blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
0d0e45b717500e7096f723da45140055b013f0af
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/nnbedew.py
903345cf4acfef6232547aba112b5421e03d2b8f
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
65
py
ii = [('GodwWSL2.py', 3), ('AinsWRR3.py', 1), ('FerrSDO2.py', 1)]
e914f312a676793d37bbd0b6ebd106a5a1ed8467
a46d135ba8fd7bd40f0b7d7a96c72be446025719
/packages/python/plotly/plotly/validators/sankey/node/line/_widthsrc.py
f4b333792ea5fe507c7ee8f990eed4194966516e
[ "MIT" ]
permissive
hugovk/plotly.py
5e763fe96f225d964c4fcd1dea79dbefa50b4692
cfad7862594b35965c0e000813bd7805e8494a5b
refs/heads/master
2022-05-10T12:17:38.797994
2021-12-21T03:49:19
2021-12-21T03:49:19
234,146,634
0
0
MIT
2020-01-15T18:33:43
2020-01-15T18:33:41
null
UTF-8
Python
false
false
419
py
import _plotly_utils.basevalidators class WidthsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name="widthsrc", parent_name="sankey.node.line", **kwargs ): super(WidthsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs )
5cd9a52daf3835b8c6d129f6f036940adfa985e3
700bf615913fa5dd8686fac51b444f691023a035
/igrins/recipes/recipe_wvlsol_sky2.py
2ccbf18967d717ff08c39a6b8788abb53a01a2d4
[]
no_license
shihyuntang/plp
e24da3d23debabb61edfca5416a72577717c6195
842a5db71dfe57d1b3bf8ac292dabdb69830ac7f
refs/heads/master
2023-03-09T06:13:50.874801
2021-02-26T20:03:20
2021-02-26T20:03:20
285,095,289
0
0
null
2020-08-04T20:42:51
2020-08-04T20:42:50
null
UTF-8
Python
false
false
6,854
py
# This is to use new framework. Let's use this to measure flexure # between emission spectra (e.g., sky, UNe, etc.) #import os import numpy as np import pandas as pd def save_qa(obsset): df = obsset.load_data_frame("SKY_FITTED_PIXELS_JSON", orient="split") msk_ = df["slit_center"] == 0.5 dfm_ = df[msk_] msk = np.isfinite(dfm_["pixels"]) dfm = dfm_[msk] lines_map = dict((o, (_["pixels"].values, _["wavelength"].values)) for o, _ in dfm.groupby("order")) from matplotlib.figure import Figure from igrins.libs.ecfit import check_fit d = obsset.load_item("SKY_WVLSOL_JSON") orders = d["orders"] fit_results = obsset.load_item("SKY_WVLSOL_FIT_RESULT_JSON") # fit_results = dict(xyz=[xl[msk], yl[msk], zl[msk]], # fit_params=fit_params, # fitted_model=poly_2d) # xl, yl, zl = get_ordered_line_data(reidentified_lines_map) xl, yl, zlo = fit_results["xyz"] xl, yl, zlo = [np.array(_) for _ in [xl, yl, zlo]] zl = zlo m = np.array(fit_results["fitted_mask"]) lines_map_filtered = dict((o, (_["pixels"].values, _["wavelength"].values)) for o, _ in dfm[m].groupby("order")) modeul_name, class_name, serialized = fit_results["fitted_model"] from igrins.libs.astropy_poly_helper import deserialize_poly_model p = deserialize_poly_model(modeul_name, class_name, serialized) if 1: fig1 = Figure(figsize=(12, 7)) check_fit(fig1, xl, yl, zl, p, orders, lines_map) fig1.tight_layout() fig2 = Figure(figsize=(12, 7)) check_fit(fig2, xl[m], yl[m], zl[m], p, orders, lines_map_filtered) fig2.tight_layout() from igrins.libs.qa_helper import figlist_to_pngs dest_dir = obsset.query_item_path("qa_sky_fit2d_dir", subdir="sky_fit2d") figlist_to_pngs(dest_dir, [fig1, fig2]) # sky_basename = helper.get_basename(band, obsids[0]) # sky_figs = helper.get_section_filename_base("QA_PATH", # "oh_fit2d", # "oh_fit2d_"+sky_basename) # figlist_to_pngs(sky_figs, [fig1, fig2]) def save_distortion_db(obsset): db = obsset.load_db("distortion") db.update(obsset.band, obsset.basename) def save_wvlsol_db(obsset): db = obsset.load_db("wvlsol") db.update(obsset.band, obsset.basename) # if 1: # thar_db.update(band, thar_basename) # 20151003 : Below is an attemp to modularize the recipes, which has # not finished. Initial solution part is done, but the distortion part # is not. def save_ordermap_slitposmap(obsset): from aperture_helper import get_simple_aperture_from_obsset wvlsol_v0 = obsset.load_resource_for("wvlsol_v0") orders = wvlsol_v0["orders"] ap = get_simple_aperture_from_obsset(obsset, orders=orders) order_map = ap.make_order_map() slitpos_map = ap.make_slitpos_map() order_map2 = ap.make_order_map(mask_top_bottom=True) obsset.store_image("ordermap_fits", order_map) obsset.store_image("slitposmap_fits", slitpos_map) obsset.store_image("ordermap_masked_fits", order_map2) def save_wavelength_map(obsset): fit_results = obsset.load_item("SKY_WVLSOL_FIT_RESULT_JSON") from igrins.libs.astropy_poly_helper import deserialize_poly_model module_name, klass_name, serialized = fit_results["fitted_model"] poly_2d = deserialize_poly_model(module_name, klass_name, serialized) order_map = obsset.load_item("ordermap_fits")[0].data # slitpos_map = caldb.load_item_from(basename, "slitposmap_fits") offset_map = obsset.load_item("slitoffset_fits")[0].data msk = order_map > 0 _, pixels = np.indices(msk.shape) orders = order_map[msk] wvl = poly_2d(pixels[msk] - offset_map[msk], orders) / orders wvlmap = np.empty(msk.shape, dtype=float) wvlmap.fill(np.nan) wvlmap[msk] = wvl obsset.store_image("WAVELENGTHMAP_FITS", wvlmap) from igrins.libs.recipe_helper import RecipeHelper from process_wvlsol_v0 import extract_spectra_multi from process_wvlsol_v0 import make_combined_image def process_band(utdate, recipe_name, band, groupname, obsids, frametypes, aux_infos, config_name): from igrins import get_caldb, get_obsset caldb = get_caldb(config_name, utdate) obsset = get_obsset(caldb, band, recipe_name, obsids, frametypes) # STEP 1 : ## make combined image make_combined_image(obsset) # Step 2 extract_spectra_multi(obsset) from process_identify_multiline import identify_multiline identify_multiline(obsset) from process_wvlsol_volume_fit import volume_fit, generate_slitoffsetmap volume_fit(obsset) save_distortion_db(obsset) save_ordermap_slitposmap(obsset) generate_slitoffsetmap(obsset) from process_derive_wvlsol import derive_wvlsol derive_wvlsol(obsset) save_wvlsol_db(obsset) save_wavelength_map(obsset) from process_save_wat_header import save_wat_header save_wat_header(obsset) # save_wavelength_map(helper, band, obsids) # #fit_wvl_sol(helper, band, obsids) save_qa(obsset) # some of the fugures are missing. # save_figures() from igrins.libs.recipe_factory import new_recipe_class, new_recipe_func # If the recipe is != "SKY", the resulting combined image will be A-B. _recipe_class_wvlsol_sky = new_recipe_class("RecipeWvlsolSky", ["SKY", "SKY_AB"], process_band) wvlsol_sky = new_recipe_func("wvlsol_sky", _recipe_class_wvlsol_sky) sky_wvlsol = new_recipe_func("sky_wvlsol", _recipe_class_wvlsol_sky) __all__ = wvlsol_sky, sky_wvlsol # if 0: # # Step 3: # identify_lines(helper, band, obsids) # get_1d_wvlsol(helper, band, obsids) # save_1d_wvlsol(extractor, # orders_w_solutions, wvl_sol, p) # save_qa(extractor, orders_w_solutions, # reidentified_lines_map, p, m) # save_figures(helper, band, obsids) # save_db(helper, band, obsids) if __name__ == "__main__": utdate = "20140709" obsids = [62, 63] utdate = "20140525" obsids = [29] utdate = "20150525" obsids = [52] recipe_name = "SKY" # utdate = "20150525" # obsids = [32] # recipe_name = "THAR" band = "K" #helper = RecipeHelper("../recipe.config", utdate) config_name = "../recipe.config" process_band(utdate, recipe_name, band, obsids, config_name)
06470ed428c9e68e74635aeeb5e1e3f853111727
5686100c4ed0436347107f4e9faae30fca609c09
/leetcode/1030. Matrix Cells in Distance Order/Solution.py
926b64215552cf842d6465f0b2786a2cc0af72cb
[]
no_license
adamqddnh/algorithm-questions
7d4f56b7e5ac2ff9460774d43ecf8cba2cd7b0cb
93a1b082e10ade0dd464deb80b5df6c81552f534
refs/heads/master
2023-06-29T04:51:26.635740
2021-07-23T09:11:45
2021-07-23T09:11:45
252,675,682
0
0
null
null
null
null
UTF-8
Python
false
false
608
py
class Solution(object): def allCellsDistOrder(self, R, C, r0, c0): """ :type R: int :type C: int :type r0: int :type c0: int :rtype: List[List[int]] """ maxLength = R + C + 1 distance = [[] for i in range(0, maxLength)] for i in range(0, R): for j in range(0, C): temp = abs(r0 - i) + abs(c0 - j) distance[temp].append([i, j]) result = [] for i in range(0, maxLength): for temp in distance[i]: result.append(temp) return result
f35da223ba059f5824b45b5398b78811b900ca89
aef40813a1b92cec0ea4fc25ec1d4a273f9bfad4
/Q15__/04_Count_Submatrices_With_All_Ones/Solution.py
c0f071e4eb738bc0cdf16e003c0295732600aa05
[ "Apache-2.0" ]
permissive
hsclinical/leetcode
e9d0e522e249a24b28ab00ddf8d514ec855110d7
48a57f6a5d5745199c5685cd2c8f5c4fa293e54a
refs/heads/main
2023-06-14T11:28:59.458901
2021-07-09T18:57:44
2021-07-09T18:57:44
319,078,569
0
0
null
null
null
null
UTF-8
Python
false
false
1,238
py
from typing import List class Solution: def numSubmat(self, mat: List[List[int]]) -> int: rowLen = len(mat) colLen = len(mat[0]) medium = [ [0] * colLen for _ in range(rowLen) ] #stack to bottom for j in range(colLen): for i in range(rowLen): if mat[i][j] == 1: if i == 0 or mat[i-1][j] == 0: medium[i][j] = 1 else: medium[i][j] = medium[i-1][j] + 1 #print(medium) result = [ [0] * colLen for _ in range(rowLen) ] total = 0 for i in range(rowLen): for j in range(colLen): if mat[i][j] == 1: cellTotal = medium[i][j] # backward column minStack = cellTotal for k in range(j-1, -1, -1): if mat[i][k] == 0: break else: minStack = min(minStack, medium[i][k]) cellTotal += minStack total += cellTotal result[i][j] = cellTotal #print(result) return total
dc9f823aea13cfa9dee9a53a698656d62586ac18
d50d24a111f7fc078ef98bc5059355793fe7dd37
/tao_bao/db/dbhelper.py
97d38ade4af4772e1f66711aeb87dcddf3af6dc3
[]
no_license
liangxuCHEN/scrapy_taobao
f2cbd38b5d746052bac3366aa035edf988cb1115
595fb9a9dcd45a32b43e0478580a7a936d1b55a2
refs/heads/master
2021-05-08T11:50:12.854647
2018-04-11T03:20:17
2018-04-11T03:20:17
119,913,389
0
0
null
null
null
null
UTF-8
Python
false
false
2,986
py
# -*- coding: utf-8 -*- from scrapy.utils.project import get_project_settings #导入seetings配置 from sqlalchemy import create_engine, Column, String, DateTime, Integer, Float, func from sqlalchemy.ext.declarative import declarative_base import redis # 初始化数据库连接: # engine = create_engine('mysql+pymysql://root:123asd@localhost:3306/utf_sys?charset=utf8') engine = create_engine('postgresql+psycopg2://postgres:[email protected]/execdb') # 初始化redis数据库连接 Redis = redis.StrictRedis(host='localhost',port=6379,db=0) Base = declarative_base() class TaoBaoModel(Base): __tablename__ = 'tab_taobao_item' id = Column(Integer, primary_key=True) page_number = Column(Integer) job_id = Column(String(50)) item_id = Column(String(50)) name = Column(String(100)) main_pic = Column(String(200)) price = Column(Float) pay_person = Column(Integer) province = Column(String(20)) city = Column(String(20)) shop_name = Column(String(50)) detail_url = Column(String(200)) category_id = Column(String(50)) category = Column(String(50)) is_tmall = Column(Integer) user_id = Column(String(50)) market = Column(String(20)) record_date = Column(DateTime) #做一个表记录搜索历史 class TaoBaoProjectModel(Base): """ 参数说明: _id: 这个搜索项目的ID, (TODO:以后在数据库生成) project_name: 项目名称 market: 1 - -》 淘宝, 2 - -》 天猫 keyword: 输入搜索框的关键字 pageNumber: 需要爬取的页数,最大100页 min_price: 选填,搜索得到宝贝价格的最低价 max_price: 选填,搜索得到宝贝价格的最高价 status: 1:新任务, 2:进行中, 3:已经完成 created: 创建时间 """ __tablename__ = 'tab_project' id = Column(Integer, primary_key=True) market = Column(String(10)) project_name = Column(String(50)) key_word = Column(String(200)) page_number = Column(Integer) min_price = Column(String(20)) max_price = Column(String(20)) status = Column(String(20), server_default='new') created_at = Column(DateTime, server_default=func.now()) updated_at = Column(DateTime, server_default=func.now(), server_onupdate=func.now()) def to_json(self): return { 'id': self.id, 'project_name': self.project_name, 'market': self.market, 'key_word': self.key_word, 'page_number': self.page_number, 'min_price': self.min_price, 'max_price': self.max_price, 'status': self.status, 'created_at': self.created_at.strftime("%Y-%m-%d %H:%M:%S") if self.created_at is not None else "", 'updated_at': self.updated_at.strftime("%Y-%m-%d %H:%M:%S") if self.updated_at is not None else "" } #创建数据表,如果数据表存在则忽视!!! Base.metadata.create_all(engine)
09dc5e4b00b0196437111230fc9b278edca31401
cb6f9cf1901b68cad07def3dd0fad75ab046e330
/constructor/migrations/0037_auto_20210824_0700.py
28b5d8a020dee9473cd9b792f1def7f8a2828737
[]
no_license
Junaid522/Cons
631dd9e0e3f1249bd911196ba4a2fef8357bd8fb
cdceb1d07728209dad827917c8ba88e1319c94ad
refs/heads/master
2023-08-10T17:23:28.942917
2021-09-20T07:30:02
2021-09-20T07:30:02
408,348,598
0
0
null
null
null
null
UTF-8
Python
false
false
731
py
# Generated by Django 3.1.2 on 2021-08-24 07:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('constructor', '0036_currency_description'), ] operations = [ migrations.AddField( model_name='course', name='career_prospects', field=models.TextField(blank=True, null=True), ), migrations.AddField( model_name='course', name='overview', field=models.TextField(blank=True, null=True), ), migrations.AddField( model_name='course', name='structure', field=models.TextField(blank=True, null=True), ), ]
be03a987402a3e0420168cf4f91c126ffd69c9de
d7641647d67d110e08997767e85bbea081c2537b
/bitmovin_api_sdk/encoding/inputs/udp_multicast/__init__.py
82c7c6f74bb923c3eaaf1fb60471039f9d174982
[ "MIT" ]
permissive
aachenmax/bitmovin-api-sdk-python
d3ded77c459852cbea4927ff28c2a4ad39e6026a
931bcd8c4695a7eb224a7f4aa5a189ba2430e639
refs/heads/master
2022-11-16T08:59:06.830567
2020-07-06T07:16:51
2020-07-06T07:16:51
267,538,689
0
1
MIT
2020-07-06T07:16:52
2020-05-28T08:44:44
Python
UTF-8
Python
false
false
322
py
from bitmovin_api_sdk.encoding.inputs.udp_multicast.udp_multicast_api import UdpMulticastApi from bitmovin_api_sdk.encoding.inputs.udp_multicast.customdata.customdata_api import CustomdataApi from bitmovin_api_sdk.encoding.inputs.udp_multicast.udp_multicast_input_list_query_params import UdpMulticastInputListQueryParams
8a51a15dd22f14caa28b6fec7f2520ee774af67f
ed06ef44c944707276a2fca16d61e7820596f51c
/Python/path-with-minimum-effort.py
46d3f4ed6f06ca05828dba1b5a76a7f30589242a
[]
no_license
sm2774us/leetcode_interview_prep_2021
15842bef80637c6ff43542ed7988ec4b2d03e82c
33b41bea66c266b733372d9a8b9d2965cd88bf8c
refs/heads/master
2023-05-29T14:14:49.074939
2021-06-12T19:52:07
2021-06-12T19:52:07
374,725,760
0
0
null
null
null
null
UTF-8
Python
false
false
7,239
py
# Time: O(m * n * log(m * n)) # Space: O(m * n) import heapq # Dijkstra algorithm solution class Solution(object): def minimumEffortPath(self, heights): """ :type heights: List[List[int]] :rtype: int """ directions = [(0, 1), (1, 0), (0, -1), (-1, 0)] dst = (len(heights)-1, len(heights[0])-1) dist = [[float("inf")]*len(heights[0]) for _ in range(len(heights))] min_heap = [(0, 0, 0)] lookup = [[False]*len(heights[0]) for _ in range(len(heights))] while min_heap: d, r, c = heapq.heappop(min_heap) if lookup[r][c]: continue lookup[r][c] = True if (r, c) == dst: return d for dr, dc in directions: nr, nc = r+dr, c+dc if not (0 <= nr < len(heights) and 0 <= nc < len(heights[0]) and not lookup[nr][nc]): continue nd = max(d, abs(heights[nr][nc]-heights[r][c])) if nd < dist[nr][nc]: dist[nr][nc] = nd heapq.heappush(min_heap, (nd, nr, nc)) return -1 # Time: O(m * n * log(m * n) + m * n * α(m * n)) = O(m * n * log(m * n)) # Space: O(m * n) import collections class UnionFind(object): # Time: (n * α(n)), Space: O(n) def __init__(self, n): self.set = range(n) self.rank = [0]*n def find_set(self, x): stk = [] while self.set[x] != x: # path compression stk.append(x) x = self.set[x] while stk: self.set[stk.pop()] = x return x def union_set(self, x, y): x_root, y_root = map(self.find_set, (x, y)) if x_root == y_root: return False if self.rank[x_root] < self.rank[y_root]: # union by rank self.set[x_root] = y_root elif self.rank[x_root] > self.rank[y_root]: self.set[y_root] = x_root else: self.set[y_root] = x_root self.rank[x_root] += 1 return True # union find solution class Solution2(object): def minimumEffortPath(self, heights): """ :type heights: List[List[int]] :rtype: int """ def index(n, i, j): return i*n + j diffs = [] for i in range(len(heights)): for j in range(len(heights[0])): if i > 0: diffs.append((abs(heights[i][j]-heights[i-1][j]), index(len(heights[0]), i-1, j), index(len(heights[0]), i, j))) if j > 0: diffs.append((abs(heights[i][j]-heights[i][j-1]), index(len(heights[0]), i, j-1), index(len(heights[0]), i, j))) diffs.sort() union_find = UnionFind(len(heights)*len(heights[0])) for d, i, j in diffs: if union_find.union_set(i, j): if union_find.find_set(index(len(heights[0]), 0, 0)) == \ union_find.find_set(index(len(heights[0]), len(heights)-1, len(heights[0])-1)): return d return 0 # Time: O(m * n * logh) # Space: O(m * n) # bi-bfs solution class Solution3(object): def minimumEffortPath(self, heights): """ :type heights: List[List[int]] :rtype: int """ directions = [(0, 1), (1, 0), (0, -1), (-1, 0)] def check(heights, x): # bi-bfs lookup = [[False]*len(heights[0]) for _ in range(len(heights))] left, right = {(0, 0)}, {(len(heights)-1, len(heights[0])-1)} while left: for r, c in left: lookup[r][c] = True new_left = set() for r, c in left: if (r, c) in right: return True for dr, dc in directions: nr, nc = r+dr, c+dc if not (0 <= nr < len(heights) and 0 <= nc < len(heights[0]) and abs(heights[nr][nc]-heights[r][c]) <= x and not lookup[nr][nc]): continue new_left.add((nr, nc)) left = new_left if len(left) > len(right): left, right = right, left return False left, right = 0, 10**6 while left <= right: mid = left + (right-left)//2 if check(heights, mid): right = mid-1 else: left = mid+1 return left # Time: O(m * n * logh) # Space: O(m * n) import collections # bfs solution class Solution4(object): def minimumEffortPath(self, heights): """ :type heights: List[List[int]] :rtype: int """ directions = [(0, 1), (1, 0), (0, -1), (-1, 0)] def check(heights, x): lookup = [[False]*len(heights[0]) for _ in range(len(heights))] q = collections.deque([(0, 0)]) while q: r, c = q.popleft() if (r, c) == (len(heights)-1, len(heights[0])-1): return True for dr, dc in directions: nr, nc = r+dr, c+dc if not (0 <= nr < len(heights) and 0 <= nc < len(heights[0]) and abs(heights[nr][nc]-heights[r][c]) <= x and not lookup[nr][nc]): continue lookup[nr][nc] = True q.append((nr, nc)) return False left, right = 0, 10**6 while left <= right: mid = left + (right-left)//2 if check(heights, mid): right = mid-1 else: left = mid+1 return left # Time: O(m * n * logh) # Space: O(m * n) # dfs solution class Solution5(object): def minimumEffortPath(self, heights): """ :type heights: List[List[int]] :rtype: int """ directions = [(0, 1), (1, 0), (0, -1), (-1, 0)] def check(heights, x): lookup = [[False]*len(heights[0]) for _ in range(len(heights))] stk = [(0, 0)] while stk: r, c = stk.pop() if (r, c) == (len(heights)-1, len(heights[0])-1): return True for dr, dc in directions: nr, nc = r+dr, c+dc if not (0 <= nr < len(heights) and 0 <= nc < len(heights[0]) and abs(heights[nr][nc]-heights[r][c]) <= x and not lookup[nr][nc]): continue lookup[nr][nc] = True stk.append((nr, nc)) return False left, right = 0, 10**6 while left <= right: mid = left + (right-left)//2 if check(heights, mid): right = mid-1 else: left = mid+1 return left
5e8af7a5f3c6134790c205055461a82ddd53a5a9
292437b85108504a7ca91571f26a639a313501b6
/venv/lib/python2.7/site-packages/oslo_middleware/tests/test_correlation_id.py
6dde5d8af681454e6d686cb8ed827fed79d6f0df
[]
no_license
heekof/monitoring-agent
c86bebcf77091490df7a6b8c881b85fdb2b9e4eb
b1c079efdf2dabe854f2aa3d96f36d2ec7021070
refs/heads/master
2021-01-15T15:39:01.512801
2016-08-31T20:53:38
2016-08-31T20:53:38
58,620,098
1
0
null
null
null
null
UTF-8
Python
false
false
1,713
py
# Copyright (c) 2013 Rackspace Hosting # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid import mock from oslotest import base as test_base from oslotest import moxstubout from oslo_middleware import correlation_id class CorrelationIdTest(test_base.BaseTestCase): def setUp(self): super(CorrelationIdTest, self).setUp() self.stubs = self.useFixture(moxstubout.MoxStubout()).stubs def test_process_request(self): app = mock.Mock() req = mock.Mock() req.headers = {} mock_uuid4 = mock.Mock() mock_uuid4.return_value = "fake_uuid" self.stubs.Set(uuid, 'uuid4', mock_uuid4) middleware = correlation_id.CorrelationId(app) middleware(req) self.assertEqual(req.headers.get("X_CORRELATION_ID"), "fake_uuid") def test_process_request_should_not_regenerate_correlation_id(self): app = mock.Mock() req = mock.Mock() req.headers = {"X_CORRELATION_ID": "correlation_id"} middleware = correlation_id.CorrelationId(app) middleware(req) self.assertEqual(req.headers.get("X_CORRELATION_ID"), "correlation_id")
ec81bc05747f8dce6b33b00f5ce00cd60311d805
380a47268c5975473a2e7c38c747bc3bdbd981b1
/benchmark/third_party/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
5b4de28b7ced312c7ef984524a8bae2aeeca582e
[ "Apache-2.0" ]
permissive
FMInference/FlexGen
07aa9b1918c19b02077e13ad07e76840843810dd
d34f7b4b43ed87a374f394b0535ed685af66197b
refs/heads/main
2023-07-24T02:29:51.179817
2023-07-21T22:38:31
2023-07-21T22:38:31
602,270,517
6,821
411
Apache-2.0
2023-07-07T22:59:24
2023-02-15T21:18:53
Python
UTF-8
Python
false
false
62,759
py
# coding=utf-8 # Copyright 2022 Meta Platforms and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Data2Vec Vision model.""" import collections.abc import math from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union import numpy as np import tensorflow as tf from transformers.tf_utils import shape_list, stable_softmax from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSemanticSegmenterOutput, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_data2vec_vision import Data2VecVisionConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "Data2VecVisionConfig" _FEAT_EXTRACTOR_FOR_DOC = "BeitFeatureExtractor" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/data2vec-vision-base" _EXPECTED_OUTPUT_SHAPE = [1, 197, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/data2vec-vision-base-ft1k" _IMAGE_CLASS_EXPECTED_OUTPUT = "remote control, remote" TF_DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/data2vec-vision-base-ft1k", # See all Data2VecVision models at https://huggingface.co/models?filter=data2vec-vision ] @dataclass class TFData2VecVisionModelOutputWithPooling(TFBaseModelOutputWithPooling): """ Class for outputs of [`TFData2VecVisionModel`]. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token will be returned. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None pooler_output: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None class TFData2VecVisionDropPath(tf.keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x class TFData2VecVisionEmbeddings(tf.keras.layers.Layer): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.patch_embeddings = TFData2VecVisionPatchEmbeddings(config, name="patch_embeddings") self.num_patches = self.patch_embeddings.num_patches self.config = config self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def build(self, input_shape: tf.TensorShape): self.cls_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="cls_token", ) if self.config.use_mask_token: self.mask_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="mask_token", ) else: self.mask_token = None if self.config.use_absolute_position_embeddings: self.position_embeddings = self.add_weight( shape=(1, self.num_patches + 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="position_embeddings", ) else: self.position_embeddings = None super().build(input_shape) def call(self, pixel_values: tf.Tensor, bool_masked_pos: Optional[tf.Tensor] = None) -> tf.Tensor: embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, projection_dim = shape_list(embeddings) cls_tokens = tf.tile(self.cls_token, (batch_size, 1, 1)) if bool_masked_pos is not None: mask_tokens = tf.broadcast_to(self.mask_token, (batch_size, seq_len, projection_dim)) # replace the masked visual tokens by mask_tokens w = bool_masked_pos[..., None] w = tf.cast(w, mask_tokens.dtype) # since TF doesn't support eager tensor assignment embeddings = embeddings * (1 - w) + mask_tokens * w embeddings = tf.concat([cls_tokens, embeddings], axis=1) if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings class TFData2VecVisionPatchEmbeddings(tf.keras.layers.Layer): """ Image to Patch Embedding. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.patch_shape = patch_shape self.num_channels = num_channels self.projection = tf.keras.layers.Conv2D( filters=hidden_size, kernel_size=patch_size, strides=patch_size, padding="valid", data_format="channels_last", kernel_initializer="glorot_uniform", # following torch.nn.Linear bias_initializer="zeros", name="projection", ) def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor: batch_size, num_channels, height, width = shape_list(pixel_values) if tf.executing_eagerly(): if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the" " configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) projection = self.projection(pixel_values) # Change the 2D spatial dimensions to a single temporal dimension. # shape = (batch_size, num_patches, out_channels=embed_dim) num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0]) return tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1)) class TFData2VecVisionSelfAttention(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key", use_bias=False, ) self.value = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob) if window_size: self.relative_position_bias = TFData2VecVisionRelativePositionBias( config, window_size=window_size, name="relative_position_bias" ) else: self.relative_position_bias = None def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) mixed_key_layer = self.key(inputs=hidden_states) mixed_value_layer = self.value(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) attention_scores = attention_scores / self.sqrt_att_head_size # Add relative position bias if present. if self.relative_position_bias is not None: # Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras # might complain about `Layer.call()` not being invoked properly. In this case this input # i.e., 0.0 is not going to be used in any calculations so we're safe. attention_scores = attention_scores + self.relative_position_bias(0.0)[None, ...] # Add shared relative position bias if provided. if relative_position_bias is not None: attention_scores = attention_scores + relative_position_bias # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs class TFData2VecVisionSelfOutput(tf.keras.layers.Layer): """ The residual connection is defined in TFData2VecVisionLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, gamma=None, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states class TFData2VecVisionAttention(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) self.attention = TFData2VecVisionSelfAttention(config, window_size=window_size, name="attention") self.dense_output = TFData2VecVisionSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.attention( hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->Data2VecVision class TFData2VecVisionIntermediate(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class TFData2VecVisionOutput(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states class TFData2VecVisionLayer(tf.keras.layers.Layer): """This corresponds to the Block class in the timm implementation.""" def __init__( self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0, **kwargs ): super().__init__(**kwargs) self.config = config self.attention = TFData2VecVisionAttention(config, window_size=window_size, name="attention") self.intermediate = TFData2VecVisionIntermediate(config, name="intermediate") self.data2vec_output = TFData2VecVisionOutput(config, name="output") self.layernorm_before = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="layernorm_before" ) self.layernorm_after = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="layernorm_after" ) # Using `layers.Activation` instead of `tf.identity` to better control `training` # behaviour. self.drop_path = ( TFData2VecVisionDropPath(drop_path_rate, name="drop_path") if drop_path_rate > 0.0 else tf.keras.layers.Activation("linear", name="drop_path") ) self.init_values = config.layer_scale_init_value def build(self, input_shape: tf.TensorShape): if self.init_values > 0: self.lambda_1 = self.add_weight( shape=(self.config.hidden_size), initializer="ones", trainable=True, name="lambda_1", ) self.lambda_2 = self.add_weight( shape=(self.config.hidden_size), initializer="ones", trainable=True, name="lambda_2", ) self.lambda_1.assign(self.init_values * tf.ones((self.config.hidden_size))) self.lambda_2.assign(self.init_values * tf.ones((self.config.hidden_size))) else: self.lambda_1, self.lambda_2 = None, None super().build(input_shape) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: self_attention_outputs = self.attention( # in Data2VecVision, layernorm is applied before self-attention input_tensor=self.layernorm_before(inputs=hidden_states), head_mask=head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # apply lambda_1 if present if self.lambda_1 is not None: attention_output = self.lambda_1 * attention_output # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # in Data2VecVision, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.data2vec_output(layer_output) if self.lambda_2 is not None: layer_output = self.lambda_2 * layer_output # second residual connection layer_output = self.drop_path(layer_output) + hidden_states outputs = (layer_output,) + outputs return outputs # Taken and modified from here: # https://github.com/leondgarse/keras_cv_attention_models/blob/main/keras_cv_attention_models/beit/beit.py#L28 class TFData2VecVisionRelativePositionBias(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: tuple, **kwargs) -> None: super().__init__(**kwargs) self.config = config self.window_size = window_size # +3 for cls_token_pos_len # window_size can be something like (14, 14) self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_index = self.get_position_index() def build(self, input_shape): self.relative_position_bias_table = self.add_weight( shape=(self.num_relative_distance, self.config.num_attention_heads), initializer="zeros", trainable=True, name="relative_position_bias_table", ) # [2*Wh-1 * 2*Ww-1, nH] # cls to token & token 2 cls & cls to cls super().build(input_shape) def get_position_index(self): # get pair-wise relative position index for each token inside the window xx, yy = tf.meshgrid(range(self.window_size[0]), range(self.window_size[1])) coords = tf.stack([yy, xx], axis=0) # [2, Wh, Ww] coords_flatten = tf.reshape(coords, [2, -1]) # [2, Wh*Ww] relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # [2, Wh*Ww, Wh*Ww] relative_coords = tf.transpose(relative_coords, perm=[1, 2, 0]) # [Wh*Ww, Wh*Ww, 2] xx = (relative_coords[:, :, 0] + self.window_size[0] - 1) * (2 * self.window_size[1] - 1) yy = relative_coords[:, :, 1] + self.window_size[1] - 1 relative_coords = tf.stack([xx, yy], axis=-1) relative_position_index = tf.reduce_sum(relative_coords, axis=-1) # [Wh*Ww, Wh*Ww] top = tf.ones((1, relative_position_index.shape[1]), dtype=relative_position_index.dtype) * ( self.num_relative_distance - 3 ) left = tf.ones((relative_position_index.shape[0], 1), dtype=relative_position_index.dtype) * ( self.num_relative_distance - 2 ) corner = tf.ones((1, 1), dtype=relative_position_index.dtype) * (self.num_relative_distance - 1) left_corner = tf.concat([corner, left], axis=0) relative_position_index = tf.concat([top, relative_position_index], axis=0) relative_position_index = tf.concat([left_corner, relative_position_index], axis=1) # [Wh*Ww + 1, Wh*Ww + 1] return relative_position_index def call(self, inputs=None) -> tf.Tensor: relative_position_bias = tf.gather(self.relative_position_bias_table, self.relative_position_index, axis=0) return tf.transpose(relative_position_bias, [2, 0, 1]) class TFData2VecVisionEncoder(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) self.config = config if config.use_shared_relative_position_bias: self.relative_position_bias = TFData2VecVisionRelativePositionBias( config, window_size=window_size, name="relative_position_bias" ) else: self.relative_position_bias = None # stochastic depth decay rule dpr = [x for x in tf.linspace(0.0, config.drop_path_rate, config.num_hidden_layers)] self.layer = [ TFData2VecVisionLayer( config, window_size=window_size if config.use_relative_position_bias else None, drop_path_rate=dpr[i], name=f"layer_._{i}", ) for i in range(config.num_hidden_layers) ] def call( self, hidden_states: tf.Tensor, head_mask: Optional[tf.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None # Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras # might complain about `Layer.call()` not being invoked properly. In this case this input # i.e., 0.0 is not going to be used in any calculations so we're safe. relative_position_bias = ( self.relative_position_bias(0.0) if self.relative_position_bias is not None else None ) layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @keras_serializable class TFData2VecVisionMainLayer(tf.keras.layers.Layer): config_class = Data2VecVisionConfig def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.add_pooling_layer = add_pooling_layer self.embeddings = TFData2VecVisionEmbeddings(config, name="embeddings") self.encoder = TFData2VecVisionEncoder( config, window_size=self.embeddings.patch_embeddings.patch_shape, name="encoder" ) self.layernorm = ( tf.identity if config.use_mean_pooling else tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") ) # We are setting the `data_format` like so because from here on we will revert to the # NCHW output format self.pooler = TFData2VecVisionPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, pixel_values: Optional[tf.Tensor] = None, bool_masked_pos: Optional[tf.Tensor] = None, head_mask: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings(pixel_values, bool_masked_pos, training=training) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return TFData2VecVisionModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class TFData2VecVisionPooler(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.layernorm = ( tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") if config.use_mean_pooling else None ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: if self.layernorm is not None: # Mean pool the final hidden states of the patch tokens patch_tokens = hidden_states[:, 1:, :] pooled_output = self.layernorm(tf.reduce_mean(patch_tokens, axis=1)) else: # Pool by simply taking the final hidden state of the [CLS] token pooled_output = hidden_states[:, 0] return pooled_output class TFData2VecVisionPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Data2VecVisionConfig base_model_prefix = "data2vec_vision" main_input_name = "pixel_values" _keys_to_ignore_on_load_unexpected = [r"relative_position_index"] @property def dummy_inputs(self) -> Dict[str, tf.Tensor]: """ Dummy inputs to build the network. Returns: `Dict[str, tf.Tensor]`: The dummy inputs. """ VISION_DUMMY_INPUTS = tf.random.uniform( shape=(3, self.config.num_channels, self.config.image_size, self.config.image_size), dtype=tf.float32, ) return {"pixel_values": tf.constant(VISION_DUMMY_INPUTS)} @tf.function( input_signature=[ { "pixel_values": tf.TensorSpec((None, None, None, None), tf.float32, name="pixel_values"), } ] ) def serving(self, inputs): """ Method used for serving the model. Args: inputs (`Dict[str, tf.Tensor]`): The input of the saved model as a dictionary of tensors. """ output = self.call(inputs) return self.serving_output(output) DATA2VEC_VISION_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.). This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`Data2VecVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ DATA2VEC_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`BeitFeatureExtractor`]. See [`BeitFeatureExtractor.__call__`] for details. head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Data2VecVision Model transformer outputting raw hidden-states without any specific head on top.", DATA2VEC_VISION_START_DOCSTRING, ) class TFData2VecVisionModel(TFData2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.data2vec_vision = TFData2VecVisionMainLayer( config, add_pooling_layer=add_pooling_layer, name="data2vec_vision" ) def get_input_embeddings(self): return self.data2vec_vision.get_input_embeddings() @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( processor_class=_FEAT_EXTRACTOR_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFData2VecVisionModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: Optional[TFModelInputType] = None, bool_masked_pos: Optional[tf.Tensor] = None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]: outputs = self.data2vec_vision( pixel_values=pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def serving_output(self, output: TFData2VecVisionModelOutputWithPooling) -> TFData2VecVisionModelOutputWithPooling: hidden_states = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attentions = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFData2VecVisionModelOutputWithPooling( last_hidden_state=output.last_hidden_state, pooler_output=output.pooler_output, hidden_states=hidden_states, attentions=attentions, ) @add_start_docstrings( """ Data2VecVision Model transformer with an image classification head on top (a linear layer on top of the average of the final hidden states of the patch tokens) e.g. for ImageNet. """, DATA2VEC_VISION_START_DOCSTRING, ) class TFData2VecVisionForImageClassification(TFData2VecVisionPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=True, name="data2vec_vision") # Classifier head self.classifier = tf.keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", ) @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( processor_class=_FEAT_EXTRACTOR_FOR_DOC, checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: Optional[TFModelInputType] = None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, tuple]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_vision( pixel_values=pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput: hidden_states = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attentions = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hidden_states, attentions=attentions) class TFData2VecVisionConvModule(tf.keras.layers.Layer): """ A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, out_channels: int, kernel_size: Union[int, Tuple[int, int]], padding: str = "valid", bias: bool = False, dilation: Union[int, Tuple[int, int]] = 1, **kwargs ) -> None: super().__init__(**kwargs) self.conv = tf.keras.layers.Conv2D( filters=out_channels, kernel_size=kernel_size, padding=padding, use_bias=bias, dilation_rate=dilation, name="conv", ) self.bn = tf.keras.layers.BatchNormalization(name="bn", momentum=0.9, epsilon=1e-5) self.activation = tf.nn.relu def call(self, input: tf.Tensor) -> tf.Tensor: output = self.conv(input) output = self.bn(output) output = self.activation(output) return output # Copied from: # https://gist.github.com/Rocketknight1/43abbe6e73f1008e6e459486e01e0ceb class TFAdaptiveAvgPool1D(tf.keras.layers.Layer): def __init__(self, output_dim, mode="dense", **kwargs): super().__init__(**kwargs) self.output_dim = output_dim self.mode = mode self.map = None def build(self, input_shape): super().build(input_shape) """We pre-compute the sparse matrix for the build() step once. The below code comes from https://stackoverflow.com/questions/53841509/how-does-adaptive-pooling-in-pytorch-work/63603993#63603993.""" def get_kernels(ind, outd) -> List: """Returns a List [(kernel_offset_start,kernel_length)] defining all the pooling kernels for a 1-D adaptive pooling layer that takes an input of dimension `ind` and yields an output of dimension `outd`""" def start_index(a, b, c): return math.floor((float(a) * float(c)) / b) def end_index(a, b, c): return math.ceil((float(a + 1) * float(c)) / b) results = [] for ow in range(outd): start = start_index(ow, outd, ind) end = end_index(ow, outd, ind) sz = end - start results.append((start, sz)) return results in_dim = int(input_shape[-1]) kernels = get_kernels(in_dim, self.output_dim) sparse_map = np.zeros((in_dim, self.output_dim), dtype=np.float32) for i, kernel in enumerate(kernels): sparse_map[kernel[0] : kernel[0] + kernel[1], i] = 1 / kernel[1] if self.mode == "dense": self.map = tf.constant(sparse_map) else: self.map = tf.sparse.from_dense(sparse_map) def call(self, inputs): if self.mode == "dense": return inputs @ self.map else: input_dims = inputs.shape input_matrix = tf.reshape(inputs, (-1, input_dims[-1])) out = tf.sparse.sparse_dense_matmul(input_matrix, self.map) return tf.reshape(out, input_dims[:-1].as_list() + [-1]) def get_config(self): config = super().get_config() config.update({"output_dim": self.output_dim, "mode": self.mode}) return config class TFAdaptiveAvgPool2D(tf.keras.layers.Layer): def __init__(self, output_shape, mode="dense", **kwargs): super().__init__(**kwargs) self.mode = mode self.h_pool = TFAdaptiveAvgPool1D(output_shape[0], mode=mode, name="h_pool") self.w_pool = TFAdaptiveAvgPool1D(output_shape[1], mode=mode, name="w_pool") def call(self, inputs): # Rearrange from NHWC -> NCHW inputs = tf.transpose(inputs, perm=[0, 3, 1, 2]) # Perform W-pooling inputs = self.w_pool(inputs) # Rearrange NCHW -> NCWH inputs = tf.transpose(inputs, perm=[0, 1, 3, 2]) # Perform H-pooling inputs = self.h_pool(inputs) # Rearrange from NCWH -> NHWC inputs = tf.transpose(inputs, perm=[0, 3, 2, 1]) return inputs def get_config(self): config = super().get_config() config.update({"mode": self.mode}) return config class TFData2VecVisionPyramidPoolingModule(tf.keras.layers.Layer): """ Pyramid Pooling Module (PPM) used in PSPNet. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module. channels (int): Channels after modules, before conv_seg. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, pool_scales: Tuple[int, ...], channels: int, **kwargs) -> None: super().__init__(**kwargs) self.pool_scales = pool_scales self.channels = channels self.layer_list = [] for idx, pool_scale in enumerate(pool_scales): pool_scale = pool_scale if isinstance(pool_scale, collections.abc.Iterable) else (pool_scale, pool_scale) self.layer_list.append( [ TFAdaptiveAvgPool2D(output_shape=pool_scale), TFData2VecVisionConvModule(out_channels=self.channels, kernel_size=1, name=f"{idx}.1"), ] ) def call(self, x: tf.Tensor) -> List[tf.Tensor]: ppm_outs = [] inputs = x for ppm in self.layer_list: for layer_module in ppm: ppm_out = layer_module(x) x = ppm_out upsampled_ppm_out = tf.image.resize(ppm_out, size=shape_list(inputs)[1:-1], method="bilinear") ppm_outs.append(upsampled_ppm_out) return ppm_outs class TFData2VecVisionUperHead(tf.keras.layers.Layer): """ Unified Perceptual Parsing for Scene Understanding. This head is the implementation of [UPerNet](https://arxiv.org/abs/1807.10221). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, config: Data2VecVisionConfig, **kwargs) -> None: super().__init__(**kwargs) self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] self.channels = config.hidden_size self.classifier = tf.keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier") # PSP Module self.psp_modules = TFData2VecVisionPyramidPoolingModule(self.pool_scales, self.channels, name="psp_modules") self.bottleneck = TFData2VecVisionConvModule(self.channels, kernel_size=3, padding="same", name="bottleneck") # FPN Module self.lateral_convs = [] self.fpn_convs = [] for idx, _ in enumerate(self.in_channels[:-1]): # skip the top layer l_conv = TFData2VecVisionConvModule(out_channels=self.channels, kernel_size=1, name=f"lateral_convs.{idx}") fpn_conv = TFData2VecVisionConvModule( out_channels=self.channels, kernel_size=3, padding="same", name=f"fpn_convs.{idx}" ) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) self.fpn_bottleneck = TFData2VecVisionConvModule( out_channels=self.channels, kernel_size=3, padding="same", name="fpn_bottleneck" ) def psp_forward(self, inputs): x = inputs[-1] psp_outs = [x] psp_outs.extend(self.psp_modules(x)) psp_outs = tf.concat(psp_outs, axis=-1) output = self.bottleneck(psp_outs) return output def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor: # build laterals laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(encoder_hidden_states)) # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): prev_shape = shape_list(laterals[i - 1])[1:-1] laterals[i - 1] = laterals[i - 1] + tf.image.resize(laterals[i], size=prev_shape, method="bilinear") # build outputs fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1, 0, -1): fpn_outs[i] = tf.image.resize(fpn_outs[i], size=shape_list(fpn_outs[0])[1:-1], method="bilinear") fpn_outs = tf.concat(fpn_outs, axis=-1) output = self.fpn_bottleneck(fpn_outs) output = self.classifier(output) return output class TFData2VecVisionFCNHead(tf.keras.layers.Layer): """ Fully Convolution Networks for Semantic Segmentation. This head is implemented from [FCNNet](https://arxiv.org/abs/1411.4038). Args: config (Data2VecVisionConfig): Configuration. kernel_size (int): The kernel size for convs in the head. Default: 3. dilation (int): The dilation rate for convs in the head. Default: 1. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, config: Data2VecVisionConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1, **kwargs ) -> None: super().__init__(**kwargs) self.in_channels = config.hidden_size self.channels = config.auxiliary_channels self.num_convs = config.auxiliary_num_convs self.concat_input = config.auxiliary_concat_input self.in_index = in_index convs = [] convs.append( TFData2VecVisionConvModule( out_channels=self.channels, kernel_size=kernel_size, padding="same", dilation=dilation, name="convs.0", ) ) for i in range(self.num_convs - 1): convs.append( TFData2VecVisionConvModule( out_channels=self.channels, kernel_size=kernel_size, padding="same", dilation=dilation, name=f"conv_module_{i+2}", ) ) if self.num_convs == 0: self.convs = [tf.identity] else: self.convs = convs if self.concat_input: self.conv_cat = TFData2VecVisionConvModule( out_channels=self.channels, kernel_size=kernel_size, padding="same", name="conv_cat" ) self.classifier = tf.keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier") def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor: # just take the relevant feature maps hidden_states = encoder_hidden_states[self.in_index] output = hidden_states for layer_module in self.convs: output = layer_module(output) if self.concat_input: output = self.conv_cat(tf.concat([hidden_states, output], axis=-1)) output = self.classifier(output) return output @add_start_docstrings( """ Data2VecVision Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes. """, DATA2VEC_VISION_START_DOCSTRING, ) class TFData2VecVisionForSemanticSegmentation(TFData2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=False, name="data2vec_vision") # FPNs self.fpn1 = [ tf.keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.0"), tf.keras.layers.BatchNormalization(name="fpn1.1", momentum=0.9, epsilon=1e-5), tf.keras.layers.Activation("gelu"), tf.keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.3"), ] self.fpn2 = [tf.keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn2.0")] self.fpn3 = tf.identity self.fpn4 = tf.keras.layers.MaxPool2D(pool_size=2, strides=2) # Semantic segmentation head(s) self.decode_head = TFData2VecVisionUperHead(config, name="decode_head") self.auxiliary_head = ( TFData2VecVisionFCNHead(config, name="auxiliary_head") if config.use_auxiliary_head else None ) def compute_loss(self, logits, auxiliary_logits, labels): # upsample logits to the images' original size if len(shape_list(labels)) > 3: label_interp_shape = shape_list(labels)[1:-1] else: label_interp_shape = shape_list(labels)[-2:] upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear") if auxiliary_logits is not None: upsampled_auxiliary_logits = tf.image.resize(auxiliary_logits, size=label_interp_shape, method="bilinear") # compute weighted loss loss_fct = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none") # Copied from https://www.tensorflow.org/text/tutorials/transformer#loss_and_metrics. # Utility to mask the index to ignore during computing the loss. def masked_loss(real, pred): mask = tf.math.logical_not(tf.math.equal(real, self.config.semantic_loss_ignore_index)) loss_ = loss_fct(real, pred) mask = tf.cast(mask, dtype=loss_.dtype) loss_ *= mask reduced_masked_loss = tf.reduce_sum(loss_) / tf.reduce_sum(mask) return tf.reshape(reduced_masked_loss, (1,)) main_loss = masked_loss(labels, upsampled_logits) auxiliary_loss = masked_loss(labels, upsampled_auxiliary_logits) loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss return loss @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: Optional[tf.Tensor] = None, head_mask: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, TFSemanticSegmenterOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoFeatureExtractor, TFData2VecVisionForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/data2vec-vision-base") >>> model = TFData2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base") >>> inputs = feature_extractor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.data2vec_vision( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features, and reshape # note that we do +1 as the encoder_hidden_states also includes the initial embeddings features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] batch_size = shape_list(pixel_values)[0] patch_resolution = self.config.image_size // self.config.patch_size def reshape_features(x): x = tf.reshape(x, (batch_size, patch_resolution, patch_resolution, -1)) return x features = [reshape_features(x[:, 1:, :]) for x in features] # apply FPNs ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for module in ops[0]: features[0] = module(features[0]) features[1] = ops[1][0](features[1]) for i in range(len(features[2:])): features[i + 2] = ops[i + 2](features[i + 2]) logits = self.decode_head(features) # Tranpose the logits to maintain consistency in the output formats. transposed_logits = tf.transpose(logits, perm=[0, 3, 1, 2]) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(features) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: loss = self.compute_loss(logits, auxiliary_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSemanticSegmenterOutput( loss=loss, logits=transposed_logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) def serving_output(self, output: TFSemanticSegmenterOutput) -> TFSemanticSegmenterOutput: hidden_states = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attentions = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFSemanticSegmenterOutput(logits=output.logits, hidden_states=hidden_states, attentions=attentions)
6497240502fa621dc2ea8c4dcbce6f85011972b3
e8b6a669bdec937a4226e749a98c7e3905e327db
/rainbow/settings.py
445b701eab004e8de35ade8739bda4dbea1d130e
[]
no_license
danielmoniz/Rainbow
bef52a7bd18f225d48822aa563af03bbba862b9e
a9085476dc83a582b87927251cc269f228ecf557
refs/heads/master
2016-09-11T03:58:41.528607
2012-06-13T19:39:58
2012-06-13T19:39:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,675
py
# Django settings for rainbow project. from private_settings import get_database_settings DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', '[email protected]'), ) MANAGERS = ADMINS # This data comes from private_settings.py DATABASES = get_database_settings() # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = '/home/daniel/python_practice/rainbow/sitestatic/' # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # The URL all users will be redirected to after login. # @TODO Make this dynamic! Users should be redirected to their last location. LOGIN_REDIRECT_URL = '/' LOGIN_URL = '/login' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. "/home/daniel/projects/rainbow/static", ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = '$w&amp;7dt1vzfgex6d0(_jzrf&amp;&amp;k^7j8gm&amp;18r9kawiufns*59(e3' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'rainbow.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'rainbow.wsgi.application' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. "/home/daniel/projects/rainbow/django_templates", ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.webdesign', # Uncomment the next line to enable the admin: # 'django.contrib.admin', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', ) # @TODO Surely I need to put the installed apps here? Eg. build_world and users TEMPLATE_CONTEXT_PROCESSORS = ( "django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.i18n", "django.core.context_processors.media", "django.core.context_processors.static", "django.core.context_processors.request", ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
b65f1abafd197004b408adad6774a73815be6aa0
6b9adefb8c3730e1b9edab5605e86ee4f1cfe53c
/treedb/__init__.py
610918df1417c888efe026a930ef6e857065fd8c
[ "MIT" ]
permissive
glottolog/treedb
8ac4b5dd6923a196ceb02f191200cd8053a2cd88
81e6a855e5d69bebc86e1fca05c938621c87ba7c
refs/heads/master
2023-07-21T04:04:27.709761
2023-07-17T20:10:20
2023-07-17T20:10:20
194,383,732
5
2
MIT
2022-05-24T17:48:32
2019-06-29T08:41:10
Jupyter Notebook
UTF-8
Python
false
false
3,066
py
"""Load Glottolog lanuoid tree ``md.ini`` files into SQLite3 database.""" from ._globals import SESSION as Session # noqa: N811 from ._tools import sha256sum from .backend import (print_versions, set_engine, connect, scalar, iterrows) from .backend.export import (print_dataset, print_schema, print_query_sql, backup, dump_sql, csv_zipfile, print_rows, write_csv, hash_csv) from .backend.load import main as load from .backend.models import Dataset, Producer, Config from .backend.pandas import pd_read_sql, pd_read_json_lines from .backend.sqlite_master import print_table_sql, select_tables_nrows from .backend.views import TABLES as views # noqa: N811 from .languoids import set_root, iterfiles from .checks import check, compare_languoids from .export import (print_languoid_stats, iterlanguoids, checksum, write_json_lines as write_languoids, pd_read_languoids, write_files) from .glottolog import glottolog_version, checkout_or_clone from .logging_ import configure_logging from .models import LEVEL, Languoid from .queries import (get_example_query, get_json_query as get_languoids_query, iterdescendants) from .settings import configure, get_default_root __all__ = ['Session', 'sha256sum', 'print_versions', 'set_engine', 'connect', 'scalar', 'iterrows', 'print_dataset', 'print_schema', 'print_query_sql', 'backup', 'dump_sql', 'csv_zipfile', 'print_rows', 'write_csv', 'hash_csv', 'load', 'Dataset', 'Producer', 'Config', 'pd_read_sql', 'pd_read_json_lines', 'print_table_sql', 'select_tables_nrows', 'views', 'set_root', 'iterfiles', 'check', 'compare_languoids', 'print_languoid_stats', 'iterlanguoids', 'checksum', 'write_languoids', 'pd_read_languoids', 'write_files', 'glottolog_version', 'checkout_or_clone', 'configure_logging', 'LEVEL', 'Languoid', 'get_example_query', 'get_languoids_query', 'iterdescendants', 'configure', 'engine', 'root'] __title__ = 'treedb' __version__ = '2.6.3.dev0' __author__ = 'Sebastian Bank <[email protected]>' __license__ = 'MIT, see LICENSE.txt' __copyright__ = 'Copyright (c) 2017-2023 Sebastian Bank' # default engine: in-memory database engine = set_engine(None) # default root: GLOTTOLOG_REPO_ROOT, or treedb.ini glottolog:repo_root, or ./glottolog root = set_root(get_default_root(env_var='GLOTTOLOG_REPO_ROOT'))
a0c813f549809f79f8ddebdafa8f599069dbc6db
79d512d58ae10492c3e82a475d30f3026561676b
/env/bin/pip3.8
6761b455abe33e3eb91291e20bd91dd5fde0c6bf
[]
no_license
puskarkarki/BlogApplication
6b63c72e1583ccb7a9b7e962e4d8e4c32b11fef0
9cc67e79d75cc6e6f83bd3b81ff02142e0c37efa
refs/heads/master
2023-07-22T15:20:40.465751
2021-09-03T10:19:05
2021-09-03T10:19:05
381,980,331
1
0
null
null
null
null
UTF-8
Python
false
false
252
8
#!/home/linux/PycharmProjects/blog/env/bin/python # -*- coding: utf-8 -*- import re import sys from pip._internal.cli.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
188529fb0dbd729ac43830eb4e0ca46e6b0fad6a
88be4d5657d19462eb1d74d2d4d98180b423a889
/scripts/plot_experiment.py
6579ab2bdda9aaa2117fdcbaab143a8dce51aafd
[ "BSD-3-Clause" ]
permissive
domingoesteban/robolearn
bc58278fe38894f4ca9ec9e657ee13a479a368b7
0d20125425c352b80ef2eeed1c0b11ab6497b11a
refs/heads/master
2020-04-15T22:38:25.343229
2019-01-29T17:01:42
2019-01-29T17:01:42
165,080,647
1
1
null
null
null
null
UTF-8
Python
false
false
2,524
py
import os import argparse import numpy as np import matplotlib.pyplot as plt from robolearn.utils.plots import plot_process_iu_returns from robolearn.utils.plots import plot_process_iu_avg_rewards from robolearn.utils.plots import plot_process_iu_policies from robolearn.utils.plots import plot_process_iu_values_errors from robolearn.utils.plots import plot_process_iu_alphas from robolearn.utils.plots import plot_process_general_data from robolearn.utils.plots.learning_process_plots import plot_process_haarnoja import json def main(args): # Load environment dirname = os.path.dirname(args.file) with open(os.path.join(dirname, 'variant.json')) as json_data: algo_name = json.load(json_data)['algo_name'] # Plot according to RL algorithm if algo_name in ['HIUSAC', 'HIUSACNEW', 'SAC', 'HIUSACEpisodic']: plot_process_iu_values_errors(csv_file=args.file, n_unintentional=args.un, block=False) plot_process_iu_policies(csv_file=args.file, n_unintentional=args.un, block=False, plot_intentional=args.no_in, deterministic=False) plot_process_iu_alphas(csv_file=args.file, n_unintentional=args.un, block=False) plot_process_iu_returns(csv_file=args.file, n_unintentional=args.un, block=False) plot_process_iu_avg_rewards(csv_file=args.file, n_unintentional=args.un, block=False) elif algo_name in ['HIUDDPG']: plot_process_iu_policies(csv_file=args.file, n_unintentional=args.un, block=False, plot_intentional=args.no_in, deterministic=True) plot_process_iu_returns(csv_file=args.file, n_unintentional=args.un, block=False) else: plot_process_general_data(csv_file=args.file, block=False) # plot_process_haarnoja(csv_file=args.file) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('file', type=str, default='./progress.csv', help='path to the progress.csv file') parser.add_argument('--un', type=int, default=-1, help='Unintentional id') parser.add_argument('--no_in', action='store_false') args = parser.parse_args() main(args) input('Press a key to close script')
9b5418cd23ca662fe1c45fcca5e76495bc07df0a
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-iotanalytics/huaweicloudsdkiotanalytics/v1/model/obs_content_req.py
22822ea39ffd91a7bf569bf3a12ad4b92bc758b9
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
4,178
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ObsContentReq: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'bucket_name': 'str', 'ak': 'str', 'sk': 'str' } attribute_map = { 'bucket_name': 'bucket_name', 'ak': 'ak', 'sk': 'sk' } def __init__(self, bucket_name=None, ak=None, sk=None): """ObsContentReq The model defined in huaweicloud sdk :param bucket_name: 桶名称 :type bucket_name: str :param ak: 租户的AK :type ak: str :param sk: 租户的SK :type sk: str """ self._bucket_name = None self._ak = None self._sk = None self.discriminator = None self.bucket_name = bucket_name self.ak = ak self.sk = sk @property def bucket_name(self): """Gets the bucket_name of this ObsContentReq. 桶名称 :return: The bucket_name of this ObsContentReq. :rtype: str """ return self._bucket_name @bucket_name.setter def bucket_name(self, bucket_name): """Sets the bucket_name of this ObsContentReq. 桶名称 :param bucket_name: The bucket_name of this ObsContentReq. :type bucket_name: str """ self._bucket_name = bucket_name @property def ak(self): """Gets the ak of this ObsContentReq. 租户的AK :return: The ak of this ObsContentReq. :rtype: str """ return self._ak @ak.setter def ak(self, ak): """Sets the ak of this ObsContentReq. 租户的AK :param ak: The ak of this ObsContentReq. :type ak: str """ self._ak = ak @property def sk(self): """Gets the sk of this ObsContentReq. 租户的SK :return: The sk of this ObsContentReq. :rtype: str """ return self._sk @sk.setter def sk(self, sk): """Sets the sk of this ObsContentReq. 租户的SK :param sk: The sk of this ObsContentReq. :type sk: str """ self._sk = sk def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ObsContentReq): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
65ae635d43801f0ac9401fab6afbe228040b58f9
8f8ac99fd3ed9ceb36778b404f6fdd0b6899d3f4
/pyobjc-framework-Cocoa/PyObjCTest/test_cfuuid.py
12c65667350ddf8c8be73389156dd615e6a3126b
[ "MIT" ]
permissive
strogo/pyobjc
ac4201c7742eb75348328eeecb7eedf4e3458de3
2579c5eaf44b0c5af77ee195c417d2c65e72dfda
refs/heads/master
2023-07-13T00:41:56.448005
2021-08-24T06:42:53
2021-08-24T06:42:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,982
py
import re import CoreFoundation from PyObjCTools.TestSupport import TestCase class TestCFUUIDAPI(TestCase): def testTypes(self): self.assertIsCFType(CoreFoundation.CFUUIDRef) def testTypeID(self): v = CoreFoundation.CFUUIDGetTypeID() self.assertIsInstance(v, int) def testCreate(self): self.assertResultIsCFRetained(CoreFoundation.CFUUIDCreate) uuid = CoreFoundation.CFUUIDCreate(None) self.assertIsNot(uuid, None) self.assertIsInstance(uuid, CoreFoundation.CFUUIDRef) text = CoreFoundation.CFUUIDCreateString(None, uuid) self.assertIsInstance(text, str) m = re.match("^[0-9A-Z]{8}(-[0-9A-Z]{4}){3}-[0-9A-Z]{12}$", text) self.assertIsNot(m, None) def testCreateWithBytes(self): self.assertResultIsCFRetained(CoreFoundation.CFUUIDCreateWithBytes) uuid = CoreFoundation.CFUUIDCreateWithBytes( None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ) self.assertIsNot(uuid, None) self.assertIsInstance(uuid, CoreFoundation.CFUUIDRef) self.assertResultIsCFRetained(CoreFoundation.CFUUIDCreateString) text = CoreFoundation.CFUUIDCreateString(None, uuid) self.assertEqual(text, "01020304-0506-0708-090A-0B0C0D0E0F10") self.assertRaises( ValueError, CoreFoundation.CFUUIDCreateWithBytes, None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 300, ) self.assertRaises( ValueError, CoreFoundation.CFUUIDCreateWithBytes, None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 300, 16, ) def testCreateFromString(self): self.assertResultIsCFRetained(CoreFoundation.CFUUIDCreateFromString) uuid1 = CoreFoundation.CFUUIDCreateFromString( None, "01020304-0506-0708-090A-0B0C0D0E0F10" ) self.assertIsNot(uuid1, None) self.assertIsInstance(uuid1, CoreFoundation.CFUUIDRef) text = CoreFoundation.CFUUIDCreateString(None, uuid1) self.assertEqual(text, "01020304-0506-0708-090A-0B0C0D0E0F10") uuid2 = CoreFoundation.CFUUIDCreateFromString( None, "01020304-0506-0708-090A-0B0C0D0E0F10" ) text = CoreFoundation.CFUUIDCreateString(None, uuid2) self.assertEqual(text, "01020304-0506-0708-090A-0B0C0D0E0F10") # CoreFoundation.CFUUID interns values self.assertIs(uuid1, uuid2) def testGetBytes(self): uuid = CoreFoundation.CFUUIDCreateWithBytes( None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ) self.assertIsNot(uuid, None) self.assertIsInstance(uuid, CoreFoundation.CFUUIDRef) bytes_value = CoreFoundation.CFUUIDGetUUIDBytes(uuid) self.assertIsInstance(bytes_value, CoreFoundation.CFUUIDBytes) self.assertEqual(bytes_value.byte0, 1) self.assertEqual(bytes_value.byte1, 2) self.assertEqual(bytes_value.byte2, 3) self.assertEqual(bytes_value.byte3, 4) self.assertEqual(bytes_value.byte4, 5) self.assertEqual(bytes_value.byte5, 6) self.assertEqual(bytes_value.byte6, 7) self.assertEqual(bytes_value.byte7, 8) self.assertEqual(bytes_value.byte8, 9) self.assertEqual(bytes_value.byte9, 10) self.assertEqual(bytes_value.byte10, 11) self.assertEqual(bytes_value.byte11, 12) self.assertEqual(bytes_value.byte12, 13) self.assertEqual(bytes_value.byte13, 14) self.assertEqual(bytes_value.byte14, 15) self.assertEqual(bytes_value.byte15, 16) def testConstant(self): # This is an interesting one, the result of # CoreFoundation.CFUUIDGetConstantUUIDWithBytes should not be released. uuid = CoreFoundation.CFUUIDGetConstantUUIDWithBytes(None, *range(16)) CoreFoundation.CFRetain( CoreFoundation.CFUUIDGetConstantUUIDWithBytes ) # Ensure the value won't be released. self.assertIsNot(uuid, None) self.assertIsInstance(uuid, CoreFoundation.CFUUIDRef) s = CoreFoundation.CFUUIDCreateString(None, uuid) uuid = None del uuid uuid = CoreFoundation.CFUUIDGetConstantUUIDWithBytes(None, *range(16)) self.assertIsNot(uuid, None) self.assertIsInstance(uuid, CoreFoundation.CFUUIDRef) t = CoreFoundation.CFUUIDCreateString(None, uuid) self.assertEqual(s, t) def testCreateFromUUIDBytes(self): bytes_value = CoreFoundation.CFUUIDBytes(*range(16, 32)) uuid = CoreFoundation.CFUUIDCreateFromUUIDBytes(None, bytes_value) self.assertIsNot(uuid, None) self.assertIsInstance(uuid, CoreFoundation.CFUUIDRef) text = CoreFoundation.CFUUIDCreateString(None, uuid) self.assertEqual(text, "10111213-1415-1617-1819-1A1B1C1D1E1F") def testStructs(self): o = CoreFoundation.CFUUIDBytes() self.assertHasAttr(o, "byte0") self.assertHasAttr(o, "byte1") self.assertHasAttr(o, "byte2") self.assertHasAttr(o, "byte3") self.assertHasAttr(o, "byte4") self.assertHasAttr(o, "byte5") self.assertHasAttr(o, "byte6") self.assertHasAttr(o, "byte7") self.assertHasAttr(o, "byte8") self.assertHasAttr(o, "byte9") self.assertHasAttr(o, "byte10") self.assertHasAttr(o, "byte11") self.assertHasAttr(o, "byte12") self.assertHasAttr(o, "byte13") self.assertHasAttr(o, "byte14") self.assertHasAttr(o, "byte15")
d3778584e95ef333ce94c9c0141d55f17ae297a7
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2214/60586/309439.py
43887ed3a7a647d20cd7bf664444a594497e9b76
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
144
py
a=input() b=input() if a=='1+1i' and 'b==1+1i': print("0+2i") elif a=='0+1i' and 'b==0+1i': print("-1+0i") else: print("0+-2i")
9f35131f1f28ffc0f2fd5ab8325e04833ad5fd83
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/built-in/cv/semantic_segmentation/BiseNetV1_for_PyTorch/configs/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen.py
a53fcfa8fe36083934a423e9b34464549cde83be
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
976
py
# Copyright (c) Facebook, Inc. and its affiliates. # Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------- _base_ = './pspnet_r50-d8_4x4_512x512_80k_vaihingen.py' model = dict( pretrained='open-mmlab://resnet18_v1c', backbone=dict(depth=18), decode_head=dict( in_channels=512, channels=128, ), auxiliary_head=dict(in_channels=256, channels=64))
30bc551d847eeb3753771764c28f595558bbc9a0
e3b5e20bcb560a3c37c09f728b9340b1715c1818
/venv/lib/python3.7/site-packages/plotly/validators/scattercarpet/_hovertextsrc.py
748253ef5dd9d965185ead830412b2629267562e
[ "MIT" ]
permissive
180Studios/LoginApp
63bc50b1f91e7221c7581627ab166eeb01758f5c
66ff684a81b23d8f45eef2c56be19a2afd95ab29
refs/heads/master
2022-12-24T00:33:08.481826
2020-02-03T05:14:41
2020-02-03T05:14:41
144,414,562
0
1
MIT
2022-12-08T01:38:26
2018-08-11T19:57:44
Python
UTF-8
Python
false
false
498
py
import _plotly_utils.basevalidators class HovertextsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name='hovertextsrc', parent_name='scattercarpet', **kwargs ): super(HovertextsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'none'), role=kwargs.pop('role', 'info'), **kwargs )
35d3332b9b2acae00406b27ed618a1477d42c45d
3474b315da3cc5cb3f7823f19a18b63a8da6a526
/scratch/KRAMS/src/apps/scratch/faezeh/working_area/inputexport.py
1edffac01025a9a4ef04fe864a2eaeb85fcefe02
[]
no_license
h4ck3rm1k3/scratch
8df97462f696bc2be00f1e58232e1cd915f0fafd
0a114a41b0d1e9b2d68dbe7af7cf34db11512539
refs/heads/master
2021-01-21T15:31:38.718039
2013-09-19T10:48:24
2013-09-19T10:48:24
29,173,525
0
0
null
2015-01-13T04:58:57
2015-01-13T04:58:56
null
UTF-8
Python
false
false
4,034
py
#!/usr/bin/env python """ This demonstrates how to create a plot offscreen and save it to an image file on disk. """ # Standard library imports import os, sys # Major library imports from numpy import fabs, linspace, pi, sin from scipy.special import jn # Enthought library imports from enthought.traits.api import false # Chaco imports from enthought.chaco.api import ArrayPlotData, Plot, PlotGraphicsContext from enthought.chaco.example_support import COLOR_PALETTE from enthought.traits.api import HasTraits from enthought.traits.api import Float, HasTraits, Button from enthought.traits.ui.menu import OKButton, CancelButton from enthought.traits.ui.api import View, Item, InstanceEditor import os DPI = 72.0 # This is a bit of a hack, to work around the fact that line widths don't scale # with the GraphicsContext's CTM. dpi_scale = DPI / 72.0 def create_plot(): numpoints = 100 low = -5 high = 15.0 x = linspace(low, high, numpoints) pd = ArrayPlotData(index=x) p = Plot(pd, bgcolor="lightgray", padding=50, border_visible=True) for i in range(10): pd.set_data("y" + str(i), jn(i,x)) p.plot(("index", "y" + str(i)), color=tuple(COLOR_PALETTE[i]), width = 2.0 * dpi_scale) p.x_grid.visible = True # p.x_grid.line_width *= dpi_scale p.x_grid.line_width = InputParameter().width p.y_grid.visible = True # p.y_grid.line_width *= dpi_scale p.y_grid.line_width = InputParameter().height p.legend.visible = True return p def draw_plot(filename, size=(800,600)): container = create_plot() container.outer_bounds = list(size) container.do_layout(force=True) gc = PlotGraphicsContext(size, dpi=DPI) gc.render_component(container) gc.save(filename) return def draw_pdf(filename, size=(800,600), width=0.0, height=0.0): from enthought.chaco.pdf_graphics_context import PdfPlotGraphicsContext container = create_plot() container.bounds = list(size) container.do_layout(force=True) width = InputParameter().width height = InputParameter().height gc = PdfPlotGraphicsContext(filename=filename, dest_box = (0.5, 0.5, width, height)) gc.render_component(container) gc.save() def get_directory(filename): print 'Please enter a path in which to place generated plots.' print 'Press <ENTER> to generate in the current directory.' path = raw_input('Path: ').strip() # /home/faeze/ as path if len(path) > 0 and not os.path.exists(path): print 'The given path does not exist.' sys.exit() if not os.path.isabs(path): print 'Creating image: ' + os.path.join(os.getcwd(), path, filename) else: print 'Creating image: ' + os.path.join(path, filename) return os.path.join(path, filename) class InputParameter(HasTraits): width = 3.0 height = 4.0 class InputParam(HasTraits): height = Float() width = Float() export_param = Button() def _export_param_fired(self): test_file = os.path.join('', 'Export_file') output_file = open(test_file + '.rtf','w') output_file.write(self.height.__str__() + '\n'+ self.width.__str__()) # print 'width', self.width # print 'height', self.height view_traits = View( Item("height"), Item("width"), Item('export_param', label = 'Export to file', style='simple', show_label = False), resizable = True, buttons = [ OKButton, CancelButton ], height = 0.2, width = 0.2 ) if __name__ == "__main__": draw_plot(get_directory('noninteractive.png'), size=(800, 600)) # If you have ReportLab installed, you can uncomment the following: draw_pdf(get_directory('noninteractive.pdf'), size=(400,300)) ip = InputParam() ip.configure_traits() # EOF
[ "Axel@Axel-Pc" ]
Axel@Axel-Pc
10fbec86fd6c3e609e74bfe53d632b78788da28c
08c8e80dc009166a8d678fd36b34dc6ddbbeecc7
/TTRPlayer.py
05d919340b3b6ecf7d02b12c5726ee121dbdafb9
[]
no_license
wqa/TicketToRide
12f6361f2b1a0461c645817c505d0ebf7a3b9ea8
dbf9ea161c5bbc456b3980a019b93dc1499ba83d
refs/heads/master
2020-03-07T21:06:42.089183
2018-04-02T07:52:57
2018-04-02T07:52:57
127,717,750
0
0
null
2018-04-02T07:00:15
2018-04-02T07:00:15
null
UTF-8
Python
false
false
2,626
py
import collections class Player(object): def __init__(self, startingHand, startingTickets, playerBoard, playerPosition, numTrains ): """orderNumber: int startingHand: list startingTickets: list playerBoard: PlayerBoard object from the TTRBoard module playerPosition: int """ self.name = '' #ask for them to enter it on first turn #implimented as a collection to avoid O(n) hand.remove(x) self.hand = collections.Counter(startingHand) self.tickets = {x:False for x in startingTickets} self.numTrains = numTrains self.points = 0 self.playerPosition = playerPosition #custom board to represent self.playerBoard = playerBoard def removeCardsFromHand(self, color, numColor): """removes one ore more cards from hand assumes all cards are in hand, error if not cards: list """ assert self.hand[color] >= numColor self.hand[color] -= numColor #add card to hand def addCardToHand(self, card): """adds a single card to hand assumes card is a valid choice card: String """ if card != None: self.hand[card] += 1 #add ticket to hand def addTicket(self, ticket): """adds a single ticket to tickets ticket: tuple(city1, city2, value) """ self.tickets[ticket] = False def completeTicket(self, ticket): """updates the value in the tickets dict to True for key: ticket ticket: tuple(city1, city2, value) """ assert ticket in self.tickets self.tickets = True def getHand(self): return self.hand def addPoints(self, numPoints): self.points += numPoints def subtractPoints(self, numPoints): self.points -= numPoints def getPoints(self): return self.points def getTickets(self): return self.tickets def getNumTrains(self): return self.numTrains def playNumTrains(self, numTrains): assert numTrains <= self.numTrains self.numTrains -= numTrains def setPlayerName(self, name): """sets playerName to name name: string """ self.name = name def getName(self): return self.name
4c5d1f202e7cb831b781f2fdf9e12481448d3c4d
7482a2601861b61f61ad082dbca521a94c36dc92
/image_captioning/config/defaults.py
3c6c9351b41efc3e54c2292e17e424a4652735c1
[]
no_license
congve1/ImageCaptioning
0da1945ac27e406c388824f47e7e4545691ef0a1
ae2d4ec2dc45bc00ff12cde4f55197654100c309
refs/heads/master
2020-05-04T17:17:42.993462
2019-07-07T08:58:28
2019-07-07T08:58:28
179,305,660
1
0
null
null
null
null
UTF-8
Python
false
false
6,738
py
import os from yacs.config import CfgNode as CN # ------------------------------------------------------------------------------ # Convention about Tranining / Test specific parameters # ------------------------------------------------------------------------------ # Whenever an argument can be either used for training or for testing, the # corresponding name will be post-fixed by a _TRAIN for a training parameter, # or _TEST for a test-specific parameter. # For example, the number of images during training will be # IMAGES_PER_BATCH_TRAIN, while the number of images for testing will be # IMAGES_PER_BATCH_TEST # ------------------------------------------------------------------------------ # Config definition # ------------------------------------------------------------------------------ _C = CN() _C.MODEL = CN() _C.MODEL.DEVICE = "cuda" # if the WEIGHT starts with a catalog://, like :R-50, the code will look for # the path in paths_catalog. Else, it will use it as the specified absolute # path _C.MODEL.WEIGHT = "" # ------------------------------------------------------------------------------ # INPUT # ------------------------------------------------------------------------------ _C.INPUT = CN() _C.INPUT.SIZE = 256 # ------------------------------------------------------------------------------ # VOCAB # ------------------------------------------------------------------------------ _C.VOCAB = CN() _C.VOCAB.WORD_COUNT_THRESHOLD = 5 # ------------------------------------------------------------------------------ # Dataset # ------------------------------------------------------------------------------ _C.DATASET = CN() _C.DATASET.SEQ_MAX_LEN = 20 # 50 in all coco captions _C.DATASET.SEQ_PER_IMG = 5 _C.DATASET.TRAIN = '' _C.DATASET.VAL = '' _C.DATASET.TEST = '' _C.DATASET.VOCAB_PATH = '' # ------------------------------------------------------------------------------ # DataLoader # ------------------------------------------------------------------------------ _C.DATALOADER = CN() _C.DATALOADER.NUM_WORKERS = 0 # ------------------------------------------------------------------------------ # Encoder options # ------------------------------------------------------------------------------ _C.MODEL.ENCODER = CN() # The encoder conv body to use # The string must match a function that is imported in modeling.model_builder _C.MODEL.ENCODER.CONV_BODY = "R-101-C5" # Add StopGrad at a specified stage so the bottom layers are frozen _C.MODEL.ENCODER.FREEZE_CONV_BODY_AT = 0 _C.MODEL.ENCODER.ATT_SIZE = 14 # 2048 for C5; 1024 for C4 ### must be consistent with CONV_BODY _C.MODEL.ENCODER.FEATURE_SIZE = 2048 # ------------------------------------------------------------------------------ # ResNe[X]t options (ResNets = {ResNet, ResNeXt}) # ------------------------------------------------------------------------------ _C.MODEL.RESNETS = CN() # Number of groups to use: 1 ==> ResNet; > 1 ==> ResNeXt _C.MODEL.RESNETS.NUM_GROUPS = 1 # Baseline width of each group _C.MODEL.RESNETS.WIDTH_PER_GROUP = 64 # Place the stride 2 conv on the 1x1 filter # Use True only for the original MSRA ResNet; Use False for C2 and Torch models _C.MODEL.RESNETS.STRIDE_IN_1X1 = False # Residual Transformation function _C.MODEL.RESNETS.TRANS_FUNC = "BottleneckWithBatchNorm" # ResNet's stem function (conv1 and pool1) _C.MODEL.RESNETS.STEM_FUNC = "StemWithBatchNorm" # Apply dilation in stage "res5" _C.MODEL.RESNETS.RES5_DILATION = 1 _C.MODEL.RESNETS.BACKBONE_OUT_CHANNELS = 256 _C.MODEL.RESNETS.RES2_OUT_CHANNELS = 256 _C.MODEL.RESNETS.STEM_OUT_CHANNELS = 64 # ---------------------------------------------------------------------------- # # FPN options # ---------------------------------------------------------------------------- # _C.MODEL.FPN = CN() _C.MODEL.FPN.USE_GN = False _C.MODEL.FPN.USE_RELU = False # ------------------------------------------------------------------------------- # Group Norm # ------------------------------------------------------------------------------- _C.MODEL.GROUP_NORM = CN() # Number of dimensions per group in GroupNorm (-1 if using NUM_GROUPS) _C.MODEL.GROUP_NORM.DIM_PER_GP = -1 # Number of groups in GroupNorm(-1 if using DIM_PER_GP) _C.MODEL.GROUP_NORM.NUM_GROUPS = 32 # GroupNorm's small constant in the denominator _C.MODEL.GROUP_NORM.EPS = 1e-5 # ------------------------------------------------------------------------------ # Decoder options # ------------------------------------------------------------------------------ _C.MODEL.DECODER = CN() _C.MODEL.DECODER.ARCH = "TopDown" # word embedding size _C.MODEL.DECODER.EMBEDDING_SIZE = 512 # num of hidden units of the rnn _C.MODEL.DECODER.HIDDEN_SIZE = 512 # strength of dropout in the language model rnn. _C.MODEL.DECODER.DROPOUT_PROB = 0.5 # the hidden size of the attention in MLP, only useful in show_attend_tell; # 0 if not using hidden layer _C.MODEL.DECODER.ATT_HIDDEN_SIZE = 512 _C.MODEL.DECODER.BEAM_SIZE = 3 # ------------------------------------------------------------------------------ # Solver # ------------------------------------------------------------------------------ _C.SOLVER = CN() _C.SOLVER.MAX_ITER = 40000 _C.SOLVER.OPTIMIZER = "SGD" _C.SOLVER.SCHEDULER = "WarmupMultiStepLR" _C.SOLVER.BASE_LR = 0.1 _C.SOLVER.BIAS_LR_FACTOR = 2 # after how many iterations to start self-critical training # -1 for disable, 0 from the beginning _C.SOLVER.SCST_AFTER = -1 # clip gradients at this norm _C.SOLVER.GRAD_CLIP = 10.0 _C.SOLVER.MOMENTUM = 0.9 _C.SOLVER.WEIGHT_DECAY = 0.0005 _C.SOLVER.WEIGHT_DECAY_BIAS = 0 # Adam beta _C.SOLVER.BETAS = (0.9, 0.999) # SGDR settings _C.SOLVER.T_MAX = 5000 _C.SOLVER.T_MULTI = 2 _C.SOLVER.ETA_MIN = 0.00001 # WarmupMultiStep Scheduler settings _C.SOLVER.GAMMA = 0.1 _C.SOLVER.STEPS = (30000, ) _C.SOLVER.WARMUP_FACTOR = 1.0 / 3 _C.SOLVER.WARMUP_ITERS = 500 _C.SOLVER.WARMUP_METHOD = "linear" # Step Scheduler settings _C.SOLVER.STEP_SIZE = 1200 _C.SOLVER.CHECKPOINT_PERIOD = 2500 _C.SOLVER.LOG_PERIOD = 100 _C.SOLVER.VAL_PERIOD = 1000 # Number of images per batch # This is global _C.SOLVER.IMS_PER_BATCH = 16 _C.SOLVER.METRIC_LOGGER_NAME = 'model' # ------------------------------------------------------------------------------ # Specific test options # ------------------------------------------------------------------------------ _C.TEST = CN() # Number of images per batch # This is global _C.TEST.IMS_PER_BATCH = 8 _C.TEST.BEAM_SIZE = 3 # ------------------------------------------------------------------------------ # Misc options # ------------------------------------------------------------------------------ _C.OUTPUT_DIR = "save" _C.PATHS_CATALOG = os.path.join(os.path.dirname(__file__), "paths_catalog_lmdb.py")
8c636ef816876d5a9d8bccdf63b5af6f4356b911
252b3451ad9683166937152444fedec8b5da6647
/obsolete/py_deprecated/LookupTables.py
cd7936866ad410f7fce43018c4363adbe2b33474
[ "MIT" ]
permissive
faithcomesbyhearing/dbp-etl
993c4c329d8f1950234f02f7fb048ec29b1883da
eb56863415d0d83f7f7928d0fcf927425c039f95
refs/heads/master
2023-08-08T15:11:37.815057
2023-07-10T16:10:21
2023-07-10T16:10:21
204,502,403
1
1
MIT
2023-07-24T23:39:37
2019-08-26T15:12:47
Python
UTF-8
Python
false
false
5,498
py
# LookupTables class LookupTables: def __init__(self): # these are not being used yet? self.otBooks=[ "GEN", "EXO", "LEV", "NUM", "DEU", "JOS", "JDG", "RUT", "1SA", "2SA", "1KI", "2KI", "1CH", "2CH", "EZR", "NEH", "EST", "JOB", "PSA", "PRO", "ECC", "SNG", "ISA", "JER", "LAM", "EZK", "DAN", "HOS", "JOL", "AMO", "OBA", "JON", "MIC", "NAM", "HAB", "ZEP", "HAG", "ZEC", "MAL"] self.ntBooks=[ "MAT", "MRK", "LUK", "JHN", "ACT", "ROM", "1CO", "2CO", "GAL", "EPH", "PHP", "COL", "1TH", "2TH", "1TI", "2TI", "TIT", "PHM", "HEB", "JAS", "1PE", "2PE", "1JN", "2JN", "3JN", "JUD", "REV"] self.apBooks=[ "1ES", "1MA", "1MQ", "2BA", "2ES", "2MA", "2MQ", "3MA", "3MQ", "4BA", "4MA", "5EZ", "6EZ", "BAR", "BEL", "DAG", "ENO", "ESG", "EZA", "JDT", "JUB", "LAO", "LBA", "LJE", "MAN", "ODA", "PS2", "PS3", "PSS", "REP", "S3Y", "SIR", "SUS", "TOB", "WIS"] def bookIdBySequence(self, seqCode): seqDict = { "B01": "MAT", "B02": "MRK", "B03": "LUK", "B04": "JHN", "B05": "ACT", "B06": "ROM", "B07": "1CO", "B08": "2CO", "B09": "GAL", "B10": "EPH", "B11": "PHP", "B12": "COL", "B13": "1TH", "B14": "2TH", "B15": "1TI", "B16": "2TI", "B17": "TIT", "B18": "PHM", "B19": "HEB", "B20": "JAS", "B21": "1PE", "B22": "2PE", "B23": "1JN", "B24": "2JN", "B25": "3JN", "B26": "JUD", "B27": "REV", "A01": "GEN", "A02": "EXO", "A03": "LEV", "A04": "NUM", "A05": "DEU", "A06": "JOS", "A07": "JDG", "A08": "RUT", "A09": "1SA", "A10": "2SA", "A11": "1KI", "A12": "2KI", "A13": "1CH", "A14": "2CH", "A15": "EZR", "A16": "NEH", "A17": "EST", "A18": "JOB", "A19": "PSA", "A20": "PRO", "A21": "ECC", "A22": "SNG", "A23": "ISA", "A24": "JER", "A25": "LAM", "A26": "EZK", "A27": "DAN", "A28": "HOS", "A29": "JOL", "A30": "AMO", "A31": "OBA", "A32": "JON", "A33": "MIC", "A34": "NAM", "A35": "HAB", "A36": "ZEP", "A37": "HAG", "A38": "ZEC", "A39": "MAL"} return seqDict.get(seqCode) # This should replaced with a query to table books after more is added def bookIdBy2Char(self, twoCharCode): twoCharDict = { # New Testament "MT": "MAT", "MK": "MRK", "LK": "LUK", "JN": "JHN", "AC": "ACT", "RM": "ROM", "C1": "1CO", "C2": "2CO", "GL": "GAL", "EP": "EPH", "PP": "PHP", "CL": "COL", "H1": "1TH", "H2": "2TH", "T1": "1TI", "T2": "2TI", "TT": "TIT", "PM": "PHM", "HB": "HEB", "JM": "JAS", "P1": "1PE", "P2": "2PE", "J1": "1JN", "J2": "2JN", "J3": "3JN", "JD": "JUD", "RV": "REV", # Old Testament "GN": "GEN", "EX": "EXO", "LV": "LEV", "NU": "NUM", "DT": "DEU", "JS": "JOS", "JG": "JDG", "RT": "RUT", "S1": "1SA", "S2": "2SA", "K1": "1KI", "K2": "2KI", "R1": "1CH", "R2": "2CH", "ER": "EZR", "NH": "NEH", "ET": "EST", "JB": "JOB", "PS": "PSA", "PR": "PRO", "EC": "ECC", "SS": "SNG", "IS": "ISA", "JR": "JER", "LM": "LAM", "EK": "EZK", "DN": "DAN", "HS": "HOS", "JL": "JOL", "AM": "AMO", "OB": "OBA", "JH": "JON", "MC": "MIC", "NM": "NAM", "HK": "HAB", "ZP": "ZEP", "HG": "HAG", "ZC": "ZEC", "ML": "MAL", # Apocrypha "E1": "1ES", # 3 Esdras "E2": "2ES", # 4 Esdras "M1": "1MA", # 1 Maccabees "M2": "2MA", # 2 Maccabees "M3": "3MA", # 3 Maccabees "M4": "4MA", # 4 Maccabees "BR": "BAR", # First book of Baruch "BL": "BEL", # Rest of Daniel "DG": "DAG", # Daniel 14 "EG": "ESG", # Greek Esther "JT": "JDT", # Judith #"LJ": None, # Apocryphal something #"PA": None, # Apocryphal something #"PN": None, # Apocryphal something "PX": "PS2", # Psalms 152 "SR": "SIR", # Sirach "SN": "SUS", # Greek Daniel "TB": "TOB", # Tobit "WS": "WIS", # Wisdom of Solomon # USFM Peripheral Book Codes "FR": "FRT", # Front Matter "IN": "INT", # Introduction "BK": "BAK", # Back Matter "CN": "CNC", # Concordance "GS": "GLO", # Glossary "TX": "TDX", # Topical Index "OH": "OTH", # Other "XA": "XXA", # "XB": "XXB", # "XC": "XXC", # "XD": "XXD", # "XE": "XXE", # "XF": "XXF", # "XG": "XXG" # } return twoCharDict.get(twoCharCode) def scriptCode(self, script): scriptDic = { "Amharic":"Ethi", "Arabic":"Arab", "Armenian":"Armn", "Bengali":"Beng", "Bengali Script":"Beng", "Berber":"Tfng", "Burmese":"Mymr", "Canadian Aboriginal Syllabic":"Cans", "Canadian Aboriginal Syllabics":"Cans", "Cherokee Sylabary":"Cher", "Cyrillic":"Cyrl", "Devanagari":"Deva", "Devangari":"Deva", "Ethiopic":"Ethi", "Ethoiopic":"Ethi", "Ethopic":"Ethi", "Ge'ez":"Ethi", "Greek":"Grek", "Gujarati":"Gujr", "Gurmukhi":"Guru", "Han":"Hani", "Hangul (Korean)":"Kore", "Hebrew":"Hebr", "Japanese":"Jpan", "Kannada":"Knda", "Khmer":"Khmr", "Khmer Script":"Khmr", "Lao":"Laoo", "Latin":"Latn", "Latin (Africa)":"Latn", "Latin (African)":"Latn", "Latin (Latin America)":"Latn", "Latin (Latin American)":"Latn", "Latin (PNG)":"Latn", "Latin (SE Asia)":"Latn", "Malayalam":"Mlym", "NA":"Zyyy", "Oriya":"Orya", "Tamil":"Taml", "Telugu":"Telu", "Thai":"Thai", "Tibetan":"Tibt"} return scriptDic[script] # not found should be a fatal error. That is intentional
27b669ce53b5e339d24c950c5bbf673fec5fd017
1ca315ac6f10d91784c9d2e9e0c993d1a528c644
/locators/class_parse_locators.py
1168ff983b02f53c51788fee41cf24dd739271cf
[]
no_license
osakoh/Scrapping-example
711df9e735f62dfdf5aad5891f8cda4cda678f44
6964f86f56a5797c8152f2e50048190d331ec6d4
refs/heads/main
2022-12-27T20:08:17.684832
2020-10-09T17:18:11
2020-10-09T17:18:11
302,692,216
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
class ParsedItemLocators: """ Locates an item in the HTML page. Allows us to see what our code will be looking at as well as change it quickly if the locator changes. """ NAME_LOCATOR = 'article.product_pod h3 a' LINK_LOCATOR = 'article.product_pod h3 a' PRICE_LOCATOR = 'article.product_pod div.product_price p.price_color' RATING_LOCATOR = 'article.product_pod p.star-rating'
718ce3d58ea9a8e84fe1c8a98f3bed47d617e276
743fe3fd926c4f23353e4d2801b007721f3dd1a1
/docstrings/bitmap.py
f9d253fbdea77806791284b8dfc21e3431bef2d8
[ "BSD-2-Clause-Views" ]
permissive
mdboom/freetypy
357cc7570987bf07daa3abd348ed616ad085186a
01b72ad35a613f1366accf16318d078b1e0dfc83
refs/heads/master
2021-01-18T07:03:53.232617
2015-11-04T01:20:01
2015-11-04T01:20:01
45,196,480
1
1
null
2015-10-29T16:38:09
2015-10-29T16:38:09
null
UTF-8
Python
false
false
5,308
py
# -*- coding: utf-8 -*- # Copyright (c) 2015, Michael Droettboom All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # The views and conclusions contained in the software and # documentation are those of the authors and should not be interpreted # as representing official policies, either expressed or implied, of # the FreeBSD Project. from __future__ import print_function, unicode_literals, absolute_import Bitmap__init__ = """ A structure used to describe a bitmap or pixmap to the raster. `Bitmap` supports the Python buffer interface, so it is easy to convert it to a Numpy array. For example:: >>> import numpy as np >>> a = np.asarray(bitmap) """ Bitmap_buffer = """ Get the bitmap's contents as a buffer. In most cases, the preferred method to get the data is to cast the `Bitmap` object to a memoryview, since that will also have size and type information. """ Bitmap_convert = """ Convert a `Bitmap` to 8 bits per pixel. Given a `Bitmap` with depth 1bpp, 2bpp, 4bpp, or 8bpp converts it to one with depth 8bpp, making the number of used bytes per line (a.k.a. the ‘pitch’) a multiple of `alignment`. Parameters ---------- alignment : int, optional The pitch of the bitmap is a multiple of this parameter. Common values are 1, 2, or 4. Returns ------- target : Bitmap The bitmap, converted to 8bpp. """ Bitmap_num_grays = """ The number of gray levels used in the bitmap. This field is only used with `PIXEL_MODE.GRAY`. """ Bitmap_pitch = """ The number of bytes taken by one bitmap row. Includes padding. The pitch is positive when the bitmap has a ‘down’ flow, and negative when it has an ‘up’ flow. In all cases, the pitch is an offset to add to a bitmap pointer in order to go down one row. Note that ‘padding’ means the alignment of a bitmap to a byte border, and FreeType functions normally align to the smallest possible integer value. For the B/W rasterizer, `pitch` is always an even number. To change the pitch of a bitmap (say, to make it a multiple of 4), use `Bitmap.convert`. Alternatively, you might use callback functions to directly render to the application's surface. """ Bitmap_pixel_mode = """ The `PIXEL_MODE`, i.e., how pixel bits are stored. """ Bitmap_rows = """ The number of bitmap rows. """ Bitmap_to_list = """ |freetypy| Convert the bitmap to a nested list. """ Bitmap_width = """ The number of pixels in bitmap row. """ PIXEL_MODE = """ Constants related to the pixel mode of bitmaps. - `MONO`: A monochrome bitmap, using 1 bit per pixel. Note that pixels are stored in most-significant order (MSB), which means that the left-most pixel in a byte has value 128. - `GRAY`: An 8-bit bitmap, generally used to represent anti-aliased glyph images. Each pixel is stored in one byte. Note that the number of ‘gray’ levels is stored in the ‘num_grays’ field of the Bitmap structure (it generally is 256). - `GRAY2`: A 2-bit per pixel bitmap, used to represent embedded anti-aliased bitmaps in font files according to the OpenType specification. We haven't found a single font using this format, however. - `GRAY4`: A 4-bit per pixel bitmap, representing embedded anti-aliased bitmaps in font files according to the OpenType specification. We haven't found a single font using this format, however. - `LCD`: An 8-bit bitmap, representing RGB or BGR decimated glyph images used for display on LCD displays; the bitmap is three times wider than the original glyph image. See also `RENDER_MODE.LCD`. On many freetype builds, this functionality will be disabled due to patent restrictions, in which case the resulting bitmap will be grayscale. - `LCD_V`: An 8-bit bitmap, representing RGB or BGR decimated glyph images used for display on rotated LCD displays; the bitmap is three times taller than the original glyph image. See also `RENDER_MODE.LCD_V`. On many freetype builds, this functionality will be disabled due to patent restrictions, in which case the resulting bitmap will be grayscale. """
bd0261b67d0371e006d269d817132bcd59e26983
12101ae802a7da37e84d1c5ed0e48670c7d7e203
/tools/trains/t010_xgb.py
c74a8dcf19be8dbdc28bfddc2cced35d43a256fd
[]
no_license
guchio3/kaggle-santander-2019
4590026e32453c257dd90dd8e47bd6812c5ee6c5
f2a636bcb60d52ad8a08a472957b846f2b684005
refs/heads/master
2020-04-29T18:09:08.640374
2019-04-13T13:07:17
2019-04-13T13:07:17
176,315,965
8
4
null
null
null
null
UTF-8
Python
false
false
8,815
py
import datetime import os import pickle import warnings from itertools import tee import lightgbm import numpy as np import pandas as pd import xgboost as xgb from sklearn.metrics import roc_auc_score from sklearn.model_selection import StratifiedKFold from tqdm import tqdm from tools.utils.features import (get_all_features, load_features, select_features) from tools.utils.logs import dec_timer, log_evaluation, sel_log from tools.utils.samplings import value_resampling from tools.utils.visualizations import save_importance warnings.simplefilter(action='ignore', category=FutureWarning) NES_DIR = './mnt/inputs/nes_info/' FEATURE_DIR = './mnt/inputs/features/' @dec_timer def t010_xgb_train(args, script_name, configs, logger): ''' policy ------------ * use original functions only if there's no pre-coded functions in useful libraries such as sklearn. todos ------------ * load features * train the model * save the followings * logs * oofs * importances * trained models * submissions (if test mode) ''' # -- Prepare for training exp_time = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S') # -- Load train data sel_log('loading training data ...', None) trn_ids = pd.read_pickle( NES_DIR + 'trn_ID_code.pkl.gz', compression='gzip') tst_ids = pd.read_pickle( NES_DIR + 'tst_ID_code.pkl.gz', compression='gzip') target = pd.read_pickle( NES_DIR + 'target.pkl.gz', compression='gzip') if args.debug: sample_idxes = trn_ids.reset_index( drop=True).sample( random_state=71, frac=0.05).index target = target.iloc[sample_idxes].reset_index(drop=True) trn_ids = trn_ids.iloc[sample_idxes].reset_index(drop=True) # load features if configs['train']['all_features']: _features = get_all_features(FEATURE_DIR) else: _features = configs['features'] trn_tst_df = load_features(_features, FEATURE_DIR, logger=logger)\ .set_index('ID_code') # feature selection if needed if configs['train']['feature_selection']: trn_tst_df = select_features(trn_tst_df, configs['train']['feature_select_path'], configs['train']['metric'], configs['train']['feature_topk']) features = trn_tst_df.columns # split train and test sel_log(f'now splitting the df to train and test ones ...', None) features_df = trn_tst_df.loc[trn_ids].reset_index(drop=True) test_features_df = trn_tst_df.loc[tst_ids].reset_index(drop=True) # -- Split using group k-fold w/ shuffling # NOTE: this is not stratified, I wanna implement it in the future if configs['train']['fold_type'] == 'skf': skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=4221) folds = skf.split(features_df, target) configs['train']['single_model'] = False else: print(f"ERROR: wrong fold_type, {configs['train']['fold_type']}") folds, pred_folds = tee(folds) # -- Make training dataset # print shape sel_log(f'used features are {features_df.columns.tolist()}', logger) sel_log(f'the shape features_df is {features_df.shape}', logger) # -- CV # Set params PARAMS = configs['xgb_params'] if 'nthread' not in PARAMS: PARAMS['nthread'] = os.cpu_count() PARAMS['interaction_constraints'] = [[v, 200 + v, 400 + v, 600 + v] for v in range(200)] PARAMS['eval_metric'] = "logloss" PARAMS['objective'] = "binary:logistic" # PARAMS['booster'] = 'gblinear' sel_log('start training ...', None) oofs = [] y_trues = [] val_idxes = [] scores = [] best_iterations = [] cv_model = [] for i, idxes in list(enumerate(folds)): trn_idx, val_idx = idxes # -- Data resampling # Stock original data for validation fold_features_df, fold_target = value_resampling( features_df.iloc[trn_idx], target[trn_idx], configs['train']['sampling_type'], configs['train']['sampling_random_state'], configs['train']['os_lim'], configs['train']['pos_t'], configs['train']['neg_t'], logger=logger) # make xgb dataset train_set = xgb.DMatrix(fold_features_df.values, label=fold_target.values) valid_set = xgb.DMatrix(features_df.values[val_idx], label=target.values[val_idx]) pred_set = xgb.DMatrix(features_df.values[val_idx]) # train booster = xgb.train( params=PARAMS.copy(), dtrain=train_set, num_boost_round=1000000, evals=[ (valid_set, 'valid'), ], verbose_eval=10, early_stopping_rounds=30, ) # predict using trained model y_pred = booster.predict(pred_set)# [:, 1] print(y_pred) y_true = target.values[val_idx] oofs.append(y_pred) y_trues.append(y_true) val_idxes.append(val_idx) # Calc AUC auc = roc_auc_score(y_true, y_pred) sel_log(f'fold AUC: {auc}', logger=logger) scores.append(auc) best_iterations.append(booster.best_iteration) # save model cv_model.append(booster) auc_mean, auc_std = np.mean(scores), np.std(scores) auc_oof = roc_auc_score(np.concatenate(y_trues), np.concatenate(oofs)) best_iteration_mean = np.mean(best_iterations) sel_log( f'AUC_mean: {auc_mean:.5f}, AUC_std: {auc_std:.5f}', logger) sel_log( f'AUC OOF: {auc_oof}', logger) sel_log( f'BEST ITER MEAN: {best_iteration_mean}', logger) # -- Post processings filename_base = f'{script_name}_{exp_time}_{auc_mean:.5}' # Save oofs oof_df = pd.DataFrame() oof_df['ID_code'] = trn_ids.iloc[np.concatenate(val_idxes)] oof_df['y_val'] = np.concatenate(y_trues) oof_df['oof_proba'] = np.concatenate(oofs) oof_df = oof_df.set_index('ID_code').loc[trn_ids] oof_df.to_csv( './mnt/oofs/' + filename_base + '_oofs.csv', index=True) with open('./mnt/oofs/' + filename_base + '_oofs.pkl', 'wb') as fout: pickle.dump([val_idxes, oofs], fout) # Save trained models with open('./mnt/trained_models/' + filename_base + '_models.pkl', 'wb') as fout: pickle.dump(cv_model, fout) # --- Make submission file if args.test: # -- Prediction sel_log('predicting for test ...', None) preds = [] preds_no_rank = [] reals = np.load('./mnt/inputs/nes_info/real_samples_indexes.npz.npy') # for booster in tqdm(cv_model.boosters): for booster in tqdm(cv_model): test_set = xgb.DMatrix(test_features_df.values) pred = booster.predict(test_set) pred = pd.Series(pred) # rank avg only using real part preds_no_rank.append(pred.copy()) pred.iloc[reals] = pred.iloc[reals].rank() / reals.shape preds.append(pred) if len(cv_model) > 1: target_values = np.mean(preds, axis=0) target_values_no_rank = np.mean(preds_no_rank, axis=0) else: target_values = preds[0] target_values_no_rank = preds[0] # blend single model # -- Make submission file sel_log(f'loading sample submission file ...', None) sub_df = pd.read_csv( './mnt/inputs/origin/sample_submission.csv.zip', compression='zip') sub_df.target = target_values sub_df_no_rank = pd.read_csv( './mnt/inputs/origin/sample_submission.csv.zip', compression='zip') sub_df_no_rank.target = target_values_no_rank # print stats submission_filename = f'./mnt/submissions/{filename_base}_sub.csv.gz' submission_filename_no_rank = f'./mnt/submissions/{filename_base}_sub_no_rank.csv' sel_log(f'saving submission file to {submission_filename}', logger) sub_df.to_csv(submission_filename, compression='gzip', index=False) sub_df_no_rank.to_csv( submission_filename_no_rank, index=False) if args.submit: os.system( f'kaggle competitions submit ' f'santander-customer-transaction-prediction ' f'-f {submission_filename} -m "{args.message}"') return auc_mean, auc_std, auc_oof
ed3469e684afa8c86b519a431e625fbbd69fd869
7030c780db36c7d8efedb1152cf945a3cc248fdb
/python/cuml/thirdparty_adapters/sparsefuncs_fast.py
21e730ef726063949023d765ade9a3962fedd7a1
[ "Apache-2.0" ]
permissive
rapidsai/cuml
546af8151fd2ee0f737cc4e62386d4b0ede74f3d
7d86042b8de06bc8acce632230fe5821bd36c17d
refs/heads/branch-23.10
2023-08-30T19:17:41.816373
2023-08-28T13:23:15
2023-08-28T13:23:15
152,616,802
3,615
569
Apache-2.0
2023-09-14T00:21:52
2018-10-11T15:45:35
C++
UTF-8
Python
false
false
10,106
py
# # Copyright (c) 2020-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from math import ceil from cuml.internals.safe_imports import gpu_only_import_from from cuml.internals.safe_imports import gpu_only_import cp = gpu_only_import("cupy") cpx = gpu_only_import("cupyx") cuda = gpu_only_import_from("numba", "cuda") def csr_mean_variance_axis0(X): """Compute mean and variance on the axis 0 of a CSR matrix Parameters ---------- X : sparse CSR matrix Input array Returns ------- mean and variance """ X = X.tocsc() means, variances, _ = _csc_mean_variance_axis0(X) return means, variances def csc_mean_variance_axis0(X): """Compute mean and variance on the axis 0 of a CSC matrix Parameters ---------- X : sparse CSC matrix Input array Returns ------- mean and variance """ means, variances, _ = _csc_mean_variance_axis0(X) return means, variances def _csc_mean_variance_axis0(X): """Compute mean, variance and nans count on the axis 0 of a CSC matrix Parameters ---------- X : sparse CSC matrix Input array Returns ------- mean, variance, nans count """ n_samples, n_features = X.shape means = cp.empty(n_features) variances = cp.empty(n_features) counts_nan = cp.empty(n_features) start = X.indptr[0] for i, end in enumerate(X.indptr[1:]): col = X.data[start:end] _count_zeros = n_samples - col.size _count_nans = (col != col).sum() _mean = cp.nansum(col) / (n_samples - _count_nans) _variance = cp.nansum((col - _mean) ** 2) _variance += _count_zeros * (_mean**2) _variance /= n_samples - _count_nans means[i] = _mean variances[i] = _variance counts_nan[i] = _count_nans start = end return means, variances, counts_nan @cuda.jit def norm_step2_k(indptr, data, norm): """Apply normalization Parameters ---------- indptr : array indptr of sparse matrix data : array data of sparse matrix norm: array norm by which to divide columns """ row_i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x inrow_idx = cuda.blockIdx.y * cuda.blockDim.y + cuda.threadIdx.y if row_i >= indptr.shape[0] - 1: return start = indptr[row_i] end = indptr[row_i + 1] if inrow_idx >= (end - start): return data[start + inrow_idx] /= norm[row_i] @cuda.jit def l1_step1_k(indptr, data, norm): """Compute norm for L1 normalization""" row_i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x inrow_idx = cuda.blockIdx.y * cuda.blockDim.y + cuda.threadIdx.y if row_i >= indptr.shape[0] - 1: return start = indptr[row_i] end = indptr[row_i + 1] if inrow_idx >= (end - start): return val = abs(data[start + inrow_idx]) cuda.atomic.add(norm, row_i, val) def inplace_csr_row_normalize_l1(X): """Normalize CSR matrix inplace with L1 norm Parameters ---------- X : sparse CSR matrix Input array Returns ------- Normalized matrix """ n_rows = X.indptr.shape[0] max_nnz = cp.diff(X.indptr).max() tpb = (32, 32) bpg_x = ceil(n_rows / tpb[0]) bpg_y = ceil(max_nnz / tpb[1]) bpg = (bpg_x, bpg_y) norm = cp.zeros(n_rows - 1, dtype=X.dtype) l1_step1_k[bpg, tpb](X.indptr, X.data, norm) norm_step2_k[bpg, tpb](X.indptr, X.data, norm) @cuda.jit def l2_step1_k(indptr, data, norm): """Compute norm for L2 normalization""" row_i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x inrow_idx = cuda.blockIdx.y * cuda.blockDim.y + cuda.threadIdx.y if row_i >= indptr.shape[0] - 1: return start = indptr[row_i] end = indptr[row_i + 1] if inrow_idx >= (end - start): return val = data[start + inrow_idx] val *= val cuda.atomic.add(norm, row_i, val) def inplace_csr_row_normalize_l2(X): """Normalize CSR matrix inplace with L2 norm Parameters ---------- X : sparse CSR matrix Input array Returns ------- Normalized matrix """ n_rows = X.indptr.shape[0] max_nnz = cp.diff(X.indptr).max() tpb = (32, 32) bpg_x = ceil(n_rows / tpb[0]) bpg_y = ceil(max_nnz / tpb[1]) bpg = (bpg_x, bpg_y) norm = cp.zeros(n_rows - 1, dtype=X.dtype) l2_step1_k[bpg, tpb](X.indptr, X.data, norm) norm = cp.sqrt(norm) norm_step2_k[bpg, tpb](X.indptr, X.data, norm) @cuda.jit(device=True, inline=True) def _deg2_column(d, i, j, interaction_only): """Compute the index of the column for a degree 2 expansion d is the dimensionality of the input data, i and j are the indices for the columns involved in the expansion. """ if interaction_only: return int(d * i - (i**2 + 3 * i) / 2 - 1 + j) else: return int(d * i - (i**2 + i) / 2 + j) @cuda.jit(device=True, inline=True) def _deg3_column(d, i, j, k, interaction_only): """Compute the index of the column for a degree 3 expansion d is the dimensionality of the input data, i, j and k are the indices for the columns involved in the expansion. """ if interaction_only: return int( ( 3 * d**2 * i - 3 * d * i**2 + i**3 + 11 * i - 3 * j**2 - 9 * j ) / 6 + i**2 - 2 * d * i + d * j - d + k ) else: return int( (3 * d**2 * i - 3 * d * i**2 + i**3 - i - 3 * j**2 - 3 * j) / 6 + d * j + k ) @cuda.jit def perform_expansion( indptr, indices, data, expanded_data, expanded_indices, d, interaction_only, degree, expanded_indptr, ): """Kernel applying polynomial expansion on CSR matrix""" row_i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x inrow_idx = cuda.blockIdx.y * cuda.blockDim.y + cuda.threadIdx.y if row_i >= indptr.shape[0] - 1: return expanded_index = expanded_indptr[row_i] + inrow_idx if expanded_index >= expanded_indptr[row_i + 1]: return row_starts = indptr[row_i] row_ends = indptr[row_i + 1] i_ptr = row_starts j_ptr = -1 k_ptr = inrow_idx if degree == 2: j_ptr = inrow_idx for i in range(row_starts, row_ends): diff = row_ends - i - interaction_only if j_ptr >= diff: j_ptr -= diff else: i_ptr = i break j_ptr += i_ptr + interaction_only else: # degree == 3 diff = 0 for i in range(row_starts, row_ends): for j in range(i + interaction_only, row_ends): diff = row_ends - j - interaction_only if k_ptr >= diff: k_ptr -= diff else: j_ptr = j i_ptr = i break if j_ptr != -1: break k_ptr += j_ptr + interaction_only i = indices[i_ptr] j = indices[j_ptr] if degree == 2: col = _deg2_column(d, i, j, interaction_only) expanded_indices[expanded_index] = col expanded_data[expanded_index] = data[i_ptr] * data[j_ptr] else: # degree == 3 k = indices[k_ptr] col = _deg3_column(d, i, j, k, interaction_only) expanded_indices[expanded_index] = col expanded_data[expanded_index] = data[i_ptr] * data[j_ptr] * data[k_ptr] def csr_polynomial_expansion(X, interaction_only, degree): """Apply polynomial expansion on CSR matrix Parameters ---------- X : sparse CSR matrix Input array Returns ------- New expansed matrix """ assert degree in (2, 3) interaction_only = 1 if interaction_only else 0 d = X.shape[1] if degree == 2: expanded_dimensionality = int((d**2 + d) / 2 - interaction_only * d) else: expanded_dimensionality = int( (d**3 + 3 * d**2 + 2 * d) / 6 - interaction_only * d**2 ) if expanded_dimensionality == 0: return None assert expanded_dimensionality > 0 nnz = cp.diff(X.indptr) if degree == 2: total_nnz = (nnz**2 + nnz) / 2 - interaction_only * nnz else: total_nnz = ( nnz**3 + 3 * nnz**2 + 2 * nnz ) / 6 - interaction_only * nnz**2 del nnz nnz_cumsum = total_nnz.cumsum(dtype=cp.int64) total_nnz_max = int(total_nnz.max()) total_nnz = int(total_nnz.sum()) num_rows = X.indptr.shape[0] - 1 expanded_data = cp.empty(shape=total_nnz, dtype=X.data.dtype) expanded_indices = cp.empty(shape=total_nnz, dtype=X.indices.dtype) expanded_indptr = cp.empty(shape=num_rows + 1, dtype=X.indptr.dtype) expanded_indptr[0] = X.indptr[0] expanded_indptr[1:] = nnz_cumsum tpb = (32, 32) bpg_x = ceil(X.indptr.shape[0] / tpb[0]) bpg_y = ceil(total_nnz_max / tpb[1]) bpg = (bpg_x, bpg_y) perform_expansion[bpg, tpb]( X.indptr, X.indices, X.data, expanded_data, expanded_indices, d, interaction_only, degree, expanded_indptr, ) return cpx.scipy.sparse.csr_matrix( (expanded_data, expanded_indices, expanded_indptr), shape=(num_rows, expanded_dimensionality), )
accdc603e7b050c80d24dd697beff1e270f215ca
111e6c08c9bfc7a3aeb22ddd69765cfdda2fd38d
/3/day03/day03/urls.py
c42a7fd2660709f6e56eb457c373b4037eedeea3
[]
no_license
huaxiawudi/yz1806
1f9e16292a44f68f7a126fc5e4655f3663ef27b1
0bc9ef8f4bd8b8e0ed9c6416caa0e083ec61d3ea
refs/heads/master
2020-04-07T08:54:53.319535
2018-11-20T04:15:45
2018-11-20T04:15:45
158,233,175
0
0
null
null
null
null
UTF-8
Python
false
false
1,006
py
"""day03 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ # url:http://www.baidu.com:80/index.html?kw=tom#1 from django.conf.urls import url from django.contrib import admin from app import views urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^adduser/$',views.adduser), url(r'^updateuser/$', views.updateuser), url(r'^deleteuser/$',views.deleteuser), url(r'^getqueryset/$',views.getqueryset) ]
740369dd7596e7744e209ee19a1d27384bffd5de
5923d7526282c63fbf2d56df706c20e4ace3fd3e
/backend/manage.py
0ba611cbf2733d3b04d711054dce31d06abd9cf8
[]
no_license
crowdbotics-apps/pushya-4586
936b4c5df863a3d1728acf5c5b8456bf60e3ce6e
e01acb275fa18542007ca2932a20896f048ed549
refs/heads/master
2023-01-09T15:14:04.158342
2019-06-12T22:49:56
2019-06-12T22:49:56
191,654,775
0
0
null
2023-01-04T00:06:07
2019-06-12T22:48:42
Python
UTF-8
Python
false
false
631
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'pushya_4586.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
22da5615e5302dcdc23585755542fcf7b9605571
a41e1498e3c080f47abd8e8e57157548df3ebbf1
/pandas/tests/indexes/numeric/test_indexing.py
cd28d519313ed36228040361dfbb2a8dccf77be5
[ "BSD-3-Clause" ]
permissive
pandas-dev/pandas
e7e639454a298bebc272622e66faa9829ea393bb
c7325d7e7e77ecb4a4e57b48bc25265277c75712
refs/heads/main
2023-09-01T12:42:07.927176
2023-09-01T11:14:10
2023-09-01T11:14:10
858,127
36,166
18,728
BSD-3-Clause
2023-09-14T21:18:41
2010-08-24T01:37:33
Python
UTF-8
Python
false
false
22,761
py
import numpy as np import pytest from pandas.errors import InvalidIndexError from pandas import ( NA, Index, RangeIndex, Series, Timestamp, ) import pandas._testing as tm from pandas.core.arrays import ( ArrowExtensionArray, FloatingArray, ) @pytest.fixture def index_large(): # large values used in Index[uint64] tests where no compat needed with Int64/Float64 large = [2**63, 2**63 + 10, 2**63 + 15, 2**63 + 20, 2**63 + 25] return Index(large, dtype=np.uint64) class TestGetLoc: def test_get_loc(self): index = Index([0, 1, 2]) assert index.get_loc(1) == 1 def test_get_loc_raises_bad_label(self): index = Index([0, 1, 2]) with pytest.raises(InvalidIndexError, match=r"\[1, 2\]"): index.get_loc([1, 2]) def test_get_loc_float64(self): idx = Index([0.0, 1.0, 2.0], dtype=np.float64) with pytest.raises(KeyError, match="^'foo'$"): idx.get_loc("foo") with pytest.raises(KeyError, match=r"^1\.5$"): idx.get_loc(1.5) with pytest.raises(KeyError, match="^True$"): idx.get_loc(True) with pytest.raises(KeyError, match="^False$"): idx.get_loc(False) def test_get_loc_na(self): idx = Index([np.nan, 1, 2], dtype=np.float64) assert idx.get_loc(1) == 1 assert idx.get_loc(np.nan) == 0 idx = Index([np.nan, 1, np.nan], dtype=np.float64) assert idx.get_loc(1) == 1 # representable by slice [0:2:2] msg = "'Cannot get left slice bound for non-unique label: nan'" with pytest.raises(KeyError, match=msg): idx.slice_locs(np.nan) # not representable by slice idx = Index([np.nan, 1, np.nan, np.nan], dtype=np.float64) assert idx.get_loc(1) == 1 msg = "'Cannot get left slice bound for non-unique label: nan" with pytest.raises(KeyError, match=msg): idx.slice_locs(np.nan) def test_get_loc_missing_nan(self): # GH#8569 idx = Index([1, 2], dtype=np.float64) assert idx.get_loc(1) == 0 with pytest.raises(KeyError, match=r"^3$"): idx.get_loc(3) with pytest.raises(KeyError, match="^nan$"): idx.get_loc(np.nan) with pytest.raises(InvalidIndexError, match=r"\[nan\]"): # listlike/non-hashable raises TypeError idx.get_loc([np.nan]) @pytest.mark.parametrize("vals", [[1], [1.0], [Timestamp("2019-12-31")], ["test"]]) def test_get_loc_float_index_nan_with_method(self, vals): # GH#39382 idx = Index(vals) with pytest.raises(KeyError, match="nan"): idx.get_loc(np.nan) @pytest.mark.parametrize("dtype", ["f8", "i8", "u8"]) def test_get_loc_numericindex_none_raises(self, dtype): # case that goes through searchsorted and key is non-comparable to values arr = np.arange(10**7, dtype=dtype) idx = Index(arr) with pytest.raises(KeyError, match="None"): idx.get_loc(None) def test_get_loc_overflows(self): # unique but non-monotonic goes through IndexEngine.mapping.get_item idx = Index([0, 2, 1]) val = np.iinfo(np.int64).max + 1 with pytest.raises(KeyError, match=str(val)): idx.get_loc(val) with pytest.raises(KeyError, match=str(val)): idx._engine.get_loc(val) class TestGetIndexer: def test_get_indexer(self): index1 = Index([1, 2, 3, 4, 5]) index2 = Index([2, 4, 6]) r1 = index1.get_indexer(index2) e1 = np.array([1, 3, -1], dtype=np.intp) tm.assert_almost_equal(r1, e1) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize( "expected,method", [ (np.array([-1, 0, 0, 1, 1], dtype=np.intp), "pad"), (np.array([-1, 0, 0, 1, 1], dtype=np.intp), "ffill"), (np.array([0, 0, 1, 1, 2], dtype=np.intp), "backfill"), (np.array([0, 0, 1, 1, 2], dtype=np.intp), "bfill"), ], ) def test_get_indexer_methods(self, reverse, expected, method): index1 = Index([1, 2, 3, 4, 5]) index2 = Index([2, 4, 6]) if reverse: index1 = index1[::-1] expected = expected[::-1] result = index2.get_indexer(index1, method=method) tm.assert_almost_equal(result, expected) def test_get_indexer_invalid(self): # GH10411 index = Index(np.arange(10)) with pytest.raises(ValueError, match="tolerance argument"): index.get_indexer([1, 0], tolerance=1) with pytest.raises(ValueError, match="limit argument"): index.get_indexer([1, 0], limit=1) @pytest.mark.parametrize( "method, tolerance, indexer, expected", [ ("pad", None, [0, 5, 9], [0, 5, 9]), ("backfill", None, [0, 5, 9], [0, 5, 9]), ("nearest", None, [0, 5, 9], [0, 5, 9]), ("pad", 0, [0, 5, 9], [0, 5, 9]), ("backfill", 0, [0, 5, 9], [0, 5, 9]), ("nearest", 0, [0, 5, 9], [0, 5, 9]), ("pad", None, [0.2, 1.8, 8.5], [0, 1, 8]), ("backfill", None, [0.2, 1.8, 8.5], [1, 2, 9]), ("nearest", None, [0.2, 1.8, 8.5], [0, 2, 9]), ("pad", 1, [0.2, 1.8, 8.5], [0, 1, 8]), ("backfill", 1, [0.2, 1.8, 8.5], [1, 2, 9]), ("nearest", 1, [0.2, 1.8, 8.5], [0, 2, 9]), ("pad", 0.2, [0.2, 1.8, 8.5], [0, -1, -1]), ("backfill", 0.2, [0.2, 1.8, 8.5], [-1, 2, -1]), ("nearest", 0.2, [0.2, 1.8, 8.5], [0, 2, -1]), ], ) def test_get_indexer_nearest(self, method, tolerance, indexer, expected): index = Index(np.arange(10)) actual = index.get_indexer(indexer, method=method, tolerance=tolerance) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) @pytest.mark.parametrize("listtype", [list, tuple, Series, np.array]) @pytest.mark.parametrize( "tolerance, expected", list( zip( [[0.3, 0.3, 0.1], [0.2, 0.1, 0.1], [0.1, 0.5, 0.5]], [[0, 2, -1], [0, -1, -1], [-1, 2, 9]], ) ), ) def test_get_indexer_nearest_listlike_tolerance( self, tolerance, expected, listtype ): index = Index(np.arange(10)) actual = index.get_indexer( [0.2, 1.8, 8.5], method="nearest", tolerance=listtype(tolerance) ) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) def test_get_indexer_nearest_error(self): index = Index(np.arange(10)) with pytest.raises(ValueError, match="limit argument"): index.get_indexer([1, 0], method="nearest", limit=1) with pytest.raises(ValueError, match="tolerance size must match"): index.get_indexer([1, 0], method="nearest", tolerance=[1, 2, 3]) @pytest.mark.parametrize( "method,expected", [("pad", [8, 7, 0]), ("backfill", [9, 8, 1]), ("nearest", [9, 7, 0])], ) def test_get_indexer_nearest_decreasing(self, method, expected): index = Index(np.arange(10))[::-1] actual = index.get_indexer([0, 5, 9], method=method) tm.assert_numpy_array_equal(actual, np.array([9, 4, 0], dtype=np.intp)) actual = index.get_indexer([0.2, 1.8, 8.5], method=method) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) @pytest.mark.parametrize("idx_dtype", ["int64", "float64", "uint64", "range"]) @pytest.mark.parametrize("method", ["get_indexer", "get_indexer_non_unique"]) def test_get_indexer_numeric_index_boolean_target(self, method, idx_dtype): # GH 16877 if idx_dtype == "range": numeric_index = RangeIndex(4) else: numeric_index = Index(np.arange(4, dtype=idx_dtype)) other = Index([True, False, True]) result = getattr(numeric_index, method)(other) expected = np.array([-1, -1, -1], dtype=np.intp) if method == "get_indexer": tm.assert_numpy_array_equal(result, expected) else: missing = np.arange(3, dtype=np.intp) tm.assert_numpy_array_equal(result[0], expected) tm.assert_numpy_array_equal(result[1], missing) @pytest.mark.parametrize("method", ["pad", "backfill", "nearest"]) def test_get_indexer_with_method_numeric_vs_bool(self, method): left = Index([1, 2, 3]) right = Index([True, False]) with pytest.raises(TypeError, match="Cannot compare"): left.get_indexer(right, method=method) with pytest.raises(TypeError, match="Cannot compare"): right.get_indexer(left, method=method) def test_get_indexer_numeric_vs_bool(self): left = Index([1, 2, 3]) right = Index([True, False]) res = left.get_indexer(right) expected = -1 * np.ones(len(right), dtype=np.intp) tm.assert_numpy_array_equal(res, expected) res = right.get_indexer(left) expected = -1 * np.ones(len(left), dtype=np.intp) tm.assert_numpy_array_equal(res, expected) res = left.get_indexer_non_unique(right)[0] expected = -1 * np.ones(len(right), dtype=np.intp) tm.assert_numpy_array_equal(res, expected) res = right.get_indexer_non_unique(left)[0] expected = -1 * np.ones(len(left), dtype=np.intp) tm.assert_numpy_array_equal(res, expected) def test_get_indexer_float64(self): idx = Index([0.0, 1.0, 2.0], dtype=np.float64) tm.assert_numpy_array_equal( idx.get_indexer(idx), np.array([0, 1, 2], dtype=np.intp) ) target = [-0.1, 0.5, 1.1] tm.assert_numpy_array_equal( idx.get_indexer(target, "pad"), np.array([-1, 0, 1], dtype=np.intp) ) tm.assert_numpy_array_equal( idx.get_indexer(target, "backfill"), np.array([0, 1, 2], dtype=np.intp) ) tm.assert_numpy_array_equal( idx.get_indexer(target, "nearest"), np.array([0, 1, 1], dtype=np.intp) ) def test_get_indexer_nan(self): # GH#7820 result = Index([1, 2, np.nan], dtype=np.float64).get_indexer([np.nan]) expected = np.array([2], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) def test_get_indexer_int64(self): index = Index(range(0, 20, 2), dtype=np.int64) target = Index(np.arange(10), dtype=np.int64) indexer = index.get_indexer(target) expected = np.array([0, -1, 1, -1, 2, -1, 3, -1, 4, -1], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) target = Index(np.arange(10), dtype=np.int64) indexer = index.get_indexer(target, method="pad") expected = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) target = Index(np.arange(10), dtype=np.int64) indexer = index.get_indexer(target, method="backfill") expected = np.array([0, 1, 1, 2, 2, 3, 3, 4, 4, 5], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) def test_get_indexer_uint64(self, index_large): target = Index(np.arange(10).astype("uint64") * 5 + 2**63) indexer = index_large.get_indexer(target) expected = np.array([0, -1, 1, 2, 3, 4, -1, -1, -1, -1], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) target = Index(np.arange(10).astype("uint64") * 5 + 2**63) indexer = index_large.get_indexer(target, method="pad") expected = np.array([0, 0, 1, 2, 3, 4, 4, 4, 4, 4], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) target = Index(np.arange(10).astype("uint64") * 5 + 2**63) indexer = index_large.get_indexer(target, method="backfill") expected = np.array([0, 1, 1, 2, 3, 4, -1, -1, -1, -1], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) @pytest.mark.parametrize("val, val2", [(4, 5), (4, 4), (4, NA), (NA, NA)]) def test_get_loc_masked(self, val, val2, any_numeric_ea_and_arrow_dtype): # GH#39133 idx = Index([1, 2, 3, val, val2], dtype=any_numeric_ea_and_arrow_dtype) result = idx.get_loc(2) assert result == 1 with pytest.raises(KeyError, match="9"): idx.get_loc(9) def test_get_loc_masked_na(self, any_numeric_ea_and_arrow_dtype): # GH#39133 idx = Index([1, 2, NA], dtype=any_numeric_ea_and_arrow_dtype) result = idx.get_loc(NA) assert result == 2 idx = Index([1, 2, NA, NA], dtype=any_numeric_ea_and_arrow_dtype) result = idx.get_loc(NA) tm.assert_numpy_array_equal(result, np.array([False, False, True, True])) idx = Index([1, 2, 3], dtype=any_numeric_ea_and_arrow_dtype) with pytest.raises(KeyError, match="NA"): idx.get_loc(NA) def test_get_loc_masked_na_and_nan(self): # GH#39133 idx = Index( FloatingArray( np.array([1, 2, 1, np.nan]), mask=np.array([False, False, True, False]) ) ) result = idx.get_loc(NA) assert result == 2 result = idx.get_loc(np.nan) assert result == 3 idx = Index( FloatingArray(np.array([1, 2, 1.0]), mask=np.array([False, False, True])) ) result = idx.get_loc(NA) assert result == 2 with pytest.raises(KeyError, match="nan"): idx.get_loc(np.nan) idx = Index( FloatingArray( np.array([1, 2, np.nan]), mask=np.array([False, False, False]) ) ) result = idx.get_loc(np.nan) assert result == 2 with pytest.raises(KeyError, match="NA"): idx.get_loc(NA) @pytest.mark.parametrize("val", [4, 2]) def test_get_indexer_masked_na(self, any_numeric_ea_and_arrow_dtype, val): # GH#39133 idx = Index([1, 2, NA, 3, val], dtype=any_numeric_ea_and_arrow_dtype) result = idx.get_indexer_for([1, NA, 5]) expected = np.array([0, 2, -1]) tm.assert_numpy_array_equal(result, expected, check_dtype=False) @pytest.mark.parametrize("dtype", ["boolean", "bool[pyarrow]"]) def test_get_indexer_masked_na_boolean(self, dtype): # GH#39133 if dtype == "bool[pyarrow]": pytest.importorskip("pyarrow") idx = Index([True, False, NA], dtype=dtype) result = idx.get_loc(False) assert result == 1 result = idx.get_loc(NA) assert result == 2 def test_get_indexer_arrow_dictionary_target(self): pa = pytest.importorskip("pyarrow") target = Index( ArrowExtensionArray( pa.array([1, 2], type=pa.dictionary(pa.int8(), pa.int8())) ) ) idx = Index([1]) result = idx.get_indexer(target) expected = np.array([0, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result_1, result_2 = idx.get_indexer_non_unique(target) expected_1, expected_2 = np.array([0, -1], dtype=np.int64), np.array( [1], dtype=np.int64 ) tm.assert_numpy_array_equal(result_1, expected_1) tm.assert_numpy_array_equal(result_2, expected_2) class TestWhere: @pytest.mark.parametrize( "index", [ Index(np.arange(5, dtype="float64")), Index(range(0, 20, 2), dtype=np.int64), Index(np.arange(5, dtype="uint64")), ], ) def test_where(self, listlike_box, index): cond = [True] * len(index) expected = index result = index.where(listlike_box(cond)) cond = [False] + [True] * (len(index) - 1) expected = Index([index._na_value] + index[1:].tolist(), dtype=np.float64) result = index.where(listlike_box(cond)) tm.assert_index_equal(result, expected) def test_where_uint64(self): idx = Index([0, 6, 2], dtype=np.uint64) mask = np.array([False, True, False]) other = np.array([1], dtype=np.int64) expected = Index([1, 6, 1], dtype=np.uint64) result = idx.where(mask, other) tm.assert_index_equal(result, expected) result = idx.putmask(~mask, other) tm.assert_index_equal(result, expected) def test_where_infers_type_instead_of_trying_to_convert_string_to_float(self): # GH 32413 index = Index([1, np.nan]) cond = index.notna() other = Index(["a", "b"], dtype="string") expected = Index([1.0, "b"]) result = index.where(cond, other) tm.assert_index_equal(result, expected) class TestTake: @pytest.mark.parametrize("idx_dtype", [np.float64, np.int64, np.uint64]) def test_take_preserve_name(self, idx_dtype): index = Index([1, 2, 3, 4], dtype=idx_dtype, name="foo") taken = index.take([3, 0, 1]) assert index.name == taken.name def test_take_fill_value_float64(self): # GH 12631 idx = Index([1.0, 2.0, 3.0], name="xxx", dtype=np.float64) result = idx.take(np.array([1, 0, -1])) expected = Index([2.0, 1.0, 3.0], dtype=np.float64, name="xxx") tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) expected = Index([2.0, 1.0, np.nan], dtype=np.float64, name="xxx") tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = Index([2.0, 1.0, 3.0], dtype=np.float64, name="xxx") tm.assert_index_equal(result, expected) msg = ( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -2]), fill_value=True) with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -5]), fill_value=True) msg = "index -5 is out of bounds for (axis 0 with )?size 3" with pytest.raises(IndexError, match=msg): idx.take(np.array([1, -5])) @pytest.mark.parametrize("dtype", [np.int64, np.uint64]) def test_take_fill_value_ints(self, dtype): # see gh-12631 idx = Index([1, 2, 3], dtype=dtype, name="xxx") result = idx.take(np.array([1, 0, -1])) expected = Index([2, 1, 3], dtype=dtype, name="xxx") tm.assert_index_equal(result, expected) name = type(idx).__name__ msg = f"Unable to fill values because {name} cannot contain NA" # fill_value=True with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -1]), fill_value=True) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = Index([2, 1, 3], dtype=dtype, name="xxx") tm.assert_index_equal(result, expected) with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -2]), fill_value=True) with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -5]), fill_value=True) msg = "index -5 is out of bounds for (axis 0 with )?size 3" with pytest.raises(IndexError, match=msg): idx.take(np.array([1, -5])) class TestContains: @pytest.mark.parametrize("dtype", [np.float64, np.int64, np.uint64]) def test_contains_none(self, dtype): # GH#35788 should return False, not raise TypeError index = Index([0, 1, 2, 3, 4], dtype=dtype) assert None not in index def test_contains_float64_nans(self): index = Index([1.0, 2.0, np.nan], dtype=np.float64) assert np.nan in index def test_contains_float64_not_nans(self): index = Index([1.0, 2.0, np.nan], dtype=np.float64) assert 1.0 in index class TestSliceLocs: @pytest.mark.parametrize("dtype", [int, float]) def test_slice_locs(self, dtype): index = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(index) assert index.slice_locs(start=2) == (2, n) assert index.slice_locs(start=3) == (3, n) assert index.slice_locs(3, 8) == (3, 6) assert index.slice_locs(5, 10) == (3, n) assert index.slice_locs(end=8) == (0, 6) assert index.slice_locs(end=9) == (0, 7) # reversed index2 = index[::-1] assert index2.slice_locs(8, 2) == (2, 6) assert index2.slice_locs(7, 3) == (2, 5) @pytest.mark.parametrize("dtype", [int, float]) def test_slice_locs_float_locs(self, dtype): index = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(index) assert index.slice_locs(5.0, 10.0) == (3, n) assert index.slice_locs(4.5, 10.5) == (3, 8) index2 = index[::-1] assert index2.slice_locs(8.5, 1.5) == (2, 6) assert index2.slice_locs(10.5, -1) == (0, n) @pytest.mark.parametrize("dtype", [int, float]) def test_slice_locs_dup_numeric(self, dtype): index = Index(np.array([10, 12, 12, 14], dtype=dtype)) assert index.slice_locs(12, 12) == (1, 3) assert index.slice_locs(11, 13) == (1, 3) index2 = index[::-1] assert index2.slice_locs(12, 12) == (1, 3) assert index2.slice_locs(13, 11) == (1, 3) def test_slice_locs_na(self): index = Index([np.nan, 1, 2]) assert index.slice_locs(1) == (1, 3) assert index.slice_locs(np.nan) == (0, 3) index = Index([0, np.nan, np.nan, 1, 2]) assert index.slice_locs(np.nan) == (1, 5) def test_slice_locs_na_raises(self): index = Index([np.nan, 1, 2]) with pytest.raises(KeyError, match=""): index.slice_locs(start=1.5) with pytest.raises(KeyError, match=""): index.slice_locs(end=1.5) class TestGetSliceBounds: @pytest.mark.parametrize("side, expected", [("left", 4), ("right", 5)]) def test_get_slice_bounds_within(self, side, expected): index = Index(range(6)) result = index.get_slice_bound(4, side=side) assert result == expected @pytest.mark.parametrize("side", ["left", "right"]) @pytest.mark.parametrize("bound, expected", [(-1, 0), (10, 6)]) def test_get_slice_bounds_outside(self, side, expected, bound): index = Index(range(6)) result = index.get_slice_bound(bound, side=side) assert result == expected
8180d20b9bd00bbe47b490f34495c8f341ec30bc
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_narrators.py
7da72b67f09225deba5ce48d2f216e8a178bf663
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
252
py
from xai.brain.wordbase.nouns._narrator import _NARRATOR #calss header class _NARRATORS(_NARRATOR, ): def __init__(self,): _NARRATOR.__init__(self) self.name = "NARRATORS" self.specie = 'nouns' self.basic = "narrator" self.jsondata = {}
1e694dedbb1c710bec69da84e4e55be2f1a13405
d21dbab3f374eb42a10f9ec7c434c1ca6fb2bff7
/Python/03 String/04 Mutations.py
ba1b1e83ce4d06eb5589e674c69d305472bec8cd
[]
no_license
almamuncsit/HackerRank
5360ad1d54aa01075dba5527f6ae695e4c6d9c7a
6599cde4c7541ebf27bacff8af02dc0c3eaaa678
refs/heads/master
2021-07-06T00:33:25.912754
2021-01-13T09:09:29
2021-01-13T09:09:29
222,364,072
4
0
null
null
null
null
UTF-8
Python
false
false
270
py
def mutate_string(string, position, character): str_list = list(string) str_list[position] = character return ''.join(str_list) if __name__ == '__main__': s = input() i, c = input().split() s_new = mutate_string(s, int(i), c) print(s_new)
8ef9e1347e94621ccc9ed1cd1d225d3447098d25
02e4920166051129d1ca28a0da80405a982f1cfe
/curso_py/ex014.py
ae83f034a8736245163401189b8c4d757af60e64
[]
no_license
felipeonf/Exercises_Python
1ab40cea2466d6bb5459b5384a1dde8e1066b3b4
8eb2d17a35a6352fd5268a5fa43b834443171c70
refs/heads/main
2023-07-23T22:30:13.567469
2021-08-25T03:34:33
2021-08-25T03:34:33
397,062,295
0
0
null
null
null
null
UTF-8
Python
false
false
208
py
import random lista = [] i = 0 while i < 4 : lista.append(input(f'Digite o nome do {1+i}° aluno: ')) i+=1 random.shuffle(lista) print(f'A ordem de apresentação escolhida foi {lista}')
133bb56e795f1304f909216fc94676e89bfc8e04
43eb31fb324240cf6f4150e310c5a7ec4087bbed
/online_inference/requests/make_request.py
324e23627b425313868aa3e32c1bd9f9e36c1ccb
[]
no_license
made-ml-in-prod-2021/bulaevvi
67cb63c0573b71eb152d102b4091f79eb887bfd5
6c0de66bb24c248b9291c03ddeed95ed1e990c61
refs/heads/main
2023-06-01T17:24:32.476388
2021-06-22T06:17:21
2021-06-22T06:17:21
354,891,217
0
0
null
2021-06-22T06:17:21
2021-04-05T16:03:26
Jupyter Notebook
UTF-8
Python
false
false
572
py
import pandas as pd import requests import time ENDPOINT = "http://127.0.0.1:8000/predict" REQUEST_FILE = "requests.csv" NUM_REQUESTS = 100 if __name__ == "__main__": data = pd.read_csv(REQUEST_FILE) for i in range(NUM_REQUESTS): request_data = data.iloc[i].to_dict() request_data["id"] = i response = requests.get( ENDPOINT, json=[request_data], ) print(f'Request: {request_data}') print(f'Response CODE: {response.status_code}') print(f'Response BODY: {response.json()}')
50dda7b0b5ff6c2dd3b252bb5836dffa34c2fd4e
3f05ce6a332003595064d14b24b57fc36021da92
/matscholar_web/tests/test_util.py
a630bf3cc334db58f3314765428bfb6b5e431020
[ "MIT" ]
permissive
materialsintelligence/matscholar-web
392f845dff515cf7f4f4684d5b105e4c40a40d88
95231228fc6da1a596653d774307b10916fb5847
refs/heads/master
2023-05-10T06:54:44.213445
2023-01-24T20:45:00
2023-01-24T20:45:00
151,479,404
9
13
MIT
2023-05-02T18:28:28
2018-10-03T20:57:22
CSS
UTF-8
Python
false
false
832
py
import json import os import unittest import matscholar_web from matscholar_web.util import load_static_data_file """ Tests for core utilities. """ class TestCoreUtils(unittest.TestCase): def setUp(self) -> None: rootdir = os.path.dirname(os.path.abspath(matscholar_web.__file__)) data_dir = os.path.join(rootdir, "assets/data/") self.test_fname = "test_file.json" self.test_fpath = os.path.join(data_dir, self.test_fname) self.true_data = {"a": [1, 2, 3], "b": "something"} def test_load_static_file(self): with open(self.test_fpath, "w") as f: json.dump(self.true_data, f) loaded_data = load_static_data_file(self.test_fname) self.assertEqual(self.true_data, loaded_data) def tearDown(self) -> None: os.remove(self.test_fpath)
c7d3f584401e6ffd29d0dc4040517f4a44631100
e9538b7ad6d0ce0ccfbb8e10c458f9e0b73926f6
/plugins/module_utils/network/ftd/operation.py
72d3e157b3287863a06c9ac800e2fde6a814e605
[]
no_license
ansible-collection-migration/misc.not_a_real_collection
b3ef8090c59de9ac30aca083c746ec3595d7f5f5
7ab1af924a3db4ada2f714b09bb392614344cb1e
refs/heads/master
2020-12-18T13:48:51.849567
2020-01-22T17:39:18
2020-01-22T17:39:18
235,400,821
0
0
null
null
null
null
UTF-8
Python
false
false
1,619
py
# Copyright (c) 2018 Cisco and/or its affiliates. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # from ansible_collections.misc.not_a_real_collection.plugins.module_utils.network.ftd.configuration import ParamName, PATH_PARAMS_FOR_DEFAULT_OBJ class FtdOperations: """ Utility class for common operation names """ GET_SYSTEM_INFO = 'getSystemInformation' GET_MANAGEMENT_IP_LIST = 'getManagementIPList' GET_DNS_SETTING_LIST = 'getDeviceDNSSettingsList' GET_DNS_SERVER_GROUP = 'getDNSServerGroup' def get_system_info(resource): """ Executes `getSystemInformation` operation and returns information about the system. :param resource: a BaseConfigurationResource object to connect to the device :return: a dictionary with system information about the device and its software """ path_params = {ParamName.PATH_PARAMS: PATH_PARAMS_FOR_DEFAULT_OBJ} system_info = resource.execute_operation(FtdOperations.GET_SYSTEM_INFO, path_params) return system_info
91322d262a1ae0f8f067202a178f058c74d25da4
13800b7827598e76428a335559b7bf11867ec2f0
/python/ccxt/async_support/ace.py
f298281814bfa4c1defe1543dc960ee5fdbfaf5b
[ "MIT" ]
permissive
ccxt/ccxt
b40a0466f5c430a3c0c6026552ae697aa80ba6c6
e4065f6a490e6fc4dd7a72b375428b2faa570668
refs/heads/master
2023-09-04T03:41:29.787733
2023-09-03T19:25:57
2023-09-03T19:25:57
91,253,698
30,798
8,190
MIT
2023-09-14T21:59:09
2017-05-14T15:41:56
Python
UTF-8
Python
false
false
41,723
py
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange from ccxt.abstract.ace import ImplicitAPI from ccxt.base.types import OrderSide from ccxt.base.types import OrderType from typing import Optional from typing import List from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import AuthenticationError from ccxt.base.decimal_to_precision import TICK_SIZE from ccxt.base.precise import Precise class ace(Exchange, ImplicitAPI): def describe(self): return self.deep_extend(super(ace, self).describe(), { 'id': 'ace', 'name': 'ACE', 'countries': ['TW'], # Taiwan 'version': 'v2', 'rateLimit': 100, 'pro': False, 'has': { 'CORS': None, 'spot': True, 'margin': False, 'swap': False, 'future': False, 'option': False, 'cancelAllOrders': False, 'cancelOrder': True, 'cancelOrders': False, 'createOrder': True, 'editOrder': False, 'fetchBalance': True, 'fetchBorrowRate': False, 'fetchBorrowRateHistories': False, 'fetchBorrowRateHistory': False, 'fetchBorrowRates': False, 'fetchClosedOrders': False, 'fetchCurrencies': False, 'fetchDepositAddress': False, 'fetchDeposits': False, 'fetchFundingHistory': False, 'fetchFundingRate': False, 'fetchFundingRateHistory': False, 'fetchFundingRates': False, 'fetchIndexOHLCV': False, 'fetchMarginMode': False, 'fetchMarkets': True, 'fetchMarkOHLCV': False, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenInterestHistory': False, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchOrders': False, 'fetchOrderTrades': True, 'fetchPositionMode': False, 'fetchPositions': False, 'fetchPremiumIndexOHLCV': False, 'fetchTicker': True, 'fetchTickers': True, 'fetchTime': False, 'fetchTrades': False, 'fetchTradingFee': False, 'fetchTradingFees': False, 'fetchTransactionFees': False, 'fetchTransactions': False, 'fetchTransfer': False, 'fetchTransfers': False, 'fetchWithdrawal': False, 'fetchWithdrawals': False, 'setLeverage': False, 'setMarginMode': False, 'transfer': False, 'withdraw': False, 'ws': False, }, 'timeframes': { '1m': 1, '5m': 5, '10m': 10, '30m': 10, '1h': 60, '2h': 120, '4h': 240, '8h': 480, '12h': 720, '1d': 24, '1w': 70, '1M': 31, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/216908003-fb314cf6-e66e-471c-b91d-1d86e4baaa90.jpg', 'api': { 'public': 'https://ace.io/polarisex', 'private': 'https://ace.io/polarisex/open', }, 'www': 'https://ace.io/', 'doc': [ 'https://github.com/ace-exchange/ace-offical-api-docs', ], 'fees': 'https://helpcenter.ace.io/hc/zh-tw/articles/360018609132-%E8%B2%BB%E7%8E%87%E8%AA%AA%E6%98%8E', }, 'requiredCredentials': { 'apiKey': True, 'secret': True, }, 'api': { 'public': { 'get': [ 'oapi/v2/list/tradePrice', 'oapi/v2/list/marketPair', 'open/v2/public/getOrderBook', ], }, 'private': { 'post': [ 'v2/coin/customerAccount', 'v2/kline/getKline', 'v2/order/order', 'v2/order/cancel', 'v2/order/getOrderList', 'v2/order/showOrderStatus', 'v2/order/showOrderHistory', 'v2/order/getTradeList', ], }, }, 'fees': { 'trading': { 'percentage': True, 'maker': self.parse_number('0.0005'), 'taker': self.parse_number('0.001'), }, }, 'options': { 'brokerId': 'ccxt', }, 'precisionMode': TICK_SIZE, 'exceptions': { 'exact': { '2003': InvalidOrder, '2004': InvalidOrder, '2005': InvalidOrder, '2021': InsufficientFunds, '2036': InvalidOrder, '2039': InvalidOrder, '2053': InvalidOrder, '2061': BadRequest, '2063': InvalidOrder, '9996': BadRequest, '10012': AuthenticationError, '20182': AuthenticationError, '20183': InvalidOrder, }, 'broad': { }, }, 'commonCurrencies': { }, }) async def fetch_markets(self, params={}): """ retrieves data on all markets for ace see https://github.com/ace-exchange/ace-official-api-docs/blob/master/api_v2.md#oapi-api---market-pair :param dict [params]: extra parameters specific to the exchange api endpoint :returns dict[]: an array of objects representing market data """ response = await self.publicGetOapiV2ListMarketPair() # # [ # { # "symbol":"BTC/USDT", # "base":"btc", # "baseCurrencyId": "122" # "quote":"usdt", # "basePrecision":"8", # "quotePrecision":"5", # "minLimitBaseAmount":"0.1", # "maxLimitBaseAmount":"480286" # } # ] # result = [] for i in range(0, len(response)): market = response[i] base = self.safe_string(market, 'base') baseCode = self.safe_currency_code(base) quote = self.safe_string(market, 'quote') quoteCode = self.safe_currency_code(quote) symbol = base + '/' + quote result.append({ 'id': self.safe_string(market, 'symbol'), 'uppercaseId': None, 'symbol': symbol, 'base': baseCode, 'baseId': self.safe_integer(market, 'baseCurrencyId'), 'quote': quoteCode, 'quoteId': self.safe_integer(market, 'quoteCurrencyId'), 'settle': None, 'settleId': None, 'type': 'spot', 'spot': True, 'margin': False, 'swap': False, 'future': False, 'option': False, 'derivative': False, 'contract': False, 'linear': None, 'inverse': None, 'contractSize': None, 'expiry': None, 'expiryDatetime': None, 'strike': None, 'optionType': None, 'limits': { 'amount': { 'min': self.safe_number(market, 'minLimitBaseAmount'), 'max': self.safe_number(market, 'maxLimitBaseAmount'), }, 'price': { 'min': None, 'max': None, }, 'cost': { 'min': None, 'max': None, }, 'leverage': { 'min': None, 'max': None, }, }, 'precision': { 'price': self.parse_number(self.parse_precision(self.safe_string(market, 'quotePrecision'))), 'amount': self.parse_number(self.parse_precision(self.safe_string(market, 'basePrecision'))), }, 'active': None, 'info': market, }) return result def parse_ticker(self, ticker, market=None): # # { # "base_volume":229196.34035399999, # "last_price":11881.06, # "quote_volume":19.2909 # } # marketId = self.safe_string(ticker, 'id') symbol = self.safe_symbol(marketId, market) return self.safe_ticker({ 'symbol': symbol, 'timestamp': None, 'datetime': None, 'high': None, 'low': None, 'bid': None, 'bidVolume': None, 'ask': None, 'askVolume': None, 'vwap': None, 'open': None, 'close': self.safe_string(ticker, 'last_price'), 'last': self.safe_string(ticker, 'last_price'), 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': self.safe_string(ticker, 'base_volume'), 'quoteVolume': self.safe_string(ticker, 'quote_volume'), 'info': ticker, }, market) async def fetch_ticker(self, symbol: str, params={}): """ fetches a price ticker, a statistical calculation with the information calculated over the past 24 hours for a specific market see https://github.com/ace-exchange/ace-official-api-docs/blob/master/api_v2.md#oapi-api---trade-data :param str symbol: unified symbol of the market to fetch the ticker for :param dict [params]: extra parameters specific to the ace api endpoint :returns dict: a `ticker structure <https://github.com/ccxt/ccxt/wiki/Manual#ticker-structure>` """ await self.load_markets() market = self.market(symbol) response = await self.publicGetOapiV2ListTradePrice(params) marketId = market['id'] ticker = self.safe_value(response, marketId, {}) # # { # "BTC/USDT":{ # "base_volume":229196.34035399999, # "last_price":11881.06, # "quote_volume":19.2909 # } # } # return self.parse_ticker(ticker, market) async def fetch_tickers(self, symbols: Optional[List[str]] = None, params={}): """ fetches price tickers for multiple markets, statistical calculations with the information calculated over the past 24 hours each market see https://github.com/ace-exchange/ace-official-api-docs/blob/master/api_v2.md#oapi-api---trade-data :param str[]|None symbols: unified symbols of the markets to fetch the ticker for, all market tickers are returned if not assigned :param dict [params]: extra parameters specific to the ace api endpoint :returns dict: a dictionary of `ticker structures <https://github.com/ccxt/ccxt/wiki/Manual#ticker-structure>` """ await self.load_markets() response = await self.publicGetOapiV2ListTradePrice() # # { # "BTC/USDT":{ # "base_volume":229196.34035399999, # "last_price":11881.06, # "quote_volume":19.2909 # } # } # tickers = [] pairs = list(response.keys()) for i in range(0, len(pairs)): marketId = pairs[i] market = self.safe_market(marketId) rawTicker = self.safe_value(response, marketId) ticker = self.parse_ticker(rawTicker, market) tickers.append(ticker) return self.filter_by_array(tickers, 'symbol', symbols) async def fetch_order_book(self, symbol: str, limit: Optional[int] = None, params={}): """ fetches information on open orders with bid(buy) and ask(sell) prices, volumes and other data see https://github.com/ace-exchange/ace-official-api-docs/blob/master/api_v2.md#open-api---order-books :param str symbol: unified symbol of the market to fetch the order book for :param int [limit]: the maximum amount of order book entries to return :param dict [params]: extra parameters specific to the ace api endpoint :returns dict: A dictionary of `order book structures <https://github.com/ccxt/ccxt/wiki/Manual#order-book-structure>` indexed by market symbols """ await self.load_markets() market = self.market(symbol) request = { 'quoteCurrencyId': market['quoteId'], 'baseCurrencyId': market['baseId'], } if limit is not None: request['depth'] = limit response = await self.publicGetOpenV2PublicGetOrderBook(self.extend(request, params)) # # { # "attachment": { # "baseCurrencyId": "2", # "quoteCurrencyId": "14", # "baseCurrencyName": "BTC", # "quoteCurrencyName": "USDT", # "bids": [ # [ # "0.0009", # "19993.53" # ], # [ # "0.001", # "19675.33" # ], # [ # "0.001", # "19357.13" # ] # ], # "asks": [ # [ # "0.001", # "20629.92" # ], # [ # "0.001", # "20948.12" # ] # ] # }, # "message": null, # "parameters": null, # "status": 200 # } # orderBook = self.safe_value(response, 'attachment') return self.parse_order_book(orderBook, market['symbol'], None, 'bids', 'asks') def parse_ohlcv(self, ohlcv, market=None): # # { # "changeRate": 0, # "volume": 0, # "closePrice": 101000.0, # "lowPrice": 101000.0, # "highPrice": 101000.0, # "highPrice": 1573195740000L, # "openPrice": 101000.0, # "current": 101000.0, # "currentTime": "2019-11-08 14:49:00", # "createTime": "2019-11-08 14:49:00" # } # dateTime = self.safe_string(ohlcv, 'createTime') timestamp = self.parse8601(dateTime) if timestamp is not None: timestamp = timestamp - 28800000 # 8 hours return [ timestamp, self.safe_number(ohlcv, 'openPrice'), self.safe_number(ohlcv, 'highPrice'), self.safe_number(ohlcv, 'lowPrice'), self.safe_number(ohlcv, 'closePrice'), self.safe_number(ohlcv, 'volume'), ] async def fetch_ohlcv(self, symbol: str, timeframe='1m', since: Optional[int] = None, limit: Optional[int] = None, params={}): """ fetches historical candlestick data containing the open, high, low, and close price, and the volume of a market see https://github.com/ace-exchange/ace-official-api-docs/blob/master/api_v2.md#open-api---klinecandlestick-data :param str symbol: unified symbol of the market to fetch OHLCV data for :param str timeframe: the length of time each candle represents :param int [since]: timestamp in ms of the earliest candle to fetch :param int [limit]: the maximum amount of candles to fetch :param dict [params]: extra parameters specific to the ace api endpoint :returns int[][]: A list of candles ordered, open, high, low, close, volume """ await self.load_markets() market = self.market(symbol) request = { 'duration': self.timeframes[timeframe], 'quoteCurrencyId': market['quoteId'], 'baseCurrencyId': market['baseId'], } if limit is not None: request['limit'] = limit if since is not None: request['startTime'] = since response = await self.privatePostV2KlineGetKline(self.extend(request, params)) data = self.safe_value(response, 'attachment', []) # # { # "attachment":[ # { # "changeRate": 0, # "closePrice": 101000.0, # "volume": 0, # "lowPrice": 101000.0, # "highPrice": 101000.0, # "highPrice": 1573195740000L, # "openPrice": 101000.0, # "current": 101000.0, # "currentTime": "2019-11-08 14:49:00", # "createTime": "2019-11-08 14:49:00" # } # ] # } # return self.parse_ohlcvs(data, market, timeframe, since, limit) def parse_order_status(self, status): statuses = { '0': 'open', '1': 'open', '2': 'closed', '4': 'canceled', '5': 'canceled', } return self.safe_string(statuses, status, None) def parse_order(self, order, market=None): # # createOrder # "15697850529570392100421100482693" # # fetchOpenOrders # { # "uid": 0, # "orderNo": "16113081376560890227301101413941", # "orderTime": "2021-01-22 17:35:37", # "orderTimeStamp": 1611308137656, # "baseCurrencyId": 1, # "baseCurrencyName": "TWD", # "quoteCurrencyId": 14, # "quoteCurrencyName": "USDT", # "buyOrSell": "1", # "num": "6.0000000000000000", # "price": "32.5880000000000000", # "remainNum": "2.0000000000000000", # "tradeNum": "4.0000000000000000", # "tradePrice": "31.19800000000000000000", # "tradeAmount": "124.7920000000000000", # "tradeRate": "0.66666666666666666667", # "status": 1, # "type": 1 # } # id = None timestamp = None symbol = None price = None amount = None side = None type = None status = None filled = None remaining = None average = None if isinstance(order, str): id = order else: id = self.safe_string(order, 'orderNo') timestamp = self.safe_integer(order, 'orderTimeStamp') if timestamp is None: dateTime = self.safe_string(order, 'orderTime') if dateTime is not None: timestamp = self.parse8601(dateTime) timestamp = timestamp - 28800000 # 8 hours orderSide = self.safe_number(order, 'buyOrSell') if orderSide is not None: side = 'buy' if (orderSide == 1) else 'sell' amount = self.safe_string(order, 'num') price = self.safe_string(order, 'price') quoteId = self.safe_string(order, 'quoteCurrencyName') baseId = self.safe_string(order, 'baseCurrencyName') if quoteId is not None and baseId is not None: symbol = baseId + '/' + quoteId orderType = self.safe_number(order, 'type') if orderType is not None: type = 'limit' if (orderType == 1) else 'market' filled = self.safe_string(order, 'tradeNum') remaining = self.safe_string(order, 'remainNum') status = self.parse_order_status(self.safe_string(order, 'status')) average = self.safe_string(order, 'averagePrice') return self.safe_order({ 'id': id, 'clientOrderId': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': type, 'timeInForce': None, 'postOnly': None, 'side': side, 'price': price, 'stopPrice': None, 'amount': amount, 'cost': None, 'average': average, 'filled': filled, 'remaining': remaining, 'status': status, 'fee': None, 'trades': None, 'info': order, }, market) async def create_order(self, symbol: str, type: OrderType, side: OrderSide, amount, price=None, params={}): """ create a trade order see https://github.com/ace-exchange/ace-official-api-docs/blob/master/api_v2.md#open-api---new-order :param str symbol: unified symbol of the market to create an order in :param str type: 'market' or 'limit' :param str side: 'buy' or 'sell' :param float amount: how much of currency you want to trade in units of base currency :param float [price]: the price at which the order is to be fullfilled, in units of the quote currency, ignored in market orders :param dict [params]: extra parameters specific to the ace api endpoint :returns dict: an `order structure <https://github.com/ccxt/ccxt/wiki/Manual#order-structure>` """ await self.load_markets() market = self.market(symbol) orderType = type.upper() orderSide = side.upper() request = { 'baseCurrencyId': market['baseId'], 'quoteCurrencyId': market['quoteId'], 'type': 1 if (orderType == 'LIMIT') else 2, 'buyOrSell': 1 if (orderSide == 'BUY') else 2, 'num': self.amount_to_precision(symbol, amount), } if type == 'limit': request['price'] = self.price_to_precision(symbol, price) response = await self.privatePostV2OrderOrder(self.extend(request, params)) # # { # "attachment": "15697850529570392100421100482693", # "message": null, # "parameters": null, # "status": 200 # } # data = self.safe_value(response, 'attachment') return self.parse_order(data, market) async def cancel_order(self, id: str, symbol: Optional[str] = None, params={}): """ cancels an open order see https://github.com/ace-exchange/ace-official-api-docs/blob/master/api_v2.md#open-api---cancel-order :param str id: order id :param str symbol: unified symbol of the market the order was made in :param dict [params]: extra parameters specific to the ace api endpoint :returns dict: An `order structure <https://github.com/ccxt/ccxt/wiki/Manual#order-structure>` """ await self.load_markets() request = { 'orderNo': id, } response = await self.privatePostV2OrderCancel(self.extend(request, params)) # # { # "attachment": 200, # "message": null, # "parameters": null, # "status": 200 # } # return response async def fetch_order(self, id: str, symbol: Optional[str] = None, params={}): """ fetches information on an order made by the user see https://github.com/ace-exchange/ace-official-api-docs/blob/master/api_v2.md#open-api---order-status :param str symbol: unified symbol of the market the order was made in :param dict [params]: extra parameters specific to the ace api endpoint :returns dict: An `order structure <https://github.com/ccxt/ccxt/wiki/Manual#order-structure>` """ await self.load_markets() request = { 'orderNo': id, } response = await self.privatePostV2OrderShowOrderStatus(self.extend(request, params)) # # { # "attachment": { # "buyOrSell": 1, # "averagePrice": "490849.75000000", # "num": "0.00000000", # "orderTime": "2022-11-29 18:03:06.318", # "price": "490849.75000000", # "status": 4, # "tradeNum": "0.02697000", # "remainNum": "0.97303000", # "baseCurrencyId": 2, # "baseCurrencyName": "BTC", # "quoteCurrencyId": 1, # "quoteCurrencyName": "TWD", # "orderNo": "16697161898600391472461100244406" # }, # "message": null, # "parameters": null, # "status": 200 # } # data = self.safe_value(response, 'attachment') return self.parse_order(data, None) async def fetch_open_orders(self, symbol: Optional[str] = None, since: Optional[int] = None, limit: Optional[int] = None, params={}): """ fetch all unfilled currently open orders see https://github.com/ace-exchange/ace-official-api-docs/blob/master/api_v2.md#open-api---order-list :param str symbol: unified market symbol of the market orders were made in :param int [since]: the earliest time in ms to fetch orders for :param int [limit]: the maximum number of orde structures to retrieve :param dict [params]: extra parameters specific to the ace api endpoint :returns Order[]: a list of `order structures <https://github.com/ccxt/ccxt/wiki/Manual#order-structure>` """ if symbol is None: raise ArgumentsRequired(self.id + ' fetchOpenOrders() requires the symbol argument') await self.load_markets() market = self.market(symbol) request = { 'quoteCurrencyId': market['quoteId'], 'baseCurrencyId': market['baseId'], # 'start': 0, } if limit is not None: request['size'] = limit response = await self.privatePostV2OrderGetOrderList(self.extend(request, params)) orders = self.safe_value(response, 'attachment') # # { # "attachment": [ # { # "uid": 0, # "orderNo": "16113081376560890227301101413941", # "orderTime": "2021-01-22 17:35:37", # "orderTimeStamp": 1611308137656, # "baseCurrencyId": 1, # "baseCurrencyName": "TWD", # "quoteCurrencyId": 14, # "quoteCurrencyName": "USDT", # "buyOrSell": "1", # "num": "6.0000000000000000", # "price": "32.5880000000000000", # "remainNum": "2.0000000000000000", # "tradeNum": "4.0000000000000000", # "tradePrice": "31.19800000000000000000", # "tradeAmount": "124.7920000000000000", # "tradeRate": "0.66666666666666666667", # "status": 1, # "type": 1 # } # ], # "message": null, # "parameters": null, # "status": 200 # } # return self.parse_orders(orders, market, since, limit) def parse_trade(self, trade, market=None): # # fetchOrderTrades # { # "amount": 0.0030965, # "tradeNo": "15681920522485652100751000417788", # "price": "0.03096500", # "num": "0.10000000", # "bi": 1, # "time": "2019-09-11 16:54:12.248" # } # # fetchMyTrades # { # "buyOrSell": 1, # "orderNo": "16708156853695560053601100247906", # "num": "1", # "price": "16895", # "orderAmount": "16895", # "tradeNum": "0.1", # "tradePrice": "16895", # "tradeAmount": "1689.5", # "fee": "0", # "feeSave": "0", # "status": 1, # "isSelf": False, # "tradeNo": "16708186395087940051961000274150", # "tradeTime": "2022-12-12 12:17:19", # "tradeTimestamp": 1670818639508, # "quoteCurrencyId": 14, # "quoteCurrencyName": "USDT", # "baseCurrencyId": 2, # "baseCurrencyName": "BTC" # } id = self.safe_string(trade, 'tradeNo') price = self.safe_string(trade, 'price') amount = self.safe_string(trade, 'num') timestamp = self.safe_integer(trade, 'tradeTimestamp') if timestamp is None: datetime = self.safe_string_2(trade, 'time', 'tradeTime') timestamp = self.parse8601(datetime) timestamp = timestamp - 28800000 # 8 hours normalize timestamp symbol = market['symbol'] quoteId = self.safe_string(trade, 'quoteCurrencyName') baseId = self.safe_string(trade, 'baseCurrencyName') if quoteId is not None and baseId is not None: symbol = baseId + '/' + quoteId side = None tradeSide = self.safe_number(trade, 'buyOrSell') if tradeSide is not None: side = 'buy' if (tradeSide == 1) else 'sell' feeString = self.safe_string(trade, 'fee') fee = None if feeString is not None: feeSaveString = self.safe_string(trade, 'feeSave') fee = { 'cost': Precise.string_sub(feeString, feeSaveString), 'currency': quoteId, } return self.safe_trade({ 'info': trade, 'id': id, 'order': self.safe_string(trade, 'orderNo'), 'symbol': symbol, 'side': side, 'type': None, 'takerOrMaker': None, 'price': price, 'amount': amount, 'cost': None, 'fee': fee, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), }, market) async def fetch_order_trades(self, id: str, symbol: Optional[str] = None, since: Optional[int] = None, limit: Optional[int] = None, params={}): """ fetch all the trades made from a single order see https://github.com/ace-exchange/ace-official-api-docs/blob/master/api_v2.md#open-api---order-history :param str id: order id :param str symbol: unified market symbol :param int [since]: the earliest time in ms to fetch trades for :param int [limit]: the maximum number of trades to retrieve :param dict [params]: extra parameters specific to the ace api endpoint :returns dict[]: a list of `trade structures <https://github.com/ccxt/ccxt/wiki/Manual#trade-structure>` """ await self.load_markets() market = self.safe_market(symbol) request = { 'orderNo': id, } response = await self.privatePostV2OrderShowOrderHistory(self.extend(request, params)) # # { # "attachment": { # "order": { # "buyOrSell": 1, # "averagePrice": "491343.74000000", # "num": "1.00000000", # "orderTime": "2022-11-29 18:32:22.232", # "price": "491343.74000000", # "status": 1, # "tradeNum": "0.01622200", # "remainNum": "0.98377800", # "baseCurrencyId": 2, # "baseCurrencyName": "BTC", # "quoteCurrencyId": 1, # "quoteCurrencyName": "TWD", # "orderNo": "16697179457740441472471100214402" # }, # "trades": [ # { # "price": "491343.74000000", # "num": "0.01622200", # "time": "2022-11-29 18:32:25.789", # "tradeNo": "16697179457897791471461000223437", # "amount": "7970.57815028" # } # ] # }, # "message": null, # "parameters": null, # "status": 200 # } # data = self.safe_value(response, 'attachment') trades = self.safe_value(data, 'trades') if trades is None: return trades return self.parse_trades(trades, market, since, limit) async def fetch_my_trades(self, symbol: Optional[str] = None, since: Optional[int] = None, limit: Optional[int] = None, params={}): """ fetch all trades made by the user see https://github.com/ace-exchange/ace-official-api-docs/blob/master/api_v2.md#open-api---trade-list :param str symbol: unified symbol of the market to fetch trades for :param int [since]: timestamp in ms of the earliest trade to fetch :param int [limit]: the maximum amount of trades to fetch :param dict [params]: extra parameters specific to the ace api endpoint :returns Trade[]: a list of `trade structures <https://github.com/ccxt/ccxt/wiki/Manual#public-trades>` """ await self.load_markets() market = self.safe_market(symbol) request = { # 'buyOrSell': 1, # 'start': 0, } if market['id'] is not None: request['quoteCurrencyId'] = market['quoteId'] request['baseCurrencyId'] = market['baseId'] if limit is not None: request['size'] = limit # default 10, max 500 response = await self.privatePostV2OrderGetTradeList(self.extend(request, params)) # # { # "attachment": [ # { # "buyOrSell": 1, # "orderNo": "16708156853695560053601100247906", # "num": "1", # "price": "16895", # "orderAmount": "16895", # "tradeNum": "0.1", # "tradePrice": "16895", # "tradeAmount": "1689.5", # "fee": "0", # "feeSave": "0", # "status": 1, # "isSelf": False, # "tradeNo": "16708186395087940051961000274150", # "tradeTime": "2022-12-12 12:17:19", # "tradeTimestamp": 1670818639508, # "quoteCurrencyId": 14, # "quoteCurrencyName": "USDT", # "baseCurrencyId": 2, # "baseCurrencyName": "BTC" # } # ], # "message": null, # "parameters": null, # "status": 200 # } # trades = self.safe_value(response, 'attachment', []) return self.parse_trades(trades, market, since, limit) def parse_balance(self, response): # # [ # { # "currencyId": 4, # "amount": 6.896, # "cashAmount": 6.3855, # "uid": 123, # "currencyName": "BTC" # } # ] # result = { 'info': response, } for i in range(0, len(response)): balance = response[i] currencyId = self.safe_string(balance, 'currencyName') code = self.safe_currency_code(currencyId) amount = self.safe_string(balance, 'amount') available = self.safe_string(balance, 'cashAmount') account = { 'free': available, 'total': amount, } result[code] = account return self.safe_balance(result) async def fetch_balance(self, params={}): """ query for balance and get the amount of funds available for trading or funds locked in orders see https://github.com/ace-exchange/ace-official-api-docs/blob/master/api_v2.md#open-api---account-balance :param dict [params]: extra parameters specific to the ace api endpoint :returns dict: a `balance structure <https://github.com/ccxt/ccxt/wiki/Manual#balance-structure>` """ await self.load_markets() response = await self.privatePostV2CoinCustomerAccount(params) balances = self.safe_value(response, 'attachment', []) # # { # "attachment":[ # { # "currencyId": 4, # "amount": 6.896, # "cashAmount": 6.3855, # "uid": 123, # "currencyName": "BTC" # } # ], # message: null, # parameters: null, # status: '200' # } # return self.parse_balance(balances) def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = '/' + self.implode_params(path, params) query = self.omit(params, self.extract_params(path)) if headers is None: headers = {} if api == 'private': self.check_required_credentials() nonce = self.milliseconds() auth = 'ACE_SIGN' + self.secret data = self.extend({ 'apiKey': self.apiKey, 'timeStamp': nonce, }, params) dataKeys = list(data.keys()) sortedDataKeys = self.sort_by(dataKeys, 0) for i in range(0, len(sortedDataKeys)): key = sortedDataKeys[i] auth += self.safe_string(data, key) signature = self.hash(self.encode(auth), 'sha256', 'hex') data['signKey'] = signature headers = { 'Content-Type': 'application/x-www-form-urlencoded', } if method == 'POST': brokerId = self.safe_string(self.options, 'brokerId') if brokerId is not None: headers['Referer'] = brokerId body = self.urlencode(data) elif api == 'public' and method == 'GET': if query: url += '?' + self.urlencode(query) url = self.urls['api'][api] + url return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return None # fallback to the default error handler feedback = self.id + ' ' + body status = self.safe_number(response, 'status', 200) if status > 200: self.throw_exactly_matched_exception(self.exceptions['exact'], status, feedback) self.throw_broadly_matched_exception(self.exceptions['broad'], status, feedback) return None
66c716da60208194ea298347d9a3cd37cde9cdbe
51e6015db62fd30ff9eaa724926e8373aedf796e
/custom_components/zhibot/chatbot.py
f071c55cac18fde4f0e9057457baed88c9e1df32
[]
no_license
xxx2016/HAExtra
ed0cb3c0a5876c11894bde8a96fde31ca8a9e3a5
e71dc33f51455e2d91ab2d7eec39a931d06847d9
refs/heads/master
2023-02-24T04:41:38.779325
2021-01-25T13:04:12
2021-01-25T13:04:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,692
py
from homeassistant.components.http import HomeAssistantView from homeassistant.util.json import load_json, save_json # from homeassistant.components.http import KEY_HASS # Logging import logging _LOGGER = logging.getLogger(__name__) class chatbotView(HomeAssistantView): """View to handle Configuration requests.""" def __init__(self, hass, conf): self.name = self.__class__.__name__.rstrip('View').lower() self.url = '/' + self.name self.requires_auth = False self.hass = hass self.password = conf.get('password') if self.password is None: # Auth: config UI confirmation, intead of pre shared password self._configuring = None self.conf = load_json(hass.config.path('.' + self.name)) if not self.conf: self.conf = [] async def post(self, request): try: # request[KEY_REAL_IP] # request.app[KEY_HASS] data = await request.json() _LOGGER.debug("REQUEST: %s", data) answer = await self.handle(data) if self.check(request, data) else "没有访问授权!" except: import traceback _LOGGER.error(traceback.format_exc()) answer = "程序出错啦!" _LOGGER.debug("RESPONSE: %s", answer) return self.json(self.response(answer)) def response(self, answer): return None async def handle(self, data): return "未能处理" def check(self, request, data): if self.password is not None: return self.password == request.query.get('password') or self.password == '' return self.config(data) def config(self, data): configurator = self.hass.components.configurator if self._configuring: configurator.async_request_done(self._configuring) def config_callback(fields): configurator.request_done(self._configuring) self._configuring = None _LOGGER.debug(fields) if fields.get('agree') == 'ok': self.config_done(data) save_json(self.hass.config.path('.' + self.name), self.conf) self._configuring = configurator.async_request_config( '智加加', config_callback, description=self.config_desc(data), submit_caption='完成', fields=[{'id': 'agree', 'name': '如果允许访问,请输入“ok”'}], ) return False def config_done(self, data): pass def config_desc(self, data): return "授权访问"
46dbd48b6d5e6c8ffb047612a78d868f11973154
17ba39d104403a36ecdfe83da0d5424feb3fdf24
/accounts/serializers.py
5758bb9f9ed301c9eb631dfdfec009cdfca7f20d
[]
no_license
bellomusodiq/obs
46bc3bfc316d224c732a8747649016ca2fdf9493
a207bf51c2e21c10996e53f01e56368b648c7e6e
refs/heads/master
2020-04-02T21:35:46.813250
2018-10-30T11:11:38
2018-10-30T11:11:38
151,956,354
0
0
null
null
null
null
UTF-8
Python
false
false
4,275
py
from rest_framework import serializers from rest_framework_jwt.settings import api_settings from .models import User, CuponCode from django.template.loader import render_to_string from django.core.mail import EmailMessage import string, random class UserSerializer(serializers.ModelSerializer): def gen_token(self): choices = string.ascii_letters + string.digits + string.hexdigits gen = '' for i in range(10): gen += random.choice(choices) return gen class Meta: model = User fields = ( 'id', 'email', 'username', 'firstname', 'lastname', 'referral_allowance', 'read_allowance', 'comment_allowance', 'referral_code', 'is_admin', 'is_active', 'password', 'cupon_code' ) read_only_fields = ('last_login','activation_token', 'is_active') extra_kwargs = { 'password': {'write_only': True}, 'referral_allowance': {'read_only': True}, 'read_allowance': {'read_only': True}, 'referral_code': {'read_only': True}, } def validate_cupon_code(self, value): if value in [code.code for code in CuponCode.objects.all()] or value == '': return value if(value in [user.referral_code for user in User.objects.filter(is_admin=False)]): return value raise serializers.ValidationError('Incorrect cupon code, input a correct cupon code or leave blank') def create(self, validated_data, *args, **kwargs): user = User( username = validated_data['username'], email = validated_data['email'], firstname = validated_data['firstname'], lastname = validated_data['lastname'], cupon_code = validated_data['cupon_code'], referral_code = self.gen_token() ) user.set_password(validated_data['password']) user.save() if not user.is_admin: cupon_code = validated_data['cupon_code'] if(cupon_code in [user.referral_code for user in User.objects.filter(is_admin=False).exclude(pk=user.pk)]): user_obj = User.objects.get(referral_code=cupon_code) user_obj.referral_allowance = float(user_obj.referral_allowance) + 200 user_obj.save() if(cupon_code in [cupon_code.code for cupon_code in CuponCode.objects.all()]): user.referral_allowance = float(user.referral_allowance) + 500 CuponCode.objects.get(code=cupon_code).delete() user.save() return user class UserLoginSerializer(serializers.ModelSerializer): token = serializers.CharField(allow_blank=True, read_only=True) username = serializers.CharField() class Meta: fields = [ 'username', 'password', 'email', 'token', 'id', 'is_active', 'is_admin', ] model = User extra_kwargs = { "password": {"write_only": True}, "email": {"read_only": True}, "is_active": {"read_only": True}, "is_admin": {"read_only": True}, "id": {"read_only": True}, } def validate(self, data): username = data.get('username', None) password = data['password'] if not username: raise serializers.ValidationError('A username is required to login') user = User.objects.get(username=username) if not user: raise serializers.ValidationError('the username is not valid') if(user): if not user.check_password(password): raise serializers.ValidationError('Incorrect Credential please try again') jwt_payload_handler = api_settings.JWT_PAYLOAD_HANDLER jwt_encode_handler = api_settings.JWT_ENCODE_HANDLER payload = jwt_payload_handler(user) token = jwt_encode_handler(payload) data['token'] = token data['id'] = user.id return data class CuponCodeSerializer(serializers.ModelSerializer): class Meta: model = CuponCode fields = ['id', 'code'] extra_kwargs = { "code": {"read_only": True}, }
067961039a165f93e34347f56a947b446b17133d
1117ae9a0bc4bbbe0e505e573af70a9629ec8c45
/App/models.py
865bdb8ca8a7b9edfe0f5c7e75a61cbabda2da10
[]
no_license
Chukslord1/E-LIBRARY
003eadf124be91e40586f2f6661b5895a93d6a60
c16f6d7ab2efb2be136251298f28119c2023b19f
refs/heads/master
2023-01-10T17:43:28.293541
2020-11-17T20:27:52
2020-11-17T20:27:52
267,709,487
0
0
null
null
null
null
UTF-8
Python
false
false
2,724
py
from django.db import models from django.contrib.auth.models import User # Create your models here. class Book(models.Model): title=models.TextField() isbn = models.IntegerField() summary= models.TextField() author = models.TextField() position=models.CharField(max_length=100) genre=models.CharField(max_length=100) language=models.TextField() total_copies=models.IntegerField() available_copies=models.IntegerField() pic=models.ImageField(blank=True, null=True) review=models.IntegerField() paginate_by = 2 def __str__(self): return self.title class Language(models.Model): name = models.CharField(max_length=200, help_text="Enter the book's natural language (e.g. English, French, Japanese etc.)") code=models.CharField(max_length=200, help_text="Enter the book's natural language code") def __str__(self): return self.name class Genre(models.Model): name = models.CharField(max_length=200, help_text="Enter a book genre (e.g. Science Fiction, French Poetry etc.)") def __str__(self): return self.name class Series(models.Model): name = models.CharField(max_length=200, help_text="Enter a book that is a Series") def __str__(self): return self.name class Book_Allotment(models.Model): book_title=models.TextField() book_number=models.IntegerField() member=models.CharField(max_length=100) email=models.CharField(max_length=100) issue_date=models.TextField(null=True,blank=True) return_date=models.TextField(null=True,blank=True) book_status=models.TextField(null=True,blank=True) def __str__(self): return self.book_title class Member(models.Model): full_name=models.TextField() address=models.TextField() email=models.CharField(max_length=100) phone_number=models.IntegerField() def __str__(self): return self.full_name class Publisher(models.Model): full_name=models.TextField() email=models.CharField(max_length=100) def __str__(self): return self.full_name class Author(models.Model): full_name=models.TextField() email=models.CharField(max_length=100) def __str__(self): return self.full_name class Liberian(models.Model): user = models.OneToOneField(User, related_name="profile", on_delete=models.CASCADE) username=models.CharField(max_length=100, null=True,blank=True) name= models.CharField(max_length=100) address= models.TextField() phone_number=models.IntegerField() class Settings(models.Model): image=models.ImageField(null=True,blank=True) name=models.TextField(null=True,blank=True)
74e1f700ad462338166fff4c0f99dcfb6d303a54
0a5db329e6ca4690f6f5f84d34ed51c0f54273b4
/6 Extra 3/Example 1.py
42e838ef0565d84e028cb1912447b5a8a3e24c4a
[]
no_license
wiput1999/Python101
b7778e8feacdf95039260ba4e7d149a1fea30304
5d0eac78417cc1139f884652c5a6c6995dfb9e22
refs/heads/master
2021-01-20T15:31:19.170451
2017-04-08T16:03:38
2017-04-08T16:03:38
90,780,461
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
num = [] for i in range(10): num.append(int(input("Num : "))) for j in range(0,len(num)): for i in range(0,len(num)-1-j): if num[i] > num[i+1]: t = num[i] num[i] = num[i+1] num[i+1] = t print(num)
c96f702c3c4d089f96e3879dc22c4ec60f1ad720
29c58b3bec6ac0fcdb3070efc118600ee92004da
/test/test_connector_sync_event_dto.py
488ce7ea7b82b940e80e1efabe7d0b5b32f66c67
[ "MIT" ]
permissive
mailslurp/mailslurp-client-python
a2b5a0545206714bd4462ae517f242852b52aaf9
5c9a7cfdd5ea8bf671928023e7263847353d92c4
refs/heads/master
2023-06-23T00:41:36.257212
2023-06-14T10:10:14
2023-06-14T10:10:14
204,662,133
8
0
null
null
null
null
UTF-8
Python
false
false
2,387
py
# coding: utf-8 """ MailSlurp API MailSlurp is an API for sending and receiving emails from dynamically allocated email addresses. It's designed for developers and QA teams to test applications, process inbound emails, send templated notifications, attachments, and more. ## Resources - [Homepage](https://www.mailslurp.com) - Get an [API KEY](https://app.mailslurp.com/sign-up/) - Generated [SDK Clients](https://docs.mailslurp.com/) - [Examples](https://github.com/mailslurp/examples) repository # noqa: E501 The version of the OpenAPI document: 6.5.2 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import mailslurp_client from mailslurp_client.models.connector_sync_event_dto import ConnectorSyncEventDto # noqa: E501 from mailslurp_client.rest import ApiException class TestConnectorSyncEventDto(unittest.TestCase): """ConnectorSyncEventDto unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test ConnectorSyncEventDto include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = mailslurp_client.models.connector_sync_event_dto.ConnectorSyncEventDto() # noqa: E501 if include_optional : return ConnectorSyncEventDto( id = '0', connector_id = '0', sync_status = 'SUCCESS', sync_count = 56, message = '0', created_at = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f') ) else : return ConnectorSyncEventDto( id = '0', connector_id = '0', sync_status = 'SUCCESS', sync_count = 56, created_at = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f'), ) def testConnectorSyncEventDto(self): """Test ConnectorSyncEventDto""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
b9c545c2775953db809aa333c5571186f061f2f1
6080bfbc95ef2e4103fbd9c75c6b30402fe08aa5
/helpers/ccsm/ccsm2icar.py
1db50ddfa270a90c8105cc3a3cc03832c34efb97
[ "MIT" ]
permissive
d-reynolds/HICAR
0628f2a65922b61e7c68749ccc5b4328fe7c5dec
0ae97ec4556624bd5fe288420f0dde2f737bf1f8
refs/heads/master
2023-05-27T09:55:13.262316
2023-03-31T12:43:55
2023-03-31T12:43:55
284,660,559
1
1
MIT
2020-09-29T14:12:28
2020-08-03T09:40:03
Fortran
UTF-8
Python
false
false
1,103
py
#!/usr/bin/env python import os,traceback,sys import config import io_routines import output import convert def main(info): for k in info.keys(): if k!="times" and k!="lat_data" and k!="lon_data": print(k,info[k]) print(info.times[0],info.times[-1]) curtime=info.times[0] curpos=0 while curtime<=info.end_date: raw_data=io_routines.load_data(curtime,info) processed_data=convert.ccsm2icar(raw_data) output.write_file(curtime,info,processed_data) curpos+=raw_data.atm.ntimes curtime=info.times[curpos] if __name__ == '__main__': try: info=config.parse() config.update_info(info) exit_code = main(info) if exit_code is None: exit_code = 0 sys.exit(exit_code) except KeyboardInterrupt as e: # Ctrl-C raise e except SystemExit as e: # sys.exit() raise e except Exception as e: print('ERROR, UNEXPECTED EXCEPTION') print(str(e)) traceback.print_exc() os._exit(1)
21ffe4553a4099601f96bfe38dde4dcef4cce140
7a3114bedb5e866fc85fecca44432d1ce60e4262
/where/postprocessors/__init__.py
e701fda648f7bd0a1601571994da4ea81345f780
[ "MIT" ]
permissive
kartverket/where
99f26e5d5f2f23a79921bad0fb60cb8a99d05e7f
0c8c5c68adca08f97e22cab1bce10e382a7fbf77
refs/heads/master
2023-08-31T03:26:23.222100
2023-08-30T08:27:07
2023-08-30T08:27:07
111,802,841
21
15
MIT
2019-02-01T15:42:36
2017-11-23T11:44:29
Python
UTF-8
Python
false
false
1,007
py
"""Framework for post-processing data Description: ------------ Each postprocessor should be defined in a separate .py-file. The function inside the .py-file that should be called needs to be decorated with the :func:`~midgard.dev.plugins.register` decorator as follows:: from midgard.dev import plugins @plugins.register def gnss_linear_combination(dset): ... """ # Midgard imports from midgard.dev import plugins # Where imports from where.lib import config from where.lib import log def apply_postprocessors(config_key, dset): """Apply postprocessors for a given session Args: config_key (String): The configuration key listing which postprocessors to apply. dset (Dataset): Dataset containing analysis data. """ prefix = dset.vars["pipeline"] postprocessors = config.tech[config_key].list log.info(f"Applying postprocessors") return plugins.call_all(package_name=__name__, plugins=postprocessors, prefix=prefix, dset=dset)
9e616c90dd516ff508549568cd468a52e1e61faf
731ebf286a169b5f4dae914bcb0970c2388ba875
/tigereye/helpers/tetime.py
1def5631fe0d37df838160507a265594d8ef3325
[]
no_license
ljxproject/tigereye
f8e86287b03102b713b4179a9fa023f03cfd36ea
406024d88450b6dcbec7a337a79339ff8c97a3e3
refs/heads/master
2020-03-26T08:48:48.595467
2018-08-14T13:05:26
2018-08-14T13:05:26
144,721,251
0
0
null
null
null
null
UTF-8
Python
false
false
190
py
from datetime import datetime DEFAULT_DATETIME_FORMAT = '%Y%m%d%H%M%S' SIMPLE_DATETIME_FORMAT = '%Y-%m-%d %H:%M:%S' def now(): return datetime.now().strftime(DEFAULT_DATETIME_FORMAT)
d18cab078be2ac934e019489d1f9e4c5ac53d096
d1ef145c7b51b694e59ed26894ef12e1026e9e78
/data_samples/aio-libs/aiohttp/aiohttp/client_ws.py
209935da8ab681ee47d6e8d8d77923b20921555d
[]
no_license
rkdls/tensorflow_new_seq2seq
2afc12b9e28626d351e4849c556a9f2320588a26
82ab66a79cc3f6631970ba2b2b349792b1aac7e4
refs/heads/master
2021-01-01T15:43:48.902079
2017-07-20T17:10:02
2017-07-20T17:10:02
97,688,888
0
1
null
null
null
null
UTF-8
Python
false
false
8,678
py
'WebSocket client for asyncio.' import asyncio import json from .client_exceptions import ClientError from .helpers import PY_35, PY_352, Timeout, call_later, create_future from .http import WS_CLOSED_MESSAGE, WS_CLOSING_MESSAGE, WebSocketError, WSMessage, WSMsgType class Class321: def __init__(self, arg312, arg501, arg693, arg1016, arg1505, arg210, arg101, arg2033, *, receive_timeout=None, heartbeat=None): self.attribute1244 = arg1016 self.attribute257 = arg1016.connection self.attribute1822 = arg501 self.attribute459 = arg312 self.attribute668 = arg693 self.attribute10 = False self.attribute71 = False self.attribute1314 = None self.attribute758 = arg1505 self.attribute1580 = receive_timeout self.attribute1153 = arg210 self.attribute1413 = arg101 self.attribute1388 = heartbeat self.attribute351 = None if (heartbeat is not None): self.attribute1004 = (heartbeat / 2.0) self.attribute1125 = None self.attribute650 = arg2033 self.attribute98 = None self.attribute1713 = None self.function2113() def function1265(self): if (self.attribute1125 is not None): self.attribute1125.cancel() self.attribute1125 = None if (self.attribute351 is not None): self.attribute351.cancel() self.attribute351 = None def function2113(self): self.function1265() if (self.attribute1388 is not None): self.attribute351 = call_later(self.function1157, self.attribute1388, self.attribute650) def function1157(self): if ((self.attribute1388 is not None) and (not self.attribute10)): self.function1918() if (self.attribute1125 is not None): self.attribute1125.cancel() self.attribute1125 = call_later(self.function471, self.attribute1004, self.attribute650) def function471(self): if (not self.attribute10): self.attribute10 = True self.attribute1314 = 1006 self.attribute1713 = asyncio.TimeoutError() self.attribute1244.close() @property def function2018(self): return self.attribute10 @property def function2260(self): return self.attribute1314 @property def function1869(self): return self.attribute668 def function1796(self, arg677, arg1808=None): 'extra info from connection transport' try: return self.attribute1244.connection.transport.function1796(arg677, arg1808) except: return arg1808 def function1349(self): return self.attribute1713 def function1918(self, arg1442='b'): self.attribute1822.function1918(arg1442) def function2181(self, arg1232='b'): self.attribute1822.function2181(arg1232) def function644(self, arg162): if (not isinstance(arg162, str)): raise TypeError(('data argument must be str (%r)' % type(arg162))) return self.attribute1822.send(arg162, binary=False) def function819(self, arg470): if (not isinstance(arg470, (bytes, bytearray, memoryview))): raise TypeError(('data argument must be byte-ish (%r)' % type(arg470))) return self.attribute1822.send(arg470, binary=True) def function2205(self, arg1185, *, dumps=json.dumps): return self.function644(dumps(arg1185)) @asyncio.coroutine def function2368(self, *, code=1000, message=b''): if ((self.attribute98 is not None) and (not self.attribute10)): self.attribute459.feed_data(WS_CLOSING_MESSAGE, 0) yield from self.attribute98 if (not self.attribute10): self.function1265() self.attribute10 = True try: self.attribute1822.function2368(code, message) except asyncio.CancelledError: self.attribute1314 = 1006 self.attribute1244.function2368() raise except Exception as var525: self.attribute1314 = 1006 self.attribute1713 = var525 self.attribute1244.function2368() return True if self.attribute71: self.attribute1244.function2368() return True while True: try: with Timeout(self.attribute758, loop=self.attribute650): var52 = yield from self.attribute459.read() except asyncio.CancelledError: self.attribute1314 = 1006 self.attribute1244.function2368() raise except Exception as var525: self.attribute1314 = 1006 self.attribute1713 = var525 self.attribute1244.function2368() return True if (var52.type == WSMsgType.CLOSE): self.attribute1314 = var52.data self.attribute1244.function2368() return True else: return False @asyncio.coroutine def function1959(self, arg1248=None): while True: if (self.attribute98 is not None): raise RuntimeError('Concurrent call to receive() is not allowed') if self.attribute10: return WS_CLOSED_MESSAGE elif self.attribute71: yield from self.function2368() return WS_CLOSED_MESSAGE try: self.attribute98 = create_future(self.attribute650) try: with Timeout((timeout or self.attribute1580), loop=self.attribute650): var52 = yield from self.attribute459.read() self.function2113() finally: var2137 = self.attribute98 self.attribute98 = None var2137.set_result(True) except (asyncio.CancelledError, asyncio.TimeoutError): self.attribute1314 = 1006 raise except ClientError: self.attribute10 = True self.attribute1314 = 1006 return WS_CLOSED_MESSAGE except WebSocketError as var525: self.attribute1314 = var525.code yield from self.function2368(code=var525.code) return WSMessage(WSMsgType.ERROR, var525, None) except Exception as var525: self.attribute1713 = var525 self.attribute71 = True self.attribute1314 = 1006 yield from self.function2368() return WSMessage(WSMsgType.ERROR, var525, None) if (var52.type == WSMsgType.CLOSE): self.attribute71 = True self.attribute1314 = var52.data if ((not self.attribute10) and self.attribute1153): yield from self.function2368() elif (var52.type == WSMsgType.CLOSING): self.attribute71 = True elif ((var52.type == WSMsgType.PING) and self.attribute1413): self.function2181(var52.data) continue elif ((var52.type == WSMsgType.PONG) and self.attribute1413): continue return var52 @asyncio.coroutine def function858(self, *, timeout=None): var52 = yield from self.function1959(arg1248) if (var52.type != WSMsgType.TEXT): raise TypeError('Received message {}:{!r} is not str'.format(var52.type, var52.data)) return var52.data @asyncio.coroutine def function2267(self, *, timeout=None): var52 = yield from self.function1959(arg1248) if (var52.type != WSMsgType.BINARY): raise TypeError('Received message {}:{!r} is not bytes'.format(var52.type, var52.data)) return var52.data @asyncio.coroutine def function1176(self, *, loads=json.loads, timeout=None): var2727 = yield from self.function858(timeout=arg1248) return loads(var2727) if PY_35: def __aiter__(self): return self if (not PY_352): var1487 = asyncio.coroutine(var1487) @asyncio.coroutine def __anext__(self): var52 = yield from self.function1959() if (var52.type in (WSMsgType.CLOSE, WSMsgType.CLOSING, WSMsgType.CLOSED)): raise StopAsyncIteration return var52
37ce0dc192e7a51cb2d91c3c8bbc9b94d5546a56
16ad791ae0fcf9b00fb3f3938e3e69fd86d91715
/solved/probs050-099/euler055.py
fd7e12947d84d15f28aec0927a223aa37fab9937
[]
no_license
chrisgilmerproj/project_euler
9a6cf051ddc1882d803531cb02cc356a94d9bdf4
5a2c72ae40cfff32b79b35bb93db2b93a84afc25
refs/heads/master
2020-05-07T16:44:22.052645
2011-05-03T15:35:34
2011-05-03T15:35:34
1,447,959
0
0
null
null
null
null
UTF-8
Python
false
false
2,772
py
# This is a problem from the Project Euler Website # http://projecteuler.net/ # # Euler Problem #055 # # Problem: How many Lychrel numbers are there below ten-thousand? # # Hint: If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. # # Not all numbers produce palindromes so quickly. For example, # # 349 + 943 = 1292 # 1292 + 2921 = 4213 # 4213 + 3124 = 7337 # # That is, 349 took three iterations to arrive at a palindrome. # # Although no one has proved it yet, it is thought that some numbers, # like 196, never produce a palindrome. A number that never forms a # palindrome through the reverse and add process is called a Lychrel # number. Due to the theoretical nature of these numbers, and for the # purpose of this problem, we shall assume that a number is Lychrel # until proven otherwise. In addition you are given that for every # number below ten-thousand, it will either (i) become a palindrome # in less than fifty iterations, or, (ii) no one, with all the # computing power that exists, has managed so far to map it to a # palindrome. In fact, 10677 is the first number to be shown to # require over fifty iterations before producing a palindrome: # 4668731596684224866951378664 (53 iterations, 28-digits). # # Surprisingly, there are palindromic numbers that are themselves # Lychrel numbers; the first example is 4994. # # NOTE: Wording was modified slightly on 24 April 2007 to emphasise # the theoretical nature of Lychrel numbers. # # Written by Chris Gilmer # Solved: 12/08/2008 # Answer: 249 # # Notes: if __name__ == '__main__': i = 1 limit = 10000 lychrel = [] while i < limit: palindrome = False count = 1 total = i print i while palindrome == False and count < 50: new_i = total reverse_i = list(str(new_i)) reverse_i.reverse() reverse_i = int(str(''.join(reverse_i))) total = new_i + reverse_i print "\t%s + %s = %s" % (new_i, reverse_i, total) str_total = list(str(total)) reverse_total = list(str(total)) reverse_total.reverse() if str_total == reverse_total: palindrome = True count += 1 if count == 50: lychrel.append(i) print "\n\tLychrel number:", i i += 1 print '\nThere are %s Lychrel numbers below %s' % (len(lychrel),limit) print 'These numbers are:', lychrel
501225b7b62991c2bb7a453bcb123b336846959d
8b9a418950a8c3ee42e4a4692a0f690c033ba401
/emulators/csp_vis_sender_02/app/__main__.py
e9dfdda4a5725883e6a15b577f3cddae1c04009f
[ "BSD-3-Clause" ]
permissive
jan2nov/integration-prototype
da5b0f8b168365856dabb644bd1d2440ebced9e8
5b4db822b0d49ab45d10365d5c7aaa86954dc2e0
refs/heads/master
2020-03-20T14:54:23.937780
2018-06-04T12:09:21
2018-06-04T12:09:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,006
py
# -*- coding: utf-8 -*- """Module main to stream SPEAD visibility data.""" import sys import argparse import logging import json from .simulator import SimpleSimulator def _init_log(level=logging.DEBUG): """Initialise the logging object. Args: level (int): Logging level. Returns: Logger: Python logging object. """ log = logging.getLogger(__file__) log.setLevel(level) ch = logging.StreamHandler(sys.stdout) ch.setLevel(level) formatter = logging.Formatter('%(asctime)s: %(message)s', '%Y/%m/%d-%H:%M:%S') ch.setFormatter(formatter) log.addHandler(ch) return log def _parse_command_line(): """Parse command line arguments.""" parser = argparse.ArgumentParser( prog='csp_visibility_sender', description='Send fake visibility data using the SPEAD protocol.') parser.add_argument('config_file', type=argparse.FileType('r'), help='JSON configuration file.') parser.add_argument('-v', '--verbose', help='Enable verbose messages.', action='store_true') parser.add_argument('-p', '--print_settings', help='Print settings file.', action='store_true') return parser.parse_args() def main(config, log): """Main script function""" # Create simulation object, and start streaming SPEAD heaps sim = SimpleSimulator(config, log) sim.simulate_heaps() if __name__ == '__main__': # Parse command line arguments args = _parse_command_line() # Initialise logging. _log = _init_log(level=logging.DEBUG if args.verbose else logging.INFO) # Load configuration. _log.info('Loading config: {}'.format(args.config_file.name)) _config = json.load(args.config_file) if args.print_settings: _log.debug('Settings:\n {}'.format(json.dumps(_config, indent=4, sort_keys=True))) main(_config, _log)
bf6dd2083475268a966f43c0bed20eeff4672592
944401a6292baa2d23b9738898e0b0cb199d0795
/lib/python2.7/site-packages/anaconda_navigator/widgets/lists/apps.py
00f63fc959dcd66ca504c9d506d11bbb66603fd5
[ "Python-2.0" ]
permissive
sunnyweilai/Finding-Theme-Color-Palettes
cc84c93ce58abdd1802431c41bd59181d7a4f75b
4c38b112f5c40b43d6ec126e415b609c7fdc1f39
refs/heads/master
2022-12-21T09:41:31.187411
2019-04-30T14:50:17
2019-04-30T14:50:17
184,273,925
1
0
null
2022-12-07T03:46:55
2019-04-30T14:09:52
Python
UTF-8
Python
false
false
22,134
py
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) 2016-2017 Anaconda, Inc. # # May be copied and distributed freely only as part of an Anaconda or # Miniconda installation. # ----------------------------------------------------------------------------- """ Widgets to list applications available to launch from the Home tab. This widget does not perform the actual conda actions or command launch, but it emits signals that should be connected to the parents and final controller on the main window. """ # yapf: disable from __future__ import absolute_import, division, print_function # Standard library imports import sys # Third party imports from qtpy.QtCore import QPoint, QSize, Qt, QTimer, Signal from qtpy.QtGui import QPixmap from qtpy.QtWidgets import QHBoxLayout, QListWidget, QMenu, QVBoxLayout # Local imports from anaconda_navigator.api.anaconda_api import AnacondaAPI from anaconda_navigator.config import GLOBAL_VSCODE_APP from anaconda_navigator.static.images import ANACONDA_ICON_256_PATH from anaconda_navigator.utils import constants as C from anaconda_navigator.utils.logs import logger from anaconda_navigator.utils.py3compat import PY3, to_text_string from anaconda_navigator.utils.qthelpers import (add_actions, create_action, update_pointer) from anaconda_navigator.utils.styles import SASS_VARIABLES, load_style_sheet from anaconda_navigator.widgets import (ButtonLabel, ButtonLink, ButtonNormal, FrameBase, LabelBase) from anaconda_navigator.widgets.lists import ListWidgetBase, ListWidgetItemBase from anaconda_navigator.widgets.spinner import NavigatorSpinner # yapf: enable # --- Widgets used in CSS styling # ----------------------------------------------------------------------------- class ButtonApplicationInstall(ButtonNormal): """Button used in CSS styling.""" class ButtonApplicationLaunch(ButtonNormal): """Button used in CSS styling.""" class ButtonApplicationOptions(ButtonNormal): """Button used in CSS styling.""" class ButtonApplicationUpdate(ButtonNormal): """Button used in CSS styling.""" class ButtonApplicationLicense(ButtonLink): """Button used in CSS styling.""" class LabelApplicationLicense(ButtonLabel): """Button used in CSS styling.""" class LabelApplicationIcon(LabelBase): """Label used in CSS styling.""" class LabelApplicationName(LabelBase): """Label used in CSS styling.""" class LabelApplicationVersion(LabelBase): """Label used in CSS styling.""" class LabelApplicationDescription(LabelBase): """Label used in CSS styling.""" class FrameApplicationSpinner(FrameBase): """Label used in CSS styling.""" class ButtonApplicationVersion(ButtonLabel): """Button used in CSS styling.""" class WidgetApplication(FrameBase): """Widget used in CSS styling.""" # application_name, command, leave_path_alone, prefix, sender, non_conda sig_launch_action_requested = Signal( object, object, bool, object, object, object ) # action, application_name, version, sender, non_conda sig_conda_action_requested = Signal(object, object, object, object, object) sig_url_clicked = Signal(object) # --- Main Widgets # ----------------------------------------------------------------------------- class ListWidgetApplication(ListWidgetBase): """Widget that holds the whole list of applications to launch.""" # application_name, command, leave_path_alone, prefix, sender, non_conda sig_launch_action_requested = Signal( object, object, bool, object, object, object ) # action, application_name, version, sender, non_conda sig_conda_action_requested = Signal(object, object, object, object, object) sig_url_clicked = Signal(object) def __init__(self, *args, **kwargs): """Widget that holds the whole list of applications to launch.""" super(ListWidgetApplication, self).__init__(*args, **kwargs) self.setGridSize(ListItemApplication.widget_size()) self.setWrapping(True) self.setViewMode(QListWidget.IconMode) self.setLayoutMode(ListWidgetApplication.Batched) self.setFocusPolicy(Qt.NoFocus) def ordered_widgets(self): """Return a list of the ordered widgets.""" ordered_widgets = [] for item in self.items(): ordered_widgets += item.ordered_widgets() return ordered_widgets def setup_item(self, item): """Override base method.""" item.widget.sig_conda_action_requested.connect( self.sig_conda_action_requested ) item.widget.sig_launch_action_requested.connect( self.sig_launch_action_requested ) item.widget.sig_url_clicked.connect(self.sig_url_clicked) class ListItemApplication(ListWidgetItemBase): """Item with custom widget for the applications list.""" ICON_SIZE = 64 def __init__( self, name=None, description=None, command=None, versions=None, image_path=None, prefix=None, needs_license=False, non_conda=False, ): """Item with custom widget for the applications list.""" super(ListItemApplication, self).__init__() self.api = AnacondaAPI() self.prefix = prefix self.name = name self.url = '' self.expired = False self.needs_license = needs_license self.description = description self.command = command self.versions = versions self.image_path = image_path if image_path else ANACONDA_ICON_256_PATH self.style_sheet = None self.timeout = 2000 self.non_conda = non_conda self._vscode_version_value = None # Widgets self.button_install = ButtonApplicationInstall("Install") # or Try! self.button_launch = ButtonApplicationLaunch("Launch") self.button_options = ButtonApplicationOptions() self.label_license = LabelApplicationLicense('') self.button_license = ButtonApplicationLicense('') self.label_icon = LabelApplicationIcon() self.label_name = LabelApplicationName(self.name) self.label_description = LabelApplicationDescription(self.description) self.button_version = ButtonApplicationVersion( to_text_string(self.version) ) self.menu_options = QMenu('Application options') self.menu_versions = QMenu('Install specific version') self.pixmap = QPixmap(self.image_path) self.timer = QTimer() self.widget = WidgetApplication() self.frame_spinner = FrameApplicationSpinner() self.spinner = NavigatorSpinner(self.widget, total_width=16) lay = QHBoxLayout() lay.addWidget(self.spinner) self.frame_spinner.setLayout(lay) # Widget setup self.button_version.setFocusPolicy(Qt.NoFocus) self.button_version.setEnabled(True) self.label_description.setAlignment(Qt.AlignCenter) self.timer.setInterval(self.timeout) self.timer.setSingleShot(True) self.label_icon.setPixmap(self.pixmap) self.label_icon.setScaledContents(True) # important on High DPI! self.label_icon.setMaximumWidth(self.ICON_SIZE) self.label_icon.setMaximumHeight(self.ICON_SIZE) self.label_icon.setAlignment(Qt.AlignCenter) self.label_name.setAlignment(Qt.AlignCenter) self.label_name.setWordWrap(True) self.label_description.setWordWrap(True) self.label_description.setAlignment(Qt.AlignTop | Qt.AlignHCenter) self.frame_spinner.setVisible(False) # Layouts layout_spinner = QHBoxLayout() layout_spinner.addWidget(self.button_version, 0, Qt.AlignCenter) layout_spinner.addWidget(self.frame_spinner, 0, Qt.AlignCenter) layout_license = QHBoxLayout() layout_license.addStretch() layout_license.addWidget(self.label_license, 0, Qt.AlignCenter) layout_license.addWidget(self.button_license, 0, Qt.AlignCenter) layout_license.addStretch() layout_main = QVBoxLayout() layout_main.addWidget(self.button_options, 0, Qt.AlignRight) layout_main.addWidget(self.label_icon, 0, Qt.AlignCenter) layout_main.addWidget(self.label_name, 0, Qt.AlignCenter) layout_main.addLayout(layout_spinner) layout_main.addLayout(layout_license) layout_main.addWidget(self.label_description, 0, Qt.AlignCenter) layout_main.addWidget(self.button_launch, 0, Qt.AlignCenter) layout_main.addWidget(self.button_install, 0, Qt.AlignCenter) self.widget.setLayout(layout_main) self.widget.setStyleSheet(load_style_sheet()) self.setSizeHint(self.widget_size()) # This might help with visual quirks on the home screen self.widget.setMinimumSize(self.widget_size()) # Signals self.button_install.clicked.connect(self.install_application) self.button_launch.clicked.connect(self.launch_application) self.button_options.clicked.connect(self.actions_menu_requested) self.button_license.clicked.connect(self.launch_url) self.timer.timeout.connect(self._application_launched) # Setup self.update_status() # --- Callbacks # ------------------------------------------------------------------------- def _application_launched(self): self.button_launch.setDisabled(False) update_pointer() # --- Helpers # ------------------------------------------------------------------------- def update_style_sheet(self, style_sheet=None): """Update custom CSS stylesheet.""" if style_sheet: self.style_sheet = style_sheet else: self.style_sheet = load_style_sheet() self.menu_options.setStyleSheet(self.style_sheet) self.menu_versions.setStyleSheet(self.style_sheet) def ordered_widgets(self): """Return a list of the ordered widgets.""" return [ self.button_license, self.button_install, self.button_launch, self.button_options ] @staticmethod def widget_size(): """Return the size defined in the SASS file.""" return QSize( SASS_VARIABLES.WIDGET_APPLICATION_TOTAL_WIDTH, SASS_VARIABLES.WIDGET_APPLICATION_TOTAL_HEIGHT ) def launch_url(self): """Launch signal for url click.""" self.widget.sig_url_clicked.emit(self.url) def actions_menu_requested(self): """Create and display menu for the currently selected application.""" self.menu_options.clear() self.menu_versions.clear() # Add versions menu versions = self.versions if self.versions else [] version_actions = [] for version in reversed(versions): action = create_action( self.widget, version, triggered=lambda value, version=version: self. install_application(version=version) ) action.setCheckable(True) if self.version == version and self.installed: action.setChecked(True) action.setDisabled(True) version_actions.append(action) install_action = create_action( self.widget, 'Install application', triggered=lambda: self.install_application() ) install_action.setEnabled(not self.installed) update_action = create_action( self.widget, 'Update application', triggered=lambda: self.update_application() ) if versions and versions[-1] == self.version: update_action.setDisabled(True) else: update_action.setDisabled(False) if self.non_conda and self.name == GLOBAL_VSCODE_APP: update_action.setDisabled(True) remove_action = create_action( self.widget, 'Remove application', triggered=lambda: self.remove_application() ) remove_action.setEnabled(self.installed) actions = [ install_action, update_action, remove_action, None, self.menu_versions ] add_actions(self.menu_options, actions) add_actions(self.menu_versions, version_actions) offset = QPoint(self.button_options.width(), 0) position = self.button_options.mapToGlobal(QPoint(0, 0)) self.menu_versions.setEnabled(len(versions) > 1) self.menu_options.move(position + offset) self.menu_options.exec_() def update_status(self): """Update status.""" # License check license_label_text = '' license_url_text = '' self.url = '' self.expired = False button_label = 'Install' if self.needs_license: # TODO: Fix this method to use the api license_info = self.api.get_package_license(self.name) license_days = self.api.get_days_left(license_info) end_date = license_info.get('end_date', '') self.expired = license_days == 0 plural = 's' if license_days != 1 else '' is_trial = license_info.get('type', '').lower() == 'trial' if self.installed and license_info: if is_trial and not self.expired: license_label_text = ( 'Trial, {days} day{plural} ' 'remaining'.format(days=license_days, plural=plural) ) self.url = '' elif is_trial and self.expired: license_label_text = 'Trial expired, ' license_url_text = 'contact us' self.url = 'mailto:[email protected]' elif not is_trial and not self.expired: license_label_text = 'License expires {}'.format(end_date) self.url = '' elif not is_trial and self.expired: license_url_text = 'Renew license' self.url = 'mailto:[email protected]' elif self.installed and not bool(license_info): # Installed but no license found! license_url_text = 'No license found' self.url = 'mailto:[email protected]' else: if not self.expired: button_label = 'Install' else: button_label = 'Try' self.button_license.setText(license_url_text) self.button_license.setVisible(bool(self.url)) self.label_license.setText(license_label_text) self.label_license.setVisible(bool(license_label_text)) # Version and version updates if (self.versions and self.version != self.versions[-1] and self.installed): # The property is used with CSS to display updatable packages. self.button_version.setProperty('pressed', True) self.button_version.setToolTip( 'Version {0} available'.format(self.versions[-1]) ) else: self.button_version.setProperty('pressed', False) if not self.needs_license: self.button_install.setText(button_label) self.button_install.setVisible(not self.installed) self.button_launch.setVisible(self.installed) else: self.button_install.setText('Try' if self.expired else 'Install') self.button_launch.setVisible(not self.expired) self.button_install.setVisible(self.expired) self.button_launch.setEnabled(True) def update_versions(self, version=None, versions=None): """Update button visibility depending on update availability.""" logger.debug(str((self.name, self.dev_tool, self.installed))) if self.installed and version: self.button_options.setVisible(True) self.button_version.setText(version) self.button_version.setVisible(True) elif not self.installed and versions: self.button_install.setEnabled(True) self.button_version.setText(versions[-1]) self.button_version.setVisible(True) self.versions = versions self.version = version self.update_status() def set_loading(self, value): """Set loading status.""" self.button_install.setDisabled(value) self.button_options.setDisabled(value) self.button_launch.setDisabled(value) self.button_license.setDisabled(value) if value: self.spinner.start() else: self.spinner.stop() if self.version is None and self.versions is not None: version = self.versions[-1] else: version = self.version self.button_version.setText(version) self.button_launch.setDisabled(self.expired) self.frame_spinner.setVisible(value) self.button_version.setVisible(not value) # --- Helpers using api # ------------------------------------------------------------------------- def _vscode_version(self): """Query the vscode version for the default installation path.""" version = None if self._vscode_version_value is None: cmd = [self.api.vscode_executable(), '--version'] # print(cmd) import subprocess try: output = subprocess.check_output(cmd) if PY3: output = output.decode() output = [o for o in output.split('\n') if o and '.' in o] # print(output) if output: version = output[0] except Exception: pass # print(e) self._vscode_version_value = version else: version = self._vscode_version_value return version @property def installed(self): """Return the installed status of the package.""" version = None if self.non_conda and self.name == GLOBAL_VSCODE_APP: # TODO: Vscode program location, check existence version = self._vscode_version() elif self.prefix: version = self.api.conda_package_version( prefix=self.prefix, pkg=self.name, build=False ) return bool(version) @property def version(self): """Return the current installed version or the highest version.""" version = None if self.non_conda and self.name == GLOBAL_VSCODE_APP: version = self._vscode_version() elif self.prefix: version = self.api.conda_package_version( prefix=self.prefix, pkg=self.name, build=False ) if not version: version = self.versions[-1] return version # --- Application actions # ------------------------------------------------------------------------ def install_application(self, value=None, version=None, install=True): """ Update the application on the defined prefix environment. This is used for both normal install and specific version install. """ if not version: version = self.versions[-1] action = C.APPLICATION_INSTALL if install else C.APPLICATION_UPDATE self.widget.sig_conda_action_requested.emit( action, self.name, version, C.TAB_HOME, self.non_conda, ) self.set_loading(True) def remove_application(self): """Remove the application from the defined prefix environment.""" self.widget.sig_conda_action_requested.emit( C.APPLICATION_REMOVE, self.name, None, C.TAB_HOME, self.non_conda, ) self.set_loading(True) def update_application(self): """Update the application on the defined prefix environment.""" self.install_application(version=self.versions[-1], install=False) def launch_application(self): """Launch application installed in prefix environment.""" leave_path_alone = False if self.command is not None: if self.non_conda and self.name == GLOBAL_VSCODE_APP: leave_path_alone = True args = [self.command] else: args = self.command.split(' ') leave_path_alone = True self.button_launch.setDisabled(True) self.timer.setInterval(self.timeout) self.timer.start() update_pointer(Qt.BusyCursor) self.widget.sig_launch_action_requested.emit( self.name, args, leave_path_alone, self.prefix, C.TAB_HOME, self.non_conda, ) # --- Local testing # ----------------------------------------------------------------------------- def local_test(): # pragma: no cover """Run local test.""" from anaconda_navigator.utils.qthelpers import qapplication from anaconda_navigator.static.images import ANACONDA_ICON_256_PATH app = qapplication(test_time=5) widget = ListWidgetApplication() for i in range(30): item = ListItemApplication( name="Package {0}".format(i), description="Scientific PYthon Development EnviRonment", versions=[str(i), str(i + 1)], image_path=ANACONDA_ICON_256_PATH, prefix=None ) widget.addItem(item) widget.update_style_sheet() widget.show() sys.exit(app.exec_()) if __name__ == "__main__": # pragma: no cover local_test()
2f2e2d2d2856f845f1e9418d80a262410ffbca17
ea515ab67b832dad3a9b69bef723bd9d918395e7
/03_Implementacao/DataBase/true_or_false_question_class_P_plus_regex/make_transformations.py
40165e0cd50ec5187a5a9d604d1f395df4bb19a5
[]
no_license
projeto-exercicios/Exercicios-Python-de-correccao-automatica
b52be3211e75d97cb55b6cdccdaa1d9f9d84f65b
a7c80ea2bec33296a3c2fbe4901ca509df4b1be6
refs/heads/master
2022-12-13T15:53:59.283232
2020-09-20T21:25:57
2020-09-20T21:25:57
295,470,320
0
0
null
null
null
null
UTF-8
Python
false
false
8,577
py
import sys #sys.path.append( # '/home/jbs/develop.old/articles/201509_python_exercises_generator') #sys.path.append('/home/jbs/develop/201902_questions_transformer') sys.path.append('../qom_questions_transformer') import string import re from random import sample from random import choice from random import randint from random import shuffle from text_transformer.tt_text_transformer_interface import add_changeable #from text_transformer.tt_text_transformer_interface import change_all_occurrences from text_transformer.tt_text_transformer_interface import change_one_occurrence # # this import removes an import error. I don't know why (jbs # # 2018/12/12). see pt_import_tests.py and try to correct the problem. # import py_transformer.ast_processor # from python_transformer.pt_python_transformer_interface import change_identifier_all_occurrences # from python_transformer.pt_python_transformer_interface import change_all_occurrences_in_strings from python_transformer.pt_python_transformer_interface import change_token_all_occurrences from python_transformer.pt_python_transformer_interface import change_all_occurrences #from sympy import latex, sympify # in the question (program) add_changeable('135') # seed add_changeable('a') # the list add_changeable('b') # the 2nd list add_changeable('n') # the loop variable add_changeable('i') # the loop variable add_changeable('__var') # class's global variable add_changeable('P') # class name add_changeable('p') # class variable add_changeable('13') # the list length add_changeable('33') # the list length add_changeable('3') # the list length # answers list name add_changeable(r'\verb+a+') add_changeable(r'\verb+b+') # answers (indexes) add_changeable(r'\verb+1+') add_changeable(r'\verb+2_1+') add_changeable(r'\verb+2_2+') add_changeable(r'\verb+3_1+') add_changeable(r'\verb+3_2+') add_changeable(r'\verb+3_1_f+') add_changeable(r'\verb+3_2_f+') add_changeable(r'\verb+4+') add_changeable(r'\verb+5_1+') add_changeable(r'\verb+5_2+') # right answers values add_changeable(r'\verb+11+') add_changeable(r'\verb+22+') add_changeable(r'\verb+33+') add_changeable(r'\verb+44+') add_changeable(r'\verb+55+') # wrong answers values add_changeable(r'\verb+111+') add_changeable(r'\verb+222+') add_changeable(r'\verb+333+') add_changeable(r'\verb+444+') add_changeable(r'\verb+555+') # variáveis partilhas entre as funções make_transformations e # make_transformations_on_results a = None b = None _1 = None _2_1 = None _2_2 = None _3 = None _3_1 = None _3_2 = None _3_1_f = None _3_2_f = None _4 = None _5_1 = None _5_2 = None __var = None var = None P = None p = None def make_transformations(): '' global a global b global _1 global _2_1 global _2_2 global _3 global _3_1 global _3_2 global _3_1_f global _3_2_f global _4 global __var global var global P global p # question _135 = str(randint(1000000, 2000000)) [a, b, n, p, P, var, i] = sample(string.ascii_lowercase, 7) _13 = randint(19000, 20000) _3 = randint(0, 3) _33 = randint(50, 1500) __var = '__' + var P = P.upper() wrong_3 = choice((p + '.' + '__' + var, P + '.' + '__' + var, p + '._' + P + '_' + var, P + '.' + var , p + '.' + var)) correct_answers_list = [p + '._' + P + '__' + var, p + ".get_var()", P + "().get_var()"] _3_1, _3_2 = sample(correct_answers_list, 2) decision = choice((0, 1)) correct_3 = choice((_3_1, _3_2)) _3_1_f = correct_3 if decision == 0 else wrong_3 _3_2_f = wrong_3 if decision == 0 else _3_1 change_all_occurrences('135', _135) change_token_all_occurrences('a', a) change_token_all_occurrences('b', b) change_token_all_occurrences('P', P) change_token_all_occurrences('__var', __var) change_token_all_occurrences('p', p) change_token_all_occurrences('i', i) change_token_all_occurrences('n', n) change_all_occurrences('13', str(_13)) change_all_occurrences('3', str(_3)) change_all_occurrences('33', str(_33)) # answers change_all_occurrences(r'\verb+a+', r'\verb+' + a + '+') change_all_occurrences(r'\verb+b+', r'\verb+' + b + '+') # indexes with no repetitions [_1] = sample(range(10), 1) _1 = str(_1) #regex parameters decision [_2_1, _2_2] = sample(range(10) ,2) _2_1 = str(_2_1) _2_2 = str(_2_2) decision = choice(("single", "list")) if decision == "single": [_4] = sample(range(10),1) _4 = str(_4) + choice(('?', '*', '+')) if decision == "list": [_4] = sample(range(10),1) [max_4] = sample(range(len(str(_13))),1) max_4 = max_4 if max_4 > 0 else max_4 + 1 [min_4] = sample(range(max_4),1) _4 = str(_4) + '{' + str(min_4) + '-' + str(max_4) + '}' change_all_occurrences(r'\verb+1+', r'\verb+' + _1 + '+') change_all_occurrences(r'\verb+2_1+', r'\verb+' + _2_1 + '+') change_all_occurrences(r'\verb+2_2+', r'\verb+' + _2_2 + '+') change_all_occurrences(r'\verb+3_1+', r'\verb+' + _3_1 + '+') change_all_occurrences(r'\verb+3_2+', r'\verb+' + _3_2 + '+') ## change_all_occurrences(r'\verb+3_1+', _3_1) ## change_all_occurrences(r'\verb+3_2+', _3_2 ) change_all_occurrences(r'\verb+3_1_f+', r'\verb+' + _3_1_f + '+') change_all_occurrences(r'\verb+3_2_f+', r'\verb+' + _3_2_f + '+') change_all_occurrences(r'\verb+4+', r'\verb+' + _4 + '+') def make_transformations_on_results(program): '' global a global b global _1 global _2_1 global _2_2 global _3_1 global _3_2 global _3_1_f global _3_2_f global _4 global _5_1 global _5_2 global __var global var global P global p the_list = program.get_global(a) the_list_b = program.get_global(b) #correct index for question 5 _5_1, _5_2 = choose_correct_idx_5(the_list) change_all_occurrences(r'\verb+5_1+', r'\verb+' + str(_5_1) + '+') change_all_occurrences(r'\verb+5_2+', r'\verb+' + str(_5_2) + '+') answer_1_true = regular_search(_1, the_list_b) new_b = regular_subtitution(_2_1, _2_2, the_list_b) answer_2_true = round(regular_search(_2_2, new_b) / regular_search(_2_2, the_list_b),2) answer_4_true = regular_match(_4, the_list_b) answer_5_true = power(the_list[_5_1].num, the_list[_5_2].num) # true answers change_all_occurrences(r'\verb+11+', str(answer_1_true)) change_all_occurrences(r'\verb+22+', str(answer_2_true)) change_all_occurrences(r'\verb+44+', str(answer_4_true)) change_all_occurrences(r'\verb+55+', str(answer_5_true)) # wrong answers increment2 = choice([.1, -.1]) increment4 = choice([1, -1]) increment5 = choice([1, -1]) answer_1_false = _1 answer_2_false = round(answer_2_true + increment2,2) answer_4_false = answer_4_true + increment4 answer_5_false = answer_5_true + increment5 change_all_occurrences(r'\verb+111+', str(answer_1_false)) change_all_occurrences(r'\verb+222+', str(answer_2_false)) change_all_occurrences(r'\verb+444+', str(answer_4_false)) change_all_occurrences(r'\verb+555+', str(answer_5_false)) def choose_correct_idx_5(the_list): result_base = 0 result_exp = 1 for i in range(len(the_list)): value = the_list[i].num if value < 10: result_base = i break for i in range(len(the_list)): value = the_list[i].num if value < 8 and value != the_list[result_base].num: result_exp = i break return result_base, result_exp def choose_diffrenet_answer(the_list, choosen_answer): while True: result = choice(the_list) if result != choosen_answer: return result def power(num, exp): if exp == 1: return num else: return num * power(num, exp - 1) def regular_search(pattern_val, the_list): return sum(list(map(lambda x: 1 if re.search(r"" + pattern_val, x) else 0, the_list))) def regular_subtitution(pattern_val, subtitute_val, the_list): return list(map(lambda x: re.sub(r"" + pattern_val, subtitute_val, x) , the_list)) def regular_match(pattern_val, the_list): return sum(list(map(lambda x: 1 if re.match(r"" + pattern_val, x) else 0, the_list)))
219470a0ff5bb403514695edf64cf9ab42c04142
6791fd830e1e3bb1b3e31bac32c8c43debc6e45b
/hash_table/files.py
bb007467042726baa23b98afaff41ac9fa007b62
[]
no_license
niccokunzmann/pydht
e3205eb4f93840531ef79019c7e47156aed44d29
89621647455657291dbb27f966a53ab10c6862f5
refs/heads/master
2020-05-30T17:48:43.608086
2013-10-09T20:34:28
2013-10-09T20:34:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,556
py
import io import tempfile import os from .. import hashing from ..errors import ContentAltered class HashTableFileMixin: """A mixin for a hashtable that adds itself to the hashtable when closed""" def __init__(self, hash_table, *args, **kw): super().__init__(*args, **kw) self._hash_table = hash_table def add_to_hashtable(self): self.seek(0) self._hash_table._add_hash_table_file(self) def close(self, *args, **kw): self.add_to_hashtable() super().close(*args, **kw) def __enter__(self, *args, **kw): if hasattr(super(), '__enter__'): super().__enter__(*args, **kw) return self def __exit__(self, *args, **kw): self.add_to_hashtable() if hasattr(super(), '__exit__'): return super().__exit__(*args, **kw) class BytesIO(HashTableFileMixin, io.BytesIO): """A io.BytesIO for a hashtable that adds itself to the hashtable when closed""" pass class SpooledTemporaryFile(HashTableFileMixin, tempfile.SpooledTemporaryFile): """A tempfile.SpooledTemporaryFile for a hashtable that adds itself to the hashtable when closed""" pass class HashingFile: """One can read from this file and the hash is updated""" default_chunk_size = 4096 is_hash = staticmethod(hashing.is_hash) def __init__(self, file, length = None): self._file = file self._read = self._file.read if hasattr(file, 'fileno'): self.fileno = file.fileno self._algorithm = hashing.algorithm() self._length = self.get_length_of_file(file, length) @property def length(self): """=> length of the file or None""" return self._length def get_length_of_file(self, file, length = None): if length is not None: return length if hasattr(file, '__len__'): return len(file) if hasattr(file, 'fileno'): try: return os.fstat(file.fileno()).st_size except OSError: pass if hasattr(file, 'seek') and hasattr(file, 'tell'): start = file.tell() file.seek(0, 2) # end of stream try: return file.tell() - start finally: file.seek(start) if hasattr(file, 'getvalue'): return len(file.getvalue()) def read(self, *args): bytes = self._read(*args) self._algorithm.update(bytes) return bytes @property def hash(self): return self._algorithm.hexdigest() def __len__(self): if self._length is None: raise TypeError('length not supported for {}'.format(self._file)) return self._length def __iter__(self): # should be readline but is not required yet data = self.read(self.default_chunk_size) while data: yield data data = self.read(self.default_chunk_size) class HashCheckingFile(HashingFile): def __init__(self, expected_hash, file, length = None): assert self.is_hash(expected_hash) super().__init__(file, length = length) self.expected_hash = expected_hash self._bytes_read = 0 @property def bytes_read(self): """=> the number of bytes read from this file""" return self._bytes_read def is_valid(self): """=> whether the hash of the content matches""" return self.hash == self.expected_hash and self.is_read_completed() def is_read_completed(self): """=> whether something can be expected to be read from the file if the file has a length""" return self.bytes_read == self.length def read(self, *args): """read from the file and at check for consistency when its end is reached""" bytes = super().read(*args) self._bytes_read += len(bytes) if self.is_read_completed() and not self.is_valid(): return self.error_hash_does_not_match() return bytes def error_hash_does_not_match(self): """Throw an error that the content differs from the expected""" raise ContentAltered("Expected the hash {} for the ressource {}" " but got the hash {}".format(self.expected_hash, self._file, self.hash)) class NonCheckingBytesIO(io.BytesIO): @staticmethod def is_valid(): return True __all__ = ['BytesIO', 'SpooledTemporaryFile', 'HashingFile', 'HashCheckingFile']
d95f07794f027cd5d62ae5f538ba541367149f10
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_97/492.py
a1f42066fd7dc40e8cdcf88aee4718a892fe6447
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
657
py
def find_recycled(n, b): ns = str(n) reclist = [] for i in xrange(1, len(ns), 1): nrec = ns[i:len(ns)] + ns[0:i] if nrec[0] != "0": nrec = eval(nrec) if nrec <= b and nrec > n and (n, nrec) not in reclist: reclist.append((n,nrec)) return reclist inp = file("input.in") T = eval(inp.readline()) out = file("output.txt", "w") d = [] for n in xrange(12, 2000000, 1): d.extend(find_recycled(n, 2000000)) for i in xrange(T): a, b = inp.readline().strip().split() a = eval(a) b = eval(b) nrec = 0 for item in d: if item[0] > b: break if item[0] >= a and item[1] <= b: nrec += 1 out.write("Case #%d: %d\n" %(i + 1, nrec))
b211f6d3238e69fee4c33b2e8d89b34fe17e5730
f56a16a03346eb2854eaeae0a13a92a222806551
/test/functional/interface_bitcoin_cli.py
74867f2d89fe0cdd48537eea6e2d53ac2dc0d1e0
[ "MIT" ]
permissive
minblock/mishcoin
77b64c00043557cde6b49d4f58612b8ff670d8f6
65d47897b2413b83480d1f04eb2031f62b36a708
refs/heads/master
2021-05-22T23:56:07.613136
2020-04-05T03:14:27
2020-04-05T03:14:27
253,146,024
0
0
null
null
null
null
UTF-8
Python
false
false
4,408
py
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mishcoin-cli""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal, assert_raises_process_error, get_auth_cookie class TestBitcoinCli(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def run_test(self): """Main test logic""" cli_response = self.nodes[0].cli("-version").send_cli() assert("Mishcoin Core RPC client version" in cli_response) self.log.info("Compare responses from getwalletinfo RPC and `mishcoin-cli getwalletinfo`") if self.is_wallet_compiled(): cli_response = self.nodes[0].cli.getwalletinfo() rpc_response = self.nodes[0].getwalletinfo() assert_equal(cli_response, rpc_response) self.log.info("Compare responses from getblockchaininfo RPC and `mishcoin-cli getblockchaininfo`") cli_response = self.nodes[0].cli.getblockchaininfo() rpc_response = self.nodes[0].getblockchaininfo() assert_equal(cli_response, rpc_response) user, password = get_auth_cookie(self.nodes[0].datadir) self.log.info("Test -stdinrpcpass option") assert_equal(0, self.nodes[0].cli('-rpcuser=%s' % user, '-stdinrpcpass', input=password).getblockcount()) assert_raises_process_error(1, "Incorrect rpcuser or rpcpassword", self.nodes[0].cli('-rpcuser=%s' % user, '-stdinrpcpass', input="foo").echo) self.log.info("Test -stdin and -stdinrpcpass") assert_equal(["foo", "bar"], self.nodes[0].cli('-rpcuser=%s' % user, '-stdin', '-stdinrpcpass', input=password + "\nfoo\nbar").echo()) assert_raises_process_error(1, "Incorrect rpcuser or rpcpassword", self.nodes[0].cli('-rpcuser=%s' % user, '-stdin', '-stdinrpcpass', input="foo").echo) self.log.info("Test connecting to a non-existing server") assert_raises_process_error(1, "Could not connect to the server", self.nodes[0].cli('-rpcport=1').echo) self.log.info("Test connecting with non-existing RPC cookie file") assert_raises_process_error(1, "Could not locate RPC credentials", self.nodes[0].cli('-rpccookiefile=does-not-exist', '-rpcpassword=').echo) self.log.info("Make sure that -getinfo with arguments fails") assert_raises_process_error(1, "-getinfo takes no arguments", self.nodes[0].cli('-getinfo').help) self.log.info("Compare responses from `mishcoin-cli -getinfo` and the RPCs data is retrieved from.") cli_get_info = self.nodes[0].cli('-getinfo').send_cli() if self.is_wallet_compiled(): wallet_info = self.nodes[0].getwalletinfo() network_info = self.nodes[0].getnetworkinfo() blockchain_info = self.nodes[0].getblockchaininfo() assert_equal(cli_get_info['version'], network_info['version']) assert_equal(cli_get_info['protocolversion'], network_info['protocolversion']) if self.is_wallet_compiled(): assert_equal(cli_get_info['walletversion'], wallet_info['walletversion']) assert_equal(cli_get_info['balance'], wallet_info['balance']) assert_equal(cli_get_info['blocks'], blockchain_info['blocks']) assert_equal(cli_get_info['timeoffset'], network_info['timeoffset']) assert_equal(cli_get_info['connections'], network_info['connections']) assert_equal(cli_get_info['proxy'], network_info['networks'][0]['proxy']) assert_equal(cli_get_info['difficulty'], blockchain_info['difficulty']) assert_equal(cli_get_info['testnet'], blockchain_info['chain'] == "test") if self.is_wallet_compiled(): assert_equal(cli_get_info['balance'], wallet_info['balance']) assert_equal(cli_get_info['keypoololdest'], wallet_info['keypoololdest']) assert_equal(cli_get_info['keypoolsize'], wallet_info['keypoolsize']) assert_equal(cli_get_info['paytxfee'], wallet_info['paytxfee']) assert_equal(cli_get_info['relayfee'], network_info['relayfee']) # unlocked_until is not tested because the wallet is not encrypted if __name__ == '__main__': TestBitcoinCli().main()
655f1c6517e4c4109ba59bf8025f9fc0cb629994
41a0c25333100fd551e7a49ceec128c1cd80857f
/Scripts/doSuperResolution.py
7a61ed8b685cd6ce72250a81e478dc58cf0f5443
[]
no_license
ANTsXNet/MRISuperResolution
7a6a6b8e3290d993f79a8d0bc9aa357fee755cb0
3568ad193e124d2000a39e89f11e50231443fff6
refs/heads/master
2021-08-16T10:16:41.781465
2020-09-22T15:37:53
2020-09-22T15:37:53
223,532,949
4
0
null
null
null
null
UTF-8
Python
false
false
2,879
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et import os import sys import time import numpy as np import keras import ants import antspynet args = sys.argv if len(args) != 3: help_message = ("Usage: python doSuperResolution.py inputFile outputFile") raise AttributeError(help_message) else: input_file_name = args[1] output_file_name = args[2] start_time_total = time.time() print("Reading ", input_file_name) start_time = time.time() input_image = ants.image_read(input_file_name) end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time: ", elapsed_time, " seconds)") dimension = len(input_image.shape) input_image_list = list() if dimension == 4: input_image_list = ants.ndimage_to_list(input_image) elif dimension == 2: raise ValueError("Model for 3-D or 4-D images only.") elif dimension == 3: input_image_list.append(input_image) model = antspynet.create_deep_back_projection_network_model_3d( (*input_image_list[0].shape, 1), number_of_outputs=1, number_of_base_filters=64, number_of_feature_filters=256, number_of_back_projection_stages=7, convolution_kernel_size=(3, 3, 3), strides=(2, 2, 2), number_of_loss_functions=1) print( "Loading weights file" ) start_time = time.time() weights_file_name = "./mriSuperResolutionWeights.h5" if not os.path.exists(weights_file_name): weights_file_name = antspynet.get_pretrained_network("mriSuperResolution", weights_file_name) model.load_weights(weights_file_name) end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time: ", elapsed_time, " seconds)") number_of_image_volumes = len(input_image_list) output_image_list = list() for i in range(number_of_image_volumes): print("Applying super resolution to image", i, "of", number_of_image_volumes) start_time = time.time() input_image = ants.iMath(input_image_list[i], "TruncateIntensity", 0.0001, 0.995) output_sr = antspynet.apply_super_resolution_model_to_image(input_image, model, target_range=(127.5, -127.5)) input_image_resampled = ants.resample_image_to_target(input_image, output_sr) output_image_list.append(antspynet.regression_match_image(output_sr, input_image_resampled, poly_order = 2)) end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time:", elapsed_time, "seconds)") print("Writing output image.") if number_of_image_volumes == 1: ants.image_write( output_image_list[0], output_file_name) else: output_image = ants.list_to_ndimage(input_image, output_image_list) ants.image_write(output_image, output_file_name) end_time_total = time.time() elapsed_time_total = end_time_total - start_time_total print( "Total elapsed time: ", elapsed_time_total, "seconds" )
ca829bb3b5c37e7e3f12c3fdecba9401acdbba5d
bccfab4d853f7417401a084be95de293e66ccd2a
/mySpider/auxiliary_files/Exhibition136_supporting.py
7999b97dede8993a5006d00cee82bfa1e3c14a46
[]
no_license
CS1803-SE/The-First-Subsystem
a8af03ce04a9de72a6b78ece6411bac4c02ae170
4829ffd6a83133479c385d6afc3101339d279ed6
refs/heads/main
2023-05-06T02:32:08.751139
2021-05-24T06:09:37
2021-05-24T06:09:37
363,400,147
0
0
null
null
null
null
UTF-8
Python
false
false
247
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 2021/5/11 20:14 # @Author : 10711 # @File : Exhibition136_supporting.py # @Software: PyCharm class Exhibition136Supporting: startUrl = ['http://www.changjiangcp.com/view/16351.html']
e340886d15839bcf81591484b8f866d8ee964e49
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02806/s940830540.py
373fb938a67908fb9d236775b0b7b61aa4ef974e
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
195
py
N = int(input()) st = [input().split() for i in range(N)] X = input() flg = 0 ans = 0 for s, t in st: if flg: ans += int(t) else: if s == X: flg = 1 print(ans)
c1b942cfb9f3e78d5166a2ba3efb2c10a7cea81b
ab5cdf8f2de94c327e4679da84f941b1f3c04db4
/kubernetes/test/test_version_api.py
2949fd9417eb62fa0c11cfb164bab7abe4314d78
[ "Apache-2.0" ]
permissive
diannaowa/client-python
a4a92a125178db26004eaef5062f9b1b581b49a8
5e268fb0b6f21a535a14a7f968b84ed4486f6774
refs/heads/master
2020-12-02T22:06:03.687696
2017-06-30T21:42:50
2017-06-30T21:42:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
832
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.7.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.apis.version_api import VersionApi class TestVersionApi(unittest.TestCase): """ VersionApi unit test stubs """ def setUp(self): self.api = kubernetes.client.apis.version_api.VersionApi() def tearDown(self): pass def test_get_code(self): """ Test case for get_code """ pass if __name__ == '__main__': unittest.main()
e125277049f9d9995016ddc244b396fee1ba6e28
40bc68b22e37e77ff7d7ed75f08b7195d16f9fde
/2019/day07/solutionsvm.py
4a2d5b272357149ee73475ed6667046cf732278d
[]
no_license
fuglede/adventofcode
1dd61b3bfd8db0346c8cb6838da8da5adf3d5296
e3c85daf96889dd7aac04a0e741d1409f74e549d
refs/heads/master
2023-09-03T08:52:48.575960
2023-08-26T18:29:19
2023-08-26T18:29:19
159,918,186
59
14
null
null
null
null
UTF-8
Python
false
false
676
py
from collections import deque from itertools import cycle, permutations from math import inf from vm import VM, read_program p07 = read_program(7) # Part one m = -inf for perm in permutations(range(5)): vms = [] signal = 0 for phase in perm: vm = VM(p07) signal = next(VM(p07, deque([phase, signal]))) m = max(m, signal) print(m) # Part two m = -inf for perm in permutations(range(5, 10)): vms = [VM(p07, deque([phase])) for phase in perm] signal = 0 try: for i in cycle(range(5)): vms[i].inputs.append(signal) signal = next(vms[i]) except StopIteration: m = max(m, signal) print(m)
d6c70c773646c56f5d50057fddd579b9c60a264a
213be849a50c84e9fc01aade5ff064a9aa7eb8c6
/nautobot_golden_config/__init__.py
133f8c98424367855de2c97353490af77f994942
[ "Apache-2.0" ]
permissive
nniehoff/nautobot-plugin-golden-config
c8d62b381727c9ba76740e4dfa81835561738840
5c5f051d244b277dc9d1dbd6a11c9b236ee9a229
refs/heads/main
2023-08-03T22:11:46.669288
2021-09-24T14:56:28
2021-09-24T14:56:28
413,983,604
0
0
null
null
null
null
UTF-8
Python
false
false
938
py
"""Plugin declaration for nautobot_golden_config.""" __version__ = "0.9.7" from nautobot.extras.plugins import PluginConfig class GoldenConfig(PluginConfig): """Plugin configuration for the nautobot_golden_config plugin.""" name = "nautobot_golden_config" verbose_name = "Golden Configuration" version = __version__ author = "Network to Code, LLC" author_email = "[email protected]" description = "A plugin for managing Golden Configurations." base_url = "golden-config" required_settings = [] # min_version = "0" # max_version = "100" default_settings = { "enable_backup": True, "enable_golden": True, "enable_compliance": True, "enable_sotagg": True, "per_feature_width": 13, "per_feature_height": 4, "per_feature_bar_width": 0.3, } caching_config = {} config = GoldenConfig # pylint:disable=invalid-name
2bca0b2d85d4f4a26bf43a98631bde8cfd883738
e2cd4f444b18adca671ae2ac8856594b22c6d2ae
/arc/migrations/0091_remove_story_details_change_date.py
1fd910194b0f36e1c5aaa93c79ea00542003a3f9
[]
no_license
anshumanairy/Sprint-Management
36c54c03b66a0d02071a337e8217144a0b0c9578
0c4e8fe87ec4099253d894b7876f0b5b914a2652
refs/heads/master
2022-12-28T02:46:25.847713
2020-10-02T10:02:13
2020-10-02T10:02:13
195,804,893
0
0
null
2020-10-02T10:02:14
2019-07-08T12:11:27
CSS
UTF-8
Python
false
false
341
py
# Generated by Django 2.2 on 2019-08-21 10:47 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('arc', '0090_story_details_change_date'), ] operations = [ migrations.RemoveField( model_name='story_details', name='change_date', ), ]
9ae68445b993fd78a1465231bfcc101b7efb2783
3f888fab6f08ceda44949c7c583ceddcc41b4062
/report_result.py
3f86d4e510fb3a6cda320f5710f608dc81f4cc25
[]
no_license
sisiwang027/Project_SBA_HackBright
cf0397da2eeb58162718c8904d2476dadd4c40bd
38fb60bade59cc5192b08fb47a8530f153a5a7f6
refs/heads/master
2020-12-14T08:50:06.125734
2017-08-07T08:39:38
2017-08-07T08:39:38
95,503,248
2
0
null
null
null
null
UTF-8
Python
false
false
18,515
py
"""Get the result of reports and return json""" from flask import (Flask, render_template, redirect, request, flash, session, jsonify, url_for, send_from_directory) from model import (Gender, User, Customer, Category, CategoryAttribute, CategoryDetail, Product, CategoryDetailValue, ProductDetail, Sale, Purchase) from model import connect_to_db, db, app from datetime import datetime from sqlalchemy.sql.functions import coalesce from dateutil.relativedelta import relativedelta def sql_to_linechartejson(sqlalchemy_list, chart_title): """Change the result of sqlalchemy to linecharte json""" data_dict = {} data_dict["labels"] = [] data_dict["datasets"] = [] cg_qty_dic = {} color_list = ["#ffb366", "rgba(102,204,255,1)", "#66ff66", "#99b3e6"] clor_choose = 0 for time_at, cg_name, qty in sqlalchemy_list: time_at = str(int(time_at)) cg_name = str(cg_name) if time_at not in data_dict["labels"]: data_dict["labels"].append(time_at) cg_qty_dic.setdefault(cg_name, []).append(qty) for cg_name in cg_qty_dic: data_set = {"fill": True, "lineTension": 0.5, "backgroundColor": "rgba(220,220,220,0.2)", "borderCapStyle": 'butt', "borderDash": [], "borderDashOffset": 0.0, "borderJoinStyle": 'miter', "pointBorderColor": "rgba(220,220,220,1)", "pointBackgroundColor": "#fff", "pointBorderWidth": 1, "pointHoverRadius": 5, "pointHoverBackgroundColor": "#fff", "pointHoverBorderColor": "rgba(220,220,220,1)", "pointHoverBorderWidth": 2, "pointRadius": 3, "pointHitRadius": 10, "spanGaps": False} data_set["label"] = cg_name data_set["data"] = cg_qty_dic[cg_name] data_set["borderColor"] = color_list[clor_choose] clor_choose += 1 data_dict["datasets"].append(data_set) options = {"title": {"display": True, "text": chart_title}, "responsive": True} data_chart = {"type": "line", "options": options, "data": data_dict} return data_chart def show_sal_qtychart_json(user_id, month_num, attr_list): """show sale quantities chart data as a json""" firstday_month = "01{}{}".format(str(datetime.now().month), str(datetime.now().year)) set_date = datetime.strptime(firstday_month, "%d%m%Y").date() - relativedelta(months=month_num-1) sale = db.session.query(db.func.date_part('year', Sale.transc_at).label("year_at"), db.func.date_part('month', Sale.transc_at).label("month_at"), Sale.prd_id, db.func.sum(Sale.transc_price * Sale.quantities).label("revenue"), db.func.sum(Sale.quantities).label("sale_qty")).filter(Sale.transc_at >= set_date).group_by(db.func.date_part('year', Sale.transc_at).label("year_at"), db.func.date_part('month', Sale.transc_at).label("month_at"), Sale.prd_id).subquery() purch_cost = db.session.query(Purchase.prd_id, (db.func.sum(Purchase.purchase_price * Purchase.quantities) / db.func.sum(Purchase.quantities)).label("avg_purch_cost")).group_by(Purchase.prd_id).subquery() prod = db.session.query(Product.prd_id, Product.cg_id, Category.cg_name).join(Category).join(Product.prddetail).filter(CategoryDetailValue.attr_val.in_(attr_list), Product.user_id == user_id).group_by(Product.prd_id, Product.cg_id, Category.cg_name).subquery() sale_qty_sum = db.session.query((sale.c.year_at * 100 + sale.c.month_at).label("sale_at"),\ prod.c.cg_name,\ db.func.sum(db.func.round(sale.c.sale_qty)).label("sale_qty"))\ .join(purch_cost, sale.c.prd_id == purch_cost.c.prd_id)\ .join(prod, sale.c.prd_id == prod.c.prd_id)\ .group_by((sale.c.year_at * 100 + sale.c.month_at).label("sale_at"),\ prod.c.cg_name).order_by((sale.c.year_at * 100 + sale.c.month_at).label("sale_at"), prod.c.cg_name)\ .all() return sql_to_linechartejson(sale_qty_sum, "Qty Chart") def show_sal_revenuechart_json(user_id, month_num, attr_list): """show sale revenue chart data as a json""" firstday_month = "01{}{}".format(str(datetime.now().month), str(datetime.now().year)) set_date = datetime.strptime(firstday_month, "%d%m%Y").date() - relativedelta(months=month_num-1) sale = db.session.query(db.func.date_part('year', Sale.transc_at).label("year_at"),\ db.func.date_part('month', Sale.transc_at).label("month_at"), Sale.prd_id,\ db.func.sum(Sale.transc_price * Sale.quantities).label("revenue"),\ db.func.sum(Sale.quantities).label("sale_qty")).filter(Sale.transc_at >= set_date)\ .group_by(db.func.date_part('year', Sale.transc_at).label("year_at"), db.func.date_part('month', Sale.transc_at).label("month_at"), Sale.prd_id).subquery() purch_cost = db.session.query(Purchase.prd_id,\ (db.func.sum(Purchase.purchase_price * Purchase.quantities) / db.func.sum(Purchase.quantities)).label("avg_purch_cost"))\ .group_by(Purchase.prd_id).subquery() prod = db.session.query(Product.prd_id, Product.cg_id, Category.cg_name)\ .join(Category).join(Product.prddetail)\ .filter(CategoryDetailValue.attr_val.in_(attr_list), Product.user_id == user_id)\ .group_by(Product.prd_id, Product.cg_id, Category.cg_name).subquery() sale_revenue_sum = db.session.query((sale.c.year_at * 100 + sale.c.month_at).label("sale_at"),\ prod.c.cg_name,\ db.func.sum(sale.c.revenue).label("revenue"))\ .join(purch_cost, sale.c.prd_id == purch_cost.c.prd_id)\ .join(prod, sale.c.prd_id == prod.c.prd_id)\ .group_by((sale.c.year_at * 100 + sale.c.month_at).label("sale_at"),\ prod.c.cg_name).order_by((sale.c.year_at * 100 + sale.c.month_at).label("sale_at"), prod.c.cg_name)\ .all() return sql_to_linechartejson(sale_revenue_sum, "Revenue Chart") def show_sal_profitchart_json(user_id, month_num, attr_list): """show sale profit chart data as a json""" firstday_month = "01{}{}".format(str(datetime.now().month), str(datetime.now().year)) set_date = datetime.strptime(firstday_month, "%d%m%Y").date() - relativedelta(months=month_num-1) sale = db.session.query(db.func.date_part('year', Sale.transc_at).label("year_at"),\ db.func.date_part('month', Sale.transc_at).label("month_at"), Sale.prd_id,\ db.func.sum(Sale.transc_price * Sale.quantities).label("revenue"),\ db.func.sum(Sale.quantities).label("sale_qty")).filter(Sale.transc_at >= set_date)\ .group_by(db.func.date_part('year', Sale.transc_at).label("year_at"), db.func.date_part('month', Sale.transc_at).label("month_at"), Sale.prd_id).subquery() purch_cost = db.session.query(Purchase.prd_id,\ (db.func.sum(Purchase.purchase_price * Purchase.quantities) / db.func.sum(Purchase.quantities)).label("avg_purch_cost"))\ .group_by(Purchase.prd_id).subquery() prod = db.session.query(Product.prd_id, Product.cg_id, Category.cg_name)\ .join(Category).join(Product.prddetail)\ .filter(CategoryDetailValue.attr_val.in_(attr_list), Product.user_id == user_id)\ .group_by(Product.prd_id, Product.cg_id, Category.cg_name).subquery() sale_profit_sum = db.session.query((sale.c.year_at * 100 + sale.c.month_at).label("sale_at"),\ prod.c.cg_name,\ db.func.sum(sale.c.revenue - purch_cost.c.avg_purch_cost * sale.c.sale_qty).label("profit"))\ .join(purch_cost, sale.c.prd_id == purch_cost.c.prd_id)\ .join(prod, sale.c.prd_id == prod.c.prd_id)\ .group_by((sale.c.year_at * 100 + sale.c.month_at).label("sale_at"),\ prod.c.cg_name).order_by((sale.c.year_at * 100 + sale.c.month_at).label("sale_at"), prod.c.cg_name)\ .all() return sql_to_linechartejson(sale_profit_sum, "Profit Chart") def sale_sum_report(user_id, attr_list, month_num): """Return data of Sale Sum Report.""" result = {} firstday_month = "01{}{}".format(str(datetime.now().month), str(datetime.now().year)) set_date = datetime.strptime(firstday_month, "%d%m%Y").date() - relativedelta(months=month_num-1) sale = db.session.query(db.func.date_part('year', Sale.transc_at).label("year_at"), db.func.date_part('month', Sale.transc_at).label("month_at"), Sale.prd_id, db.func.sum(Sale.transc_price * Sale.quantities).label("revenue"), db.func.sum(Sale.quantities).label("sale_qty")).filter(Sale.transc_at >= set_date).group_by(db.func.date_part('year', Sale.transc_at).label("year_at"), db.func.date_part('month', Sale.transc_at).label("month_at"), Sale.prd_id).subquery() purch_cost = db.session.query(Purchase.prd_id, (db.func.sum(Purchase.purchase_price * Purchase.quantities) / db.func.sum(Purchase.quantities)).label("avg_purch_cost")).group_by(Purchase.prd_id).subquery() prod = db.session.query(Product.prd_id, Product.cg_id, Category.cg_name).join(Category).join(Product.prddetail).filter(CategoryDetailValue.attr_val.in_(attr_list), Product.user_id == user_id).group_by(Product.prd_id, Product.cg_id, Category.cg_name).subquery() sale_sum = db.session.query((sale.c.year_at * 100 + sale.c.month_at).label("sale_at"), prod.c.cg_name, db.func.sum(db.func.round(sale.c.sale_qty)).label("sale_qty"), db.func.sum(sale.c.revenue).label("revenue"), db.func.sum(sale.c.revenue - purch_cost.c.avg_purch_cost * sale.c.sale_qty).label("profit")).join(purch_cost, sale.c.prd_id == purch_cost.c.prd_id).join(prod, sale.c.prd_id == prod.c.prd_id).group_by((sale.c.year_at * 100 + sale.c.month_at).label("sale_at"), prod.c.cg_name).order_by((sale.c.year_at * 100 + sale.c.month_at).label("sale_at"), prod.c.cg_name) column_name = [column["name"] for column in sale_sum.column_descriptions] result["result"] = [dict(zip(column_name, data)) for data in sale_sum] return result def prod_sum_report(user_id, attr_list, month_num): """Return data of Product Sum.""" result = {} firstday_month = month_num.replace('-', '') + "01" set_date = datetime.strptime(firstday_month, "%Y%m%d").date() + relativedelta(months=1) purch = db.session.query(Purchase.prd_id, db.func.round(db.func.sum(coalesce(Purchase.quantities, 0))).label("purch_qty"), db.func.sum(coalesce(db.func.round(Purchase.quantities) * Purchase.purchase_price, 0)).label("purch_price_sum"))\ .filter(Purchase.purchase_at < set_date)\ .group_by(Purchase.prd_id).subquery() sale = db.session.query(Sale.prd_id, db.func.round(db.func.sum(coalesce(Sale.quantities, 0))).label("sale_qty"), db.func.sum(coalesce(db.func.round(Sale.quantities) * Sale.transc_price, 0)).label("sale_price_sum"))\ .filter(Sale.transc_at < set_date)\ .group_by(Sale.prd_id).subquery() prod = db.session.query(Product.prd_id, Product.cg_id, Category.cg_name)\ .join(Category).join(Product.prddetail)\ .filter(CategoryDetailValue.attr_val.in_(attr_list), Product.user_id == user_id)\ .group_by(Product.prd_id, Product.cg_id, Category.cg_name).subquery() product_sum = db.session.query(prod.c.cg_name, db.func.count(prod.c.prd_id).label("prod_num"), db.func.sum(purch.c.purch_qty).label("purch_qty_sum"), db.func.sum(purch.c.purch_price_sum).label("purch_price_sum"), db.func.sum(purch.c.purch_qty - sale.c.sale_qty).label("purch_onhand_qty"), db.func.sum(purch.c.purch_price_sum / purch.c.purch_qty * (purch.c.purch_qty - sale.c.sale_qty)).label("purch_onhand_cost"), db.func.sum(sale.c.sale_qty).label("sale_qty"), db.func.sum(sale.c.sale_price_sum).label("sale_price_sum"))\ .outerjoin(purch, prod.c.prd_id == purch.c.prd_id)\ .outerjoin(sale, prod.c.prd_id == sale.c.prd_id)\ .group_by(prod.c.cg_name) column_name = [column["name"] for column in product_sum.column_descriptions] result["result"] = [dict(zip(column_name, data)) for data in product_sum] return result def sql_to_pichartejson(sqlalchemy_list, chart_title): """Change the result of sqlalchemy to linecharte json""" qty_date = list(sqlalchemy_list[0]) data_dict = {"labels": ["Sale Qty", "On-hand Qty"], "datasets": [{"data": qty_date, "backgroundColor": ["#FF6384", "#36A2EB"], "hoverBackgroundColor": ["#FF6384", "#36A2EB"]}]} options = {"title": {"display": True, "text": chart_title}, "responsive": True} data_chart = {"type": "doughnut", "options": options, "data": data_dict} return data_chart def show_prodchart_json(user_id, month_num, attr_list): """show sale profit chart data as a json""" firstday_month = month_num.replace('-', '') + "01" set_date = datetime.strptime(firstday_month, "%Y%m%d").date() + relativedelta(months=1) purch = db.session.query(Purchase.prd_id, db.func.round(db.func.sum(coalesce(Purchase.quantities, 0))).label("purch_qty"), db.func.sum(coalesce(db.func.round(Purchase.quantities) * Purchase.purchase_price, 0)).label("purch_price_sum"))\ .filter(Purchase.purchase_at < set_date)\ .group_by(Purchase.prd_id).subquery() sale = db.session.query(Sale.prd_id, db.func.round(db.func.sum(coalesce(Sale.quantities, 0))).label("sale_qty"), db.func.sum(coalesce(db.func.round(Sale.quantities) * Sale.transc_price, 0)).label("sale_price_sum"))\ .filter(Sale.transc_at < set_date)\ .group_by(Sale.prd_id).subquery() # prod = db.session.query(Product.prd_id, # Product.cg_id, Category.cg_name)\ # .join(Category).join(Product.prddetail)\ # .filter(CategoryDetailValue.attr_val.in_(attr_list), Product.user_id == user_id)\ # .group_by(Product.prd_id, Product.cg_id, Category.cg_name).subquery() product_sum = db.session.query(db.func.sum(sale.c.sale_qty).label("sale_qty_sum"), db.func.sum(purch.c.purch_qty - sale.c.sale_qty).label("purch_onhand_qty"))\ .join(purch, sale.c.prd_id == purch.c.prd_id).all() return sql_to_pichartejson(product_sum, "Sales Chart") def sql_to_barchartejson(sqlalchemy_list, chart_title): """Change the result of sqlalchemy to linecharte json""" prod_list = [] sale_list = [] for prod_name, sale_qty in sqlalchemy_list: prod_list.append(prod_name) sale_list.append(sale_qty) data_dict = {"labels": prod_list, "datasets": [{"data": sale_list, "backgroundColor": ["#FF6384", "#36A2EB", "#36A2EB", "#36A2EB", "#36A2EB", "#36A2EB", "#36A2EB", "#36A2EB", "#36A2EB", "#36A2EB"]}]} options = {"title": {"display": True, "text": chart_title}, "legend": {"display": False}} data_chart = {"type": "bar", "options": options, "data": data_dict} return data_chart def show_top10_prod_json(user_id, month_num, attr_list): """Show Top 10 products chart.""" firstday_month = month_num.replace('-', '') + "01" set_date = datetime.strptime(firstday_month, "%Y%m%d").date() + relativedelta(months=1) top10_prod = db.session.query(Product.prd_name, db.func.sum(db.func.round(Sale.quantities)).label("sale_qty"))\ .filter(Sale.transc_at < set_date)\ .join(Sale).group_by(Product.prd_name)\ .order_by(db.func.sum(db.func.round(Sale.quantities)).label("sale_qty").desc())\ .limit(10).all() return sql_to_barchartejson(top10_prod, "Top Ten Products") def sql_to_cust_barchartejson(sqlalchemy_list, chart_title): """Change the result of sqlalchemy to barcharte json""" distrib_name = [] cust_num = [] for distri_name, num in sqlalchemy_list: distrib_name.append(distri_name) cust_num.append(num) data_dict = {"labels": distrib_name, "datasets": [{"data": cust_num, "backgroundColor": ["#36A2EB", "#FF6384", "#36A2EB", "#36A2EB"]}]} options = {"title": {"display": True, "text": chart_title}, "legend": {"display": False}} data_chart = {"type": "bar", "options": options, "data": data_dict} return data_chart def show_cust_age_json(user_id): """Show customer age distribution chart.""" sql = "select birth, count(*) num from ( select case when date_part('year',age(birth_date)) < 20 then 'age:0-20' when date_part('year',age(birth_date)) between 20 and 30 then 'age:21-30' when date_part('year',age(birth_date)) between 30 and 40 then 'age:31-40' when date_part('year',age(birth_date)) > 40 then 'age:41 and up' end birth from customers where user_id = 1 ) a group by birth order by 1" cursor = db.session.execute(sql) result = cursor.fetchall() return sql_to_cust_barchartejson(result, "Customers Age Distribution") if __name__ == "__main__": print "Don't run this file directly."
95592d26dae1df0cb62329b8a85140998af39521
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-2/7c65ad11e2914bc9774abd37cdd1ac455f1c9433-<list_all>-fix.py
14a5a1ef5bf50d8cde4ae3f6831042b8b6ceec9b
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
242
py
def list_all(self): self.log('List all items') try: response = self.storage_client.storage_accounts.list() except Exception as exc: self.fail('Error listing all items - {0}'.format(str(exc))) return response
58607e561ba847b72406335fbca478f269ddb28c
3ec008209548feba572f95629747abdebe0558a3
/housing prediction/env/bin/jupyter
37d2a6756a7e2057599c8598b75d53af3855bfea
[]
no_license
KaTaiHo/Continious_Learning
9937b5d14067b13608ad731e5345043caacaca96
879279f9a51038dc3d7b64c28b1e13880f23ac8a
refs/heads/master
2022-11-20T21:23:20.680437
2018-08-24T06:15:16
2018-08-24T06:15:16
99,074,529
0
1
null
2022-10-21T10:47:01
2017-08-02T05:11:53
Python
UTF-8
Python
false
false
263
#!/Users/KaTaiHo/Desktop/GitHub/learning/env/bin/python3.5 # -*- coding: utf-8 -*- import re import sys from jupyter_core.command import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
1980f57a7df7a9544b8dbf8bacd0c53c350a1143
559995c23c13f67ee6f342389d0db81081207d87
/prjforinfcreditvilfw/estimation/postprocess/jsoncsv/gen_top_estimates_df.py
db5348dfd2d78e63f2c2dd095ba7aee8b7cbbcb7
[]
no_license
MacroFinanceHub/PrjForInfCreditVilFW
06a6c475d0c846c1578205e062acb0190bcce1c2
d2a863656962691f8dc13d205a82c81823040c8b
refs/heads/main
2023-07-19T05:31:15.992847
2021-08-30T14:44:14
2021-08-30T14:44:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,516
py
''' Created on Aug 30, 2018 @author: fan ''' import os.path import logging import pandas as pd # import pandas.io.readexport as readexport import pyfan.panda.inout.readexport as readexport import estimation.moments.momcomp as momcomp import projectsupport.hardcode.string_shared as hardstring logger = logging.getLogger(__name__) def top_estimates_df(panda_df, top_estimates_keep_count): """Merge top results moments and data together Find Top estimates, combine model with data, and save Examples -------- import estimation.postprocess.jsoncsv.gen_top_estimates_df as top_estimate top_esti_df = top_estimate.top_estimates_df(panda_df, top_estimates_keep_count) """ moment_csv_strs = hardstring.moment_csv_strs() moment_pd_cate_vars = hardstring.moment_csv_strs_cates() top_objective = moment_csv_strs['main_allperiods_obj'][1] sort_by_col = top_objective group_by_col = moment_pd_cate_vars['period_dictkey']['colname'] unique_periodkeys = list(panda_df[moment_pd_cate_vars['period_dictkey']['colname']].unique()) for ctr, period_key_str_val in enumerate(unique_periodkeys): all_esti_df_cur = panda_df[panda_df[group_by_col] == period_key_str_val] all_esti_df_cur = all_esti_df_cur.sort_values(sort_by_col).head(top_estimates_keep_count) if (ctr == 0): top_esti_df = all_esti_df_cur else: # drop = true to delete the current index (2020-11-14 21:10) top_esti_df = pd.concat([top_esti_df, all_esti_df_cur], axis=0).reset_index(drop=True) # Previously drop=FALSE by default, created index column, was deleted, new code below is absolete if 'index' in top_esti_df: del top_esti_df['index'] return top_esti_df def top_results_merge_moments_data(combo_type_list, esti_specs, all_esti_df, top_estimates_keep_count=4, search_directory='', save_file_name='', save_file_name_regress='', multiperiod=True, save_panda_top=True, return_panda_top=False, exo_or_endo_graph_row_select='_exo_wgtJ'): """Merge top results moments and data together Find Top estimates, combine model with data, and save to CSV Parameters ---------- return_panda_top: boolean return existing, do not save new or find new if already has file Examples -------- import estimation.postprocess.jsoncsv.gen_top_estimates_df as top_estimate """ ''' 0. File Full Directory + Name ''' save_directory = search_directory if (save_file_name.endswith('.csv')): file_name = save_file_name else: file_name = save_file_name + '.csv' save_directory_file_name = save_directory + file_name file_exists = False if (os.path.isfile(save_directory_file_name)): file_exists = True if (file_exists and return_panda_top): top_esti_df = readexport.read_csv(save_directory_file_name) else: ''' 1. Top Estimate and Moments ''' moment_pd_cate_vars = hardstring.moment_csv_strs_cates() moment_csv_strs = hardstring.moment_csv_strs() ''' 1b. CAN NOT have other top_objective, CAN ONLY HAVE the main_allperiods_obj other objectives are period specific, not common to all periods. ''' top_objective = moment_csv_strs['main_allperiods_obj'][1] ''' unique period keys ''' unique_periodkeys = list(all_esti_df[moment_pd_cate_vars['period_dictkey']['colname']].unique()) unique_periodkeys = [x for x in unique_periodkeys if str(x) != 'nan'] if (multiperiod): esti_obj_main_obj = [top_objective, moment_csv_strs['period_dictkey'][1]] ''' 1. separate to sub-groups 2. each subgroup select top 3. combine back ''' top_esti_df = top_estimates_df(all_esti_df, top_estimates_keep_count) else: esti_obj_main_obj = [moment_csv_strs['main_obj'][1]] all_esti_df = all_esti_df.sort_values(esti_obj_main_obj, ascending=True) ''' 2. Top estimates ''' top_esti_df = all_esti_df.iloc[0:top_estimates_keep_count * 2] ''' 3. add string variable for model or data, all model simulation results are model ''' data_model_col = moment_pd_cate_vars['data_model']['colname'] data_model_col_model_cate = moment_pd_cate_vars['data_model']['cates']['model'][0] data_model_col_data_cate = moment_pd_cate_vars['data_model']['cates']['data'][0] top_esti_df[data_model_col] = data_model_col_model_cate ''' Unique Period Keys In current Results ''' moments_type = esti_specs['moments_type'] momsets_type = esti_specs['momsets_type'] moments_data, __, __ = momcomp.get_moments_momsets(moments_type, momsets_type) periods_keys = hardstring.region_time_dict(True) for period_key_str_val in unique_periodkeys: period_moments_data_dict = moments_data[period_key_str_val] ''' Add to CSV ''' period_moments_data_dict[moment_csv_strs['period_dictkey'][0]] = period_key_str_val period_moments_data_dict[data_model_col] = data_model_col_data_cate df_period_moments_data = pd.DataFrame([period_moments_data_dict], columns=period_moments_data_dict.keys()) top_esti_df = pd.concat([top_esti_df, df_period_moments_data], axis=0).reset_index(drop=True) ''' 4. Re-order column names ''' steady_agg_suffixes = hardstring.steady_aggregate_suffixes() moment_key_list = list(period_moments_data_dict.keys()) moment_key_list_wth_var = [] for mom_key in moment_key_list: moment_key_list_wth_var.append(mom_key) moment_key_list_wth_var.append(mom_key + steady_agg_suffixes['_var'][0]) ''' 4b. include priority columns that are also in all_cols, this is for variance, earlier calculation did nothave variance also deletes vars from the data/model key var as well as date var ''' all_cols = list(top_esti_df.columns.values) priority_cols = [top_objective] + moment_key_list_wth_var priority_cols_include = [col_priority for col_priority in priority_cols if (col_priority in all_cols)] non_priority_cols = [col for col in all_cols if (col not in priority_cols_include)] resorted_cols = priority_cols_include + non_priority_cols top_esti_df = top_esti_df[resorted_cols] ''' 4c. Sort by time, data vs model, by objective ''' sort_cols = [moment_pd_cate_vars['data_model']['colname'], moment_csv_strs['main_obj'][1]] if (multiperiod): sort_cols = [moment_csv_strs['period_dictkey'][0], moment_pd_cate_vars['data_model']['colname'], top_objective] top_esti_df = top_esti_df.sort_values(by=sort_cols, ascending=True) ''' 5. Save Results in single file under main folder ''' if (save_panda_top): save_directory = search_directory if (save_file_name.endswith('.csv')): file_name = save_file_name else: file_name = save_file_name + '.csv' top_esti_df.to_csv(save_directory + file_name, header=True, index=False) ''' 6. Top with only estimation parameters ''' save_panda_top_regress = False if (save_panda_top_regress): ''' if save panda_top, save a separate file where we have estimation objective as well as all parameters that were randomly drawn, that were allowed to be different - keep only one time period, because parameters and objectives are the same ''' regress_use_cols = [moment_csv_strs['main_allperiods_obj'][1], moment_csv_strs['agg_prob_obj'][1], moment_csv_strs['BI_obj'][1]] + combo_type_list[0][2] ''' select only one time period rows all_esti_df only has model rows, top has data rows as well unique_periodkeys[0] or unique_periodkeys[1] should give identical results ''' all_esti_df_modelrows_oneperiod = all_esti_df[ all_esti_df[moment_csv_strs['period_dictkey'][0]] == unique_periodkeys[0]] ''' regression table ''' top_esti_df_regress = all_esti_df_modelrows_oneperiod[regress_use_cols] save_directory = search_directory if (save_file_name_regress.endswith('.csv')): file_name = save_file_name_regress else: file_name = save_file_name_regress + '.csv' top_esti_df_regress.to_csv(save_directory + file_name, header=True, index=False) return top_esti_df
369727caa9b1f274cb3338d70531988c54568528
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_098/ch86_2020_06_21_19_53_15_222963.py
1fcf5f95c6e8c012df1e1136e94771e9acbee12f
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
import csv with open('dados.csv','r') as csv_file, open('dados.tsv', 'w') as tsv_file: csv_file,tsv_file = csv.reader(csv_file), csv.writer(tsv_file, delimiter='\t') for linha in csv_file: tsv_file.writerow(linha)
0fc50b674c41b43ef786650cbc2d22bfbb195881
d14a63d9a08be6040baf51d4f4a6ec845fd9cb97
/admit/util/filter/Filter1D.py
5c1d28090f94e669ff599b1036d628719d97bafd
[ "MIT" ]
permissive
teuben/admit
abf982620f1c58a770a24f9c28165f4adf3f1d0c
1cae54d1937c9af3f719102838df716e7e6d655c
refs/heads/master
2020-04-12T00:49:54.196990
2016-11-09T20:42:13
2016-11-09T20:42:13
73,388,055
1
0
null
null
null
null
UTF-8
Python
false
false
17,793
py
""" .. _filter1D: Filter1D --- 1-dimensional spectral filtering. ---------------------------------------------- This module defines the 1D filter methods. """ import numpy as np import math from copy import deepcopy from collections import OrderedDict class Filter1D(object): """ This class defines and runs 1D spectral filters. The currently available filters are Gaussian, Hanning, Triangle, Welch, Boxcar, and Savitzky Golay. The output spectrum will be of the same length as the input spectrum, however some edge channels may be zeroed by some methods, depending on the input paramters. Parameters ---------- spec : numpy array 1D numpy array of the input spectrum (just the amplitudes). method : str The smoothing filter to apply: boxcar, gaussian, welch, hanning, triangle, or savgol. No default. Minimum matching is enabled with a minimum of 3 characters, i.e. box = boxcar. keyval : various Any keyword value pairs for the specific method chosen, see the notes for specific keywords. Attributes ---------- spec : numpy array The spectrum. len : int The length of the spectrum. methods : list A list of the available filters. [method]_args : dict A dictionary for each method giving its keywords and defaults (e.g. boxcar_args). method : str The method being used. Notes ----- Details of the different filter keywords and defaults: .. tabularcolumns:: |p{1.5cm}|p{2cm}|p{0.5cm}|p{8cm}| +------------+---------------+------+----------------------------------------------+ | Filter | Keyword | Def. | Description | +============+===============+======+==============================================+ | "boxcar" | "width" | 3 | Number of channels to average together | +------------+---------------+------+----------------------------------------------+ | "gaussian" | "width" | 7 | Number of channels to span with the gaussian | +------------+---------------+------+----------------------------------------------+ | "hanning" | "width" | 5 | Number of channels to include in the cos | +------------+---------------+------+----------------------------------------------+ | "triangle" | "width" | 5 | Number of channels to span with the triangle | +------------+---------------+------+----------------------------------------------+ | "welch" | "width" | 5 | Number of channels to use in the function | +------------+---------------+------+----------------------------------------------+ | "savgol" | "window_size" | 7 | Number of channels to use in the calculation | +------------+---------------+------+----------------------------------------------+ | | "order" | 3 | Order of the poynomial fit (must be odd) | +------------+---------------+------+----------------------------------------------+ | | "deriv" | 0 | The number of the derivative to compute | | | | | (0 = just smooth) | +------------+---------------+------+----------------------------------------------+ """ boxcar_args = OrderedDict([("width", 3)]) gaussian_args = OrderedDict([("width", 7)]) welch_args = OrderedDict([("width", 5)]) hanning_args = OrderedDict([("width", 5)]) triangle_args = OrderedDict([("width", 5)]) savgol_args = OrderedDict([("window_size", 7), ("order" , 3), ("deriv" , 0), ("rate" , 1)]) methods = ["boxcar", "gaussian", "welch", "hanning", "triangle", "savgol"] def __init__(self, spec, method, **keyval): if len(spec.shape) > 1: raise Exception("Spectrum is not 1D but you are trying to use a 1D filter.") self.spec = spec self.len = self.spec.shape[0] # keywords for the different algorithms self.method = self.checkmethod(method) for k, v in keyval.iteritems(): try: a = getattr(self, method + "_args")[k] except: raise Exception("Unknown input %s for smoothing." % (k)) if type(a) != type(v): raise Exception("Cannot change the type of an attribute. %s must be a %s not a %s." % (k, type(a), type(v))) getattr(self, method + "_args")[k] = v def isodd(self, value): """ Method to determine if a number is odd Parameters ---------- value : int The number to check Returns ------- bool, True if the number is odd, False if it is even """ return value%2 == 1 def checkmethod(self, method): """ Method to interpret the input method and determine the full method name Parameters ---------- method : str The method to use, minimal matching is possible, with a minimum of 3 characters (e.g. "box" will be interpreted to be "boxcar") Returns ------- None """ if len(method) < 3: raise Exception("Minimum of 3 characters are needed for minimal matching of strings.") for m in self.methods: if m.startswith(method): return m raise Exception("Unknown method %s given for smoothing. Available methods are: %s" % (method, str(self.methods))) def buffer(self, nchan): """ Method to buffer/pad an array so that filters can work all the way to the edge. Uses np.pad with mode='reflect' Parameters ---------- nchan : int The number of channels to add to each end of the array Returns ------- Numpy array containing the buffered input array """ return np.pad(self.spec, (nchan, ), mode='reflect') def boxcar(self, width): r""" Method to apply a boxcar filter to a spectrum. The filter for point x[i] is defined as: .. math:: x[i] = \frac{1}{N} \sum_{n=0}^{N} x[i + n - \frac{N - 1}{2}] where N is the width of the filter. Parameters ---------- width : int The width of the box to use in channels, must be odd Returns ------- numpy array The smoothed spectrum, (width - 1)/2 edge channels will be zeroed """ if not self.isodd(width): raise Exception("Boxcar width must be an odd number.") side = (width - 1) / 2 kernel = np.array([1.0] * width) kernel /= kernel.sum() return np.convolve(self.buffer(side), kernel, mode="valid") def gaussian(self, width): r""" Method to apply a Gaussian filter to a spectrum. The filter for point x[i] is defined as: .. math:: x[i] = \sum_{n=0}^{N} x[i + n - \frac{N - 1}{2}] e^{-\frac{1}{2}\left(\frac{n-(N-1)/2}{\sigma(N-1)/2}\right)^2} where N is the width of the filter. Parameters ---------- width : int The number of channels to span with the gaussian for each iteration, must be odd Returns ------- numpy array The smoothed spectrum, (width - 1)/2 edge channels will be zeroed """ if not self.isodd(width): raise Exception("Gaussian width must be an odd number.") side = (width - 1) / 2 kernel = np.zeros(width) for j in range(width): kernel[j] = math.exp(-0.5 * pow(((float(j) - ((float(width) - 1.0) / 2.0)) / (0.2 * (float(width) - 1.0) / 2.0)), 2)) kernel /= kernel.sum() return np.convolve(self.buffer(side), kernel, mode="valid") def welch(self, width): r""" Method to apply a Welch filter to a spectrum. The filter for point x[i] is defined as: .. math:: x[i] = \sum_{n=0}^{N} x[i + n - \frac{N - 1}{2}] \left(1 - \left(\frac{n - \frac{N-1}{2}}{\frac{N-1}{2}}\right)^2\right) where N is the width of the filter. Parameters ---------- width : int The number of channels to span with the function for each iteration, must be odd Returns ------- numpy array The smoothed spectrum, (width - 1)/2 edge channels will be zeroed """ if not self.isodd(width): raise Exception("Welch width must be an odd number.") width += 2 # must add 2 to get the proper width side = (width - 1) / 2 kernel = np.zeros(width) for j in range(width): kernel[j] = (1 - math.pow((j - (float(width - 1) / 2.0)) / (float(width - 1) / 2.0), 2)) kernel /= kernel.sum() return np.convolve(self.buffer(side), kernel, mode="valid") def hanning(self, width): r""" Method to apply a Hanning filter to a spectrum. The filter for point x[i] is defined as: .. math:: x[i] = \sum_{n=0}^{N} x[i + n - \frac{N - 1}{2}] 0.5 \left(1 - \cos\left(\frac{2\pi n}{N-1}\right)\right) where N is the width of the filter. Parameters ---------- width : int The number of channels to span with the function for each iteration, must be odd Returns ------- numpy array The smoothed spectrum, (width - 1)/2 edge channels will be zeroed """ if not self.isodd(width): raise Exception("Hanning width must be an odd number.") width += 2 # must add 2 to get the proper width side = (width - 1) / 2 kernel = np.zeros(width) for j in range(width): kernel[j] = 0.5 * (1.0 - math.cos((2.0 * math.pi * j) / float(width - 1))) kernel /= kernel.sum() return np.convolve(self.buffer(side), kernel, mode="valid") def triangle(self, width): r""" Method to apply a Triangular filter to a spectrum. The filter for point x[i] is defined as: .. math:: x[i] = \sum_{n=0}^{N} x[i + n - \frac{N - 1}{2}] \left(1 - \left|\frac{n-\frac{N-1}{2}}{\frac{N}{2}}\right|\right) where N is the width of the filter. Parameters ---------- width : int The number of channels to span with the function for each iteration, must be odd Returns ------- numpy array The smoothed spectrum, (width - 1)/2 edge channels will be zeroed """ if not self.isodd(width): raise Exception("Triangle width must be an odd number.") side = (width - 1) / 2 kernel = np.zeros(width) for j in range(width): kernel[j] = (1 - abs((j - (float(width - 1) / 2.0)) / (float(width) / 2.0))) kernel /= kernel.sum() return np.convolve(self.buffer(side), kernel, mode="valid") def savgol(self, window_size, order, deriv=0, rate=1): """ Smooth (and optionally differentiate) data with a Savitzky-Golay filter. The Savitzky-Golay filter removes high frequency noise from data. It has the advantage of preserving the original shape and features of the signal better than other types of filtering approaches, such as moving averages techniques. Adapted from http://wiki.scipy.org/Cookbook/SavitzkyGolay Parameters ---------- window_size : int the length of the window. Must be an odd integer number. order : int the order of the polynomial used in the filtering. Must be less then `window_size` - 1. deriv: int the order of the derivative to compute (default = 0 means only smoothing) Returns ------- ndarray the smoothed signal (or it's n-th derivative). Notes ----- The Savitzky-Golay is a type of low-pass filter, particularly suited for smoothing noisy data. The main idea behind this approach is to make for each point a least-square fit with a polynomial of high order over a odd-sized window centered at the point. References ---------- .. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639. .. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery Cambridge University Press ISBN-13: 9780521880688 """ if not self.isodd(width): raise Exception("Savgol window_size must be an odd number.") y = deepcopy(self.spec) try: window_size = np.abs(np.int(window_size)) order = np.abs(np.int(order)) except ValueError: raise ValueError("window_size and order have to be of type int") if window_size % 2 != 1 or window_size < 1: raise TypeError("window_size size must be a positive odd number") if window_size < order + 2: raise TypeError("window_size is too small for the polynomials order") order_range = range(order + 1) half_window = (window_size - 1) // 2 # precompute coefficients b = np.mat([[k ** i for i in order_range] for k in range(-half_window, half_window + 1)]) m = np.linalg.pinv(b).A[deriv] * rate ** deriv * math.factorial(deriv) # pad the signal at the extremes with # values taken from the signal itself firstvals = y[0] - np.abs(y[1:half_window + 1][::-1] - y[0]) lastvals = y[-1] + np.abs(y[-half_window - 1:-1][::-1] - y[-1]) y = np.concatenate((firstvals, y, lastvals)) return np.convolve(m[::-1], y, mode='valid') @staticmethod def convertargs(args): """ Method to convert a tuple of arguments into a dictionary of arguments for the specified method. The first item of the tuple must be the method name. The remaining items are the arguments to the method in the order the method lists. To see which arguments a method takes call getargs(method) or getargs() to list the arguments for all methods. Parameters ---------- args : tuple Tuple containing the method as the first item and any arguments for that method in the order specified by the method. Returns ------- Dictionary containing the converted arguments. """ if len(args) == 0: raise Exception("Smoothing method must be given.") if args[0] not in Filter1D.methods: raise Exception("The smoothing method %s is not known, it must be one of: %s" % (args[0], str(Fiter1D.methods))) keyval = deepcopy(getattr(Filter1D, args[0] + "_args")) keys = keyval.keys() for i, arg in enumerate(args): if i == 0: continue keyval[keys[i - 1]] = arg return dict(keyval) def run(self): """ Method to run the selected filter on the data Parameters ---------- None Returns ------- The smoothed spectrum """ return getattr(self, self.method)(**getattr(self, self.method + "_args")) def getargs(method=None): """ Method to report the keywords and default values for smoothing algorithms Parameters ---------- method : str The name of the method to report the keywords and default values for. If no method is given then all methods are reported on. Default: None Returns ------- None """ if method is None: print " arg Default" for m in Filter1D.methods: print m for k, v in getattr(Filter1D, m + "_args").iteritems(): print " %s %s" % (k.ljust(14), str(v)) return if method in Filter1D.methods: print " arg Default" for k, v in getattr(Filter1D, method + "_args").iteritems(): print " %s %s" % (k.ljust(14), str(v)) return print "Method %s is not known. Available methods are: %s" % (method, Filter1D.methods)
0a1229effa14b40210a1abe973f19d6d8e697ee6
384d31fe319844c171891f7453b73df84a77bdcc
/src/apps_base/order/constants.py
efbdbf9e0bf0fc6b7c9cad05af960452d6cb5749
[]
no_license
danielhuamani/fanntop
0227a1b5337a45b3b91ab16c614e206f10efc891
1adb65f617f1e418cad75588fa60af909c1e690a
refs/heads/master
2021-03-22T00:46:51.355400
2018-10-06T05:46:07
2018-10-06T05:46:07
114,432,640
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
PENDIENTE = "PE" RECHAZADO = "RC" PAGADO = "PG" CANCELADO = "CN" DENEGADO = "DN" PROCESO = 'PR_1' PROCESO_2 = 'PR_2' ORDER_VALIDATED = 'VAL' ORDER_USED = 'USE' REEMBOLSO = 'RE' TYPE_STATUS = ( (PROCESO, "Pendiente"), ("RC", "Rechazado"), ("PG", "Pagado"), # ("PE", "Pendiente"), # (PROCESO_2, "Proceso Paso 2"), ("RE", "Reembolso"), ) ALMACEN = 'AL' TYPE_STATUS_SHIPPING = ( (ALMACEN, "En Almacén"), ("DS", "En Despacho"), ("EG", "Entregado"), )
cf39c48564e9b19e551240ce121a93cc7743fb4b
dbf4f74403dec9c5531118a858c7b208c43323d4
/airflow/dags/lib/common.py
1ce3c55bbcfb30bcba974a240da78b23c1a92130
[]
no_license
LaoKpa/short_sale_volume
03208c6a5830b61a8e98ba3854b0ada45ee2a666
02c2fb9f91ca94845768554074a5a3018e87b0fe
refs/heads/master
2022-04-06T15:05:19.678439
2020-02-27T20:05:18
2020-02-27T20:05:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
613
py
from airflow.configuration import conf as airflow_config import configparser import json import os config = configparser.ConfigParser() airflow_dir = os.path.split(airflow_config['core']['dags_folder'])[0] config.read('{}/config.cfg'.format(airflow_dir)) CLUSTER_NAME = config['AWS']['CLUSTER_NAME'] VPC_ID = config['AWS']['VPC_ID'] SUBNET_ID = config['AWS']['SUBNET_ID'] if config['App']['STOCKS'] == '': STOCKS = [] else: STOCKS = json.loads(config.get('App', 'STOCKS').replace("'", '"')) if config['App']['STOCK_LIMITS'] == '': LIMIT = None else: LIMIT = int(config['App']['STOCK_LIMITS'])
877b61c1bf6a0f9f65e65d4dddc3d75e1788ad23
3ff1c245d945acf82e48f388d2457204e202275f
/desafio/migrations/0022_atributos.py
d65eeb6862db78a6105419422e55ae646f1da42a
[]
no_license
rauldosS/desafio_compiladores
075e7dcb3a167d20d71928727db6c1cb500e23af
da01adf41c47dafd50b1487bb4ad8d27c4f2d199
refs/heads/main
2023-01-03T09:13:18.990618
2020-10-29T01:25:59
2020-10-29T01:25:59
305,174,524
0
0
null
null
null
null
UTF-8
Python
false
false
702
py
# Generated by Django 3.1.2 on 2020-10-28 23:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('desafio', '0021_auto_20201026_0732'), ] operations = [ migrations.CreateModel( name='Atributos', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('atributo', models.CharField(max_length=255)), ], options={ 'verbose_name': 'Atributo', 'verbose_name_plural': 'Atributos', 'ordering': ('id', 'atributo'), }, ), ]
d01c0cfc4e6c223bd56c8cba997a671ee074cc0a
642b7138da231474154a83c2dc3b4a2a42eb441b
/array/sub_arr_with_least_avg.py
4adb849677697c4f94b4740e71555febb2a85ea6
[]
no_license
somanshu/python-pr
15465ed7182413591c709f9978420f6a16c9db91
7bfee6fc2a8340ba3e343f991a1da5bdb4ae9cb2
refs/heads/master
2020-07-02T17:21:37.132495
2019-08-22T08:04:11
2019-08-22T08:04:11
201,602,731
0
0
null
null
null
null
UTF-8
Python
false
false
690
py
# https://www.geeksforgeeks.org/find-subarray-least-average/ def leastAvg(arr, k): summation = [] summation.append(0) summation.append(arr[0]) min_avg = 9999 min_avg_last_index = None for i in range(2, len(arr) + 1): summation.append(summation[i-1] + arr[i-1]) for i in range(3, len(arr) + 1): cur_sum = summation[i] - summation[i-k] avg_sum = cur_sum // k if avg_sum < min_avg: min_avg = avg_sum min_avg_last_index = i - 1 return (min_avg, min_avg_last_index - k + 1, min_avg_last_index) arr = [3, 7, 90, 20, 10, 50, 40] arr = [3, 7, 5, 20, -10, 0, 12] k = 2 res = leastAvg(arr, k) print(res)
b361107089051be80b1ac8ccd2fb285cfb6e7754
be95beccb4747297af730b25ff00e5016c4337c3
/hostman/__init__.py
091830c8cee238e3b72309918ecee5541fc3e40c
[ "MIT" ]
permissive
TeamAleph/hostman
4e2ebf1a9f246763762fd816d2f3eab9a86e2de4
8ba27903a6dc58464ee4cb8e1a48a2b1a5559696
refs/heads/master
2022-03-30T07:46:24.126778
2020-01-13T20:17:49
2020-01-13T20:17:49
275,264,024
1
0
MIT
2020-06-26T23:14:09
2020-06-26T23:14:08
null
UTF-8
Python
false
false
9,467
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """Hostman. Usage: hostman add [-fqbvq] [--force] [--path=PATH] ( [ENTRY ...] | [--input-file=FILE] | [--input-url=URL] ) hostman remove [-qbvq] ([--address=<address>] [--names=<names>]) [--path=PATH] [--input-file=FILE] [--input-url=URL] hostman --version Options: -h --help show this help message and exit --version show version and exit -f --force replace matching entries --address=ADDRESS ipv6 or ipv4 address --names=NAMES host names -q --quiet report only failures -p --path=PATH location of hosts file (attempts to detect default) -i --input-file=FILE file containing hosts to import -u --input-url=URL url of file containing hosts to import -b --backup create a backup before writing any changes --exclude=VALUE comma separated list of names or addresses to exclude from operation [default: 127.0.0.1] -v --verbose print verbose output """ from __future__ import print_function from docopt import docopt from python_hosts import Hosts, HostsEntry from .utils import is_writeable, is_readable import sys import os import datetime import shutil from colorama import Fore, init init(autoreset=True) name = "hostman" def backup_hosts(source=None, extension=None): """Backup a hosts file :param source: Path to the hosts file :param extension: The extension to add to the backup file :return: A dict containing the result and user message to output """ if not extension: now = datetime.datetime.now() ext = now.strftime('%Y%m%d%H%M%S') else: ext = extension dest_split = source.split('/') new_filename = ".{0}.{1}".format(dest_split[-1], ext) dest_split[-1] = new_filename dest = "/".join(dest_split) try: shutil.copy(source, dest) return {'result': 'success', 'message': 'Backup written to: {0}'.format(dest)} except IOError: return {'result': 'failed', 'message': 'Cannot create backup file: {0}'.format(dest)} def output_message(message=None, quiet=False): """User friendly result of action :param message: A dict containing the result and a user notification message :return: Exit with 0 or 1, or True if this is not the final output """ res = message.get('result') if res == 'success': if not quiet: print(Fore.GREEN + message.get('message')) sys.exit(0) elif res == 'failed': print(Fore.RED + message.get('message')) sys.exit(1) elif res == 'continue': if not quiet: print(message.get('message')) return True def add(entry_line=None, hosts_path=None, force_add=False): """Add the specified entry :param entry_line: The entry to add :param hosts_path: The path of the hosts file :param force_add: Replace matching any matching entries with new entry :return: A dict containing the result and user message to output """ hosts_entry = HostsEntry.str_to_hostentry(entry_line) if not hosts_entry: output_message({'result': 'failed', 'message': '"{0}": is not a valid entry.'.format(entry_line)}) duplicate_entry = False entry_to_add = False hosts = Hosts(hosts_path) add_result = hosts.add(entries=[hosts_entry], force=force_add) if add_result.get('replaced_count'): hosts.write() return {'result': 'success', 'message': 'Entry added. Matching entries replaced.'} if add_result.get('ipv4_count') or add_result.get('ipv6_count'): entry_to_add = True if add_result.get('duplicate_count'): duplicate_entry = True if entry_to_add and not duplicate_entry: hosts.write() return {'result': 'success', 'message': 'New entry added.'} if not force_add and duplicate_entry: return {'result': 'failed', 'message': 'New entry matches one or more existing.' '\nUse -f to replace similar entries.'} def import_from_file(hosts_path=None, file_path=None): """Import entries from a text file :param hosts_path: Path to the hosts file to update :param file_path: Path to the file containing the hosts entries to import :return: A dict containing the result and user message to output """ if hosts_path and not os.path.exists(hosts_path): return {'result': 'failed', 'message': 'Cannot read hosts file: {0}'.format(hosts_path)} if not os.path.exists(file_path): return {'result': 'failed', 'message': 'Cannot read import file: {0}'.format(file_path)} else: hosts = Hosts(path=hosts_path) pre_count = len(hosts.entries) import_file_output = hosts.import_file(import_file_path=file_path) post_count = len(hosts.entries) write_result = import_file_output.get('write_result') message = 'New entries:\t{0}\nTotal entries:\t{1}\n'.format( post_count - pre_count, write_result.get('total_written') ) return {'result': import_file_output.get('result'), 'message': message} def import_from_url(hosts_path=None, url=None): """Import entries from a text file found on a specific URL :param hosts_path: Path to the hosts file to update :param url: URL of the text file containing the hosts entries to import :return: A dict containing the result and user message to output """ hosts = Hosts(path=hosts_path) pre_count = len(hosts.entries) import_url_output = hosts.import_url(url=url) post_count = len(hosts.entries) write_result = import_url_output.get('write_result') message = 'New entries:\t{0}\nTotal entries:\t{1}\n'.format( post_count - pre_count, write_result.get('total_written') ) return {'result': import_url_output.get('result'), 'message': message} def remove(address_to_remove=None, names_to_remove=None, remove_from_path=None): """Remove entries from a hosts file :param address_to_remove: An ipv4 or ipv6 address to remove :param names_to_remove: A list of names to remove :param remove_from_path: The path of the hosts file to remove entries from :return: A dict containing the result and user message to output """ hosts = Hosts(path=remove_from_path) if address_to_remove or names_to_remove: num_before = hosts.count() hosts.remove_all_matching(address=address_to_remove, name=names_to_remove) hosts.write() difference = num_before - hosts.count() if difference: if difference > 1: str_entry = 'entries' else: str_entry = 'entry' return {'result': 'success', 'message': 'Removed {0} {1}'.format(difference, str_entry)} else: return {'result': 'failed', 'message': 'No matching entries found'} def strip_entry_value(entry_value): """Strip white space from a string or list of strings :param entry_value: value to strip spaces from :return: value minus the leading and trailing spaces """ if isinstance(entry_value, list): new_list = [] for value in entry_value: new_list.append(value.strip()) return ' '.join(new_list) if isinstance(entry_value, str): return entry_value.strip() def real_main(): """ The function called from the script :return: None """ arguments = docopt(__doc__, version='0.1.3') entry = arguments.get('ENTRY') quiet = arguments.get('--quiet') path = arguments.get('--path') force = arguments.get('--force') backup = arguments.get('--backup') address = arguments.get('--address') names = arguments.get('--names') input_file = arguments.get('--input-file') input_url = arguments.get('--input-url') result = None if not path: if sys.platform.startswith('win'): path = r'c:\windows\system32\drivers\etc\hosts' else: path = '/etc/hosts' if not is_readable(path): output_message({'result': 'failed', 'message': 'Unable to read path: {0}.'.format(path)}) new_entry = None if entry: new_entry = strip_entry_value(entry) if backup: result = backup_hosts(source=path) if result.get('result') == 'success': result['result'] = 'continue' output_message(result, quiet=quiet) if arguments.get('add'): if not is_writeable(path): result = {'result': 'failed', 'message': 'Unable to write to: {0}'.format(path)} if new_entry: result = add(entry_line=new_entry, hosts_path=path, force_add=force) if input_file: result = import_from_file(hosts_path=path, file_path=input_file) if input_url: result = import_from_url(hosts_path=path, url=input_url) else: if arguments.get('remove'): result = remove(address_to_remove=address, names_to_remove=names, remove_from_path=path) if result: output_message(result, quiet=quiet) if __name__ == '__main__': real_main()
756c1be0b975f8ff483955c9a83fcd8608da7e75
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_136/3240.py
a6126108a389ce9f2e9429f3b4ddc959c34189ad
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
776
py
#!/usr/bin/env python import sys # import numpy import operator def main(filename): f = open(filename, 'r') T = int(f.readline()) for t in xrange(T): result = solve(f) print "Case #%i: %.7f" % (t+1, result) def solve(f): F0 = 2.0 C, F, X = map(float, f.readline().split()) best_time = X / F0 current_time = 0.0 current_rate = F0 while True: current_time += C / current_rate current_rate += F new_completion_time = X / current_rate + current_time if new_completion_time < best_time: best_time = new_completion_time else: break return best_time if __name__ == "__main__": sys.exit(main(sys.argv[1]))
0afde19c13d759b12976085d7ffb89bde8ee1f5e
9aaa39f200ee6a14d7d432ef6a3ee9795163ebed
/Algorithm/Python/812. Largest Triangle Area.py
892e5661352025b255cbf0cabc57d72ec735f4c0
[]
no_license
WuLC/LeetCode
47e1c351852d86c64595a083e7818ecde4131cb3
ee79d3437cf47b26a4bca0ec798dc54d7b623453
refs/heads/master
2023-07-07T18:29:29.110931
2023-07-02T04:31:00
2023-07-02T04:31:00
54,354,616
29
16
null
null
null
null
UTF-8
Python
false
false
1,046
py
# -*- coding: utf-8 -*- # Created on Mon Apr 09 2018 15:45:58 # Author: WuLC # EMail: [email protected] # get the area of triangle with Heron's formula # reference https://en.wikipedia.org/wiki/Heron%27s_formula class Solution(object): def largestTriangleArea(self, points): """ :type points: List[List[int]] :rtype: float """ n = len(points) result = 0 for i in xrange(n): for j in xrange(i+1, n): for k in xrange(j+1, n): result = max(result, self.area(points[i], points[j], points[k])) return result def area(self, p1, p2, p3): a = ((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2) ** 0.5 b = ((p1[0] - p3[0])**2 + (p1[1] - p3[1])**2) ** 0.5 c = ((p2[0] - p3[0])**2 + (p2[1] - p3[1])**2) ** 0.5 if a+b <= c or a+c <=b or b+c <= a: # three points may not be able to contruct a triangle return 0 s = (a+b+c)/2.0 return (s*(s-a)*(s-b)*(s-c))**0.5
98582fdd92598261a9288ab72cad9d235b2a216b
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/sieve-big-3893.py
a0be1c21754b1c2d35d43c59263aa38aa757372e
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
31,754
py
# A resizable list of integers class Vector(object): items: [int] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A resizable list of integers class Vector2(object): items: [int] = None items2: [int] = None size: int = 0 size2: int = 0 def __init__(self:"Vector2"): self.items = [0] # Returns current capacity def capacity(self:"Vector2") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector2") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector2", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector2", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector2", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector2", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector2", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector2", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector2", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector2", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector2") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector2") -> int: return self.size # A resizable list of integers class Vector3(object): items: [int] = None items2: [int] = None items3: [int] = None size: int = 0 size2: int = 0 size3: int = 0 def __init__(self:"Vector3"): self.items = [0] # Returns current capacity def capacity(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector3") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector3", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector3", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector3", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector3", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector3", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector3", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector3", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector3", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector3", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector3", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector3", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector3", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector3") -> int: return self.size # A resizable list of integers class Vector4(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 def __init__(self:"Vector4"): self.items = [0] # Returns current capacity def capacity(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector4") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector4", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector4", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector4", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector4", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector4", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector4", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector4", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector4", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector4", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4($ID:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector4", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector4", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector4", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector4") -> int: return self.size # A resizable list of integers class Vector5(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None items5: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 size5: int = 0 def __init__(self:"Vector5"): self.items = [0] # Returns current capacity def capacity(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity5(self:"Vector5") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity5(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector5", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector5", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector5", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector5", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append5(self:"Vector5", item: int, item2: int, item3: int, item4: int, item5: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector5", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector5", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all5(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int], new_items5: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 item5:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector5", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector5", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector5", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector5", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector5", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector5", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves an item at a given index def get5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length5(self:"Vector5") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector2(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector3(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector4(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector5(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 doubling_limit5:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity5(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange2(i:int, j:int, i2:int, j2:int) -> Vector: v:Vector = None v2:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange3(i:int, j:int, i2:int, j2:int, i3:int, j3:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange4(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange5(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int, i5:int, j5:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve2(v:Vector, v2:Vector) -> object: i:int = 0 i2:int = 0 j:int = 0 j2:int = 0 k:int = 0 k2:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve3(v:Vector, v2:Vector, v3:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 j:int = 0 j2:int = 0 j3:int = 0 k:int = 0 k2:int = 0 k3:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve4(v:Vector, v2:Vector, v3:Vector, v4:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve5(v:Vector, v2:Vector, v3:Vector, v4:Vector, v5:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 j5:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 k5:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 n2:int = 50 n3:int = 50 n4:int = 50 n5:int = 50 # Data v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch v = vrange(2, n) v2 = vrange(2, n) v3 = vrange(2, n) v4 = vrange(2, n) v5 = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
2827303ea1787af24a4a3935a48e8b7cc341780b
2c4648efe8c7e408b8c3a649b2eed8bb846446ec
/codewars/Python/8 kyu/ExclusiveOrXorLogicalOperator/xor.py
ee8ba551c8806b9d2aebe809a31c1ddfa1f85d12
[]
no_license
Adasumizox/ProgrammingChallenges
9d79bd1b0ce4794b576124f9874aabb86d5c0713
3630fcde088d7991e344eb1b84805e9e756aa1a2
refs/heads/master
2021-07-16T08:16:57.538577
2020-07-19T19:58:28
2020-07-19T19:58:28
190,159,085
1
0
null
null
null
null
UTF-8
Python
false
false
31
py
def xor(a,b): return a != b
f1196a410af03757d39757835dc4e5a8603ad26a
45de7d905486934629730945619f49281ad19359
/xlsxwriter/test/comparison/test_comment03.py
28e4c327e5958ca3a4b6bd46ac2f1bfae30638fe
[ "BSD-2-Clause" ]
permissive
jmcnamara/XlsxWriter
599e1d225d698120ef931a776a9d93a6f60186ed
ab13807a1be68652ffc512ae6f5791d113b94ee1
refs/heads/main
2023-09-04T04:21:04.559742
2023-08-31T19:30:52
2023-08-31T19:30:52
7,433,211
3,251
712
BSD-2-Clause
2023-08-28T18:52:14
2013-01-04T01:07:06
Python
UTF-8
Python
false
false
961
py
############################################################################### # # Tests for XlsxWriter. # # SPDX-License-Identifier: BSD-2-Clause # Copyright (c), 2013-2023, John McNamara, [email protected] # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename("comment03.xlsx") def test_create_file(self): """Test the creation of a simple XlsxWriter file with comments.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.write("A1", "Foo") worksheet.write_comment("A1", "Some text") worksheet.write_comment("XFD1048576", "Some text") worksheet.set_comments_author("John") workbook.close() self.assertExcelEqual()
09dddad36a31c3941f9759d85f109af7ad424d73
28c0bcb13917a277cc6c8f0a34e3bb40e992d9d4
/koku/api/migrations/0010_auto_20200128_2138.py
7aceb81ec568991a0e9b1d2e34bcf43e8c3ff8f9
[ "Apache-2.0" ]
permissive
luisfdez/koku
43a765f6ba96c2d3b2deda345573e1d97992e22f
2979f03fbdd1c20c3abc365a963a1282b426f321
refs/heads/main
2023-06-22T13:19:34.119984
2021-07-20T12:01:35
2021-07-20T12:01:35
387,807,027
0
1
Apache-2.0
2021-07-20T13:50:15
2021-07-20T13:50:14
null
UTF-8
Python
false
false
593
py
# Generated by Django 2.2.8 on 2020-01-28 21:38 from django.db import migrations class Migration(migrations.Migration): dependencies = [("api", "0009_providerstatus_squashed_0042_auto_20200116_2048")] operations = [ migrations.RunSQL( """ UPDATE public.api_provider SET type = 'Azure' WHERE type = 'AZURE' ; UPDATE public.api_providerinfrastructuremap SET infrastructure_type = 'Azure' WHERE infrastructure_type = 'AZURE' ; """ ) ]
de6c66ecf43e841a117ca0be3fd1b576c402f4e8
51e7336e8bb447187cbe6ede2910f40700316dc1
/simics/monitorCore/diddler.py
9bb67e16e8360d641a011f184d6c1538ec82b788
[]
no_license
hacker-steroids/RESim
69bac74a1b119c54d03b9ea0fda7a85cc45ea854
94498c699575f5078de415fac8c517d520cb2f94
refs/heads/master
2020-05-30T12:33:53.799610
2019-06-01T00:51:20
2019-06-01T00:51:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,721
py
#!/usr/bin/env python import os import re from simics import * def nextLine(fh): retval = None while retval is None: line = fh.readline() if line is None or len(line) == 0: break if line.startswith('#'): continue retval = line.strip('\n') return retval class Diddler(): class Fiddle(): def __init__(self, match, was, becomes, cmds=[]): self.match = match self.was = was self.becomes = becomes self.cmds = cmds def __init__(self, path, mem_utils, cell_name, lgr): self.kind = None self.fiddles = [] self.mem_utils = mem_utils self.lgr = lgr self.stop_hap = None self.cell_name = cell_name self.path = path self.operation = None if os.path.isfile(path): with open(path) as fh: done = False kind_line = nextLine(fh) parts = kind_line.split() self.kind = parts[0] if len(parts) > 1: self.operation = parts[1] else: self.lgr.error('Diddle command missing operation %s' % kind_line) return self.lgr.debug('Diddle of kind %s cell is %s' % (self.kind, self.cell_name)) if self.kind == 'full_replace': match = nextLine(fh) becomes='' while not done: line = fh.readline() if line is None or len(line)==0: done = True break if len(becomes)==0: becomes=line else: becomes=becomes+line self.fiddles.append(self.Fiddle(match, None, becomes)) elif self.kind == 'match_cmd': match = nextLine(fh) was = nextLine(fh) cmds=[] while not done: line = nextLine(fh) if line is None or len(line)==0: done = True break cmds.append(line) self.fiddles.append(self.Fiddle(match, was, None, cmds=cmds)) elif self.kind == 'sub_replace': while not done: match = nextLine(fh) if match is None: done = True break was = nextLine(fh) becomes = nextLine(fh) self.fiddles.append(self.Fiddle(match, was, becomes)) else: print('Unknown diddler kind: %s' % self.kind) return self.lgr.debug('Diddler loaded %d fiddles of kind %s' % (len(self.fiddles), self.kind)) else: self.lgr.debug('Diddler, no file at %s' % path) def subReplace(self, cpu, s, addr): rm_this = None for fiddle in self.fiddles: #self.lgr.debug('Diddle checkString %s to %s' % (fiddle.match, s)) if re.search(fiddle.match, s, re.M|re.I) is not None: if re.search(fiddle.was, s, re.M|re.I) is not None: #self.lgr.debug('Diddle replace %s with %s in \n%s' % (fiddle.was, fiddle.becomes, s)) new_string = re.sub(fiddle.was, fiddle.becomes, s) self.mem_utils.writeString(cpu, addr, new_string) else: #self.lgr.debug('Diddle found match %s but not string %s in\n%s' % (fiddle.match, fiddle.was, s)) pass rm_this = fiddle break return rm_this def fullReplace(self, cpu, s, addr): rm_this = None fiddle = self.fiddles[0] if fiddle.match in s: count = len(fiddle.becomes) self.mem_utils.writeString(cpu, addr, fiddle.becomes) esp = self.mem_utils.getRegValue(cpu, 'esp') count_addr = esp + 3*self.mem_utils.WORD_SIZE self.mem_utils.writeWord(cpu, count_addr, count) #cpu.iface.int_register.write(reg_num, count) self.lgr.debug('diddle fullReplace %s in %s wrote %d bytes' % (fiddle.match, s, count)) rm_this = fiddle #SIM_break_simulation('deeedee') return rm_this def stopAlone(self, fiddle): self.stop_hap = SIM_hap_add_callback("Core_Simulation_Stopped", self.stopHap, fiddle) SIM_break_simulation('matchCmd') def matchCmd(self, s): ''' The match lets us stop looking regardless of whether or not the values are bad. The "was" tells us a bad value, i.e., reason to run commands ''' rm_this = None fiddle = self.fiddles[0] #self.lgr.debug('look for match of %s in %s' % (fiddle.match, s)) if re.search(fiddle.match, s, re.M|re.I) is not None: #self.lgr.debug('found match of %s in %s' % (fiddle.match, s)) rm_this = fiddle if re.search(fiddle.was, s, re.M|re.I) is not None: SIM_run_alone(self.stopAlone, fiddle) return rm_this def checkString(self, cpu, addr, count): retval = False byte_string, byte_array = self.mem_utils.getBytes(cpu, count, addr) s = ''.join(map(chr,byte_array)) if self.kind == 'sub_replace': rm_this = self.subReplace(cpu, s, addr) elif self.kind == 'full_replace': rm_this = self.fullReplace(cpu, s, addr) elif self.kind == 'match_cmd': rm_this = self.matchCmd(s) else: print('Unknown kind %s' % self.kind) return if rm_this is not None: self.lgr.debug('Diddler checkString found match cell %s path %s' % (self.cell_name, self.path)) self.fiddles.remove(rm_this) if len(self.fiddles) == 0: self.lgr.debug('Diddler checkString removed last fiddle') retval = True return retval def stopHap(self, fiddle, one, exception, error_string): SIM_hap_delete_callback_id("Core_Simulation_Stopped", self.stop_hap) self.lgr.debug('Diddler stop hap') for cmd in fiddle.cmds: SIM_run_command(cmd) def getOperation(self): return self.operation def getPath(self): return self.path if __name__ == '__main__': print('begin') d = Diddler('dog.diddle')
baebd8438e36c15261b39d8240930bbf3b21cfac
42fdf741bf64ea2e63d1546bb08356286f994505
/macrocab_ex2/rasp30_vmm_frame6.py
5ccb702b8fe5f8f28ed7cfe61ee3204261d47609
[]
no_license
skim819/RASP_Workspace_sihwan
7e3cd403dc3965b8306ec203007490e3ea911e3b
0799e146586595577c8efa05c647b8cb92b962f4
refs/heads/master
2020-12-24T05:22:25.775823
2017-04-01T22:15:18
2017-04-01T22:15:18
41,511,563
1
0
null
null
null
null
UTF-8
Python
false
false
377
py
'cab_vmm.O[0:5]' ,[range( 29, 23, -1), 21]] ## o/ps connectn to i/ps?? ummmmm !!! ---we need this self.li = smDictFromList(li_sm) li0b = recStrExpand(li_sm_0b) li0b.reverse() self.li0 = recStrExpand(li_sm_0a) + li0b self.li1 = recStrExpand(li_sm_1) #pdb.set_trace() #CAB Devices ## order is very important here
[ "ubuntu@ubuntu-VirtualBox.(none)" ]
ubuntu@ubuntu-VirtualBox.(none)
ded8ee76872f157d15e6d9423f30b3068ac198ae
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02392/s638672279.py
d0cf75d9c7215e1b6ef0047f7a19216eae852dd7
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
220
py
import fileinput for line in fileinput.input(): tokens = list(map(int, line.strip().split())) a, b, c = tokens[0], tokens[1], tokens[2] if a < b and b < c: print("Yes") else: print("No")
05bd301169b370c0af23207dbee2b2997c24161d
50948d4cb10dcb1cc9bc0355918478fb2841322a
/azure-mgmt-network/azure/mgmt/network/v2018_12_01/operations/vpn_connections_operations.py
ad7612c0a65d8b003afc62f941e61d8a204314a4
[ "MIT" ]
permissive
xiafu-msft/azure-sdk-for-python
de9cd680b39962702b629a8e94726bb4ab261594
4d9560cfd519ee60667f3cc2f5295a58c18625db
refs/heads/master
2023-08-12T20:36:24.284497
2019-05-22T00:55:16
2019-05-22T00:55:16
187,986,993
1
0
MIT
2020-10-02T01:17:02
2019-05-22T07:33:46
Python
UTF-8
Python
false
false
17,358
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrest.polling import LROPoller, NoPolling from msrestazure.polling.arm_polling import ARMPolling from .. import models class VpnConnectionsOperations(object): """VpnConnectionsOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: Client API version. Constant value: "2018-12-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2018-12-01" self.config = config def get( self, resource_group_name, gateway_name, connection_name, custom_headers=None, raw=False, **operation_config): """Retrieves the details of a vpn connection. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param connection_name: The name of the vpn connection. :type connection_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: VpnConnection or ClientRawResponse if raw=true :rtype: ~azure.mgmt.network.v2018_12_01.models.VpnConnection or ~msrest.pipeline.ClientRawResponse :raises: :class:`ErrorException<azure.mgmt.network.v2018_12_01.models.ErrorException>` """ # Construct URL url = self.get.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('VpnConnection', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}'} def _create_or_update_initial( self, resource_group_name, gateway_name, connection_name, vpn_connection_parameters, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.create_or_update.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(vpn_connection_parameters, 'VpnConnection') # Construct and send request request = self._client.put(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 201]: raise models.ErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('VpnConnection', response) if response.status_code == 201: deserialized = self._deserialize('VpnConnection', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def create_or_update( self, resource_group_name, gateway_name, connection_name, vpn_connection_parameters, custom_headers=None, raw=False, polling=True, **operation_config): """Creates a vpn connection to a scalable vpn gateway if it doesn't exist else updates the existing connection. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param connection_name: The name of the connection. :type connection_name: str :param vpn_connection_parameters: Parameters supplied to create or Update a VPN Connection. :type vpn_connection_parameters: ~azure.mgmt.network.v2018_12_01.models.VpnConnection :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns VpnConnection or ClientRawResponse<VpnConnection> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2018_12_01.models.VpnConnection] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2018_12_01.models.VpnConnection]] :raises: :class:`ErrorException<azure.mgmt.network.v2018_12_01.models.ErrorException>` """ raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, connection_name=connection_name, vpn_connection_parameters=vpn_connection_parameters, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('VpnConnection', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}'} def _delete_initial( self, resource_group_name, gateway_name, connection_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.delete.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.delete(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202, 204]: raise models.ErrorException(self._deserialize, response) if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def delete( self, resource_group_name, gateway_name, connection_name, custom_headers=None, raw=False, polling=True, **operation_config): """Deletes a vpn connection. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param connection_name: The name of the connection. :type connection_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns None or ClientRawResponse<None> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[None] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[None]] :raises: :class:`ErrorException<azure.mgmt.network.v2018_12_01.models.ErrorException>` """ raw_result = self._delete_initial( resource_group_name=resource_group_name, gateway_name=gateway_name, connection_name=connection_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}'} def list_by_vpn_gateway( self, resource_group_name, gateway_name, custom_headers=None, raw=False, **operation_config): """Retrieves all vpn connections for a particular virtual wan vpn gateway. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of VpnConnection :rtype: ~azure.mgmt.network.v2018_12_01.models.VpnConnectionPaged[~azure.mgmt.network.v2018_12_01.models.VpnConnection] :raises: :class:`ErrorException<azure.mgmt.network.v2018_12_01.models.ErrorException>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list_by_vpn_gateway.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) return response # Deserialize response deserialized = models.VpnConnectionPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.VpnConnectionPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list_by_vpn_gateway.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections'}
ceb816aa78646111fde73dd941d40a313982aebe
95100d3a58122a81946eac46618b9e59bef1ba22
/Bin/autoTestClass.py
82c5b1f2fd5691c930ede521b36ef16f95f2afad
[]
no_license
ayiya-hui/automation
6fc65bf7168a2ca663d17ead66ad83adffb61cb4
d100795db2275994a40199b8935296ae30a9eb0e
refs/heads/master
2022-12-31T08:32:53.558207
2020-05-25T09:17:53
2020-05-25T09:17:53
135,518,107
2
1
null
null
null
null
UTF-8
Python
false
false
6,566
py
import logging class Config: def __init__(self): self.dataCollector='' self.appServer='' self.user='' self.password='' self.testModule='' self.testTask='' self.testSuites='' self.excludeSuites='' self.option='' self.sleep='' self.version='' class TestCategory: def __init__(self): self.suites='' class TestSuite: def __init__(self): self.name='' self.method='' self.setupTasks=[] self.testcases=[] self.fileName='' class configImportSuite(TestSuite): def __init__(self): TestSuite.__init__(self) class RBACSuite(TestSuite): def __init__(self): TestSuite.__init__(self) class adminRole: def __init__(self): self.userName='' self.org='' self.password='' self.scope='' class setupTask: def __init__(self): self.setupName='' self.setupValue=[] class verifyTask: def __init__(self): self.type='' class eventTypeQuery: def __init__(self): self.name='' class reportQuery: def __init__(self): self.id='' self.eventType='' self.key='' class rbacEventQuery: def __init__(self): self.name='' self.condition='' class readEventType: def __init__(self): self.name='' class createDevice: def __init__(self): self.deviceList=[] class device: def __init__(self): self.name='' self.type='' self.ip='' self.custId='' class sentEvent: def __init__(self): self.eventList=[] class event: def __init__(self): self.eventType='' self.reporter='' class sentIncident: def __init__(self): self.incidentList=[] class incident: def __init__(self): self.incidentType='' self.reporter='' class eventExportSuite(TestSuite): def __init__(self): TestSuite.__init__(self) class eventParsingSuite(TestSuite): def __init__(self): TestSuite.__init__(self) def getKeyMap(self): eventKey=[] reporterKey=[] for case in self.testcases: event=case.eventType.strip() if event not in eventKey: eventKey.append(event) reporter=case.reporter if reporter not in reporterKey: reporterKey.append(reporter) eventStr='","'.join(eventKey) reporterStr=','.join(reporterKey) keyMap={} keyMap['eventType']='"'+eventStr+'"' keyMap['reporter']=reporterStr return keyMap class eventTypeSuite(TestSuite): def __init__(self): TestSuite.__init__(self) class logDiscoverySuite(TestSuite): def __init__(self): TestSuite.__init__(self) class incidentSuite(TestSuite): def __init__(self): TestSuite.__init__(self) def getKeyMap(self): eventKey=[] reporterKey=[] for case in self.testcases: event=case.eventType.strip() if event not in eventKey: eventKey.append(event) reporter=case.reporter if reporter not in reporterKey: reporterKey.append(reporter) eventStr='","'.join(eventKey) reporterStr='","'.join(reporterKey) keyMap={} keyMap['eventType']='"'+eventStr+'"' keyMap['reporter']='"'+reporterStr+'"' return keyMap class incidentTimeBasedSuite(incidentSuite): def __init__(self): incidentSuite.__init__(self) self.sendEvent='' class incidentPatternBasedSuite(incidentTimeBasedSuite): def __init__(self): incidentTimeBasedSuite.__init__(self) class linuxFileMonitorSuite(TestSuite): def __init__(self): TestSuite.__init__(self) self.linuxHost='' self.linuxUsers=[] self.monPath='' self.monConfig='' class linuxUser: def __init__(self): self.name='' self.password='' class reportSuite(TestSuite): def __init__(self): TestSuite.__init__(self) class TestCase: def __init__(self): self.name='' self.reporter='' class configImportCase(TestCase): def __init__(self): TestCase.__init__(self) class RBACCase(TestCase): def __init__(self): TestCase.__init__(self) self.verifyName='' self.eventType='' self.desc='' self.roleName='' self.verifyTasks=[] class eventExportCase(TestCase): def __init__(self): TestCase.__init__(self) self.deviceName='' self.timeZone='' self.option='' self.startTime='' self.endTime='' self.custName='' class eventParsingCase(TestCase): def __init__(self): TestCase.__init__(self) self.eventType='' self.parseEvent='' self.key='' self.parameters='' class eventTypeCase(TestCase): def __init__(self): TestCase.__init__(self) self.verifyTasks=[] class logDiscoveryCase(TestCase): def __init__(self): TestCase.__init__(self) self.discoverEvent='' self.parameters='' class incidentCase(TestCase): def __init__(self): TestCase.__init__(self) self.eventType='' self.createDevice='' self.deviceType='' self.deviceName='' self.custId='' self.repeatCount='' self.repeatInterval='' self.domainController='' self.events=[] self.parameters='' class incidentEvent: def __init__(self): self.incidentMsg='' class incidentTimeBasedCase(incidentCase): def __init__(self): incidentCase.__init__(self) self.sendCount='' self.sendInterval='' self.clearInterval='' self.clearWait='' class incidentPatternBasedCase(incidentTimeBasedCase): def __init__(self): incidentTimeBasedCase.__init__(self) self.clearEvent='' self.clearCount='' class reportCase(TestCase): def __init__(self): TestCase.__init__(self) self.verifyTasks=[] class linuxFileMonitorCase(TestCase): def __init__(self): TestCase.__init__(self) self.resultOption='' self.parameters='' self.tasks=[] class task: def __init__(self): self.taskName='' self.taskType='' self.targetPath='' self.target='' self.recurse='' self.excuteUser='' class RbacProfile: def __init__(self): self.name='' self.description='' self.config='' self.eventFilter='' class eventFilter: def __init__(self): self.name='' self.singleConstraint='' self.groupConstraint='' self.groupBy='' self.index='' self.singleConditions=[] self.groupConditions=[] class domain: def __init__(self): self.name='' self.domainId='' self.companyName='' self.description='' self.primaryContactUser='' self.secondaryContactUser='' self.initialized=True self.lastDataDistributedTime='' self.timeZoneOffset='' self.logoURL='' self.encKey='' self.disabled=False self.custKey='' self.includeRange='' self.excludeRange='' self.address='' self.phone='' self.collectors=[]
8a08595a18180fdd63eb5e412db51e021f22bf79
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03050/s149029376.py
4af3d320d49d90f7eaaaa5bb9349d14574c742f6
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
452
py
def main(): def trial_division(n): divs = [] for i in range(1, int(n**0.5)+1): if n % i == 0: divs.append(i) if i != n//i: divs.append(n//i) return divs N = int(input()) divs = trial_division(N) ans = 0 for d in divs: if d != 1 and N//(d-1) == N % (d-1): ans += (d-1) print(ans) if __name__ == '__main__': main()
123ef66ca04621db199f5545ba0778aa705e1a77
9afbb6993450d1e0c3bae68e86844bd06d4419ee
/file_handling/json_programs/j1.py
bf4e31c84eab625edd9c8a9dbc0bde5ea2b9b2c5
[]
no_license
Jigar710/Python_Programs
6f331caac30878655d4cca4ad97d4214c0262088
714a6306487eb6712f32ccb51b6a2407a81873fa
refs/heads/main
2023-02-25T12:24:44.874199
2021-01-28T15:43:24
2021-01-28T15:43:24
332,869,164
0
0
null
null
null
null
UTF-8
Python
false
false
104
py
import json a = {"name":'sumit',"age":31} print(type(a)) file = open("output.txt","w") json.dump(a,file)
965b64261b972827ee492000da2e36bc4999cadf
2776195dc0863f5e43c5394767f1f950ce7672bb
/util/command_console_tui.py
646711bad18fe43b632ea9eb243f651dc9bf2df2
[ "MIT" ]
permissive
sharkbound/PythonTwitchBotFramework
a5e6f55c89a0639cb8e3dd16b99bb6388ee5f5f8
3d9aff994d531272d53b869c3dac6602b04a9d70
refs/heads/master
2023-09-04T06:34:44.456338
2023-08-16T21:32:58
2023-08-16T21:32:58
134,095,615
111
47
MIT
2023-09-14T20:40:04
2018-05-19T20:24:24
Python
UTF-8
Python
false
false
6,689
py
#!/usr/bin/env python3 import asyncio import json import click import websockets from urwid import AsyncioEventLoop, Edit, ExitMainLoop, Filler, Frame, MainLoop, Text, connect_signal COMMAND_READ, PASSWORD_READ = 0, 1 SEND_PASSWORD = 'send_password' BAD_PASSWORD = 'bad_password' DISCONNECTING = 'disconnecting' LIST_CHANNELS = 'list_channels' BAD_DATA = 'bad_data' AUTHENTICATION_SUCCESSFUL = 'authentication_successful' SEND_PRIVMSG = 'send_privmsg' CHANNEL_NOT_FOUND = 'channel_not_found' SUCCESS = 'success' RUN_COMMAND = 'run_command' loop = asyncio.get_event_loop() @click.command() @click.option('--host', prompt='Command server host', default='localhost') @click.option('--port', prompt='Command server port', default='1337') def run(host, port): """ Start a websocket client and a terminal UI to interact with it. """ # connection state channels = [] bound_channel = None ws = None # UI state lines = ['example text\n'] output = Text(lines) input_field = Edit('>> ') input_state = COMMAND_READ widget = Frame(Filler(output, 'top'), footer=input_field) widget.focus_position = 'footer' # event wiring event_loop = AsyncioEventLoop(loop=loop) input_cb = None def write(msg): """ Show an additional line of text. """ lines.append(msg + '\n') output.set_text(lines) def prompt_for_password(msg): """ Change prompt to password prompt. Return a future for the typed password. """ nonlocal input_cb, input_state input_cb = loop.create_future() input_state = PASSWORD_READ input_cb.add_done_callback(_password_done) input_field.set_mask('*') input_field.set_caption(msg) return input_cb def _password_done(_): nonlocal input_state input_field.set_mask(None) input_state = COMMAND_READ def accept_input(key): """ Process typed lines of text. Dispatches to password prompt or command prompt as needed. """ if key == 'enter': if input_state == PASSWORD_READ: input_cb.set_result(input_field.edit_text) elif input_state == COMMAND_READ: cmd_dispatch(input_field.edit_text) input_field.set_edit_text('') def update_channels(new_channels): """ Receive channel data. """ nonlocal channels, bound_channel channels = new_channels if len(channels) == 1: bound_channel = channels[0] write(f'bound console to channel "{bound_channel}"') else: write(f'bot is in these channels: {", ".join(channels)}') async def ws_dispatch(): """ Handle websocket messages. """ nonlocal ws ws = await websockets.connect(f'ws://{host}:{port}') while True: try: msg = json.loads(await ws.recv()) if msg['type'] == SEND_PASSWORD: loop.create_task(ws.send(await prompt_for_password("Server password:"))) elif msg['type'] == DISCONNECTING: write('server terminated connection...') ws = None elif msg['type'] == BAD_PASSWORD: write('authentication failed... password did not match!') elif msg['type'] == LIST_CHANNELS: update_channels(msg['data']['channels']) elif msg['type'] == AUTHENTICATION_SUCCESSFUL: write('logged into command server!') except Exception as e: write(f'Error: {e}') raise def print_help(): write('/channel <channel> : binds this console to a bot-joined channel (needed for /chat)') write('/chat <msg> : sends the chat message to the channel bound to this console') write('/sendcmd <commands> [args...]: tells the bot run a command') write('/quit: exit console') write('/help to see this message again') def cmd_dispatch(command): write(f"dispatching {repr(command)}") nonlocal bound_channel if not ws: write('Not connected') return parts = command.split() if not parts: print_help() command_part = parts[0].lower() if command_part[0] == '/': command_part = command_part[1:] args = parts[1:] if command_part == 'help': print_help() elif command_part == 'sendcmd': if not bound_channel: write('there is not a bound channel! use `/channel <channel>` to bind one!') elif not args: write('you must provide a command to run to /sendcmd, ex: /sendcmd help') else: loop.create_task(ws.send( json.dumps( { 'type': RUN_COMMAND, 'channel': bound_channel, 'command': args[0], 'args': args[1:], 'silent': True, } ) )) elif command_part == 'chat': if not bound_channel: write('there is not a bound channel! use `/channel <channel>` to bind one!') else: loop.create_task(ws.send( json.dumps( { 'type': SEND_PRIVMSG, 'channel': bound_channel, 'message': ' '.join(args), } ) )) elif command_part == 'channel': if not channels: write('the bot is not currently in any channels, please have the bot join at least one than relaunch this console') elif not args: write(f'the bot is currently in these channels: {", ".join(channels)}\ndo `/channel <channel>` to bind this channel to one') elif args[0] not in channels: write(f'the bot is not currently in "{args[0]}"') else: bound_channel = args[0] elif command_part == 'quit': raise ExitMainLoop() else: write(f"Unrecognized command {repr(command_part)}") event_loop.alarm(0, lambda: loop.create_task(ws_dispatch())) mainloop = MainLoop(widget, event_loop=event_loop, unhandled_input=accept_input) mainloop.run() if __name__ == '__main__': run()
38507d07b45390ec1f2ae7abcb4b09bafc861be6
bea3febeda4c0688dfbb2db584ab4f7d710040e0
/django/instad/insta/settings.py
6010fe845419449c188ed9aa6dcdd3369ae86c0d
[]
no_license
airpong/TIL-c9
c471ac73e23716cf677ba590dd6099e584c42883
069cc53820a09cd9787765ad41ba7e792dc342b5
refs/heads/master
2022-12-12T22:26:23.147651
2019-06-27T08:24:44
2019-06-27T08:24:44
166,777,129
0
0
null
2022-11-22T03:46:57
2019-01-21T08:34:01
Python
UTF-8
Python
false
false
3,302
py
""" Django settings for insta project. Generated by 'django-admin startproject' using Django 2.1.8. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'x0@q$j%oeql+7&2jpw@4r0^v^7(&%ov5*9#)@1a!qo(c4!y%wr' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['playground-airpong.c9users.io'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'bootstrap4', 'imagekit', 'accounts', 'posts', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'insta.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR,'insta','templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'insta.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' # Media MEDIA_URL = '/mediaimage/' MEDIA_ROOT = os.path.join(BASE_DIR,'media')
e62b8f2033d88c7c11b3b8e799e603b19e5974b7
4bfbcb96dcfe05fee32d222cb7a274099db055bd
/bilinear_LSTM_hingeloss/utils.py
ece2b6692b2ebe9ab87dc7f335d8cdfc537b3af4
[]
no_license
naushadzaman/ACL_CKBC
5c5c8b0669e059f9f08090b9500dff84af94d2e6
655f3aaf28ff5040f50e72fb8118934766306969
refs/heads/master
2020-07-17T07:30:07.943944
2018-11-19T01:27:13
2018-11-19T01:27:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,095
py
from scipy.io import loadmat import numpy as np import math from random import shuffle from random import choice from random import randint from theano import tensor as T def lookup(We,words,w): if w in words: return We[words[w],:] else: #print 'find UUUNKKK words',w return We[words['UUUNKKK'],:] def lookupIDX(We,words,w): if w in words: return words[w] else: #print 'find UUUNKKK words',w return words['UUUNKKK'] def lookupRelIDX(We,words,w): w = w.lower() if w in words: return words[w] else: #print 'find UUUNKKK words',w return words['UUUNKKK'] def lookup_with_unk(We,words,w): if w in words: return We[words[w],:],False else: #print 'find Unknown Words in WordSim Task',w return We[words['UUUNKKK'],:],True def lookupwordID(We,words,w): #w = w.strip() result = [] array = w.split(' ') for i in range(len(array)): if(array[i] in words): result.append(words[array[i]]) else: #print "Find Unknown Words ",w result.append(words['UUUNKKK']) return result def getData(f): data = open(f,'r') lines = data.readlines() examples = [] for i in lines: i=i.strip() if(len(i) > 0): i=i.split('\t') e = (i[0], i[1], i[2], float(i[3])) examples.append(e) shuffle(examples) return examples def getWordmap(textfile): words={} We = [] f = open(textfile,'r') lines = f.readlines() for (n,i) in enumerate(lines): i=i.split() j = 1 v = [] while j < len(i): v.append(float(i[j])) j += 1 words[i[0]]=n We.append(v) return (words, np.matrix(We)) def getRelation(relationfile): rel = {} f = open(relationfile,'r') lines = f.readlines() for (n,i) in enumerate(lines): i = i.strip() rel[i] = n return rel #modified def getPairMax(label,vec_r,vec,idx,d,We,words,rel,Rel,wi,wj,Weight,Offset,activation): min = -5000 best = None for i in range(len(d)): if i == idx: continue (r,w1,w2,l) = d[i] v1 = getVec(We,words,w1) #v2 = getVec(We,words,w2) if(activation.lower()=='relu'): gv1 = Relu(np.dot(Weight,v1)+Offset[0]) gv2 = Relu(np.dot(Weight,vec)+Offset[0]) if(activation.lower()=='tanh'): gv1 = np.tanh(np.dot(Weight,v1)+Offset[0]) gv2= np.tanh(np.dot(Weight,vec)+Offset[0]) if(activation.lower()=='sigmoid'): gv1 = Sigmoid(np.dot(Weight,v1)+Offset[0]) gv2= Sigmoid(np.dot(Weight,vec)+Offset[0]) temp1 = np.dot(gv1, vec_r) np1 = np.inner(temp1,gv2) if(np1 > min and not(wi == w1) and not(wj==w1)): min = np1 best = w1 return best def getPairRand(label,vec,idx,d,We,words,wi,wj): wpick = None while(wpick == None or wpick == wi or wpick == wj): ww = choice(d) ridx = randint(0,1) wpick = ww[ridx] #print wpick return wpick def getPairMix(label,vec,idx,d,We,words,wi,wj): r1 = randint(0,1) if r1 == 1: return getPairMax(label,vec,idx,d,We,words,wi,wj,Weight,Offset,activation) else: return getPairRand(label,vec,idx,d,We,words,wi,wj) def getVec(We,words,t): t = t.strip() array = t.split(' ') if array[0] in words: vec = We[words[array[0]],:] else: #print 'find UUUNKKK words',array[0].lower() vec = We[words['UUUNKKK'],:] for i in range(len(array)-1): #print array[i+1] if array[i+1] in words: vec = vec + We[words[array[i+1]],:] else: #print 'can not find corresponding vector:',array[i+1].lower() vec = vec + We[words['UUUNKKK'],:] vec = vec/len(array) return vec def getPairs(d, words, We, rel, Rel, type, size,Weight,Offset,activation): pairs = [] for i in range(len(d)): (r, t1, t2, s) = d[i] v1 = getVec(We,words,t1) v2 = getVec(We,words,t2) v_r = Rel[rel[r.lower()]*size:rel[r.lower()]*size+size,:] p1 = None #p2 = None if type == "MAX": #print w1 #only change the first term p1 = getPairMax(s,v_r,v2,i,d,We,words,rel,Rel,t1,t2,Weight,Offset,activation) if type == "RAND": #print w1 p1 = getPairRand(s,v1,i,d,We,words,rel,Rel,r,t1,t2) if type == "MIX": #print w1 p1 = getPairMix(s,v1,i,d,We,words,rel,Rel,r,t1,t2) pairs.append(p1) # 'getPairs'+str(len(pairs)) #print pairs return pairs def getPairsBatch(d, words, We, rel, Rel, batchsize, type, size,Weight,Offset,activation): idx = 0 pairs = [] while idx < len(d): batch = d[idx: idx + batchsize if idx + batchsize < len(d) else len(d)] if(len(batch) <= 2): print "batch too small." continue #just move on because pairing could go faulty p = getPairs(batch,words,We,rel,Rel,type,size,Weight,Offset,activation) pairs.extend(p) idx += batchsize #print 'getPairsBatch'+str(len(pairs)) return pairs def convertToIndex(e,words, We, rel, Rel): if str(e).find(',') != -1: (r,p1,p2,s) = e new_e = (lookupRelIDX(Rel, rel, r),lookupwordID(We, words, p1), lookupwordID(We, words, p2), float(s)) #print new_e return new_e else: p1 = e new_e = (lookupwordID(We, words, p1)) #print new_e return new_e def ReluT(x): return T.switch(x<0, 0 ,x) def Relu(x): result = np.zeros(x.shape) #print x.shape for i in xrange(result.shape[0]): if(x[i]>0): result[i]=x[i] return result def Sigmoid(x): result = np.zeros(x.shape) for i in xrange(result.shape[0]): for j in xrange(result.shape[1]): result[i][j] = 1 / (1 + math.exp(-x[i][j])) return result
bc48e51be4ffe8728dfa46f4d44de953c2b09add
7a550d2268bc4bc7e2fec608ffb1db4b2e5e94a0
/0901-1000/0908-Smallest Range I/0908-Smallest Range I.py
294efb4da9d84443ca7fc5f5c0dbae2aa24d967c
[ "MIT" ]
permissive
jiadaizhao/LeetCode
be31bd0db50cc6835d9c9eff8e0175747098afc6
4ddea0a532fe7c5d053ffbd6870174ec99fc2d60
refs/heads/master
2021-11-05T04:38:47.252590
2021-10-31T09:54:53
2021-10-31T09:54:53
99,655,604
52
28
MIT
2020-10-02T12:47:47
2017-08-08T05:57:26
C++
UTF-8
Python
false
false
122
py
class Solution: def smallestRangeI(self, A: List[int], K: int) -> int: return max(0, max(A) - min(A) - K * 2)
7c447cdc98629e0992225a79f10d08e2ae28ed04
650aed41de2191565dce812a3c4d2b049928f5a4
/tornado_overview/chapter01/blockio_test.py
1c48fd520ee956a849f583d2d50952c3f9107b0f
[ "Apache-2.0" ]
permissive
mtianyan/TornadoForum
a41dfc57f1a9ca60a0991dcaa4374cd4a8b6ba93
5698dd5cc0e399d3d0ec53e159b8e1f1cddfbe71
refs/heads/master
2022-04-23T09:48:25.933781
2020-04-20T17:06:23
2020-04-20T17:06:23
168,485,700
2
1
null
null
null
null
UTF-8
Python
false
false
651
py
# 阻塞io import socket import requests html = requests.get("http://www.baidu.com").text # #1. 三次握手建立tcp连接, # # 2. 等待服务器响应 print(html) print("*" * 30) # 如何通过socket直接获取html client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) host = "www.baidu.com" client.connect((host, 80)) # 阻塞io, 意味着这个时候cpu是空闲的 client.send("GET {} HTTP/1.1\r\nHost:{}\r\nConnection:close\r\n\r\n".format("/", host).encode("utf8")) data = b"" while 1: d = client.recv(1024) # 阻塞直到有數據 if d: data += d else: break data = data.decode("utf8") print(data)
e1bd696eaab1b5eebddfedbc850748664f84c256
bb983b38f9be7b6fd4ab1a651484db37c1aeff39
/0705/test2_physical_properties.py
f6a28c9ca6581f46cb5dcee2ac17325035455cc2
[]
no_license
nakanishi-akitaka/python2018_backup
c214df78372cca993d69f8001010ec2f6dcaf1be
45766d3c3777de2a91b3e2cf50c6bfedca8627da
refs/heads/master
2023-02-18T08:04:28.625532
2022-06-07T01:02:53
2022-06-07T01:02:53
201,399,236
5
30
null
2023-02-10T21:06:51
2019-08-09T05:48:22
Jupyter Notebook
UTF-8
Python
false
false
583
py
# -*- coding: utf-8 -*- """ Check physical properties of materials Created on Thu Jul 5 14:04:59 2018 @author: Akitaka """ from mendeleev import element for i in range(1,100): x=element(i) # print(x.symbol) # print(x,x.electron_affinity,"electron affinity") if(x.electron_affinity==None): print(x,x.electron_affinity,"electron affinity") elif(x.electron_affinity<0.0): print(x,x.electron_affinity,"electron affinity") # if(x.thermal_conductivity==None): # print(x,x.thermal_conductivity,"thermal conductivity")
4b8beff234eb9196456cb171893224665acf0ae0
b580fd482147e54b1ca4f58b647fab016efa3855
/host_im/mount/malware-classification-master/samples/not/sample_good386.py
12e873b5df7e5bce9581700bed1365123b6204c4
[]
no_license
Barnsa/Dissertation
1079c8d8d2c660253543452d4c32799b6081cfc5
b7df70abb3f38dfd446795a0a40cf5426e27130e
refs/heads/master
2022-05-28T12:35:28.406674
2020-05-05T08:37:16
2020-05-05T08:37:16
138,386,344
0
0
null
null
null
null
UTF-8
Python
false
false
431
py
import re import datetime import math import array import random import readline import textwrap import stringprep import difflib nterms = 719 n1, n2 = 0, 1 if nterms <= 0: print("Please provide a positive integer.") elif nterms == 1: print("Fibonacci sequence upto", nterms, ":") print(n1) else: print("Fibonacci sequence:") count = 0 while 0 == True & 0 < 719: print(n1) nth = n1 + n2 n1 = n2 n2 = nth count += 1
8e632b71a2abf023a97cded3ffed0e7a87717c64
5138b8077a944e655570c3d15389ccaac0dafceb
/scripts/fileserver.py
c20b8737a7e1bddee6c8ef5a3c1e1060c3c2b821
[]
no_license
cms-btv-pog/CTagTraining
9740abaf4a5a05500782695723cace90f6d8882e
affb2dc09a3bb812d59302990f59cbfaa06370f4
refs/heads/master
2021-01-18T22:29:05.148151
2016-04-07T07:12:29
2016-04-07T07:12:29
42,971,506
2
4
null
2016-01-25T10:15:07
2015-09-23T01:42:03
Python
UTF-8
Python
false
false
998
py
''' Workaround to allow xrd access to root files, given that the ROOT version shipped with anaconda does not provide the functionality. Files are transferred on demand and deleted when not needed any longer. ''' import subprocess import os import uuid class PoolFile(object): def __init__(self, path, delete_on_exit=True): self.path = path self.del_once_done = delete_on_exit def __del__(self): if self.del_once_done: print 'deleting %s' % self.path os.remove(self.path) def serve(path): if path.startswith('root://'): fname = '%s.root' % uuid.uuid1() print '%s --> %s' % (path, fname) proc = subprocess.Popen(['xrdcp', path, fname], stdout=subprocess.PIPE, stderr=subprocess.PIPE) exitcode = proc.wait() if exitcode != 0: _, stderr = proc.communicate() raise RuntimeError('Problem copying file %s, Error: %s' % (path, stderr)) return PoolFile(fname) else: return PoolFile(path, False)
39c8bc0e2a0434d7c3f69aa93bb3a118e6a627a0
fa5e890e95f35744a42ae231c6678b8295502c12
/lectures/migrations/0001_initial.py
5b9fa25a457967d2fff42b78c8734607ad809eae
[]
no_license
JeeHyungPark/first_MVP
4518ae01114686e9ad9fde45112c2eef438e1054
c4a673a69772260d1ebdb16f73b242c4f90da674
refs/heads/master
2023-01-05T19:31:35.018377
2020-09-02T07:38:34
2020-09-02T07:38:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,967
py
# Generated by Django 3.0.9 on 2020-09-01 16:13 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Lecture', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100, unique=True, verbose_name='제목')), ('video', models.URLField(unique=True, verbose_name='강의출처')), ('description', models.TextField(blank=True, verbose_name='강의설명')), ('lecturer', models.CharField(blank=True, max_length=50, verbose_name='강사')), ('main_category', models.CharField(blank=True, choices=[('코딩', '코딩'), ('미술', '미술'), ('디자인/편집', '디자인/편집')], max_length=16, verbose_name='대분류')), ('sub_category', models.CharField(blank=True, choices=[('Python', 'Python'), ('HTML/CSS', 'HTML/CSS'), ('Javascript', 'Javascript'), ('C', 'C'), ('Java', 'Java'), ('Git', 'Git'), ('연필', '연필'), ('디지털드로잉', '디지털드로잉'), ('색연필', '색연필'), ('수채화', '수채화'), ('펜', '펜'), ('캘리그래피', '캘리그래피'), ('아크릴', '아크릴'), ('Premiere Pro', 'Premiere Pro'), ('Photoshop', 'Photoshop'), ('After Effect', 'After Effect'), ('InDesign', 'InDesign'), ('Illustrator', 'Illustrator'), ('Sketch', 'Sketch')], max_length=18, verbose_name='중분류')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], options={ 'verbose_name': '강의', 'verbose_name_plural': '강의', 'ordering': ['title'], }, ), ]
fa338f2fa35a152beb28b1af654dc0bd2c3f620e
e1efc8e0b0e4629dea61504fbc816c0527691bd9
/6.redis/redis12-线程模型.py
ed2756dce5974767a3cd606fad0585653fcbcf93
[]
no_license
xiongmengmeng/xmind-technology
2bb67a0bf92cfd660cac01f8ab3a2454423ccba5
e2fdb6987ef805a65f0a4feb52d84383853f4b77
refs/heads/main
2023-07-31T07:10:29.868120
2021-09-11T08:18:17
2021-09-11T08:18:17
307,636,242
3
1
null
null
null
null
UTF-8
Python
false
false
2,214
py
import os,sys parentdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0,parentdir) import xmind from xmind.core.markerref import MarkerId xmind_name="redis" w = xmind.load(os.path.dirname(os.path.abspath(__file__))+"\\"+xmind_name+".xmind") s2=w.createSheet() s2.setTitle("线程模型") r2=s2.getRootTopic() r2.setTitle("线程模型") content={ '线程模型':[ '基于Reactor模式开发', '文件事件处理器' ], 'Redis称单线程模型':[ '文件事件分派器队列的消费是单线程的' ], '文件事件处理器4部分组成':[ {'多个套接字':[ '会并发产生不同的操作,每个操作对应不同文件事件', {'文件事件':[ '对socket操作的抽象', '当一个socket准备好执行连接accept、read、write、close操作时,会产生一个文件事件' ]} ]}, {'IO多路复用程序':[ '监听多个socket,将socket产生的事件放入队列', '通过队列以有序、同步且每次一个socket的方式向文件事件分派器传送socket', '当上一个socket产生的事件被对应事件处理器执行完后,I/O多路复用程序才会向文件事件分派器传送下个socket' ]}, {'文件事件分派器':[ '接收I/O多路复用程序传来的socket', '根据socket产生的事件类型,调用相应的事件处理器' ]}, {'事件处理器':[ '连接应答处理器', '命令请求处理器', '命令回复处理器' ]} ], '客户端和Redis服务器通信过程':[ '1.客户端向服务器发起【连接请求】,socket产生一个AE_READABLE事件', '2.AE_READABLE事件映射到【连接应答处理器】', '3.客户端向服务器发起【命令请求】(不管读还是写请求),socket产生一个AE_READABLE事件', '4.AE_READABLE事件映射到【命令请求处理器】', '5.服务器向客户端发起【命令响应】', '6.AE_WRITABLE事件映射到【命令回复处理器】' ] } #构建xmind xmind.build(content,r2) #保存xmind xmind.save(w,os.path.dirname(os.path.abspath(__file__))+"\\"+xmind_name+".xmind")
9ddca5a1b07df11753fc7a2efda1d2201290c07d
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/2/ehb.py
058990e09572712d7dcb0b5b6a5f7d55aff559ca
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'eHB': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
e867fcb024d983a83ea381bf70d707e03b5bf658
a560269290749e10466b1a29584f06a2b8385a47
/Notebooks/py/byt3dev/titanic-data-science-solutions/titanic-data-science-solutions.py
dded11be2e4ef2c17bb12915f5a13b249e462570
[]
no_license
nischalshrestha/automatic_wat_discovery
c71befad1aa358ae876d5494a67b0f4aa1266f23
982e700d8e4698a501afffd6c3a2f35346c34f95
refs/heads/master
2022-04-07T12:40:24.376871
2020-03-15T22:27:39
2020-03-15T22:27:39
208,379,586
2
1
null
null
null
null
UTF-8
Python
false
false
38,808
py
#!/usr/bin/env python # coding: utf-8 # # Titanic Data Science Solutions # # This notebook is companion to the book [Data Science Solutions](https://startupsci.com). The notebook walks us through a typical workflow for solving data science competitions at sites like Kaggle. # # There are several excellent notebooks to study data science competition entries. However many will skip some of the explanation on how the solution is developed as these notebooks are developed by experts for experts. The objective of this notebook is to follow a step-by-step workflow, explaining each step and rationale for every decision we take during solution development. # # ## Workflow stages # # The competition solution workflow goes through seven stages described in the Data Science Solutions book. # # 1. Question or problem definition. # 2. Acquire training and testing data. # 3. Wrangle, prepare, cleanse the data. # 4. Analyze, identify patterns, and explore the data. # 5. Model, predict and solve the problem. # 6. Visualize, report, and present the problem solving steps and final solution. # 7. Supply or submit the results. # # The workflow indicates general sequence of how each stage may follow the other. However there are use cases with exceptions. # # - We may combine mulitple workflow stages. We may analyze by visualizing data. # - Perform a stage earlier than indicated. We may analyze data before and after wrangling. # - Perform a stage multiple times in our workflow. Visualize stage may be used multiple times. # - Drop a stage altogether. We may not need supply stage to productize or service enable our dataset for a competition. # # # ## Question and problem definition # # Competition sites like Kaggle define the problem to solve or questions to ask while providing the datasets for training your data science model and testing the model results against a test dataset. The question or problem definition for Titanic Survival competition is [described here at Kaggle](https://www.kaggle.com/c/titanic). # # > Knowing from a training set of samples listing passengers who survived or did not survive the Titanic disaster, can our model determine based on a given test dataset not containing the survival information, if these passengers in the test dataset survived or not. # # We may also want to develop some early understanding about the domain of our problem. This is described on the [Kaggle competition description page here](https://www.kaggle.com/c/titanic). Here are the highlights to note. # # - On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. Translated 32% survival rate. # - One of the reasons that the shipwreck led to such loss of life was that there were not enough lifeboats for the passengers and crew. # - Although there was some element of luck involved in surviving the sinking, some groups of people were more likely to survive than others, such as women, children, and the upper-class. # # ## Workflow goals # # The data science solutions workflow solves for seven major goals. # # **Classifying.** We may want to classify or categorize our samples. We may also want to understand the implications or correlation of different classes with our solution goal. # # **Correlating.** One can approach the problem based on available features within the training dataset. Which features within the dataset contribute significantly to our solution goal? Statistically speaking is there a [correlation](https://en.wikiversity.org/wiki/Correlation) among a feature and solution goal? As the feature values change does the solution state change as well, and visa-versa? This can be tested both for numerical and categorical features in the given dataset. We may also want to determine correlation among features other than survival for subsequent goals and workflow stages. Correlating certain features may help in creating, completing, or correcting features. # # **Converting.** For modeling stage, one needs to prepare the data. Depending on the choice of model algorithm one may require all features to be converted to numerical equivalent values. So for instance converting text categorical values to numeric values. # # **Completing.** Data preparation may also require us to estimate any missing values within a feature. Model algorithms may work best when there are no missing values. # # **Correcting.** We may also analyze the given training dataset for errors or possibly innacurate values within features and try to corrent these values or exclude the samples containing the errors. One way to do this is to detect any outliers among our samples or features. We may also completely discard a feature if it is not contribting to the analysis or may significantly skew the results. # # **Creating.** Can we create new features based on an existing feature or a set of features, such that the new feature follows the correlation, conversion, completeness goals. # # **Charting.** How to select the right visualization plots and charts depending on nature of the data and the solution goals. A good start is to read the Tableau paper on [Which chart or graph is right for you?](http://www.tableau.com/learn/whitepapers/which-chart-or-graph-is-right-for-you#ERAcoH5sEG5CFlek.99). # ## Refactor Release 2017-Jan-29 # # We are significantly refactoring the notebook based on (a) comments received by readers, (b) issues in porting notebook from Jupyter kernel (2.7) to Kaggle kernel (3.5), and (c) review of few more best practice kernels. # # ### User comments # # - Combine training and test data for certain operations like converting titles across dataset to numerical values. (thanks @Sharan Naribole) # - Correct observation - nearly 30% of the passengers had siblings and/or spouses aboard. (thanks @Reinhard) # - Correctly interpreting logistic regresssion coefficients. (thanks @Reinhard) # # ### Porting issues # # - Specify plot dimensions, bring legend into plot. # # # ### Best practices # # - Performing feature correlation analysis early in the project. # - Using multiple plots instead of overlays for readability. # In[ ]: # data analysis and wrangling import pandas as pandas import numpy as numpy import random as random # visualization import seaborn as seaborn import matplotlib.pyplot as plot get_ipython().magic(u'matplotlib inline') # machine learning from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier # ## Acquire data # # The Python Pandas packages helps us work with our datasets. We start by acquiring the training and testing datasets into Pandas DataFrames. We also combine these datasets to run certain operations on both datasets together. # In[ ]: train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') combine = [train_df, test_df] # ## Analyze by describing data # # Pandas also helps describe the datasets answering following questions early in our project. # # **Which features are available in the dataset?** # # Noting the feature names for directly manipulating or analyzing these. These feature names are described on the [Kaggle data page here](https://www.kaggle.com/c/titanic/data). # In[ ]: print(train_df.columns.values) # **Which features are categorical?** # # These values classify the samples into sets of similar samples. Within categorical features are the values nominal, ordinal, ratio, or interval based? Among other things this helps us select the appropriate plots for visualization. # # - Categorical: Survived, Sex, and Embarked. Ordinal: Pclass. # # **Which features are numerical?** # # Which features are numerical? These values change from sample to sample. Within numerical features are the values discrete, continuous, or timeseries based? Among other things this helps us select the appropriate plots for visualization. # # - Continous: Age, Fare. Discrete: SibSp, Parch. # In[ ]: # preview the data train_df.head() # **Which features are mixed data types?** # # Numerical, alphanumeric data within same feature. These are candidates for correcting goal. # # - Ticket is a mix of numeric and alphanumeric data types. Cabin is alphanumeric. # # **Which features may contain errors or typos?** # # This is harder to review for a large dataset, however reviewing a few samples from a smaller dataset may just tell us outright, which features may require correcting. # # - Name feature may contain errors or typos as there are several ways used to describe a name including titles, round brackets, and quotes used for alternative or short names. # In[ ]: train_df.tail() # **Which features contain blank, null or empty values?** # # These will require correcting. # # - Cabin > Age > Embarked features contain a number of null values in that order for the training dataset. # - Cabin > Age are incomplete in case of test dataset. # # **What are the data types for various features?** # # Helping us during converting goal. # # - Seven features are integer or floats. Six in case of test dataset. # - Five features are strings (object). # In[ ]: train_df.info() print('_'*40) test_df.info() # **What is the distribution of numerical feature values across the samples?** # # This helps us determine, among other early insights, how representative is the training dataset of the actual problem domain. # # - Total samples are 891 or 40% of the actual number of passengers on board the Titanic (2,224). # - Survived is a categorical feature with 0 or 1 values. # - Around 38% samples survived representative of the actual survival rate at 32%. # - Most passengers (> 75%) did not travel with parents or children. # - Nearly 30% of the passengers had siblings and/or spouse aboard. # - Fares varied significantly with few passengers (<1%) paying as high as $512. # - Few elderly passengers (<1%) within age range 65-80. # In[ ]: train_df.describe() # Review survived rate using `percentiles=[.61, .62]` knowing our problem description mentions 38% survival rate. # Review Parch distribution using `percentiles=[.75, .8]` # SibSp distribution `[.68, .69]` # Age and Fare `[.1, .2, .3, .4, .5, .6, .7, .8, .9, .99]` # **What is the distribution of categorical features?** # # - Names are unique across the dataset (count=unique=891) # - Sex variable as two possible values with 65% male (top=male, freq=577/count=891). # - Cabin values have several dupicates across samples. Alternatively several passengers shared a cabin. # - Embarked takes three possible values. S port used by most passengers (top=S) # - Ticket feature has high ratio (22%) of duplicate values (unique=681). # In[ ]: train_df.describe(include=['O']) # ### Assumtions based on data analysis # # We arrive at following assumptions based on data analysis done so far. We may validate these assumptions further before taking appropriate actions. # # **Correlating.** # # We want to know how well does each feature correlate with Survival. We want to do this early in our project and match these quick correlations with modelled correlations later in the project. # # **Completing.** # # 1. We may want to complete Age feature as it is definitely correlated to survival. # 2. We may want to complete the Embarked feature as it may also correlate with survival or another important feature. # # **Correcting.** # # 1. Ticket feature may be dropped from our analysis as it contains high ratio of duplicates (22%) and there may not be a correlation between Ticket and survival. # 2. Cabin feature may be dropped as it is highly incomplete or contains many null values both in training and test dataset. # 3. PassengerId may be dropped from training dataset as it does not contribute to survival. # 4. Name feature is relatively non-standard, may not contribute directly to survival, so maybe dropped. # # **Creating.** # # 1. We may want to create a new feature called Family based on Parch and SibSp to get total count of family members on board. # 2. We may want to engineer the Name feature to extract Title as a new feature. # 3. We may want to create new feature for Age bands. This turns a continous numerical feature into an ordinal categorical feature. # 4. We may also want to create a Fare range feature if it helps our analysis. # # **Classifying.** # # We may also add to our assumptions based on the problem description noted earlier. # # 1. Women (Sex=female) were more likely to have survived. # 2. Children (Age<?) were more likely to have survived. # 3. The upper-class passengers (Pclass=1) were more likely to have survived. # ## Analyze by pivoting features # # To confirm some of our observations and assumptions, we can quickly analyze our feature correlations by pivoting features against each other. We can only do so at this stage for features which do not have any empty values. It also makes sense doing so only for features which are categorical (Sex), ordinal (Pclass) or discrete (SibSp, Parch) type. # # - **Pclass** We observe significant correlation (>0.5) among Pclass=1 and Survived (classifying #3). We decide to include this feature in our model. # - **Sex** We confirm the observation during problem definition that Sex=female had very high survival rate at 74% (classifying #1). # - **SibSp and Parch** These features have zero correlation for certain values. It may be best to derive a feature or a set of features from these individual features (creating #1). # In[ ]: train_df[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean().sort_values(by='Survived', ascending=False) # In[ ]: train_df[["Sex", "Survived"]].groupby(['Sex'], as_index=False).mean().sort_values(by='Survived', ascending=False) # In[ ]: train_df[["SibSp", "Survived"]].groupby(['SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) # In[ ]: train_df[["Parch", "Survived"]].groupby(['Parch'], as_index=False).mean().sort_values(by='Survived', ascending=False) # ## Analyze by visualizing data # # Now we can continue confirming some of our assumptions using visualizations for analyzing the data. # # ### Correlating numerical features # # Let us start by understanding correlations between numerical features and our solution goal (Survived). # # A histogram chart is useful for analyzing continous numerical variables like Age where banding or ranges will help identify useful patterns. The histogram can indicate distribution of samples using automatically defined bins or equally ranged bands. This helps us answer questions relating to specific bands (Did infants have better survival rate?) # # Note that x-axis in historgram visualizations represents the count of samples or passengers. # # **Observations.** # # - Infants (Age <=4) had high survival rate. # - Oldest passengers (Age = 80) survived. # - Large number of 15-25 year olds did not survive. # - Most passengers are in 15-35 age range. # # **Decisions.** # # This simple analysis confirms our assumptions as decisions for subsequent workflow stages. # # - We should consider Age (our assumption classifying #2) in our model training. # - Complete the Age feature for null values (completing #1). # - We should band age groups (creating #3). # In[ ]: g = sns.FacetGrid(train_df, col='Survived') g.map(plt.hist, 'Age', bins=20) # ### Correlating numerical and ordinal features # # We can combine multiple features for identifying correlations using a single plot. This can be done with numerical and categorical features which have numeric values. # # **Observations.** # # - Pclass=3 had most passengers, however most did not survive. Confirms our classifying assumption #2. # - Infant passengers in Pclass=2 and Pclass=3 mostly survived. Further qualifies our classifying assumption #2. # - Most passengers in Pclass=1 survived. Confirms our classifying assumption #3. # - Pclass varies in terms of Age distribution of passengers. # # **Decisions.** # # - Consider Pclass for model training. # In[ ]: # grid = sns.FacetGrid(train_df, col='Pclass', hue='Survived') grid = sns.FacetGrid(train_df, col='Survived', row='Pclass', size=2.2, aspect=1.6) grid.map(plt.hist, 'Age', alpha=.5, bins=20) grid.add_legend(); # ### Correlating categorical features # # Now we can correlate categorical features with our solution goal. # # **Observations.** # # - Female passengers had much better survival rate than males. Confirms classifying (#1). # - Exception in Embarked=C where males had higher survival rate. This could be a correlation between Pclass and Embarked and in turn Pclass and Survived, not necessarily direct correlation between Embarked and Survived. # - Males had better survival rate in Pclass=3 when compared with Pclass=2 for C and Q ports. Completing (#2). # - Ports of embarkation have varying survival rates for Pclass=3 and among male passengers. Correlating (#1). # # **Decisions.** # # - Add Sex feature to model training. # - Complete and add Embarked feature to model training. # In[ ]: # grid = sns.FacetGrid(train_df, col='Embarked') grid = sns.FacetGrid(train_df, row='Embarked', size=2.2, aspect=1.6) grid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette='deep') grid.add_legend() # ### Correlating categorical and numerical features # # We may also want to correlate categorical features (with non-numeric values) and numeric features. We can consider correlating Embarked (Categorical non-numeric), Sex (Categorical non-numeric), Fare (Numeric continuous), with Survived (Categorical numeric). # # **Observations.** # # - Higher fare paying passengers had better survival. Confirms our assumption for creating (#4) fare ranges. # - Port of embarkation correlates with survival rates. Confirms correlating (#1) and completing (#2). # # **Decisions.** # # - Consider banding Fare feature. # In[ ]: # grid = sns.FacetGrid(train_df, col='Embarked', hue='Survived', palette={0: 'k', 1: 'w'}) grid = sns.FacetGrid(train_df, row='Embarked', col='Survived', size=2.2, aspect=1.6) grid.map(sns.barplot, 'Sex', 'Fare', alpha=.5, ci=None) grid.add_legend() # ## Wrangle data # # We have collected several assumptions and decisions regarding our datasets and solution requirements. So far we did not have to change a single feature or value to arrive at these. Let us now execute our decisions and assumptions for correcting, creating, and completing goals. # # ### Correcting by dropping features # # This is a good starting goal to execute. By dropping features we are dealing with fewer data points. Speeds up our notebook and eases the analysis. # # Based on our assumptions and decisions we want to drop the Cabin (correcting #2) and Ticket (correcting #1) features. # # Note that where applicable we perform operations on both training and testing datasets together to stay consistent. # In[ ]: print("Before", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape) train_df = train_df.drop(['Ticket', 'Cabin'], axis=1) test_df = test_df.drop(['Ticket', 'Cabin'], axis=1) combine = [train_df, test_df] print("After", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape) # ### Creating new feature extracting from existing # # We want to analyze if Name feature can be engineered to extract titles and test correlation between titles and survival, before dropping Name and PassengerId features. # # In the following code we extract Title feature using regular expressions. The RegEx pattern `(\w+\.)` matches the first word which ends with a dot character within Name feature. The `expand=False` flag returns a DataFrame. # # **Observations.** # # When we plot Title, Age, and Survived, we note the following observations. # # - Most titles band Age groups accurately. For example: Master title has Age mean of 5 years. # - Survival among Title Age bands varies slightly. # - Certain titles mostly survived (Mme, Lady, Sir) or did not (Don, Rev, Jonkheer). # # **Decision.** # # - We decide to retain the new Title feature for model training. # In[ ]: for dataset in combine: dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\.', expand=False) pd.crosstab(train_df['Title'], train_df['Sex']) # We can replace many titles with a more common name or classify them as `Rare`. # In[ ]: for dataset in combine: dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') train_df[['Title', 'Survived']].groupby(['Title'], as_index=False).mean() # We can convert the categorical titles to ordinal. # In[ ]: title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5} for dataset in combine: dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) train_df.head() # Now we can safely drop the Name feature from training and testing datasets. We also do not need the PassengerId feature in the training dataset. # In[ ]: train_df = train_df.drop(['Name', 'PassengerId'], axis=1) test_df = test_df.drop(['Name'], axis=1) combine = [train_df, test_df] train_df.shape, test_df.shape # ### Converting a categorical feature # # Now we can convert features which contain strings to numerical values. This is required by most model algorithms. Doing so will also help us in achieving the feature completing goal. # # Let us start by converting Sex feature to a new feature called Gender where female=1 and male=0. # In[ ]: for dataset in combine: dataset['Sex'] = dataset['Sex'].map( {'female': 1, 'male': 0} ).astype(int) train_df.head() # ### Completing a numerical continuous feature # # Now we should start estimating and completing features with missing or null values. We will first do this for the Age feature. # # We can consider three methods to complete a numerical continuous feature. # # 1. A simple way is to generate random numbers between mean and [standard deviation](https://en.wikipedia.org/wiki/Standard_deviation). # # 2. More accurate way of guessing missing values is to use other correlated features. In our case we note correlation among Age, Gender, and Pclass. Guess Age values using [median](https://en.wikipedia.org/wiki/Median) values for Age across sets of Pclass and Gender feature combinations. So, median Age for Pclass=1 and Gender=0, Pclass=1 and Gender=1, and so on... # # 3. Combine methods 1 and 2. So instead of guessing age values based on median, use random numbers between mean and standard deviation, based on sets of Pclass and Gender combinations. # # Method 1 and 3 will introduce random noise into our models. The results from multiple executions might vary. We will prefer method 2. # In[ ]: # grid = sns.FacetGrid(train_df, col='Pclass', hue='Gender') grid = sns.FacetGrid(train_df, row='Pclass', col='Sex', size=2.2, aspect=1.6) grid.map(plt.hist, 'Age', alpha=.5, bins=20) grid.add_legend() # Let us start by preparing an empty array to contain guessed Age values based on Pclass x Gender combinations. # In[ ]: guess_ages = np.zeros((2,3)) guess_ages # Now we iterate over Sex (0 or 1) and Pclass (1, 2, 3) to calculate guessed values of Age for the six combinations. # In[ ]: for dataset in combine: for i in range(0, 2): for j in range(0, 3): guess_df = dataset[(dataset['Sex'] == i) & (dataset['Pclass'] == j+1)]['Age'].dropna() # age_mean = guess_df.mean() # age_std = guess_df.std() # age_guess = rnd.uniform(age_mean - age_std, age_mean + age_std) age_guess = guess_df.median() # Convert random age float to nearest .5 age guess_ages[i,j] = int( age_guess/0.5 + 0.5 ) * 0.5 for i in range(0, 2): for j in range(0, 3): dataset.loc[ (dataset.Age.isnull()) & (dataset.Sex == i) & (dataset.Pclass == j+1), 'Age'] = guess_ages[i,j] dataset['Age'] = dataset['Age'].astype(int) train_df.head() # Let us create Age bands and determine correlations with Survived. # In[ ]: train_df['AgeBand'] = pd.cut(train_df['Age'], 5) train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean().sort_values(by='AgeBand', ascending=True) # Let us replace Age with ordinals based on these bands. # In[ ]: for dataset in combine: dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0 dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1 dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2 dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3 dataset.loc[ dataset['Age'] > 64, 'Age'] train_df.head() # We can not remove the AgeBand feature. # In[ ]: train_df = train_df.drop(['AgeBand'], axis=1) combine = [train_df, test_df] train_df.head() # ### Create new feature combining existing features # # We can create a new feature for FamilySize which combines Parch and SibSp. This will enable us to drop Parch and SibSp from our datasets. # In[ ]: for dataset in combine: dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1 train_df[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False).mean().sort_values(by='Survived', ascending=False) # We can create another feature called IsAlone. # In[ ]: for dataset in combine: dataset['IsAlone'] = 0 dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1 train_df[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False).mean() # Let us drop Parch, SibSp, and FamilySize features in favor of IsAlone. # In[ ]: train_df = train_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1) test_df = test_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1) combine = [train_df, test_df] train_df.head() # We can also create an artificial feature combining Pclass and Age. # In[ ]: for dataset in combine: dataset['Age*Class'] = dataset.Age * dataset.Pclass train_df.loc[:, ['Age*Class', 'Age', 'Pclass']].head(10) # ### Completing a categorical feature # # Embarked feature takes S, Q, C values based on port of embarkation. Our training dataset has two missing values. We simply fill these with the most common occurance. # In[ ]: freq_port = train_df.Embarked.dropna().mode()[0] freq_port # In[ ]: for dataset in combine: dataset['Embarked'] = dataset['Embarked'].fillna(freq_port) train_df[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean().sort_values(by='Survived', ascending=False) # ### Converting categorical feature to numeric # # We can now convert the EmbarkedFill feature by creating a new numeric Port feature. # In[ ]: for dataset in combine: dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int) train_df.head() # ### Quick completing and converting a numeric feature # # We can now complete the Fare feature for single missing value in test dataset using mode to get the value that occurs most frequently for this feature. We do this in a single line of code. # # Note that we are not creating an intermediate new feature or doing any further analysis for correlation to guess missing feature as we are replacing only a single value. The completion goal achieves desired requirement for model algorithm to operate on non-null values. # # We may also want round off the fare to two decimals as it represents currency. # In[ ]: test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True) test_df.head() # We can not create FareBand. # In[ ]: train_df['FareBand'] = pd.qcut(train_df['Fare'], 4) train_df[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False).mean().sort_values(by='FareBand', ascending=True) # Convert the Fare feature to ordinal values based on the FareBand. # In[ ]: for dataset in combine: dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0 dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1 dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2 dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3 dataset['Fare'] = dataset['Fare'].astype(int) train_df = train_df.drop(['FareBand'], axis=1) combine = [train_df, test_df] train_df.head(10) # And the test dataset. # In[ ]: test_df.head(10) # ## Model, predict and solve # # Now we are ready to train a model and predict the required solution. There are 60+ predictive modelling algorithms to choose from. We must understand the type of problem and solution requirement to narrow down to a select few models which we can evaluate. Our problem is a classification and regression problem. We want to identify relationship between output (Survived or not) with other variables or features (Gender, Age, Port...). We are also perfoming a category of machine learning which is called supervised learning as we are training our model with a given dataset. With these two criteria - Supervised Learning plus Classification and Regression, we can narrow down our choice of models to a few. These include: # # - Logistic Regression # - KNN or k-Nearest Neighbors # - Support Vector Machines # - Naive Bayes classifier # - Decision Tree # - Random Forrest # - Perceptron # - Artificial neural network # - RVM or Relevance Vector Machine # In[ ]: X_train = train_df.drop("Survived", axis=1) Y_train = train_df["Survived"] X_test = test_df.drop("PassengerId", axis=1).copy() X_train.shape, Y_train.shape, X_test.shape # Logistic Regression is a useful model to run early in the workflow. Logistic regression measures the relationship between the categorical dependent variable (feature) and one or more independent variables (features) by estimating probabilities using a logistic function, which is the cumulative logistic distribution. Reference [Wikipedia](https://en.wikipedia.org/wiki/Logistic_regression). # # Note the confidence score generated by the model based on our training dataset. # In[ ]: # Logistic Regression logreg = LogisticRegression() logreg.fit(X_train, Y_train) Y_pred = logreg.predict(X_test) acc_log = round(logreg.score(X_train, Y_train) * 100, 2) acc_log # We can use Logistic Regression to validate our assumptions and decisions for feature creating and completing goals. This can be done by calculating the coefficient of the features in the decision function. # # Positive coefficients increase the log-odds of the response (and thus increase the probability), and negative coefficients decrease the log-odds of the response (and thus decrease the probability). # # - Sex is highest positivie coefficient, implying as the Sex value increases (male: 0 to female: 1), the probability of Survived=1 increases the most. # - Inversely as Pclass increases, probability of Survived=1 decreases the most. # - This way Age*Class is a good artificial feature to model as it has second highest negative correlation with Survived. # - So is Title as second highest positive correlation. # In[ ]: coeff_df = pd.DataFrame(train_df.columns.delete(0)) coeff_df.columns = ['Feature'] coeff_df["Correlation"] = pd.Series(logreg.coef_[0]) coeff_df.sort_values(by='Correlation', ascending=False) # Next we model using Support Vector Machines which are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. Given a set of training samples, each marked as belonging to one or the other of **two categories**, an SVM training algorithm builds a model that assigns new test samples to one category or the other, making it a non-probabilistic binary linear classifier. Reference [Wikipedia](https://en.wikipedia.org/wiki/Support_vector_machine). # # Note that the model generates a confidence score which is higher than Logistics Regression model. # In[ ]: # Support Vector Machines svc = SVC() svc.fit(X_train, Y_train) Y_pred = svc.predict(X_test) acc_svc = round(svc.score(X_train, Y_train) * 100, 2) acc_svc # In pattern recognition, the k-Nearest Neighbors algorithm (or k-NN for short) is a non-parametric method used for classification and regression. A sample is classified by a majority vote of its neighbors, with the sample being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor. Reference [Wikipedia](https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm). # # KNN confidence score is better than Logistics Regression but worse than SVM. # In[ ]: knn = KNeighborsClassifier(n_neighbors = 3) knn.fit(X_train, Y_train) Y_pred = knn.predict(X_test) acc_knn = round(knn.score(X_train, Y_train) * 100, 2) acc_knn # In machine learning, naive Bayes classifiers are a family of simple probabilistic classifiers based on applying Bayes' theorem with strong (naive) independence assumptions between the features. Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (features) in a learning problem. Reference [Wikipedia](https://en.wikipedia.org/wiki/Naive_Bayes_classifier). # # The model generated confidence score is the lowest among the models evaluated so far. # In[ ]: # Gaussian Naive Bayes gaussian = GaussianNB() gaussian.fit(X_train, Y_train) Y_pred = gaussian.predict(X_test) acc_gaussian = round(gaussian.score(X_train, Y_train) * 100, 2) acc_gaussian # The perceptron is an algorithm for supervised learning of binary classifiers (functions that can decide whether an input, represented by a vector of numbers, belongs to some specific class or not). It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector. The algorithm allows for online learning, in that it processes elements in the training set one at a time. Reference [Wikipedia](https://en.wikipedia.org/wiki/Perceptron). # In[ ]: # Perceptron perceptron = Perceptron() perceptron.fit(X_train, Y_train) Y_pred = perceptron.predict(X_test) acc_perceptron = round(perceptron.score(X_train, Y_train) * 100, 2) acc_perceptron # In[ ]: # Linear SVC linear_svc = LinearSVC() linear_svc.fit(X_train, Y_train) Y_pred = linear_svc.predict(X_test) acc_linear_svc = round(linear_svc.score(X_train, Y_train) * 100, 2) acc_linear_svc # In[ ]: # Stochastic Gradient Descent sgd = SGDClassifier() sgd.fit(X_train, Y_train) Y_pred = sgd.predict(X_test) acc_sgd = round(sgd.score(X_train, Y_train) * 100, 2) acc_sgd # This model uses a decision tree as a predictive model which maps features (tree branches) to conclusions about the target value (tree leaves). Tree models where the target variable can take a finite set of values are called classification trees; in these tree structures, leaves represent class labels and branches represent conjunctions of features that lead to those class labels. Decision trees where the target variable can take continuous values (typically real numbers) are called regression trees. Reference [Wikipedia](https://en.wikipedia.org/wiki/Decision_tree_learning). # # The model confidence score is the highest among models evaluated so far. # In[ ]: # Decision Tree decision_tree = DecisionTreeClassifier() decision_tree.fit(X_train, Y_train) Y_pred = decision_tree.predict(X_test) acc_decision_tree = round(decision_tree.score(X_train, Y_train) * 100, 2) acc_decision_tree # The next model Random Forests is one of the most popular. Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks, that operate by constructing a multitude of decision trees (n_estimators=100) at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. Reference [Wikipedia](https://en.wikipedia.org/wiki/Random_forest). # # The model confidence score is the highest among models evaluated so far. We decide to use this model's output (Y_pred) for creating our competition submission of results. # In[ ]: # Random Forest random_forest = RandomForestClassifier(n_estimators=100) random_forest.fit(X_train, Y_train) Y_pred = random_forest.predict(X_test) random_forest.score(X_train, Y_train) acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2) acc_random_forest # ### Model evaluation # # We can now rank our evaluation of all the models to choose the best one for our problem. While both Decision Tree and Random Forest score the same, we choose to use Random Forest as they correct for decision trees' habit of overfitting to their training set. # In[ ]: models = pd.DataFrame({ 'Model': ['Support Vector Machines', 'KNN', 'Logistic Regression', 'Random Forest', 'Naive Bayes', 'Perceptron', 'Stochastic Gradient Decent', 'Linear SVC', 'Decision Tree'], 'Score': [acc_svc, acc_knn, acc_log, acc_random_forest, acc_gaussian, acc_perceptron, acc_sgd, acc_linear_svc, acc_decision_tree]}) models.sort_values(by='Score', ascending=False) # In[ ]: submission = pd.DataFrame({ "PassengerId": test_df["PassengerId"], "Survived": Y_pred }) # submission.to_csv('../output/submission.csv', index=False) # Our submission to the competition site Kaggle results in scoring 3,883 of 6,082 competition entries. This result is indicative while the competition is running. This result only accounts for part of the submission dataset. Not bad for our first attempt. Any suggestions to improve our score are most welcome. # ## References # # This notebook has been created based on great work done solving the Titanic competition and other sources. # # - [A journey through Titanic](https://www.kaggle.com/omarelgabry/titanic/a-journey-through-titanic) # - [Getting Started with Pandas: Kaggle's Titanic Competition](https://www.kaggle.com/c/titanic/details/getting-started-with-random-forests) # - [Titanic Best Working Classifier](https://www.kaggle.com/sinakhorami/titanic/titanic-best-working-classifier)
efd6dd85796d1d65f530aaa37a650624b1f19999
cc8905a957e9e0fa211e5e14e6cda6957727c5dc
/ipwxlearn/tests/glue/test_updates.py
91d6c4e7364f03c7f83768bba473cdaea04aab4c
[]
no_license
korepwx/ipwxlearn
630ae276e1a8b95e68d466debdaf4f51c5c6d634
afbfe8ee1af114a8bf6aac73aee36c4d0930b8fc
refs/heads/master
2021-01-14T10:15:05.883476
2016-07-15T01:59:23
2016-07-15T01:59:23
57,875,265
0
0
null
null
null
null
UTF-8
Python
false
false
2,116
py
# -*- coding: utf-8 -*- import unittest import numpy as np from ipwxlearn import glue from ipwxlearn.glue import G class UpdatesTestCase(unittest.TestCase): def _do_test_update(self, optimizer, n_dim=256, *args, **kwargs): graph = G.Graph() with graph.as_default(): # okay, compose the quadratic function. x = G.make_variable('x', shape=[n_dim], init=G.init.Uniform([-1, 1]), dtype=glue.config.floatX) # finally, create the training function. loss = G.op.dot(x, x) train_fn = G.make_function(updates=optimizer(loss, [x], *args, **kwargs), outputs=loss) with G.Session(graph): best_x = G.get_variable_values(x) best_loss = np.dot(best_x, best_x) self.assertGreater(np.mean((best_x - np.zeros_like(best_x)) ** 2), 1e-2) for i in range(700): train_loss = train_fn() if train_loss < best_loss: best_x = G.get_variable_values(x) best_loss = train_loss self.assertLess(np.mean((best_x - np.zeros_like(best_x)) ** 2), 1e-7) def test_sgd(self): """Test training with SGD.""" self._do_test_update(G.updates.sgd, learning_rate=0.01) def test_momentum(self): """Test training with momentum.""" self._do_test_update(G.updates.momentum, learning_rate=0.001) @unittest.skipIf(glue.config.backend == 'tensorflow', 'TensorFlow has not supported Nesterov momentum yet.') def test_nesterov_momentum(self): """Test training with nesterov momentum.""" self._do_test_update(G.updates.nesterov_momentum, learning_rate=0.001) def test_adagrad(self): """Test training with AdaGrad.""" self._do_test_update(G.updates.adagrad, learning_rate=1.0) def test_rmsprop(self): """Test training with RMSProp.""" self._do_test_update(G.updates.rmsprop, learning_rate=10.0, rho=0.999) def test_adam(self): """Test training with Adam.""" self._do_test_update(G.updates.adam, learning_rate=0.01)
05a0b55aa941375cb364396a2d5cb1c4b6bd978a
1382e88bc948a1f6b506018521827a1fafb9c2df
/modules/dictionary/dictionary.py
39305b1b1169a9c819196605b33ef8f97574931d
[]
no_license
nano13/tambi
73c405d333b91dc478d7cd274e3f8516fde15bd5
9475110ddd9ebb153de4bc8c734ce95c11d63186
refs/heads/master
2021-01-18T12:52:22.386453
2019-01-19T13:52:50
2019-01-19T13:52:50
100,367,577
2
2
null
null
null
null
UTF-8
Python
false
false
2,458
py
# -*- coding: utf_8 -*- from interpreter.exceptions import CommandNotInThisModule from interpreter.structs import Result import sqlite3 class Dictionary(object): def __init__(self): pass def initDbConnection(self): self.connection = sqlite3.connect("./modules/vocable/vocables.db") self.cursor = self.connection.cursor() def getCommands(self): return { "dictionary.commands" : self.commands, "dictionary.hebrew" : self.hebrew, "dictionary.greek" : self.greek, "dictionary.aramaic" : self.aramaic, "dictionary.akkadian" : self.akkadian, } def interpreter(self, command, args, queue): print("args:", args) commands = self.getCommands() return commands.get(command, self.commandNotFound)(command, args) def commandNotFound(self, c, a): raise CommandNotInThisModule("command not found in module quran") def commands(self, c, a): dic = self.getCommands() commands = sorted(dic.items()) all_commands = [] for key in commands: line = str(key).split(",")[0] all_commands.append(str(line[2:-1])) result_object = Result() result_object.category = "list" result_object.payload = all_commands return result_object def hebrew(self, c, args): return self.dictionaryHelper(args, 'hebrew') def greek(self, c, args): return self.dictionaryHelper(args, 'greek') def aramaic(self, c, args): return self.dictionaryHelper(args, 'aramaic') def akkadian(self, c, args): return self.dictionaryHelper(args, 'akkadian') def dictionaryHelper(self, args, language): result_object = Result() query = """ SELECT display, gloss FROM {0} WHERE display LIKE ? OR gloss LIKE ? """.format(language) try: param = '%'+str(args[0])+'%' except IndexError: result_object.error = 'invalid parameter' else: self.initDbConnection() self.cursor.execute(query, [param, param]) result_object.payload = self.cursor.fetchall() result_object.category = "itemized" result_object.name = "dictionary result" return result_object
c626b14c3515006e2869ad2a09ddea3d53f9a59a
9468a03f04f91bbb76338253ccb53b885b65698a
/beam_models/EMSS/with_elevation/SKADCBeamPatterns/2019_08_06_SKA_Ku/interpolated/interpolate_beam_Ku.py
035dcf0d39393dc2b17e0baaeeffdfca603503e6
[ "BSD-3-Clause" ]
permissive
ska-telescope/sim-mid-pointing
53a9cd1cb1e66584a72b4f50e51b3e15942d1de7
0f11d37e6fac231d7f20e4a7e20ee76e7d2d560f
refs/heads/master
2020-05-20T06:47:51.107561
2020-01-23T13:50:22
2020-01-23T13:50:22
185,428,675
0
1
BSD-3-Clause
2019-10-15T16:21:26
2019-05-07T15:22:02
Python
UTF-8
Python
false
false
3,440
py
import logging import sys import numpy from processing_library.image.operations import create_empty_image_like from rascil.processing_components.image.operations import export_image_to_fits, import_image_from_fits import matplotlib.pyplot as plt log = logging.getLogger() log.setLevel(logging.INFO) log.addHandler(logging.StreamHandler(sys.stdout)) mpl_logger = logging.getLogger("matplotlib") mpl_logger.setLevel(logging.WARNING) import pprint pp = pprint.PrettyPrinter() from scipy import interpolate # x = np.arange(0, 10) # y = np.exp(-x/3.0) # f = interpolate.interp1d(x, y) # # xnew = np.arange(0,9, 0.1) # ynew = f(xnew) # use interpolation function returned by `interp1d` # plt.plot(x, y, 'o', xnew, ynew, '-') # plt.show() elevations_in = numpy.array([15, 45, 90], dtype='float') elevations_out = numpy.array([15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90], dtype='float') elevations_out = numpy.arange(15.0, 90, 1.0) default = 1 nchan = 1 npol = 4 ny = 1024 nx = 1024 array_in = numpy.zeros([nchan, npol, ny, ny, len(elevations_in)]) array_out = numpy.zeros([nchan, npol, ny, ny, len(elevations_out)]) im_in = "../Ku_{el:d}_11700_{type}.fits" im_out = "Ku_{el:d}_11700_{type}_interpolated.fits" im_diff_out = "Ku_{el:d}_11700_{type}_interpolated_difference.fits" im_template = None for type in ['real', 'imag']: for iel, el in enumerate(elevations_in): print("Reading elevation %s part elevation %.0f" % (type, el)) im_in_file = im_in.format(el=int(el), type=type) im = import_image_from_fits(im_in_file) array_in[..., iel] = im.data if im_template is None: im_template = create_empty_image_like(im) f = interpolate.interp1d(elevations_in, array_in, axis=4, kind='quadratic') array_out = f(elevations_out) rms_vp = [] max_vp = [] min_vp = [] rms_diff = [] max_diff = [] min_diff = [] for iel, el in enumerate(elevations_out): print("Writing elevation %s part %.0f" % (type, el)) im_template.data = array_out[..., iel] im_out_file = im_out.format(el=int(el), type=type) export_image_to_fits(im_template, im_out_file) rms_vp.append(numpy.std(im_template.data[0,0:1,...])) max_vp.append(numpy.max(im_template.data[0,0:1,...])) min_vp.append(numpy.min(im_template.data[0,0:1,...])) im_template.data -= array_in[..., default] im_diff_out_file = im_diff_out.format(el=int(el), type=type) export_image_to_fits(im_template, im_diff_out_file) rms_diff.append(numpy.std(im_template.data[0,0:1,...])) max_diff.append(numpy.max(im_template.data[0,0:1,...])) min_diff.append(numpy.min(im_template.data[0,0:1,...])) plt.clf() plt.plot(elevations_out, rms_vp, '-', color='r', label='VP rms') if type == 'imag': plt.plot(elevations_out, max_vp, '.', color='g', label='VP max') plt.plot(elevations_out, min_vp, '-', color='b', label='VP min') plt.plot(elevations_out, rms_diff, '.', color='r', label='VP diff rms') plt.plot(elevations_out, max_diff, '.', color='g', label='VP diff max') plt.plot(elevations_out, min_diff, '.', color='b', label='VP diff min') plt.xlabel('Elevation') plt.ylabel('Value') plt.title('Statistics in %s part of 11700MHz voltage pattern' % type) plt.legend() plt.savefig('%s_vp_statistics.png' % type) plt.show(block=False)