blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
07d70ae42492f6ef1d0c9f70c89b683116d2d1fe
0b01cb61a4ae4ae236a354cbfa23064e9057e434
/alipay/aop/api/request/KoubeiMerchantKbcloudSubuserinfoQueryRequest.py
25b94a0a4cf762b874f9cb73885384e42136d8d1
[ "Apache-2.0" ]
permissive
hipacloud/alipay-sdk-python-all
e4aec2869bf1ea6f7c6fb97ac7cc724be44ecd13
bdbffbc6d5c7a0a3dd9db69c99443f98aecf907d
refs/heads/master
2022-11-14T11:12:24.441822
2020-07-14T03:12:15
2020-07-14T03:12:15
277,970,730
0
0
Apache-2.0
2020-07-08T02:33:15
2020-07-08T02:33:14
null
UTF-8
Python
false
false
4,021
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.KoubeiMerchantKbcloudSubuserinfoQueryModel import KoubeiMerchantKbcloudSubuserinfoQueryModel class KoubeiMerchantKbcloudSubuserinfoQueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, KoubeiMerchantKbcloudSubuserinfoQueryModel): self._biz_content = value else: self._biz_content = KoubeiMerchantKbcloudSubuserinfoQueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'koubei.merchant.kbcloud.subuserinfo.query' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
6d5689b96edd16de7af3d2cdb8ee31be61120d55
dcbb531eada723b717cf7243fbeac6d3738007b4
/chapter3/BX-CSV-Dump/users.py
ba7426d264ec460afc5d144cd1afc3500153ad3b
[]
no_license
yangtao0304/recommendation-system
14a023a57d38a2450d44467bb85c441bd067e8f9
995b93ed0fd146d5bb6d837055b8e150a8b145c7
refs/heads/master
2020-09-12T05:56:00.173486
2020-03-10T01:24:28
2020-03-10T01:24:28
222,332,946
0
0
null
null
null
null
UTF-8
Python
false
false
588
py
import pandas as pd file_path = 'BX-Users.csv' users = pd.read_table(file_path, sep=';', header=0, encoding='ISO-8859-1') print('前5条数据为:\n{}\n'.format(users.head())) print('总的数据条数为:\n{}\n'.format(users.count())) print('年龄区间:<{},{}>'.format(users['Age'].min(), users['Age'].max())) ''' 总的数据条数为: User-ID 278858 Location 278858 Age 168096 年龄区间:<0.0,244.0> ''' # Age列,对于NULL,pandas处理为NaN # 最大、最小年龄有误 # 这里可以采用1.符合事实范围的随机数;2.平均数填充
06017e09936000545346137f186f35e3dd4590ef
a1aba83b90285def84cc425c0b089dd632a01a51
/py千峰/day13线程与协程/xiecheng03.py
8ba4d3827ffd07f072a48671005c6c1fcbd1b612
[]
no_license
15929134544/wangwang
8ada14acb505576f07f01e37c936500ee95573a0
47f9abbf46f8d3cbc0698cb64c043735b06940d4
refs/heads/master
2023-05-11T19:59:54.462454
2021-05-25T15:19:43
2021-05-25T15:19:43
328,119,916
1
1
null
2021-05-11T16:13:18
2021-01-09T09:33:29
JavaScript
UTF-8
Python
false
false
1,285
py
""" greenlet已经实现了协程,但是这个是人工切换,是不是觉得太麻烦了,不要着急 python还有一个比greenlet更强大的并且能够自动切换任务的模块gevent 其原理就是当一个greenlet遇到了IO(指的是input output输入输出,比如网络、文件操作等) 操作时,比如访问网络,就自动切换到其他的greenlet,等到IO完成, 在适当的时候切换回来继续执行。 由于IO操作非常耗时,经常使程序处于等待状态,有了gevent我们自动切换协程, 就保证总有greenlet在运行,而不是等待IO。 """ import time import gevent as gevent from greenlet import greenlet from gevent import monkey monkey.patch_all() # 打补丁 def a(): # 任务A for i in range(5): print('A' + str(i)) # gb.switch() # 切换 time.sleep(0.1) def b(): # 任务B for i in range(5): print('B' + str(i)) # gc.switch() time.sleep(0.1) def c(): # 任务C for i in range(5): print('C' + str(i)) # ga.switch() time.sleep(0.1) if __name__ == '__main__': g1 = gevent.spawn(a) g2 = gevent.spawn(b) g3 = gevent.spawn(c) g1.join() g2.join() g3.join() print('---------------')
64f802ee3da662f7515a4b931b1bd80bc895e282
e2992e19ebc728387125a70c72a702a076de7a12
/Python/01_My_Programs_Hv/05_List/102_C5_E3.py
20429dcf098b179f726d90ec28f04fadd4ca8fe1
[]
no_license
harsh1915/Machine_Learning
c9c32ed07df3b2648f7796f004ebb38726f13ae4
c68a973cfbc6c60eeb94e253c6f2ce34baa3686e
refs/heads/main
2023-08-27T15:01:16.430869
2021-11-15T07:53:36
2021-11-15T07:53:36
377,694,941
0
1
null
null
null
null
UTF-8
Python
false
false
164
py
ls= ["abc", "def", "ghi"] print(ls[0][::-1]) def list_reverse(ls): ls1= [] for i in ls: ls1.append(i[::-1]) return ls1 print(list_reverse(ls))
[ "“[email protected]”" ]
a18d86d09a8f17900f98f2b1c6064003b6ee5ec0
50e10e8f304d32329ba88aa3fa8f8250c0a6a84d
/standard/girc.py
594043511c56131f646724eb2d265123d12a8728
[ "Apache-2.0" ]
permissive
candeira/duxlot
0a1b4468e1d93f3db90219ea21d45a8e494aaabb
69f4234e14ac8ad1ef53a0d663a7240d6e321e46
refs/heads/master
2021-01-20T04:26:10.588945
2012-09-13T17:00:18
2012-09-13T17:00:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,750
py
# Copyright 2012, Sean B. Palmer # Code at http://inamidst.com/duxlot/ # Apache License 2.0 # @@ this can't be named irc.py import duxlot # Save PEP 3122! if "." in __name__: from . import api else: import api command = duxlot.command # @@ ask, not tell yourself # IRC @command def ask(env): "Ask another user an enquiry" if not env.arg: return env.reply(ask.__doc__) env.verb = "ask" to(env) # IRC @command def parsed_message(env): "Show parsed input message" env.reply(repr(env.message)) # IRC @command def schedule(env): "Schedule an event" # @@ database.timezones if not env.arg: return env.reply(schedule.__doc__) t, text = env.arg.split(" ", 1) t = float(t) env.schedule((t, env.sender, env.nick, text)) env.reply("Scheduled") # @@ test to make sure the right time is given! # IRC @command def seen(env): "Find out whether somebody has been around recently" if not env.arg: return env.say(seen.__doc__) if env.arg == env.options["nick"]: return env.reply("I'm right here") # env.database.seen.get.verb.verb.verb result = env.database.cache.seen.get(env.arg) if not result: env.say("Haven't seen %s" % env.arg) else: unixtime, place = result offset, abbreviation = zone_from_nick(env, env.nick) dt = api.clock.format_datetime( format="%Y-%m-%d %H:%M:%S $TZ", offset=offset, tz=abbreviation, unixtime=unixtime ) env.say("On %s at %s" % (place, dt)) # IRC # @@ a check that commands are covered here @command def stats(env): "Display information about the most used commands" usage = env.database.cache.usage usage = sorted(((b, a) for (a, b) in usage.items()), reverse=True) usage = list(usage)[:10] usage = ["%s (%s)" % (b, a) for (a, b) in usage] env.reply("Top used commands: " + ", ".join(usage)) # IRC @command def tell(env): "Tell another user a message" # Inspired by Monty, by Paul Mutton # http://www.jibble.org/ if not env.arg: return env.reply(tell.__doc__) env.verb = "tell" to(env) # IRC @command def timezone(env): "Set the user's timezone to an IANA Time Zone Database value" tz = env.database.cache.timezones.get(env.nick, None) if not env.arg: if tz: return env.reply("Your timezone is currently set to %s" % tz) else: return env.reply("You do not currently have a timezone set") if env.arg in {"None", "-", "delete", "remove", "unset"}: if tz is None: return env.reply("You do not current have a timezone set") with env.database.context("timezones") as timezones: del timezones[env.nick] return env.reply("Your timezone has been un-set") if env.arg in {"geo", "guess"}: zonename = api.geo.timezone_info( address=env.message["prefix"]["host"] ).zone else: zonename = env.arg import os.path zoneinfo = env.options["zoneinfo"] zonefile = os.path.join(zoneinfo, zonename) try: opt = api.clock.zoneinfo_offset(filename=zonefile) except Exception: env.reply("Unrecognised zone. Try using one of the TZ fields here:") env.reply("http://en.wikipedia.org/wiki/List_of_tz_database_time_zones") else: tz = round(opt.offset, 2) with env.database.context("timezones") as timezones: timezones[env.nick] = zonename # message = "Set your zone to %s, which is currently %s (%s)" message = "Set your TZ to %s; currently %s (UTC %s)" hours = round(tz / 3600, 3) hours = "+" + str(hours) if (hours >=0) else str(hours) hours = hours.rstrip("0").rstrip(".") env.reply(message % (zonename, opt.abbreviation, hours)) # @@ check nickname sanity # IRC @command def to(env): "Send a message to another user" if not env.arg: return env.reply(to.__doc__) # import time # could be partly moved to api? recipient, message = env.arg.split(" ", 1) # check syntax of env.nick! # "self!" syntax to force a message to self if env.nick == recipient: return env.reply("You can tell yourself that") if env.options["nick"] == recipient: return env.reply("Understood") if not hasattr(input, "verb"): env.verb = None # @@ check nick format item = (int(time.time()), env.nick, env.verb, recipient, message) with env.database.context("messages") as messages: messages.setdefault(recipient, []) messages[recipient].append(item) env.reply("Will pass your message to %s" % recipient)
5262ad751574f1650ce9fde9ee1b73565b930cb2
d7379fa682e25d1d40b93b61dfe7c1fc2a64e0ff
/test/test_variables.py
fb481be5d642768a394481a1a887f86acd895855
[ "Apache-2.0" ]
permissive
renuacpro/unit
f7b00cfc059b1ff9298824ead28b1ac404b86ff0
22c88f0253d57756ad541326df09d1398a871708
refs/heads/master
2022-12-10T08:27:15.371966
2020-09-07T12:21:14
2020-09-07T12:21:14
293,599,216
2
0
null
2020-09-07T18:08:47
2020-09-07T18:08:47
null
UTF-8
Python
false
false
3,888
py
from unit.applications.proto import TestApplicationProto class TestVariables(TestApplicationProto): prerequisites = {} def setUp(self): super().setUp() self.assertIn( 'success', self.conf( { "listeners": {"*:7080": {"pass": "routes/$method"}}, "routes": { "GET": [{"action": {"return": 201}}], "POST": [{"action": {"return": 202}}], "3": [{"action": {"return": 203}}], "4*": [{"action": {"return": 204}}], "blahGET}": [{"action": {"return": 205}}], "5GET": [{"action": {"return": 206}}], "GETGET": [{"action": {"return": 207}}], "localhost": [{"action": {"return": 208}}], }, }, ), 'configure routes', ) def conf_routes(self, routes): self.assertIn('success', self.conf(routes, 'listeners/*:7080/pass')) def test_variables_method(self): self.assertEqual(self.get()['status'], 201, 'method GET') self.assertEqual(self.post()['status'], 202, 'method POST') def test_variables_uri(self): self.conf_routes("\"routes$uri\"") self.assertEqual(self.get(url='/3')['status'], 203, 'uri') self.assertEqual(self.get(url='/4*')['status'], 204, 'uri 2') self.assertEqual(self.get(url='/4%2A')['status'], 204, 'uri 3') def test_variables_host(self): self.conf_routes("\"routes/$host\"") def check_host(host, status=208): self.assertEqual( self.get(headers={'Host': host, 'Connection': 'close'})[ 'status' ], status, ) check_host('localhost') check_host('localhost.') check_host('localhost:7080') check_host('.localhost', 404) check_host('www.localhost', 404) check_host('localhost1', 404) def test_variables_many(self): self.conf_routes("\"routes$uri$method\"") self.assertEqual(self.get(url='/5')['status'], 206, 'many') self.conf_routes("\"routes${uri}${method}\"") self.assertEqual(self.get(url='/5')['status'], 206, 'many 2') self.conf_routes("\"routes${uri}$method\"") self.assertEqual(self.get(url='/5')['status'], 206, 'many 3') self.conf_routes("\"routes/$method$method\"") self.assertEqual(self.get()['status'], 207, 'many 4') self.conf_routes("\"routes/$method$uri\"") self.assertEqual(self.get()['status'], 404, 'no route') self.assertEqual(self.get(url='/blah')['status'], 404, 'no route 2') def test_variables_replace(self): self.assertEqual(self.get()['status'], 201) self.conf_routes("\"routes$uri\"") self.assertEqual(self.get(url='/3')['status'], 203) self.conf_routes("\"routes/${method}\"") self.assertEqual(self.post()['status'], 202) self.conf_routes("\"routes${uri}\"") self.assertEqual(self.get(url='/4*')['status'], 204) self.conf_routes("\"routes/blah$method}\"") self.assertEqual(self.get()['status'], 205) def test_variables_invalid(self): def check_variables(routes): self.assertIn( 'error', self.conf(routes, 'listeners/*:7080/pass'), 'invalid variables', ) check_variables("\"routes$\"") check_variables("\"routes${\"") check_variables("\"routes${}\"") check_variables("\"routes$ur\"") check_variables("\"routes$uriblah\"") check_variables("\"routes${uri\"") check_variables("\"routes${{uri}\"") if __name__ == '__main__': TestVariables.main()
7e96ded78edf879fd044bae181c6553700ee19a1
3db9ef78b62b01bf79dff6671b02c24192cd4648
/13/8.py
b0c91ec8d0d5b114b03beb2ee22681599281cb1e
[]
no_license
rheehot/python-for-coding-test
401f5655af1a8cf20bc86edb1635bdc4a9e88e52
be95a0d0b3191bb21eab1075953fa472f4102351
refs/heads/master
2022-11-11T19:35:56.680749
2020-06-24T02:19:48
2020-06-24T02:19:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,759
py
from collections import deque def get_next_pos(pos, board): next_pos = [] # 반환 결과 (이동 가능한 위치들) pos = list(pos) # 현재 위치 pos1_x, pos1_y, pos2_x, pos2_y = pos[0][0], pos[0][1], pos[1][0], pos[1][1] # (상, 하, 좌, 우)로 이동하는 경우에 대해서 처리 dx = [-1, 1, 0, 0] dy = [0, 0, -1, 1] for i in range(4): pos1_next_x, pos1_next_y, pos2_next_x, pos2_next_y = pos1_x + dx[i], pos1_y + dy[i], pos2_x + dx[i], pos2_y + dy[i] # 이동하고자 하는 두 칸이 모두 비어있다면 if board[pos1_next_x][pos1_next_y] == 0 and board[pos2_next_x][pos2_next_y] == 0: next_pos.append({(pos1_next_x, pos1_next_y), (pos2_next_x, pos2_next_y)}) # 현재 로봇이 가로로 놓여 있는 경우 if pos1_x == pos2_x: for i in [-1, 1]: # 위쪽으로 회전하거나, 아래쪽으로 회전 if board[pos1_x + i][pos1_y] == 0 and board[pos2_x + i][pos2_y] == 0: # 위쪽 혹은 아래쪽 두 칸이 모두 비어 있다면 next_pos.append({(pos1_x, pos1_y), (pos1_x + i, pos1_y)}) next_pos.append({(pos2_x, pos2_y), (pos2_x + i, pos2_y)}) # 현재 로봇이 세로로 놓여 있는 경우 elif pos1_y == pos2_y: for i in [-1, 1]: # 왼쪽으로 회전하거나, 오른쪽으로 회전 if board[pos1_x][pos1_y + i] == 0 and board[pos2_x][pos2_y + i] == 0: # 왼쪽 혹은 오른쪽 두 칸이 모두 비어 있다면 next_pos.append({(pos1_x, pos1_y), (pos1_x, pos1_y + i)}) next_pos.append({(pos2_x, pos2_y), (pos2_x, pos2_y + i)}) # 현재 위치에서 이동할 수 있는 위치를 반환 return next_pos def solution(board): # 맵의 외곽에 벽을 두는 형태로 맵 변형 n = len(board) new_board = [[1] * (n + 2) for _ in range(n + 2)] for i in range(n): for j in range(n): new_board[i + 1][j + 1] = board[i][j] # 너비 우선 탐색(BFS) 수행 q = deque() visited = [] pos = {(1, 1), (1, 2)} # 시작 위치 설정 q.append((pos, 0)) # 큐에 삽입한 뒤에 visited.append(pos) # 방문 처리 # 큐가 빌 때까지 반복 while q: pos, cost = q.popleft() # (n, n) 위치에 로봇이 도달했다면, 최단 거리이므로 반환 if (n, n) in pos: return cost # 현재 위치에서 이동할 수 있는 위치 확인 for next_pos in get_next_pos(pos, new_board): # 아직 방문하지 않은 위치라면 큐에 삽입하고 방문 처리 if next_pos not in visited: q.append((next_pos, cost + 1)) visited.append(next_pos) return 0
43fceb1cbee1e30cbb8565be49c40ba5a3866b44
6d9fbe6e6a2abfd8455e92f6dba67a5f02d87f41
/lib/phonenumbers/shortdata/region_TR.py
4840c1a7757ec99155ac8ae581af9b61d4516426
[]
no_license
JamesBrace/InfluenceUWebLaunch
549d0b48ff3259b139cb891a19cb8b5382ffe2c8
332d25940e4b1b45a7a2a8200f77c8413543b199
refs/heads/master
2021-09-04T04:08:47.594900
2018-01-15T16:49:29
2018-01-15T16:49:29
80,778,825
1
1
null
null
null
null
UTF-8
Python
false
false
816
py
"""Auto-generated file, do not edit by hand. TR metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_TR = PhoneMetadata(id='TR', country_code=None, international_prefix=None, general_desc=PhoneNumberDesc(national_number_pattern='1\\d{2}', possible_number_pattern='\\d{3}', possible_length=(3,)), toll_free=PhoneNumberDesc(), premium_rate=PhoneNumberDesc(), emergency=PhoneNumberDesc(national_number_pattern='1(?:1[02]|55)', possible_number_pattern='\\d{3}', example_number='112', possible_length=(3,)), short_code=PhoneNumberDesc(national_number_pattern='1(?:1[02]|55)', possible_number_pattern='\\d{3}', example_number='112', possible_length=(3,)), standard_rate=PhoneNumberDesc(), carrier_specific=PhoneNumberDesc(), short_data=True)
9026e69e8f119456f9e40a29da8f7c7d3ef7372b
971e0efcc68b8f7cfb1040c38008426f7bcf9d2e
/tests/model_control/detailed/transf_Integration/model_control_one_enabled_Integration_PolyTrend_BestCycle_MLP.py
5274eb0449dc0222445102838746fbe7b7badd4e
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
antoinecarme/pyaf
a105d172c2e7544f8d580d75f28b751351dd83b6
b12db77cb3fa9292e774b2b33db8ce732647c35e
refs/heads/master
2023-09-01T09:30:59.967219
2023-07-28T20:15:53
2023-07-28T20:15:53
70,790,978
457
77
BSD-3-Clause
2023-03-08T21:45:40
2016-10-13T09:30:30
Python
UTF-8
Python
false
false
154
py
import tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['Integration'] , ['PolyTrend'] , ['BestCycle'] , ['MLP'] );
36fa9338504116911b5efc2f47a261d074edb8a3
3cd4902b67de144d8e6f36335e125d0548d8cf97
/submissions/runs/RUN10_vc_extended_model_img_unsorted.py
129ab86ee4ee8a26ac6546af8dd14261d13a222a
[ "MIT" ]
permissive
stefantaubert/imageclef-lifelog-2019
5d201c2a28f15f608b9b58b94ab2ecddb5201205
ad49dc79db98a163c5bc282fb179c0f7730546b3
refs/heads/master
2022-10-06T12:42:30.011610
2022-08-29T13:35:09
2022-08-29T13:35:09
196,553,184
1
0
null
null
null
null
UTF-8
Python
false
false
3,215
py
from src.models.pooling.Model_opts import * from src.data.RawPlaces365Data import name_raw_places from src.data.IndoorOutdoorData import name_io from src.data.CocoYoloData import name_yolo from src.data.CocoDetectronData import name_detectron from src.data.CocoDefaultData import name_coco_default from src.data.OpenImagesData import name_oi from src.data.ImageNetData import name_imagenet from src.data.SUNattributesData import name_sun from submissions.runs.run_base import run_on_dev from submissions.runs.run_base import run_on_test opts = { opt_model: { opt_use_seg: False, opt_subm_imgs_per_day: 0, opt_subm_imgs_per_day_only_on_recall: False, opt_comp_method: comp_method_datamax, opt_comp_use_weights: True, opt_query_src: query_src_title, opt_use_tokenclustering: False, opt_optimize_labels: True, }, opt_data: { name_coco_default: { opt_weight: 1, opt_threshold: 0.9, opt_use_idf: False, opt_idf_boosting_threshold: 0, opt_intensify_factor_m: 1, opt_intensify_factor_p: 1, opt_ceiling: False, }, name_detectron: { opt_weight: 1, opt_threshold: 0.95, opt_use_idf: False, opt_idf_boosting_threshold: 0, opt_intensify_factor_m: 1, opt_intensify_factor_p: 1, opt_ceiling: False, }, name_yolo: { opt_weight: 1, opt_threshold: 0.9, opt_use_idf: False, opt_idf_boosting_threshold: 0, opt_intensify_factor_m: 1, opt_intensify_factor_p: 1, opt_ceiling: False, }, name_imagenet: { opt_weight: 1, opt_threshold: 0.99, opt_use_idf: False, opt_idf_boosting_threshold: 0, opt_intensify_factor_m: 1, opt_intensify_factor_p: 1, opt_ceiling: False, }, name_oi: { opt_weight: 1, opt_threshold: 0, opt_use_idf: True, opt_idf_boosting_threshold: 0.5, opt_intensify_factor_m: 2, opt_intensify_factor_p: 2, opt_ceiling: True, }, name_raw_places: { opt_weight: 1, opt_threshold: 0, opt_use_idf: False, opt_idf_boosting_threshold: 0, opt_intensify_factor_m: 1, opt_intensify_factor_p: 1, opt_ceiling: True, }, name_io: { opt_weight: 1, opt_threshold: 0, opt_use_idf: False, opt_idf_boosting_threshold: 0, opt_intensify_factor_m: 3, opt_intensify_factor_p: 3, opt_ceiling: False, }, name_sun: { opt_weight: 1, opt_threshold: 0, opt_use_idf: False, opt_idf_boosting_threshold: 0, opt_intensify_factor_m: 1, opt_intensify_factor_p: 1, opt_ceiling: False, }, }, } if __name__ == "__main__": run_on_dev(opts) run_on_test(opts)
99fbbf8071ba11b6ce828063c78654215208e339
bede13ba6e7f8c2750815df29bb2217228e91ca5
/medical_lab_management/__manifest__.py
01ea6d84e8879c00ab859c47d9b8fa1631145e57
[]
no_license
CybroOdoo/CybroAddons
f44c1c43df1aad348409924603e538aa3abc7319
4b1bcb8f17aad44fe9c80a8180eb0128e6bb2c14
refs/heads/16.0
2023-09-01T17:52:04.418982
2023-09-01T11:43:47
2023-09-01T11:43:47
47,947,919
209
561
null
2023-09-14T01:47:59
2015-12-14T02:38:57
HTML
UTF-8
Python
false
false
2,048
py
# -*- coding: utf-8 -*- ############################################################################# # # Cybrosys Technologies Pvt. Ltd. # # Copyright (C) 2021-TODAY Cybrosys Technologies(<https://www.cybrosys.com>). # # You can modify it under the terms of the GNU AFFERO # GENERAL PUBLIC LICENSE (AGPL v3), Version 3. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU AFFERO GENERAL PUBLIC LICENSE (AGPL v3) for more details. # # You should have received a copy of the GNU AFFERO GENERAL PUBLIC LICENSE # (AGPL v3) along with this program. # If not, see <http://www.gnu.org/licenses/>. # ############################################################################# { 'name': "Medical Lab Management", 'version': '16.0.1.1.0', 'summary': """Manage Medical Lab Operations.""", 'description': """Manage Medical Lab General Operations, Odoo15, Odoo 15""", 'author': "Cybrosys Techno Solutions", 'maintainer': 'Cybrosys Techno Solutions', 'company': "Cybrosys Techno Solutions", 'website': "https://www.cybrosys.com", 'category': 'Industries', 'depends': ['base', 'mail', 'account', 'contacts'], 'data': [ 'security/lab_users.xml', 'security/ir.model.access.csv', 'views/res_partner.xml', 'views/lab_patient_view.xml', 'views/test_unit_view.xml', 'views/lab_test_type.xml', 'views/lab_test_content_type.xml', 'views/physician_specialty.xml', 'views/physician_details.xml', 'views/lab_request.xml', 'views/lab_appointment.xml', 'views/account_invoice.xml', 'report/report.xml', 'report/lab_test_report.xml', 'report/lab_patient_card.xml', ], 'images': ['static/description/banner.png'], 'license': 'AGPL-3', 'installable': True, 'auto_install': False, 'application': True, }
2d48271b9fc70a4e9d62124e31981289ac41c030
cfb373af248f1f24124194913a52d395e6b826e7
/recruitment_plus/config/docs.py
e2d3da882af7144d3fec38727c269c5516b501da
[ "MIT" ]
permissive
leaftechnology/recruitment-plus
616da8e1b9fc405d431e3e20559f55c2b5e78981
505478a9d4299b18089dba41a86d7ab3b4907289
refs/heads/master
2023-04-02T13:50:52.135805
2021-04-12T13:29:24
2021-04-12T13:29:24
328,859,542
0
0
null
null
null
null
UTF-8
Python
false
false
340
py
""" Configuration for docs """ # source_link = "https://github.com/[org_name]/recruitment_plus" # docs_base_url = "https://[org_name].github.io/recruitment_plus" # headline = "App that does everything" # sub_heading = "Yes, you got that right the first time, everything" def get_context(context): context.brand_html = "Recruitment Plus"
a81fbbd2f5f2f89caa41421f4da4cedacd4fe732
bc441bb06b8948288f110af63feda4e798f30225
/staff_manage_sdk/model/metadata_center/stream_aggregate_states_pb2.py
e1c387bf61b3d82a52c66f128f07bb8158289ee0
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
3,721
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: stream_aggregate_states.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from staff_manage_sdk.model.metadata_center import stream_aggregate_rule_pb2 as staff__manage__sdk_dot_model_dot_metadata__center_dot_stream__aggregate__rule__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='stream_aggregate_states.proto', package='metadata_center', syntax='proto3', serialized_options=_b('ZIgo.easyops.local/contracts/protorepo-models/easyops/model/metadata_center'), serialized_pb=_b('\n\x1dstream_aggregate_states.proto\x12\x0fmetadata_center\x1a\x42staff_manage_sdk/model/metadata_center/stream_aggregate_rule.proto\"l\n\x15StreamAggregateStates\x12\x0b\n\x03org\x18\x01 \x01(\x05\x12\x0f\n\x07\x63ommand\x18\x02 \x01(\t\x12\x35\n\x07payload\x18\x03 \x03(\x0b\x32$.metadata_center.StreamAggregateRuleBKZIgo.easyops.local/contracts/protorepo-models/easyops/model/metadata_centerb\x06proto3') , dependencies=[staff__manage__sdk_dot_model_dot_metadata__center_dot_stream__aggregate__rule__pb2.DESCRIPTOR,]) _STREAMAGGREGATESTATES = _descriptor.Descriptor( name='StreamAggregateStates', full_name='metadata_center.StreamAggregateStates', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='org', full_name='metadata_center.StreamAggregateStates.org', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='command', full_name='metadata_center.StreamAggregateStates.command', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='payload', full_name='metadata_center.StreamAggregateStates.payload', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=118, serialized_end=226, ) _STREAMAGGREGATESTATES.fields_by_name['payload'].message_type = staff__manage__sdk_dot_model_dot_metadata__center_dot_stream__aggregate__rule__pb2._STREAMAGGREGATERULE DESCRIPTOR.message_types_by_name['StreamAggregateStates'] = _STREAMAGGREGATESTATES _sym_db.RegisterFileDescriptor(DESCRIPTOR) StreamAggregateStates = _reflection.GeneratedProtocolMessageType('StreamAggregateStates', (_message.Message,), { 'DESCRIPTOR' : _STREAMAGGREGATESTATES, '__module__' : 'stream_aggregate_states_pb2' # @@protoc_insertion_point(class_scope:metadata_center.StreamAggregateStates) }) _sym_db.RegisterMessage(StreamAggregateStates) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
8351589ff5cf619e24e9651f2c6e06360a29a3d5
0580861bd8b993ac92faec0ed88a339975d702c0
/reagent/model_managers/discrete_dqn_base.py
ea825859334f6a14b3a64a0e0ef59b203444de62
[ "BSD-3-Clause" ]
permissive
Sandy4321/ReAgent
346094ae4c98121de5c54d504186f583de21daf0
0a387c1aeb922d242c705338fae9379becc82814
refs/heads/master
2023-07-17T01:27:17.762206
2021-08-19T03:15:15
2021-08-19T03:17:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,205
py
#!/usr/bin/env python3 import abc import logging from typing import Dict, List, Optional, Tuple from reagent.core import types as rlt from reagent.core.dataclasses import dataclass, field from reagent.core.parameters import ( EvaluationParameters, NormalizationData, NormalizationKey, RLParameters, ) from reagent.data.data_fetcher import DataFetcher from reagent.data.manual_data_module import ManualDataModule from reagent.data.reagent_data_module import ReAgentDataModule from reagent.gym.policies.policy import Policy from reagent.gym.policies.predictor_policies import create_predictor_policy_from_model from reagent.gym.policies.samplers.discrete_sampler import ( GreedyActionSampler, ) from reagent.gym.policies.scorers.discrete_scorer import discrete_dqn_scorer from reagent.model_managers.model_manager import ModelManager from reagent.models.model_feature_config_provider import RawModelFeatureConfigProvider from reagent.preprocessing.batch_preprocessor import ( BatchPreprocessor, DiscreteDqnBatchPreprocessor, ) from reagent.preprocessing.preprocessor import Preprocessor from reagent.preprocessing.types import InputColumn from reagent.reporting.discrete_dqn_reporter import DiscreteDQNReporter from reagent.training import ReAgentLightningModule from reagent.workflow.identify_types_flow import identify_normalization_parameters from reagent.workflow.types import ( Dataset, ModelFeatureConfigProvider__Union, PreprocessingOptions, ReaderOptions, ResourceOptions, RewardOptions, TableSpec, ) logger = logging.getLogger(__name__) @dataclass class DiscreteDQNBase(ModelManager): target_action_distribution: Optional[List[float]] = None state_feature_config_provider: ModelFeatureConfigProvider__Union = field( # pyre-fixme[28]: Unexpected keyword argument `raw`. default_factory=lambda: ModelFeatureConfigProvider__Union( raw=RawModelFeatureConfigProvider(float_feature_infos=[]) ) ) preprocessing_options: Optional[PreprocessingOptions] = None reader_options: Optional[ReaderOptions] = None eval_parameters: EvaluationParameters = field(default_factory=EvaluationParameters) def __post_init_post_parse__(self): super().__post_init_post_parse__() @property @abc.abstractmethod def rl_parameters(self) -> RLParameters: pass def create_policy( self, trainer_module: ReAgentLightningModule, serving: bool = False, normalization_data_map: Optional[Dict[str, NormalizationData]] = None, ) -> Policy: """Create an online DiscreteDQN Policy from env.""" if serving: assert normalization_data_map return create_predictor_policy_from_model( self.build_serving_module(trainer_module, normalization_data_map), rl_parameters=self.rl_parameters, ) else: sampler = GreedyActionSampler() # pyre-fixme[6]: Expected `ModelBase` for 1st param but got # `Union[torch.Tensor, torch.nn.Module]`. scorer = discrete_dqn_scorer(trainer_module.q_network) return Policy(scorer=scorer, sampler=sampler) @property def state_feature_config(self) -> rlt.ModelFeatureConfig: return self.state_feature_config_provider.value.get_model_feature_config() def get_state_preprocessing_options(self) -> PreprocessingOptions: state_preprocessing_options = ( self.preprocessing_options or PreprocessingOptions() ) state_features = [ ffi.feature_id for ffi in self.state_feature_config.float_feature_infos ] logger.info(f"state allowedlist_features: {state_features}") state_preprocessing_options = state_preprocessing_options._replace( allowedlist_features=state_features ) return state_preprocessing_options @property def multi_steps(self) -> Optional[int]: return self.rl_parameters.multi_steps def get_data_module( self, *, input_table_spec: Optional[TableSpec] = None, reward_options: Optional[RewardOptions] = None, reader_options: Optional[ReaderOptions] = None, setup_data: Optional[Dict[str, bytes]] = None, saved_setup_data: Optional[Dict[str, bytes]] = None, resource_options: Optional[ResourceOptions] = None, ) -> Optional[ReAgentDataModule]: return DiscreteDqnDataModule( input_table_spec=input_table_spec, reward_options=reward_options, setup_data=setup_data, saved_setup_data=saved_setup_data, reader_options=reader_options, resource_options=resource_options, model_manager=self, ) def get_reporter(self): return DiscreteDQNReporter( self.trainer_param.actions, target_action_distribution=self.target_action_distribution, ) class DiscreteDqnDataModule(ManualDataModule): @property def should_generate_eval_dataset(self) -> bool: return self.model_manager.eval_parameters.calc_cpe_in_training def run_feature_identification( self, input_table_spec: TableSpec ) -> Dict[str, NormalizationData]: preprocessing_options = ( self.model_manager.preprocessing_options or PreprocessingOptions() ) state_features = [ ffi.feature_id for ffi in self.model_manager.state_feature_config.float_feature_infos ] logger.info(f"Overriding allowedlist_features: {state_features}") preprocessing_options = preprocessing_options._replace( allowedlist_features=state_features ) return { NormalizationKey.STATE: NormalizationData( dense_normalization_parameters=identify_normalization_parameters( input_table_spec, InputColumn.STATE_FEATURES, preprocessing_options ) ) } def query_data( self, input_table_spec: TableSpec, sample_range: Optional[Tuple[float, float]], reward_options: RewardOptions, data_fetcher: DataFetcher, ) -> Dataset: return data_fetcher.query_data( input_table_spec=input_table_spec, discrete_action=True, actions=self.model_manager.action_names, include_possible_actions=True, sample_range=sample_range, custom_reward_expression=reward_options.custom_reward_expression, multi_steps=self.model_manager.multi_steps, gamma=self.model_manager.rl_parameters.gamma, ) def build_batch_preprocessor(self) -> BatchPreprocessor: state_preprocessor = Preprocessor( self.state_normalization_data.dense_normalization_parameters, use_gpu=self.resource_options.use_gpu, ) return DiscreteDqnBatchPreprocessor( num_actions=len(self.model_manager.action_names), state_preprocessor=state_preprocessor, use_gpu=self.resource_options.use_gpu, )
e280e7b4ce66799e836bba7771e9ef48dfd54688
59359e4821554f559c9ffc5bf1a7f52fff0c6051
/descarteslabs/core/common/client/tests/test_attributes.py
cc396105832fecd35dea1fa023f4f5e890c94ff5
[ "Apache-2.0" ]
permissive
descarteslabs/descarteslabs-python
706acfc594721a1087872744c9cb72fe2b3d2e5b
a8a3859b8ced6d4478b93ff205caad06d508501d
refs/heads/master
2023-08-23T12:01:36.802085
2023-08-21T14:57:22
2023-08-21T15:20:01
84,609,153
176
49
NOASSERTION
2023-05-02T15:54:37
2017-03-10T23:27:12
Python
UTF-8
Python
false
false
10,438
py
# Copyright 2018-2023 Descartes Labs. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from datetime import datetime, timezone import pytz from .. import Attribute, DatetimeAttribute, Document, DocumentState, ListAttribute class MyDocument(Document): id: int = Attribute(int, readonly=True) name: str = Attribute(str) local: str = Attribute(str, default="local", sticky=True) once: int = Attribute(int, mutable=False) default: datetime = DatetimeAttribute(default=lambda: datetime.utcnow()) created_at: datetime = DatetimeAttribute(readonly=True) class TestDocument(unittest.TestCase): def test_attribute(self): doc = MyDocument(name="testing") assert doc.name == "testing" assert doc.state == DocumentState.NEW def test_default(self): doc = MyDocument() assert doc.id is None assert doc.name is None assert doc.local == "local" assert doc.once is None date = doc.default assert date is not None assert doc.default == date assert doc.created_at is None def test_modified(self): doc = MyDocument(name="test") doc.name = "something new" assert doc.name == "something new" assert doc.is_modified assert doc._modified == {"name"} doc.name = None assert doc.is_modified assert doc._modified == {"name"} assert doc.name is None def test_coerce(self): doc = MyDocument(once="1") assert doc.once == 1 with self.assertRaises(ValueError) as ctx: doc = MyDocument(once="1blguoaw") assert "Unable to assign" in str(ctx.exception) def test_attribute_immutable(self): # Should be able to set the value once even if it's None doc = MyDocument(once=None) doc.once == 1 doc = MyDocument(once="1") doc.once == 1 with self.assertRaises(ValueError) as ctx: doc.once = 2 assert "Unable to set immutable attribute 'once'" == str(ctx.exception) with self.assertRaises(ValueError) as ctx: doc.once = None assert "Unable to set immutable attribute 'once'" == str(ctx.exception) def test_attribute_readonly(self): with self.assertRaises(ValueError) as ctx: MyDocument(id="123") assert "Unable to set readonly attribute 'id'" == str(ctx.exception) doc = MyDocument() with self.assertRaises(ValueError) as ctx: doc.id = "123" assert "Unable to set readonly attribute 'id'" == str(ctx.exception) def test_init_from_server(self): now = datetime.utcnow() # 2000-01-01, if set to 0 astimezone on windows in python 3.8 will error timestamp = 946710000 data = { "id": 1, "name": "server", "local": "server", "once": 2, "default": datetime.fromtimestamp(timestamp).isoformat(), "created_at": now.isoformat(), "extra": "should be ignored", } doc = MyDocument(**data, saved=True) assert doc.id == 1 assert doc.name == "server" assert doc.local == "local" assert doc.once == 2 assert doc.default == datetime.fromtimestamp(timestamp, tz=timezone.utc) assert doc.created_at == now.replace(tzinfo=timezone.utc) with self.assertRaises(AttributeError): doc.extra def test_set_from_server(self): now = datetime.utcnow() doc = MyDocument(name="local", once="1", default=now) # 2000-01-01, if set to 0 astimezone on windows in python 3.8 will error timestamp = 946710000 assert doc.once == 1 data = { "id": 1, "name": "server", "local": "server", "once": 2, "default": datetime.fromtimestamp(timestamp).isoformat(), "created_at": now.isoformat(), } doc._load_from_remote(data) assert doc.id == 1 assert doc.name == "server" assert doc.local == "local" assert doc.once == 2 assert doc.default == datetime.fromtimestamp(timestamp, tz=timezone.utc) assert doc.created_at == now.replace(tzinfo=timezone.utc) def test_to_dict(self): doc = MyDocument(name="local", once="1") assert doc.to_dict() == { "id": None, "name": "local", "local": "local", "once": 1, "default": doc.default.isoformat(), "created_at": None, } def test_deleted(self): doc = MyDocument(name="local", once="1") doc._deleted = True with self.assertRaises(AttributeError) as ctx: doc.name assert "MyDocument has been deleted" == str(ctx.exception) class TestDatetimeAttribute(unittest.TestCase): def test_local_time(self): class TzTest(Document): date: datetime = DatetimeAttribute(timezone=pytz.timezone("MST")) now = datetime.utcnow() doc = TzTest(date=now.isoformat()) assert doc.date.tzinfo == pytz.timezone("MST") assert doc.date.astimezone(tz=timezone.utc) == now.replace(tzinfo=timezone.utc) assert doc.to_dict()["date"] == now.replace(tzinfo=timezone.utc).isoformat() def test_trailing_z(self): class TrailingTest(Document): date: datetime = DatetimeAttribute() now = datetime.utcnow() doc = TrailingTest(date=now.isoformat() + "Z") doc.date == now.replace(tzinfo=timezone.utc) def test_assign_instance(self): tz = pytz.timezone("MST") class InstanceTest(Document): date: datetime = DatetimeAttribute(timezone=tz) now = datetime.utcnow() doc = InstanceTest(date=now) assert doc.date == now.replace(tzinfo=timezone.utc).astimezone(tz=tz) def test_validation(self): class ValidationTest(Document): date: datetime = DatetimeAttribute() with self.assertRaises(ValueError) as ctx: doc = ValidationTest(date={}) assert "Expected iso formatted date or unix timestamp" in str(ctx.exception) now = datetime.utcnow() doc = ValidationTest(date=now.timestamp()) assert doc.date == now.replace(tzinfo=timezone.utc) class TestListAttribute(unittest.TestCase): def test_append(self): class ListTest(Document): items: list = ListAttribute(int) doc = ListTest(items=[1, 2], saved=True) doc.items.append(3) assert doc.items == [1, 2, 3] assert doc.is_modified assert doc.to_dict()["items"] == [1, 2, 3] def test_append_readonly(self): class ListTest(Document): items: list = ListAttribute(int, readonly=True) doc = ListTest(items=[1, 2], saved=True) with self.assertRaises(ValueError) as ctx: doc.items.append(3) assert "Unable to append readonly attribute 'items'" == str(ctx.exception) assert doc.items == [1, 2] def test_delete(self): class ListTest(Document): items: list = ListAttribute(int) doc = ListTest(items=[1, 2], saved=True) del doc.items[0] assert doc.items == [2] assert doc.is_modified assert doc.to_dict()["items"] == [2] def test_add_assign(self): class ListTest(Document): items: list = ListAttribute(int) doc = ListTest(items=[1, 2], saved=True) doc.items += [3] assert doc.items == [1, 2, 3] assert doc.is_modified assert doc.to_dict()["items"] == [1, 2, 3] doc._clear_modified() doc.items += [] assert doc.items == [1, 2, 3] assert doc.is_modified is False assert doc.to_dict()["items"] == [1, 2, 3] def test_clear(self): class ListTest(Document): items: list = ListAttribute(int) doc = ListTest(items=[1, 2], saved=True) doc.items.clear() assert doc.items == [] assert doc.is_modified assert doc.to_dict()["items"] == [] def test_extend(self): class ListTest(Document): items: list = ListAttribute(int) doc = ListTest(items=[1, 2], saved=True) doc.items.extend([3, 4]) assert doc.items == [1, 2, 3, 4] assert doc.is_modified assert doc.to_dict()["items"] == [1, 2, 3, 4] def test_insert(self): class ListTest(Document): items: list = ListAttribute(int) doc = ListTest(items=[1, 2], saved=True) doc.items.insert(0, 0) assert doc.items == [0, 1, 2] assert doc.is_modified assert doc.to_dict()["items"] == [0, 1, 2] def test_pop(self): class ListTest(Document): items: list = ListAttribute(int) doc = ListTest(items=[1, 2, 3], saved=True) assert doc.items.pop() == 3 assert doc.items == [1, 2] assert doc.is_modified assert doc.to_dict()["items"] == [1, 2] doc._clear_modified() assert doc.items.pop(0) == 1 assert doc.items == [2] assert doc.is_modified assert doc.to_dict()["items"] == [2] def test_remove(self): class ListTest(Document): items: list = ListAttribute(int) doc = ListTest(items=[1, 2, 3], saved=True) doc.items.remove(2) assert doc.items == [1, 3] assert doc.is_modified assert doc.to_dict()["items"] == [1, 3] def test_serializes_type(self): class ListTest(Document): items: list = ListAttribute(str) doc = ListTest(items=[1, 2, 3], saved=True) assert doc.to_dict()["items"] == ["1", "2", "3"] doc.items.append(4) assert doc.is_modified assert doc.to_dict()["items"] == ["1", "2", "3", "4"]
411d1b5d5d006f9c41b1c82bed003b39f7fba6ac
27acd9eeb0d2b9b6326cc0477e7dbb84341e265c
/test/vraag4/src/isbn/222.py
fd40dde79d0542bab2d8bd49e8cc487684633488
[]
no_license
VerstraeteBert/algos-ds
e0fe35bc3c5b7d8276c07250f56d3719ecc617de
d9215f11cdfa1a12a3b19ade3b95fa73848a636c
refs/heads/master
2021-07-15T13:46:58.790446
2021-02-28T23:28:36
2021-02-28T23:28:36
240,883,220
1
1
null
null
null
null
UTF-8
Python
false
false
1,127
py
def isISBN_13(code): if len(code) != 13: return False if code[:3] != "978" and code[:3] != "979": return False even = code[::2] oneven = code[1::2] even_som = 0 oneven_som = 0 for i in range(6): cijfer = int(even[i]) even_som += cijfer cijfer = int(oneven[i]) oneven_som += cijfer controle = (10 - (even_som + 3 * oneven_som) % 10) % 10 return controle == int(even[6]) def overzicht(codes): types = ["Engelstalige landen", "Franstalige landen", "Duitstalige landen", "Japan", "Russischtalige landen", "China", "Overige landen", "Fouten"] lijst = {} for soort in types: lijst[soort] = 0 for code in codes: if not isISBN_13(code): lijst["Fouten"] += 1 else: nr = code[3] if nr == "0": nr = "1" elif nr in "689": nr = "7" elif nr == "7": nr = "6" soort = types[int(nr) - 1] lijst[soort] += 1 for el in lijst: print("{}: {}".format(el, lijst[el]))
16af628a8124aa21de4d8f7daff20c5fc1e87eea
0951b7ad46683d5fd99ae5611e33117b70d5ba1b
/scg_venv/lib/python3.8/site-packages/pandas/tests/io/xml/test_to_xml.py
beaa6d61f02c24e9cac8829c36633f2c67a36630
[]
no_license
alissonpmedeiros/scg
035bf833e16e39f56502f2a65633e361c6dc4fa6
e3e022a14058936619f1d79d11dbbb4f6f48d531
refs/heads/main
2023-04-19T05:29:55.828544
2022-10-28T08:38:27
2022-10-28T08:38:27
525,835,696
0
0
null
null
null
null
UTF-8
Python
false
false
34,499
py
from __future__ import annotations from io import ( BytesIO, StringIO, ) import os import numpy as np import pytest import pandas.util._test_decorators as td from pandas import ( NA, DataFrame, Index, ) import pandas._testing as tm import pandas.io.common as icom from pandas.io.common import get_handle from pandas.io.xml import read_xml """ CHECKLIST [x] - ValueError: "Values for parser can only be lxml or etree." etree [x] - ImportError: "lxml not found, please install or use the etree parser." [X] - TypeError: "...is not a valid type for attr_cols" [X] - TypeError: "...is not a valid type for elem_cols" [X] - LookupError: "unknown encoding" [X] - KeyError: "...is not included in namespaces" [X] - KeyError: "no valid column" [X] - ValueError: "To use stylesheet, you need lxml installed..." [] - OSError: (NEED PERMISSOIN ISSUE, DISK FULL, ETC.) [X] - FileNotFoundError: "No such file or directory" [X] - PermissionError: "Forbidden" lxml [X] - TypeError: "...is not a valid type for attr_cols" [X] - TypeError: "...is not a valid type for elem_cols" [X] - LookupError: "unknown encoding" [] - OSError: (NEED PERMISSOIN ISSUE, DISK FULL, ETC.) [X] - FileNotFoundError: "No such file or directory" [X] - KeyError: "...is not included in namespaces" [X] - KeyError: "no valid column" [X] - ValueError: "stylesheet is not a url, file, or xml string." [] - LookupError: (NEED WRONG ENCODING FOR FILE OUTPUT) [] - URLError: (USUALLY DUE TO NETWORKING) [] - HTTPError: (NEED AN ONLINE STYLESHEET) [X] - OSError: "failed to load external entity" [X] - XMLSyntaxError: "Opening and ending tag mismatch" [X] - XSLTApplyError: "Cannot resolve URI" [X] - XSLTParseError: "failed to compile" [X] - PermissionError: "Forbidden" """ geom_df = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": [360, 360, 180], "sides": [4, np.nan, 3], } ) planet_df = DataFrame( { "planet": [ "Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune", ], "type": [ "terrestrial", "terrestrial", "terrestrial", "terrestrial", "gas giant", "gas giant", "ice giant", "ice giant", ], "location": [ "inner", "inner", "inner", "inner", "outer", "outer", "outer", "outer", ], "mass": [ 0.330114, 4.86747, 5.97237, 0.641712, 1898.187, 568.3174, 86.8127, 102.4126, ], } ) from_file_expected = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row> <index>0</index> <category>cooking</category> <title>Everyday Italian</title> <author>Giada De Laurentiis</author> <year>2005</year> <price>30.0</price> </row> <row> <index>1</index> <category>children</category> <title>Harry Potter</title> <author>J K. Rowling</author> <year>2005</year> <price>29.99</price> </row> <row> <index>2</index> <category>web</category> <title>Learning XML</title> <author>Erik T. Ray</author> <year>2003</year> <price>39.95</price> </row> </data>""" def equalize_decl(doc): # etree and lxml differ on quotes and case in xml declaration if doc is not None: doc = doc.replace( '<?xml version="1.0" encoding="utf-8"?', "<?xml version='1.0' encoding='utf-8'?", ) return doc @pytest.fixture(params=["rb", "r"]) def mode(request): return request.param @pytest.fixture(params=[pytest.param("lxml", marks=td.skip_if_no("lxml")), "etree"]) def parser(request): return request.param # FILE OUTPUT def test_file_output_str_read(datapath, parser): filename = datapath("io", "data", "xml", "books.xml") df_file = read_xml(filename, parser=parser) with tm.ensure_clean("test.xml") as path: df_file.to_xml(path, parser=parser) with open(path, "rb") as f: output = f.read().decode("utf-8").strip() output = equalize_decl(output) assert output == from_file_expected def test_file_output_bytes_read(datapath, parser): filename = datapath("io", "data", "xml", "books.xml") df_file = read_xml(filename, parser=parser) with tm.ensure_clean("test.xml") as path: df_file.to_xml(path, parser=parser) with open(path, "rb") as f: output = f.read().decode("utf-8").strip() output = equalize_decl(output) assert output == from_file_expected def test_str_output(datapath, parser): filename = datapath("io", "data", "xml", "books.xml") df_file = read_xml(filename, parser=parser) output = df_file.to_xml(parser=parser) output = equalize_decl(output) assert output == from_file_expected def test_wrong_file_path(parser): path = "/my/fake/path/output.xml" with pytest.raises( OSError, match=(r"Cannot save file into a non-existent directory: .*path"), ): geom_df.to_xml(path, parser=parser) # INDEX def test_index_false(datapath, parser): expected = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row> <category>cooking</category> <title>Everyday Italian</title> <author>Giada De Laurentiis</author> <year>2005</year> <price>30.0</price> </row> <row> <category>children</category> <title>Harry Potter</title> <author>J K. Rowling</author> <year>2005</year> <price>29.99</price> </row> <row> <category>web</category> <title>Learning XML</title> <author>Erik T. Ray</author> <year>2003</year> <price>39.95</price> </row> </data>""" filename = datapath("io", "data", "xml", "books.xml") df_file = read_xml(filename, parser=parser) with tm.ensure_clean("test.xml") as path: df_file.to_xml(path, index=False, parser=parser) with open(path, "rb") as f: output = f.read().decode("utf-8").strip() output = equalize_decl(output) assert output == expected def test_index_false_rename_row_root(datapath, parser): expected = """\ <?xml version='1.0' encoding='utf-8'?> <books> <book> <category>cooking</category> <title>Everyday Italian</title> <author>Giada De Laurentiis</author> <year>2005</year> <price>30.0</price> </book> <book> <category>children</category> <title>Harry Potter</title> <author>J K. Rowling</author> <year>2005</year> <price>29.99</price> </book> <book> <category>web</category> <title>Learning XML</title> <author>Erik T. Ray</author> <year>2003</year> <price>39.95</price> </book> </books>""" filename = datapath("io", "data", "xml", "books.xml") df_file = read_xml(filename, parser=parser) with tm.ensure_clean("test.xml") as path: df_file.to_xml( path, index=False, root_name="books", row_name="book", parser=parser ) with open(path, "rb") as f: output = f.read().decode("utf-8").strip() output = equalize_decl(output) assert output == expected @pytest.mark.parametrize( "offset_index", [list(range(10, 13)), [str(i) for i in range(10, 13)]] ) def test_index_false_with_offset_input_index(parser, offset_index): """ Tests that the output does not contain the `<index>` field when the index of the input Dataframe has an offset. This is a regression test for issue #42458. """ expected = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row> <shape>square</shape> <degrees>360</degrees> <sides>4.0</sides> </row> <row> <shape>circle</shape> <degrees>360</degrees> <sides/> </row> <row> <shape>triangle</shape> <degrees>180</degrees> <sides>3.0</sides> </row> </data>""" offset_geom_df = geom_df.copy() offset_geom_df.index = Index(offset_index) output = offset_geom_df.to_xml(index=False, parser=parser) output = equalize_decl(output) assert output == expected # NA_REP na_expected = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row> <index>0</index> <shape>square</shape> <degrees>360</degrees> <sides>4.0</sides> </row> <row> <index>1</index> <shape>circle</shape> <degrees>360</degrees> <sides/> </row> <row> <index>2</index> <shape>triangle</shape> <degrees>180</degrees> <sides>3.0</sides> </row> </data>""" def test_na_elem_output(datapath, parser): output = geom_df.to_xml(parser=parser) output = equalize_decl(output) assert output == na_expected def test_na_empty_str_elem_option(datapath, parser): output = geom_df.to_xml(na_rep="", parser=parser) output = equalize_decl(output) assert output == na_expected def test_na_empty_elem_option(datapath, parser): expected = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row> <index>0</index> <shape>square</shape> <degrees>360</degrees> <sides>4.0</sides> </row> <row> <index>1</index> <shape>circle</shape> <degrees>360</degrees> <sides>0.0</sides> </row> <row> <index>2</index> <shape>triangle</shape> <degrees>180</degrees> <sides>3.0</sides> </row> </data>""" output = geom_df.to_xml(na_rep="0.0", parser=parser) output = equalize_decl(output) assert output == expected # ATTR_COLS def test_attrs_cols_nan_output(datapath, parser): expected = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row index="0" shape="square" degrees="360" sides="4.0"/> <row index="1" shape="circle" degrees="360"/> <row index="2" shape="triangle" degrees="180" sides="3.0"/> </data>""" output = geom_df.to_xml(attr_cols=["shape", "degrees", "sides"], parser=parser) output = equalize_decl(output) assert output == expected def test_attrs_cols_prefix(datapath, parser): expected = """\ <?xml version='1.0' encoding='utf-8'?> <doc:data xmlns:doc="http://example.xom"> <doc:row doc:index="0" doc:shape="square" \ doc:degrees="360" doc:sides="4.0"/> <doc:row doc:index="1" doc:shape="circle" \ doc:degrees="360"/> <doc:row doc:index="2" doc:shape="triangle" \ doc:degrees="180" doc:sides="3.0"/> </doc:data>""" output = geom_df.to_xml( attr_cols=["index", "shape", "degrees", "sides"], namespaces={"doc": "http://example.xom"}, prefix="doc", parser=parser, ) output = equalize_decl(output) assert output == expected def test_attrs_unknown_column(parser): with pytest.raises(KeyError, match=("no valid column")): geom_df.to_xml(attr_cols=["shape", "degree", "sides"], parser=parser) def test_attrs_wrong_type(parser): with pytest.raises(TypeError, match=("is not a valid type for attr_cols")): geom_df.to_xml(attr_cols='"shape", "degree", "sides"', parser=parser) # ELEM_COLS def test_elems_cols_nan_output(datapath, parser): elems_cols_expected = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row> <degrees>360</degrees> <sides>4.0</sides> <shape>square</shape> </row> <row> <degrees>360</degrees> <sides/> <shape>circle</shape> </row> <row> <degrees>180</degrees> <sides>3.0</sides> <shape>triangle</shape> </row> </data>""" output = geom_df.to_xml( index=False, elem_cols=["degrees", "sides", "shape"], parser=parser ) output = equalize_decl(output) assert output == elems_cols_expected def test_elems_unknown_column(parser): with pytest.raises(KeyError, match=("no valid column")): geom_df.to_xml(elem_cols=["shape", "degree", "sides"], parser=parser) def test_elems_wrong_type(parser): with pytest.raises(TypeError, match=("is not a valid type for elem_cols")): geom_df.to_xml(elem_cols='"shape", "degree", "sides"', parser=parser) def test_elems_and_attrs_cols(datapath, parser): elems_cols_expected = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row shape="square"> <degrees>360</degrees> <sides>4.0</sides> </row> <row shape="circle"> <degrees>360</degrees> <sides/> </row> <row shape="triangle"> <degrees>180</degrees> <sides>3.0</sides> </row> </data>""" output = geom_df.to_xml( index=False, elem_cols=["degrees", "sides"], attr_cols=["shape"], parser=parser, ) output = equalize_decl(output) assert output == elems_cols_expected # HIERARCHICAL COLUMNS def test_hierarchical_columns(datapath, parser): expected = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row> <location>inner</location> <type>terrestrial</type> <count_mass>4</count_mass> <sum_mass>11.81</sum_mass> <mean_mass>2.95</mean_mass> </row> <row> <location>outer</location> <type>gas giant</type> <count_mass>2</count_mass> <sum_mass>2466.5</sum_mass> <mean_mass>1233.25</mean_mass> </row> <row> <location>outer</location> <type>ice giant</type> <count_mass>2</count_mass> <sum_mass>189.23</sum_mass> <mean_mass>94.61</mean_mass> </row> <row> <location>All</location> <type/> <count_mass>8</count_mass> <sum_mass>2667.54</sum_mass> <mean_mass>333.44</mean_mass> </row> </data>""" pvt = planet_df.pivot_table( index=["location", "type"], values="mass", aggfunc=["count", "sum", "mean"], margins=True, ).round(2) output = pvt.to_xml(parser=parser) output = equalize_decl(output) assert output == expected def test_hierarchical_attrs_columns(datapath, parser): expected = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row location="inner" type="terrestrial" count_mass="4" \ sum_mass="11.81" mean_mass="2.95"/> <row location="outer" type="gas giant" count_mass="2" \ sum_mass="2466.5" mean_mass="1233.25"/> <row location="outer" type="ice giant" count_mass="2" \ sum_mass="189.23" mean_mass="94.61"/> <row location="All" type="" count_mass="8" \ sum_mass="2667.54" mean_mass="333.44"/> </data>""" pvt = planet_df.pivot_table( index=["location", "type"], values="mass", aggfunc=["count", "sum", "mean"], margins=True, ).round(2) output = pvt.to_xml(attr_cols=list(pvt.reset_index().columns.values), parser=parser) output = equalize_decl(output) assert output == expected # MULTIINDEX def test_multi_index(datapath, parser): expected = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row> <location>inner</location> <type>terrestrial</type> <count>4</count> <sum>11.81</sum> <mean>2.95</mean> </row> <row> <location>outer</location> <type>gas giant</type> <count>2</count> <sum>2466.5</sum> <mean>1233.25</mean> </row> <row> <location>outer</location> <type>ice giant</type> <count>2</count> <sum>189.23</sum> <mean>94.61</mean> </row> </data>""" agg = ( planet_df.groupby(["location", "type"])["mass"] .agg(["count", "sum", "mean"]) .round(2) ) output = agg.to_xml(parser=parser) output = equalize_decl(output) assert output == expected def test_multi_index_attrs_cols(datapath, parser): expected = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row location="inner" type="terrestrial" count="4" \ sum="11.81" mean="2.95"/> <row location="outer" type="gas giant" count="2" \ sum="2466.5" mean="1233.25"/> <row location="outer" type="ice giant" count="2" \ sum="189.23" mean="94.61"/> </data>""" agg = ( planet_df.groupby(["location", "type"])["mass"] .agg(["count", "sum", "mean"]) .round(2) ) output = agg.to_xml(attr_cols=list(agg.reset_index().columns.values), parser=parser) output = equalize_decl(output) assert output == expected # NAMESPACE def test_default_namespace(parser): expected = """\ <?xml version='1.0' encoding='utf-8'?> <data xmlns="http://example.com"> <row> <index>0</index> <shape>square</shape> <degrees>360</degrees> <sides>4.0</sides> </row> <row> <index>1</index> <shape>circle</shape> <degrees>360</degrees> <sides/> </row> <row> <index>2</index> <shape>triangle</shape> <degrees>180</degrees> <sides>3.0</sides> </row> </data>""" output = geom_df.to_xml(namespaces={"": "http://example.com"}, parser=parser) output = equalize_decl(output) assert output == expected # PREFIX def test_namespace_prefix(parser): expected = """\ <?xml version='1.0' encoding='utf-8'?> <doc:data xmlns:doc="http://example.com"> <doc:row> <doc:index>0</doc:index> <doc:shape>square</doc:shape> <doc:degrees>360</doc:degrees> <doc:sides>4.0</doc:sides> </doc:row> <doc:row> <doc:index>1</doc:index> <doc:shape>circle</doc:shape> <doc:degrees>360</doc:degrees> <doc:sides/> </doc:row> <doc:row> <doc:index>2</doc:index> <doc:shape>triangle</doc:shape> <doc:degrees>180</doc:degrees> <doc:sides>3.0</doc:sides> </doc:row> </doc:data>""" output = geom_df.to_xml( namespaces={"doc": "http://example.com"}, prefix="doc", parser=parser ) output = equalize_decl(output) assert output == expected def test_missing_prefix_in_nmsp(parser): with pytest.raises(KeyError, match=("doc is not included in namespaces")): geom_df.to_xml( namespaces={"": "http://example.com"}, prefix="doc", parser=parser ) def test_namespace_prefix_and_default(parser): expected = """\ <?xml version='1.0' encoding='utf-8'?> <doc:data xmlns="http://example.com" xmlns:doc="http://other.org"> <doc:row> <doc:index>0</doc:index> <doc:shape>square</doc:shape> <doc:degrees>360</doc:degrees> <doc:sides>4.0</doc:sides> </doc:row> <doc:row> <doc:index>1</doc:index> <doc:shape>circle</doc:shape> <doc:degrees>360</doc:degrees> <doc:sides/> </doc:row> <doc:row> <doc:index>2</doc:index> <doc:shape>triangle</doc:shape> <doc:degrees>180</doc:degrees> <doc:sides>3.0</doc:sides> </doc:row> </doc:data>""" output = geom_df.to_xml( namespaces={"": "http://example.com", "doc": "http://other.org"}, prefix="doc", parser=parser, ) output = equalize_decl(output) if output is not None: # etree and lxml differs on order of namespace prefixes output = output.replace( 'xmlns:doc="http://other.org" xmlns="http://example.com"', 'xmlns="http://example.com" xmlns:doc="http://other.org"', ) assert output == expected # ENCODING encoding_expected = """\ <?xml version='1.0' encoding='ISO-8859-1'?> <data> <row> <index>0</index> <rank>1</rank> <malename>José</malename> <femalename>Sofía</femalename> </row> <row> <index>1</index> <rank>2</rank> <malename>Luis</malename> <femalename>Valentina</femalename> </row> <row> <index>2</index> <rank>3</rank> <malename>Carlos</malename> <femalename>Isabella</femalename> </row> <row> <index>3</index> <rank>4</rank> <malename>Juan</malename> <femalename>Camila</femalename> </row> <row> <index>4</index> <rank>5</rank> <malename>Jorge</malename> <femalename>Valeria</femalename> </row> </data>""" def test_encoding_option_str(datapath, parser): filename = datapath("io", "data", "xml", "baby_names.xml") df_file = read_xml(filename, parser=parser, encoding="ISO-8859-1").head(5) output = df_file.to_xml(encoding="ISO-8859-1", parser=parser) if output is not None: # etree and lxml differ on quotes and case in xml declaration output = output.replace( '<?xml version="1.0" encoding="ISO-8859-1"?', "<?xml version='1.0' encoding='ISO-8859-1'?", ) assert output == encoding_expected @td.skip_if_no("lxml") def test_correct_encoding_file(datapath): filename = datapath("io", "data", "xml", "baby_names.xml") df_file = read_xml(filename, encoding="ISO-8859-1", parser="lxml") with tm.ensure_clean("test.xml") as path: df_file.to_xml(path, index=False, encoding="ISO-8859-1", parser="lxml") @td.skip_if_no("lxml") @pytest.mark.parametrize("encoding", ["UTF-8", "UTF-16", "ISO-8859-1"]) def test_wrong_encoding_option_lxml(datapath, parser, encoding): filename = datapath("io", "data", "xml", "baby_names.xml") df_file = read_xml(filename, encoding="ISO-8859-1", parser="lxml") with tm.ensure_clean("test.xml") as path: df_file.to_xml(path, index=False, encoding=encoding, parser=parser) def test_misspelled_encoding(parser): with pytest.raises(LookupError, match=("unknown encoding")): geom_df.to_xml(encoding="uft-8", parser=parser) # PRETTY PRINT @td.skip_if_no("lxml") def test_xml_declaration_pretty_print(): expected = """\ <data> <row> <index>0</index> <shape>square</shape> <degrees>360</degrees> <sides>4.0</sides> </row> <row> <index>1</index> <shape>circle</shape> <degrees>360</degrees> <sides/> </row> <row> <index>2</index> <shape>triangle</shape> <degrees>180</degrees> <sides>3.0</sides> </row> </data>""" output = geom_df.to_xml(xml_declaration=False) assert output == expected def test_no_pretty_print_with_decl(parser): expected = ( "<?xml version='1.0' encoding='utf-8'?>\n" "<data><row><index>0</index><shape>square</shape>" "<degrees>360</degrees><sides>4.0</sides></row><row>" "<index>1</index><shape>circle</shape><degrees>360" "</degrees><sides/></row><row><index>2</index><shape>" "triangle</shape><degrees>180</degrees><sides>3.0</sides>" "</row></data>" ) output = geom_df.to_xml(pretty_print=False, parser=parser) output = equalize_decl(output) # etree adds space for closed tags if output is not None: output = output.replace(" />", "/>") assert output == expected def test_no_pretty_print_no_decl(parser): expected = ( "<data><row><index>0</index><shape>square</shape>" "<degrees>360</degrees><sides>4.0</sides></row><row>" "<index>1</index><shape>circle</shape><degrees>360" "</degrees><sides/></row><row><index>2</index><shape>" "triangle</shape><degrees>180</degrees><sides>3.0</sides>" "</row></data>" ) output = geom_df.to_xml(xml_declaration=False, pretty_print=False, parser=parser) # etree adds space for closed tags if output is not None: output = output.replace(" />", "/>") assert output == expected # PARSER @td.skip_if_installed("lxml") def test_default_parser_no_lxml(): with pytest.raises( ImportError, match=("lxml not found, please install or use the etree parser.") ): geom_df.to_xml() def test_unknown_parser(): with pytest.raises( ValueError, match=("Values for parser can only be lxml or etree.") ): geom_df.to_xml(parser="bs4") # STYLESHEET xsl_expected = """\ <?xml version="1.0" encoding="utf-8"?> <data> <row> <field field="index">0</field> <field field="shape">square</field> <field field="degrees">360</field> <field field="sides">4.0</field> </row> <row> <field field="index">1</field> <field field="shape">circle</field> <field field="degrees">360</field> <field field="sides"/> </row> <row> <field field="index">2</field> <field field="shape">triangle</field> <field field="degrees">180</field> <field field="sides">3.0</field> </row> </data>""" @td.skip_if_no("lxml") def test_stylesheet_file_like(datapath, mode): xsl = datapath("io", "data", "xml", "row_field_output.xsl") with open(xsl, mode) as f: assert geom_df.to_xml(stylesheet=f) == xsl_expected @td.skip_if_no("lxml") def test_stylesheet_io(datapath, mode): xsl_path = datapath("io", "data", "xml", "row_field_output.xsl") xsl_obj: BytesIO | StringIO with open(xsl_path, mode) as f: if mode == "rb": xsl_obj = BytesIO(f.read()) else: xsl_obj = StringIO(f.read()) output = geom_df.to_xml(stylesheet=xsl_obj) assert output == xsl_expected @td.skip_if_no("lxml") def test_stylesheet_buffered_reader(datapath, mode): xsl = datapath("io", "data", "xml", "row_field_output.xsl") with open(xsl, mode) as f: xsl_obj = f.read() output = geom_df.to_xml(stylesheet=xsl_obj) assert output == xsl_expected @td.skip_if_no("lxml") def test_stylesheet_wrong_path(datapath): from lxml.etree import XMLSyntaxError xsl = os.path.join("data", "xml", "row_field_output.xslt") with pytest.raises( XMLSyntaxError, match=("Start tag expected, '<' not found"), ): geom_df.to_xml(stylesheet=xsl) @td.skip_if_no("lxml") @pytest.mark.parametrize("val", ["", b""]) def test_empty_string_stylesheet(val): from lxml.etree import XMLSyntaxError with pytest.raises( XMLSyntaxError, match=("Document is empty|Start tag expected, '<' not found") ): geom_df.to_xml(stylesheet=val) @td.skip_if_no("lxml") def test_incorrect_xsl_syntax(): from lxml.etree import XMLSyntaxError xsl = """\ <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="xml" encoding="utf-8" indent="yes" > <xsl:strip-space elements="*"/> <xsl:template match="@*|node()"> <xsl:copy> <xsl:apply-templates select="@*|node()"/> </xsl:copy> </xsl:template> <xsl:template match="row/*"> <field> <xsl:attribute name="field"> <xsl:value-of select="name()"/> </xsl:attribute> <xsl:value-of select="text()"/> </field> </xsl:template> </xsl:stylesheet>""" with pytest.raises(XMLSyntaxError, match=("Opening and ending tag mismatch")): geom_df.to_xml(stylesheet=xsl) @td.skip_if_no("lxml") def test_incorrect_xsl_eval(): from lxml.etree import XSLTParseError xsl = """\ <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="xml" encoding="utf-8" indent="yes" /> <xsl:strip-space elements="*"/> <xsl:template match="@*|node(*)"> <xsl:copy> <xsl:apply-templates select="@*|node()"/> </xsl:copy> </xsl:template> <xsl:template match="row/*"> <field> <xsl:attribute name="field"> <xsl:value-of select="name()"/> </xsl:attribute> <xsl:value-of select="text()"/> </field> </xsl:template> </xsl:stylesheet>""" with pytest.raises(XSLTParseError, match=("failed to compile")): geom_df.to_xml(stylesheet=xsl) @td.skip_if_no("lxml") def test_incorrect_xsl_apply(parser): from lxml.etree import XSLTApplyError xsl = """\ <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="xml" encoding="utf-8" indent="yes" /> <xsl:strip-space elements="*"/> <xsl:template match="@*|node()"> <xsl:copy> <xsl:copy-of select="document('non_existent.xml')/*"/> </xsl:copy> </xsl:template> </xsl:stylesheet>""" with pytest.raises(XSLTApplyError, match=("Cannot resolve URI")): with tm.ensure_clean("test.xml") as path: geom_df.to_xml(path, stylesheet=xsl) def test_stylesheet_with_etree(datapath): xsl = """\ <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="xml" encoding="utf-8" indent="yes" /> <xsl:strip-space elements="*"/> <xsl:template match="@*|node(*)"> <xsl:copy> <xsl:apply-templates select="@*|node()"/> </xsl:copy> </xsl:template>""" with pytest.raises( ValueError, match=("To use stylesheet, you need lxml installed") ): geom_df.to_xml(parser="etree", stylesheet=xsl) @td.skip_if_no("lxml") def test_style_to_csv(): xsl = """\ <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="text" indent="yes" /> <xsl:strip-space elements="*"/> <xsl:param name="delim">,</xsl:param> <xsl:template match="/data"> <xsl:text>,shape,degrees,sides&#xa;</xsl:text> <xsl:apply-templates select="row"/> </xsl:template> <xsl:template match="row"> <xsl:value-of select="concat(index, $delim, shape, $delim, degrees, $delim, sides)"/> <xsl:text>&#xa;</xsl:text> </xsl:template> </xsl:stylesheet>""" out_csv = geom_df.to_csv(line_terminator="\n") if out_csv is not None: out_csv = out_csv.strip() out_xml = geom_df.to_xml(stylesheet=xsl) assert out_csv == out_xml @td.skip_if_no("lxml") def test_style_to_string(): xsl = """\ <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="text" indent="yes" /> <xsl:strip-space elements="*"/> <xsl:param name="delim"><xsl:text> </xsl:text></xsl:param> <xsl:template match="/data"> <xsl:text> shape degrees sides&#xa;</xsl:text> <xsl:apply-templates select="row"/> </xsl:template> <xsl:template match="row"> <xsl:value-of select="concat(index, ' ', substring($delim, 1, string-length('triangle') - string-length(shape) + 1), shape, substring($delim, 1, string-length(name(degrees)) - string-length(degrees) + 2), degrees, substring($delim, 1, string-length(name(sides)) - string-length(sides) + 2), sides)"/> <xsl:text>&#xa;</xsl:text> </xsl:template> </xsl:stylesheet>""" out_str = geom_df.to_string() out_xml = geom_df.to_xml(na_rep="NaN", stylesheet=xsl) assert out_xml == out_str @td.skip_if_no("lxml") def test_style_to_json(): xsl = """\ <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="text" indent="yes" /> <xsl:strip-space elements="*"/> <xsl:param name="quot">"</xsl:param> <xsl:template match="/data"> <xsl:text>{"shape":{</xsl:text> <xsl:apply-templates select="descendant::row/shape"/> <xsl:text>},"degrees":{</xsl:text> <xsl:apply-templates select="descendant::row/degrees"/> <xsl:text>},"sides":{</xsl:text> <xsl:apply-templates select="descendant::row/sides"/> <xsl:text>}}</xsl:text> </xsl:template> <xsl:template match="shape|degrees|sides"> <xsl:variable name="val"> <xsl:if test = ".=''"> <xsl:value-of select="'null'"/> </xsl:if> <xsl:if test = "number(text()) = text()"> <xsl:value-of select="text()"/> </xsl:if> <xsl:if test = "number(text()) != text()"> <xsl:value-of select="concat($quot, text(), $quot)"/> </xsl:if> </xsl:variable> <xsl:value-of select="concat($quot, preceding-sibling::index, $quot,':', $val)"/> <xsl:if test="preceding-sibling::index != //row[last()]/index"> <xsl:text>,</xsl:text> </xsl:if> </xsl:template> </xsl:stylesheet>""" out_json = geom_df.to_json() out_xml = geom_df.to_xml(stylesheet=xsl) assert out_json == out_xml # COMPRESSION geom_xml = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row> <index>0</index> <shape>square</shape> <degrees>360</degrees> <sides>4.0</sides> </row> <row> <index>1</index> <shape>circle</shape> <degrees>360</degrees> <sides/> </row> <row> <index>2</index> <shape>triangle</shape> <degrees>180</degrees> <sides>3.0</sides> </row> </data>""" def test_compression_output(parser, compression_only): with tm.ensure_clean() as path: geom_df.to_xml(path, parser=parser, compression=compression_only) with get_handle( path, "r", compression=compression_only, ) as handle_obj: output = handle_obj.handle.read() output = equalize_decl(output) assert geom_xml == output.strip() def test_filename_and_suffix_comp(parser, compression_only): compfile = "xml." + icom._compression_to_extension[compression_only] with tm.ensure_clean(filename=compfile) as path: geom_df.to_xml(path, parser=parser, compression=compression_only) with get_handle( path, "r", compression=compression_only, ) as handle_obj: output = handle_obj.handle.read() output = equalize_decl(output) assert geom_xml == output.strip() def test_ea_dtypes(any_numeric_ea_dtype, parser): # GH#43903 expected = """<?xml version='1.0' encoding='utf-8'?> <data> <row> <index>0</index> <a/> </row> </data>""" df = DataFrame({"a": [NA]}).astype(any_numeric_ea_dtype) result = df.to_xml(parser=parser) assert equalize_decl(result).strip() == expected def test_unsuported_compression(datapath, parser): with pytest.raises(ValueError, match="Unrecognized compression type"): with tm.ensure_clean() as path: geom_df.to_xml(path, parser=parser, compression="7z") # STORAGE OPTIONS @td.skip_if_no("s3fs") @td.skip_if_no("lxml") def test_s3_permission_output(parser, s3_resource): # s3_resource hosts pandas-test import s3fs with pytest.raises(PermissionError, match="Access Denied"): fs = s3fs.S3FileSystem(anon=True) fs.ls("pandas-test") geom_df.to_xml("s3://pandas-test/geom.xml", compression="zip", parser=parser)
68166f1c54bc0727d4ea84555b656e8b4fc72753
a5200ba8b1d2b248c7c7bef5704c7e375efc1c2a
/exp_configs.py
c09ecd223c6f468e105e0d7348bd4b1cfa3bf410
[]
no_license
hongyunnchen/sps
e0c958dadca2a60b0e8d797d8e786f88669cf5c7
4ddb3567f9a1893685ea161e2b1d7ba3cb3a1fe3
refs/heads/master
2023-02-26T06:36:41.462069
2021-02-09T12:22:09
2021-02-09T12:22:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,448
py
from haven import haven_utils as hu import itertools # datasets kernel_datasets = ["mushrooms", # "w8a", "ijcnn", # "rcv1" ] # define runs run_list = [0] # define optimizers c_list = [0.2] sps_list = [] for c, adapt_flag in itertools.product(c_list, ['smooth_iter']): sps_list += [{'name':"sps", "c":c, 'adapt_flag':adapt_flag}] opt_list = sps_list + [{'name': 'adam'}] EXP_GROUPS = {} # define interpolation exp groups EXP_GROUPS['kernel'] = hu.cartesian_exp_group({"dataset":kernel_datasets, "model":["linear"], "loss_func": ['logistic_loss'], "acc_func": ["logistic_accuracy"], "opt": opt_list , "batch_size":[100], "max_epoch":[35], "runs":run_list}) EXP_GROUPS['mf'] = hu.cartesian_exp_group({"dataset":["matrix_fac"], "model":["matrix_fac_1", "matrix_fac_4", "matrix_fac_10", "linear_fac"], "loss_func": ["squared_loss"], "opt": opt_list, "acc_func":["mse"], "batch_size":[100], "max_epoch":[50], "runs":run_list}) EXP_GROUPS['mnist'] = hu.cartesian_exp_group({"dataset":["mnist"], "model":["mlp"], "loss_func": ["softmax_loss"], "opt":[{'name':"sps", "c":c, 'adapt_flag':'smooth_iter', 'centralize_grad':True}] + opt_list, "acc_func":["softmax_accuracy"], "batch_size":[128], "max_epoch":[200], "runs":run_list}) EXP_GROUPS['deep'] = (hu.cartesian_exp_group({"dataset":["cifar10"], "model":["resnet34", "densenet121"], "loss_func": ["softmax_loss"], "opt": opt_list, "acc_func":["softmax_accuracy"], "batch_size":[128], "max_epoch":[200], "runs":run_list}) + hu.cartesian_exp_group({"dataset":["cifar100"], "model":["resnet34_100", "densenet121_100"], "loss_func": ["softmax_loss"], "opt": opt_list, "acc_func":["softmax_accuracy"], "batch_size":[128], "max_epoch":[200], "runs":run_list}) ) EXP_GROUPS['cifar'] = hu.cartesian_exp_group({"dataset":["cifar10"], "model":["resnet34"], "loss_func": ["softmax_loss"], "opt": opt_list + [{'name':"sps", "c":c, 'adapt_flag':'smooth_iter', 'centralize_grad':True}] , "acc_func":["softmax_accuracy"], "batch_size":[128], "max_epoch":[200], "runs":[0]}) # define non-interpolation exp groups eta_max_list = [1, 5, 100] c_list = [0.5] sps_l2_list = [] for c, eta_max in itertools.product(c_list, eta_max_list): sps_l2_list += [{'name':"sps", "c":c, 'fstar_flag':True, 'eps':0, 'adapt_flag':'constant', 'eta_max':eta_max}] sps_list = [] for c, eta_max in itertools.product(c_list, eta_max_list): sps_list += [{'name':"sps", "c":c, 'fstar_flag':False, 'eps':0, 'adapt_flag':'constant', 'eta_max':eta_max}] sgd_list = [{'name':"sgd", "lr":10.0},{'name':"sgd", "lr":1.0}, {'name':"sgd", "lr":1e-3}, {'name':"sgd", "lr":1e-1}, {'name':"sgd", "lr":1e-2}] EXP_GROUPS['syn_l2'] = (hu.cartesian_exp_group({"dataset":['syn'], "model":["logistic"], "loss_func": [ 'logistic_l2_loss', ], "acc_func": ["logistic_accuracy"], "opt": sps_l2_list + sgd_list, "batch_size":[1], "max_epoch":[50], "runs":run_list})) EXP_GROUPS['syn'] = (hu.cartesian_exp_group({"dataset":['syn'], "model":["logistic"], "loss_func": [ 'logistic_loss', ], "acc_func": ["logistic_accuracy"], "opt": sps_list + sgd_list, "batch_size":[1], "max_epoch":[50], "runs":run_list}))
5fbdd4faeaa02752c91f94d6860761a2dfb07bac
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
/sdk/python/pulumi_azure_native/datashare/v20181101preview/get_adls_gen2_file_system_data_set.py
6a6d525b551e637a119b660529a00a01bd625ef0
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bpkgoud/pulumi-azure-native
0817502630062efbc35134410c4a784b61a4736d
a3215fe1b87fba69294f248017b1591767c2b96c
refs/heads/master
2023-08-29T22:39:49.984212
2021-11-15T12:43:41
2021-11-15T12:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,350
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = [ 'GetADLSGen2FileSystemDataSetResult', 'AwaitableGetADLSGen2FileSystemDataSetResult', 'get_adls_gen2_file_system_data_set', 'get_adls_gen2_file_system_data_set_output', ] @pulumi.output_type class GetADLSGen2FileSystemDataSetResult: """ An ADLS Gen 2 file system data set. """ def __init__(__self__, data_set_id=None, file_system=None, id=None, kind=None, name=None, resource_group=None, storage_account_name=None, subscription_id=None, type=None): if data_set_id and not isinstance(data_set_id, str): raise TypeError("Expected argument 'data_set_id' to be a str") pulumi.set(__self__, "data_set_id", data_set_id) if file_system and not isinstance(file_system, str): raise TypeError("Expected argument 'file_system' to be a str") pulumi.set(__self__, "file_system", file_system) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if kind and not isinstance(kind, str): raise TypeError("Expected argument 'kind' to be a str") pulumi.set(__self__, "kind", kind) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if resource_group and not isinstance(resource_group, str): raise TypeError("Expected argument 'resource_group' to be a str") pulumi.set(__self__, "resource_group", resource_group) if storage_account_name and not isinstance(storage_account_name, str): raise TypeError("Expected argument 'storage_account_name' to be a str") pulumi.set(__self__, "storage_account_name", storage_account_name) if subscription_id and not isinstance(subscription_id, str): raise TypeError("Expected argument 'subscription_id' to be a str") pulumi.set(__self__, "subscription_id", subscription_id) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="dataSetId") def data_set_id(self) -> str: """ Unique id for identifying a data set resource """ return pulumi.get(self, "data_set_id") @property @pulumi.getter(name="fileSystem") def file_system(self) -> str: """ The file system name. """ return pulumi.get(self, "file_system") @property @pulumi.getter def id(self) -> str: """ The resource id of the azure resource """ return pulumi.get(self, "id") @property @pulumi.getter def kind(self) -> str: """ Kind of data set. Expected value is 'AdlsGen2FileSystem'. """ return pulumi.get(self, "kind") @property @pulumi.getter def name(self) -> str: """ Name of the azure resource """ return pulumi.get(self, "name") @property @pulumi.getter(name="resourceGroup") def resource_group(self) -> str: """ Resource group of storage account """ return pulumi.get(self, "resource_group") @property @pulumi.getter(name="storageAccountName") def storage_account_name(self) -> str: """ Storage account name of the source data set """ return pulumi.get(self, "storage_account_name") @property @pulumi.getter(name="subscriptionId") def subscription_id(self) -> str: """ Subscription id of storage account """ return pulumi.get(self, "subscription_id") @property @pulumi.getter def type(self) -> str: """ Type of the azure resource """ return pulumi.get(self, "type") class AwaitableGetADLSGen2FileSystemDataSetResult(GetADLSGen2FileSystemDataSetResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetADLSGen2FileSystemDataSetResult( data_set_id=self.data_set_id, file_system=self.file_system, id=self.id, kind=self.kind, name=self.name, resource_group=self.resource_group, storage_account_name=self.storage_account_name, subscription_id=self.subscription_id, type=self.type) def get_adls_gen2_file_system_data_set(account_name: Optional[str] = None, data_set_name: Optional[str] = None, resource_group_name: Optional[str] = None, share_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetADLSGen2FileSystemDataSetResult: """ An ADLS Gen 2 file system data set. :param str account_name: The name of the share account. :param str data_set_name: The name of the dataSet. :param str resource_group_name: The resource group name. :param str share_name: The name of the share. """ __args__ = dict() __args__['accountName'] = account_name __args__['dataSetName'] = data_set_name __args__['resourceGroupName'] = resource_group_name __args__['shareName'] = share_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:datashare/v20181101preview:getADLSGen2FileSystemDataSet', __args__, opts=opts, typ=GetADLSGen2FileSystemDataSetResult).value return AwaitableGetADLSGen2FileSystemDataSetResult( data_set_id=__ret__.data_set_id, file_system=__ret__.file_system, id=__ret__.id, kind=__ret__.kind, name=__ret__.name, resource_group=__ret__.resource_group, storage_account_name=__ret__.storage_account_name, subscription_id=__ret__.subscription_id, type=__ret__.type) @_utilities.lift_output_func(get_adls_gen2_file_system_data_set) def get_adls_gen2_file_system_data_set_output(account_name: Optional[pulumi.Input[str]] = None, data_set_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, share_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetADLSGen2FileSystemDataSetResult]: """ An ADLS Gen 2 file system data set. :param str account_name: The name of the share account. :param str data_set_name: The name of the dataSet. :param str resource_group_name: The resource group name. :param str share_name: The name of the share. """ ...
1f9ca65ce07629f7f3f5c41490cfa08c638c7723
6ac3e509c9d848497a7cb0f79008ec1f395f3aad
/Phone-Numbers/freecarrierlookup/freecarrierlookup/__main__.py
e28a3cacc22b778073bda4d6b71388e5f2893fbf
[]
no_license
WeilerWebServices/Scrapers
a87ca6c0fd719639be831623b2b55183932d8fba
206ea9adf48e9b882a2d62df691185609483f9d0
refs/heads/master
2022-11-30T10:46:09.731660
2020-08-04T16:07:19
2020-08-04T16:07:19
273,375,685
0
0
null
null
null
null
UTF-8
Python
false
false
5,091
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import time import csv from sys import stderr, stdout try: import phonenumbers except ImportError: phonenumbers = None from . import FreeCarrierLookup ######################################## # Parse arguments p = argparse.ArgumentParser(description='Lookup carrier information using FreeCarrierLookup.com') if phonenumbers: p.add_argument('phone_number', nargs='+', type=str.strip, help='Phone number to lookup') p.add_argument('--region', default='US', help='libphonenumbers dialing region (default %(default)r)') x = p.add_mutually_exclusive_group() x.add_argument('--cc', type=str.strip, help='Default country code (if none, all numbers must be in E.164 format)') x.add_argument('-E', '--assume-e164', action='store_true', help="Assume E.164 format even if leading '+' not present") else: p.description += '''; phonenumbers module not available (https://github.com/daviddrysdale/python-phonenumbers), so country code must be explicitly specified.''' p.add_argument('phone_number', nargs='+', type=str.strip, help='Phone number to lookup (without country code)') p.add_argument('--cc', type=str.strip, required=True, help='Country code for all numbers') p.add_argument('-o','--output', type=argparse.FileType('w'), default=stdout, help='Output file (default is stdout)') p.add_argument('-c','--csv', action='store_true', help='Output results in CSV format') p.add_argument('-u', '--user-agent', help="User-Agent string (default is none)") p.add_argument('-r', '--rate-limit', type=int, help="Rate limit in seconds per query (default is none)") p.add_argument('--proxy', help='HTTPS proxy (in any format accepted by python-requests, e.g. socks5://localhost:8080)') args = p.parse_args() fcl = FreeCarrierLookup(args.user_agent) csvwr = None if args.proxy: fcl.session.proxies['https'] = args.proxy # Lookup phone numbers' carriers rate_allow = None for pn in args.phone_number: if phonenumbers: # parse into country code and "national number" with phonenumbers if not pn.startswith('+'): if args.cc: pn = '+%s %s' % (args.cc, pn) elif args.assume_e164: pn = '+' + pn try: obj = phonenumbers.parse(pn, region=args.region) cc, phonenum = obj.country_code, ('0'*(obj.number_of_leading_zeros or obj.italian_leading_zero or 0)) + str(obj.national_number) except phonenumbers.NumberParseException as e: print("WARNING: Could not parse %r with phonenumbers: %s" % (pn, ' '.join(e.args)), file=stderr) continue else: # use country code and phone number as-is if pn.startswith('+'): print("WARNING: Skipping %r, which has an E.164 country code prefix (can't parse without phonenumbers module)" % pn, file=stderr) continue cc, phonenum = args.cc, ''.join(filter(str.isdigit, pn)) # Request (web interface includes test=456 and sessionlogin=0, but they don't seem to be required) if args.rate_limit: now = time.time() if rate_allow and now < rate_allow: time.sleep(rate_allow - now) rate_allow = time.time() + args.rate_limit retry = True while retry: retry = False try: im, prompt = fcl.get_captcha() captcha = None if prompt: print("CAPTCHA prompt: %s" % prompt, file=stderr) captcha = input("CAPTCHA response (leave blank to show image)? ") else: print("Couldn't parse CAPTCHA prompt, showing image", file=stderr) if not captcha: im.show() captcha = input("CAPTCHA response? ") results = fcl.lookup(cc, phonenum, captcha) except RuntimeError as e: status, strings = e.args if status == 'error' and 'quota' in strings[0].lower(): p.error('exceeded quota') elif status == 'error' and 'captcha' in strings[0].lower(): print('Incorrect CAPTCHA response. Retry with new CAPTCHA', file=stderr) retry = True else: print('%s received for +%s %s: %s' % (status.title(), cc, phonenum, ' '.join(strings)), file=stderr) except Exception as e: p.error('\n'.join(map(str, e.args))) else: if args.csv: if csvwr is None: csvwr = csv.writer(args.output) csvwr.writerow(('Country Code', 'Phone Number', 'Carrier', 'Is Wireless', 'SMS Gateway Address', 'MMS Gateway Address', 'Note', 'Extra')) csvwr.writerow((cc, phonenum, results.pop('Carrier', None), results.pop('Is Wireless', None), results.pop('SMS Gateway Address',None), results.pop('MMS Gateway Address',None), results.pop('Note',None), results or None)) else: print('+%s %s: %s' % (cc, phonenum, results), file=args.output) p.exit()
680ed39c6067bac7d1093e8713b57f5a460cce64
a8079efec61894fb6082986e66c4c146757fc895
/src/constraints/operations/Set.py
bb54ca702dcb33a9ceb60f2d7578608f0f5e5c14
[]
no_license
gsdlab/ClaferSMT
aaa5bd0c0c72f6a9b156529a871cced40e006cba
d8240b4503107641d62f7f913ebe50a88182d9a3
refs/heads/master
2021-01-16T21:23:22.838308
2015-08-20T00:24:54
2015-08-20T00:24:54
9,037,961
2
1
null
2018-08-21T13:48:02
2013-03-26T19:00:12
TeX
UTF-8
Python
false
false
19,280
py
''' Created on Nov 1, 2013 @author: ezulkosk ''' from common import Common, SMTLib from common.Common import mAnd, mOr from structures.ExprArg import ExprArg, IntArg, BoolArg, JoinArg import sys def getClaferMatch(key, my_list): ''' TODO REMOVE Returns the entries in my_list that correspond to either sub or super sorts of key, specifically a list of tuples [(bool, int, (sort, Mask))], where bool is True iff the key is the subsort, int is the index of the subsort in the supersort (0 if the same sort), (sort,Mask) are the actual entries from my_list. ''' matches = [] for i in my_list: (sort, _) = i if key == sort: matches.append((True,0,i)) else: totalIndexInSuper = 0 tempKey = key while tempKey.superSort: totalIndexInSuper = totalIndexInSuper + tempKey.indexInSuper tempKey = tempKey.superSort if tempKey == sort: matches.append((True, totalIndexInSuper, i)) break totalIndexInSuper = 0 tempKey = sort while tempKey.superSort: totalIndexInSuper = totalIndexInSuper + tempKey.indexInSuper tempKey = tempKey.superSort if tempKey == key: matches.append((False, totalIndexInSuper, i)) break return matches def find(key, l): #TODO REMOVE for i in l: (sort, mask) = i if sort == key: return mask def addMatchValues(matches, instances, left=True): ''' Ignores PrimitiveSorts ''' for (sort, index) in instances.keys(): (expr,polarity) = instances[(sort,index)] #!!! default = (SMTLib.SMT_BoolConst(False), Common.DEFINITELY_OFF) (prev_left, prev_right) = matches.get((sort,index), (default,default)) if left: (prev_expr, prev_pol) = prev_left new_left = (mOr(expr, prev_expr), Common.aggregate_polarity(polarity, prev_pol)) new_right = prev_right else: (prev_expr, prev_pol) = prev_right new_left = prev_left new_right = (mOr(expr, prev_expr), Common.aggregate_polarity(polarity, prev_pol)) matches[(sort,index)] = (new_left,new_right) return matches def getSetInstancePairs(left,right=None): #key -- (sort, index), where sort must be a highest sort #value -- ([isOnExpr], [isOnExpr]), where the left and right come from leftInstanceSort or rightInstanceSort, respectively matches = {} matches = addMatchValues(matches, left.getInstances(), left=True) if right: matches = addMatchValues(matches, right.getInstances(), left=False) return matches def compute_int_set(instances): cons = [] for index in range(len(instances)): (i,c) = instances[index] cons.append(mAnd(c, *[mOr(SMTLib.createNot(jc), SMTLib.SMT_NE(j,i)) for (j, jc) in instances[0:index]])) return cons def op_eq(left,right, cacheJoins=False, bc = None): ''' :param left: :type left: :class:`~ExprArg` :param right: :type right: :class:`~ExprArg` :returns: :class:`~BoolArg` Ensures that the left = right. ''' assert isinstance(left, ExprArg) assert isinstance(right, ExprArg) if cacheJoins and bc: #TODO CLEAN left_key = None right_key = None keys = [] #asil allocation speedup, if both sides are sets, we can perform expression substitution in other constraints #bc is the bracketed constraint to put the cache for i in [left,right]: if isinstance(i, JoinArg): newkeys = Common.computeCacheKeys(i.flattenJoin()) #print(tuple(key)) keys = keys + newkeys #need to return all keys during the progress of join, add flag? #get the all keys all_keys = i.checkIfJoinIsComputed(nonsupered=True, getAllKeys = True) #print(keys) #print(all_keys) keys = keys+all_keys #sys.exit() #print() #print("GGGG right" + str(right.__class__)) #print(right.clafers) if len(left.clafers) != len(right.clafers): minJoinVal = left.clafers if len(left.clafers) < len(right.clafers) else right.clafers for i in keys: #TODO make more robust (e.g. if multiple equalities exist for the same join key, aggregate expressions bc.cache[i] = ExprArg(minJoinVal) #print(i) #print(minJoinVal) #print(str(len(minJoinVal)) + " " + str(len(left.clafers)) + " " + str(len(right.clafers))) #print(str(len(left.clafers)) + " " + str(len(right.clafers))) cond = [] #int equality case lints = [(e,c) for (e,c) in left.getInts() if str(c) != "False"] rints = [(e,c) for (e,c) in right.getInts() if str(c) != "False"] if lints or rints: for (e,c) in lints: #exists r in R s.t. e == r expr = mOr(*[mAnd(rc, SMTLib.SMT_EQ(e,r)) for (r,rc) in rints]) if str(c) != "True": expr = SMTLib.SMT_Implies(c, expr) cond.append(expr) for (e,c) in rints: #exists l in L s.t. e == l expr = mOr(*[mAnd(lc, SMTLib.SMT_EQ(e,l)) for (l,lc) in lints]) if str(c) != "True": expr = SMTLib.SMT_Implies(c, expr) cond.append(expr) #clafer-set equality case matches = getSetInstancePairs(left,right) for ((lexpr, lpol),(rexpr, rpol)) in matches.values(): if lpol == Common.DEFINITELY_OFF and rpol == Common.DEFINITELY_OFF: continue elif lpol == Common.DEFINITELY_OFF: cond.append(SMTLib.createNot(rexpr)) elif rpol == Common.DEFINITELY_OFF: cond.append(SMTLib.createNot(lexpr)) else: cond.append(SMTLib.SMT_Implies(lexpr, rexpr)) cond.append(SMTLib.SMT_Implies(rexpr, lexpr)) return BoolArg(mAnd(*cond)) def op_ne(left,right): ''' :param left: :type left: :class:`~ExprArg` :param right: :type right: :class:`~ExprArg` :returns: :class:`~BoolArg` Ensures that the left != right. ''' assert isinstance(left, ExprArg) assert isinstance(right, ExprArg) expr = op_eq(left, right) b = expr.getBool() return BoolArg(SMTLib.createNot(b)) def op_implies(left,right): ''' :param left: :type left: :class:`~ExprArg` :param right: :type right: :class:`~ExprArg` :returns: :class:`~BoolArg` Ensure that if instance *i* of left is on, so is instance *i* of right. ''' assert isinstance(left, ExprArg) assert isinstance(right, ExprArg) #clafer-set equality case if left.getInts(): sys.exit("FIXME Implies") if isinstance(left, BoolArg) and isinstance(right, BoolArg): return BoolArg(SMTLib.SMT_Implies(left.getBool(), right.getBool())) cond = [] matches = getSetInstancePairs(left,right) for ((lexpr, lpol),(rexpr, rpol)) in matches.values(): if lpol == Common.DEFINITELY_OFF or rpol == Common.DEFINITELY_ON: continue elif lpol == Common.DEFINITELY_ON: cond.append(rexpr) else: #lpol is unknown and rpol is off or unknown #almost the same as op_difference below cond.append(SMTLib.SMT_Implies(lexpr, rexpr)) return BoolArg(mAnd(*cond)) ''' ####################################################################### # END RELATIONAL/BOOLEAN OPERATORS ####################################################################### ''' ''' ####################################################################### # SET OPERATORS ####################################################################### ''' def getNextInstanceSort(left, right): if left or right: if left and right: if left[0][0] < right[0][0]: return [("l", left.pop(0))] elif left[0][0] > right[0][0]: return [("r", right.pop(0))] else: return [("l", left.pop(0)), ("r", right.pop(0))] elif left: return [("l", left.pop(0))] else: return [("r", right.pop(0))] else: return [] def op_card(arg): ''' :param arg: :type left: :class:`~arg` :param right: :type right: :class:`~ExprArg` :returns: :class:`~IntArg` Returns the number of instances that are *on* in arg. ''' assert isinstance(arg, ExprArg) instances = [] matches = getSetInstancePairs(arg) known_card = 0 if arg.getInts(): card_cons = compute_int_set(arg.getInts()) for i in card_cons: if isinstance(i, SMTLib.SMT_BoolConst): if i.value: known_card = known_card + 1 else: instances.append(SMTLib.SMT_If(i, SMTLib.SMT_IntConst(1), SMTLib.SMT_IntConst(0))) for (instance,_) in matches.values(): (expr, polarity) = instance if polarity == Common.DEFINITELY_ON: known_card = known_card + 1 else: instances.append(SMTLib.SMT_If(expr, SMTLib.SMT_IntConst(1), SMTLib.SMT_IntConst(0))) instances.append(SMTLib.SMT_IntConst(known_card)) return IntArg(SMTLib.createSum(instances)) def int_set_union(leftIntSort, rightIntSort): sys.exit("TODO") ''' (_,(left_sort, left_mask)) = leftIntSort (_,(right_sort, right_mask)) = rightIntSort newMask = Mask() sort = IntSort() for i in left_mask.keys(): cardMask_constraint = SMTLib.SMT_EQ(left_sort.cardinalityMask.get(i), SMTLib.SMT_IntConst(1)) if newMask.size() != 0: noPrevious_constraint = SMTLib.SMT_And(*[SMTLib.SMT_Or(SMTLib.SMT_EQ(sort.cardinalityMask.get(j), SMTLib.SMT_IntConst(0)), SMTLib.SMT_NE(newMask.get(j), left_mask.get(i))) for j in newMask.keys()]) else: noPrevious_constraint = SMTLib.SMT_BoolConst(True) full_constraint = SMTLib.SMT_And(noPrevious_constraint, cardMask_constraint) sort.cardinalityMask.put(i, SMTLib.SMT_If(full_constraint, SMTLib.SMT_IntConst(1), SMTLib.SMT_IntConst(0))) newMask.put(i, SMTLib.SMT_If(full_constraint, left_mask.get(i), SMTLib.SMT_IntConst(0))) delta = left_mask.size() for i in right_mask.keys(): cardMask_constraint = SMTLib.SMT_EQ(right_sort.cardinalityMask.get(i), SMTLib.SMT_IntConst(1)) if newMask.size() != 0: noPrevious_constraint = SMTLib.SMT_And(*[SMTLib.SMT_Or(SMTLib.SMT_EQ(sort.cardinalityMask.get(j), SMTLib.SMT_IntConst(0)), SMTLib.SMT_NE(newMask.get(j), right_mask.get(i))) for j in newMask.keys()]) else: noPrevious_constraint = SMTLib.SMT_BoolConst(True) full_constraint = SMTLib.SMT_And(noPrevious_constraint, cardMask_constraint) #constraint = SMTLib.SMT_And(SMTLib.SMT_EQ(right_sort.cardinalityMask.get(i), SMTLib.SMT_IntConst(1)), # *[SMTLib.SMT_Or(SMTLib.SMT_NE(left_mask.get(j), right_mask.get(i)), # SMTLib.SMT_EQ(left_sort.cardinalityMask.get(j), SMTLib.SMT_IntConst(0))) for j in left_mask.keys()]) sort.cardinalityMask.put(i + delta, SMTLib.SMT_If(full_constraint, SMTLib.SMT_IntConst(1), SMTLib.SMT_IntConst(0))) newMask.put(i+delta, SMTLib.SMT_If(full_constraint, right_mask.get(i), SMTLib.SMT_IntConst(0))) return (sort, newMask) ''' def putIfNotMatched(sort, mask, index, value, matches): ''' Used to make sure you don't add duplicate elements to a set i.e. a sub and super. Needed by union, intersection, and difference. ''' if not matches: mask.put(index, value) else: cond = [] for i in matches: (leftIsSub, transform, (match_sort,match_mask)) = i if leftIsSub: if match_mask.get(index + transform): cond.append(match_sort.isOff(match_mask.get(index + transform))) else: if match_mask.get(index - transform): cond.append(match_sort.isOff(match_mask.get(index - transform))) if not cond: mask.put(index, value) else: mask.put(index, SMTLib.SMT_If(mAnd(*cond), value, SMTLib.SMT_IntConst(sort.parentInstances))) def op_union(left,right): ''' :param left: :type left: :class:`~ExprArg` :param right: :type right: :class:`~ExprArg` :returns: :class:`~ExprArg` Computes the set union (left ++ right) ''' assert isinstance(left, ExprArg) assert isinstance(right, ExprArg) if left.getInts() or right.getInts(): sys.exit("FIXME ints union") matches = getSetInstancePairs(left,right) newInstances = {} for (sort,index) in matches.keys(): key = (sort,index) ((lexpr,lpol),(rexpr,rpol)) = matches[(sort,index)] if rpol == Common.DEFINITELY_OFF and lpol == Common.DEFINITELY_OFF: continue else: new_expr = mOr(lexpr,rexpr) newInstances[key] = (new_expr, Common.aggregate_polarity(lpol, rpol)) return ExprArg(newInstances) def int_set_intersection(left_sort, left_mask, right_sort, right_mask): sys.exit("TODO") ''' newMask = Mask() sort = IntSort() for i in left_mask.keys(): cardMask_constraint = SMTLib.SMT_EQ(left_sort.cardinalityMask.get(i), SMTLib.SMT_IntConst(1)) onRight_constraint = SMTLib.SMT_Or(*[SMTLib.SMT_And(SMTLib.SMT_EQ(left_mask.get(i), right_mask.get(j)), SMTLib.SMT_EQ(right_sort.cardinalityMask.get(j), SMTLib.SMT_IntConst(1))) for j in right_mask.keys()]) if newMask.size() != 0: noPrevious_constraint = SMTLib.SMT_And(*[SMTLib.SMT_Or(SMTLib.SMT_EQ(sort.cardinalityMask.get(j), SMTLib.SMT_IntConst(0)), SMTLib.SMT_NE(newMask.get(j), left_mask.get(i))) for j in newMask.keys()]) else: noPrevious_constraint = SMTLib.SMT_BoolConst(True) full_constraint = SMTLib.SMT_And(noPrevious_constraint, cardMask_constraint, onRight_constraint) sort.cardinalityMask.put(i, SMTLib.SMT_If(full_constraint, SMTLib.SMT_IntConst(1), SMTLib.SMT_IntConst(0))) newMask.put(i, SMTLib.SMT_If(full_constraint, left_mask.get(i), SMTLib.SMT_IntConst(0))) return (sort, newMask) ''' def op_intersection(left,right): ''' :param left: :type left: :class:`~ExprArg` :param right: :type right: :class:`~ExprArg` :returns: :class:`~ExprArg` Computes the set intersection (left & right) ''' assert isinstance(left, ExprArg) assert isinstance(right, ExprArg) if left.getInts() or right.getInts(): sys.exit("FIXME ints intersection") matches = getSetInstancePairs(left,right) newInstances = {} for (sort,index) in matches.keys(): key = (sort,index) ((lexpr,lpol),(rexpr,rpol)) = matches[(sort,index)] if rpol == Common.DEFINITELY_OFF or lpol == Common.DEFINITELY_OFF: continue else: new_expr = mAnd(lexpr,rexpr) newInstances[key] = (new_expr, Common.aggregate_polarity(lpol, rpol)) return ExprArg(newInstances) def int_set_difference(leftIntSort, rightIntSort): sys.exit("TODO") ''' (_,(left_sort, left_mask)) = leftIntSort (_,(right_sort, right_mask)) = rightIntSort newMask = Mask() sort = IntSort() for i in left_mask.keys(): constraint = SMTLib.SMT_And(SMTLib.SMT_EQ(left_sort.cardinalityMask.get(i), SMTLib.SMT_IntConst(1)), *[SMTLib.SMT_Or(SMTLib.SMT_NE(left_mask.get(i), right_mask.get(j)), SMTLib.SMT_EQ(right_sort.cardinalityMask.get(j), SMTLib.SMT_IntConst(0))) for j in right_mask.keys()]) sort.cardinalityMask.put(i, SMTLib.SMT_If(constraint, SMTLib.SMT_IntConst(1), SMTLib.SMT_IntConst(0))) newMask.put(i, SMTLib.SMT_If(constraint, left_mask.get(i), SMTLib.SMT_IntConst(0))) return (sort, newMask) ''' def op_difference(left,right): ''' :param left: :type left: :class:`~ExprArg` :param right: :type right: :class:`~ExprArg` :returns: :class:`~ExprArg` Computes the set difference (left - - right) ''' assert isinstance(left, ExprArg) assert isinstance(right, ExprArg) if left.getInts() or right.getInts(): sys.exit("FIXME ints diff") matches = getSetInstancePairs(left,right) newInstances = {} for (sort,index) in matches.keys(): key = (sort,index) ((lexpr,lpol),(rexpr,rpol)) = matches[(sort,index)] if rpol == Common.DEFINITELY_ON or lpol == Common.DEFINITELY_OFF: #cases (-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1) continue elif rpol == Common.DEFINITELY_OFF: #cases (0 , -1), (1, -1) newInstances[key] = (lexpr, lpol) else: #rpol is unknown, lpol is unknown or on => new_pol is UNKNOWN #cases (0, 0), (1, 0) #if right is not on, then left, else sort.isOff new_expr = SMTLib.SMT_If(SMTLib.createNot(rexpr), lexpr, sort.parentInstances) newInstances[key] = (new_expr, Common.UNKNOWN) return ExprArg(newInstances) def int_set_in(leftIntSort, rightIntSort): (left_sort, left_mask) = leftIntSort (right_sort, right_mask) = rightIntSort cond = [] for i in left_mask.keys(): constraint = SMTLib.SMT_Or(SMTLib.SMT_EQ(left_sort.cardinalityMask.get(i), SMTLib.SMT_IntConst(0)), SMTLib.SMT_Or(*[SMTLib.SMT_And(SMTLib.SMT_EQ(right_sort.cardinalityMask.get(j), SMTLib.SMT_IntConst(1)), SMTLib.SMT_EQ(right_mask.get(j), left_mask.get(i))) for j in right_mask.keys()])) cond.append(constraint) return(SMTLib.SMT_And(*cond)) def op_in(left,right): ''' :param left: :type left: :class:`~ExprArg` :param right: :type right: :class:`~ExprArg` :returns: :class:`~BoolArg` Ensures that left is a subset of right. ''' return op_implies(left,right) def op_nin(left,right): ''' :param left: :type left: :class:`~ExprArg` :param right: :type right: :class:`~ExprArg` :returns: :class:`~ExprArg` Ensures that left is not a subset of right. ''' assert isinstance(left, ExprArg) assert isinstance(right, ExprArg) expr = op_in(left,right) return BoolArg(SMTLib.createNot(expr.pop_value())) def op_domain_restriction(l,r): sys.exit("Domain Restriction") def op_range_restriction(l,r): sys.exit("Range Restriction")
50ffb4956388901f75c430e335b4c03a8493463b
d748710c6c5fa0f61b5bd6c2ec849d9250428811
/demo1/client_python/test/test_format.py
a03e8a252d7c7c1a5ae10dea8b78b8c22f086cd7
[]
no_license
stefan2904/aries-experiments
9f4dab2d0711b76557e3d6ae8e5a27e532102685
46f31ee62cf951da2696e5ca4e6dc1d3d753743d
refs/heads/main
2023-03-23T00:06:06.362992
2021-03-18T12:56:58
2021-03-18T12:56:58
329,986,417
1
0
null
null
null
null
UTF-8
Python
false
false
902
py
# coding: utf-8 """ (Aries Agent REST Server) of VC4SM University. No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 0.1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.models.format import Format # noqa: E501 from swagger_client.rest import ApiException class TestFormat(unittest.TestCase): """Format unit test stubs""" def setUp(self): pass def tearDown(self): pass def testFormat(self): """Test Format""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.format.Format() # noqa: E501 pass if __name__ == '__main__': unittest.main()
4befa60f75f65fc7d117fd7196c46db4398c2c4c
f99cca94f74c69bc518e298c14140534e18eabd3
/OrcApi/start_report.py
efcbc2ca473ffe5c686fdeb3c906e7f559f6ecab
[]
no_license
pubselenium/OrcTestToolsKit
d6d838d9937d2c4d86941e317cb3ff096b58e52d
f3ccbbceaed4f4996f6907a2f4880c2fd3f82bbb
refs/heads/master
2021-04-29T05:15:53.240714
2016-12-30T09:42:53
2016-12-30T09:42:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
832
py
# coding=utf-8 import sys from flask import make_response from OrcLib import init_log from OrcLib import get_config from OrcApi import app from OrcApi import orc_api from OrcApi.Run.ReportApi import ReportDetAPI configer = get_config("server") @app.after_request def after_request(response): response.headers['Access-Control-Allow-Origin'] = '*' return response @orc_api.representation("text/html") def out_html(data, code, headers=None): resp = make_response(data, code) resp.headers.extend(headers or {}) return resp # Widget orc_api.add_resource(ReportDetAPI, '/api/1.0/Report/<string:p_id>/<string:p_time>', endpoint='Report') driver_host = configer.get_option("REPORT", "ip") driver_port = configer.get_option("REPORT", "port") reload(sys) init_log() app.run(host=driver_host, port=driver_port)
53cde0b836010d45228fa1c3b0df4ed331fc4563
0bde5f7f09aa537ed1f4828d4e5ebee66475918f
/h2o-py/tests/testdir_apis/Data_Manipulation/pyunit_h2oH2OFrame_split_frame.py
7b6184fc5c776b24ad32cc3e4da703f2af126c3c
[ "Apache-2.0" ]
permissive
Winfredemalx54/h2o-3
d69f1c07e1f5d2540cb0ce5e6073415fa0780d32
dfb163c82ff3bfa6f88cdf02465a9bb4c8189cb7
refs/heads/master
2022-12-14T08:59:04.109986
2020-09-23T08:36:59
2020-09-23T08:36:59
297,947,978
2
0
Apache-2.0
2020-09-23T11:28:54
2020-09-23T11:28:54
null
UTF-8
Python
false
false
1,086
py
from __future__ import print_function import sys sys.path.insert(1,"../../../") from tests import pyunit_utils import h2o import numpy as np from h2o.utils.typechecks import assert_is_type from h2o.frame import H2OFrame def h2o_H2OFrame_split_frame(): """ Python API test: h2o.frame.H2OFrame.split_frame(ratios=None, destination_frames=None, seed=None) """ python_lists = np.random.uniform(-1,1, (10000,2)) h2oframe = h2o.H2OFrame(python_obj=python_lists) newframe = h2oframe.split_frame(ratios=[0.5, 0.25], destination_frames=["f1", "f2", "f3"], seed=None) assert_is_type(newframe, list) assert_is_type(newframe[0], H2OFrame) assert len(newframe)==3, "h2o.H2OFrame.split_frame() command is not working." assert h2oframe.nrow==(newframe[0].nrow+newframe[1].nrow+newframe[2].nrow), "h2o.H2OFrame.split_frame() command " \ "is not working." if __name__ == "__main__": pyunit_utils.standalone_test(h2o_H2OFrame_split_frame()) else: h2o_H2OFrame_split_frame()
5953b3b9c01500579a6f297e7f5b22fd87d779c5
2bb90b620f86d0d49f19f01593e1a4cc3c2e7ba8
/pardus/playground/ebayer/c2/kernel/pae/drivers/module-pae-openafs/actions.py
5dcbf53a4428541a79d686435aaf1aa6a77d6da8
[]
no_license
aligulle1/kuller
bda0d59ce8400aa3c7ba9c7e19589f27313492f7
7f98de19be27d7a517fe19a37c814748f7e18ba6
refs/heads/master
2021-01-20T02:22:09.451356
2013-07-23T17:57:58
2013-07-23T17:57:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
796
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2010 TUBITAK/UEKAE # Licensed under the GNU General Public License, version 2. # See the file http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt from pisi.actionsapi import shelltools from pisi.actionsapi import autotools from pisi.actionsapi import pisitools from pisi.actionsapi import get from pisi.actionsapi import kerneltools KDIR = kerneltools.getKernelVersion() WorkDir = "openafs-%s" % get.srcVERSION() def setup(): autotools.configure("--with-linux-kernel-headers=/lib/modules/%s/build" % KDIR) def build(): autotools.make("-j1 only_libafs") def install(): for m in ("libafs.ko", "afspag.ko"): pisitools.insinto("/lib/modules/%s/kernel/extra/openafs" % KDIR, "src/libafs/MODLOAD-%s-SP/%s" % (KDIR, m))
6e00615762e8df542d13ee65b1357bdf9cf232dc
a11984110d22e8231896c7e8bf2c6c2a96e46502
/Daily Challenges/2020/June/Coin Change 2.py
11def6bdf3936bba8f8e65cab5a71696240db825
[]
no_license
Waqar-107/LeetCode
fbd323c89a5ea010b3322b0b35dd087a7744abc4
5f7dc48918c0367b20e733830e9807eb40840f77
refs/heads/master
2023-08-03T12:27:58.593051
2023-07-24T01:33:24
2023-07-24T01:33:24
220,239,559
8
7
null
2022-05-01T18:50:03
2019-11-07T13:08:48
Python
UTF-8
Python
false
false
837
py
class Solution: def change(self, amount: int, coins: List[int]) -> int: n = len(coins) dp = [[0 for _ in range(n)] for _ in range(amount + 1)] if amount == 0: return 1 if n == 0: return 0 for j in range(n): dp[0][j] = 1 for i in range(1, amount + 1): for j in range(n): # include coin j if i - coins[j] >= 0: x = dp[i - coins[j]][j] else: x = 0 # do not include j if j >= 1: y = dp[i][j - 1] else: y = 0 dp[i][j] = x + y return dp[amount][n - 1]
0a6b8b51c8c6d0be55dbbec18662c723561424b8
44064ed79f173ddca96174913910c1610992b7cb
/Second_Processing_app/temboo/Library/SendGrid/WebAPI/Profile/__init__.py
6d92d7a013674c733657f66763ff162be16e38d5
[]
no_license
dattasaurabh82/Final_thesis
440fb5e29ebc28dd64fe59ecd87f01494ed6d4e5
8edaea62f5987db026adfffb6b52b59b119f6375
refs/heads/master
2021-01-20T22:25:48.999100
2014-10-14T18:58:00
2014-10-14T18:58:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
172
py
from UpdateContactProfileEmailAddress import * from UpdateUsername import * from ViewAccountProfile import * from ResetPassword import * from UpdateAccountProfile import *
4ddb79704d7f95d929525eb9514d2329a0e2ae5f
9ce4292954000fd66bcdbd0797a280c306308d08
/quizzes/00.organize.me/Cracking the Coding Interview/10-5.py
b766c70b7b543f695e10a7a7269d68734ca8f968
[ "MIT" ]
permissive
JiniousChoi/encyclopedia-in-code
0c786f2405bfc1d33291715d9574cae625ae45be
77bc551a03a2a3e3808e50016ece14adb5cfbd96
refs/heads/master
2021-06-27T07:50:10.789732
2020-05-29T12:50:46
2020-05-29T12:50:46
137,426,553
2
0
MIT
2020-10-13T08:56:12
2018-06-15T01:29:31
Python
UTF-8
Python
false
false
1,342
py
''' 10.5 - 빈 문자열이 섞여 있는 정렬 상태의 배열이 주어졌을 때, 특정한 문자열 의 위치를 찾는 메서드를 작성하라. ''' def search_arr_with_empty_string(arr, target): assert arr left = init_left(arr) right = init_right(arr) mid = get_mid(arr, left, right) while mid>=0: if arr[mid]==target: return mid if arr[mid]>target: right=mid elif arr[mid]<target: left=mid else: assert False mid = get_mid(arr, left, right) return -1 def init_left(arr): for i,e in enumerate(arr): if e: return i raise Exception("주어진 배열이 빈문자열로만 차있습니다") def init_right(arr): for i in range(len(arr)-1, -1, -1): if arr[i]: return i raise Exception("주어진 배열이 빈문자열로만 차있습니다") def get_mid(arr, left, right): assert left < right mid = (left+right)//2 if arr[mid]: return mid for t in range(mid-1, left, -1): if arr[t]: return t for t in range(mid+1, right): if arr[t]: return t return -1 sample_arr = ["at","","","","ball","","","car","","","dad","",""] idx = search_arr_with_empty_string(sample_arr, "ball") print(idx)
dcbab961672293df7685c2b68b386d61314c7e39
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_144/ch149_2020_04_13_20_40_50_766295.py
878ea953ff527f041b48cc86231d9d5b082aeda2
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
1,029
py
salario_bruto = int(input(("Salario: ")) numero_dependentes = int(input("Dependentes: ")) contri_INSS = 0 if salario_bruto <= 1045: contri_INSS = salario_bruto * 0.075 elif salario_bruto >= 1045.01 and salario_bruto <=2089.60: contri_INSS = salario_bruto * 0.09 elif salario_bruto >= 2089.01 and salario_bruto <= 3134.40: contri_INSS = salario_bruto * 0.12 elif salario_bruto >= 3134.41 and salario_bruto <=6101.06: contri_INSS = salario_bruto * 0.14 else: contri_INSS = 671.12 base = salario_bruto - contri_INSS - (numero_dependentes* 189.59) aliquota = 0 deducao = 0 if base <= 1903.98: aliquota = 0 deducao = 0 elif base >= 1903.99 and base <= 2826.65: aliquota = 0.75 deducao = 142.80 elif base >= 2826.66 and base <= 3751.05: aliquota = 0.15 deducao = 354.80 elif base >= 3751.06 and base <= 4664.68: aliquota = 0.225 deducao = 636.13 else: aliquota = 0.275 deducao = 869.36 IRRF = base * aliquota - deducao print(IRRF)
584fe41b940e4bd228c969c3f6fe5b68081645b6
cc0c0f99a5cf563ff52a76f2ac17cdad09d22f01
/venv/Lib/site-packages/itk/itkQuadEdgeMeshToQuadEdgeMeshFilterPython.py
9b071e6e20bc0503a4cd1054eb25977024483ead
[]
no_license
Marxss/carck_detect_system
9c0d338bde322b4c7304fd0addb524d8697c8a7b
d2480f2108052af8af0aa5265a5239c309885043
refs/heads/master
2022-04-15T23:34:20.988335
2020-03-29T16:24:00
2020-03-29T16:24:00
214,625,168
0
0
null
null
null
null
UTF-8
Python
false
false
12,466
py
# This file was automatically generated by SWIG (http://www.swig.org). # Version 3.0.8 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info if version_info >= (3, 0, 0): new_instancemethod = lambda func, inst, cls: _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.SWIG_PyInstanceMethod_New(func) else: from new import instancemethod as new_instancemethod if version_info >= (2, 6, 0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_itkQuadEdgeMeshToQuadEdgeMeshFilterPython', [dirname(__file__)]) except ImportError: import _itkQuadEdgeMeshToQuadEdgeMeshFilterPython return _itkQuadEdgeMeshToQuadEdgeMeshFilterPython if fp is not None: try: _mod = imp.load_module('_itkQuadEdgeMeshToQuadEdgeMeshFilterPython', fp, pathname, description) finally: fp.close() return _mod _itkQuadEdgeMeshToQuadEdgeMeshFilterPython = swig_import_helper() del swig_import_helper else: import _itkQuadEdgeMeshToQuadEdgeMeshFilterPython del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self, class_type, name, value, static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name, None) if method: return method(self, value) if (not static): object.__setattr__(self, name, value) else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self, class_type, name, value): return _swig_setattr_nondynamic(self, class_type, name, value, 0) def _swig_getattr_nondynamic(self, class_type, name, static=1): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name, None) if method: return method(self) if (not static): return object.__getattr__(self, name) else: raise AttributeError(name) def _swig_getattr(self, class_type, name): return _swig_getattr_nondynamic(self, class_type, name, 0) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except Exception: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object: pass _newclass = 0 def _swig_setattr_nondynamic_method(set): def set_attr(self, name, value): if (name == "thisown"): return self.this.own(value) if hasattr(self, name) or (name == "this"): set(self, name, value) else: raise AttributeError("You cannot add attributes to %s" % self) return set_attr import itkQuadEdgeMeshBasePython import itkVectorPython import vnl_vectorPython import vnl_matrixPython import stdcomplexPython import pyBasePython import vnl_vector_refPython import itkFixedArrayPython import itkMapContainerPython import ITKCommonBasePython import itkPointPython import itkImagePython import itkOffsetPython import itkSizePython import itkMatrixPython import vnl_matrix_fixedPython import itkCovariantVectorPython import itkSymmetricSecondRankTensorPython import itkImageRegionPython import itkIndexPython import itkRGBPixelPython import itkRGBAPixelPython import itkGeometricalQuadEdgePython import itkQuadEdgePython import itkQuadEdgeCellTraitsInfoPython import itkQuadEdgeMeshPointPython import itkQuadEdgeMeshLineCellPython import itkArrayPython def itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_New(): return itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3.New() def itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_New(): return itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2.New() class itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2(itkQuadEdgeMeshBasePython.itkMeshToMeshFilterQEMD2QEMD2): """Proxy of C++ itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_Pointer": """__New_orig__() -> itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_Pointer""" return _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_Pointer": """Clone(itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2 self) -> itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_Pointer""" return _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_Clone(self) __swig_destroy__ = _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.delete_itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2 def cast(obj: 'itkLightObject') -> "itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2 *": """cast(itkLightObject obj) -> itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2""" return _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2 Create a new object of the class itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2.Clone = new_instancemethod(_itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_Clone, None, itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2) itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_swigregister = _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_swigregister itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_swigregister(itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2) def itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2___New_orig__() -> "itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_Pointer": """itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2___New_orig__() -> itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_Pointer""" return _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2___New_orig__() def itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_cast(obj: 'itkLightObject') -> "itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2 *": """itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_cast(itkLightObject obj) -> itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2""" return _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD2QEMD2_cast(obj) class itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3(itkQuadEdgeMeshBasePython.itkMeshToMeshFilterQEMD3QEMD3): """Proxy of C++ itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_Pointer": """__New_orig__() -> itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_Pointer""" return _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_Pointer": """Clone(itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3 self) -> itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_Pointer""" return _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_Clone(self) __swig_destroy__ = _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.delete_itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3 def cast(obj: 'itkLightObject') -> "itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3 *": """cast(itkLightObject obj) -> itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3""" return _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3 Create a new object of the class itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3.Clone = new_instancemethod(_itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_Clone, None, itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3) itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_swigregister = _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_swigregister itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_swigregister(itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3) def itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3___New_orig__() -> "itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_Pointer": """itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3___New_orig__() -> itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_Pointer""" return _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3___New_orig__() def itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_cast(obj: 'itkLightObject') -> "itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3 *": """itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_cast(itkLightObject obj) -> itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3""" return _itkQuadEdgeMeshToQuadEdgeMeshFilterPython.itkQuadEdgeMeshToQuadEdgeMeshFilterQEMD3QEMD3_cast(obj) def quad_edge_mesh_to_quad_edge_mesh_filter(*args, **kwargs): """Procedural interface for QuadEdgeMeshToQuadEdgeMeshFilter""" import itk instance = itk.QuadEdgeMeshToQuadEdgeMeshFilter.New(*args, **kwargs) return instance.__internal_call__() def quad_edge_mesh_to_quad_edge_mesh_filter_init_docstring(): import itk import itkTemplate if isinstance(itk.QuadEdgeMeshToQuadEdgeMeshFilter, itkTemplate.itkTemplate): quad_edge_mesh_to_quad_edge_mesh_filter.__doc__ = itk.QuadEdgeMeshToQuadEdgeMeshFilter.values()[0].__doc__ else: quad_edge_mesh_to_quad_edge_mesh_filter.__doc__ = itk.QuadEdgeMeshToQuadEdgeMeshFilter.__doc__
c1825c451ebce3e5a90f216fa0ea0683c035ad0d
34f6d9a4c4becc057d1b01a0ed3e50f20a071b03
/main/migrations/0001_initial.py
55e4c7b7da9e0f6d8dea069a8d80d7bc81e61042
[]
no_license
hitscanner/WUW
e6d59bb8eae3834cf115e50834a2a4af51c29b29
31a482afe3e4789c979696a70f5ded17488b7810
refs/heads/master
2022-12-10T06:01:01.862354
2019-08-11T11:31:01
2019-08-11T11:31:01
196,556,732
0
0
null
2022-07-06T20:13:05
2019-07-12T10:06:49
JavaScript
UTF-8
Python
false
false
771
py
# Generated by Django 2.2 on 2019-07-16 08:45 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Search_result', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('poster', models.ImageField(blank=True, upload_to='')), ('heart', models.ImageField(blank=True, upload_to='')), ('created_at', models.DateField(auto_now_add=True)), ('updated_at', models.DateField(auto_now=True)), ], ), ]
cab7d49da20714d35bcfe777d586c4c4b8e8bcb1
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/eqpt/spcmnblk.py
4a85bd179a0f4e21e2c358232362a472c0383c4d
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
8,084
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class SpCmnBlk(Mo): """ A SPROM common block. """ meta = ClassMeta("cobra.model.eqpt.SpCmnBlk") meta.moClassName = "eqptSpCmnBlk" meta.rnFormat = "spcmn" meta.category = MoCategory.REGULAR meta.label = "Sprom Common Block" meta.writeAccessMask = 0x80080000000001 meta.readAccessMask = 0x80080000000001 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.parentClasses.add("cobra.model.eqpt.SpromFan") meta.parentClasses.add("cobra.model.eqpt.SpromLc") meta.parentClasses.add("cobra.model.eqpt.SpromSup") meta.parentClasses.add("cobra.model.eqpt.SpromPsu") meta.parentClasses.add("cobra.model.eqpt.SpromBP") meta.superClasses.add("cobra.model.eqpt.SpBlkHdr") meta.rnPrefixes = [ ('spcmn', False), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cksum", "cksum", 3358, PropCategory.REGULAR) prop.label = "Checksum" prop.isImplicit = True prop.isAdmin = True meta.props.add("cksum", prop) prop = PropMeta("str", "clei", "clei", 3375, PropCategory.REGULAR) prop.label = "CLEI Code" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("clei", prop) prop = PropMeta("str", "count", "count", 3360, PropCategory.REGULAR) prop.label = "Block Count" prop.isImplicit = True prop.isAdmin = True meta.props.add("count", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "engBits", "engBits", 3372, PropCategory.REGULAR) prop.label = "Engineering Bits" prop.isImplicit = True prop.isAdmin = True meta.props.add("engBits", prop) prop = PropMeta("str", "hwRevMaj", "hwRevMaj", 3369, PropCategory.REGULAR) prop.label = "Hardware Revision Major Number" prop.isImplicit = True prop.isAdmin = True meta.props.add("hwRevMaj", prop) prop = PropMeta("str", "hwRevMin", "hwRevMin", 3370, PropCategory.REGULAR) prop.label = "Hardware Revision Minor Number" prop.isImplicit = True prop.isAdmin = True meta.props.add("hwRevMin", prop) prop = PropMeta("str", "len", "len", 3357, PropCategory.REGULAR) prop.label = "Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("len", prop) prop = PropMeta("str", "major", "major", 3361, PropCategory.REGULAR) prop.label = "FRU Major Number" prop.isImplicit = True prop.isAdmin = True meta.props.add("major", prop) prop = PropMeta("str", "mfgBits", "mfgBits", 3371, PropCategory.REGULAR) prop.label = "Manufacturing Bits" prop.isImplicit = True prop.isAdmin = True meta.props.add("mfgBits", prop) prop = PropMeta("str", "mfgDev", "mfgDev", 3368, PropCategory.REGULAR) prop.label = "Manufacturing Deviation" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("mfgDev", prop) prop = PropMeta("str", "minor", "minor", 3362, PropCategory.REGULAR) prop.label = "FRU Minor Number" prop.isImplicit = True prop.isAdmin = True meta.props.add("minor", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "oem", "oem", 3363, PropCategory.REGULAR) prop.label = "OEM" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("oem", prop) prop = PropMeta("str", "pRev", "pRev", 3367, PropCategory.REGULAR) prop.label = "Part Revision" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("pRev", prop) prop = PropMeta("str", "pdNum", "pdNum", 3364, PropCategory.REGULAR) prop.label = "Product Number" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("pdNum", prop) prop = PropMeta("str", "prtNum", "prtNum", 3366, PropCategory.REGULAR) prop.label = "Part Number" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("prtNum", prop) prop = PropMeta("str", "pwrCon", "pwrCon", 3373, PropCategory.REGULAR) prop.label = "Power Consumption" prop.isImplicit = True prop.isAdmin = True meta.props.add("pwrCon", prop) prop = PropMeta("str", "ramFl", "ramFl", 3374, PropCategory.REGULAR) prop.label = "RMA Failure Code" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("ramFl", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "serNum", "serNum", 3365, PropCategory.REGULAR) prop.label = "Serial Number" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("serNum", prop) prop = PropMeta("str", "sig", "sig", 3355, PropCategory.REGULAR) prop.label = "Signature" prop.isImplicit = True prop.isAdmin = True meta.props.add("sig", prop) prop = PropMeta("str", "size", "size", 3359, PropCategory.REGULAR) prop.label = "Block Size" prop.isImplicit = True prop.isAdmin = True meta.props.add("size", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "vdrId", "vdrId", 3376, PropCategory.REGULAR) prop.label = "Vendor ID" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("vdrId", prop) prop = PropMeta("str", "ver", "ver", 3356, PropCategory.REGULAR) prop.label = "Version" prop.isImplicit = True prop.isAdmin = True meta.props.add("ver", prop) # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" meta.deploymentQueryPaths.append(DeploymentPathMeta("EqptSlotToEPg", "EPG", "cobra.model.fv.EPg")) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
d64a07214140198e05e8730f69a9a5dd80e5146d
aa3beba7d2e9eb7d4b5b4884f8d11203fe8ebe8e
/historical_bars_pandas_one_time.py
4b41c3982182d22d010ea68d4e22e4cd423b3b3f
[]
no_license
webclinic017/historical_ticks-1
0d3d5113f16624f2191fff366c9e9f6ad2e72f1c
8a30e6b6ea3c484f6cab95cf4d32fe3dd2695056
refs/heads/main
2023-08-05T03:07:59.258809
2021-09-13T12:22:59
2021-09-13T12:22:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,089
py
import pandas as pd import csv import argparse import datetime import collections import inspect import logging import os.path import time import datetime from ibapi import wrapper from ibapi import utils from ibapi.client import EClient from ibapi.utils import iswrapper from ContractSamples import ContractSamples from ibapi.ticktype import TickType, TickTypeEnum from ibapi import wrapper from ibapi.client import EClient from ibapi.wrapper import EWrapper # types from ibapi.common import * # @UnusedWildImport from ibapi.order import * # @UnusedWildImport from DBHelperMay import DBHelper def SetupLogger(): if not os.path.exists("log"): os.makedirs("log") time.strftime("pyibapi.%Y%m%d_%H%M%S.log") recfmt = '(%(threadName)s) %(asctime)s.%(msecs)03d %(levelname)s %(filename)s:%(lineno)d %(message)s' timefmt = '%y%m%d_%H:%M:%S' # logging.basicConfig( level=logging.DEBUG, # format=recfmt, datefmt=timefmt) logging.basicConfig(filename=time.strftime("log/pyibapi.%y%m%d_%H%M%S.log"), filemode="w", level=logging.INFO, format=recfmt, datefmt=timefmt) logger = logging.getLogger() console = logging.StreamHandler() console.setLevel(logging.INFO) logger.addHandler(console) def printWhenExecuting(fn): def fn2(self): print(" doing", fn.__name__) fn(self) print(" done w/", fn.__name__) return fn2 def printinstance(inst:Object): attrs = vars(inst) print(', '.join("%s: %s" % item for item in attrs.items())) class Activity(Object): def __init__(self, reqMsgId, ansMsgId, ansEndMsgId, reqId): self.reqMsdId = reqMsgId self.ansMsgId = ansMsgId self.ansEndMsgId = ansEndMsgId self.reqId = reqId class RequestMgr(Object): def __init__(self): # I will keep this simple even if slower for now: only one list of # requests finding will be done by linear search self.requests = [] def addReq(self, req): self.requests.append(req) def receivedMsg(self, msg): pass # ! [socket_init] class TestApp(EWrapper, EClient): def __init__(self): EWrapper.__init__(self) EClient.__init__(self, wrapper=self) # ! [socket_init] self.nKeybInt = 0 self.started = False self.nextValidOrderId = None self.permId2ord = {} self.globalCancelOnly = False self.simplePlaceOid = None self._my_errors = {} # pandas lines # https://stackoverflow.com/questions/58524845/is-there-a-proper-way-to-produce-a-ohlcv-pandas-dataframe-using-ib-api # https://stackoverflow.com/questions/62416071/storing-api-data-into-a-dataframe self.cols = ['date', 'open', 'high', 'low', 'close', 'volume'] self.df = pd.DataFrame(columns=self.cols) # def dumpReqAnsErrSituation(self): # logging.debug("%s\t%s\t%s\t%s" % ("ReqId", "#Req", "#Ans", "#Err")) # for reqId in sorted(self.reqId2nReq.keys()): # nReq = self.reqId2nReq.get(reqId, 0) # nAns = self.reqId2nAns.get(reqId, 0) # nErr = self.reqId2nErr.get(reqId, 0) # logging.debug("%d\t%d\t%s\t%d" % (reqId, nReq, nAns, nErr)) @iswrapper # ! [connectack] def connectAck(self): if self.asynchronous: self.startApi() # ! [connectack] @iswrapper # ! [nextvalidid] def nextValidId(self, orderId: int): super().nextValidId(orderId) logging.debug("setting nextValidOrderId: %d", orderId) self.nextValidOrderId = orderId print("NextValidId:", orderId) # ! [nextvalidid] # we can start now self.start() def start(self): if self.started: return self.started = True if self.globalCancelOnly: print("Executing GlobalCancel only") self.reqGlobalCancel() else: print("Executing requests") # self.tickDataOperations_req() # self.historicalTicksOperations() # self.reqGlobalCancel() # self.marketDataTypeOperations() # self.accountOperations_req() # self.tickDataOperations_req() # self.marketDepthOperations_req() # self.realTimeBarsOperations_req() self.historicalDataOperations_req() # self.optionsOperations_req() # self.marketScannersOperations_req() # self.fundamentalsOperations_req() # self.bulletinsOperations_req() # self.contractOperations() # self.newsOperations_req() # self.miscelaneousOperations() # self.linkingOperations() # self.financialAdvisorOperations() # self.orderOperations_req() # self.rerouteCFDOperations() # self.marketRuleOperations() # self.pnlOperations_req() # self.histogramOperations_req() # self.continuousFuturesOperations_req() # self.historicalTicksOperations() # self.tickByTickOperations_req() # self.whatIfOrderOperations() print("Executing requests ... finished") def keyboardInterrupt(self): self.nKeybInt += 1 if self.nKeybInt == 1: self.stop() else: print("Finishing test") self.done = True def stop(self): print("Executing cancels") # self.orderOperations_cancel() # self.accountOperations_cancel() # self.tickDataOperations_cancel() # self.marketDepthOperations_cancel() # self.realTimeBarsOperations_cancel() self.historicalDataOperations_cancel() # self.optionsOperations_cancel() # self.marketScanners_cancel() # self.fundamentalsOperations_cancel() # self.bulletinsOperations_cancel() # self.newsOperations_cancel() # self.pnlOperations_cancel() # self.histogramOperations_cancel() # self.continuousFuturesOperations_cancel() # self.tickByTickOperations_cancel() print("Executing cancels ... finished") def nextOrderId(self): oid = self.nextValidOrderId self.nextValidOrderId += 1 return oid @iswrapper # ! [error] def error(self, reqId: TickerId, errorCode: int, errorString: str): super().error(reqId, errorCode, errorString) print("Error. Id:", reqId, "Code:", errorCode, "Msg:", errorString) errormsg = "IB error id %d errorcode %d string %s" % (reqId, errorCode, errorString) self._my_errors = errormsg @iswrapper def winError(self, text: str, lastError: int): super().winError(text, lastError) @printWhenExecuting def tickByTickOperations_req(self): # Requesting tick-by-tick data (only refresh) # ! [reqtickbytick] self.reqTickByTickData(19001, ContractSamples.EuropeanStock2(), "Last", 0, True) self.reqTickByTickData(19002, ContractSamples.EuropeanStock2(), "AllLast", 0, False) self.reqTickByTickData(19003, ContractSamples.EuropeanStock2(), "BidAsk", 0, True) self.reqTickByTickData(19004, ContractSamples.EurGbpFx(), "MidPoint", 0, False) # ! [reqtickbytick] # Requesting tick-by-tick data (refresh + historicalticks) # ! [reqtickbytickwithhist] self.reqTickByTickData(19005, ContractSamples.SimpleFuture(), "Last", 10, False) self.reqTickByTickData(19006, ContractSamples.SimpleFuture(), "AllLast", 10, False) self.reqTickByTickData(19007, ContractSamples.SimpleFuture(), "BidAsk", 10, False) self.reqTickByTickData(19008, ContractSamples.SimpleFuture(), "MidPoint", 10, True) # ! [reqtickbytickwithhist] @printWhenExecuting def historicalDataOperations_req(self, num_days = '20 D'): self.num_days = num_days queryTime = (datetime.datetime.today() - datetime.timedelta(days=7)).strftime("%Y%m%d %H:%M:%S") self.reqHistoricalData(4103, ContractSamples.SimpleFuture(), queryTime, self.num_days, "1 day", "TRADES", 1, 1, False, []) # self.reqHistoricalData(4104, ContractSamples.SimpleFuture(), "", # "1 M", "1 day", "MIDPOINT", 1, 1, True, []) # ! [reqhistoricaldata] def historicalData(self, reqId: int, bar: BarData): # print("HistoricalData. ReqId:", reqId, "BarData.", bar) # print(bar.date, bar.open, bar.high, bar.low, bar.close, bar.volume) self.df.loc[len(self.df)] = [bar.date, bar.open, bar.high, bar.low, bar.close, bar.volume] self.df.to_csv('history2.csv') print(self.df) # ! [historicaldata] @printWhenExecuting def historicalDataOperations_cancel(self): # ! [cancelHeadTimestamp] # self.cancelHeadTimeStamp(4101) # ! [cancelHeadTimestamp] # ! [cancelHeadTimestamp] # Canceling historical data requests # ! [cancelhistoricaldata] # self.cancelHistoricalData(4102) self.cancelHistoricalData(4103) # self.cancelHistoricalData(4104) # ! [cancelhistoricaldata] # @iswrapper # # ! [historicaldataend] # def historicalDataEnd(self, reqId: int, start: str, end: str): # super().historicalDataEnd(reqId, start, end) # print("HistoricalDataEnd. ReqId:", reqId, "from", start, "to", end) # # # ! [historicaldataend] # # @iswrapper # # ! [historicalDataUpdate] # def historicalDataUpdate(self, reqId: int, bar: BarData): # print("HistoricalDataUpdate. ReqId:", reqId, "BarData.", bar) # # # ! [historicalDataUpdate] # # def historicalData(self, reqId:int, bar: BarData): # print("HistoricalData. ReqId:", reqId, "BarData.", bar) # logging.debug("ReqId:", reqId, "BarData.", bar) # # self.disconnect() @iswrapper def tickPrice(self, tickerId: TickerId , tickType: TickType, price: float, attrib): super().tickPrice(tickerId, tickType, price, attrib) print("Tick Price, Ticker Id:", tickerId, "tickType:", TickTypeEnum.to_str(tickType), "Price:", price, " Time:", attrib.time, file=sys.stderr, end= " ") @iswrapper def tickSize(self, tickerId: TickerId, tickType: TickType, size: int): super().tickSize(tickerId, tickType, size) print( "Tick Size, Ticker Id:",tickerId, "tickType:", TickTypeEnum.to_str(tickType), "Size:", size, file=sys.stderr) def tickByTickAllLast(self, reqId: int, tickType: int, time: int, price: float, size: int, tickAttribLast: TickAttribLast, exchange: str, specialConditions: str): super().tickByTickAllLast(reqId, tickType, time, price, size, tickAttribLast, exchange, specialConditions) if tickType == 1: print("Last.", end='') else: print("AllLast.", end='') print(" ReqId:", reqId, "Time:", datetime.datetime.fromtimestamp(time).strftime("%Y%m%d %H:%M:%S"), "Price:", price, "Size:", size, "Exch:", exchange, "Spec Cond:", specialConditions, "PastLimit:", tickAttribLast.pastLimit, "Unreported:", tickAttribLast.unreported) def main(): SetupLogger() logging.getLogger().setLevel(logging.ERROR) cmdLineParser = argparse.ArgumentParser("api tests") # cmdLineParser.add_option("-c", action="store_True", dest="use_cache", default = False, help = "use the cache") # cmdLineParser.add_option("-f", action="store", type="string", dest="file", default="", help="the input file") cmdLineParser.add_argument("-p", "--port", action="store", type=int, dest="port", default=7497, help="The TCP port to use") cmdLineParser.add_argument("-C", "--global-cancel", action="store_true", dest="global_cancel", default=False, help="whether to trigger a globalCancel req") args = cmdLineParser.parse_args() print("Using args", args) logging.debug("Using args %s", args) # print(args) # tc = TestClient(None) # tc.reqMktData(1101, ContractSamples.USStockAtSmart(), "", False, None) # print(tc.reqId2nReq) # sys.exit(1) try: app = TestApp() if args.global_cancel: app.globalCancelOnly = True # ! [connect] app.connect("127.0.0.1", args.port, clientId=3) # ! [connect] print("serverVersion:%s connectionTime:%s" % (app.serverVersion(), app.twsConnectionTime())) # ! [clientrun] app.run() time.sleep(2) app.disconnect() # ! [clientrun] except: raise # finally: # app.dumpTestCoverageSituation() # app.dumpReqAnsErrSituation() if __name__ == "__main__": main()
877d1c526b3f20bd3188f83451ed138f7a56e486
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_sniggering.py
17cd2b9a2bb4518486b4ed491fb93307ec1d284d
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
#calss header class _SNIGGERING(): def __init__(self,): self.name = "SNIGGERING" self.definitions = snigger self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['snigger']
ac7098eb210e84d502ecbef2178e0288d257fa61
010215c1421f5275a846e7154189b22cdd3c89bc
/MS/Two Pointer/backspace_compare.py
b930b074d11fe2ed02fd6c809b5f4f8223bf58ac
[]
no_license
bsextion/CodingPractice_Py
ab54d5715298645a8fd7ab6945bf3b22d4e6a874
da2847a04705394c32a6fe1b5f6c6b64c24647a3
refs/heads/master
2023-08-16T17:14:47.643989
2021-09-28T19:23:40
2021-09-28T19:23:40
383,658,966
0
0
null
null
null
null
UTF-8
Python
false
false
644
py
def backspace_compare(str1:str, str2): #two pointers, ptr_one = 0 ptr_two = 0 while ptr_one < len(str1): if str1[ptr_one] is '#' and ptr_one > 0: temp = list(str1) temp[ptr_one-1] = '' temp[ptr_one] = '' str1 = ''.join(temp) ptr_one += 1 while ptr_two < len(str2): if str2[ptr_two] is '#' and ptr_two > 0: temp = list(str2) temp[ptr_two - 1] = '' temp[ptr_two] = '' str2 = ''.join(temp) ptr_two += 1 if str1 == str2: return True return False backspace_compare("xp#", "xyz##")
b6677daaa5433a1a5bff104dbd781005f9caa6ad
bdba52c756cc09f192b720ea318510c265665dcd
/swagger_client/models/get_characters_character_id_planets_planet_id_head.py
d6daf4f3b6cdc6f78e96cc5957b82e43bb1a5d74
[ "MIT" ]
permissive
rseichter/bootini-star
6b38195890f383615cc2b422c365ac28c5b87292
a80258f01a05e4df38748b8cb47dfadabd42c20d
refs/heads/master
2020-03-14T03:17:11.385048
2018-06-28T17:23:23
2018-06-28T17:23:23
131,416,504
0
0
MIT
2018-05-01T14:26:04
2018-04-28T14:28:46
Python
UTF-8
Python
false
false
5,555
py
# coding: utf-8 """ EVE Swagger Interface An OpenAPI for EVE Online # noqa: E501 OpenAPI spec version: 0.8.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class GetCharactersCharacterIdPlanetsPlanetIdHead(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'head_id': 'int', 'latitude': 'float', 'longitude': 'float' } attribute_map = { 'head_id': 'head_id', 'latitude': 'latitude', 'longitude': 'longitude' } def __init__(self, head_id=None, latitude=None, longitude=None): # noqa: E501 """GetCharactersCharacterIdPlanetsPlanetIdHead - a model defined in Swagger""" # noqa: E501 self._head_id = None self._latitude = None self._longitude = None self.discriminator = None self.head_id = head_id self.latitude = latitude self.longitude = longitude @property def head_id(self): """Gets the head_id of this GetCharactersCharacterIdPlanetsPlanetIdHead. # noqa: E501 head_id integer # noqa: E501 :return: The head_id of this GetCharactersCharacterIdPlanetsPlanetIdHead. # noqa: E501 :rtype: int """ return self._head_id @head_id.setter def head_id(self, head_id): """Sets the head_id of this GetCharactersCharacterIdPlanetsPlanetIdHead. head_id integer # noqa: E501 :param head_id: The head_id of this GetCharactersCharacterIdPlanetsPlanetIdHead. # noqa: E501 :type: int """ if head_id is None: raise ValueError("Invalid value for `head_id`, must not be `None`") # noqa: E501 if head_id is not None and head_id > 9: # noqa: E501 raise ValueError("Invalid value for `head_id`, must be a value less than or equal to `9`") # noqa: E501 if head_id is not None and head_id < 0: # noqa: E501 raise ValueError("Invalid value for `head_id`, must be a value greater than or equal to `0`") # noqa: E501 self._head_id = head_id @property def latitude(self): """Gets the latitude of this GetCharactersCharacterIdPlanetsPlanetIdHead. # noqa: E501 latitude number # noqa: E501 :return: The latitude of this GetCharactersCharacterIdPlanetsPlanetIdHead. # noqa: E501 :rtype: float """ return self._latitude @latitude.setter def latitude(self, latitude): """Sets the latitude of this GetCharactersCharacterIdPlanetsPlanetIdHead. latitude number # noqa: E501 :param latitude: The latitude of this GetCharactersCharacterIdPlanetsPlanetIdHead. # noqa: E501 :type: float """ if latitude is None: raise ValueError("Invalid value for `latitude`, must not be `None`") # noqa: E501 self._latitude = latitude @property def longitude(self): """Gets the longitude of this GetCharactersCharacterIdPlanetsPlanetIdHead. # noqa: E501 longitude number # noqa: E501 :return: The longitude of this GetCharactersCharacterIdPlanetsPlanetIdHead. # noqa: E501 :rtype: float """ return self._longitude @longitude.setter def longitude(self, longitude): """Sets the longitude of this GetCharactersCharacterIdPlanetsPlanetIdHead. longitude number # noqa: E501 :param longitude: The longitude of this GetCharactersCharacterIdPlanetsPlanetIdHead. # noqa: E501 :type: float """ if longitude is None: raise ValueError("Invalid value for `longitude`, must not be `None`") # noqa: E501 self._longitude = longitude def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, GetCharactersCharacterIdPlanetsPlanetIdHead): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
c4f36d4b7fa6d6a4966f1a22288517df1842a6e4
480e33f95eec2e471c563d4c0661784c92396368
/Configuration/Generator/python/QCD_Pt-20toInf_MuEnrichedPt15_TuneCUETP8M1_13TeV_pythia8_cff.py
7ca22905e2e7cd1528d55e528353b0c20e2ccb2d
[ "Apache-2.0" ]
permissive
cms-nanoAOD/cmssw
4d836e5b76ae5075c232de5e062d286e2026e8bd
4eccb8a758b605875003124dd55ea58552b86af1
refs/heads/master-cmsswmaster
2021-01-23T21:19:52.295420
2020-08-27T08:01:20
2020-08-27T08:01:20
102,867,729
7
14
Apache-2.0
2022-05-23T07:58:09
2017-09-08T14:03:57
C++
UTF-8
Python
false
false
2,277
py
import FWCore.ParameterSet.Config as cms from Configuration.Generator.Pythia8CommonSettings_cfi import * from Configuration.Generator.Pythia8CUEP8M1Settings_cfi import * generator = cms.EDFilter("Pythia8GeneratorFilter", maxEventsToPrint = cms.untracked.int32(1), pythiaPylistVerbosity = cms.untracked.int32(1), filterEfficiency = cms.untracked.double(0.00042), pythiaHepMCVerbosity = cms.untracked.bool(False), comEnergy = cms.double(13000.0), crossSection = cms.untracked.double(7.20648e+08), PythiaParameters = cms.PSet( pythia8CommonSettingsBlock, pythia8CUEP8M1SettingsBlock, processParameters = cms.vstring( 'ParticleDecays:limitTau0 = off', 'ParticleDecays:limitCylinder = on', 'ParticleDecays:xyMax = 2000', 'ParticleDecays:zMax = 4000', 'HardQCD:all = on', 'PhaseSpace:pTHatMin = 20', '130:mayDecay = on', '211:mayDecay = on', '321:mayDecay = on' ), parameterSets = cms.vstring('pythia8CommonSettings', 'pythia8CUEP8M1Settings', 'processParameters', ) ) ) mugenfilter = cms.EDFilter("MCSmartSingleParticleFilter", MinPt = cms.untracked.vdouble(15.,15.), MinEta = cms.untracked.vdouble(-2.5,-2.5), MaxEta = cms.untracked.vdouble(2.5,2.5), ParticleID = cms.untracked.vint32(13,-13), Status = cms.untracked.vint32(1,1), # Decay cuts are in mm MaxDecayRadius = cms.untracked.vdouble(2000.,2000.), MinDecayZ = cms.untracked.vdouble(-4000.,-4000.), MaxDecayZ = cms.untracked.vdouble(4000.,4000.) ) configurationMetadata = cms.untracked.PSet( version = cms.untracked.string('\$Revision$'), name = cms.untracked.string('\$Source$'), annotation = cms.untracked.string('QCD dijet production, pThat > 20 GeV, with INCLUSIVE muon preselection (pt(mu) > 15 GeV), 13 TeV, TuneCUETP8M1') ) ProductionFilterSequence = cms.Sequence(generator*mugenfilter)
ba2213f9f76fd58af80066c34ca0933cca61dfbe
8b2b497069ed3db150e15863559dc0e9a44dc8c1
/pure_protobuf/io/url.py
3e2004fb24b0f96f02a7ce5efe77d39b2a72b5a2
[ "MIT" ]
permissive
eigenein/protobuf
2aec2c544cf9f6571b161b1e62ec3675a5b141eb
cf14bc702302c9334c7c9cc839b0b24334a725ef
refs/heads/master
2023-08-31T21:23:29.258800
2023-08-27T12:00:26
2023-08-28T12:36:25
1,890,285
216
20
MIT
2023-09-13T12:58:54
2011-06-13T18:26:55
Python
UTF-8
Python
false
false
619
py
"""Reading and writing parsed URLs.""" from typing import IO, Iterator from urllib.parse import ParseResult, urlparse, urlunparse from pure_protobuf.interfaces.read import Read from pure_protobuf.interfaces.write import Write from pure_protobuf.io.bytes_ import read_string, write_string class ReadUrl(Read[ParseResult]): __slots__ = () def __call__(self, io: IO[bytes]) -> Iterator[ParseResult]: yield urlparse(read_string(io)) class WriteUrl(Write[ParseResult]): __slots__ = () def __call__(self, value: ParseResult, io: IO[bytes]) -> None: write_string(urlunparse(value), io)
aee56c11569ff5461d903c1776810a2242a2f6ce
12c15c7ae150acaf8032f444db24440da2234b1a
/ComputerVision/Projects/cv20_proj1/lap.py
f91c55cde634d08ca8ca04d68cc2380417508879
[]
no_license
Jimut123/rkmveri-labs
315ecd4607af72dd0851489e427a3ab09a8009ff
be19a453ea32460c454e3443798e3d8954fb084b
refs/heads/master
2023-02-02T17:11:23.641187
2020-12-13T18:35:20
2020-12-13T18:35:20
201,784,550
2
0
null
null
null
null
UTF-8
Python
false
false
1,476
py
import numpy as np import cv2 cutoff_frequency = 4 filter = cv2.getGaussianKernel(ksize=cutoff_frequency*4+1, sigma=cutoff_frequency) filter = np.dot(filter, filter.T) def del2(M): dx = 1 dy = 1 rows, cols = M.shape dx = dx * np.ones ((1, cols - 1)) dy = dy * np.ones ((rows-1, 1)) mr, mc = M.shape D = np.zeros ((mr, mc)) if (mr >= 3): ## x direction ## left and right boundary D[:, 0] = (M[:, 0] - 2 * M[:, 1] + M[:, 2]) / (dx[:,0] * dx[:,1]) D[:, mc-1] = (M[:, mc - 3] - 2 * M[:, mc - 2] + M[:, mc-1]) \ / (dx[:,mc - 3] * dx[:,mc - 2]) ## interior points tmp1 = D[:, 1:mc - 1] tmp2 = (M[:, 2:mc] - 2 * M[:, 1:mc - 1] + M[:, 0:mc - 2]) tmp3 = np.kron (dx[:,0:mc -2] * dx[:,1:mc - 1], np.ones ((mr, 1))) D[:, 1:mc - 1] = tmp1 + tmp2 / tmp3 if (mr >= 3): ## y direction ## top and bottom boundary D[0, :] = D[0,:] + \ (M[0, :] - 2 * M[1, :] + M[2, :] ) / (dy[0,:] * dy[1,:]) D[mr-1, :] = D[mr-1, :] \ + (M[mr-3,:] - 2 * M[mr-2, :] + M[mr-1, :]) \ / (dy[mr-3,:] * dx[:,mr-2]) ## interior points tmp1 = D[1:mr-1, :] tmp2 = (M[2:mr, :] - 2 * M[1:mr - 1, :] + M[0:mr-2, :]) tmp3 = np.kron (dy[0:mr-2,:] * dy[1:mr-1,:], np.ones ((1, mc))) D[1:mr-1, :] = tmp1 + tmp2 / tmp3 return D / 4 print(del2(filter))
c89b9794cbf2b7f1b847fd4e611f0c42b5aa35fa
4771ca5cd2c7be8e6d0a50f1e0b1f85a17ec5efd
/todos/forms.py
51e119676bbd8af1823a81a48e4933eac9090377
[]
no_license
luanfonceca/todomvc-django-over-the-wire
03aa2e57c04d465c56cf06e1c95b417c502bcbad
ae1b6e989c0c9edd7d4f8de2d9553bf57e4e1e38
refs/heads/main
2023-03-03T19:23:35.849691
2021-02-07T13:23:17
2021-02-07T13:23:17
334,795,276
2
0
null
null
null
null
UTF-8
Python
false
false
272
py
from django import forms from todos.models import ToDo class ToDoForm(forms.ModelForm): class Meta: model = ToDo fields = ('title',) class CompleteToDoForm(forms.ModelForm): class Meta: model = ToDo fields = ('is_completed',)
2212a2b636017e168a6d9d41201b0c3c70163ac9
057d662a83ed85897e9906d72ea90fe5903dccc5
/Comprehension.py
68427686ee2e27abe1a3290558f7865fd4fd49bb
[]
no_license
Karishma00/AnsiblePractice
19a4980b1f6cca7b251f2cbea3acf9803db6e016
932558d48869560a42ba5ba3fb72688696e1868a
refs/heads/master
2020-08-05T00:05:31.679220
2019-10-04T13:07:29
2019-10-04T13:07:29
212,324,468
0
0
null
null
null
null
UTF-8
Python
false
false
150
py
# list=[x**2 for x in range(0,10)] print(list) #another ex celcius=[0,10,30,90] fahrenheiet=[((0/5)*temp +32) for temp in celcius] print(fahrenheiet)
1d806f235836b0b15c4c2615bbf176dff8458479
82be2ebd50fef5b359cfbcacd21f38da4c383ffc
/tests/test_writer.py
a340f79117bfab8297d6e6b0fb63a8be472e2988
[ "BSD-3-Clause" ]
permissive
isabella232/helium-commander
5eae81b89cccf2dae56a4163815d867777387288
58d1fe4064c51beccbff7a0d93bf037fffdac370
refs/heads/master
2021-06-15T15:16:00.139651
2017-02-28T23:22:36
2017-02-28T23:22:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,170
py
from helium_commander import Sensor, DataPoint from itertools import islice import pytest def validate_format(output, client, sensors, capsys): first_sensor = sensors[0] # With sort Sensor.display(client, sensors, format=output, sort='name') out, err = capsys.readouterr() assert first_sensor.short_id in out Sensor.display(client, sensors, format=output, sort='name', reverse=True) reversed, err = capsys.readouterr() assert reversed != out # Without sort Sensor.display(client, sensors, format=output) out, err = capsys.readouterr() assert first_sensor.short_id in out Sensor.display(client, sensors, format=output, reverse=True) reversed, err = capsys.readouterr() assert reversed != out def test_formats(client, sensors, capsys): for output in ['csv', 'tabular', 'json']: validate_format(output, client, sensors, capsys) with pytest.raises(AttributeError): Sensor.display(client, sensors, format='xxx') def test_timeseries(client, authorized_organization): points = islice(authorized_organization.timeseries(), 10) DataPoint.display(client, points, max_width=20)
102a94ec2318f2e1673fd0e494380451db909578
0e7aed5eef2e1d132a7e75dd8f439ae76c87639c
/python/652_find_duplicated_subtrees.py
ee4a673bdc3ecbf54bdd00a403e289703d72c886
[ "MIT" ]
permissive
liaison/LeetCode
2a93df3b3ca46b34f922acdbc612a3bba2d34307
bf03743a3676ca9a8c107f92cf3858b6887d0308
refs/heads/master
2022-09-05T15:04:19.661298
2022-08-19T19:29:19
2022-08-19T19:29:19
52,914,957
17
4
null
null
null
null
UTF-8
Python
false
false
2,429
py
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def findDuplicateSubtrees(self, root: TreeNode) -> List[TreeNode]: # set of all node strings node_str_set = set() duplicated_strs = set() duplicated_nodes = list() def node2str(node): """ this function accomplishes two tasks: - index each node into a string - search the duplicated nodes during the traversal """ nonlocal node_str_set nonlocal duplicated_strs nonlocal duplicated_nodes if node is None: return "" left_str = node2str(node.left) right_str = node2str(node.right) node_str = str(node.val) + "(" + left_str + ")" + "(" + right_str + ")" if node_str in node_str_set: if node_str not in duplicated_strs: duplicated_strs.add(node_str) duplicated_nodes.append(node) else: node_str_set.add(node_str) return node_str node2str(root) return duplicated_nodes # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class SolutionCount: def findDuplicateSubtrees(self, root: TreeNode) -> List[TreeNode]: # node_str -> count node_str_count = defaultdict(int) duplicated_nodes = list() def node2str(node): """ this function accomplishes two tasks: - index each node into a string - search the duplicated nodes during the traversal """ nonlocal node_str_count nonlocal duplicated_nodes if node is None: return "" node_str = "{}({})({})".format( node.val, node2str(node.left), node2str(node.right)) node_str_count[node_str] += 1 if node_str_count[node_str] == 2: duplicated_nodes.append(node) return node_str node2str(root) return duplicated_nodes
15fd9952fee0476a4522d0e9c5220985962185cf
88abc8645e499a61e96e2979ae6092e98bfd09e7
/streamz/utils.py
4e1538da7c4506a9bf7fed145c07d2eb9fdde2bc
[ "BSD-3-Clause" ]
permissive
vishalbelsare/streamz
5e2d6e112b6a2a90e396c4e3bc11cb1167d879e3
b73a8c4c5be35ff1dae220daaefbfd2bfa58e0a1
refs/heads/master
2022-12-24T17:28:40.600327
2022-11-22T16:40:35
2022-11-22T16:40:35
207,001,623
0
0
BSD-3-Clause
2022-12-10T04:20:03
2019-09-07T17:20:32
Python
UTF-8
Python
false
false
1,184
py
_method_cache = {} class methodcaller(object): """ Return a callable object that calls the given method on its operand. Unlike the builtin `operator.methodcaller`, instances of this class are serializable """ __slots__ = ('method',) func = property(lambda self: self.method) # For `funcname` to work def __new__(cls, method): if method in _method_cache: return _method_cache[method] self = object.__new__(cls) self.method = method _method_cache[method] = self return self def __call__(self, obj, *args, **kwargs): return getattr(obj, self.method)(*args, **kwargs) def __reduce__(self): return (methodcaller, (self.method,)) def __str__(self): return "<%s: %s>" % (self.__class__.__name__, self.method) __repr__ = __str__ class MethodCache(object): """Attribute access on this object returns a methodcaller for that attribute. Examples -------- >>> a = [1, 3, 3] >>> M.count(a, 3) == a.count(3) True """ __getattr__ = staticmethod(methodcaller) __dir__ = lambda self: list(_method_cache) M = MethodCache()
3a084bb437dc7e9fbb08e486b1cc9993909d21bb
71d535545c4f3b2fc626cd04cfcee22805b67353
/copacity_app/migrations/0007_auto_20210613_1019.py
c0f52b9073d682a55e6c58ee766848aa894fabd7
[]
no_license
mcnalj/copacity_django
01a018d32ee9cb9ba392e5dcd160d636ba0b5b74
48432cff7585af342599c06cac497947e4b68195
refs/heads/master
2023-07-04T14:27:50.736252
2021-08-10T16:53:59
2021-08-10T16:53:59
383,779,070
0
0
null
null
null
null
UTF-8
Python
false
false
1,768
py
# Generated by Django 3.1.7 on 2021-06-13 10:19 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('copacity_app', '0006_checkin_owner'), ] operations = [ migrations.CreateModel( name='Circle', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('createdBy', models.CharField(max_length=50)), ('createdOn', models.DateTimeField(auto_now_add=True)), ('adminId', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='CircleMembership', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('circle', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='copacity_app.circle')), ('inviter', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='circle_invites', to=settings.AUTH_USER_MODEL)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='circle', name='members', field=models.ManyToManyField(related_name='circle_member', through='copacity_app.CircleMembership', to=settings.AUTH_USER_MODEL), ), ]
ef954e4bc9bcc4a0ca428034f6427da6e1577c8f
07da31b260bf2949ffd9463ad4f777ca93b75d43
/sleekforum/src/sleekapps/threads/views/post/post.py
6f81800803801b5318b4dba53439f620da360d57
[]
no_license
adepeter/sleek-docker
134fd7de12ade8c521ceb8e1b2b2611fa2224dde
dcf010c3da53093600101d970c6888c82360209f
refs/heads/master
2022-12-15T14:53:01.499098
2020-09-14T00:42:31
2020-09-14T00:42:31
282,499,689
0
0
null
2020-07-31T14:31:22
2020-07-25T18:12:19
JavaScript
UTF-8
Python
false
false
1,459
py
from django.contrib import messages from django.views.generic.edit import CreateView, DeleteView, UpdateView from django.utils.translation import gettext_lazy as _ from ...forms.post.post import PostEditForm, PostForm from ...viewmixins.post import BasePostMixin TEMPLATE_URL = 'threads/post' class EditPost(BasePostMixin, UpdateView): form_class = PostEditForm template_name = f'{TEMPLATE_URL}/edit_post.html' def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs.update({'request': self.request}) return kwargs def form_valid(self, form): if not form.has_changed(): messages.success(self.request, _('No changes were made to your reply')) else: messages.success(self.request, _('Post was successfully edited.')) return super().form_valid(form) class DeletePost(BasePostMixin, DeleteView): pass class ReplyPost(BasePostMixin, CreateView): form_class = PostForm template_name = f'{TEMPLATE_URL}/reply_post.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['parent'] = self.get_object() return context def form_valid(self, form): parent_object = self.get_object() form.instance.thread = parent_object.thread form.instance.parent = parent_object form.instance.user = self.request.user return super().form_valid(form)
418ff5b81b82739dbb020083e568e2276627c16e
fdaba69f8d3ae3e645cb548a31111814b67f88bc
/credit/xgboost_Chunk_join.py
3d222a1d0c5720a80dc1aa63bfc2f49b7910ada3
[]
no_license
curryli/pandasFlow
6c381a06843f353f3449666cc9aee3e3fc2c3620
891963e1d9acd8cdd23732180a3fd4b4633bc335
refs/heads/master
2020-12-07T15:24:36.500075
2018-07-01T09:01:09
2018-07-01T09:01:09
95,520,789
4
3
null
null
null
null
UTF-8
Python
false
false
4,752
py
# -*- coding: utf-8 -*- import pandas as pd from sklearn.cross_validation import train_test_split from sklearn.metrics import recall_score, precision_score from sklearn.metrics import precision_recall_fscore_support from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix from sklearn.utils import shuffle import datetime from collections import Counter from xgboost.sklearn import XGBClassifier import numpy as np start_time = datetime.datetime.now() ################################################# #reader = pd.read_csv("new_FE_idx.csv", low_memory=False, iterator=True) #reader = pd.read_csv("trans_small.csv", low_memory=False, iterator=True) reader = pd.read_csv("cert_all_right.csv", low_memory=False, iterator=True) loop = True chunkSize = 100000 chunks = [] i = 0 while loop: try: chunk = reader.get_chunk(chunkSize) chunks.append(chunk) if (i%5)==0: print i i = i+1 except StopIteration: loop = False print "Iteration is stopped." df_All = pd.concat(chunks, ignore_index=True) print df_All.columns #df_All = df_All.drop(["Trans_at","hist_fraud_cnt"], axis=1,inplace=False) df_All = df_All[(df_All["label"] == 0) | (df_All["label"] == 1)] df_All_stat = pd.read_csv("train_1108.csv", sep=',') df_All_stat = df_All_stat[(df_All_stat["label"]==0) | (df_All_stat["label"]==1)] df_All_stat= df_All_stat.drop( ["label"], axis=1,inplace=False) df_All = pd.merge(left=df_All, right=df_All_stat, how='left', left_on='certid', right_on='certid') df_All = shuffle(df_All) df_All = df_All.fillna(-1) df_X = df_All.drop(["label","certid","card_no"], axis=1,inplace=False) df_y = df_All[["certid","label"]] X_train, X_test, y_train, y_test = train_test_split(df_X, df_y, test_size=0.2) np.savetxt("X_train_cols.csv",np.array(X_train.columns),fmt="%s" ) ############################################### certid_test = y_test y_train = y_train.drop(["certid"], axis=1,inplace=False) y_test = y_test.drop(["certid"], axis=1,inplace=False) clf = XGBClassifier(learning_rate =0.1,n_estimators=500,max_depth=5,gamma=0.05,subsample=0.8,colsample_bytree=0.8,objective= 'binary:logistic', reg_lambda=1,seed=27) print "start training" clf.fit(X_train, y_train) pred = clf.predict(X_test) cm1=confusion_matrix(y_test,pred) print cm1 print "For Trans:\n" result = precision_recall_fscore_support(y_test,pred) #print result precision_0 = result[0][0] recall_0 = result[1][0] f1_0 = result[2][0] precision_1 = result[0][1] recall_1 = result[1][1] f1_1 = result[2][1] print "precision_0: ", precision_0," recall_0: ", recall_0, " f1_0: ", f1_0 #print "certid_test_ori\n",certid_test certid_test.index = range(certid_test.shape[0]) #print "certid_test\n",certid_test certid_pred = pd.DataFrame(pred,columns=["pred"]) #print "certid_pred\n", certid_pred certid_DF = pd.concat([certid_test,certid_pred], axis=1, ignore_index=True) certid_DF.columns = ["certid","label","pred"] #print "certid_DF\n",certid_DF print certid_DF.dtypes certid_DF.to_csv("certid_DF_drop.csv") certid_grouped = certid_DF.groupby([certid_DF['certid']]) #certid_grouped = certid_DF.groupby([certid_DF['certid']], as_index=False) # def label_cnt(arr): # 同一个人出现次数最多的元素 # cnt_set = Counter(arr) # max_cnt_pair = cnt_set.most_common(1)[0] # (maxitem,maxcount) # return max_cnt_pair[0] def label_cnt(arr): # 同一个人出现次数最多的元素 cnt_0 = 0 arr_values = arr.values for i in range(len(arr_values)): if arr_values[i]==float(0): cnt_0 = cnt_0+1 if(cnt_0>0): return 0 else: return 1 agg_dict = {} agg_dict["pred"] = [label_cnt] agg_stat_df = certid_grouped.agg(agg_dict) agg_stat_df.columns = agg_stat_df.columns.map('{0[0]}-{0[1]}'.format) #https://www.cnblogs.com/hhh5460/p/7067928.html agg_stat_df.reset_index(level=0, inplace=True) #print agg_stat_df pred_label_DF = agg_stat_df[["certid", "pred-label_cnt"]] true_label_DF = certid_test.drop_duplicates() compare_df = pd.merge(left=true_label_DF, right=pred_label_DF, how='left', left_on='certid', right_on='certid') y_test = compare_df["label"] pred = compare_df["pred-label_cnt"] cm2=confusion_matrix(y_test,pred) print cm2 print "For Person:\n" result = precision_recall_fscore_support(y_test,pred) #print result precision_0 = result[0][0] recall_0 = result[1][0] f1_0 = result[2][0] precision_1 = result[0][1] recall_1 = result[1][1] f1_1 = result[2][1] print "precision_0: ", precision_0," recall_0: ", recall_0, " f1_0: ", f1_0 end_time = datetime.datetime.now() delta_time = str((end_time-start_time).total_seconds()) print "cost time",delta_time,"s"
4b3187694d3f43ef8b7ee834c64e18fad6e4b5d3
2290eed5c494202beea0da1b9257a38b7a4403d2
/script/[662]二叉树最大宽度.py
382e8af49c05465745fefb5b155a1be322b7d57b
[]
no_license
DSXiangLi/Leetcode_python
4b1c9848ea774955fb252b9bd796ba8d46ad728e
a2ef0ba5e86405dbf68dbc1ffeb086c7d864db1d
refs/heads/main
2022-09-01T04:34:04.260402
2022-08-20T01:12:27
2022-08-20T01:12:27
445,347,891
1
0
null
2022-07-23T06:32:14
2022-01-07T00:15:20
Python
UTF-8
Python
false
false
2,352
py
# 给定一个二叉树,编写一个函数来获取这个树的最大宽度。树的宽度是所有层中的最大宽度。这个二叉树与满二叉树(full binary tree)结构相同,但一些节 # 点为空。 # # 每一层的宽度被定义为两个端点(该层最左和最右的非空节点,两端点间的null节点也计入长度)之间的长度。 # # 示例 1: # # # 输入: # # 1 # / \ # 3 2 # / \ \ # 5 3 9 # # 输出: 4 # 解释: 最大值出现在树的第 3 层,宽度为 4 (5,3,null,9)。 # # # 示例 2: # # # 输入: # # 1 # / # 3 # / \ # 5 3 # # 输出: 2 # 解释: 最大值出现在树的第 3 层,宽度为 2 (5,3)。 # # # 示例 3: # # # 输入: # # 1 # / \ # 3 2 # / # 5 # # 输出: 2 # 解释: 最大值出现在树的第 2 层,宽度为 2 (3,2)。 # # # 示例 4: # # # 输入: # # 1 # / \ # 3 2 # / \ # 5 9 # / \ # 6 7 # 输出: 8 # 解释: 最大值出现在树的第 4 层,宽度为 8 (6,null,null,null,null,null,null,7)。 # # # 注意: 答案在32位有符号整数的表示范围内。 # Related Topics 树 深度优先搜索 广度优先搜索 二叉树 👍 384 👎 0 # leetcode submit region begin(Prohibit modification and deletion) # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def widthOfBinaryTree(self, root: Optional[TreeNode]) -> int: maxw = 0 stack = [(root,0)] while stack: l = len(stack) left = 0 for i in range(l): node, pos = stack.pop(0) if i==0: left= pos if node.left: stack.append((node.left, pos*2)) if node.right: stack.append((node.right, pos*2+1)) if i==l-1: maxw = max(maxw, pos-left+1) return maxw # leetcode submit region end(Prohibit modification and deletion)
ea41bf74cd26d0892bb73965c448beea182cf8f0
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/nnconveyanc.py
8b322095af1ce66ac5cee14556ce11e1e57f9dc2
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
158
py
ii = [('ClarGE2.py', 7), ('AinsWRR3.py', 1), ('ClarGE.py', 2), ('WadeJEB.py', 6), ('HaliTBC.py', 1), ('MereHHB2.py', 1), ('ClarGE3.py', 2), ('DibdTRL.py', 4)]
68a8b7bca0c433c9063cdb4726ee5fc8ce83c752
48aacf0425c5ab071972034c3fbd388feb036578
/node-7/site-packages/ceph_deploy/connection.py
381f6afa4c9bd0454eb2cda6a9881067950e2c18
[]
no_license
wputra/MOS-centos
2b8ec0116bb3a28632c54d6052d322a42391439f
0a4f24dd4183d4d44e8c7beb27adce12e42f0201
refs/heads/master
2021-01-10T19:22:22.920342
2014-09-12T03:33:54
2014-09-12T03:33:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
654
py
from ceph_deploy.lib.remoto import Connection from sudo_pushy import needs_sudo # TODO move this to utils once pushy is out def get_connection(hostname, logger, threads=5): """ A very simple helper, meant to return a connection that will know about the need to use sudo. """ try: return Connection( hostname, logger=logger, sudo=needs_sudo(), threads=threads, ) except Exception as error: msg = "connecting to host: %s " % hostname errors = "resulted in errors: %s %s" % (error.__class__.__name__, error) raise RuntimeError(msg + errors)
f54066fc82d29ccbcbb0f6fbc82e0b625fe67fb5
ad0857eaba945c75e705594a53c40dbdd40467fe
/leetCode/maximal_rectangle.py
98b030c3831e8cf2db830fb6e04f0209fe45fc5d
[ "MIT" ]
permissive
yskang/AlgorithmPractice
c9964d463fbd0d61edce5ba8b45767785b0b5e17
3efa96710e97c8740d6fef69e4afe7a23bfca05f
refs/heads/master
2023-05-25T13:51:11.165687
2023-05-19T07:42:56
2023-05-19T07:42:56
67,045,852
0
0
null
2021-06-20T02:42:27
2016-08-31T14:40:10
Python
UTF-8
Python
false
false
927
py
class Solution(object): def maximal_rectangle(self, matrix): if not matrix or not matrix[0]: return 0 width = len(matrix[0]) heights = [0] * (width+1) ans = 0 for row in matrix: for i in range(width): heights[i] = heights[i] + 1 if row[i] == '1' else 0 stack = [-1] for i in range(width+1): while heights[i] < heights[stack[-1]]: h = heights[stack.pop()] w = i - 1 - stack[-1] ans = max(ans, h * w) stack.append(i) return ans if __name__ == "__main__": sol = Solution() print(sol.maximal_rectangle([["1", "0", "1", "0", "0"], ["1", "0", "1", "1", "1"], ["1", "1", "1", "1", "1"], ["1", "0", "1", "1", "0"]]))
ac7a8bc1157a39c61201db61f88be40f9b180771
7cf52b987da6595ebc5f763b384b03e608ccb25f
/tests/index/test_mongodb_index.py
87a66da4180d9cc8e832f22eb992d389b7dee1c3
[]
no_license
shaypal5/dinglebop
93fdfda48ec4d91c0a9485173a106d1edbcd1b29
a10473b4abecfd70a00cd9086aa8919a404959c9
refs/heads/master
2021-08-20T10:17:46.640046
2017-11-14T18:01:43
2017-11-14T18:01:43
109,569,728
0
0
null
null
null
null
UTF-8
Python
false
false
3,710
py
"""Testing the implementation of MongoDB-based dingle indexes.""" import pytest from dinglebop.index.mongodb import MongoDBIndex from dinglebop.shared import get_dinglebop_cfg SAMPLE_IDEN1 = 'school_data_2016' SAMPLE_IDEN2 = 'school_data_2017' SAMPLE_DOC1 = {'identifier': SAMPLE_IDEN1, 'version': 'v1.0', 'store': 'somestore', 'format_identifier': 'arrow'} SAMPLE_DOC2 = {'identifier': SAMPLE_IDEN1, 'version': 'v1.1', 'store': 'somestore', 'format_identifier': 'csv'} SAMPLE_DOC3 = {'identifier': SAMPLE_IDEN2, 'version': 'v0.03', 'store': 'somestore', 'format_identifier': 'csv'} SAMPLE_DOC4 = {'identifier': SAMPLE_IDEN2, 'version': 'v0.23', 'store': 'somestore', 'format_identifier': 'csv'} SAMPLE_DOCS = [SAMPLE_DOC1, SAMPLE_DOC2, SAMPLE_DOC3, SAMPLE_DOC4] def _get_mongodb_idx_instance(): dcfg = get_dinglebop_cfg() idx_cfg = dcfg['dingles']['dinglebop_test']['index'].copy() assert idx_cfg.pop('type') == 'MongoDB' return MongoDBIndex(**idx_cfg) def _get_idx_collection(): return _get_mongodb_idx_instance()._get_collection() @pytest.fixture(scope="session", autouse=True) def reset_idx_collection(): idx_obj = _get_mongodb_idx_instance() collection = idx_obj._get_collection() if MongoDBIndex._INDEX_NAME in collection.index_information(): collection.drop_index(MongoDBIndex._INDEX_NAME) collection.delete_many({}) collection.insert_many([d.copy() for d in SAMPLE_DOCS]) def test_mongodb_index_autocreation(): idx_collection = _get_idx_collection() assert MongoDBIndex._INDEX_NAME in idx_collection.index_information() def test_get_all_dataset_entries(): dingle_idx = _get_mongodb_idx_instance() cursor = dingle_idx.get_all_dataset_entries(identifier=SAMPLE_IDEN1) docs = list(cursor) assert len(docs) == 2 assert docs[0]['version'] == 'v1.1' assert docs[1]['version'] == 'v1.0' def test_get_latest_dataset_entry(): dingle_idx = _get_mongodb_idx_instance() doc1 = dingle_idx.get_latest_dataset_entry(identifier=SAMPLE_IDEN1) assert doc1['version'] == 'v1.1' doc2 = dingle_idx.get_latest_dataset_entry(identifier=SAMPLE_IDEN2) assert doc2['version'] == 'v0.23' def test_get_dataset_entry_by_version(): dingle_idx = _get_mongodb_idx_instance() doc = dingle_idx.get_dataset_entry_by_version( identifier=SAMPLE_IDEN1, version='v1.0') assert doc['format_identifier'] == 'arrow' @pytest.fixture(scope='function') def clear_all_idx_docs(): collection = _get_idx_collection() collection.delete_many({}) def test_add_entry(clear_all_idx_docs): dingle_idx = _get_mongodb_idx_instance() dingle_idx.add_entry(**SAMPLE_DOC1) dingle_idx.add_entry(**SAMPLE_DOC2) docs = list(dingle_idx.get_all_dataset_entries(identifier=SAMPLE_IDEN1)) assert len(docs) == 2 @pytest.fixture(scope='function') def add_all_idx_docs(): collection = _get_idx_collection() collection.delete_many({}) collection.insert_many([d.copy() for d in SAMPLE_DOCS]) def test_remove_entries(add_all_idx_docs): dingle_idx = _get_mongodb_idx_instance() docs1 = list(dingle_idx.get_all_dataset_entries(identifier=SAMPLE_IDEN1)) assert len(docs1) == 2 docs2 = list(dingle_idx.get_all_dataset_entries(identifier=SAMPLE_IDEN2)) assert len(docs2) == 2 dingle_idx.remove_entries(identifier=SAMPLE_IDEN1, version='v1.0') docs1 = list(dingle_idx.get_all_dataset_entries(identifier=SAMPLE_IDEN1)) assert len(docs1) == 1 dingle_idx.remove_entries(identifier=SAMPLE_IDEN2) docs2 = list(dingle_idx.get_all_dataset_entries(identifier=SAMPLE_IDEN2)) assert len(docs2) == 0
9f5159c90657e4c81d5b418e21cacd21836d48a7
0f3a0be642cd6a2dd792c548cf7212176761e9b1
/pywps_services/r_spreadpath.py
afb9e04098aba8613b3ae1e979cf639f4e50b450
[]
no_license
huhabla/wps-grass-bridge
63a5d60735d372e295ec6adabe527eec9e72635a
aefdf1516a7517b1b745ec72e2d2481a78e10017
refs/heads/master
2021-01-10T10:10:34.246497
2014-01-22T23:40:58
2014-01-22T23:40:58
53,005,463
0
0
null
null
null
null
UTF-8
Python
false
false
4,149
py
# ################################################ # # This process was generated using GrassXMLtoPyWPS # # Author: Soeren Gebbert # # Mail: soerengebbert <at> googlemail <dot> com # # ################################################ # from pywps.Process import WPSProcess from PyWPSGrassModuleStarter import PyWPSGrassModuleStarter class r_spreadpath(WPSProcess): def __init__(self): WPSProcess.__init__(self, identifier = 'r.spreadpath', title = 'Recursively traces the least cost path backwards to cells from which the cumulative cost was determined.', version = 1, statusSupported = True, storeSupported = True, metadata = [{'type': 'simple', 'title': 'raster'}, {'type': 'simple', 'title': 'fire'}, {'type': 'simple', 'title': 'cumulative costs'}], abstract = 'http://grass.osgeo.org/grass70/manuals/html70_user/r.spreadpath.html') # Literal and complex inputs self.addComplexInput(identifier = 'x_input', title = 'Name of raster map containing back-path easting information', minOccurs = 1, maxOccurs = 1, formats = [{'mimeType': 'image/tiff'}, {'mimeType': 'image/geotiff'}, {'mimeType': 'application/geotiff'}, {'mimeType': 'application/x-geotiff'}, {'mimeType': 'image/png'}, {'mimeType': 'image/gif'}, {'mimeType': 'image/jpeg'}, {'mimeType': 'application/x-erdas-hfa'}, {'mimeType': 'application/netcdf'}, {'mimeType': 'application/x-netcdf'}]) self.addComplexInput(identifier = 'y_input', title = 'Name of raster map containing back-path northing information', minOccurs = 1, maxOccurs = 1, formats = [{'mimeType': 'image/tiff'}, {'mimeType': 'image/geotiff'}, {'mimeType': 'application/geotiff'}, {'mimeType': 'application/x-geotiff'}, {'mimeType': 'image/png'}, {'mimeType': 'image/gif'}, {'mimeType': 'image/jpeg'}, {'mimeType': 'application/x-erdas-hfa'}, {'mimeType': 'application/netcdf'}, {'mimeType': 'application/x-netcdf'}]) self.addLiteralInput(identifier = 'coordinate', title = 'The map E and N grid coordinates of starting points', minOccurs = 0, maxOccurs = 1024, type = type("string"), allowedValues = '*') self.addLiteralInput(identifier = '-v', title = 'Run verbosely', minOccurs = 0, maxOccurs = 1, type = type(True), default = False, allowedValues = [True, False]) self.addLiteralInput(identifier = 'grass_resolution_ns', title = 'Resolution of the mapset in north-south direction in meters or degrees', abstract = 'This parameter defines the north-south resolution of the mapset in meter or degrees, which should be used to process the input and output raster data. To enable this setting, you need to specify north-south and east-west resolution.', minOccurs = 0, maxOccurs = 1, type = type(0.0), allowedValues = '*') self.addLiteralInput(identifier = 'grass_resolution_ew', title = 'Resolution of the mapset in east-west direction in meters or degrees', abstract = 'This parameter defines the east-west resolution of the mapset in meters or degrees, which should be used to process the input and output raster data. To enable this setting, you need to specify north-south and east-west resolution.', minOccurs = 0, maxOccurs = 1, type = type(0.0), allowedValues = '*') self.addLiteralInput(identifier = 'grass_band_number', title = 'Band to select for processing (default is all bands)', abstract = 'This parameter defines band number of the input raster files which should be processed. As default all bands are processed and used as single and multiple inputs for raster modules.', minOccurs = 0, maxOccurs = 1, type = type(0), allowedValues = '*') # complex outputs self.addComplexOutput(identifier = 'output', title = 'Name of spread path raster map', formats = [{'mimeType': 'image/tiff'}, {'mimeType': 'image/geotiff'}, {'mimeType': 'application/geotiff'}, {'mimeType': 'application/x-geotiff'}, {'mimeType': 'application/x-erdas-hfa'}, {'mimeType': 'application/netcdf'}, {'mimeType': 'application/x-netcdf'}]) def execute(self): starter = PyWPSGrassModuleStarter() starter.fromPyWPS("r.spreadpath", self.inputs, self.outputs, self.pywps) if __name__ == "__main__": process = r_spreadpath() process.execute()
[ "soerengebbert@23da3d23-e2f9-862c-be8f-f61c6c06f202" ]
soerengebbert@23da3d23-e2f9-862c-be8f-f61c6c06f202
634e12c0e89842b519a5bae4fcff0bcc9f6bc466
6e19835f99efea46d7b7966144efa8e2302d5e4c
/tensorflow/python/autograph/utils/misc_test.py
c813e0f5c96386a0d0fbd078bd5b663c688b0327
[ "Apache-2.0" ]
permissive
Cincan/tensorflow
415fba147ef4676901f424a839d751aa7d1c50f0
94c9acddd9f3fd73a5e4b5bc1fd7c9284a68ea75
refs/heads/master
2020-04-08T14:07:14.355697
2018-11-28T00:59:40
2018-11-28T00:59:40
159,422,705
1
0
Apache-2.0
2018-11-28T01:08:35
2018-11-28T01:08:35
null
UTF-8
Python
false
false
1,719
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for misc module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.autograph.utils.misc import alias_tensors from tensorflow.python.framework.constant_op import constant from tensorflow.python.ops.variables import Variable from tensorflow.python.platform import test class MiscTest(test.TestCase): def test_alias_single_tensor(self): a = constant(1) new_a = alias_tensors(a) self.assertFalse(new_a is a) with self.cached_session() as sess: self.assertEqual(1, self.evaluate(new_a)) def test_alias_tensors(self): a = constant(1) v = Variable(2) s = 'a' l = [1, 2, 3] new_a, new_v, new_s, new_l = alias_tensors(a, v, s, l) self.assertFalse(new_a is a) self.assertTrue(new_v is v) self.assertTrue(new_s is s) self.assertTrue(new_l is l) with self.cached_session() as sess: self.assertEqual(1, self.evaluate(new_a)) if __name__ == '__main__': test.main()
d3bb18f8490dbe42f2945f71dc53ab3f6ba81073
012aadc12dc2a4560eabc04527414c3883e87e3d
/myvenv/bin/autopep8
b7dcecda5a6c5b3d815b73491659a8d14741a669
[]
no_license
kosiannpann/my-first-blog
a0c17286256e0d16a90b40b6b2f9beddebe9b03e
e41f4966da20785cabb9402e02a4119fb981fee1
refs/heads/master
2023-06-09T04:19:02.276691
2021-07-04T02:52:22
2021-07-04T02:52:22
376,177,938
0
0
null
null
null
null
UTF-8
Python
false
false
237
#!/Users/ootadaiki/djangogirls/myvenv/bin/python # -*- coding: utf-8 -*- import re import sys from autopep8 import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
a1169142ea4526aa901d36823d53da96429542b2
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02898/s602471427.py
314d28278090b7657613ada6c2c07aa32f78faee
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
528
py
from sys import stdin import sys import math from functools import reduce import functools import itertools from collections import deque,Counter,defaultdict from operator import mul import copy # ! /usr/bin/env python # -*- coding: utf-8 -*- import heapq sys.setrecursionlimit(10**6) # INF = float("inf") INF = 10**18 import bisect import statistics mod = 10**9+7 # mod = 998244353 N, K = map(int, input().split()) h = list(map(int, input().split())) ans = 0 for i in range(N): if h[i] >= K: ans += 1 print(ans)
df7b698115c3ffbcc37de296d1f45a03dd270d4e
78144baee82268a550400bbdb8c68de524adc68f
/Production/python/Autumn18/RPV_2t6j_mStop-1300_mN1-100_TuneCP2_13TeV-madgraphMLM-pythia8_cff.py
76c72b7101248b1ce6344a581378b039f338ce9b
[]
no_license
tklijnsma/TreeMaker
e6989c03189b849aff2007bad22e2bfc6922a244
248f2c04cc690ef2e2202b452d6f52837c4c08e5
refs/heads/Run2_2017
2023-05-26T23:03:42.512963
2020-05-12T18:44:15
2020-05-12T18:44:15
263,960,056
1
2
null
2020-09-25T00:27:35
2020-05-14T15:57:20
null
UTF-8
Python
false
false
1,467
py
import FWCore.ParameterSet.Config as cms maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) readFiles = cms.untracked.vstring() secFiles = cms.untracked.vstring() source = cms.Source ("PoolSource",fileNames = readFiles, secondaryFileNames = secFiles) readFiles.extend( [ '/store/mc/RunIIAutumn18MiniAOD/RPV_2t6j_mStop-1300_mN1-100_TuneCP2_13TeV-madgraphMLM-pythia8/MINIAODSIM/102X_upgrade2018_realistic_v15-v2/30000/38EB0BD1-6F82-A44F-BF83-86E69D8B150E.root', '/store/mc/RunIIAutumn18MiniAOD/RPV_2t6j_mStop-1300_mN1-100_TuneCP2_13TeV-madgraphMLM-pythia8/MINIAODSIM/102X_upgrade2018_realistic_v15-v2/30000/3A2A6249-6A8F-D24F-A36F-4C441E9A6DF1.root', '/store/mc/RunIIAutumn18MiniAOD/RPV_2t6j_mStop-1300_mN1-100_TuneCP2_13TeV-madgraphMLM-pythia8/MINIAODSIM/102X_upgrade2018_realistic_v15-v2/30000/4041B441-D1EF-534F-B6BB-C2C07AB51940.root', '/store/mc/RunIIAutumn18MiniAOD/RPV_2t6j_mStop-1300_mN1-100_TuneCP2_13TeV-madgraphMLM-pythia8/MINIAODSIM/102X_upgrade2018_realistic_v15-v2/30000/795C52C1-CEAD-7F44-9D3B-8737D8AC54DE.root', '/store/mc/RunIIAutumn18MiniAOD/RPV_2t6j_mStop-1300_mN1-100_TuneCP2_13TeV-madgraphMLM-pythia8/MINIAODSIM/102X_upgrade2018_realistic_v15-v2/30000/BF2BF1E5-ECC7-9042-A2A8-B906E018E1F2.root', '/store/mc/RunIIAutumn18MiniAOD/RPV_2t6j_mStop-1300_mN1-100_TuneCP2_13TeV-madgraphMLM-pythia8/MINIAODSIM/102X_upgrade2018_realistic_v15-v2/30000/FBE70B20-508A-984A-9CBF-95601BA7E965.root', ] )
68554203dcadc071481784c3c5bb2aa165f03998
f5ffd566166948c4202eb1e66bef44cf55a70033
/openapi_client/model/array_of_groups.py
49b6ca340c93633e7253f9ed715d5e9b8508b2ce
[]
no_license
skyportal/skyportal_client
ed025ac6d23589238a9c133d712d4f113bbcb1c9
15514e4dfb16313e442d06f69f8477b4f0757eaa
refs/heads/master
2023-02-10T02:54:20.757570
2021-01-05T02:18:03
2021-01-05T02:18:03
326,860,562
0
1
null
null
null
null
UTF-8
Python
false
false
8,650
py
""" Fritz: SkyPortal API SkyPortal provides an API to access most of its underlying functionality. To use it, you will need an API token. This can be generated via the web application from your profile page or, if you are an admin, you may use the system provisioned token stored inside of `.tokens.yaml`. ### Accessing the SkyPortal API Once you have a token, you may access SkyPortal programmatically as follows. #### Python ```python import requests token = 'ea70a5f0-b321-43c6-96a1-b2de225e0339' def api(method, endpoint, data=None): headers = {'Authorization': f'token {token}'} response = requests.request(method, endpoint, json=data, headers=headers) return response response = api('GET', 'http://localhost:5000/api/sysinfo') print(f'HTTP code: {response.status_code}, {response.reason}') if response.status_code in (200, 400): print(f'JSON response: {response.json()}') ``` #### Command line (curl) ```shell curl -s -H 'Authorization: token ea70a5f0-b321-43c6-96a1-b2de225e0339' http://localhost:5000/api/sysinfo ``` ### Response In the above examples, the SkyPortal server is located at `http://localhost:5000`. In case of success, the HTTP response is 200: ``` HTTP code: 200, OK JSON response: {'status': 'success', 'data': {}, 'version': '0.9.dev0+git20200819.84c453a'} ``` On failure, it is 400; the JSON response has `status=\"error\"` with the reason for the failure given in `message`: ```js { \"status\": \"error\", \"message\": \"Invalid API endpoint\", \"data\": {}, \"version\": \"0.9.1\" } ``` # Authentication <!-- ReDoc-Inject: <security-definitions> --> # noqa: E501 The version of the OpenAPI document: 0.9.dev0+git20201221.76627dd Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 import nulltype # noqa: F401 from openapi_client.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from openapi_client.model.group import Group globals()['Group'] = Group class ArrayOfGroups(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ('status',): { 'SUCCESS': "success", }, } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'status': (str,), # noqa: E501 'message': (str,), # noqa: E501 'data': ([Group],), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'status': 'status', # noqa: E501 'message': 'message', # noqa: E501 'data': 'data', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """ArrayOfGroups - a model defined in OpenAPI Args: Keyword Args: status (str): defaults to "success", must be one of ["success", ] # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) message (str): [optional] # noqa: E501 data ([Group]): [optional] # noqa: E501 """ status = kwargs.get('status', "success") _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.status = status for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
0bf8b725ddbfa47071048214793a8fd56f8a68d9
90c6262664d013d47e9a3a9194aa7a366d1cabc4
/tests/storage/cases/test_KT1GvgQwPwo8ZdYojFrQyjs1QtjRKjn52cbV.py
2ae9510b0d691b63af6e04ec0a6f9d672271926b
[ "MIT" ]
permissive
tqtezos/pytezos
3942fdab7aa7851e9ea81350fa360180229ec082
a4ac0b022d35d4c9f3062609d8ce09d584b5faa8
refs/heads/master
2021-07-10T12:24:24.069256
2020-04-04T12:46:24
2020-04-04T12:46:24
227,664,211
1
0
MIT
2020-12-30T16:44:56
2019-12-12T17:47:53
Python
UTF-8
Python
false
false
1,130
py
from unittest import TestCase from tests import get_data from pytezos.michelson.converter import build_schema, decode_micheline, encode_micheline, micheline_to_michelson class StorageTestKT1GvgQwPwo8ZdYojFrQyjs1QtjRKjn52cbV(TestCase): @classmethod def setUpClass(cls): cls.maxDiff = None cls.contract = get_data('storage/zeronet/KT1GvgQwPwo8ZdYojFrQyjs1QtjRKjn52cbV.json') def test_storage_encoding_KT1GvgQwPwo8ZdYojFrQyjs1QtjRKjn52cbV(self): type_expr = self.contract['script']['code'][1] val_expr = self.contract['script']['storage'] schema = build_schema(type_expr) decoded = decode_micheline(val_expr, type_expr, schema) actual = encode_micheline(decoded, schema) self.assertEqual(val_expr, actual) def test_storage_schema_KT1GvgQwPwo8ZdYojFrQyjs1QtjRKjn52cbV(self): _ = build_schema(self.contract['script']['code'][0]) def test_storage_format_KT1GvgQwPwo8ZdYojFrQyjs1QtjRKjn52cbV(self): _ = micheline_to_michelson(self.contract['script']['code']) _ = micheline_to_michelson(self.contract['script']['storage'])
8f05bd2092972f6b401e756e15c2117a31a5a4ba
ad69b52951c2f80d152b9ce2225b9a588f110deb
/fan_element_struct.py
66a7720d1a15cb86b7b4a0c70052200350ac8318
[]
no_license
hailangzz/fan_health_program
47c70fe884ec8e28b20be63f99d5c3004bb2a261
137d8a1a2271a44c68fe5a5b2b4e367023c0efad
refs/heads/master
2020-03-19T16:03:13.442179
2018-06-09T07:47:34
2018-06-09T07:47:34
136,698,139
0
1
null
null
null
null
UTF-8
Python
false
false
8,210
py
#coding=utf-8 import numpy as np import copy def fan_element_struct(): #机组状态码暂时不确定,因此后续动态添加···,做单台机组状态码频率分布···,'stames_alive_list'是不同机组状态的存活列表··· stames_code={'stamescode_number':0,'stamescode_time':0,'reduce_power':0,'stames_alive_list':[]} #机组故障及其次数统计 error={'uiHubErr':{'HubErr_code':{},'starttime':[]}, 'uiErrFir':{'ErrFir_code':{},'starttime':[]}, 'uiConErr':{'ConErr_code':{},'starttime':[]}, 'uiYawErr':{'YawErr_code':{},'starttime':[]}, 'uiWarFir':{'WarFir_code':{},'starttime':[]} } #windspeed_array=[set_wind_cut for set_wind_cut in np.arange(3,20,0.1)] #存储计算机组正常的功率曲线数据···,可以基于此数据,统计风况概率分布,不同风况下机组总发电量分布``` normal_power_curve={} windspeed_array=np.arange(3,20,0.2) for wind_cut in windspeed_array: if wind_cut not in normal_power_curve: normal_power_curve[round(wind_cut,1)]={'total_power':0,'registe_number':0,'poweravg':0} hzth_standard_wind_power={} hzth_power_list=[123,142,164,189,213,239,268,300,331,366,398,434,470,514,552,593,630,661,707,742,806,843,893,953,1001,1049,1095,1147,1204,1248,1293, 1353,1398,1428,1465,1481,1493,1501,1514,1528,1540,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552, 1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552,1552 ] windspeed_array=np.arange(3,20,0.2) for wind_cut_id in range(len(windspeed_array)): if windspeed_array[wind_cut_id] not in hzth_standard_wind_power: hzth_standard_wind_power[round(windspeed_array[wind_cut_id],1)]={'poweravg':0} hzth_standard_wind_power[round(windspeed_array[wind_cut_id],1)]['poweravg']=hzth_power_list[wind_cut_id] #用于存储风机全部出口功率频率分布··· power_status_distribute={} power_status=np.arange(0,1800,10) for power_cut in power_status: if power_cut not in power_status_distribute: power_status_distribute[power_cut]={'registe_number':0} #用于统计存储风机风况频率分布··· wind_status_distribute={} wind_array=np.arange(0,20,0.2) for wind_cut in wind_array: if wind_cut not in wind_status_distribute: wind_status_distribute[round(wind_cut,1)]={'registe_number':0} fChoGenTemAve_status_distribute={} temperature1_cut=np.arange(0,200,2) for temp1_cut in temperature1_cut: if temp1_cut not in fChoGenTemAve_status_distribute: fChoGenTemAve_status_distribute[temp1_cut]={'registe_number':0} fGeaBeaTemAve_status_distribute={} temperature1_cut=np.arange(0,150,2) for temp1_cut in temperature1_cut: if temp1_cut not in fGeaBeaTemAve_status_distribute: fGeaBeaTemAve_status_distribute[temp1_cut]={'registe_number':0} fGeaOilTemAve_status_distribute={} temperature1_cut=np.arange(0,150,2) for temp1_cut in temperature1_cut: if temp1_cut not in fGeaOilTemAve_status_distribute: fGeaOilTemAve_status_distribute[temp1_cut]={'registe_number':0} fGenTemAve_status_distribute={} temperature1_cut=np.arange(0,200,2) for temp1_cut in temperature1_cut: if temp1_cut not in fGenTemAve_status_distribute: fGenTemAve_status_distribute[temp1_cut]={'registe_number':0} fGenBeaDriTemAve_status_distribute={} temperature1_cut=np.arange(0,150,2) for temp1_cut in temperature1_cut: if temp1_cut not in fGenBeaDriTemAve_status_distribute: fGenBeaDriTemAve_status_distribute[temp1_cut]={'registe_number':0} fConGsclgbTemAve_status_distribute={} temperature1_cut=np.arange(0,150,2) for temp1_cut in temperature1_cut: if temp1_cut not in fConGsclgbTemAve_status_distribute: fConGsclgbTemAve_status_distribute[temp1_cut]={'registe_number':0} tenminlog={'wind_status_distribute':{},#存储风况频率分布 'power_status_distribute':{},#存储正常功率频率分布 'fChoGenTemAve_distribute':{},#存储机组发电机感应线圈温度频率分布··· 'fGeaBeaTemAve_distribute':{},#存储机组齿轮箱温度频率分布··· 'fGeaOilTemAve_distribute':{},#存储机组齿轮箱油温频率分布··· 'fGenTemAve_distribute':{}, 'fGenBeaDriTemAve_distribute':{}, 'fConGsclgbTemAve_distribute':{}, 'normal_power_splat':{'wind_list':[],'power_list':[]},#存储正常功率风速散点··· 'all_power_splat':{'wind_list':[],'power_list':[]},#存储所有功率风速散点··· 'selflimite_power_splat':{'wind_list':[],'power_list':[]},#存储超温限功率散点··· 'limite_power_splat':{'wind_list':[],'power_list':[]}, 'stop_power_splat':{'wind_list':[],'power_list':[]}, #超温限功率数据统计··· 'over_temperature':{'fChoGenTemAve':{'number':0,'total_time':0}, 'fGeaBeaTemAve':{'number':0,'total_time':0}, 'fGeaOilTemAve':{'number':0,'total_time':0}, 'fGenTemAve':{'number':0,'total_time':0}, 'fGenBeaDriTemAve':{'number':0,'total_time':0}, 'fConGsclgbTemAve':{'number':0,'total_time':0} }, 'totalpower':0,#机组总发电量··· 'normal_totalpower':0,#机组正常发电总的发电量存储··· 'selflimite_totaltime':0, 'limite_totaltime':0, 'stop_totaltime':0, 'over_temperature_totaltime':0, 'hzth_increase_totalpower':0, 'selflimite_reducepower':0, #限功率损失发电量统计··· 'limite_reducepower':0, 'stop_reducepower':0, 'fChoGenTemAve':{'registe_id':[],'temperature':[]}, 'fGeaBeaTemAve':{'registe_id':[],'temperature':[]}, 'fGeaOilTemAve':{'registe_id':[],'temperature':[]}, 'fGenTemAve':{'registe_id':[],'temperature':[]}, 'fGenBeaDriTemAve':{'registe_id':[],'temperature':[]}, 'fConGsclgbTemAve':{'registe_id':[],'temperature':[]} #机组部件温度数据概率分布统计··· } #初始化‘tenminlog’结构变量··· tenminlog['wind_status_distribute']=copy.deepcopy(wind_status_distribute) tenminlog['power_status_distribute']=copy.deepcopy(power_status_distribute) tenminlog['fChoGenTemAve_distribute']=copy.deepcopy(fChoGenTemAve_status_distribute) tenminlog['fGeaBeaTemAve_distribute']=copy.deepcopy(fGeaBeaTemAve_status_distribute) tenminlog['fGeaOilTemAve_distribute']=copy.deepcopy(fGeaOilTemAve_status_distribute) tenminlog['fGenTemAve_distribute']=copy.deepcopy(fGenTemAve_status_distribute) tenminlog['fGenBeaDriTemAve_distribute']=copy.deepcopy(fGenBeaDriTemAve_status_distribute) tenminlog['fConGsclgbTemAve_distribute']=copy.deepcopy(fConGsclgbTemAve_status_distribute) fan_element={'stames':{},'error':{},'tenminlog':{},'normal_power_curve':{},'fanset_information':{'fanid':0,'fanname':'','fanip':'','fantype':0,'plctype':0}} fan_element['error']=copy.deepcopy(error) fan_element['tenminlog']=copy.deepcopy(tenminlog) fan_element['normal_power_curve']=copy.deepcopy(normal_power_curve) fan_element['hzth_standard_wind_power']=copy.deepcopy(hzth_standard_wind_power) fan_root_dict={} return fan_root_dict,fan_element,stames_code
0c8d931e83ca07c53fe67e67250f3e7cb9fb37c8
09dbc3b3ecf116eda30b039c641913b63aecb991
/turbustat/data_reduction/data_reduc.py
41e624b91294e59713b677f5f9150537dbd1d512
[ "MIT" ]
permissive
keflavich/TurbuStat
2a3e2a891933046074adb6a20f93977ad136e750
a6fac4c0d10473a74c62cce4a9c6a30773a955b1
refs/heads/master
2021-01-18T06:30:06.717191
2014-07-04T00:05:27
2014-07-04T00:05:27
21,695,425
0
0
null
null
null
null
UTF-8
Python
false
false
14,244
py
# Licensed under an MIT open source license - see LICENSE ''' Data Reduction Routines for PPV data cubes ''' import numpy as np from scipy import ndimage as nd from operator import itemgetter from itertools import groupby from astropy.io import fits import copy from scipy.optimize import curve_fit from astropy.convolution import convolve class property_arrays(object): ''' Create property arrays from a data cube Creates centroid (moment 1), integrated intensity, velocity dispersion (moment 2), total intensity (moment 0) ''' def __init__(self, cube, clip_level = 3,rms_noise = None, kernel_size=None, save_name=None): super(property_arrays, self).__init__() self.cube = cube[0]#cube.data self.header = cube[1]#cube.header self.array_shape = (self.cube.shape[1],self.cube.shape[2]) self.save_name = save_name self.clean_cube = np.ones(self.cube.shape) self.noise_array = None self.nan_mask = np.invert(np.isnan(self.cube), dtype=bool) self.weight_cube = np.ones(self.cube.shape) for i in range(self.cube.shape[1]): for j in range(self.cube.shape[2]): self.weight_cube[:,i,j] = np.arange(1,self.cube.shape[0]+1,1) self.sigma = None self.property_dict = {} if rms_noise != None: if isinstance(rms_noise, float): self.noise_type_flag = 1 self.sigma = rms_noise self.noise_array = np.ones(self.array_shape) * self.sigma self.noise_mask = np.ones(self.array_shape) self.clean_cube[self.cube < (clip_level * self.sigma)] = 0.0 self.clean_cube *= np.ma.masked_invalid(self.cube) else: self.noise_type_flag = 2 self.clean_cube, self.noise_array, self.sigma = given_noise_cube(self.cube, rms_noise, clip_level) self.noise_mask = self.noise_array < (clip_level * self.sigma) else: if not kernel_size: raise ValueError("Kernel Size must be given for moment masking.") self.noise_type_flag = 0 self.clean_cube, self.mask_cube, self.sigma = moment_masking(self.cube, clip_level, kernel_size) # self.noise_mask = self.noise_array < (clip_level * self.sigma) self.nan_mask += self.mask_cube def moment0(self): moment0_array = np.sum(self.clean_cube * self.nan_mask, axis=0) # moment0_array *= self.noise_mask error_array = self.sigma * np.sqrt(np.sum(self.nan_mask * (self.clean_cube>0), axis=0)) # error_array *= self.noise_mask self.property_dict["moment0"] = moment0_array, error_array return self def centroid(self): centroid_array = np.sum(self.clean_cube * self.nan_mask * self.weight_cube, axis=0) / self.property_dict["moment0"][0] # centroid_array *= self.noise_mask first_err_term = self.sigma**2. * np.sqrt(np.sum(self.weight_cube[np.nonzero(self.clean_cube * self.nan_mask)], axis=0)) / self.property_dict["moment0"][0]**2. second_err_term = self.property_dict["moment0"][1]**2. / self.property_dict["moment0"][0]**2. error_array = np.sqrt(first_err_term + second_err_term) # error_array *= self.noise_mask self.property_dict["centroid"] = centroid_array, error_array return self def integrated_intensity(self): masked_clean = self.clean_cube * self.nan_mask int_intensity_array = np.ones(self.array_shape) error_array = np.ones(self.array_shape) for i in range(self.array_shape[0]): for j in range(self.array_shape[1]): z = np.where(masked_clean[:,i,j]>0) continuous_sections = [] for _, g in groupby(enumerate(z[0]), lambda (i,x): i-x): continuous_sections.append(map(itemgetter(1), g)) try: integrating_section = max(continuous_sections, key=len) int_intensity_array[i,j] = np.sum([masked_clean[k,i,j] for k in integrating_section]) error_array[i,j] = (np.sqrt(len(integrating_section)))**-1. * self.sigma except ValueError: int_intensity_array[i,j] = np.NaN error_array[i,j] = np.NaN self.property_dict["int_int"] = int_intensity_array, error_array return self def linewidth(self): masked_clean = self.clean_cube * self.nan_mask weight_clean = self.weight_cube * self.nan_mask linewidth_array = np.empty(self.array_shape) error_array = np.empty(self.array_shape) for i in range(self.array_shape[0]): for j in range(self.array_shape[1]): linewidth_array[i,j] = np.sqrt(np.sum((weight_clean[:,i,j] - self.property_dict["centroid"][0][i,j])**2. * masked_clean[:,i,j]) / \ self.property_dict["moment0"][0][i,j]) first_err_term = (2 * np.sum((weight_clean[:,i,j] - self.property_dict["centroid"][0][i,j]) * masked_clean[:,i,j]) * self.property_dict["centroid"][1][i,j]**2. +\ self.sigma**2. * np.sum((weight_clean[:,i,j] - self.property_dict["centroid"][0][i,j])**2.)) / \ np.sum((weight_clean[:,i,j] - self.property_dict["centroid"][0][i,j])**2. * masked_clean[:,i,j])**2. second_err_term = self.sigma**2. * np.sum(self.nan_mask[:,i,j])**2. / self.property_dict["moment0"][0][i,j]**2. error_array[i,j] = np.sqrt(first_err_term + second_err_term) self.property_dict["linewidth"] = linewidth_array, error_array def pixel_to_physical_units(self): if np.abs(self.header["CDELT3"])> 1: ## Lazy check to make sure we have units of km/s vel_pix_division = np.abs(self.header["CDELT3"])/1000. reference_velocity = self.header["CRVAL3"]/1000. else: vel_pix_division = np.abs(self.header["CDELT3"]) reference_velocity = self.header["CRVAL3"] ## Centroid error needs to be recalculated when changing to physical units physical_weights = (np.sum(self.weight_cube, axis=0) * vel_pix_division) + \ reference_velocity - (vel_pix_division * self.header["CRPIX3"]) first_err_term = self.sigma**2. * np.sqrt(np.sum(physical_weights * (self.clean_cube>0) * self.nan_mask, axis=0)) / self.property_dict["moment0"][0]**2. second_err_term = self.property_dict["moment0"][1]**2. / self.property_dict["moment0"][0]**2. cent_error_array = np.sqrt(first_err_term + second_err_term) # cent_error_array *= self.noise_mask self.property_dict["centroid"] = (self.property_dict["centroid"][0] * vel_pix_division) + \ reference_velocity - (vel_pix_division * self.header["CRPIX3"]), \ cent_error_array self.property_dict["int_int"] = (self.property_dict["int_int"][0] * vel_pix_division, \ self.property_dict["int_int"][1] * vel_pix_division) self.property_dict["linewidth"] = (self.property_dict["linewidth"][0] * vel_pix_division, \ self.property_dict["linewidth"][1] * vel_pix_division) return self def save_fits(self, save_path=None): new_hdr = copy.deepcopy(self.header) del new_hdr["NAXIS3"],new_hdr["CRVAL3"],new_hdr["CRPIX3"],new_hdr['CDELT3'], new_hdr['CTYPE3'] new_hdr.update("NAXIS",2) new_err_hdr = copy.deepcopy(new_hdr) if self.save_name is None: self.save_name = self.header["OBJECT"] moment0_specs = {'comment': "= Image of the Zeroth Moment", 'BUNIT': 'K', 'name': 'moment0'} centroid_specs = {'comment': "= Image of the First Moment", 'BUNIT': 'km/s', 'name': 'centroid'} linewidth_specs = {'comment': "= Image of the Second Moment", 'BUNIT': 'km/s', 'name': 'linewidth'} int_int_specs = {'comment': "= Image of the Integrated Intensity", 'BUNIT': 'K km/s', 'name': 'integrated_intensity'} moment0_error_specs = {'comment': "= Image of the Zeroth Moment Error", 'BUNIT': 'K', 'name': 'moment0'} centroid_error_specs = {'comment': "= Image of the First Moment Error", 'BUNIT': 'km/s', 'name': 'centroid'} linewidth_error_specs = {'comment': "= Image of the Second Moment Error", 'BUNIT': 'km/s', 'name': 'linewidth'} int_int_error_specs = {'comment': "= Image of the Integrated Intensity Error", 'BUNIT': 'K km/s', 'name': 'integrated_intensity'} for prop_array in self.property_dict.keys(): if prop_array=='moment0': specs = moment0_specs specs_error = moment0_error_specs elif prop_array=='centroid': specs = centroid_specs specs_error = centroid_error_specs elif prop_array=='int_int': specs = int_int_specs specs_error = int_int_error_specs elif prop_array=='linewidth': specs = linewidth_specs specs_error = linewidth_error_specs if save_path!=None: filename = "".join([save_path, self.save_name, ".", specs["name"], ".fits"]) filename_err = "".join([save_path, self.save_name, ".", specs["name"], "_error.fits"]) else: filename = "".join([self.save_name, ".", specs["name"], ".fits"]) filename_err = "".join([self.save_name, ".", specs["name"], "_error.fits"]) ## Update header for array and the error array new_hdr.update("BUNIT",value=specs['BUNIT'],comment='') new_hdr.add_comment(specs["comment"]) new_err_hdr.update("BUNIT",value=specs['BUNIT'],comment='') new_err_hdr.add_comment(specs["comment"]) fits.writeto(filename,self.property_dict[prop_array][0],new_hdr) fits.writeto(filename_err,self.property_dict[prop_array][1],new_hdr) ## Reset the comments del new_hdr["COMMENT"] del new_err_hdr["COMMENT"] return self def return_all(self, save=True, physical_units=True, continuous_boundary=True, save_path=None): self.moment0() self.centroid() self.linewidth() self.integrated_intensity() if physical_units: self.pixel_to_physical_units() if continuous_boundary: for prop_array in self.property_dict.keys(): pass if save: self.save_fits(save_path = None) return self def given_noise_cube(data_cube, noise_cube, clip_level): if data_cube.shape!=noise_cube.shape: raise ValueError("Error array has different dimensions.") assert clip_level is int noise_cube[np.where(noise_cube==0)] = np.NaN clipped_cube = (data_cube/noise_cube) >= clip_level inv_cube = np.invert(clip_cube,dtype=bool) noise_array = np.max(inv_cube*data_cube,axis=0) sigma = np.mean(noise_array) return clipped_cube * data_cube, noise_array, sigma def __sigma__(data_cube, clip_level): flat_cube = np.ravel(data_cube[~np.isnan(data_cube)]) hist, bins = np.histogram(flat_cube, bins = int(len(flat_cube)/100.)) centres = (bins[:-1]+bins[1:])/2 def gaussian(x,*p): # Peak Height is p[0],Sigma is p[1],Mu is p[2] return p[0]*np.exp(-1*np.power(x-p[2],2) / (2*np.power(p[1],2))) p0 = (np.max(hist), 1.0, centres[np.argmax(hist)]) opts, cov = curve_fit(gaussian, centres, hist, p0, maxfev=(100*len(hist))+1) if opts[1] == p0[1]: print "Fitting Failed. Sigma is %s" % (opts[1]) return opts[1] def moment_masking(data_cube, clip_level, kernel_size): sigma_orig = __sigma__(data_cube, clip_level) if np.isnan(data_cube).any(): print "Using astropy to convolve over nans" kernel = gauss_kern(kernel_size, ysize=kernel_size, zsize=kernel_size) smooth_cube = convolve(data_cube, kernel, normalize_kernel=True) else: smooth_cube = nd.gaussian_filter(data_cube, kernel_size, mode="mirror") sigma_smooth = __sigma__(smooth_cube, clip_level) mask_cube = smooth_cube > (clip_level * sigma_smooth) dilate_struct = nd.generate_binary_structure(3,3) mask_cube = nd.binary_dilation(mask_cube, structure=dilate_struct) noise_cube = np.invert(mask_cube, dtype=bool) * data_cube # noise_array = np.max(noise_cube, axis=0) return (mask_cube * data_cube), mask_cube, sigma_orig def pad_wrapper(array, boundary_size=5): xshape, yshape = array.shape continuous_array = np.zeros((xshape - 6*boundary_size, yshape - 6*boundary_size)) reduced_array = array[boundary_size : xshape - boundary_size, boundary_size : yshape - boundary_size] pass def gauss_kern(size, ysize=None, zsize=None): """ Returns a normalized 3D gauss kernel array for convolutions """ size = int(size) if not ysize: ysize = size else: ysize = int(ysize) if not zsize: zsize = size else: zsize = int(zsize) x, y, z = np.mgrid[-size:size+1, -ysize:ysize+1, -zsize:zsize+1] g = np.exp(-(x**2/float(size)+y**2/float(ysize)+z**2/float(zsize))) return g / g.sum() if __name__=='__main__': pass # import sys # fib(int(sys.argv[1])) # from astropy.io.fits import getdata # cube, header = getdata("filename",header=True) # shape = cube.shape # cube[:,shape[0],:] = cube[:,0,:] # cube[:,:,shape[1]] = cube[:,:,0] # data = property_arrays((cube,header), rms_noise=0.001, save_name="filename") # data.return_all()
d917aed4d0dc683d3061f78f5a904422e86e49e2
26a660be93842a94c6416491fcf29bbab4a98a66
/dev_utils/BioLogic_.py
63ea4d02289cf872e0b1f0f10bd2c512fdf203c7
[ "MIT" ]
permissive
indigos33k3r/cellpy
b9d2b37c994c41c73e5a3a0a439c787b9857e978
7aef2bb416d1506229747320cf73dc199704f585
refs/heads/master
2020-04-14T10:37:44.810456
2018-11-16T13:39:08
2018-11-16T13:39:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,053
py
# -*- coding: utf-8 -*- """Code to read in data files from Bio-Logic instruments""" # created by Chris Kerr # downloaded from https://github.com/chatcannon/galvani/blob/master/galvani/BioLogic.py __all__ = ['MPTfileCSV', 'MPTfile'] import sys import re import csv from os import SEEK_SET import time from datetime import date, datetime, timedelta from collections import OrderedDict import numpy as np if sys.version_info.major <= 2: str3 = str from string import maketrans else: str3 = lambda b: str(b, encoding='ascii') maketrans = bytes.maketrans def fieldname_to_dtype(fieldname): """Converts a column header from the MPT file into a tuple of canonical name and appropriate numpy dtype""" if fieldname == 'mode': return ('mode', np.uint8) elif fieldname in ("ox/red", "error", "control changes", "Ns changes", "counter inc."): return (fieldname, np.bool_) elif fieldname in ("time/s", "P/W", "(Q-Qo)/mA.h", "x", "control/V", "control/V/mA", "(Q-Qo)/C", "dQ/C", "freq/Hz", "|Ewe|/V", "|I|/A", "Phase(Z)/deg", "|Z|/Ohm", "Re(Z)/Ohm", "-Im(Z)/Ohm"): return (fieldname, np.float_) # N.B. I'm not sure what 'Ns' is as in the only file I have with that # header it never has any value other than '0' elif fieldname in ("cycle number", "I Range", "Ns"): return (fieldname, np.int_) elif fieldname in ("dq/mA.h", "dQ/mA.h"): return ("dQ/mA.h", np.float_) elif fieldname in ("I/mA", "<I>/mA"): return ("I/mA", np.float_) elif fieldname in ("Ewe/V", "<Ewe>/V"): return ("Ewe/V", np.float_) else: raise ValueError("Invalid column header: %s" % fieldname) def comma_converter(float_string): """Convert numbers to floats whether the decimal point is '.' or ','""" trans_table = maketrans(b',', b'.') return float(float_string.translate(trans_table)) def MPTfile(file_or_path): """Opens .mpt files as numpy record arrays Checks for the correct headings, skips any comments and returns a numpy record array object and a list of comments """ if isinstance(file_or_path, str): mpt_file = open(file_or_path, 'rb') else: mpt_file = file_or_path magic = next(mpt_file) if magic != b'EC-Lab ASCII FILE\r\n': raise ValueError("Bad first line for EC-Lab file: '%s'" % magic) nb_headers_match = re.match(b'Nb header lines : (\d+)\s*$', next(mpt_file)) nb_headers = int(nb_headers_match.group(1)) if nb_headers < 3: raise ValueError("Too few header lines: %d" % nb_headers) ## The 'magic number' line, the 'Nb headers' line and the column headers ## make three lines. Every additional line is a comment line. comments = [next(mpt_file) for i in range(nb_headers - 3)] fieldnames = str3(next(mpt_file)).strip().split('\t') record_type = np.dtype(list(map(fieldname_to_dtype, fieldnames))) ## Must be able to parse files where commas are used for decimal points converter_dict = dict(((i, comma_converter) for i in range(len(fieldnames)))) mpt_array = np.loadtxt(mpt_file, dtype=record_type, converters=converter_dict) return mpt_array, comments def MPTfileCSV(file_or_path): """Simple function to open MPT files as csv.DictReader objects Checks for the correct headings, skips any comments and returns a csv.DictReader object and a list of comments """ if isinstance(file_or_path, str): mpt_file = open(file_or_path, 'r') else: mpt_file = file_or_path magic = next(mpt_file) if magic.rstrip() != 'EC-Lab ASCII FILE': raise ValueError("Bad first line for EC-Lab file: '%s'" % magic) nb_headers_match = re.match('Nb header lines : (\d+)\s*$', next(mpt_file)) nb_headers = int(nb_headers_match.group(1)) if nb_headers < 3: raise ValueError("Too few header lines: %d" % nb_headers) ## The 'magic number' line, the 'Nb headers' line and the column headers ## make three lines. Every additional line is a comment line. comments = [next(mpt_file) for i in range(nb_headers - 3)] mpt_csv = csv.DictReader(mpt_file, dialect='excel-tab') expected_fieldnames = ( ["mode", "ox/red", "error", "control changes", "Ns changes", "counter inc.", "time/s", "control/V/mA", "Ewe/V", "dq/mA.h", "P/W", "<I>/mA", "(Q-Qo)/mA.h", "x"], ['mode', 'ox/red', 'error', 'control changes', 'Ns changes', 'counter inc.', 'time/s', 'control/V', 'Ewe/V', 'dq/mA.h', '<I>/mA', '(Q-Qo)/mA.h', 'x'], ["mode", "ox/red", "error", "control changes", "Ns changes", "counter inc.", "time/s", "control/V", "Ewe/V", "I/mA", "dQ/mA.h", "P/W"], ["mode", "ox/red", "error", "control changes", "Ns changes", "counter inc.", "time/s", "control/V", "Ewe/V", "<I>/mA", "dQ/mA.h", "P/W"]) if mpt_csv.fieldnames not in expected_fieldnames: raise ValueError("Unrecognised headers for MPT file format") return mpt_csv, comments VMPmodule_hdr = np.dtype([('shortname', 'S10'), ('longname', 'S25'), ('length', '<u4'), ('version', '<u4'), ('date', 'S8')]) def VMPdata_dtype_from_colIDs(colIDs): dtype_dict = OrderedDict() flags_dict = OrderedDict() flags2_dict = OrderedDict() for colID in colIDs: if colID in (1, 2, 3, 21, 31, 65): dtype_dict['flags'] = 'u1' if colID == 1: flags_dict['mode'] = (np.uint8(0x03), np.uint8) elif colID == 2: flags_dict['ox/red'] = (np.uint8(0x04), np.bool_) elif colID == 3: flags_dict['error'] = (np.uint8(0x08), np.bool_) elif colID == 21: flags_dict['control changes'] = (np.uint8(0x10), np.bool_) elif colID == 31: flags_dict['Ns changes'] = (np.uint8(0x20), np.bool_) elif colID == 65: flags_dict['counter inc.'] = (np.uint8(0x80), np.bool_) else: raise NotImplementedError("flag %d not implemented" % colID) elif colID in (131,): dtype_dict['flags2'] = '<u2' if colID == 131: flags2_dict['??'] = (np.uint16(0x0001), np.bool_) elif colID == 4: dtype_dict['time/s'] = '<f8' elif colID == 5: dtype_dict['control/V/mA'] = '<f4' # 6 is Ewe, 77 is <Ewe>, I don't see the difference elif colID in (6, 77): dtype_dict['Ewe/V'] = '<f4' # Can't see any difference between 7 and 23 elif colID in (7, 23): dtype_dict['dQ/mA.h'] = '<f8' # 76 is <I>, 8 is either I or <I> ?? elif colID in (8, 76): dtype_dict['I/mA'] = '<f4' elif colID == 11: dtype_dict['I/mA'] = '<f8' elif colID == 19: dtype_dict['control/V'] = '<f4' elif colID == 24: dtype_dict['cycle number'] = '<f8' elif colID == 32: dtype_dict['freq/Hz'] = '<f4' elif colID == 33: dtype_dict['|Ewe|/V'] = '<f4' elif colID == 34: dtype_dict['|I|/A'] = '<f4' elif colID == 35: dtype_dict['Phase(Z)/deg'] = '<f4' elif colID == 36: dtype_dict['|Z|/Ohm'] = '<f4' elif colID == 37: dtype_dict['Re(Z)/Ohm'] = '<f4' elif colID == 38: dtype_dict['-Im(Z)/Ohm'] = '<f4' elif colID == 39: dtype_dict['I Range'] = '<u2' elif colID == 70: dtype_dict['P/W'] = '<f4' elif colID == 434: dtype_dict['(Q-Qo)/C'] = '<f4' elif colID == 435: dtype_dict['dQ/C'] = '<f4' else: raise NotImplementedError("column type %d not implemented" % colID) return np.dtype(list(dtype_dict.items())), flags_dict, flags2_dict hdr = np.fromstring(hdr_bytes, dtype=VMPmodule_hdr, count=1) hdr_dict = dict(((n, hdr[n][0]) for n in VMPmodule_hdr.names)) hdr_dict['offset'] = fileobj.tell() if read_module_data: hdr_dict['data'] = fileobj.read(hdr_dict['length']) if len(hdr_dict['data']) != hdr_dict['length']: raise IOError("""Unexpected end of file while reading data current module: %s length read: %d length expected: %d""" % (hdr_dict['longname'], len(hdr_dict['data']), hdr_dict['length'])) yield hdr_dict else: yield hdr_dict fileobj.seek(hdr_dict['offset'] + hdr_dict['length'], SEEK_SET) def read_VMP_modules(fileobj, read_module_data=True): """Reads in module headers in the VMPmodule_hdr format. Yields a dict with the headers and offset for each module. N.B. the offset yielded is the offset to the start of the data i.e. after the end of the header. The data runs from (offset) to (offset+length)""" while True: module_magic = fileobj.read(len(b'MODULE')) if len(module_magic) == 0: # end of file raise StopIteration elif module_magic != b'MODULE': raise ValueError("Found %r, expecting start of new VMP MODULE" % module_magic) hdr_bytes = fileobj.read(VMPmodule_hdr.itemsize) if len(hdr_bytes) < VMPmodule_hdr.itemsize: raise IOError("Unexpected end of file while reading module header") class MPRfile: """Bio-Logic .mpr file The file format is not specified anywhere and has therefore been reverse engineered. Not all the fields are known. Attributes ========== modules - A list of dicts containing basic information about the 'modules' of which the file is composed. data - numpy record array of type VMPdata_dtype containing the main data array of the file. startdate - The date when the experiment started enddate - The date when the experiment finished """ def __init__(self, file_or_path): if isinstance(file_or_path, str): mpr_file = open(file_or_path, 'rb') else: mpr_file = file_or_path mpr_magic = b'BIO-LOGIC MODULAR FILE\x1a \x00\x00\x00\x00' magic = mpr_file.read(len(mpr_magic)) if magic != mpr_magic: raise ValueError('Invalid magic for .mpr file: %s' % magic) modules = list(read_VMP_modules(mpr_file)) self.modules = modules settings_mod, = (m for m in modules if m['shortname'] == b'VMP Set ') data_module, = (m for m in modules if m['shortname'] == b'VMP data ') maybe_log_module = [m for m in modules if m['shortname'] == b'VMP LOG '] n_data_points = np.fromstring(data_module['data'][:4], dtype='<u4') n_columns = np.fromstring(data_module['data'][4:5], dtype='u1') if data_module['version'] == 0: column_types = np.fromstring(data_module['data'][5:], dtype='u1', count=n_columns) remaining_headers = data_module['data'][5 + n_columns:100] main_data = data_module['data'][100:] elif data_module['version'] == 2: column_types = np.fromstring(data_module['data'][5:], dtype='<u2', count=n_columns) ## There is 405 bytes of data before the main array starts remaining_headers = data_module['data'][5 + 2 * n_columns:405] main_data = data_module['data'][405:] else: raise ValueError("Unrecognised version for data module: %d" % data_module['version']) if sys.version_info.major <= 2: assert(all((b == '\x00' for b in remaining_headers))) else: assert(not any(remaining_headers)) self.dtype, self.flags_dict, self.flags2_dict = VMPdata_dtype_from_colIDs(column_types) self.data = np.fromstring(main_data, dtype=self.dtype) assert(self.data.shape[0] == n_data_points) ## No idea what these 'column types' mean or even if they are actually ## column types at all self.version = int(data_module['version']) self.cols = column_types self.npts = n_data_points tm = time.strptime(str3(settings_mod['date']), '%m/%d/%y') self.startdate = date(tm.tm_year, tm.tm_mon, tm.tm_mday) if maybe_log_module: log_module, = maybe_log_module tm = time.strptime(str3(log_module['date']), '%m/%d/%y') self.enddate = date(tm.tm_year, tm.tm_mon, tm.tm_mday) ## There is a timestamp at either 465 or 469 bytes ## I can't find any reason why it is one or the other in any ## given file ole_timestamp1 = np.fromstring(log_module['data'][465:], dtype='<f8', count=1) ole_timestamp2 = np.fromstring(log_module['data'][469:], dtype='<f8', count=1) ole_timestamp3 = np.fromstring(log_module['data'][473:], dtype='<f8', count=1) if ole_timestamp1 > 40000 and ole_timestamp1 < 50000: ole_timestamp = ole_timestamp1 elif ole_timestamp2 > 40000 and ole_timestamp2 < 50000: ole_timestamp = ole_timestamp2 elif ole_timestamp3 > 40000 and ole_timestamp3 < 50000: ole_timestamp = ole_timestamp3 else: raise ValueError("Could not find timestamp in the LOG module") ole_base = datetime(1899, 12, 30, tzinfo=None) ole_timedelta = timedelta(days=ole_timestamp[0]) self.timestamp = ole_base + ole_timedelta if self.startdate != self.timestamp.date(): raise ValueError("""Date mismatch: Start date: %s End date: %s Timestamp: %s""" % (self.startdate, self.enddate, self.timestamp)) def get_flag(self, flagname): if flagname in self.flags_dict: mask, dtype = self.flags_dict[flagname] return np.array(self.data['flags'] & mask, dtype=dtype) elif flagname in self.flags2_dict: mask, dtype = self.flags2_dict[flagname] return np.array(self.data['flags2'] & mask, dtype=dtype) else: raise AttributeError("Flag '%s' not present" % flagname) def main(filename): m = MPRfile(filename) if __name__ == '__main__': test_file = "../cellpy/data_ex/biologic/Bec01_01_1_C20_loop_20170219_01_MB_C02.mpr" main(test_file)
e3ea71ddfb85dc71b555b2e4eae31113519430a1
4819a4f99c6e283344bf81d05f98afb6555b4fe9
/untitled1/urls.py
8a2caf4fa2350d2a1cf343ecd51d3a00dc4e5e00
[]
no_license
RafayelGardishyan/Schoolar
e6efe7280ac6c355421e34c3742f685a6c75b988
48e21c03486060e4bf6b0dd3e8f529f3faea0e9d
refs/heads/master
2022-03-09T00:18:46.684387
2019-10-31T15:55:59
2019-10-31T15:55:59
170,994,415
0
0
null
null
null
null
UTF-8
Python
false
false
930
py
"""untitled1 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf.urls.static import static from django.contrib import admin from django.urls import path, include from . import settings urlpatterns = [ path('admin/', admin.site.urls), path('', include('learnit.urls')) ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
0a3443fba16aaf8d469463c85e077f82a962c1a3
e4f1f60c587fadab2af3082836b559f981a74015
/pcmdpy/galaxy/sfhmodels.py
633948280418a368fd72cfdc917404aad8e5503b
[ "MIT" ]
permissive
bacook17/pcmdpy
bb2cd4b224f6a7cad5ca638a94f8494945404c6a
ce2e9341efb1846e8c6c8bac27208603591ec525
refs/heads/master
2021-06-04T09:49:21.414770
2019-08-13T17:39:48
2019-08-13T17:39:48
113,083,573
7
2
MIT
2023-06-27T04:45:28
2017-12-04T19:09:52
Batchfile
UTF-8
Python
false
false
12,206
py
# sfhmodels.py # Ben Cook ([email protected]) """Define SFHModel classes to integrate with Galaxy Models""" __all__ = ['BaseSFHModel', 'NonParam', 'ConstantSFR', 'TauModel', 'RisingTau', 'SSPModel', 'get_sfh_model', 'all_sfh_models'] import numpy as np def get_sfh_model(name, *args, **kwargs): if name.lower() == 'nonparam': return NonParam(*args, **kwargs) elif name.lower() == 'constant': return ConstantSFR(*args, **kwargs) elif name.lower() == 'tau': return TauModel(*args, **kwargs) elif name.lower() == 'risingtau': return RisingTau(*args, **kwargs) elif name.lower() == 'ssp': return SSPModel(*args, **kwargs) else: raise NotImplementedError( "given name {} not an acceptable SFH model. Choose one of:\n" "{}".format(name.lower(), ['nonparam', 'constant', 'tau', 'risingtau', 'ssp'])) class BaseSFHModel: default_SFH_edges = np.array([6., 8., 9., 9.5, 10., 10.2]) _num_SFH_bins = len(default_SFH_edges) - 1 def __init__(self): assert hasattr(self, 'iso_edges'), ("iso_edges not set") assert hasattr(self, 'SFH'), ('SFH not set') if not hasattr(self, '_params'): self._params = [None] @property def ages(self): return 0.5*(self.iso_edges[:-1] + self.iso_edges[1:]) @property def _num_isochrones(self): return len(self.iso_edges) - 1 @property def delta_ts(self): return np.diff(10.**(self.iso_edges - 9.)) @property def Npix(self): return np.sum(self.SFH) @property def logNpix(self): return np.log10(self.Npix) @property def logSFH(self): return np.log10(self.SFH) def get_vals(self): return self.ages, self.SFH def get_cum_sfh(self): """ Defined such that first age bin has 100% cum SFH """ normed_sfh = self.SFH / self.Npix cum_sfh = 1. - np.cumsum(normed_sfh) return np.append(1., cum_sfh) def mass_frac_younger_than(self, age): return np.sum(self.SFH[self.ages < age]) / self.Npix def as_NonParam(self): current_edges = self.iso_edges self.update_edges(self.default_SFH_edges) other = NonParam(self.logSFH, iso_step=-1, sfh_edges=self.default_SFH_edges) self.update_edges(current_edges) return other def as_default(self): return self.as_NonParam() def update_edges(self, new_edges): self.iso_edges = new_edges @property def mean_age(self): return np.average(self.ages, weights=self.SFH) class NonParam(BaseSFHModel): _params = np.array([None, None, None, None, None]) def __init__(self, initial_params=None, iso_step=0.2, sfh_edges=None, iso_edges=None): self.iso_step = iso_step if iso_edges is None: if iso_step > 0: # construct list of ages, given isochrone spacing self.iso_edges = np.arange(6.0, 10.3, iso_step) else: self.iso_edges = self.default_SFH_edges else: self.iso_edges = iso_edges self.update_sfh_edges(sfh_edges if sfh_edges is not None else self.default_SFH_edges) assert np.all(np.isclose(self.overlap_matrix.sum(axis=1), 1.0)), ( "The sums over the overlap matrix should all be near 1") if initial_params is None: initial_params = np.zeros(self._num_params, dtype=float) self.set_params(initial_params) super().__init__() def copy(self): return NonParam(initial_params=self._params, iso_step=self.iso_step, sfh_edges=self.sfh_edges, iso_edges=self.iso_edges) @property def _deltat_sfh(self): return np.diff(10.**(self.sfh_edges - 9.)) @property def _num_params(self): return len(self.sfh_edges) - 1 @property def _param_names(self): return ['logSFH{:d}'.format(i) for i in range(self._num_params)] @property def _fancy_names(self): return [r'$\log\;$' + 'SFH{:d}'.format(i) for i in range(self._num_params)] @property def _default_prior_bounds(self): return [[-3.0, 3.0]] * self._num_params def set_params(self, sfh_params): is_valid = (hasattr(sfh_params, '__len__') and len(sfh_params) == self._num_params) assert is_valid, ('sfh_params must be an array or list of length ' '{:d}, not {:d}'.format(self._num_params, len(sfh_params))) sfh_params = sfh_params.astype(float) self.SFH = np.dot(10.**sfh_params, self.overlap_matrix) assert np.isclose(self.Npix, np.sum(10.**sfh_params)) self._params = sfh_params def from_sfr(self, sfr_params): sfh_params = np.log10(self._deltat_sfh) + sfr_params self.set_params(sfh_params) def update_sfh_edges(self, new_edges): self.sfh_edges = new_edges self.overlap_matrix = _build_overlap_matrix(10.**self.sfh_edges, 10.**self.iso_edges) self.set_params(np.zeros(self._num_params)) def update_edges(self, new_edges): self.iso_edges = new_edges self.overlap_matrix = _build_overlap_matrix(10.**self.sfh_edges, 10.**self.iso_edges) self.set_params(self._params) def as_NonParam(self): # transform current SFH into original SFH bins _new_overlap = _build_overlap_matrix(10.**self.sfh_edges, 10.**self.default_SFH_edges) sfh_params = np.log10(np.dot(10.**self._params, _new_overlap)) return NonParam(initial_params=sfh_params, iso_step=-1, sfh_edges=self.default_SFH_edges) class ConstantSFR(BaseSFHModel): _param_names = ['logNpix'] _fancy_names = [r'$\log\; \mathrm{N_{pix}}$'] _num_params = len(_param_names) _default_prior_bounds = [[0., 8.0]] _params = [None] def __init__(self, initial_params=None, iso_step=0.2): """ """ self.iso_step = iso_step if iso_step > 0: self.iso_edges = np.arange(6.0, 10.3, iso_step) else: self.iso_edges = self.default_SFH_edges if initial_params is None: initial_params = np.zeros(self._num_params) self.set_params(initial_params) super().__init__() def copy(self): return ConstantSFR(initial_params=self._params, iso_step=self.iso_step) def set_params(self, logNpix): if hasattr(logNpix, '__len__'): assert len(logNpix) == self._num_params, ("params for " "ConstantSFR should be " "length {:d}, not {:d}".format(self._num_params, len(sfh_params))) logNpix = logNpix[0] self._params = np.array([logNpix], dtype=float) @property def SFH(self): Npix = 10.**self._params[0] return Npix * self.delta_ts / np.sum(self.delta_ts) class TauModel(BaseSFHModel): _param_names = ['logNpix', 'tau'] _fancy_names = [r'$\log\; \mathrm{N_{pix}}$', r'$\tau$'] _num_params = len(_param_names) _default_prior_bounds = [[0., 8.0], [0.1, 20.]] _params = [None, None] def __init__(self, initial_params=None, iso_step=0.2): """ """ self.iso_step = iso_step if iso_step > 0: self.iso_edges = np.arange(6.0, 10.3, iso_step) else: self.iso_edges = self.default_SFH_edges if initial_params is None: initial_params = np.array([0., 1.]) self.set_params(initial_params) super().__init__() def copy(self): return TauModel(initial_params=self._params, iso_step=self.iso_step) def set_params(self, sfh_params): is_valid = (hasattr(sfh_params, '__len__') and len(sfh_params) == self._num_params) assert is_valid, ('sfh_params must be an array or list of length ' '{:d}, not {:d}'.format(self._num_params, len(sfh_params))) self._params = np.array(sfh_params).astype(float) @property def SFH(self): Npix = 10.**self._params[0] tau = self._params[1] ages_linear = 10.**(self.iso_edges - 9.) # convert to Gyrs SFH_term = np.diff(np.exp(ages_linear/tau)) return Npix * SFH_term / np.sum(SFH_term) class RisingTau(BaseSFHModel): _param_names = ['logNpix', 'tau_rise'] _fancy_names = [r'$\log\;\mathrm{N_{pix}}$', r'$\tau$'] _num_params = len(_param_names) _default_prior_bounds = [[0., 8.0], [0.1, 20.]] _params = [None, None] def __init__(self, initial_params=None, iso_step=0.2): """ """ self.iso_step = iso_step if iso_step > 0: self.iso_edges = np.arange(6.0, 10.3, iso_step) else: self.iso_edges = self.default_SFH_edges if initial_params is None: initial_params = np.array([0., 1.]) self.set_params(initial_params) super().__init__() def copy(self): return RisingTau(initial_params=self._params, iso_step=self.iso_step) def set_params(self, sfh_params): is_valid = (hasattr(sfh_params, '__len__') and len(sfh_params) == self._num_params) assert is_valid, ('sfh_params must be an array or list of length ' '{:d}, not {:d}'.format(self._num_params, len(sfh_params))) self._params = np.array(sfh_params).astype(float) @property def SFH(self): Npix = 10.**self._params[0] tau = self._params[1] ages_linear = 10.**(self.iso_edges - 9.) # convert to Gyrs base_term = (ages_linear[-1]+tau-ages_linear) * np.exp(ages_linear/tau) SFH_term = np.diff(base_term) return Npix * SFH_term / np.sum(SFH_term) class SSPModel(BaseSFHModel): _param_names = ['logNpix', 'logage'] _fancy_names = [r'$\log\;\mathrm{N_{pix}}$', r'$\log$ age (yr)'] _num_params = len(_param_names) _default_prior_bounds = [[0., 8.0], [8.0, 10.5]] _params = [None, None] def __init__(self, initial_params=None, iso_step=None): """ """ if initial_params is None: initial_params = np.array([0.0, 10.0]) self.iso_step = iso_step self.set_params(initial_params) super().__init__() def copy(self): return SSPModel(initial_params=self._params, iso_step=self.iso_step) def set_params(self, sfh_params): is_valid = (hasattr(sfh_params, '__len__') and len(sfh_params) == self._num_params) assert is_valid, ('sfh_params must be an array or list of length ' '{:d}, not {:d}'.format(self._num_params, len(sfh_params))) Npix = 10.**sfh_params[0] self.SFH = np.array([Npix]) self.iso_edges = np.array([-0.1, 0.1]) + sfh_params[1] self._params = sfh_params.astype(float) all_sfh_models = [NonParam, TauModel, RisingTau, SSPModel, ConstantSFR] def _overlap(left1, right1, left2, right2): x = (min(right1, right2) - max(left1, left2)) / (right1 - left1) return max(0, x) def _build_overlap_matrix(arr1, arr2): result = np.zeros((len(arr1)-1, len(arr2)-1)) for i in range(len(arr1)-1): for j in range(len(arr2)-1): result[i, j] = _overlap(arr1[i], arr1[i+1], arr2[j], arr2[j+1]) return result
b7f51ac07e35b2adf6dab304ed1b86b064e9a447
29cc0a662b62078e553c461f05ef999c76c0f51f
/Lab_01/connection.py
7f6f22939e3081ad8120f3d5f4badfa55ace0957
[]
no_license
fefeagus/Redes_Sistemas_Distribuidos_2015
bd2978f439389d8f50cbe55a9681cede2530de26
eee77359891d6c52083c2bd116c2ae65cf36af14
refs/heads/master
2023-04-14T13:46:13.935385
2017-09-12T03:37:50
2017-09-12T03:37:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,300
py
# encoding: utf-8 # Copyright 2014 Carlos Bederián # $Id: connection.py 455 2011-05-01 00:32:09Z carlos $ import os import socket from constants import * import server class Connection(object): """ Conexión punto a punto entre el servidor y un cliente. Se encarga de satisfacer los pedidos del cliente hasta que termina la conexión. """ def __init__(self, socket, directory): # Inicialización de conexión self.sock = socket self.dir = directory self.buff_in = '' self.buff_out = '' self.connection_active = True def es_nombre_valido(self, name_file): """ Devuelve True si el nombre ingresado contiene caracteres validos o False en caso contrario. """ nombre = set(name_file) - VALID_CHARS return nombre == set([]) def send_buffer(self): """ Envia datos para ser recibidos por el cliente. """ while self.buff_out: cant_bytes = self.sock.send(self.buff_out) assert cant_bytes > 0 self.buff_out = self.buff_out[cant_bytes:] def unknown_command(self): """ Mensaje de comando inválido. """ self.buff_out += str(INVALID_COMMAND) self.buff_out += space + error_messages[INVALID_COMMAND] + EOL self.send_buffer() def wrong_arg_q(self): """ Mensaje de argumentos inválidos. """ self.buff_out += str(INVALID_ARGUMENTS) self.buff_out += space + error_messages[INVALID_ARGUMENTS] + EOL self.send_buffer() def file_not_found(self): """ Mensaje de archivo inexistente. """ self.buff_out += str(FILE_NOT_FOUND) self.buff_out += space + error_messages[FILE_NOT_FOUND] + EOL self.send_buffer() def bad_offset(self): """ Mensaje de posicion inexistente en un archivo. """ self.buff_out += str(BAD_OFFSET) self.buff_out += space + error_messages[BAD_OFFSET] + EOL self.send_buffer() def bad_eol(self): """ Mensaje de que se encontro un caracter r\n fuera de un terminador de pedido EOL. """ self.buff_out += str(BAD_EOL) self.buff_out += space + error_messages[BAD_EOL] + EOL self.send_buffer() def get_file_listing(self): """ Lista los archivos de un directorio. """ try: lista = os.listdir(self.dir) except: print('INTERNAL SERVER ERROR') raise INTERNAL_ERROR else: self.buff_out += "0 OK" + EOL for x in lista: self.buff_out += x self.buff_out += EOL self.buff_out += EOL self.send_buffer() def get_metadata(self, name_file): """ Devuelve el tamaño del archivo dado (en bytes). """ is_valid_name = self.es_nombre_valido(name_file) file_exist = os.path.isfile(os.path.join(self.dir, name_file)) if not is_valid_name: # si el nombre de archivo es valido self.wrong_arg_q() elif not file_exist: self.file_not_found() # Error interno del servidor else: try: data = os.path.getsize(os.path.join(self.dir, name_file)) except: print('INTERNAL SERVER ERROR') raise INTERNAL_ERROR else: self.buff_out += "0 OK" + EOL + str(data) + EOL self.send_buffer() def get_slice(self, avl_file, offset, size): """ Leer y muestra los datos del archivo ingresado desde el OFFSET hasta OFFSET + SIZE. """ file_exist = os.path.isfile(os.path.join(self.dir, avl_file)) if not file_exist: self.file_not_found() else: try: offset2 = int(offset) size2 = int(size) except ValueError: self.wrong_arg_q() else: size_file = size2 start_read = offset2 len_file = os.path.getsize(os.path.join(self.dir, avl_file)) offset_plus = start_read > len_file size_plus = (start_read + size_file) > len_file if offset_plus or size_plus: self.bad_offset() else: try: file_open = open(os.path.join(self.dir, avl_file), 'r') except IOError: print("el archivo no se pudo abrir") raise INTERNAL_ERROR file_open.seek(start_read) self.buff_out += "0 OK" + EOL remain = size_file while remain > 0: last_part = min(remain, SIZE_READ) bytes_read = file_open.read(last_part) self.buff_out += str(len(bytes_read)) self.buff_out += space + bytes_read + EOL remain -= len(bytes_read) self.send_buffer() self.buff_out += "0 " + EOL self.send_buffer() def quit(self): """ Cierra la conexion al cliente. """ self.buff_out += str(CODE_OK) + " Listo!" + EOL self.send_buffer() self.sock.close() self.connection_active = False def analizar(self, command): """ Analiza si el pedido esta bien escrito y si contiene la cantidad de argumentos necesarios para cada método. """ c_tmp = command.split(space) if c_tmp[0] == 'get_file_listing': if len(c_tmp) == 1: self.get_file_listing() else: self.wrong_arg_q() elif c_tmp[0] == 'get_metadata': if len(c_tmp) != 2 or c_tmp[1] == '': self.wrong_arg_q() else: self.get_metadata(c_tmp[1]) elif c_tmp[0] == 'get_slice': if len(c_tmp) == 4: self.get_slice(c_tmp[1], c_tmp[2], c_tmp[3]) else: self.wrong_arg_q() elif c_tmp[0] == 'quit': if len(c_tmp) == 1: self.quit() else: self.wrong_arg_q() else: self.unknown_command() def handle(self): """ Atiende eventos de la conexión hasta que termina. """ # Maneja recepciones y envíos hasta desconexión while self.connection_active: # Recibe datos hasta recibir un EOL while EOL not in self.buff_in: rec = self.sock.recv(SIZE_READ) self.buff_in += rec # Separa el primer "pedido" del resto request, self.buff_in = self.buff_in.split(EOL, 1) # Se fija que no exista error tipo 100 if new_line in request: self.bad_eol() # Analiza el primer "pedido" recibido else: self.analizar(request) # Cerramos el socket en desconexión self.sock.close()
20413f0c344df7cbdad1bb7338a11aa39fc9861d
48460db1a6fdc6c09845c86cf5fa257f1a32f08a
/leetcode/medium/0949_Largest_Time_for_Given_Digits.py
0a85a9dd6fad4107f8c6a0e5a7d7bc8004502a85
[]
no_license
MichalBrzozowski91/algorithms
9d0b085621ed94b1aff5473663fbdc686463cd8d
ae57535b574a800c6300eae7d55b21f2432c3baa
refs/heads/master
2022-12-20T08:00:59.385002
2020-09-30T16:32:33
2020-09-30T16:32:33
290,835,098
0
0
null
null
null
null
UTF-8
Python
false
false
1,053
py
class Solution: def largestTimeFromDigits(self, A: List[int]) -> str: B = A.copy() for firstDigitLimit in [2,1]: A = B.copy() result = '' temp = [a for a in A if a in range(firstDigitLimit + 1)] if not temp: return '' dig = max(temp) result += str(dig) A.remove(dig) # Second digit if dig == 2: temp = [a for a in A if a in [0,1,2,3]] else: temp = A if not temp: continue dig = max(temp) result += str(dig) A.remove(dig) # Third digit temp = [a for a in A if a in [0,1,2,3,4,5]] if not temp: continue dig = max(temp) result += ':' + str(dig) A.remove(dig) # Fourth digit dig = A[0] result += str(dig) return result return ''
172e43d93c0b543dc370d654dd22753e9dd1cdfd
f7574ee7a679261e758ba461cb5a5a364fdb0ed1
/MergeSortedArray.py
25c884f75350c4b5cb98ff52b73b35e165289aaa
[]
no_license
janewjy/Leetcode
807050548c0f45704f2f0f821a7fef40ffbda0ed
b4dccd3d1c59aa1e92f10ed5c4f7a3e1d08897d8
refs/heads/master
2021-01-10T19:20:22.858158
2016-02-26T16:03:19
2016-02-26T16:03:19
40,615,255
1
0
null
null
null
null
UTF-8
Python
false
false
1,549
py
class Solution(object): def merge(self, nums1, m, nums2, n): """ :type nums1: List[int] :type m: int :type nums2: List[int] :type n: int :rtype: void Do not return anything, modify nums1 in-place instead. """ i = 0 j = 0 for j in range(n): while i < m+j and nums1[i] < nums2[j]: i += 1 nums1.insert(i,nums2[j]) i += 1 nums1[m+j+1:] = nums2[j+1:] # inster() slow the code down def merge2(self, nums1, m, nums2, n): l1, l2, end = m-1, n-1, m+n-1 while l1 >= 0 and l2 >= 0: if nums1[l1] > nums2[l2]: nums1[end] = nums1[l1] l1 -= 1 else: nums1[end] = nums2[l2] l2 -= 1 end -= 1 if l1 < 0: nums1[:l2+1] = nums2[:l2+1] # 1-28 class Solution(object): def merge(self, nums1, m, nums2, n): """ :type nums1: List[int] :type m: int :type nums2: List[int] :type n: int :rtype: void Do not return anything, modify nums1 in-place instead. """ i,j,cur = m-1,n-1,m+n-1 while i>=0 and j>=0: if nums1[i] > nums2[j]: nums1[cur] = nums1[i] i-=1 else: nums1[cur] = nums2[j] j -= 1 cur -= 1 if i < 0: nums1[:cur+1] = nums2[:j+1]
74c5c8c7b320b2dfc6dc3ab53abcf9739fd64eaa
343bdaddfc66c6316e2cee490e9cedf150e3a5b7
/0001_0100/0076/0076.py
851fe3c3ab0a773579c4237f01aaebb9804a5a57
[]
no_license
dm-alexi/acmp
af7f6b4484b78f5922f3b464406a0ba5dea0d738
3fa0016d132adfeab7937b3e8c9687a34642c93a
refs/heads/master
2021-07-09T15:14:25.857086
2020-10-20T19:08:54
2020-10-20T19:08:54
201,908,038
0
0
null
null
null
null
UTF-8
Python
false
false
584
py
def timeint(s): return int(s[:2]) * 60 + int(s[3:]) with open("input.txt", "r") as f, open("output.txt", "w") as q: m = 0 inlist, outlist = [], [] n = int(f.readline()) for i in range(n): a, b = (timeint(x) for x in f.readline().split()) inlist.append(a) outlist.append(b) inlist.sort() outlist.sort() i, j, c = 0, 0, 0 while i < n: if inlist[i] <= outlist[j]: i += 1 c += 1 if c > m: m = c else: j += 1 c -= 1 q.write(str(m))
45716f1b021167af4d29c8f8aceb4dcacc7127bd
ec0b8bfe19b03e9c3bb13d9cfa9bd328fb9ca3f1
/res/packages/scripts/scripts/client_common/client_request_lib/data_sources/fake.py
929662c454b82fe9c9e9246b4e9b77d255e999ca
[]
no_license
webiumsk/WOT-0.9.20.0
de3d7441c5d442f085c47a89fa58a83f1cd783f2
811cb4e1bca271372a1d837a268b6e0e915368bc
refs/heads/master
2021-01-20T22:11:45.505844
2017-08-29T20:11:38
2017-08-29T20:11:38
101,803,045
0
1
null
null
null
null
WINDOWS-1250
Python
false
false
33,763
py
# 2017.08.29 21:52:16 Střední Evropa (letní čas) # Embedded file name: scripts/client_common/client_request_lib/data_sources/fake.py """ Created on Jul 1, 2015 @author: oleg """ from functools import wraps, partial from datetime import datetime, timedelta, time as dt_time import random from client_request_lib import exceptions from client_request_lib.data_sources import base EXAMPLES = {} def _doResponse(callback, result, status_code, response_code): callback(result, status_code, response_code) def fake_method(example): def wrapper(func): @wraps(func) def wrapped(self, callback, *args, **kwargs): try: result = func(self, *args, **kwargs) response_code = exceptions.ResponseCodes.NO_ERRORS status_code = 200 except exceptions.BaseRequestError as e: result = {'description': e.description} status_code = e.status_code response_code = e.response_code except: raise _doResponse(callback, result, status_code, response_code) name = func.__name__ if 'get_' in name: name = name.split('get_', 1)[-1] EXAMPLES[name] = example return wrapped return wrapper def paginated_method(func): @wraps(func) def wrapped(*args, **kwargs): offset = kwargs.pop('offset') or 0 limit = kwargs.pop('limit') or 18 diapasone = slice(offset, offset + limit) get_total_count = kwargs.pop('get_total_count', False) result = func(*args, **kwargs) total = len(result) result = {'items': result[diapasone]} if get_total_count: result['total'] = total return result return wrapped class FakeDataAccessor(base.BaseDataAccessor): """ obtain fake data `FakeDataAccessor` should be used for test purposes when one want emulate expected backend response :Example: >>> fake_accessor = FakeDataAccessor() >>> requester = Requester(fake_accessor) >>> requester.login(str, 12312, 'sdfee23e2') >>> def printer (*args, **kwargs): pprint(args) ... >>> requester.clans.get_account_applications_count_since(printer, 123) ( {'total': 17}, 200, 0 ) Use `requests_before_logout` to emulate session expiration. Session will be considered as expired when `requests_before_logout` is made use -1 for endless session (default behavior) :Example: >>> fake_accessor = FakeDataAccessor() >>> fake_accessor.requests_before_logout = 2 >>> requester = Requester(fake_accessor) >>> requester.login(str, 12312, 'sdfee23e2') >>> def printer (*args, **kwargs): print (args) ... >>> requester.clans.get_account_applications_count_since(printer, 123) ({'total': 17}, 200, 0) >>> requester.clans.get_account_applications_count_since(printer, 123) ({'total': 17}, 200, 0) >>> requester.clans.get_account_applications_count_since(printer, 123) ('User is not authentificated', 403, 2) To set expected result for method use `set_data` method :Example: >>> fake_accessor = FakeDataAccessor() >>> requester = Requester(fake_accessor) >>> requester.login(str, 12312, 'sdfee23e2') >>> def printer (*args, **kwargs): print (args) >>> fake_accessor.set_data('account_applications_count_since', 14, {'total': 11}) >>> requester.clans.get_account_applications_count_since(printer, 14) ({'total': 11}, 200, 0) >>> requester.clans.get_account_applications_count_since(printer, 123) ({'total': 17}, 200, 0) To emulate error in response set data to error instance :Example: >>> fake_accessor = FakeDataAccessor() >>> requester = Requester(fake_accessor) >>> requester.login(str, 12312, 'sdfee23e2') >>> def printer (*args, **kwargs): print (args) >>> fake_accessor.set_data('account_applications_count_since', 14, exceptions.PermissionDenied()) >>> requester.clans.get_account_applications_count_since(printer, 14) ('Forbidden', 403, 3) >>> requester.clans.get_account_applications_count_since(printer, 123) ({'total': 17}, 200, 0) """ requests_before_logout = -1 def __init__(self, url_fetcher = None, config = None, client_lang = None, user_agent = None): super(FakeDataAccessor, self).__init__() self.client_lang = client_lang self._account = None self._storage = {} self.account = None self.user_agent = user_agent return def login(self, callback, account_id, spa_token): self.account = account_id self._account = self.requests_before_logout result, status_code = ('ok', 200) response_code = exceptions.ResponseCodes.NO_ERRORS _doResponse(callback, result, status_code, response_code) def get_alive_status(self, callback): result, status_code = {'status': 'I am alive!'}, 200 response_code = exceptions.ResponseCodes.NO_ERRORS _doResponse(callback, result, status_code, response_code) def logout(self, callback): self.account = None self._account = None result, status_code = ('ok', 200) response_code = exceptions.ResponseCodes.NO_ERRORS _doResponse(callback, result, status_code, response_code) return def _filter_data(self, data, fields): if isinstance(data, list): return [ self._filter_data(i, fields) for i in data ] return {k:v for k, v in data.iteritems() if k in fields} def _request_data(self, section, entity_id, fields = None): if not self._account: raise exceptions.AuthentificationError() self._account -= 1 try: result = self._storage[section][entity_id] except KeyError: result = EXAMPLES[section] if callable(result): result = result(entity_id) self._storage.setdefault(section, {})[entity_id] = result if isinstance(result, exceptions.BaseRequestError): raise result if fields: result = self._filter_data(result, fields) return result def _compare_keys(self, example, data): if isinstance(example, list): for i in data: self._compare_keys(example[0], i) if isinstance(example, dict): if set(example) ^ set(data): missed = set(example) - set(data) extra = set(data) - set(example) message = [] if missed: message.append('(%s) keys are missed' % ', '.join(missed)) if extra: message.append('(%s) keys are not needed' % ', '.join(extra)) raise ValueError(' and '.join(message)) def set_data(self, section, entity_id, data): """ set fake data for different sections, compare keys while setting possible sections are following: - account_applications_count_since - account_invites - accounts_clans - accounts_info - accounts_names - clan_applications - clan_globalmap_stats - clan_invites_count_since - clan_invites - clan_members - clan_provinces - clans_info - clans_ratings - fronts_info - search_clans - stronghold_info - strongholds_state - strongholds_statistics """ if not section in EXAMPLES: raise AssertionError example = EXAMPLES[section] isinstance(data, exceptions.BaseRequestError) or self._compare_keys(example, data) self._storage.setdefault(section, {})[entity_id] = data @fake_method(example=lambda clan_id: {'clan_id': clan_id, 'xp_avg': random.randrange(1, 1000) / 10.0, 'efficiency': random.randrange(1, 10000), 'battles_count_avg': random.randrange(1, 10000), 'wins_ratio_avg': random.randrange(1, 100), 'gm_elo_rating_6': random.randrange(1, 1000), 'gm_elo_rating_8': random.randrange(1, 1000), 'gm_elo_rating_10': random.randrange(1, 1000), 'gm_elo_rating_6_rank': random.randrange(1, 1000), 'gm_elo_rating_8_rank': random.randrange(1, 1000), 'gm_elo_rating_10_rank': random.randrange(1, 1000), 'fb_elo_rating_8': random.randrange(1, 1000), 'fb_elo_rating_10': random.randrange(1, 1000), 'fb_battles_count_10_28d': random.randrange(1, 100), 'fs_battles_count_10_28d': random.randrange(1, 100), 'gm_battles_count_28d': random.randrange(1, 100), 'fs_battles_count_28d': random.randrange(1, 100), 'fb_battles_count_28d': random.randrange(1, 100)}) def get_clans_ratings(self, clan_ids, fields = None): """ return fake data from `clans_ratings` section """ return [ self._request_data('clans_ratings', i, fields=fields) for i in clan_ids ] @fake_method(example=lambda clan_id: {'name': 'xxx', 'tag': 'ff', 'motto': 'yyyy', 'leader_id': 666, 'members_count': 13, 'clan_id': clan_id, 'created_at': datetime.now(), 'accepts_join_requests': True, 'treasury': 2423}) def get_clans_info(self, clan_ids, fields = None): """ return fake data from `clans_info` section """ return [ self._request_data('clans_info', clan_id, fields=fields) for clan_id in clan_ids ] @fake_method(example=lambda acc_id: {'id': acc_id, 'name': 'name'}) def get_accounts_names(self, account_ids, fields = None): """ return fake data from `accounts_names` section """ return [ self._request_data('accounts_names', account_id, fields=fields) for account_id in account_ids ] @fake_method(example=lambda clan_id: [ {'account_id': 2324 + i, 'role_name': 'officer', 'role_bw_flag': 1 << i, 'clan_id': clan_id, 'joined_at': datetime.now()} for i in range(11) ]) def get_clan_members(self, clan_id, fields = None): """ return fake data from `clan_members` section """ return self._request_data('clan_members', clan_id, fields=fields) @fake_method(example={'clan_id': 2790, 'favorite_arena_6': 1, 'favorite_arena_8': 3, 'favorite_arena_10': 65549, 'favorite_primetime': dt_time(19, 0)}) def get_clan_favorite_attributes(self, clan_id, fields = None): """ return fake data from `clan_favorite_attributes` section """ return self._request_data('clan_favorite_attributes', clan_id, fields=fields) @fake_method(example={'total': 17}) def get_account_applications_count_since(self, account_id, since = None): """ return fake data from `account_applications_count_since` section """ return self._request_data('account_applications_count_since', account_id) @fake_method(example={'total': 14}) def get_clan_invites_count_since(self, clan_id, since = None): """ return fake data from `clan_invites_count_since` section """ return self._request_data('clan_invites_count_since', clan_id) @fake_method(example={'account_id': 234, 'joined_at': datetime.now(), 'clan_id': 343, 'role_bw_flag': 13, 'role_name': 'commander', 'in_clan_cooldown_till': datetime.now(), 'clan_tag': 'fake', 'clan_color': 123}) def get_accounts_clans(self, account_ids, fields): """ return fake data from `accounts_clans` section """ return [ self._request_data('accounts_clans', i, fields=fields) for i in account_ids ] @fake_method(example=lambda (account_id, statuses): [ {'status': random.choice(statuses or ('active', 'declined', 'cancelled', 'accepted', 'expired', 'error', 'deleted')), 'created_at': datetime.now(), 'updated_at': datetime.now(), 'sender_id': random.randrange(1, 10000), 'id': random.randrange(1, 1000000), 'account_id': account_id, 'clan_id': random.randrange(1, 10000), 'status_changer_id': random.randrange(1, 10000), 'comment': 'Welcome {}!'.format(random.randrange(1, 10000)) if random.choice((1, 0)) else ''} for i in range(random.randrange(0, 1000)) ]) @paginated_method def get_account_applications(self, fields = None, statuses = None): """ return fake data from `account_applications` section """ return self._request_data('account_applications', (self.account, tuple(statuses or [])), fields=fields) @fake_method(example=lambda (clan_id, statuses): [ {'status': random.choice(statuses or ('active', 'declined', 'cancelled', 'accepted', 'expired', 'error', 'deleted')), 'created_at': datetime.now(), 'updated_at': datetime.now(), 'sender_id': random.randrange(1, 10000), 'id': random.randrange(1, 1000000), 'account_id': random.randrange(1, 10000), 'clan_id': clan_id, 'status_changer_id': random.randrange(1, 10000), 'comment': 'Welcome {}!'.format(random.randrange(1, 10000)) if random.choice((1, 0)) else ''} for i in range(random.randrange(0, 1000)) ]) @paginated_method def get_clan_applications(self, clan_id, fields = None, statuses = None): """ return fake data from `clan_applications` section """ return self._request_data('clan_applications', (clan_id, tuple(statuses or [])), fields=fields) @fake_method(example=lambda search: ([] if len(search) % 2 else [ {'name': 'Clan Name %d' % random.randrange(1, 1000), 'tag': 'TCLAN', 'motto': 'Clan Motto', 'leader_id': random.randrange(1, 10000), 'clan_id': random.randrange(1, 100), 'members_count': random.randrange(1, 50), 'created_at': datetime.now(), 'accepts_join_requests': random.choice((True, False))} for i in range(random.randrange(1, 36)) ])) @paginated_method def search_clans(self, search, fields = None): """ return fake data from `clans_info` section """ return self._request_data('search_clans', search) @fake_method(example=lambda account: [ {'name': 'Clan Name %d' % random.randrange(1, 1000), 'tag': 'TCLAN', 'motto': 'Clan Motto', 'leader_id': random.randrange(1, 10000), 'clan_id': random.randrange(1, 100), 'members_count': random.randrange(1, 50), 'created_at': datetime.now(), 'accepts_join_requests': random.choice((True, False))} for i in range(random.randrange(1, 36)) ]) @paginated_method def get_recommended_clans(self, fields = None): """ return fake data from `clans_info` section """ return self._request_data('recommended_clans', self.account) @fake_method(example=lambda (clan_id, statuses): [ {'status': random.choice(statuses or ('active', 'declined', 'cancelled', 'accepted', 'expired', 'error', 'deleted')), 'created_at': datetime.now(), 'updated_at': datetime.now(), 'sender_id': random.randrange(1, 10000), 'id': random.randrange(1, 1000000), 'account_id': random.randrange(1, 10000), 'clan_id': clan_id, 'comment': 'Welcome {}!'.format(random.randrange(1, 10000)) if random.choice((1, 0)) else '', 'status_changer_id': 2132} for i in range(random.randrange(0, 1000)) ]) @paginated_method def get_clan_invites(self, clan_id, fields = None, statuses = None): """ return fake data from `clan_invites` section """ return self._request_data('clan_invites', (clan_id, tuple(statuses or [])), fields=fields) @fake_method(example=lambda (account_id, statuses): [ {'status': random.choice(statuses or ('active', 'declined', 'cancelled', 'accepted', 'expired', 'error', 'deleted')), 'created_at': datetime.now(), 'updated_at': datetime.now(), 'sender_id': random.randrange(1, 10000), 'id': random.randrange(1, 1000000), 'account_id': account_id, 'clan_id': random.randrange(1, 10000), 'status_changer_id': 2132, 'comment': 'Welcome {}!'.format(random.randrange(1, 10000)) if random.choice((1, 0)) else ''} for i in range(random.randrange(0, 1000)) ]) @paginated_method def get_account_invites(self, fields = None, statuses = None): """ return fake data from `account_invites` section """ return self._request_data('account_invites', (self.account, tuple(statuses or [])), fields=fields) @fake_method(example=lambda account_id: {'global_rating': random.randrange(100, 10000), 'battle_avg_xp': random.randrange(100, 10000), 'battles_count': random.randrange(1, 1000), 'battle_avg_performance': random.uniform(0, 1), 'xp_amount': random.randrange(100, 1000), 'account_id': account_id}) def get_accounts_info(self, account_ids, fields = None): """ return fake data from `accounts_info` section """ return [ self._request_data('accounts_info', acc_id, fields=fields) for acc_id in account_ids ] @fake_method(example=[{'front_name': 'some_front', 'province_id': 'some_province', 'front_name_localized': 'some_front_localized', 'province_id_localized': 'some_province_localized', 'revenue': 324, 'hq_connected': True, 'prime_time': dt_time(18, 0, 0), 'periphery': 333, 'game_map': 'some_map', 'pillage_cooldown': 1, 'pillage_end_datetime': datetime.now() + timedelta(hours=3), 'turns_owned': 12}, {'front_name': 'some_front2', 'province_id': 'some_province2', 'front_name_localized': 'some_front_localized2', 'province_id_localized': 'some_province_localized2', 'revenue': 333, 'hq_connected': True, 'prime_time': dt_time(19, 0, 0), 'periphery': 444, 'game_map': 'some_map2', 'pillage_cooldown': None, 'pillage_end_datetime': None, 'turns_owned': 12, 'arena_id': 5}]) def get_clan_provinces(self, clan_id, fields = None): """ return fake data from `clan_provinces` section """ return self._request_data('clan_provinces', clan_id, fields=fields) @fake_method(example={'battles_lost': 12, 'influence_points': 121, 'provinces_captured': 23, 'provinces_count': 234, 'battles_played': 332, 'battles_won': 232, 'battles_played_on_6_level': 21, 'battles_won_on_6_level': 12, 'battles_played_on_8_level': 32, 'battles_won_on_8_level': 21, 'battles_played_on_10_level': 43, 'battles_won_on_10_level': 23}) def get_clan_globalmap_stats(self, clan_id, fields = None): """ return fake data from `clan_globalmap_stats` section """ return self._request_data('clan_globalmap_stats', clan_id, fields=fields) @fake_method(example=[{'front_name': 'front_name', 'front_name_localized': 'front_name_localized', 'min_vehicle_level': 2, 'max_vehicle_level': 4}]) def get_fronts_info(self, front_names = None, fields = None): """ return fake data from `fronts_info` section """ return self._request_data('fronts_info', front_names, fields=fields) @fake_method(example={'defence_mode_is_activated': True, 'defence_hour': dt_time(10, 0), 'sortie_battles_count': 23, 'sortie_wins': 12, 'sortie_losses': 19, 'sortie_fort_resource_in_absolute': 100, 'sortie_fort_resource_in_champion': 71, 'sortie_fort_resource_in_middle': 60, 'defence_battles_count': 234, 'defence_combat_wins': 21, 'sortie_middle_battles_count': 12, 'sortie_champion_battles_count': 32, 'sortie_absolute_battles_count': 23, 'defence_enemy_base_capture_count': 43, 'defence_capture_enemy_building_total_count': 55, 'defence_loss_own_building_total_count': 65, 'defence_attack_efficiency': 23.2, 'defence_success_attack_count': 122, 'defence_attack_count': 13, 'defence_defence_efficiency': 32.2, 'defence_defence_count': 24, 'defence_success_defence_count': 5, 'total_resource_amount': 321, 'defence_resource_loss_count': 112, 'defence_resource_capture_count': 322, 'fb_battles_count_8': 23, 'fb_battles_count_10': 12, 'level': 2, 'buildings': [{'type': 1, 'direction': 0, 'level': 2, 'position': 2}, {'type': 2, 'direction': 1, 'level': 3, 'position': 2}]}) def get_stronghold_info(self, clan_id, fields = None): """ return fake data from `stronghold_info` section """ return self._request_data('stronghold_info', clan_id, fields=fields) @fake_method(example={'buildings_count': 4, 'directions_count': 3, 'buildings': [{'type': 1, 'hp': 32, 'storage': 123, 'level': 4, 'position': 7, 'direction': 1}], 'directions': [1, 2], 'off_day': 3, 'vacation_start': datetime.utcnow() + timedelta(days=1), 'vacation_finish': datetime.utcnow() + timedelta(days=4), 'periphery_id': 333, 'clan_tag': 'tag', 'clan_name': 'some_name', 'clan_id': 21, 'level': 2, 'sortie_wins_period': 7, 'sortie_battles_wins_percentage_period': 20.0, 'sortie_battles_count_period': 122, 'defence_battles_count_period': 21}) def get_strongholds_statistics(self, clan_id, fields = None): """ return fake data from `strongholds_statistics` section """ return self._request_data('strongholds_statistics', clan_id, fields=fields) @fake_method(example={'clan_id': 234, 'defence_hour': dt_time(10, 0)}) def get_strongholds_state(self, clan_id, fields = None): """ return fake data from `strongholds_state` section """ return self._request_data('strongholds_state', clan_id, fields=fields) @fake_method(example=[{'clan_id': 234, 'account_id': 3, 'id': 23}]) def create_invites(self, clan_id, account_ids, comment, fields = None): """ return fake data from `create_invites` section """ return self._request_data('create_invites', (clan_id, account_ids), fields=fields) @fake_method(example=[{'clan_id': 224, 'account_id': 3, 'id': 123}]) def create_applications(self, clan_ids, comment, fields = None): """ return fake data from `create_applications` section """ return self._request_data('create_applications', clan_ids, fields=fields) @fake_method(example=lambda obj_id: {'transaction_id': 213, 'id': obj_id, 'account_id': 343, 'clan_id': 17}) def accept_application(self, application_id, fields = None): """ return fake data from `accept_application` section """ return self._request_data('accept_application', application_id, fields=fields) @fake_method(example=lambda obj_id: {'id': obj_id, 'account_id': 343, 'clan_id': 17}) def decline_application(self, application_id, fields = None): """ return fake data from `decline_application` section """ return self._request_data('decline_application', application_id, fields=fields) @fake_method(example=lambda obj_id: {'transaction_id': 213, 'id': obj_id, 'account_id': 343, 'clan_id': 17}) def accept_invite(self, invite_id, fields = None): """ return fake data from `accept_invite` section """ return self._request_data('accept_invite', invite_id, fields=fields) @fake_method(example=lambda obj_id: {'id': obj_id, 'account_id': 343, 'clan_id': 17}) def decline_invite(self, invite_id, fields = None): """ return fake data from `decline_invite` section """ return self._request_data('decline_invite', invite_id, fields=fields) @fake_method(example=[{'id': 991, 'account_id': 1001, 'clan_id': 19}, {'id': 992, 'account_id': 1001, 'clan_id': 19}, {'id': 993, 'account_id': 1001, 'clan_id': 19}]) def bulk_decline_invites(self, invite_ids): """ return fake data from `bulk_decline_invites` section """ return self._request_data('bulk_decline_invites', invite_ids) @fake_method(example={'permissions': {'manage_reserves': ['commander', 'combat_officer', 'executive_officer', 'personnel_officer']}, 'time_to_ready': 900, 'max_level': 10, 'battle_series_duration': 3600, 'enemy_clan': None, 'industrial_resource_multiplier': 1, 'max_players_count': 15, 'type': 'FORT_BATTLE', 'max_legionaries_count': 0, 'available_reserves': {'ARTILLERY_STRIKE': [], 'HIGH_CAPACITY_TRANSPORT': [], 'REQUISITION': [], 'AIRSTRIKE': []}, 'direction': 'A', 'min_players_count': 1, 'matchmaker_next_tick': 1475578800, 'battle_series_status': [{'battle_reward': 0, 'gameplay_id': 0, 'geometry_id': 6, 'first_resp_clan_id': None, 'second_resp_clan_id': None, 'attacker': None, 'clan_owner_id': 14000012972L, 'current_battle': False, 'map_id': 6}, {'battle_reward': 0, 'gameplay_id': 0, 'geometry_id': 14, 'first_resp_clan_id': None, 'second_resp_clan_id': None, 'attacker': None, 'clan_owner_id': 14000012972L, 'current_battle': False, 'map_id': 14}, {'battle_reward': 0, 'gameplay_id': 0, 'geometry_id': 20, 'first_resp_clan_id': None, 'second_resp_clan_id': None, 'attacker': None, 'clan_owner_id': 14000012972L, 'current_battle': False, 'map_id': 20}], 'battle_duration': 600, 'requisition_bonus_percent': None, 'public': False, 'selected_reserves': [None, None, None], 'min_level': 1}) def get_wgsh_unit_info(self, periphery_id, unit_id, fields = None): """ return fake data from `wgsh_unit_info` section """ return self._request_data('wgsh_unit_info', unit_id) @fake_method(example={}) def set_vehicle(self, periphery_id, unit_id, vehicle_cd, fields = None): """ return fake data from `set_vehicle` section """ return self._request_data('set_vehicle', unit_id) @fake_method(example={}) def set_readiness(self, periphery_id, unit_id, is_ready, reset_vehicle, fields = None): """ return fake data from `set_readiness` section """ return self._request_data('set_readiness', unit_id) @fake_method(example={}) def invite_players(self, periphery_id, unit_id, accounts_to_invite, comment, fields = None): """ return fake data from `invite_players` section """ return self._request_data('invite_players', unit_id) @fake_method(example={}) def assign_player(self, periphery_id, unit_id, account_to_assign, fields = None): """ return fake data from `assign_player` section """ return self._request_data('assign_player', unit_id) @fake_method(example={}) def unassign_player(self, periphery_id, unit_id, account_to_assign, fields = None): """ return fake data from `unassign_player` section """ return self._request_data('unassign_player', unit_id) @fake_method(example={}) def give_leadership(self, periphery_id, unit_id, account_to_assign, fields = None): """ return fake data from `give_leadership` section """ return self._request_data('give_leadership', unit_id) @fake_method(example={}) def leave_room(self, periphery_id, unit_id, fields = None): """ return fake data from `leave_room` section """ return self._request_data('leave_room', unit_id) @fake_method(example={}) def take_away_leadership(self, periphery_id, unit_id, fields = None): """ return fake data from `take_away_leadership` section """ return self._request_data('take_away_leadership', unit_id) @fake_method(example={}) def kick_player(self, periphery_id, unit_id, account_to_assign, fields = None): """ return fake data from `kick_player` section """ return self._request_data('kick_player', unit_id) @fake_method(example={}) def set_open(self, periphery_id, unit_id, is_open, fields = None): """ return fake data from `set_open` section """ return self._request_data('set_open', unit_id) @fake_method(example={}) def lock_reserve(self, periphery_id, unit_id, reserve_id, fields = None): """ return fake data from `lock_reserve` section """ return self._request_data('lock_reserve', unit_id) @fake_method(example={}) def unlock_reserve(self, periphery_id, unit_id, reserve_id, fields = None): """ return fake data from `unlock_reserve` section """ return self._request_data('unlock_reserve', unit_id) @fake_method(example=lambda clan_id: {'skirmishes_statistics': {'last_28_days_battles_count': 1, 'last_28_days_wins_count': 1, 'wins_count': 1, 'loses_count': 1, 'draws_count': 1}, 'battles_statistics': {'last_28_days_battles_count': 1, 'last_28_days_wins_count': 1, 'wins_count': 1, 'loses_count': 1, 'draws_count': 1}, 'skirmishes_count_last_28_days': 1, 'battles_count_last_28_days': 1, 'clear_wins_count': 1, 'level_6_statistics': {'wins_count': 1, 'battles_count': 1}, 'level_8_statistics': {'wins_count': 1, 'battles_count': 1}, 'level_10_statistics': {'wins_count': 1, 'battles_count': 1}}) def clan_statistics(self, clan_id, fields = None): """ return fake data from `clan_statistics` section """ return self._request_data('clan_statistics', clan_id) @fake_method(example=lambda account_id: {'skirmishes_statistics': {'wins_count': 1, 'loses_count': 1, 'draws_count': 1}, 'battles_statistics': {'wins_count': 1, 'loses_count': 1, 'draws_count': 1}, 'industrial_resource_total': {'random_battles': 1, 'skirmishes': 1, 'battles': 1}, 'industrial_resource_last_28_days': {'random_battles': 1, 'skirmishes': 1, 'battles': 1}}) def account_statistics(self, account_id, fields = None): """ return fake data from `account_statistics` section """ return self._request_data('account_statistics', account_id) @fake_method(example={}) def join_room(self, periphery_id, unit_id, fields = None): """ return fake data from `join_room` section """ return self._request_data('join_room', unit_id) @fake_method(example={'results': {'season': {'avg_exp': 6113244, 'total_battles': 2, 'battles_with_steps': 1, 'points': 91, 'avg_assist_damage': 2, 'avg_damage': 348}}, 'meta': {'spa': {'id': 519}}}) def user_season_statistics(self, fields = None): """ return fake data from `user_season_statistics` section """ return self._request_data('user_season_statistics', None) @fake_method(example={'meta': {'total': 224}, 'results': {'spa_id': 502, 'position': 1}}) def user_ranked_position(self, fields = None): """ return fake data from `user_ranked_position` section """ return self._request_data('user_ranked_position', None) # okay decompyling c:\Users\PC\wotmods\files\originals\res\packages\scripts\scripts\client_common\client_request_lib\data_sources\fake.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2017.08.29 21:52:17 Střední Evropa (letní čas)
24a2b2bd01037bb5984627af29d73e874afe85da
94ea21700381f12b72649a59d2c90ae32c7e04f0
/addons/hc_medication_administration/models/hc_res_medication_administration.py
43a24cc10010e8dd270762918187fcb536cf5171
[]
no_license
messakali/odoo-fhir
c07e2d058763580de2929d4c84ebd4717ac15c43
1f5c28a3fdd788370696a5f75ab68a2acfe16d25
refs/heads/master
2021-01-10T22:35:55.158494
2016-09-28T17:21:56
2016-09-28T17:21:56
69,700,012
0
1
null
2016-09-30T20:30:57
2016-09-30T20:30:56
null
UTF-8
Python
false
false
450
py
# -*- coding: utf-8 -*- from openerp import models, fields, api # class hc_medication_administration(models.Model): # _name = 'hc_medication_administration.hc_medication_administration' # name = fields.Char() # value = fields.Integer() # value2 = fields.Float(compute="_value_pc", store=True) # description = fields.Text() # # @api.depends('value') # def _value_pc(self): # self.value2 = float(self.value) / 100
b9d463520440cefe1071f439c6ea17ab48c3146f
9d6f8b37165f51cf1f07f527ee1b86cc507127af
/api_pytest_2020/api_2020_04_25_1314/a4.py
73cef69a16ec6718fad574b3c43bad2c3e284c94
[]
no_license
pangchuan99/web_auto
61876df2e69a642a983aa5309a8423429d0105bf
62d79675eb37a7163a0d1baef97a37e36058fa6d
refs/heads/master
2022-12-02T18:05:44.996353
2020-08-19T07:09:44
2020-08-19T07:09:44
280,367,528
1
0
null
null
null
null
UTF-8
Python
false
false
112
py
#作用域 # b = "200" def function(b): a = "111" c = a+b return c b = "200" print(function(b))
f3a1b7d5b8f3c6718af758c89fae01723081f4ca
ca0757ab59d6420efae766dae80a539a3b692fbd
/apps/ippcdrupal/auth_backends.py
ba28716f1c21d575cec5c18d2e1d8708a507320f
[]
no_license
hypertexthero/itwishlist
bc1cfe7f3542a395ab439ee5aa71c1991baaadff
148a085238ae86ee07255f94d3a48a92190ce5c5
refs/heads/master
2020-06-05T01:00:41.981168
2013-08-30T15:06:52
2013-08-30T15:06:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,052
py
# =todo: authenticate against drupal users db # Looks like we'll need to upgrade to Django 1.4... from django.conf import settings from django.contrib.auth import login from django.contrib.auth.models import User, check_password from itwishlist.apps.ippcdrupal.models import DrupalUsers # from itwishlist.apps.ippcdrupal.hashers import is_password_usable, get_hasher # =todo: upgrade to django 1.4 # from django.contrib.auth.hashers import is_password_usable, get_hasher from django.utils.encoding import smart_str # http://stackoverflow.com/questions/16482531/django-registration-custom-backend # class DrupalUserAuthBackend(object): # """ # Authenticates against django.contrib.auth.models.User. with my modifications # """ # supports_inactive_user = True # # """ # This function does not upgrade the user password hasher # """ # def check_password(self, password, encoded): # if not password or not is_password_usable(encoded): # # is_password_usable is only available in Django 1.4 # # https://docs.djangoproject.com/en/1.4/topics/auth/#django.contrib.auth.hashers.is_password_usable # # if not password: # return False # # password = smart_str(password) # encoded = smart_str(encoded) # # if encoded[0] == "$": # encoded = encoded[1:] # make it compatible so that drupal 7 sha512 hasher can work properly # # if len(encoded) == 32 and '$' not in encoded: # hasher = get_hasher('unsalted_md5') # else: # algorithm = encoded.split('$', 1)[0] # hasher = get_hasher(algorithm) # # is_correct = hasher.verify(password, encoded) # # return is_correct # # def authenticate(self, username=None, password=None, db=None, **kwargs): # try: # user = DrupalUsers.objects.using(db).get(name=username) # name in ippcdrupal.models.DrupalUsers # if self.check_password(password, user.pass_field): # return user # except DrupalUsers.DoesNotExist: # return None # # http://query7.com/django-authentication-backends # http://djangosnippets.org/snippets/2729/ # from account.models import Account # from itwishlist.apps.ippcdrupal.drupalhasher.DrupalPasswordHasher import verify # from django.contrib.auth.models import User # # class DrupalUserAuthBackend(object): # # def authenticate(self, username, password): # # try: # account = DrupalUsers.objects.using('drupaldb').get(username=username, sha_pass_hash=verify(username, password)) # # try: # user = User.objects.get(username=username) # # except User.DoesNotExist: # # user = User(username=account.username) # user.is_staff = False # user.is_superuser = False # user.set_unusable_password() # user.save() # # return user # # except Account.DoesNotExist: # # return None # # def get_user(self, id): # try: # return User.objects.get(id=id) # except User.DoesNotExist: # return None class DrupalUserAuthBackend: """ Authenticate against the settings ADMIN_LOGIN and ADMIN_PASSWORD. Use the login name, and a hash of the password. For example: ADMIN_LOGIN = 'admin' ADMIN_PASSWORD = 'sha1$4e987$afbcf42e21bd417fb71db8c66b321e9fc33051de' """ supports_object_permissions = False supports_anonymous_user = False supports_inactive_user = False def authenticate(self, username=None, password=None): # login_valid = (settings.ADMIN_LOGIN == username) # pwd_valid = check_password(password, settings.ADMIN_PASSWORD) # if login_valid and pwd_valid: try: user = DrupalUsers.objects.using('drupaldb').get(name=username) except DrupalUsers.DoesNotExist: # Create a new user. Note that we can set password # to anything, because it won't be checked; the password # from settings.py will. # user = User(username=username, password='test') # user.is_staff = False # user.is_active = False # user.is_superuser = False # user.save() return None # return None def get_user(self, user_id): try: return User.objects.get(pk=user_id) except User.DoesNotExist: return None # class DrupalUserAuthBackend(object): # """ # Authenticates against ippcdrupal.models.DrupalUsers # """ # # def authenticate(self, username=None, password=None, **kwargs): # # UserModel = get_user_model() # # if username is None: # # username = kwargs.get(UserModel.USERNAME_FIELD) # try: # user = DrupalUsers.objects.using('drupaldb').get(name=username) # name in ippcdrupal.models.DrupalUsers # # if check_password(password): # if check_password(password): # return user # except DrupalUsers.DoesNotExist: # return None # class SettingsBackend(object): # """ # Authenticate against the settings ADMIN_LOGIN and ADMIN_PASSWORD. # # Use the login name, and a hash of the password. For example: # # ADMIN_LOGIN = 'admin' # ADMIN_PASSWORD = 'sha1$4e987$afbcf42e21bd417fb71db8c66b321e9fc33051de' # """ # # def DrupalUserAuth(self, username=None, password=None, db=None, **kwargs): # login_valid = (settings.ADMIN_LOGIN == username) # pwd_valid = check_password(password, settings.ADMIN_PASSWORD) # if login_valid and pwd_valid: # try: # user = User.objects.using(db).get(username=name) # if user.check_password(password): # return user # # user = User.objects.get(username=username) # # except User.DoesNotExist: # # # Create a new user. Note that we can set password # # # to anything, because it won't be checked; the password # # # from settings.py will. # # user = User(username=username, password='get from settings.py') # # user.is_staff = True # # user.is_superuser = True # # user.save() # return user # return None # # def get_user(self, user_id): # try: # return User.objects.get(pk=user_id) # except User.DoesNotExist: # return None # # from __future__ import unicode_literals # from django.contrib.auth import get_user_model # from django.contrib.auth.models import Permission # # class DrupalUserAuth(object): # """ # Authenticates against django.contrib.auth.models.User. # """ # # def authenticate(self, username=None, password=None, db=None, **kwargs): # UserModel = get_user_model() # if username is None: # username = kwargs.get(UserModel.USERNAME_FIELD) # try: # user = UserModel.objects.using(db).get(username=username) # if user.check_password(password): # return user # except UserModel.DoesNotExist: # return None # from __future__ import unicode_literals # from django.contrib.auth import get_user_model # from django.contrib.auth.models import Permission # # class DrupalUserAuth(object): # """ # Authenticates against django.contrib.auth.models.User. # """ # # def authenticate(self, username=None, password=None, db=None, **kwargs): # UserModel = get_user_model() # if username is None: # username = kwargs.get(UserModel.USERNAME_FIELD) # try: # user = UserModel.objects.using(db).get(username=username) # if user.check_password(password): # return user # except UserModel.DoesNotExist: # return None # # #
5bb40c1749eaa3eac4770ac0d10b52827385b4ad
19ffa66dc7ad2eb2e7f81783abbf365caf04dae9
/Code/Mine/Python/SympyHelpers/MethodHelp/GeqPolyDirect/PolynomialWay.py
94a1ef9bc9e2ebd9af3a024a9d79983f1aa7c711
[]
no_license
jordanpitt3141/gSGN
648bd137760937bc7ab28dfcc11ec6b0039b33d9
c62b88316ba583737500341d233982c3c3810dbd
refs/heads/master
2023-02-25T23:48:39.919795
2021-01-27T04:54:52
2021-01-27T04:54:52
264,787,792
0
1
null
null
null
null
UTF-8
Python
false
false
12,569
py
""" Python code to generate csv files that contain integrals of the basis functions needed to generate the matrices of the Finite Element Method. by Jordan Pitt 11/10/2018 """ """ ############################# IMPORTS ######################################### """ from sympy import * #Related website: https://www.sympy.org/en/index.html from IPython.display import display # symbols x,t,dx,dt,ga,b1 = symbols('x,t,dx,dt,g,beta1', positive = True, nonzero = True,real=True) def PolyFromPoints(yjmh,yjms,yjps,yjph,dx): a3 = (-9*yjmh + 27*yjms - 27*yjps + 9*yjph)/ (2*dx**3) a2 = (9*yjmh - 9*yjms - 9*yjps + 9*yjph )/ (4*dx**2) a1 = (yjmh - 27*yjms + 27*yjps - yjph )/ (8*dx) a0 = (-yjmh+ 9*yjms + 9*yjps - yjph)/ 16 return a0,a1,a2,a3 def SolveForuEdges(beta1,ha0,ha1,ha2,ha3,Ga0,Ga1,Ga2,Ga3 ,dx): print(beta1,ha0,ha1,ha2,ha3,Ga0,Ga1,Ga2,Ga3 ,dx) if (abs(beta1) > 10.0**(-10)): if (abs(ha3) < 10.0**(-15)): ua3 =(108*Ga0*beta1**2*ha0**4*ha1*ha3**2 - 36*Ga0*beta1**2*ha0**4*ha2**2*ha3 + 576*Ga0*beta1**2*ha0**3*ha1**2*ha2*ha3 - 360*Ga0*beta1**2*ha0**3*ha1*ha2**3 - 216*Ga0*beta1**2*ha0**2*ha1**4*ha3 + 240*Ga0*beta1**2*ha0**2*ha1**3*ha2**2 + 24*Ga0*beta1**2*ha0*ha1**5*ha2 + 24*Ga0*beta1**2*ha1**7 - 21*Ga0*beta1*ha0**2*ha1**2*ha3 + 72*Ga0*beta1*ha0**2*ha1*ha2**2 - 22*Ga0*beta1*ha0*ha1**3*ha2 - 11*Ga0*beta1*ha1**5 + Ga0*ha0**2*ha3 - 2*Ga0*ha0*ha1*ha2 + Ga0*ha1**3 - 198*Ga1*beta1**2*ha0**5*ha3**2 - 426*Ga1*beta1**2*ha0**4*ha1*ha2*ha3 + 192*Ga1*beta1**2*ha0**4*ha2**3 + 240*Ga1*beta1**2*ha0**3*ha1**3*ha3 - 312*Ga1*beta1**2*ha0**3*ha1**2*ha2**2 - 48*Ga1*beta1**2*ha0**2*ha1**4*ha2 - 24*Ga1*beta1**2*ha0*ha1**6 + 10*Ga1*beta1*ha0**3*ha1*ha3 - 28*Ga1*beta1*ha0**3*ha2**2 + 33*Ga1*beta1*ha0**2*ha1**2*ha2 + 11*Ga1*beta1*ha0*ha1**4 + Ga1*ha0**2*ha2 - Ga1*ha0*ha1**2 + 132*Ga2*beta1**2*ha0**5*ha2*ha3 - 144*Ga2*beta1**2*ha0**4*ha1**2*ha3 + 168*Ga2*beta1**2*ha0**4*ha1*ha2**2 + 72*Ga2*beta1**2*ha0**3*ha1**3*ha2 + 24*Ga2*beta1**2*ha0**2*ha1**5 - 22*Ga2*beta1*ha0**4*ha3 - 44*Ga2*beta1*ha0**3*ha1*ha2 - 11*Ga2*beta1*ha0**2*ha1**3 + Ga2*ha0**2*ha1 + 90*Ga3*beta1**2*ha0**5*ha1*ha3 - 96*Ga3*beta1**2*ha0**5*ha2**2 - 6*Ga3*beta1**2*ha0**4*ha1**2*ha2 - 24*Ga3*beta1**2*ha0**3*ha1**4 + 22*Ga3*beta1*ha0**4*ha2 + 11*Ga3*beta1*ha0**3*ha1**2 - Ga3*ha0**3)/(ha0**4*(1188*beta1**3*ha0**4*ha3**2 - 4248*beta1**3*ha0**3*ha1*ha2*ha3 + 2304*beta1**3*ha0**3*ha2**3 - 792*beta1**3*ha0**2*ha1**3*ha3 + 1008*beta1**3*ha0**2*ha1**2*ha2**2 - 576*beta1**3*ha0*ha1**4*ha2 + 360*beta1**3*ha1**6 + 624*beta1**2*ha0**2*ha1*ha3 - 720*beta1**2*ha0**2*ha2**2 - 204*beta1**2*ha0*ha1**2*ha2 - 189*beta1**2*ha1**4 + 52*beta1*ha0*ha2 + 26*beta1*ha1**2 - 1)) ua2 = (54*Ga0*beta1**2*ha0**4*ha3**2 - 522*Ga0*beta1**2*ha0**3*ha1*ha2*ha3 + 144*Ga0*beta1**2*ha0**3*ha2**3 + 180*Ga0*beta1**2*ha0**2*ha1**3*ha3 + 36*Ga0*beta1**2*ha0**2*ha1**2*ha2**2 - 216*Ga0*beta1**2*ha0*ha1**4*ha2 - 108*Ga0*beta1**2*ha1**6 + 30*Ga0*beta1*ha0**2*ha1*ha3 - 36*Ga0*beta1*ha0**2*ha2**2 - 15*Ga0*beta1*ha0*ha1**2*ha2 + 39*Ga0*beta1*ha1**4 + Ga0*ha0*ha2 - Ga0*ha1**2 + 324*Ga1*beta1**2*ha0**4*ha2*ha3 - 243*Ga1*beta1**2*ha0**3*ha1**2*ha3 + 216*Ga1*beta1**2*ha0**3*ha1*ha2**2 + 324*Ga1*beta1**2*ha0**2*ha1**3*ha2 + 108*Ga1*beta1**2*ha0*ha1**5 - 9*Ga1*beta1*ha0**3*ha3 - 24*Ga1*beta1*ha0**2*ha1*ha2 - 39*Ga1*beta1*ha0*ha1**3 + Ga1*ha0*ha1 + 126*Ga2*beta1**2*ha0**4*ha1*ha3 - 144*Ga2*beta1**2*ha0**4*ha2**2 - 252*Ga2*beta1**2*ha0**3*ha1**2*ha2 - 108*Ga2*beta1**2*ha0**2*ha1**4 + 36*Ga2*beta1*ha0**3*ha2 + 39*Ga2*beta1*ha0**2*ha1**2 - Ga2*ha0**2 - 54*Ga3*beta1**2*ha0**5*ha3 + 72*Ga3*beta1**2*ha0**4*ha1*ha2 + 63*Ga3*beta1**2*ha0**3*ha1**3 - 21*Ga3*beta1*ha0**3*ha1)/(ha0**3*(1188*beta1**3*ha0**4*ha3**2 - 4248*beta1**3*ha0**3*ha1*ha2*ha3 + 2304*beta1**3*ha0**3*ha2**3 - 792*beta1**3*ha0**2*ha1**3*ha3 + 1008*beta1**3*ha0**2*ha1**2*ha2**2 - 576*beta1**3*ha0*ha1**4*ha2 + 360*beta1**3*ha1**6 + 624*beta1**2*ha0**2*ha1*ha3 - 720*beta1**2*ha0**2*ha2**2 - 204*beta1**2*ha0*ha1**2*ha2 - 189*beta1**2*ha1**4 + 52*beta1*ha0*ha2 + 26*beta1*ha1**2 - 1)) ua1 = (36*Ga0*beta1**2*ha0**3*ha2*ha3 - 432*Ga0*beta1**2*ha0**2*ha1**2*ha3 + 504*Ga0*beta1**2*ha0**2*ha1*ha2**2 - 384*Ga0*beta1**2*ha0*ha1**3*ha2 + 432*Ga0*beta1**2*ha1**5 + 6*Ga0*beta1*ha0**2*ha3 - 48*Ga0*beta1*ha0*ha1*ha2 - 27*Ga0*beta1*ha1**3 + Ga0*ha1 + 594*Ga1*beta1**2*ha0**3*ha1*ha3 - 576*Ga1*beta1**2*ha0**3*ha2**2 + 72*Ga1*beta1**2*ha0**2*ha1**2*ha2 - 432*Ga1*beta1**2*ha0*ha1**4 + 52*Ga1*beta1*ha0**2*ha2 + 27*Ga1*beta1*ha0*ha1**2 - Ga1*ha0 - 132*Ga2*beta1**2*ha0**4*ha3 + 72*Ga2*beta1**2*ha0**3*ha1*ha2 + 312*Ga2*beta1**2*ha0**2*ha1**3 - 4*Ga2*beta1*ha0**2*ha1 + 96*Ga3*beta1**2*ha0**4*ha2 - 162*Ga3*beta1**2*ha0**3*ha1**2 - 6*Ga3*beta1*ha0**3)/(ha0**2*(1188*beta1**3*ha0**4*ha3**2 - 4248*beta1**3*ha0**3*ha1*ha2*ha3 + 2304*beta1**3*ha0**3*ha2**3 - 792*beta1**3*ha0**2*ha1**3*ha3 + 1008*beta1**3*ha0**2*ha1**2*ha2**2 - 576*beta1**3*ha0*ha1**4*ha2 + 360*beta1**3*ha1**6 + 624*beta1**2*ha0**2*ha1*ha3 - 720*beta1**2*ha0**2*ha2**2 - 204*beta1**2*ha0*ha1**2*ha2 - 189*beta1**2*ha1**4 + 52*beta1*ha0*ha2 + 26*beta1*ha1**2 - 1)) ua0 = (1296*Ga0*beta1**3*ha0**4*ha3**2 - 5184*Ga0*beta1**3*ha0**3*ha1*ha2*ha3 + 2592*Ga0*beta1**3*ha0**3*ha2**3 - 1728*Ga0*beta1**3*ha0**2*ha1**3*ha3 + 2592*Ga0*beta1**3*ha0**2*ha1**2*ha2**2 - 2160*Ga0*beta1**3*ha0*ha1**4*ha2 + 1440*Ga0*beta1**3*ha1**6 + 702*Ga0*beta1**2*ha0**2*ha1*ha3 - 792*Ga0*beta1**2*ha0**2*ha2**2 - 378*Ga0*beta1**2*ha0*ha1**2*ha2 - 192*Ga0*beta1**2*ha1**4 + 54*Ga0*beta1*ha0*ha2 + 27*Ga0*beta1*ha1**2 - Ga0 + 648*Ga1*beta1**3*ha0**4*ha2*ha3 + 1296*Ga1*beta1**3*ha0**3*ha1**2*ha3 - 1296*Ga1*beta1**3*ha0**3*ha1*ha2**2 + 864*Ga1*beta1**3*ha0**2*ha1**3*ha2 - 1080*Ga1*beta1**3*ha0*ha1**5 - 18*Ga1*beta1**2*ha0**3*ha3 + 108*Ga1*beta1**2*ha0**2*ha1*ha2 + 3*Ga1*beta1**2*ha0*ha1**3 - Ga1*beta1*ha0*ha1 - 144*Ga2*beta1**3*ha0**4*ha1*ha3 - 288*Ga2*beta1**3*ha0**4*ha2**2 - 288*Ga2*beta1**3*ha0**3*ha1**2*ha2 + 720*Ga2*beta1**3*ha0**2*ha1**4 + 72*Ga2*beta1**2*ha0**3*ha2 + 66*Ga2*beta1**2*ha0**2*ha1**2 - 2*Ga2*beta1*ha0**2 - 108*Ga3*beta1**3*ha0**5*ha3 + 432*Ga3*beta1**3*ha0**4*ha1*ha2 - 360*Ga3*beta1**3*ha0**3*ha1**3 - 60*Ga3*beta1**2*ha0**3*ha1)/(ha0*(1188*beta1**3*ha0**4*ha3**2 - 4248*beta1**3*ha0**3*ha1*ha2*ha3 + 2304*beta1**3*ha0**3*ha2**3 - 792*beta1**3*ha0**2*ha1**3*ha3 + 1008*beta1**3*ha0**2*ha1**2*ha2**2 - 576*beta1**3*ha0*ha1**4*ha2 + 360*beta1**3*ha1**6 + 624*beta1**2*ha0**2*ha1*ha3 - 720*beta1**2*ha0**2*ha2**2 - 204*beta1**2*ha0*ha1**2*ha2 - 189*beta1**2*ha1**4 + 52*beta1*ha0*ha2 + 26*beta1*ha1**2 - 1)) elif (abs(ha2) < 10.0**(-15)): ua3 = (-360*Ga0*beta1**2*ha0**3*ha1*ha2**3 + 240*Ga0*beta1**2*ha0**2*ha1**3*ha2**2 + 24*Ga0*beta1**2*ha0*ha1**5*ha2 + 24*Ga0*beta1**2*ha1**7 + 72*Ga0*beta1*ha0**2*ha1*ha2**2 - 22*Ga0*beta1*ha0*ha1**3*ha2 - 11*Ga0*beta1*ha1**5 - 2*Ga0*ha0*ha1*ha2 + Ga0*ha1**3 + 192*Ga1*beta1**2*ha0**4*ha2**3 - 312*Ga1*beta1**2*ha0**3*ha1**2*ha2**2 - 48*Ga1*beta1**2*ha0**2*ha1**4*ha2 - 24*Ga1*beta1**2*ha0*ha1**6 - 28*Ga1*beta1*ha0**3*ha2**2 + 33*Ga1*beta1*ha0**2*ha1**2*ha2 + 11*Ga1*beta1*ha0*ha1**4 + Ga1*ha0**2*ha2 - Ga1*ha0*ha1**2 + 168*Ga2*beta1**2*ha0**4*ha1*ha2**2 + 72*Ga2*beta1**2*ha0**3*ha1**3*ha2 + 24*Ga2*beta1**2*ha0**2*ha1**5 - 44*Ga2*beta1*ha0**3*ha1*ha2 - 11*Ga2*beta1*ha0**2*ha1**3 + Ga2*ha0**2*ha1 - 96*Ga3*beta1**2*ha0**5*ha2**2 - 6*Ga3*beta1**2*ha0**4*ha1**2*ha2 - 24*Ga3*beta1**2*ha0**3*ha1**4 + 22*Ga3*beta1*ha0**4*ha2 + 11*Ga3*beta1*ha0**3*ha1**2 - Ga3*ha0**3)/(ha0**4*(2304*beta1**3*ha0**3*ha2**3 + 1008*beta1**3*ha0**2*ha1**2*ha2**2 - 576*beta1**3*ha0*ha1**4*ha2 + 360*beta1**3*ha1**6 - 720*beta1**2*ha0**2*ha2**2 - 204*beta1**2*ha0*ha1**2*ha2 - 189*beta1**2*ha1**4 + 52*beta1*ha0*ha2 + 26*beta1*ha1**2 - 1)) ua2 = (144*Ga0*beta1**2*ha0**3*ha2**3 + 36*Ga0*beta1**2*ha0**2*ha1**2*ha2**2 - 216*Ga0*beta1**2*ha0*ha1**4*ha2 - 108*Ga0*beta1**2*ha1**6 - 36*Ga0*beta1*ha0**2*ha2**2 - 15*Ga0*beta1*ha0*ha1**2*ha2 + 39*Ga0*beta1*ha1**4 + Ga0*ha0*ha2 - Ga0*ha1**2 + 216*Ga1*beta1**2*ha0**3*ha1*ha2**2 + 324*Ga1*beta1**2*ha0**2*ha1**3*ha2 + 108*Ga1*beta1**2*ha0*ha1**5 - 24*Ga1*beta1*ha0**2*ha1*ha2 - 39*Ga1*beta1*ha0*ha1**3 + Ga1*ha0*ha1 - 144*Ga2*beta1**2*ha0**4*ha2**2 - 252*Ga2*beta1**2*ha0**3*ha1**2*ha2 - 108*Ga2*beta1**2*ha0**2*ha1**4 + 36*Ga2*beta1*ha0**3*ha2 + 39*Ga2*beta1*ha0**2*ha1**2 - Ga2*ha0**2 + 72*Ga3*beta1**2*ha0**4*ha1*ha2 + 63*Ga3*beta1**2*ha0**3*ha1**3 - 21*Ga3*beta1*ha0**3*ha1)/(ha0**3*(2304*beta1**3*ha0**3*ha2**3 + 1008*beta1**3*ha0**2*ha1**2*ha2**2 - 576*beta1**3*ha0*ha1**4*ha2 + 360*beta1**3*ha1**6 - 720*beta1**2*ha0**2*ha2**2 - 204*beta1**2*ha0*ha1**2*ha2 - 189*beta1**2*ha1**4 + 52*beta1*ha0*ha2 + 26*beta1*ha1**2 - 1)) ua1 = (504*Ga0*beta1**2*ha0**2*ha1*ha2**2 - 384*Ga0*beta1**2*ha0*ha1**3*ha2 + 432*Ga0*beta1**2*ha1**5 - 48*Ga0*beta1*ha0*ha1*ha2 - 27*Ga0*beta1*ha1**3 + Ga0*ha1 - 576*Ga1*beta1**2*ha0**3*ha2**2 + 72*Ga1*beta1**2*ha0**2*ha1**2*ha2 - 432*Ga1*beta1**2*ha0*ha1**4 + 52*Ga1*beta1*ha0**2*ha2 + 27*Ga1*beta1*ha0*ha1**2 - Ga1*ha0 + 72*Ga2*beta1**2*ha0**3*ha1*ha2 + 312*Ga2*beta1**2*ha0**2*ha1**3 - 4*Ga2*beta1*ha0**2*ha1 + 96*Ga3*beta1**2*ha0**4*ha2 - 162*Ga3*beta1**2*ha0**3*ha1**2 - 6*Ga3*beta1*ha0**3)/(ha0**2*(2304*beta1**3*ha0**3*ha2**3 + 1008*beta1**3*ha0**2*ha1**2*ha2**2 - 576*beta1**3*ha0*ha1**4*ha2 + 360*beta1**3*ha1**6 - 720*beta1**2*ha0**2*ha2**2 - 204*beta1**2*ha0*ha1**2*ha2 - 189*beta1**2*ha1**4 + 52*beta1*ha0*ha2 + 26*beta1*ha1**2 - 1)) ua0 =(2592*Ga0*beta1**3*ha0**3*ha2**3 + 2592*Ga0*beta1**3*ha0**2*ha1**2*ha2**2 - 2160*Ga0*beta1**3*ha0*ha1**4*ha2 + 1440*Ga0*beta1**3*ha1**6 - 792*Ga0*beta1**2*ha0**2*ha2**2 - 378*Ga0*beta1**2*ha0*ha1**2*ha2 - 192*Ga0*beta1**2*ha1**4 + 54*Ga0*beta1*ha0*ha2 + 27*Ga0*beta1*ha1**2 - Ga0 - 1296*Ga1*beta1**3*ha0**3*ha1*ha2**2 + 864*Ga1*beta1**3*ha0**2*ha1**3*ha2 - 1080*Ga1*beta1**3*ha0*ha1**5 + 108*Ga1*beta1**2*ha0**2*ha1*ha2 + 3*Ga1*beta1**2*ha0*ha1**3 - Ga1*beta1*ha0*ha1 - 288*Ga2*beta1**3*ha0**4*ha2**2 - 288*Ga2*beta1**3*ha0**3*ha1**2*ha2 + 720*Ga2*beta1**3*ha0**2*ha1**4 + 72*Ga2*beta1**2*ha0**3*ha2 + 66*Ga2*beta1**2*ha0**2*ha1**2 - 2*Ga2*beta1*ha0**2 + 432*Ga3*beta1**3*ha0**4*ha1*ha2 - 360*Ga3*beta1**3*ha0**3*ha1**3 - 60*Ga3*beta1**2*ha0**3*ha1)/(ha0*(2304*beta1**3*ha0**3*ha2**3 + 1008*beta1**3*ha0**2*ha1**2*ha2**2 - 576*beta1**3*ha0*ha1**4*ha2 + 360*beta1**3*ha1**6 - 720*beta1**2*ha0**2*ha2**2 - 204*beta1**2*ha0*ha1**2*ha2 - 189*beta1**2*ha1**4 + 52*beta1*ha0*ha2 + 26*beta1*ha1**2 - 1)) elif (abs(ha1) < 10.0**(-15)): ua3 = (Ga0*ha1**3 - Ga1*ha0*ha1**2 + Ga2*ha0**2*ha1 - Ga3*ha0**3)/(ha0**4*(15*beta1*ha1**2 - 1)) ua2 = (-36*Ga0*beta1*ha1**4 + Ga0*ha1**2 + 36*Ga1*beta1*ha0*ha1**3 - Ga1*ha0*ha1 - 36*Ga2*beta1*ha0**2*ha1**2 + Ga2*ha0**2 + 21*Ga3*beta1*ha0**3*ha1)/(ha0**3*(120*beta1**2*ha1**4 - 23*beta1*ha1**2 + 1)) ua1 = (432*Ga0*beta1**2*ha1**5 - 27*Ga0*beta1*ha1**3 + Ga0*ha1 - 432*Ga1*beta1**2*ha0*ha1**4 + 27*Ga1*beta1*ha0*ha1**2 - Ga1*ha0 + 312*Ga2*beta1**2*ha0**2*ha1**3 - 4*Ga2*beta1*ha0**2*ha1 - 162*Ga3*beta1**2*ha0**3*ha1**2 - 6*Ga3*beta1*ha0**3)/(ha0**2*(360*beta1**3*ha1**6 - 189*beta1**2*ha1**4 + 26*beta1*ha1**2 - 1)) ua0 = (1440*Ga0*beta1**3*ha1**6 - 192*Ga0*beta1**2*ha1**4 + 27*Ga0*beta1*ha1**2 - Ga0 - 1080*Ga1*beta1**3*ha0*ha1**5 + 3*Ga1*beta1**2*ha0*ha1**3 - Ga1*beta1*ha0*ha1 + 720*Ga2*beta1**3*ha0**2*ha1**4 + 66*Ga2*beta1**2*ha0**2*ha1**2 - 2*Ga2*beta1*ha0**2 - 360*Ga3*beta1**3*ha0**3*ha1**3 - 60*Ga3*beta1**2*ha0**3*ha1)/(ha0*(360*beta1**3*ha1**6 - 189*beta1**2*ha1**4 + 26*beta1*ha1**2 - 1)) else: ua3 =Ga3/ha0 ua2 =Ga2/ha0 ua1 =Ga1/ha0 + 6*Ga3*beta1*ha0 ua0 =Ga0/ha0 + 2*Ga2*beta1*ha0 else: ua3 =Ga3/ha3 ua2 =Ga2/ha2 ua1 =Ga1/ha1 ua0 =Ga0/ha0 return ua0,ua1,ua3,ua2 dx = 0.1 h0 = 2 G0 = 1 print('A') A = SolveForuEdges(2.0/3.0,2,2,2,2,1,1,1,1,dx) print(A) print('A') A = SolveForuEdges(2.0/3.0,2,2,2,0,1,1,1,1,dx) print(A) print('A') A = SolveForuEdges(2.0/3.0,2,2,0,0,1,1,1,1,dx) print(A) print('A') A = SolveForuEdges(2.0/3.0,2,0,0,0,1,1,1,1,dx) print(A) # print('A') # A = SolveForuEdges(2.0/3.0,1,2,3,4,0,0,0,0,dx) # print('B') # B = SolveForuEdges(2.0/3.0,1,2,3,4,1,0,0,0,dx) # print('C') # C = SolveForuEdges(2.0/3.0,1,2,3,4,1,1,0,0,dx) # print('D') # D = SolveForuEdges(2.0/3.0,1,2,3,4,1,1,1,0,dx) # print('E') # E = SolveForuEdges(2.0/3.0,1,2,3,4,1,1,1,1,dx) #jpLets Check
b2e0397ffe57b93e5e6ae261bde6a10fee12cd3a
b213c8b10b831d5fdacfb65c145450f6af846a4f
/blog/blog.py
ce23082f7c014309cc37d87c9b6217fc56981450
[]
no_license
tuomas56/random-python-stuff
1df260532abeb0a3da02560ed23ad1ee1995f5b2
12737127a31f1a3b84456021e8a5ac81545324da
refs/heads/master
2020-12-31T04:42:12.123345
2015-11-25T21:54:28
2015-11-25T21:54:28
46,889,061
0
0
null
null
null
null
UTF-8
Python
false
false
3,649
py
from bottle import server_names, ServerAdapter, run, request, Bottle, redirect,response, abort import markdown import re import os import pickle import uuid import scrypt import base64 from datetime import datetime, timedelta from cherrypy import wsgiserver from cherrypy.wsgiserver.ssl_builtin import BuiltinSSLAdapter from config import SSL_PRIV_KEY, PASS_DB, SALT_DB, HASH_TIME SCRIPT_RE = re.compile(r"\<script\>(.*?)\<\\script\>") HASH_TIME = timedelta.strptime("%H:%M:%S") InvalidUserPass = RuntimeError("Invalid username or password.") class SSLCherryPy(ServerAdapter): def run(self, handler): server = wsgiserver.CherryPyWSGIServer((self.host, self.port), handler) server.ssl_adapter = BuiltinSSLAdapter(SSL_PRIV_KEY, SSL_PRIV_KEY) try: server.start() finally: server.stop() server_names['sslcherrypy'] = SSLCherryPy def enable_cors(fn): def _enable_cors(*args, **kwargs): response.headers['Access-Control-Allow-Origin'] = '*' return fn(*args, **kwargs) return _enable_cors app = Bottle() current_hashes = {} with open(PASS_DB, "rb") as f: pass_db = pickle.load(f) with open(SALT_DB, "rb") as f: salt_db = pickle.load(f) class HashData: def __init__(self, hash, expiry, user): self.hash = hash self.expiry = expiry self.user = user def expired(self): return self.expiry < datetime.now() def authenticated(fn): def _authenticated(hash, *args, **kwargs): if hash in current_hashes: if not current_hashes[hash].expired(): return fn(current_hashes[hash], *args, **kwargs) else: del current_hashes[hash] redirect('/login/expired') else: redirect('/login/expired') return _authenticated def action_login(user, passwd): if user not in pass_db or pass_db[user] != passwd_hash(user, passwd): raise InvalidUserPass else: return generate_hash(user) def generate_hash(user): expiry = datetime.now() + HASH_TIME hash = uuid.uuid4() return Hash(hash, expiry, user) def generate_salt(): return base64.b64encode(os.urandom(16)).decode() def passwd_hash(user, passwd): return salt_db[user] + scrypt.hash(passwd, salt_db[user], mintime=0.1) @app.route("/do/login/<user>/<passwd>") @enable_cors def do_login(user, passwd): try: current_hashes[user] = action_login(user, passwd) redirect('/home/%s' % current_hashes[user]) except RuntimeError: redirect('/login/invalid') @app.route("/login/<error>") def login(error): return template('pages/login.html.tpl', error=login_error(error)) def login_error(error): if error = 'invalid': return 'Invalid username or password.' elif error = 'expired': return 'Hash has expired; please login.' elif error = 'none': return '' else: raise RuntimeError("No such login error.") class Article: def __init__(self, author, date_written, tags, text): self.author = author self.date_written = date_written self.tags = tags self.text = text class Comment: def __init__(self, author, date_posted, parent, article, text): self.author = author self.date_posted = date_posted self.parent = parent self.article = article self.text = text def process_article(text): lines = text.split("\n") author, date_written, tags, *lines = lines date_written = datetime.strptime(date_written, "%d/%m/%Y %H:%M") tags = tags.split(",") text = markdown.markdown('\n'.join(lines)) return Article(author, date_written, tags, text) def process_comment(author, date_posted, parent, article, text): return Comment(author, datetime.strptime(date_written, "%d/%m/%Y %H:%M"),article,SCRIPT_RE.replace(markdown.markdown(text), r"<code>\1</code>"))
b191a119c6debbe2643f12b03216b61002e09590
8f4c59e69cce2f6e932f55b3c65aae376b206a2c
/笨办法学python/ex47/skeleton/tests/ex47_tests.py
00d322ae6ea3a7f953674e7ad506bc4a1713fde2
[]
no_license
zmjm4/python
ef7206292f1c3a3a5763b25527024999de5e8e79
44cf74c0f16891c351ce214762218ccf2d7353a0
refs/heads/master
2020-05-27T17:23:48.776167
2018-05-24T07:14:16
2018-05-24T07:14:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,022
py
# -*- coding: utf-8 -*- from nose.tools import * from ex47.game import Room def test_room(): gold=Room("GoldRoom", """This room has gold in it you can grab. There's a door to the north.""") assert_equal(gold.name,"GoldRoom") assert_equal(gold.paths,{}) def test_room_paths(): center = Room("Center", "Test room in the center.") north = Room("North", "Test room in the north.") south = Room("South", "Test room in the south.") center.add_paths({'north':north,'south':south}) assert_equal(center.go('north'),north) assert_equal(center.go('south'),south) def test_map(): start = Room("Start", "You can go west and down a hole.") west = Room("Trees", "There are trees here, you can go east.") down = Room("Dungeon", "It's dark down here, you can go up.") start.add_paths({'west':west,'down':down}) west.add_paths({'east':start}) down.add_paths({'up':start}) assert_equal(start.go('west'),west) assert_equal(start.go('west').go('east'),start) assert_equal(start.go('down').go('up'),start)
58c46c9a110a1eb99789632d26ae3ae38b04e23d
9463d85666453fd8e57a0ce9e515e4765ae2b60a
/cwetsy/cwetsy/parser/browse_parser.py
a049cb5b8bc4542890ee7856ce7379b97e183bed
[ "MIT" ]
permissive
trujunzhang/djzhang-targets
dc6c3086553a5450fb239cc1cef5330a51a02e1f
c2e327acde9d51f0455e7243f17d93d74b579501
refs/heads/master
2021-01-09T20:52:31.258826
2016-07-16T13:18:53
2016-07-16T13:18:53
60,747,429
2
1
null
null
null
null
UTF-8
Python
false
false
204
py
from cwetsy.parser.base_parser import BaseParser class BrowseParser(BaseParser): def __init__(self): super(BrowseParser, self).__init__() def parse(self, url, hxs): return None
68e4256f5b371f2525935ebc77355c859a1a2757
2993adb383fed317e6a83f2b8c2cacd640d19fb3
/bookmarks/account/authentication.py
2a9db5db7359fcc4a5a5ddcca0b1e3170ebbf911
[]
no_license
Dyavathrocky/socialapp
0e811a957a224b30aa32e8a24e3253c1b49a25df
1dc071b69f9258c4f540211e25635ac277a6f6e4
refs/heads/master
2022-12-02T03:42:32.778466
2020-08-21T13:19:25
2020-08-21T13:19:25
286,060,425
0
0
null
null
null
null
UTF-8
Python
false
false
579
py
from django.contrib.auth.models import User class EmailAuthBackend(object): """ Authenticate using an e-mail address. """ def authenticate(self, request, username=None, password=None): try: user = User.objects.get(email=username) if user.check_password(password): return user return None except User.DoesNotExist: return None def get_user(self, user_id): try: return User.objects.get(pk=user_id) except User.DoesNotExist: return None
9478688498c1c1a485af4ce8894c0f2948b2b74b
6223dc2e5de7921696cb34fb62142fd4a4efe361
/.metadata/.plugins/org.eclipse.core.resources/.history/25/0083d7fa3b6a00141afa8a8ed49a3dc2
7b564846565a3335ffc0ed085fe8f0d38b42e923
[]
no_license
Mushirahmed/python_workspace
5ef477b2688e8c25b1372f546752501ee53d93e5
46e2ed783b17450aba29e4e2df7b656522b2b03b
refs/heads/master
2021-03-12T19:24:50.598982
2015-05-25T10:23:54
2015-05-25T10:23:54
24,671,376
0
1
null
2015-02-06T09:27:40
2014-10-01T08:40:33
Python
UTF-8
Python
false
false
5,466
#!/usr/bin/env python # # Copyright 2014 <+YOU OR YOUR COMPANY+>. # # This is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # This software is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this software; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # import numpy #from operator import add #import copy #from gnuradio import gr import gras class expo(gras.Block): """ docstring for block expo """ def __init__(self): gras.Block.__init__(self, name="expo", in_sig=[numpy.float32], out_sig=[numpy.float32]) def set_parameters(self,g,a,b): self.gama=g self.alpha=a self.beta=b def yield_times(self): from datetime import date, time, datetime, timedelta start = datetime.combine(date.today(), time(0, 0)) yield start.strftime("%S") while True: start += timedelta(seconds=0.5) yield start.strftime("%S") def work(self, input_items, output_items): in0 = input_items[0] out = output_items[0] tmrg = [] o1 = [] o2 = [] o3 = [] ans = [] final_output = [] gen = self.yield_times() for ii in range(20): tmrg.append(gen.next()) # print "tmrg :",tmrg """for i1 in range(0,10): o1.append((self.gama)/(self.alpha*self.beta)) print "o1 : ", o1 for i2 in range(0,10): o2.append(((self.gama)*(-numpy.exp(self.alpha)))/(self.alpha*(self.beta-self.alpha))) print "o2 : ",o2 for i3 in range(0,10): o3.append(((self.gama)*(-numpy.exp(self.beta)))/(self.beta*(self.alpha-self.beta))) print "o3 : ",o3 #ans.append(o1+o2+o3) for i in range(0,10): ans.append(list(numpy.array(o1[i])+numpy.array(o2[i])+numpy.array(o3[i]))) print "Final Ans : ",ans print "Type out : ",type(out) print "Type ans :",type(ans) out = copy.copy(ans) #out[0:1] = ans print "Output is : " ,out self.consume(0,1) self.produce(0,1)""" #o1.append((self.gama)/(self.alpha*self.beta)) #print "o1 : ", o1 for i in range(0,20): o1.append((self.gama)/(self.alpha*self.beta)) print "o1 : ", o1[i] o2.append(((self.gama)*(numpy.exp(-(self.alpha*in0[0]*i)))/(self.alpha*(self.beta-self.alpha)))) print "o2 : ",o2[i] o3.append(((self.gama)*(numpy.exp(-(self.beta*in0[0]*i)))/(self.beta*(self.alpha-self.beta)))) print "o3 : ",o3[i] ans.append(o1[i]+o2[i]+o3[i]) print "Final Ans : ",ans #print "Type out : ",type(out) #print "Type ans :",type(ans) #out[0:1] = ans #print "Output : ", out[0] """for i in range(0,len(ans)): #out = copy.copy(ans[i]) #out[0:1] = ans #print "Output is : " ,out""" """for i1 in range(0,len(ans)): final_output.append(o1+ans[i1]) print "Final OutPut : ", final_output""" for i1 in range(0,len(ans)): out[0] = ans[i1] print "Output Sent : ", out #out[:len(final_output)] = copy.copy(final_output) self.consume(0,1) self.produce(0,1) """result = [] for i in range(0,20): result.append(numpy.exp(i)) print "Result : ",result out[0] = result self.consume(0,1) self.produce(0,1) """ #o2 = -numpy.exp(-2*in0[0:1]) #o3 = -numpy.exp(-3*in0[0:1]) #o2=numpy.exp(-(in0[0:1]*self.alpha)) #print("o2 :",o2) #o3=numpy.sin((self.freq*in0[0:1])+(self.sigma)) #print("o3 :",o3) #o4=numpy.sqrt(o1-numpy.square(self.zita)) #print("o4 :",o4) """ans = o1-(mul/o4) #ans.append(o1-((numpy.exp(-in0[0:1]*self.sigma)*(numpy.sin((self.freq*in0[0:1])+(self.sigma))))/numpy.sqrt(o1-numpy.square(self.zita)))) print("Final Value : ",ans) out[0:1] = ans""" #o2 = -numpy.exp(-2*tmrg) #o3 = -numpy.exp(-3*in0[0:1]) #o2 = numpy.exp(-in0[0:1]*self.alpha) #o3 = numpy.exp(-in0[0:1]*self.beta) #o4 = numpy.sqrt(1-numpy.square(self.alpha)) #ans = 1-((o2*o3)/o4) #ans.append(o2) #ans.append(o1-((numpy.exp(-in0[0:1]*self.sigma)*(numpy.sin((self.freq*in0[0:1])+(self.sigma))))/numpy.sqrt(o1-numpy.square(self.zita)))) #print("Final Value : ",ans) #out[0:1] = ans #out = copy.copy(ans) #self.consume(0,1) #self.produce(0,1) #return len(output_items[0])
d3e241d4b04a38c79e01d0b0348b62f60c6c72fa
b44ba1ca68154a37936ae3822ca016b5d9a99a2a
/Redis/redis_pipe.py
bfde6e48477131440764d56064521f1f1f917c54
[]
no_license
liuxingrichu/advanced-network-program
6e17d30980e21b3397ac5ed5e404a282983a6869
3f84c4600a35af12a68a4c512afbe60ddf6347b1
refs/heads/master
2021-01-23T02:05:45.933255
2017-08-06T09:15:54
2017-08-06T09:15:54
85,964,385
0
1
null
null
null
null
UTF-8
Python
false
false
427
py
#!/usr/bin/env python # -*- coding:utf-8 -*- import redis import time ''' 使用pipeline实现一次请求,执行多条命令 ''' # db的选择范围为0-15 pool = redis.ConnectionPool(host='localhost', port=6379, db=12) r = redis.Redis(connection_pool=pool) # pipe = r.pipeline(transaction=False) pipe = r.pipeline(transaction=True) pipe.set('name', 'Tom') time.sleep(30) pipe.set('role', 'teacher') pipe.execute()
4c3c98dc139b2f8f584f48a9f1db91fb63471c18
5eea120356afc15cc3edb71f8864d6771ad865c6
/futures/var_model/__init__.py
e9af4c55745c0234467df114b12290c6b8f19f73
[ "MIT" ]
permissive
ShubraChowdhury/Investment_Finance
469d5e5a200616eee830be18cb4a86d54319a30b
3da761d755278d3d2de8c201b56d4ff9cb23def4
refs/heads/master
2022-12-12T11:52:33.585329
2021-09-23T18:13:15
2021-09-23T18:13:15
153,317,318
2
0
null
2022-12-08T00:45:34
2018-10-16T16:22:56
Jupyter Notebook
UTF-8
Python
false
false
312
py
""" The __init__.py files are required to make Python treat the directories as containing packages; this is done to prevent directories with a common name, such as string, from unintentionally hiding valid modules that occur later (deeper) on the module search path. @author: ucaiado Created on 09/05/2016 """
91f6f93546e8240aff32445f1e68c11ccfe19d83
4d2238210813c1581bf44f64d8a63196f75d2df4
/tem.py
ece18216c221c476bc14897a6b8a415a8a9197d1
[]
no_license
wwtang/code02
b1600d34907404c81fa523cfdaa74db0021b8bb3
9f03dda7b339d8c310c8a735fc4f6d795b153801
refs/heads/master
2020-12-24T14:10:33.738734
2012-12-14T04:24:47
2012-12-14T04:24:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
214
py
color = raw_input('please select the color: ') if color == "white" or color == "black": print "the color was black or white" elif color > "k" : print "the color start with letter after the 'K' in alphabet"
a4ce7faf8a9617e3a7dcffa89948c091bf32dc3f
1e11d6f9245c55e21edfb24f4340d52e3f7f327f
/dillo/migrations/0078_organizations.py
ecdc1eed4f69e90c13232e53b67ef2f646fc6389
[]
no_license
armadillica/dillo
996e8462f4f76349ecc49ecb08cdd6c8c66e072b
960aed85f8438109bed9883321891305e1db8b10
refs/heads/main
2023-08-04T06:45:34.570071
2023-06-04T00:07:57
2023-06-04T00:07:57
30,461,275
79
18
null
2023-08-02T00:22:40
2015-02-07T16:17:43
Python
UTF-8
Python
false
false
4,925
py
# Generated by Django 3.2.13 on 2022-11-19 22:29 import dillo.models.mixins from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django_countries.fields def forwards_func(apps, schema_editor): """Set default cateogries.""" OrganizationCategory = apps.get_model('dillo', 'OrganizationCategory') db_alias = schema_editor.connection.alias for c in {'3D', '2D', 'Features', 'Shorts', 'Games'}: OrganizationCategory.objects.using(db_alias).create(name=c) class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('dillo', '0077_profile_job'), ] operations = [ migrations.CreateModel( name='OrganizationCategory', fields=[ ( 'id', models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name='ID' ), ), ('name', models.CharField(max_length=128, unique=True)), ], options={ 'verbose_name_plural': 'Organization categories', }, ), migrations.CreateModel( name='Organization', fields=[ ( 'id', models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name='ID' ), ), ( 'created_at', models.DateTimeField(auto_now_add=True, verbose_name='date created'), ), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='date edited')), ('name', models.CharField(max_length=255, unique=True)), ( 'visibility', models.CharField( choices=[ ('public', 'Public'), ('unlisted', 'Unlisted'), ('under_review', 'Under Review'), ], default='under_review', max_length=16, ), ), ( 'description', models.TextField( blank=True, help_text='A description of the organization activities.', null=True, ), ), ('website', models.URLField(max_length=120)), ( 'logo', models.ImageField( blank=True, height_field='logo_height', upload_to=dillo.models.mixins.get_upload_to_hashed_path, width_field='logo_width', help_text='A square picture, around 512x512.', ), ), ('logo_height', models.PositiveIntegerField(null=True)), ('logo_width', models.PositiveIntegerField(null=True)), ('city', models.CharField(blank=True, max_length=256, null=True)), ( 'country', django_countries.fields.CountryField(blank=True, max_length=2, null=True), ), ( 'is_online', models.BooleanField( default=False, help_text='Operates fully online, with no physical HQ.' ), ), ('is_active', models.BooleanField(default=True)), ( 'categories', models.ManyToManyField( help_text='Keywords to identify this organization.', null=True, to='dillo.OrganizationCategory', ), ), ( 'city_ref', models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='organizations', to='dillo.city', ), ), ( 'user', models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, ), ), ], options={ 'abstract': False, }, ), migrations.RunPython(forwards_func, migrations.RunPython.noop), ]
95482e1fc560e2c251c59b36d951f928ba1157ba
06292f96cba132ca57777672a447cfff7c5abee6
/week5/tut/submit/1.py
b099a6a693b68bb37a739181ac6b9f40fa36844d
[]
no_license
kietteik/ppl
1746440b12affe71e67d6f958922b32b1fdaab5c
2ee60582e81595b8d8b5d0f8212d20151cfe9264
refs/heads/master
2023-03-01T00:24:36.969189
2021-01-31T05:15:13
2021-01-31T05:15:13
305,802,556
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
def double(lst): '''1. a''' return [i * 2 for i in lst] def double(lst): '''1. b''' if not lst: return [] return [lst[0] * 2] + double(lst[1:]) def double(lst): '''1. c''' return list(map(lambda x: x * 2, lst))
bf0d24f0abd3437a1d7ea9f45e109f8389451f71
42c48f3178a48b4a2a0aded547770027bf976350
/google/ads/google_ads/v4/proto/resources/ad_group_pb2.py
9b8b6e30e51cd9adcbc7d0531551288d3aeb74cc
[ "Apache-2.0" ]
permissive
fiboknacky/google-ads-python
e989464a85f28baca1f28d133994c73759e8b4d6
a5b6cede64f4d9912ae6ad26927a54e40448c9fe
refs/heads/master
2021-08-07T20:18:48.618563
2020-12-11T09:21:29
2020-12-11T09:21:29
229,712,514
0
0
Apache-2.0
2019-12-23T08:44:49
2019-12-23T08:44:49
null
UTF-8
Python
false
true
27,203
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads_v4/proto/resources/ad_group.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.ads.google_ads.v4.proto.common import custom_parameter_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_common_dot_custom__parameter__pb2 from google.ads.google_ads.v4.proto.common import explorer_auto_optimizer_setting_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_common_dot_explorer__auto__optimizer__setting__pb2 from google.ads.google_ads.v4.proto.common import targeting_setting_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_common_dot_targeting__setting__pb2 from google.ads.google_ads.v4.proto.enums import ad_group_ad_rotation_mode_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_ad__group__ad__rotation__mode__pb2 from google.ads.google_ads.v4.proto.enums import ad_group_status_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_ad__group__status__pb2 from google.ads.google_ads.v4.proto.enums import ad_group_type_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_ad__group__type__pb2 from google.ads.google_ads.v4.proto.enums import bidding_source_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_bidding__source__pb2 from google.ads.google_ads.v4.proto.enums import targeting_dimension_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_targeting__dimension__pb2 from google.api import field_behavior_pb2 as google_dot_api_dot_field__behavior__pb2 from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 from google.protobuf import wrappers_pb2 as google_dot_protobuf_dot_wrappers__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v4/proto/resources/ad_group.proto', package='google.ads.googleads.v4.resources', syntax='proto3', serialized_options=_b('\n%com.google.ads.googleads.v4.resourcesB\014AdGroupProtoP\001ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v4/resources;resources\242\002\003GAA\252\002!Google.Ads.GoogleAds.V4.Resources\312\002!Google\\Ads\\GoogleAds\\V4\\Resources\352\002%Google::Ads::GoogleAds::V4::Resources'), serialized_pb=_b('\n6google/ads/googleads_v4/proto/resources/ad_group.proto\x12!google.ads.googleads.v4.resources\x1a;google/ads/googleads_v4/proto/common/custom_parameter.proto\x1aJgoogle/ads/googleads_v4/proto/common/explorer_auto_optimizer_setting.proto\x1a<google/ads/googleads_v4/proto/common/targeting_setting.proto\x1a\x43google/ads/googleads_v4/proto/enums/ad_group_ad_rotation_mode.proto\x1a\x39google/ads/googleads_v4/proto/enums/ad_group_status.proto\x1a\x37google/ads/googleads_v4/proto/enums/ad_group_type.proto\x1a\x38google/ads/googleads_v4/proto/enums/bidding_source.proto\x1a=google/ads/googleads_v4/proto/enums/targeting_dimension.proto\x1a\x1fgoogle/api/field_behavior.proto\x1a\x19google/api/resource.proto\x1a\x1egoogle/protobuf/wrappers.proto\x1a\x1cgoogle/api/annotations.proto\"\xe0\x0f\n\x07\x41\x64Group\x12?\n\rresource_name\x18\x01 \x01(\tB(\xe0\x41\x05\xfa\x41\"\n googleads.googleapis.com/AdGroup\x12,\n\x02id\x18\x03 \x01(\x0b\x32\x1b.google.protobuf.Int64ValueB\x03\xe0\x41\x03\x12*\n\x04name\x18\x04 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12N\n\x06status\x18\x05 \x01(\x0e\x32>.google.ads.googleads.v4.enums.AdGroupStatusEnum.AdGroupStatus\x12M\n\x04type\x18\x0c \x01(\x0e\x32:.google.ads.googleads.v4.enums.AdGroupTypeEnum.AdGroupTypeB\x03\xe0\x41\x05\x12h\n\x10\x61\x64_rotation_mode\x18\x16 \x01(\x0e\x32N.google.ads.googleads.v4.enums.AdGroupAdRotationModeEnum.AdGroupAdRotationMode\x12]\n\rbase_ad_group\x18\x12 \x01(\x0b\x32\x1c.google.protobuf.StringValueB(\xe0\x41\x03\xfa\x41\"\n googleads.googleapis.com/AdGroup\x12;\n\x15tracking_url_template\x18\r \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12N\n\x15url_custom_parameters\x18\x06 \x03(\x0b\x32/.google.ads.googleads.v4.common.CustomParameter\x12Y\n\x08\x63\x61mpaign\x18\n \x01(\x0b\x32\x1c.google.protobuf.StringValueB)\xe0\x41\x05\xfa\x41#\n!googleads.googleapis.com/Campaign\x12\x33\n\x0e\x63pc_bid_micros\x18\x0e \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x33\n\x0e\x63pm_bid_micros\x18\x0f \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x36\n\x11target_cpa_micros\x18\x1b \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x38\n\x0e\x63pv_bid_micros\x18\x11 \x01(\x0b\x32\x1b.google.protobuf.Int64ValueB\x03\xe0\x41\x03\x12\x36\n\x11target_cpm_micros\x18\x1a \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x31\n\x0btarget_roas\x18\x1e \x01(\x0b\x32\x1c.google.protobuf.DoubleValue\x12;\n\x16percent_cpc_bid_micros\x18\x14 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x65\n\x1f\x65xplorer_auto_optimizer_setting\x18\x15 \x01(\x0b\x32<.google.ads.googleads.v4.common.ExplorerAutoOptimizerSetting\x12n\n\x1c\x64isplay_custom_bid_dimension\x18\x17 \x01(\x0e\x32H.google.ads.googleads.v4.enums.TargetingDimensionEnum.TargetingDimension\x12\x36\n\x10\x66inal_url_suffix\x18\x18 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12K\n\x11targeting_setting\x18\x19 \x01(\x0b\x32\x30.google.ads.googleads.v4.common.TargetingSetting\x12\x45\n\x1b\x65\x66\x66\x65\x63tive_target_cpa_micros\x18\x1c \x01(\x0b\x32\x1b.google.protobuf.Int64ValueB\x03\xe0\x41\x03\x12h\n\x1b\x65\x66\x66\x65\x63tive_target_cpa_source\x18\x1d \x01(\x0e\x32>.google.ads.googleads.v4.enums.BiddingSourceEnum.BiddingSourceB\x03\xe0\x41\x03\x12@\n\x15\x65\x66\x66\x65\x63tive_target_roas\x18\x1f \x01(\x0b\x32\x1c.google.protobuf.DoubleValueB\x03\xe0\x41\x03\x12i\n\x1c\x65\x66\x66\x65\x63tive_target_roas_source\x18 \x01(\x0e\x32>.google.ads.googleads.v4.enums.BiddingSourceEnum.BiddingSourceB\x03\xe0\x41\x03\x12[\n\x06labels\x18! \x03(\x0b\x32\x1c.google.protobuf.StringValueB-\xe0\x41\x03\xfa\x41\'\n%googleads.googleapis.com/AdGroupLabel:O\xea\x41L\n googleads.googleapis.com/AdGroup\x12(customers/{customer}/adGroups/{ad_group}B\xf9\x01\n%com.google.ads.googleads.v4.resourcesB\x0c\x41\x64GroupProtoP\x01ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v4/resources;resources\xa2\x02\x03GAA\xaa\x02!Google.Ads.GoogleAds.V4.Resources\xca\x02!Google\\Ads\\GoogleAds\\V4\\Resources\xea\x02%Google::Ads::GoogleAds::V4::Resourcesb\x06proto3') , dependencies=[google_dot_ads_dot_googleads__v4_dot_proto_dot_common_dot_custom__parameter__pb2.DESCRIPTOR,google_dot_ads_dot_googleads__v4_dot_proto_dot_common_dot_explorer__auto__optimizer__setting__pb2.DESCRIPTOR,google_dot_ads_dot_googleads__v4_dot_proto_dot_common_dot_targeting__setting__pb2.DESCRIPTOR,google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_ad__group__ad__rotation__mode__pb2.DESCRIPTOR,google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_ad__group__status__pb2.DESCRIPTOR,google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_ad__group__type__pb2.DESCRIPTOR,google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_bidding__source__pb2.DESCRIPTOR,google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_targeting__dimension__pb2.DESCRIPTOR,google_dot_api_dot_field__behavior__pb2.DESCRIPTOR,google_dot_api_dot_resource__pb2.DESCRIPTOR,google_dot_protobuf_dot_wrappers__pb2.DESCRIPTOR,google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _ADGROUP = _descriptor.Descriptor( name='AdGroup', full_name='google.ads.googleads.v4.resources.AdGroup', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v4.resources.AdGroup.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\340A\005\372A\"\n googleads.googleapis.com/AdGroup'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='id', full_name='google.ads.googleads.v4.resources.AdGroup.id', index=1, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\340A\003'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='google.ads.googleads.v4.resources.AdGroup.name', index=2, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='status', full_name='google.ads.googleads.v4.resources.AdGroup.status', index=3, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='google.ads.googleads.v4.resources.AdGroup.type', index=4, number=12, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\340A\005'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='ad_rotation_mode', full_name='google.ads.googleads.v4.resources.AdGroup.ad_rotation_mode', index=5, number=22, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='base_ad_group', full_name='google.ads.googleads.v4.resources.AdGroup.base_ad_group', index=6, number=18, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\340A\003\372A\"\n googleads.googleapis.com/AdGroup'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tracking_url_template', full_name='google.ads.googleads.v4.resources.AdGroup.tracking_url_template', index=7, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='url_custom_parameters', full_name='google.ads.googleads.v4.resources.AdGroup.url_custom_parameters', index=8, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='campaign', full_name='google.ads.googleads.v4.resources.AdGroup.campaign', index=9, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\340A\005\372A#\n!googleads.googleapis.com/Campaign'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cpc_bid_micros', full_name='google.ads.googleads.v4.resources.AdGroup.cpc_bid_micros', index=10, number=14, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cpm_bid_micros', full_name='google.ads.googleads.v4.resources.AdGroup.cpm_bid_micros', index=11, number=15, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_cpa_micros', full_name='google.ads.googleads.v4.resources.AdGroup.target_cpa_micros', index=12, number=27, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cpv_bid_micros', full_name='google.ads.googleads.v4.resources.AdGroup.cpv_bid_micros', index=13, number=17, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\340A\003'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_cpm_micros', full_name='google.ads.googleads.v4.resources.AdGroup.target_cpm_micros', index=14, number=26, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_roas', full_name='google.ads.googleads.v4.resources.AdGroup.target_roas', index=15, number=30, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='percent_cpc_bid_micros', full_name='google.ads.googleads.v4.resources.AdGroup.percent_cpc_bid_micros', index=16, number=20, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='explorer_auto_optimizer_setting', full_name='google.ads.googleads.v4.resources.AdGroup.explorer_auto_optimizer_setting', index=17, number=21, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='display_custom_bid_dimension', full_name='google.ads.googleads.v4.resources.AdGroup.display_custom_bid_dimension', index=18, number=23, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='final_url_suffix', full_name='google.ads.googleads.v4.resources.AdGroup.final_url_suffix', index=19, number=24, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='targeting_setting', full_name='google.ads.googleads.v4.resources.AdGroup.targeting_setting', index=20, number=25, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='effective_target_cpa_micros', full_name='google.ads.googleads.v4.resources.AdGroup.effective_target_cpa_micros', index=21, number=28, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\340A\003'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='effective_target_cpa_source', full_name='google.ads.googleads.v4.resources.AdGroup.effective_target_cpa_source', index=22, number=29, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\340A\003'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='effective_target_roas', full_name='google.ads.googleads.v4.resources.AdGroup.effective_target_roas', index=23, number=31, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\340A\003'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='effective_target_roas_source', full_name='google.ads.googleads.v4.resources.AdGroup.effective_target_roas_source', index=24, number=32, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\340A\003'), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='labels', full_name='google.ads.googleads.v4.resources.AdGroup.labels', index=25, number=33, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=_b('\340A\003\372A\'\n%googleads.googleapis.com/AdGroupLabel'), file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('\352AL\n googleads.googleapis.com/AdGroup\022(customers/{customer}/adGroups/{ad_group}'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=721, serialized_end=2737, ) _ADGROUP.fields_by_name['id'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _ADGROUP.fields_by_name['name'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _ADGROUP.fields_by_name['status'].enum_type = google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_ad__group__status__pb2._ADGROUPSTATUSENUM_ADGROUPSTATUS _ADGROUP.fields_by_name['type'].enum_type = google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_ad__group__type__pb2._ADGROUPTYPEENUM_ADGROUPTYPE _ADGROUP.fields_by_name['ad_rotation_mode'].enum_type = google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_ad__group__ad__rotation__mode__pb2._ADGROUPADROTATIONMODEENUM_ADGROUPADROTATIONMODE _ADGROUP.fields_by_name['base_ad_group'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _ADGROUP.fields_by_name['tracking_url_template'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _ADGROUP.fields_by_name['url_custom_parameters'].message_type = google_dot_ads_dot_googleads__v4_dot_proto_dot_common_dot_custom__parameter__pb2._CUSTOMPARAMETER _ADGROUP.fields_by_name['campaign'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _ADGROUP.fields_by_name['cpc_bid_micros'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _ADGROUP.fields_by_name['cpm_bid_micros'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _ADGROUP.fields_by_name['target_cpa_micros'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _ADGROUP.fields_by_name['cpv_bid_micros'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _ADGROUP.fields_by_name['target_cpm_micros'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _ADGROUP.fields_by_name['target_roas'].message_type = google_dot_protobuf_dot_wrappers__pb2._DOUBLEVALUE _ADGROUP.fields_by_name['percent_cpc_bid_micros'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _ADGROUP.fields_by_name['explorer_auto_optimizer_setting'].message_type = google_dot_ads_dot_googleads__v4_dot_proto_dot_common_dot_explorer__auto__optimizer__setting__pb2._EXPLORERAUTOOPTIMIZERSETTING _ADGROUP.fields_by_name['display_custom_bid_dimension'].enum_type = google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_targeting__dimension__pb2._TARGETINGDIMENSIONENUM_TARGETINGDIMENSION _ADGROUP.fields_by_name['final_url_suffix'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _ADGROUP.fields_by_name['targeting_setting'].message_type = google_dot_ads_dot_googleads__v4_dot_proto_dot_common_dot_targeting__setting__pb2._TARGETINGSETTING _ADGROUP.fields_by_name['effective_target_cpa_micros'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _ADGROUP.fields_by_name['effective_target_cpa_source'].enum_type = google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_bidding__source__pb2._BIDDINGSOURCEENUM_BIDDINGSOURCE _ADGROUP.fields_by_name['effective_target_roas'].message_type = google_dot_protobuf_dot_wrappers__pb2._DOUBLEVALUE _ADGROUP.fields_by_name['effective_target_roas_source'].enum_type = google_dot_ads_dot_googleads__v4_dot_proto_dot_enums_dot_bidding__source__pb2._BIDDINGSOURCEENUM_BIDDINGSOURCE _ADGROUP.fields_by_name['labels'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE DESCRIPTOR.message_types_by_name['AdGroup'] = _ADGROUP _sym_db.RegisterFileDescriptor(DESCRIPTOR) AdGroup = _reflection.GeneratedProtocolMessageType('AdGroup', (_message.Message,), dict( DESCRIPTOR = _ADGROUP, __module__ = 'google.ads.googleads_v4.proto.resources.ad_group_pb2' , __doc__ = """An ad group. Attributes: resource_name: Immutable. The resource name of the ad group. Ad group resource names have the form: ``customers/{customer_id}/adGroups/{ad_group_id}`` id: Output only. The ID of the ad group. name: The name of the ad group. This field is required and should not be empty when creating new ad groups. It must contain fewer than 255 UTF-8 full-width characters. It must not contain any null (code point 0x0), NL line feed (code point 0xA) or carriage return (code point 0xD) characters. status: The status of the ad group. type: Immutable. The type of the ad group. ad_rotation_mode: The ad rotation mode of the ad group. base_ad_group: Output only. For draft or experiment ad groups, this field is the resource name of the base ad group from which this ad group was created. If a draft or experiment ad group does not have a base ad group, then this field is null. For base ad groups, this field equals the ad group resource name. This field is read-only. tracking_url_template: The URL template for constructing a tracking URL. url_custom_parameters: The list of mappings used to substitute custom parameter tags in a ``tracking_url_template``, ``final_urls``, or ``mobile_final_urls``. campaign: Immutable. The campaign to which the ad group belongs. cpc_bid_micros: The maximum CPC (cost-per-click) bid. cpm_bid_micros: The maximum CPM (cost-per-thousand viewable impressions) bid. target_cpa_micros: The target CPA (cost-per-acquisition). cpv_bid_micros: Output only. The CPV (cost-per-view) bid. target_cpm_micros: Average amount in micros that the advertiser is willing to pay for every thousand times the ad is shown. target_roas: The target ROAS (return-on-ad-spend) override. If the ad group's campaign bidding strategy is a standard Target ROAS strategy, then this field overrides the target ROAS specified in the campaign's bidding strategy. Otherwise, this value is ignored. percent_cpc_bid_micros: The percent cpc bid amount, expressed as a fraction of the advertised price for some good or service. The valid range for the fraction is [0,1) and the value stored here is 1,000,000 \* [fraction]. explorer_auto_optimizer_setting: Settings for the Display Campaign Optimizer, initially termed "Explorer". display_custom_bid_dimension: Allows advertisers to specify a targeting dimension on which to place absolute bids. This is only applicable for campaigns that target only the display network and not search. final_url_suffix: URL template for appending params to Final URL. targeting_setting: Setting for targeting related features. effective_target_cpa_micros: Output only. The effective target CPA (cost-per-acquisition). This field is read-only. effective_target_cpa_source: Output only. Source of the effective target CPA. This field is read-only. effective_target_roas: Output only. The effective target ROAS (return-on-ad-spend). This field is read-only. effective_target_roas_source: Output only. Source of the effective target ROAS. This field is read-only. labels: Output only. The resource names of labels attached to this ad group. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v4.resources.AdGroup) )) _sym_db.RegisterMessage(AdGroup) DESCRIPTOR._options = None _ADGROUP.fields_by_name['resource_name']._options = None _ADGROUP.fields_by_name['id']._options = None _ADGROUP.fields_by_name['type']._options = None _ADGROUP.fields_by_name['base_ad_group']._options = None _ADGROUP.fields_by_name['campaign']._options = None _ADGROUP.fields_by_name['cpv_bid_micros']._options = None _ADGROUP.fields_by_name['effective_target_cpa_micros']._options = None _ADGROUP.fields_by_name['effective_target_cpa_source']._options = None _ADGROUP.fields_by_name['effective_target_roas']._options = None _ADGROUP.fields_by_name['effective_target_roas_source']._options = None _ADGROUP.fields_by_name['labels']._options = None _ADGROUP._options = None # @@protoc_insertion_point(module_scope)
efc7ecd6a3329d95f29a04a55031b90530622262
52381a4fc02e90ce1fcfffd8d9876d9e8f44c248
/core/storage/app_feedback_report/gae_models_test.py
3d85809c3d1398a4612e0373018cc3bd404014b1
[ "Apache-2.0" ]
permissive
ankita240796/oppia
18aa1609a0f237ce76142b2a0d3169e830e5bcdd
ba4f072e494fd59df53fecc37e67cea7f9727234
refs/heads/develop
2022-07-11T01:11:53.136252
2022-06-30T08:55:49
2022-06-30T08:55:49
160,626,761
0
0
Apache-2.0
2020-04-28T16:12:26
2018-12-06T06:02:18
Python
UTF-8
Python
false
false
23,191
py
# Copyright 2021 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for core.storage.app_feedback_report.gae_models.""" from __future__ import annotations import datetime import enum import types from core import feconf from core import utils from core.platform import models from core.tests import test_utils from mypy_imports import app_feedback_report_models, base_models # isort:skip from typing import List, Any # isort:skip # pylint: disable=unused-import (base_models, app_feedback_report_models) = models.Registry.import_models( [models.NAMES.base_model, models.NAMES.app_feedback_report]) class AppFeedbackReportModelTests(test_utils.GenericTestBase): """Tests for the AppFeedbackReportModel class.""" PLATFORM_ANDROID = 'android' PLATFORM_WEB = 'web' # Timestamp in sec since epoch for Mar 7 2021 21:17:16 UTC. REPORT_SUBMITTED_TIMESTAMP_1 = datetime.datetime.fromtimestamp(1615151836) REPORT_SUBMITTED_TIMESTAMP_1_MSEC = ( utils.get_time_in_millisecs(REPORT_SUBMITTED_TIMESTAMP_1)) # Timestamp in sec since epoch for Mar 12 2021 3:22:17 UTC. REPORT_SUBMITTED_TIMESTAMP_2 = datetime.datetime.fromtimestamp(1615519337) REPORT_SUBMITTED_TIMESTAMP_2_MSEC = ( utils.get_time_in_millisecs(REPORT_SUBMITTED_TIMESTAMP_2)) # Timestamp in sec since epoch for Mar 19 2021 17:10:36 UTC. TICKET_CREATION_TIMESTAMP = datetime.datetime.fromtimestamp(1616173836) TICKET_CREATION_TIMESTAMP_MSEC = ( utils.get_time_in_millisecs(TICKET_CREATION_TIMESTAMP)) TICKET_ID = '%s.%s.%s' % ( 'random_hash', int(TICKET_CREATION_TIMESTAMP_MSEC), '16CharString1234') REPORT_TYPE_SUGGESTION = 'suggestion' CATEGORY_OTHER = 'other' PLATFORM_VERSION = '0.1-alpha-abcdef1234' DEVICE_COUNTRY_LOCALE_CODE_INDIA = 'in' ANDROID_DEVICE_MODEL = 'Pixel 4a' ANDROID_SDK_VERSION = 28 ENTRY_POINT_NAVIGATION_DRAWER = 'navigation_drawer' TEXT_LANGUAGE_CODE_ENGLISH = 'en' AUDIO_LANGUAGE_CODE_ENGLISH = 'en' ANDROID_REPORT_INFO = { 'user_feedback_other_text_input': 'add an admin', 'event_logs': ['event1', 'event2'], 'logcat_logs': ['logcat1', 'logcat2'], 'package_version_code': 1, 'language_locale_code': 'en', 'entry_point_info': { 'entry_point_name': 'crash', }, 'text_size': 'MEDIUM_TEXT_SIZE', 'only_allows_wifi_download_and_update': True, 'automatically_update_topics': False, 'is_curriculum_admin': False } WEB_REPORT_INFO = { 'user_feedback_other_text_input': 'add an admin' } ANDROID_REPORT_INFO_SCHEMA_VERSION = 1 WEB_REPORT_INFO_SCHEMA_VERSION = 1 def setUp(self) -> None: """Set up models in datastore for use in testing.""" super(AppFeedbackReportModelTests, self).setUp() self.signup(self.NEW_USER_EMAIL, self.NEW_USER_USERNAME) self.user_id = self.get_user_id_from_email(self.NEW_USER_EMAIL) # type: ignore[no-untyped-call] self.feedback_report_model = ( app_feedback_report_models.AppFeedbackReportModel( id='%s.%s.%s' % ( self.PLATFORM_ANDROID, int(self.REPORT_SUBMITTED_TIMESTAMP_1_MSEC), 'randomInteger123'), platform=self.PLATFORM_ANDROID, scrubbed_by=self.user_id, ticket_id='%s.%s.%s' % ( 'random_hash', int(self.TICKET_CREATION_TIMESTAMP_MSEC), '16CharString1234'), submitted_on=self.REPORT_SUBMITTED_TIMESTAMP_1, local_timezone_offset_hrs=0, report_type=self.REPORT_TYPE_SUGGESTION, category=self.CATEGORY_OTHER, platform_version=self.PLATFORM_VERSION, android_device_country_locale_code=( self.DEVICE_COUNTRY_LOCALE_CODE_INDIA), android_device_model=self.ANDROID_DEVICE_MODEL, android_sdk_version=self.ANDROID_SDK_VERSION, entry_point=self.ENTRY_POINT_NAVIGATION_DRAWER, text_language_code=self.TEXT_LANGUAGE_CODE_ENGLISH, audio_language_code=self.AUDIO_LANGUAGE_CODE_ENGLISH, android_report_info=self.ANDROID_REPORT_INFO, android_report_info_schema_version=( self.ANDROID_REPORT_INFO_SCHEMA_VERSION) ) ) self.feedback_report_model.update_timestamps() self.feedback_report_model.put() def test_create_and_get_android_report_model(self) -> None: report_id = ( app_feedback_report_models.AppFeedbackReportModel.generate_id( self.PLATFORM_ANDROID, self.REPORT_SUBMITTED_TIMESTAMP_2)) app_feedback_report_models.AppFeedbackReportModel.create( report_id, self.PLATFORM_ANDROID, self.REPORT_SUBMITTED_TIMESTAMP_2, 0, self.REPORT_TYPE_SUGGESTION, self.CATEGORY_OTHER, self.PLATFORM_VERSION, self.DEVICE_COUNTRY_LOCALE_CODE_INDIA, self.ANDROID_SDK_VERSION, self.ANDROID_DEVICE_MODEL, self.ENTRY_POINT_NAVIGATION_DRAWER, None, None, None, None, self.TEXT_LANGUAGE_CODE_ENGLISH, self.AUDIO_LANGUAGE_CODE_ENGLISH, self.ANDROID_REPORT_INFO, None) report_model = app_feedback_report_models.AppFeedbackReportModel.get( report_id) self.assertEqual(report_model.platform, self.PLATFORM_ANDROID) self.assertEqual( report_model.submitted_on, self.REPORT_SUBMITTED_TIMESTAMP_2) self.assertEqual(report_model.report_type, self.REPORT_TYPE_SUGGESTION) self.assertEqual(report_model.android_report_info_schema_version, 1) self.assertEqual(report_model.web_report_info, None) def test_create_and_get_web_report_model(self) -> None: report_id = ( app_feedback_report_models.AppFeedbackReportModel.generate_id( self.PLATFORM_WEB, self.REPORT_SUBMITTED_TIMESTAMP_2)) app_feedback_report_models.AppFeedbackReportModel.create( report_id, self.PLATFORM_WEB, self.REPORT_SUBMITTED_TIMESTAMP_2, 0, self.REPORT_TYPE_SUGGESTION, self.CATEGORY_OTHER, self.PLATFORM_VERSION, self.DEVICE_COUNTRY_LOCALE_CODE_INDIA, self.ANDROID_SDK_VERSION, self.ANDROID_DEVICE_MODEL, self.ENTRY_POINT_NAVIGATION_DRAWER, None, None, None, None, self.TEXT_LANGUAGE_CODE_ENGLISH, self.AUDIO_LANGUAGE_CODE_ENGLISH, None, self.WEB_REPORT_INFO) report_model = app_feedback_report_models.AppFeedbackReportModel.get( report_id) self.assertEqual(report_model.platform, self.PLATFORM_WEB) self.assertEqual( report_model.submitted_on, self.REPORT_SUBMITTED_TIMESTAMP_2) self.assertEqual(report_model.report_type, self.REPORT_TYPE_SUGGESTION) self.assertEqual(report_model.web_report_info_schema_version, 1) self.assertEqual(report_model.android_report_info, None) def test_create_raises_exception_by_mocking_collision(self) -> None: model_class = app_feedback_report_models.AppFeedbackReportModel # Test Exception for AppFeedbackReportModel. with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'The id generator for AppFeedbackReportModel is ' 'producing too many collisions.'): # Swap dependent method get_by_id to simulate collision every time. with self.swap( app_feedback_report_models.AppFeedbackReportModel, 'get_by_id', types.MethodType( lambda x, y: True, app_feedback_report_models.AppFeedbackReportModel)): report_id = model_class.generate_id( self.PLATFORM_ANDROID, self.REPORT_SUBMITTED_TIMESTAMP_2) model_class.create( report_id, self.PLATFORM_ANDROID, self.REPORT_SUBMITTED_TIMESTAMP_1, 0, self.REPORT_TYPE_SUGGESTION, self.CATEGORY_OTHER, self.PLATFORM_VERSION, self.DEVICE_COUNTRY_LOCALE_CODE_INDIA, self.ANDROID_SDK_VERSION, self.ANDROID_DEVICE_MODEL, self.ENTRY_POINT_NAVIGATION_DRAWER, None, None, None, None, self.TEXT_LANGUAGE_CODE_ENGLISH, self.AUDIO_LANGUAGE_CODE_ENGLISH, self.ANDROID_REPORT_INFO, None) def test_get_deletion_policy(self) -> None: model = app_feedback_report_models.AppFeedbackReportModel self.assertEqual( model.get_deletion_policy(), base_models.DELETION_POLICY.LOCALLY_PSEUDONYMIZE) def test_export_data_without_scrubber(self) -> None: self.feedback_report_model.scrubbed_by = 'id' self.feedback_report_model.update_timestamps() self.feedback_report_model.put() exported_data = ( app_feedback_report_models.AppFeedbackReportModel.export_data('id')) report_id = '%s.%s.%s' % ( self.PLATFORM_ANDROID, int(self.REPORT_SUBMITTED_TIMESTAMP_1_MSEC), 'randomInteger123') expected_data = { report_id: { 'scrubbed_by': None, 'platform': self.PLATFORM_ANDROID, 'ticket_id': self.TICKET_ID, 'submitted_on': utils.get_human_readable_time_string( self.REPORT_SUBMITTED_TIMESTAMP_1_MSEC), 'local_timezone_offset_hrs': 0, 'report_type': self.REPORT_TYPE_SUGGESTION, 'category': self.CATEGORY_OTHER, 'platform_version': self.PLATFORM_VERSION } } self.assertEqual(exported_data, expected_data) def test_export_data_with_scrubber(self) -> None: exported_data = ( app_feedback_report_models.AppFeedbackReportModel.export_data( self.user_id)) report_id = '%s.%s.%s' % ( self.PLATFORM_ANDROID, int(self.REPORT_SUBMITTED_TIMESTAMP_1_MSEC), 'randomInteger123') expected_data = { report_id: { 'scrubbed_by': self.NEW_USER_USERNAME, 'platform': self.PLATFORM_ANDROID, 'ticket_id': self.TICKET_ID, 'submitted_on': utils.get_human_readable_time_string( self.REPORT_SUBMITTED_TIMESTAMP_1_MSEC), 'local_timezone_offset_hrs': 0, 'report_type': self.REPORT_TYPE_SUGGESTION, 'category': self.CATEGORY_OTHER, 'platform_version': self.PLATFORM_VERSION } } self.assertEqual(exported_data, expected_data) def test_get_all_unscrubbed_expiring_report_models(self) -> None: expired_timestamp = datetime.datetime.utcnow() - ( feconf.APP_FEEDBACK_REPORT_MAXIMUM_LIFESPAN + datetime.timedelta(days=10)) expired_model = app_feedback_report_models.AppFeedbackReportModel( id='%s.%s.%s' % ( self.PLATFORM_ANDROID, int(utils.get_time_in_millisecs(expired_timestamp)), 'randomInteger123'), platform=self.PLATFORM_ANDROID, scrubbed_by=None, ticket_id='%s.%s.%s' % ( 'random_hash', int(self.TICKET_CREATION_TIMESTAMP_MSEC), '16CharString1234'), submitted_on=expired_timestamp, local_timezone_offset_hrs=0, report_type=self.REPORT_TYPE_SUGGESTION, category=self.CATEGORY_OTHER, platform_version=self.PLATFORM_VERSION, android_device_country_locale_code=( self.DEVICE_COUNTRY_LOCALE_CODE_INDIA), android_device_model=self.ANDROID_DEVICE_MODEL, android_sdk_version=self.ANDROID_SDK_VERSION, entry_point=self.ENTRY_POINT_NAVIGATION_DRAWER, text_language_code=self.TEXT_LANGUAGE_CODE_ENGLISH, audio_language_code=self.AUDIO_LANGUAGE_CODE_ENGLISH, android_report_info=self.ANDROID_REPORT_INFO, android_report_info_schema_version=( self.ANDROID_REPORT_INFO_SCHEMA_VERSION) ) expired_model.created_on = expired_timestamp expired_model.put() model_class = app_feedback_report_models.AppFeedbackReportModel model_entities = model_class.get_all_unscrubbed_expiring_report_models() self.assertEqual(len(model_entities), 1) self.assertEqual(model_entities[0].id, expired_model.id) def test_get_lowest_supported_role(self) -> None: model = app_feedback_report_models.AppFeedbackReportModel self.assertEqual( model.get_lowest_supported_role(), feconf.ROLE_ID_MODERATOR) def test_has_reference_to_user_id(self) -> None: model_class = app_feedback_report_models.AppFeedbackReportModel # The only user references will be those who have scrubbed a report. report_id = '%s.%s.%s' % ( self.PLATFORM_ANDROID, int(self.REPORT_SUBMITTED_TIMESTAMP_1_MSEC), 'randomInteger123') model_entity = model_class.get(report_id) model_entity.scrubbed_by = 'scrubber_user' model_entity.update_timestamps() model_entity.put() self.assertTrue(model_class.has_reference_to_user_id('scrubber_user')) self.assertFalse(model_class.has_reference_to_user_id('id_x')) def test_get_filter_options_with_invalid_field_throws_exception( self) -> None: model_class = app_feedback_report_models.AppFeedbackReportModel class InvalidFilter(enum.Enum): """Invalid filter.""" INVALID_FIELD = 'invalid_field' with self.assertRaisesRegex( # type: ignore[no-untyped-call] utils.InvalidInputException, 'The field %s is not a valid field to filter reports on' % ( InvalidFilter.INVALID_FIELD.name) ): with self.swap( model_class, 'query', self._mock_query_filters_returns_empy_list): # Using type ignore[arg-type] because we passes arg of type # InvalidFilter to type class filter_field_names. This is done # to ensure that InvalidInputException is thrown. model_class.get_filter_options_for_field( InvalidFilter.INVALID_FIELD) # type: ignore[arg-type] def _mock_query_filters_returns_empy_list( self, projection: bool, distinct: bool) -> List[Any]: # pylint: disable=unused-argument """Mock the model query to test for an invalid filter field. Named parameters 'projection' and 'distinct' are required to mock the query function. """ return [] class AppFeedbackReportTicketModelTests(test_utils.GenericTestBase): """Tests for the AppFeedbackReportTicketModel class.""" # Timestamp in sec since epoch for Mar 7 2021 21:17:16 UTC. REPORT_SUBMITTED_TIMESTAMP = datetime.datetime.fromtimestamp(1615151836) REPORT_SUBMITTED_TIMESTAMP_MSEC = utils.get_time_in_millisecs( REPORT_SUBMITTED_TIMESTAMP) # Timestamp in sec since epoch for Mar 7 2021 21:17:16 UTC. NEWEST_REPORT_TIMESTAMP = datetime.datetime.fromtimestamp(1615151836) # Timestamp in sec since epoch for Mar 19 2021 17:10:36 UTC. TICKET_CREATION_TIMESTAMP = datetime.datetime.fromtimestamp(1616173836) TICKET_CREATION_TIMESTAMP_MSEC = utils.get_time_in_millisecs( TICKET_CREATION_TIMESTAMP) PLATFORM = 'android' PLATFORM_VERSION = '0.1-alpha-abcdef1234' TICKET_NAME = 'example ticket name' TICKET_ID = '%s.%s.%s' % ( 'random_hash', int(TICKET_CREATION_TIMESTAMP_MSEC), '16CharString1234') REPORT_IDS = ['%s.%s.%s' % ( PLATFORM, int(REPORT_SUBMITTED_TIMESTAMP_MSEC), 'randomInteger123')] def test_create_and_get_ticket_model(self) -> None: ticket_id = ( app_feedback_report_models.AppFeedbackReportTicketModel.generate_id( self.TICKET_NAME)) app_feedback_report_models.AppFeedbackReportTicketModel.create( entity_id=ticket_id, ticket_name=self.TICKET_NAME, platform=self.PLATFORM, github_issue_repo_name=None, github_issue_number=None, newest_report_timestamp=self.NEWEST_REPORT_TIMESTAMP, report_ids=self.REPORT_IDS) ticket_model = ( app_feedback_report_models.AppFeedbackReportTicketModel.get( ticket_id)) self.assertEqual(ticket_model.id, ticket_id) self.assertEqual(ticket_model.platform, self.PLATFORM) self.assertEqual( ticket_model.newest_report_timestamp, self.NEWEST_REPORT_TIMESTAMP) self.assertEqual(ticket_model.ticket_name, self.TICKET_NAME) self.assertEqual(ticket_model.report_ids, self.REPORT_IDS) def test_create_raises_exception_by_mocking_collision(self) -> None: model_class = app_feedback_report_models.AppFeedbackReportTicketModel # Test Exception for AppFeedbackReportTicketModel. with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'The id generator for AppFeedbackReportTicketModel is producing too' 'many collisions.' ): # Swap dependent method get_by_id to simulate collision every time. with self.swap(model_class, 'get_by_id', types.MethodType( lambda x, y: True, model_class)): ticket_id = model_class.generate_id(self.TICKET_NAME) model_class.create( entity_id=ticket_id, ticket_name=self.TICKET_NAME, platform=self.PLATFORM, github_issue_repo_name=None, github_issue_number=None, newest_report_timestamp=self.NEWEST_REPORT_TIMESTAMP, report_ids=self.REPORT_IDS) def test_get_deletion_policy(self) -> None: model = app_feedback_report_models.AppFeedbackReportTicketModel() self.assertEqual( model.get_deletion_policy(), base_models.DELETION_POLICY.NOT_APPLICABLE) def test_get_lowest_supported_role(self) -> None: model = app_feedback_report_models.AppFeedbackReportTicketModel self.assertEqual( model.get_lowest_supported_role(), feconf.ROLE_ID_MODERATOR) class AppFeedbackReportStatsModelTests(test_utils.GenericTestBase): """Tests for the AppFeedbackReportStatsModel class.""" # Timestamp in sec since epoch for Mar 19 2021 17:10:36 UTC. TICKET_CREATION_TIMESTAMP = datetime.datetime.fromtimestamp(1616173836) TICKET_CREATION_TIMESTAMP_MSEC = ( utils.get_time_in_millisecs(TICKET_CREATION_TIMESTAMP)) TICKET_ID = '%s.%s.%s' % ( 'random_hash', int(TICKET_CREATION_TIMESTAMP_MSEC), '16CharString1234') # Timestamp date in sec since epoch for Mar 19 2021 UTC. STATS_DATE = datetime.date.fromtimestamp(1616173836) DAILY_STATS = { 'report_type': { 'suggestion': 1, 'issue': 1, 'crash': 1}} TOTAL_REPORTS_SUBMITTED = 3 def test_create_and_get_stats_model(self) -> None: entity_id = ( app_feedback_report_models.AppFeedbackReportStatsModel.calculate_id( 'android', self.TICKET_ID, self.STATS_DATE)) app_feedback_report_models.AppFeedbackReportStatsModel.create( entity_id=entity_id, platform='android', ticket_id=self.TICKET_ID, stats_tracking_date=self.STATS_DATE, total_reports_submitted=self.TOTAL_REPORTS_SUBMITTED, daily_param_stats=self.DAILY_STATS) stats_model = ( app_feedback_report_models.AppFeedbackReportStatsModel.get_by_id( entity_id)) # Ruling out the possibility of None for mypy type checking. assert stats_model is not None self.assertEqual(stats_model.id, '%s:%s:%s' % ( 'android', self.TICKET_ID, self.STATS_DATE.isoformat())) self.assertEqual(stats_model.platform, 'android') self.assertEqual( stats_model.stats_tracking_date, self.STATS_DATE) self.assertEqual( stats_model.total_reports_submitted, self.TOTAL_REPORTS_SUBMITTED) self.assertEqual(stats_model.daily_param_stats, self.DAILY_STATS) def test_get_id_on_same_ticket_produces_same_id(self) -> None: model_class = ( app_feedback_report_models.AppFeedbackReportStatsModel) entity_id = model_class.calculate_id( 'android', self.TICKET_ID, self.STATS_DATE) entity_id_copy = model_class.calculate_id( 'android', self.TICKET_ID, self.STATS_DATE) self.assertEqual(entity_id, entity_id_copy) def test_get_stats_for_ticket(self) -> None: entity_id = ( app_feedback_report_models.AppFeedbackReportStatsModel.calculate_id( 'android', self.TICKET_ID, self.STATS_DATE)) app_feedback_report_models.AppFeedbackReportStatsModel.create( entity_id=entity_id, platform='android', ticket_id=self.TICKET_ID, total_reports_submitted=self.TOTAL_REPORTS_SUBMITTED, stats_tracking_date=self.STATS_DATE, daily_param_stats=self.DAILY_STATS) expected_stats_model = ( app_feedback_report_models.AppFeedbackReportStatsModel.get_by_id( entity_id)) stats_model_class = ( app_feedback_report_models.AppFeedbackReportStatsModel) stats_models = ( stats_model_class.get_stats_for_ticket(self.TICKET_ID)) self.assertEqual(len(stats_models), 1) self.assertEqual(stats_models[0].id, entity_id) self.assertEqual(stats_models[0], expected_stats_model) def test_get_deletion_policy(self) -> None: model = app_feedback_report_models.AppFeedbackReportStatsModel() self.assertEqual( model.get_deletion_policy(), base_models.DELETION_POLICY.NOT_APPLICABLE) def test_get_lowest_supported_role(self) -> None: model = app_feedback_report_models.AppFeedbackReportStatsModel self.assertEqual( model.get_lowest_supported_role(), feconf.ROLE_ID_MODERATOR)
b59a65aaf741f7146a41fec472f14aee29ef80fa
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02627/s326133719.py
ea89387977f0185b18128a2c9ae93915afa28952
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
108
py
from string import ascii_lowercase a = input() if a in ascii_lowercase: print("a") else: print("A")
c469f6d0359884d8d16ed851a6af1e7f39b15f42
6f04b7f8fd55fffb54ce4c78049812655b8c176b
/chap03_GroupApply/lecture/step02_groupby_plot_선생님.py
a33aaf98830f6e875d4ec23df91b81e5c56e0c20
[]
no_license
Elly-bang/Python-ll
71092507b719e1532675f8bab489be3f7366c1de
2658de214cc4a9dd68ad35d82202b59b3129e5af
refs/heads/master
2022-11-09T18:11:55.449732
2020-06-30T06:57:11
2020-06-30T06:57:11
276,021,248
0
0
null
null
null
null
UTF-8
Python
false
false
2,962
py
# -*- coding: utf-8 -*- """ 집단변수 기준 자료 분석 - subset 생성 - group 객체 생성 - 시각화 """ import pandas as pd # 1. dataset load wine = pd.read_csv('C:/ITWILL/4_Python-II/data/winequality-both.csv') wine.info() # type, quality # 칼럼명 변경 : 공백 -> '_' 교체 wine.columns = wine.columns.str.replace(' ', '_') wine.info() # RangeIndex: 6497 entries, 0 to 6496 # Data columns (total 13 columns) # 집단변수 확인 wine['type'].unique() # ['red', 'white'] wine.quality.unique() # [5, 6, 7, 4, 8, 3, 9] # 2. subset 생성 # 1) type 칼럼 : DataFrame(2차원) red_wine = wine.loc[wine['type']=='red'] #[row, col] red_wine.info() # Int64Index: 1599 entries, 0 to 1598 # Data columns (total 13 columns): red_wine.shape # (1599, 13) # 2) type(행) vs quality(열) : Series(1차원) red_quality = wine.loc[wine['type']=='red', 'quality']#[행, 열] type(red_quality) # pandas.core.series.Series red_quality.shape # (1599,) white_quality = wine.loc[wine['type']=='white', 'quality']#[행, 열] type(white_quality) # pandas.core.series.Series white_quality.shape # (4898,) # 3. group 객체 생성 : 집단변수 2개 -> 11변수 그룹화 # 형식) DF.groupby(['칼럼1', '칼럼2']) wine_grp = wine.groupby(['type', 'quality']) # 각 그룹의 빈도수 wine_grp.size() ''' type quality red 3 10 4 53 5 681 6 638 7 199 8 18 white 3 20 4 163 ''' # 1d -> 2d : 교차분할표 grp_2d = wine_grp.size().unstack() grp_2d ''' quality 3 4 5 6 7 8 9 type red 10.0 53.0 681.0 638.0 199.0 18.0 NaN white 20.0 163.0 1457.0 2198.0 880.0 175.0 5.0 ''' # 교차분할표 tab = pd.crosstab(wine['type'], wine['quality']) # (index=행, columns=열) tab ''' quality 3 4 5 6 7 8 9 type red 10 53 681 638 199 18 0 white 20 163 1457 2198 880 175 5 ''' # 4. group 객체 시각화 import matplotlib.pyplot as plt type(grp_2d) # pandas.core.frame.DataFrame # 누적형 가로막대 grp_2d.plot(kind='barh', title='type vs quality', stacked=True) plt.show() # 5. wine 종류(집단변수) vs 알콜(연속형) 통계량 wine_grp = wine.groupby('type') # 집단변수 1개 -> 12개 변수 그룹화 # 각 집단별 알콜 요약통계량 wine_grp['alcohol'].describe() ''' count mean std min 25% 50% 75% max type red 1599.0 10.422983 1.065668 8.4 9.5 10.2 11.1 14.9 white 4898.0 10.514267 1.230621 8.0 9.5 10.4 11.4 14.2 '''
03ae5a477c8f067d8cb700f67401521690fd068d
eda9187adfd53c03f55207ad05d09d2d118baa4f
/algo/pca/pca_old.py
264da244de8c2b727e5ca60a969c58a436681e39
[]
no_license
HuiZhaozh/python_tutorials
168761c9d21ad127a604512d7c6c6b38b4faa3c7
bde4245741081656875bcba2e4e4fcb6b711a3d9
refs/heads/master
2023-07-07T20:36:20.137647
2020-04-24T07:18:25
2020-04-24T07:18:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,519
py
# -*- coding:utf-8 -*- # /usr/bin/python ''' @Author: Yan Errol @Email:[email protected] @Date: 2019-06-09 23:59 @Describe: @Evn: ''' from sklearn.decomposition import PCA import matplotlib.pyplot as plt import numpy as np # A value we picked to always display the same results # Feel free to change this to any value greater than 0 view different random value outcomes seed = 9000 # We're using a seeded random state so we always get the same outcome seeded_state = np.random.RandomState(seed=seed) # Returns a random 150 points (x, y pairs) in a gaussian distribution, # IE most of the points fall close to the average with a few outliers rand_points = seeded_state.randn(150, 2) # The @ operator performs matrix multiplication, and serves to bring # our gaussian distribution points closer together points = rand_points @ seeded_state.rand(2, 2) x = points[:, 0] y = points[:, 1] # Now we have a sample dataset of 150 points to perform PCA on, so # go ahead and display this in a plot. plt.scatter(x, y, alpha=0.5) plt.title("Sample Dataset") print("Plotting our created dataset...\n") print("Points:") for p in points[:10, :]: print("({:7.4f}, {:7.4f})".format(p[0], p[1])) print("...\n") plt.show() # Find two principal components from our given dataset pca = PCA(n_components = 2) pca.fit(points) # Once we are fitted, we have access to inner mean_, components_, and explained_variance_ variables # Use these to add some arrows to our plot plt.scatter(x, y, alpha=0.5) plt.title("Sample Dataset with Principal Component Lines") for var, component in zip(pca.explained_variance_, pca.components_): plt.annotate( "", component * np.sqrt(var) * 2 + pca.mean_, pca.mean_ ) print("Plotting our calculated principal components...\n") plt.show() # Reduce the dimensionality of our data using a PCA transformation pca = PCA(n_components = 1) transformed_points = pca.fit_transform(points) # Note that all the inverse transformation does is transforms the data to its original space. # In practice, this is unnecessary. For this example, all data would be along the x axis. # We use it here for visualization purposes inverse = pca.inverse_transform(transformed_points) t_x = inverse[:, 0] t_y = inverse[:, 0] # Plot the original and transformed data sets plt.scatter(x, y, alpha=0.3) plt.scatter(t_x, t_y, alpha=0.7) plt.title("Sample Dataset (Blue) and Transformed Dataset (Orange)") print("Plotting our dataset with a dimensionality reduction...") plt.show()
c3029c19a6c3b697bb29649019096a2ef9384915
521efcd158f4c69a686ed1c63dd8e4b0b68cc011
/airflow/operators/datetime.py
47021c1730952719ea17c0bf05c4778c8d57ae5f
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
coutureai/RaWorkflowOrchestrator
33fd8e253bfea2f9a82bb122ca79e8cf9dffb003
cd3ea2579dff7bbab0d6235fcdeba2bb9edfc01f
refs/heads/main
2022-10-01T06:24:18.560652
2021-12-29T04:52:56
2021-12-29T04:52:56
184,547,783
5
12
Apache-2.0
2022-11-04T00:02:55
2019-05-02T08:38:38
Python
UTF-8
Python
false
false
4,632
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import datetime from typing import Iterable, Union from airflow.exceptions import AirflowException from airflow.operators.branch import BaseBranchOperator from airflow.utils import timezone from airflow.utils.context import Context class BranchDateTimeOperator(BaseBranchOperator): """ Branches into one of two lists of tasks depending on the current datetime. For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:BranchDateTimeOperator` True branch will be returned when ``datetime.datetime.now()`` falls below ``target_upper`` and above ``target_lower``. :param follow_task_ids_if_true: task id or task ids to follow if ``datetime.datetime.now()`` falls above target_lower and below ``target_upper``. :type follow_task_ids_if_true: str or list[str] :param follow_task_ids_if_false: task id or task ids to follow if ``datetime.datetime.now()`` falls below target_lower or above ``target_upper``. :type follow_task_ids_if_false: str or list[str] :param target_lower: target lower bound. :type target_lower: Optional[datetime.datetime] :param target_upper: target upper bound. :type target_upper: Optional[datetime.datetime] :param use_task_execution_date: If ``True``, uses task's execution day to compare with targets. Execution date is useful for backfilling. If ``False``, uses system's date. :type use_task_execution_date: bool """ def __init__( self, *, follow_task_ids_if_true: Union[str, Iterable[str]], follow_task_ids_if_false: Union[str, Iterable[str]], target_lower: Union[datetime.datetime, datetime.time, None], target_upper: Union[datetime.datetime, datetime.time, None], use_task_execution_date: bool = False, **kwargs, ) -> None: super().__init__(**kwargs) if target_lower is None and target_upper is None: raise AirflowException( "Both target_upper and target_lower are None. At least one " "must be defined to be compared to the current datetime" ) self.target_lower = target_lower self.target_upper = target_upper self.follow_task_ids_if_true = follow_task_ids_if_true self.follow_task_ids_if_false = follow_task_ids_if_false self.use_task_execution_date = use_task_execution_date def choose_branch(self, context: Context) -> Union[str, Iterable[str]]: if self.use_task_execution_date is True: now = timezone.make_naive(context["logical_date"], self.dag.timezone) else: now = timezone.make_naive(timezone.utcnow(), self.dag.timezone) lower, upper = target_times_as_dates(now, self.target_lower, self.target_upper) if upper is not None and upper < now: return self.follow_task_ids_if_false if lower is not None and lower > now: return self.follow_task_ids_if_false return self.follow_task_ids_if_true def target_times_as_dates( base_date: datetime.datetime, lower: Union[datetime.datetime, datetime.time, None], upper: Union[datetime.datetime, datetime.time, None], ): """Ensures upper and lower time targets are datetimes by combining them with base_date""" if isinstance(lower, datetime.datetime) and isinstance(upper, datetime.datetime): return lower, upper if lower is not None and isinstance(lower, datetime.time): lower = datetime.datetime.combine(base_date, lower) if upper is not None and isinstance(upper, datetime.time): upper = datetime.datetime.combine(base_date, upper) if lower is None or upper is None: return lower, upper if upper < lower: upper += datetime.timedelta(days=1) return lower, upper
734b6a332d6f0af9cd41c64282aff3d00bb8662f
461bffdd97ba507b29f1fbf6f9af1800f0e241f6
/pytext/metric_reporters/classification_metric_reporter.py
1e3ced78d285a9bff886349e7b06f32ac39129b1
[ "BSD-3-Clause" ]
permissive
Erica-Liu/pytext
d347e1327254bbe746c491fd8002bcc2e29d82a9
0a77e34e555750311ede54514c3c85b133b258f3
refs/heads/master
2020-06-16T02:49:21.589774
2019-07-05T18:25:52
2019-07-05T18:33:55
195,459,270
0
0
NOASSERTION
2019-07-05T19:38:34
2019-07-05T19:38:34
null
UTF-8
Python
false
false
6,254
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from enum import Enum from typing import List, Optional from pytext.common.constants import Stage from pytext.data import CommonMetadata from pytext.metrics import ( LabelListPrediction, LabelPrediction, compute_classification_metrics, compute_multi_label_classification_metrics, ) from .channel import Channel, ConsoleChannel, FileChannel from .metric_reporter import MetricReporter META_LABEL_NAMES = "label_names" class IntentModelChannel(FileChannel): def get_title(self): return ("predicted", "actual", "scores_str", "text") def gen_content(self, metrics, loss, preds, targets, scores, contexts): for i in range(len(preds)): yield [ preds[i], targets[i], ",".join([f"{s:.2f}" for s in scores[i]]), contexts["utterance"][i], ] class ComparableClassificationMetric(Enum): ACCURACY = "accuracy" ROC_AUC = "roc_auc" MCC = "mcc" MACRO_F1 = "macro_f1" LABEL_F1 = "label_f1" LABEL_AVG_PRECISION = "label_avg_precision" LABEL_ROC_AUC = "label_roc_auc" # use negative because the reporter's lower_is_better value is False NEGATIVE_LOSS = "negative_loss" class ClassificationMetricReporter(MetricReporter): __EXPANSIBLE__ = True class Config(MetricReporter.Config): model_select_metric: ComparableClassificationMetric = ( ComparableClassificationMetric.ACCURACY ) target_label: Optional[str] = None #: These column names correspond to raw input data columns. Text in these #: columns (usually just 1 column) will be concatenated and output in #: the IntentModelChannel as an evaluation tsv. text_column_names: List[str] = ["text"] def __init__( self, label_names: List[str], channels: List[Channel], model_select_metric: ComparableClassificationMetric = ( ComparableClassificationMetric.ACCURACY ), target_label: Optional[str] = None, text_column_names: List[str] = Config.text_column_names, ) -> None: super().__init__(channels) self.label_names = label_names self.model_select_metric = model_select_metric self.target_label = target_label self.text_column_names = text_column_names @classmethod def from_config(cls, config, meta: CommonMetadata = None, tensorizers=None): # TODO: refactor metric reporting and remove this hack if tensorizers: labels = list(tensorizers["labels"].vocab) else: labels = meta.target.vocab.itos return cls.from_config_and_label_names(config, labels) @classmethod def from_config_and_label_names(cls, config, label_names: List[str]): if config.model_select_metric in ( ComparableClassificationMetric.LABEL_F1, ComparableClassificationMetric.LABEL_AVG_PRECISION, ComparableClassificationMetric.LABEL_ROC_AUC, ): assert config.target_label is not None assert config.target_label in label_names if config.model_select_metric in ( ComparableClassificationMetric.ROC_AUC, ComparableClassificationMetric.MCC, ): assert len(label_names) == 2 return cls( label_names, [ConsoleChannel(), IntentModelChannel((Stage.TEST,), config.output_path)], config.model_select_metric, config.target_label, config.text_column_names, ) def batch_context(self, raw_batch, batch): context = super().batch_context(raw_batch, batch) context["utterance"] = [ " | ".join(str(row[column_name]) for column_name in self.text_column_names) for row in raw_batch ] return context def calculate_metric(self): return compute_classification_metrics( [ LabelPrediction(scores, pred, expect) for scores, pred, expect in zip( self.all_scores, self.all_preds, self.all_targets ) ], self.label_names, self.calculate_loss(), ) def get_meta(self): return {META_LABEL_NAMES: self.label_names} def get_model_select_metric(self, metrics): if self.model_select_metric == ComparableClassificationMetric.ACCURACY: metric = metrics.accuracy elif self.model_select_metric == ComparableClassificationMetric.ROC_AUC: metric = metrics.roc_auc elif self.model_select_metric == ComparableClassificationMetric.MCC: metric = metrics.mcc elif self.model_select_metric == ComparableClassificationMetric.MACRO_F1: metric = metrics.macro_prf1_metrics.macro_scores.f1 elif self.model_select_metric == ComparableClassificationMetric.LABEL_F1: metric = metrics.macro_prf1_metrics.per_label_scores[self.target_label].f1 elif ( self.model_select_metric == ComparableClassificationMetric.LABEL_AVG_PRECISION ): metric = metrics.per_label_soft_scores[self.target_label].average_precision elif self.model_select_metric == ComparableClassificationMetric.LABEL_ROC_AUC: metric = metrics.per_label_soft_scores[self.target_label].roc_auc elif self.model_select_metric == ComparableClassificationMetric.NEGATIVE_LOSS: metric = -metrics.loss else: raise ValueError(f"unknown metric: {self.model_select_metric}") assert metric is not None return metric class MultiLabelClassificationMetricReporter(ClassificationMetricReporter): def calculate_metric(self): return compute_multi_label_classification_metrics( [ LabelListPrediction(scores, pred, expect) for scores, pred, expect in zip( self.all_scores, self.all_preds, self.all_targets ) ], self.label_names, self.calculate_loss(), )
8f6c010d69c13e262cdd609efe3ac4b6009f38d3
6dae31f10260e39feae9d268e3ebe6d23146575a
/spm/bin_deep_surveys/run_stellarpop_miles_deep2_kroupa
fc11bb5287636c2c426dae12945d749d5984c5b1
[ "CC0-1.0" ]
permissive
JohanComparat/pySU
e55eba92f0660e733468bce618595a03dc25a3d2
4169e11414be661dc0c01c774e64fb8ce6242825
refs/heads/master
2021-12-25T11:06:04.315554
2021-10-11T12:03:22
2021-10-11T12:03:22
44,340,565
1
2
null
null
null
null
UTF-8
Python
false
false
2,277
#! /usr/bin/env python import sys from os.path import join import os import time import numpy as np import glob import astropy.cosmology as co cosmo = co.Planck13 import astropy.io.fits as fits # for one galaxy spectrum import GalaxySpectrumFIREFLY as gs import StellarPopulationModel as spm catalog=fits.open(join(os.environ['DEEP2_DIR'], "catalogs", "zcat.deep2.dr4.v4.LFcatalogTC.Planck15.fits"))[1].data outputFolder = join( os.environ['DEEP2_DIR'], 'stellarpop-m11-kroupa-miles', 'stellarpop') def runSpec(catalog_entry): print catalog_entry['ZBEST'], catalog_entry['RA'], catalog_entry['DEC'] t0=time.time() mask=str(catalog_entry['MASK']) objno=str(catalog_entry['OBJNO']) path_to_spectrum = glob.glob(join(os.environ['DEEP2_DIR'], 'spectra', mask, '*', '*' + objno + '*_fc_tc.dat')) if len(path_to_spectrum)>=1: try: spec=gs.GalaxySpectrumFIREFLY("-", milky_way_reddening=True) spec.openObservedDEEP2pectrum(catalog_entry) ageMax = np.log10(cosmo.age(spec.redshift).value*1e9) if spec.redshift>0.01 and spec.redshift < 1.7 : model = spm.StellarPopulationModel(spec, join(outputFolder , 'spFly-deep2-'+mask+'-'+objno ), cosmo, models = 'm11', model_libs = ['MILES'], imfs = ['kr'], age_limits = [6,10], downgrade_models = True, data_wave_medium = 'air', Z_limits = [-3.,1.],suffix="-kr.fits", use_downgraded_models = True) try : model.fit_models_to_data() #print( model.averages ) except (ValueError): pass print "time used =", time.time()-t0 ,"seconds" except (IndexError): pass for catalog_entry in catalog[::-1]: mask=str(catalog_entry['MASK']) objno=str(catalog_entry['OBJNO']) if os.path.isfile(join(outputFolder , 'spFly-deep2-'+mask+'-'+objno +"-kr.fits")): print "pass", join(outputFolder , 'spFly-deep2-'+mask+'-'+objno +"-kr.fits") else: runSpec(catalog_entry) sys.exit() n_fc_tc = n.zeros_like(catalog['ZBEST']) for ii, catalog_entry in enumerate(catalog): mask=str(catalog_entry['MASK']) objno=str(catalog_entry['OBJNO']) path_to_spectrum = glob.glob(join(os.environ['DEEP2_DIR'], 'spectra', mask, '*', '*' + objno + '*_fc_tc.dat')) n_fc_tc[ii] = len(path_to_spectrum ) ok=(catalog['ZBEST']>0.01)&(catalog['ZBEST']<1.7)&(n_fc_tc>=1) print len(catalog), len(catalog[ok])
ff6f46df45a62d02b5d3eb10ff5fa6488d3aca62
ea01ed735850bf61101b869b1df618d3c09c2aa3
/python基础/network_programming/ftp_task/ftp/conf/settings.py
fe1097cb50a4b2bf3c4804ce40907ffed75bb71a
[]
no_license
liuzhipeng17/python-common
867c49ac08719fabda371765d1f9e42f6dd289b9
fb44da203d4e3a8304d9fe6205e60c71d3a620d8
refs/heads/master
2021-09-27T10:39:45.178135
2018-11-08T01:49:33
2018-11-08T01:49:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,296
py
# -*- coding: utf-8 -*- import os.path _project_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) USER_DB_PATH = os.path.join(_project_path, 'db', 'userdb.ini') ENCODING = 'utf-8' MAX_BUFFER_SIZE = 1024 USER_BASE_PATH = os.path.join(_project_path, 'dir', 'home') BASE_DIR = os.path.join(_project_path, 'dir') USER_DOWNLOAD_BASE_DIR = os.path.join(_project_path, 'dir', 'downloads') USER_UPLOAD_BASE_DIR = os.path.join(_project_path, 'dir', 'uploads') STATUS_CODE = { 200 : "Task finished", 250 : "Invalid cmd format, e.g: {'action':'get','filename':'tests.py','size':344}", 251 : "Invalid cmd ", 252 : "Invalid auth data", 253 : "Wrong username or password", 254 : "Passed authentication", 255 : "Filename doesn't provided", 256 : "File doesn't exist on server", 257 : "ready to send file", 258 : "md5 verification", 259 : "path doesn't exist on server", 260 : "path changed", 261 : "send File line", 262 : "File has exist on server", 263 : "Put empty file", 264 : "Put not null file", 265 : "Get empty file", 266 : "Path access permitted or Path not exist", 267 : "pwd invalid cmd arguments", 268 : "pwd pass", 269 : "permitted putting same-name file unless continue situation" }
e1550eadd9cc69970c6b6044d39bd284e1baef25
474525154a4e1d48ef5242d1f44164d05399b145
/spinoffs/oryx/oryx/experimental/nn/function.py
b9d20e453f86199f85885faeeef667bb5300a2ac
[ "Apache-2.0" ]
permissive
svshivapuja/probability
9855737790f74a39169688fbfec9671deef804d9
af7ccb22d972329633530c3b754ed1f49472f6a7
refs/heads/main
2023-07-17T04:14:53.703622
2021-08-30T17:47:06
2021-08-30T17:47:06
400,983,015
1
0
Apache-2.0
2021-08-29T07:51:29
2021-08-29T07:51:29
null
UTF-8
Python
false
false
1,863
py
# Copyright 2020 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # Lint as: python3 """Registers custom rules for neural networks in the stateful function API. The Oryx state API enables having a custom unzip rules when `init`-ing a function. We use this for neural networks to thread kwargs through the Jaxpr that is created when unzipping a function. This module implements this by first replacing instances of `layer_cau` with a `FlatPrimitive`s, which avoids using a call primitive, which we would be difficult to pass new keyword arguments into. We can more easily override the behavior of a regular primitive. """ from jax import tree_util from oryx.core import state from oryx.experimental.nn import base __all__ = [ ] def layer_cau_kwargs_rule(*flat_args, num_consts, in_tree, kwargs, **_): """Custom kwargs rule for layer_cau primitive.""" flat_args = flat_args[num_consts:] layer, *args = tree_util.tree_unflatten(in_tree, flat_args) kwargs = dict(kwargs) has_rng = kwargs.pop('has_rng', False) if has_rng: rng, args = args[0], args[1:] kwargs = dict(kwargs, rng=rng) ans = layer.call_and_update(*args, **kwargs) return tree_util.tree_leaves(ans) state.kwargs_rules[base.layer_cau_p] = layer_cau_kwargs_rule
b55ecc78784e9edeb59f797fac7f6750b1ccd7e5
79c0358277a5f6ae231d89ee4476cb1facd00e50
/extra/desktop/gnome/addons/gnome-color-manager/actions.py
c37eddcb3525032b734864d2c7b456d5bc8496bb
[]
no_license
mrust1/PisiLinux
a139dbc9f8d3d61ebec38d08f36dfa6eafff7107
a2014b6912df50ad22da5b2f3d21bf01cbd8e192
refs/heads/master
2020-12-11T03:42:50.309869
2014-10-05T14:05:17
2014-10-05T14:05:17
24,826,519
1
0
null
null
null
null
UTF-8
Python
false
false
663
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Licensed under the GNU General Public License, version 3. # See the file http://www.gnu.org/licenses/gpl.txt from pisi.actionsapi import autotools from pisi.actionsapi import pisitools from pisi.actionsapi import shelltools from pisi.actionsapi import get def setup(): autotools.configure("--libexecdir=/usr/lib/gnome-color-manager") def build(): autotools.make() def install(): autotools.rawInstall("DESTDIR=%s" % get.installDIR()) pisitools.insinto("/usr/share/pixmaps", "data/icons/48x48/gnome-color-manager.png") pisitools.dodoc("AUTHORS", "COPYING", "ChangeLog", "NEWS", "README")
9d6a7d467f536f81f74bd7a97d1b3f132f5b0116
46ff8840ec7b3949c7f9c8d3262252b76761df3a
/fil_finder/filament.py
6c8828ef6322203f9914544ddb6cd32e86aefcb6
[ "MIT" ]
permissive
samdf96/FilFinder
cc087fbc78ff8db85dae4b8200d41a607dae00be
340497399b782e855840e48b6a00f979babfad38
refs/heads/master
2023-09-04T11:56:20.672554
2019-10-25T22:11:38
2019-10-25T22:11:38
248,880,381
0
1
MIT
2020-03-21T00:45:53
2020-03-21T00:45:52
null
UTF-8
Python
false
false
55,271
py
# Licensed under an MIT open source license - see LICENSE import numpy as np import astropy.units as u import networkx as nx import warnings import scipy.ndimage as nd from astropy.nddata import extract_array import astropy.modeling as mod from astropy.modeling.models import Gaussian1D, Const1D import sys if sys.version_info[0] >= 3: import _pickle as pickle else: import cPickle as pickle from .length import (init_lengths, main_length, make_final_skeletons, pre_graph, longest_path, prune_graph) from .pixel_ident import pix_identify from .utilities import pad_image, in_ipynb, red_chisq from .base_conversions import UnitConverter from .rollinghough import rht from .width import (radial_profile, gaussian_model, fit_radial_model, nonparam_width) class FilamentNDBase(object): """ Analysis and properties of a single filament object. """ @property def pixel_coords(self): return self._pixel_coords @property def pixel_extents(self): return [tuple([coord.min() for coord in self._orig_pixel_coords]), tuple([coord.max() for coord in self._orig_pixel_coords])] def position(self, world_coord=False): ''' Return the centre position of the filament based on the pixel coordinates. ''' centres = [np.median(coord) for coord in self._orig_pixel_coords] if world_coord: if hasattr(self._converter, '_wcs'): wcs = self._converter._wcs # Convert to world coordinates posn_tuple = centres + [0] w_centres = wcs.all_pix2world(*posn_tuple) # Attach units wu_centres = [val * u.Unit(wcs.wcs.cunit[i]) for i, val in enumerate(w_centres)] return wu_centres else: warnings.warn("No WCS information given. Returning pixel" " position.") return [centre * u.pix for centre in centres] else: return [centre * u.pix for centre in centres] class Filament2D(FilamentNDBase): """ Analysis and properties of a 2D filament. Parameters ---------- pixel_coords : tuple of `~np.ndarray` Pixel coordinates as a set of arrays (i.e., the output from `~numpy.where`). converter : `~fil_finder.base_conversions.UnitConverter`, optional Unit converter class. wcs : `~astropy.wcs.WCS`, optional WCS information for the pixel set. distance : `~astropy.units.Quantity`, optional Distance to the region described by the pixel set. Requires for conversions to physical units. """ def __init__(self, pixel_coords, converter=None, wcs=None, distance=None): super(Filament2D, self).__init__() self._pixel_coords = pixel_coords # Create a separate account of the initial skeleton pixels self._orig_pixel_coords = pixel_coords if converter is not None: self._converter = converter else: self._converter = UnitConverter(wcs=wcs, distance=distance) def image_slicer(self, image, out_shape, pad_size=0): ''' Create a cut-out of a given image to some output shape with optional padding on the edges. The given image must be on the same pixel grid as the image used to create the skeleton. Parameters ---------- image : `~numpy.ndarray` or `~astropy.units.Quantity` Image to slice out around the skeleton. out_shape : tuple 2D output shape. pad_size : int, optional Number of pixels to pad. Returns ------- out_arr : `~numpy.ndarray` or `~astropy.units.Quantity` Output array with given shape. ''' arr_cent = [(out_shape[0] - pad_size * 2 - 1) / 2. + self.pixel_extents[0][0], (out_shape[1] - pad_size * 2 - 1) / 2. + self.pixel_extents[0][1]] out_arr = extract_array(image, out_shape, arr_cent) # astropy v4.0 now retains the unit. So only add a unit # when out_arr isn't a Quantity if hasattr(image, "unit") and not hasattr(out_arr, 'unit'): out_arr = out_arr * image.unit return out_arr def skeleton(self, pad_size=0, corner_pix=None, out_type='all'): ''' Create a mask from the pixel coordinates. Parameters ---------- pad_size : int, optional Number of pixels to pad along each edge. corner_pix : tuple of ints, optional The position of the left-bottom corner of the pixels in the skeleton. Used for offsetting the location of the pixels. out_type : {"all", "longpath"}, optional Return the entire skeleton or just the longest path. Default is to return the whole skeleton. Returns ------- mask : `~numpy.ndarray` Boolean mask containing the skeleton pixels. ''' pad_size = int(pad_size) if pad_size < 0: raise ValueError("pad_size must be a positive integer.") if corner_pix is None: # Place the smallest pixel in the set at the pad size corner_pix = [pad_size, pad_size] out_types = ['all', 'longpath'] if out_type not in out_types: raise ValueError("out_type must be 'all' or 'longpath'.") y_shape = self.pixel_extents[1][0] - self.pixel_extents[0][0] + \ 2 * pad_size + 1 x_shape = self.pixel_extents[1][1] - self.pixel_extents[0][1] + \ 2 * pad_size + 1 mask = np.zeros((y_shape, x_shape), dtype=bool) if out_type == 'all': pixels = self.pixel_coords else: if not hasattr(self, '_longpath_pixel_coords'): raise AttributeError("longest path is not defined. Run " "`Filament2D.skeleton_analysis` first.") pixels = self.longpath_pixel_coords mask[pixels[0] - self.pixel_extents[0][0] + corner_pix[0], pixels[1] - self.pixel_extents[0][1] + corner_pix[1]] = True return mask def skeleton_analysis(self, image, verbose=False, save_png=False, save_name=None, prune_criteria='all', relintens_thresh=0.2, max_prune_iter=10, branch_thresh=0 * u.pix): ''' Run the skeleton analysis. Separates skeleton structures into branches and intersections. Branches below the pruning criteria are removed. The structure is converted into a graph object to find the longest path. The pruned skeleton is used in the subsequent analysis steps. Parameters ---------- image : `~numpy.ndarray` or `~astropy.units.Quantity` Data the filament was extracted from. verbose : bool, optional Show intermediate plots. save_png : bool, optional Save the plots in verbose mode. save_name : str, optional Prefix for the saved plots. prune_criteria : {'all', 'intensity', 'length'}, optional Choose the property to base pruning on. 'all' requires that the branch fails to satisfy the length and relative intensity checks. relintens_thresh : float, optional Value between 0 and 1 that sets the relative importance of the intensity-to-length criteria when pruning. Only used if `prune_criteria='all'`. max_prune_iter : int, optional Maximum number of pruning iterations to apply. branch_thresh : `~astropy.units.Quantity`, optional Minimum length for a branch to be eligible to be pruned. ''' # NOTE: # All of these functions are essentially the same as those used for # fil_finder_2D. For now, they all are expecting lists with each # filament property as an element. Everything is wrapped to be a list # because of this, but will be removed once fil_finder_2D is removed. # A lot of this can be streamlined in that process. if save_png and save_name is None: raise ValueError("save_name must be given when save_png=True.") # Must have a pad size of 1 for the morphological operations. pad_size = 1 self._pad_size = pad_size branch_thresh = self._converter.to_pixel(branch_thresh) # Do we need to pad the image before slicing? input_image = pad_image(image, self.pixel_extents, pad_size) skel_mask = self.skeleton(pad_size=pad_size) # If the padded image matches the mask size, don't need additional # slicing if input_image.shape != skel_mask.shape: input_image = self.image_slicer(input_image, skel_mask.shape, pad_size=pad_size) # The mask and sliced image better have the same shape! if input_image.shape != skel_mask.shape: raise AssertionError("Sliced image shape does not equal the mask " "shape. This should never happen! If you see" " this issue, please report it as a bug!") iter = 0 while True: skel_mask = self.skeleton(pad_size=pad_size) interpts, hubs, ends, filbranches, labeled_mask = \ pix_identify([skel_mask], 1) branch_properties = init_lengths(labeled_mask, filbranches, [[(0, 0), (0, 0)]], input_image) edge_list, nodes, loop_edges = \ pre_graph(labeled_mask, branch_properties, interpts, ends) max_path, extremum, G = \ longest_path(edge_list, nodes, verbose=False, skeleton_arrays=labeled_mask) # Skip pruning if skeleton has only one branch if len(G[0].nodes()) > 1: updated_lists = \ prune_graph(G, nodes, edge_list, max_path, labeled_mask, branch_properties, loop_edges, prune_criteria=prune_criteria, length_thresh=branch_thresh.value, relintens_thresh=relintens_thresh, max_iter=1) labeled_mask, edge_list, nodes, branch_properties = \ updated_lists final_fil_arrays =\ make_final_skeletons(labeled_mask, interpts, verbose=False) # Update the skeleton pixels good_pix = np.where(final_fil_arrays[0]) self._pixel_coords = \ (good_pix[0] + self.pixel_extents[0][0] - pad_size, good_pix[1] + self.pixel_extents[0][1] - pad_size) if iter == 0: prev_G = G[0] iter += 1 if iter == max_prune_iter: break else: continue # Isomorphic comparison is failing for networkx 2.1 # I don't understand the error, so we'll instead require # that the nodes be the same. This should be safe as # pruning can only remove nodes. # edge_match = iso.numerical_edge_match('weight', 1) # if nx.is_isomorphic(prev_G, G[0], # edge_match=edge_match): # the node attribute was removed in 2.4. if hasattr(G, 'node'): if prev_G.node == G[0].node: break if hasattr(G, 'nodes'): if prev_G.nodes == G[0].nodes: break prev_G = G[0] iter += 1 if iter >= max_prune_iter: warnings.warn("Graph pruning reached max iterations.") break self._graph = G[0] # Run final analyses for plotting, etc. max_path, extremum, G = \ longest_path(edge_list, nodes, verbose=verbose, save_png=save_png, save_name="{0}_graphstruct.png".format(save_name), skeleton_arrays=labeled_mask) length_output = main_length(max_path, edge_list, labeled_mask, interpts, branch_properties["length"], 1., verbose=verbose, save_png=save_png, save_name="{0}_longestpath.png".format(save_name)) lengths, long_path_array = length_output good_long_pix = np.where(long_path_array[0]) self._longpath_pixel_coords = \ (good_long_pix[0] + self.pixel_extents[0][0] - pad_size, good_long_pix[1] + self.pixel_extents[0][1] - pad_size) self._length = lengths[0] * u.pix final_fil_arrays =\ make_final_skeletons(labeled_mask, interpts, verbose=verbose, save_png=save_png, save_name="{0}_finalskeleton.png".format(save_name)) # Track the final intersection and end points interpts, hubs, ends = \ pix_identify([final_fil_arrays[0].copy()], 1)[:3] # Adjust intersection and end points to be in the original array # positions corr_inters = [] for inter in interpts[0]: per_inter = [] for ints in inter: per_inter.append((ints[0] + self.pixel_extents[0][0] - pad_size, ints[1] + self.pixel_extents[0][1] - pad_size)) corr_inters.append(per_inter) self._interpts = corr_inters corr_ends = [] for end in ends[0]: corr_ends.append((end[0] + self.pixel_extents[0][0] - pad_size, end[1] + self.pixel_extents[0][1] - pad_size)) self._endpts = corr_ends # Update the skeleton pixels good_pix = np.where(final_fil_arrays[0]) self._pixel_coords = \ (good_pix[0] + self.pixel_extents[0][0] - pad_size, good_pix[1] + self.pixel_extents[0][1] - pad_size) self._branch_properties = \ {'length': branch_properties['length'][0] * u.pix, 'intensity': np.array(branch_properties['intensity'][0]), 'number': branch_properties['number'][0], 'pixels': branch_properties['pixels'][0]} @property def branch_properties(self): ''' Dictionary with branch lengths, average intensity, and pixels. ''' return self._branch_properties def branch_pts(self, img_coords=False): ''' Pixels within each skeleton branch. Parameters ---------- img_coords : bool Return the branch pts in coordinates of the original image. ''' if not img_coords: return self.branch_properties['pixels'] # Transform from per-filament to image coords img_branch_pts = [] for bpts in self.branch_properties['pixels']: bpts_copy = bpts.copy() bpts_copy[:, 0] = bpts[:, 0] + self.pixel_extents[0][0] - self._pad_size bpts_copy[:, 1] = bpts[:, 1] + self.pixel_extents[0][1] - self._pad_size img_branch_pts.append(bpts_copy) return img_branch_pts @property def intersec_pts(self): ''' Skeleton pixels associated intersections. ''' return self._interpts @property def end_pts(self): ''' Skeleton pixels associated branch end. ''' return self._endpts def length(self, unit=u.pixel): ''' The longest path length of the skeleton Parameters ---------- unit : `~astropy.units.Unit`, optional Pixel, angular, or physical unit to convert to. ''' return self._converter.from_pixel(self._length, unit) @property def longpath_pixel_coords(self): ''' Pixel coordinates of the longest path. ''' return self._longpath_pixel_coords @property def graph(self): ''' The networkx graph for the filament. ''' return self._graph def plot_graph(self, save_name=None, layout_func=nx.spring_layout): ''' Plot the graph structure. Parameters ---------- save_name : str, optional Name of saved plot. A plot is only saved if a name is given. layout_func : networkx layout function, optional Layout function from networkx. Defaults to `spring_layout`. ''' import matplotlib.pyplot as plt G = self.graph elist = [(u, v) for (u, v, d) in G.edges(data=True)] posns = layout_func(G) nx.draw_networkx_nodes(G, posns, node_size=200) nx.draw_networkx_edges(G, posns, edgelist=elist, width=2) nx.draw_networkx_labels(G, posns, font_size=10, font_family='sans-serif') plt.axis('off') if save_name is not None: # Save the plot plt.savefig(save_name) plt.close() else: plt.show() # Add in the ipynb checker def rht_analysis(self, radius=10 * u.pix, ntheta=180, background_percentile=25): ''' Use the RHT to find the filament orientation and dispersion of the longest path. Parameters ---------- radius : `~astropy.units.Quantity`, optional Radius of the region to compute the orientation within. Converted to pixel units and rounded to the nearest integer. ntheta : int, optional Number of angles to sample at. Default is 180. background_percentile : float, optional Float between 0 and 100 that sets a background level for the RHT distribution before calculating orientation and curvature. ''' if not hasattr(radius, 'unit'): warnings.warn("Radius has no given units. Assuming pixel units.") radius *= u.pix radius = int(round(self._converter.to_pixel(radius).value)) longpath_arr = self.skeleton(out_type='longpath') longpath_arr = np.fliplr(longpath_arr) theta, R, quant = rht(longpath_arr, radius, ntheta, background_percentile) twofive, mean, sevenfive = quant self._orientation = mean * u.rad if sevenfive > twofive: self._curvature = np.abs(sevenfive - twofive) * u.rad else: self._curvature = (np.abs(sevenfive - twofive) + np.pi) * u.rad self._orientation_hist = [theta, R] self._orientation_quantiles = [twofive, sevenfive] @property def orientation_hist(self): ''' Distribution of orientations from the RHT along the longest path. Contains the angles of the distribution bins and the values in those bins. ''' return self._orientation_hist @property def orientation(self): ''' Mean orientation of the filament along the longest path. ''' return self._orientation @property def curvature(self): ''' Interquartile range of the RHT orientation distribution along the longest path. ''' return self._curvature def plot_rht_distrib(self, save_name=None): ''' Plot the RHT distribution from `Filament2D.rht_analysis`. Parameters ---------- save_name : str, optional Name of saved plot. A plot is only saved if a name is given. ''' theta = self.orientation_hist[0] R = self.orientation_hist[1] import matplotlib.pyplot as plt median = self.orientation.value twofive, sevenfive = self._orientation_quantiles ax1 = plt.subplot(121, polar=True) ax1.plot(2 * theta, R / R.max(), "kD") ax1.fill_between(2 * theta, 0, R[:, 0] / R.max(), facecolor="blue", interpolate=True, alpha=0.5) ax1.set_rmax(1.0) ax1.plot([2 * median] * 2, np.linspace(0.0, 1.0, 2), "g") ax1.plot([2 * twofive] * 2, np.linspace(0.0, 1.0, 2), "b--") ax1.plot([2 * sevenfive] * 2, np.linspace(0.0, 1.0, 2), "b--") plt.subplot(122) plt.imshow(self.skeleton(out_type='longpath'), cmap="binary", origin="lower") if save_name is not None: plt.savefig(save_name) plt.close() else: plt.show() def rht_branch_analysis(self, radius=10 * u.pix, ntheta=180, background_percentile=25, min_branch_length=3 * u.pix): ''' Use the RHT to find the filament orientation and dispersion of each branch in the filament. Parameters ---------- radius : `~astropy.units.Quantity`, optional Radius of the region to compute the orientation within. Converted to pixel units and rounded to the nearest integer. ntheta : int, optional Number of angles to sample at. Default is 180. background_percentile : float, optional Float between 0 and 100 that sets a background level for the RHT distribution before calculating orientation and curvature. min_branch_length : `~astropy.units.Quantity`, optional Minimum length of a branch to run the RHT on. Branches that are too short will cause spikes along the axis angles or 45 deg. off. ''' # Convert length cut to pixel units if not hasattr(radius, 'unit'): warnings.warn("Radius has no given units. Assuming pixel units.") radius *= u.pix if not hasattr(min_branch_length, 'unit'): warnings.warn("min_branch_length has no given units. Assuming " "pixel units.") min_branch_length *= u.pix radius = int(round(self._converter.to_pixel(radius).value)) min_branch_length = self._converter.to_pixel(min_branch_length).value means = [] iqrs = [] # Make padded arrays from individual branches for i, (pix, length) in enumerate(zip(self.branch_pts(img_coords=False), self.branch_properties['length'])): if length.value < min_branch_length: means.append(np.NaN) iqrs.append(np.NaN) continue # Setup size of array ymax = pix[:, 0].max() ymin = pix[:, 0].min() xmax = pix[:, 1].max() xmin = pix[:, 1].min() shape = (ymax - ymin + 1 + 2 * radius, xmax - xmin + 1 + 2 * radius) branch_array = np.zeros(shape, dtype=bool) branch_array[pix[:, 0] - ymin + radius, pix[:, 1] - xmin + radius] = True branch_array = np.fliplr(branch_array) theta, R, quant = rht(branch_array, radius, ntheta, background_percentile) twofive, mean, sevenfive = quant means.append(mean) if sevenfive > twofive: iqrs.append(np.abs(sevenfive - twofive)) else: iqrs.append(np.abs(sevenfive - twofive) + np.pi) self._orientation_branches = np.array(means) * u.rad self._curvature_branches = np.array(iqrs) * u.rad @property def orientation_branches(self): ''' Orientations along each branch in the filament. ''' return self._orientation_branches @property def curvature_branches(self): ''' Curvature along each branch in the filament. ''' return self._curvature_branches def width_analysis(self, image, all_skeleton_array=None, max_dist=10 * u.pix, pad_to_distance=0 * u.pix, fit_model='gaussian_bkg', fitter=None, try_nonparam=True, use_longest_path=False, add_width_to_length=False, deconvolve_width=True, beamwidth=None, fwhm_function=None, chisq_max=10., **kwargs): ''' Create an average radial profile for the filament and fit a given model. Parameters ---------- image : `~astropy.unit.Quantity` or `~numpy.ndarray` The image from which the filament was extracted. all_skeleton_array : np.ndarray An array with the skeletons of other filaments. This is used to avoid double-counting pixels in the radial profiles in nearby filaments. max_dist : `~astropy.units.Quantity`, optional Largest radius around the skeleton to create the profile from. This can be given in physical, angular, or physical units. pad_to_distance : `~astropy.units.Quantity`, optional Force all pixels within this distance to be kept, even if a pixel is closer to another skeleton, as given in `all_skeleton_array`. fit_model : str or `~astropy.modeling.Fittable1DModel`, optional The model to fit to the profile. Built-in models include 'gaussian_bkg' for a Gaussian with a constant background, 'gaussian_nobkg' for just a Gaussian, 'nonparam' for the non-parametric estimator. Defaults to 'gaussian_bkg'. fitter : `~astropy.modeling.fitting.Fitter`, optional One of the astropy fitting classes. Defaults to a Levenberg-Marquardt fitter. try_nonparam : bool, optional If the chosen model fit fails, fall back to a non-parametric estimate. use_longest_path : bool, optional Only fit profile to the longest path skeleton. Disabled by default. add_width_to_length : bool, optional Add the FWHM to the filament length. This accounts for the expected shortening in the medial axis transform. Enabled by default. deconvolve_width : bool, optional Deconvolve the beam width from the FWHM. Enabled by default. beamwidth : `~astropy.units.Quantity`, optional The beam width to deconvolve the FWHM from. Required if `deconvolve_width = True`. fwhm_function : function, optional Convert the width parameter to the FWHM. Must take the fit model as an argument and return the FWHM and its uncertainty. If no function is given, the Gaussian FWHM is used. chisq_max : float, optional Enable the fail flag if the reduced chi-squared value is above this limit. kwargs : Passed to `~fil_finder.width.radial_profile`. ''' # Convert quantities to pixel units. max_dist = self._converter.to_pixel(max_dist).value pad_to_distance = self._converter.to_pixel(pad_to_distance).value if deconvolve_width and beamwidth is None: raise ValueError("beamwidth must be given when deconvolve_width is" " enabled.") if beamwidth is not None: beamwidth = self._converter.to_pixel(beamwidth) # Use the max dist as the pad size pad_size = int(np.ceil(max_dist)) # if given a master skeleton array, require it to be the same shape as # the image if all_skeleton_array is not None: if all_skeleton_array.shape != image.shape: raise ValueError("The shape of all_skeleton_array must match" " the given image.") if use_longest_path: skel_array = self.skeleton(pad_size=pad_size, out_type='longpath') else: skel_array = self.skeleton(pad_size=pad_size, out_type='all') out_shape = skel_array.shape input_image = self.image_slicer(image, out_shape, pad_size=pad_size) if all_skeleton_array is not None: input_all_skeleton_array = \ self.image_slicer(all_skeleton_array, out_shape, pad_size=pad_size) else: input_all_skeleton_array = None # Create distance arrays to build profile from dist_skel_arr = nd.distance_transform_edt(np.logical_not(skel_array)) # And create a distance array from the full skeleton array if given if input_all_skeleton_array is not None: dist_skel_all = nd.distance_transform_edt(np.logical_not(input_all_skeleton_array)) else: dist_skel_all = None # Need the unbinned data for the non-parametric fit. out = radial_profile(input_image, dist_skel_all, dist_skel_arr, [(0, 0), (0, 0)], max_distance=max_dist, pad_to_distance=pad_to_distance, **kwargs) if out is None: raise ValueError("Building radial profile failed. Check the input" " image for NaNs.") else: dist, radprof, weights, unbin_dist, unbin_radprof = out # Attach units xunit = u.pix if hasattr(image, 'unit'): yunit = image.unit else: yunit = u.dimensionless_unscaled self._yunit = yunit radprof = radprof * yunit dist = dist * xunit self._radprofile = [dist, radprof] self._unbin_radprofile = [unbin_dist * xunit, unbin_radprof * yunit] # Make sure the given model is valid if not isinstance(fit_model, mod.Model): skip_fitting = False self._radprof_type = fit_model # Check the default types if fit_model == "gaussian_bkg": fit_model = gaussian_model(dist, radprof, with_bkg=True) elif fit_model == "gaussian_nobkg": fit_model = gaussian_model(dist, radprof, with_bkg=False) elif fit_model == "nonparam": skip_fitting = True else: raise ValueError("fit_model must be an " "astropy.modeling.Fittable1DModel or " "one of the default models: 'gaussian_bkg'," " 'gaussian_nobkg', or 'nonparam'.") else: # Record the fit type self._radprof_type = fit_model.name if not skip_fitting: fitted_model, fitter = fit_radial_model(dist, radprof, fit_model, weights=weights) # Only keep the non-fixed parameters. The fixed parameters won't # appear in the covariance matrix. params = [] names = [] for name in fitted_model.param_names: # Check if it is fixed: if fitted_model.fixed[name]: continue param = getattr(fitted_model, name) if param.quantity is not None: params.append(param.quantity) else: # Assign a dimensionless unit params.append(param.value * u.dimensionless_unscaled) names.append(name) self._radprof_params = params npar = len(self.radprof_params) self._radprof_parnames = names self._radprof_model = fitted_model self._radprof_fitter = fitter # Fail checks fail_flag = False param_cov = fitter.fit_info.get('param_cov') if param_cov is not None: fit_uncert = list(np.sqrt(np.diag(param_cov))) else: fit_uncert = [np.NaN] * npar fail_flag = True if len(fit_uncert) != len(params): raise ValueError("The number of parameters does not match the " "number from the covariance matrix. Check for" " fixed parameters.") # Add units to errors for i, par in enumerate(params): fit_uncert[i] = fit_uncert[i] * par.unit self._radprof_errors = fit_uncert # Check if units should be kept if fitted_model._supports_unit_fitting: modvals = fitted_model(dist) radprof_vals = radprof else: modvals = fitted_model(dist.value) radprof_vals = radprof.value chisq = red_chisq(radprof_vals, modvals, npar, 1) if chisq > chisq_max: fail_flag = True if (skip_fitting or fail_flag) and try_nonparam: fit, fit_error, fail_flag = \ nonparam_width(dist.value, radprof.value, unbin_dist, unbin_radprof, None, 5, 99) self._radprof_type = 'nonparam' # Make the equivalent Gaussian model w/ a background self._radprof_model = Gaussian1D() + Const1D() if self._radprof_model._supports_unit_fitting: self._radprof_model.amplitude_0 = fit[0] * yunit self._radprof_model.mean_0 = 0.0 * xunit self._radprof_model.sigma_0 = fit[1] * xunit self._radprof_model.amplitude_1 = fit[2] * yunit else: self._radprof_model.amplitude_0 = fit[0] self._radprof_model.mean_0 = 0.0 self._radprof_model.sigma_0 = fit[1] self._radprof_model.amplitude_1 = fit[2] # Slice out the FWHM and add units params = [fit[0] * yunit, fit[1] * xunit, fit[2] * yunit] errs = [fit_error[0] * yunit, fit_error[1] * xunit, fit_error[2] * yunit] self._radprof_params = params self._radprof_errors = errs self._radprof_parnames = ['amplitude_0', 'stddev_0', 'amplitude_1'] if fwhm_function is not None: fwhm = fwhm_function(fitted_model) else: # Default to Gaussian FWHM for idx, name in enumerate(self.radprof_parnames): if "stddev" in name: found_width = True break if found_width: fwhm = self.radprof_params[idx].value * np.sqrt(8 * np.log(2)) * xunit fwhm_err = self.radprof_errors[idx].value * np.sqrt(8 * np.log(2)) * xunit else: raise ValueError("Could not automatically identify which " "parameter in the model corresponds to the " "width. Please pass a function to " "'fwhm_function' to identify the width " "parameter.") if deconvolve_width: fwhm_deconv_sq = fwhm**2 - beamwidth**2 if fwhm_deconv_sq > 0: fwhm_deconv = np.sqrt(fwhm_deconv_sq) fwhm_deconv_err = fwhm * fwhm_err / fwhm_deconv else: fwhm_deconv = np.NaN fwhm_deconv_err = np.NaN warnings.warn("Width could not be deconvolved from the beam " "width.") else: fwhm_deconv = fwhm fwhm_deconv_err = fwhm_err self._fwhm = fwhm_deconv self._fwhm_err = fwhm_deconv_err # Final width check -- make sure length is longer than the width. # If it is, add the width onto the length since the adaptive # thresholding shortens each edge by the about the same. if self.length() < self._fwhm: fail_flag = True # Add the width onto the length if enabled if add_width_to_length: if fail_flag: warnings.warn("Ignoring adding the width to the length because" " the fail flag was raised for the fit.") else: self._length += self._fwhm self._radprof_failflag = fail_flag @property def radprof_fit_fail_flag(self): ''' Flag to catch poor fits. ''' return self._radprof_failflag @property def radprof_type(self): ''' The model type used to fit the radial profile. ''' return self._radprof_type @property def radprofile(self): ''' The binned radial profile created in `~FilFinder2D.width_analysis`. This contains the distances and the profile value in the distance bin. ''' return self._radprofile @property def radprof_params(self): ''' Fit parameters from `~FilFinder2D.width_analysis`. ''' return self._radprof_params @property def radprof_errors(self): ''' Fit uncertainties from `~FilFinder2D.width_analysis`. ''' return self._radprof_errors def radprof_fwhm(self, unit=u.pixel): ''' The FWHM of the fitted radial profile and its uncertainty. Parameters ---------- unit : `~astropy.units.Unit`, optional Pixel, angular, or physical unit to convert to. ''' return self._converter.from_pixel(self._fwhm, unit), \ self._converter.from_pixel(self._fwhm_err, unit) @property def radprof_parnames(self): ''' Parameter names from `~FilFinder2D.radprof_model`. ''' return self._radprof_parnames def radprof_fit_table(self, unit=u.pix): ''' Return an `~astropy.table.Table` with the fit parameters and uncertainties. Parameters ---------- unit : `~astropy.units.Unit`, optional Pixel, angular, or physical unit to convert to. ''' from astropy.table import Table, Column tab = Table() for name, val, err in zip(self.radprof_parnames, self.radprof_params, self.radprof_errors): # Try converting to the given unit. Assume failures are not length # units. try: conv_val = self._converter.from_pixel(val, unit) conv_err = self._converter.from_pixel(err, unit) except u.UnitsError: conv_val = val conv_err = err tab[name] = Column(conv_val.reshape((1,))) tab[name + "_err"] = Column(conv_err.reshape((1,))) # Add on the FWHM tab['fwhm'] = Column(self.radprof_fwhm(unit)[0].reshape((1,))) tab['fwhm_err'] = Column(self.radprof_fwhm(unit)[1].reshape((1,))) # Add on whether the fit was "successful" tab['fail_flag'] = Column([self.radprof_fit_fail_flag]) # Add the type of fit based on the model type tab['model_type'] = Column([self.radprof_type]) return tab @property def radprof_model(self): ''' The fitted radial profile model. ''' return self._radprof_model def plot_radial_profile(self, save_name=None, xunit=u.pix, ax=None): ''' Plot the radial profile of the filament and the fitted model. Parameters ---------- xunit : `~astropy.units.Unit`, optional Pixel, angular, or physical unit to convert to. ax : `~matplotlib.axes`, optional Use an existing set of axes to plot the profile. ''' dist, radprof = self.radprofile model = self.radprof_model conv_dist = self._converter.from_pixel(dist, xunit) import matplotlib.pyplot as plt if ax is None: ax = plt.subplot(111) ax.plot(conv_dist, radprof, "kD") points = np.linspace(np.min(dist), np.max(dist), 5 * len(dist)) # Check if units should be kept when evaluating the model if not model._supports_unit_fitting: points = points.value conv_points = np.linspace(np.min(conv_dist), np.max(conv_dist), 5 * len(conv_dist)) ax.plot(conv_points, model(points), "r") ax.set_xlabel(r'Radial Distance ({})'.format(xunit)) ax.set_ylabel(r'Intensity ({})'.format(self._yunit)) ax.grid(True) plt.tight_layout() if save_name is not None: plt.savefig(save_name) plt.show() if in_ipynb(): plt.clf() def total_intensity(self, bkg_subtract=False, bkg_mod_index=2): ''' Return the sum of all pixels within the FWHM of the filament. .. warning:: `fil_finder_2D` multiplied the total intensity by the angular size of a pixel. This function is just the sum of pixel values. Unit conversions can be applied on the output if needed. Parameters ---------- bkg_subtract : bool, optional Subtract off the fitted background level. bkg_mod_index : int, optional Indicate which element in `Filament2D.radprof_params` is the background level. Defaults to 2 for the Gaussian with background model. Returns ------- total_intensity : `~astropy.units.Quantity` The total intensity for the filament. ''' within_fwhm = self._unbin_radprofile[0] <= \ 0.5 * self.radprof_fwhm()[0] total_intensity = np.sum(self._unbin_radprofile[1][within_fwhm]) if bkg_subtract: bkg = self.radprof_params[bkg_mod_index] if not self.radprof_model._supports_unit_fitting: bkg = bkg.value * total_intensity.unit total_intensity -= bkg * within_fwhm.sum() return total_intensity def model_image(self, max_radius=20 * u.pix, bkg_subtract=True, bkg_mod_index=2): ''' Return a model image from the radial profile fit. Parameters ---------- max_radius : `~astropy.units.Quantity`, optional Set the radius to compute the model to. The outputted array will be padded by the number of pixels the max_radius corresponds to. bkg_subtract : bool, optional Subtract off the fitted background level. bkg_mod_index : int, optional Indicate which element in `Filament2D.radprof_params` is the background level. Defaults to 2 for the Gaussian with background model. Returns ------- model_array : `~astropy.units.Quantity` A 2D array computed using the radial profile model. ''' max_radius = self._converter.to_pixel(max_radius).value pad_size = int(max_radius) skel_arr = self.skeleton(pad_size) dists = nd.distance_transform_edt(~skel_arr) if self.radprof_model._supports_unit_fitting: dists = dists * u.pix if not bkg_subtract: return self.radprof_model(dists) else: bkg = self.radprof_params[bkg_mod_index] if not self.radprof_model._supports_unit_fitting: bkg = bkg.value return self.radprof_model(dists) - bkg def median_brightness(self, image): ''' Return the median brightness along the skeleton of the filament. Parameters ---------- image : `~numpy.ndarray` or `~astropy.units.Quantity` The image from which the filament was extracted. Returns ------- median_brightness : float or `~astropy.units.Quantity` Median brightness along the skeleton. ''' pad_size = 1 # Do we need to pad the image before slicing? input_image = pad_image(image, self.pixel_extents, pad_size) skels = self.skeleton(pad_size=pad_size) # If the padded image matches the mask size, don't need additional # slicing if input_image.shape != skels.shape: input_image = self.image_slicer(input_image, skels.shape, pad_size=pad_size) assert input_image.shape == skels.shape return np.nanmedian(input_image[skels]) def ridge_profile(self, image): ''' Return the image values along the longest path extent of a filament, or from radial slices along the longest path. Parameters ---------- image : `~numpy.ndarray` or `~astropy.units.Quantity` The image from which the filament was extracted. ''' pad_size = 1 # Do we need to pad the image before slicing? input_image = pad_image(image, self.pixel_extents, pad_size) * \ u.dimensionless_unscaled skels = self.skeleton(pad_size=pad_size, out_type='longpath') # If the padded image matches the mask size, don't need additional # slicing if input_image.shape != skels.shape: input_image = self.image_slicer(input_image, skels.shape, pad_size=pad_size) # These should have the same shape now. assert input_image.shape == skels.shape from .width_profiles.profile_line_width import walk_through_skeleton order_pts = walk_through_skeleton(skels) if hasattr(image, 'unit'): unit = image.unit else: unit = u.dimensionless_unscaled input_image = input_image * unit values = [] for pt in order_pts: values.append(input_image[pt[0], pt[1]].value) return values * unit def profile_analysis(self, image, max_dist=20 * u.pix, num_avg=3, xunit=u.pix): ''' Create profiles of radial slices along the longest path skeleton. Profiles created from `~fil_finder.width_profiles.filament_profile`. .. note:: Does not include fitting to the radial profiles. Limited fitting of Gaussian profiles is provided in `~fil_finder.width_profiles.filament_profile`. See a dedicated package like `radfil <https://github.com/catherinezucker/radfil>`_ for modeling profiles. Parameters ---------- image : `~numpy.ndarray` or `~astropy.units.Quantity` The image from which the filament was extracted. max_dist : astropy Quantity, optional The angular or physical (when distance is given) extent to create the profile away from the centre skeleton pixel. The entire profile will be twice this value (for each side of the profile). num_avg : int, optional Number of points before and after a pixel that is used when computing the normal vector. Using at least three points is recommended due to small pixel instabilities in the skeletons. Returns ------- dists : `~astropy.units.Quantity` Distances in the radial profiles from the skeleton. Units set by `xunit`. profiles : `~astropy.units.Quantity` Radial image profiles. ''' from .width_profiles import filament_profile max_dist = self._converter.to_pixel(max_dist) pad_size = int(max_dist.value) # Do we need to pad the image before slicing? input_image = pad_image(image, self.pixel_extents, pad_size) if hasattr(image, 'unit'): input_image = input_image * image.unit else: input_image = input_image * u.dimensionless_unscaled skels = self.skeleton(pad_size=pad_size, out_type='longpath') # If the padded image matches the mask size, don't need additional # slicing if input_image.shape != skels.shape: input_image = self.image_slicer(input_image, skels.shape, pad_size=pad_size) # Check if angular conversions are defined. If not, stay in pixel units if hasattr(self._converter, '_ang_size'): pixscale = self._converter.to_angular(1 * u.pix) ang_conv = True else: pixscale = 1.0 * u.deg ang_conv = False dists, profiles = filament_profile(skels, input_image, pixscale, max_dist=max_dist, distance=None, fit_profiles=False, bright_unit=input_image.unit) # First put the distances into pixel units if ang_conv: dists = [self._converter.to_pixel(dist) for dist in dists] else: # Already in pixel units. dists = [dist.value * u.pix for dist in dists] # Convert the distance units dists = [self._converter.from_pixel(dist, xunit) for dist in dists] return dists, profiles def radprof_table(self, xunit=u.pix): ''' Return the radial profile as a table. Parameters ---------- xunit : `~astropy.units.Unit`, optional Spatial unit to convert radial profile distances. Returns ------- tab : `~astropy.table.Table` Table with the radial profile distance and values. ''' from astropy.table import Column, Table dists = Column(self._converter.from_pixel(self._radprofile[0], xunit)) vals = Column(self._radprofile[1]) tab = Table() tab['distance'] = dists tab['values'] = vals return tab def branch_table(self, include_rht=False): ''' Save the branch properties of the filament. Parameters ---------- include_rht : bool, optional If `branches=True` is used in `Filament2D.exec_rht`, the branch orientation and curvature will be added to the table. Returns ------- tab : `~astropy.table.Table` Table with the branch properties. ''' from astropy.table import Table, Column branch_data = self.branch_properties.copy() del branch_data['pixels'] del branch_data['number'] if include_rht: branch_data['orientation'] = self.orientation_branches branch_data['curvature'] = self.curvature_branches tab = Table([Column(branch_data[key]) for key in branch_data], names=branch_data.keys()) return tab def save_fits(self, savename, image, pad_size=20 * u.pix, header=None, **model_kwargs): ''' Save a stamp of the image centered on the filament, the skeleton, the longest path skeleton, and the model. Parameters ---------- image : `~numpy.ndarray` or `~astropy.units.Quantity` The image from which the filament was extracted. pad_size : `~astropy.units.Quantity`, optional Size to pad the saved arrays by. header : `~astropy.io.fits.Header`, optional Provide a FITS header to save to. If `~Filament2D` was given WCS information, this will be used if no header is given. model_kwargs : Passed to `~Filament2D.model_image`. ''' pad_size = int(self._converter.to_pixel(pad_size).value) # Do we need to pad the image before slicing? input_image = pad_image(image, self.pixel_extents, pad_size) skels = self.skeleton(pad_size=pad_size, out_type='all') skels_lp = self.skeleton(pad_size=pad_size, out_type='longpath') # If the padded image matches the mask size, don't need additional # slicing if input_image.shape != skels.shape: input_image = self.image_slicer(input_image, skels.shape, pad_size=pad_size) model = self.model_image(max_radius=pad_size * u.pix, **model_kwargs) if hasattr(model, 'unit'): model = model.value from astropy.io import fits import time if header is None: if hasattr(self._converter, "_wcs"): header = self._converter._wcs.to_header() else: header = fits.Header() # Strip off units if the image is a Quantity if hasattr(input_image, 'unit'): input_image = input_image.value.copy() hdu = fits.PrimaryHDU(input_image, header) skel_hdr = header.copy() skel_hdr['BUNIT'] = ("", "bool") skel_hdr['COMMENT'] = "Skeleton created by fil_finder on " + \ time.strftime("%c") skel_hdu = fits.ImageHDU(skels.astype(int), skel_hdr) skel_lp_hdu = fits.ImageHDU(skels_lp.astype(int), skel_hdr) model_hdu = fits.ImageHDU(model, header) hdulist = fits.HDUList([hdu, skel_hdu, skel_lp_hdu, model_hdu]) hdulist.writeto(savename) def to_pickle(self, savename): ''' Save a Filament2D class as a pickle file. Parameters ---------- savename : str Name of the pickle file. ''' with open(savename, 'wb') as output: pickle.dump(self, output, -1) @staticmethod def from_pickle(filename): ''' Load a Filament2D from a pickle file. Parameters ---------- filename : str Name of the pickle file. ''' with open(filename, 'rb') as input: self = pickle.load(input) return self class Filament3D(FilamentNDBase): """docstring for Filament3D""" def __init__(self, arg): super(Filament3D, self).__init__() self.arg = arg
656b9a478e48b1c9114cb46915cfa1113d2c3a9e
651a296c8f45b5799781fd78a6b5329effe702a0
/polpak/bell_values.py
22a15e0802b2391a06bf53d6f330732079415995
[]
no_license
pdhhiep/Computation_using_Python
095d14370fe1a01a192d7e44fcc81a52655f652b
407ed29fddc267950e9860b8bbd1e038f0387c97
refs/heads/master
2021-05-29T12:35:12.630232
2015-06-27T01:05:17
2015-06-27T01:05:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,625
py
#!/usr/bin/env python # def bell_values ( n_data ): #*****************************************************************************80 # ## BELL_VALUES returns some values of the Bell numbers. # # Discussion: # # The Bell number B(N) is the number of restricted growth functions on N. # # Note that the Stirling numbers of the second kind, S^m_n, count the # number of partitions of N objects into M classes, and so it is # true that # # B(N) = S^1_N + S^2_N + ... + S^N_N. # # The Bell numbers were named for Eric Temple Bell. # # In Mathematica, the function can be evaluated by # # Sum[StirlingS2[n,m],{m,1,n}] # # The Bell number B(N) is defined as the number of partitions (of # any size) of a set of N distinguishable objects. # # A partition of a set is a division of the objects of the set into # subsets. # # Example: # # There are 15 partitions of a set of 4 objects: # # (1234), # (123) (4), # (124) (3), # (12) (34), # (12) (3) (4), # (134) (2), # (13) (24), # (13) (2) (4), # (14) (23), # (1) (234), # (1) (23) (4), # (14) (2) (3), # (1) (24) (3), # (1) (2) (34), # (1) (2) (3) (4). # # and so B(4) = 15. # # First values: # # N B(N) # 0 1 # 1 1 # 2 2 # 3 5 # 4 15 # 5 52 # 6 203 # 7 877 # 8 4140 # 9 21147 # 10 115975 # # Recursion: # # B(I) = sum ( 1 <= J <=I ) Binomial ( I-1, J-1 ) * B(I-J) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 November 2014 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the Bell number. # # Output, integer C, the value of the Bell number. # import numpy as np n_max = 11 c_vec = np.array ( ( 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975 ) ) n_vec = np.array ( ( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 c = 0 else: n = n_vec[n_data] c = c_vec[n_data] n_data = n_data + 1 return n_data, n, c def bell_values_test ( ): #*****************************************************************************80 # ## BELL_VALUES_TEST demonstrates the use of BELL_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 November 2014 # # Author: # # John Burkardt # print '' print 'BELL_VALUES_TEST:' print ' BELL_VALUES returns values of' print ' the Bell numbers.' print '' print ' N BELL(N)' print '' n_data = 0 while ( True ): n_data, n, c = bell_values ( n_data ) if ( n_data == 0 ): break print '%6d %10d' % ( n, c ) print '' print 'BELL_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bell_values_test ( ) timestamp ( )
e636e89dc9a0a67ae30601cbdb6cdcf9947fef12
e4f2aba6cb66ac33c5fc439374e8ef39d0bb0e4a
/Week-2-format-string/Exercise-4.py
7d00cc9ba3f0f3a488faa705797ac2907d073325
[]
no_license
AChen24562/Python-QCC
573f5b545239aa24b8047c74539ca6b3e997faa0
1da01b76e209eb9b0d08f0f205d635bc2a149dfd
refs/heads/master
2023-02-06T23:18:41.850377
2020-12-28T12:59:29
2020-12-28T12:59:29
289,614,327
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
width = 17 height = 12.0 delimiter = "." print(width//2, type(width//2)) print(width/2.0, type(width/2.0)) print(height/3, type(height/3)) # delimiter * 5 = '.....', str print(delimiter * 5, type(delimiter * 5))
307a62915d6949a0d0da070e0c930329d1b02074
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/compute/v20180601/get_log_analytic_export_request_rate_by_interval.py
3eff60bb02dd42eaf3cbb6765a0555d41fb0c38f
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
3,956
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * __all__ = [ 'GetLogAnalyticExportRequestRateByIntervalResult', 'AwaitableGetLogAnalyticExportRequestRateByIntervalResult', 'get_log_analytic_export_request_rate_by_interval', ] @pulumi.output_type class GetLogAnalyticExportRequestRateByIntervalResult: """ LogAnalytics operation status response """ def __init__(__self__, properties=None): if properties and not isinstance(properties, dict): raise TypeError("Expected argument 'properties' to be a dict") pulumi.set(__self__, "properties", properties) @property @pulumi.getter def properties(self) -> 'outputs.LogAnalyticsOutputResponse': """ LogAnalyticsOutput """ return pulumi.get(self, "properties") class AwaitableGetLogAnalyticExportRequestRateByIntervalResult(GetLogAnalyticExportRequestRateByIntervalResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetLogAnalyticExportRequestRateByIntervalResult( properties=self.properties) def get_log_analytic_export_request_rate_by_interval(blob_container_sas_uri: Optional[str] = None, from_time: Optional[str] = None, group_by_operation_name: Optional[bool] = None, group_by_resource_name: Optional[bool] = None, group_by_throttle_policy: Optional[bool] = None, interval_length: Optional['IntervalInMins'] = None, location: Optional[str] = None, to_time: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetLogAnalyticExportRequestRateByIntervalResult: """ LogAnalytics operation status response :param str blob_container_sas_uri: SAS Uri of the logging blob container to which LogAnalytics Api writes output logs to. :param str from_time: From time of the query :param bool group_by_operation_name: Group query result by Operation Name. :param bool group_by_resource_name: Group query result by Resource Name. :param bool group_by_throttle_policy: Group query result by Throttle Policy applied. :param 'IntervalInMins' interval_length: Interval value in minutes used to create LogAnalytics call rate logs. :param str location: The location upon which virtual-machine-sizes is queried. :param str to_time: To time of the query """ __args__ = dict() __args__['blobContainerSasUri'] = blob_container_sas_uri __args__['fromTime'] = from_time __args__['groupByOperationName'] = group_by_operation_name __args__['groupByResourceName'] = group_by_resource_name __args__['groupByThrottlePolicy'] = group_by_throttle_policy __args__['intervalLength'] = interval_length __args__['location'] = location __args__['toTime'] = to_time if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:compute/v20180601:getLogAnalyticExportRequestRateByInterval', __args__, opts=opts, typ=GetLogAnalyticExportRequestRateByIntervalResult).value return AwaitableGetLogAnalyticExportRequestRateByIntervalResult( properties=__ret__.properties)
ae3b13b10359ae08b10f0782054445f49475fc90
52b5773617a1b972a905de4d692540d26ff74926
/.history/maxProduct_20200731212441.py
c7bb8018626c41179870e4caa9d8418f760ec486
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
766
py
import sys # time complexity is o(n3 ) and space is o(1) def maxThree(arr): if len(arr) < 3: return -1 maxProduct = -(sys.maxsize -1) print(maxProduct) n = len(arr) for i in range(0,n-2): for j in range(i+1,n-1): for k in range(j+1,n): print('i',arr[i],'j',arr[j],'k',arr[k]) product = arr[i] * arr[j] * arr[k] if product > maxProduct: maxProduct = product return maxProduct # Optimal solution o(nlogn) def maxOp(arr): n = len(arr) arr.sort() first = arr[n-1] * arr[n-2] * arr[n-3] second = arr[0] * arr[1] * arr[n-1] return max(first,second) print(maxOp([-5,-5,4,5])) # O(n) time complexity
1699d7d134745de10adce3f9435f31332bfe41fd
635cb7fb75048f9de7b95b48d1f59de68f9b3368
/R09/używanie_metaklas_do_kontrolowania_tworzenia_obiektów/example1.py
e76bc265bf850d4e8c8757ec5aaa9bafea6fbc7d
[]
no_license
anpadoma/python_receptury3
9e889ac503e48eb62160050eecfdc4a64072c184
c761f2c36707785a8a70bdaccebd7533c76dee21
refs/heads/master
2021-01-22T14:38:34.718999
2014-01-31T22:09:44
2014-01-31T22:09:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
423
py
# example1.py # # Bezpośrednie tworzenie obiektów jest niedozwolone class NoInstances(type): def __call__(self, *args, **kwargs): raise TypeError("Nie można bezpośrednio tworzyć obiektu") class Spam(metaclass=NoInstances): @staticmethod def grok(x): print('Spam.grok') if __name__ == '__main__': try: s = Spam() except TypeError as e: print(e) Spam.grok(42)