blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
49517e70736f11514ca7a72baad84680a1fbc737
2ed13136c2139e994472df9ab0a0c1eebde1dd73
/srcs/mahjong/model/hallModel.py
b809b01afdaeb68d48303ac14d2271792bdf0902
[]
no_license
rolllyroman/monitoring
5a98b312ef3ac04b758a807319473366861b7fbc
5859af04ef15b6865ef7a4fb844168cfc6d93685
refs/heads/master
2020-03-27T17:42:58.542132
2018-09-10T06:21:53
2018-09-10T06:21:53
146,868,967
0
0
null
null
null
null
UTF-8
Python
false
false
19,896
py
#-*- coding:utf-8 -*- #!/usr/bin/python """ Author:$Author$ Date:$Date$ Revision:$Revision$ Description: 大厅Model """ from web_db_define import * from datetime import datetime,timedelta from wechat.wechatData import * from admin import access_module from config.config import * from datetime import datetime import mahjong_pb2 import poker_pb2 import replay4proto_pb2 from mahjong.model.agentModel import getTopAgentId from common import log_util # import socket # def sendRemoveIpaddr(address): # host='183.60.133.234' # port = 9797 # socket.setdefaulttimeout(50) # sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM) # try: # sock.connect((host,port)) # address = address # sock.sendall(address) # print address # sock.close() # print 'done' # except: # print 'error' def onReg(redis, account, passwd, type, ip): #传入参数:账号,密码,类型;返回参数:成功返回账号和密码,失败返回None, None curTime = datetime.now() #print log_util.debug('[try onReg] account[%s] passwd[%s] type[%s]'%(account,passwd,type)) if type == 1: #微信code登录 tokenMessage = checkWeixinCode(account) if tokenMessage: password = account accessToken = tokenMessage["access_token"] refreshToken = tokenMessage["refresh_token"] openID = tokenMessage["openid"] userData = getWeixinData(openID, accessToken) unionid = userData['unionid'] if redis.exists(WEIXIN2ACCOUNT%(unionid)): realAccount = redis.get(WEIXIN2ACCOUNT%(unionid)) account2user_table = FORMAT_ACCOUNT2USER_TABLE%(realAccount) table = redis.get(account2user_table) redis.hmset(table, {'accessToken':accessToken, 'refreshToken':refreshToken, 'password':md5.new(password).hexdigest()}) else: setOpenid2account(openID, accessToken, refreshToken, ip, redis, account) redis.srem(FORMAT_LOGIN_POOL_SET,account) return unionid, password redis.srem(FORMAT_LOGIN_POOL_SET,account) elif type == 2: if redis.exists(WEIXIN2ACCOUNT%(account)): realAccount = redis.get(WEIXIN2ACCOUNT%(account)) account2user_table = FORMAT_ACCOUNT2USER_TABLE%(realAccount) table = redis.get(account2user_table) truePassword, openID, accessToken = redis.hmget(table, ('password', 'openid', 'accessToken')) log_util.debug('type 2:passwd[%s] md5[%s] truePassword[%s]'%(md5.new(passwd).hexdigest(), passwd, truePassword)) if truePassword == md5.new(passwd).hexdigest(): userData = getWeixinData(openID, accessToken) log_util.debug('onReg for type 2, userData:%s'%(userData)) if userData: redis.hmset(table, { 'nickname' : userData['nickname'], 'sex' : userData['sex'], 'headImgUrl' : userData['headimgurl'] } ) redis.srem(FORMAT_LOGIN_POOL_SET,account) return account, passwd redis.srem(FORMAT_LOGIN_POOL_SET,account) elif type == 3: #微信WEBcode登录 tokenMessage = checkWeixinCodeWEB(account) if tokenMessage: password = account accessToken = tokenMessage["access_token"] refreshToken = tokenMessage["refresh_token"] openID = tokenMessage["openid"] userData = getWeixinData(openID, accessToken) unionid = userData['unionid'] if redis.exists(WEIXIN2ACCOUNT%(unionid)): realAccount = redis.get(WEIXIN2ACCOUNT%(unionid)) account2user_table = FORMAT_ACCOUNT2USER_TABLE%(realAccount) table = redis.get(account2user_table) redis.hmset(table, {'accessToken':accessToken, 'refreshToken':refreshToken, 'password':md5.new(password).hexdigest()}) else: setOpenid2account(openID, accessToken, refreshToken, ip, redis, account) redis.srem(FORMAT_LOGIN_POOL_SET,account) return unionid, password redis.srem(FORMAT_LOGIN_POOL_SET,account) elif type == 4: #微信WEBcode登录 tokenMessage = checkWeixinCodeWEB(account) if tokenMessage: password = account accessToken = tokenMessage["access_token"] refreshToken = tokenMessage["refresh_token"] openID = tokenMessage["openid"] userData = getWeixinData(openID, accessToken) unionid = userData['unionid'] if redis.exists(WEIXIN2ACCOUNT%(unionid)): realAccount = redis.get(WEIXIN2ACCOUNT%(unionid)) account2user_table = FORMAT_ACCOUNT2USER_TABLE%(realAccount) table = redis.get(account2user_table) redis.hmset(table, {'accessToken':accessToken, 'refreshToken':refreshToken, 'password':md5.new(password).hexdigest()}) else: setOpenid2account(openID, accessToken, refreshToken, ip, redis, account) redis.srem(FORMAT_LOGIN_POOL_SET,account) return unionid, password redis.srem(FORMAT_LOGIN_POOL_SET,account) elif type == 0: account2user_table = FORMAT_ACCOUNT2USER_TABLE%(account) if redis.exists(account2user_table): table = redis.get(account2user_table) truePassword = redis.hget(table, 'password') if truePassword == md5.new(passwd).hexdigest(): return account, passwd redis.srem(FORMAT_LOGIN_POOL_SET,account) return None, None def onRegFish(redis, account, passwd, type, ip): #传入参数:账号,密码,类型;返回参数:成功返回账号和密码,失败返回None, None curTime = datetime.now() #print log_util.debug('[try onReg] account[%s] passwd[%s] type[%s]'%(account,passwd,type)) if type == 1: #微信code登录 tokenMessage = checkWeixinCode4fish(account) if tokenMessage: password = account accessToken = tokenMessage["access_token"] refreshToken = tokenMessage["refresh_token"] openID = tokenMessage["openid"] userData = getWeixinData(openID, accessToken) unionid = userData['unionid'] if redis.exists(WEIXIN2ACCOUNT4FISH%(unionid)):# or redis.exists(WEIXIN2ACCOUNT%(unionid)): realAccount = redis.get(WEIXIN2ACCOUNT4FISH%(unionid)) if not realAccount: realAccount = redis.get(WEIXIN2ACCOUNT%(unionid)) account2user_table = FORMAT_ACCOUNT2USER_TABLE%(realAccount) table = redis.get(account2user_table) redis.hmset(table, {'accessToken':accessToken, 'refreshToken':refreshToken, 'password':md5.new(password).hexdigest()}) else: setOpenid2account4fish(openID, accessToken, refreshToken, ip, redis, account) redis.srem(FORMAT_LOGIN_POOL_SET,account) return unionid, password redis.srem(FORMAT_LOGIN_POOL_SET,account) elif type == 2: if redis.exists(WEIXIN2ACCOUNT4FISH%(account)):# or redis.exists(WEIXIN2ACCOUNT%(account)): realAccount = redis.get(WEIXIN2ACCOUNT4FISH%(account)) if not realAccount: realAccount = redis.get(WEIXIN2ACCOUNT%(account)) account2user_table = FORMAT_ACCOUNT2USER_TABLE%(realAccount) table = redis.get(account2user_table) truePassword, openID, accessToken = redis.hmget(table, ('password', 'openid', 'accessToken')) log_util.debug('type 2:passwd[%s] md5[%s] truePassword[%s]'%(md5.new(passwd).hexdigest(), passwd, truePassword)) if truePassword == md5.new(passwd).hexdigest(): userData = getWeixinData(openID, accessToken) log_util.debug('onReg for type 2, userData:%s'%(userData)) if userData: redis.hmset(table, { 'nickname' : userData['nickname'], 'sex' : userData['sex'], 'headImgUrl' : userData['headimgurl'] } ) redis.srem(FORMAT_LOGIN_POOL_SET,account) return account, passwd redis.srem(FORMAT_LOGIN_POOL_SET,account) elif type == 3: #微信WEBcode登录 tokenMessage = checkWeixinCodeWEB(account) if tokenMessage: password = account accessToken = tokenMessage["access_token"] refreshToken = tokenMessage["refresh_token"] openID = tokenMessage["openid"] userData = getWeixinData(openID, accessToken) unionid = userData['unionid'] if redis.exists(WEIXIN2ACCOUNT4FISH%(unionid)):# or redis.exists(WEIXIN2ACCOUNT%(unionid)): realAccount = redis.get(WEIXIN2ACCOUNT4FISH%(unionid)) if not realAccount: realAccount = redis.get(WEIXIN2ACCOUNT%(unionid)) account2user_table = FORMAT_ACCOUNT2USER_TABLE%(realAccount) table = redis.get(account2user_table) redis.hmset(table, {'accessToken':accessToken, 'refreshToken':refreshToken, 'password':md5.new(password).hexdigest()}) else: setOpenid2account4fish(openID, accessToken, refreshToken, ip, redis, account) redis.srem(FORMAT_LOGIN_POOL_SET,account) return unionid, password redis.srem(FORMAT_LOGIN_POOL_SET,account) elif type == 4: #微信WEBcode登录 tokenMessage = checkWeixinCodeWEB(account) if tokenMessage: password = account accessToken = tokenMessage["access_token"] refreshToken = tokenMessage["refresh_token"] openID = tokenMessage["openid"] userData = getWeixinData(openID, accessToken) unionid = userData['unionid'] if redis.exists(WEIXIN2ACCOUNT4FISH%(unionid)):# or redis.exists(WEIXIN2ACCOUNT%(unionid)): realAccount = redis.get(WEIXIN2ACCOUNT4FISH%(unionid)) if not realAccount: realAccount = redis.get(WEIXIN2ACCOUNT%(unionid)) account2user_table = FORMAT_ACCOUNT2USER_TABLE%(realAccount) table = redis.get(account2user_table) redis.hmset(table, {'accessToken':accessToken, 'refreshToken':refreshToken, 'password':md5.new(password).hexdigest()}) else: setOpenid2account4fish(openID, accessToken, refreshToken, ip, redis, account) redis.srem(FORMAT_LOGIN_POOL_SET,account) return unionid, password redis.srem(FORMAT_LOGIN_POOL_SET,account) elif type == 0: account2user_table = FORMAT_ACCOUNT2USER_TABLE%(account) if redis.exists(account2user_table): table = redis.get(account2user_table) truePassword = redis.hget(table, 'password') if truePassword == md5.new(passwd).hexdigest(): return account, passwd redis.srem(FORMAT_LOGIN_POOL_SET,account) return None, None def saveHotUpDateSetting(redis,settingInfo,sys="HALL"): """ 保存热更新配置 """ if sys == 'HALL': hot_table = HOTUPDATE_TABLE else: hot_table = FISH_HOTUPDATE_TABLE return redis.hmset(hot_table,settingInfo) def getHotSettingField(redis,field): """ 获取单个配置信息 """ return redis.hget(HOTUPDATE_TABLE,field) def getHotSettingAll(redis): return redis.hgetall(HOTUPDATE_TABLE) def get_fish_hall_setting(redis): return redis.hgetall(FISH_HOTUPDATE_TABLE) def getUserByAccount(redis, account): """ 通过account获取玩家数据 """ account2user_table = FORMAT_ACCOUNT2USER_TABLE%(account) userTable = redis.get(account2user_table) return userTable def do_sessionExpire(redis,session,SessionTable,SESSION_TTL): """ 刷新session """ #refresh session redis.expire(session['session_key'],60*60) redis.expire(SessionTable,60*10) session.expire() def check_session_verfiy(redis,api_name,SessionTable,account,sid,verfiySid): ''' 验证session是否合法 return code,msg ''' log_util.debug('[on refresh] account[%s] sid[%s]'%(account, sid)) if verfiySid and sid != verfiySid: #session['member_account'],session['member_id'] = '','' return -4,'账号已在其他地方登录',False if not redis.exists(SessionTable): return -3,'sid 超时',False user_table = getUserByAccount(redis, account) if not redis.exists(user_table): return -5,'该用户不存在',False return 0,True,user_table def packPrivaTeData4Game(chair, data, resp, proto): privateResp = proto() privateResp.ParseFromString(resp.privateData) for data in privateResp.data.gameInfo.roomInfo.playerList: if int(data.side) == int(chair): print 'replay side get,side:%s nickname:%s'%(data.side, data.nickname) privateResp.data.gameInfo.selfInfo.side = data.side privateResp.data.gameInfo.selfInfo.nickname = data.nickname privateResp.data.gameInfo.selfInfo.coin = data.coin privateResp.data.gameInfo.selfInfo.ip = data.ip privateResp.data.gameInfo.selfInfo.sex = data.sex privateResp.data.gameInfo.selfInfo.headImgUrl = data.headImgUrl privateResp.data.gameInfo.selfInfo.roomCards = 0 resp.privateData = privateResp.SerializeToString() replayStr = resp.SerializeToString() return replayStr def packPrivaTeData(chair, data): resp = replay4proto_pb2.ReplayData() resp.ParseFromString(data) refreshDataNameProtos = [mahjong_pb2.S_C_RefreshData, poker_pb2.S_C_RefreshData] for proto in refreshDataNameProtos: try: replayStr = packPrivaTeData4Game(chair, data, resp, proto) break except Exception as e: print 'packPrivaTeData error', e return replayStr def getRuleText(rule, gameId, redis): ruleList = eval(rule) ruleText = '底分: %s\n'%(max(int(ruleList[-1]), 1)) gameTable = GAME_TABLE%(gameId) for data in redis.lrange(USE_ROOM_CARDS_RULE%(gameId), 0, -1): datas = data.split(':') name, cards = datas[0], datas[1] try: playCount = int(datas[2]) except: playCount = name if int(cards) == ruleList[-2]: ruleText += '局数: %s\n'%(playCount) num = 0 for ruleNum in redis.lrange(GAME2RULE%(gameId), 0, -1): ruleTile, ruleType, rule = redis.hmget(GAME2RULE_DATA%(gameId, ruleNum), ('title', 'type', 'rule')) ruleDataList = rule.split(',') if int(ruleType) == 1: #print '[on getRuleText]get ruleList[%s] num[%s]'%(ruleList, num) try: ruleText += '%s: %s\n'%(ruleTile, ruleDataList[int(ruleList[num])]) except: ruleText += '%s: %s\n'%(ruleTile, ruleDataList[int(ruleList[num][0])]) else: text = '%s: '%(ruleTile) textList = [] for ruleData in ruleList[num]: textList.append(ruleDataList[ruleData]) textData = ','.join(textList) text += textData ruleText =ruleText + text + '\n' num += 1 ruleText = ruleText.decode('utf-8') return ruleText def tryExitGroup(redis, userTable, account, id, groupId): pipe = redis.pipeline() key = redis.get(ACCOUNT2WAIT_JOIN_PARTY_TABLE%account) # for key in redis.keys(WAIT_JOIN_PARTY_ROOM_PLAYERS%('*', '*', '*')): #在等待匹配娱乐模式的话则离开列表 if key: waitJoinList = redis.lrange(key, 0, -1) if account in waitJoinList: pipe.lrem(key, account) pipe.srem(FORMAT_ADMIN_ACCOUNT_MEMBER_TABLE%(groupId), id) #上线代理需要获得 pipe.hmset(userTable, {'parentAg':'', 'isVolntExitGroup':1,'lastGroup':groupId}) #记录到省级公会的房卡 topAgId = getTopAgentId(redis,groupId) roomcard = redis.get(USER4AGENT_CARD%(groupId,id)) if not roomcard: roomcard = 0 print '[try exitGroup] topAgId[%s] roomCards[%s]'%(topAgId,roomcard) pipe.set(USER4AGENT_CARD%(topAgId,id),int(roomcard)) pipe.execute() def getGroupIds(redis,groupId): """ 获取所有上级代理ID """ Ids = [] if redis.exists(AGENT_TABLE%(groupId)): parentId = redis.get(AGENT2PARENT%(groupId)) if parentId: if int(parentId) == 1: return ['1'] Ids.extend(getGroupIds(redis,parentId)) else: Ids.append(parentId) return Ids def getBroadcasts(redis,groupId,isNew=''): """ 获取广播列表 """ bIds = redis.lrange(HALL_BROADCAST_LIST,0,-1) broadInfos = [] groupIds = getGroupIds(redis,groupId) groupIds.append(groupId) log_util.debug('[groupIds][%s] bids[%s]'%(groupIds,bIds)) for bid in bIds: if redis.exists(FORMAT_BROADCAST_TABLE%(bid)): bInfos = redis.hgetall(FORMAT_BROADCAST_TABLE%(bid)) if bInfos['ag'] in groupIds: broadInfos.append(bInfos) else: redis.lrem(FORMAT_BROADCAST_LIST_TABLE,'1',bid) broadcasts = {'broadcasts':broadInfos} if isNew: broadcasts['isNew'] = isNew return broadcasts def getHallBroadInfo(redis,group_id,broad_table,broad_belone): """ 获取大厅广播列表 """ play_set = redis.smembers(HALL_BRO_PLAY_SET) broads = redis.lrange(broad_table%(1),0,-1) broad_list = [] for broad in broads: if broad in play_set: broadDetail = {} broadInfo = redis.hgetall(HALL_BRO_TABLE%(broad)) broadDetail['content'] = broadInfo['content'] broadDetail['repeatInterval'] = int(broadInfo['per_sec']) broad_list.append(broadDetail) broads = redis.lrange(broad_table%(0),0,-1) for broad in broads: if broad in play_set: broadDetail = {} broadInfo = redis.hgetall(HALL_BRO_TABLE%(broad)) broadDetail['content'] = broadInfo['content'] broadDetail['repeatInterval'] = int(broadInfo['per_sec']) broad_list.append(broadDetail) return broad_list if broad_belone == 'HALL': broads = redis.lrange(HALL_BRO_CONTAIN_AG_LIST%(2,group_id),0,-1) for broad in broads: if broad in play_set: broadDetail = {} broadInfo = redis.hgetall(HALL_BRO_TABLE%(broad)) broadDetail['content'] = broadInfo['content'] broadDetail['repeatInterval'] = int(broadInfo['per_sec']) broad_list.append(broadDetail) return broad_list broads = redis.lrange(HALL_BRO_CONTAIN_AG_LIST%(3,group_id),0,-1) for broad in broads: if broad in play_set: broadDetail = {} broadInfo = redis.hgetall(HALL_BRO_TABLE%(broad)) broadDetail['content'] = broadInfo['content'] broadDetail['repeatInterval'] = int(broadInfo['per_sec']) broad_list.append(broadDetail) return broad_list return broad_list def extendSession(redis,session,SessionTable): """ 延长session有效时间 """ redis.expire(session['session_key'],60*60) redis.expire(SessionTable,60*40)
ed2d7ba12a554f73862f406384a7473d3bc00b64
beaf759183cfb5a86aecdff12a85b572b6ad7d96
/faro/test/test_faro_entrypoint.py
4a49855e7bca5361034b5a94fa78c09ef3621453
[ "MIT" ]
permissive
austinsonger/FARO
6ad33318eb687a1be9deb725aef2edfc12d164d0
dc075fa3af8d68ade571eeb14ff8359f28ee0083
refs/heads/master
2022-12-06T23:31:58.499815
2020-08-03T16:39:15
2020-08-03T16:39:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,401
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest import json import argparse import os from os import path from faro.faro_entrypoint import faro_execute INPUT_FILE = 'sensitive_data.pdf' INPUT_FILE_OCR = 'ocr.pdf' INPUT_FILE_PROTECTED = 'protected.pdf' INPUT_FILE_NO_METADATA = 'no_metadata.pdf' INPUT_FILE_SPLIT_LINES = 'split_lines.docx' INPUT_FILE_SIGNATURE = 'signature_boe.pdf' INPUT_FILE_TESTS_TXT = 'tests.txt' INPUT_FILE_NO_SENSITIVE = 'lorem.rtf' CWD = os.path.dirname(__file__) INPUT_PATH = os.path.join(CWD, 'data') SCORE_EXT = 'score' ENTITY_EXT = 'entity' SIGNATURE = ['María de los Ángeles Hernández Toribio'] MONETARY_QUANTITY = ["4,99", "49,99"] EMAILS = ["[email protected]", "[email protected]"] MOBILE_PHONES = ["654456654", "666444222", "651.651.651"] DOCUMENT_ID = ["C59933143", "E-38008785", "36663760-N", "96222560J"] FINANCIAL_DATA = ["ES6621000418401234567891", "5390700823285988", "4916697015082", "4929432390175839"] CUSTOM_WORDS = ["confidencial", "contraseña"] LANGUAGE_METADA = "meta:lang" def _get_file_data(file_path): with open(file_path, "r") as f: file_text = f.read() return json.loads(file_text) def _faro_run(input_path, input_file, file_type=ENTITY_EXT): _type = '%s.%s' % (input_file, file_type) params = argparse.Namespace() params.input_file = '%s/%s' % (input_path, input_file) faro_execute(params) faro_data = _get_file_data('%s/%s' % (input_path, _type)) if file_type == ENTITY_EXT: faro_data = faro_data['entities'] return faro_data def _remove_output_files(): dir_list = os.listdir(INPUT_PATH) for file_name in dir_list: try: if file_name.find(SCORE_EXT) != -1 or file_name.find(ENTITY_EXT) != -1: os.remove('%s/%s' % (INPUT_PATH, file_name)) except FileNotFoundError: pass class FaroEntrypointTest(unittest.TestCase): @classmethod def setUpClass(cls): _remove_output_files() cls.FARO_ENTITY_TEST_1 = _faro_run(INPUT_PATH, INPUT_FILE) @classmethod def tearDownClass(cls): _remove_output_files() def setUp(self): """ Setting up for the test """ pass def tearDown(self): """ Cleaning up after the test """ pass def test_document_id_detection(self): faro_document_ids_entity = list(self.FARO_ENTITY_TEST_1['document_id'].keys()) self.assertTrue(len(faro_document_ids_entity) == len(DOCUMENT_ID)) diff_list = (set(faro_document_ids_entity) ^ set(DOCUMENT_ID)) self.assertTrue(len(diff_list) == 0) def test_document_financial_data_detection(self): faro_financial_data_entity = list(self.FARO_ENTITY_TEST_1['financial_data'].keys()) self.assertTrue(len(faro_financial_data_entity) == len(FINANCIAL_DATA)) diff_list = (set(faro_financial_data_entity) ^ set(FINANCIAL_DATA)) self.assertTrue(len(diff_list) == 0) def test_mobile_phone_detection(self): faro_mobile_phone_number_entity = list(self.FARO_ENTITY_TEST_1['mobile_phone_number'].keys()) for i in range(len(faro_mobile_phone_number_entity)): faro_mobile_phone_number_entity[i] = faro_mobile_phone_number_entity[i].replace(" ", "") self.assertTrue(len(faro_mobile_phone_number_entity) == len(MOBILE_PHONES)) diff_list = (set(faro_mobile_phone_number_entity) ^ set(MOBILE_PHONES)) self.assertTrue(len(diff_list) == 0) def test_email_detection(self): faro_email_entity = list(self.FARO_ENTITY_TEST_1['personal_email'].keys()) self.assertTrue(len(faro_email_entity) == len(EMAILS)) diff_list = (set(faro_email_entity) ^ set(EMAILS)) self.assertTrue(len(diff_list) == 0) def test_monetary_quantity_detection(self): faro_monetary_quantity_entity = list(self.FARO_ENTITY_TEST_1['monetary_quantity'].keys()) self.assertTrue(len(faro_monetary_quantity_entity) == len(MONETARY_QUANTITY)) diff_list = (set(faro_monetary_quantity_entity) ^ set(MONETARY_QUANTITY)) self.assertTrue(len(diff_list) == 0) def test_no_metadata(self): faro_no_metadata_score = _faro_run(INPUT_PATH, INPUT_FILE_NO_METADATA, SCORE_EXT) self.assertTrue(faro_no_metadata_score["meta:date"] is None) self.assertTrue(faro_no_metadata_score["meta:author"] is None) def test_language(self): faro_language_score = _faro_run(INPUT_PATH, INPUT_FILE, SCORE_EXT) self.assertTrue(faro_language_score[LANGUAGE_METADA] == "es") def test_unsupported_language(self): faro_language_score = _faro_run(INPUT_PATH, INPUT_FILE_PROTECTED, SCORE_EXT) self.assertTrue(faro_language_score[LANGUAGE_METADA] == "unk") def test_unsupported_language(self): faro_language_score = _faro_run(INPUT_PATH, INPUT_FILE_TESTS_TXT, SCORE_EXT) self.assertTrue(faro_language_score[LANGUAGE_METADA] == "ca") def test_protected_document(self): faro_protected_score = _faro_run(INPUT_PATH, INPUT_FILE_PROTECTED, SCORE_EXT) self.assertTrue(faro_protected_score["meta:encrypted"] == 1) def test_params_rename_output_files(self): entity_file_name = 'test_entity' score_file_name = 'test_score' params = argparse.Namespace() params.input_file = '%s/%s' % (INPUT_PATH, INPUT_FILE) params.output_entity_file = '%s/%s.%s' % (INPUT_PATH, entity_file_name, ENTITY_EXT) params.output_score_file = '%s/%s.%s' % (INPUT_PATH, score_file_name, SCORE_EXT) faro_execute(params) self.assertTrue(path.exists(params.output_entity_file)) self.assertTrue(path.exists(params.output_score_file)) def test_params_verbose(self): entity_file_name = 'test_verbose_entity' score_file_name = 'test_verbose_score' params = argparse.Namespace() params.input_file = '%s/%s' % (INPUT_PATH, INPUT_FILE) params.output_entity_file = '%s/%s.%s' % (INPUT_PATH, entity_file_name, ENTITY_EXT) params.output_score_file = '%s/%s.%s' % (INPUT_PATH, score_file_name, SCORE_EXT) params.verbose = True faro_execute(params) faro_verbose = _get_file_data(params.output_entity_file) faro_verbose_entity = faro_verbose['entities'] self.assertTrue(faro_verbose_entity['person'] is not None) self.assertTrue(faro_verbose_entity['phone_number'] is not None) self.assertTrue(faro_verbose_entity['probable_currency_amount'] is not None) def test_params_split_lines(self): params = argparse.Namespace() params.input_file = '%s/%s' % (INPUT_PATH, INPUT_FILE_SPLIT_LINES) params.split_lines = True faro_execute(params) faro_split_lines = _get_file_data(params.output_entity_file) faro_split_lines_entity = faro_split_lines['entities'] self.assertTrue(faro_split_lines_entity.get('mobile_phone_number') is None) def test_ocr(self): faro_ocr = _faro_run(INPUT_PATH, INPUT_FILE_OCR) faro_ocr_financial_data = list(faro_ocr['financial_data'].keys()) self.assertTrue(len(faro_ocr_financial_data) == len(FINANCIAL_DATA)) diff_list = (set(faro_ocr_financial_data) ^ set(FINANCIAL_DATA)) self.assertTrue(len(diff_list) == 0) def test_signature(self): faro_signature_score = _faro_run(INPUT_PATH, INPUT_FILE_SIGNATURE, SCORE_EXT)['signature'] faro_signature_entity = _get_file_data(os.path.join(INPUT_PATH, INPUT_FILE_SIGNATURE + "." + ENTITY_EXT)) faro_signature_entity = list(faro_signature_entity['entities']['signature']) self.assertTrue(faro_signature_score == 1) self.assertTrue(faro_signature_entity[0] == SIGNATURE[0]) def test_custom_words(self): faro_custom_score = _faro_run(INPUT_PATH, INPUT_FILE_TESTS_TXT, SCORE_EXT)['custom_words'] faro_custom_entity = _get_file_data(os.path.join(INPUT_PATH, INPUT_FILE_TESTS_TXT + "." + ENTITY_EXT)) faro_entities = list(faro_custom_entity['entities']['custom_words']) self.assertTrue(faro_custom_score == 2) diff_list = (set(faro_entities) ^ set(CUSTOM_WORDS)) self.assertTrue(len(diff_list) == 0) def test_corp_emails(self): entity_file_name = 'test_corp_email_entity' score_file_name = 'test_corp_email_score' params = argparse.Namespace() params.input_file = '%s/%s' % (INPUT_PATH, INPUT_FILE_TESTS_TXT) params.output_entity_file = '%s/%s.%s' % (INPUT_PATH, entity_file_name, ENTITY_EXT) params.output_score_file = '%s/%s.%s' % (INPUT_PATH, score_file_name, SCORE_EXT) params.verbose = True faro_execute(params) faro_entities = _get_file_data(params.output_entity_file)['entities'] self.assertTrue(faro_entities['corporate_email'] is not None) self.assertEqual(len(faro_entities['corporate_email']), 2) def test_no_sensitive_data(self): faro_custom_score = _faro_run(INPUT_PATH, INPUT_FILE_NO_SENSITIVE, SCORE_EXT)['score'] faro_custom_entity = _get_file_data(os.path.join(INPUT_PATH, INPUT_FILE_NO_SENSITIVE + "." + ENTITY_EXT)) faro_entities = list(faro_custom_entity['entities']) self.assertTrue(faro_custom_score == "low") self.assertTrue(len(faro_entities) == 0) if __name__ == "__main__": unittest.main()
926f48063b1bb48ae00d07dc888717f3e602f13d
3451a6d056098c83ff517960d1ecef51b35d266e
/blog_02/app_usuarios/views.py
08f0a3f2b0f0672632b0e4a96daf608083748fed
[]
no_license
luisdebia123/blog_2
aa9e3f03ebafdbad8741d30205dd1de5c48b83d0
dc945114b7558e03e72dc084b48692a16fd8cee2
refs/heads/master
2023-05-28T11:54:03.444971
2021-06-17T04:23:14
2021-06-17T04:23:14
377,480,832
0
0
null
null
null
null
UTF-8
Python
false
false
1,570
py
# app_detalle import json from django.shortcuts import render, redirect, get_object_or_404 # from django.conf import settings from django.http import HttpResponse from django.contrib.auth.decorators import login_required, permission_required from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import authenticate, login import random import csv from django.contrib import messages # from django.contrib.messages.views import SuccessMessageMixin # from functools import wraps from urllib.parse import urlparse from django.contrib.auth import REDIRECT_FIELD_NAME from django.core.exceptions import PermissionDenied from django.shortcuts import resolve_url from django.shortcuts import reverse, redirect # from django.utils.http import urlencode from django import forms # #---------------------------------------------# #from .forms import CustomUserCreationForm (sólo si esta creado en el forms.py) from .models import Usuarios # from django.views.generic import ListView, DetailView, CreateView, UpdateView, DeleteView # from django.views.generic import TemplateView #from django.views.generic.edit import CreateView, UpdateView, DeleteView # # Create your views here. # app_usuarios # #def index(request): # return render(request,'app_categorias/index.html') class UsuariosListView(ListView) : model = Usuarios template_name = 'app_usuarios/index.html' class Create_Usuarios(TemplateView) : template_name = 'app_usuarios/crear.html'
c2f3056d6eedeb364d87f6a1cf4eb4ee930dfc1f
af43615e07f2bfaa908d6d96b4c90f98ce3ad47b
/rdr_service/lib_fhir/fhirclient_3_0_0/models/auditevent.py
1c26ac3c0771d8ba65433a426deca7d5f33fe601
[ "BSD-3-Clause" ]
permissive
all-of-us/raw-data-repository
11aa25385543f5f8ef706663b79ce181775c1c9a
461ae46aeda21d54de8a91aa5ef677676d5db541
refs/heads/devel
2023-09-01T06:47:25.710651
2023-09-01T01:18:56
2023-09-01T01:18:56
66,000,771
46
22
BSD-3-Clause
2023-09-14T21:06:38
2016-08-18T13:47:08
Python
UTF-8
Python
false
false
13,760
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 3.0.0.11832 (http://hl7.org/fhir/StructureDefinition/AuditEvent) on 2017-03-22. # 2017, SMART Health IT. from . import domainresource class AuditEvent(domainresource.DomainResource): """ Event record kept for security purposes. A record of an event made for purposes of maintaining a security log. Typical uses include detection of intrusion attempts and monitoring for inappropriate usage. """ resource_type = "AuditEvent" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.action = None """ Type of action performed during the event. Type `str`. """ self.agent = None """ Actor involved in the event. List of `AuditEventAgent` items (represented as `dict` in JSON). """ self.entity = None """ Data or objects used. List of `AuditEventEntity` items (represented as `dict` in JSON). """ self.outcome = None """ Whether the event succeeded or failed. Type `str`. """ self.outcomeDesc = None """ Description of the event outcome. Type `str`. """ self.purposeOfEvent = None """ The purposeOfUse of the event. List of `CodeableConcept` items (represented as `dict` in JSON). """ self.recorded = None """ Time when the event occurred on source. Type `FHIRDate` (represented as `str` in JSON). """ self.source = None """ Audit Event Reporter. Type `AuditEventSource` (represented as `dict` in JSON). """ self.subtype = None """ More specific type/id for the event. List of `Coding` items (represented as `dict` in JSON). """ self.type = None """ Type/identifier of event. Type `Coding` (represented as `dict` in JSON). """ super(AuditEvent, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(AuditEvent, self).elementProperties() js.extend([ ("action", "action", str, False, None, False), ("agent", "agent", AuditEventAgent, True, None, True), ("entity", "entity", AuditEventEntity, True, None, False), ("outcome", "outcome", str, False, None, False), ("outcomeDesc", "outcomeDesc", str, False, None, False), ("purposeOfEvent", "purposeOfEvent", codeableconcept.CodeableConcept, True, None, False), ("recorded", "recorded", fhirdate.FHIRDate, False, None, True), ("source", "source", AuditEventSource, False, None, True), ("subtype", "subtype", coding.Coding, True, None, False), ("type", "type", coding.Coding, False, None, True), ]) return js from . import backboneelement class AuditEventAgent(backboneelement.BackboneElement): """ Actor involved in the event. An actor taking an active role in the event or activity that is logged. """ resource_type = "AuditEventAgent" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.altId = None """ Alternative User id e.g. authentication. Type `str`. """ self.location = None """ Where. Type `FHIRReference` referencing `Location` (represented as `dict` in JSON). """ self.media = None """ Type of media. Type `Coding` (represented as `dict` in JSON). """ self.name = None """ Human-meaningful name for the agent. Type `str`. """ self.network = None """ Logical network location for application activity. Type `AuditEventAgentNetwork` (represented as `dict` in JSON). """ self.policy = None """ Policy that authorized event. List of `str` items. """ self.purposeOfUse = None """ Reason given for this user. List of `CodeableConcept` items (represented as `dict` in JSON). """ self.reference = None """ Direct reference to resource. Type `FHIRReference` referencing `Practitioner, Organization, Device, Patient, RelatedPerson` (represented as `dict` in JSON). """ self.requestor = None """ Whether user is initiator. Type `bool`. """ self.role = None """ Agent role in the event. List of `CodeableConcept` items (represented as `dict` in JSON). """ self.userId = None """ Unique identifier for the user. Type `Identifier` (represented as `dict` in JSON). """ super(AuditEventAgent, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(AuditEventAgent, self).elementProperties() js.extend([ ("altId", "altId", str, False, None, False), ("location", "location", fhirreference.FHIRReference, False, None, False), ("media", "media", coding.Coding, False, None, False), ("name", "name", str, False, None, False), ("network", "network", AuditEventAgentNetwork, False, None, False), ("policy", "policy", str, True, None, False), ("purposeOfUse", "purposeOfUse", codeableconcept.CodeableConcept, True, None, False), ("reference", "reference", fhirreference.FHIRReference, False, None, False), ("requestor", "requestor", bool, False, None, True), ("role", "role", codeableconcept.CodeableConcept, True, None, False), ("userId", "userId", identifier.Identifier, False, None, False), ]) return js class AuditEventAgentNetwork(backboneelement.BackboneElement): """ Logical network location for application activity. Logical network location for application activity, if the activity has a network location. """ resource_type = "AuditEventAgentNetwork" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.address = None """ Identifier for the network access point of the user device. Type `str`. """ self.type = None """ The type of network access point. Type `str`. """ super(AuditEventAgentNetwork, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(AuditEventAgentNetwork, self).elementProperties() js.extend([ ("address", "address", str, False, None, False), ("type", "type", str, False, None, False), ]) return js class AuditEventEntity(backboneelement.BackboneElement): """ Data or objects used. Specific instances of data or objects that have been accessed. """ resource_type = "AuditEventEntity" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.description = None """ Descriptive text. Type `str`. """ self.detail = None """ Additional Information about the entity. List of `AuditEventEntityDetail` items (represented as `dict` in JSON). """ self.identifier = None """ Specific instance of object. Type `Identifier` (represented as `dict` in JSON). """ self.lifecycle = None """ Life-cycle stage for the entity. Type `Coding` (represented as `dict` in JSON). """ self.name = None """ Descriptor for entity. Type `str`. """ self.query = None """ Query parameters. Type `str`. """ self.reference = None """ Specific instance of resource. Type `FHIRReference` referencing `Resource` (represented as `dict` in JSON). """ self.role = None """ What role the entity played. Type `Coding` (represented as `dict` in JSON). """ self.securityLabel = None """ Security labels on the entity. List of `Coding` items (represented as `dict` in JSON). """ self.type = None """ Type of entity involved. Type `Coding` (represented as `dict` in JSON). """ super(AuditEventEntity, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(AuditEventEntity, self).elementProperties() js.extend([ ("description", "description", str, False, None, False), ("detail", "detail", AuditEventEntityDetail, True, None, False), ("identifier", "identifier", identifier.Identifier, False, None, False), ("lifecycle", "lifecycle", coding.Coding, False, None, False), ("name", "name", str, False, None, False), ("query", "query", str, False, None, False), ("reference", "reference", fhirreference.FHIRReference, False, None, False), ("role", "role", coding.Coding, False, None, False), ("securityLabel", "securityLabel", coding.Coding, True, None, False), ("type", "type", coding.Coding, False, None, False), ]) return js class AuditEventEntityDetail(backboneelement.BackboneElement): """ Additional Information about the entity. Tagged value pairs for conveying additional information about the entity. """ resource_type = "AuditEventEntityDetail" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.type = None """ Name of the property. Type `str`. """ self.value = None """ Property value. Type `str`. """ super(AuditEventEntityDetail, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(AuditEventEntityDetail, self).elementProperties() js.extend([ ("type", "type", str, False, None, True), ("value", "value", str, False, None, True), ]) return js class AuditEventSource(backboneelement.BackboneElement): """ Audit Event Reporter. The system that is reporting the event. """ resource_type = "AuditEventSource" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.identifier = None """ The identity of source detecting the event. Type `Identifier` (represented as `dict` in JSON). """ self.site = None """ Logical source location within the enterprise. Type `str`. """ self.type = None """ The type of source where event originated. List of `Coding` items (represented as `dict` in JSON). """ super(AuditEventSource, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(AuditEventSource, self).elementProperties() js.extend([ ("identifier", "identifier", identifier.Identifier, False, None, True), ("site", "site", str, False, None, False), ("type", "type", coding.Coding, True, None, False), ]) return js import sys try: from . import codeableconcept except ImportError: codeableconcept = sys.modules[__package__ + '.codeableconcept'] try: from . import coding except ImportError: coding = sys.modules[__package__ + '.coding'] try: from . import fhirdate except ImportError: fhirdate = sys.modules[__package__ + '.fhirdate'] try: from . import fhirreference except ImportError: fhirreference = sys.modules[__package__ + '.fhirreference'] try: from . import identifier except ImportError: identifier = sys.modules[__package__ + '.identifier']
08116a00157fc76d178c93e63aba8866d03e1c4e
b9963ffb80aad7e057bc375edb85ac7ed5a837d0
/adventofcode2019/02.py
1f51e1764d11d946029f5ae774e31ffbf6f4705c
[ "MIT" ]
permissive
matslindh/codingchallenges
a2db9f4579e9f35189f5cdf74590863cf84bdf95
a846e522f7a31e988c470cda87955ee3ef20a274
refs/heads/main
2022-12-23T15:56:19.776354
2022-12-15T21:03:37
2022-12-15T21:03:37
76,491,177
3
0
null
null
null
null
UTF-8
Python
false
false
1,733
py
def run(memory): pc = 0 while memory[pc] != 99: if memory[pc] == 1: memory[memory[pc+3]] = memory[memory[pc+1]] + memory[memory[pc+2]] elif memory[pc] == 2: memory[memory[pc+3]] = memory[memory[pc+1]] * memory[memory[pc+2]] pc += 4 return memory def evaluate(s): memory = [int(r.strip()) for r in s.split(',')] return run(memory) def find_parameters(s, goal): memory = [int(r.strip()) for r in s.split(',')] for x in range(0, 99): for y in range(0, 99): mem = list(memory) mem[1] = x mem[2] = y if run(mem)[0] == goal: return x,y def test_evaluate(): assert evaluate('1,0,0,0,99') == [2,0,0,0,99] assert evaluate('2,3,0,3,99') == [2,3,0,6,99] assert evaluate('2,4,4,5,99,0') == [2,4,4,5,99,9801] assert evaluate('1,1,1,4,99,5,6,0,99') == [30,1,1,4,2,5,6,0,99] if __name__ == '__main__': print(evaluate('1,12,2,3,1,1,2,3,1,3,4,3,1,5,0,3,2,13,1,19,1,19,10,23,2,10,23,27,1,27,6,31,1,13,31,35,1,13,35,39,1,39,10,43,2,43,13,47,1,47,9,51,2,51,13,55,1,5,55,59,2,59,9,63,1,13,63,67,2,13,67,71,1,71,5,75,2,75,13,79,1,79,6,83,1,83,5,87,2,87,6,91,1,5,91,95,1,95,13,99,2,99,6,103,1,5,103,107,1,107,9,111,2,6,111,115,1,5,115,119,1,119,2,123,1,6,123,0,99,2,14,0,0')) print(find_parameters('1,12,2,3,1,1,2,3,1,3,4,3,1,5,0,3,2,13,1,19,1,19,10,23,2,10,23,27,1,27,6,31,1,13,31,35,1,13,35,39,1,39,10,43,2,43,13,47,1,47,9,51,2,51,13,55,1,5,55,59,2,59,9,63,1,13,63,67,2,13,67,71,1,71,5,75,2,75,13,79,1,79,6,83,1,83,5,87,2,87,6,91,1,5,91,95,1,95,13,99,2,99,6,103,1,5,103,107,1,107,9,111,2,6,111,115,1,5,115,119,1,119,2,123,1,6,123,0,99,2,14,0,0', 19690720))
84c5d9573226e76a809023134456aa0ebbf95103
639359b9cfc88e02968923c9dfc57d626cdaec9b
/boardapp/board/migrations/0004_board.py
d7726e44bbd0dfeab8ee0697fc670fc156bdeaec
[]
no_license
ElvinKim/django-angular-board-project
ee220585a1f64804dff718066ca2d00f749e8c6c
de06a560c16a4f1db66afb15e54471ad0e9d104b
refs/heads/master
2021-01-20T21:11:51.009496
2019-02-09T07:04:46
2019-02-09T07:04:46
62,854,114
3
1
null
2018-11-07T09:46:29
2016-07-08T02:55:53
Python
UTF-8
Python
false
false
939
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-07-11 05:38 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('board', '0003_delete_board'), ] operations = [ migrations.CreateModel( name='Board', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('content', models.TextField()), ('user', models.IntegerField(default=0)), ('view_cnt', models.IntegerField(default=0)), ('moddt', models.DateTimeField()), ('regdt', models.DateTimeField()), ], options={ 'db_table': 'tbl_board', }, ), ]
ed41664cc42a14be55f7006ebf125f618d472233
4e186c81ba3ad30b98e76eb6b684b66b8a5c61a8
/src/devilry_settings/devilry_settings/default_settings.py
778740418c78bdd373f7ead000bb57d845e9db90
[]
no_license
unioslo/devilry-django
0805e9d691586f17e52cef142de5ef4c232a3665
29b250ba1ed843e90bc70bc50561ab09a8c96721
refs/heads/master
2020-12-31T07:19:03.162554
2014-04-10T12:14:54
2014-04-10T12:14:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,426
py
# Enable the Celery task queue import djcelery djcelery.setup_loader() ######################################################################## # # Defaults for django settings # - See: https://docs.djangoproject.com/en/dev/ref/settings/ # ######################################################################## DEBUG = False EXTJS4_DEBUG = DEBUG TEMPLATE_DEBUG = DEBUG TIME_ZONE = 'Europe/Oslo' SITE_ID = 1 USE_I18N = True USE_L10N = True FORMAT_MODULE_PATH = 'devilry_settings.formats' LOGIN_URL = '/authenticate/login' STATIC_URL = '/static/' STATIC_ROOT = 'static' DATABASES = {} EMAIL_SUBJECT_PREFIX = '[Devilry] ' ROOT_URLCONF = 'devilry_settings.default_root_urlconf' AUTH_PROFILE_MODULE = 'core.DevilryUserProfile' EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' INSTALLED_APPS = ['django.contrib.markup', 'django.contrib.sessions', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.staticfiles', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.admin', 'djcelery', 'errortemplates', 'crispy_forms', 'djangorestframework', 'gunicorn', 'extjs4', 'haystack', 'south', 'celery_haystack', 'django_decoupled_docs', 'devilry.apps.core', 'devilry.apps.theme', 'devilry.apps.extjshelpers', 'devilry.apps.extjsux', 'devilry.apps.developertools', 'devilry.apps.jsfiledownload', 'devilry.apps.approved_gradeeditor', 'devilry.apps.manual_gradeeditor', 'devilry.apps.autograde_gradeeditor', 'devilry.apps.basicform_gradeeditor', 'devilry.apps.commentform_gradeeditor', 'devilry.apps.statistics', 'devilry.apps.markup', 'devilry.apps.student', 'devilry.apps.examiner', 'devilry.apps.administrator', 'devilry.apps.superadmin', 'devilry.apps.authenticate', 'devilry.apps.gradeeditors', 'devilry.apps.send_email_to_students', 'devilry_extjsextras', 'devilry_theme', 'devilry_usersearch', 'devilry_authenticateduserinfo', 'devilry_header', 'devilry_useradmin', 'devilry_helplinks', 'devilry_frontpage', 'devilry_student', 'devilry_i18n', 'devilry_settings', 'devilry_subjectadmin', 'devilry_nodeadmin', 'devilry_search', 'devilry_qualifiesforexam', 'devilry_qualifiesforexam_approved', 'devilry_qualifiesforexam_points', 'devilry_qualifiesforexam_select', 'devilry_mathjax', 'devilry_examiner', 'devilry_gradingsystem', 'devilry_gradingsystemplugin_points', 'devilry_gradingsystemplugin_approved', 'devilry_rest', ] TEMPLATE_CONTEXT_PROCESSORS = ("django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.i18n", "django.core.context_processors.media", "django.core.context_processors.debug", "django.core.context_processors.request", 'django.contrib.messages.context_processors.messages', 'extjs4.context_processors.extjs4', 'devilry.apps.theme.templatecontext.template_variables') MIDDLEWARE_CLASSES = ['django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'devilry_i18n.middleware.LocaleMiddleware', 'django.middleware.transaction.TransactionMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'devilry.utils.logexceptionsmiddleware.TracebackLoggingMiddleware'] ####################################################################### # # Testing # ####################################################################### TEST_RUNNER = 'devilry_settings.testsuiterunner.FilterableTestSuiteRunner' TEST_FILTER = { 'exclude': [ 'django.*', 'djangorestframework.*', 'devilry.apps.examiner.tests.simplified.*', 'devilry.apps.student.tests.simplified.*', 'devilry.apps.student.tests.simplified.*', 'devilry_search.tests.*', # Ignored when running all tests because they requir a fullfeatured search backend, like solr, to work ], 'include': ['devilry*'] } ################################################################################## # # Haystack (search) # ################################################################################## HAYSTACK_SITECONF = 'devilry_search.haystack_search_sites' HAYSTACK_SEARCH_ENGINE = 'solr' HAYSTACK_SOLR_URL = 'http://127.0.0.1:8983/solr' ######################################################################## # # Celery # ######################################################################## BROKER_URL = 'amqp://devilry:secret@localhost:5672/devilryhost' CELERYBEAT_SCHEDULER = 'djcelery.schedulers.DatabaseScheduler' ######################################################################## # # Defaults for settings defined by Devilry. # ######################################################################## # Make sure this does not end with / (i.e. '' means / is the main page). # DEVILRY_URLPATH_PREFIX = '/django/devilry' DEVILRY_URLPATH_PREFIX = '' # The default grade-plugin: DEVILRY_DEFAULT_GRADEEDITOR='approved' DEVILRY_STATIC_URL = '/static' # Must not end in / (this means that '' is the server root) DEVILRY_THEME_URL = DEVILRY_STATIC_URL + '/theme/themes/devilry' DEVILRY_EXTJS_URL = DEVILRY_STATIC_URL + '/extjs4' DEVILRY_MATHJAX_URL = '{}/devilry_mathjax/MathJax.js'.format(DEVILRY_STATIC_URL) DEVILRY_LOGOUT_URL = '/authenticate/logout' DEVILRY_HELP_URL = 'https://devilry-userdoc.readthedocs.org' #Set max file size to 5MB. Files greater than this size are split into chunks of this size. DEVILRY_MAX_ARCHIVE_CHUNK_SIZE = 5000000 DEVILRY_SEND_EMAIL_TO_USERS = True DEVILRY_EMAIL_SUBJECT_PREFIX_ADMIN = '[devilry-admin] ' DEVILRY_EMAIL_SIGNATURE = "This is a message from the Devilry assignment delivery system. " \ "Please do not respond to this email." DEVILRY_DELIVERY_STORE_BACKEND = 'devilry.apps.core.deliverystore.FsHierDeliveryStore' DEVILRY_FSHIERDELIVERYSTORE_INTERVAL = 1000 DEVILRY_SYNCSYSTEM = 'YOUR SYNC SYSTEM HERE' DEVILRY_EMAIL_DEFAULT_FROM = '[email protected]' DEVILRY_SYSTEM_ADMIN_EMAIL = '[email protected]' DEVILRY_SCHEME_AND_DOMAIN = 'https://devilry.example.com' #: Email pattern. Set this, and add 'devilry.apps.autoset_empty_email_by_username' to INSTALLED_APPS #: to automatically set email to "<username>@DEVILRY_DEFAULT_EMAIL_SUFFIX" if it is not set when a user is saved. #DEVILRY_DEFAULT_EMAIL_SUFFIX = 'example.com' #: When sorting by fullname, would you like to sort by last name? Currently #: only affects the overview over an entire period. DEVILRY_SORT_FULL_NAME_BY_LASTNAME = True #: Messages that are displayed in the 3 dashboards for users with no permission to the dashboard #: The body of each message can contain html. For example, you can add an email link using: <a href="mailto:[email protected]">[email protected]</a> DEVILRY_STUDENT_NO_PERMISSION_MSG = {'title': 'No published assignments', 'body': 'You are not registered as a student on any assignments in Devilry. This is usually because you subject/course administrator has not published any assignments yet. Contact your subject/course administrator if this is wrong.'} DEVILRY_EXAMINER_NO_PERMISSION_MSG = {'title': 'You are not an examiner', 'body': 'You are not registered as an examiner on any publshed assignments in Devilry. If this is wrong, please contact the subject/course administrator.'} DEVILRY_ADMINISTRATOR_NO_PERMISSION_MSG = {'title': 'You are not an administrator', 'body': 'You are not registered as an administrator on any Node, Subject/Course, Period/Semester or Assignment in Devilry. If this is wrong, please contact the system administrator.'} DEVILRY_QUALIFIESFOREXAM_PLUGINS = [ 'devilry_qualifiesforexam_approved.all', 'devilry_qualifiesforexam_approved.subset', 'devilry_qualifiesforexam_points', 'devilry_qualifiesforexam_select', ] CRISPY_TEMPLATE_PACK = 'bootstrap3' #: Deadline handling method: #: #: 0: Soft deadlines #: 1: Hard deadlines DEFAULT_DEADLINE_HANDLING_METHOD = 0 #: Url where users are directed when they do not have the permissions they believe they should have. DEVILRY_LACKING_PERMISSIONS_URL = None #: Url where users are directed when they want to know what to do if their personal info in Devilry is wrong. DEVILRY_WRONG_USERINFO_URL = None #: Django apps that override the Devilry javascript translations (which is most #: of the Devilry user interface). DEVILRY_JAVASCRIPT_LOCALE_OVERRIDE_APPS = tuple() #: Default language LANGUAGE_CODE = 'en' #: Available languages gettext_noop = lambda s: s LANGUAGES = [('en', gettext_noop('English')), ('nb', gettext_noop('Norwegian Bokmal'))] #: Enable MathJax? DEVILRY_ENABLE_MATHJAX = True ################################################### # Setup logging using the defaults - logs to stderr ################################################### from devilry_settings.log import create_logging_config LOGGING = create_logging_config()
e81b788920912c0d9f56722dd3d855601c8582d6
40b42ccf2b6959d6fce74509201781be96f04475
/mmocr/datasets/base_dataset.py
5a39bf46548e9d20996abe52a3d2ffdda518eaeb
[ "Apache-2.0" ]
permissive
xdxie/WordArt
2f1414d8e4edaa89333353d0b28e5096e1f87263
89bf8a218881b250d0ead7a0287526c69586c92a
refs/heads/main
2023-05-23T02:04:22.185386
2023-03-06T11:51:43
2023-03-06T11:51:43
515,485,694
106
12
null
null
null
null
UTF-8
Python
false
false
5,469
py
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmcv.utils import print_log from mmdet.datasets.builder import DATASETS from mmdet.datasets.pipelines import Compose from torch.utils.data import Dataset from mmocr.datasets.builder import build_loader @DATASETS.register_module() class BaseDataset(Dataset): """Custom dataset for text detection, text recognition, and their downstream tasks. 1. The text detection annotation format is as follows: The `annotations` field is optional for testing (this is one line of anno_file, with line-json-str converted to dict for visualizing only). .. code-block:: json { "file_name": "sample.jpg", "height": 1080, "width": 960, "annotations": [ { "iscrowd": 0, "category_id": 1, "bbox": [357.0, 667.0, 804.0, 100.0], "segmentation": [[361, 667, 710, 670, 72, 767, 357, 763]] } ] } 2. The two text recognition annotation formats are as follows: The `x1,y1,x2,y2,x3,y3,x4,y4` field is used for online crop augmentation during training. format1: sample.jpg hello format2: sample.jpg 20 20 100 20 100 40 20 40 hello Args: ann_file (str): Annotation file path. pipeline (list[dict]): Processing pipeline. loader (dict): Dictionary to construct loader to load annotation infos. img_prefix (str, optional): Image prefix to generate full image path. test_mode (bool, optional): If set True, try...except will be turned off in __getitem__. """ def __init__(self, ann_file, loader, pipeline, img_prefix='', test_mode=False): super().__init__() self.test_mode = test_mode self.img_prefix = img_prefix self.ann_file = ann_file # load annotations loader.update(ann_file=ann_file) self.data_infos = build_loader(loader) # processing pipeline self.pipeline = Compose(pipeline) # set group flag and class, no meaning # for text detect and recognize self._set_group_flag() self.CLASSES = 0 def __len__(self): return len(self.data_infos) def _set_group_flag(self): """Set flag.""" self.flag = np.zeros(len(self), dtype=np.uint8) def pre_pipeline(self, results): """Prepare results dict for pipeline.""" results['img_prefix'] = self.img_prefix def prepare_train_img(self, index): """Get training data and annotations from pipeline. Args: index (int): Index of data. Returns: dict: Training data and annotation after pipeline with new keys introduced by pipeline. """ img_info = self.data_infos[index] results = dict(img_info=img_info) self.pre_pipeline(results) return self.pipeline(results) def prepare_test_img(self, img_info): """Get testing data from pipeline. Args: idx (int): Index of data. Returns: dict: Testing data after pipeline with new keys introduced by pipeline. """ return self.prepare_train_img(img_info) def _log_error_index(self, index): """Logging data info of bad index.""" try: data_info = self.data_infos[index] img_prefix = self.img_prefix print_log(f'Warning: skip broken file {data_info} ' f'with img_prefix {img_prefix}') except Exception as e: print_log(f'load index {index} with error {e}') def _get_next_index(self, index): """Get next index from dataset.""" self._log_error_index(index) index = (index + 1) % len(self) return index def __getitem__(self, index): """Get training/test data from pipeline. Args: index (int): Index of data. Returns: dict: Training/test data. """ if self.test_mode: return self.prepare_test_img(index) while True: try: data = self.prepare_train_img(index) if data is None: raise Exception('prepared train data empty') break except Exception as e: print_log(f'prepare index {index} with error {e}') index = self._get_next_index(index) return data def format_results(self, results, **kwargs): """Placeholder to format result to dataset-specific output.""" pass def evaluate(self, results, metric=None, logger=None, **kwargs): """Evaluate the dataset. Args: results (list): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. Returns: dict[str: float] """ raise NotImplementedError
e23459a3a02e02800b2ef6783cb1df6e5086e855
d16fbe6ec22af65fb21e31839f3565cee6c32739
/bin/casasim_go_v20190816.py
7d1ee42466cc0d0c2a41374581f1c2aabd515542
[]
no_license
1054/Crab.Toolkit.PdBI
4320ae59fc9e0c7e4334deb8e6b65aafd57a6321
037a589586c61ac0b27bbe5e1b556532847e85fb
refs/heads/master
2023-08-13T13:42:39.282276
2023-07-28T20:15:27
2023-07-28T20:15:27
62,636,065
4
0
null
null
null
null
UTF-8
Python
false
false
16,490
py
#!/usr/bin/env python # # This code needs to be ran in CASA. # # This code simulates ALMA data. # # Usage: # casa # execfile(\'casasim_go.py\') <TODO> # # Usage 2: # casa # sys.path.append('/Users/dzliu/Cloud/Github/Crab.Toolkit.PdBI/bin') # simfreq = '339.0 GHz' # simcell = '0.062 arcsec' # import casasim_go # reload(casasim_go) # skymodel, complist = casasim_go.simulate_Gaussian(locals()) # casasim_go.simulate_Visibilities(locals()) # # 20190723: init # from __future__ import print_function import os, sys, re, json, copy, time, datetime, shutil import numpy as np import inspect import random # # A function to get arg list of another function # #def get_arg_list(func_name): # inspect__dir__ = dir(inspect) # arg_list = [] # if 'signature' in inspect__dir__: # arg_list = inspect.signature(func_name).parameters.keys() # arg_list = list(arg_list) # elif 'getfullargspec' in inspect__dir__: # arg_list = inspect.getfullargspec(func_name)[0] # elif 'getargspec' in inspect__dir__: # arg_list = inspect.getargspec(func_name)[0] # else: # print('Error! Could not call inspect.getargspec() or inspect.getfullargspec() or inspect.signature()!') # sys.exit() # return arg_list # # Simulate a Gaussian shape source # def simulate_Gaussian(locals_dict): # # Simulate sky model # def simulate_Model(casasim_source_models, locals_dict): # qa = locals_dict['qa'] cl = locals_dict['cl'] ia = locals_dict['ia'] exportfits = locals_dict['exportfits'] # # load variables if not ('simfreq' in locals_dict): simfreq = '339.0GHz' #raise ValueError('Please set simfreq!') else: simfreq = locals_dict['simfreq'] if not ('simcell' in locals_dict): simcell = '0.062arcsec' #raise ValueError('Please set simcell!') else: simcell = locals_dict['simcell'] if not ('simsize' in locals_dict): simsize = 256 else: simsize = locals_dict['simsize'] if not ('skymodel' in locals_dict): skymodel = "casasim_Model.fits" else: skymodel = locals_dict['skymodel'] if skymodel == '': raise ValueError('Error! skymodel is empty!') return if not ('complist' in locals_dict): complist = "casasim_Model.cl" else: complist = locals_dict['complist'] if complist == '': raise ValueError('Error! complist is empty!') return # # check input models if not (type(casasim_source_models) is list): casasim_source_models = [casasim_source_models] for i,casasim_source_model in enumerate(casasim_source_models): if not (type(casasim_source_model) is dict): raise ValueError('Error! The %d-th model of the input model list is not a dict!'%(i)) return if not ('ra' in casasim_source_model and 'dec' in casasim_source_model and 'shape' in casasim_source_model and 'flux' in casasim_source_model): raise ValueError('Error! The %d-th model of the input model list does not have \'ra\', \'dec\', \'shape\' or \'flux\'!'%(i)) return if casasim_source_model['shape'] == 'Gaussian': if not ('majoraxis' in casasim_source_model and 'minoraxis' in casasim_source_model and 'positionangle' in casasim_source_model): if 'size' in casasim_source_model: if not (type(casasim_source_model['size']) is list): casasim_source_model['size'] = [float(casasim_source_model['size'])] if len(casasim_source_model['size']) == 1: casasim_source_models[i]['majoraxis'] = casasim_source_model['size'][0] casasim_source_models[i]['minoraxis'] = casasim_source_model['size'][0] casasim_source_models[i]['positionangle'] = 0.0 elif len(casasim_source_model['size']) == 2: casasim_source_models[i]['majoraxis'] = casasim_source_model['size'][0] casasim_source_models[i]['minoraxis'] = casasim_source_model['size'][1] casasim_source_models[i]['positionangle'] = 0.0 elif len(casasim_source_model['size']) >= 3: casasim_source_models[i]['majoraxis'] = casasim_source_model['size'][0] casasim_source_models[i]['minoraxis'] = casasim_source_model['size'][1] casasim_source_models[i]['positionangle'] = casasim_source_model['size'][2] # #if not ('casasim_source_models' in locals_dict): # casasim_source_models = [] # #casasim_source_models.append({'ra':'10h00m00.0s','dec':'-30d00m00.0s','flux':2.0,'fluxunit':'mJy','shape':'Gaussian','majoraxis':'0.6arcsec','minoraxis':'0.4arcsec','positionangle':'0.0deg'}) # #<TODO># test reading ds9 regions file # with open('ds9.reg', 'r') as fp: # for fline in fp.readlines(): # if fline.startswith('ellipse'): # ra, dec, majoraxis, minoraxis, positionangle = re.sub(r'ellipse\(([0-9:+-\.]+)\s*,\s*([0-9:+-\.]+)\s*,\s*([0-9Ee:+-\.\"]+)\s*,\s*([0-9Ee:+-\.\"]+)\s*,\s*([0-9Ee:+-\.]+)\s*\)\s*.*', r'\1 \2 \3 \4 \5', fline.strip()).split(' ') # if ra.find(':')>=0: ra = re.sub(r'([0-9+-]+):([0-9+-]+):([0-9+-\.]+)', r'\1h\2m\3s', ra) # if dec.find(':')>=0: dec = re.sub(r'([0-9+-]+):([0-9+-]+):([0-9+-\.]+)', r'\1d\2m\3s', dec) # if majoraxis.endswith('"'): majoraxis = majoraxis.replace('"','arcsec') # if minoraxis.endswith('"'): minoraxis = minoraxis.replace('"','arcsec') # majoraxisvalue = qa.convert(majoraxis,'arcsec')['value'] # minoraxisvalue = qa.convert(minoraxis,'arcsec')['value'] # positionanglevalue = float(positionangle) # deg # if majoraxisvalue < minoraxisvalue: # majoraxis, minoraxis = minoraxis, majoraxis # positionangle = '%s'%(positionanglevalue + 90.0) # positionangle += 'deg' # flux_max = 2.0 #<TODO># test random flux between 0.2 - 2.0 mJy/beam # flux_min = 0.2 #<TODO># test random flux between 0.2 - 2.0 mJy/beam # flux = (random.random() - 0.0) / (1.0 - 0.0) * (flux_max - flux_min) + flux_min #<TODO># test random flux # casasim_source_models.append({'ra':ra,'dec':dec,'flux':flux,'fluxunit':'mJy','shape':'Gaussian','majoraxis':majoraxis,'minoraxis':minoraxis,'positionangle':positionangle}) # #print(casasim_source_models[-1]) # # closes any open component lists, if any. cl.done() # # backup previous result if any skymodelname = re.sub(r'^(.*)\.fits', r'\1', skymodel, re.IGNORECASE) if os.path.isdir(skymodelname+'.im'): if os.path.isdir(skymodelname+'.im'+'.backup'): shutil.rmtree(skymodelname+'.im'+'.backup') shutil.move(skymodelname+'.im', skymodelname+'.im'+'.backup') if os.path.isdir(complist): if os.path.isdir(complist+'.backup'): shutil.rmtree(complist+'.backup') shutil.move(complist, complist+'.backup') # # prepare to set sim image center RA Dec by taking the position of the first model source simCenRA = None simCenDec = None # # prepare to add components cl_addcomponent_arg_list = ['flux','fluxunit','shape','majoraxis','minoraxis','positionangle'] for imodel, casasim_source_model in enumerate(casasim_source_models): cl_component_properties = {} for key in casasim_source_model.keys(): if key in cl_addcomponent_arg_list and key != 'dir' and key != 'freq': cl_component_properties[key] = casasim_source_model[key] print('component %d, %s = %s'%(imodel, key, cl_component_properties[key])) cl.addcomponent(dir='J2000 %s %s'%(casasim_source_model['ra'], casasim_source_model['dec']), freq=simfreq, **cl_component_properties) if simCenRA is None: simCenRA = casasim_source_model['ra'] if simCenDec is None: simCenDec = casasim_source_model['dec'] # # print message print('simCenRA = %s'%(simCenRA)) print('simCenDec = %s'%(simCenDec)) print('simfreq = %s'%(simfreq)) print('simcell = %s'%(simcell)) print('simsize = %s'%(simsize)) print('complist = %s'%(complist)) print('skymodel = %s'%(skymodel)) print('casasim_source_models = %s'%(str(casasim_source_models))) # # process image ia.fromshape(skymodelname+".im", [simsize,simsize,1,1], overwrite=True) # image a cs = ia.coordsys() # coordinate system cs.setunits(['rad', 'rad', '', 'Hz']) cell_rad = qa.convert(qa.quantity(simcell), "rad")['value'] cs.setincrement([-cell_rad,cell_rad],'direction') cs.setreferencevalue([qa.convert(simCenRA,'rad')['value'], qa.convert(simCenDec,'rad')['value']], type="direction") cs.setreferencevalue(qa.convert(qa.quantity(simfreq),'Hz')['value'], 'spectral') cs.setincrement('31.25MHz','spectral') ia.setcoordsys(cs.torecord()) ia.setbrightnessunit("Jy/pixel") ia.modify(cl.torecord(),subtract=False) exportfits(imagename = skymodelname+'.im', fitsimage = skymodelname+'.fits', overwrite = True) print('Output to "%s"!'%(skymodelname+'.im')) print('Output to "%s"!'%(skymodelname+'.fits')) # cl.rename(complist) cl.done() print('Output to "%s"!'%(complist)) return skymodel, complist # #locals_dict.update({'skymodel':skymodelname+'.fits', 'complist':complist}) # # # def simulate_Visibilities(locals_dict): # simobserve = locals_dict['simobserve'] qa = locals_dict['qa'] imhead = locals_dict['imhead'] split = locals_dict['split'] exportuvfits = locals_dict['exportuvfits'] #inp = locals_dict['inp'] # # load variables if not ('project' in locals_dict): project = "casasim_Project" else: project = locals_dict['project'] if not ('skymodel' in locals_dict): skymodel = "casasim_Model.fits" else: skymodel = locals_dict['skymodel'] if not ('complist' in locals_dict): complist = "" else: complist = locals_dict['complist'] if not ('compwidth' in locals_dict): compwidth = '' else: compwidth = locals_dict['compwidth'] if not ('inwidth' in locals_dict): inwidth = '' else: inwidth = locals_dict['inwidth'] if not ('antennalist' in locals_dict): antennalist = 'alma;0.1arcsec' else: antennalist = locals_dict['antennalist'] if not ('totaltime' in locals_dict): totaltime = '' else: totaltime = locals_dict['totaltime'] if not ('integration' in locals_dict): integration = '600s' else: integration = locals_dict['integration'] if not ('thermalnoise' in locals_dict): thermalnoise = '' # 'tsys-atm' (user_pwv=XXX) else: thermalnoise = locals_dict['thermalnoise'] if not ('obsmode' in locals_dict): obsmode = 'int' # 'int' or 'sd' else: obsmode = locals_dict['obsmode'] if not ('direction' in locals_dict): direction = '' # "J2000 10h00m00.0s -30d00m00.0s" # If left unset, simobserve will use the center of the skymodel image. -- not working? else: direction = locals_dict['direction'] if not ('mapsize' in locals_dict): mapsize = '5arcsec' else: mapsize = locals_dict['mapsize'] # # print message print('project = %s'%(project)) print('skymodel = %s'%(skymodel)) #print('complist = %s'%(complist)) #print('direction = %s'%(direction)) # # backup previous result if any if os.path.isdir(os.path.join(project, 'split_field_0_spw_0.ms')): if os.path.isdir(os.path.join(project, 'split_field_0_spw_0.ms'+'.backup')): shutil.rmtree(os.path.join(project, 'split_field_0_spw_0.ms'+'.backup')) shutil.move(os.path.join(project, 'split_field_0_spw_0.ms'), os.path.join(project, 'split_field_0_spw_0.ms'+'.backup')) # # run simobserve task print('Running simobserve(project=\'%s\', ...)'%(project)) project_in = project simobserve(project = project, skymodel = skymodel, complist = complist, direction = direction, mapsize = mapsize, ptgfile = '', compwidth = compwidth, inwidth = inwidth, obsmode = obsmode, antennalist = antennalist, integration = integration, thermalnoise = thermalnoise, verbose = True, overwrite = True, ) project = project_in # it seems 'project' variable got changed after simobserve ... # # check output if antennalist.endswith('.cfg'): outname = antennalist.replace('.cfg','').replace('alma.','alma_') else: outname = antennalist.replace(';','_').replace('alma.','alma_') if not (os.path.isdir(os.path.join(project, project+'.'+outname+'.ms'))): raise Exception('Error! Failed to run simobserve()! Could not find "%s"!'%(os.path.join(project, project+'.'+outname+'.ms'))) print('Output to "%s"!'%(os.path.join(project, project+'.'+outname+'.ms'))) # # exportuvfits split(vis = os.path.join(project, project+'.'+outname+'.ms'), outputvis = os.path.join(project, 'split_field_0_spw_0.ms'), keepmms = False, keepflags = False, field = '0', spw = '0', timebin = '30s', ) if not (os.path.isdir(os.path.join(project, 'split_field_0_spw_0.ms'))): raise Exception('Error! Failed to run split()! Could not find "%s"!'%(os.path.join(project, 'split_field_0_spw_0.ms'))) print('Output to "%s"!'%(os.path.join(project, 'split_field_0_spw_0.ms'))) # # exportuvfits exportuvfits(vis = os.path.join(project, 'split_field_0_spw_0.ms'), fitsfile = os.path.join(project, 'split_field_0_spw_0.uvfits'), multisource = False, combinespw = False, overwrite = True, ) if not (os.path.isfile(os.path.join(project, 'split_field_0_spw_0.uvfits'))): raise Exception('Error! Failed to run exportuvfits()! Could not find "%s"!'%(os.path.join(project, 'split_field_0_spw_0.uvfits'))) print('Output to "%s"!'%(os.path.join(project, 'split_field_0_spw_0.uvfits'))) # # # #def convolve_model_image_with_beam(locals_dict): # # # imsmooth = locals_dict['imsmooth'] # # # # load variables # if not ('project' in locals_dict): # project = "casasim_Project" # else: # project = locals_dict['project'] # if not ('skymodel' in locals_dict): # skymodel = "casasim_Gaussian.fits" # else: # skymodel = locals_dict['skymodel'] # if not ('beam' in locals_dict): # skymodel = "casasim_Gaussian.fits" # else: # skymodel = locals_dict['skymodel'] # # # # check antennalist # if not ('antennalist' in locals_dict): # raise Exception('Errro! antennalist was not set!') # else: # antennalist = locals_dict['antennalist'] # # # if antennalist.endswith('.cfg'): # outname = antennalist.replace('.cfg','').replace('alma.','alma_') # else: # outname = antennalist.replace(';','_').replace('alma.','alma_') # # # if not (os.path.isdir(os.path.join(project, project+'.'+outname+'.ms'))): # raise Exception('Error! Could not find "%s"! Please run simobserve() first!'%(os.path.join(project, project+'.'+outname+'.ms'))) # # # print('Reading "%s"'%(os.path.join(project, project+'.'+outname+'.ms'))) # # # # get clean beam size # restoringbeam = # # # # skymodelname # skymodelname = re.sub(r'\.fits$', r'', skymodel, re.IGNORECASE) # # # # output a smoothed version # imsmooth(imagename = skymodel, kernel = 'gauss', beam = beam) # print('Output to "%s"!'%(skymodelname+'_convolved.fits'))
754c57955dc4711c3f1b16359dad22056c067dde
d97b9dc98c65ed3114a6449e0dab9c6c9bd1c01a
/tests/parser_tests.py
7a9a7b1dc3b44895dab24b0cf46a9bec9402325c
[ "MIT" ]
permissive
blitzmann/evepaste
19f7edbb0d15e44e898f575952d6322fe60a18ce
78b2ca1553b0773e68978bce6858d37f445a927e
refs/heads/master
2021-01-18T09:28:00.967532
2014-07-23T05:43:28
2014-07-23T05:43:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,523
py
from evepaste import parse from tests import parsers, TableChecker ALL_TABLES = [parsers.ASSET_TABLE, parsers.BOM_TABLE, parsers.CARGO_SCAN_TABLE, parsers.CHAT_TABLE, parsers.CONTRACT_TABLE, parsers.DSCAN_TABLE, parsers.EFT_TABLE, parsers.FITTING_TABLE, parsers.KILLMAIL_TABLE, parsers.LOOT_HISTORY_TABLE, parsers.PI_TABLE, parsers.SURVEY_SCANNER_TABLE, parsers.VIEW_CONTENTS_TABLE, parsers.WALLET_TABLE] def test_generator(): # Perform each table test with their associated callable for table in ALL_TABLES + [parsers.PARSE_TABLE, parsers.LISTING_TABLE]: for i, (input_str, expected) in enumerate(table.tests): name = ('test_%s[%s]' % (str(table.funct.__name__), i)) checker = TableChecker(table.funct, name) yield checker, input_str, expected # Perform each table test with parse() instead of the associated callable for table in ALL_TABLES: for i, (input_str, expected) in enumerate(table.tests): if isinstance(expected, tuple) and not expected[1]: name = 'test_parse(%s)[%s]' % (str(table.funct.__name__), i) checker = TableChecker(parse, name) result, bad_lines = expected _type = table.funct.__name__.split('_', 1)[1] yield checker, input_str, (_type, result, bad_lines)
84bb6640e82b66ac5cf41c0c71d175c99bde1072
c6123c9a071746cd72a7797e47cc6dfb6efc3f26
/com/old/nlp/user_portrait_analysis/user_portrait_analysis.py
85717da4a2f89140eaa74aeabc34c4178850c4ee
[]
no_license
happiless/AI
74144d842e61a9c1ef09b6e4fe4b3b09cae285c5
31b8bd1e890a2d0519c65958da198a504ffe2e2d
refs/heads/master
2023-08-07T18:35:54.509458
2020-11-23T18:47:29
2020-11-23T18:47:29
262,650,975
0
0
null
2023-07-06T21:36:58
2020-05-09T20:13:23
Python
UTF-8
Python
false
false
11,048
py
# 用户画像-案例 # 基于用户搜索关键词数据为用户打上标签(年龄,性别,学历) # 整体流程 # (一)数据预处理 # 编码方式转换 # 对数据搜索内容进行分词 # 词性过滤 # 数据检查 # (二)特征选择 # 建立word2vec词向量模型 # 对所有搜索数据求平均向量 # (三)建模预测 # 不同机器学习模型对比 # 堆叠模型 # 将原始数据转换成utf-8编码,防止后续出现各种编码问题 # 由于原始数据比较大,在分词与过滤阶段会比较慢,这里我们选择了原始数据中的1W个 import csv import pandas as pd # import jieba # import jieba.posseg import os import sys import time import itertools from gensim.models import word2vec from gensim.models.word2vec import Word2Vec import numpy as np from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score ''' # (一)数据预处理 # 编码方式转换 data_path = './data/user_tag_query.10W.TRAIN' csv_file = open(data_path + '-1w.csv', 'w') writer = csv.writer(csv_file) writer.writerow(['ID', 'Age', 'Gender', 'Education', 'QueryList']) # 转换成utf-8编码格式 with open(data_path, 'r', encoding='gbk', errors='ignore') as f: lines = f.readlines() print(len(lines)) for line in lines[:10000]: try: data = line.strip().split('\t') write_data = [data[0], data[1], data[2], data[3]] querystr = '' data[-1] = data[-1][:-1] for d in data[4:]: try: cur_str = d.encode('utf8') cur_str = cur_str.decode('utf8') querystr += cur_str + '\t' print(querystr) except: continue querystr = querystr[:-1] write_data.append(querystr) writer.writerow(write_data) except: continue # 编码转换完成的数据,取的是1W的子集 train_name = data_path + '-1w.csv' data = pd.read_csv(train_name, encoding='gbk') print(data.info()) data.Age.to_csv('./data/train_age.csv', index=False) data.Gender.to_csv('./data/train_gender.csv', index=False) data.Education.to_csv('./data/train_education.csv', index=False) data.QueryList.to_csv('./data/train_querylist.csv', index=False) # 对数据搜索内容进行分词 def input(train_name): train_data = [] with open(train_name, 'rb') as f: line = f.readline() count = 0 while line: try: train_data.append(line) count += 1 except: print('error', count, line) line = f.readline() return train_data start = time.clock() filepath = './data/train_querylist.csv' query_list = input(filepath) write_path = './data/train_querylist_writefile-1w.csv' csv_file = open(write_path, 'w') # part-of-speech tagging 词性标注 POS = {} for i in range(len(query_list)): if i % 2000 == 0 and i >= 1000: print(i, 'finished') s = [] str = "" words = jieba.posseg.cut(query_list[i]) # 带有词性的精确分词模式 allowPOS = ['n', 'v', 'j'] for word, flag in words: print(word, flag) # 婚外 j 女人 n 不 d 爱 v 你 r 的 uj 表现 v POS[flag] = POS.get(flag, 0) + 1 if (flag[0] in allowPOS) and len(word) >= 2: str += word + " " cur_str = str.encode('utf8') cur_str = cur_str.decode('utf8') s.append(cur_str) csv_file.write(" ".join(s) + "\n") csv_file.close() end = time.clock() print("total time: %f s" % (end - start)) print(POS) ''' # (二)特征选择 # 建立word2vec词向量模型 # 使用Gensim库建立word2vec词向量模型 # 参数定义: # sentences:可以是一个list # sg: 用于设置训练算法,默认为0,对应CBOW算法;sg=1则采用skip-gram算法。 # size:是指特征向量的维度,默认为100。大的size需要更多的训练数据,但是效果会更好. 推荐值为几十到几百。 # window:表示当前词与预测词在一个句子中的最大距离是多少 # alpha: 是学习速率 # seed:用于随机数发生器。与初始化词向量有关。 # min_count: 可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5 # max_vocab_size: 设置词向量构建期间的RAM限制。如果所有独立单词个数超过这个,则就消除掉其中最不频繁的一个。每一千万个单词需要大约1GB的RAM。设置成None则没有限制。 # workers参数控制训练的并行数。 # hs: 如果为1则会采用hierarchica·softmax技巧。如果设置为0(default),则negative sampling会被使用。 # negative: 如果>0,则会采用negativesampling,用于设置多少个noise words # iter: 迭代次数,默认为5 # 将数据变换成list of list格式 # pip install --upgrade smart_open train_path = './data/train_querylist_writefile-1w.csv' save_path = "1w_word2vec_300.model" with open(train_path, 'r') as f: my_list = [] lines = f.readlines() for line in lines: cur_list = [] data = line.strip().split(' ') for d in data: cur_list.append(d) my_list.append(cur_list) model = word2vec.Word2Vec(my_list, size=300, window=10, workers=4) model.save(save_path) model = Word2Vec.load(save_path) print(model.most_similar('大哥')) print(model.most_similar('清华')) # 对所有搜索数据求平均向量 # 加载训练好的word2vec模型,求用户搜索结果的平均向量 with open(train_path, 'r') as f: cur_index = 0 lines = f.readlines() doc_cev = np.zeros((len(lines), 300)) for line in lines: word_cev = np.zeros((1, 300)) words = line.strip().split(" ") word_num = 0 # 求模型的平均向量 for word in words: if word in model: word_num += 1 word_cev += np.array([model[word]]) doc_cev[cur_index] = word_cev / float(word_num) cur_index += 1 print(doc_cev.shape) print(doc_cev[0]) gender_label = np.loadtxt('./data/train_gender.csv', int) education_label = np.loadtxt('./data/train_education.csv', int) age_label = np.loadtxt('./data/train_age.csv', int) def remove_zero(x, y): """ 把标签列Y为0的去除掉,对应Y为0的X矩阵的行也相应去掉 :param x: 列表包含一个个用户搜素词的平均向量 :param y: 用户性别标签列/年龄标签列/教育标签列 :return: 返回去除标签列为0的记录X和y """ nonzero = np.nonzero(y) y = y[nonzero] x = np.array(x) x = x[nonzero] return x, y gender_train, gender_label = remove_zero(doc_cev, gender_label) education_train, education_label = remove_zero(doc_cev, education_label) age_train, age_label = remove_zero(doc_cev, age_label) print(gender_train.shape, gender_label.shape) print(education_train.shape, education_label.shape) print(age_train.shape, age_label.shape) # 定义一个函数去绘制混淆矩阵,为了评估看着方便 def plot_confusion_matrix(cm, classes, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) # 加上图里面的颜色渐近条 plt.colorbar() # 分别给横纵坐标在0和1的位置写上数字0和1 tick_marks = np.arange(len(classes)) plt.xticks(ticks=tick_marks, labels=classes, rotation=0) plt.yticks(ticks=tick_marks, labels=classes) thresh = cm.max() / 2. # itertools.product(a, b) 两个元组进行笛卡尔积 # 在混淆矩阵图形四象限的格子里面写上数值,如果底色深就用白色,如果底色浅就用 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment='center', color='white' if cm[i, j] > thresh else 'black') plt.tight_layout() plt.ylabel('True Label') plt.xlabel('Predicted Label') # (三)建模预测 # 不同机器学习模型对比 # 建立一个基础预测模型 X_train, X_test, y_train, y_test = train_test_split(gender_train, gender_label, test_size=0.2, random_state=0) lr = LinearRegression() lr.fit(X_train, y_train) y_pred = lr.predict(X_test) print(accuracy_score(y_pred=y_pred, y_true=y_test)) cnf_matrix = confusion_matrix(y_true=y_test, y_pred=y_pred) print('Test Recall metric => ', cnf_matrix[1, 1] / (cnf_matrix[1, 0] + cnf_matrix[1, 1])) print('Test accuracy metric => ', cnf_matrix[1, 1] / (cnf_matrix[0, 0] + cnf_matrix[0, 1] + cnf_matrix[1, 0] + cnf_matrix[1, 1])) class_names = [0, 1] plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, title='Gender-Confusion matrix') plt.show() rfc = RandomForestClassifier(n_estimators=100, min_samples_split=5, max_depth=10) rfc.fit(X_train, y_train) y_pred = rfc.predict(X_test) print(accuracy_score(y_true=y_test, y_pred=y_pred)) cnf_matrix = confusion_matrix(y_true=y_test, y_pred=y_pred) print('Test Recall metric => ', cnf_matrix[1, 1] / (cnf_matrix[1, 0] + cnf_matrix[1, 1])) print('Test accuracy metric => ', cnf_matrix[1, 1] / (cnf_matrix[0, 0] + cnf_matrix[0, 1])) plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, title='Gender-Confusion Matrix') plt.show() # 堆叠模型 clf1 = RandomForestClassifier(n_estimators=100, min_samples_split=5, max_depth=10) clf2 = SVC() clf3 = LogisticRegression() base_model = [ ['rf', clf1], ['svm', clf2], ['lr', clf3] ] models = base_model # 把第一阶段模型预测的结果,存在S_train和S_test中,供给第二阶段去训练 S_train = np.zeros(X_train.shape[0], len(models)) S_test = np.zeros(X_test.shape[0], len(models)) X_train, X_test, y_train, y_test = train_test_split(gender_train, gender_label, test_size=0.2, random_state=0) folds = KFold(n_splits=5, random_state=0) for i, bm in models: clf = bm[1] for train_idx, valid_idx in folds.split(X_train): X_train_cv = X_train[train_idx] y_train_cv = y_train[train_idx] X_valid = X_train[valid_idx] clf.fit(X_train_cv, y_train_cv) y_valid = clf.predict(X_valid)[:] S_train[train_idx, i] = y_valid y_pred = clf.predict(X_test) S_test[:, i] = y_test print(accuracy_score(y_true=y_test, y_pred=y_pred)) # 第二阶段算法随便选择一个,这里选择了随机森林 final_rfc = RandomForestClassifier(n_estimators=100) final_rfc.fit(S_train, y_train) S_pred = final_rfc.predict(S_test) print(S_pred) print(final_rfc.score(S_test, y_test))
053e7c20b755a200f86dc65acb5e2982c3213c7f
40b27bdd261a0d8a9e100bc4e83c9f76b9ef710e
/contests/ABC1-100/ABC3/a.py
ef238598da9c9f189cd50d282d535fac16896483
[]
no_license
kouma1990/AtCoder-code-collection
486d612ae1def6df49f4aa3632e06aae7ff73d2f
a3040a6025b43fb7dd3522945dce05a2626a92aa
refs/heads/master
2020-04-16T22:42:39.023009
2019-08-29T07:05:43
2019-08-29T07:05:43
165,980,129
2
0
null
null
null
null
UTF-8
Python
false
false
73
py
n = int(input()) s = 0 for i in range(1,n+1): s+=i print(s*10000/n)
a6579d48d9a950469d219fe1691ca39caed063b2
1e58cee5b12b157b7b646bd06b09806f97d7fb57
/tests/test_regex.py
acfeb0755a29804cbe490ff40b52e34bf82e8ba3
[]
no_license
DRMacIver/FALBS
3397612430ea8fbd60cb6c2452ac47a74e912452
efd9231da4e64fd98c025eef86a106db72c96e80
refs/heads/master
2020-05-24T16:14:41.739260
2018-02-20T11:14:18
2018-02-20T11:14:18
84,857,328
2
0
null
null
null
null
UTF-8
Python
false
false
10,111
py
from tests.helpers import regex import falbs.regex as rd from hypothesis import given, assume, strategies as st, example from pyrsistent import pset import pytest @given(regex()) def test_can_build_a_dfa(re): assume(rd.has_matches(re)) rd.build_dfa(re) def test_char_classes_1(): assert rd.character_classes( rd.concatenate(rd.union(rd.char(0), rd.char(1)), rd.char(2)) ) == pset([pset([0, 1])]) @given(regex()) def test_characters_in_same_class_produce_equivalent_expressions(re): assume(rd.has_matches(re)) classes = rd.character_classes(re) assume(any(len(cs) > 1 for cs in classes)) for cs in classes: if len(cs) > 1: derivs = [rd.derivative(re, c) for c in cs] for a in derivs: for b in derivs: assert rd.equivalent(a, b) @example(rd.star(rd.char(b'0'))) @example(rd.subtract(rd.star(rd.char(b'0')), rd.char(b'0'))) @given(regex()) def test_infinite_regex_have_more_than_one_solution(reg): assume(rd.is_infinite(reg)) x = rd.subtract(reg, rd.literal(rd.lexmin(reg))) assert rd.has_matches(x) @example(rd.concatenate(rd.star(rd.char(b'\0')), rd.char(b'\1'))) @example(rd.union(rd.char(b'\0'), rd.star(rd.literal(b'\0\0')))) @example(rd.star(rd.char(0))) @given(regex()) def test_decompilation(re): assume(rd.has_matches(re)) dfa = rd.build_dfa(re) rewritten = rd.decompile_dfa(*dfa) assert rd.equivalent(re, rewritten) def symdiff(x, y): return rd.union(rd.subtract(x, y), rd.subtract(y, x)) @example( rd.union( rd.char(b'\x00'), rd.subtract(rd.star(rd.char(b'\x01')), rd.Epsilon)), rd.intersection(rd.char(b'\x00'), rd.star(rd.char(b'\x00'))) ) @example(x=rd.literal(b'01'), y=rd.literal(b'11')) @given(regex(), regex()) def test_lexmin_of_symmetric_difference_is_refutation(x, y): assume(not rd.equivalent(x, y)) w = rd.lexmin(symdiff(x, y)) assert w is not None assert w == rd.witness_difference(x, y) @example(rd.union(rd.char(b'\0'), rd.star(rd.char(b'\x00')))) @given(regex()) def test_no_refutation_for_decompilation(re): dec = rd.decompile_dfa(*rd.build_dfa(re)) assert rd.witness_difference(dec, re) is None @given(regex(), st.data()) def test_lexmin_of_mutated_regex_is_refutation(x, data): assume(rd.has_matches(x)) accepting, transitions = rd.build_dfa(x) j = data.draw(st.integers(0, len(accepting) - 1)) assume(transitions[j]) c = data.draw(st.sampled_from(sorted(transitions[j]))) transitions[j][c] = data.draw(st.integers(0, len(accepting) - 1)) y = rd.decompile_dfa(accepting, transitions) assume(rd.has_matches(y)) assume(not rd.equivalent(x, y)) w = rd.lexmin(symdiff(x, y)) assert w is not None assert w == rd.witness_difference(x, y) @example(rd.union(rd.char(b'\x00'), rd.star(rd.char(b'\x00'))), 0, 1) @example(rd.star(rd.char(b'\x00')), 1, 1) @given(regex(), st.integers(0, 10), st.integers(0, 10)) def test_count_below_bound_is_the_same(re, m, n): assume(rd.has_matches(re)) m, n = sorted((m, n)) count1 = rd.LanguageCounter(*rd.build_dfa(re)).count(m) count2 = rd.LanguageCounter(*rd.build_dfa(rd.bounded(re, n))).count(m) assert count1 == count2 def test_clearing_caches_resets_identity(): c1 = rd.char(0) c2 = rd.char(0) rd.clear_caches() c3 = rd.char(0) assert c1 is c2 is not c3 @pytest.mark.parametrize( 'c', [rd.Empty, rd.Epsilon, rd.char(0), rd.bounded(rd.star(rd.char(0)), 1)] ) def test_bounded_does_not_wrap_obviously_bounded(c): assert rd.bounded(c, 1) is c assert rd.bounded(rd.Empty, 1) is rd.Empty def test_basic_impossible_bounds_are_empty(): assert rd.bounded(rd.char(0), -1) is rd.Empty assert rd.bounded(rd.char(0), 0) is rd.Empty def test_bounds_are_not_nested(): x = rd.bounded(rd.star(rd.char(0)), 7) y = rd.bounded(x, 5) assert x.bound == 7 assert y.bound == 5 assert isinstance(y.child, rd.Star) def test_bounds_propagate_through_unions(): assert isinstance( rd.bounded(rd.union(rd.star(rd.char(0)), rd.star(rd.char(1))), 1), rd.Union ) def test_bounds_propagate_through_intersections(): x = rd.star(rd.char(b'\0\1')) y = rd.star(rd.char(b'\1\2')) assert isinstance( rd.bounded(rd.intersection(x, y), 3), rd.Intersection ) def test_bounds_propagate_through_subtraction(): x = rd.star(rd.char(b'\0\1')) y = rd.literal(b'\0\0\0\1') z = rd.subtract(x, y) b = rd.bounded(z, 10) assert isinstance(b, rd.Subtraction) assert isinstance(b.left, rd.Bounded) @example(rd.concatenate(rd.char(b'\x00\x01'), rd.char(b'\x00')), 2) @given(regex(), st.integers(0, 10)) def test_bounded_min_matches_bounds(re, n): bd = rd.bounded(re, n) assume(rd.has_matches(bd)) assert len(rd.lexmin(bd)) <= n @example(rd.char(0)) @given(regex()) def test_non_empty_is_identity_on_non_nullable(re): assume(not re.nullable) assume(rd.has_matches(re)) assert rd.nonempty(re) is re def test_star_collapses_trivial_children(): assert rd.star(rd.Empty) is rd.Epsilon assert rd.star(rd.Epsilon) is rd.Epsilon def test_star_collapses_stars(): x = rd.star(rd.char(0)) assert rd.star(x) is x def test_flattens_unions(): x = rd.star(rd.char(0)) y = rd.star(rd.char(1)) z = rd.star(rd.char(2)) assert rd.union(x, rd.union(y, z)) is rd.union(rd.union(x, z), y) def test_flattens_intersections(): x = rd.star(rd.char(b'01')) y = rd.star(rd.char(b'02')) z = rd.star(rd.char(b'03')) assert rd.intersection(x, rd.intersection(y, z)) is \ rd.intersection(rd.intersection(x, z), y) def test_removes_empty_from_unions(): c = rd.char(0) assert c is rd.union(rd.Empty, c) def test_union_of_empty_is_empty(): assert rd.union(rd.Empty, rd.Empty) is rd.Empty def test_epsilon_prunes_down_intersections(): assert rd.intersection(rd.Epsilon, rd.star(rd.char(0))) is rd.Epsilon assert rd.intersection(rd.Epsilon, rd.char(0)) is rd.Empty def test_empty_kills_intersections(): assert rd.intersection(rd.Empty, rd.Epsilon) is rd.Empty def test_self_intersection_is_identity(): x = rd.char(0) assert rd.intersection(x, x, x) is x def test_valid_starts_of_nullable_cat(): x = rd.concatenate(rd.star(rd.char(0)), rd.char(1)) assert rd.valid_starts(x) == pset([0, 1]) def test_empty_concatenation_is_epsilon(): assert rd.concatenate() is rd.Epsilon def test_single_concatenation_is_self(): assert rd.concatenate(rd.char(0)) is rd.char(0) def test_rebalances_concatenation(): x = rd.char(0) y = rd.star(rd.char(1)) z = rd.char(2) assert rd.concatenate(x, rd.concatenate(y, z)) is \ rd.concatenate(rd.concatenate(x, y), z) def test_self_subtraction_is_empty(): x = rd.char(0) assert rd.subtract(x, x) is rd.Empty def test_empty_subtraction_is_identity(): x = rd.char(0) assert rd.subtract(x, rd.Empty) is x def test_subtraction_from_empty_is_empty(): x = rd.char(0) assert rd.subtract(rd.Empty, x) is rd.Empty def test_subtraction_from_epsilon_checks_nullability(): assert rd.subtract(rd.Epsilon, rd.char(0)) is rd.Epsilon assert rd.subtract(rd.Epsilon, rd.star(rd.char(0))) is rd.Empty def test_merges_multiple_subtracts(): x = rd.star(rd.char(b'012')) y = rd.star(rd.char(b'0')) z = rd.star(rd.char(b'1')) t = rd.subtract(rd.subtract(x, y), z) assert t is rd.subtract(x, rd.union(y, z)) t = rd.subtract(x, rd.subtract(y, z)) assert t.nullable assert isinstance(t, rd.Union) def test_derivatives_of_unions(): assert rd.derivative( rd.union(rd.star(rd.char(0)), rd.star(rd.char(1))), 0 ) is rd.star(rd.char(0)) def test_derivatives_of_intersection(): x = rd.star(rd.char(b'\0\1')) y = rd.star(rd.literal(b'\0\1')) z = rd.intersection(x, y) d1 = rd.derivative(z, 0) d2 = rd.derivative(d1, 1) assert d2 is z def test_valid_starts_of_subtraction(): x = rd.star(rd.char(b'\0\1')) y = rd.char(b'\1') z = rd.subtract(x, y) assert rd.valid_starts(z) == pset([0, 1]) def test_difference_of_same_is_none(): x = rd.char(0) assert rd.witness_difference(x, x) is None def test_difference_of_epsilon_and_non_nullable_is_epsilon(): assert rd.witness_difference(rd.char(0), rd.Epsilon) is b'' def test_witness_difference_of_literals_is_smaller_of_two(): assert rd.witness_difference(rd.literal(b'00'), rd.literal(b'01')) == b'00' def test_lexmin_of_star_is_empty(): assert rd.lexmin(rd.star(rd.char(b'0'))) is b'' def test_empty_is_not_infinite(): assert not rd.is_infinite(rd.Empty) def test_basic_finite_are_not_infinite(): assert not rd.is_infinite(rd.Epsilon) assert not rd.is_infinite(rd.char(0)) def test_union_of_infinite_and_finite_is_infinite(): assert rd.is_infinite(rd.union(rd.char(1), rd.star(rd.char(0)))) def test_can_walk_graph_for_infintiy(): assert rd.is_infinite(rd.intersection( rd.star(rd.char(b'01')), rd.star(rd.char(b'12')) )) def test_bounded_is_not_infinite(): assert not rd.is_infinite(rd.bounded(rd.star(rd.char(0)), 10 ** 6)) def to_basic(re): return rd.decompile_dfa(*rd.build_dfa(re)) def test_complex_graphs_may_be_finite(): x = to_basic(rd.bounded( rd.union(rd.star(rd.char(0)), rd.star(rd.char(1))), 20)) assert not rd.is_infinite(x) def test_non_empty_star_dfa(): accepting, _ = rd.build_dfa(rd.nonempty(rd.star(rd.char(0)))) assert accepting == [False, True] def test_two_phase_dfa(): re = rd.concatenate(rd.star(rd.char(0)), rd.star(rd.char(1))) accepting, transitions = rd.build_dfa(re) assert accepting == [True, True] assert transitions == [{0: 0, 1: 1}, {1: 1}] def test_lexmin_of_empty_is_none(): assert rd.lexmin(rd.Empty) is None def test_trival_dfa_from_intersection(): assert rd.build_dfa( rd.intersection(rd.char(b'\x00'), rd.char(b'\x00\x01'))) == ( [False, True], [{0: 1}, {}] )
812face81685d31ba6466f309191646f1a14e8ad
cf4958e16c65c4445d0c3e749bb407a452a1d722
/tests/identify/test_identify.py
2a4a77aacfaad76c0adf1e9794bbf74a80fecb94
[ "Apache-2.0" ]
permissive
greschd/NodeFinder
a4775566f22c85f880bd34ea4bcbc24e4e006000
0204789afb13fcd1ffb86fd3c013e7debafb2590
refs/heads/dev
2021-10-08T04:14:51.391769
2020-03-13T20:37:59
2020-03-13T20:37:59
96,325,459
3
2
Apache-2.0
2020-03-13T20:38:01
2017-07-05T14:00:37
Python
UTF-8
Python
false
false
3,103
py
# -*- coding: utf-8 -*- # © 2017-2019, ETH Zurich, Institut für Theoretische Physik # Author: Dominik Gresch <[email protected]> """ Tests for the identify step. """ import os import pytest import numpy as np import nodefinder as nf @pytest.fixture def run_identify(sample): """ Fixture to run the identification step for a given sample file. """ def inner(sample_name): search_res = nf.io.load(sample(os.path.join('search', sample_name))) return nf.identify.run(search_res) return inner @pytest.fixture def run_single_identify(run_identify): # pylint: disable=redefined-outer-name """ Fixture to run the identification step for a given sample file which should contain only one cluster, and return the result for that cluster. """ def inner(sample_name): res = run_identify(sample_name) assert len(res) == 1 return res[0] return inner def test_point(run_single_identify): # pylint: disable=redefined-outer-name """ Test that a point is correctly identified. """ res = run_single_identify('point.hdf5') assert res.dimension == 0 assert np.allclose(res.shape.position, [0.2, 0.4, 0.8]) def test_line(run_single_identify): # pylint: disable=redefined-outer-name """ Test that a line is correctly identified. """ res = run_single_identify('line.hdf5') assert res.dimension == 1 assert len(res.shape.graph.nodes) > 10 assert res.shape.degree_count == dict() def test_surface(run_single_identify): # pylint: disable=redefined-outer-name """ Test that a surface is correctly identified. """ res = run_single_identify('surface.hdf5') assert res.dimension == 2 def test_two_lines(run_identify): # pylint: disable=redefined-outer-name """ Test that two 2D lines are correctly identified. """ res = run_identify('two_lines.hdf5') assert len(res) == 2 for identified_object in res: assert identified_object.shape.degree_count == dict() assert identified_object.dimension == 1 assert len(identified_object.shape.graph.nodes) > 10 def test_cross(run_single_identify): # pylint: disable=redefined-outer-name """ Test that the cross is identified without holes. """ res = run_single_identify('cross.hdf5') assert res.dimension == 1 assert res.shape.degree_count == {4: 1} def test_open_line(run_single_identify): # pylint: disable=redefined-outer-name """ Test that an open line is identified correctly. """ res = run_single_identify('line_open.hdf5') assert res.dimension == 1 assert res.shape.degree_count == {1: 2} positions = np.array(list(res.shape.graph.nodes)) assert np.min(positions) < -0.49 assert np.max(positions) > 0.49 def test_line_short_paths(run_single_identify): # pylint: disable=redefined-outer-name """ Test that a short line is identified correctly, without holes. """ res = run_single_identify('line_1d.hdf5') assert res.dimension == 1 assert res.shape.degree_count == dict()
c5c9b79a713e8c961f1d210aadef8e76768b6c54
adfb55c4fe2027986cabb49bf58081241bbba5cc
/SingletonPyton/SingletonPY.py
d5768bd1084ab78954806511859b90bec435b92c
[]
no_license
juanmontes1224/SingletonJavayPython
04003061fcf0a990455689c90fa227e8e921541b
68cd5f09709d503b8ab755676cc357bda7442077
refs/heads/master
2020-07-25T00:18:23.250152
2019-09-12T16:34:11
2019-09-12T16:34:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
import singleton class PatronSingleton: def __new__(obj): try: obj.instance except AttributeError: obj.instance = super(PatronSingleton, obj).__new__(obj) return obj.instance x = singleton.PatronSingleton() y = singleton.PatronSingleton() print("LA INSTANCIA "+str(x)+ " ") print("ES IGUAL A LA INSTANCIA "+str(y)+" ")
f9ce079989453c45688be5ac2affa1080c642420
32eeb97dff5b1bf18cf5be2926b70bb322e5c1bd
/benchmark/calenderNotification/testcase/firstcases/testcase4_021.py
72fdf8a65de555c26803c8d914f81dd294d2e3ae
[]
no_license
Prefest2018/Prefest
c374d0441d714fb90fca40226fe2875b41cf37fc
ac236987512889e822ea6686c5d2e5b66b295648
refs/heads/master
2021-12-09T19:36:24.554864
2021-12-06T12:46:14
2021-12-06T12:46:14
173,225,161
5
0
null
null
null
null
UTF-8
Python
false
false
10,600
py
#coding=utf-8 import os import subprocess import time import traceback from appium import webdriver from appium.webdriver.common.touch_action import TouchAction from selenium.common.exceptions import NoSuchElementException, WebDriverException desired_caps = { 'platformName' : 'Android', 'deviceName' : 'Android Emulator', 'platformVersion' : '4.4', 'appPackage' : 'com.github.quarck.calnotify', 'appActivity' : 'com.github.quarck.calnotify.ui.MainActivity', 'resetKeyboard' : True, 'androidCoverage' : 'com.github.quarck.calnotify/com.github.quarck.calnotify.JacocoInstrumentation', 'noReset' : True } def command(cmd, timeout=5): p = subprocess.Popen(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, shell=True) time.sleep(timeout) p.terminate() return def getElememt(driver, str) : for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str) return element def getElememtBack(driver, str1, str2) : for i in range(0, 2, 1): try: element = driver.find_element_by_android_uiautomator(str1) except NoSuchElementException: time.sleep(1) else: return element for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str2) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str2) return element def swipe(driver, startxper, startyper, endxper, endyper) : size = driver.get_window_size() width = size["width"] height = size["height"] try: driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=1000) except WebDriverException: time.sleep(1) driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=1000) return def scrollToFindElement(driver, str) : for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str) elements = driver.find_elements_by_android_uiautomator(str) if (len(elements) > 1) : for temp in elements : if temp.get_attribute("enabled") == "true" : element = temp break except NoSuchElementException: swipe(driver, 0.5, 0.55, 0.5, 0.2) else : return element for i in range(0, 4, 1): try: element = driver.find_element_by_android_uiautomator(str) elements = driver.find_elements_by_android_uiautomator(str) if (len(elements) > 1): for temp in elements: if temp.get_attribute("enabled") == "true": element = temp break except NoSuchElementException: swipe(driver, 0.5, 0.2, 0.5, 0.55) else : return element return def scrollToClickElement(driver, str) : element = scrollToFindElement(driver, str) if element is None : return else : element.click() def clickInList(driver, str) : element = None if (str is None) : candidates = driver.find_elements_by_class_name("android.widget.CheckedTextView") if len(candidates) >= 1 and checkWindow(driver): element = candidates[len(candidates)-1] else : element = scrollToFindElement(driver, str) if element is not None : element.click() else : if checkWindow(driver) : driver.press_keycode(4) def clickOnCheckable(driver, str, value = "true") : parents = driver.find_elements_by_class_name("android.widget.LinearLayout") for parent in parents: try : parent.find_element_by_android_uiautomator(str) lists = parent.find_elements_by_class_name("android.widget.LinearLayout") if len(lists) == 1 : innere = parent.find_element_by_android_uiautomator("new UiSelector().checkable(true)") nowvalue = innere.get_attribute("checked") if (nowvalue != value) : innere.click() break except NoSuchElementException: continue def typeText(driver, value) : element = getElememt(driver, "new UiSelector().className(\"android.widget.EditText\")") element.clear() element.send_keys(value) enterelement = getElememt(driver, "new UiSelector().text(\"OK\")") if (enterelement is None) : if checkWindow(driver): driver.press_keycode(4) else : enterelement.click() def checkWindow(driver) : dsize = driver.get_window_size() nsize = driver.find_element_by_class_name("android.widget.FrameLayout").size if dsize['height'] > nsize['height']: return True else : return False def testingSeekBar(driver, str, value): try : if(not checkWindow(driver)) : element = seekForNearestSeekBar(driver, str) else : element = driver.find_element_by_class_name("android.widget.SeekBar") if (None != element): settingSeekBar(driver, element, value) driver.find_element_by_android_uiautomator("new UiSelector().text(\"OK\")").click() except NoSuchElementException: time.sleep(1) def seekForNearestSeekBar(driver, str): parents = driver.find_elements_by_class_name("android.widget.LinearLayout") for parent in parents: try : parent.find_element_by_android_uiautomator(str) lists = parent.find_elements_by_class_name("android.widget.LinearLayout") if len(lists) == 1 : innere = parent.find_element_by_class_name("android.widget.SeekBar") return innere break except NoSuchElementException: continue def settingSeekBar(driver, element, value) : x = element.rect.get("x") y = element.rect.get("y") width = element.rect.get("width") height = element.rect.get("height") TouchAction(driver).press(None, x + 10, y + height/2).move_to(None, x + width * value,y + height/2).release().perform() y = value def clickInMultiList(driver, str) : element = None if (str is None) : candidates = driver.find_elements_by_class_name("android.widget.CheckedTextView") if len(candidates) >= 1 and checkWindow(driver): element = candidates[len(candidates)-1] else : element = scrollToFindElement(driver, str) if element is not None : nowvalue = element.get_attribute("checked") if (nowvalue != "true") : element.click() if checkWindow(driver) : driver.find_element_by_android_uiautomator("new UiSelector().text(\"OK\")").click() # testcase4_021 try : starttime = time.time() driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) element = getElememt(driver, "new UiSelector().resourceId(\"com.github.quarck.calnotify:id/card_view_event_name\").className(\"android.widget.TextView\")") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Until specific time and date\")", "new UiSelector().className(\"android.widget.TextView\").instance(14)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"01\")", "new UiSelector().className(\"android.widget.Button\").instance(2)") TouchAction(driver).long_press(element).release().perform() element = getElememt(driver, "new UiSelector().resourceId(\"android:id/numberpicker_input\").className(\"android.widget.EditText\")") element.clear() element.send_keys("Feb"); element = getElememtBack(driver, "new UiSelector().text(\"29\")", "new UiSelector().className(\"android.widget.Button\").instance(3)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Jan\")", "new UiSelector().className(\"android.widget.Button\").instance(1)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Oct\")", "new UiSelector().className(\"android.widget.Button\")") TouchAction(driver).long_press(element).release().perform() element = getElememtBack(driver, "new UiSelector().text(\"Oct\")", "new UiSelector().className(\"android.widget.Button\").instance(1)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Nov\")", "new UiSelector().className(\"android.widget.Button\").instance(1)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"2020\")", "new UiSelector().className(\"android.widget.Button\").instance(4)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"26\")", "new UiSelector().className(\"android.widget.Button\").instance(2)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Sep\")", "new UiSelector().className(\"android.widget.Button\").instance(1)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"2019\")", "new UiSelector().className(\"android.widget.Button\").instance(5)") TouchAction(driver).long_press(element).release().perform() element = getElememtBack(driver, "new UiSelector().text(\"2020\")", "new UiSelector().className(\"android.widget.Button\").instance(5)") TouchAction(driver).long_press(element).release().perform() element = getElememtBack(driver, "new UiSelector().text(\"2018\")", "new UiSelector().className(\"android.widget.Button\").instance(5)") TouchAction(driver).long_press(element).release().perform() element = getElememtBack(driver, "new UiSelector().text(\"Dec\")", "new UiSelector().className(\"android.widget.Button\")") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Feb\")", "new UiSelector().className(\"android.widget.Button\").instance(1)") TouchAction(driver).long_press(element).release().perform() element = getElememtBack(driver, "new UiSelector().text(\"27\")", "new UiSelector().className(\"android.widget.Button\").instance(2)") TouchAction(driver).long_press(element).release().perform() swipe(driver, 0.5, 0.8, 0.5, 0.2) element = getElememtBack(driver, "new UiSelector().text(\"27\")", "new UiSelector().className(\"android.widget.Button\").instance(2)") TouchAction(driver).long_press(element).release().perform() except Exception, e: print 'FAIL' print 'str(e):\t\t', str(e) print 'repr(e):\t', repr(e) print traceback.format_exc() else: print 'OK' finally: cpackage = driver.current_package endtime = time.time() print 'consumed time:', str(endtime - starttime), 's' command("adb shell am broadcast -a com.example.pkg.END_EMMA --es name \"4_021\"") jacocotime = time.time() print 'jacoco time:', str(jacocotime - endtime), 's' driver.quit() if (cpackage != 'com.github.quarck.calnotify'): cpackage = "adb shell am force-stop " + cpackage os.popen(cpackage)
6a80192155d9e0511c8cc5db8443d8d3333429d0
f70da0d011ad2d96ffd6a693e6cd36f1e1df56cb
/Proyecto2/Optimization/Instructions/Assignment.py
fd3c7e81489ded2d4756af82502cbb7a0c91433f
[]
no_license
diemorales96/OLC_Proyecto2_201503958
aeaa2ba013f9ed643b324537cc6493710d407226
7779c619e635b7dc7cc2e47130a1c654ac84889a
refs/heads/main
2023-09-02T05:11:57.732595
2021-11-13T04:54:04
2021-11-13T04:54:04
427,418,116
0
0
null
null
null
null
UTF-8
Python
false
false
689
py
from Optimization.C3DInstruction import * from Optimization.Expressions import * class Assignment(C3DInstruction): def __init__(self, place, exp, line, column): C3DInstruction.__init__(self, line, column) self.place = place self.exp = exp def selfAssignment(self): if type(self.exp) is Literal: aux = self.place.getCode() == self.exp.getCode() else: aux = self.place.getCode() == self.exp.right.getCode() or self.place.getCode() == self.exp.left.getCode() return aux def getCode(self): if self.deleted: return '' return f'{self.place.getCode()} = {self.exp.getCode()};'
f9265fb504e00e40640d423894f0bbbba00b6493
947fa6a4a6155ffce0038b11f4d743603418ad68
/.c9/metadata/environment/ib_miniprojects_backend/covid_dashboard/tests/presenters/test_raise_invalid_username_exception.py
016394fe848a71bbce6cc3bdafa9be4381937364
[]
no_license
bharathi151/bharathi_diyyala
bd75e10639d7d22b332d5ce677e7799402dc4984
99f8657d010c790a0e4e4c9d6b57f81814784eb0
refs/heads/master
2022-11-21T12:43:48.401239
2020-07-23T09:05:52
2020-07-23T09:05:52
281,903,260
0
0
null
null
null
null
UTF-8
Python
false
false
9,973
py
{"filter":false,"title":"test_raise_invalid_username_exception.py","tooltip":"/ib_miniprojects_backend/covid_dashboard/tests/presenters/test_raise_invalid_username_exception.py","undoManager":{"mark":29,"position":29,"stack":[[{"start":{"row":3,"column":60},"end":{"row":3,"column":70},"action":"remove","lines":["COMMENT_ID"],"id":2}],[{"start":{"row":3,"column":60},"end":{"row":3,"column":61},"action":"insert","lines":["U"],"id":3}],[{"start":{"row":3,"column":52},"end":{"row":3,"column":61},"action":"remove","lines":["INVALID_U"],"id":4},{"start":{"row":3,"column":52},"end":{"row":3,"column":69},"action":"insert","lines":["INVALID_USER_NAME"]}],[{"start":{"row":3,"column":14},"end":{"row":3,"column":15},"action":"remove","lines":["2"],"id":5},{"start":{"row":3,"column":13},"end":{"row":3,"column":14},"action":"remove","lines":["v"]},{"start":{"row":3,"column":12},"end":{"row":3,"column":13},"action":"remove","lines":["_"]},{"start":{"row":3,"column":11},"end":{"row":3,"column":12},"action":"remove","lines":["t"]},{"start":{"row":3,"column":10},"end":{"row":3,"column":11},"action":"remove","lines":["s"]},{"start":{"row":3,"column":9},"end":{"row":3,"column":10},"action":"remove","lines":["o"]},{"start":{"row":3,"column":8},"end":{"row":3,"column":9},"action":"remove","lines":["p"]},{"start":{"row":3,"column":7},"end":{"row":3,"column":8},"action":"remove","lines":["_"]},{"start":{"row":3,"column":6},"end":{"row":3,"column":7},"action":"remove","lines":["b"]},{"start":{"row":3,"column":5},"end":{"row":3,"column":6},"action":"remove","lines":["f"]}],[{"start":{"row":3,"column":5},"end":{"row":3,"column":6},"action":"insert","lines":["c"],"id":6}],[{"start":{"row":3,"column":5},"end":{"row":3,"column":6},"action":"remove","lines":["c"],"id":7},{"start":{"row":3,"column":5},"end":{"row":3,"column":20},"action":"insert","lines":["covid_dashboard"]}],[{"start":{"row":4,"column":14},"end":{"row":4,"column":15},"action":"remove","lines":["2"],"id":8},{"start":{"row":4,"column":13},"end":{"row":4,"column":14},"action":"remove","lines":["v"]},{"start":{"row":4,"column":12},"end":{"row":4,"column":13},"action":"remove","lines":["_"]},{"start":{"row":4,"column":11},"end":{"row":4,"column":12},"action":"remove","lines":["t"]},{"start":{"row":4,"column":10},"end":{"row":4,"column":11},"action":"remove","lines":["s"]},{"start":{"row":4,"column":9},"end":{"row":4,"column":10},"action":"remove","lines":["o"]},{"start":{"row":4,"column":8},"end":{"row":4,"column":9},"action":"remove","lines":["p"]},{"start":{"row":4,"column":7},"end":{"row":4,"column":8},"action":"remove","lines":["_"]},{"start":{"row":4,"column":6},"end":{"row":4,"column":7},"action":"remove","lines":["b"]},{"start":{"row":4,"column":5},"end":{"row":4,"column":6},"action":"remove","lines":["f"]}],[{"start":{"row":4,"column":5},"end":{"row":4,"column":6},"action":"insert","lines":["c"],"id":9}],[{"start":{"row":4,"column":5},"end":{"row":4,"column":6},"action":"remove","lines":["c"],"id":10},{"start":{"row":4,"column":5},"end":{"row":4,"column":20},"action":"insert","lines":["covid_dashboard"]}],[{"start":{"row":9,"column":41},"end":{"row":9,"column":42},"action":"remove","lines":["D"],"id":11},{"start":{"row":9,"column":40},"end":{"row":9,"column":41},"action":"remove","lines":["I"]},{"start":{"row":9,"column":39},"end":{"row":9,"column":40},"action":"remove","lines":["_"]},{"start":{"row":9,"column":38},"end":{"row":9,"column":39},"action":"remove","lines":["T"]},{"start":{"row":9,"column":37},"end":{"row":9,"column":38},"action":"remove","lines":["N"]},{"start":{"row":9,"column":36},"end":{"row":9,"column":37},"action":"remove","lines":["E"]},{"start":{"row":9,"column":35},"end":{"row":9,"column":36},"action":"remove","lines":["M"]},{"start":{"row":9,"column":34},"end":{"row":9,"column":35},"action":"remove","lines":["M"]},{"start":{"row":9,"column":33},"end":{"row":9,"column":34},"action":"remove","lines":["O"]},{"start":{"row":9,"column":32},"end":{"row":9,"column":33},"action":"remove","lines":["C"]}],[{"start":{"row":9,"column":32},"end":{"row":9,"column":33},"action":"insert","lines":["U"],"id":12}],[{"start":{"row":9,"column":24},"end":{"row":9,"column":33},"action":"remove","lines":["INVALID_U"],"id":13},{"start":{"row":9,"column":24},"end":{"row":9,"column":41},"action":"insert","lines":["INVALID_USER_NAME"]}],[{"start":{"row":10,"column":44},"end":{"row":10,"column":45},"action":"remove","lines":["D"],"id":14}],[{"start":{"row":10,"column":44},"end":{"row":10,"column":45},"action":"insert","lines":["\\"],"id":15}],[{"start":{"row":10,"column":44},"end":{"row":10,"column":45},"action":"remove","lines":["\\"],"id":16},{"start":{"row":10,"column":43},"end":{"row":10,"column":44},"action":"remove","lines":["I"]},{"start":{"row":10,"column":42},"end":{"row":10,"column":43},"action":"remove","lines":["_"]},{"start":{"row":10,"column":41},"end":{"row":10,"column":42},"action":"remove","lines":["T"]},{"start":{"row":10,"column":40},"end":{"row":10,"column":41},"action":"remove","lines":["N"]},{"start":{"row":10,"column":39},"end":{"row":10,"column":40},"action":"remove","lines":["E"]},{"start":{"row":10,"column":38},"end":{"row":10,"column":39},"action":"remove","lines":["M"]},{"start":{"row":10,"column":37},"end":{"row":10,"column":38},"action":"remove","lines":["M"]},{"start":{"row":10,"column":36},"end":{"row":10,"column":37},"action":"remove","lines":["O"]},{"start":{"row":10,"column":35},"end":{"row":10,"column":36},"action":"remove","lines":["C"]}],[{"start":{"row":10,"column":35},"end":{"row":10,"column":36},"action":"insert","lines":["U"],"id":17}],[{"start":{"row":10,"column":27},"end":{"row":10,"column":36},"action":"remove","lines":["INVALID_U"],"id":18},{"start":{"row":10,"column":27},"end":{"row":10,"column":44},"action":"insert","lines":["INVALID_USER_NAME"]}],[{"start":{"row":12,"column":23},"end":{"row":12,"column":57},"action":"remove","lines":["raise_invalid_comment_id_exception"],"id":19}],[{"start":{"row":12,"column":23},"end":{"row":12,"column":24},"action":"insert","lines":["r"],"id":20},{"start":{"row":12,"column":24},"end":{"row":12,"column":25},"action":"insert","lines":["a"]}],[{"start":{"row":12,"column":23},"end":{"row":12,"column":25},"action":"remove","lines":["ra"],"id":21},{"start":{"row":12,"column":23},"end":{"row":12,"column":55},"action":"insert","lines":["raise_invalid_username_exception"]}],[{"start":{"row":7,"column":4},"end":{"row":7,"column":43},"action":"remove","lines":["test_raise_invalid_comment_id_exception"],"id":22}],[{"start":{"row":7,"column":4},"end":{"row":7,"column":5},"action":"insert","lines":["t"],"id":23},{"start":{"row":7,"column":5},"end":{"row":7,"column":6},"action":"insert","lines":["e"]},{"start":{"row":7,"column":6},"end":{"row":7,"column":7},"action":"insert","lines":["s"]},{"start":{"row":7,"column":7},"end":{"row":7,"column":8},"action":"insert","lines":["t"]}],[{"start":{"row":7,"column":7},"end":{"row":7,"column":8},"action":"remove","lines":["t"],"id":24},{"start":{"row":7,"column":6},"end":{"row":7,"column":7},"action":"remove","lines":["s"]},{"start":{"row":7,"column":5},"end":{"row":7,"column":6},"action":"remove","lines":["e"]},{"start":{"row":7,"column":4},"end":{"row":7,"column":5},"action":"remove","lines":["t"]}],[{"start":{"row":7,"column":4},"end":{"row":7,"column":5},"action":"insert","lines":["r"],"id":25},{"start":{"row":7,"column":5},"end":{"row":7,"column":6},"action":"insert","lines":["a"]}],[{"start":{"row":7,"column":4},"end":{"row":7,"column":6},"action":"remove","lines":["ra"],"id":26},{"start":{"row":7,"column":4},"end":{"row":7,"column":36},"action":"insert","lines":["raise_invalid_password_exception"]}],[{"start":{"row":7,"column":4},"end":{"row":7,"column":5},"action":"insert","lines":["t"],"id":27},{"start":{"row":7,"column":5},"end":{"row":7,"column":6},"action":"insert","lines":["e"]},{"start":{"row":7,"column":6},"end":{"row":7,"column":7},"action":"insert","lines":["s"]},{"start":{"row":7,"column":7},"end":{"row":7,"column":8},"action":"insert","lines":["t"]},{"start":{"row":7,"column":8},"end":{"row":7,"column":9},"action":"insert","lines":["_"]}],[{"start":{"row":7,"column":30},"end":{"row":7,"column":31},"action":"remove","lines":["d"],"id":28},{"start":{"row":7,"column":29},"end":{"row":7,"column":30},"action":"remove","lines":["r"]},{"start":{"row":7,"column":28},"end":{"row":7,"column":29},"action":"remove","lines":["o"]},{"start":{"row":7,"column":27},"end":{"row":7,"column":28},"action":"remove","lines":["w"]},{"start":{"row":7,"column":26},"end":{"row":7,"column":27},"action":"remove","lines":["s"]},{"start":{"row":7,"column":25},"end":{"row":7,"column":26},"action":"remove","lines":["s"]}],[{"start":{"row":7,"column":24},"end":{"row":7,"column":25},"action":"remove","lines":["a"],"id":29},{"start":{"row":7,"column":23},"end":{"row":7,"column":24},"action":"remove","lines":["p"]}],[{"start":{"row":7,"column":23},"end":{"row":7,"column":24},"action":"insert","lines":["u"],"id":30},{"start":{"row":7,"column":24},"end":{"row":7,"column":25},"action":"insert","lines":["s"]},{"start":{"row":7,"column":25},"end":{"row":7,"column":26},"action":"insert","lines":["e"]},{"start":{"row":7,"column":26},"end":{"row":7,"column":27},"action":"insert","lines":["r"]},{"start":{"row":7,"column":27},"end":{"row":7,"column":28},"action":"insert","lines":["n"]},{"start":{"row":7,"column":28},"end":{"row":7,"column":29},"action":"insert","lines":["a"]}],[{"start":{"row":7,"column":29},"end":{"row":7,"column":30},"action":"insert","lines":["m"],"id":31},{"start":{"row":7,"column":30},"end":{"row":7,"column":31},"action":"insert","lines":["e"]}]]},"ace":{"folds":[],"scrolltop":0,"scrollleft":0,"selection":{"start":{"row":16,"column":0},"end":{"row":16,"column":0},"isBackwards":false},"options":{"guessTabSize":true,"useWrapMode":false,"wrapToView":true},"firstLineState":0},"timestamp":1590568234028,"hash":"b2f85c5d800a71bad9192aa8472738ff9c5be858"}
39887b28df78f262c8bbab74d1632da71f0305cb
13130259156f6f9d16670cea88aa2608dd477d16
/goeievraag/api.py
da5550ee4d634d841e456869f5e506e812c80368
[]
no_license
fkunneman/DiscoSumo
d459251d543be5f4df38292a96f52baf4b520a0b
ed8f214834cf0c2e04a3bc429253502f7e79fbf8
refs/heads/master
2022-12-14T13:34:41.496963
2019-07-31T15:57:02
2019-07-31T15:57:02
140,422,779
2
1
null
2022-12-08T04:57:55
2018-07-10T11:36:00
Python
UTF-8
Python
false
false
689
py
import json from flask import Flask, request from main import GoeieVraag app = Flask(__name__) model = GoeieVraag() @app.route("/rank", methods=['GET']) def search(): ''' :return: return the 10 most semantic-similar questions to the query based on our official sysmte ''' questions = {'code': 400} query, method = '', 'ensemble' if 'q' in request.args: query = request.args['q'].strip() if 'method' in request.args: method = request.args['method'].strip() if request.method == 'GET': questions = model(query=query.strip(), method=method) questions = { 'code':200, 'result': questions } return json.dumps(questions)
88aef09482138586ab261da2c44dcb42137269ec
e8912ed90e97730b465b1e65084c1dbcc741a73e
/기본/Cage D4/practice.py
61641fe72db9d47335a7aec6862d65842133b0aa
[]
no_license
yhnb3/Algorithm_lecture
a0dcefc27ed17bec3cadae56d69e3cc64239cbfb
461367e907e2b8a6a0cdc629e6a9029d9b03fba1
refs/heads/master
2020-12-22T05:39:05.412680
2020-04-10T09:16:19
2020-04-10T09:16:19
236,685,987
0
0
null
null
null
null
UTF-8
Python
false
false
497
py
import sys sys.stdin = open('samsung_bus.txt') T = int(input()) for tc in range(1, T + 1): N = int(input()) A = [list(map(int, input().split())) for _ in range(N)] P = int(input()) C = [list(map(int, input())) for _ in range(P)] cnt = [0] * 5002 print(C) for i in range(N): for j in range(A[i][0], A[i][1] + 1): cnt[j] += 1 print('#{}'.format(tc), end='') for a in range(P): print(' {}'.format(cnt[C[a][0]]), end='') print()
bb6f61c1e8ff19905364983a96a89e0015f61066
bc441bb06b8948288f110af63feda4e798f30225
/anxin_service_sdk/model/easy_flow/target_info_pb2.py
bb13e8970970155b8556c9e7d1ab4fbeac6f2cce
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
11,758
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: target_info.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from anxin_service_sdk.model.cmdb import cluster_info_pb2 as anxin__service__sdk_dot_model_dot_cmdb_dot_cluster__info__pb2 from anxin_service_sdk.model.easy_flow import version_info_pb2 as anxin__service__sdk_dot_model_dot_easy__flow_dot_version__info__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='target_info.proto', package='easy_flow', syntax='proto3', serialized_options=_b('ZCgo.easyops.local/contracts/protorepo-models/easyops/model/easy_flow'), serialized_pb=_b('\n\x11target_info.proto\x12\teasy_flow\x1a/anxin_service_sdk/model/cmdb/cluster_info.proto\x1a\x34\x61nxin_service_sdk/model/easy_flow/version_info.proto\"\x9b\x04\n\nTargetInfo\x12\x10\n\x08targetId\x18\x01 \x01(\t\x12\x12\n\ntargetName\x18\x02 \x01(\t\x12\x12\n\ninstanceId\x18\x03 \x01(\t\x12\"\n\x07\x63luster\x18\x04 \x01(\x0b\x32\x11.cmdb.ClusterInfo\x12\x38\n\x0cinstanceInfo\x18\x05 \x03(\x0b\x32\".easy_flow.TargetInfo.InstanceInfo\x12:\n\roperationInfo\x18\x06 \x03(\x0b\x32#.easy_flow.TargetInfo.OperationInfo\x1a\x8b\x01\n\x0cInstanceInfo\x12\x13\n\x0bversionName\x18\x01 \x01(\t\x12+\n\x0bversionInfo\x18\x02 \x01(\x0b\x32\x16.easy_flow.VersionInfo\x12\x11\n\tpackageId\x18\x03 \x01(\t\x12\x13\n\x0binstallPath\x18\x04 \x01(\t\x12\x11\n\tversionId\x18\x05 \x01(\t\x1a\xaa\x01\n\rOperationInfo\x12\x11\n\toperation\x18\x01 \x01(\t\x12-\n\rversionToInfo\x18\x02 \x01(\x0b\x32\x16.easy_flow.VersionInfo\x12/\n\x0fversionFromInfo\x18\x03 \x01(\x0b\x32\x16.easy_flow.VersionInfo\x12\x13\n\x0binstallPath\x18\x04 \x01(\t\x12\x11\n\tpackageId\x18\x05 \x01(\tBEZCgo.easyops.local/contracts/protorepo-models/easyops/model/easy_flowb\x06proto3') , dependencies=[anxin__service__sdk_dot_model_dot_cmdb_dot_cluster__info__pb2.DESCRIPTOR,anxin__service__sdk_dot_model_dot_easy__flow_dot_version__info__pb2.DESCRIPTOR,]) _TARGETINFO_INSTANCEINFO = _descriptor.Descriptor( name='InstanceInfo', full_name='easy_flow.TargetInfo.InstanceInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='versionName', full_name='easy_flow.TargetInfo.InstanceInfo.versionName', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='versionInfo', full_name='easy_flow.TargetInfo.InstanceInfo.versionInfo', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='packageId', full_name='easy_flow.TargetInfo.InstanceInfo.packageId', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='installPath', full_name='easy_flow.TargetInfo.InstanceInfo.installPath', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='versionId', full_name='easy_flow.TargetInfo.InstanceInfo.versionId', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=363, serialized_end=502, ) _TARGETINFO_OPERATIONINFO = _descriptor.Descriptor( name='OperationInfo', full_name='easy_flow.TargetInfo.OperationInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='operation', full_name='easy_flow.TargetInfo.OperationInfo.operation', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='versionToInfo', full_name='easy_flow.TargetInfo.OperationInfo.versionToInfo', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='versionFromInfo', full_name='easy_flow.TargetInfo.OperationInfo.versionFromInfo', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='installPath', full_name='easy_flow.TargetInfo.OperationInfo.installPath', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='packageId', full_name='easy_flow.TargetInfo.OperationInfo.packageId', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=505, serialized_end=675, ) _TARGETINFO = _descriptor.Descriptor( name='TargetInfo', full_name='easy_flow.TargetInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='targetId', full_name='easy_flow.TargetInfo.targetId', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='targetName', full_name='easy_flow.TargetInfo.targetName', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='instanceId', full_name='easy_flow.TargetInfo.instanceId', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cluster', full_name='easy_flow.TargetInfo.cluster', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='instanceInfo', full_name='easy_flow.TargetInfo.instanceInfo', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='operationInfo', full_name='easy_flow.TargetInfo.operationInfo', index=5, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_TARGETINFO_INSTANCEINFO, _TARGETINFO_OPERATIONINFO, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=136, serialized_end=675, ) _TARGETINFO_INSTANCEINFO.fields_by_name['versionInfo'].message_type = anxin__service__sdk_dot_model_dot_easy__flow_dot_version__info__pb2._VERSIONINFO _TARGETINFO_INSTANCEINFO.containing_type = _TARGETINFO _TARGETINFO_OPERATIONINFO.fields_by_name['versionToInfo'].message_type = anxin__service__sdk_dot_model_dot_easy__flow_dot_version__info__pb2._VERSIONINFO _TARGETINFO_OPERATIONINFO.fields_by_name['versionFromInfo'].message_type = anxin__service__sdk_dot_model_dot_easy__flow_dot_version__info__pb2._VERSIONINFO _TARGETINFO_OPERATIONINFO.containing_type = _TARGETINFO _TARGETINFO.fields_by_name['cluster'].message_type = anxin__service__sdk_dot_model_dot_cmdb_dot_cluster__info__pb2._CLUSTERINFO _TARGETINFO.fields_by_name['instanceInfo'].message_type = _TARGETINFO_INSTANCEINFO _TARGETINFO.fields_by_name['operationInfo'].message_type = _TARGETINFO_OPERATIONINFO DESCRIPTOR.message_types_by_name['TargetInfo'] = _TARGETINFO _sym_db.RegisterFileDescriptor(DESCRIPTOR) TargetInfo = _reflection.GeneratedProtocolMessageType('TargetInfo', (_message.Message,), { 'InstanceInfo' : _reflection.GeneratedProtocolMessageType('InstanceInfo', (_message.Message,), { 'DESCRIPTOR' : _TARGETINFO_INSTANCEINFO, '__module__' : 'target_info_pb2' # @@protoc_insertion_point(class_scope:easy_flow.TargetInfo.InstanceInfo) }) , 'OperationInfo' : _reflection.GeneratedProtocolMessageType('OperationInfo', (_message.Message,), { 'DESCRIPTOR' : _TARGETINFO_OPERATIONINFO, '__module__' : 'target_info_pb2' # @@protoc_insertion_point(class_scope:easy_flow.TargetInfo.OperationInfo) }) , 'DESCRIPTOR' : _TARGETINFO, '__module__' : 'target_info_pb2' # @@protoc_insertion_point(class_scope:easy_flow.TargetInfo) }) _sym_db.RegisterMessage(TargetInfo) _sym_db.RegisterMessage(TargetInfo.InstanceInfo) _sym_db.RegisterMessage(TargetInfo.OperationInfo) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
8207e03ca2def6f397ee315a6a5d7197f231c0b7
e51c1abe850bacebaed50db66cf05f613db8c2f6
/djangoevents/djangoevents/settings.py
b13380b36ea4611488a6ef4c35face2ce45651f9
[]
no_license
zurcx/bkp_provi_djangoevents
26a5932c170b52b2dd0e983265778d35bb9103ad
b7b4e5ec6ca3730c0c52b7e10341b10157104737
refs/heads/master
2021-01-19T13:33:25.967838
2013-06-10T12:43:08
2013-06-10T12:43:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,302
py
# Django settings for djangoevents project. import os PROJECT_ROOT = os.path.dirname(__file__) DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', '[email protected]'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'djangoevents.db', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/Sao_Paulo' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'pt-br' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = os.path.join(PROJECT_ROOT, 'media') # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '/media/' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = os.path.join(PROJECT_ROOT, 'static_files') # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( os.path.join(PROJECT_ROOT, 'static'), ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = 'yg2qqmd0xlo)1ybqq)cyxz-*7w*n^3ds_oo7j3^&amp;q=#*a3b6qa' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'djangoevents.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'djangoevents.wsgi.application' TEMPLATE_DIRS = ( os.path.join(PROJECT_ROOT, 'templates') ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Uncomment the next line to enable the admin: 'django.contrib.admin', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', 'core', 'events', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } } EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'
2b40d9cd03bf736e19b0d5cf91b979b04c27b6f2
4f3e9294fff97ec4d14bfa43e45501a5ba53de00
/ver0028/py_subplot2.py
c752457f7da5ccf4fa5e05eaba84f239d2189e43
[]
no_license
corrod/mittet_main
6e7264df1d93d8f00437d4ab153d9c906057ce13
4dc60eee8ca1daf9ef70fd10ed300b6fa6a1e67d
refs/heads/master
2021-01-06T20:38:30.150942
2015-02-26T05:17:44
2015-02-26T05:17:44
20,375,520
0
0
null
null
null
null
UTF-8
Python
false
false
1,452
py
# coding:utf-8 from pylab import * import numpy as np import scipy as sp import matplotlib.pyplot as plt f = figure() subplots_adjust(hspace=0.001) ax1 = subplot(411) data1 = np.loadtxt('./ex1010.d') x1 = data1[:,0] y1 = data1[:,1] plt.plot(x1,y1) ax2 = subplot(412) data2 = np.loadtxt('./ex1020.d') x2 = data2[:,0] y2 = data2[:,1] plt.plot(x2,y2) ax3 = subplot(413) data3 = np.loadtxt('./ex1030.d') x3 = data3[:,0] y3 = data3[:,1] plt.plot(x3,y3) # ax4 = subplot(414) # data4 = np.loadtxt('./ex1040.d') # x4 = data4[:,0] # y4 = data4[:,1] # plt.plot(x4,y4) # ax5 = subplot(615) # data5 = np.loadtxt('./hz1040.d') # x5 = data5[:,0] # y5 = data5[:,1] # plt.plot(x5,y5) # ax6 = subplot(616) # data6 = np.loadtxt('./hz1050.d') # x6 = data6[:,0] # y6 = data6[:,1] # plt.plot(x6,y6) show() # from pylab import * # t = arange(0.0, 2.0, 0.01) # s1 = sin(2*pi*t) # s2 = exp(-t) # s3 = s1*s2 # # axes rect in relative 0,1 coords left, bottom, width, height. Turn # # off xtick labels on all but the lower plot # f = figure() # subplots_adjust(hspace=0.001) # ax1 = subplot(311) # ax1.plot(t,s1) # yticks(arange(-0.9, 1.0, 0.4)) # ylim(-1,1) # ax2 = subplot(312, sharex=ax1) # ax2.plot(t,s2) # yticks(arange(0.1, 1.0, 0.2)) # ylim(0,1) # ax3 = subplot(313, sharex=ax1) # ax3.plot(t,s3) # yticks(arange(-0.9, 1.0, 0.4)) # ylim(-1,1) # xticklabels = ax1.get_xticklabels()+ax2.get_xticklabels() # setp(xticklabels, visible=False) # show()
a1638f815e06cb7c87660b8bb36c0ca73466c002
aa9f21f74196960ab57ffa0ff664b2a19de17e0b
/surrogate/files/moeaJSON.py
18cd24118fa15aa75333f0d8743d49d67f29db5d
[ "MIT" ]
permissive
onlymezhong/Surrogate-Model
36a73a40f38bc9e4d86123a2a12f11a369195024
1e47b5eaff74ee3491ef436dd604fe2bc3af8f57
refs/heads/master
2021-04-28T22:54:48.947536
2016-12-22T15:38:09
2016-12-22T15:38:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,651
py
import json import matplotlib.pyplot as plt import numpy as np from matplotlib.pyplot import cm class JSON(object): def __init__(self, fileName, numVar, numPop, numCon, numObj, numGen): self.fileName = fileName self.numPop = numPop self.numVar = numVar self.numCon = numCon self.numObj = numObj self.numGen = numGen def writeHeader(self): outFile = open(self.fileName, "wt") outFile.write("{\n") outFile.write("\"generation\": [\n") outFile.close() def writeEnd(self): outFile = open(self.fileName, "a") outFile.write("]\n}\n") outFile.close() def writePareto(self, individuals, igen): outFile = open(self.fileName, "a") outFile.write(" {\n") outFile.write(" \"variable\" : [") outFile.write("[%f" % (individuals[0].variable[0])) for j in range(1, self.numVar): outFile.write(",%f" % (individuals[0].variable[j])) outFile.write("]") for i in range(1, self.numPop): outFile.write(",[%f" % (individuals[i].variable[0])) for j in range(1, self.numVar): outFile.write(",%f" % (individuals[i].variable[j])) outFile.write("]") outFile.write("],\n") outFile.write(" \"objective\" : [[") outFile.write("[%f" % (individuals[0].fitness.values[0])) for j in range(1, self.numObj): outFile.write(",%f" % (individuals[0].fitness.values[j])) outFile.write("]") for i in range(1, self.numPop): outFile.write(",[%f" % (individuals[i].fitness.values[0])) for j in range(1, self.numObj): outFile.write(",%f" % (individuals[i].fitness.values[j])) outFile.write("]") outFile.write("]]") if self.numCon > 0: outFile.write(",") outFile.write("\n") if self.numCon > 0: outFile.write(" \"constraint\" : [") outFile.write("[%f" % (individuals[0].constraint[0])) for j in range(1, self.numCon): outFile.write(",%f" % (individuals[0].constraint[j])) outFile.write("]") for i in range(1, self.numPop): outFile.write(",[%f" % (individuals[i].constraint[0])) for j in range(1, self.numCon): outFile.write(",%f" % (individuals[i].constraint[j])) outFile.write("]") outFile.write("]") outFile.write("\n") outFile.write(" }") if igen < self.numGen - 1: outFile.write(",") outFile.write("\n") outFile.close() def plot_json(self): with open(self.fileName) as data_file: data = json.load(data_file) gen = data["generation"] gen_tot = len(gen) color = iter(cm.gray(np.linspace(1, 0.1, gen_tot))) # color = iter(cm.rainbow(np.linspace(0,1,gen_tot))) for index, item in enumerate(gen): obj = item["objective"][0] obj_tot = len(obj) x = [] y = [] r = index / gen_tot g = index / gen_tot b = index / gen_tot for iobj in obj: x.append(iobj[0]) y.append(iobj[1]) plt.plot(x, y, '.', color=next(color), label=str(index)) plt.title('moea.json') plt.xlabel('obj1') # plt.xlim([0.7,1.1]) plt.ylabel('obj2') # plt.ylim([6,9]) plt.grid(True) # plt.legend(loc='best') plt.show()
d67369c8830125c0b3fbd5e61988f907aa13951b
f8d3f814067415485bb439d7fe92dc2bbe22a048
/solem/examples/ch1_morphology.py
e0fe53f9ce60b8c8db29fecba431b2392b479042
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference", "BSD-2-Clause" ]
permissive
gmonkman/python
2f9ab8f159c01f6235c86cb0cd52062cd3fdedd3
9123aa6baf538b662143b9098d963d55165e8409
refs/heads/master
2023-04-09T15:53:29.746676
2022-11-26T20:35:21
2022-11-26T20:35:21
60,254,898
0
2
null
2023-03-24T22:58:39
2016-06-02T10:25:27
Python
UTF-8
Python
false
false
649
py
from __future__ import print_function from PIL import Image from numpy import * from scipy.ndimage import measurements, morphology """ This is the morphology counting objects example in Section 1.4. """ # load image and threshold to make sure it is binary im = array(Image.open('./data/houses.png').convert('L')) im = (im < 128) labels, nbr_objects = measurements.label(im) print(("Number of objects:", nbr_objects)) # morphology - opening to separate objects better im_open = morphology.binary_opening(im, ones((9, 5)), iterations=2) labels_open, nbr_objects_open = measurements.label(im_open) print(("Number of objects:", nbr_objects_open))
65605a0e75c94747baeb0f7b40c8c21546c038ac
6874015cb6043d1803b61f8978627ddce64963b4
/tests/multiple_database/tests.py
412daa7e38e768082e77c627eb9d41b4d2dd197d
[ "BSD-3-Clause", "Python-2.0" ]
permissive
yephper/django
25fbfb4147211d08ec87c41e08a695ac016454c6
cdd1689fb354886362487107156978ae84e71453
refs/heads/master
2021-01-21T12:59:14.443153
2016-04-27T09:51:41
2016-04-27T09:51:41
56,134,291
0
1
null
null
null
null
UTF-8
Python
false
false
96,272
py
from __future__ import unicode_literals import datetime import pickle from operator import attrgetter from django.contrib.auth.models import User from django.contrib.contenttypes.models import ContentType from django.core import management from django.db import DEFAULT_DB_ALIAS, connections, router, transaction from django.db.models import signals from django.db.utils import ConnectionRouter from django.test import SimpleTestCase, TestCase, override_settings from django.utils.six import StringIO from .models import Book, Person, Pet, Review, UserProfile from .routers import AuthRouter, TestRouter, WriteRouter class QueryTestCase(TestCase): multi_db = True def test_db_selection(self): "Check that querysets will use the default database by default" self.assertEqual(Book.objects.db, DEFAULT_DB_ALIAS) self.assertEqual(Book.objects.all().db, DEFAULT_DB_ALIAS) self.assertEqual(Book.objects.using('other').db, 'other') self.assertEqual(Book.objects.db_manager('other').db, 'other') self.assertEqual(Book.objects.db_manager('other').all().db, 'other') def test_default_creation(self): "Objects created on the default database don't leak onto other databases" # Create a book on the default database using create() Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) # Create a book on the default database using a save dive = Book() dive.title = "Dive into Python" dive.published = datetime.date(2009, 5, 4) dive.save() # Check that book exists on the default database, but not on other database try: Book.objects.get(title="Pro Django") Book.objects.using('default').get(title="Pro Django") except Book.DoesNotExist: self.fail('"Pro Django" should exist on default database') with self.assertRaises(Book.DoesNotExist): Book.objects.using('other').get(title="Pro Django") try: Book.objects.get(title="Dive into Python") Book.objects.using('default').get(title="Dive into Python") except Book.DoesNotExist: self.fail('"Dive into Python" should exist on default database') with self.assertRaises(Book.DoesNotExist): Book.objects.using('other').get(title="Dive into Python") def test_other_creation(self): "Objects created on another database don't leak onto the default database" # Create a book on the second database Book.objects.using('other').create(title="Pro Django", published=datetime.date(2008, 12, 16)) # Create a book on the default database using a save dive = Book() dive.title = "Dive into Python" dive.published = datetime.date(2009, 5, 4) dive.save(using='other') # Check that book exists on the default database, but not on other database try: Book.objects.using('other').get(title="Pro Django") except Book.DoesNotExist: self.fail('"Pro Django" should exist on other database') with self.assertRaises(Book.DoesNotExist): Book.objects.get(title="Pro Django") with self.assertRaises(Book.DoesNotExist): Book.objects.using('default').get(title="Pro Django") try: Book.objects.using('other').get(title="Dive into Python") except Book.DoesNotExist: self.fail('"Dive into Python" should exist on other database') with self.assertRaises(Book.DoesNotExist): Book.objects.get(title="Dive into Python") with self.assertRaises(Book.DoesNotExist): Book.objects.using('default').get(title="Dive into Python") def test_refresh(self): dive = Book() dive.title = "Dive into Python" dive = Book() dive.title = "Dive into Python" dive.published = datetime.date(2009, 5, 4) dive.save(using='other') dive.published = datetime.date(2009, 5, 4) dive.save(using='other') dive2 = Book.objects.using('other').get() dive2.title = "Dive into Python (on default)" dive2.save(using='default') dive.refresh_from_db() self.assertEqual(dive.title, "Dive into Python") dive.refresh_from_db(using='default') self.assertEqual(dive.title, "Dive into Python (on default)") self.assertEqual(dive._state.db, "default") def test_basic_queries(self): "Queries are constrained to a single database" dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) dive = Book.objects.using('other').get(published=datetime.date(2009, 5, 4)) self.assertEqual(dive.title, "Dive into Python") with self.assertRaises(Book.DoesNotExist): Book.objects.using('default').get(published=datetime.date(2009, 5, 4)) dive = Book.objects.using('other').get(title__icontains="dive") self.assertEqual(dive.title, "Dive into Python") with self.assertRaises(Book.DoesNotExist): Book.objects.using('default').get(title__icontains="dive") dive = Book.objects.using('other').get(title__iexact="dive INTO python") self.assertEqual(dive.title, "Dive into Python") with self.assertRaises(Book.DoesNotExist): Book.objects.using('default').get(title__iexact="dive INTO python") dive = Book.objects.using('other').get(published__year=2009) self.assertEqual(dive.title, "Dive into Python") self.assertEqual(dive.published, datetime.date(2009, 5, 4)) with self.assertRaises(Book.DoesNotExist): Book.objects.using('default').get(published__year=2009) years = Book.objects.using('other').dates('published', 'year') self.assertEqual([o.year for o in years], [2009]) years = Book.objects.using('default').dates('published', 'year') self.assertEqual([o.year for o in years], []) months = Book.objects.using('other').dates('published', 'month') self.assertEqual([o.month for o in months], [5]) months = Book.objects.using('default').dates('published', 'month') self.assertEqual([o.month for o in months], []) def test_m2m_separation(self): "M2M fields are constrained to a single database" # Create a book and author on the default database pro = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) marty = Person.objects.create(name="Marty Alchin") # Create a book and author on the other database dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) mark = Person.objects.using('other').create(name="Mark Pilgrim") # Save the author relations pro.authors.set([marty]) dive.authors.set([mark]) # Inspect the m2m tables directly. # There should be 1 entry in each database self.assertEqual(Book.authors.through.objects.using('default').count(), 1) self.assertEqual(Book.authors.through.objects.using('other').count(), 1) # Check that queries work across m2m joins self.assertEqual( list(Book.objects.using('default').filter(authors__name='Marty Alchin').values_list('title', flat=True)), ['Pro Django'] ) self.assertEqual( list(Book.objects.using('other').filter(authors__name='Marty Alchin').values_list('title', flat=True)), [] ) self.assertEqual( list(Book.objects.using('default').filter(authors__name='Mark Pilgrim').values_list('title', flat=True)), [] ) self.assertEqual( list(Book.objects.using('other').filter(authors__name='Mark Pilgrim').values_list('title', flat=True)), ['Dive into Python'] ) # Reget the objects to clear caches dive = Book.objects.using('other').get(title="Dive into Python") mark = Person.objects.using('other').get(name="Mark Pilgrim") # Retrieve related object by descriptor. Related objects should be database-bound self.assertEqual(list(dive.authors.all().values_list('name', flat=True)), ['Mark Pilgrim']) self.assertEqual(list(mark.book_set.all().values_list('title', flat=True)), ['Dive into Python']) def test_m2m_forward_operations(self): "M2M forward manipulations are all constrained to a single DB" # Create a book and author on the other database dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) mark = Person.objects.using('other').create(name="Mark Pilgrim") # Save the author relations dive.authors.set([mark]) # Add a second author john = Person.objects.using('other').create(name="John Smith") self.assertEqual( list(Book.objects.using('other').filter(authors__name='John Smith').values_list('title', flat=True)), [] ) dive.authors.add(john) self.assertEqual( list(Book.objects.using('other').filter(authors__name='Mark Pilgrim').values_list('title', flat=True)), ['Dive into Python'] ) self.assertEqual( list(Book.objects.using('other').filter(authors__name='John Smith').values_list('title', flat=True)), ['Dive into Python'] ) # Remove the second author dive.authors.remove(john) self.assertEqual( list(Book.objects.using('other').filter(authors__name='Mark Pilgrim').values_list('title', flat=True)), ['Dive into Python'] ) self.assertEqual( list(Book.objects.using('other').filter(authors__name='John Smith').values_list('title', flat=True)), [] ) # Clear all authors dive.authors.clear() self.assertEqual( list(Book.objects.using('other').filter(authors__name='Mark Pilgrim').values_list('title', flat=True)), [] ) self.assertEqual( list(Book.objects.using('other').filter(authors__name='John Smith').values_list('title', flat=True)), [] ) # Create an author through the m2m interface dive.authors.create(name='Jane Brown') self.assertEqual( list(Book.objects.using('other').filter(authors__name='Mark Pilgrim').values_list('title', flat=True)), [] ) self.assertEqual( list(Book.objects.using('other').filter(authors__name='Jane Brown').values_list('title', flat=True)), ['Dive into Python'] ) def test_m2m_reverse_operations(self): "M2M reverse manipulations are all constrained to a single DB" # Create a book and author on the other database dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) mark = Person.objects.using('other').create(name="Mark Pilgrim") # Save the author relations dive.authors.set([mark]) # Create a second book on the other database grease = Book.objects.using('other').create(title="Greasemonkey Hacks", published=datetime.date(2005, 11, 1)) # Add a books to the m2m mark.book_set.add(grease) self.assertEqual( list(Person.objects.using('other').filter(book__title='Dive into Python').values_list('name', flat=True)), ['Mark Pilgrim'] ) self.assertEqual( list( Person.objects.using('other').filter(book__title='Greasemonkey Hacks').values_list('name', flat=True) ), ['Mark Pilgrim'] ) # Remove a book from the m2m mark.book_set.remove(grease) self.assertEqual( list(Person.objects.using('other').filter(book__title='Dive into Python').values_list('name', flat=True)), ['Mark Pilgrim'] ) self.assertEqual( list( Person.objects.using('other').filter(book__title='Greasemonkey Hacks').values_list('name', flat=True) ), [] ) # Clear the books associated with mark mark.book_set.clear() self.assertEqual( list(Person.objects.using('other').filter(book__title='Dive into Python').values_list('name', flat=True)), [] ) self.assertEqual( list( Person.objects.using('other').filter(book__title='Greasemonkey Hacks').values_list('name', flat=True) ), [] ) # Create a book through the m2m interface mark.book_set.create(title="Dive into HTML5", published=datetime.date(2020, 1, 1)) self.assertEqual( list(Person.objects.using('other').filter(book__title='Dive into Python').values_list('name', flat=True)), [] ) self.assertEqual( list(Person.objects.using('other').filter(book__title='Dive into HTML5').values_list('name', flat=True)), ['Mark Pilgrim'] ) def test_m2m_cross_database_protection(self): "Operations that involve sharing M2M objects across databases raise an error" # Create a book and author on the default database pro = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) marty = Person.objects.create(name="Marty Alchin") # Create a book and author on the other database dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) mark = Person.objects.using('other').create(name="Mark Pilgrim") # Set a foreign key set with an object from a different database with self.assertRaises(ValueError): with transaction.atomic(using='default'): marty.edited.set([pro, dive]) # Add to an m2m with an object from a different database with self.assertRaises(ValueError): with transaction.atomic(using='default'): marty.book_set.add(dive) # Set a m2m with an object from a different database with self.assertRaises(ValueError): with transaction.atomic(using='default'): marty.book_set.set([pro, dive]) # Add to a reverse m2m with an object from a different database with self.assertRaises(ValueError): with transaction.atomic(using='other'): dive.authors.add(marty) # Set a reverse m2m with an object from a different database with self.assertRaises(ValueError): with transaction.atomic(using='other'): dive.authors.set([mark, marty]) def test_m2m_deletion(self): "Cascaded deletions of m2m relations issue queries on the right database" # Create a book and author on the other database dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) mark = Person.objects.using('other').create(name="Mark Pilgrim") dive.authors.set([mark]) # Check the initial state self.assertEqual(Person.objects.using('default').count(), 0) self.assertEqual(Book.objects.using('default').count(), 0) self.assertEqual(Book.authors.through.objects.using('default').count(), 0) self.assertEqual(Person.objects.using('other').count(), 1) self.assertEqual(Book.objects.using('other').count(), 1) self.assertEqual(Book.authors.through.objects.using('other').count(), 1) # Delete the object on the other database dive.delete(using='other') self.assertEqual(Person.objects.using('default').count(), 0) self.assertEqual(Book.objects.using('default').count(), 0) self.assertEqual(Book.authors.through.objects.using('default').count(), 0) # The person still exists ... self.assertEqual(Person.objects.using('other').count(), 1) # ... but the book has been deleted self.assertEqual(Book.objects.using('other').count(), 0) # ... and the relationship object has also been deleted. self.assertEqual(Book.authors.through.objects.using('other').count(), 0) # Now try deletion in the reverse direction. Set up the relation again dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) dive.authors.set([mark]) # Check the initial state self.assertEqual(Person.objects.using('default').count(), 0) self.assertEqual(Book.objects.using('default').count(), 0) self.assertEqual(Book.authors.through.objects.using('default').count(), 0) self.assertEqual(Person.objects.using('other').count(), 1) self.assertEqual(Book.objects.using('other').count(), 1) self.assertEqual(Book.authors.through.objects.using('other').count(), 1) # Delete the object on the other database mark.delete(using='other') self.assertEqual(Person.objects.using('default').count(), 0) self.assertEqual(Book.objects.using('default').count(), 0) self.assertEqual(Book.authors.through.objects.using('default').count(), 0) # The person has been deleted ... self.assertEqual(Person.objects.using('other').count(), 0) # ... but the book still exists self.assertEqual(Book.objects.using('other').count(), 1) # ... and the relationship object has been deleted. self.assertEqual(Book.authors.through.objects.using('other').count(), 0) def test_foreign_key_separation(self): "FK fields are constrained to a single database" # Create a book and author on the default database pro = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) george = Person.objects.create(name="George Vilches") # Create a book and author on the other database dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) chris = Person.objects.using('other').create(name="Chris Mills") # Save the author's favorite books pro.editor = george pro.save() dive.editor = chris dive.save() pro = Book.objects.using('default').get(title="Pro Django") self.assertEqual(pro.editor.name, "George Vilches") dive = Book.objects.using('other').get(title="Dive into Python") self.assertEqual(dive.editor.name, "Chris Mills") # Check that queries work across foreign key joins self.assertEqual( list(Person.objects.using('default').filter(edited__title='Pro Django').values_list('name', flat=True)), ['George Vilches'] ) self.assertEqual( list(Person.objects.using('other').filter(edited__title='Pro Django').values_list('name', flat=True)), [] ) self.assertEqual( list( Person.objects.using('default').filter(edited__title='Dive into Python').values_list('name', flat=True) ), [] ) self.assertEqual( list( Person.objects.using('other').filter(edited__title='Dive into Python').values_list('name', flat=True) ), ['Chris Mills'] ) # Reget the objects to clear caches chris = Person.objects.using('other').get(name="Chris Mills") dive = Book.objects.using('other').get(title="Dive into Python") # Retrieve related object by descriptor. Related objects should be database-bound self.assertEqual(list(chris.edited.values_list('title', flat=True)), ['Dive into Python']) def test_foreign_key_reverse_operations(self): "FK reverse manipulations are all constrained to a single DB" dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) chris = Person.objects.using('other').create(name="Chris Mills") # Save the author relations dive.editor = chris dive.save() # Add a second book edited by chris html5 = Book.objects.using('other').create(title="Dive into HTML5", published=datetime.date(2010, 3, 15)) self.assertEqual( list(Person.objects.using('other').filter(edited__title='Dive into HTML5').values_list('name', flat=True)), [] ) chris.edited.add(html5) self.assertEqual( list(Person.objects.using('other').filter(edited__title='Dive into HTML5').values_list('name', flat=True)), ['Chris Mills'] ) self.assertEqual( list( Person.objects.using('other').filter(edited__title='Dive into Python').values_list('name', flat=True) ), ['Chris Mills'] ) # Remove the second editor chris.edited.remove(html5) self.assertEqual( list(Person.objects.using('other').filter(edited__title='Dive into HTML5').values_list('name', flat=True)), [] ) self.assertEqual( list( Person.objects.using('other').filter(edited__title='Dive into Python').values_list('name', flat=True) ), ['Chris Mills'] ) # Clear all edited books chris.edited.clear() self.assertEqual( list(Person.objects.using('other').filter(edited__title='Dive into HTML5').values_list('name', flat=True)), [] ) self.assertEqual( list( Person.objects.using('other').filter(edited__title='Dive into Python').values_list('name', flat=True) ), [] ) # Create an author through the m2m interface chris.edited.create(title='Dive into Water', published=datetime.date(2010, 3, 15)) self.assertEqual( list(Person.objects.using('other').filter(edited__title='Dive into HTML5').values_list('name', flat=True)), [] ) self.assertEqual( list(Person.objects.using('other').filter(edited__title='Dive into Water').values_list('name', flat=True)), ['Chris Mills'] ) self.assertEqual( list( Person.objects.using('other').filter(edited__title='Dive into Python').values_list('name', flat=True) ), [] ) def test_foreign_key_cross_database_protection(self): "Operations that involve sharing FK objects across databases raise an error" # Create a book and author on the default database pro = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) marty = Person.objects.create(name="Marty Alchin") # Create a book and author on the other database dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) # Set a foreign key with an object from a different database with self.assertRaises(ValueError): dive.editor = marty # Set a foreign key set with an object from a different database with self.assertRaises(ValueError): with transaction.atomic(using='default'): marty.edited.set([pro, dive]) # Add to a foreign key set with an object from a different database with self.assertRaises(ValueError): with transaction.atomic(using='default'): marty.edited.add(dive) def test_foreign_key_deletion(self): "Cascaded deletions of Foreign Key relations issue queries on the right database" mark = Person.objects.using('other').create(name="Mark Pilgrim") Pet.objects.using('other').create(name="Fido", owner=mark) # Check the initial state self.assertEqual(Person.objects.using('default').count(), 0) self.assertEqual(Pet.objects.using('default').count(), 0) self.assertEqual(Person.objects.using('other').count(), 1) self.assertEqual(Pet.objects.using('other').count(), 1) # Delete the person object, which will cascade onto the pet mark.delete(using='other') self.assertEqual(Person.objects.using('default').count(), 0) self.assertEqual(Pet.objects.using('default').count(), 0) # Both the pet and the person have been deleted from the right database self.assertEqual(Person.objects.using('other').count(), 0) self.assertEqual(Pet.objects.using('other').count(), 0) def test_foreign_key_validation(self): "ForeignKey.validate() uses the correct database" mickey = Person.objects.using('other').create(name="Mickey") pluto = Pet.objects.using('other').create(name="Pluto", owner=mickey) self.assertIsNone(pluto.full_clean()) def test_o2o_separation(self): "OneToOne fields are constrained to a single database" # Create a user and profile on the default database alice = User.objects.db_manager('default').create_user('alice', '[email protected]') alice_profile = UserProfile.objects.using('default').create(user=alice, flavor='chocolate') # Create a user and profile on the other database bob = User.objects.db_manager('other').create_user('bob', '[email protected]') bob_profile = UserProfile.objects.using('other').create(user=bob, flavor='crunchy frog') # Retrieve related objects; queries should be database constrained alice = User.objects.using('default').get(username="alice") self.assertEqual(alice.userprofile.flavor, "chocolate") bob = User.objects.using('other').get(username="bob") self.assertEqual(bob.userprofile.flavor, "crunchy frog") # Check that queries work across joins self.assertEqual( list( User.objects.using('default') .filter(userprofile__flavor='chocolate').values_list('username', flat=True) ), ['alice'] ) self.assertEqual( list( User.objects.using('other') .filter(userprofile__flavor='chocolate').values_list('username', flat=True) ), [] ) self.assertEqual( list( User.objects.using('default') .filter(userprofile__flavor='crunchy frog').values_list('username', flat=True) ), [] ) self.assertEqual( list( User.objects.using('other') .filter(userprofile__flavor='crunchy frog').values_list('username', flat=True) ), ['bob'] ) # Reget the objects to clear caches alice_profile = UserProfile.objects.using('default').get(flavor='chocolate') bob_profile = UserProfile.objects.using('other').get(flavor='crunchy frog') # Retrieve related object by descriptor. Related objects should be database-bound self.assertEqual(alice_profile.user.username, 'alice') self.assertEqual(bob_profile.user.username, 'bob') def test_o2o_cross_database_protection(self): "Operations that involve sharing FK objects across databases raise an error" # Create a user and profile on the default database alice = User.objects.db_manager('default').create_user('alice', '[email protected]') # Create a user and profile on the other database bob = User.objects.db_manager('other').create_user('bob', '[email protected]') # Set a one-to-one relation with an object from a different database alice_profile = UserProfile.objects.using('default').create(user=alice, flavor='chocolate') with self.assertRaises(ValueError): bob.userprofile = alice_profile # BUT! if you assign a FK object when the base object hasn't # been saved yet, you implicitly assign the database for the # base object. bob_profile = UserProfile.objects.using('other').create(user=bob, flavor='crunchy frog') new_bob_profile = UserProfile(flavor="spring surprise") # assigning a profile requires an explicit pk as the object isn't saved charlie = User(pk=51, username='charlie', email='[email protected]') charlie.set_unusable_password() # initially, no db assigned self.assertEqual(new_bob_profile._state.db, None) self.assertEqual(charlie._state.db, None) # old object comes from 'other', so the new object is set to use 'other'... new_bob_profile.user = bob charlie.userprofile = bob_profile self.assertEqual(new_bob_profile._state.db, 'other') self.assertEqual(charlie._state.db, 'other') # ... but it isn't saved yet self.assertEqual(list(User.objects.using('other').values_list('username', flat=True)), ['bob']) self.assertEqual(list(UserProfile.objects.using('other').values_list('flavor', flat=True)), ['crunchy frog']) # When saved (no using required), new objects goes to 'other' charlie.save() bob_profile.save() new_bob_profile.save() self.assertEqual(list(User.objects.using('default').values_list('username', flat=True)), ['alice']) self.assertEqual(list(User.objects.using('other').values_list('username', flat=True)), ['bob', 'charlie']) self.assertEqual(list(UserProfile.objects.using('default').values_list('flavor', flat=True)), ['chocolate']) self.assertEqual(list(UserProfile.objects.using('other').values_list('flavor', flat=True)), ['crunchy frog', 'spring surprise']) # This also works if you assign the O2O relation in the constructor denise = User.objects.db_manager('other').create_user('denise', '[email protected]') denise_profile = UserProfile(flavor="tofu", user=denise) self.assertEqual(denise_profile._state.db, 'other') # ... but it isn't saved yet self.assertEqual(list(UserProfile.objects.using('default').values_list('flavor', flat=True)), ['chocolate']) self.assertEqual(list(UserProfile.objects.using('other').values_list('flavor', flat=True)), ['crunchy frog', 'spring surprise']) # When saved, the new profile goes to 'other' denise_profile.save() self.assertEqual(list(UserProfile.objects.using('default').values_list('flavor', flat=True)), ['chocolate']) self.assertEqual(list(UserProfile.objects.using('other').values_list('flavor', flat=True)), ['crunchy frog', 'spring surprise', 'tofu']) def test_generic_key_separation(self): "Generic fields are constrained to a single database" # Create a book and author on the default database pro = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) review1 = Review.objects.create(source="Python Monthly", content_object=pro) # Create a book and author on the other database dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) review2 = Review.objects.using('other').create(source="Python Weekly", content_object=dive) review1 = Review.objects.using('default').get(source="Python Monthly") self.assertEqual(review1.content_object.title, "Pro Django") review2 = Review.objects.using('other').get(source="Python Weekly") self.assertEqual(review2.content_object.title, "Dive into Python") # Reget the objects to clear caches dive = Book.objects.using('other').get(title="Dive into Python") # Retrieve related object by descriptor. Related objects should be database-bound self.assertEqual(list(dive.reviews.all().values_list('source', flat=True)), ['Python Weekly']) def test_generic_key_reverse_operations(self): "Generic reverse manipulations are all constrained to a single DB" dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) temp = Book.objects.using('other').create(title="Temp", published=datetime.date(2009, 5, 4)) review1 = Review.objects.using('other').create(source="Python Weekly", content_object=dive) review2 = Review.objects.using('other').create(source="Python Monthly", content_object=temp) self.assertEqual( list(Review.objects.using('default').filter(object_id=dive.pk).values_list('source', flat=True)), [] ) self.assertEqual( list(Review.objects.using('other').filter(object_id=dive.pk).values_list('source', flat=True)), ['Python Weekly'] ) # Add a second review dive.reviews.add(review2) self.assertEqual( list(Review.objects.using('default').filter(object_id=dive.pk).values_list('source', flat=True)), [] ) self.assertEqual( list(Review.objects.using('other').filter(object_id=dive.pk).values_list('source', flat=True)), ['Python Monthly', 'Python Weekly'] ) # Remove the second author dive.reviews.remove(review1) self.assertEqual( list(Review.objects.using('default').filter(object_id=dive.pk).values_list('source', flat=True)), [] ) self.assertEqual( list(Review.objects.using('other').filter(object_id=dive.pk).values_list('source', flat=True)), ['Python Monthly'] ) # Clear all reviews dive.reviews.clear() self.assertEqual( list(Review.objects.using('default').filter(object_id=dive.pk).values_list('source', flat=True)), [] ) self.assertEqual( list(Review.objects.using('other').filter(object_id=dive.pk).values_list('source', flat=True)), [] ) # Create an author through the generic interface dive.reviews.create(source='Python Daily') self.assertEqual( list(Review.objects.using('default').filter(object_id=dive.pk).values_list('source', flat=True)), [] ) self.assertEqual( list(Review.objects.using('other').filter(object_id=dive.pk).values_list('source', flat=True)), ['Python Daily'] ) def test_generic_key_cross_database_protection(self): "Operations that involve sharing generic key objects across databases raise an error" # Create a book and author on the default database pro = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) review1 = Review.objects.create(source="Python Monthly", content_object=pro) # Create a book and author on the other database dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) Review.objects.using('other').create(source="Python Weekly", content_object=dive) # Set a foreign key with an object from a different database with self.assertRaises(ValueError): review1.content_object = dive # Add to a foreign key set with an object from a different database with self.assertRaises(ValueError): with transaction.atomic(using='other'): dive.reviews.add(review1) # BUT! if you assign a FK object when the base object hasn't # been saved yet, you implicitly assign the database for the # base object. review3 = Review(source="Python Daily") # initially, no db assigned self.assertEqual(review3._state.db, None) # Dive comes from 'other', so review3 is set to use 'other'... review3.content_object = dive self.assertEqual(review3._state.db, 'other') # ... but it isn't saved yet self.assertEqual( list(Review.objects.using('default').filter(object_id=pro.pk).values_list('source', flat=True)), ['Python Monthly'] ) self.assertEqual( list(Review.objects.using('other').filter(object_id=dive.pk).values_list('source', flat=True)), ['Python Weekly'] ) # When saved, John goes to 'other' review3.save() self.assertEqual( list(Review.objects.using('default').filter(object_id=pro.pk).values_list('source', flat=True)), ['Python Monthly'] ) self.assertEqual( list(Review.objects.using('other').filter(object_id=dive.pk).values_list('source', flat=True)), ['Python Daily', 'Python Weekly'] ) def test_generic_key_deletion(self): "Cascaded deletions of Generic Key relations issue queries on the right database" dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) Review.objects.using('other').create(source="Python Weekly", content_object=dive) # Check the initial state self.assertEqual(Book.objects.using('default').count(), 0) self.assertEqual(Review.objects.using('default').count(), 0) self.assertEqual(Book.objects.using('other').count(), 1) self.assertEqual(Review.objects.using('other').count(), 1) # Delete the Book object, which will cascade onto the pet dive.delete(using='other') self.assertEqual(Book.objects.using('default').count(), 0) self.assertEqual(Review.objects.using('default').count(), 0) # Both the pet and the person have been deleted from the right database self.assertEqual(Book.objects.using('other').count(), 0) self.assertEqual(Review.objects.using('other').count(), 0) def test_ordering(self): "get_next_by_XXX commands stick to a single database" Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) learn = Book.objects.using('other').create(title="Learning Python", published=datetime.date(2008, 7, 16)) self.assertEqual(learn.get_next_by_published().title, "Dive into Python") self.assertEqual(dive.get_previous_by_published().title, "Learning Python") def test_raw(self): "test the raw() method across databases" dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) val = Book.objects.db_manager("other").raw('SELECT id FROM multiple_database_book') self.assertQuerysetEqual(val, [dive.pk], attrgetter("pk")) val = Book.objects.raw('SELECT id FROM multiple_database_book').using('other') self.assertQuerysetEqual(val, [dive.pk], attrgetter("pk")) def test_select_related(self): "Database assignment is retained if an object is retrieved with select_related()" # Create a book and author on the other database mark = Person.objects.using('other').create(name="Mark Pilgrim") Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4), editor=mark) # Retrieve the Person using select_related() book = Book.objects.using('other').select_related('editor').get(title="Dive into Python") # The editor instance should have a db state self.assertEqual(book.editor._state.db, 'other') def test_subquery(self): """Make sure as_sql works with subqueries and primary/replica.""" sub = Person.objects.using('other').filter(name='fff') qs = Book.objects.filter(editor__in=sub) # When you call __str__ on the query object, it doesn't know about using # so it falls back to the default. If the subquery explicitly uses a # different database, an error should be raised. with self.assertRaises(ValueError): str(qs.query) # Evaluating the query shouldn't work, either with self.assertRaises(ValueError): for obj in qs: pass def test_related_manager(self): "Related managers return managers, not querysets" mark = Person.objects.using('other').create(name="Mark Pilgrim") # extra_arg is removed by the BookManager's implementation of # create(); but the BookManager's implementation won't get called # unless edited returns a Manager, not a queryset mark.book_set.create(title="Dive into Python", published=datetime.date(2009, 5, 4), extra_arg=True) mark.book_set.get_or_create(title="Dive into Python", published=datetime.date(2009, 5, 4), extra_arg=True) mark.edited.create(title="Dive into Water", published=datetime.date(2009, 5, 4), extra_arg=True) mark.edited.get_or_create(title="Dive into Water", published=datetime.date(2009, 5, 4), extra_arg=True) class ConnectionRouterTestCase(SimpleTestCase): @override_settings(DATABASE_ROUTERS=[ 'multiple_database.tests.TestRouter', 'multiple_database.tests.WriteRouter']) def test_router_init_default(self): connection_router = ConnectionRouter() self.assertListEqual([r.__class__.__name__ for r in connection_router.routers], ['TestRouter', 'WriteRouter']) def test_router_init_arg(self): connection_router = ConnectionRouter([ 'multiple_database.tests.TestRouter', 'multiple_database.tests.WriteRouter' ]) self.assertListEqual([r.__class__.__name__ for r in connection_router.routers], ['TestRouter', 'WriteRouter']) # Init with instances instead of strings connection_router = ConnectionRouter([TestRouter(), WriteRouter()]) self.assertListEqual([r.__class__.__name__ for r in connection_router.routers], ['TestRouter', 'WriteRouter']) # Make the 'other' database appear to be a replica of the 'default' @override_settings(DATABASE_ROUTERS=[TestRouter()]) class RouterTestCase(TestCase): multi_db = True def test_db_selection(self): "Check that querysets obey the router for db suggestions" self.assertEqual(Book.objects.db, 'other') self.assertEqual(Book.objects.all().db, 'other') self.assertEqual(Book.objects.using('default').db, 'default') self.assertEqual(Book.objects.db_manager('default').db, 'default') self.assertEqual(Book.objects.db_manager('default').all().db, 'default') def test_migrate_selection(self): "Synchronization behavior is predictable" self.assertTrue(router.allow_migrate_model('default', User)) self.assertTrue(router.allow_migrate_model('default', Book)) self.assertTrue(router.allow_migrate_model('other', User)) self.assertTrue(router.allow_migrate_model('other', Book)) with override_settings(DATABASE_ROUTERS=[TestRouter(), AuthRouter()]): # Add the auth router to the chain. TestRouter is a universal # synchronizer, so it should have no effect. self.assertTrue(router.allow_migrate_model('default', User)) self.assertTrue(router.allow_migrate_model('default', Book)) self.assertTrue(router.allow_migrate_model('other', User)) self.assertTrue(router.allow_migrate_model('other', Book)) with override_settings(DATABASE_ROUTERS=[AuthRouter(), TestRouter()]): # Now check what happens if the router order is reversed. self.assertFalse(router.allow_migrate_model('default', User)) self.assertTrue(router.allow_migrate_model('default', Book)) self.assertTrue(router.allow_migrate_model('other', User)) self.assertTrue(router.allow_migrate_model('other', Book)) def test_partial_router(self): "A router can choose to implement a subset of methods" dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) # First check the baseline behavior. self.assertEqual(router.db_for_read(User), 'other') self.assertEqual(router.db_for_read(Book), 'other') self.assertEqual(router.db_for_write(User), 'default') self.assertEqual(router.db_for_write(Book), 'default') self.assertTrue(router.allow_relation(dive, dive)) self.assertTrue(router.allow_migrate_model('default', User)) self.assertTrue(router.allow_migrate_model('default', Book)) with override_settings(DATABASE_ROUTERS=[WriteRouter(), AuthRouter(), TestRouter()]): self.assertEqual(router.db_for_read(User), 'default') self.assertEqual(router.db_for_read(Book), 'other') self.assertEqual(router.db_for_write(User), 'writer') self.assertEqual(router.db_for_write(Book), 'writer') self.assertTrue(router.allow_relation(dive, dive)) self.assertFalse(router.allow_migrate_model('default', User)) self.assertTrue(router.allow_migrate_model('default', Book)) def test_database_routing(self): marty = Person.objects.using('default').create(name="Marty Alchin") pro = Book.objects.using('default').create(title="Pro Django", published=datetime.date(2008, 12, 16), editor=marty) pro.authors.set([marty]) # Create a book and author on the other database Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) # An update query will be routed to the default database Book.objects.filter(title='Pro Django').update(pages=200) with self.assertRaises(Book.DoesNotExist): # By default, the get query will be directed to 'other' Book.objects.get(title='Pro Django') # But the same query issued explicitly at a database will work. pro = Book.objects.using('default').get(title='Pro Django') # Check that the update worked. self.assertEqual(pro.pages, 200) # An update query with an explicit using clause will be routed # to the requested database. Book.objects.using('other').filter(title='Dive into Python').update(pages=300) self.assertEqual(Book.objects.get(title='Dive into Python').pages, 300) # Related object queries stick to the same database # as the original object, regardless of the router self.assertEqual(list(pro.authors.values_list('name', flat=True)), ['Marty Alchin']) self.assertEqual(pro.editor.name, 'Marty Alchin') # get_or_create is a special case. The get needs to be targeted at # the write database in order to avoid potential transaction # consistency problems book, created = Book.objects.get_or_create(title="Pro Django") self.assertFalse(created) book, created = Book.objects.get_or_create(title="Dive Into Python", defaults={'published': datetime.date(2009, 5, 4)}) self.assertTrue(created) # Check the head count of objects self.assertEqual(Book.objects.using('default').count(), 2) self.assertEqual(Book.objects.using('other').count(), 1) # If a database isn't specified, the read database is used self.assertEqual(Book.objects.count(), 1) # A delete query will also be routed to the default database Book.objects.filter(pages__gt=150).delete() # The default database has lost the book. self.assertEqual(Book.objects.using('default').count(), 1) self.assertEqual(Book.objects.using('other').count(), 1) def test_invalid_set_foreign_key_assignment(self): marty = Person.objects.using('default').create(name="Marty Alchin") dive = Book.objects.using('other').create( title="Dive into Python", published=datetime.date(2009, 5, 4), ) # Set a foreign key set with an object from a different database msg = "<Book: Dive into Python> instance isn't saved. Use bulk=False or save the object first." with self.assertRaisesMessage(ValueError, msg): marty.edited.set([dive]) def test_foreign_key_cross_database_protection(self): "Foreign keys can cross databases if they two databases have a common source" # Create a book and author on the default database pro = Book.objects.using('default').create(title="Pro Django", published=datetime.date(2008, 12, 16)) marty = Person.objects.using('default').create(name="Marty Alchin") # Create a book and author on the other database dive = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) mark = Person.objects.using('other').create(name="Mark Pilgrim") # Set a foreign key with an object from a different database try: dive.editor = marty except ValueError: self.fail("Assignment across primary/replica databases with a common source should be ok") # Database assignments of original objects haven't changed... self.assertEqual(marty._state.db, 'default') self.assertEqual(pro._state.db, 'default') self.assertEqual(dive._state.db, 'other') self.assertEqual(mark._state.db, 'other') # ... but they will when the affected object is saved. dive.save() self.assertEqual(dive._state.db, 'default') # ...and the source database now has a copy of any object saved try: Book.objects.using('default').get(title='Dive into Python').delete() except Book.DoesNotExist: self.fail('Source database should have a copy of saved object') # This isn't a real primary/replica database, so restore the original from other dive = Book.objects.using('other').get(title='Dive into Python') self.assertEqual(dive._state.db, 'other') # Set a foreign key set with an object from a different database try: marty.edited.set([pro, dive], bulk=False) except ValueError: self.fail("Assignment across primary/replica databases with a common source should be ok") # Assignment implies a save, so database assignments of original objects have changed... self.assertEqual(marty._state.db, 'default') self.assertEqual(pro._state.db, 'default') self.assertEqual(dive._state.db, 'default') self.assertEqual(mark._state.db, 'other') # ...and the source database now has a copy of any object saved try: Book.objects.using('default').get(title='Dive into Python').delete() except Book.DoesNotExist: self.fail('Source database should have a copy of saved object') # This isn't a real primary/replica database, so restore the original from other dive = Book.objects.using('other').get(title='Dive into Python') self.assertEqual(dive._state.db, 'other') # Add to a foreign key set with an object from a different database try: marty.edited.add(dive, bulk=False) except ValueError: self.fail("Assignment across primary/replica databases with a common source should be ok") # Add implies a save, so database assignments of original objects have changed... self.assertEqual(marty._state.db, 'default') self.assertEqual(pro._state.db, 'default') self.assertEqual(dive._state.db, 'default') self.assertEqual(mark._state.db, 'other') # ...and the source database now has a copy of any object saved try: Book.objects.using('default').get(title='Dive into Python').delete() except Book.DoesNotExist: self.fail('Source database should have a copy of saved object') # This isn't a real primary/replica database, so restore the original from other dive = Book.objects.using('other').get(title='Dive into Python') # If you assign a FK object when the base object hasn't # been saved yet, you implicitly assign the database for the # base object. chris = Person(name="Chris Mills") html5 = Book(title="Dive into HTML5", published=datetime.date(2010, 3, 15)) # initially, no db assigned self.assertEqual(chris._state.db, None) self.assertEqual(html5._state.db, None) # old object comes from 'other', so the new object is set to use the # source of 'other'... self.assertEqual(dive._state.db, 'other') chris.save() dive.editor = chris html5.editor = mark self.assertEqual(dive._state.db, 'other') self.assertEqual(mark._state.db, 'other') self.assertEqual(chris._state.db, 'default') self.assertEqual(html5._state.db, 'default') # This also works if you assign the FK in the constructor water = Book(title="Dive into Water", published=datetime.date(2001, 1, 1), editor=mark) self.assertEqual(water._state.db, 'default') # For the remainder of this test, create a copy of 'mark' in the # 'default' database to prevent integrity errors on backends that # don't defer constraints checks until the end of the transaction mark.save(using='default') # This moved 'mark' in the 'default' database, move it back in 'other' mark.save(using='other') self.assertEqual(mark._state.db, 'other') # If you create an object through a FK relation, it will be # written to the write database, even if the original object # was on the read database cheesecake = mark.edited.create(title='Dive into Cheesecake', published=datetime.date(2010, 3, 15)) self.assertEqual(cheesecake._state.db, 'default') # Same goes for get_or_create, regardless of whether getting or creating cheesecake, created = mark.edited.get_or_create( title='Dive into Cheesecake', published=datetime.date(2010, 3, 15), ) self.assertEqual(cheesecake._state.db, 'default') puddles, created = mark.edited.get_or_create(title='Dive into Puddles', published=datetime.date(2010, 3, 15)) self.assertEqual(puddles._state.db, 'default') def test_m2m_cross_database_protection(self): "M2M relations can cross databases if the database share a source" # Create books and authors on the inverse to the usual database pro = Book.objects.using('other').create(pk=1, title="Pro Django", published=datetime.date(2008, 12, 16)) marty = Person.objects.using('other').create(pk=1, name="Marty Alchin") dive = Book.objects.using('default').create(pk=2, title="Dive into Python", published=datetime.date(2009, 5, 4)) mark = Person.objects.using('default').create(pk=2, name="Mark Pilgrim") # Now save back onto the usual database. # This simulates primary/replica - the objects exist on both database, # but the _state.db is as it is for all other tests. pro.save(using='default') marty.save(using='default') dive.save(using='other') mark.save(using='other') # Check that we have 2 of both types of object on both databases self.assertEqual(Book.objects.using('default').count(), 2) self.assertEqual(Book.objects.using('other').count(), 2) self.assertEqual(Person.objects.using('default').count(), 2) self.assertEqual(Person.objects.using('other').count(), 2) # Set a m2m set with an object from a different database try: marty.book_set.set([pro, dive]) except ValueError: self.fail("Assignment across primary/replica databases with a common source should be ok") # Database assignments don't change self.assertEqual(marty._state.db, 'default') self.assertEqual(pro._state.db, 'default') self.assertEqual(dive._state.db, 'other') self.assertEqual(mark._state.db, 'other') # All m2m relations should be saved on the default database self.assertEqual(Book.authors.through.objects.using('default').count(), 2) self.assertEqual(Book.authors.through.objects.using('other').count(), 0) # Reset relations Book.authors.through.objects.using('default').delete() # Add to an m2m with an object from a different database try: marty.book_set.add(dive) except ValueError: self.fail("Assignment across primary/replica databases with a common source should be ok") # Database assignments don't change self.assertEqual(marty._state.db, 'default') self.assertEqual(pro._state.db, 'default') self.assertEqual(dive._state.db, 'other') self.assertEqual(mark._state.db, 'other') # All m2m relations should be saved on the default database self.assertEqual(Book.authors.through.objects.using('default').count(), 1) self.assertEqual(Book.authors.through.objects.using('other').count(), 0) # Reset relations Book.authors.through.objects.using('default').delete() # Set a reverse m2m with an object from a different database try: dive.authors.set([mark, marty]) except ValueError: self.fail("Assignment across primary/replica databases with a common source should be ok") # Database assignments don't change self.assertEqual(marty._state.db, 'default') self.assertEqual(pro._state.db, 'default') self.assertEqual(dive._state.db, 'other') self.assertEqual(mark._state.db, 'other') # All m2m relations should be saved on the default database self.assertEqual(Book.authors.through.objects.using('default').count(), 2) self.assertEqual(Book.authors.through.objects.using('other').count(), 0) # Reset relations Book.authors.through.objects.using('default').delete() self.assertEqual(Book.authors.through.objects.using('default').count(), 0) self.assertEqual(Book.authors.through.objects.using('other').count(), 0) # Add to a reverse m2m with an object from a different database try: dive.authors.add(marty) except ValueError: self.fail("Assignment across primary/replica databases with a common source should be ok") # Database assignments don't change self.assertEqual(marty._state.db, 'default') self.assertEqual(pro._state.db, 'default') self.assertEqual(dive._state.db, 'other') self.assertEqual(mark._state.db, 'other') # All m2m relations should be saved on the default database self.assertEqual(Book.authors.through.objects.using('default').count(), 1) self.assertEqual(Book.authors.through.objects.using('other').count(), 0) # If you create an object through a M2M relation, it will be # written to the write database, even if the original object # was on the read database alice = dive.authors.create(name='Alice') self.assertEqual(alice._state.db, 'default') # Same goes for get_or_create, regardless of whether getting or creating alice, created = dive.authors.get_or_create(name='Alice') self.assertEqual(alice._state.db, 'default') bob, created = dive.authors.get_or_create(name='Bob') self.assertEqual(bob._state.db, 'default') def test_o2o_cross_database_protection(self): "Operations that involve sharing FK objects across databases raise an error" # Create a user and profile on the default database alice = User.objects.db_manager('default').create_user('alice', '[email protected]') # Create a user and profile on the other database bob = User.objects.db_manager('other').create_user('bob', '[email protected]') # Set a one-to-one relation with an object from a different database alice_profile = UserProfile.objects.create(user=alice, flavor='chocolate') try: bob.userprofile = alice_profile except ValueError: self.fail("Assignment across primary/replica databases with a common source should be ok") # Database assignments of original objects haven't changed... self.assertEqual(alice._state.db, 'default') self.assertEqual(alice_profile._state.db, 'default') self.assertEqual(bob._state.db, 'other') # ... but they will when the affected object is saved. bob.save() self.assertEqual(bob._state.db, 'default') def test_generic_key_cross_database_protection(self): "Generic Key operations can span databases if they share a source" # Create a book and author on the default database pro = Book.objects.using( 'default').create(title="Pro Django", published=datetime.date(2008, 12, 16)) review1 = Review.objects.using( 'default').create(source="Python Monthly", content_object=pro) # Create a book and author on the other database dive = Book.objects.using( 'other').create(title="Dive into Python", published=datetime.date(2009, 5, 4)) review2 = Review.objects.using( 'other').create(source="Python Weekly", content_object=dive) # Set a generic foreign key with an object from a different database try: review1.content_object = dive except ValueError: self.fail("Assignment across primary/replica databases with a common source should be ok") # Database assignments of original objects haven't changed... self.assertEqual(pro._state.db, 'default') self.assertEqual(review1._state.db, 'default') self.assertEqual(dive._state.db, 'other') self.assertEqual(review2._state.db, 'other') # ... but they will when the affected object is saved. dive.save() self.assertEqual(review1._state.db, 'default') self.assertEqual(dive._state.db, 'default') # ...and the source database now has a copy of any object saved try: Book.objects.using('default').get(title='Dive into Python').delete() except Book.DoesNotExist: self.fail('Source database should have a copy of saved object') # This isn't a real primary/replica database, so restore the original from other dive = Book.objects.using('other').get(title='Dive into Python') self.assertEqual(dive._state.db, 'other') # Add to a generic foreign key set with an object from a different database try: dive.reviews.add(review1) except ValueError: self.fail("Assignment across primary/replica databases with a common source should be ok") # Database assignments of original objects haven't changed... self.assertEqual(pro._state.db, 'default') self.assertEqual(review1._state.db, 'default') self.assertEqual(dive._state.db, 'other') self.assertEqual(review2._state.db, 'other') # ... but they will when the affected object is saved. dive.save() self.assertEqual(dive._state.db, 'default') # ...and the source database now has a copy of any object saved try: Book.objects.using('default').get(title='Dive into Python').delete() except Book.DoesNotExist: self.fail('Source database should have a copy of saved object') # BUT! if you assign a FK object when the base object hasn't # been saved yet, you implicitly assign the database for the # base object. review3 = Review(source="Python Daily") # initially, no db assigned self.assertEqual(review3._state.db, None) # Dive comes from 'other', so review3 is set to use the source of 'other'... review3.content_object = dive self.assertEqual(review3._state.db, 'default') # If you create an object through a M2M relation, it will be # written to the write database, even if the original object # was on the read database dive = Book.objects.using('other').get(title='Dive into Python') nyt = dive.reviews.create(source="New York Times", content_object=dive) self.assertEqual(nyt._state.db, 'default') def test_m2m_managers(self): "M2M relations are represented by managers, and can be controlled like managers" pro = Book.objects.using('other').create(pk=1, title="Pro Django", published=datetime.date(2008, 12, 16)) marty = Person.objects.using('other').create(pk=1, name="Marty Alchin") self.assertEqual(pro.authors.db, 'other') self.assertEqual(pro.authors.db_manager('default').db, 'default') self.assertEqual(pro.authors.db_manager('default').all().db, 'default') self.assertEqual(marty.book_set.db, 'other') self.assertEqual(marty.book_set.db_manager('default').db, 'default') self.assertEqual(marty.book_set.db_manager('default').all().db, 'default') def test_foreign_key_managers(self): "FK reverse relations are represented by managers, and can be controlled like managers" marty = Person.objects.using('other').create(pk=1, name="Marty Alchin") Book.objects.using('other').create(pk=1, title="Pro Django", published=datetime.date(2008, 12, 16), editor=marty) self.assertEqual(marty.edited.db, 'other') self.assertEqual(marty.edited.db_manager('default').db, 'default') self.assertEqual(marty.edited.db_manager('default').all().db, 'default') def test_generic_key_managers(self): "Generic key relations are represented by managers, and can be controlled like managers" pro = Book.objects.using('other').create(title="Pro Django", published=datetime.date(2008, 12, 16)) Review.objects.using('other').create(source="Python Monthly", content_object=pro) self.assertEqual(pro.reviews.db, 'other') self.assertEqual(pro.reviews.db_manager('default').db, 'default') self.assertEqual(pro.reviews.db_manager('default').all().db, 'default') def test_subquery(self): """Make sure as_sql works with subqueries and primary/replica.""" # Create a book and author on the other database mark = Person.objects.using('other').create(name="Mark Pilgrim") Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4), editor=mark) sub = Person.objects.filter(name='Mark Pilgrim') qs = Book.objects.filter(editor__in=sub) # When you call __str__ on the query object, it doesn't know about using # so it falls back to the default. Don't let routing instructions # force the subquery to an incompatible database. str(qs.query) # If you evaluate the query, it should work, running on 'other' self.assertEqual(list(qs.values_list('title', flat=True)), ['Dive into Python']) def test_deferred_models(self): mark_def = Person.objects.using('default').create(name="Mark Pilgrim") mark_other = Person.objects.using('other').create(name="Mark Pilgrim") orig_b = Book.objects.using('other').create(title="Dive into Python", published=datetime.date(2009, 5, 4), editor=mark_other) b = Book.objects.using('other').only('title').get(pk=orig_b.pk) self.assertEqual(b.published, datetime.date(2009, 5, 4)) b = Book.objects.using('other').only('title').get(pk=orig_b.pk) b.editor = mark_def b.save(using='default') self.assertEqual(Book.objects.using('default').get(pk=b.pk).published, datetime.date(2009, 5, 4)) @override_settings(DATABASE_ROUTERS=[AuthRouter()]) class AuthTestCase(TestCase): multi_db = True def test_auth_manager(self): "The methods on the auth manager obey database hints" # Create one user using default allocation policy User.objects.create_user('alice', '[email protected]') # Create another user, explicitly specifying the database User.objects.db_manager('default').create_user('bob', '[email protected]') # The second user only exists on the other database alice = User.objects.using('other').get(username='alice') self.assertEqual(alice.username, 'alice') self.assertEqual(alice._state.db, 'other') with self.assertRaises(User.DoesNotExist): User.objects.using('default').get(username='alice') # The second user only exists on the default database bob = User.objects.using('default').get(username='bob') self.assertEqual(bob.username, 'bob') self.assertEqual(bob._state.db, 'default') with self.assertRaises(User.DoesNotExist): User.objects.using('other').get(username='bob') # That is... there is one user on each database self.assertEqual(User.objects.using('default').count(), 1) self.assertEqual(User.objects.using('other').count(), 1) def test_dumpdata(self): "Check that dumpdata honors allow_migrate restrictions on the router" User.objects.create_user('alice', '[email protected]') User.objects.db_manager('default').create_user('bob', '[email protected]') # Check that dumping the default database doesn't try to include auth # because allow_migrate prohibits auth on default new_io = StringIO() management.call_command('dumpdata', 'auth', format='json', database='default', stdout=new_io) command_output = new_io.getvalue().strip() self.assertEqual(command_output, '[]') # Check that dumping the other database does include auth new_io = StringIO() management.call_command('dumpdata', 'auth', format='json', database='other', stdout=new_io) command_output = new_io.getvalue().strip() self.assertIn('"email": "[email protected]"', command_output) class AntiPetRouter(object): # A router that only expresses an opinion on migrate, # passing pets to the 'other' database def allow_migrate(self, db, app_label, model_name=None, **hints): if db == 'other': return model_name == 'pet' else: return model_name != 'pet' class FixtureTestCase(TestCase): multi_db = True fixtures = ['multidb-common', 'multidb'] @override_settings(DATABASE_ROUTERS=[AntiPetRouter()]) def test_fixture_loading(self): "Multi-db fixtures are loaded correctly" # Check that "Pro Django" exists on the default database, but not on other database try: Book.objects.get(title="Pro Django") Book.objects.using('default').get(title="Pro Django") except Book.DoesNotExist: self.fail('"Pro Django" should exist on default database') with self.assertRaises(Book.DoesNotExist): Book.objects.using('other').get(title="Pro Django") # Check that "Dive into Python" exists on the default database, but not on other database try: Book.objects.using('other').get(title="Dive into Python") except Book.DoesNotExist: self.fail('"Dive into Python" should exist on other database') with self.assertRaises(Book.DoesNotExist): Book.objects.get(title="Dive into Python") with self.assertRaises(Book.DoesNotExist): Book.objects.using('default').get(title="Dive into Python") # Check that "Definitive Guide" exists on the both databases try: Book.objects.get(title="The Definitive Guide to Django") Book.objects.using('default').get(title="The Definitive Guide to Django") Book.objects.using('other').get(title="The Definitive Guide to Django") except Book.DoesNotExist: self.fail('"The Definitive Guide to Django" should exist on both databases') @override_settings(DATABASE_ROUTERS=[AntiPetRouter()]) def test_pseudo_empty_fixtures(self): """ A fixture can contain entries, but lead to nothing in the database; this shouldn't raise an error (#14068). """ new_io = StringIO() management.call_command('loaddata', 'pets', stdout=new_io, stderr=new_io) command_output = new_io.getvalue().strip() # No objects will actually be loaded self.assertEqual(command_output, "Installed 0 object(s) (of 2) from 1 fixture(s)") class PickleQuerySetTestCase(TestCase): multi_db = True def test_pickling(self): for db in connections: Book.objects.using(db).create(title='Dive into Python', published=datetime.date(2009, 5, 4)) qs = Book.objects.all() self.assertEqual(qs.db, pickle.loads(pickle.dumps(qs)).db) class DatabaseReceiver(object): """ Used in the tests for the database argument in signals (#13552) """ def __call__(self, signal, sender, **kwargs): self._database = kwargs['using'] class WriteToOtherRouter(object): """ A router that sends all writes to the other database. """ def db_for_write(self, model, **hints): return "other" class SignalTests(TestCase): multi_db = True def override_router(self): return override_settings(DATABASE_ROUTERS=[WriteToOtherRouter()]) def test_database_arg_save_and_delete(self): """ Tests that the pre/post_save signal contains the correct database. (#13552) """ # Make some signal receivers pre_save_receiver = DatabaseReceiver() post_save_receiver = DatabaseReceiver() pre_delete_receiver = DatabaseReceiver() post_delete_receiver = DatabaseReceiver() # Make model and connect receivers signals.pre_save.connect(sender=Person, receiver=pre_save_receiver) signals.post_save.connect(sender=Person, receiver=post_save_receiver) signals.pre_delete.connect(sender=Person, receiver=pre_delete_receiver) signals.post_delete.connect(sender=Person, receiver=post_delete_receiver) p = Person.objects.create(name='Darth Vader') # Save and test receivers got calls p.save() self.assertEqual(pre_save_receiver._database, DEFAULT_DB_ALIAS) self.assertEqual(post_save_receiver._database, DEFAULT_DB_ALIAS) # Delete, and test p.delete() self.assertEqual(pre_delete_receiver._database, DEFAULT_DB_ALIAS) self.assertEqual(post_delete_receiver._database, DEFAULT_DB_ALIAS) # Save again to a different database p.save(using="other") self.assertEqual(pre_save_receiver._database, "other") self.assertEqual(post_save_receiver._database, "other") # Delete, and test p.delete(using="other") self.assertEqual(pre_delete_receiver._database, "other") self.assertEqual(post_delete_receiver._database, "other") signals.pre_save.disconnect(sender=Person, receiver=pre_save_receiver) signals.post_save.disconnect(sender=Person, receiver=post_save_receiver) signals.pre_delete.disconnect(sender=Person, receiver=pre_delete_receiver) signals.post_delete.disconnect(sender=Person, receiver=post_delete_receiver) def test_database_arg_m2m(self): """ Test that the m2m_changed signal has a correct database arg (#13552) """ # Make a receiver receiver = DatabaseReceiver() # Connect it signals.m2m_changed.connect(receiver=receiver) # Create the models that will be used for the tests b = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) p = Person.objects.create(name="Marty Alchin") # Create a copy of the models on the 'other' database to prevent # integrity errors on backends that don't defer constraints checks Book.objects.using('other').create(pk=b.pk, title=b.title, published=b.published) Person.objects.using('other').create(pk=p.pk, name=p.name) # Test addition b.authors.add(p) self.assertEqual(receiver._database, DEFAULT_DB_ALIAS) with self.override_router(): b.authors.add(p) self.assertEqual(receiver._database, "other") # Test removal b.authors.remove(p) self.assertEqual(receiver._database, DEFAULT_DB_ALIAS) with self.override_router(): b.authors.remove(p) self.assertEqual(receiver._database, "other") # Test addition in reverse p.book_set.add(b) self.assertEqual(receiver._database, DEFAULT_DB_ALIAS) with self.override_router(): p.book_set.add(b) self.assertEqual(receiver._database, "other") # Test clearing b.authors.clear() self.assertEqual(receiver._database, DEFAULT_DB_ALIAS) with self.override_router(): b.authors.clear() self.assertEqual(receiver._database, "other") class AttributeErrorRouter(object): "A router to test the exception handling of ConnectionRouter" def db_for_read(self, model, **hints): raise AttributeError def db_for_write(self, model, **hints): raise AttributeError class RouterAttributeErrorTestCase(TestCase): multi_db = True def override_router(self): return override_settings(DATABASE_ROUTERS=[AttributeErrorRouter()]) def test_attribute_error_read(self): "Check that the AttributeError from AttributeErrorRouter bubbles up" b = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) with self.override_router(): with self.assertRaises(AttributeError): Book.objects.get(pk=b.pk) def test_attribute_error_save(self): "Check that the AttributeError from AttributeErrorRouter bubbles up" dive = Book() dive.title = "Dive into Python" dive.published = datetime.date(2009, 5, 4) with self.override_router(): with self.assertRaises(AttributeError): dive.save() def test_attribute_error_delete(self): "Check that the AttributeError from AttributeErrorRouter bubbles up" b = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) p = Person.objects.create(name="Marty Alchin") b.authors.set([p]) b.editor = p with self.override_router(): with self.assertRaises(AttributeError): b.delete() def test_attribute_error_m2m(self): "Check that the AttributeError from AttributeErrorRouter bubbles up" b = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) p = Person.objects.create(name="Marty Alchin") with self.override_router(): with self.assertRaises(AttributeError): b.authors.set([p]) class ModelMetaRouter(object): "A router to ensure model arguments are real model classes" def db_for_write(self, model, **hints): if not hasattr(model, '_meta'): raise ValueError @override_settings(DATABASE_ROUTERS=[ModelMetaRouter()]) class RouterModelArgumentTestCase(TestCase): multi_db = True def test_m2m_collection(self): b = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) p = Person.objects.create(name="Marty Alchin") # test add b.authors.add(p) # test remove b.authors.remove(p) # test clear b.authors.clear() # test setattr b.authors.set([p]) # test M2M collection b.delete() def test_foreignkey_collection(self): person = Person.objects.create(name='Bob') Pet.objects.create(owner=person, name='Wart') # test related FK collection person.delete() class SyncOnlyDefaultDatabaseRouter(object): def allow_migrate(self, db, app_label, **hints): return db == DEFAULT_DB_ALIAS class MigrateTestCase(TestCase): available_apps = [ 'multiple_database', 'django.contrib.auth', 'django.contrib.contenttypes' ] multi_db = True def test_migrate_to_other_database(self): """Regression test for #16039: migrate with --database option.""" cts = ContentType.objects.using('other').filter(app_label='multiple_database') count = cts.count() self.assertGreater(count, 0) cts.delete() management.call_command('migrate', verbosity=0, interactive=False, database='other') self.assertEqual(cts.count(), count) def test_migrate_to_other_database_with_router(self): """Regression test for #16039: migrate with --database option.""" cts = ContentType.objects.using('other').filter(app_label='multiple_database') cts.delete() with override_settings(DATABASE_ROUTERS=[SyncOnlyDefaultDatabaseRouter()]): management.call_command('migrate', verbosity=0, interactive=False, database='other') self.assertEqual(cts.count(), 0) class RouterUsed(Exception): WRITE = 'write' def __init__(self, mode, model, hints): self.mode = mode self.model = model self.hints = hints class RouteForWriteTestCase(TestCase): multi_db = True class WriteCheckRouter(object): def db_for_write(self, model, **hints): raise RouterUsed(mode=RouterUsed.WRITE, model=model, hints=hints) def override_router(self): return override_settings(DATABASE_ROUTERS=[RouteForWriteTestCase.WriteCheckRouter()]) def test_fk_delete(self): owner = Person.objects.create(name='Someone') pet = Pet.objects.create(name='fido', owner=owner) try: with self.override_router(): pet.owner.delete() self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Person) self.assertEqual(e.hints, {'instance': owner}) def test_reverse_fk_delete(self): owner = Person.objects.create(name='Someone') to_del_qs = owner.pet_set.all() try: with self.override_router(): to_del_qs.delete() self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Pet) self.assertEqual(e.hints, {'instance': owner}) def test_reverse_fk_get_or_create(self): owner = Person.objects.create(name='Someone') try: with self.override_router(): owner.pet_set.get_or_create(name='fido') self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Pet) self.assertEqual(e.hints, {'instance': owner}) def test_reverse_fk_update(self): owner = Person.objects.create(name='Someone') Pet.objects.create(name='fido', owner=owner) try: with self.override_router(): owner.pet_set.update(name='max') self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Pet) self.assertEqual(e.hints, {'instance': owner}) def test_m2m_add(self): auth = Person.objects.create(name='Someone') book = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) try: with self.override_router(): book.authors.add(auth) self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Book.authors.through) self.assertEqual(e.hints, {'instance': book}) def test_m2m_clear(self): auth = Person.objects.create(name='Someone') book = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) book.authors.add(auth) try: with self.override_router(): book.authors.clear() self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Book.authors.through) self.assertEqual(e.hints, {'instance': book}) def test_m2m_delete(self): auth = Person.objects.create(name='Someone') book = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) book.authors.add(auth) try: with self.override_router(): book.authors.all().delete() self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Person) self.assertEqual(e.hints, {'instance': book}) def test_m2m_get_or_create(self): Person.objects.create(name='Someone') book = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) try: with self.override_router(): book.authors.get_or_create(name='Someone else') self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Book) self.assertEqual(e.hints, {'instance': book}) def test_m2m_remove(self): auth = Person.objects.create(name='Someone') book = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) book.authors.add(auth) try: with self.override_router(): book.authors.remove(auth) self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Book.authors.through) self.assertEqual(e.hints, {'instance': book}) def test_m2m_update(self): auth = Person.objects.create(name='Someone') book = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) book.authors.add(auth) try: with self.override_router(): book.authors.all().update(name='Different') self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Person) self.assertEqual(e.hints, {'instance': book}) def test_reverse_m2m_add(self): auth = Person.objects.create(name='Someone') book = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) try: with self.override_router(): auth.book_set.add(book) self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Book.authors.through) self.assertEqual(e.hints, {'instance': auth}) def test_reverse_m2m_clear(self): auth = Person.objects.create(name='Someone') book = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) book.authors.add(auth) try: with self.override_router(): auth.book_set.clear() self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Book.authors.through) self.assertEqual(e.hints, {'instance': auth}) def test_reverse_m2m_delete(self): auth = Person.objects.create(name='Someone') book = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) book.authors.add(auth) try: with self.override_router(): auth.book_set.all().delete() self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Book) self.assertEqual(e.hints, {'instance': auth}) def test_reverse_m2m_get_or_create(self): auth = Person.objects.create(name='Someone') Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) try: with self.override_router(): auth.book_set.get_or_create(title="New Book", published=datetime.datetime.now()) self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Person) self.assertEqual(e.hints, {'instance': auth}) def test_reverse_m2m_remove(self): auth = Person.objects.create(name='Someone') book = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) book.authors.add(auth) try: with self.override_router(): auth.book_set.remove(book) self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Book.authors.through) self.assertEqual(e.hints, {'instance': auth}) def test_reverse_m2m_update(self): auth = Person.objects.create(name='Someone') book = Book.objects.create(title="Pro Django", published=datetime.date(2008, 12, 16)) book.authors.add(auth) try: with self.override_router(): auth.book_set.all().update(title='Different') self.fail('db_for_write() not invoked on router') except RouterUsed as e: self.assertEqual(e.mode, RouterUsed.WRITE) self.assertEqual(e.model, Book) self.assertEqual(e.hints, {'instance': auth})
1ff723030c57bb8f1374e9cf2945a6d7a1a2132d
fd8f429f146ae2e4455b5f9a19dfdfec9dcaaabf
/utils/fairseq_mod/fairseq_mod/modules/multi_head_attention_temp.py
206260b43ac447601c45434adb4acedd15a7021b
[ "MIT" ]
permissive
mayank-k-jha/Knowledge-Distillation-Toolkit
274448a10b7f9108bf886120481137e77eb6c348
2d4a2b87c757462a980f0ed0c2a7a9ccea0be683
refs/heads/main
2023-04-02T21:50:51.083071
2021-03-19T21:22:12
2021-03-19T21:22:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,605
py
""" We simplified the logics in torch.nn.functional.multi_head_attention_forward, and only kept operations that are relevant to wav2vec 2.0. """ from __future__ import division import warnings import math import torch from torch._C import _infer_size, _add_docstr from torch.nn import _reduction as _Reduction from torch.nn.modules import utils from torch.nn.modules.utils import _single, _pair, _triple, _list_with_default from torch.nn import grad # noqa: F401 from torch import _VF from torch._jit_internal import boolean_dispatch, List, Optional, _overload from torch._overrides import has_torch_function, handle_torch_function from torch.nn.functional import linear, softmax, dropout Tensor = torch.Tensor def multi_head_attention_forward_temp(query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Tensor, in_proj_bias: Tensor, bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, q_proj_bias = None, k_proj_bias = None, v_proj_bias = None ): if not torch.jit.is_scripting(): tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): return handle_torch_function( multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check # allow MHA to have different sizes for the feature dimension assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 # !!! Assume use_separate_proj_weight = True q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) # !!! Did not indexing in_proj_bias because biases are supplied separately q = linear(query, q_proj_weight_non_opt, q_proj_bias) k = linear(key, k_proj_weight_non_opt, k_proj_bias) v = linear(value, v_proj_weight_non_opt, v_proj_bias) q = q * scaling # !!! Assumed that attn_mask is None # !!! Assumed that key_padding_mask.dtype = torch.Bool # !!! Assumed that bias_k and bias_v are None q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len # !!! Assumed add_zero_attn is False attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'), ) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) attn_output_weights = softmax( attn_output_weights, dim=-1) attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None
76f9d4a607fd502c71c1b37b1e0d92d48b6e5780
6c14069181f313e84eeb524dd495e3882156ef50
/samples/basic/crud/models/cisco-ios-xr/Cisco-IOS-XR-ip-domain-cfg/nc-read-xr-ip-domain-cfg-10-ydk.py
f4b17cee4430379ce46492911c842f1526de80e5
[ "Apache-2.0" ]
permissive
decolnz/ydk-py-samples
dde0fd64fd4df12a215588766a0f1fb8baf07fcd
7fa3f53c4d458c3332d372fb2fe3c46c5e036f07
refs/heads/master
2021-01-19T03:24:19.877929
2017-04-04T17:16:46
2017-04-04T17:16:46
87,310,389
1
0
null
2017-04-05T13:06:57
2017-04-05T13:06:57
null
UTF-8
Python
false
false
2,723
py
#!/usr/bin/env python # # Copyright 2016 Cisco Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Read all data for model Cisco-IOS-XR-ip-domain-cfg. usage: nc-read-xr-ip-domain-cfg-10-ydk.py [-h] [-v] device positional arguments: device NETCONF device (ssh://user:password@host:port) optional arguments: -h, --help show this help message and exit -v, --verbose print debugging messages """ from argparse import ArgumentParser from urlparse import urlparse from ydk.services import CRUDService from ydk.providers import NetconfServiceProvider from ydk.models.cisco_ios_xr import Cisco_IOS_XR_ip_domain_cfg \ as xr_ip_domain_cfg import logging def process_ip_domain(ip_domain): """Process data in ip_domain object.""" pass if __name__ == "__main__": """Execute main program.""" parser = ArgumentParser() parser.add_argument("-v", "--verbose", help="print debugging messages", action="store_true") parser.add_argument("device", help="NETCONF device (ssh://user:password@host:port)") args = parser.parse_args() device = urlparse(args.device) # log debug messages if verbose argument specified if args.verbose: logger = logging.getLogger("ydk") logger.setLevel(logging.DEBUG) handler = logging.StreamHandler() formatter = logging.Formatter(("%(asctime)s - %(name)s - " "%(levelname)s - %(message)s")) handler.setFormatter(formatter) logger.addHandler(handler) # create NETCONF provider provider = NetconfServiceProvider(address=device.hostname, port=device.port, username=device.username, password=device.password, protocol=device.scheme) # create CRUD service crud = CRUDService() ip_domain = xr_ip_domain_cfg.IpDomain() # create object # read data from NETCONF device # ip_domain = crud.read(provider, ip_domain) process_ip_domain(ip_domain) # process object data provider.close() exit() # End of script
f312c517f23c163fd877ebd3e6cd379560543899
4df3712caff818c0554e7fbe4b97dee5fcfd8675
/testCase/is/test_registerUsingPOST.py
b24a2919f9393b559958aa146eef8ac54bfcca4d
[]
no_license
Qingyaya/interface
456057a740bd77ba6c38eda27dd1aef658e0add9
3ae37816f52ad8c45e192596a854848d8e546b14
refs/heads/master
2020-03-22T07:16:04.171904
2018-12-05T05:20:25
2018-12-05T05:20:25
139,690,021
0
0
null
null
null
null
UTF-8
Python
false
false
1,229
py
#-*-coding:utf-8-*- import unittest import paramunittest from common import myHttp from common.get_csv import * from common.Log import Log from common.checkResult import checkResult import os apifile,datapath,casename=get_dataname(os.path.abspath(__file__)) load_csv=get_testdata(datapath) package=get_package(os.path.abspath(__file__)) @paramunittest.parametrized(*load_csv) class test_registerUsingPOST(unittest.TestCase): def setParameters(self,caseId,caseName,assertKey,assertValue,params): self.caseId=caseId self.caseName=caseName self.assertKey=assertKey self.assertValue=assertValue self.params=eval(params) def setUp(self): self.url=get_url(apifile,casename) self.log=Log() self.log.build_start_line(self.caseId+ ":"+ self.caseName) def test_registerUsingPOST(self): u"""eps_云超市用户注册""" self.re=myHttp.post(self.url,self.params,package) checkResult().ck(self.caseId,self.caseName,self.assertKey,self.assertValue,self.params,self.url,self.re) def tearDown(self): self.log.build_end_line(self.caseId +":"+ self.caseName) if __name__ == "__main__": unittest.main()
22e90031b1c24c768d56487151773a8de59326f2
88e03e66109adb6325ccace96f37b31e15c5e86c
/docopt/example1.py
91b2d16a7304e135fafe8a1dc1496d307bbc53e8
[]
no_license
abevieiramota/learning-python
53ee5d158af33f627c65a7d3960083a1242713ed
c9dfa37e5dd547ab03d1ff67932ff28be70bfbeb
refs/heads/master
2021-01-10T21:05:48.021976
2014-07-11T20:28:03
2014-07-11T20:28:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
542
py
"""Naval Fate. Usage: naval_fate.py ship new <name>... naval_fate.py ship <name> move <x> <y> [--speed=<kn>] naval_fate.py ship shoot <x> <y> naval_fate.py mine (set|remove) <x> <y> [--moored|--drifting] naval_fate.py -h | --help naval_fate.py --version Options: -h --help Show this screen. --version Show version. --speed=<kn> Speed in knots [default: 10]. --moored Moored (anchored) mine. --drifting Drifting mine.""" from docopt import docopt args = docopt(__doc__, version='1.2.3.4') print args
a01ada960931c5a2d450ca04cd612c3e4ced1d26
4d2a789ccc9fac1380b80b558569e29a71980c0f
/backend/model/open_chat/chatterbot_chat/chattrbot_chat.py
ef256414eafbdae32a642ceff4bfb9c5f2f4a4f0
[]
no_license
zhuxianzhong/libot
d493853ca847498b7ea12fc22b62c8a4f831dd62
59f70c4e41e36f3743bd659d0fb038bedb40be72
refs/heads/master
2020-07-13T12:53:11.850328
2019-08-28T12:41:16
2019-08-28T12:41:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,581
py
# -*- coding: utf-8 -*- # File: chatterbot_chat.py # Author: Hualong Zhang <[email protected]> # CreateDate: 19-03-07 import os import sys # 模块路径引用统一回退到Libbot目录下 project_path = os.path.abspath(os.path.join(os.getcwd(), "../..")) sys.path.append(project_path) from chatterbot import ChatBot from chatterbot.trainers import ChatterBotCorpusTrainer import logging # logging.basicConfig(level=logging.INFO) class ChatterbotChat(): @classmethod def create_chatterbot(cls): """ 用语料训练一个chatbot :return: """ cn_chatter = ChatBot("National Lib Chatter", storage_adapter='chatterbot.storage.SQLStorageAdapter', input_adapter='chatterbot.input.TerminalAdapter', output_adapter='chatterbot.output.TerminalAdapter', logic_adapters=[ 'chatterbot.logic.BestMatch', 'chatterbot.logic.MathematicalEvaluation', ], database='./db.sqlite3' ) trainer = ChatterBotCorpusTrainer(cn_chatter) trainer.train('./xiaohuangji_chatterbot_corpus.json') # trainer.export_for_training('./my_export.json') return cn_chatter @classmethod def load_chatterbot(cls): """ 加载训练好的bot :return: """ cn_chatterbot = ChatBot('National Lib Chatter', storage_adapter='chatterbot.storage.SQLStorageAdapter', input_adapter = 'chatterbot.input.TerminalAdapter', output_adapter = 'chatterbot.output.TerminalAdapter', logic_adapters = [ 'chatterbot.logic.BestMatch', 'chatterbot.logic.MathematicalEvaluation', ], database = './db.sqlite3' ) return cn_chatterbot if __name__ == '__main__': test_chatter = ChatterbotChat.create_chatterbot() test_chatter = ChatterbotChat.load_chatterbot() while True: try: user_input = input('USER:') response = test_chatter.get_response(user_input) print('BOT:', response) # 直到按ctrl-c 或者 ctrl-d 才会退出 except (KeyboardInterrupt, EOFError, SystemExit): break
fafe53a39da8ee583dc0c6eb3fcc4cee0ba2e479
6df76f8a6fcdf444c3863e3788a2f4b2c539c22c
/django code/p44/p44/settings.py
d6f5008e8a2e60f7f24dd5e91f4f61217b442cc7
[]
no_license
basantbhandari/DjangoProjectsAsDocs
068e4a704fade4a97e6c40353edb0a4299bd9678
594dbb560391eaf94bb6db6dc07702d127010b88
refs/heads/master
2022-12-18T22:33:23.902228
2020-09-22T13:11:01
2020-09-22T13:11:01
297,651,728
1
0
null
null
null
null
UTF-8
Python
false
false
3,134
py
""" Django settings for p44 project. Generated by 'django-admin startproject' using Django 3.0.3. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '^o920jad3pr1kw$gy+1hy(pgw_#wmrbwq-)*2x&$bsp5*j=s%h' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # user app 'enroll', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'p44.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'p44.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
d845a2d41d812594b7e5c1c64f2625373db1d58c
028e5d9ee8cc476459372843e759730faf4d7b73
/Package/CONFIG.py
12cf50ec1d6032598f68c4c67df58c27f64a788b
[ "Apache-2.0" ]
permissive
YuanYuLin/libiopccmd_client
a3635d59036ade6dfeacc0e556edb1fa16c7d65b
b9f320c28b631bb3ecea6289a2d50421a1561fd0
refs/heads/master
2021-01-11T19:05:30.422275
2017-04-23T04:54:37
2017-04-23T04:54:37
79,315,547
0
0
null
null
null
null
UTF-8
Python
false
false
107
py
import ops def MAIN_ENV(args): env = {} return env def MAIN(args): print "libiopccmd_client"
190a82839258ab6b37fcae6033559509b366b1d2
ea57ef44636ce151b3ef5322466cdfcb02482515
/tests/formatting/test_formatter.py
14106396206bd4fd77b1e2c26fe6f06344ede303
[ "MIT" ]
permissive
Sn3akyP3t3/pendulum
acb3dc5067576c4569a08b1d8a8ecfce918b4724
7ce170bdc64199d74e09e347402983f1bb015f63
refs/heads/master
2020-03-22T01:15:01.160870
2018-07-01T15:49:09
2018-07-01T15:49:09
139,292,657
0
0
MIT
2018-07-01T01:46:00
2018-07-01T01:46:00
null
UTF-8
Python
false
false
7,274
py
# -*- coding: utf-8 -*- import pytest import pendulum from pendulum.formatting import Formatter from pendulum.locales.locale import Locale @pytest.fixture(autouse=True) def setup(): Locale._cache['dummy'] = {} yield del Locale._cache['dummy'] def test_year_tokens(): d = pendulum.datetime(2009, 1, 14, 15, 25, 50, 123456) f = Formatter() assert f.format(d, 'YYYY') == '2009' assert f.format(d, 'YY') == '09' assert f.format(d, 'Y') == '2009' def test_quarter_tokens(): f = Formatter() d = pendulum.datetime(1985, 1, 4) assert f.format(d, 'Q') == '1' d = pendulum.datetime(2029, 8, 1) assert f.format(d, 'Q') == '3' d = pendulum.datetime(1985, 1, 4) assert f.format(d, 'Qo') == '1st' d = pendulum.datetime(2029, 8, 1) assert f.format(d, 'Qo') == '3rd' d = pendulum.datetime(1985, 1, 4) assert f.format(d, 'Qo', locale='fr') == '1er' d = pendulum.datetime(2029, 8, 1) assert f.format(d, 'Qo', locale='fr') == '3e' def test_month_tokens(): f = Formatter() d = pendulum.datetime(2016, 3, 24) assert f.format(d, 'MM') == '03' assert f.format(d, 'M') == '3' assert f.format(d, 'MMM') == 'Mar' assert f.format(d, 'MMMM') == 'March' assert f.format(d, 'Mo') == '3rd' assert f.format(d, 'MMM', locale='fr') == 'mars' assert f.format(d, 'MMMM', locale='fr') == 'mars' assert f.format(d, 'Mo', locale='fr') == '3e' def test_day_tokens(): f = Formatter() d = pendulum.datetime(2016, 3, 7) assert f.format(d, 'DD') == '07' assert f.format(d, 'D') == '7' assert f.format(d, 'Do') == '7th' assert f.format(d.first_of('month'), 'Do') == '1st' assert f.format(d, 'Do', locale='fr') == '7e' assert f.format(d.first_of('month'), 'Do', locale='fr') == '1er' def test_day_of_year(): f = Formatter() d = pendulum.datetime(2016, 8, 28) assert f.format(d, 'DDDD') == '241' assert f.format(d, 'DDD') == '241' assert f.format(d.start_of('year'), 'DDDD') == '001' assert f.format(d.start_of('year'), 'DDD') == '1' assert f.format(d, 'DDDo') == '241st' assert f.format(d.add(days=3), 'DDDo') == '244th' assert f.format(d, 'DDDo', locale='fr') == '241e' assert f.format(d.add(days=3), 'DDDo', locale='fr') == '244e' def test_week_of_year(): f = Formatter() d = pendulum.datetime(2016, 8, 28) assert f.format(d, 'wo') == '34th' def test_day_of_week(): f = Formatter() d = pendulum.datetime(2016, 8, 28) assert f.format(d, 'd') == '0' assert f.format(d, 'dd') == 'Sun' assert f.format(d, 'ddd') == 'Sun' assert f.format(d, 'dddd') == 'Sunday' assert f.format(d, 'dd', locale='fr') == 'dim.' assert f.format(d, 'ddd', locale='fr') == 'dim.' assert f.format(d, 'dddd', locale='fr') == 'dimanche' assert f.format(d, 'do') == '0th' def test_am_pm(): f = Formatter() d = pendulum.datetime(2016, 8, 28, 23) assert f.format(d, 'A') == 'PM' assert f.format(d.set(hour=11), 'A') == 'AM' def test_hour(): f = Formatter() d = pendulum.datetime(2016, 8, 28, 7) assert f.format(d, 'H') == '7' assert f.format(d, 'HH') == '07' d = pendulum.datetime(2016, 8, 28, 0) assert f.format(d, 'h') == '12' assert f.format(d, 'hh') == '12' def test_minute(): f = Formatter() d = pendulum.datetime(2016, 8, 28, 7, 3) assert f.format(d, 'm') == '3' assert f.format(d, 'mm') == '03' def test_second(): f = Formatter() d = pendulum.datetime(2016, 8, 28, 7, 3, 6) assert f.format(d, 's') == '6' assert f.format(d, 'ss') == '06' def test_fractional_second(): f = Formatter() d = pendulum.datetime(2016, 8, 28, 7, 3, 6, 123456) assert f.format(d, 'S') == '1' assert f.format(d, 'SS') == '12' assert f.format(d, 'SSS') == '123' assert f.format(d, 'SSSS') == '1234' assert f.format(d, 'SSSSS') == '12345' assert f.format(d, 'SSSSSS') == '123456' d = pendulum.datetime(2016, 8, 28, 7, 3, 6, 0) assert f.format(d, 'S') == '0' assert f.format(d, 'SS') == '00' assert f.format(d, 'SSS') == '000' assert f.format(d, 'SSSS') == '0000' assert f.format(d, 'SSSSS') == '00000' assert f.format(d, 'SSSSSS') == '000000' d = pendulum.datetime(2016, 8, 28, 7, 3, 6, 123) assert f.format(d, 'S') == '0' assert f.format(d, 'SS') == '00' assert f.format(d, 'SSS') == '000' assert f.format(d, 'SSSS') == '0001' assert f.format(d, 'SSSSS') == '00012' assert f.format(d, 'SSSSSS') == '000123' def test_timezone(): f = Formatter() d = pendulum.datetime(2016, 8, 28, 7, 3, 6, 123456, tz='Europe/Paris') assert f.format(d, 'zz') == 'CEST' assert f.format(d, 'z') == 'Europe/Paris' d = pendulum.datetime(2016, 1, 28, 7, 3, 6, 123456, tz='Europe/Paris') assert f.format(d, 'zz') == 'CET' assert f.format(d, 'z') == 'Europe/Paris' def test_timezone_offset(): f = Formatter() d = pendulum.datetime(2016, 8, 28, 7, 3, 6, 123456, tz='Europe/Paris') assert f.format(d, 'ZZ') == '+0200' assert f.format(d, 'Z') == '+02:00' d = pendulum.datetime(2016, 1, 28, 7, 3, 6, 123456, tz='Europe/Paris') assert f.format(d, 'ZZ') == '+0100' assert f.format(d, 'Z') == '+01:00' d = pendulum.datetime(2016, 1, 28, 7, 3, 6, 123456, tz='America/Guayaquil') assert f.format(d, 'ZZ') == '-0500' assert f.format(d, 'Z') == '-05:00' def test_timestamp(): f = Formatter() d = pendulum.datetime(1970, 1, 1) assert f.format(d, 'X') == '0' assert f.format(d.add(days=1), 'X') == '86400' def test_date_formats(): f = Formatter() d = pendulum.datetime(2016, 8, 28, 7, 3, 6, 123456) assert f.format(d, 'LT') == '7:03 AM' assert f.format(d, 'LTS') == '7:03:06 AM' assert f.format(d, 'L') == '08/28/2016' assert f.format(d, 'LL') == 'August 28, 2016' assert f.format(d, 'LLL') == 'August 28, 2016 7:03 AM' assert f.format(d, 'LLLL') == 'Sunday, August 28, 2016 7:03 AM' assert f.format(d, 'LT', locale='fr') == '07:03' assert f.format(d, 'LTS', locale='fr') == '07:03:06' assert f.format(d, 'L', locale='fr') == '28/08/2016' assert f.format(d, 'LL', locale='fr') == u'28 août 2016' assert f.format(d, 'LLL', locale='fr') == u'28 août 2016 07:03' assert f.format(d, 'LLLL', locale='fr') == u'dimanche 28 août 2016 07:03' def test_escape(): f = Formatter() d = pendulum.datetime(2016, 8, 28) assert f.format(d, '[YYYY] YYYY \[YYYY\]') == 'YYYY 2016 [2016]' assert f.format(d, '\D D \\\D') == 'D 28 \\28' def test_date_formats_missing(): f = Formatter() d = pendulum.datetime(2016, 8, 28, 7, 3, 6, 123456) assert f.format(d, 'LT', locale='dummy') == '7:03 AM' assert f.format(d, 'LTS', locale='dummy') == '7:03:06 AM' assert f.format(d, 'L', locale='dummy') == '08/28/2016' assert f.format(d, 'LL', locale='dummy') == 'August 28, 2016' assert f.format(d, 'LLL', locale='dummy') == 'August 28, 2016 7:03 AM' assert f.format(d, 'LLLL', locale='dummy') == 'Sunday, August 28, 2016 7:03 AM' def test_unknown_token(): f = Formatter() d = pendulum.datetime(2016, 8, 28, 7, 3, 6, 123456) assert f.format(d, 'J') == 'J'
8bb167bb9814265161c1b8eeddb4dcacc76b6bbf
87879af0c48875acc14d7b31842f403cb29d93e3
/isitfit/cli/core.py
74f848a438e7cb075a711fcbda411d875f9bc413
[ "Apache-2.0" ]
permissive
pgupta35/isitfit
bfcec5e03778837c7040a45fbc710c7d8dcc5366
db69f0501486346e3794f1013ed0c57ce3895b8c
refs/heads/master
2020-09-14T16:50:23.454724
2019-11-20T17:39:40
2019-11-20T17:39:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,582
py
# RuntimeError: Click will abort further execution because Python 3 was configured to use ASCII as encoding for the environment. # Consult https://click.palletsprojects.com/en/7.x/python3/ for mitigation steps. # # Edit 2019-10-08: whatsapp's wadebug uses "click.disable_unicode_literals_warning = True" # Ref: https://github.com/WhatsApp/WADebug/blob/958ac37be804cc732ae514d4872b93d19d197a5c/wadebug/cli.py#L23 from ..utils import mysetlocale mysetlocale() import logging logger = logging.getLogger('isitfit') import click from .. import isitfit_version # For the --share-email "multiple options" # https://click.palletsprojects.com/en/7.x/options/#multiple-options @click.group(invoke_without_command=True) @click.option('--debug', is_flag=True, help='Display more details to help with debugging') @click.option('--optimize', is_flag=True, help='DEPRECATED: use "isitfit cost optimize" instead') @click.option('--version', is_flag=True, help='DEPRECATED: use "isitfit version" instead') @click.option('--share-email', multiple=True, help='Share result to email address') @click.option('--skip-check-upgrade', is_flag=True, help='Skip step for checking for upgrade of isitfit') @click.pass_context def cli_core(ctx, debug, optimize, version, share_email, skip_check_upgrade): logLevel = logging.DEBUG if debug else logging.INFO ch = logging.StreamHandler() ch.setLevel(logLevel) logger.addHandler(ch) logger.setLevel(logLevel) if debug: logger.debug("Enabled debug level") logger.debug("-------------------") # After adding the separate command for "cost" (i.e. `isitfit cost analyze`) # putting a note here to notify user of new usage # Ideally, this code would be deprecated though if ctx.invoked_subcommand is None: # if still used without subcommands, notify user of new usage #from .cost import analyze as cost_analyze, optimize as cost_optimize #if optimize: # ctx.invoke(cost_optimize, filter_tags=filter_tags, n=n) #else: # ctx.invoke(cost_analyze, filter_tags=filter_tags) from click.exceptions import UsageError if optimize: raise UsageError("As of version 0.11, please use `isitfit cost optimize` instead of `isitfit --optimize`.") elif version: # ctx.invoke(cli_version) raise UsageError("As of version 0.11, please use `isitfit version` instead of `isitfit --version`.") else: raise UsageError("As of version 0.11, please use `isitfit cost analyze` instead of `isitfit` to calculate the cost-weighted utilization.") # make sure that context is a dict ctx.ensure_object(dict) # check if emailing requested if share_email is not None: max_n_recipients = 3 if len(share_email) > max_n_recipients: from click.exceptions import BadParameter raise BadParameter("Maximum allowed number of email recipients is %i. Received %i"%(max_n_recipients, len(share_email)), param_hint="--share-email") ctx.obj['share_email'] = share_email # check if current version is out-of-date if not skip_check_upgrade: from ..utils import prompt_upgrade is_outdated = prompt_upgrade('isitfit', isitfit_version) ctx.obj['is_outdated'] = is_outdated from .tags import tags as cli_tags from .cost import cost as cli_cost from .version import version as cli_version cli_core.add_command(cli_version) cli_core.add_command(cli_cost) cli_core.add_command(cli_tags) #----------------------- if __name__ == '__main__': cli_core()
4f1e75369d5f0420fdc4f28eb1188153e869a7d9
a34ec07c3464369a88e68c9006fa1115f5b61e5f
/B_HashTable/Basic/L0_1282_Group_the_People_Given_the_Group_Size_They_Belong_To.py
92ea13493ced4cb225285f580300bf6fa20a0bcb
[]
no_license
824zzy/Leetcode
9220f2fb13e03d601d2b471b5cfa0c2364dbdf41
93b7f4448a366a709214c271a570c3399f5fc4d3
refs/heads/master
2023-06-27T02:53:51.812177
2023-06-16T16:25:39
2023-06-16T16:25:39
69,733,624
14
3
null
2022-05-25T06:48:38
2016-10-01T10:56:07
Python
UTF-8
Python
false
false
440
py
""" https://leetcode.com/problems/group-the-people-given-the-group-size-they-belong-to/ """ class Solution: def groupThePeople(self, groupSizes: List[int]) -> List[List[int]]: cnt = defaultdict(list) for i, x in enumerate(groupSizes): cnt[x].append(i) ans = [] for k, v in cnt.items(): for i in range(0, len(v), k): ans.append(v[i:i+k]) return ans
4a59b66d1aab3d4e8c93955f5bad4b91c49bb18f
b0a350df2e6eef86b753e2eff9e57b21bd113019
/users/models.py
9ea4638742a4c278f8a25a672944e04bdd4c7bab
[]
no_license
fazer1929/Go-Collab
8ba92ce926bb163e50ffcf3eb4eecb29d8e0a94b
75efb243ee6143603026dee45ca73aabf8d9ddff
refs/heads/main
2023-02-24T01:08:25.440449
2021-01-30T21:50:08
2021-01-30T21:50:08
334,199,821
0
0
null
2021-01-30T21:30:58
2021-01-29T16:24:56
HTML
UTF-8
Python
false
false
655
py
from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE,null=True,blank=True) bio = models.TextField(max_length=500, blank=True) skills = models.CharField(max_length=40,blank=True) @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_user_profile(sender, instance, **kwargs): instance.profile.save()
69ac7f2c16d34374a622fb6417163aa64a013b79
1df82fa8ef888b74fb9095c9ade89e16895366b1
/14.Lambdas and Buit In Functions - Exercise/06. Unique Numbers.py
6980fd7dc051a806142c78f6ce701771e8ffbacc
[]
no_license
filipov73/python_advanced_january_2020
868eb4bc365f7774c373183760e7ac584e1bd20c
a5e24190ee08bd1a0534dc04f91a5ba1927d1b19
refs/heads/master
2020-11-26T14:07:12.423309
2020-02-23T15:20:13
2020-02-23T15:20:13
229,097,988
1
0
null
null
null
null
UTF-8
Python
false
false
343
py
numbers = [float(x) for x in input().split()] round_numbers = sorted(set(map(round, numbers))) print(min(round_numbers)) print(max(round_numbers)) mul_x_3 = [x * 3 for x in round_numbers] print(" ".join(map(str, mul_x_3))) # min and max and multiply the numbers by 3. # Print only the unique numbers in ascending order separated by space
39079db82e3a8b93fef53ad1103579bf166f8128
a99bf471ebc6b3753a17bfe74b711185e72d9194
/map/cats.py
737f1b41deff42b9cd67e2245c1de437339c47ed
[]
no_license
andrewpilon/decals-web
efd6ecaa00196636f7c2979b308eab1c96bfd971
50602dea0696f3e81e57f47cab435b3f1433e092
refs/heads/master
2020-04-03T13:26:11.428079
2018-10-24T11:13:51
2018-10-24T11:13:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
37,308
py
from __future__ import print_function import os import fitsio if __name__ == '__main__': import sys sys.path.insert(0, 'django-1.9') import os os.environ['DJANGO_SETTINGS_MODULE'] = 'viewer.settings' import django django.setup() from django.http import HttpResponse, StreamingHttpResponse from viewer import settings try: from django.core.urlresolvers import reverse except: # django 2.0 from django.urls import reverse from map.utils import send_file, trymakedirs, get_tile_wcs, oneyear debug = print if not settings.DEBUG_LOGGING: def debug(*args, **kwargs): pass catversions = { 'decals-dr7': [1,], 'mzls+bass-dr6': [1,], 'decals-dr5': [1,], 'mzls+bass-dr4': [1,], 'decals-dr2': [2,], 'decals-dr3': [1,], 'ngc': [1,], 'lslga': [1,], 'spec': [1,], 'spec-deep2': [1,], 'bright': [1,], 'tycho2': [1,], 'targets-dr2': [1,], 'targets-dr45': [1,], 'targets-dr56': [1,], 'targets-bgs-dr56': [1,], 'targets-dr67': [1,], 'targets-bgs-dr67': [1,], 'targets-sky-dr67': [1,], 'targets-bright-dr67': [1,], 'targets-dark-dr67': [1,], 'gaia-dr1': [1,], 'gaia-dr2': [1,], 'sdss-cat': [1,], 'phat-clusters': [1,], 'ps1': [1,], } def cat_phat_clusters(req, ver): import json from astrometry.util.fits import fits_table, merge_tables tag = 'phat-clusters' ralo = float(req.GET['ralo']) rahi = float(req.GET['rahi']) declo = float(req.GET['declo']) dechi = float(req.GET['dechi']) ver = int(ver) if not ver in catversions[tag]: raise RuntimeError('Invalid version %i for tag %s' % (ver, tag)) cat = fits_table(os.path.join(settings.DATA_DIR, 'phat-clusters.fits')) cat.cut((cat.ra >= ralo ) * (cat.ra <= rahi) * (cat.dec >= declo) * (cat.dec <= dechi)) return HttpResponse(json.dumps(dict( name=[str(s.strip()) for s in cat.name], rd=[(float(o.ra),float(o.dec)) for o in cat], mag=[float(o.mag) for o in cat], young=[bool(o.young) for o in cat], velocity=[float(o.velocity) for o in cat], metallicity=[float(o.metallicity) for o in cat], )), content_type='application/json') def cat_gaia_dr1(req, ver): import json from legacypipe.gaiacat import GaiaCatalog tag = 'gaia-dr1' ralo = float(req.GET['ralo']) rahi = float(req.GET['rahi']) declo = float(req.GET['declo']) dechi = float(req.GET['dechi']) ver = int(ver) if not ver in catversions[tag]: raise RuntimeError('Invalid version %i for tag %s' % (ver, tag)) os.environ['GAIA_CAT_DIR'] = settings.GAIA_DR1_CAT_DIR gaia = GaiaCatalog() cat = gaia.get_catalog_radec_box(ralo, rahi, declo, dechi) return HttpResponse(json.dumps(dict( rd=[(float(o.ra),float(o.dec)) for o in cat], gmag=[float(o.phot_g_mean_mag) for o in cat], )), content_type='application/json') def cat_gaia_dr2(req, ver): import json from legacypipe.gaiacat import GaiaCatalog import numpy as np tag = 'gaia-dr2' ralo = float(req.GET['ralo']) rahi = float(req.GET['rahi']) declo = float(req.GET['declo']) dechi = float(req.GET['dechi']) ver = int(ver) if not ver in catversions[tag]: raise RuntimeError('Invalid version %i for tag %s' % (ver, tag)) os.environ['GAIA_CAT_DIR'] = settings.GAIA_DR2_CAT_DIR gaia = GaiaCatalog() cat = gaia.get_catalog_radec_box(ralo, rahi, declo, dechi) for c in ['ra','dec','phot_g_mean_mag','phot_bp_mean_mag', 'phot_rp_mean_mag', 'pmra','pmdec','parallax']: val = cat.get(c) val[np.logical_not(np.isfinite(val))] = 0. cat.set(c, val) return HttpResponse(json.dumps(dict( rd=[(float(o.ra),float(o.dec)) for o in cat], sourceid=[int(o.source_id) for o in cat], gmag=[float(o.phot_g_mean_mag) for o in cat], bpmag=[float(o.phot_bp_mean_mag) for o in cat], rpmag=[float(o.phot_rp_mean_mag) for o in cat], pmra=[float(o.pmra) for o in cat], pmdec=[float(o.pmdec) for o in cat], parallax=[float(o.parallax) for o in cat], )), content_type='application/json') def cat_sdss(req, ver): import json import numpy as np from astrometry.util.starutil_numpy import degrees_between, radectoxyz, xyztoradec from map.views import sdss_ccds_near from astrometry.util.fits import fits_table, merge_tables tag = 'sdss-cat' ralo = float(req.GET['ralo']) rahi = float(req.GET['rahi']) declo = float(req.GET['declo']) dechi = float(req.GET['dechi']) ver = int(ver) if not ver in catversions[tag]: raise RuntimeError('Invalid version %i for tag %s' % (ver, tag)) rad = degrees_between(ralo, declo, rahi, dechi) / 2. xyz1 = radectoxyz(ralo, declo) xyz2 = radectoxyz(rahi, dechi) xyz = (xyz1 + xyz2) xyz /= np.sqrt(np.sum(xyz**2)) rc,dc = xyztoradec(xyz) rad = rad + np.hypot(10.,14.)/2./60. ccds = sdss_ccds_near(rc[0], dc[0], rad) if ccds is None: print('No SDSS CCDs nearby') return HttpResponse(json.dumps(dict(rd=[])), content_type='application/json') print(len(ccds), 'SDSS CCDs') T = [] for ccd in ccds: # env/BOSS_PHOTOOBJ/301/2073/3/photoObj-002073-3-0088.fits fn = os.path.join(settings.SDSS_BASEDIR, 'env', 'BOSS_PHOTOOBJ', str(ccd.rerun), str(ccd.run), str(ccd.camcol), 'photoObj-%06i-%i-%04i.fits' % (ccd.run, ccd.camcol, ccd.field)) print('Reading', fn) T.append(fits_table(fn, columns='ra dec objid mode objc_type objc_flags objc_flags nchild tai expflux devflux psfflux cmodelflux fracdev mjd'.split())) T = merge_tables(T) T.cut((T.dec >= declo) * (T.dec <= dechi)) # FIXME T.cut((T.ra >= ralo) * (T.ra <= rahi)) # primary T.cut(T.mode == 1) types = ['P' if t == 6 else 'C' for t in T.objc_type] fluxes = [p if t == 6 else c for t,p,c in zip(T.objc_type, T.psfflux, T.cmodelflux)] return HttpResponse(json.dumps(dict( rd=[(float(o.ra),float(o.dec)) for o in T], sourcetype=types, fluxes = [dict(u=float(f[0]), g=float(f[1]), r=float(f[2]), i=float(f[3]), z=float(f[4])) for f in fluxes], )), content_type='application/json') def upload_cat(req): import tempfile from astrometry.util.fits import fits_table from django.http import HttpResponseRedirect from map.views import index if req.method != 'POST': return HttpResponse('POST only') print('Files:', req.FILES) cat = req.FILES['catalog'] dirnm = settings.USER_QUERY_DIR if not os.path.exists(dirnm): try: os.makedirs(dirnm) except: pass f,tmpfn = tempfile.mkstemp(suffix='.fits', dir=dirnm) os.close(f) os.unlink(tmpfn) print('Saving to', tmpfn) with open(tmpfn, 'wb+') as destination: for chunk in cat.chunks(): destination.write(chunk) print('Wrote', tmpfn) try: T = fits_table(tmpfn) except: return HttpResponse('Must upload FITS format catalog including "RA", "Dec", optionally "Name" columns') cols = T.columns() if not (('ra' in cols) and ('dec' in cols)): return HttpResponse('Must upload catalog including "RA", "Dec", optionally "Name" columns') ra,dec = T.ra[0], T.dec[0] catname = tmpfn.replace(dirnm, '').replace('.fits', '') if catname.startswith('/'): catname = catname[1:] try: import fitsio primhdr = fitsio.read_header(tmpfn) name = primhdr.get('CATNAME', '') color = primhdr.get('CATCOLOR', '') if len(name): catname = catname + '-n%s' % name.strip().replace(' ','_') if len(color): catname = catname + '-c%s' % color.strip() except: pass return HttpResponseRedirect(reverse(index) + '?ra=%.4f&dec=%.4f&catalog=%s' % (ra, dec, catname)) def get_random_galaxy(layer=None): import numpy as np from map.views import galaxycat, layer_to_survey_name if layer is not None: layer = layer_to_survey_name(layer) global galaxycat if layer == 'mzls+bass-dr4': galfn = os.path.join(settings.DATA_DIR, 'galaxies-in-dr4.fits') drnum = 4 elif layer == 'mzls+bass-dr6': galfn = os.path.join(settings.DATA_DIR, 'galaxies-in-dr6.fits') drnum = 4 elif layer == 'decals-dr7': galfn = os.path.join(settings.DATA_DIR, 'galaxies-in-dr7.fits') drnum = 7 elif layer == 'decals-dr5': galfn = os.path.join(settings.DATA_DIR, 'galaxies-in-dr5.fits') drnum = 5 else: galfn = os.path.join(settings.DATA_DIR, 'galaxies-in-dr3.fits') drnum = 3 if galaxycat is None and not os.path.exists(galfn): if settings.CREATE_GALAXY_CATALOG: try: create_galaxy_catalog(galfn, drnum) except: import traceback traceback.print_exc() pass if not os.path.exists(galfn): if drnum == 4: return 147.1744, 44.0812, 'NGC 2998' else: return 18.6595, -1.0210, 'NGC 442' if galaxycat is None: from astrometry.util.fits import fits_table galaxycat = fits_table(galfn) i = np.random.randint(len(galaxycat)) ra = float(galaxycat.ra[i]) dec = float(galaxycat.dec[i]) name = galaxycat.name[i].strip() return ra,dec,name def create_galaxy_catalog(galfn, drnum): import astrometry.catalogs from astrometry.util.fits import fits_table, merge_tables import fitsio from astrometry.util.util import Tan from astrometry.libkd.spherematch import match_radec import numpy as np fn = os.path.join(os.path.dirname(astrometry.catalogs.__file__), 'ngc2000.fits') NGC = fits_table(fn) print(len(NGC), 'NGC objects') NGC.name = np.array(['NGC %i' % n for n in NGC.ngcnum]) NGC.delete_column('ngcnum') fn = os.path.join(os.path.dirname(astrometry.catalogs.__file__), 'ic2000.fits') IC = fits_table(fn) print(len(IC), 'IC objects') IC.name = np.array(['IC %i' % n for n in IC.icnum]) IC.delete_column('icnum') # fn = os.path.join(settings.DATA_DIR, 'ugc.fits') # UGC = fits_table(fn) # print(len(UGC), 'UGC objects') # UGC.name = np.array(['UGC %i' % n for n in UGC.ugcnum]) # UGC.delete_column('ugcnum') #T = merge_tables([NGC, IC, UGC]) #T.writeto(os.path.join(settings.DATA_DIR, 'galaxy-cats.fits')) T = merge_tables([NGC, IC]) T.writeto(os.path.join('/tmp/galaxy-cats.fits')) keep = np.zeros(len(T), bool) from map.views import get_survey bricks = None if drnum == 3: bricks = fits_table(os.path.join(settings.DATA_DIR, 'decals-dr3', 'decals-bricks-in-dr3.fits')) bricks.cut(bricks.has_g * bricks.has_r * bricks.has_z) print(len(bricks), 'bricks with grz') survey = get_survey('decals-dr3') elif drnum == 4: survey = get_survey('mzls+bass-dr4') bricks = fits_table(os.path.join(settings.DATA_DIR, 'survey-bricks-in-dr4.fits')) elif drnum == 6: survey = get_survey('mzls+bass-dr6') bricks = survey.get_bricks() bricks.cut(bricks.has_g * bricks.has_r * bricks.has_z) elif drnum == 5: survey = get_survey('decals-dr5') elif drnum == 7: survey = get_survey('decals-dr7') if bricks is None: bricks = survey.get_bricks() I,J,d = match_radec(bricks.ra, bricks.dec, T.ra, T.dec, 0.25, nearest=True) print('Matched', len(I), 'bricks near NGC objects') bricks.cut(I) # bricks = fits_table(os.path.join(settings.DATA_DIR, 'survey-bricks-dr4.fits')) # bricks.cut((bricks.nexp_g > 0) * # (bricks.nexp_r > 0) * # (bricks.nexp_z > 0)) # print(len(bricks), 'bricks with grz') # # sbricks = survey.get_bricks() # binds = dict([(b,i) for i,b in enumerate(sbricks.brickname)]) # I = np.array([binds[b] for b in bricks.brickname]) # bricks.ra1 = sbricks.ra1[I] # bricks.ra2 = sbricks.ra2[I] # bricks.dec1 = sbricks.dec1[I] # bricks.dec2 = sbricks.dec2[I] # # fn = '/tmp/survey-bricks-in-dr4.fits' # bricks.writeto(fn) # print('Wrote', fn) for brick in bricks: fn = survey.find_file('nexp', brick=brick.brickname, band='r') if not os.path.exists(fn): print('Does not exist:', fn) continue I = np.flatnonzero((T.ra >= brick.ra1 ) * (T.ra < brick.ra2 ) * (T.dec >= brick.dec1) * (T.dec < brick.dec2)) print('Brick', brick.brickname, 'has', len(I), 'galaxies') if len(I) == 0: continue nn,hdr = fitsio.read(fn, header=True) h,w = nn.shape #imgfn = survey.find_file('image', brick=brick.brickname, band='r') #wcs = Tan(imgfn) print('file', fn) wcs = Tan(hdr) ok,x,y = wcs.radec2pixelxy(T.ra[I], T.dec[I]) x = np.clip((x-1).astype(int), 0, w-1) y = np.clip((y-1).astype(int), 0, h-1) n = nn[y,x] keep[I[n > 0]] = True T.cut(keep) fn = '/tmp/galaxies-in-dr%i.fits' % drnum T.writeto(fn) print('Wrote', fn) T.writeto(galfn) def cat_targets_dr2(req, ver): import json tag = 'targets-dr2' ralo = float(req.GET['ralo']) rahi = float(req.GET['rahi']) declo = float(req.GET['declo']) dechi = float(req.GET['dechi']) ver = int(ver) if not ver in catversions[tag]: raise RuntimeError('Invalid version %i for tag %s' % (ver, tag)) from astrometry.util.fits import fits_table, merge_tables import numpy as np from cat.models import DR2_Target as Target from astrometry.util.starutil_numpy import radectoxyz, xyztoradec, degrees_between xyz1 = radectoxyz(ralo, declo) xyz2 = radectoxyz(rahi, dechi) xyz = (xyz1 + xyz2)/2. xyz /= np.sqrt(np.sum(xyz**2)) rc,dc = xyztoradec(xyz) rc = rc[0] dc = dc[0] rad = degrees_between(rc, dc, ralo, declo) objs = Target.objects.extra(where=[ 'q3c_radial_query(target.ra, target.dec, %.4f, %.4f, %g)' % (rc, dc, rad * 1.01)]) print('Got', objs.count(), 'targets') print('types:', np.unique([o.type for o in objs])) print('versions:', np.unique([o.version for o in objs])) return HttpResponse(json.dumps(dict( rd=[(float(o.ra),float(o.dec)) for o in objs], name=[o.type for o in objs], )), content_type='application/json') def cat_targets_dr45(req, ver): return cat_targets_drAB(req, ver, cats=[ os.path.join(settings.DATA_DIR, 'targets-dr5-0.20.0.kd.fits'), os.path.join(settings.DATA_DIR, 'targets-dr4-0.20.0.kd.fits'), ], tag = 'targets-dr45') def cat_targets_dr56(req, ver): return cat_targets_drAB(req, ver, cats=[ os.path.join(settings.DATA_DIR, 'targets-dr5-0.20.0.kd.fits'), os.path.join(settings.DATA_DIR, 'targets-dr6-0.22.0.kd.fits'), ], tag = 'targets-dr56') def cat_targets_bgs_dr56(req, ver): return cat_targets_drAB(req, ver, cats=[ os.path.join(settings.DATA_DIR, 'targets-dr5-0.20.0.kd.fits'), os.path.join(settings.DATA_DIR, 'targets-dr6-0.22.0.kd.fits'), ], tag = 'targets-bgs-dr56', bgs=True) def cat_targets_dr67(req, ver): return cat_targets_drAB(req, ver, cats=[ os.path.join(settings.DATA_DIR, 'targets-dr6-0.22.0.kd.fits'), os.path.join(settings.DATA_DIR, 'targets-dr7.1-0.23.0.kd.fits'), ], tag = 'targets-dr67') def cat_targets_bgs_dr67(req, ver): return cat_targets_drAB(req, ver, cats=[ os.path.join(settings.DATA_DIR, 'targets-dr6-0.22.0.kd.fits'), os.path.join(settings.DATA_DIR, 'targets-dr7.1-0.23.0.kd.fits'), ], tag = 'targets-bgs-dr67', bgs=True) def cat_targets_sky_dr67(req, ver): return cat_targets_drAB(req, ver, cats=[ os.path.join(settings.DATA_DIR, 'skies-dr6-0.22.0.kd.fits'), os.path.join(settings.DATA_DIR, 'skies-dr7.1-0.22.0.kd.fits'), ], tag = 'targets-sky-dr67', sky=True) def cat_targets_bright_dr67(req, ver): return cat_targets_drAB(req, ver, cats=[ os.path.join(settings.DATA_DIR, 'targets-dr6-0.22.0.kd.fits'), os.path.join(settings.DATA_DIR, 'targets-dr7.1-0.23.0.kd.fits'), ], tag = 'targets-bright-dr67', bright=True) def cat_targets_dark_dr67(req, ver): return cat_targets_drAB(req, ver, cats=[ os.path.join(settings.DATA_DIR, 'targets-dr6-0.22.0.kd.fits'), os.path.join(settings.DATA_DIR, 'targets-dr7.1-0.23.0.kd.fits'), ], tag = 'targets-dark-dr67', dark=True) def cat_targets_drAB(req, ver, cats=[], tag='', bgs=False, sky=False, bright=False, dark=False): import json ralo = float(req.GET['ralo']) rahi = float(req.GET['rahi']) declo = float(req.GET['declo']) dechi = float(req.GET['dechi']) ver = int(ver) if not ver in catversions[tag]: raise RuntimeError('Invalid version %i for tag %s' % (ver, tag)) from astrometry.util.fits import fits_table, merge_tables from astrometry.libkd.spherematch import tree_open, tree_search_radec import numpy as np from astrometry.util.starutil_numpy import radectoxyz, xyztoradec, degrees_between xyz1 = radectoxyz(ralo, declo) xyz2 = radectoxyz(rahi, dechi) xyz = (xyz1 + xyz2)/2. xyz /= np.sqrt(np.sum(xyz**2)) rc,dc = xyztoradec(xyz) rc = rc[0] dc = dc[0] rad = degrees_between(rc, dc, ralo, declo) ''' startree -i /project/projectdirs/desi/target/catalogs/targets-dr4-0.20.0.fits -o data/targets-dr4-0.20.0.kd.fits -P -k -T ''' TT = [] for fn in cats: kd = tree_open(fn) I = tree_search_radec(kd, rc, dc, rad) print('Matched', len(I), 'from', fn) if len(I) == 0: continue T = fits_table(fn, rows=I) TT.append(T) if len(TT) == 0: return HttpResponse(json.dumps(dict(rd=[], name=[])), content_type='application/json') T = merge_tables(TT) if bgs: T.cut(T.bgs_target > 0) if bright: T.cut(np.logical_or(T.bgs_target > 0, T.mws_target > 0)) if dark: T.cut(T.desi_target > 0) names = [] colors = [] for t in T: desibits = [] bgsbits = [] mwsbits = [] for bit in range(64): if (1 << bit) & int(t.desi_target): desibits.append(bit) if (1 << bit) & int(t.bgs_target): bgsbits.append(bit) if (1 << bit) & int(t.mws_target): mwsbits.append(bit) # https://github.com/desihub/desitarget/blob/master/py/desitarget/data/targetmask.yaml desinames = [{ 0: 'LRG', 1: 'ELG', 2: 'QSO', # 8: 'LRG_NORTH', # 9: 'ELG_NORTH', # 10: 'QSO_NORTH', # 16: 'LRG_SOUTH', # 17: 'ELG_SOUTH', # 18: 'QSO_SOUTH', 32: 'SKY', 33: 'STD_FSTAR', 34: 'STD_WD', 35: 'STD_BRIGHT', 36: 'BADSKY', 50: 'BRIGHT_OBJECT', 51: 'IN_BRIGHT_OBJECT', 52: 'NEAR_BRIGHT_OBJECT', # 60: 'BGS_ANY', # 61: 'MWS_ANY', 62: 'ANCILLARY_ANY', }.get(b) for b in desibits] bgsnames = [{ 0: 'BGS_FAINT', 1: 'BGS_BRIGHT', # 8: 'BGS_FAINT_NORTH', # 9: 'BGS_BRIGHT_NORTH', # 16: 'BGS_FAINT_SOUTH', # 17: 'BGS_BRIGHT_SOUTH', 40: 'BGS_KNOWN_ANY', 41: 'BGS_KNOWN_COLLIDED', 42: 'BGS_KNOWN_SDSS', 43: 'BGS_KNOWN_BOSS', }.get(b) for b in bgsbits] mwsnames = [{ 0: 'MWS_MAIN', 1: 'MWS_WD', 2: 'MWS_NEARBY', 16: 'MWS_MAIN_VERY_FAINT', }.get(b) for b in mwsbits] bitnames = [n for n in desinames + bgsnames + mwsnames if n is not None] names.append(', '.join(bitnames)) nn = ' '.join(bitnames) cc = 'white' if 'QSO' in nn: cc = 'cyan' elif 'LRG' in nn: cc = 'red' elif 'ELG' in nn: cc = 'gray' elif 'BGS' in nn: cc = 'orange' colors.append(cc) if sky: fluxes = [dict(g=float(g), r=float(r), z=float(z)) for (g,r,z) in zip(T.apflux_g[:,0], T.apflux_r[:,0], T.apflux_z[:,0])] nobs = None else: fluxes = [dict(g=float(g), r=float(r), z=float(z), W1=float(W1), W2=float(W2)) for (g,r,z,W1,W2) in zip(T.flux_g, T.flux_r, T.flux_z, T.flux_w1, T.flux_w2)] nobs=[dict(g=int(g), r=int(r), z=int(z)) for g,r,z in zip(T.nobs_g, T.nobs_r, T.nobs_z)], rtn = dict(rd=[(t.ra, t.dec) for t in T], name=names, targetid=[int(t) for t in T.targetid], fluxes=fluxes, color=colors, ) if nobs is not None: rtn.update(nobs=nobs) return HttpResponse(json.dumps(rtn), content_type='application/json') def cat_lslga(req, ver): import json fn = os.path.join(settings.DATA_DIR, 'lslga', 'LSLGA-v1.0.kd.fits') tag = 'lslga' T = cat_kd(req, ver, tag, fn) if T is None: return HttpResponse(json.dumps(dict(rd=[], name=[], mjd=[], fiber=[],plate=[])), content_type='application/json') rd = list((float(r),float(d)) for r,d in zip(T.ra, T.dec)) names = [t.strip() for t in T.galaxy] radius = [d * 60./2. for d in T.d25] return HttpResponse(json.dumps(dict(rd=rd, name=names, radiusArcsec=radius)), content_type='application/json') def cat_spec(req, ver): import json fn = os.path.join(settings.DATA_DIR, 'sdss', 'specObj-dr14-trimmed.kd.fits') tag = 'spec' T = cat_kd(req, ver, tag, fn) if T is None: return HttpResponse(json.dumps(dict(rd=[], name=[], mjd=[], fiber=[],plate=[])), content_type='application/json') plate = req.GET.get('plate', None) if plate is not None: plate = int(plate, 10) T.cut(T.plate == plate) rd = list((float(r),float(d)) for r,d in zip(T.ra, T.dec)) names = [t.strip() for t in T.label] # HACK #names = [t.split()[0] for t in names] mjd = [int(x) for x in T.mjd] fiber = [int(x) for x in T.fiberid] plate = [int(x) for x in T.plate] return HttpResponse(json.dumps(dict(rd=rd, name=names, mjd=mjd, fiber=fiber, plate=plate)), content_type='application/json') def cat_kd(req, ver, tag, fn): tag = 'spec' ralo = float(req.GET['ralo']) rahi = float(req.GET['rahi']) declo = float(req.GET['declo']) dechi = float(req.GET['dechi']) ver = int(ver) if not ver in catversions[tag]: raise RuntimeError('Invalid version %i for tag %s' % (ver, tag)) import numpy as np from astrometry.util.fits import fits_table, merge_tables from astrometry.libkd.spherematch import tree_open, tree_search_radec from astrometry.util.starutil_numpy import radectoxyz, xyztoradec, degrees_between xyz1 = radectoxyz(ralo, declo) xyz2 = radectoxyz(rahi, dechi) xyz = (xyz1 + xyz2)/2. xyz /= np.sqrt(np.sum(xyz**2)) rc,dc = xyztoradec(xyz) rc = rc[0] dc = dc[0] rad = degrees_between(rc, dc, ralo, declo) kd = tree_open(fn) I = tree_search_radec(kd, rc, dc, rad) print('Matched', len(I), 'from', fn) if len(I) == 0: return None T = fits_table(fn, rows=I) debug(len(T), 'spectra') if ralo > rahi: # RA wrap T.cut(np.logical_or(T.ra > ralo, T.ra < rahi) * (T.dec > declo) * (T.dec < dechi)) else: T.cut((T.ra > ralo) * (T.ra < rahi) * (T.dec > declo) * (T.dec < dechi)) debug(len(T), 'in cut') return T def cat_spec_deep2(req, ver): import json tag = 'spec-deep2' ralo = float(req.GET['ralo']) rahi = float(req.GET['rahi']) declo = float(req.GET['declo']) dechi = float(req.GET['dechi']) ver = int(ver) if not ver in catversions[tag]: raise RuntimeError('Invalid version %i for tag %s' % (ver, tag)) from astrometry.util.fits import fits_table, merge_tables import numpy as np TT = [] T = fits_table(os.path.join(settings.DATA_DIR, 'deep2-zcat-dr4-uniq.fits')) debug(len(T), 'spectra') if ralo > rahi: # RA wrap T.cut(np.logical_or(T.ra > ralo, T.ra < rahi) * (T.dec > declo) * (T.dec < dechi)) else: T.cut((T.ra > ralo) * (T.ra < rahi) * (T.dec > declo) * (T.dec < dechi)) debug(len(T), 'in cut') rd = list((float(r),float(d)) for r,d in zip(T.ra, T.dec)) names = [] classes = T.get('class') subclasses = T.subclass zbests = T.zbest zq = T.zquality for i in range(len(T)): clazz = classes[i] clazz = clazz[0] + clazz[1:].lower() #if zq[i] >= 3: nm = clazz sc = subclasses[i].strip() if sc != 'NONE': nm += ' ' + sc if not (zq[i] == -1 and clazz.strip() == 'Star'): nm += ' z=%.2f, q=%i' % (zbests[i], zq[i]) names.append(nm) return HttpResponse(json.dumps(dict(rd=rd, name=names)), content_type='application/json') def cat_user(req, ver): from astrometry.util.fits import fits_table import json import re cat = str(req.GET.get('cat')) if not re.match('\w?', cat): print('Catalog "%s" did not match regex' % cat) return haverd = False havei = False if ('ralo' in req.GET and 'rahi' in req.GET and 'declo' in req.GET and 'dechi' in req.GET): ralo = float(req.GET['ralo']) rahi = float(req.GET['rahi']) declo = float(req.GET['declo']) dechi = float(req.GET['dechi']) haverd = True elif ('start' in req.GET and 'N' in req.GET): start = int(req.GET['start']) N = int(req.GET['N']) havei = True else: return HttpResponse('need {ra,dec}{lo,hi} or start,N') fn = os.path.join(settings.USER_QUERY_DIR, cat+'.fits') if not os.path.exists(fn): print('Does not exist:', fn) return cat = fits_table(fn) if haverd: if ralo > rahi: import numpy as np # RA wrap cat.cut(np.logical_or(cat.ra > ralo, cat.ra < rahi) * (cat.dec > declo) * (cat.dec < dechi)) else: cat.cut((cat.ra > ralo) * (cat.ra < rahi) * (cat.dec > declo) * (cat.dec < dechi)) print(len(cat), 'user catalog sources after RA,Dec cut') elif havei: cat = cat[start:start+N] rd = list(zip(cat.ra.astype(float), cat.dec.astype(float))) D = dict(rd=rd) cols = cat.columns() if 'name' in cols: D.update(names=cat.name.tolist()) if 'type' in cols: try: v = list([t[0] for t in cat.get('type')]) json.dumps(v) D.update(sourcetype=v) except: print('failed to convert column "type". Traceback:') import traceback traceback.print_exc() if 'g' in cols and 'r' in cols and 'z' in cols: D.update(fluxes=[dict(g=float(g), r=float(r), z=float(z)) for g,r,z in zip(10.**((cat.g - 22.5)/-2.5), 10.**((cat.r - 22.5)/-2.5), 10.**((cat.z - 22.5)/-2.5))]) if 'gnobs' in cols and 'rnobs' in cols and 'znobs' in cols: D.update(nobs=[dict(g=int(g), r=int(r), z=int(z)) for g,r,z in zip(cat.gnobs, cat.rnobs, cat.znobs)]) if 'objids' in cols: D.update(objids=[int(x) for x in cat.objid]) if 'brickname' in cols: D.update(bricknames=cat.brickname.tolist()) if 'radius' in cols: D.update(radius=list([float(r) for r in cat.radius])) if 'color' in cols: D.update(color=list([c.strip() for c in cat.color])) #for k,v in D.items(): # print('Cat', k, v) return HttpResponse(json.dumps(D).replace('NaN','null'), content_type='application/json') def cat_bright(req, ver): return cat(req, ver, 'bright', os.path.join(settings.DATA_DIR, 'bright.fits')) def cat_tycho2(req, ver): return cat(req, ver, 'tycho2', os.path.join(settings.DATA_DIR, 'tycho2.fits')) def cat_gals(req, ver): return cat(req, ver, 'ngc', os.path.join(settings.DATA_DIR,'galaxy-cats.fits')) def cat_ps1(req, ver): ralo = float(req.GET['ralo']) rahi = float(req.GET['rahi']) declo = float(req.GET['declo']) dechi = float(req.GET['dechi']) # We have the EDR region and a block around 0,0 if (rahi > 241) and (ralo < 246) * (dechi >= 6.5) * (declo < 11.5): return cat(req, ver, 'ps1', os.path.join(settings.DATA_DIR,'ps1-cat-edr.fits')) return cat(req, ver, 'ps1', os.path.join(settings.DATA_DIR,'ps1-cat.fits')) def cat(req, ver, tag, fn): import json ralo = float(req.GET['ralo']) rahi = float(req.GET['rahi']) declo = float(req.GET['declo']) dechi = float(req.GET['dechi']) ver = int(ver) if not ver in catversions[tag]: raise RuntimeError('Invalid version %i for tag %s' % (ver, tag)) from astrometry.util.fits import fits_table import numpy as np TT = [] T = fits_table(fn) debug(len(T), 'catalog objects') if ralo > rahi: # RA wrap T.cut(np.logical_or(T.ra > ralo, T.ra < rahi) * (T.dec > declo) * (T.dec < dechi)) else: T.cut((T.ra > ralo) * (T.ra < rahi) * (T.dec > declo) * (T.dec < dechi)) debug(len(T), 'in cut') rd = list((float(r),float(d)) for r,d in zip(T.ra, T.dec)) rtn = dict(rd=rd) # PS1 if 'ndetections' in T.columns(): T.name = np.array(['%i' % n for n in T.ndetections]) if 'name' in T.columns(): names = [t.strip() for t in T.name] rtn['name'] = names # bright stars if 'alt_name' in T.columns(): rtn.update(altname = [t.strip() for t in T.alt_name]) if 'radius' in T.columns(): rtn.update(radiusArcsec=list(float(f) for f in T.radius * 3600.)) return HttpResponse(json.dumps(rtn), content_type='application/json') def cat_decals_dr2(req, ver, zoom, x, y, tag='decals-dr2'): return cat_decals(req, ver, zoom, x, y, tag=tag, docache=False) def cat_decals_dr3(req, ver, zoom, x, y, tag='decals-dr3'): return cat_decals(req, ver, zoom, x, y, tag=tag, docache=False) def cat_mobo_dr4(req, ver, zoom, x, y, tag='mzls+bass-dr4'): return cat_decals(req, ver, zoom, x, y, tag=tag, docache=False) def cat_decals_dr5(req, ver, zoom, x, y, tag='decals-dr5'): return cat_decals(req, ver, zoom, x, y, tag=tag, docache=False) def cat_mobo_dr6(req, ver, zoom, x, y, tag='mzls+bass-dr6'): return cat_decals(req, ver, zoom, x, y, tag=tag, docache=False) def cat_decals_dr7(req, ver, zoom, x, y, tag='decals-dr7'): return cat_decals(req, ver, zoom, x, y, tag=tag, docache=False) def cat_decals(req, ver, zoom, x, y, tag='decals', docache=True): import json zoom = int(zoom) if zoom < 12: return HttpResponse(json.dumps(dict(rd=[])), content_type='application/json') from astrometry.util.fits import fits_table, merge_tables import numpy as np try: wcs, W, H, zoomscale, zoom,x,y = get_tile_wcs(zoom, x, y) except RuntimeError as e: print('e:', e) return HttpResponse(e.strerror) ver = int(ver) if not ver in catversions[tag]: raise RuntimeError('Invalid version %i for tag %s' % (ver, tag)) basedir = settings.DATA_DIR sendfile_kwargs = dict() if docache: cachefn = os.path.join(basedir, 'cats-cache', tag, '%i/%i/%i/%i.cat.json' % (ver, zoom, x, y)) if os.path.exists(cachefn): return send_file(cachefn, 'application/json', modsince=req.META.get('HTTP_IF_MODIFIED_SINCE'), expires=oneyear) sendfile_kwargs.update(expires=oneyear) else: import tempfile f,cachefn = tempfile.mkstemp(suffix='.json') os.close(f) sendfile_kwargs.update(unlink=True) cat,hdr = _get_decals_cat(wcs, tag=tag) if cat is None: rd = [] types = [] fluxes = [] bricknames = [] objids = [] nobs = [] else: rd = list(zip(cat.ra, cat.dec)) types = list([t[0] for t in cat.get('type')]) if 'decam_flux' in cat.get_columns(): fluxes = [dict(g=float(g), r=float(r), z=float(z)) for g,r,z in zip(cat.decam_flux[:,1], cat.decam_flux[:,2], cat.decam_flux[:,4])] nobs = [dict(g=int(g), r=int(r), z=int(z)) for g,r,z in zip(cat.decam_nobs[:,1], cat.decam_nobs[:,2], cat.decam_nobs[:,4])] else: # DR4+ fluxes = [dict(g=float(g), r=float(r), z=float(z)) for g,r,z in zip(cat.flux_g, cat.flux_r, cat.flux_z)] nobs = [dict(g=int(g), r=int(r), z=int(z)) for g,r,z in zip(cat.nobs_g, cat.nobs_r, cat.nobs_z)] bricknames = list(cat.brickname) objids = [int(x) for x in cat.objid] json = json.dumps(dict(rd=rd, sourcetype=types, fluxes=fluxes, nobs=nobs, bricknames=bricknames, objids=objids)) if docache: trymakedirs(cachefn) f = open(cachefn, 'w') f.write(json) f.close() return send_file(cachefn, 'application/json', **sendfile_kwargs) def _get_decals_cat(wcs, tag='decals'): from astrometry.util.fits import fits_table, merge_tables from map.views import get_survey basedir = settings.DATA_DIR H,W = wcs.shape X = wcs.pixelxy2radec([1,1,1,W/2,W,W,W,W/2], [1,H/2,H,H,H,H/2,1,1]) r,d = X[-2:] #catpat = os.path.join(basedir, 'cats', tag, '%(brickname).3s', # 'tractor-%(brickname)s.fits') survey = get_survey(tag) B = survey.get_bricks_readonly() I = survey.bricks_touching_radec_box(B, r.min(), r.max(), d.min(), d.max()) #print(len(I), 'bricks touching RA,Dec box', r.min(),r.max(), d.min(),d.max()) cat = [] hdr = None for brickname in B.brickname[I]: catfn = survey.find_file('tractor', brick=brickname) if not os.path.exists(catfn): print('Does not exist:', catfn) continue debug('Reading catalog', catfn) T = fits_table(catfn) T.cut(T.brick_primary) print('File', catfn, 'cut to', len(T), 'primary') ok,xx,yy = wcs.radec2pixelxy(T.ra, T.dec) T.cut((xx > 0) * (yy > 0) * (xx < W) * (yy < H)) cat.append(T) if hdr is None: hdr = T.get_header() if len(cat) == 0: cat = None else: cat = merge_tables(cat, columns='fillzero') return cat,hdr if __name__ == '__main__': #print('Random galaxy:', get_random_galaxy(layer='mzls+bass-dr4')) #create_galaxy_catalog('/tmp/dr6.fits', 6) #specObj-dr14.fits #T = fits_table('/project/projectdirs/cosmo/data/sdss/dr14/sdss/spectro/redux/specObj-dr14.fits') from django.test import Client c = Client() c.get('/usercatalog/1/cat.json?ralo=200.2569&rahi=200.4013&declo=47.4930&dechi=47.5823&cat=tmpajwai3dx') import sys sys.exit(0) T=fits_table('/project/projectdirs/cosmo/data/sdss/dr14/sdss/spectro/redux/specObj-dr14.fits', columns=['plate','mjd','fiberid','plug_ra','plug_dec','class','subclass','z','zwarning']) T.rename('plug_ra', 'ra') T.rename('plug_dec','dec') labels = [] for t in T: sub = t.subclass sub = sub.split() sub = ' '.join([s for s in sub if s[0] != '(']) cla = t.get('class').strip() txt = cla if len(sub): txt += ' (' + sub + ')' if cla in ['GALAXY', 'QSO']: txt += ' z=%.3f' % t.z labels.append(txt) T.label = np.array(labels) T.writeto('specObj-dr14-trimmed.fits', columns=['ra','dec','plate','mjd','fiberid','z','zwarning','label']) # startree -i data/specObj-dr14-trimmed.fits -o data/specObj-dr14-trimmed.kd.fits -T -k -P
6256100f755fc35f9df3f524d14acea287224c27
5ea2ff68ba98c8034d2f21d69752af45e9bf61dd
/imodels/rulefit/rulefit.py
02990962779f4af1465bece5a0f7bb3dca8abaf8
[]
permissive
Pacmed/interpretability-implementations-demos
160181d03a0fd8c7276f602e33afa22a5138eb41
4b5f21da2ca8eb17e38185c00621df3fa1308695
refs/heads/master
2021-07-04T04:56:30.558899
2020-12-21T10:55:03
2020-12-21T10:55:03
201,427,811
1
1
MIT
2019-11-11T16:58:43
2019-08-09T08:40:32
Jupyter Notebook
UTF-8
Python
false
false
21,997
py
"""Linear model of tree-based decision rules This method implement the RuleFit algorithm The module structure is the following: - ``RuleCondition`` implements a binary feature transformation - ``Rule`` implements a Rule composed of ``RuleConditions`` - ``RuleEnsemble`` implements an ensemble of ``Rules`` - ``RuleFit`` implements the RuleFit algorithm """ import pandas as pd import numpy as np from sklearn.base import BaseEstimator from sklearn.base import TransformerMixin from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier, RandomForestRegressor, RandomForestClassifier from sklearn.linear_model import LassoCV,LogisticRegressionCV from functools import reduce class RuleCondition(): """Class for binary rule condition Warning: this class should not be used directly. """ def __init__(self, feature_index, threshold, operator, support, feature_name = None): self.feature_index = feature_index self.threshold = threshold self.operator = operator self.support = support self.feature_name = feature_name def __repr__(self): return self.__str__() def __str__(self): if self.feature_name: feature = self.feature_name else: feature = self.feature_index return "%s %s %s" % (feature, self.operator, self.threshold) def transform(self, X): """Transform dataset. Parameters ---------- X: array-like matrix, shape=(n_samples, n_features) Returns ------- X_transformed: array-like matrix, shape=(n_samples, 1) """ if self.operator == "<=": res = 1 * (X[:,self.feature_index] <= self.threshold) elif self.operator == ">": res = 1 * (X[:,self.feature_index] > self.threshold) return res def __eq__(self, other): return self.__hash__() == other.__hash__() def __hash__(self): return hash((self.feature_index, self.threshold, self.operator, self.feature_name)) class Winsorizer(): """Performs Winsorization 1->1* Warning: this class should not be used directly. """ def __init__(self,trim_quantile=0.0): self.trim_quantile=trim_quantile self.winsor_lims=None def train(self,X): # get winsor limits self.winsor_lims=np.ones([2,X.shape[1]])*np.inf self.winsor_lims[0,:]=-np.inf if self.trim_quantile>0: for i_col in np.arange(X.shape[1]): lower=np.percentile(X[:,i_col],self.trim_quantile*100) upper=np.percentile(X[:,i_col],100-self.trim_quantile*100) self.winsor_lims[:,i_col]=[lower,upper] def trim(self,X): X_=X.copy() X_=np.where(X>self.winsor_lims[1,:],np.tile(self.winsor_lims[1,:],[X.shape[0],1]),np.where(X<self.winsor_lims[0,:],np.tile(self.winsor_lims[0,:],[X.shape[0],1]),X)) return X_ class FriedScale(): """Performs scaling of linear variables according to Friedman et al. 2005 Sec 5 Each variable is first Winsorized l->l*, then standardised as 0.4 x l* / std(l*) Warning: this class should not be used directly. """ def __init__(self, winsorizer = None): self.scale_multipliers=None self.winsorizer = winsorizer def train(self,X): # get multipliers if self.winsorizer != None: X_trimmed= self.winsorizer.trim(X) else: X_trimmed = X scale_multipliers=np.ones(X.shape[1]) for i_col in np.arange(X.shape[1]): num_uniq_vals=len(np.unique(X[:,i_col])) if num_uniq_vals>2: # don't scale binary variables which are effectively already rules scale_multipliers[i_col]=0.4/(1.0e-12 + np.std(X_trimmed[:,i_col])) self.scale_multipliers=scale_multipliers def scale(self,X): if self.winsorizer != None: return self.winsorizer.trim(X)*self.scale_multipliers else: return X*self.scale_multipliers class Rule(): """Class for binary Rules from list of conditions Warning: this class should not be used directly. """ def __init__(self, rule_conditions,prediction_value): self.conditions = set(rule_conditions) self.support = min([x.support for x in rule_conditions]) self.prediction_value=prediction_value self.rule_direction=None def transform(self, X): """Transform dataset. Parameters ---------- X: array-like matrix Returns ------- X_transformed: array-like matrix, shape=(n_samples, 1) """ rule_applies = [condition.transform(X) for condition in self.conditions] return reduce(lambda x,y: x * y, rule_applies) def __str__(self): return " & ".join([x.__str__() for x in self.conditions]) def __repr__(self): return self.__str__() def __hash__(self): return sum([condition.__hash__() for condition in self.conditions]) def __eq__(self, other): return self.__hash__() == other.__hash__() def extract_rules_from_tree(tree, feature_names=None): """Helper to turn a tree into as set of rules """ rules = set() def traverse_nodes(node_id=0, operator=None, threshold=None, feature=None, conditions=[]): if node_id != 0: if feature_names is not None: feature_name = feature_names[feature] else: feature_name = feature rule_condition = RuleCondition(feature_index=feature, threshold=threshold, operator=operator, support = tree.n_node_samples[node_id] / float(tree.n_node_samples[0]), feature_name=feature_name) new_conditions = conditions + [rule_condition] else: new_conditions = [] ## if not terminal node if tree.children_left[node_id] != tree.children_right[node_id]: feature = tree.feature[node_id] threshold = tree.threshold[node_id] left_node_id = tree.children_left[node_id] traverse_nodes(left_node_id, "<=", threshold, feature, new_conditions) right_node_id = tree.children_right[node_id] traverse_nodes(right_node_id, ">", threshold, feature, new_conditions) else: # a leaf node if len(new_conditions)>0: new_rule = Rule(new_conditions,tree.value[node_id][0][0]) rules.update([new_rule]) else: pass #tree only has a root node! return None traverse_nodes() return rules class RuleEnsemble(): """Ensemble of binary decision rules This class implements an ensemble of decision rules that extracts rules from an ensemble of decision trees. Parameters ---------- tree_list: List or array of DecisionTreeClassifier or DecisionTreeRegressor Trees from which the rules are created feature_names: List of strings, optional (default=None) Names of the features Attributes ---------- rules: List of Rule The ensemble of rules extracted from the trees """ def __init__(self, tree_list, feature_names=None): self.tree_list = tree_list self.feature_names = feature_names self.rules = set() ## TODO: Move this out of __init__ self._extract_rules() self.rules=list(self.rules) def _extract_rules(self): """Recursively extract rules from each tree in the ensemble """ for tree in self.tree_list: rules = extract_rules_from_tree(tree[0].tree_,feature_names=self.feature_names) self.rules.update(rules) def filter_rules(self, func): self.rules = filter(lambda x: func(x), self.rules) def filter_short_rules(self, k): self.filter_rules(lambda x: len(x.conditions) > k) def transform(self, X,coefs=None): """Transform dataset. Parameters ---------- X: array-like matrix, shape=(n_samples, n_features) coefs: (optional) if supplied, this makes the prediction slightly more efficient by setting rules with zero coefficients to zero without calling Rule.transform(). Returns ------- X_transformed: array-like matrix, shape=(n_samples, n_out) Transformed dataset. Each column represents one rule. """ rule_list=list(self.rules) if coefs is None : return np.array([rule.transform(X) for rule in rule_list]).T else: # else use the coefs to filter the rules we bother to interpret res= np.array([rule_list[i_rule].transform(X) for i_rule in np.arange(len(rule_list)) if coefs[i_rule]!=0]).T res_=np.zeros([X.shape[0],len(rule_list)]) res_[:,coefs!=0]=res return res_ def __str__(self): return (map(lambda x: x.__str__(), self.rules)).__str__() class RuleFit(BaseEstimator, TransformerMixin): """Rulefit class Parameters ---------- tree_size: Number of terminal nodes in generated trees. If exp_rand_tree_size=True, this will be the mean number of terminal nodes. sample_fract: fraction of randomly chosen training observations used to produce each tree. FP 2004 (Sec. 2) max_rules: approximate total number of rules generated for fitting. Note that actual number of rules will usually be lower than this due to duplicates. memory_par: scale multiplier (shrinkage factor) applied to each new tree when sequentially induced. FP 2004 (Sec. 2) rfmode: 'regress' for regression or 'classify' for binary classification. lin_standardise: If True, the linear terms will be standardised as per Friedman Sec 3.2 by multiplying the winsorised variable by 0.4/stdev. lin_trim_quantile: If lin_standardise is True, this quantile will be used to trim linear terms before standardisation. exp_rand_tree_size: If True, each boosted tree will have a different maximum number of terminal nodes based on an exponential distribution about tree_size. (Friedman Sec 3.3) model_type: 'r': rules only; 'l': linear terms only; 'rl': both rules and linear terms random_state: Integer to initialise random objects and provide repeatability. tree_generator: Optional: this object will be used as provided to generate the rules. This will override almost all the other properties above. Must be GradientBoostingRegressor or GradientBoostingClassifier, optional (default=None) Attributes ---------- rule_ensemble: RuleEnsemble The rule ensemble feature_names: list of strings, optional (default=None) The names of the features (columns) """ def __init__(self,tree_size=4,sample_fract='default',max_rules=2000, memory_par=0.01, tree_generator=None, rfmode='regress',lin_trim_quantile=0.025, lin_standardise=True, exp_rand_tree_size=True, model_type='rl',Cs=None,cv=3,random_state=None): self.tree_generator = tree_generator self.rfmode=rfmode self.lin_trim_quantile=lin_trim_quantile self.lin_standardise=lin_standardise self.winsorizer=Winsorizer(trim_quantile=lin_trim_quantile) self.friedscale=FriedScale(self.winsorizer) self.stddev = None self.mean = None self.exp_rand_tree_size=exp_rand_tree_size self.max_rules=max_rules self.sample_fract=sample_fract self.max_rules=max_rules self.memory_par=memory_par self.tree_size=tree_size self.random_state=random_state self.model_type=model_type self.cv=cv self.Cs=Cs def fit(self, X, y=None, feature_names=None, verbose=False): """Fit and estimate linear combination of rule ensemble """ if type(X) == pd.DataFrame: X = X.values if type(y) in [pd.DataFrame, pd.Series]: y = y.values ## Enumerate features if feature names not provided N=X.shape[0] if feature_names is None: self.feature_names = ['feature_' + str(x) for x in range(0, X.shape[1])] else: self.feature_names=feature_names if 'r' in self.model_type: ## initialise tree generator if self.tree_generator is None: n_estimators_default=int(np.ceil(self.max_rules/self.tree_size)) self.sample_fract_=min(0.5,(100+6*np.sqrt(N))/N) if self.rfmode=='regress': self.tree_generator = GradientBoostingRegressor(n_estimators=n_estimators_default, max_leaf_nodes=self.tree_size, learning_rate=self.memory_par,subsample=self.sample_fract_,random_state=self.random_state,max_depth=100) else: self.tree_generator =GradientBoostingClassifier(n_estimators=n_estimators_default, max_leaf_nodes=self.tree_size, learning_rate=self.memory_par,subsample=self.sample_fract_,random_state=self.random_state,max_depth=100) if self.rfmode=='regress': if type(self.tree_generator) not in [GradientBoostingRegressor,RandomForestRegressor]: raise ValueError("RuleFit only works with RandomForest and BoostingRegressor") else: if type(self.tree_generator) not in [GradientBoostingClassifier,RandomForestClassifier]: raise ValueError("RuleFit only works with RandomForest and BoostingClassifier") ## fit tree generator if not self.exp_rand_tree_size: # simply fit with constant tree size self.tree_generator.fit(X, y) else: # randomise tree size as per Friedman 2005 Sec 3.3 np.random.seed(self.random_state) tree_sizes=np.random.exponential(scale=self.tree_size-2,size=int(np.ceil(self.max_rules*2/self.tree_size))) tree_sizes=np.asarray([2+np.floor(tree_sizes[i_]) for i_ in np.arange(len(tree_sizes))],dtype=int) i=int(len(tree_sizes)/4) while np.sum(tree_sizes[0:i])<self.max_rules: i=i+1 tree_sizes=tree_sizes[0:i] self.tree_generator.set_params(warm_start=True) curr_est_=0 for i_size in np.arange(len(tree_sizes)): size=tree_sizes[i_size] self.tree_generator.set_params(n_estimators=curr_est_+1) self.tree_generator.set_params(max_leaf_nodes=size) random_state_add = self.random_state if self.random_state else 0 self.tree_generator.set_params(random_state=i_size+random_state_add) # warm_state=True seems to reset random_state, such that the trees are highly correlated, unless we manually change the random_sate here. self.tree_generator.get_params()['n_estimators'] self.tree_generator.fit(np.copy(X, order='C'), np.copy(y, order='C')) curr_est_=curr_est_+1 self.tree_generator.set_params(warm_start=False) tree_list = self.tree_generator.estimators_ if isinstance(self.tree_generator, RandomForestRegressor) or isinstance(self.tree_generator, RandomForestClassifier): tree_list = [[x] for x in self.tree_generator.estimators_] ## extract rules self.rule_ensemble = RuleEnsemble(tree_list = tree_list, feature_names=self.feature_names) ## concatenate original features and rules X_rules = self.rule_ensemble.transform(X) ## standardise linear variables if requested (for regression model only) if 'l' in self.model_type: ## standard deviation and mean of winsorized features self.winsorizer.train(X) winsorized_X = self.winsorizer.trim(X) self.stddev = np.std(winsorized_X, axis = 0) self.mean = np.mean(winsorized_X, axis = 0) if self.lin_standardise: self.friedscale.train(X) X_regn=self.friedscale.scale(X) else: X_regn=X.copy() ## Compile Training data X_concat=np.zeros([X.shape[0],0]) if 'l' in self.model_type: X_concat = np.concatenate((X_concat,X_regn), axis=1) if 'r' in self.model_type: if X_rules.shape[0] >0: X_concat = np.concatenate((X_concat, X_rules), axis=1) ## fit Lasso if self.rfmode=='regress': if self.Cs is None: # use defaultshasattr(self.Cs, "__len__"): n_alphas= 100 alphas=None elif hasattr(self.Cs, "__len__"): n_alphas= None alphas=1./self.Cs else: n_alphas= self.Cs alphas=None self.lscv = LassoCV(n_alphas=n_alphas,alphas=alphas,cv=self.cv,random_state=self.random_state) self.lscv.fit(X_concat, y) self.coef_=self.lscv.coef_ self.intercept_=self.lscv.intercept_ else: Cs=10 if self.Cs is None else self.Cs self.lscv=LogisticRegressionCV(Cs=Cs,cv=self.cv,penalty='l1',random_state=self.random_state,solver='liblinear') self.lscv.fit(X_concat, y) self.coef_=self.lscv.coef_[0] self.intercept_=self.lscv.intercept_[0] return self def predict(self, X): """Predict outcome for X """ if type(X) == pd.DataFrame: X = X.values.astype(np.float32) X_concat=np.zeros([X.shape[0],0]) if 'l' in self.model_type: if self.lin_standardise: X_concat = np.concatenate((X_concat,self.friedscale.scale(X)), axis=1) else: X_concat = np.concatenate((X_concat,X), axis=1) if 'r' in self.model_type: rule_coefs=self.coef_[-len(self.rule_ensemble.rules):] if len(rule_coefs)>0: X_rules = self.rule_ensemble.transform(X,coefs=rule_coefs) if X_rules.shape[0] >0: X_concat = np.concatenate((X_concat, X_rules), axis=1) return self.lscv.predict(X_concat) def transform(self, X=None, y=None): """Transform dataset. Parameters ---------- X : array-like matrix, shape=(n_samples, n_features) Input data to be transformed. Use ``dtype=np.float32`` for maximum efficiency. Returns ------- X_transformed: matrix, shape=(n_samples, n_out) Transformed data set """ return self.rule_ensemble.transform(X) def get_rules(self, exclude_zero_coef=False, subregion=None): """Return the estimated rules Parameters ---------- exclude_zero_coef: If True (default), returns only the rules with an estimated coefficient not equalt to zero. subregion: If None (default) returns global importances (FP 2004 eq. 28/29), else returns importance over subregion of inputs (FP 2004 eq. 30/31/32). Returns ------- rules: pandas.DataFrame with the rules. Column 'rule' describes the rule, 'coef' holds the coefficients and 'support' the support of the rule in the training data set (X) """ n_features= len(self.coef_) - len(self.rule_ensemble.rules) rule_ensemble = list(self.rule_ensemble.rules) output_rules = [] ## Add coefficients for linear effects for i in range(0, n_features): if self.lin_standardise: coef=self.coef_[i]*self.friedscale.scale_multipliers[i] else: coef=self.coef_[i] if subregion is None: importance = abs(coef)*self.stddev[i] else: subregion = np.array(subregion) importance = sum(abs(coef)* abs([ x[i] for x in self.winsorizer.trim(subregion) ] - self.mean[i]))/len(subregion) output_rules += [(self.feature_names[i], 'linear',coef, 1, importance)] ## Add rules for i in range(0, len(self.rule_ensemble.rules)): rule = rule_ensemble[i] coef=self.coef_[i + n_features] if subregion is None: importance = abs(coef)*(rule.support * (1-rule.support))**(1/2) else: rkx = rule.transform(subregion) importance = sum(abs(coef) * abs(rkx - rule.support))/len(subregion) output_rules += [(rule.__str__(), 'rule', coef, rule.support, importance)] rules = pd.DataFrame(output_rules, columns=["rule", "type","coef", "support", "importance"]) if exclude_zero_coef: rules = rules.ix[rules.coef != 0] return rules
73ce286191945ea0d7b3750e084b44c850201d99
bbf7787d94e97d4e0c9bceb46203c08939e6e67d
/python_test_case/Data.py
de2ca81bcab87030d2f956c769b3e395ba99f41f
[]
no_license
llanoxdewa/python
076e6fa3ed2128c21cdd26c1be6bc82ee6917f9c
6586170c5f48827a5e1bcb35656870b5e4eed732
refs/heads/main
2023-06-16T05:31:52.494796
2021-07-09T09:04:30
2021-07-09T09:04:30
362,782,196
0
0
null
null
null
null
UTF-8
Python
false
false
534
py
class Siswa: def __init__(self,nama,kelas,nilai): self.__nama = nama self.__kelas = kelas self.__nilai = nilai def hasil(self): return { 'nama':self.__nama, 'kelas':self.__kelas, 'nilai':self.__nilai } def getNama(self): return self.__nama def getKelas(self): return self.__kelas def getNilai(self): return self.__nilai if __name__=='__main__': siswa1 = Siswa('llano','11 elektro 1',100) siswa2 = Siswa('ujang','10 Las 3',95) print(siswa1.hasil()) print(siswa2.hasil())
802d6402d865c869adb1e04cefcef3152c37917e
357fefa288745c9ab3bc276a7ef0bc815f3fec2a
/src/gui/descriptive_statistics.py
e5768c5bf81b94911ecfc0e7ac1bc4dd97c8ef83
[ "MIT" ]
permissive
jdvelasq/techminer
61da47f44719e462732627edcc1094fab6c173f1
7a34a9fd684ce56cfbab583fa1bb71c1669035f9
refs/heads/main
2023-03-15T23:26:22.876051
2023-03-13T21:47:24
2023-03-13T21:47:24
204,352,276
0
1
MIT
2019-12-09T02:37:11
2019-08-25T21:34:19
Jupyter Notebook
UTF-8
Python
false
false
9,149
py
import numpy as np import pandas as pd import ipywidgets as widgets from ipywidgets import GridspecLayout, Layout from IPython.display import display from techminer.core.filter_records import filter_records ## ## ## Term extraction and count ## ## def _extract_terms(x, column): x = x.copy() x[column] = x[column].map( lambda w: w.split(";") if not pd.isna(w) and isinstance(w, str) else w ) x = x.explode(column) x[column] = x[column].map(lambda w: w.strip() if isinstance(w, str) else w) x = pd.unique(x[column].dropna()) x = np.sort(x) return pd.DataFrame({column: x}) def _count_terms(x, column): return len(_extract_terms(x, column)) class App: def __init__(self) -> None: self.app_layout = GridspecLayout(9, 4, height="870px") self.output = widgets.Output().add_class("output_color") self.app_layout[0:, 0:] = widgets.VBox( [self.output], layout=Layout(margin="10px 10px 10px 10px", border="1px solid gray"), ) def run(self): x = filter_records(pd.read_csv("corpus.csv")) ## ## General information ## general = {} general["Documents:"] = str(len(x)) if "Year" in x.columns: general["Years:"] = str(min(x.Year)) + "-" + str(max(x.Year)) n = max(x.Year) - min(x.Year) + 1 Po = len(x.Year[x.Year == min(x.Year)]) Pn = len(x) cagr = str(round(100 * (np.power(Pn / Po, 1 / n) - 1), 2)) + " %" general["Compound annual growth rate:"] = cagr if "Global_Citations" in x.columns: general["Average citations per document:"] = "{:4.2f}".format( x["Global_Citations"].mean() ) if "Global_Citations" in x.columns and "Year" in x.columns: general["Average citations per document per year:"] = "{:4.2f}".format( x["Global_Citations"].sum() / (len(x) * (x.Year.max() - x.Year.min() + 1)) ) if "Global_References" in x.columns: general["Total references:"] = round(_count_terms(x, "Global_References")) general["Average global references per document:"] = round( _count_terms(x, "Global_References") / len(x) ) if "Source_title" in x.columns: general["Source titles:"] = round(_count_terms(x, "Source_title")) general["Average documents per Source title:"] = round( len(x) / _count_terms(x, "Source_title") ) x.pop("Source_title") if "Abb_Source_Title" in x.columns: general["Abbreviated Source titles:"] = round( _count_terms(x, "Abb_Source_Title") ) x.pop("Abb_Source_Title") ## ## Document types ## document_types = {} if "Document_Type" in x.columns: z = x[["Document_Type"]].groupby("Document_Type").size() for index, value in zip(z.index, z): document_types[index + ":"] = value x.pop("Document_Type") ## ## Authors ## authors = {} if "Authors" in x.columns: authors["Authors:"] = _count_terms(x, "Authors") m = x.Authors m = m.dropna() m = m.map(lambda w: w.split(";"), na_action="ignore") m = m.explode() authors["Author appearances:"] = len(m) authors["Documents per author:"] = round( len(x) / _count_terms(x, "Authors"), 2 ) authors["Authors per document:"] = round( _count_terms(x, "Authors") / len(x), 2 ) if "Num_Authors" in x.columns: authors["Single-authored documents:"] = len(x[x["Num_Authors"] == 1]) authors["Multi-authored documents:"] = len(x[x["Num_Authors"] > 1]) authors["Co-authors per document:"] = round(x["Num_Authors"].mean(), 2) authors["Collaboration index:"] = round( _count_terms(x[x.Num_Authors > 1], "Authors") / len(x[x.Num_Authors > 1]), 2, ) if "Institutions" in x.columns: authors["Institutions:"] = _count_terms(x, "Institutions") x.pop("Institutions") if "Institution_1st_Author" in x.columns: authors["Institutions (1st author):"] = _count_terms( x, "Institution_1st_Author" ) x.pop("Institution_1st_Author") if "Countries" in x.columns: authors["Countries:"] = _count_terms(x, "Countries") if "Countries" in x.columns: x.pop("Countries") if "Country_1st_Author" in x.columns: authors["Countries (1st author):"] = _count_terms(x, "Country_1st_Author") x.pop("Country_1st_Author") ## ## Keywords ## keywords = {} if "Author_Keywords" in x.columns: keywords["Author Keywords (raw):"] = round( _count_terms(x, "Author_Keywords") ) x.pop("Author_Keywords") if "Author_Keywords_CL" in x.columns: keywords["Author Keywords (cleaned):"] = round( _count_terms(x, "Author_Keywords_CL") ) x.pop("Author_Keywords_CL") if "Index_Keywords" in x.columns: keywords["Index Keywords (raw):"] = round(_count_terms(x, "Index_Keywords")) x.pop("Index_Keywords") if "Index_Keywords_CL" in x.columns: keywords["Index Keywords (cleaned):"] = round( _count_terms(x, "Index_Keywords_CL") ) x.pop("Index_Keywords_CL") if "Keywords_CL" in x.columns: keywords["Keywords (cleaned):"] = round(_count_terms(x, "Keywords_CL")) x.pop("Keywords_CL") if "Title_words" in x.columns: keywords["Title words (raw):"] = round(_count_terms(x, "Title_words")) x.pop("Title_words") if "Title_words_CL" in x.columns: keywords["Title words (cleaned):"] = round( _count_terms(x, "Title_words_CL") ) x.pop("Title_words_CL") if "Abstract_words" in x.columns: keywords["Abstract words (raw)"] = round(_count_terms(x, "Abstract_words")) x.pop("Abstract_words") if "Abstract_words_CL" in x.columns: keywords["Abstract words (cleaned)"] = round( _count_terms(x, "Abstract_words_CL") ) x.pop("Abstract_words_CL") ## ## Report ## if "Frac_Num_Documents" in x.columns: x.pop("Frac_Num_Documents") if "Historiograph_ID" in x.columns: x.pop("Historiograph_ID") d = [] d += [key for key in general.keys()] d += [key for key in document_types.keys()] d += [key for key in authors.keys()] d += [key for key in keywords.keys()] v = [] v += [general[key] for key in general.keys()] v += [document_types[key] for key in document_types.keys()] v += [authors[key] for key in authors.keys()] v += [keywords[key] for key in keywords.keys()] ## ## Other columns in the dataset ## others = {} for column in sorted(x.columns): if column + ":" in d or column in [ "Abstract", "Abstract_Author_Keywords", "Abstract_Author_Keywords_CL", "Abstract_Index_Keywords", "Abstract_Index_Keywords_CL", "Abstract_Keywords", "Abstract_Keywords_CL", "Authors_ID", "Bradford_Law_Zone", "Global_Citations", "Global_References", "ID", "Keywords", "Local_Citations", "Local_References", "Num_Authors", "Title", "Year", "Affiliations", ]: continue others[column] = round(_count_terms(x, column)) if len(others): d += [key for key in others.keys()] v += [others[key] for key in others.keys()] with self.output: display( pd.DataFrame( v, columns=["value"], index=pd.MultiIndex.from_arrays( [ ["GENERAL"] * len(general) + ["DOCUMENT TYPES"] * len(document_types) + ["AUTHORS"] * len(authors) + ["KEYWORDS"] * len(keywords) + ["OTHERS"] * len(others), d, ], names=["Category", "Item"], ), ) ) return self.app_layout
8bd5f7297672cd1bcc6f7bac4d676841b7226b48
f5c3fde6a1f0825ef03c73c659ad61a9ca15eac9
/backend/course/api/v1/urls.py
d3fda365b5a60402915d8df5400dd7132d425b80
[]
no_license
crowdbotics-apps/meira-20558
654cf2c71b7c1bb22a419dc4eb20f41391ca20bb
2ff22fb39ca7c380389524805c21b70bf4c53611
refs/heads/master
2022-12-25T00:22:10.427658
2020-09-22T12:23:05
2020-09-22T12:23:05
297,630,146
0
0
null
null
null
null
UTF-8
Python
false
false
944
py
from django.urls import path, include from rest_framework.routers import DefaultRouter from .viewsets import ( RecordingViewSet, EventViewSet, SubscriptionViewSet, CourseViewSet, GroupViewSet, ModuleViewSet, PaymentMethodViewSet, SubscriptionTypeViewSet, EnrollmentViewSet, LessonViewSet, CategoryViewSet, ) router = DefaultRouter() router.register("paymentmethod", PaymentMethodViewSet) router.register("category", CategoryViewSet) router.register("module", ModuleViewSet) router.register("lesson", LessonViewSet) router.register("subscriptiontype", SubscriptionTypeViewSet) router.register("enrollment", EnrollmentViewSet) router.register("event", EventViewSet) router.register("subscription", SubscriptionViewSet) router.register("recording", RecordingViewSet) router.register("group", GroupViewSet) router.register("course", CourseViewSet) urlpatterns = [ path("", include(router.urls)), ]
f030a759d8cdbb9ea7ca151b2e0defbfaa9762d6
48894ae68f0234e263d325470178d67ab313c73e
/sa/profiles/DLink/DGS3100/get_interface_status.py
c9e8246ac2d799ba19927cd9ff87b7157fcd836d
[ "BSD-3-Clause" ]
permissive
DreamerDDL/noc
7f949f55bb2c02c15ac2cc46bc62d957aee43a86
2ab0ab7718bb7116da2c3953efd466757e11d9ce
refs/heads/master
2021-05-10T18:22:53.678588
2015-06-29T12:28:20
2015-06-29T12:28:20
118,628,133
0
0
null
2018-01-23T15:19:51
2018-01-23T15:19:51
null
UTF-8
Python
false
false
2,088
py
# -*- coding: utf-8 -*- ##---------------------------------------------------------------------- ## DLink.DGS3100.get_interface_status ##---------------------------------------------------------------------- ## Copyright (C) 2007-2014 The NOC Project ## See LICENSE for details ##---------------------------------------------------------------------- """ """ from noc.sa.script import Script as NOCScript from noc.sa.interfaces import IGetInterfaceStatus import re class Script(NOCScript): name = "DLink.DGS3100.get_interface_status" implements = [IGetInterfaceStatus] rx_line = re.compile( r"^\s*(?P<interface>\S+)\s+(Enabled|Disabled)\s+\S+\s+" r"(?P<status>.+)\s+(Enabled|Disabled)\s*$", re.IGNORECASE | re.MULTILINE) def execute(self, interface=None): # Not tested. Must be identical in different vendors if self.snmp and self.access_profile.snmp_ro: try: # Get interface status r = [] # IF-MIB::ifName, IF-MIB::ifOperStatus for n, s in self.snmp.join_tables( "1.3.6.1.2.1.31.1.1.1.1", "1.3.6.1.2.1.2.2.1.8", bulk=True): if not n.startswith("802.1Q Encapsulation Tag"): if interface is not None and interface == n: r += [{"interface": n, "status": int(s) == 1}] else: r += [{"interface": n, "status": int(s) == 1}] return r except self.snmp.TimeOutError: pass # Fallback to CLI if interface is None: interface = "all" try: s = self.cli("show ports %s" % interface) except self.CLISyntaxError: raise self.NotSupportedError() r = [] for match in self.rx_line.finditer(s): r += [{ "interface": match.group("interface"), "status": match.group("status").strip() != "Link Down" }] return r
72d33eb12312e3ec1ce19ff5b0ab6f6eae075df6
1d01149498a26385eb0e47b35a1045d37a1584b4
/pyntcloud/io/ply.py
938cdcd52aabd2ce9263e5e594e767cec8d040fe
[ "Unlicense" ]
permissive
iindovina/pyntcloud
f54c0dc528385bbeb1d37952abbfe631594e7060
e2499f7f1a897d3ff0b526a12b88f3914a663067
refs/heads/master
2021-07-21T07:35:19.129049
2017-10-31T14:34:23
2017-10-31T14:34:23
107,396,333
0
0
null
2017-10-18T11:03:46
2017-10-18T11:03:46
null
UTF-8
Python
false
false
7,055
py
# HAKUNA MATATA import sys import numpy as np import pandas as pd from collections import defaultdict ply_dtypes = dict([ (b'int8', 'i1'), (b'char', 'i1'), (b'uint8', 'u1'), (b'uchar', 'b1'), (b'uchar', 'u1'), (b'int16', 'i2'), (b'short', 'i2'), (b'uint16', 'u2'), (b'ushort', 'u2'), (b'int32', 'i4'), (b'int', 'i4'), (b'uint32', 'u4'), (b'uint', 'u4'), (b'float32', 'f4'), (b'float', 'f4'), (b'float64', 'f8'), (b'double', 'f8') ]) valid_formats = {'ascii': '', 'binary_big_endian': '>', 'binary_little_endian': '<'} def read_ply(filename): """ Read a .ply (binary or ascii) file and store the elements in pandas DataFrame Parameters ---------- filename: str Path tho the filename Returns ------- data: dict Elements as pandas DataFrames; comments and ob_info as list of string """ with open(filename, 'rb') as ply: if b'ply' not in ply.readline(): raise ValueError('The file does not start whith the word ply') # get binary_little/big or ascii fmt = ply.readline().split()[1].decode() # get extension for building the numpy dtypes ext = valid_formats[fmt] line = [] dtypes = defaultdict(list) count = 2 points_size = None mesh_size = None while b'end_header' not in line and line != b'': line = ply.readline() if b'element' in line: line = line.split() name = line[1].decode() size = int(line[2]) if name == "vertex": points_size = size elif name == "face": mesh_size = size elif b'property' in line: line = line.split() # element mesh if b'list' in line: mesh_names = ['n_points', 'v1', 'v2', 'v3'] if fmt == "ascii": # the first number has different dtype than the list dtypes[name].append( (mesh_names[0], ply_dtypes[line[2]])) # rest of the numbers have the same dtype dt = ply_dtypes[line[3]] else: # the first number has different dtype than the list dtypes[name].append( (mesh_names[0], ext + ply_dtypes[line[2]])) # rest of the numbers have the same dtype dt = ext + ply_dtypes[line[3]] for j in range(1, 4): dtypes[name].append((mesh_names[j], dt)) else: if fmt == "ascii": dtypes[name].append( (line[2].decode(), ply_dtypes[line[1]])) else: dtypes[name].append( (line[2].decode(), ext + ply_dtypes[line[1]])) count += 1 # for bin end_header = ply.tell() data = {} if fmt == 'ascii': top = count bottom = 0 if mesh_size is None else mesh_size names = [x[0] for x in dtypes["vertex"]] data["points"] = pd.read_csv(filename, sep=" ", header=None, engine="python", skiprows=top, skipfooter=bottom, usecols=names, names=names) for n, col in enumerate(data["points"].columns): data["points"][col] = data["points"][col].astype( dtypes["vertex"][n][1]) if mesh_size is not None: top = count + points_size names = [x[0] for x in dtypes["face"]][1:] usecols = [1, 2, 3] data["mesh"] = pd.read_csv( filename, sep=" ", header=None, engine="python", skiprows=top, usecols=usecols, names=names) for n, col in enumerate(data["mesh"].columns): data["mesh"][col] = data["mesh"][col].astype( dtypes["face"][n + 1][1]) else: with open(filename, 'rb') as ply: ply.seek(end_header) data["points"] = pd.DataFrame(np.fromfile( ply, dtype=dtypes["vertex"], count=points_size)) if mesh_size is not None: data["mesh"] = pd.DataFrame(np.fromfile( ply, dtype=dtypes["face"], count=mesh_size)) data["mesh"].drop('n_points', axis=1, inplace=True) return data def write_ply(filename, points=None, mesh=None, as_text=False): """ Parameters ---------- filename: str The created file will be named with this points: ndarray mesh: ndarray as_text: boolean Set the write mode of the file. Default: binary Returns ------- boolean True if no problems """ if not filename.endswith('ply'): filename += '.ply' # open in text mode to write the header with open(filename, 'w') as ply: header = ['ply'] if as_text: header.append('format ascii 1.0') else: header.append('format binary_' + sys.byteorder + '_endian 1.0') if points is not None: header.extend(describe_element('vertex', points)) if mesh is not None: mesh = mesh.copy() mesh.insert(loc=0, column="n_points", value=3) mesh["n_points"] = mesh["n_points"].astype("u1") header.extend(describe_element('face', mesh)) header.append('end_header') for line in header: ply.write("%s\n" % line) if as_text: if points is not None: points.to_csv(filename, sep=" ", index=False, header=False, mode='a', encoding='ascii') if mesh is not None: mesh.to_csv(filename, sep=" ", index=False, header=False, mode='a', encoding='ascii') else: # open in binary/append to use tofile with open(filename, 'ab') as ply: if points is not None: points.to_records(index=False).tofile(ply) if mesh is not None: mesh.to_records(index=False).tofile(ply) return True def describe_element(name, df): """ Takes the columns of the dataframe and builds a ply-like description Parameters ---------- name: str df: pandas DataFrame Returns ------- element: list[str] """ property_formats = {'f': 'float', 'u': 'uchar', 'i': 'int'} element = ['element ' + name + ' ' + str(len(df))] if name == 'face': element.append("property list uchar int vertex_indices") else: for i in range(len(df.columns)): # get first letter of dtype to infer format f = property_formats[str(df.dtypes[i])[0]] element.append('property ' + f + ' ' + df.columns.values[i]) return element
e913c4515484c39cb110b8eeb50f63d53599c617
cec916f882afbd09fe68f6b88879e68eaea976f6
/bigmler/options/multilabel.py
c7cad984064814fe938c6fa487987c77e151eef4
[ "Apache-2.0" ]
permissive
jaor/bigmler
d86db6d7950768d7ba3e21b5f29bc265467f4cad
bbf221e41ef04e8d37a511a35a63216b64689449
refs/heads/master
2023-04-26T12:07:49.428263
2023-04-12T15:22:20
2023-04-12T15:22:20
15,663,632
0
0
null
null
null
null
UTF-8
Python
false
false
2,530
py
# -*- coding: utf-8 -*- # # Copyright 2014-2023 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Options for BigMLer multi-label processing """ def get_multi_label_options(defaults=None): """Multi-label-related options """ if defaults is None: defaults = {} options = { # Multi-label labels. If set, only the given labels are expanded '--labels': { 'action': 'store', 'dest': 'labels', 'default': defaults.get('labels', None), 'help': ("Comma-separated list of the labels" " to be expanded from a multi-label field.")}, # Multi-label label separator. Separator used when splitting labels in # the objective field. '--label-separator': { 'action': 'store', 'dest': 'label_separator', 'default': defaults.get('label_separator', None), 'help': ("Separator used when splitting labels in the" " objective field.")}, # Multi-label fields. Comma-separated list of fields that should be # treated as being multi-label fields. # Either its name or column number. '--multi-label-fields': { 'action': 'store', 'dest': 'multi_label_fields', 'default': defaults.get('multi_label_fields', None), 'help': ("Comma-separated list of the fields" " to be expanded as being multi-label. Name" " or column number.")}, # Label-aggregates. Comma-separated list of aggregation functions # for the multi-label fields. '--label-aggregates': { 'action': 'store', 'dest': 'label_aggregates', 'default': defaults.get('label_aggregates', None), 'help': ("Comma-separated list of aggregation functions " "for the multi-label field labels." " Allowed aggregates: count, first and last")}} return options
e4f471f5de8a7768f739889d5f7bdae7996aecb4
de75304d96e433f67dba3438f2456dd3dbb2ce08
/scriptsLinAlg/06_matrix-properties.py
dd6fc05f9695dbbf6cadf91808dc93466ce05c6f
[]
no_license
dalerxli/slides_linear-algebra-intro
ef7486a2779d5cd6633222662c629eae0ee59997
9bdbafeecd620a13e2c152bc3eb331543a5d7674
refs/heads/master
2023-07-14T14:35:24.395828
2021-08-10T17:55:04
2021-08-10T17:55:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
689
py
#!/usr/bin/env python3 # _*_ coding: utf-8 _*_ import numpy as np A = np.array([ [7, 1], [2, -3], [4, 8], ]) B = np.array([ [ 1, 6 ], [-2, 3 ], ]) C = np.array([ [4, 1], [7, 3], ]) # Associative ABC = A.dot(B.dot(C)) AB_C = A.dot(B).dot(C) # Distributive D = A.dot(B + C) E = A.dot(B) + A.dot(C) # Commutative print('\n', B.dot(C)) print('\n', C.dot(B)) print('\n', B.dot(C) == C.dot(B)) v1 = np.array([[3], [8], [1], ]) v2 = np.array([[4], [8], [3], ]) print('\n', v1.T.dot(v2)) print('\n', v2.T.dot(v1))
da6b586298b34518a6dec9ed0a3e1211f0ea97b6
cda2c95ee6167a34ce9ba3ea25707469a2c357ca
/neural_augmented_simulator/old-code/simple_joints_lstm/dataset_ergoreachersimple_v2.py
ef2f878e4c98cdf6b58abc25f8daf9dec3c33b7a
[]
no_license
fgolemo/neural-augmented-simulator
f43d9a88187fbef478aba9b4399eaa59d8795746
eb02f20d92e6775824dbac221771f8b8c6dda582
refs/heads/master
2020-06-23T15:50:35.957495
2020-03-06T21:16:34
2020-03-06T21:16:34
198,666,041
0
1
null
2019-12-04T22:19:27
2019-07-24T15:49:48
Jupyter Notebook
UTF-8
Python
false
false
2,498
py
import os from torch.utils.data import Dataset import numpy as np class DatasetErgoreachersimpleV2(Dataset): def __init__(self, path="~/data/sim2real/data-ergoreachersimple-v2.npz", train=True, nosim=False): super().__init__() ds = np.load(os.path.expanduser(path)) self.nosim = nosim self.curr_real = ds["state_current_real"] self.next_real = ds["state_next_real"] self.next_sim = ds["state_next_sim"] self.action = ds["actions"] if train: self.curr_real = self.curr_real[:900] self.next_real = self.next_real[:900] self.next_sim = self.next_sim[:900] self.action = self.action[:900] else: self.curr_real = self.curr_real[900:] self.next_real = self.next_real[900:] self.next_sim = self.next_sim[900:] self.action = self.action[900:] def __len__(self): return len(self.curr_real) def format_data(self, idx): if not self.nosim: diff = self.next_real[idx] - self.next_sim[idx] else: diff = self.next_real[idx] - self.curr_real[idx] return ( np.hstack((self.next_sim[idx], self.curr_real[idx], self.action[idx])), diff ) def __getitem__(self, idx): x, y = self.format_data(idx) return {"x": x, "y": y} if __name__ == '__main__': dsr = DatasetErgoreachersimpleV2(train=False) print("len test", len(dsr)) print(dsr[10]) dsr = DatasetErgoreachersimpleV2(train=True) print("len train", len(dsr)) print(dsr[10]["x"].shape, dsr[10]["y"].shape) for i in range(10, 20): print("real t1:", dsr[0]["x"][i, 8:16].round(2)) print("sim_ t2:", dsr[0]["x"][i, :8].round(2)) print("action_:", dsr[0]["x"][i, 16:].round(2)) print("real t2:", (dsr[0]["x"][i, :8] + dsr[0]["y"][i]).round(2)) print("delta__:", dsr[0]["y"][i].round(2)) print("===") max_x = -np.inf min_x = +np.inf max_y = -np.inf min_y = +np.inf for item in dsr: if item["x"].max() > max_x: max_x = item["x"].max() if item["y"].max() > max_y: max_y = item["y"].max() if item["x"].min() < min_x: min_x = item["x"].min() if item["y"].min() < min_y: min_y = item["y"].min() print("min x {}, max x {}\n" "min y {}, max y {}".format(min_x, max_x, min_y, max_y))
b5aed2abd39b21240499c9a0569177c51db73fb1
436290052fdd3a7c8cabfdaffd9f8bf7ff6d325b
/analysis/generate_dendrogram_2.py
f04b5eb96a4f539e9f55923e418a54389b453ece
[]
no_license
mf1832146/bi-tbcnn
bcf7abc3bb8c6022c1b21aac481e6fe0ac21b40f
309f5f16c3211f922fa04eed32fa7d6c58978faf
refs/heads/master
2020-07-30T05:48:35.117150
2019-03-23T14:22:54
2019-03-23T14:22:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,937
py
from scipy.cluster.hierarchy import dendrogram, linkage import random from matplotlib.pyplot import show import matplotlib.pyplot as plt from scipy.cluster.hierarchy import fcluster from matplotlib import pyplot as plt import numpy as np import matplotlib.colors as colors from sklearn.decomposition import PCA from collections import Counter max_d = 31 with open("./test_vectors/cpp_vectors_bitbcnn_def_use.txt", "r") as f: cpp_data = f.readlines() with open("./test_vectors/java_vectors_bitbcnn_def_use.txt", "r") as f: java_data = f.readlines() labels = [] bubblesort_vectors = [] mergesort_vectors = [] quicksort_vectors = [] linkedlist_vectors = [] queue_vectors = [] stack_vectors = [] heap_vectors = [] bfs_vectors = [] dfs_vectors = [] knapsack_vectors = [] cpp_bubblesort_vectors = [] cpp_mergesort_vectors = [] cpp_quicksort_vectors = [] cpp_linkedlist_vectors = [] cpp_queue_vectors = [] cpp_stack_vectors = [] cpp_heap_vectors = [] cpp_bfs_vectors = [] cpp_dfs_vectors = [] cpp_knapsack_vectors = [] java_bubblesort_vectors = [] java_mergesort_vectors = [] java_quicksort_vectors = [] java_linkedlist_vectors = [] java_queue_vectors = [] java_stack_vectors = [] java_heap_vectors = [] java_bfs_vectors = [] java_dfs_vectors = [] java_knapsack_vectors = [] vectors_all = [] labels_all = [] label_index = [] lang_index = [] cpp_vectors = [] java_vectors = [] lang_labels = [] cpp_label_index = [] java_label_index = [] cpp_labels_all = [] java_labels_all = [] for line in cpp_data: l = line.replace("\n","").strip() splits = l.split(" ") label = splits[0] vector = splits[1:len(splits)] vector_f = [float(i) for i in vector] # labels.append(label) if label == "bfs": bfs_vectors.append(vector_f) label_index.append(1) cpp_label_index.append(1) cpp_bfs_vectors.append(vector_f) if label == "dfs": dfs_vectors.append(vector_f) label_index.append(2) cpp_label_index.append(2) cpp_dfs_vectors.append(vector_f) if label == "bubblesort": bubblesort_vectors.append(vector_f) cpp_bubblesort_vectors.append(vector_f) label_index.append(3) cpp_label_index.append(3) if label == "quicksort": quicksort_vectors.append(vector_f) cpp_quicksort_vectors.append(vector_f) label_index.append(4) cpp_label_index.append(4) if label == "mergesort": mergesort_vectors.append(vector_f) cpp_mergesort_vectors.append(vector_f) label_index.append(5) cpp_label_index.append(5) if label == "heap": heap_vectors.append(vector_f) cpp_heap_vectors.append(vector_f) label_index.append(6) cpp_label_index.append(6) if label == "linkedlist": linkedlist_vectors.append(vector_f) cpp_linkedlist_vectors.append(vector_f) label_index.append(7) cpp_label_index.append(7) if label == "queue": queue_vectors.append(vector_f) cpp_queue_vectors.append(vector_f) label_index.append(8) cpp_label_index.append(8) if label == "stack": stack_vectors.append(vector_f) cpp_stack_vectors.append(vector_f) label_index.append(9) cpp_label_index.append(9) if label == "knapsack": knapsack_vectors.append(vector_f) cpp_knapsack_vectors.append(vector_f) label_index.append(10) cpp_label_index.append(10) cpp_vectors.append(vector_f) # if label != "knapsack": vectors_all.append(vector_f) labels_all.append(label+"_cpp") lang_index.append(1) cpp_labels_all.append(label) lang_labels.append("cpp") for line in java_data: l = line.replace("\n","").strip() splits = l.split(" ") label = splits[0] vector = splits[1:len(splits)] vector_f = [float(i) for i in vector] # labels.append(label) if label == "bfs": bfs_vectors.append(vector_f) java_bfs_vectors.append(vector_f) label_index.append(11) java_label_index.append(11) if label == "dfs": dfs_vectors.append(vector_f) java_dfs_vectors.append(vector_f) label_index.append(12) java_label_index.append(12) if label == "bubblesort": bubblesort_vectors.append(vector_f) java_bubblesort_vectors.append(vector_f) label_index.append(13) java_label_index.append(13) if label == "quicksort": quicksort_vectors.append(vector_f) java_quicksort_vectors.append(vector_f) label_index.append(14) java_label_index.append(14) if label == "mergesort": mergesort_vectors.append(vector_f) java_mergesort_vectors.append(vector_f) label_index.append(15) java_label_index.append(15) if label == "heap": heap_vectors.append(vector_f) java_heap_vectors.append(vector_f) label_index.append(16) java_label_index.append(16) if label == "linkedlist": linkedlist_vectors.append(vector_f) java_linkedlist_vectors.append(vector_f) label_index.append(17) java_label_index.append(17) if label == "queue": queue_vectors.append(vector_f) java_queue_vectors.append(vector_f) label_index.append(18) java_label_index.append(18) if label == "stack": stack_vectors.append(vector_f) java_stack_vectors.append(vector_f) label_index.append(19) java_label_index.append(19) if label == "knapsack": knapsack_vectors.append(vector_f) java_knapsack_vectors.append(vector_f) label_index.append(20) java_label_index.append(20) java_vectors.append(vector_f) # if label != "knapsack": vectors_all.append(vector_f) labels_all.append(label+"_java") lang_index.append(2) java_labels_all.append(label) lang_labels.append("java") print("length java vectors : " + str(len(java_vectors))) print("length cpp vectors : " + str(len(cpp_vectors))) print("length all vectors : " + str(len(vectors_all))) print("length cpp bfs vectors : " + str(len(cpp_bfs_vectors))) print("length cpp dfs vectors : " + str(len(cpp_dfs_vectors))) print("length cpp bubblesort vectors : " + str(len(cpp_bubblesort_vectors))) print("length cpp quicksort vectors : " + str(len(cpp_quicksort_vectors))) print("length cpp mergesort vectors : " + str(len(cpp_mergesort_vectors))) print("length cpp heap vectors : " + str(len(cpp_heap_vectors))) print("length cpp linkedlist vectors : " + str(len(cpp_linkedlist_vectors))) print("length cpp queue vectors : " + str(len(cpp_queue_vectors))) print("length cpp stack vectors : " + str(len(cpp_stack_vectors))) print("length cpp knapsack vectors : " + str(len(cpp_knapsack_vectors))) print("length java bfs vectors : " + str(len(java_bfs_vectors))) print("length java dfs vectors : " + str(len(java_dfs_vectors))) print("length java bubblesort vectors : " + str(len(java_bubblesort_vectors))) print("length java quicksort vectors : " + str(len(java_quicksort_vectors))) print("length java mergesort vectors : " + str(len(java_mergesort_vectors))) print("length java heap vectors : " + str(len(java_heap_vectors))) print("length java linkedlist vectors : " + str(len(java_linkedlist_vectors))) print("length java queue vectors : " + str(len(java_queue_vectors))) print("length java stack vectors : " + str(len(java_stack_vectors))) print("length java knapsack vectors : " + str(len(java_knapsack_vectors))) vectors_all_append = [] vectors_all_append.extend(cpp_bfs_vectors) vectors_all_append.extend(cpp_dfs_vectors) vectors_all_append.extend(cpp_bubblesort_vectors) vectors_all_append.extend(cpp_quicksort_vectors) vectors_all_append.extend(cpp_mergesort_vectors) vectors_all_append.extend(cpp_heap_vectors) vectors_all_append.extend(cpp_linkedlist_vectors) vectors_all_append.extend(cpp_queue_vectors) vectors_all_append.extend(cpp_stack_vectors) vectors_all_append.extend(cpp_knapsack_vectors) vectors_all_append.extend(java_bfs_vectors) vectors_all_append.extend(java_dfs_vectors) vectors_all_append.extend(java_bubblesort_vectors) vectors_all_append.extend(java_quicksort_vectors) vectors_all_append.extend(java_mergesort_vectors) vectors_all_append.extend(java_heap_vectors) vectors_all_append.extend(java_linkedlist_vectors) vectors_all_append.extend(java_queue_vectors) vectors_all_append.extend(java_stack_vectors) vectors_all_append.extend(java_knapsack_vectors) algo_lang_labels_cpp_ordered = ["bfs_cpp","dfs_cpp","bubblesort_cpp","quicksort_cpp","mergesort_cpp","heap_cpp","linkedlist_cpp","queue_cpp","stack_cpp","knapsack_cpp"] algo_lang_labels_java_ordered = ["bfs_java","dfs_java","bubblesort_java","quicksort_java","mergesort_java","heap_java","linkedlist_java","queue_java","stack_java","knapsack_java"] algo_lang_labels = algo_lang_labels_cpp_ordered algo_lang_labels.extend(algo_lang_labels_java_ordered) pca = PCA(n_components=2) vectors_all_pca = pca.fit_transform(cpp_vectors) # cpp_all_pca = pca.fit_transform(java_vectors) # java_all_pca = pca.fit_transform(cpp_vectors) # data_langs = (cpp_all_pca, java_all_pca) # colors = ("red", "green") groups = ["cpp", "java"] label_color_dict = {label:idx for idx,label in enumerate(np.unique(lang_labels))} cvec = [label_color_dict[label] for label in lang_labels] cpp_label_dict = { 1: "bfs_cpp", 2: "dfs_cpp", 3: "bubblesort_cpp", 4: "quicksort_cpp", 5: "mergesort_cpp", 6: "heap_cpp", 7: "linkedlist_cpp", 8: "queue_cpp", 9: "stack_cpp", 10: "knapsack_cpp", } java_label_dict = { 11: "bfs_java", 12: "dfs_java", 13: "bubblesort_java", 14: "quicksort_java", 15: "mergesort_java", 16: "heap_java", 17: "linkedlist_java", 18: "queue_java", 19: "stack_java", 20: "knapsack_java" } label_dict = { 1: "bfs_cpp", 2: "dfs_cpp", 3: "bubblesort_cpp", 4: "quicksort_cpp", 5: "mergesort_cpp", 6: "heap_cpp", 7: "linkedlist_cpp", 8: "queue_cpp", 9: "stack_cpp", 10: "knapsack_cpp", 11: "bfs_java", 12: "dfs_java", 13: "bubblesort_java", 14: "quicksort_java", 15: "mergesort_java", 16: "heap_java", 17: "linkedlist_java", 18: "queue_java", 19: "stack_java", 20: "knapsack_java" } print lang_index print cvec # fig, ax = plt.subplots() # cmap = plt.get_cmap('jet', 20) # cmap.set_under('gray') # fig, ax = plt.subplots() # cax = ax.scatter(vectors_all_pca[:,0],vectors_all_pca[:,1], c= label_index, s=50, cmap=cmap) # fig.colorbar(cax, extend='min') # plt.show() # Add a colorbar. Move the ticks up by 0.5, so they are centred on the colour. # cb=plt.colorbar(ticks=np.array(label_index)+0.5) # cb.set_ticklabels(label_index) # plt.scatter(vectors_all_pca[0:108,0],vectors_all_pca[0:108,1],c="r",label="bfs_cpp") # plt.scatter(vectors_all_pca[108:217,0],vectors_all_pca[108:217,1],c="g",label="dfs_cpp") # plt.scatter(vectors_all_pca[108:217,0],vectors_all_pca[108:217,1],c="g",label="dfs_cpp") # plt.scatter(vectors_all_pca[108:217,0],vectors_all_pca[108:217,1],c="g",label="dfs_cpp") # plt.scatter(vectors_all_pca[108:217,0],vectors_all_pca[108:217,1],c="g",label="dfs_cpp") # plt.scatter(vectors_all_pca[108:217,0],vectors_all_pca[108:217,1],c="g",label="dfs_cpp") # plt.scatter(vectors_all_pca[108:217,0],vectors_all_pca[108:217,1],c="g",label="dfs_cpp") label_index = cpp_label_index unique = list(set(label_index)) colors_c = [plt.cm.jet(float(i)/max(unique)) for i in unique] for i, u in enumerate(unique): xi = [vectors_all_pca[:,0][j] for j in range(len(vectors_all_pca[:,0])) if label_index[j] == u] yi = [vectors_all_pca[:,1][j] for j in range(len(vectors_all_pca[:,1])) if label_index[j] == u] plt.scatter(xi, yi, c=colors_c[i], label=cpp_label_dict[u]) plt.legend(bbox_to_anchor=(1,1), loc=1, ncol=5) # for i, vec in enumerate(vectors_all_pca): # # print label_index[i] # plt.scatter(vec[0],vec[1],c=colors_c[i],label=str(label_index[i])) # ax.scatter(cpp_all_pca[:,0], cpp_all_pca[:,1], color='r') # ax.scatter(java_all_pca[:,0], java_all_pca[:,1], color='g') # plt.show() # for color,group in zip(colors, groups): # plt.scatter(vectors_all_pca[:,0],vectors_all_pca[:,1],c=cvec) # plt.scatter(vectors_all_pca[0:1040,0],vectors_all_pca[0:1040,1],c="r",label="cpp") # plt.scatter(vectors_all_pca[1040:1539,0],vectors_all_pca[1040:1539,1],c="g",label="java") plt.title('Visualization of cpp programs (vectors extracted from Bi-DTBCNN)') # plt.legend(loc=2) plt.show() # labels = ["bfs","dfs","bublesort","quicksort","mergesort","heap","linkedlist", "queue","stack","knapsack"] vectors = [] print("aaaaa : " + str(len(dfs_vectors))) # vectors.append(random.choice(bfs_vectors)) # vectors.append(random.choice(dfs_vectors)) # vectors.append(random.choice(bubblesort_vectors)) # vectors.append(random.choice(quicksort_vectors)) # vectors.append(random.choice(mergesort_vectors)) # vectors.append(random.choice(heap_vectors)) # vectors.append(random.choice(linkedlist_vectors)) # vectors.append(random.choice(queue_vectors)) # vectors.append(random.choice(stack_vectors)) # vectors.append(random.choice(knapsack_vectors)) samples = 10 vectors.extend(random.sample(bfs_vectors,samples)) vectors.extend(random.sample(dfs_vectors,samples)) vectors.extend(random.sample(bubblesort_vectors,samples)) vectors.extend(random.sample(quicksort_vectors,samples)) vectors.extend(random.sample(mergesort_vectors,samples)) vectors.extend(random.sample(heap_vectors,samples)) vectors.extend(random.sample(linkedlist_vectors,samples)) vectors.extend(random.sample(queue_vectors,samples)) vectors.extend(random.sample(stack_vectors,samples)) vectors.extend(random.sample(knapsack_vectors,samples)) labels.extend(["bfs" for i in range(0,samples)]) labels.extend(["dfs" for i in range(0,samples)]) labels.extend(["bublesort" for i in range(0,samples)]) labels.extend(["quicksort" for i in range(0,samples)]) labels.extend(["mergesort" for i in range(0,samples)]) labels.extend(["heap" for i in range(0,samples)]) labels.extend(["linkedlist" for i in range(0,samples)]) labels.extend(["queue" for i in range(0,samples)]) labels.extend(["stack" for i in range(0,samples)]) labels.extend(["knapsack" for i in range(0,samples)]) print(labels) print("length of labels : " + str(len(labels))) # print vectors def augmented_dendrogram(*args, **kwargs): ddata = dendrogram(*args, **kwargs) if not kwargs.get('no_plot', False): for i, d in zip(ddata['icoord'], ddata['dcoord']): x = 0.5 * sum(i[1:3]) y = d[1] plt.plot(x, y, 'ro') plt.annotate("%.3g" % y, (x, y), xytext=(0, -8), textcoords='offset points', va='top', ha='center') return ddata def fancy_dendrogram(*args, **kwargs): max_d = kwargs.pop('max_d', None) if max_d and 'color_threshold' not in kwargs: kwargs['color_threshold'] = max_d annotate_above = kwargs.pop('annotate_above', 0) ddata = dendrogram(*args, **kwargs) if not kwargs.get('no_plot', False): # plt.title('Hierarchical Clustering Dendrogram (10 program each class)') plt.title('Hierarchical Clustering Dendrogram (all cpp program) - vectors are extracted from D-TBCNN') plt.xlabel('sample index or (cluster size)') plt.ylabel('distance') for i, d, c in zip(ddata['icoord'], ddata['dcoord'], ddata['color_list']): x = 0.5 * sum(i[1:3]) y = d[1] if y > annotate_above: plt.plot(x, y, 'o', c=c) plt.annotate("%.3g" % y, (x, y), xytext=(0, -5), textcoords='offset points', va='top', ha='center') if max_d: plt.axhline(y=max_d, c='k') return ddata print("leng of vectors : " + str(len(vectors))) Z = linkage(cpp_vectors, "ward") # print(Z) # fancy_dendrogram(Z, labels= labels) # dendrogram(Z,truncate_mode='lastp',p=12,labels = labels, show_contracted=True) ddata = fancy_dendrogram(Z,truncate_mode='lastp',labels = cpp_labels_all,max_d=max_d) # Retrieving cluster clusters = fcluster(Z, max_d, criterion='distance') print(clusters) print("length of cluster : " + str(len(clusters))) # cluster_indexes = [x for x in range(0,11)] from collections import defaultdict result = defaultdict(list) for k, v in zip(clusters, labels_all): result[k].append(v) for k,v in result.items(): print("---------------------------") print("Number of programs : " + str(len(v))) print("Cluster %s - %s" % (str(k), str(v))) print("Counter : " + str(Counter(v))) show()
bc7b26f53ee58f08c0235b1f7d00ab1788620dcd
3899dd3debab668ef0c4b91c12127e714bdf3d6d
/venv/Lib/site-packages/tensorflow/python/util/decorator_utils.py
4b4ce90e1210574d10a44de4deb88c68fb84c884
[]
no_license
SphericalPotatoInVacuum/CNNDDDD
b2f79521581a15d522d8bb52f81b731a3c6a4db4
03c5c0e7cb922f53f31025b7dd78287a19392824
refs/heads/master
2020-04-21T16:10:25.909319
2019-02-08T06:04:42
2019-02-08T06:04:42
169,691,960
3
2
null
null
null
null
UTF-8
Python
false
false
3,741
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions for writing decorators (which modify docstrings).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys def get_qualified_name(function): # Python 3 if hasattr(function, '__qualname__'): return function.__qualname__ # Python 2 if hasattr(function, 'im_class'): return function.im_class.__name__ + '.' + function.__name__ return function.__name__ def _normalize_docstring(docstring): """Normalizes the docstring. Replaces tabs with spaces, removes leading and trailing blanks lines, and removes any indentation. Copied from PEP-257: https://www.python.org/dev/peps/pep-0257/#handling-docstring-indentation Args: docstring: the docstring to normalize Returns: The normalized docstring """ if not docstring: return '' # Convert tabs to spaces (following the normal Python rules) # and split into a list of lines: lines = docstring.expandtabs().splitlines() # Determine minimum indentation (first line doesn't count): # (we use sys.maxsize because sys.maxint doesn't exist in Python 3) indent = sys.maxsize for line in lines[1:]: stripped = line.lstrip() if stripped: indent = min(indent, len(line) - len(stripped)) # Remove indentation (first line is special): trimmed = [lines[0].strip()] if indent < sys.maxsize: for line in lines[1:]: trimmed.append(line[indent:].rstrip()) # Strip off trailing and leading blank lines: while trimmed and not trimmed[-1]: trimmed.pop() while trimmed and not trimmed[0]: trimmed.pop(0) # Return a single string: return '\n'.join(trimmed) def add_notice_to_docstring( doc, instructions, no_doc_str, suffix_str, notice): """Adds a deprecation notice to a docstring.""" if not doc: lines = [no_doc_str] else: lines = _normalize_docstring(doc).splitlines() lines[0] += ' ' + suffix_str notice = [''] + notice + ([instructions] if instructions else []) if len(lines) > 1: # Make sure that we keep our distance from the main body if lines[1].strip(): notice.append('') lines[1:1] = notice else: lines += notice return '\n'.join(lines) def validate_callable(func, decorator_name): if not hasattr(func, '__call__'): raise ValueError( '%s is not a function. If this is a property, make sure' ' @property appears before @%s in your source code:' '\n\n@property\n@%s\ndef method(...)' % ( func, decorator_name, decorator_name)) class classproperty(object): # pylint: disable=invalid-name """Class property decorator. Example usage: class MyClass(object): @classproperty def value(cls): return '123' > print MyClass.value 123 """ def __init__(self, func): self._func = func def __get__(self, owner_self, owner_cls): return self._func(owner_cls)
dd950c1d86e56494571de4f4f7db8c6f7925e6d9
a5fcf5efa26615922ad3a8169d4f8911ab6cefe7
/candidate/controllers.py
e034d3d0337471541f7c4b5a8e18b4d5aa910037
[ "MIT" ]
permissive
eternal44/WeVoteServer
c0bc5ad96c0c72c6b4b3198a91ef44b6f347cc93
acaae24d7cb0ec34ec4470247ea1072ee34510cb
refs/heads/master
2021-01-15T12:44:19.988036
2016-04-28T05:03:42
2016-04-28T05:03:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,527
py
# candidate/controllers.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- from .models import CandidateCampaignList, CandidateCampaignManager from ballot.models import CANDIDATE from config.base import get_environment_variable from django.contrib import messages from django.http import HttpResponse from exception.models import handle_exception from import_export_vote_smart.controllers import retrieve_and_match_candidate_from_vote_smart, \ retrieve_candidate_photo_from_vote_smart from import_export_vote_smart.models import VoteSmartCandidateManager import json from office.models import ContestOfficeManager import wevote_functions.admin from wevote_functions.functions import positive_value_exists logger = wevote_functions.admin.get_logger(__name__) WE_VOTE_API_KEY = get_environment_variable("WE_VOTE_API_KEY") CANDIDATE_CAMPAIGNS_URL = get_environment_variable("CANDIDATE_CAMPAIGNS_URL") def candidates_import_from_sample_file(request=None, load_from_uri=False): """ Get the json data, and either create new entries or update existing :return: """ # if load_from_uri: # # Request json file from We Vote servers # messages.add_message(request, messages.INFO, "Loading CandidateCampaign IDs from We Vote Master servers") # request = requests.get(CANDIDATE_CAMPAIGNS_URL, params={ # "key": WE_VOTE_API_KEY, # This comes from an environment variable # }) # structured_json = json.loads(request.text) # else: # Load saved json from local file # messages.add_message(request, messages.INFO, "Loading CandidateCampaigns from local file") with open("candidate/import_data/candidate_campaigns_sample.json") as json_data: structured_json = json.load(json_data) candidate_campaign_manager = CandidateCampaignManager() candidates_saved = 0 candidates_updated = 0 candidates_not_processed = 0 for candidate in structured_json: candidate_name = candidate['candidate_name'] if 'candidate_name' in candidate else '' we_vote_id = candidate['we_vote_id'] if 'we_vote_id' in candidate else '' google_civic_election_id = \ candidate['google_civic_election_id'] if 'google_civic_election_id' in candidate else '' ocd_division_id = candidate['ocd_division_id'] if 'ocd_division_id' in candidate else '' contest_office_we_vote_id = \ candidate['contest_office_we_vote_id'] if 'contest_office_we_vote_id' in candidate else '' # This routine imports from another We Vote server, so a contest_office_id doesn't come from import # Look it up for this local database. If we don't find it, then we know the contest_office hasn't been imported # from another server yet, so we fail out. contest_office_manager = ContestOfficeManager() contest_office_id = contest_office_manager.fetch_contest_office_id_from_we_vote_id( contest_office_we_vote_id) if positive_value_exists(candidate_name) and positive_value_exists(google_civic_election_id) \ and positive_value_exists(we_vote_id) and positive_value_exists(contest_office_id): proceed_to_update_or_create = True # elif positive_value_exists(candidate_name) and positive_value_exists(google_civic_election_id) \ # and positive_value_exists(we_vote_id) and positive_value_exists(ocd_division_id) \ # and positive_value_exists(contest_office_we_vote_id): # proceed_to_update_or_create = True else: proceed_to_update_or_create = False if proceed_to_update_or_create: updated_candidate_campaign_values = { # Values we search against 'google_civic_election_id': google_civic_election_id, 'ocd_division_id': ocd_division_id, 'contest_office_we_vote_id': contest_office_we_vote_id, 'candidate_name': candidate_name, # The rest of the values 'we_vote_id': we_vote_id, 'maplight_id': candidate['maplight_id'] if 'maplight_id' in candidate else None, 'contest_office_id': contest_office_id, 'politician_we_vote_id': candidate['politician_we_vote_id'] if 'politician_we_vote_id' in candidate else '', 'state_code': candidate['state_code'] if 'state_code' in candidate else '', 'party': candidate['party'] if 'party' in candidate else '', 'order_on_ballot': candidate['order_on_ballot'] if 'order_on_ballot' in candidate else 0, 'candidate_url': candidate['candidate_url'] if 'candidate_url' in candidate else '', 'photo_url': candidate['photo_url'] if 'photo_url' in candidate else '', 'photo_url_from_maplight': candidate['photo_url_from_maplight'] if 'photo_url_from_maplight' in candidate else '', 'facebook_url': candidate['facebook_url'] if 'facebook_url' in candidate else '', 'twitter_url': candidate['twitter_url'] if 'twitter_url' in candidate else '', 'google_plus_url': candidate['google_plus_url'] if 'google_plus_url' in candidate else '', 'youtube_url': candidate['youtube_url'] if 'youtube_url' in candidate else '', 'google_civic_candidate_name': candidate['google_civic_candidate_name'] if 'google_civic_candidate_name' in candidate else '', 'candidate_email': candidate['candidate_email'] if 'candidate_email' in candidate else '', 'candidate_phone': candidate['candidate_phone'] if 'candidate_phone' in candidate else '', } results = candidate_campaign_manager.update_or_create_candidate_campaign( we_vote_id, google_civic_election_id, ocd_division_id, contest_office_id, contest_office_we_vote_id, candidate_name, updated_candidate_campaign_values) else: candidates_not_processed += 1 results = { 'success': False, 'status': 'Required value missing, cannot update or create' } if results['success']: if results['new_candidate_created']: candidates_saved += 1 else: candidates_updated += 1 else: candidates_not_processed += 1 if candidates_not_processed < 5 and request is not None: messages.add_message(request, messages.ERROR, results['status'] + "candidate_name: {candidate_name}" ", google_civic_election_id: {google_civic_election_id}" ", we_vote_id: {we_vote_id}" ", contest_office_id: {contest_office_id}" ", contest_office_we_vote_id: {contest_office_we_vote_id}" "".format( candidate_name=candidate_name, google_civic_election_id=google_civic_election_id, we_vote_id=we_vote_id, contest_office_id=contest_office_id, contest_office_we_vote_id=contest_office_we_vote_id, )) candidates_results = { 'saved': candidates_saved, 'updated': candidates_updated, 'not_processed': candidates_not_processed, } return candidates_results def candidate_retrieve_for_api(candidate_id, candidate_we_vote_id): """ Used by the api :param candidate_id: :param candidate_we_vote_id: :return: """ # NOTE: Candidates retrieve is independent of *who* wants to see the data. Candidates retrieve never triggers # a ballot data lookup from Google Civic, like voterBallotItems does if not positive_value_exists(candidate_id) and not positive_value_exists(candidate_we_vote_id): status = 'VALID_CANDIDATE_ID_AND_CANDIDATE_WE_VOTE_ID_MISSING' json_data = { 'status': status, 'success': False, 'kind_of_ballot_item': CANDIDATE, 'id': candidate_id, 'we_vote_id': candidate_we_vote_id, 'google_civic_election_id': 0, } return HttpResponse(json.dumps(json_data), content_type='application/json') candidate_manager = CandidateCampaignManager() if positive_value_exists(candidate_id): results = candidate_manager.retrieve_candidate_campaign_from_id(candidate_id) success = results['success'] status = results['status'] elif positive_value_exists(candidate_we_vote_id): results = candidate_manager.retrieve_candidate_campaign_from_we_vote_id(candidate_we_vote_id) success = results['success'] status = results['status'] else: status = 'VALID_CANDIDATE_ID_AND_CANDIDATE_WE_VOTE_ID_MISSING_2' # It should be impossible to reach this json_data = { 'status': status, 'success': False, 'kind_of_ballot_item': CANDIDATE, 'id': candidate_id, 'we_vote_id': candidate_we_vote_id, 'google_civic_election_id': 0, } return HttpResponse(json.dumps(json_data), content_type='application/json') if success: candidate_campaign = results['candidate_campaign'] json_data = { 'status': status, 'success': True, 'kind_of_ballot_item': CANDIDATE, 'id': candidate_campaign.id, 'we_vote_id': candidate_campaign.we_vote_id, 'ballot_item_display_name': candidate_campaign.candidate_name, 'candidate_photo_url': candidate_campaign.candidate_photo_url(), 'order_on_ballot': candidate_campaign.order_on_ballot, 'google_civic_election_id': candidate_campaign.google_civic_election_id, 'maplight_id': candidate_campaign.maplight_id, 'contest_office_id': candidate_campaign.contest_office_id, 'contest_office_we_vote_id': candidate_campaign.contest_office_we_vote_id, 'politician_id': candidate_campaign.politician_id, 'politician_we_vote_id': candidate_campaign.politician_we_vote_id, # 'google_civic_candidate_name': candidate_campaign.google_civic_candidate_name, 'party': candidate_campaign.party_display(), 'ocd_division_id': candidate_campaign.ocd_division_id, 'state_code': candidate_campaign.state_code, 'candidate_url': candidate_campaign.candidate_url, 'facebook_url': candidate_campaign.facebook_url, 'twitter_url': candidate_campaign.twitter_url, 'twitter_handle': candidate_campaign.fetch_twitter_handle(), 'twitter_description': candidate_campaign.twitter_description, 'twitter_followers_count': candidate_campaign.twitter_followers_count, 'google_plus_url': candidate_campaign.google_plus_url, 'youtube_url': candidate_campaign.youtube_url, 'candidate_email': candidate_campaign.candidate_email, 'candidate_phone': candidate_campaign.candidate_phone, } else: json_data = { 'status': status, 'success': False, 'kind_of_ballot_item': CANDIDATE, 'id': candidate_id, 'we_vote_id': candidate_we_vote_id, 'google_civic_election_id': 0, } return HttpResponse(json.dumps(json_data), content_type='application/json') def candidates_retrieve_for_api(office_id, office_we_vote_id): """ Used by the api :param office_id: :param office_we_vote_id: :return: """ # NOTE: Candidates retrieve is independent of *who* wants to see the data. Candidates retrieve never triggers # a ballot data lookup from Google Civic, like voterBallotItems does if not positive_value_exists(office_id) and not positive_value_exists(office_we_vote_id): status = 'VALID_OFFICE_ID_AND_OFFICE_WE_VOTE_ID_MISSING' json_data = { 'status': status, 'success': False, 'office_id': office_id, 'office_we_vote_id': office_we_vote_id, 'google_civic_election_id': 0, 'candidate_list': [], } return HttpResponse(json.dumps(json_data), content_type='application/json') candidate_list = [] candidates_to_display = [] google_civic_election_id = 0 try: candidate_list_object = CandidateCampaignList() results = candidate_list_object.retrieve_all_candidates_for_office(office_id, office_we_vote_id) success = results['success'] status = results['status'] candidate_list = results['candidate_list'] except Exception as e: status = 'FAILED candidates_retrieve. ' \ '{error} [type: {error_type}]'.format(error=e.message, error_type=type(e)) handle_exception(e, logger=logger, exception_message=status) success = False if success: # Reset office_we_vote_id and office_id so we are sure that it matches what we pull from the database office_id = 0 office_we_vote_id = '' for candidate in candidate_list: one_candidate = { 'id': candidate.id, 'we_vote_id': candidate.we_vote_id, 'ballot_item_display_name': candidate.candidate_name, 'candidate_photo_url': candidate.candidate_photo_url(), 'party': candidate.party_display(), 'order_on_ballot': candidate.order_on_ballot, 'kind_of_ballot_item': CANDIDATE, } candidates_to_display.append(one_candidate.copy()) # Capture the office_we_vote_id and google_civic_election_id so we can return if not positive_value_exists(office_id) and candidate.contest_office_id: office_id = candidate.contest_office_id if not positive_value_exists(office_we_vote_id) and candidate.contest_office_we_vote_id: office_we_vote_id = candidate.contest_office_we_vote_id if not positive_value_exists(google_civic_election_id) and candidate.google_civic_election_id: google_civic_election_id = candidate.google_civic_election_id if len(candidates_to_display): status = 'CANDIDATES_RETRIEVED' else: status = 'NO_CANDIDATES_RETRIEVED' json_data = { 'status': status, 'success': True, 'office_id': office_id, 'office_we_vote_id': office_we_vote_id, 'google_civic_election_id': google_civic_election_id, 'candidate_list': candidates_to_display, } else: json_data = { 'status': status, 'success': False, 'office_id': office_id, 'office_we_vote_id': office_we_vote_id, 'google_civic_election_id': google_civic_election_id, 'candidate_list': [], } return HttpResponse(json.dumps(json_data), content_type='application/json') def retrieve_candidate_photos(we_vote_candidate, force_retrieve=False): vote_smart_candidate_exists = False vote_smart_candidate_just_retrieved = False vote_smart_candidate_photo_exists = False vote_smart_candidate_photo_just_retrieved = False # Has this candidate already been linked to a Vote Smart candidate? candidate_retrieve_results = retrieve_and_match_candidate_from_vote_smart(we_vote_candidate, force_retrieve) if positive_value_exists(candidate_retrieve_results['vote_smart_candidate_id']): # Bring out the object that now has vote_smart_id attached we_vote_candidate = candidate_retrieve_results['we_vote_candidate'] # Reach out to Vote Smart and retrieve photo URL photo_retrieve_results = retrieve_candidate_photo_from_vote_smart(we_vote_candidate) status = photo_retrieve_results['status'] success = photo_retrieve_results['success'] vote_smart_candidate_exists = True vote_smart_candidate_just_retrieved = candidate_retrieve_results['vote_smart_candidate_just_retrieved'] if success: vote_smart_candidate_photo_exists = photo_retrieve_results['vote_smart_candidate_photo_exists'] vote_smart_candidate_photo_just_retrieved = \ photo_retrieve_results['vote_smart_candidate_photo_just_retrieved'] else: status = candidate_retrieve_results['status'] + ' ' status += 'RETRIEVE_CANDIDATE_PHOTOS_NO_CANDIDATE_MATCH' success = False results = { 'success': success, 'status': status, 'vote_smart_candidate_exists': vote_smart_candidate_exists, 'vote_smart_candidate_just_retrieved': vote_smart_candidate_just_retrieved, 'vote_smart_candidate_photo_just_retrieved': vote_smart_candidate_photo_just_retrieved, 'vote_smart_candidate_photo_exists': vote_smart_candidate_photo_exists, } return results
4abad0338b29831728ac721fc4205a6c61efa18c
48c4bb95c2d49ca9dca1e6356e61784d6f36a01d
/analysis/summary.py
b14e5896cb708693292283e6c2a96ccbab90bb1e
[]
no_license
afcarl/SpatialMoney
2a5e5caf91ed7b0925317d4ec949d9ca4752f416
6c9339ae556c842f228cd1cce65842b5b346f060
refs/heads/master
2020-03-16T16:11:36.835280
2018-03-19T20:31:31
2018-03-19T20:31:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,032
py
import numpy as np import enum import os import matplotlib.pyplot as plt class MoneyAnalysis: def __init__(self, m0, m1, m2, interruptions): self.m0 = m0 self.m1 = m1 self.m2 = m2 self.interruptions = interruptions class MoneyAnalyst(object): money_threshold = .75 @classmethod def _test_for_money_state(cls, direct_exchange, indirect_exchange): money = -1 # Money = 0? # type '0' should use direct exchange cond0 = direct_exchange[0] > cls.money_threshold # type '1' should use indirect exchange cond1 = indirect_exchange[1] > cls.money_threshold # type '2' should use direct exchange cond2 = direct_exchange[2] > cls.money_threshold if (cond0 * cond1 * cond2) == 1: money = 0 else: # Money = 1? cond0 = direct_exchange[0] > cls.money_threshold cond1 = direct_exchange[1] > cls.money_threshold cond2 = indirect_exchange[2] > cls.money_threshold if (cond0 * cond1 * cond2) == 1: money = 1 else: # Money = 2? cond0 = indirect_exchange[0] > cls.money_threshold cond1 = direct_exchange[1] > cls.money_threshold cond2 = direct_exchange[2] > cls.money_threshold if (cond0 * cond1 * cond2) == 1: money = 2 return money @classmethod def run(cls, direct_exchange, indirect_exchange, t_max): money_time_line = np.zeros(t_max) money = {0: 0, 1: 0, 2: 0, -1: 0} interruptions = 0 for t in range(t_max): money_t = cls._test_for_money_state( direct_exchange=direct_exchange[t], indirect_exchange=indirect_exchange[t]) money_time_line[t] = money_t money[money_t] += 1 if t > 0: cond0 = money_t == -1 cond1 = money_time_line[t-1] != -1 interruptions += cond0 * cond1 return MoneyAnalysis( m0=money[0], m1=money[1], m2=money[2], interruptions=interruptions) def plot(data): class X(enum.Enum): alpha = enum.auto() tau = enum.auto() vision_area = enum.auto() x = enum.auto() x = { X.alpha: [], X.tau: [], X.vision_area: [], X.x: [] } y = [] for d in data.data: a = MoneyAnalyst.run( t_max=data.parameters.t_max, direct_exchange=d.direct_exchanges_proportions, indirect_exchange=d.indirect_exchanges_proportions ) x[X.vision_area].append(d.parameters.vision_area) x[X.tau].append(d.parameters.tau) x[X.alpha].append(d.parameters.alpha) x[X.x].append(d.parameters.x0 + d.parameters.x1 + d.parameters.x2) y.append( a.m0 + a.m1 + a.m2 ) fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(221) ax.scatter(x[X.tau], y, c="black", alpha=0.4, s=15) ax.set_ylabel("n monetary states") ax.set_xlabel(r"$\tau$") ax = fig.add_subplot(222) ax.scatter(x[X.alpha], y, c="black", alpha=0.4, s=15) ax.set_ylabel("n monetary states") ax.set_xlabel(r"$\alpha$") ax = fig.add_subplot(223) ax.scatter(x[X.vision_area], y, c="black", alpha=0.4, s=15) ax.set_ylabel("n monetary states") ax.set_xlabel(r"vision area") ax = fig.add_subplot(224) ax.scatter(x[X.x], y, c="black", alpha=0.4, s=15) ax.set_ylabel("n monetary states") ax.set_xlabel(r"n agents") ax.text(0.005, 0.005, data.file_name, transform=fig.transFigure, fontsize='x-small', color='0.5') plt.tight_layout() file_path = "figures/{}/{}_summary.pdf".format( data.file_name, data.file_name) os.makedirs(os.path.dirname(file_path), exist_ok=True) plt.savefig(file_path) plt.close(fig)
ede1ced08cc6a341318a155c9fb090799f49fafd
7a54cb77f8a900335834291a452b57c24df6faff
/docs/src/LectureNotes/_build/jupyter_execute/chapter6.py
9f94eb16969599dd00331b16cc90c82d6cf42a4a
[]
no_license
CompPhysics/InsightPhysicsImmersionWeek
76e016b8637aa60be0f92405769c6fffd8556d60
3d7d58f30ef906f2c05b52edc507ab4e11ac34a7
refs/heads/main
2023-06-08T23:16:03.597940
2021-06-25T13:36:57
2021-06-25T13:36:57
374,204,873
2
2
null
2021-06-15T13:56:22
2021-06-05T20:18:26
null
UTF-8
Python
false
false
108,524
py
# Two-body problems ## Introduction and Definitions Central forces are forces which are directed towards or away from a reference point. A familiar force is the gravitional force with the motion of our Earth around the Sun as a classic. The Sun, being approximately sixth order of magnitude heavier than the Earth serves as our origin. A force like the gravitational force is a function of the relative distance $\boldsymbol{r}=\boldsymbol{r}_1-\boldsymbol{r}_2$ only, where $\boldsymbol{r}_1$ and $\boldsymbol{r}_2$ are the positions relative to a defined origin for object one and object two, respectively. These forces depend on the spatial degrees of freedom only (the positions of the interacting objects/particles). As discussed earlier, from such forces we can infer that the total internal energy, the total linear momentum and total angular momentum are so-called constants of the motion, that is they stay constant over time. We say that energy, linear and anuglar momentum are conserved. With a scalar potential $V(\boldsymbol{r})$ we define the force as the gradient of the potential $$ \boldsymbol{F}(\boldsymbol{r})=-\boldsymbol{\nabla}V(\boldsymbol{r}). $$ In general these potentials depend only on the magnitude of the relative position and we will write the potential as $V(r)$ where $r$ is defined as, $$ r = |\boldsymbol{r}_1-\boldsymbol{r}_2|. $$ In three dimensions our vectors are defined as (for a given object/particle $i$) $$ \boldsymbol{r}_i = x_i\boldsymbol{e}_1+y_i\boldsymbol{e}_2+z_i\boldsymbol{e}_3, $$ while in two dimensions we have $$ \boldsymbol{r}_i = x_i\boldsymbol{e}_1+y_i\boldsymbol{e}_2. $$ In two dimensions the radius $r$ is defined as $$ r = |\boldsymbol{r}_1-\boldsymbol{r}_2|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}. $$ If we consider the gravitational potential involving two masses $1$ and $2$, we have $$ V_{12}(r)=V(r)=-\frac{Gm_1m_2}{|\boldsymbol{r}_1-\boldsymbol{r}_2|}=-\frac{Gm_1m_2}{r}. $$ Calculating the gradient of this potential we obtain the force $$ \boldsymbol{F}(\boldsymbol{r})=-\frac{Gm_1m_2}{|\boldsymbol{r}_1-\boldsymbol{r}_1|^2}\hat{\boldsymbol{r}}_{12}=-\frac{Gm_am_b}{r^2}\hat{\boldsymbol{r}}, $$ where we have the unit vector $$ \hat{\boldsymbol{r}}=\hat{\boldsymbol{r}}_{12}=\frac{\boldsymbol{r}_2-\boldsymbol{r}_1}{|\boldsymbol{r}_1-\boldsymbol{r}_2|}. $$ Here $G=6.67\times 10^{-11}$ Nm$^2$/kg$^2$, and $\boldsymbol{F}$ is the force on $2$ due to $1$. By inspection, one can see that the force on $2$ due to $1$ and the force on $1$ due to $2$ are equal and opposite. The net potential energy for a large number of masses would be $$ V=\sum_{i<j}V_{ij}=\frac{1}{2}\sum_{i\ne j}V_{ij}. $$ In general, the central forces that we will study can be written mathematically as $$ \boldsymbol{F}(\boldsymbol{r})=f(r)\hat{r}, $$ where $f(r)$ is a scalar function. For the above gravitational force this scalar term is $-Gm_1m_2/r^2$. In general we will simply write this scalar function $f(r)=\alpha/r^2$ where $\alpha$ is a constant that can be either negative or positive. We will also see examples of other types of potentials in the examples below. Besides general expressions for the potentials/forces, we will discuss in detail different types of motion that arise, from circular to elliptical or hyperbolic or parabolic. By transforming to either polar coordinates or spherical coordinates, we will be able to obtain analytical solutions for the equations of motion and thereby obtain new insights about the properties of a system. Where possible, we will compare our analytical equations with numerical studies. However, before we arrive at these lovely insights, we need to introduce some mathematical manipulations and definitions. ## Center of Mass and Relative Coordinates Thus far, we have considered the trajectory as if the force is centered around a fixed point. For two bodies interacting only with one another, both masses circulate around the center of mass. One might think that solutions would become more complex when both particles move, but we will see here that the problem can be reduced to one with a single body moving according to a fixed force by expressing the trajectories for $\boldsymbol{r}_1$ and $\boldsymbol{r}_2$ into the center-of-mass coordinate $\boldsymbol{R}$ and the relative coordinate $\boldsymbol{r}$. We define the center-of-mass (CoM) coordinate as $$ \boldsymbol{R}\equiv\frac{m_1\boldsymbol{r}_1+m_2\boldsymbol{r}_2}{m_1+m_2}, $$ and the relative coordinate as $$ \boldsymbol{r}\equiv\boldsymbol{r}_1-\boldsymbol{r_2}. $$ We can then rewrite $\boldsymbol{r}_1$ and $\boldsymbol{r}_2$ in terms of the relative and CoM coordinates as $$ \boldsymbol{r}_1=\boldsymbol{R}+\frac{m_2}{M}\boldsymbol{r}, $$ and $$ \boldsymbol{r}_2=\boldsymbol{R}-\frac{m_1}{M}\boldsymbol{r}. $$ ### Conservation of total Linear Momentum In our discussions on conservative forces we defined the total linear momentum as $$ \boldsymbol{P}=\sum_{i=1}^Nm_i\frac{d\boldsymbol{r}_i}{dt}, $$ where $N=2$ in our case. With the above definition of the center of mass position, we see that we can rewrite the total linear momentum as (multiplying the CoM coordinate with $M$) $$ \boldsymbol{P}=M\frac{d\boldsymbol{R}}{dt}=M\dot{\boldsymbol{R}}. $$ The net force acting on the system is given by the time derivative of the linear momentum (assuming mass is time independent) and we have $$ \boldsymbol{F}^{\mathrm{net}}=\dot{\boldsymbol{P}}=M\ddot{\boldsymbol{R}}. $$ The net force acting on the system is given by the sum of the forces acting on the two bodies, that is we have $$ \boldsymbol{F}^{\mathrm{net}}=\boldsymbol{F}_1+\boldsymbol{F}_2=\dot{\boldsymbol{P}}=M\ddot{\boldsymbol{R}}. $$ In our case the forces are given by the internal forces only. The force acting on object $1$ is thus $\boldsymbol{F}_{12}$ and the one acting on object $2$ is $\boldsymbol{F}_{12}$. We have also defined that $\boldsymbol{F}_{12}=-\boldsymbol{F}_{21}$. This means thar we have $$ \boldsymbol{F}_1+\boldsymbol{F}_2=\boldsymbol{F}_{12}+\boldsymbol{F}_{21}=0=\dot{\boldsymbol{P}}=M\ddot{\boldsymbol{R}}. $$ We could alternatively had write this $$ \ddot{\boldsymbol{R}}_{\rm cm}=\frac{1}{m_1+m_2}\left\{m_1\ddot{\boldsymbol{r}}_1+m_2\ddot{\boldsymbol{r}}_2\right\}=\frac{1}{m_1+m_2}\left\{\boldsymbol{F}_{12}+\boldsymbol{F}_{21}\right\}=0. $$ This has the important consequence that the CoM velocity is a constant of the motion. And since the total linear momentum is given by the time-derivative of the CoM coordinate times the total mass $M=m_1+m_2$, it means that linear momentum is also conserved. Stated differently, the center-of-mass coordinate $\boldsymbol{R}$ moves at a fixed velocity. This has also another important consequence for our forces. If we assume that our force depends only on the relative coordinate, it means that the gradient of the potential with respect to the center of mass position is zero, that is $$ M\ddot{d\boldsymbol{R}}=-\boldsymbol{\nabla}_{\boldsymbol{R}}V =0! $$ If we now switch to the equation of motion for the relative coordinate, we have $$ \ddot{\boldsymbol{r}}=\ddot{\boldsymbol{r}}_1-\ddot{\boldsymbol{r}}_2=\left(\frac{\boldsymbol{F}_{12}}{m_1}-\frac{\boldsymbol{F}_{21}}{m_2}\right)=\left(\frac{1}{m_1}+\frac{1}{m_2}\right)\boldsymbol{F}_{12}, $$ which we can rewrite in terms of the reduced mass $$ \mu=\frac{m_1m_2}{m_1+m_2}, $$ as $$ \mu \ddot{\boldsymbol{r}}=\boldsymbol{F}_{12}. $$ This has a very important consequence for our coming analysis of the equations of motion for the two-body problem. Since the acceleration for the CoM coordinate is zero, we can now treat the trajectory as a one-body problem where the mass is given by the reduced mass $\mu$ plus a second trivial problem for the center of mass. The reduced mass is especially convenient when one is considering forces that depend only on the relative coordinate (like the Gravitational force or the electrostatic force between two charges) because then for say the gravitational force we have $$ \mu \ddot{\boldsymbol{r}}=-\frac{Gm_1m_2}{r^2}\hat{\boldsymbol{r}}=-\frac{GM\mu}{r^2}\hat{\boldsymbol{r}}, $$ where we have defined $M= m_1+m_2$. It means that the acceleration of the relative coordinate is $$ \ddot{\boldsymbol{r}}=-\frac{GM}{r^2}\hat{\boldsymbol{r}}, $$ and we have that for the gravitational problem, the reduced mass then falls out and the trajectory depends only on the total mass $M$. The standard strategy is to transform into the center of mass frame, then treat the problem as one of a single particle of mass $\mu$ undergoing a force $\boldsymbol{F}_{12}$. Before we proceed to our definition of the CoM frame we need to set up the expression for the energy in terms of the relative and CoM coordinates. ### Kinetic and total Energy The kinetic energy and momenta also have analogues in center-of-mass coordinates. We have defined the total linear momentum as $$ \boldsymbol{P}=\sum_{i=1}^Nm_i\frac{d\boldsymbol{r}_i}{dt}=M\dot{\boldsymbol{R}}. $$ For the relative momentum $\boldsymbol{q}$, we have that the time derivative of $\boldsymbol{r}$ is $$ \dot{\boldsymbol{r}} =\dot{\boldsymbol{r}}_1-\dot{\boldsymbol{r}}_2, $$ We know also that the momenta $\boldsymbol{p}_1=m_1\dot{\boldsymbol{r}}_1$ and $\boldsymbol{p}_2=m_2\dot{\boldsymbol{r}}_2$. Using these expressions we can rewrite $$ \dot{\boldsymbol{r}} =\frac{\boldsymbol{p}_1}{m_1}-\frac{\boldsymbol{p}_2}{m_2}, $$ which gives $$ \dot{\boldsymbol{r}} =\frac{m_2\boldsymbol{p}_1-m_1\boldsymbol{p}_2}{m_1m_2}, $$ and dividing both sides with $M$ we have $$ \frac{m_1m_2}{M}\dot{\boldsymbol{r}} =\frac{m_2\boldsymbol{p}_1-m_1\boldsymbol{p}_2}{M}. $$ Introducing the reduced mass $\mu=m_1m_2/M$ we have finally $$ \mu\dot{\boldsymbol{r}} =\frac{m_2\boldsymbol{p}_1-m_1\boldsymbol{p}_2}{M}. $$ And $\mu\dot{\boldsymbol{r}}$ defines the relative momentum $\boldsymbol{q}=\mu\dot{\boldsymbol{r}}$. With these definitions we can then calculate the kinetic energy in terms of the relative and CoM coordinates. We have that $$ K=\frac{p_1^2}{2m_1}+\frac{p_2^2}{2m_2}, $$ and with $\boldsymbol{p}_1=m_1\dot{\boldsymbol{r}}_1$ and $\boldsymbol{p}_2=m_2\dot{\boldsymbol{r}}_2$ and using $$ \dot{\boldsymbol{r}}_1=\dot{\boldsymbol{R}}+\frac{m_2}{M}\dot{\boldsymbol{r}}, $$ and $$ \dot{\boldsymbol{r}}_2=\dot{\boldsymbol{R}}-\frac{m_1}{M}\dot{\boldsymbol{r}}, $$ we obtain after squaring the expressions for $\dot{\boldsymbol{r}}_1$ and $\dot{\boldsymbol{r}}_2$ $$ K=\frac{(m_1+m_2)\dot{\boldsymbol{R}}^2}{2}+\frac{(m_1+m_2)m_1m_2\dot{\boldsymbol{r}}^2}{2M^2}, $$ which we simplify to $$ K=\frac{\dot{\boldsymbol{P}}^2}{2M}+\frac{\mu\dot{\boldsymbol{q}}^2}{2}. $$ Below we will define a reference frame, the so-called CoM-frame, where $\boldsymbol{R}=0$. This is going to simplify our equations further. ### Conservation of Angular Momentum The angular momentum (the total one) is the sum of the individual angular momenta. In our case we have two bodies only, meaning that our angular momentum is defined as $$ \boldsymbol{L} = \boldsymbol{r}_1 \times \boldsymbol{p}_1+\boldsymbol{r}_2 \times \boldsymbol{p}_2, $$ and using that $m_1\dot{\boldsymbol{r}}_1=\boldsymbol{p}_1$ and $m_2\dot{\boldsymbol{r}}_2=\boldsymbol{p}_2$ we have $$ \boldsymbol{L} = m_1\boldsymbol{r}_1 \times \dot{\boldsymbol{r}}_1+m_2\boldsymbol{r}_2 \times \dot{\boldsymbol{r}}_2. $$ We define now the CoM-Frame where we set $\boldsymbol{R}=0$. This means that the equations for $\boldsymbol{r}_1$ and $\boldsymbol{r}_2$ in terms of the relative motion simplify and we have $$ \boldsymbol{r}_1=\frac{m_2}{M}\boldsymbol{r}, $$ and $$ \boldsymbol{r}_2=-\frac{m_1}{M}\boldsymbol{r}. $$ resulting in $$ \boldsymbol{L} = m_1 \frac{m_2}{M}\boldsymbol{r}\times\frac{m_2}{M}\boldsymbol{r} +m_2 \frac{m_1}{M}\boldsymbol{r} \times \frac{m_1}{M}\dot{\boldsymbol{r}}. $$ We see that can rewrite this equation as $$ \boldsymbol{L}=\boldsymbol{r}\times \mu\dot{\boldsymbol{r}}=\mu\boldsymbol{r}\times \dot{\boldsymbol{r}}. $$ If we now use a central force, we have that $$ \mu\dot{\boldsymbol{r}}=\boldsymbol{F}(\boldsymbol{r})=f(r)\hat{\boldsymbol{r}}, $$ and inserting this in the equation for the angular momentum we have $$ \boldsymbol{L}=\boldsymbol{r}\times f(r)\hat{\boldsymbol{r}}, $$ which equals zero since we are taking the cross product of the vector $\boldsymbol{r}$ with itself. Angular momentum is thus conserved and in addition to the total linear momentum being conserved, we know that energy is also conserved with forces that depend only on position and the relative coordinate only. Since angular momentum is conserved, we can idealize the motion of our two objects as two bodies moving in a plane spanned by the relative coordinate and the relative momentum. The angular momentum is perpendicular to the plane spanned by these two vectors. It means also, since $\boldsymbol{L}$ is conserved, that we can reduce our problem to a motion in say the $xy$-plane. What we have done then is to reduce a two-body problem in three-dimensions with six degrees of freedom (the six coordinates of the two objects) to a problem defined entirely by the relative coordinate in two dimensions. We have thus moved from a problem with six degrees of freedom to one with two degrees of freedom only. Since we deal with central forces that depend only on the relative coordinate, we will show below that transforming to polar coordinates, we cna find analytical solution to the equation of motion $$ \mu\dot{\boldsymbol{r}}=\boldsymbol{F}(\boldsymbol{r})=f(r)\hat{\boldsymbol{r}}. $$ Note the boldfaced symbols for the relative position $\boldsymbol{r}$. Our vector $\boldsymbol{r}$ is defined as $$ \boldsymbol{r}=x\boldsymbol{e}_1+y\boldsymbol{e}_2 $$ and introducing polar coordinates $r\in[0,\infty)$ and $\phi\in [0,2\pi]$ and the transformation $$ r=\sqrt{x^2+y^2}, $$ and $x=r\cos\phi$ and $y=r\sin\phi$, we will rewrite our equation of motion by transforming from Cartesian coordinates to Polar coordinates. By so doing, we end up with two differential equations which can be solved analytically (it depends on the form of the potential). What follows now is a rewrite of these equations and the introduction of Kepler's laws as well. ## Deriving Elliptical Orbits Kepler's laws state that a gravitational orbit should be an ellipse with the source of the gravitational field at one focus. Deriving this is surprisingly messy. To do this, we first use angular momentum conservation to transform the equations of motion so that it is in terms of $r$ and $\phi$ instead of $r$ and $t$. The overall strategy is to 1. Find equations of motion for $r$ and $t$ with no angle ($\phi$) mentioned, i.e. $d^2r/dt^2=\cdots$. Angular momentum conservation will be used, and the equation will involve the angular momentum $L$. 2. Use angular momentum conservation to find an expression for $\dot{\phi}$ in terms of $r$. 3. Use the chain rule to convert the equations of motions for $r$, an expression involving $r,\dot{r}$ and $\ddot{r}$, to one involving $r,dr/d\phi$ and $d^2r/d\phi^2$. This is quitecomplicated because the expressions will also involve a substitution $u=1/r$ so that one finds an expression in terms of $u$ and $\phi$. 4. Once $u(\phi)$ is found, you need to show that this can be converted to the familiar form for an ellipse. We will now rewrite the above equation of motion (note the boldfaced vector $\boldsymbol{r}$) $$ \mu \ddot{\boldsymbol{r}}=\boldsymbol{F}(\boldsymbol{r}), $$ in polar coordinates. What follows here is a repeated application of the chain rule for derivatives. We start with derivative for $r$ as function of time in a cartesian basis <!-- Equation labels as ordinary links --> <div id="eq:radialeqofmotion"></div> $$ \begin{eqnarray} \label{eq:radialeqofmotion} \tag{1} \frac{d}{dt}r^2&=&\frac{d}{dt}(x^2+y^2)=2x\dot{x}+2y\dot{y}=2r\dot{r},\\ \nonumber \dot{r}&=&\frac{x}{r}\dot{x}+\frac{y}{r}\dot{y},\\ \nonumber \ddot{r}&=&\frac{x}{r}\ddot{x}+\frac{y}{r}\ddot{y} +\frac{\dot{x}^2+\dot{y}^2}{r} -\frac{\dot{r}^2}{r}. \end{eqnarray} $$ Note that there are no vectors involved here. Recognizing that the numerator of the third term is the velocity squared, and that it can be written in polar coordinates, <!-- Equation labels as ordinary links --> <div id="_auto1"></div> $$ \begin{equation} v^2=\dot{x}^2+\dot{y}^2=\dot{r}^2+r^2\dot{\phi}^2, \label{_auto1} \tag{2} \end{equation} $$ one can write $\ddot{r}$ as <!-- Equation labels as ordinary links --> <div id="eq:radialeqofmotion2"></div> $$ \begin{equation} \label{eq:radialeqofmotion2} \tag{3} \ddot{r}=\frac{F_x\cos\phi+F_y\sin\phi}{m}+\frac{\dot{r}^2+r^2\dot{\phi}^2}{r}-\frac{\dot{r}^2}{r} \end{equation} $$ $$ \nonumber =\frac{F}{m}+\frac{r^2\dot{\phi}^2}{r} $$ <!-- Equation labels as ordinary links --> <div id="_auto2"></div> $$ \begin{equation} \label{_auto2} \tag{4} \end{equation} $$ or $$ m\ddot{r}=F+\frac{L^2}{mr^3}. $$ This derivation used the fact that the force was radial, $F=F_r=F_x\cos\phi+F_y\sin\phi$, and that angular momentum is $L=mrv_{\phi}=mr^2\dot{\phi}$. The term $L^2/mr^3=mv^2/r$ behaves like an additional force. Sometimes this is referred to as a centrifugal force, but it is not a force. Instead, it is the consequence of considering the motion in a rotating (and therefore accelerating) frame. Now, we switch to the particular case of an attractive inverse square force, $F=-\alpha/r^2$, and show that the trajectory, $r(\phi)$, is an ellipse. To do this we transform derivatives w.r.t. time to derivatives w.r.t. $\phi$ using the chain rule combined with angular momentum conservation, $\dot{\phi}=L/mr^2$. <!-- Equation labels as ordinary links --> <div id="eq:rtotheta"></div> $$ \begin{eqnarray} \label{eq:rtotheta} \tag{5} \dot{r}&=&\frac{dr}{d\phi}\dot{\phi}=\frac{dr}{d\phi}\frac{L}{mr^2},\\ \nonumber \ddot{r}&=&\frac{d^2r}{d\phi^2}\dot{\phi}^2 +\frac{dr}{d\phi}\left(\frac{d}{dr}\frac{L}{mr^2}\right)\dot{r}\\ \nonumber &=&\frac{d^2r}{d\phi^2}\left(\frac{L}{mr^2}\right)^2 -2\frac{dr}{d\phi}\frac{L}{mr^3}\dot{r}\\ \nonumber &=&\frac{d^2r}{d\phi^2}\left(\frac{L}{mr^2}\right)^2 -\frac{2}{r}\left(\frac{dr}{d\phi}\right)^2\left(\frac{L}{mr^2}\right)^2 \end{eqnarray} $$ Equating the two expressions for $\ddot{r}$ in Eq.s ([3](#eq:radialeqofmotion2)) and ([5](#eq:rtotheta)) eliminates all the derivatives w.r.t. time, and provides a differential equation with only derivatives w.r.t. $\phi$, <!-- Equation labels as ordinary links --> <div id="eq:rdotdot"></div> $$ \begin{equation} \label{eq:rdotdot} \tag{6} \frac{d^2r}{d\phi^2}\left(\frac{L}{mr^2}\right)^2 -\frac{2}{r}\left(\frac{dr}{d\phi}\right)^2\left(\frac{L}{mr^2}\right)^2 =\frac{F}{m}+\frac{L^2}{m^2r^3}, \end{equation} $$ that when solved yields the trajectory, i.e. $r(\phi)$. Up to this point the expressions work for any radial force, not just forces that fall as $1/r^2$. The trick to simplifying this differential equation for the inverse square problems is to make a substitution, $u\equiv 1/r$, and rewrite the differential equation for $u(\phi)$. $$ \begin{eqnarray} r&=&1/u,\\ \nonumber \frac{dr}{d\phi}&=&-\frac{1}{u^2}\frac{du}{d\phi},\\ \nonumber \frac{d^2r}{d\phi^2}&=&\frac{2}{u^3}\left(\frac{du}{d\phi}\right)^2-\frac{1}{u^2}\frac{d^2u}{d\phi^2}. \end{eqnarray} $$ Plugging these expressions into Eq. ([6](#eq:rdotdot)) gives an expression in terms of $u$, $du/d\phi$, and $d^2u/d\phi^2$. After some tedious algebra, <!-- Equation labels as ordinary links --> <div id="_auto3"></div> $$ \begin{equation} \frac{d^2u}{d\phi^2}=-u-\frac{F m}{L^2u^2}. \label{_auto3} \tag{7} \end{equation} $$ For the attractive inverse square law force, $F=-\alpha u^2$, <!-- Equation labels as ordinary links --> <div id="_auto4"></div> $$ \begin{equation} \frac{d^2u}{d\phi^2}=-u+\frac{m\alpha}{L^2}. \label{_auto4} \tag{8} \end{equation} $$ The solution has two arbitrary constants, $A$ and $\phi_0$, <!-- Equation labels as ordinary links --> <div id="eq:Ctrajectory"></div> $$ \begin{eqnarray} \label{eq:Ctrajectory} \tag{9} u&=&\frac{m\alpha}{L^2}+A\cos(\phi-\phi_0),\\ \nonumber r&=&\frac{1}{(m\alpha/L^2)+A\cos(\phi-\phi_0)}. \end{eqnarray} $$ The radius will be at a minimum when $\phi=\phi_0$ and at a maximum when $\phi=\phi_0+\pi$. The constant $A$ is related to the eccentricity of the orbit. When $A=0$ the radius is a constant $r=L^2/(m\alpha)$, and the motion is circular. If one solved the expression $mv^2/r=-\alpha/r^2$ for a circular orbit, using the substitution $v=L/(mr)$, one would reproduce the expression $r=L^2/(m\alpha)$. The form describing the elliptical trajectory in Eq. ([9](#eq:Ctrajectory)) can be identified as an ellipse with one focus being the center of the ellipse by considering the definition of an ellipse as being the points such that the sum of the two distances between the two foci are a constant. Making that distance $2D$, the distance between the two foci as $2a$, and putting one focus at the origin, $$ \begin{eqnarray} 2D&=&r+\sqrt{(r\cos\phi-2a)^2+r^2\sin^2\phi},\\ \nonumber 4D^2+r^2-4Dr&=&r^2+4a^2-4ar\cos\phi,\\ \nonumber r&=&\frac{D^2-a^2}{D+a\cos\phi}=\frac{1}{D/(D^2-a^2)-a\cos\phi/(D^2-a^2)}. \end{eqnarray} $$ By inspection, this is the same form as Eq. ([9](#eq:Ctrajectory)) with $D/(D^2-a^2)=m\alpha/L^2$ and $a/(D^2-a^2)=A$. Let us remind ourselves about what an ellipse is before we proceed. %matplotlib inline import numpy as np from matplotlib import pyplot as plt from math import pi u=1. #x-position of the center v=0.5 #y-position of the center a=2. #radius on the x-axis b=1.5 #radius on the y-axis t = np.linspace(0, 2*pi, 100) plt.plot( u+a*np.cos(t) , v+b*np.sin(t) ) plt.grid(color='lightgray',linestyle='--') plt.show() ## Effective or Centrifugal Potential The total energy of a particle is $$ \begin{eqnarray} E&=&V(r)+\frac{1}{2}mv_\phi^2+\frac{1}{2}m\dot{r}^2\\ \nonumber &=&V(r)+\frac{1}{2}mr^2\dot{\phi}^2+\frac{1}{2}m\dot{r}^2\\ \nonumber &=&V(r)+\frac{L^2}{2mr^2}+\frac{1}{2}m\dot{r}^2. \end{eqnarray} $$ The second term then contributes to the energy like an additional repulsive potential. The term is sometimes referred to as the "centrifugal" potential, even though it is actually the kinetic energy of the angular motion. Combined with $V(r)$, it is sometimes referred to as the "effective" potential, $$ \begin{eqnarray} V_{\rm eff}(r)&=&V(r)+\frac{L^2}{2mr^2}. \end{eqnarray} $$ Note that if one treats the effective potential like a real potential, one would expect to be able to generate an effective force, $$ \begin{eqnarray} F_{\rm eff}&=&-\frac{d}{dr}V(r) -\frac{d}{dr}\frac{L^2}{2mr^2}\\ \nonumber &=&F(r)+\frac{L^2}{mr^3}=F(r)+m\frac{v_\perp^2}{r}, \end{eqnarray} $$ which is indeed matches the form for $m\ddot{r}$ in Eq. ([3](#eq:radialeqofmotion2)), which included the **centrifugal** force. The following code plots this effective potential for a simple choice of parameters, with a standard gravitational potential $-\alpha/r$. Here we have chosen $L=m=\alpha=1$. # Common imports import numpy as np from math import * import matplotlib.pyplot as plt Deltax = 0.01 #set up arrays xinitial = 0.3 xfinal = 5.0 alpha = 1.0 # spring constant m = 1.0 # mass, you can change these AngMom = 1.0 # The angular momentum n = ceil((xfinal-xinitial)/Deltax) x = np.zeros(n) for i in range(n): x[i] = xinitial+i*Deltax V = np.zeros(n) V = -alpha/x+0.5*AngMom*AngMom/(m*x*x) # Plot potential fig, ax = plt.subplots() ax.set_xlabel('r[m]') ax.set_ylabel('V[J]') ax.plot(x, V) fig.tight_layout() plt.show() ### Gravitational force example Using the above parameters, we can now study the evolution of the system using for example the velocity Verlet method. This is done in the code here for an initial radius equal to the minimum of the potential well. We seen then that the radius is always the same and corresponds to a circle (the radius is always constant). # Common imports import numpy as np import pandas as pd from math import * import matplotlib.pyplot as plt import os # Where to save the figures and data files PROJECT_ROOT_DIR = "Results" FIGURE_ID = "Results/FigureFiles" DATA_ID = "DataFiles/" if not os.path.exists(PROJECT_ROOT_DIR): os.mkdir(PROJECT_ROOT_DIR) if not os.path.exists(FIGURE_ID): os.makedirs(FIGURE_ID) if not os.path.exists(DATA_ID): os.makedirs(DATA_ID) def image_path(fig_id): return os.path.join(FIGURE_ID, fig_id) def data_path(dat_id): return os.path.join(DATA_ID, dat_id) def save_fig(fig_id): plt.savefig(image_path(fig_id) + ".png", format='png') # Simple Gravitational Force -alpha/r DeltaT = 0.01 #set up arrays tfinal = 100.0 n = ceil(tfinal/DeltaT) # set up arrays for t, v and r t = np.zeros(n) v = np.zeros(n) r = np.zeros(n) # Constants of the model, setting all variables to one for simplicity alpha = 1.0 AngMom = 1.0 # The angular momentum m = 1.0 # scale mass to one c1 = AngMom*AngMom/(m*m) c2 = AngMom*AngMom/m rmin = (AngMom*AngMom/m/alpha) # Initial conditions r0 = rmin v0 = 0.0 r[0] = r0 v[0] = v0 # Start integrating using the Velocity-Verlet method for i in range(n-1): # Set up acceleration a = -alpha/(r[i]**2)+c1/(r[i]**3) # update velocity, time and position using the Velocity-Verlet method r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a anew = -alpha/(r[i+1]**2)+c1/(r[i+1]**3) v[i+1] = v[i] + 0.5*DeltaT*(a+anew) t[i+1] = t[i] + DeltaT # Plot position as function of time fig, ax = plt.subplots(2,1) ax[0].set_xlabel('time') ax[0].set_ylabel('radius') ax[0].plot(t,r) ax[1].set_xlabel('time') ax[1].set_ylabel('Velocity') ax[1].plot(t,v) save_fig("RadialGVV") plt.show() Changing the value of the initial position to a value where the energy is positive, leads to an increasing radius with time, a so-called unbound orbit. Choosing on the other hand an initial radius that corresponds to a negative energy and different from the minimum value leads to a radius that oscillates back and forth between two values. ### Harmonic Oscillator in two dimensions Consider a particle of mass $m$ in a 2-dimensional harmonic oscillator with potential $$ V=\frac{1}{2}kr^2=\frac{1}{2}k(x^2+y^2). $$ If the orbit has angular momentum $L$, we can find the radius and angular velocity of the circular orbit as well as the b) the angular frequency of small radial perturbations. We consider the effective potential. The radius of a circular orbit is at the minimum of the potential (where the effective force is zero). The potential is plotted here with the parameters $k=m=0.1$ and $L=1.0$. # Common imports import numpy as np from math import * import matplotlib.pyplot as plt Deltax = 0.01 #set up arrays xinitial = 0.5 xfinal = 3.0 k = 1.0 # spring constant m = 1.0 # mass, you can change these AngMom = 1.0 # The angular momentum n = ceil((xfinal-xinitial)/Deltax) x = np.zeros(n) for i in range(n): x[i] = xinitial+i*Deltax V = np.zeros(n) V = 0.5*k*x*x+0.5*AngMom*AngMom/(m*x*x) # Plot potential fig, ax = plt.subplots() ax.set_xlabel('r[m]') ax.set_ylabel('V[J]') ax.plot(x, V) fig.tight_layout() plt.show() $$ \begin{eqnarray*} V_{\rm eff}&=&\frac{1}{2}kr^2+\frac{L^2}{2mr^2} \end{eqnarray*} $$ The effective potential looks like that of a harmonic oscillator for large $r$, but for small $r$, the centrifugal potential repels the particle from the origin. The combination of the two potentials has a minimum for at some radius $r_{\rm min}$. $$ \begin{eqnarray*} 0&=&kr_{\rm min}-\frac{L^2}{mr_{\rm min}^3},\\ r_{\rm min}&=&\left(\frac{L^2}{mk}\right)^{1/4},\\ \dot{\phi}&=&\frac{L}{mr_{\rm min}^2}=\sqrt{k/m}. \end{eqnarray*} $$ For particles at $r_{\rm min}$ with $\dot{r}=0$, the particle does not accelerate and $r$ stays constant, i.e. a circular orbit. The radius of the circular orbit can be adjusted by changing the angular momentum $L$. For the above parameters this minimum is at $r_{\rm min}=1$. Now consider small vibrations about $r_{\rm min}$. The effective spring constant is the curvature of the effective potential. $$ \begin{eqnarray*} k_{\rm eff}&=&\left.\frac{d^2}{dr^2}V_{\rm eff}(r)\right|_{r=r_{\rm min}}=k+\frac{3L^2}{mr_{\rm min}^4}\\ &=&4k,\\ \omega&=&\sqrt{k_{\rm eff}/m}=2\sqrt{k/m}=2\dot{\phi}. \end{eqnarray*} $$ Here, the second step used the result of the last step from part (a). Because the radius oscillates with twice the angular frequency, the orbit has two places where $r$ reaches a minimum in one cycle. This differs from the inverse-square force where there is one minimum in an orbit. One can show that the orbit for the harmonic oscillator is also elliptical, but in this case the center of the potential is at the center of the ellipse, not at one of the foci. The solution is also simple to write down exactly in Cartesian coordinates. The $x$ and $y$ equations of motion separate, $$ \begin{eqnarray*} \ddot{x}&=&-kx,\\ \ddot{y}&=&-ky. \end{eqnarray*} $$ So the general solution can be expressed as $$ \begin{eqnarray*} x&=&A\cos\omega_0 t+B\sin\omega_0 t,\\ y&=&C\cos\omega_0 t+D\sin\omega_0 t. \end{eqnarray*} $$ The code here finds the solution for $x$ and $y$ using the code we developed in homework 5 and 6 and the midterm. Note that this code is tailored to run in Cartesian coordinates. There is thus no angular momentum dependent term. DeltaT = 0.01 #set up arrays tfinal = 10.0 n = ceil(tfinal/DeltaT) # set up arrays t = np.zeros(n) v = np.zeros((n,2)) r = np.zeros((n,2)) radius = np.zeros(n) # Constants of the model k = 1.0 # spring constant m = 1.0 # mass, you can change these omega02 = sqrt(k/m) # Frequency AngMom = 1.0 # The angular momentum rmin = (AngMom*AngMom/k/m)**0.25 # Initial conditions as compact 2-dimensional arrays x0 = rmin-0.5; y0= sqrt(rmin*rmin-x0*x0) r0 = np.array([x0,y0]) v0 = np.array([0.0,0.0]) r[0] = r0 v[0] = v0 # Start integrating using the Velocity-Verlet method for i in range(n-1): # Set up the acceleration a = -r[i]*omega02 # update velocity, time and position using the Velocity-Verlet method r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a anew = -r[i+1]*omega02 v[i+1] = v[i] + 0.5*DeltaT*(a+anew) t[i+1] = t[i] + DeltaT # Plot position as function of time radius = np.sqrt(r[:,0]**2+r[:,1]**2) fig, ax = plt.subplots(3,1) ax[0].set_xlabel('time') ax[0].set_ylabel('radius squared') ax[0].plot(t,r[:,0]**2+r[:,1]**2) ax[1].set_xlabel('time') ax[1].set_ylabel('x position') ax[1].plot(t,r[:,0]) ax[2].set_xlabel('time') ax[2].set_ylabel('y position') ax[2].plot(t,r[:,1]) fig.tight_layout() save_fig("2DimHOVV") plt.show() With some work using double angle formulas, one can calculate $$ \begin{eqnarray*} r^2&=&x^2+y^2\\ \nonumber &=&(A^2+C^2)\cos^2(\omega_0t)+(B^2+D^2)\sin^2\omega_0t+(AB+CD)\cos(\omega_0t)\sin(\omega_0t)\\ \nonumber &=&\alpha+\beta\cos 2\omega_0 t+\gamma\sin 2\omega_0 t,\\ \alpha&=&\frac{A^2+B^2+C^2+D^2}{2},~~\beta=\frac{A^2-B^2+C^2-D^2}{2},~~\gamma=AB+CD,\\ r^2&=&\alpha+(\beta^2+\gamma^2)^{1/2}\cos(2\omega_0 t-\delta),~~~\delta=\arctan(\gamma/\beta), \end{eqnarray*} $$ and see that radius oscillates with frequency $2\omega_0$. The factor of two comes because the oscillation $x=A\cos\omega_0t$ has two maxima for $x^2$, one at $t=0$ and one a half period later. The following code shows first how we can solve this problem using the radial degrees of freedom only. DeltaT = 0.01 #set up arrays tfinal = 10.0 n = ceil(tfinal/DeltaT) # set up arrays for t, v and r t = np.zeros(n) v = np.zeros(n) r = np.zeros(n) E = np.zeros(n) # Constants of the model AngMom = 1.0 # The angular momentum m = 1.0 k = 1.0 omega02 = k/m c1 = AngMom*AngMom/(m*m) c2 = AngMom*AngMom/m rmin = (AngMom*AngMom/k/m)**0.25 # Initial conditions r0 = rmin v0 = 0.0 r[0] = r0 v[0] = v0 E[0] = 0.5*m*v0*v0+0.5*k*r0*r0+0.5*c2/(r0*r0) # Start integrating using the Velocity-Verlet method for i in range(n-1): # Set up acceleration a = -r[i]*omega02+c1/(r[i]**3) # update velocity, time and position using the Velocity-Verlet method r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a anew = -r[i+1]*omega02+c1/(r[i+1]**3) v[i+1] = v[i] + 0.5*DeltaT*(a+anew) t[i+1] = t[i] + DeltaT E[i+1] = 0.5*m*v[i+1]*v[i+1]+0.5*k*r[i+1]*r[i+1]+0.5*c2/(r[i+1]*r[i+1]) # Plot position as function of time fig, ax = plt.subplots(2,1) ax[0].set_xlabel('time') ax[0].set_ylabel('radius') ax[0].plot(t,r) ax[1].set_xlabel('time') ax[1].set_ylabel('Energy') ax[1].plot(t,E) save_fig("RadialHOVV") plt.show() ## Stability of Orbits The effective force can be extracted from the effective potential, $V_{\rm eff}$. Beginning from the equations of motion, Eq. ([1](#eq:radialeqofmotion)), for $r$, $$ \begin{eqnarray} m\ddot{r}&=&F+\frac{L^2}{mr^3}\\ \nonumber &=&F_{\rm eff}\\ \nonumber &=&-\partial_rV_{\rm eff},\\ \nonumber F_{\rm eff}&=&-\partial_r\left[V(r)+(L^2/2mr^2)\right]. \end{eqnarray} $$ For a circular orbit, the radius must be fixed as a function of time, so one must be at a maximum or a minimum of the effective potential. However, if one is at a maximum of the effective potential the radius will be unstable. For the attractive Coulomb force the effective potential will be dominated by the $-\alpha/r$ term for large $r$ because the centrifugal part falls off more quickly, $\sim 1/r^2$. At low $r$ the centrifugal piece wins and the effective potential is repulsive. Thus, the potential must have a minimum somewhere with negative potential. The circular orbits are then stable to perturbation. The effective potential is sketched for two cases, a $1/r$ attractive potential and a $1/r^3$ attractive potential. The $1/r$ case has a stable minimum, whereas the circular orbit in the $1/r^3$ case is unstable. If one considers a potential that falls as $1/r^3$, the situation is reversed and the point where $\partial_rV$ disappears will be a local maximum rather than a local minimum. **Fig to come here with code** The repulsive centrifugal piece dominates at large $r$ and the attractive Coulomb piece wins out at small $r$. The circular orbit is then at a maximum of the effective potential and the orbits are unstable. It is the clear that for potentials that fall as $r^n$, that one must have $n>-2$ for the orbits to be stable. Consider a potential $V(r)=\beta r$. For a particle of mass $m$ with angular momentum $L$, find the angular frequency of a circular orbit. Then find the angular frequency for small radial perturbations. For the circular orbit you search for the position $r_{\rm min}$ where the effective potential is minimized, $$ \begin{eqnarray*} \partial_r\left\{\beta r+\frac{L^2}{2mr^2}\right\}&=&0,\\ \beta&=&\frac{L^2}{mr_{\rm min}^3},\\ r_{\rm min}&=&\left(\frac{L^2}{\beta m}\right)^{1/3},\\ \dot{\phi}&=&\frac{L}{mr_{\rm min}^2}=\frac{\beta^{2/3}}{(mL)^{1/3}} \end{eqnarray*} $$ Now, we can find the angular frequency of small perturbations about the circular orbit. To do this we find the effective spring constant for the effective potential, $$ \begin{eqnarray*} k_{\rm eff}&=&\partial_r^2 \left.V_{\rm eff}\right|_{r_{\rm min}}\\ &=&\frac{3L^2}{mr_{\rm min}^4},\\ \omega&=&\sqrt{\frac{k_{\rm eff}}{m}}\\ &=&\frac{\beta^{2/3}}{(mL)^{1/3}}\sqrt{3}. \end{eqnarray*} $$ If the two frequencies, $\dot{\phi}$ and $\omega$, differ by an integer factor, the orbit's trajectory will repeat itself each time around. This is the case for the inverse-square force, $\omega=\dot{\phi}$, and for the harmonic oscillator, $\omega=2\dot{\phi}$. In this case, $\omega=\sqrt{3}\dot{\phi}$, and the angles at which the maxima and minima occur change with each orbit. ### Code example with gravitional force The code example here is meant to illustrate how we can make a plot of the final orbit. We solve the equations in polar coordinates (the example here uses the minimum of the potential as initial value) and then we transform back to cartesian coordinates and plot $x$ versus $y$. We see that we get a perfect circle when we place ourselves at the minimum of the potential energy, as expected. # Simple Gravitational Force -alpha/r DeltaT = 0.01 #set up arrays tfinal = 8.0 n = ceil(tfinal/DeltaT) # set up arrays for t, v and r t = np.zeros(n) v = np.zeros(n) r = np.zeros(n) phi = np.zeros(n) x = np.zeros(n) y = np.zeros(n) # Constants of the model, setting all variables to one for simplicity alpha = 1.0 AngMom = 1.0 # The angular momentum m = 1.0 # scale mass to one c1 = AngMom*AngMom/(m*m) c2 = AngMom*AngMom/m rmin = (AngMom*AngMom/m/alpha) # Initial conditions, place yourself at the potential min r0 = rmin v0 = 0.0 # starts at rest r[0] = r0 v[0] = v0 phi[0] = 0.0 # Start integrating using the Velocity-Verlet method for i in range(n-1): # Set up acceleration a = -alpha/(r[i]**2)+c1/(r[i]**3) # update velocity, time and position using the Velocity-Verlet method r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a anew = -alpha/(r[i+1]**2)+c1/(r[i+1]**3) v[i+1] = v[i] + 0.5*DeltaT*(a+anew) t[i+1] = t[i] + DeltaT phi[i+1] = t[i+1]*c2/(r0**2) # Find cartesian coordinates for easy plot x = r*np.cos(phi) y = r*np.sin(phi) fig, ax = plt.subplots(3,1) ax[0].set_xlabel('time') ax[0].set_ylabel('radius') ax[0].plot(t,r) ax[1].set_xlabel('time') ax[1].set_ylabel('Angle $\cos{\phi}$') ax[1].plot(t,np.cos(phi)) ax[2].set_ylabel('y') ax[2].set_xlabel('x') ax[2].plot(x,y) save_fig("Phasespace") plt.show() Try to change the initial value for $r$ and see what kind of orbits you get. In order to test different energies, it can be useful to look at the plot of the effective potential discussed above. However, for orbits different from a circle the above code would need modifications in order to allow us to display say an ellipse. For the latter, it is much easier to run our code in cartesian coordinates, as done here. In this code we test also energy conservation and see that it is conserved to numerical precision. The code here is a simple extension of the code we developed for homework 4. # Common imports import numpy as np import pandas as pd from math import * import matplotlib.pyplot as plt DeltaT = 0.01 #set up arrays tfinal = 10.0 n = ceil(tfinal/DeltaT) # set up arrays t = np.zeros(n) v = np.zeros((n,2)) r = np.zeros((n,2)) E = np.zeros(n) # Constants of the model m = 1.0 # mass, you can change these alpha = 1.0 # Initial conditions as compact 2-dimensional arrays x0 = 0.5; y0= 0. r0 = np.array([x0,y0]) v0 = np.array([0.0,1.0]) r[0] = r0 v[0] = v0 rabs = sqrt(sum(r[0]*r[0])) E[0] = 0.5*m*(v[0,0]**2+v[0,1]**2)-alpha/rabs # Start integrating using the Velocity-Verlet method for i in range(n-1): # Set up the acceleration rabs = sqrt(sum(r[i]*r[i])) a = -alpha*r[i]/(rabs**3) # update velocity, time and position using the Velocity-Verlet method r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a rabs = sqrt(sum(r[i+1]*r[i+1])) anew = -alpha*r[i+1]/(rabs**3) v[i+1] = v[i] + 0.5*DeltaT*(a+anew) E[i+1] = 0.5*m*(v[i+1,0]**2+v[i+1,1]**2)-alpha/rabs t[i+1] = t[i] + DeltaT # Plot position as function of time fig, ax = plt.subplots(3,1) ax[0].set_ylabel('y') ax[0].set_xlabel('x') ax[0].plot(r[:,0],r[:,1]) ax[1].set_xlabel('time') ax[1].set_ylabel('y position') ax[1].plot(t,r[:,0]) ax[2].set_xlabel('time') ax[2].set_ylabel('y position') ax[2].plot(t,r[:,1]) fig.tight_layout() save_fig("2DimGravity") plt.show() print(E) ## Exercises ### The Earth-Sun System We start with a simpler case first, the Earth-Sun system in two dimensions only. The gravitational force $F_G$ on the earth from the sun is $$ \boldsymbol{F}_G=-\frac{GM_{\odot}M_E}{r^3}\boldsymbol{r}, $$ where $G$ is the gravitational constant, $$ M_E=6\times 10^{24}\mathrm{Kg}, $$ the mass of Earth, $$ M_{\odot}=2\times 10^{30}\mathrm{Kg}, $$ the mass of the Sun and $$ r=1.5\times 10^{11}\mathrm{m}, $$ is the distance between Earth and the Sun. The latter defines what we call an astronomical unit **AU**. From Newton's second law we have then for the $x$ direction $$ \frac{d^2x}{dt^2}=-\frac{F_{x}}{M_E}, $$ and $$ \frac{d^2y}{dt^2}=-\frac{F_{y}}{M_E}, $$ for the $y$ direction. Here we will use that $x=r\cos{(\theta)}$, $y=r\sin{(\theta)}$ and $$ r = \sqrt{x^2+y^2}. $$ We can rewrite these equations $$ F_{x}=-\frac{GM_{\odot}M_E}{r^2}\cos{(\theta)}=-\frac{GM_{\odot}M_E}{r^3}x, $$ and $$ F_{y}=-\frac{GM_{\odot}M_E}{r^2}\sin{(\theta)}=-\frac{GM_{\odot}M_E}{r^3}y, $$ as four first-order coupled differential equations $$ \frac{dv_x}{dt}=-\frac{GM_{\odot}}{r^3}x, $$ and $$ \frac{dx}{dt}=v_x, $$ and $$ \frac{dv_y}{dt}=-\frac{GM_{\odot}}{r^3}y, $$ and $$ \frac{dy}{dt}=v_y. $$ The four coupled differential equations $$ \frac{dv_x}{dt}=-\frac{GM_{\odot}}{r^3}x, $$ and $$ \frac{dx}{dt}=v_x, $$ and $$ \frac{dv_y}{dt}=-\frac{GM_{\odot}}{r^3}y, $$ and $$ \frac{dy}{dt}=v_y, $$ can be turned into dimensionless equations or we can introduce astronomical units with $1$ AU = $1.5\times 10^{11}$. Using the equations from circular motion (with $r =1\mathrm{AU}$) $$ \frac{M_E v^2}{r} = F = \frac{GM_{\odot}M_E}{r^2}, $$ we have $$ GM_{\odot}=v^2r, $$ and using that the velocity of Earth (assuming circular motion) is $v = 2\pi r/\mathrm{yr}=2\pi\mathrm{AU}/\mathrm{yr}$, we have $$ GM_{\odot}= v^2r = 4\pi^2 \frac{(\mathrm{AU})^3}{\mathrm{yr}^2}. $$ The four coupled differential equations can then be discretized using Euler's method as (with step length $h$) $$ v_{x,i+1}=v_{x,i}-h\frac{4\pi^2}{r_i^3}x_i, $$ and $$ x_{i+1}=x_i+hv_{x,i}, $$ and $$ v_{y,i+1}=v_{y,i}-h\frac{4\pi^2}{r_i^3}y_i, $$ and $$ y_{i+1}=y_i+hv_{y,i}, $$ The code here implements Euler's method for the Earth-Sun system using a more compact way of representing the vectors. Alternatively, you could have spelled out all the variables $v_x$, $v_y$, $x$ and $y$ as one-dimensional arrays. # Common imports import numpy as np import pandas as pd from math import * import matplotlib.pyplot as plt import os # Where to save the figures and data files PROJECT_ROOT_DIR = "Results" FIGURE_ID = "Results/FigureFiles" DATA_ID = "DataFiles/" if not os.path.exists(PROJECT_ROOT_DIR): os.mkdir(PROJECT_ROOT_DIR) if not os.path.exists(FIGURE_ID): os.makedirs(FIGURE_ID) if not os.path.exists(DATA_ID): os.makedirs(DATA_ID) def image_path(fig_id): return os.path.join(FIGURE_ID, fig_id) def data_path(dat_id): return os.path.join(DATA_ID, dat_id) def save_fig(fig_id): plt.savefig(image_path(fig_id) + ".png", format='png') DeltaT = 0.01 #set up arrays tfinal = 10 # in years n = ceil(tfinal/DeltaT) # set up arrays for t, a, v, and x t = np.zeros(n) v = np.zeros((n,2)) r = np.zeros((n,2)) # Initial conditions as compact 2-dimensional arrays r0 = np.array([1.0,0.0]) v0 = np.array([0.0,2*pi]) r[0] = r0 v[0] = v0 Fourpi2 = 4*pi*pi # Start integrating using Euler's method for i in range(n-1): # Set up the acceleration # Here you could have defined your own function for this rabs = sqrt(sum(r[i]*r[i])) a = -Fourpi2*r[i]/(rabs**3) # update velocity, time and position using Euler's forward method v[i+1] = v[i] + DeltaT*a r[i+1] = r[i] + DeltaT*v[i] t[i+1] = t[i] + DeltaT # Plot position as function of time fig, ax = plt.subplots() #ax.set_xlim(0, tfinal) ax.set_xlabel('x[AU]') ax.set_ylabel('y[AU]') ax.plot(r[:,0], r[:,1]) fig.tight_layout() save_fig("EarthSunEuler") plt.show() We notice here that Euler's method doesn't give a stable orbit with for example $\Delta t =0.01$. It means that we cannot trust Euler's method. Euler's method does not conserve energy. It is an example of an integrator which is not [symplectic](https://en.wikipedia.org/wiki/Symplectic_integrator). Here we present thus two methods, which with simple changes allow us to avoid these pitfalls. The simplest possible extension is the so-called Euler-Cromer method. The changes we need to make to our code are indeed marginal here. We need simply to replace r[i+1] = r[i] + DeltaT*v[i] in the above code with the velocity at the new time $t_{i+1}$ r[i+1] = r[i] + DeltaT*v[i+1] By this simple caveat we get stable orbits. Below we derive the Euler-Cromer method as well as one of the most utlized algorithms for solving the above type of problems, the so-called Velocity-Verlet method. Let us repeat Euler's method. We have a differential equation <!-- Equation labels as ordinary links --> <div id="_auto5"></div> $$ \begin{equation} y'(t_i)=f(t_i,y_i) \label{_auto5} \tag{10} \end{equation} $$ and if we truncate at the first derivative, we have from the Taylor expansion <!-- Equation labels as ordinary links --> <div id="eq:euler"></div> $$ \begin{equation} y_{i+1}=y(t_i) + (\Delta t) f(t_i,y_i) + O(\Delta t^2), \label{eq:euler} \tag{11} \end{equation} $$ which when complemented with $t_{i+1}=t_i+\Delta t$ forms the algorithm for the well-known Euler method. Note that at every step we make an approximation error of the order of $O(\Delta t^2)$, however the total error is the sum over all steps $N=(b-a)/(\Delta t)$ for $t\in [a,b]$, yielding thus a global error which goes like $NO(\Delta t^2)\approx O(\Delta t)$. To make Euler's method more precise we can obviously decrease $\Delta t$ (increase $N$), but this can lead to loss of numerical precision. Euler's method is not recommended for precision calculation, although it is handy to use in order to get a first view on how a solution may look like. Euler's method is asymmetric in time, since it uses information about the derivative at the beginning of the time interval. This means that we evaluate the position at $y_1$ using the velocity at $v_0$. A simple variation is to determine $x_{n+1}$ using the velocity at $v_{n+1}$, that is (in a slightly more generalized form) <!-- Equation labels as ordinary links --> <div id="_auto6"></div> $$ \begin{equation} y_{n+1}=y_{n}+ v_{n+1}+O(\Delta t^2) \label{_auto6} \tag{12} \end{equation} $$ and <!-- Equation labels as ordinary links --> <div id="_auto7"></div> $$ \begin{equation} v_{n+1}=v_{n}+(\Delta t) a_{n}+O(\Delta t^2). \label{_auto7} \tag{13} \end{equation} $$ The acceleration $a_n$ is a function of $a_n(y_n, v_n, t_n)$ and needs to be evaluated as well. This is the Euler-Cromer method. It is easy to change the above code and see that with the same time step we get stable results. Let us stay with $x$ (position) and $v$ (velocity) as the quantities we are interested in. We have the Taylor expansion for the position given by $$ x_{i+1} = x_i+(\Delta t)v_i+\frac{(\Delta t)^2}{2}a_i+O((\Delta t)^3). $$ The corresponding expansion for the velocity is $$ v_{i+1} = v_i+(\Delta t)a_i+\frac{(\Delta t)^2}{2}v^{(2)}_i+O((\Delta t)^3). $$ Via Newton's second law we have normally an analytical expression for the derivative of the velocity, namely $$ a_i= \frac{d^2 x}{dt^2}\vert_{i}=\frac{d v}{dt}\vert_{i}= \frac{F(x_i,v_i,t_i)}{m}. $$ If we add to this the corresponding expansion for the derivative of the velocity $$ v^{(1)}_{i+1} = a_{i+1}= a_i+(\Delta t)v^{(2)}_i+O((\Delta t)^2)=a_i+(\Delta t)v^{(2)}_i+O((\Delta t)^2), $$ and retain only terms up to the second derivative of the velocity since our error goes as $O(h^3)$, we have $$ (\Delta t)v^{(2)}_i\approx a_{i+1}-a_i. $$ We can then rewrite the Taylor expansion for the velocity as $$ v_{i+1} = v_i+\frac{(\Delta t)}{2}\left( a_{i+1}+a_{i}\right)+O((\Delta t)^3). $$ Our final equations for the position and the velocity become then $$ x_{i+1} = x_i+(\Delta t)v_i+\frac{(\Delta t)^2}{2}a_{i}+O((\Delta t)^3), $$ and $$ v_{i+1} = v_i+\frac{(\Delta t)}{2}\left(a_{i+1}+a_{i}\right)+O((\Delta t)^3). $$ Note well that the term $a_{i+1}$ depends on the position at $x_{i+1}$. This means that you need to calculate the position at the updated time $t_{i+1}$ before the computing the next velocity. Note also that the derivative of the velocity at the time $t_i$ used in the updating of the position can be reused in the calculation of the velocity update as well. We can now easily add the Verlet method to our original code as DeltaT = 0.01 #set up arrays tfinal = 10 n = ceil(tfinal/DeltaT) # set up arrays for t, a, v, and x t = np.zeros(n) v = np.zeros((n,2)) r = np.zeros((n,2)) # Initial conditions as compact 2-dimensional arrays r0 = np.array([1.0,0.0]) v0 = np.array([0.0,2*pi]) r[0] = r0 v[0] = v0 Fourpi2 = 4*pi*pi # Start integrating using the Velocity-Verlet method for i in range(n-1): # Set up forces, air resistance FD, note now that we need the norm of the vecto # Here you could have defined your own function for this rabs = sqrt(sum(r[i]*r[i])) a = -Fourpi2*r[i]/(rabs**3) # update velocity, time and position using the Velocity-Verlet method r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a rabs = sqrt(sum(r[i+1]*r[i+1])) anew = -4*(pi**2)*r[i+1]/(rabs**3) v[i+1] = v[i] + 0.5*DeltaT*(a+anew) t[i+1] = t[i] + DeltaT # Plot position as function of time fig, ax = plt.subplots() ax.set_xlabel('x[AU]') ax.set_ylabel('y[AU]') ax.plot(r[:,0], r[:,1]) fig.tight_layout() save_fig("EarthSunVV") plt.show() You can easily generalize the calculation of the forces by defining a function which takes in as input the various variables. We leave this as a challenge to you. Running the above code for various time steps we see that the Velocity-Verlet is fully stable for various time steps. We can also play around with different initial conditions in order to find the escape velocity from an orbit around the sun with distance one astronomical unit, 1 AU. The theoretical value for the escape velocity, is given by $$ v = \sqrt{8\pi^2}{r}, $$ and with $r=1$ AU, this means that the escape velocity is $2\pi\sqrt{2}$ AU/yr. To obtain this we required that the kinetic energy of Earth equals the potential energy given by the gravitational force. Setting $$ \frac{1}{2}M_{\mathrm{Earth}}v^2=\frac{GM_{\odot}}{r}, $$ and with $GM_{\odot}=4\pi^2$ we obtain the above relation for the velocity. Setting an initial velocity say equal to $9$ in the above code, yields a planet (Earth) which escapes a stable orbit around the sun, as seen by running the code here. DeltaT = 0.01 #set up arrays tfinal = 100 n = ceil(tfinal/DeltaT) # set up arrays for t, a, v, and x t = np.zeros(n) v = np.zeros((n,2)) r = np.zeros((n,2)) # Initial conditions as compact 2-dimensional arrays r0 = np.array([1.0,0.0]) # setting initial velocity larger than escape velocity v0 = np.array([0.0,9.0]) r[0] = r0 v[0] = v0 Fourpi2 = 4*pi*pi # Start integrating using the Velocity-Verlet method for i in range(n-1): # Set up forces, air resistance FD, note now that we need the norm of the vecto # Here you could have defined your own function for this rabs = sqrt(sum(r[i]*r[i])) a = -Fourpi2*r[i]/(rabs**3) # update velocity, time and position using the Velocity-Verlet method r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a rabs = sqrt(sum(r[i+1]*r[i+1])) anew = -4*(pi**2)*r[i+1]/(rabs**3) v[i+1] = v[i] + 0.5*DeltaT*(a+anew) t[i+1] = t[i] + DeltaT # Plot position as function of time fig, ax = plt.subplots() ax.set_xlabel('x[AU]') ax.set_ylabel('y[AU]') ax.plot(r[:,0], r[:,1]) fig.tight_layout() save_fig("EscapeEarthSunVV") plt.show() ### Testing Energy conservation The code here implements Euler's method for the Earth-Sun system using a more compact way of representing the vectors. Alternatively, you could have spelled out all the variables $v_x$, $v_y$, $x$ and $y$ as one-dimensional arrays. It tests conservation of potential and kinetic energy as functions of time, in addition to the total energy, again as function of time **Note**: in all codes we have used scaled equations so that the gravitational constant times the mass of the sum is given by $4\pi^2$ and the mass of the earth is set to **one** in the calculations of kinetic and potential energies. Else, we would get very large results. # Common imports import numpy as np import pandas as pd from math import * import matplotlib.pyplot as plt import os # Where to save the figures and data files PROJECT_ROOT_DIR = "Results" FIGURE_ID = "Results/FigureFiles" DATA_ID = "DataFiles/" if not os.path.exists(PROJECT_ROOT_DIR): os.mkdir(PROJECT_ROOT_DIR) if not os.path.exists(FIGURE_ID): os.makedirs(FIGURE_ID) if not os.path.exists(DATA_ID): os.makedirs(DATA_ID) def image_path(fig_id): return os.path.join(FIGURE_ID, fig_id) def data_path(dat_id): return os.path.join(DATA_ID, dat_id) def save_fig(fig_id): plt.savefig(image_path(fig_id) + ".png", format='png') # Initial values, time step, positions and velocites DeltaT = 0.0001 #set up arrays tfinal = 100 # in years n = ceil(tfinal/DeltaT) # set up arrays for t, a, v, and x t = np.zeros(n) v = np.zeros((n,2)) r = np.zeros((n,2)) # setting up the kinetic, potential and total energy, note only functions of time EKinetic = np.zeros(n) EPotential = np.zeros(n) ETotal = np.zeros(n) # Initial conditions as compact 2-dimensional arrays r0 = np.array([1.0,0.0]) v0 = np.array([0.0,2*pi]) r[0] = r0 v[0] = v0 Fourpi2 = 4*pi*pi # Setting up variables for the calculation of energies # distance that defines rabs in potential energy rabs0 = sqrt(sum(r[0]*r[0])) # Initial kinetic energy. Note that we skip the mass of the Earth here, that is MassEarth=1 in all codes EKinetic[0] = 0.5*sum(v0*v0) # Initial potential energy (note negative sign, why?) EPotential[0] = -4*pi*pi/rabs0 # Initial total energy ETotal[0] = EPotential[0]+EKinetic[0] # Start integrating using Euler's method for i in range(n-1): # Set up the acceleration # Here you could have defined your own function for this rabs = sqrt(sum(r[i]*r[i])) a = -Fourpi2*r[i]/(rabs**3) # update Energies, velocity, time and position using Euler's forward method v[i+1] = v[i] + DeltaT*a r[i+1] = r[i] + DeltaT*v[i] t[i+1] = t[i] + DeltaT EKinetic[i+1] = 0.5*sum(v[i+1]*v[i+1]) EPotential[i+1] = -4*pi*pi/sqrt(sum(r[i+1]*r[i+1])) ETotal[i+1] = EPotential[i+1]+EKinetic[i+1] # Plot energies as functions of time fig, axs = plt.subplots(3, 1) axs[0].plot(t, EKinetic) axs[0].set_xlim(0, tfinal) axs[0].set_ylabel('Kinetic energy') axs[1].plot(t, EPotential) axs[1].set_ylabel('Potential Energy') axs[2].plot(t, ETotal) axs[2].set_xlabel('Time [yr]') axs[2].set_ylabel('Total Energy') fig.tight_layout() save_fig("EarthSunEuler") plt.show() We see very clearly that Euler's method does not conserve energy!! Try to reduce the time step $\Delta t$. What do you see? With the Euler-Cromer method, the only thing we need is to update the position at a time $t+1$ with the update velocity from the same time. Thus, the change in the code is extremely simply, and **energy is suddenly conserved**. Note that the error runs like $O(\Delta t)$ and this is why we see the larger oscillations. But within this oscillating energy envelope, we see that the energies swing between a max and a min value and never exceed these values. # Common imports import numpy as np import pandas as pd from math import * import matplotlib.pyplot as plt import os # Where to save the figures and data files PROJECT_ROOT_DIR = "Results" FIGURE_ID = "Results/FigureFiles" DATA_ID = "DataFiles/" if not os.path.exists(PROJECT_ROOT_DIR): os.mkdir(PROJECT_ROOT_DIR) if not os.path.exists(FIGURE_ID): os.makedirs(FIGURE_ID) if not os.path.exists(DATA_ID): os.makedirs(DATA_ID) def image_path(fig_id): return os.path.join(FIGURE_ID, fig_id) def data_path(dat_id): return os.path.join(DATA_ID, dat_id) def save_fig(fig_id): plt.savefig(image_path(fig_id) + ".png", format='png') # Initial values, time step, positions and velocites DeltaT = 0.0001 #set up arrays tfinal = 100 # in years n = ceil(tfinal/DeltaT) # set up arrays for t, a, v, and x t = np.zeros(n) v = np.zeros((n,2)) r = np.zeros((n,2)) # setting up the kinetic, potential and total energy, note only functions of time EKinetic = np.zeros(n) EPotential = np.zeros(n) ETotal = np.zeros(n) # Initial conditions as compact 2-dimensional arrays r0 = np.array([1.0,0.0]) v0 = np.array([0.0,2*pi]) r[0] = r0 v[0] = v0 Fourpi2 = 4*pi*pi # Setting up variables for the calculation of energies # distance that defines rabs in potential energy rabs0 = sqrt(sum(r[0]*r[0])) # Initial kinetic energy. Note that we skip the mass of the Earth here, that is MassEarth=1 in all codes EKinetic[0] = 0.5*sum(v0*v0) # Initial potential energy EPotential[0] = -4*pi*pi/rabs0 # Initial total energy ETotal[0] = EPotential[0]+EKinetic[0] # Start integrating using Euler's method for i in range(n-1): # Set up the acceleration # Here you could have defined your own function for this rabs = sqrt(sum(r[i]*r[i])) a = -Fourpi2*r[i]/(rabs**3) # update velocity, time and position using Euler's forward method v[i+1] = v[i] + DeltaT*a # Only change when we add the Euler-Cromer method r[i+1] = r[i] + DeltaT*v[i+1] t[i+1] = t[i] + DeltaT EKinetic[i+1] = 0.5*sum(v[i+1]*v[i+1]) EPotential[i+1] = -4*pi*pi/sqrt(sum(r[i+1]*r[i+1])) ETotal[i+1] = EPotential[i+1]+EKinetic[i+1] # Plot energies as functions of time fig, axs = plt.subplots(3, 1) axs[0].plot(t, EKinetic) axs[0].set_xlim(0, tfinal) axs[0].set_ylabel('Kinetic energy') axs[1].plot(t, EPotential) axs[1].set_ylabel('Potential Energy') axs[2].plot(t, ETotal) axs[2].set_xlabel('Time [yr]') axs[2].set_ylabel('Total Energy') fig.tight_layout() save_fig("EarthSunEulerCromer") plt.show() ### Adding the velocity Verlet method Our final equations for the position and the velocity become then $$ x_{i+1} = x_i+(\Delta t)v_i+\frac{(\Delta t)^2}{2}a_{i}+O((\Delta t)^3), $$ and $$ v_{i+1} = v_i+\frac{(\Delta t)}{2}\left(a_{i+1}+a_{i}\right)+O((\Delta t)^3). $$ Note well that the term $a_{i+1}$ depends on the position at $x_{i+1}$. This means that you need to calculate the position at the updated time $t_{i+1}$ before the computing the next velocity. Note also that the derivative of the velocity at the time $t_i$ used in the updating of the position can be reused in the calculation of the velocity update as well. We can now easily add the Verlet method to our original code as DeltaT = 0.001 #set up arrays tfinal = 100 n = ceil(tfinal/DeltaT) # set up arrays for t, a, v, and x t = np.zeros(n) v = np.zeros((n,2)) r = np.zeros((n,2)) # Initial conditions as compact 2-dimensional arrays r0 = np.array([1.0,0.0]) v0 = np.array([0.0,2*pi]) r[0] = r0 v[0] = v0 Fourpi2 = 4*pi*pi # setting up the kinetic, potential and total energy, note only functions of time EKinetic = np.zeros(n) EPotential = np.zeros(n) ETotal = np.zeros(n) # Setting up variables for the calculation of energies # distance that defines rabs in potential energy rabs0 = sqrt(sum(r[0]*r[0])) # Initial kinetic energy. Note that we skip the mass of the Earth here, that is MassEarth=1 in all codes EKinetic[0] = 0.5*sum(v0*v0) # Initial potential energy EPotential[0] = -4*pi*pi/rabs0 # Initial total energy ETotal[0] = EPotential[0]+EKinetic[0] # Start integrating using the Velocity-Verlet method for i in range(n-1): # Set up forces, air resistance FD, note now that we need the norm of the vecto # Here you could have defined your own function for this rabs = sqrt(sum(r[i]*r[i])) a = -Fourpi2*r[i]/(rabs**3) # update velocity, time and position using the Velocity-Verlet method r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a rabs = sqrt(sum(r[i+1]*r[i+1])) anew = -4*(pi**2)*r[i+1]/(rabs**3) v[i+1] = v[i] + 0.5*DeltaT*(a+anew) t[i+1] = t[i] + DeltaT EKinetic[i+1] = 0.5*sum(v[i+1]*v[i+1]) EPotential[i+1] = -4*pi*pi/sqrt(sum(r[i+1]*r[i+1])) ETotal[i+1] = EPotential[i+1]+EKinetic[i+1] # Plot energies as functions of time fig, axs = plt.subplots(3, 1) axs[0].plot(t, EKinetic) axs[0].set_xlim(0, tfinal) axs[0].set_ylabel('Kinetic energy') axs[1].plot(t, EPotential) axs[1].set_ylabel('Potential Energy') axs[2].plot(t, ETotal) axs[2].set_xlabel('Time [yr]') axs[2].set_ylabel('Total Energy') fig.tight_layout() save_fig("EarthSunVelocityVerlet") plt.show() And we see that due to the smaller truncation error that energy conservation is improved as a function of time. Try out different time steps $\Delta t$ and see if the results improve or worsen. ### Exercise: Center-of-Mass and Relative Coordinates and Reference Frames We define the two-body center-of-mass coordinate and relative coordinate by expressing the trajectories for $\boldsymbol{r}_1$ and $\boldsymbol{r}_2$ into the center-of-mass coordinate $\boldsymbol{R}_{\rm cm}$ $$ \boldsymbol{R}_{\rm cm}\equiv\frac{m_1\boldsymbol{r}_1+m_2\boldsymbol{r}_2}{m_1+m_2}, $$ and the relative coordinate $$ \boldsymbol{r}\equiv\boldsymbol{r}_1-\boldsymbol{r_2}. $$ Here, we assume the two particles interact only with one another, so $\boldsymbol{F}_{12}=-\boldsymbol{F}_{21}$ (where $\boldsymbol{F}_{ij}$ is the force on $i$ due to $j$. * 2a (5pt) Show that the equations of motion then become $\ddot{\boldsymbol{R}}_{\rm cm}=0$ and $\mu\ddot{\boldsymbol{r}}=\boldsymbol{F}_{12}$, with the reduced mass $\mu=m_1m_2/(m_1+m_2)$. The first expression simply states that the center of mass coordinate $\boldsymbol{R}_{\rm cm}$ moves at a fixed velocity. The second expression can be rewritten in terms of the reduced mass $\mu$. Let us first start with some basic definitions. We have the center of mass coordinate $\boldsymbol{R}$ defined as (for two particles) $$ \boldsymbol{R}=\frac{m_1\boldsymbol{r}_1+m_2\boldsymbol{r}_2}{M}, $$ where $m_1$ and $m_2$ are the masses of the two objects and $\boldsymbol{r}_1$ and $\boldsymbol{r}_2$ their respective positions defined according to a chosen origin. Here $M=m_1+m_2$ is the total mass. The relative position is defined as $$ \boldsymbol{r} =\boldsymbol{r}_1-\boldsymbol{r}_2, $$ and we then define $\boldsymbol{r}_1$ and $\boldsymbol{r}_2$ in terms of the relative and center of mass positions as $$ \boldsymbol{r}_1=\boldsymbol{R}+\frac{m_2}{M}\boldsymbol{r}, $$ and $$ \boldsymbol{r}_2=\boldsymbol{R}-\frac{m_1}{M}\boldsymbol{r}, $$ The total linear momentum is then defined as $$ \boldsymbol{P}=\sum_{i=1}^Nm_i\frac{\boldsymbol{r}_i}{dt}, $$ where $N=2$ in our case. With the above definition of the center of mass position, we see that we can rewrite the total linear momentum as (multiplying the center of mass position with $M$) $$ \boldsymbol{P}=M\frac{d\boldsymbol{R}}{dt}=M\dot{\boldsymbol{R}}. $$ This result is also an answer to a part of exercise 2b, see below. The net force acting on the system is given by the time derivative of the linear momentum (assuming mass is time independent) and we have $$ \boldsymbol{F}^{\mathrm{net}}=\dot{\boldsymbol{P}}=M\ddot{\boldsymbol{R}}. $$ The net force acting on the system is given by the sum of the forces acting on the two object, that is we have $$ \boldsymbol{F}^{\mathrm{net}}=\boldsymbol{F}_1+\boldsymbol{F}_2=\dot{\boldsymbol{P}}=M\ddot{\boldsymbol{R}}. $$ In our case the forces are given by the internal forces only. The force acting on object $1$ is thus $\boldsymbol{F}_{12}$ and the one acting on object $2$ is $\boldsymbol{F}_{12}$. We have also defined that $\boldsymbol{F}_{12}=-\boldsymbol{F}_{21}$. This means thar we have $$ \boldsymbol{F}_1+\boldsymbol{F}_2=\boldsymbol{F}_{12}+\boldsymbol{F}_{21}=0=\dot{\boldsymbol{P}}=M\ddot{\boldsymbol{R}}, $$ which is what we wanted to show. The center of mass velocity is thus a constant of the motion. We could also define the so-called center of mass reference frame where we simply set $\boldsymbol{R}=0$. This has also another important consequence for our forces. If we assume that our force depends only on the positions, it means that the gradient of the potential with respect to the center of mass position is zero, that is $$ M\ddot{d\boldsymbol{R}}=-\boldsymbol{\nabla}_{\boldsymbol{R}}V =0! $$ An alternative way is $$ \begin{eqnarray} \ddot{\boldsymbol{R}}_{\rm cm}&=&\frac{1}{m_1+m_2}\left\{m_1\ddot{\boldsymbol{r}}_1+m_2\ddot{\boldsymbol{r}}_2\right\}\\ \nonumber &=&\frac{1}{m_1+m_2}\left\{\boldsymbol{F}_{12}+\boldsymbol{F}_{21}\right\}=0.\\ \ddot{\boldsymbol{r}}&=&\ddot{\boldsymbol{r}}_1-\ddot{\boldsymbol{r}}_2=\left(\frac{\boldsymbol{F}_{12}}{m_1}-\frac{\boldsymbol{F}_{21}}{m_2}\right)\\ \nonumber &=&\left(\frac{1}{m_1}+\frac{1}{m_2}\right)\boldsymbol{F}_{12}. \end{eqnarray} $$ The first expression simply states that the center of mass coordinate $\boldsymbol{R}_{\rm cm}$ moves at a fixed velocity. The second expression can be rewritten in terms of the reduced mass $\mu$. $$ \begin{eqnarray} \mu \ddot{\boldsymbol{r}}&=&\boldsymbol{F}_{12},\\ \frac{1}{\mu}&=&\frac{1}{m_1}+\frac{1}{m_2},~~~~\mu=\frac{m_1m_2}{m_1+m_2}. \end{eqnarray} $$ Thus, one can treat the trajectory as a one-body problem where the reduced mass is $\mu$, and a second trivial problem for the center of mass. The reduced mass is especially convenient when one is considering gravitational problems, as we have seen during the lectures of weeks 11-13. * 2b (5pt) Show that the linear momenta for the center-of-mass $\boldsymbol{P}$ motion and the relative motion $\boldsymbol{q}$ are given by $\boldsymbol{P}=M\dot{\boldsymbol{R}}_{\rm cm}$ with $M=m_1+m_2$ and $\boldsymbol{q}=\mu\dot{\boldsymbol{r}}$. The linear momentum of the relative motion is defined $\boldsymbol{q} = (m_2\boldsymbol{p}_1-m_1\boldsymbol{p}_2)/(m_1+m_2)$. In 2a we showed, as an intermediate step that the total linear momentum is given by $$ \boldsymbol{P}=\sum_{i=1}^Nm_i\frac{d\boldsymbol{r}_i}{dt}=M\dot{\boldsymbol{R}}. $$ For the relative momentum $\boldsymbol{q}$, we have that the time derivative of $\boldsymbol{r}$ is $$ \dot{\boldsymbol{r}} =\dot{\boldsymbol{r}}_1-\dot{\boldsymbol{r}}_2, $$ We now also that the momenta $\boldsymbol{p}_1=m_1\dot{\boldsymbol{r}}_1$ and $\boldsymbol{p}_2=m_2\dot{\boldsymbol{r}}_2$. Using these expressions we can rewrite $$ \dot{\boldsymbol{r}} =\frac{\boldsymbol{p}_1}{m_1}-\frac{\boldsymbol{p}_2}{m_2}, $$ which we can rewrite as $$ \dot{\boldsymbol{r}} =\frac{m_2\boldsymbol{p}_1-m_1\boldsymbol{p}_2}{m_1m_2}, $$ and dividing both sides with $M$ we have $$ \frac{m_1m_2}{M}\dot{\boldsymbol{r}} =\frac{m_2\boldsymbol{p}_1-m_1\boldsymbol{p}_2}{M}. $$ Introducing the reduced mass $\mu=m_1m_2/M$ we have finally $$ \mu\dot{\boldsymbol{r}} =\frac{m_2\boldsymbol{p}_1-m_1\boldsymbol{p}_2}{M}. $$ And $\mu\dot{\boldsymbol{r}}$ defines the relative momentum $\boldsymbol{q}=\mu\dot{\boldsymbol{r}}$. When we introduce the Lagrangian formalism we will see that it is much easier to derive these equations. * 2c (5pt) Show then that the kinetic energy for two objects can then be written as $$ K=\frac{P^2}{2M}+\frac{q^2}{2\mu}. $$ Here we just need to use our definitions of kinetic energy in terms of the coordinates $\boldsymbol{r}_1$ and $\boldsymbol{r}_2$. We have that $$ K=\frac{p_1^2}{2m_1}+\frac{p_2^2}{2m_2}, $$ and with $\boldsymbol{p}_1=m_1\dot{\boldsymbol{r}}_1$ and $\boldsymbol{p}_2=m_2\dot{\boldsymbol{r}}_2$ and using $$ \dot{\boldsymbol{r}}_1=\dot{\boldsymbol{R}}+\frac{m_2}{M}\dot{\boldsymbol{r}}, $$ and $$ \dot{\boldsymbol{r}}_2=\dot{\boldsymbol{R}}-\frac{m_1}{M}\dot{\boldsymbol{r}}, $$ we obtain (after squaring the expressions for $\dot{\boldsymbol{r}}_1$ and $\dot{\boldsymbol{r}}_2$) we have $$ K=\frac{(m_1+m_2)\dot{\boldsymbol{R}}^2}{2}+\frac{(m_1+m_2)m_1m_2\dot{\boldsymbol{r}}^2}{2M^2}, $$ which we simplify to $$ K=\frac{\dot{\boldsymbol{P}}^2}{2M}+\frac{\mu\dot{\boldsymbol{q}}^2}{2}, $$ which is what we wanted to show. * 2d (5pt) Show that the total angular momentum for two-particles in the center-of-mass frame $\boldsymbol{R}=0$, is given by $$ \boldsymbol{L}=\boldsymbol{r}\times \mu\dot{\boldsymbol{r}}. $$ Here we need again that $$ \boldsymbol{r} =\boldsymbol{r}_1-\boldsymbol{r}_2, $$ and we then define $\boldsymbol{r}_1$ and $\boldsymbol{r}_2$ in terms of the relative and center of mass positions with $\boldsymbol{R}=0$ $$ \boldsymbol{r}_1=\frac{m_2}{M}\boldsymbol{r}, $$ and $$ \boldsymbol{r}_2=-\frac{m_1}{M}\boldsymbol{r}, $$ The angular momentum (the total one) is the sum of the individual angular momenta (see homework 4) and we have $$ \boldsymbol{L} = \boldsymbol{r}_1 \times \boldsymbol{p}_1+\boldsymbol{r}_2 \times \boldsymbol{p}_2, $$ and using that $m_1\dot{\boldsymbol{r}}_1=\boldsymbol{p}_1$ and $m_2\dot{\boldsymbol{r}}_2=\boldsymbol{p}_2$ we have $$ \boldsymbol{L} = m_1\boldsymbol{r}_1 \times \dot{\boldsymbol{r}}_1+m_2\boldsymbol{r}_2 \times \dot{\boldsymbol{r}}_2. $$ Inserting the equations for $\boldsymbol{r}_1$ and $\boldsymbol{r}_2$ in terms of the relative motion, we have $$ \boldsymbol{L} = m_1 \frac{m_2}{M}\boldsymbol{r}\times\frac{m_2}{M}\boldsymbol{r} +m_2 \frac{m_1}{M}\boldsymbol{r} \times \frac{m_1}{M}\dot{\boldsymbol{r}}. $$ We see that can rewrite this equation as $$ \boldsymbol{L}=\boldsymbol{r}\times \mu\dot{\boldsymbol{r}}, $$ which is what we wanted to derive. ### Exercise: Conservation of Energy The equations of motion in the center-of-mass frame in two dimensions with $x=r\cos{(\phi)}$ and $y=r\sin{(\phi)}$ and $r\in [0,\infty)$, $\phi\in [0,2\pi]$ and $r=\sqrt{x^2+y^2}$ are given by $$ \mu \ddot{r}=-\frac{dV(r)}{dr}+\mu r\dot{\phi}^2, $$ and $$ \dot{\phi}=\frac{L}{\mu r^2}. $$ Here $V(r)$ is any central force which depends only on the relative coordinate. * 1a (5pt) Show that you can rewrite the radial equation in terms of an effective potential $V_{\mathrm{eff}}(r)=V(r)+L^2/(2\mu r^2)$. Here we use that $$ \dot{\phi}=\frac{L}{\mu r^2}. $$ and rewrite the above equation of motion as $$ \mu \ddot{r}=-\frac{dV(r)}{dr}+\frac{L^2}{\mu r^3}. $$ If we now define an effective potential $$ V_{\mathrm{eff}}=V(r)+\frac{L^2}{2\mu r^2}, $$ we can rewrite our equation of motion in terms of $$ \mu \ddot{r}=-\frac{dV_{\mathrm{eff}}(r)}{dr}=-\frac{dV(r)}{dr}+\frac{L^2}{\mu r^3}. $$ The addition due to the angular momentum comes from the kinetic energy when we rewrote it in terms of polar coordinates. It introduces a so-called centrifugal barrier due to the angular momentum. This centrifugal barrier pushes the object farther away from the origin. Alternatively, <!-- Equation labels as ordinary links --> <div id="_auto8"></div> $$ \begin{equation} -\frac{dV_{\text{eff}}(r)}{dr} = \mu \ddot{r} =-\frac{dV(r)}{dr}+\mu\dot{\phi}^2r \label{_auto8} \tag{14} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto9"></div> $$ \begin{equation} -\frac{dV_{\text{eff}}(r)}{dr} = -\frac{dV(r)}{dr}+\mu\left( \frac{L}{\mu r^2}\right) ^2r \label{_auto9} \tag{15} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto10"></div> $$ \begin{equation} = -\frac{dV(r)}{dr}+\mu\frac{L^2}{\mu}r^{-3} \label{_auto10} \tag{16} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto11"></div> $$ \begin{equation} = -\frac{d\left( V(r)+\frac{1}{2} \frac{L^2}{\mu r^2}\right) }{dr}. \label{_auto11} \tag{17} \end{equation} $$ Integrating we obtain <!-- Equation labels as ordinary links --> <div id="_auto12"></div> $$ \begin{equation} V_{\text{eff}}(r) = V(r) + \frac{L^2}{2\mu r^2} + C \label{_auto12} \tag{18} \end{equation} $$ Imposing the extra condition that $V_{\text{eff}}(r\rightarrow \infty) = V(r\rightarrow \infty)$, <!-- Equation labels as ordinary links --> <div id="_auto13"></div> $$ \begin{equation} V_{\text{eff}}(r) = V(r) + \frac{L^2}{2\mu r^2} \label{_auto13} \tag{19} \end{equation} $$ Write out the final differential equation for the radial degrees of freedom when we specify that $V(r)=-\alpha/r$. Plot the effective potential. You can choose values for $\alpha$ and $L$ and discuss (see Taylor section 8.4 and example 8.2) the physics of the system for two energies, one larger than zero and one smaller than zero. This is similar to what you did in the first midterm, except that the potential is different. We insert now the explicit potential form $V(r)=-\alpha/r$. This gives us the following equation of motion $$ \mu \ddot{r}=-\frac{dV_{\mathrm{eff}}(r)}{dr}=-\frac{d(-\alpha/r)}{dr}+\frac{L^2}{\mu r^3}=-\frac{\alpha}{r^2}+\frac{L^2}{\mu r^3}. $$ The following code plots this effective potential for a simple choice of parameters, with a standard gravitational potential $-\alpha/r$. Here we have chosen $L=m=\alpha=1$. # Common imports import numpy as np from math import * import matplotlib.pyplot as plt Deltax = 0.01 #set up arrays xinitial = 0.3 xfinal = 5.0 alpha = 1.0 # spring constant m = 1.0 # mass, you can change these AngMom = 1.0 # The angular momentum n = ceil((xfinal-xinitial)/Deltax) x = np.zeros(n) for i in range(n): x[i] = xinitial+i*Deltax V = np.zeros(n) V = -alpha/x+0.5*AngMom*AngMom/(m*x*x) # Plot potential fig, ax = plt.subplots() ax.set_xlabel('r[m]') ax.set_ylabel('V[J]') ax.plot(x, V) fig.tight_layout() plt.show() If we select a potential energy below zero (and not necessarily one which corresponds to the minimum point), the object will oscillate between two values of $r$, a value $r_{\mathrm{min}}$ and a value $r_{\mathrm{max}}$. We can assume that for example the kinetic energy is zero at these two points. The object will thus oscillate back and forth between these two points. As we will see in connection with the solution of the equations of motion, this case corresponds to elliptical orbits. If we select $r$ equal to the minimum of the potential and use initial conditions for the velocity that correspond to circular motion, the object will have a constant value of $r$ given by the value at the minimum and the orbit is a circle. If we select a potential energy larger than zero, then, since the kinetic energy is always larger or equal to zero, the object will move away from the origin. See also the discussion in Taylor, sections 8.4-8.6. ### Exercise: Harmonic oscillator again Consider a particle of mass $m$ in a $2$-dimensional harmonic oscillator with potential $$ V(r)=\frac{1}{2}kr^2=\frac{1}{2}k(x^2+y^2). $$ We assume the orbit has a final non-zero angular momentum $L$. The effective potential looks like that of a harmonic oscillator for large $r$, but for small $r$, the centrifugal potential repels the particle from the origin. The combination of the two potentials has a minimum for at some radius $r_{\rm min}$. Set up the effective potential and plot it. Find $r_{\rm min}$ and $\dot{\phi}$. Show that the latter is given by $\dot{\phi}=\sqrt{k/m}$. At $r_{\rm min}$ the particle does not accelerate and $r$ stays constant and the motion is circular. With fixed $k$ and $m$, which parameter can we adjust to change the value of $r$ at $r_{\rm min}$? We consider the effective potential. The radius of a circular orbit is at the minimum of the potential (where the effective force is zero). The potential is plotted here with the parameters $k=m=1.0$ and $L=1.0$. # Common imports import numpy as np from math import * import matplotlib.pyplot as plt Deltax = 0.01 #set up arrays xinitial = 0.5 xfinal = 3.0 k = 1.0 # spring constant m = 1.0 # mass, you can change these AngMom = 1.0 # The angular momentum n = ceil((xfinal-xinitial)/Deltax) x = np.zeros(n) for i in range(n): x[i] = xinitial+i*Deltax V = np.zeros(n) V = 0.5*k*x*x+0.5*AngMom*AngMom/(m*x*x) # Plot potential fig, ax = plt.subplots() ax.set_xlabel('r[m]') ax.set_ylabel('V[J]') ax.plot(x, V) fig.tight_layout() plt.show() We have an effective potential $$ \begin{eqnarray*} V_{\rm eff}&=&\frac{1}{2}kr^2+\frac{L^2}{2mr^2} \end{eqnarray*} $$ The effective potential looks like that of a harmonic oscillator for large $r$, but for small $r$, the centrifugal potential repels the particle from the origin. The combination of the two potentials has a minimum for at some radius $r_{\rm min}$. $$ \begin{eqnarray*} 0&=&kr_{\rm min}-\frac{L^2}{mr_{\rm min}^3},\\ r_{\rm min}&=&\left(\frac{L^2}{mk}\right)^{1/4},\\ \dot{\theta}&=&\frac{L}{mr_{\rm min}^2}=\sqrt{k/m}. \end{eqnarray*} $$ For particles at $r_{\rm min}$ with $\dot{r}=0$, the particle does not accelerate and $r$ stays constant, i.e. a circular orbit. The radius of the circular orbit can be adjusted by changing the angular momentum $L$. For the above parameters this minimum is at $r_{\rm min}=1$. Now consider small vibrations about $r_{\rm min}$. The effective spring constant is the curvature of the effective potential. Use the curvature at $r_{\rm min}$ to find the effective spring constant (hint, look at exercise 4 in homework 6) $k_{\mathrm{eff}}$. Show also that $\omega=\sqrt{k_{\mathrm{eff}}/m}=2\dot{\phi}$ $$ \begin{eqnarray*} k_{\rm eff}&=&\left.\frac{d^2}{dr^2}V_{\rm eff}(r)\right|_{r=r_{\rm min}}=k+\frac{3L^2}{mr_{\rm min}^4}\\ &=&4k,\\ \omega&=&\sqrt{k_{\rm eff}/m}=2\sqrt{k/m}=2\dot{\theta}. \end{eqnarray*} $$ Because the radius oscillates with twice the angular frequency, the orbit has two places where $r$ reaches a minimum in one cycle. This differs from the inverse-square force where there is one minimum in an orbit. One can show that the orbit for the harmonic oscillator is also elliptical, but in this case the center of the potential is at the center of the ellipse, not at one of the foci. The solution to the equations of motion in Cartesian coordinates is simple. The $x$ and $y$ equations of motion separate, and we have $\ddot{x}=-kx/m$ and $\ddot{y}=-ky/m$. The harmonic oscillator is indeed a system where the degrees of freedom separate and we can find analytical solutions. Define a natural frequency $\omega_0=\sqrt{k/m}$ and show that (where $A$, $B$, $C$ and $D$ are arbitrary constants defined by the initial conditions) $$ \begin{eqnarray*} x&=&A\cos\omega_0 t+B\sin\omega_0 t,\\ y&=&C\cos\omega_0 t+D\sin\omega_0 t. \end{eqnarray*} $$ The solution is also simple to write down exactly in Cartesian coordinates. The $x$ and $y$ equations of motion separate, $$ \begin{eqnarray*} \ddot{x}&=&-kx,\\ \ddot{y}&=&-ky. \end{eqnarray*} $$ We know from our studies of the harmonic oscillator that the general solution can be expressed as $$ \begin{eqnarray*} x&=&A\cos\omega_0 t+B\sin\omega_0 t,\\ y&=&C\cos\omega_0 t+D\sin\omega_0 t. \end{eqnarray*} $$ With the solutions for $x$ and $y$, and $r^2=x^2+y^2$ and the definitions $\alpha=\frac{A^2+B^2+C^2+D^2}{2}$, $\beta=\frac{A^2-B^2+C^2-D^2}{2}$ and $\gamma=AB+CD$, show that $$ r^2=\alpha+(\beta^2+\gamma^2)^{1/2}\cos(2\omega_0 t-\delta), $$ with $$ \delta=\arctan(\gamma/\beta). $$ We start with $r^2 & = x^2+y^2$ and square the above analytical solutions and after some **exciting algebraic manipulations** we arrive at <!-- Equation labels as ordinary links --> <div id="_auto14"></div> $$ \begin{equation} r^2 = x^2+y^2 \label{_auto14} \tag{20} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto15"></div> $$ \begin{equation} = \left( A\cos\omega_0 t+B\sin\omega_0 t\right) ^2 + \left( C\cos\omega_0 t+D\sin\omega_0 t\right) ^2 \label{_auto15} \tag{21} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto16"></div> $$ \begin{equation} = A^2\cos^2\omega_0 t+B^2\sin^2\omega_0 t + 2AB\sin\omega_0 t \cos\omega_0 t + C^2\cos^2\omega_0 t+D^2\sin^2\omega_0 t + 2CD\sin\omega_0 t \cos\omega_0 t \label{_auto16} \tag{22} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto17"></div> $$ \begin{equation} = (A^2+C^2)\cos^2\omega_0 t + (B^2+D^2)\sin^2\omega_0 t + 2(AC + BD)\sin\omega_0 t \cos\omega_0 t \label{_auto17} \tag{23} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto18"></div> $$ \begin{equation} = (B^2+D^2) + (A^2+C^2-B^2-D^2)\cos^2\omega_0 t + 2(AC + BD)2\sin2\omega_0 t \label{_auto18} \tag{24} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto19"></div> $$ \begin{equation} = (B^2+D^2) + (A^2+C^2-B^2-D^2)\frac{1+\cos{2\omega_0 t}}{2} + 2(AC + BD)\frac{1}{2}\sin2\omega_0 t \label{_auto19} \tag{25} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto20"></div> $$ \begin{equation} = \frac{2B^2+2D^2+A^2+C^2-B^2-D^2}{2} + (A^2+C^2-B^2-D^2)\frac{\cos{2\omega_0 t}}{2} + (AC + BD)\sin2\omega_0 t \label{_auto20} \tag{26} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto21"></div> $$ \begin{equation} = \frac{B^2+D^2+A^2+C^2}{2} + \frac{A^2+C^2-B^2-D^2}{2}\cos{2\omega_0 t} + (AC + BD)\sin2\omega_0 t \label{_auto21} \tag{27} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto22"></div> $$ \begin{equation} = \alpha + \beta\cos{2\omega_0 t} + \gamma\sin2\omega_0 t \label{_auto22} \tag{28} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto23"></div> $$ \begin{equation} = \alpha + \sqrt{\beta^2+\gamma^2}\left( \frac{\beta}{\sqrt{\beta^2+\gamma^2}}\cos{2\omega_0 t} + \frac{\gamma}{\sqrt{\beta^2+\gamma^2}}\sin2\omega_0 t\right) \label{_auto23} \tag{29} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto24"></div> $$ \begin{equation} = \alpha + \sqrt{\beta^2+\gamma^2}\left( \cos{\delta}\cos{2\omega_0 t} + \sin{\delta}\sin2\omega_0 t\right) \label{_auto24} \tag{30} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto25"></div> $$ \begin{equation} = \alpha + \sqrt{\beta^2+\gamma^2}\cos{\left( 2\omega_0 t - \delta\right) }, \label{_auto25} \tag{31} \end{equation} $$ which is what we wanted to show. ### Exercise: Numerical Solution of the Harmonic Oscillator Using the code we developed in homeworks 5 and/or 6 for the Earth-Sun system, we can solve the above harmonic oscillator problem in two dimensions using our code from this homework. We need however to change the acceleration from the gravitational force to the one given by the harmonic oscillator potential. * 3a (20pt) Use for example the code in the exercise set to set up the acceleration and use the initial conditions fixed by for example $r_{\rm min}$ from exercise 2. Which value should the initial velocity take if you place yourself at $r_{\rm min}$ and you require a circular motion? Hint: see the first midterm, part 2. There you used the centripetal acceleration. Instead of solving the equations in the cartesian frame we will now rewrite the above code in terms of the radial degrees of freedom only. Our differential equation is now $$ \mu \ddot{r}=-\frac{dV(r)}{dr}+\mu\dot{\phi}^2, $$ and $$ \dot{\phi}=\frac{L}{\mu r^2}. $$ * 3b (20pt) We will use $r_{\rm min}$ to fix a value of $L$, as seen in exercise 2. This fixes also $\dot{\phi}$. Write a code which now implements the radial equation for $r$ using the same $r_{\rm min}$ as you did in 3a. Compare the results with those from 3a with the same initial conditions. Do they agree? Use only one set of initial conditions. The code here finds the solution for $x$ and $y$ using the code we developed in homework 5 and 6 and the midterm. Note that this code is tailored to run in Cartesian coordinates. There is thus no angular momentum dependent term. Here we have chosen initial conditions that correspond to the minimum of the effective potential $r_{\mathrm{min}}$. We have chosen $x_0=r_{\mathrm{min}}$ and $y_0=0$. Similarly, we use the centripetal acceleration to determine the initial velocity so that we have a circular motion (see back to the last question of the midterm). This means that we set the centripetal acceleration $v^2/r$ equal to the force from the harmonic oscillator $-k\boldsymbol{r}$. Taking the magnitude of $\boldsymbol{r}$ we have then $v^2/r=k/mr$, which gives $v=\pm\omega_0r$. Since the code here solves the equations of motion in cartesian coordinates and the harmonic oscillator potential leads to forces in the $x$- and $y$-directions that are decoupled, we have to select the initial velocities and positions so that we don't get that for example $y(t)=0$. We set $x_0$ to be different from zero and $v_{y0}$ to be different from zero. # Common imports import numpy as np import pandas as pd from math import * import matplotlib.pyplot as plt import os # Where to save the figures and data files PROJECT_ROOT_DIR = "Results" FIGURE_ID = "Results/FigureFiles" DATA_ID = "DataFiles/" if not os.path.exists(PROJECT_ROOT_DIR): os.mkdir(PROJECT_ROOT_DIR) if not os.path.exists(FIGURE_ID): os.makedirs(FIGURE_ID) if not os.path.exists(DATA_ID): os.makedirs(DATA_ID) def image_path(fig_id): return os.path.join(FIGURE_ID, fig_id) def data_path(dat_id): return os.path.join(DATA_ID, dat_id) def save_fig(fig_id): plt.savefig(image_path(fig_id) + ".png", format='png') DeltaT = 0.001 #set up arrays tfinal = 10.0 n = ceil(tfinal/DeltaT) # set up arrays t = np.zeros(n) v = np.zeros((n,2)) r = np.zeros((n,2)) radius = np.zeros(n) # Constants of the model k = 1.0 # spring constant m = 1.0 # mass, you can change these omega02 = k/m # Frequency AngMom = 1.0 # The angular momentum # Potential minimum rmin = (AngMom*AngMom/k/m)**0.25 # Initial conditions as compact 2-dimensional arrays, x0=rmin and y0 = 0 x0 = rmin; y0= 0.0 r0 = np.array([x0,y0]) vy0 = sqrt(omega02)*rmin; vx0 = 0.0 v0 = np.array([vx0,vy0]) r[0] = r0 v[0] = v0 # Start integrating using the Velocity-Verlet method for i in range(n-1): # Set up the acceleration a = -r[i]*omega02 # update velocity, time and position using the Velocity-Verlet method r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a anew = -r[i+1]*omega02 v[i+1] = v[i] + 0.5*DeltaT*(a+anew) t[i+1] = t[i] + DeltaT # Plot position as function of time radius = np.sqrt(r[:,0]**2+r[:,1]**2) fig, ax = plt.subplots(3,1) ax[0].set_xlabel('time') ax[0].set_ylabel('radius squared') ax[0].plot(t,r[:,0]**2+r[:,1]**2) ax[1].set_xlabel('time') ax[1].set_ylabel('x position') ax[1].plot(t,r[:,0]) ax[2].set_xlabel('time') ax[2].set_ylabel('y position') ax[2].plot(t,r[:,1]) fig.tight_layout() save_fig("2DimHOVV") plt.show() We see that the radius (to within a given error), we obtain a constant radius. The following code shows first how we can solve this problem using the radial degrees of freedom only. Here we need to add the explicit centrifugal barrier. Note that the variable $r$ depends only on time. There is no $x$ and $y$ directions since we have transformed the equations to polar coordinates. DeltaT = 0.01 #set up arrays tfinal = 10.0 n = ceil(tfinal/DeltaT) # set up arrays for t, v and r t = np.zeros(n) v = np.zeros(n) r = np.zeros(n) E = np.zeros(n) # Constants of the model AngMom = 1.0 # The angular momentum m = 1.0 k = 1.0 omega02 = k/m c1 = AngMom*AngMom/(m*m) c2 = AngMom*AngMom/m rmin = (AngMom*AngMom/k/m)**0.25 # Initial conditions r0 = rmin v0 = 0.0 r[0] = r0 v[0] = v0 E[0] = 0.5*m*v0*v0+0.5*k*r0*r0+0.5*c2/(r0*r0) # Start integrating using the Velocity-Verlet method for i in range(n-1): # Set up acceleration a = -r[i]*omega02+c1/(r[i]**3) # update velocity, time and position using the Velocity-Verlet method r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a anew = -r[i+1]*omega02+c1/(r[i+1]**3) v[i+1] = v[i] + 0.5*DeltaT*(a+anew) t[i+1] = t[i] + DeltaT E[i+1] = 0.5*m*v[i+1]*v[i+1]+0.5*k*r[i+1]*r[i+1]+0.5*c2/(r[i+1]*r[i+1]) # Plot position as function of time fig, ax = plt.subplots(2,1) ax[0].set_xlabel('time') ax[0].set_ylabel('radius') ax[0].plot(t,r) ax[1].set_xlabel('time') ax[1].set_ylabel('Energy') ax[1].plot(t,E) save_fig("RadialHOVV") plt.show() ### Exercise: Equations for an ellipse Consider an ellipse defined by the sum of the distances from the two foci being $2D$, which expressed in a Cartesian coordinates with the middle of the ellipse being at the origin becomes $$ \sqrt{(x-a)^2+y^2}+\sqrt{(x+a)^2+y^2}=2D. $$ Here the two foci are at $(a,0)$ and $(-a,0)$. Show that this form is can be written as $$ \frac{x^2}{D^2}+\frac{y^2}{D^2-a^2}=1. $$ We start by squaring the two sides and, again, after some **exciting algebraic manipulations** we arrive at $$ \sqrt{(x-a)^2+y^2}+\sqrt{(x+a)^2+y^2} =2D \\ (x-a)^2 + y^2 + (x+a)^2 + y^2 + 2\sqrt{(x-a)^2 + y^2}\sqrt{(x+a)^2+y^2} = 4D^2 \\ 2y^2 + 2x^2 + 2a^2 + 2\sqrt{(x-a)^2(x+a)^2 + y^4 + y^2[(x-a)^2+(x+a)^2]} = 4D^2 \\ y^2 + x^2 + a^2 + \sqrt{(x^2-a^2)^2 + y^4 + y^2(2x^2+2a^2)} = 2D^2 \\ \sqrt{(x^2-a^2)^2 + y^4 + y^2(2x^2+2a^2)} = 2D^2 -( y^2 + x^2 + a^2 ) \\ (x^2-a^2)^2 + y^4 + y^2(2x^2+2a^2) = 4D^4 + y^4 + x^4 + a^4 - 4D^2( y^2 + x^2 + a^2 ) + 2(y^2x^2+y^2a^2+x^2a^2) \\ x^4-2x^2a^2+a^4 + y^4 + 2y^2x^2+2y^2a^2 = 4D^4 + y^4 + x^4 + a^4 - 4D^2y^2 -4D^2 x^2 -4D^2 a^2 + 2y^2x^2+2y^2a^2+2x^2a^2 \\ 4D^4 - 4D^2y^2 -4D^2 x^2 -4D^2 a^2 +4x^2a^2 = 0 \\ D^4 - D^2y^2 -D^2 x^2 -D^2 a^2 +x^2a^2 = 0 \\ D^2(D^2-a^2) - x^2(D^2-a^2) = D^2y^2 \\ D^2 - x^2 = \frac{D^2y^2}{D^2-a^2} \\ 1 - \frac{x^2}{D^2} = \frac{y^2}{D^2-a^2} \\ \frac{x^2}{D^2} + \frac{y^2}{D^2-a^2} = 1, $$ where the last line is indeed the equation for an ellipse. ### Exercise: Attractive Potential Consider a particle in an attractive potential $$ U(r)=-\alpha/r. $$ The quantity $r$ is the absolute value of the relative position. We will use the reduced mass $\mu$ and the angular momentum $L$, as discussed during the lectures. With the transformation of a two-body problem to the center-of-mass frame, the actual equations look like an *effective* one-body problem. The energy of the system is $E$ and the minimum of the effective potential is $r_{\rm min}$. The analytical solution to the radial equation of motion is $$ r(\phi) = \frac{1}{\frac{\mu\alpha}{L^2}+A\cos{(\phi)}}. $$ Find the value of $A$. Hint: Use the fact that at $r_{\rm min}$ there is no radial kinetic energy and $E=-\alpha/r_{\rm min}+L^2/2mr_{\rm min}^2$. At $r_{\mathrm{min}}$ and $r_{\mathrm{max}}$ , all the kinetic energy is stored in the velocity in the direction perpendicular to $r$ since the radial velocity is set to zero . We can calculate using angular momentum and from there, find 𝐴 in terms of the energy $E$ which is constant. But first, we need to find $r_{\mathrm{min}}$ from the conservation of energy (noting that the radial velocity $\ddot{r}$ at the mininum is zero): $$ E = U(r) + \frac{1}{2} \mu(\ddot{r}^2 + (r\ddot{\phi})^2) \\ E = \frac{-\alpha}{r_{\min}} + \frac{1}{2} \mu\left( \frac{L}{\mu r_{\min}}\right) ^2 \\ E r_{\min}^2 - \frac{1}{2}\mu\left( \frac{L}{\mu}\right) ^2 + \alpha r_{\min} = 0 \\ r_{\min}^2 + \frac{\alpha}{E} r_{\min} - \frac{L^2}{2E\mu} = 0 \\ r_{\min} = - \frac{\alpha}{2E} \pm \frac{1}{2} \sqrt{\frac{\alpha^2}{E^2} + 2\frac{L^2}{E\mu}} $$ Since we're looking for the minimum, the ± sign must be negative (then 𝑟min will not be negative since 𝐸<0 ). Therefore, we have $$ \frac{1}{\frac{\mu\alpha}{L^2}+A} = -\frac{\alpha}{2E} - \frac{1}{2} \sqrt{\frac{\alpha^2}{E^2} + 2\frac{L^2}{E\mu}} \\ A = - \frac{\mu\alpha}{L^2} - \frac{2E}{\alpha + \sqrt{\alpha^2 + 2\frac{L^2E}{\mu}}} $$ ### Exercise: Inverse-square force Consider again the same effective potential as in the previous exercise. This leads to an attractive inverse-square-law force, $F=-\alpha/r^2$. Consider a particle of mass $m$ with angular momentum $L$. Taylor sections 8.4-8.7 are relevant background material. See also the harmonic oscillator potential from hw8. The equation of motion for the radial degrees of freedom is (see also hw8) in the center-of-mass frame in two dimensions with $x=r\cos{(\phi)}$ and $y=r\sin{(\phi)}$ and $r\in [0,\infty)$, $\phi\in [0,2\pi]$ and $r=\sqrt{x^2+y^2}$ are given by $$ \ddot{r}=-\frac{1}{m}\frac{dV(r)}{dr}+r\dot{\phi}^2, $$ and $$ \dot{\phi}=\frac{L}{m r^2}. $$ Here $V(r)$ is any central force which depends only on the relative coordinate. Find the radius of a circular orbit by solving for the position of the minimum of the effective potential. <!-- Equation labels as ordinary links --> <div id="_auto26"></div> $$ \begin{equation} \frac{1}{m}\frac{dV(r)}{dr} = r\dot{\phi}^2 \label{_auto26} \tag{32} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto27"></div> $$ \begin{equation} \frac{1}{m}\left( -\frac{-\alpha}{r^2}\right) = r \frac{L^2}{m^2r^4} \label{_auto27} \tag{33} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto28"></div> $$ \begin{equation} \frac{\alpha}{mr^2} = \frac{L^2}{m^2r^3} \label{_auto28} \tag{34} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto29"></div> $$ \begin{equation} r = \frac{L^2}{m\alpha} \label{_auto29} \tag{35} \end{equation} $$ At the minimum, the radial velocity is zero and it is only the [centripetal velocity](https://en.wikipedia.org/wiki/Centripetal_force) which is nonzero. This implies that $\ddot{r}=0$. What is the angular frequency, $\dot{\theta}$, of the orbit? Solve this by setting $\ddot{r}=0=F/m+\dot{\theta}^2r$. <!-- Equation labels as ordinary links --> <div id="_auto30"></div> $$ \begin{equation} \dot{\theta}^2 r = - \frac{F}{m} \label{_auto30} \tag{36} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto31"></div> $$ \begin{equation} \dot{\theta}^2 r = - \frac{-\frac{\alpha}{r^2}}{m} \label{_auto31} \tag{37} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto32"></div> $$ \begin{equation} \dot{\theta}^2 = \frac{\alpha}{mr^3} \label{_auto32} \tag{38} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto33"></div> $$ \begin{equation} \dot{\theta} = \pm \sqrt{\frac{\alpha}{mr^3}} \label{_auto33} \tag{39} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto34"></div> $$ \begin{equation} \dot{\theta} = \pm \sqrt{\frac{\alpha}{m\frac{L^6}{m^3\alpha^3}}} \label{_auto34} \tag{40} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto35"></div> $$ \begin{equation} \dot{\theta} = \pm \sqrt{\frac{\alpha^4m^2}{L^6}} \label{_auto35} \tag{41} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto36"></div> $$ \begin{equation} \dot{\theta} = \pm \frac{\alpha^2m}{L^3} \label{_auto36} \tag{42} \end{equation} $$ Find the effective spring constant for the particle at the minimum. We have shown in class that from the taylor expansion, we have $$ k = \frac{d^2V_{\text{eff}}}{dr^2} $$ Therefore, all we have to do is find the second derivative of $V_{\text{eff}}$ around the minimum point of $V_{\text{eff}}$ where $\dot{r} = \ddot{r} = 0$. <!-- Equation labels as ordinary links --> <div id="_auto37"></div> $$ \begin{equation} k = \frac{d^2V_{\text{eff}}}{dr^2} \label{_auto37} \tag{43} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto38"></div> $$ \begin{equation} = \frac{d^2\left( -\frac{\alpha}{r} + \frac{1}{2} \frac{L^2}{mr^2}\right) }{dr^2} \label{_auto38} \tag{44} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto39"></div> $$ \begin{equation} = -\frac{2\alpha}{r^3} + \frac{3L^2}{mr^4} \label{_auto39} \tag{45} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto40"></div> $$ \begin{equation} = -\frac{2\alpha}{\frac{L^6}{m^3\alpha^3}} + \frac{3L^2}{m\frac{L^8}{m^4\alpha^4}} \label{_auto40} \tag{46} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto41"></div> $$ \begin{equation} = -\frac{2m^3\alpha^4}{L^6} + \frac{3m^3\alpha^4}{L^6} \label{_auto41} \tag{47} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto42"></div> $$ \begin{equation} = \frac{m^3\alpha^4}{L^6} \label{_auto42} \tag{48} \end{equation} $$ What is the angular frequency for small vibrations about the minimum? How does this compare with the answer to (3b)? For small deviations $\delta r$ of $r$, $$ m\frac{d^2\left( \delta r \right) }{dt^2} = -k \delta r $$ The solution of this differential equation is of the form $$ \delta r = A \cos(\omega t + \phi) $$ where <!-- Equation labels as ordinary links --> <div id="_auto43"></div> $$ \begin{equation} \omega = \sqrt{\frac{k}{m}} \label{_auto43} \tag{49} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto44"></div> $$ \begin{equation} = \sqrt{\frac{m^2\alpha^4}{L^6}} \label{_auto44} \tag{50} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto45"></div> $$ \begin{equation} = \frac{m\alpha^2}{L^3} \label{_auto45} \tag{51} \end{equation} $$ This is in fact equal to the expression for $\dot{\theta}$. This means that small perturbations oscillate in sync with the orbit and this traces out an ellipse with a very small eccentricity, a very nice physical result. ### Exercise: Inverse-square force again Consider again a particle of mass $m$ in the same attractive potential, $U(r)=-\alpha/r$, with angular momentum $L$ with just the right energy so that $$ A=m\alpha/L^2 $$ where $A$ comes from the expression $$ r=\frac{1}{(m\alpha/L^2)+A\cos{(\phi)}}. $$ The trajectory can then be rewritten as $$ r=\frac{2r_0}{1+\cos\theta},~~~r_0=\frac{L^2}{2m\alpha}. $$ Show that for this case the total energy $E$ approaches zero. <!-- Equation labels as ordinary links --> <div id="_auto46"></div> $$ \begin{equation} E = - \frac{\alpha}{r} + \frac{1}{2} m \left( (\dot{\theta}r)^2+\dot{r}^2\right) \label{_auto46} \tag{52} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto47"></div> $$ \begin{equation} = - \frac{\alpha}{r} + \frac{1}{2} m \left[ \left( \frac{L}{mr^2}r\right) ^2+\left( \frac{dr}{d\theta}\dot{\theta}\right) ^2\right] \label{_auto47} \tag{53} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto48"></div> $$ \begin{equation} = - \frac{\alpha}{2r_0}(1+\cos\theta) + \frac{1}{2} m \left[ \left( \frac{L(1+\cos\theta)}{2mr_0}\right) ^2+\left( 2r_0\frac{-1}{(1+\cos\theta)^2}(-\sin\theta)\frac{L}{mr^2}\right) ^2\right] \label{_auto48} \tag{54} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto49"></div> $$ \begin{equation} = - \frac{\alpha}{2r_0}(1+\cos\theta) + \frac{1}{2} m \left[ \left( \frac{L(1+\cos\theta)}{2mr_0}\right) ^2+\left( 2r_0\frac{-1}{(1+\cos\theta)^2}(-\sin\theta)\frac{L(1+\cos\theta)^2}{4mr_0^2}\right) ^2\right] \label{_auto49} \tag{55} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto50"></div> $$ \begin{equation} = - \frac{\alpha}{2r_0}(1+\cos\theta) + \frac{1}{2} m \left[ \left( \frac{L(1+\cos\theta)}{2mr_0}\right) ^2+\left( \sin\theta\frac{L}{2mr_0}\right) ^2\right] \label{_auto50} \tag{56} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto51"></div> $$ \begin{equation} = - \frac{\alpha}{2r_0}(1+\cos\theta) + \frac{1}{2} m \left[ \left( \frac{L(1+\cos\theta)}{2mr_0}\right) ^2+\left( \sin\theta\frac{L}{2mr_0}\right) ^2\right] \label{_auto51} \tag{57} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto52"></div> $$ \begin{equation} = - \frac{\alpha}{2r_0}(1+\cos\theta) + \frac{1}{2} m \frac{L^2}{4m^2r_0^2} \left[ \left( 1+\cos\theta\right) ^2+\left( \sin\theta\right) ^2\right] \label{_auto52} \tag{58} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto53"></div> $$ \begin{equation} = - \frac{\alpha}{2r_0}(1+\cos\theta) + \frac{1}{2} \frac{L^2}{4mr_0^2} \left( 1 + \cos^2\theta + 2\cos \theta + \sin^2\theta\right) \label{_auto53} \tag{59} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto54"></div> $$ \begin{equation} = - \frac{\alpha}{2r_0}(1+\cos\theta) + \frac{1}{2} \frac{L^2}{4mr_0^2} \left( 2 + 2\cos \theta \right) \label{_auto54} \tag{60} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto55"></div> $$ \begin{equation} = (1+\cos\theta) \left( - \frac{\alpha}{2r_0} + \frac{L^2}{4mr_0^2}\right) \label{_auto55} \tag{61} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto56"></div> $$ \begin{equation} = (1+\cos\theta) \left( - \frac{\alpha}{2\frac{L^2}{2m\alpha}} + \frac{L^2}{4m\frac{L^4}{4m^2\alpha^2}}\right) \label{_auto56} \tag{62} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto57"></div> $$ \begin{equation} = (1+\cos\theta) \left( - \frac{m\alpha^2}{L^2} + \frac{m\alpha^2}{L^2}\right) \label{_auto57} \tag{63} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto58"></div> $$ \begin{equation} = 0 \label{_auto58} \tag{64} \end{equation} $$ With zero energy $E=0$, write this trajectory in a more recognizable parabolic form, that is express $x_0$ and $R$ in terms of $r_0$ using $$ x=x_0-\frac{y^2}{R}. $$ We have that <!-- Equation labels as ordinary links --> <div id="_auto59"></div> $$ \begin{equation} x = r \cos\theta \label{_auto59} \tag{65} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto60"></div> $$ \begin{equation} y = r \sin \theta. \label{_auto60} \tag{66} \end{equation} $$ Using the general solution with eccintricity $\epsilon=1$, we have $$ r(\theta)=\frac{c}{1+\cos\theta}, $$ and multiplying both sides with $1+\cos\theta$ and using that $x=r\cos\theta$, $$ r = c -x, $$ and using that $r^2=x^2+y^2$, we square both sides $$ r^2 = x^2+y^2=c^2 +x^2-2cx, $$ leading to $$ y^2=c^2-2cx, $$ and using that we defined $$ c=2r_0=\frac{L^2}{m\alpha}, $$ we divide by $2c$ and we get the final answer $$ x = r_0 - \frac{y^2}{4r_0} $$ ### Exercise: Parabolic and hyperbolic orbits The solution to the radial function for an inverse-square-law force, see for example Taylor equation (8.59) or the equation above, is $$ r(\phi) = \frac{c}{1+\epsilon\cos{(\phi)}}. $$ For $\epsilon=1$ (or the energy $E=0$) the orbit reduces to a parabola as we saw in the previous exercise, while for $\epsilon > 1$ (or energy positive) the orbit becomes a hyperbola. The equation for a hyperbola in Cartesian coordinates is $$ \frac{(x-\delta)^2}{\alpha^2}-\frac{y^2}{\beta^2}=1. $$ For a hyperbola, identify the constants $\alpha$, $\beta$ and $\delta$ in terms of the constants $c$ and $\epsilon$ for $r(\phi)$. <!-- Equation labels as ordinary links --> <div id="_auto61"></div> $$ \begin{equation} x = r\cos\phi \label{_auto61} \tag{67} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto62"></div> $$ \begin{equation} = \frac{c\cos\phi}{1+\epsilon\cos\phi} \label{_auto62} \tag{68} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto63"></div> $$ \begin{equation} y = r\sin\phi \label{_auto63} \tag{69} \end{equation} $$ <!-- Equation labels as ordinary links --> <div id="_auto64"></div> $$ \begin{equation} = \frac{c\sin\phi}{1+\epsilon\cos\phi} \label{_auto64} \tag{70} \end{equation} $$ Here $\epsilon>1$. We use our equation for $r$, multiply with the denominator $1+\epsilon\cos\phi$ on both sides and have $$ r(1+\epsilon\cos\phi)=c, $$ use $x=r\cos\phi$ and square and use that $r^2=x^2+y^2$ and we have $$ r^2=x^2+y^2=c^2+\epsilon^2x^2-2cx\epsilon, $$ and reorder $$ x^2(\epsilon^2-1)-y^2-2cx\epsilon= -c^2. $$ We complete the square in $x$ by adding and subtracting on both sides $\epsilon^2c^2/(\epsilon^2-1)$ and we obtain $$ (\epsilon^2-1)(x-\delta)^2-y^2= -c^2+\frac{\epsilon^2c^2}{\epsilon^2-1}. $$ Here we have defined $$ \delta = \frac{c\epsilon}{\epsilon^2-1}, $$ and introducing the constants $$ \alpha = \frac{c}{\epsilon^2-1}, $$ and $$ \beta = \frac{c}{\sqrt{\epsilon^2-1}}, $$ we can rewrite the above equation as $$ \frac{(x-\delta)^2}{\alpha^2}-\frac{y^2}{\beta^2}=1, $$ which is nothing but the equation for a hyperbola. ### Exercise: Testing orbit types In this exercise we can use the program for $r(\phi)$ we developed in hw8. We will use an inverse-square-law force as in the previous four exercises. The aim is to see that the orbits we get for $E<0$ become ellipses (or circles), parabola for $E=0$ and hyperbola for $E>0$. An example code is shown here. Here we have defined the constants $L=m=\alpha=1$. Feel free to set new values. **You need also to set the initial conditions** in order to study the different types of orbits. It may be useful to plot the potential here and find the values for the initial conditions that fit $E<0$, $E=0$ and $E>0$. # Common imports import numpy as np import pandas as pd from math import * import matplotlib.pyplot as plt # Simple Gravitational Force -alpha/r DeltaT = 0.01 #set up arrays tfinal = 100.0 n = ceil(tfinal/DeltaT) # set up arrays for t, v and r t = np.zeros(n) v = np.zeros(n) r = np.zeros(n) # Constants of the model, setting all variables to one for simplicity alpha = 1.0 AngMom = 1.0 # The angular momentum m = 1.0 # scale mass to one c1 = AngMom*AngMom/(m*m) c2 = AngMom*AngMom/m # You need to specify the initial conditions # Here we have chosen the conditions which lead to circular orbit and thereby a constant r r0 = (AngMom*AngMom/m/alpha) v0 = 0.0 r[0] = r0 v[0] = v0 # Start integrating using the Velocity-Verlet method for i in range(n-1): # Set up acceleration a = -alpha/(r[i]**2)+c1/(r[i]**3) # update velocity, time and position using the Velocity-Verlet method r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a anew = -alpha/(r[i+1]**2)+c1/(r[i+1]**3) v[i+1] = v[i] + 0.5*DeltaT*(a+anew) t[i+1] = t[i] + DeltaT # Plot position as function of time fig, ax = plt.subplots(2,1) ax[0].set_xlabel('time') ax[0].set_ylabel('radius') ax[0].plot(t,r) ax[1].set_xlabel('time') ax[1].set_ylabel('Velocity') ax[1].plot(t,v) plt.show() Run your code and study and discuss the situations where you have elliptical, parabolic and hyperbolic orbits. Discuss the physics of these cases. The results from the four previous exercises 4 may be useful here. In the code here we have chosen initial conditions which correspond to circular motion. This corresponds to $$ r_{\mathrm{min}} = \frac{L^2}{m\alpha}. $$ Note well that the velocity is now the radial velocity. If we want to study the angular velocity we would need to add the equations for this quantity. The solution to exercises 1-4 give you the minimum $r$ values needed to find the elliptical, parabolic and hyperbolic orbits. For elliptical orbits you should have $\frac{L^2}{2m\alpha} < r_{\mathrm{min}} <\frac{L^2}{m\alpha}$. For parabolic orbits $r_{\mathrm{min}} =\frac{L^2}{m\alpha}$ and for hyperbolic orbits we have $0<r_{\mathrm{min}} <\frac{L^2}{m\alpha}$. Try out these different initial conditions in order to test these different types of motion. ### Exercise: New reference frame Show that if one transforms to a reference frame where the total momentum is zero, $\boldsymbol{p}_1=-\boldsymbol{p}_2$, that the relative momentum $\boldsymbol{q}$ corresponds to either $\boldsymbol{p}_1$ or $-\boldsymbol{p}_2$. This means that in this frame the magnitude of $\boldsymbol{q}$ is one half the magnitude of $\boldsymbol{p}_1-\boldsymbol{p}_2$. ### Exercise: Center of mass and relative coordinates Given the center of mass and relative coordinates $\boldsymbol{R}$ and $\boldsymbol{r}$, respectively, for particles of mass $m_1$ and $m_2$, find the coordinates $\boldsymbol{r}_1$ and $\boldsymbol{r}_2$ in terms of the masses, $\boldsymbol{R}$ and $\boldsymbol{r}$. ### Exercise: Two-body problems Consider a particle of mass $m$ moving in a potential $$ V(r)=\alpha\ln(r/\alpha), $$ where $\alpha$ is a constant. * (a) If the particle is moving in a circular orbit of radius $R$, find the angular frequency $\dot{\theta}$. Solve this by setting $F=-m\dot{\theta}^2r$ (force and acceleration point inward). * (b) Express the angular momentum $L$ in terms of the constant $\alpha$, the mass $m$ and the radius $R$. Also express $R$ in terms of $L$, $\alpha$ and $m$. * (c) Sketch the effective radial potential, $V_{\rm eff}(r)$, for a particle with angular momentum $L$. (No longer necessarily moving in a circular orbit.) * (d) Find the position of the minimum of $V_{\rm eff}$ in terms of $L$, $\alpha$ and $m$, then compare to the result of (b). * (e) What is the effective spring constant for a particle at the minimum of $V_{\rm eff}$? Express your answer in terms of $L$, $m$ and $\alpha$. * (f) What is the angular frequency, $\omega$, for small oscillations of $r$ about the $R_{\rm min}$? Express your answer in terms of $\dot{\theta}$ from part (3a).
41c19da94508fae06a1c001e18307c47af389914
556403cb93b2fdd464c3aef4cba4f1c3dc42e9d7
/Python/venv/Scripts/easy_install-script.py
7f846650c43e425c3d8dd49ca82ecb1272cbbe96
[]
no_license
msivakumarm/PycharmProjects
4d90a0105f334f2393d30fe46dc650808002b4fd
7d84194a576f9ec8356ff272642d07dbddc48d42
refs/heads/master
2020-09-06T14:42:12.945424
2019-11-08T11:42:14
2019-11-08T11:42:14
219,989,724
0
0
null
null
null
null
UTF-8
Python
false
false
448
py
#!C:\Users\SIVA\PycharmProjects\Python\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )
b042fdcacc6b466da8f278faceace2ce9a4f2584
ae81b16cf4242d329dfcb055e85fafe87262cc7f
/leetcode/509斐波那切数列.py
ec74e05e99dfed630718815437601a4785cd97d8
[]
no_license
coquelin77/PyProject
3d2d3870b085c4b7ff41bd200fe025630969ab8e
58e84ed8b3748c6e0f78184ab27af7bff3778cb8
refs/heads/master
2023-03-18T19:14:36.441967
2019-06-19T02:44:22
2019-06-19T02:44:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,009
py
'''斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1. 给定 N,计算 F(N)。 示例 1: 输入:2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1. 示例 2: 输入:3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2. 示例 3: 输入:4 输出:3 解释:F(4) = F(3) + F(2) = 2 + 1 = 3.''' class Solution(object): def fib(self, N): """ :type N: int :rtype: int """ list = [0, 1] if N<2 and N>=0: if N==0: return 0 if N==1: return 1 else: for i in range(2, N+1): add = list[i - 1] + list[i - 2] list.append(add) e = list[-1] return e if __name__ == '__main__': a=Solution() p=a.fib(0) print(p)
31e4b5de766ec1ab842af725b94e2c8ce8339e03
7c04a4dd2159284fe1a1dfef1e88a53757abf843
/orm/sqlalchemy复习/s17.py
bce14ab6016578d3fbc969a6a6996fd70150afbe
[]
no_license
RelaxedDong/flask_advance
f6c24c38e4f3143bb49f3c461011bcad15ea03ae
1cc42cb6c7607f35903f1a2edc3d11a34a5046e1
refs/heads/master
2022-01-07T18:26:00.010508
2019-04-13T09:51:17
2019-04-13T09:51:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,193
py
from sqlalchemy import create_engine, Column, Integer, String, func from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base engine = create_engine("mysql+pymysql://root:[email protected]/ormreview?charset=utf8", encoding='utf8') session = sessionmaker(engine)() Base = declarative_base(engine) class Aticle(Base): __tablename__ = "article" id = Column(Integer, primary_key=True, autoincrement=True) title = Column(String(100), nullable=False) def reset(): Base.metadata.drop_all() Base.metadata.create_all() print('---重置成功---') def query(): #查询不一样的标题 #article = session.query(Aticle.title).distinct().all() #update #session.query(Aticle).filter(Aticle.id==1).update({"title":'updated title'}) #delete # session.query(Aticle).filter(Aticle.id==1).delete() import time start = time.time() articles = session.query(func.count(Aticle.id)).all() end = time.time() print('%f'%(end-start)) #有索引 0.028020 #没有索引 0.388275 print(articles) if __name__ == '__main__': # reset() query()
079d5a036fab015463d7d3b7689f744e6925af06
2781ffdb7dd131c43d5777d33ee002643c839c28
/WebScraping/DatasetScriping.py
949a2f2d7b0afe8876a8d4464e6de15688ba91fb
[]
no_license
AbuBakkar32/Python-Essential-Practice
b5e820d2e27e557b04848b5ec63dd78ae5b554c4
8659cf5652441d32476dfe1a8d90184a9ae92b3b
refs/heads/master
2022-11-13T23:07:16.829075
2020-06-27T18:46:52
2020-06-27T18:46:52
275,432,093
4
0
null
null
null
null
UTF-8
Python
false
false
257
py
import requests from bs4 import BeautifulSoup link = requests.get('https://www.data.gov/') soup = BeautifulSoup(link.text, 'html.parser') data = soup.find_all('small') for i in data: a = i.find('a').text[0:] print('This website has :{}'.format(a))
74de4d362f296692eacb457593fecbd74f4e209d
214bfc26b3982c5c662b50a35756d7070e1664a2
/initial/lm/trainAttention/ARCHIVE_September_2021/matchData_EYE.py
dc65bdc172a3dff3c1273fc2132c6cade23b6b2c
[]
no_license
m-hahn/forgetting-model
cf3f51e40fb53a49e9dfa0c648cd296803eec7ed
4ee0f06c6cd01ffff579cfbca67287cc32fac66c
refs/heads/master
2022-09-03T02:29:56.607656
2022-08-27T13:51:36
2022-08-27T13:51:36
252,456,546
0
1
null
null
null
null
UTF-8
Python
false
false
2,054
py
import os import sys import random from collections import defaultdict with open("/u/scr/mhahn/Dundee/DundeeTreebankTokenized.csv", "r") as inFile: dundee = [x.split("\t") for x in inFile.read().strip().split("\n")] header = dundee[0] header = dict(zip(header, list(range(len(header))))) dundee = dundee[1:] calibrationSentences = [] for i in range(len(dundee)): line = dundee[i] Itemno, WNUM, SentenceID, ID, WORD, Token = line SentenceID = (SentenceID) if i == 0 or SentenceID != dundee[i-1][header["SentenceID"]]: calibrationSentences.append([]) print(SentenceID, dundee[i-1][header["SentenceID"]]) if i > 0 and SentenceID == dundee[i-1][header["SentenceID"]] and ID == dundee[i-1][header["ID"]]: continue else: calibrationSentences[-1].append((WORD.strip(".").strip(",").strip("?").strip(":").strip(";").replace("’", "'").strip("!").lower(), line)) # else: if True: numberOfSamples = 12 with open("analyze_EYE/"+__file__+".tsv", "w") as outFile: # print("\t".join([str(w) for w in [sentenceID, regions[i], remainingInput[i][0]] + remainingInput[i][1] ]), file=outFile) #, file=outFile) # Itemno, WNUM, SentenceID, ID, WORD, Token = line print("\t".join(["Sentence", "Region", "Word", "Itemno", "WNUM", "SentenceID", "ID", "WORD", "Token"]), file=outFile) for sentenceID in range(len(calibrationSentences)): sentence = calibrationSentences[sentenceID] #.lower().replace(".", "").replace(",", "").replace("n't", " n't").split(" ") print(sentence) context = sentence[0] remainingInput = sentence[1:] regions = range(len(sentence)) print("INPUT", context, remainingInput) if len(sentence) < 2: continue assert len(remainingInput) > 0 for i in range(len(remainingInput)): print("\t".join([str(w) for w in [sentenceID, regions[i], remainingInput[i][0]] + remainingInput[i][1] ]), file=outFile) #, file=outFile)
9648e10ec3c1b48598944069a8af287b4bf97fe1
2a1cbd7570ade00e6efb5c39ca9246f05c7f500b
/21/00/0.py
9db06c49841196fdd6336ffd86da7b9713ae110a
[ "CC0-1.0" ]
permissive
pylangstudy/201707
dd5faf446cb0cc3d95f7f9db30f47e0f15400258
c1cc72667f1e0b6e8eef4ee85067d7fa4ca500b6
refs/heads/master
2020-12-03T02:19:42.341198
2017-07-31T00:11:35
2017-07-31T00:11:35
95,927,705
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
from abc import ABCMeta class MyABC(metaclass=ABCMeta): pass MyABC.register(tuple) assert issubclass(tuple, MyABC) assert isinstance((), MyABC)
ccf77c6dbb63b159be375a0549f4330ed4b77ada
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_phalanges.py
95a07958093f090cc6658575ecaed636093c7c0e
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
247
py
from xai.brain.wordbase.nouns._phalanx import _PHALANX #calss header class _PHALANGES(_PHALANX, ): def __init__(self,): _PHALANX.__init__(self) self.name = "PHALANGES" self.specie = 'nouns' self.basic = "phalanx" self.jsondata = {}
df3851986643d89986f27702969b422b0c5e4585
17d05858112c2aa73feab0c054457ce9808797df
/setup.py
6bcb2919589ac0e9e4988473f5290cdcb93a9395
[]
no_license
invisibleroads/invisibleroads-macros-descriptor
ffad4b56c1b9191131a1d85e16a82ea19801ca30
de428ead5cea757ea2f800ace556ded069e53586
refs/heads/master
2023-08-11T17:33:00.458008
2020-11-30T03:48:54
2020-11-30T03:48:54
248,628,719
0
0
null
null
null
null
UTF-8
Python
false
false
1,096
py
from os.path import abspath, dirname, join from setuptools import find_packages, setup ENTRY_POINTS = ''' ''' APP_CLASSIFIERS = [ 'Programming Language :: Python', 'License :: OSI Approved :: MIT License', ] APP_REQUIREMENTS = [ ] TEST_REQUIREMENTS = [ 'pytest', 'pytest-cov', ] FOLDER = dirname(abspath(__file__)) DESCRIPTION = '\n\n'.join(open(join(FOLDER, x)).read().strip() for x in [ 'README.md', 'CHANGES.md']) setup( name='invisibleroads-macros-descriptor', version='1.0.2', description='Shortcut functions for descriptor operations', long_description=DESCRIPTION, long_description_content_type='text/markdown', classifiers=APP_CLASSIFIERS, author='Roy Hyunjin Han', author_email='[email protected]', url=( 'https://github.com/invisibleroads/' 'invisibleroads-macros-descriptor'), keywords='invisibleroads', packages=find_packages(), include_package_data=True, zip_safe=True, extras_require={'test': TEST_REQUIREMENTS}, install_requires=APP_REQUIREMENTS, entry_points=ENTRY_POINTS)
d62ec5ded84e385a5a6f52da4618333cd3e5cec7
037877a31670a85fa78b61df9ceabe981cfdfbf6
/sympy/concrete/gosper.py
76f439ce5d72929e5d79906a18fcaefc30adc036
[]
no_license
certik/sympy_gamma
6343b02e5d6d1c7d511a3329bbbd27cd11cd7ec8
b0e555ca03f8476533cb1c19575f4461533837de
refs/heads/master
2020-12-25T03:52:40.132034
2010-02-15T08:02:31
2010-02-15T08:02:31
344,391
2
2
null
null
null
null
UTF-8
Python
false
false
2,661
py
""" """ from sympy.core.basic import Basic, S from sympy.core.symbol import Symbol from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core import sympify from sympy.polys import gcd, quo, roots, resultant def normal(f, g, n=None): """Given relatively prime univariate polynomials 'f' and 'g', rewrite their quotient to a normal form defined as follows: f(n) A(n) C(n+1) ---- = Z ----------- g(n) B(n) C(n) where Z is arbitrary constant and A, B, C are monic polynomials in 'n' with follwing properties: (1) gcd(A(n), B(n+h)) = 1 for all 'h' in N (2) gcd(B(n), C(n+1)) = 1 (3) gcd(A(n), C(n)) = 1 This normal form, or rational factorization in other words, is crucial step in Gosper's algorithm and in difference equations solving. It can be also used to decide if two hypergeometric are similar or not. This procedure will return return triple containig elements of this factorization in the form (Z*A, B, C). For example: >>> from sympy import Symbol >>> n = Symbol('n', integer=True) >>> normal(4*n+5, 2*(4*n+1)*(2*n+3), n) (1/4, 3/2 + n, 1/4 + n) """ f, g = map(sympify, (f, g)) p = f.as_poly(n) q = g.as_poly(n) a, p = p.LC, p.as_monic() b, q = q.LC, q.as_monic() A = p.as_basic() B = q.as_basic() C, Z = S.One, a / b h = Symbol('h', dummy=True) res = resultant(A, B.subs(n, n+h), n) nni_roots = roots(res, h, domain='Z', predicate=lambda r: r >= 0).keys() if not nni_roots: return (f, g, S.One) else: for i in sorted(nni_roots): d = gcd(A, B.subs(n, n+i), n) A = quo(A, d, n) B = quo(B, d.subs(n, n-i), n) C *= Mul(*[ d.subs(n, n-j) for j in xrange(1, i+1) ]) return (Z*A, B, C) def gosper(term, k, a, n): from sympy.solvers import rsolve_poly if not hyper: return None else: p, q = expr.as_numer_denom() A, B, C = normal(p, q, k) B = B.subs(k, k-1) R = rsolve_poly([-B, A], C, k) symbol = [] if not (R is None or R is S.Zero): if symbol != []: symbol = symbol[0] W = R.subs(symbol, S.Zero) if W is S.Zero: R = R.subs(symbol, S.One) else: R = W Z = B*R*term/C return simplify(Z.subs(k, n+1) - Z.subs(k, a)) else: return None
64d9dc0646e47648a14378c7f64e13b43bf794aa
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/fc/receivefeccountershist.py
0e8130b82af1eba3932723f59a0bef420d485acf
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
19,036
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class ReceiveFecCountersHist(Mo): meta = StatsClassMeta("cobra.model.fc.ReceiveFecCountersHist", "Fec counters") counter = CounterMeta("uncorrected", CounterCategory.COUNTER, "frames", "Uncorrected counters") counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "uncorrectedCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "uncorrectedPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "uncorrectedMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "uncorrectedMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "uncorrectedAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "uncorrectedSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "uncorrectedThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "uncorrectedTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "uncorrectedRate" meta._counters.append(counter) counter = CounterMeta("corrected", CounterCategory.COUNTER, "frames", "Corrected counters") counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "correctedCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "correctedPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "correctedMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "correctedMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "correctedAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "correctedSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "correctedThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "correctedTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "correctedRate" meta._counters.append(counter) meta.isAbstract = True meta.moClassName = "fcReceiveFecCountersHist" meta.moClassName = "fcReceiveFecCountersHist" meta.rnFormat = "" meta.category = MoCategory.STATS_HISTORY meta.label = "historical Fec counters stats" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.superClasses.add("cobra.model.stats.Item") meta.superClasses.add("cobra.model.stats.Hist") meta.concreteSubClasses.add("cobra.model.fc.ReceiveFecCountersHist1mo") meta.concreteSubClasses.add("cobra.model.fc.ReceiveFecCountersHist1h") meta.concreteSubClasses.add("cobra.model.fc.ReceiveFecCountersHist1year") meta.concreteSubClasses.add("cobra.model.fc.ReceiveFecCountersHist1d") meta.concreteSubClasses.add("cobra.model.fc.ReceiveFecCountersHist1qtr") meta.concreteSubClasses.add("cobra.model.fc.ReceiveFecCountersHist1w") meta.concreteSubClasses.add("cobra.model.fc.ReceiveFecCountersHist5min") meta.concreteSubClasses.add("cobra.model.fc.ReceiveFecCountersHist15min") meta.rnPrefixes = [ ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "correctedAvg", "correctedAvg", 45182, PropCategory.IMPLICIT_AVG) prop.label = "Corrected counters average value" prop.isOper = True prop.isStats = True meta.props.add("correctedAvg", prop) prop = PropMeta("str", "correctedCum", "correctedCum", 45178, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "Corrected counters cumulative" prop.isOper = True prop.isStats = True meta.props.add("correctedCum", prop) prop = PropMeta("str", "correctedMax", "correctedMax", 45181, PropCategory.IMPLICIT_MAX) prop.label = "Corrected counters maximum value" prop.isOper = True prop.isStats = True meta.props.add("correctedMax", prop) prop = PropMeta("str", "correctedMin", "correctedMin", 45180, PropCategory.IMPLICIT_MIN) prop.label = "Corrected counters minimum value" prop.isOper = True prop.isStats = True meta.props.add("correctedMin", prop) prop = PropMeta("str", "correctedPer", "correctedPer", 45179, PropCategory.IMPLICIT_PERIODIC) prop.label = "Corrected counters periodic" prop.isOper = True prop.isStats = True meta.props.add("correctedPer", prop) prop = PropMeta("str", "correctedRate", "correctedRate", 45186, PropCategory.IMPLICIT_RATE) prop.label = "Corrected counters rate" prop.isOper = True prop.isStats = True meta.props.add("correctedRate", prop) prop = PropMeta("str", "correctedSpct", "correctedSpct", 45183, PropCategory.IMPLICIT_SUSPECT) prop.label = "Corrected counters suspect count" prop.isOper = True prop.isStats = True meta.props.add("correctedSpct", prop) prop = PropMeta("str", "correctedThr", "correctedThr", 45184, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Corrected counters thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("correctedThr", prop) prop = PropMeta("str", "correctedTr", "correctedTr", 45185, PropCategory.IMPLICIT_TREND) prop.label = "Corrected counters trend" prop.isOper = True prop.isStats = True meta.props.add("correctedTr", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "index", "index", 115, PropCategory.REGULAR) prop.label = "History Index" prop.isImplicit = True prop.isAdmin = True meta.props.add("index", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "uncorrectedAvg", "uncorrectedAvg", 45203, PropCategory.IMPLICIT_AVG) prop.label = "Uncorrected counters average value" prop.isOper = True prop.isStats = True meta.props.add("uncorrectedAvg", prop) prop = PropMeta("str", "uncorrectedCum", "uncorrectedCum", 45199, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "Uncorrected counters cumulative" prop.isOper = True prop.isStats = True meta.props.add("uncorrectedCum", prop) prop = PropMeta("str", "uncorrectedMax", "uncorrectedMax", 45202, PropCategory.IMPLICIT_MAX) prop.label = "Uncorrected counters maximum value" prop.isOper = True prop.isStats = True meta.props.add("uncorrectedMax", prop) prop = PropMeta("str", "uncorrectedMin", "uncorrectedMin", 45201, PropCategory.IMPLICIT_MIN) prop.label = "Uncorrected counters minimum value" prop.isOper = True prop.isStats = True meta.props.add("uncorrectedMin", prop) prop = PropMeta("str", "uncorrectedPer", "uncorrectedPer", 45200, PropCategory.IMPLICIT_PERIODIC) prop.label = "Uncorrected counters periodic" prop.isOper = True prop.isStats = True meta.props.add("uncorrectedPer", prop) prop = PropMeta("str", "uncorrectedRate", "uncorrectedRate", 45207, PropCategory.IMPLICIT_RATE) prop.label = "Uncorrected counters rate" prop.isOper = True prop.isStats = True meta.props.add("uncorrectedRate", prop) prop = PropMeta("str", "uncorrectedSpct", "uncorrectedSpct", 45204, PropCategory.IMPLICIT_SUSPECT) prop.label = "Uncorrected counters suspect count" prop.isOper = True prop.isStats = True meta.props.add("uncorrectedSpct", prop) prop = PropMeta("str", "uncorrectedThr", "uncorrectedThr", 45205, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Uncorrected counters thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("uncorrectedThr", prop) prop = PropMeta("str", "uncorrectedTr", "uncorrectedTr", 45206, PropCategory.IMPLICIT_TREND) prop.label = "Uncorrected counters trend" prop.isOper = True prop.isStats = True meta.props.add("uncorrectedTr", prop) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
bee39884f4e19d05af666738a1bb2b126d605f33
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/insights/v20170401/outputs.py
7ca157a0564561fd13512aa45f207d8e08294d4e
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
21,889
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'ActivityLogAlertActionGroupResponse', 'ActivityLogAlertActionListResponse', 'ActivityLogAlertAllOfConditionResponse', 'ActivityLogAlertLeafConditionResponse', 'AutomationRunbookReceiverResponse', 'AzureAppPushReceiverResponse', 'EmailReceiverResponse', 'ItsmReceiverResponse', 'SmsReceiverResponse', 'WebhookReceiverResponse', ] @pulumi.output_type class ActivityLogAlertActionGroupResponse(dict): """ A pointer to an Azure Action Group. """ @staticmethod def __key_warning(key: str): suggest = None if key == "actionGroupId": suggest = "action_group_id" elif key == "webhookProperties": suggest = "webhook_properties" if suggest: pulumi.log.warn(f"Key '{key}' not found in ActivityLogAlertActionGroupResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ActivityLogAlertActionGroupResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ActivityLogAlertActionGroupResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, action_group_id: str, webhook_properties: Optional[Mapping[str, str]] = None): """ A pointer to an Azure Action Group. :param str action_group_id: The resourceId of the action group. This cannot be null or empty. :param Mapping[str, str] webhook_properties: the dictionary of custom properties to include with the post operation. These data are appended to the webhook payload. """ pulumi.set(__self__, "action_group_id", action_group_id) if webhook_properties is not None: pulumi.set(__self__, "webhook_properties", webhook_properties) @property @pulumi.getter(name="actionGroupId") def action_group_id(self) -> str: """ The resourceId of the action group. This cannot be null or empty. """ return pulumi.get(self, "action_group_id") @property @pulumi.getter(name="webhookProperties") def webhook_properties(self) -> Optional[Mapping[str, str]]: """ the dictionary of custom properties to include with the post operation. These data are appended to the webhook payload. """ return pulumi.get(self, "webhook_properties") @pulumi.output_type class ActivityLogAlertActionListResponse(dict): """ A list of activity log alert actions. """ @staticmethod def __key_warning(key: str): suggest = None if key == "actionGroups": suggest = "action_groups" if suggest: pulumi.log.warn(f"Key '{key}' not found in ActivityLogAlertActionListResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ActivityLogAlertActionListResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ActivityLogAlertActionListResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, action_groups: Optional[Sequence['outputs.ActivityLogAlertActionGroupResponse']] = None): """ A list of activity log alert actions. :param Sequence['ActivityLogAlertActionGroupResponse'] action_groups: The list of activity log alerts. """ if action_groups is not None: pulumi.set(__self__, "action_groups", action_groups) @property @pulumi.getter(name="actionGroups") def action_groups(self) -> Optional[Sequence['outputs.ActivityLogAlertActionGroupResponse']]: """ The list of activity log alerts. """ return pulumi.get(self, "action_groups") @pulumi.output_type class ActivityLogAlertAllOfConditionResponse(dict): """ An Activity Log alert condition that is met when all its member conditions are met. """ @staticmethod def __key_warning(key: str): suggest = None if key == "allOf": suggest = "all_of" if suggest: pulumi.log.warn(f"Key '{key}' not found in ActivityLogAlertAllOfConditionResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ActivityLogAlertAllOfConditionResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ActivityLogAlertAllOfConditionResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, all_of: Sequence['outputs.ActivityLogAlertLeafConditionResponse']): """ An Activity Log alert condition that is met when all its member conditions are met. :param Sequence['ActivityLogAlertLeafConditionResponse'] all_of: The list of activity log alert conditions. """ pulumi.set(__self__, "all_of", all_of) @property @pulumi.getter(name="allOf") def all_of(self) -> Sequence['outputs.ActivityLogAlertLeafConditionResponse']: """ The list of activity log alert conditions. """ return pulumi.get(self, "all_of") @pulumi.output_type class ActivityLogAlertLeafConditionResponse(dict): """ An Activity Log alert condition that is met by comparing an activity log field and value. """ def __init__(__self__, *, equals: str, field: str): """ An Activity Log alert condition that is met by comparing an activity log field and value. :param str equals: The field value will be compared to this value (case-insensitive) to determine if the condition is met. :param str field: The name of the field that this condition will examine. The possible values for this field are (case-insensitive): 'resourceId', 'category', 'caller', 'level', 'operationName', 'resourceGroup', 'resourceProvider', 'status', 'subStatus', 'resourceType', or anything beginning with 'properties.'. """ pulumi.set(__self__, "equals", equals) pulumi.set(__self__, "field", field) @property @pulumi.getter def equals(self) -> str: """ The field value will be compared to this value (case-insensitive) to determine if the condition is met. """ return pulumi.get(self, "equals") @property @pulumi.getter def field(self) -> str: """ The name of the field that this condition will examine. The possible values for this field are (case-insensitive): 'resourceId', 'category', 'caller', 'level', 'operationName', 'resourceGroup', 'resourceProvider', 'status', 'subStatus', 'resourceType', or anything beginning with 'properties.'. """ return pulumi.get(self, "field") @pulumi.output_type class AutomationRunbookReceiverResponse(dict): """ The Azure Automation Runbook notification receiver. """ @staticmethod def __key_warning(key: str): suggest = None if key == "automationAccountId": suggest = "automation_account_id" elif key == "isGlobalRunbook": suggest = "is_global_runbook" elif key == "runbookName": suggest = "runbook_name" elif key == "webhookResourceId": suggest = "webhook_resource_id" elif key == "serviceUri": suggest = "service_uri" if suggest: pulumi.log.warn(f"Key '{key}' not found in AutomationRunbookReceiverResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: AutomationRunbookReceiverResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: AutomationRunbookReceiverResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, automation_account_id: str, is_global_runbook: bool, runbook_name: str, webhook_resource_id: str, name: Optional[str] = None, service_uri: Optional[str] = None): """ The Azure Automation Runbook notification receiver. :param str automation_account_id: The Azure automation account Id which holds this runbook and authenticate to Azure resource. :param bool is_global_runbook: Indicates whether this instance is global runbook. :param str runbook_name: The name for this runbook. :param str webhook_resource_id: The resource id for webhook linked to this runbook. :param str name: Indicates name of the webhook. :param str service_uri: The URI where webhooks should be sent. """ pulumi.set(__self__, "automation_account_id", automation_account_id) pulumi.set(__self__, "is_global_runbook", is_global_runbook) pulumi.set(__self__, "runbook_name", runbook_name) pulumi.set(__self__, "webhook_resource_id", webhook_resource_id) if name is not None: pulumi.set(__self__, "name", name) if service_uri is not None: pulumi.set(__self__, "service_uri", service_uri) @property @pulumi.getter(name="automationAccountId") def automation_account_id(self) -> str: """ The Azure automation account Id which holds this runbook and authenticate to Azure resource. """ return pulumi.get(self, "automation_account_id") @property @pulumi.getter(name="isGlobalRunbook") def is_global_runbook(self) -> bool: """ Indicates whether this instance is global runbook. """ return pulumi.get(self, "is_global_runbook") @property @pulumi.getter(name="runbookName") def runbook_name(self) -> str: """ The name for this runbook. """ return pulumi.get(self, "runbook_name") @property @pulumi.getter(name="webhookResourceId") def webhook_resource_id(self) -> str: """ The resource id for webhook linked to this runbook. """ return pulumi.get(self, "webhook_resource_id") @property @pulumi.getter def name(self) -> Optional[str]: """ Indicates name of the webhook. """ return pulumi.get(self, "name") @property @pulumi.getter(name="serviceUri") def service_uri(self) -> Optional[str]: """ The URI where webhooks should be sent. """ return pulumi.get(self, "service_uri") @pulumi.output_type class AzureAppPushReceiverResponse(dict): """ The Azure mobile App push notification receiver. """ @staticmethod def __key_warning(key: str): suggest = None if key == "emailAddress": suggest = "email_address" if suggest: pulumi.log.warn(f"Key '{key}' not found in AzureAppPushReceiverResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: AzureAppPushReceiverResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: AzureAppPushReceiverResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, email_address: str, name: str): """ The Azure mobile App push notification receiver. :param str email_address: The email address registered for the Azure mobile app. :param str name: The name of the Azure mobile app push receiver. Names must be unique across all receivers within an action group. """ pulumi.set(__self__, "email_address", email_address) pulumi.set(__self__, "name", name) @property @pulumi.getter(name="emailAddress") def email_address(self) -> str: """ The email address registered for the Azure mobile app. """ return pulumi.get(self, "email_address") @property @pulumi.getter def name(self) -> str: """ The name of the Azure mobile app push receiver. Names must be unique across all receivers within an action group. """ return pulumi.get(self, "name") @pulumi.output_type class EmailReceiverResponse(dict): """ An email receiver. """ @staticmethod def __key_warning(key: str): suggest = None if key == "emailAddress": suggest = "email_address" if suggest: pulumi.log.warn(f"Key '{key}' not found in EmailReceiverResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: EmailReceiverResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: EmailReceiverResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, email_address: str, name: str, status: str): """ An email receiver. :param str email_address: The email address of this receiver. :param str name: The name of the email receiver. Names must be unique across all receivers within an action group. :param str status: The receiver status of the e-mail. """ pulumi.set(__self__, "email_address", email_address) pulumi.set(__self__, "name", name) pulumi.set(__self__, "status", status) @property @pulumi.getter(name="emailAddress") def email_address(self) -> str: """ The email address of this receiver. """ return pulumi.get(self, "email_address") @property @pulumi.getter def name(self) -> str: """ The name of the email receiver. Names must be unique across all receivers within an action group. """ return pulumi.get(self, "name") @property @pulumi.getter def status(self) -> str: """ The receiver status of the e-mail. """ return pulumi.get(self, "status") @pulumi.output_type class ItsmReceiverResponse(dict): """ An Itsm receiver. """ @staticmethod def __key_warning(key: str): suggest = None if key == "connectionId": suggest = "connection_id" elif key == "ticketConfiguration": suggest = "ticket_configuration" elif key == "workspaceId": suggest = "workspace_id" if suggest: pulumi.log.warn(f"Key '{key}' not found in ItsmReceiverResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ItsmReceiverResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ItsmReceiverResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, connection_id: str, name: str, region: str, ticket_configuration: str, workspace_id: str): """ An Itsm receiver. :param str connection_id: Unique identification of ITSM connection among multiple defined in above workspace. :param str name: The name of the Itsm receiver. Names must be unique across all receivers within an action group. :param str region: Region in which workspace resides. Supported values:'centralindia','japaneast','southeastasia','australiasoutheast','uksouth','westcentralus','canadacentral','eastus','westeurope' :param str ticket_configuration: JSON blob for the configurations of the ITSM action. CreateMultipleWorkItems option will be part of this blob as well. :param str workspace_id: OMS LA instance identifier. """ pulumi.set(__self__, "connection_id", connection_id) pulumi.set(__self__, "name", name) pulumi.set(__self__, "region", region) pulumi.set(__self__, "ticket_configuration", ticket_configuration) pulumi.set(__self__, "workspace_id", workspace_id) @property @pulumi.getter(name="connectionId") def connection_id(self) -> str: """ Unique identification of ITSM connection among multiple defined in above workspace. """ return pulumi.get(self, "connection_id") @property @pulumi.getter def name(self) -> str: """ The name of the Itsm receiver. Names must be unique across all receivers within an action group. """ return pulumi.get(self, "name") @property @pulumi.getter def region(self) -> str: """ Region in which workspace resides. Supported values:'centralindia','japaneast','southeastasia','australiasoutheast','uksouth','westcentralus','canadacentral','eastus','westeurope' """ return pulumi.get(self, "region") @property @pulumi.getter(name="ticketConfiguration") def ticket_configuration(self) -> str: """ JSON blob for the configurations of the ITSM action. CreateMultipleWorkItems option will be part of this blob as well. """ return pulumi.get(self, "ticket_configuration") @property @pulumi.getter(name="workspaceId") def workspace_id(self) -> str: """ OMS LA instance identifier. """ return pulumi.get(self, "workspace_id") @pulumi.output_type class SmsReceiverResponse(dict): """ An SMS receiver. """ @staticmethod def __key_warning(key: str): suggest = None if key == "countryCode": suggest = "country_code" elif key == "phoneNumber": suggest = "phone_number" if suggest: pulumi.log.warn(f"Key '{key}' not found in SmsReceiverResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: SmsReceiverResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: SmsReceiverResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, country_code: str, name: str, phone_number: str, status: str): """ An SMS receiver. :param str country_code: The country code of the SMS receiver. :param str name: The name of the SMS receiver. Names must be unique across all receivers within an action group. :param str phone_number: The phone number of the SMS receiver. :param str status: The status of the receiver. """ pulumi.set(__self__, "country_code", country_code) pulumi.set(__self__, "name", name) pulumi.set(__self__, "phone_number", phone_number) pulumi.set(__self__, "status", status) @property @pulumi.getter(name="countryCode") def country_code(self) -> str: """ The country code of the SMS receiver. """ return pulumi.get(self, "country_code") @property @pulumi.getter def name(self) -> str: """ The name of the SMS receiver. Names must be unique across all receivers within an action group. """ return pulumi.get(self, "name") @property @pulumi.getter(name="phoneNumber") def phone_number(self) -> str: """ The phone number of the SMS receiver. """ return pulumi.get(self, "phone_number") @property @pulumi.getter def status(self) -> str: """ The status of the receiver. """ return pulumi.get(self, "status") @pulumi.output_type class WebhookReceiverResponse(dict): """ A webhook receiver. """ @staticmethod def __key_warning(key: str): suggest = None if key == "serviceUri": suggest = "service_uri" if suggest: pulumi.log.warn(f"Key '{key}' not found in WebhookReceiverResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: WebhookReceiverResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: WebhookReceiverResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, name: str, service_uri: str): """ A webhook receiver. :param str name: The name of the webhook receiver. Names must be unique across all receivers within an action group. :param str service_uri: The URI where webhooks should be sent. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "service_uri", service_uri) @property @pulumi.getter def name(self) -> str: """ The name of the webhook receiver. Names must be unique across all receivers within an action group. """ return pulumi.get(self, "name") @property @pulumi.getter(name="serviceUri") def service_uri(self) -> str: """ The URI where webhooks should be sent. """ return pulumi.get(self, "service_uri")
81efde228ef6de285080c846e3a219b46e2322e7
d5a4fe6a8d466dce3c131c9678e86398b17b27c5
/Finite Difference Computing with Exponential Decay_HPL/SF_FDCED/softeng/decay_flat.py
26557b62d82049ce8043028498525738a4bb08ef
[]
no_license
AaronCHH/B_PYTHON_Numerical
d8fe3ec843dc1b1b35a407134980027ac5516721
d369d73f443cc9afdb0a10912b539bc8c48f7d4a
refs/heads/master
2021-01-19T10:14:57.903055
2017-06-21T05:21:21
2017-06-21T05:21:21
87,845,435
0
0
null
null
null
null
UTF-8
Python
false
false
840
py
from numpy import * from matplotlib.pyplot import * I = 1 a = 2 T = 4 dt = 0.2 Nt = int(round(T/dt)) # no of time intervals u = zeros(Nt+1) # array of u[n] values t = linspace(0, T, Nt+1) # time mesh theta = 1 # Backward Euler method u[0] = I # assign initial condition for n in range(0, Nt): # n=0,1,...,Nt-1 u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n] # Compute norm of the error u_e = I*exp(-a*t) - u # exact u at the mesh points error = u_e - u E = sqrt(dt*sum(error**2)) print 'Norm of the error: %.3E' % E # Compare numerical (u) and exact solution (u_e) in a plot plot(t, u, 'r--o') t_e = linspace(0, T, 1001) # very fine mesh for u_e u_e = I*exp(-a*t_e) plot(t_e, u_e, 'b-') legend(['numerical, theta=%g' % theta, 'exact']) xlabel('t') ylabel('u') show()
8a569eaf12f58d883faecc822a171a6d31d01b88
de9fe69314068eea0e66500144c382de149e1882
/backend/bruhcult_18193/wsgi.py
f972466a75ac627b92d1a22c6584755e6c690ba6
[]
no_license
crowdbotics-apps/bruhcult-18193
35d7ee7c14fb92ae8d52b9f4a5688ef725421735
c82fd627b8e28155292a073e2c1fd8d2422cf72f
refs/heads/master
2022-11-08T12:18:49.426568
2020-06-18T19:15:10
2020-06-18T19:15:10
273,281,748
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
""" WSGI config for bruhcult_18193 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "bruhcult_18193.settings") application = get_wsgi_application()
aa609bf28d3a0cdc57bab21c53b69728615ad8d5
93e55f080779f16f47a7382a3fb0b29a4189e074
/convertor/huawei/te/tik/tik_lib/tik_conf_.py
8a618ab5b76cc48f38139fb0c205cb300d15e6f9
[]
no_license
jizhuoran/caffe-huawei-atlas-convertor
b00cfdec3888da3bb18794f52a41deea316ada67
148511a31bfd195df889291946c43bb585acb546
refs/heads/master
2022-11-25T13:59:45.181910
2020-07-31T07:37:02
2020-07-31T07:37:02
283,966,371
4
2
null
null
null
null
UTF-8
Python
false
false
10,844
py
""" Copyright (R) @huawei.com, all rights reserved -*- coding:utf-8 -*- FILE: tik_conf_.py DESC: configuration of tik CREATED: 2019-04-18 18:53:42 MODIFIED: 2019-07-25 09:59:30 """ from te.platform.cce_conf import te_set_version from te.platform.cce_conf import cceProduct from te.platform.cce_conf import get_soc_spec from te.platform.cce_params import scope_cbuf from te.platform.cce_params import scope_ubuf from te.platform.cce_params import scope_ca from te.platform.cce_params import scope_cb from te.platform.cce_params import scope_cc from te.platform.cce_params import scope_smask from te.platform.cce_params import AIC from te.platform.cce_params import HI3796CV300ESAIC from te.platform.cce_params import VEC from te.platform.cce_params import ASCEND_310AIC from te.platform.cce_params import ASCEND_910AIC from .tik_params import KB_SIZE, L1_BUFFER, UB_BUFFER,\ L0A_BUFFER, L0B_BUFFER, LOC_BUFFER, SMASK_BUFFER, \ AI_CORE_VERSION_MAP_TO_PRODUCT from .tik_source_info import TikSourceInfo, source_info_decorator from .tik_check_util import TikCheckUtil from ..common.tik_get_soc_name import get_soc_name from ..common.tik_get_soc_name import get_soc_core_type def _get_buffers_parameter(buffer_arch_list): """ According D core information,buffers parameters can be known. Parameters ---------- buffer_arch_list:D aicore information Returns ---------- return:buffers_map buffers_map: L0A/B/C,L1 and UB buffer memory size """ buffer_names = [L1_BUFFER, UB_BUFFER, L0A_BUFFER, L0B_BUFFER, LOC_BUFFER, SMASK_BUFFER] buffer_arch = {} for buffer_params in buffer_arch_list: for buffer_name in buffer_names: if buffer_params.find(buffer_name) == 0: buffer_paras = buffer_params.split(' ') if buffer_name == SMASK_BUFFER: buffer_size = buffer_paras[-1].split("B")[0] buffer_arch[buffer_name] = int(buffer_size) else: buffer_size = buffer_paras[-1].split("KB")[0] buffer_arch[buffer_name] = int(buffer_size)*KB_SIZE return buffer_arch class Dprofile1(): """ ai_core profile explanation """ _SMASK_MAP = { AIC: 256, VEC: 0, HI3796CV300ESAIC: 256, ASCEND_310AIC: 0, ASCEND_910AIC: 0 } def __init__(self, ai_core_arch=None, ai_core_version=None, ddk_version=None): """ ai_core profile initialization Parameters ---------- ai_core_arch : ai_core architecture ai_core_version: ai_core version Returns ------- """ # need TikSourceInfo() init function to set source_info None first self.source_info = TikSourceInfo() self.source_info.register_source_info(depth=2) if ddk_version is not None: self.ddk_version = ddk_version cceProduct(self.ddk_version) elif SetProductFlag.is_set_product_version or \ (ai_core_arch is None or ai_core_version is None): # ge do the init! pass else: TikCheckUtil.check_type_match(ai_core_arch, str, "ai_core_arch should be str") TikCheckUtil.check_type_match(ai_core_version, str, "ai_core_version should be str") self.ai_core_arch = ai_core_arch.lower() self.ai_core_version = ai_core_version.lower() # version self.ddk_version = _gen_version(self.ai_core_arch, self.ai_core_version) cceProduct(self.ddk_version) # we will use cce product params to represent ai core arch and version. # map for save device buffer info self.ai_core_buffer = {} self.registe() self.source_info.clear_source_info() def registe(self): """ ai_core register configure Parameters ---------- Returns ------- return:no return """ # get the device buffer info _smask_map = { AIC: 256, VEC: 0, HI3796CV300ESAIC: 256, ASCEND_310AIC: 0, ASCEND_910AIC: 0 } l1_buffer = _get_l1_size() ub_buffer = _get_ub_size() l0a_buffer = _get_l0a_size() l0b_buffer = _get_l0b_size() l0c_buffer = _get_l0c_size() smask_buffer = _smask_map[get_soc_name() + get_soc_core_type()] key_name = get_soc_name() + get_soc_core_type() # save the device buffer info into the map self.ai_core_buffer[key_name] = ["L1_Buffer: " + str(l1_buffer // KB_SIZE) + "KB", "Unified_Buffer: " + str(ub_buffer // KB_SIZE) + "KB", "L0A_Buffer: " + str(l0a_buffer // KB_SIZE) + "KB", "L0B_Buffer: " + str(l0b_buffer // KB_SIZE) + "KB", "L0C_Buffer: " + str(l0c_buffer // KB_SIZE) + "KB", "SMASK_Buffer: " + str(smask_buffer) + "B" ] @source_info_decorator() def get_aicore_num(self): """ return ai_core number for specify ai core Parameters ---------- Returns ------- return:ai_core number """ return get_soc_spec("CORE_NUM") def buffer_size_query(self, buffer_scope=None): """ according the AI core params, get the buffer params for_example:LOA/B/C,L01,UB buffer Parameters ---------- buffer_scope:value is scope_cbuf, scope_ubuf, scope_ca scope_cb, scope_cc Returns ------- return:ai_core buffer params """ key_map = {scope_cbuf: L1_BUFFER, scope_ubuf: UB_BUFFER, scope_ca: L0A_BUFFER, scope_cb: L0B_BUFFER, scope_cc: LOC_BUFFER, scope_smask: SMASK_BUFFER} key_name = get_soc_name() + get_soc_core_type() buffer_arch_list = self.ai_core_buffer[key_name] buffer_arch = _get_buffers_parameter(buffer_arch_list) if buffer_scope is None: buffer_map = {scope_cbuf: 0, scope_ubuf: 0, scope_ca: 0, scope_cb: 0, scope_cc: 0, scope_smask: 0} for scope in key_map: buffer_map[scope] = buffer_arch[key_map[scope]] return buffer_map TikCheckUtil.check_in_range( buffer_scope, key_map.keys(), "buffer_scope value is not correct!") return buffer_arch[key_map[buffer_scope]] @source_info_decorator() def get_l1_buffer_size(self): """ return l1 buffer size for specify ai core Parameters ---------- Returns ------- return:l1_buffer_size """ return _get_l1_size() @source_info_decorator() def get_l0a_buffer_size(self): """ return l0a_buffer buffer size for specify ai core Parameters ---------- Returns ------- return:l0a_buffer_size """ return _get_l0a_size() @source_info_decorator() def get_l0b_buffer_size(self): """ return l0b_buffer buffer size for specify ai core Parameters ---------- Returns ------- return:l0a_buffer_size """ return _get_l0b_size() @source_info_decorator() def get_l0c_buffer_size(self): """ return l0c_buffer buffer size for specify ai core Parameters ---------- Returns ------- return:l0c_buffer_size """ return _get_l0c_size() @source_info_decorator() def get_product_name(self): """ return product_name for specify ai core Parameters ---------- Returns ------- return:product_name """ return _get_product_name() def _get_product_name(): """ return a tuple, include version and product name Parameters ---------- product:ddk version, like 1.1.xxx.xxx Returns ------- return:a tuple represents current product, like v100, mini """ product_name = get_soc_name() + get_soc_core_type() if product_name in AI_CORE_VERSION_MAP_TO_PRODUCT: return AI_CORE_VERSION_MAP_TO_PRODUCT[product_name] return TikCheckUtil.raise_error( "Not valid product version for tik:" + product_name) def set_product_version(version): """set version info Parameters ---------- version : str product name format: <major>.<middle>.<minor>.<point> major: 1xx or 2xx or 3xx """ # need TikSourceInfo() init function to set source_info None first TikSourceInfo().register_source_info() te_set_version(version) SetProductFlag.is_set_product_version = True TikSourceInfo.clear_source_info() def unset_product_version(): """unset SetProductFlag to false """ # need TikSourceInfo() init function to set source_info None first TikSourceInfo().register_source_info() SetProductFlag.is_set_product_version = False TikSourceInfo.clear_source_info() class SetProductFlag(): """ use to show whether has set product version """ is_set_product_version = False def __str__(self): pass def __hash__(self): pass def _get_ub_size(): return get_soc_spec("UB_SIZE") def _get_l0a_size(): return get_soc_spec("L0A_SIZE") def _get_l0b_size(): return get_soc_spec("L0B_SIZE") def _get_l0c_size(): return get_soc_spec("L0C_SIZE") def _get_l1_size(): return get_soc_spec("L1_SIZE") def _gen_version(arch, version): """ gen version :param arch: :param version: :return: string ddk version """ if arch == "v100": if version == "mini": return "1.1.xxx.xxx" if version == "cloud": return "1.60.xxx.xxx" TikCheckUtil.raise_error("Error chip!") elif arch == "v200": if version == "aic": return "2.10.xxx.xxx" if version in ("hisi-es", "hisi-cs"): return "5.10.xxx.xxx" if version == "vec": return "3.20.xxx.xxx" TikCheckUtil.raise_error("Error chip!")
460b60c4a8cdb5b8753f5e3e2789318b3fea73b4
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/jmZe7R4ibXkrQbogr_0.py
46152937d3897c2b43d87c5e4b43b440156a655f
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
847
py
""" Write a **regular expression** that checks to see if a password is valid. For a password to be valid, it must meet the following requirments: 1. The password must contain at least one uppercase character. 2. The password must contain at least one lowercase character. 3. The password must contain at least one number. 4. The password must contain at least one special character `! ? * #` 5. The password must be at least 8 characters in length. ### Examples "Password*12" ➞ True "passWORD12!" ➞ True "Pass" ➞ False ### Notes * The lowercase char, uppercase char, special char, and number can appear at any part of the password. * **You will only be writing a regular expression; do not write a function.** """ import re r="^(?=.*[a-z])(?=.*[A-Z])(?=.*\d)(?=.*[!*#?])[A-Za-z\d!#*?]{8,}$"
fa23bb740b0242e213687ec80b61153c25233105
1cadec31e3f5c71407a67b4676fdc9e1ab9891bf
/modoboa/extensions/admin/forms/__init__.py
5bfbed71114c50c36aac8fb32d3ac51b92833677
[ "ISC" ]
permissive
SonRiab/modoboa
9b840b639e6e05a8e6145bffd45ddd1ce90a2b8b
97db0811c089aa477b21f28f318ab631d20cf108
refs/heads/master
2020-12-25T09:09:27.286185
2014-08-13T09:58:22
2014-08-13T09:58:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
676
py
from .domain import DomainFormGeneral, DomainFormOptions, DomainForm from .account import ( AccountFormGeneral, AccountFormMail, AccountPermissionsForm, AccountForm ) from .alias import AliasForm from .forward import ForwardForm from .import_ import ImportDataForm, ImportIdentitiesForm from .export import ExportDataForm, ExportDomainsForm, ExportIdentitiesForm __all__ = [ 'DomainFormGeneral', 'DomainFormOptions', 'DomainForm', 'AccountFormGeneral', 'AccountFormMail', 'AccountPermissionsForm', 'AccountForm', 'AliasForm', 'ImportDataForm', 'ImportIdentitiesForm', 'ExportDataForm', 'ExportDomainsForm', 'ExportIdentitiesForm', 'ForwardForm' ]
7e2e79ddfb16ee42977e799c3cf15480e2b87a9f
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p04046/s526215955.py
321044d84612a39406e8d438749ed1e56e37746f
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
200
py
m=10**9+7 h,w,a,b=map(int,input().split()) d=c=1 for i in range(h-1): d=c=c*(w+h-b-2-i)*pow(i+1,m-2,m)%m for i in range(1,h-a): c=c*(b-1+i)*(h-i)*pow(i*(w+h-b-1-i),m-2,m)%m d+=c print(d%m)
471f4a97647808b279d4134c0ea9d027ab9c2229
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/place/different_eye/new_time.py
c6abfe47f36c42f4f14c519a34724907fd677864
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
#! /usr/bin/env python def way_or_child(str_arg): week(str_arg) print('case_or_week') def week(str_arg): print(str_arg) if __name__ == '__main__': way_or_child('last_government_and_next_fact')
55bfa04f5f0c6a8178be290cfe54075f6133963e
e2969ce860cba03add07d3b6412397d337b8b0a1
/algorithms/sorting/2_median_of_medians/solution/solution.py
af924bcc4a21f05025bc57bdf3318b334ac67747
[]
no_license
AshRavi7/Exercises
cfe16ef1d7a248b1fead12e3fb4dd0b26205de07
0a2738771e03b36e353cc25edfc7d8b8a0e4b2fe
refs/heads/master
2022-12-20T08:30:04.104476
2020-09-11T15:58:46
2020-09-11T15:58:46
290,986,365
0
0
null
2020-08-28T07:56:53
2020-08-28T07:56:52
null
UTF-8
Python
false
false
36
py
def median_of_medians(lst): pass
ca7a2aa1310b5cf5fe2bc79a782b7d9bba4daaed
46ac378de81b13359ceff567b8ec1b04cda1d4d5
/luddite/app.py
dc79b95750eafccdf985da0f64d4caa7ea8b20f0
[ "MIT" ]
permissive
ntoll/luddite
f54f8c4564590e57bdc97b7f3ee9847f7e940849
e234a955db16391d9cd9b4cd97c214c954e5697d
refs/heads/master
2021-01-11T22:10:52.120319
2017-01-23T09:53:29
2017-01-23T09:53:29
78,933,221
7
2
null
2017-01-20T20:46:05
2017-01-14T10:15:20
Python
UTF-8
Python
false
false
871
py
""" Luddite - the anti-browser. :-) """ import os import logging from luddite import __version__ from luddite.browser import Browser def setup_logging(): """ This could probably be more elegant. """ home = os.path.expanduser('~') log_dir = os.path.join(home, 'luddite') log_file = os.path.join(log_dir, 'luddite.log') if not os.path.exists(log_dir): os.makedirs(log_dir) log_fmt = '%(asctime)s - %(name)s(%(funcName)s) %(levelname)s: %(message)s' logging.basicConfig(filename=log_file, filemode='w', format=log_fmt, level=logging.DEBUG) print('Logging to {}'.format(log_file)) def run(urls): setup_logging() logging.info('Starting Luddite {}'.format(__version__)) logging.info(urls) browser = Browser() for url in urls: browser.create_tab(url) browser.mainloop()
8f181a38345a7cd75b67289817a44b5871fe08f4
000d7a149b59b9e23ca31a34cd07ce62bb7bcae4
/models/linktracker.py
83e9e4d6130876b20bb212924e6914ad9e00e321
[ "MIT" ]
permissive
Lumiare1/tyggbot
37ce0f2d2a697b0e673b83b02eb032c43deced3a
5a1e09504304f966f73344ca6ee27d7f4c20fc6e
refs/heads/master
2021-01-16T17:59:14.656659
2015-10-04T11:03:45
2015-10-04T11:03:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,792
py
import logging import datetime import pymysql from urllib.parse import urlsplit log = logging.getLogger('tyggbot') class LinkTrackerLink: @classmethod def load(cls, cursor, url): link = cls() cursor.execute('SELECT * FROM `tb_link_data` WHERE `url`=%s', [url]) row = cursor.fetchone() if row: # We found a link matching this URL in the database! link.id = row['id'] link.url = row['url'] link.times_linked = row['times_linked'] link.first_linked = row['first_linked'] link.last_linked = row['last_linked'] link.needs_sync = False else: # No link was found with this URL, create a new one! link.id = -1 link.url = url link.times_linked = 0 link.first_linked = datetime.datetime.now() link.last_linked = datetime.datetime.now() link.needs_sync = False return link def increment(self): self.times_linked += 1 self.last_linked = datetime.datetime.now() self.needs_sync = True def sync(self, cursor): _first_linked = self.first_linked.strftime('%Y-%m-%d %H:%M:%S') _last_linked = self.last_linked.strftime('%Y-%m-%d %H:%M:%S') if self.id == -1: cursor.execute('INSERT INTO `tb_link_data` (`url`, `times_linked`, `first_linked`, `last_linked`) VALUES (%s, %s, %s, %s)', [self.url, self.times_linked, _first_linked, _last_linked]) self.id = cursor.lastrowid else: cursor.execute('UPDATE `tb_link_data` SET `times_linked`=%s, `last_linked`=%s WHERE `id`=%s', [self.times_linked, _last_linked, self.id]) class LinkTracker: def __init__(self, sqlconn): self.sqlconn = sqlconn self.links = {} def add(self, url): url_data = urlsplit(url) if url_data.netloc[:4] == 'www.': netloc = url_data.netloc[4:] else: netloc = url_data.netloc if url_data.path.endswith('/'): path = url_data.path[:-1] else: path = url_data.path if len(url_data.query) > 0: query = '?' + url_data.query else: query = '' url = netloc + path + query if url not in self.links: self.links[url] = LinkTrackerLink.load(self.sqlconn.cursor(pymysql.cursors.DictCursor), url) self.links[url].increment() def sync(self): self.sqlconn.autocommit(False) cursor = self.sqlconn.cursor() for link in [link for k, link in self.links.items() if link.needs_sync]: link.sync(cursor) cursor.close() self.sqlconn.autocommit(True)
518672544e321b6bed89cfb0a084186f20f524b8
38422c3edeb269926502fed31a0761aff8dd3d3b
/Swanepoel_analysis/Swanepoel_analysis/config_files/ek036-4_config.py
79e82e0ebd6416bc263e9bebbc4bb486c1ccf30f
[]
no_license
vfurtula/Alle-projekter
2dab3ccbf7ddb6be3ee09f9f5e87085f354dd84a
da3d7c9611088043e2aea5d844f1ae6056215e04
refs/heads/master
2022-06-07T05:17:35.327228
2020-04-30T10:28:48
2020-04-30T10:28:48
260,180,957
0
0
null
null
null
null
UTF-8
Python
false
false
687
py
loadSubOlis=["/home/vfurtula/Documents/Projects/Swanepoel_analysis/data/sapphirejune16.asc",True] loadSubFilmOlis=["/home/vfurtula/Documents/Projects/Swanepoel_analysis/data/ek036-4.asc",True] loadSubFTIR=["/home/vfurtula/Documents/Projects/Swanepoel_analysis/data/SAPPHIREJUNE16.DPT",True] loadSubFilmFTIR=["/home/vfurtula/Documents/Projects/Swanepoel_analysis/data/EK036-4.DPT",True] fit_linear_spline="spline" gaussian_factors=[7.25, 1.0, 0.75, 0.0] gaussian_borders=[0.225, 0.6, 0.8, 1.6, 3.25] ignore_data_pts=45 corr_slit=1 fit_poly_order=4 fit_poly_ranges=[[0.6, 0.95, 1.5, 2.5],True] filename="save_to_file" folder="save_to_folde" timestr="180223-1627" save_figs=True plot_X="eV"
49ad7fbd531626b902b58ec3a7df9d440d97e36b
a518141ca3ba2b6fa63a7961b51936d9438ff022
/401 - Palindromes.py
c489ec9ee8ebc9e83818d1be9f90a8116897be74
[]
no_license
jlhung/UVA-Python
ec93b2c98e04c753e8356f3e4825584fae4a8663
7a0db4fecffd7ac4f377f93da41291a8e998ee9b
refs/heads/master
2022-11-28T04:47:49.270187
2020-08-10T13:19:58
2020-08-10T13:19:58
116,969,745
19
9
null
null
null
null
UTF-8
Python
false
false
655
py
''' 20180203 jlhung v1.0 ''' a = "A000300HIL0JM0O0002TUVMXY51SE0Z0080" def cal(z): if z >= 65: return z - 65 else: return z - 49 + 26 while True: try: n = input() except EOFError: break if n == n[::-1]: p = 1 else: p = 0 m = 1 for i in range(len(n)//2 + 1): x = cal(ord(n[i])) if a[x] != n[len(n)-1-i]: m = 0 break if m == 1 and p == 1: print("{} -- is a mirrored palindrome.".format(n)) elif m == 0 and p == 1: print("{} -- is a regular palindrome.".format(n)) elif m == 1 and p == 0: print("{} -- is a mirrored string.".format(n)) else: print("{} -- is not a palindrome.".format(n)) print()
d172f7350f6aaeb3f780cbf04830ffcac3896f82
deae8bc2da1936c4f9afbd8e9412af8df39e96a2
/src/spaceone/inventory/connector/__init__.py
c89ed55465d6f21041cb30667531f80727c4f47b
[ "Apache-2.0" ]
permissive
choonho/inventory
11a3ef0ec327214cc26260ace049305021c892cf
cc89757490d28fecb7ffccdfd6f89d4c0aa40da5
refs/heads/master
2023-04-17T05:51:20.373738
2020-06-16T07:14:27
2020-06-16T07:14:27
273,175,186
0
0
null
2020-06-18T07:49:19
2020-06-18T07:49:18
null
UTF-8
Python
false
false
394
py
from spaceone.inventory.connector.identity_connector import IdentityConnector from spaceone.inventory.connector.plugin_connector import PluginConnector from spaceone.inventory.connector.secret_connector import SecretConnector from spaceone.inventory.connector.collector_connector import CollectorPluginConnector from spaceone.inventory.connector.repository_connector import RepositoryConnector
87c88e8b5fe16b76cb62ec4af876bdc38c0526de
a74cabbe1b11fc8ef575ea86f2543cd95db78ec9
/python_program/q1348_Tweet_Counts_Per_Frequency.py
0ebd6ba5dc2c6918e1155392e2fb98e3ccab9546
[]
no_license
tszandy/leetcode
87e3ccf291b2879637d2d8238935a455b401a78a
f1f4361541dcffbb291285663c8820d7ffb37d2f
refs/heads/master
2023-04-06T15:34:04.847875
2023-03-26T12:22:42
2023-03-26T12:22:42
204,069,234
0
0
null
null
null
null
UTF-8
Python
false
false
1,470
py
from typing import List from collections import Counter,defaultdict from math import * from functools import reduce,lru_cache import numpy as np from heapq import * from bisect import bisect_left class TweetCounts: def __init__(self): self.counter = Counter() def recordTweet(self, tweetName: str, time: int) -> None: self.counter[(tweetName,time)]+=1 def getTweetCountsPerFrequency(self, freq: str, tweetName: str, startTime: int, endTime: int) -> List[int]: freq_to_num = {"minute":60,"hour":3600,"day":86400} return_list = [] for i in range(startTime,endTime+1,freq_to_num[freq]): return_list.append(0) for j in range(min(freq_to_num[freq],endTime-i+1)): time = i+j return_list[-1]+=self.counter[(tweetName,time)] return return_list # Your TweetCounts object will be instantiated and called as such: # obj = TweetCounts() # obj.recordTweet(tweetName,time) # param_2 = obj.getTweetCountsPerFrequency(freq,tweetName,startTime,endTime) sol = Solution() # input ["TweetCounts","recordTweet","recordTweet","recordTweet","getTweetCountsPerFrequency","getTweetCountsPerFrequency","recordTweet","getTweetCountsPerFrequency"] [[],["tweet3",0],["tweet3",60],["tweet3",10],["minute","tweet3",0,59],["minute","tweet3",0,60],["tweet3",120],["hour","tweet3",0,210]] # output output = sol.func() # answer answer = "" print(output, answer, answer == output)
0996721394223768eb7b2c15f84c02d6f59230e9
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/vaster.py
a727153d233f607502258f30f0c7640bac736fa4
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
45
py
ii = [('BentJDO2.py', 1), ('SadlMLP2.py', 1)]
844ef7dcae523873a814431086047825c6846d7b
cde6893942b906bc7388e2af69dd33c2cca6bb8b
/docs/source/conf.py
d2cb29be5dd0a759ae77be5f9c5a2db66da1b5d9
[ "MIT" ]
permissive
samirelanduk/fuzz
9b482d51436caf3ca576ae57639031f61da498c3
c2b75009686ca9775d8bfaa4e489e7e1db5ac22b
refs/heads/master
2020-12-03T08:13:05.763707
2020-12-02T15:57:08
2020-12-02T15:57:08
95,669,452
1
0
null
null
null
null
UTF-8
Python
false
false
4,796
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # fuzz documentation build configuration file, created by # sphinx-quickstart on Sun Jun 18 15:49:06 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('../..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'fuzz' copyright = '2017, Sam Ireland' author = 'Sam Ireland' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'fuzzdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'fuzz.tex', 'fuzz Documentation', 'Sam Ireland', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'fuzz', 'fuzz Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'fuzz', 'fuzz Documentation', author, 'fuzz', 'One line description of project.', 'Miscellaneous'), ] autodoc_member_order = 'bysource' autodoc_docstring_signature = True
d1a69c770860c71d4ea8cbe1f0d096cc33ed146f
9e36b3a0a609f862aa2894a1473896c8465c41a1
/arelle/ViewWinGrid.py
b2cea677258415d91d3d4774b0643e666a8e869e
[ "Apache-2.0" ]
permissive
marado/Arelle
7cd74a66d19be174c9f1fe66f788dd53447bffac
7ca2bf09c852787cd7a38d68b13c11d5e33e72a2
refs/heads/master
2020-04-08T00:27:54.212337
2011-10-28T17:49:49
2011-10-28T17:49:49
2,658,979
0
0
null
null
null
null
UTF-8
Python
false
false
5,703
py
''' Created on Oct 9, 2010 @author: Mark V Systems Limited (c) Copyright 2010 Mark V Systems Limited, All rights reserved. ''' from tkinter import * from tkinter.ttk import * from arelle.CntlrWinTooltip import ToolTip from arelle.UiUtil import (scrolledHeaderedFrame, scrolledFrame) class ViewGrid: def __init__(self, modelXbrl, tabWin, tabTitle, hasToolTip=False, lang=None): self.tabWin = tabWin #self.viewFrame = Frame(tabWin) #self.viewFrame.grid(row=0, column=0, sticky=(N, S, E, W)) ''' paneWin = PanedWindow(self.viewFrame, orient=VERTICAL) paneWin.grid(row=1, column=0, sticky=(N, S, E, W)) self.zGrid = scrollgrid(paneWin) self.zGrid.grid(row=0, column=0, sticky=(N, S, E, W)) self.xyGrid = scrollgrid(paneWin) self.xyGrid.grid(row=1, column=0, sticky=(N, S, E, W)) ''' ''' self.gridBody = scrollgrid(self.viewFrame) self.gridBody.grid(row=0, column=0, sticky=(N, S, E, W)) ''' self.viewFrame = scrolledHeaderedFrame(tabWin) self.gridTblHdr = self.viewFrame.tblHdrInterior self.gridColHdr = self.viewFrame.colHdrInterior self.gridRowHdr = self.viewFrame.rowHdrInterior self.gridBody = self.viewFrame.bodyInterior ''' self.viewFrame = scrolledFrame(tabWin) self.gridTblHdr = self.gridRowHdr = self.gridColHdr = self.gridBody = self.viewFrame.interior ''' tabWin.add(self.viewFrame,text=tabTitle) self.modelXbrl = modelXbrl self.hasToolTip = hasToolTip self.toolTipText = StringVar() if hasToolTip: self.gridBody.bind("<Motion>", self.motion, '+') self.gridBody.bind("<Leave>", self.leave, '+') self.toolTipText = StringVar() self.toolTip = ToolTip(self.gridBody, textvariable=self.toolTipText, wraplength=480, follow_mouse=True, state="disabled") self.toolTipColId = None self.toolTipRowId = None self.modelXbrl = modelXbrl self.contextMenuClick = self.modelXbrl.modelManager.cntlr.contextMenuClick self.gridTblHdr.contextMenuClick = self.contextMenuClick self.gridColHdr.contextMenuClick = self.contextMenuClick self.gridRowHdr.contextMenuClick = self.contextMenuClick self.gridBody.contextMenuClick = self.contextMenuClick self.lang = lang if modelXbrl: modelXbrl.views.append(self) if not lang: self.lang = modelXbrl.modelManager.defaultLang def close(self): self.tabWin.forget(self.viewFrame) self.modelXbrl.views.remove(self) self.modelXbrl = None def select(self): self.tabWin.select(self.viewFrame) def leave(self, *args): self.toolTipColId = None self.toolTipRowId = None def motion(self, *args): ''' tvColId = self.gridBody.identify_column(args[0].x) tvRowId = self.gridBody.identify_row(args[0].y) if tvColId != self.toolTipColId or tvRowId != self.toolTipRowId: self.toolTipColId = tvColId self.toolTipRowId = tvRowId newValue = None if tvRowId and len(tvRowId) > 0: try: col = int(tvColId[1:]) if col == 0: newValue = self.gridBody.item(tvRowId,"text") else: values = self.gridBody.item(tvRowId,"values") if col <= len(values): newValue = values[col - 1] except ValueError: pass self.setToolTip(newValue, tvColId) ''' def setToolTip(self, text, colId="#0"): self.toolTip._hide() if isinstance(text,str) and len(text) > 0: width = self.gridBody.column(colId,"width") if len(text) * 8 > width or '\n' in text: self.toolTipText.set(text) self.toolTip.configure(state="normal") self.toolTip._schedule() else: self.toolTipText.set("") self.toolTip.configure(state="disabled") else: self.toolTipText.set("") self.toolTip.configure(state="disabled") def contextMenu(self): try: return self.menu except AttributeError: self.menu = Menu( self.viewFrame, tearoff = 0 ) self.gridBody.bind( self.contextMenuClick, self.popUpMenu ) if not self.gridTblHdr.bind(self.contextMenuClick): self.gridTblHdr.bind( self.contextMenuClick, self.popUpMenu ) if not self.gridColHdr.bind(self.contextMenuClick): self.gridColHdr.bind( self.contextMenuClick, self.popUpMenu ) if not self.gridRowHdr.bind(self.contextMenuClick): self.gridRowHdr.bind( self.contextMenuClick, self.popUpMenu ) return self.menu def popUpMenu(self, event): self.menu.post( event.x_root, event.y_root ) def menuAddLangs(self): langsMenu = Menu(self.viewFrame, tearoff=0) self.menu.add_cascade(label=_("Language"), menu=langsMenu, underline=0) for lang in sorted(self.modelXbrl.langs): langsMenu.add_cascade(label=lang, underline=0, command=lambda l=lang: self.setLang(l)) def setLang(self, lang): self.lang = lang self.view()
0b5a6d6033e0072d7b2378fe1573de7aa7606581
9673db0d489c0cfa0a304844b9ff5ba8c6024621
/cwmipermanentevents/win_cwmieventlogconsumer.py
319871554f23f8852e9a806d3457eb0744bf007b
[]
no_license
daveres/Ansible-Auto-Generated-Modules
a9ec1ad2f9ff9c741b77f5d411b927f1a48c6ce3
a91b484171be12b9e2bc7c0a9c23bdd767877e38
refs/heads/master
2020-12-25T03:29:37.751104
2015-12-22T19:24:01
2015-12-22T19:24:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,930
py
#!/usr/bin/python # -*- coding: utf-8 -*- # <COPYRIGHT> # <CODEGENMETA> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # this is a windows documentation stub. actual code lives in the .ps1 # file of the same name DOCUMENTATION = ''' --- module: win_cwmieventlogconsumer version_added: short_description: Generated from DSC module cwmipermanentevents version 1.1 at 22.12.2015 20.11.12 description: - DSC Resources for managing WMI permanent events options: EventID: description: - required: True default: aliases: [] Name: description: - required: True default: aliases: [] Category: description: - required: False default: aliases: [] Ensure: description: - required: False default: aliases: [] choices: - Absent - Present EventType: description: - required: False default: aliases: [] choices: - AuditFailure - AuditSuccess - Error - Information - Success - Warning InsertionStringTemplates: description: - required: False default: aliases: [] NumberOfInsertionStrings: description: - required: False default: aliases: [] PsDscRunAsCredential_username: description: - required: False default: aliases: [] PsDscRunAsCredential_password: description: - required: False default: aliases: [] SourceName: description: - required: False default: aliases: [] UNCServerName: description: - required: False default: aliases: [] AutoInstallModule: description: - If true, the required dsc resource/module will be auto-installed using the Powershell package manager required: False default: false aliases: [] choices: - true - false AutoConfigureLcm: description: - If true, LCM will be auto-configured for directly invoking DSC resources (which is a one-time requirement for Ansible DSC modules) required: False default: false aliases: [] choices: - true - false
de2ae8f2273970279ea9cb452dd78cf5bfdf252b
9645bdfbb15742e0d94e3327f94471663f32061a
/Python/394 - Decode String/394_decode-string.py
1f0ffd16417ab8710b0220c574306888c52a0085
[]
no_license
aptend/leetcode-rua
f81c080b2260adb2da677612e5c437eda256781d
80e44f4e9d3a5b592fdebe0bf16d1df54e99991e
refs/heads/master
2023-06-22T00:40:05.533424
2021-03-17T13:51:28
2021-03-17T13:51:28
186,434,133
2
0
null
2023-06-21T22:12:51
2019-05-13T14:17:27
HTML
UTF-8
Python
false
false
1,013
py
from leezy import Solution, solution class Q394(Solution): @solution def decodeString(self, s): # 20ms 49.53% i = 0 while i < len(s) and s[i].isalpha(): i += 1 if i == len(s): # pure string return s lead_str = s[:i] # s[i] is digit or [ cnt = 0 while s[i].isdigit(): # no boundry check when we have trusted input cnt = cnt * 10 + int(s[i]) i += 1 # now s[i] is '[' open_ = 1 j = i while j < len(s) and open_: j += 1 if s[j] == '[': open_ += 1 elif s[j] == ']': open_ -= 1 return lead_str + cnt * self.decodeString(s[i+1:j]) + self.decodeString(s[j+1:]) @solution def decode_str(self, s): pass def main(): q = Q394() q.add_args('3[a]2[bc]') q.add_args('3[a2[c]]') q.add_args('2[abc]3[cd]ef') q.run() if __name__ == "__main__": main()
322d450662d582c2c1f19c213517f29168d4ec15
a9f676c06bacee1f8b27e08d3c411c89a69cfd40
/falmer/events/migrations/0031_auto_20180928_1223.py
f7d76238b0effcfd8ed14b357d772ca4cd902f86
[ "MIT" ]
permissive
sussexstudent/falmer
1b877c3ac75a0477f155ce1a9dee93a5ada686d6
ae735bd9d6177002c3d986e5c19a78102233308f
refs/heads/master
2022-12-11T19:40:12.232488
2020-03-20T13:01:47
2020-03-20T13:01:47
88,043,958
2
3
MIT
2022-12-08T03:17:26
2017-04-12T11:24:02
Python
UTF-8
Python
false
false
537
py
# Generated by Django 2.0.8 on 2018-09-28 11:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('events', '0030_brandingperiod_override_listings_root'), ] operations = [ migrations.AlterField( model_name='event', name='ticket_type', field=models.CharField(choices=[('NA', 'n/a'), ('NT', 'Native'), ('EB', 'Eventbrite'), ('AC', 'ACCA'), ('GN', 'Generic'), ('MSL', 'MSL')], default='NA', max_length=3), ), ]
eaa42c766189d48ffb00f361d854aead4aac7002
1534531d248728e583310214c84cd329cfeb243b
/accelerator/examples/a_dsexample_multipledatasets.py
1539fa2b787d90fd2240e9cfee47148b70491c9b
[ "Apache-2.0" ]
permissive
eBay/accelerator
415a006d18283940661c0f3cbae2c311acc1ffaa
8376d289e39cd90562de7dc2e3cdaa0bf080587b
refs/heads/master
2023-03-10T11:08:58.828517
2022-07-14T19:15:46
2022-07-14T19:15:46
130,265,539
146
30
null
null
null
null
UTF-8
Python
false
false
459
py
def prepare(job): dw1 = job.datasetwriter(name='first') dw2 = job.datasetwriter(name='second') dw3 = job.datasetwriter(name='third') dw1.add('col1', 'int64') dw2.add('col1', 'json') dw3.add('col1', 'number') dw3.add('col2', 'ascii') dw3.add('col3', 'bool') return dw1, dw2, dw3 def analysis(sliceno, prepare_res): dw1, dw2, dw3 = prepare_res dw1.write(sliceno) dw2.write({'sliceno': sliceno}) dw3.write(sliceno, str(sliceno), sliceno % 2 == 0)
1ad148f1ed603386468eba8abf94ca4498c06ff7
70cdf0741a22c678401a306229003bf036ffe5a6
/ocbind/bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/__init__.py
c7c0b7216ecbdb740eabfcde08d780c3cf6e5192
[]
no_license
zsblevins/nanog81-hackathon
5001e034339d6b0c6452ae2474f06916bcd715cf
1b64fd207dd69837f947094fbd6d6c1cea3a1070
refs/heads/main
2023-03-03T09:39:28.460000
2021-02-15T13:41:38
2021-02-15T13:41:38
336,698,856
2
0
null
null
null
null
UTF-8
Python
false
false
49,081
py
# -*- coding: utf-8 -*- from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ from . import config from . import state class prefix_limit(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-bgp - based on the path /bgp/peer-groups/peer-group/afi-safis/afi-safi/ipv4-labeled-unicast/prefix-limit. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Configure the maximum number of prefixes that will be accepted from a peer """ __slots__ = ('_path_helper', '_extmethods', '__config','__state',) _yang_name = 'prefix-limit' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return ['bgp', 'peer-groups', 'peer-group', 'afi-safis', 'afi-safi', 'ipv4-labeled-unicast', 'prefix-limit'] def _get_config(self): """ Getter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ return self.__config def _set_config(self, v, load=False): """ Setter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) If this variable is read-only (config: false) in the source YANG file, then _set_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_config() directly. YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """config must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__config = t if hasattr(self, '_set'): self._set() def _unset_config(self): self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) def _get_state(self): """ Getter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__state = t if hasattr(self, '_set'): self._set() def _unset_state(self): self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) config = __builtin__.property(_get_config, _set_config) state = __builtin__.property(_get_state, _set_state) _pyangbind_elements = OrderedDict([('config', config), ('state', state), ]) from . import config from . import state class prefix_limit(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-bgp-common - based on the path /bgp/peer-groups/peer-group/afi-safis/afi-safi/ipv4-labeled-unicast/prefix-limit. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Configure the maximum number of prefixes that will be accepted from a peer """ __slots__ = ('_path_helper', '_extmethods', '__config','__state',) _yang_name = 'prefix-limit' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return ['bgp', 'peer-groups', 'peer-group', 'afi-safis', 'afi-safi', 'ipv4-labeled-unicast', 'prefix-limit'] def _get_config(self): """ Getter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ return self.__config def _set_config(self, v, load=False): """ Setter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) If this variable is read-only (config: false) in the source YANG file, then _set_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_config() directly. YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """config must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__config = t if hasattr(self, '_set'): self._set() def _unset_config(self): self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) def _get_state(self): """ Getter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__state = t if hasattr(self, '_set'): self._set() def _unset_state(self): self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) config = __builtin__.property(_get_config, _set_config) state = __builtin__.property(_get_state, _set_state) _pyangbind_elements = OrderedDict([('config', config), ('state', state), ]) from . import config from . import state class prefix_limit(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-bgp-common-multiprotocol - based on the path /bgp/peer-groups/peer-group/afi-safis/afi-safi/ipv4-labeled-unicast/prefix-limit. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Configure the maximum number of prefixes that will be accepted from a peer """ __slots__ = ('_path_helper', '_extmethods', '__config','__state',) _yang_name = 'prefix-limit' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return ['bgp', 'peer-groups', 'peer-group', 'afi-safis', 'afi-safi', 'ipv4-labeled-unicast', 'prefix-limit'] def _get_config(self): """ Getter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ return self.__config def _set_config(self, v, load=False): """ Setter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) If this variable is read-only (config: false) in the source YANG file, then _set_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_config() directly. YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """config must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__config = t if hasattr(self, '_set'): self._set() def _unset_config(self): self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) def _get_state(self): """ Getter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__state = t if hasattr(self, '_set'): self._set() def _unset_state(self): self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) config = __builtin__.property(_get_config, _set_config) state = __builtin__.property(_get_state, _set_state) _pyangbind_elements = OrderedDict([('config', config), ('state', state), ]) from . import config from . import state class prefix_limit(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-bgp-common-structure - based on the path /bgp/peer-groups/peer-group/afi-safis/afi-safi/ipv4-labeled-unicast/prefix-limit. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Configure the maximum number of prefixes that will be accepted from a peer """ __slots__ = ('_path_helper', '_extmethods', '__config','__state',) _yang_name = 'prefix-limit' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return ['bgp', 'peer-groups', 'peer-group', 'afi-safis', 'afi-safi', 'ipv4-labeled-unicast', 'prefix-limit'] def _get_config(self): """ Getter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ return self.__config def _set_config(self, v, load=False): """ Setter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) If this variable is read-only (config: false) in the source YANG file, then _set_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_config() directly. YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """config must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__config = t if hasattr(self, '_set'): self._set() def _unset_config(self): self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) def _get_state(self): """ Getter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__state = t if hasattr(self, '_set'): self._set() def _unset_state(self): self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) config = __builtin__.property(_get_config, _set_config) state = __builtin__.property(_get_state, _set_state) _pyangbind_elements = OrderedDict([('config', config), ('state', state), ]) from . import config from . import state class prefix_limit(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-bgp-peer-group - based on the path /bgp/peer-groups/peer-group/afi-safis/afi-safi/ipv4-labeled-unicast/prefix-limit. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Configure the maximum number of prefixes that will be accepted from a peer """ __slots__ = ('_path_helper', '_extmethods', '__config','__state',) _yang_name = 'prefix-limit' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return ['bgp', 'peer-groups', 'peer-group', 'afi-safis', 'afi-safi', 'ipv4-labeled-unicast', 'prefix-limit'] def _get_config(self): """ Getter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ return self.__config def _set_config(self, v, load=False): """ Setter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) If this variable is read-only (config: false) in the source YANG file, then _set_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_config() directly. YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """config must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__config = t if hasattr(self, '_set'): self._set() def _unset_config(self): self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) def _get_state(self): """ Getter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__state = t if hasattr(self, '_set'): self._set() def _unset_state(self): self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) config = __builtin__.property(_get_config, _set_config) state = __builtin__.property(_get_state, _set_state) _pyangbind_elements = OrderedDict([('config', config), ('state', state), ]) from . import config from . import state class prefix_limit(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-bgp-neighbor - based on the path /bgp/peer-groups/peer-group/afi-safis/afi-safi/ipv4-labeled-unicast/prefix-limit. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Configure the maximum number of prefixes that will be accepted from a peer """ __slots__ = ('_path_helper', '_extmethods', '__config','__state',) _yang_name = 'prefix-limit' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return ['bgp', 'peer-groups', 'peer-group', 'afi-safis', 'afi-safi', 'ipv4-labeled-unicast', 'prefix-limit'] def _get_config(self): """ Getter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ return self.__config def _set_config(self, v, load=False): """ Setter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) If this variable is read-only (config: false) in the source YANG file, then _set_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_config() directly. YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """config must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__config = t if hasattr(self, '_set'): self._set() def _unset_config(self): self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) def _get_state(self): """ Getter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__state = t if hasattr(self, '_set'): self._set() def _unset_state(self): self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) config = __builtin__.property(_get_config, _set_config) state = __builtin__.property(_get_state, _set_state) _pyangbind_elements = OrderedDict([('config', config), ('state', state), ]) from . import config from . import state class prefix_limit(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-bgp-global - based on the path /bgp/peer-groups/peer-group/afi-safis/afi-safi/ipv4-labeled-unicast/prefix-limit. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Configure the maximum number of prefixes that will be accepted from a peer """ __slots__ = ('_path_helper', '_extmethods', '__config','__state',) _yang_name = 'prefix-limit' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return ['bgp', 'peer-groups', 'peer-group', 'afi-safis', 'afi-safi', 'ipv4-labeled-unicast', 'prefix-limit'] def _get_config(self): """ Getter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ return self.__config def _set_config(self, v, load=False): """ Setter method for config, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/config (container) If this variable is read-only (config: false) in the source YANG file, then _set_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_config() directly. YANG Description: Configuration parameters relating to the prefix limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """config must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__config = t if hasattr(self, '_set'): self._set() def _unset_config(self): self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) def _get_state(self): """ Getter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /bgp/peer_groups/peer_group/afi_safis/afi_safi/ipv4_labeled_unicast/prefix_limit/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: State information relating to the prefix-limit for the AFI-SAFI """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True)""", }) self.__state = t if hasattr(self, '_set'): self._set() def _unset_state(self): self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/bgp', defining_module='openconfig-bgp', yang_type='container', is_config=True) config = __builtin__.property(_get_config, _set_config) state = __builtin__.property(_get_state, _set_state) _pyangbind_elements = OrderedDict([('config', config), ('state', state), ])
41423559ea1814593584b0719e067271b835e2f5
36de14c6b188886df6a284ee9ce4a464a5ded433
/Solutions/0481/0481.py
9cb5c5f805a1753547fb9a793374fca17c61eb5e
[]
no_license
washing1127/LeetCode
0dca0f3caa5fddd72b299e6e8f59b5f2bf76ddd8
b910ddf32c7e727373449266c9e3167c21485167
refs/heads/main
2023-03-04T23:46:40.617866
2023-02-21T03:00:04
2023-02-21T03:00:04
319,191,720
3
0
null
null
null
null
UTF-8
Python
false
false
481
py
# -*- coding:utf-8 -*- # Author: washing # DateTime: 2022/10/31 07:56 # File: 0481.py # Desc: class Solution: def magicalString(self, n: int) -> int: if n <= 3: return 1 l = [1,2,2] gai = 1 idx = 2 for _ in range(2, n): l.extend([gai] * l[idx]) idx += 1 if gai == 1: gai = 2 else: gai = 1 if len(l) >= n: return sum([i%2 for i in l[:n]])
4c27d86afe78672f295177ebcb30ea11b71ae563
727f1bc2205c88577b419cf0036c029b8c6f7766
/out-bin/py/google/fhir/models/run_locally.runfiles/pypi__tensorboard_1_12_1/tensorboard/backend/event_processing/db_import_multiplexer.py
b3af8b8b84de188f8bd2edf64b42541f54c25b77
[ "Apache-2.0" ]
permissive
rasalt/fhir
55cf78feed3596a3101b86f9e9bbf6652c6ed4ad
d49883cc4d4986e11ca66058d5a327691e6e048a
refs/heads/master
2020-04-13T00:16:54.050913
2019-01-15T14:22:15
2019-01-15T14:22:15
160,260,223
0
0
Apache-2.0
2018-12-03T22:07:01
2018-12-03T22:07:01
null
UTF-8
Python
false
false
172
py
/home/rkharwar/.cache/bazel/_bazel_rkharwar/c4bcd65252c8f8250f091ba96375f9a5/external/pypi__tensorboard_1_12_1/tensorboard/backend/event_processing/db_import_multiplexer.py
6fc9932f4c30db04bb30d77843208976772512e4
ca4b23956a888c0c26106eafb665bf60d067161e
/stepik-union/src/test/resources/samples/python3/expected_replaced/5.py
7d90a37efa7a26919641cef8f49997350f660afa
[]
no_license
shanedecamp/intellij-plugins
c9f332ca20eaecd6736e6582641b7b725a025d8c
27475af7baa78de7c9506b06046287f163bebae3
refs/heads/master
2020-04-13T18:22:17.996572
2017-11-23T12:08:08
2017-11-23T12:08:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
37
py
replaced # Stepik code: end some text
174372ef8d2ca43068f5360b308aef75060ce3fb
4766d241bbc736e070f79a6ae6a919a8b8bb442d
/archives/20190519python/0977. Squares of a Sorted Array.py
31e803b0f0a7a1799a41547fd8cdb2db90103d5c
[]
no_license
yangzongwu/leetcode
f7a747668b0b5606050e8a8778cc25902dd9509b
01f2edd79a1e922bfefecad69e5f2e1ff3a479e5
refs/heads/master
2021-07-08T06:45:16.218954
2020-07-18T10:20:24
2020-07-18T10:20:24
165,957,437
10
8
null
null
null
null
UTF-8
Python
false
false
1,211
py
class Solution: def sortedSquares(self, A: List[int]) -> List[int]: if not A: return A if A[0]>=0: return self.getSquares(A) if A[0]<0: if A[-1]<0: A=self.getSquares(A) return A[::-1] k=0 while k<len(A) and A[k]<0: k+=1 nums1=self.getSquares(A[:k][::-1]) nums2=self.getSquares(A[k:]) return self.getsortedArray(nums1,nums2) def getsortedArray(self,nums1,nums2): if not nums1: return nums2 if not nums2: return nums1 rep=[] k1,k2=0,0 while k1<len(nums1) and k2<len(nums2): if nums1[k1]<nums2[k2]: rep.append(nums1[k1]) k1+=1 else: rep.append(nums2[k2]) k2+=1 while k1<len(nums1): rep.append(nums1[k1]) k1+=1 while k2<len(nums2): rep.append(nums2[k2]) k2+=1 return rep def getSquares(self,A): for k in range(len(A)): A[k]=A[k]*A[k] return A
f2751c6ffd13b7ca049b44caf699c03881be8ee1
6e34d59a5220d42b8baa39bd5bc49d69f77103b6
/timelapse_stack.py
faa41545ac02dbba0480be8e54f29d69fd136595
[]
no_license
pbmanis/timelapse
034dc6633fa98d43cba03faf68eb9d2636da8120
6a989545cbf83e2a40e2d8f87120860104ee24b6
refs/heads/master
2021-06-29T18:38:41.726219
2020-07-14T01:33:03
2020-07-14T01:33:03
66,783,357
0
0
null
null
null
null
UTF-8
Python
false
false
6,952
py
""" Script used to convert timelapse+zstack data into a max-filtered video. Luke Campagnola and Paul Manis, 4-2015 and 3, 4-2016. Input data structures: 1. 'auto': ImageSequence_nnn has a number if image_nnn.ma files; each of those files is a single time point in the sequence. 2. 'manual': Each ImageSequence_nnn has a single image_000.ma file; the ImageSequence itself is the individual time point; the slice directory handles the """ from acq4.util.metaarray import MetaArray import acq4.util.DataManager as DataManager import imreg_dft import scipy.stats import re import os import numpy as np import pyqtgraph as pg from collections import OrderedDict import argparse parser = argparse.ArgumentParser(description='Analyze time lapse stacks') parser.add_argument('Experiment', type=int, help='Select an Experiment number') args = parser.parse_args() expt = args.Experiment app = pg.mkQApp() basedir = '/Volumes/Backup2B/Sullivan_Chelsea/Chelsea/' basedir = '/Volumes/Promise Pegasus/ManisLab_Data3/Sullivan_Chelsea/' # man.setBaseDir(basedir) # # Analysis is driven by the filelist data structure # # 'filelist' is a dictionary, which contains a dict of parameters to guide the analysis. # 'refframes' is a list of the matching frames from each of the z-stacks in the successive # time points # 'mode' is either 'auto', or 'manual'. If the data are collected as a time-lapse seuqence of # z stacks, and appear as a set of "ImageSequence_000" directories, then the mode should be # 'auto'. If the time-lapse points were manually collected, but the stacks are automatic, # then the mode should be 'manual'. # 'datalist' is a list of the records to include. If 'datalist' is set to None, then all # recordings will be included. Note that if mode is "auto", then datalist should be None. # filelist = OrderedDict([('2015.04.17_000/slice_001/ImageSequence_000', {'refframes': [40, 37, 33, 30, 28, 26, 23, 21, 19, 17, 16, 14], 'mode': 'auto', 'datalist': None}), ('2016.03.22_000/slice_000', {'refframes': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'mode': 'manual', 'datalist': None}), ('2016.03.23_000', {'refframes': [0]*39, 'mode': 'manual', 'datalist': None}), ('2016.03.28_000/slice_000', {'refframes': [0]*len(range(0, 9)), 'mode': 'manual', 'datalist': range(0, 9)}), ('2016.04.11_000/slice_000', {'refframes': [0]*len(range(0, 13)), 'mode': 'manual', 'datalist': range(0, 13)}), ('2016.04.13_000/slice_000', {'refframes': [0]*len(range(2, 16)), 'mode': 'manual', 'datalist': range(2, 16)}), ('2016.04.15_000/slice_000', {'refframes': [0]*len(range(14, 34)), 'mode': 'manual', 'datalist': range(14, 34)}), ]) # select a dataset to analyze: ff = filelist.keys()[expt] # gets the dataset name fullpath = os.path.join(basedir, ff) print 'File: ', fullpath dh = DataManager.getDirHandle(fullpath, create=False) # collect all data with depth corrected #dh = man.currentFile found = False for n in filelist.keys(): if n in dh.name(): found = True break if not found: raise ValueError('Unknown file: %s' % dh.name()) print 'Dataset found.' indexes = filelist[n]['refframes'] if filelist[n]['mode'] == 'auto': z_length = len(dh.info()['zStackValues']) offsets = [-min(indexes), z_length - max(indexes)] print 'Analyzing in Auto mode' print '\tTimes in timelapse: ', z_length print '\tIndexes: ', indexes print '\tOffsets: ', offsets data = [dh['image_%03d.ma'%i].read()[indexes[i]+offsets[0]:indexes[i]+offsets[1]]. asarray()[np.newaxis, ...] for i in range(len(indexes))] elif filelist[n]['mode'] == 'manual': nframes = dh['ImageSequence_%03d' % filelist[n]['datalist'][0]]['image_000.ma'].read().shape[0] ts = [] if filelist[n]['datalist'] != None : sequence = filelist[n]['datalist'] else: sequence = range(len(indexes)) for i in sequence: th = dh['ImageSequence_%03d'%i]['image_000.ma'] if th.exists() and th.read().shape[0] == nframes: ts.append(i) z_length = len(ts) offsets = [-min(indexes), z_length - max(indexes)] print 'Analyzing in Manual mode' print '\t# of depths in timelapse: ', z_length print '\t# of frames in each: ', nframes print '\tIndexes: ', indexes print '\tOffsets: ', offsets try: print indexes print offsets print 'list of indexes reading: ', [[indexes[i]+offsets[0],indexes[i]+offsets[1]] for i in ts] data = [dh['ImageSequence_%03d'%i]['image_000.ma'].read()[indexes[i]+offsets[0]:indexes[i]+offsets[1]]. asarray()[np.newaxis, ...] for i in range(len(ts[:-2]))] except: print 'error' print 'len ts: ', len(ts) print 'ts: ', ts print 'i: ', i print 'index[i], o: ', indexes[i], offsets[0], offsets[1] raise ValueError('Indexing error for ImageSequence image data set %d' % i) else: raise ValueError('Unknown data mode: %s' % filelist[n]['mode']) print 'data shape: ', [len(k) for k in data] data = np.concatenate(data, axis=0) # print 'data shape (t, z, x, y): ', data.shape # dim edges to avoid artifacts at the edges of depth range dim = data.copy() dim[:,0] *= 0.33 dim[:,1] *= 0.66 dim[:,-1] *= 0.33 dim[:,-2] *= 0.66 # flatten stacks m = dim.max(axis=1) nreg = m.shape[0] ireg = int(nreg/2) # get one near the middle of the sequence. # correct for lateral motion off = [imreg_dft.translation(m[ireg], m[i])[0] for i in range(0, m.shape[0])] offt = np.array(off).T # find boundaries of outer rectangle including all images as registered minx = np.min(offt[0]) maxx = np.max(offt[0]) miny = np.min(offt[1]) maxy = np.max(offt[1]) # build canvas canvas = np.zeros(shape=(m.shape[0], m.shape[1]-minx+maxx, m.shape[2]-miny+maxy), dtype=m.dtype) # set initial image (offsets were computed relative to this, so it has no offset) # canvas[0, -minx:-minx+m.shape[1], -miny:-miny+m.shape[2]] = m[0] for i in range(0, m.shape[0]): ox = offt[0][i] - minx oy = offt[1][i] - miny canvas[i, ox:(ox+m.shape[1]), oy:(oy+m.shape[2])] = m[i] # print 'canvas %d set' % i # correct for bleaching levels = np.array([np.median(m[m>scipy.stats.scoreatpercentile(m[i], 95)]) for i in range(m.shape[0])]) norm = canvas / levels[:, np.newaxis, np.newaxis] w = pg.image() w.setImage(norm) # write the resulting compressed z-stacks to a file in the original directory. ma = MetaArray(norm, info=[{'name': 'Time'}, {'name': 'X'}, {'name': 'Y'}, {}]) ma.write(dh.name() + '/max_stack.ma') pg.show() import sys if sys.flags.interactive == 0: app.exec_()
a2912aa8082dd0c86f50d80a953f898ece522e01
e733d07a1492f6e9b762d9ca496ec59668aedb95
/qcloudsdkcvm/InquiryInstancePriceHourRequest.py
906b50e9717e953b7d3cb28273d3cd7f2de595fb
[ "Apache-2.0" ]
permissive
QcloudApi/qcloudcli
1f67d8467b81ac8964362491cd4f3104f8e59161
ba16161f65df5f621d9f1c5587b9900dca600cb5
refs/heads/master
2023-08-15T01:51:05.236254
2018-07-11T08:07:29
2018-07-11T08:07:29
100,922,202
8
6
null
2018-03-29T11:57:26
2017-08-21T06:55:45
Python
UTF-8
Python
false
false
2,262
py
# -*- coding: utf-8 -*- from qcloudsdkcore.request import Request class InquiryInstancePriceHourRequest(Request): def __init__(self): super(InquiryInstancePriceHourRequest, self).__init__( 'cvm', 'qcloudcliV1', 'InquiryInstancePriceHour', 'cvm.api.qcloud.com') def get_bandwidth(self): return self.get_params().get('bandwidth') def set_bandwidth(self, bandwidth): self.add_param('bandwidth', bandwidth) def get_bandwidthType(self): return self.get_params().get('bandwidthType') def set_bandwidthType(self, bandwidthType): self.add_param('bandwidthType', bandwidthType) def get_cpu(self): return self.get_params().get('cpu') def set_cpu(self, cpu): self.add_param('cpu', cpu) def get_goodsNum(self): return self.get_params().get('goodsNum') def set_goodsNum(self, goodsNum): self.add_param('goodsNum', goodsNum) def get_imageId(self): return self.get_params().get('imageId') def set_imageId(self, imageId): self.add_param('imageId', imageId) def get_imageType(self): return self.get_params().get('imageType') def set_imageType(self, imageType): self.add_param('imageType', imageType) def get_instanceModel(self): return self.get_params().get('instanceModel') def set_instanceModel(self, instanceModel): self.add_param('instanceModel', instanceModel) def get_mem(self): return self.get_params().get('mem') def set_mem(self, mem): self.add_param('mem', mem) def get_rootSize(self): return self.get_params().get('rootSize') def set_rootSize(self, rootSize): self.add_param('rootSize', rootSize) def get_storageSize(self): return self.get_params().get('storageSize') def set_storageSize(self, storageSize): self.add_param('storageSize', storageSize) def get_storageType(self): return self.get_params().get('storageType') def set_storageType(self, storageType): self.add_param('storageType', storageType) def get_zoneId(self): return self.get_params().get('zoneId') def set_zoneId(self, zoneId): self.add_param('zoneId', zoneId)
24de9783acf09079e0e372ead54d08b82db5e567
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/storagegateway_write_f/smb-file-share_update.py
3357133385bf1dc97e35672040d499ce1326752f
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
676
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html if __name__ == '__main__': """ create-smb-file-share : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/storagegateway/create-smb-file-share.html describe-smb-file-shares : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/storagegateway/describe-smb-file-shares.html """ write_parameter("storagegateway", "update-smb-file-share")
2dd74bd70f39713191de8dc6a0ece7478c6387db
6e158a54409937515b14676730adfadfd457d4ae
/gaussian_spheres/pwl.py
829e513a721f8fe6245d003f3e220aab7e410ea8
[]
no_license
Tjstretchalot/machinelearning
e2b277efd99f6e45005cb92a0cc17e90bf7d37e4
5a3b17c49211a63f71cdf40ca35e00a3af4b198a
refs/heads/master
2020-05-02T09:25:25.032430
2019-07-25T14:37:43
2019-07-25T14:37:43
177,871,307
0
0
null
null
null
null
UTF-8
Python
false
false
5,665
py
"""A gaussian spheres input technique. Randomly places cluster centers in an n-dimensional cube. Then assigns each cluster a label. To generate points, a cluster is selected uniformly at random, then a radius is selected from a normal distribution, then a point is selected uniformly from within a sphere centered at the cluster center with the given radius.""" import torch import typing import scipy.spatial.distance as distance import numpy as np from shared.pwl import PointWithLabelProducer, PointWithLabel class GaussianSpheresPWLP(PointWithLabelProducer): """Produces points selected from gaussian spheres. Marks are ignored. Attributes: clusters (list[PointWithLabel]) radius_dist (torch.distributions.distribution.Distribution) """ def __init__(self, epoch_size: int, input_dim: int, output_dim: int, clusters: typing.List[PointWithLabel], std_dev: float, mean: float): super().__init__(epoch_size, input_dim, output_dim) self.clusters = clusters self.radius_dist = torch.distributions.normal.Normal( torch.tensor([float(mean)]), torch.tensor([float(std_dev)])) #pylint: disable=not-callable @classmethod def create(cls, epoch_size: int, input_dim: int, output_dim: int, cube_half_side_len: float, num_clusters: int, std_dev: float, mean: float, min_sep: float, force_split: bool = False): """Creates a new gaussian spheres pwlp, pulling points from the cube with a side length of 2*cube_half_side_len centered at the origin Arguments: epoch_size (int): the number of points we will consider 1 epoch input_dim (int): the input dimension (i.e., number of coordinates per point) output_dim (int): the output dimension (i.e., number of unique labels) cube_half_side_len (float): if '1', each coordinate is uniform from [-1, 1] num_clusters (int): the number of clusters std_dev (float): standard deviation of the radius mean (float): mean of the radius min_sep (float): minimum separation between points force_split (bool, optional): if True then there will be an even as possible distribution of cluster labels. if False then there will be a multinomial distribution of cluster labels with the same probability for each """ # rejection sampling clust_centers = np.zeros((num_clusters, input_dim), dtype='double') clusters = [] if force_split: next_label = 0 for i in range(num_clusters): rejections = 0 center = torch.zeros((input_dim,), dtype=torch.double) while True: torch.rand(input_dim, out=center) center = (center - 0.5) * 2 * cube_half_side_len distances = distance.cdist(center.reshape(1, -1).numpy(), clust_centers) if np.min(distances) < min_sep: rejections += 1 if rejections > 10000: raise ValueError('rejected too many points!') else: break clust_centers[i, :] = center.numpy() if force_split: clust_label = next_label next_label = (next_label + 1) % output_dim else: clust_label = torch.randint(output_dim, (1,)).item() clusters.append(PointWithLabel(point=center, label=clust_label)) return cls(epoch_size, input_dim, output_dim, clusters, std_dev, mean) def _fill_with_clusters(self, points: torch.tensor, labels: torch.tensor, cluster_inds: torch.tensor): vec = torch.zeros((self.input_dim,), dtype=torch.double) for i in range(points.shape[0]): clust = self.clusters[cluster_inds[i].item()] radius = torch.abs(self.radius_dist.sample()).double() torch.randn(self.input_dim, out=vec) vec *= (radius / torch.norm(vec)) labels[i] = clust.label points[i, :] = clust.point + vec def _fill(self, points: torch.tensor, labels: torch.tensor): batch_size = points.shape[0] cluster_inds = torch.randint(len(self.clusters), (batch_size,), dtype=torch.long) self._fill_with_clusters(points, labels, cluster_inds) def fill_uniform(self, points: torch.tensor, labels: torch.tensor): """Fills the specified points and labels such that the labels are spread evenly""" batch_size = points.shape[0] num_per_label = batch_size // self.output_dim if num_per_label * self.output_dim != batch_size: raise ValueError(f'cannot fill {batch_size} uniformly when output dim is {self.output_dim}') cluster_lbls = np.zeros(len(self.clusters), dtype='int32') for ind, clust in enumerate(self.clusters): cluster_lbls[ind] = clust.label cluster_inds = torch.zeros(0, dtype=torch.long) for lbl in range(self.output_dim): mask = cluster_lbls == lbl viable_clust_inds = np.arange(len(self.clusters), dtype='int64')[mask] lbl_clust_inds = np.random.choice(viable_clust_inds, (num_per_label,)) cluster_inds = torch.cat((cluster_inds, torch.from_numpy(lbl_clust_inds))) self._fill_with_clusters(points, labels, cluster_inds) def _position(self, pos: int): pass
e9ad0d1f8948db6b00d4c77f6d1d720bfbf254d9
6b699b7763a0ff8c32b85014d96f6faf02514a2e
/models/research/object_detection/models/embedded_ssd_mobilenet_v1_feature_extractor.py
96586e17f65a9ead1cb9d1c93540cd46477f3b2f
[ "Apache-2.0" ]
permissive
leizeling/Base_tensorflow-object_detection_2Dcord
df7c195685fed21fd456f1dd79881a198cf8b6e0
d07418eb68543adc2331211ccabbc27137c8676e
refs/heads/master
2020-03-19T11:51:57.961688
2018-06-07T14:47:16
2018-06-07T14:47:16
136,481,479
0
1
null
null
null
null
UTF-8
Python
false
false
7,185
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Embedded-friendly SSDFeatureExtractor for MobilenetV1 features.""" import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import context_manager from object_detection.utils import ops from nets import mobilenet_v1 slim = tf.contrib.slim class EmbeddedSSDMobileNetV1FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """Embedded-friendly SSD Feature Extractor using MobilenetV1 features. This feature extractor is similar to SSD MobileNetV1 feature extractor, and it fixes input resolution to be 256x256, reduces the number of feature maps used for box prediction and ensures convolution kernel to be no larger than input tensor in spatial dimensions. This feature extractor requires support of the following ops if used in embedded devices: - Conv - DepthwiseConv - Relu6 All conv/depthwiseconv use SAME padding, and no additional spatial padding is needed. """ def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """MobileNetV1 Feature Extractor for Embedded-friendly SSD Models. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. For EmbeddedSSD it must be set to 1. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. use_depthwise: Whether to use depthwise convolutions. Default is False. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. Raises: ValueError: upon invalid `pad_to_multiple` values. """ if pad_to_multiple != 1: raise ValueError('Embedded-specific SSD only supports `pad_to_multiple` ' 'of 1.') super(EmbeddedSSDMobileNetV1FeatureExtractor, self).__init__( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights, use_explicit_padding, use_depthwise, override_base_feature_extractor_hyperparams) def preprocess(self, resized_inputs): """SSD preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] Raises: ValueError: if image height or width are not 256 pixels. """ image_shape = preprocessed_inputs.get_shape() image_shape.assert_has_rank(4) image_height = image_shape[1].value image_width = image_shape[2].value if image_height is None or image_width is None: shape_assert = tf.Assert( tf.logical_and(tf.equal(tf.shape(preprocessed_inputs)[1], 256), tf.equal(tf.shape(preprocessed_inputs)[2], 256)), ['image size must be 256 in both height and width.']) with tf.control_dependencies([shape_assert]): preprocessed_inputs = tf.identity(preprocessed_inputs) elif image_height != 256 or image_width != 256: raise ValueError('image size must be = 256 in both height and width;' ' image dim = %d,%d' % (image_height, image_width)) feature_map_layout = { 'from_layer': [ 'Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', '' ], 'layer_depth': [-1, -1, 512, 256, 256], 'conv_kernel_size': [-1, -1, 3, 3, 2], 'use_explicit_padding': self._use_explicit_padding, 'use_depthwise': self._use_depthwise, } with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope(is_training=None)): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): # TODO(skligys): Enable fused batch norm once quantization supports it. with slim.arg_scope([slim.batch_norm], fused=False): _, image_features = mobilenet_v1.mobilenet_v1_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Conv2d_13_pointwise', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, use_explicit_padding=self._use_explicit_padding, scope=scope) with slim.arg_scope(self._conv_hyperparams_fn()): # TODO(skligys): Enable fused batch norm once quantization supports it. with slim.arg_scope([slim.batch_norm], fused=False): feature_maps = feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, image_features=image_features) return feature_maps.values()
8f1f76c2428f1baf72a698618a67511bdb315528
fb8909f8ca2418e3ee25469073fa06636c3d294b
/src/unity/python/turicreate/toolkits/regression/decision_tree_regression.py
cde30984bb969b7d260d1210461c4ede7f907451
[ "BSD-3-Clause" ]
permissive
fossabot/turicreate
a1e9d95fc1f68e7074d1d8024ffd64de82463d39
a500d5e52143ad15ebdf771d9f74198982c7c45c
refs/heads/master
2020-12-02T21:45:09.045339
2019-12-31T17:50:02
2019-12-31T17:50:02
231,127,861
0
0
BSD-3-Clause
2019-12-31T17:50:01
2019-12-31T17:50:00
null
UTF-8
Python
false
false
18,183
py
# -*- coding: utf-8 -*- # Copyright © 2017 Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can # be found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause """ This package contains the decision tree model class and the create function. """ from __future__ import print_function as _ from __future__ import division as _ from __future__ import absolute_import as _ import turicreate as _turicreate from turicreate.toolkits._supervised_learning import SupervisedLearningModel as _SupervisedLearningModel import turicreate.toolkits._supervised_learning as _sl import turicreate.toolkits._main as _toolkits_main from turicreate.toolkits._internal_utils import _toolkit_repr_print from turicreate.toolkits._internal_utils import _raise_error_evaluation_metric_is_valid from turicreate.toolkits._internal_utils import _raise_error_if_column_exists from turicreate.toolkits._tree_model_mixin import TreeModelMixin as _TreeModelMixin from turicreate.toolkits._internal_utils import _raise_error_if_not_sframe from turicreate.toolkits._internal_utils import _map_unity_proxy_to_object _DECISION_TREE_MODEL_PARAMS_KEYS = ['max_depth', 'min_child_weight', 'min_loss_reduction'] _DECISION_TREE_TRAINING_PARAMS_KEYS = ['objective', 'training_time', 'training_error', 'validation_error', 'evaluation_metric'] _DECISION_TREE_TRAINING_DATA_PARAMS_KEYS = ['target', 'features', 'num_features', 'num_examples', 'num_validation_examples'] class DecisionTreeRegression(_SupervisedLearningModel, _TreeModelMixin): """ The prediction is based on a collection of base learners, `regression trees <http://en.wikipedia.org/wiki/Decision_tree_learning>`_. This algorithm is a special case for boosted trees regression with number of trees set to 1. Different from linear models, e.g. linear regression, the gradient boost trees model is able to model non-linear interactions between the features and the target using decision trees as the subroutine. It is good for handling numerical features and categorical features with tens of categories but is less suitable for highly sparse feautres such as text data. This model cannot be constructed directly. Instead, use :func:`turicreate.decision_tree_regression.create` to create an instance of this model. A detailed list of parameter options and code samples are available in the documentation for the create function. See Also -------- create """ def __init__(self, proxy): """__init__(self)""" self.__proxy__ = proxy self.__name__ = self.__class__._native_name() @classmethod def _native_name(cls): return "decision_tree_regression" def __str__(self): """ Return a string description of the model to the ``print`` method. Returns ------- out : string A description of the model. """ return self.__repr__() def _get_summary_struct(self): """ Returns a structured description of the model, including (where relevant) the schema of the training data, description of the training data, training statistics, and model hyperparameters. Returns ------- sections : list (of list of tuples) A list of summary sections. Each section is a list. Each item in a section list is a tuple of the form: ('<label>','<field>') section_titles: list A list of section titles. The order matches that of the 'sections' object. """ data_fields = [ ('Number of examples', 'num_examples'), ('Number of feature columns', 'num_features'), ('Number of unpacked features', 'num_unpacked_features')] training_fields = [ ("Max tree depth", 'max_depth'), ("Train RMSE", 'training_rmse'), ("Validation RMSE", 'validation_rmse'), ("Training time (sec)", 'training_time')] return ( [data_fields, training_fields], ['Schema', 'Settings']) def __repr__(self): """ Print a string description of the model, when the model name is entered in the terminal. """ (sections, section_titles) = self._get_summary_struct() return _toolkit_repr_print(self, sections, section_titles, width=30) def _get(self, field): """ Get the value of a given field. The list of all queryable fields is detailed below, and can be obtained programmatically using the :func:`~turicreate.decision_tree_regression._list_fields` method. +-------------------------+--------------------------------------------------------------------------------+ | Field | Description | +=========================+================================================================================+ | column_subsample | Percentage of the columns for training each individual tree | +-------------------------+--------------------------------------------------------------------------------+ | features | Names of the feature columns | +-------------------------+--------------------------------------------------------------------------------+ | max_depth | The maximum depth of individual trees | +-------------------------+--------------------------------------------------------------------------------+ | min_child_weight | Minimun weight required on the leave nodes | +-------------------------+--------------------------------------------------------------------------------+ | min_loss_reduction | Minimun loss reduction required for splitting a node | +-------------------------+--------------------------------------------------------------------------------+ | num_features | Number of features in the model | +-------------------------+--------------------------------------------------------------------------------+ | num_unpacked_features | Number of features in the model (including unpacked dict/list type columns) | +-------------------------+--------------------------------------------------------------------------------+ | num_examples | Number of training examples | +-------------------------+--------------------------------------------------------------------------------+ | num_validation_examples | Number of validation examples | +-------------------------+--------------------------------------------------------------------------------+ | target | Name of the target column | +-------------------------+--------------------------------------------------------------------------------+ | training_error | Error on training data | +-------------------------+--------------------------------------------------------------------------------+ | training_time | Time spent on training the model in seconds | +-------------------------+--------------------------------------------------------------------------------+ | trees_json | Tree encoded using JSON | +-------------------------+--------------------------------------------------------------------------------+ | valiation_error | Error on validation data | +-------------------------+--------------------------------------------------------------------------------+ | unpacked_features | Feature names (including expanded list/dict features) | +-------------------------+--------------------------------------------------------------------------------+ | random_seed | Seed for row and column subselection | +-------------------------+--------------------------------------------------------------------------------+ | metric | Performance metric(s) that are tracked during training | +-------------------------+--------------------------------------------------------------------------------+ Parameters ---------- field : string Name of the field to be retrieved. Returns ------- out : [various] The current value of the requested field. Examples -------- >>> m.get('training_error') """ return super(DecisionTreeRegression, self)._get(field) def evaluate(self, dataset, metric='auto', missing_value_action='auto'): """ Evaluate the model on the given dataset. Parameters ---------- dataset : SFrame Dataset in the same format used for training. The columns names and types of the dataset must be the same as that used in training. metric : str, optional Name of the evaluation metric. Can be one of: - 'auto': Compute all metrics. - 'rmse': Rooted mean squared error. - 'max_error': Maximum error. missing_value_action : str, optional Action to perform when missing values are encountered. Can be one of: - 'auto': By default the model will treat missing value as is. - 'impute': Proceed with evaluation by filling in the missing values with the mean of the training data. Missing values are also imputed if an entire column of data is missing during evaluation. - 'error': Do not proceed with evaluation and terminate with an error message. Returns ------- out : dict A dictionary containing the evaluation result. See Also ---------- create, predict Examples -------- ..sourcecode:: python >>> results = model.evaluate(test_data, 'rmse') """ _raise_error_evaluation_metric_is_valid( metric, ['auto', 'rmse', 'max_error']) return super(DecisionTreeRegression, self).evaluate(dataset, missing_value_action=missing_value_action, metric=metric) def export_coreml(self, filename): """ Export the model in Core ML format. Parameters ---------- filename: str A valid filename where the model can be saved. Examples -------- >>> model.export_coreml("MyModel.mlmodel") """ from turicreate.toolkits import _coreml_utils display_name = "decision tree regression" short_description = _coreml_utils._mlmodel_short_description(display_name) context = {"mode" : "regression", "model_type" : "decision_tree", "version": _turicreate.__version__, "class": self.__class__.__name__, "short_description": short_description} self._export_coreml_impl(filename, context) def predict(self, dataset, missing_value_action='auto'): """ Predict the target column of the given dataset. The target column is provided during :func:`~turicreate.decision_tree_regression.create`. If the target column is in the `dataset` it will be ignored. Parameters ---------- dataset : SFrame A dataset that has the same columns that were used during training. If the target column exists in ``dataset`` it will be ignored while making predictions. missing_value_action : str, optional Action to perform when missing values are encountered. Can be one of: - 'auto': By default the model will treat missing value as is. - 'impute': Proceed with evaluation by filling in the missing values with the mean of the training data. Missing values are also imputed if an entire column of data is missing during evaluation. - 'error': Do not proceed with evaluation and terminate with an error message. Returns ------- out : SArray Predicted target value for each example (i.e. row) in the dataset. See Also ---------- create, predict Examples -------- >>> m.predict(testdata) """ return super(DecisionTreeRegression, self).predict(dataset, output_type='margin', missing_value_action=missing_value_action) @classmethod def _get_queryable_methods(cls): '''Returns a list of method names that are queryable through Predictive Service''' methods = _SupervisedLearningModel._get_queryable_methods() methods['extract_features'] = {'dataset': 'sframe'} return methods def create(dataset, target, features=None, validation_set='auto', max_depth=6, min_loss_reduction=0.0, min_child_weight=0.1, verbose=True, random_seed = None, metric = 'auto', **kwargs): """ Create a :class:`~turicreate.decision_tree_regression.DecisionTreeRegression` to predict a scalar target variable using one or more features. In addition to standard numeric and categorical types, features can also be extracted automatically from list- or dictionary-type SFrame columns. Parameters ---------- dataset : SFrame A training dataset containing feature columns and a target column. Only numerical typed (int, float) target column is allowed. target : str The name of the column in ``dataset`` that is the prediction target. This column must have a numeric type. features : list[str], optional A list of columns names of features used for training the model. Defaults to None, using all columns. validation_set : SFrame, optional The validation set that is used to watch the validation result as boosting progress. max_depth : float, optional Maximum depth of a tree. Must be at least 1. min_loss_reduction : float, optional (non-negative) Minimum loss reduction required to make a further partition/split a node during the tree learning phase. Larger (more positive) values can help prevent overfitting by avoiding splits that do not sufficiently reduce the loss function. min_child_weight : float, optional (non-negative) Controls the minimum weight of each leaf node. Larger values result in more conservative tree learning and help prevent overfitting. Formally, this is minimum sum of instance weights (hessians) in each node. If the tree learning algorithm results in a leaf node with the sum of instance weights less than `min_child_weight`, tree building will terminate. verbose : boolean, optional If True, print progress information during training. random_seed: int, optional Seeds random operations such as column and row subsampling, such that results are reproduceable. metric : str or list[str], optional Performance metric(s) that are tracked during training. When specified, the progress table will display the tracked metric(s) on training and validation set. Supported metrics are: {'rmse', 'max_error'} Returns ------- out : DecisionTreeRegression A trained decision tree model References ---------- - `Wikipedia - Gradient tree boosting <http://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting>`_ - `Trevor Hastie's slides on Boosted Trees and Random Forest <http://jessica2.msri.org/attachments/10778/10778-boost.pdf>`_ See Also -------- DecisionTreeRegression, turicreate.linear_regression.LinearRegression, turicreate.regression.create Examples -------- Setup the data: >>> url = 'https://static.turi.com/datasets/xgboost/mushroom.csv' >>> data = turicreate.SFrame.read_csv(url) >>> data['label'] = data['label'] == 'p' Split the data into training and test data: >>> train, test = data.random_split(0.8) Create the model: >>> model = turicreate.decision_tree_regression.create(train, target='label') Make predictions and evaluate the model: >>> predictions = model.predict(test) >>> results = model.evaluate(test) """ if random_seed is not None: kwargs['random_seed'] = random_seed model = _sl.create(dataset = dataset, target = target, features = features, model_name = 'decision_tree_regression', validation_set = validation_set, max_depth = max_depth, min_loss_reduction = min_loss_reduction, min_child_weight = min_child_weight, verbose = verbose, **kwargs) return DecisionTreeRegression(model.__proxy__)
1bcc583b18dbe1c149df61636316daf19ebb3da8
bc3bd7601fa427d638f872b4ddfdebe4ce23a25c
/bitbucketopenapi/models/branching_model_all_of_branch_types.py
5c19cc4a2bfc8439d01eead784bcecbd8c6be7a7
[]
no_license
magmax/bitbucket-openapi
59ef55ab3aa42940c8211d3ecd16ef7d6fc74c21
836ae762735ae5b1ececcee5287fa271d7d8de5b
refs/heads/master
2020-07-28T16:10:32.736169
2019-09-19T04:17:09
2019-09-19T04:17:09
209,460,884
3
0
null
null
null
null
UTF-8
Python
false
false
4,858
py
# coding: utf-8 """ Bitbucket API Code against the Bitbucket API to automate simple tasks, embed Bitbucket data into your own site, build mobile or desktop apps, or even add custom UI add-ons into Bitbucket itself using the Connect framework. # noqa: E501 The version of the OpenAPI document: 2.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class BranchingModelAllOfBranchTypes(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'kind': 'str', 'prefix': 'str' } attribute_map = { 'kind': 'kind', 'prefix': 'prefix' } def __init__(self, kind=None, prefix=None): # noqa: E501 """BranchingModelAllOfBranchTypes - a model defined in OpenAPI""" # noqa: E501 self._kind = None self._prefix = None self.discriminator = None self.kind = kind self.prefix = prefix @property def kind(self): """Gets the kind of this BranchingModelAllOfBranchTypes. # noqa: E501 The kind of branch. # noqa: E501 :return: The kind of this BranchingModelAllOfBranchTypes. # noqa: E501 :rtype: str """ return self._kind @kind.setter def kind(self, kind): """Sets the kind of this BranchingModelAllOfBranchTypes. The kind of branch. # noqa: E501 :param kind: The kind of this BranchingModelAllOfBranchTypes. # noqa: E501 :type: str """ if kind is None: raise ValueError("Invalid value for `kind`, must not be `None`") # noqa: E501 allowed_values = ["feature", "bugfix", "release", "hotfix"] # noqa: E501 if kind not in allowed_values: raise ValueError( "Invalid value for `kind` ({0}), must be one of {1}" # noqa: E501 .format(kind, allowed_values) ) self._kind = kind @property def prefix(self): """Gets the prefix of this BranchingModelAllOfBranchTypes. # noqa: E501 The prefix for this branch type. A branch with this prefix will be classified as per `kind`. The prefix must be a valid prefix for a branch and must always exist. It cannot be blank, empty or `null`. # noqa: E501 :return: The prefix of this BranchingModelAllOfBranchTypes. # noqa: E501 :rtype: str """ return self._prefix @prefix.setter def prefix(self, prefix): """Sets the prefix of this BranchingModelAllOfBranchTypes. The prefix for this branch type. A branch with this prefix will be classified as per `kind`. The prefix must be a valid prefix for a branch and must always exist. It cannot be blank, empty or `null`. # noqa: E501 :param prefix: The prefix of this BranchingModelAllOfBranchTypes. # noqa: E501 :type: str """ if prefix is None: raise ValueError("Invalid value for `prefix`, must not be `None`") # noqa: E501 self._prefix = prefix def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, BranchingModelAllOfBranchTypes): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
00d30d1d0c99da6ea3aafe35fc7e3c3e88eb6f3e
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/ZMGOCycleFlexConfig.py
a346c3b220c6ea3812a72dfb56fd69a64303cdc3
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
2,868
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class ZMGOCycleFlexConfig(object): def __init__(self): self._cycle_flex_withhold_fee_name = None self._cycle_flex_withhold_max_price = None self._cycle_flex_withhold_total_period_count = None @property def cycle_flex_withhold_fee_name(self): return self._cycle_flex_withhold_fee_name @cycle_flex_withhold_fee_name.setter def cycle_flex_withhold_fee_name(self, value): self._cycle_flex_withhold_fee_name = value @property def cycle_flex_withhold_max_price(self): return self._cycle_flex_withhold_max_price @cycle_flex_withhold_max_price.setter def cycle_flex_withhold_max_price(self, value): self._cycle_flex_withhold_max_price = value @property def cycle_flex_withhold_total_period_count(self): return self._cycle_flex_withhold_total_period_count @cycle_flex_withhold_total_period_count.setter def cycle_flex_withhold_total_period_count(self, value): self._cycle_flex_withhold_total_period_count = value def to_alipay_dict(self): params = dict() if self.cycle_flex_withhold_fee_name: if hasattr(self.cycle_flex_withhold_fee_name, 'to_alipay_dict'): params['cycle_flex_withhold_fee_name'] = self.cycle_flex_withhold_fee_name.to_alipay_dict() else: params['cycle_flex_withhold_fee_name'] = self.cycle_flex_withhold_fee_name if self.cycle_flex_withhold_max_price: if hasattr(self.cycle_flex_withhold_max_price, 'to_alipay_dict'): params['cycle_flex_withhold_max_price'] = self.cycle_flex_withhold_max_price.to_alipay_dict() else: params['cycle_flex_withhold_max_price'] = self.cycle_flex_withhold_max_price if self.cycle_flex_withhold_total_period_count: if hasattr(self.cycle_flex_withhold_total_period_count, 'to_alipay_dict'): params['cycle_flex_withhold_total_period_count'] = self.cycle_flex_withhold_total_period_count.to_alipay_dict() else: params['cycle_flex_withhold_total_period_count'] = self.cycle_flex_withhold_total_period_count return params @staticmethod def from_alipay_dict(d): if not d: return None o = ZMGOCycleFlexConfig() if 'cycle_flex_withhold_fee_name' in d: o.cycle_flex_withhold_fee_name = d['cycle_flex_withhold_fee_name'] if 'cycle_flex_withhold_max_price' in d: o.cycle_flex_withhold_max_price = d['cycle_flex_withhold_max_price'] if 'cycle_flex_withhold_total_period_count' in d: o.cycle_flex_withhold_total_period_count = d['cycle_flex_withhold_total_period_count'] return o
33142582fc29000c271ed5a172c7f98479c6dbda
2f09a5d75343702a0aecf10112b77b00c2063816
/setup.py
466ca0e3e205500ff3041ffbb29c2b4101f5c4d1
[ "Apache-2.0" ]
permissive
tracer0tong/statsitemap
8ac963d03ab53a61c942eeb7c1d63d4fb03c0c24
0e0cc4387b98cd91ffc717f5494e0a2168127992
refs/heads/master
2016-09-10T21:36:22.734268
2015-04-21T22:02:49
2015-04-21T22:02:49
34,352,916
0
0
null
null
null
null
UTF-8
Python
false
false
524
py
from distutils.core import setup setup( name='statsitemap', packages=['statsitemap'], version='0.1', description='Library for building statistical graph (sitemap) from called URI/referer pairs', author='Yury Leonychev (@tracer0tong)', author_email='[email protected]', url='https://github.com/tracer0tong/statsitemap', download_url='https://github.com/tracer0tong/statsitemap/tarball/0.1', keywords=['statsitemap', 'graph', 'nginx', 'apache', 'accesslog'], classifiers=[], )
c8f7add0004abb00bdec5a84216d5e250182acc9
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/agc007/B/4738230.py
5ff3a4324a3c6b6e9adee2311585322f49bfc888
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
252
py
n = int(input()) x = list(map(int, input().split())) a = [20001*i for i in range(1,n+1)] b = [20001*(n+1-i) for i in range(1,n+1)] for i in range(n): b[x[i]-1] += i for x in a:print(x, end=' ') print() for x in b:print(x, end=' ')