blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
8ebfb829b1d0def60e4c43777cb8f3bf68601fa8
4c458854c0b5672a098b496d871a2b4f1d8e828d
/tools/py_bulit_in/getattr_module.py
4c2d67c27b0d03499119524cbf097660dd38e9c8
[]
no_license
claire1234995/code
ae918aebd0fb87f50d1ac0ee434e4976e8682b23
1bb9f5aaad1ac801e912cd13537de2ebfe9dcb1c
refs/heads/master
2022-02-20T05:28:40.303611
2019-10-11T05:28:11
2019-10-11T05:28:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
164
py
from importlib import import_module defa = import_module('.'.join(["default"])) # gettattr(defa, 'info') 是 a function attr = getattr(defa, 'info') print(attr())
4b3f4ce7d3466af21161b49b5de4bb3c3dae016e
f3b233e5053e28fa95c549017bd75a30456eb50c
/p38a_input/L2Z/2Z-2Y_wat_20Abox/set_1ns_equi.py
caf34fdac8c7fd631e0581c3c13b6dd1db8f0e62
[]
no_license
AnguseZhang/Input_TI
ddf2ed40ff1c0aa24eea3275b83d4d405b50b820
50ada0833890be9e261c967d00948f998313cb60
refs/heads/master
2021-05-25T15:02:38.858785
2020-02-18T16:57:04
2020-02-18T16:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
915
py
import os dir = '/mnt/scratch/songlin3/run/p38a/L2Z/wat_20Abox/ti_one-step/2Z_2Y/' filesdir = dir + 'files/' temp_equiin = filesdir + 'temp_equi.in' temp_pbs = filesdir + 'temp_1ns_equi.pbs' lambd = [ 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078] for j in lambd: os.system("rm -r %6.5f" %(j)) os.system("mkdir %6.5f" %(j)) os.chdir("%6.5f" %(j)) os.system("rm *") workdir = dir + "%6.5f" %(j) + '/' #equiin eqin = workdir + "%6.5f_equi.in" %(j) os.system("cp %s %s" %(temp_equiin, eqin)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, eqin)) #PBS pbs = workdir + "%6.5f_1ns_equi.pbs" %(j) os.system("cp %s %s" %(temp_pbs, pbs)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, pbs)) #top os.system("cp ../2Z-2Y_merged.prmtop .") os.system("cp ../0.5_equi_0.rst .") #submit pbs os.system("qsub %s" %(pbs)) os.chdir(dir)
178cb057717e1ae8d262ad395a5abd1a2506036e
71ad2a6587cc7c0a7149465287b2659d81f406e7
/morpheus_chair_pkg/scripts/simple_firmata.py
d282b902a57547d624cac95b58488394e34f9c8c
[]
no_license
ArifSohaib/morpheus_chair_arduino
389a091ad00535992260ed8eeb6d897d33c08010
be4e4892a87f09cc86c8832a12b2ccc06172756f
refs/heads/master
2020-04-29T09:02:15.593714
2019-12-07T05:35:10
2019-12-07T05:35:10
176,008,958
0
1
null
null
null
null
UTF-8
Python
false
false
4,531
py
from pyfirmata import Arduino, util import os if os.name == 'nt': from pynput import keyboard import time """defining pins""" #define ENB 5 #define IN1 7 #define IN2 8 #define IN3 9 #define IN4 11 #define ENA 6 ENB = 5 IN1 = 7 IN2 = 8 IN3 = 9 IN4 = 11 ENA = 6 def forward(): """ ORIGINAL function void forward(){ digitalWrite(ENA, HIGH); //enable L298n A channel digitalWrite(ENB, HIGH); //enable L298n B channel digitalWrite(IN1, HIGH); //set IN1 hight level digitalWrite(IN2, LOW); //set IN2 low level digitalWrite(IN3, LOW); //set IN3 low level digitalWrite(IN4, HIGH); //set IN4 hight level Serial.println("Forward"); //send message to serial monitor }""" board.digital[ENA].write(1) board.digital[ENB].write(1) board.digital[IN1].write(1) board.digital[IN2].write(0) board.digital[IN3].write(0) board.digital[IN4].write(1) def back(): """ void back(){ digitalWrite(ENA, HIGH); digitalWrite(ENB, HIGH); digitalWrite(IN1, LOW); digitalWrite(IN2, HIGH); digitalWrite(IN3, HIGH); digitalWrite(IN4, LOW); Serial.println("Back"); }""" board.digital[ENA].write(1) board.digital[ENB].write(1) board.digital[IN1].write(0) board.digital[IN2].write(1) board.digital[IN3].write(1) board.digital[IN4].write(0) def left(): """ void left(){ digitalWrite(ENA, HIGH); digitalWrite(ENB, HIGH); digitalWrite(IN1, LOW); digitalWrite(IN2, HIGH); digitalWrite(IN3, LOW); digitalWrite(IN4, HIGH); Serial.println("Left"); }""" board.digital[ENA].write(1) board.digital[ENB].write(1) board.digital[IN1].write(0) board.digital[IN2].write(1) board.digital[IN3].write(0) board.digital[IN4].write(1) def right(): """ void right(){ digitalWrite(ENA, HIGH); digitalWrite(ENB, HIGH); digitalWrite(IN1, HIGH); digitalWrite(IN2, LOW); digitalWrite(IN3, HIGH); digitalWrite(IN4, LOW); Serial.println("Right"); } """ board.digital[ENA].write(1) board.digital[ENB].write(1) board.digital[IN1].write(1) board.digital[IN2].write(0) board.digital[IN3].write(1) board.digital[IN4].write(0) def stop(): board.digital[ENA].write(0) board.digital[ENB].write(0) board.digital[IN1].write(0) board.digital[IN2].write(0) board.digital[IN3].write(0) board.digital[IN4].write(0) def on_press(key): try: print('alphanumeric key {0} pressed'.format(key.char)) if key.char == 'w': forward() elif key.char == 's': back() elif key.char == 'a': left() elif key.char == 'd': right() elif key.char == 'x': stop(); board.exit() return False except AttributeError: try: board.exit() except: print("board not connected") print('special key {0} pressed'.format( key)) def on_release(key): print('{0} released'.format(key)) if key == keyboard.Key.esc: # Stop listener return False #define globals try: board = Arduino("COM9") except: board = Arduino("/dev/ttyACM0") iterator = util.Iterator(board) iterator.start() def main(): # connect(board) # Collect events until released with keyboard.Listener(on_press=on_press,on_release=on_release) as listener:listener.join() # import keyboard # using module keyboard # while True: # making a loop # try: # used try so that if user pressed other than the given key error will not be shown # if keyboard.is_pressed('q'): # if key 'q' is pressed # print('You Pressed A Key!') # try: # board.exit() # except: # print("not connected") # break # finishing the loop # else: # pass # except: # try: # board.exit() # except: # print("not connected") # break # if user pressed a key other than the given key the loop will break def main_simple(): import time forward() time.sleep(10) back() time.sleep(10) stop() if __name__ == "__main__": if os.name != 'nt': main_simple() else: main()
90aab359ae9197e2d3629214164cb1cc90ca7031
b86608b6de44642ed29cd88bba4acbbdd31a0b04
/examples/bq_file_load_benchmark/tests/test_parquet_util.py
55fff7d7e6872a3077acaea7ee3a1e2d5624fa6b
[ "Apache-2.0" ]
permissive
MCRen88/professional-services
a514a926dd23e3c4ac6dadb656faed22c3d91d5d
d7bc3b194159ffdb149c9507890bb1fbae7a8d88
refs/heads/master
2020-12-15T16:38:17.860940
2020-01-06T19:29:47
2020-01-06T19:29:47
235,181,173
1
0
Apache-2.0
2020-01-20T19:26:15
2020-01-20T19:26:14
null
UTF-8
Python
false
false
1,423
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import pyarrow as pa import unittest from google.cloud import bigquery from bq_file_load_benchmark.generic_benchmark_tools import parquet_util class TestParquetUtil(unittest.TestCase): """Tests functionality of load_benchmark_tools.parquet_util.ParquetUtil. Attributes: parquet_util(load_benchmark_tools.ParquetUtil): parquet utility class to be tested. """ def setUp(self): """Sets up resources for tests. """ bq_schema = [ bigquery.SchemaField('string1', 'STRING', 'REQUIRED'), bigquery.SchemaField('numeric1', 'NUMERIC', 'REQUIRED') ] self.parquet_util = parquet_util.ParquetUtil( bq_schema=bq_schema ) def test_get_parquet_translated_schema(self): """Tests ParquetUtil.get_pa_translated_schema(). Tests ParquetUtil's ability to translate a BigQuery schema to PyArrow schema for parquet. Returns: True if test passes, else False. """ parquet_translated_schema = self.parquet_util.get_pa_translated_schema() expected_pa_schema = pa.schema([ pa.field('string1', pa.string()), pa.field('numeric1', pa.int64()) ]) assert parquet_translated_schema == expected_pa_schema
b5ce1f91b4d8d62e404127000eb05f3225a5afd7
04c343a4b6ba0cee3873a17833ac910e930e27ce
/goals/migrations/0053_add_field_theme_to_sector.py
16cdfaaa0b865ae88c90451028af51503525f230
[ "Unlicense" ]
permissive
tehamalab/dgs
f10f45440494aa3404da068cfef69ad2f7385033
46de3cdaced5e4afef46fa46c7a3303d53df0da0
refs/heads/master
2021-03-16T05:13:57.548503
2017-11-24T05:45:49
2017-11-24T05:46:08
93,390,835
6
1
null
null
null
null
UTF-8
Python
false
false
510
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-08-28 05:49 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('goals', '0052_add_field_caption_on_plan'), ] operations = [ migrations.AddField( model_name='sector', name='themes', field=models.ManyToManyField(related_name='sectors', to='goals.Theme', verbose_name='Themes'), ), ]
125065bc258175c73d7cc32c947d987f6a4b70e0
e5de11874e3d68ebd48f22d75d0c5b37ed058ae9
/src/env/dm_control/dm_control/suite/common/settings.py
b6ace94933a01f6f632e88350d11796f7e6ec6e9
[ "Apache-2.0" ]
permissive
xiaolonw/policy-adaptation-during-deployment
4436e568439e3e7df48b7ed529304e9d11e979f0
e3f98eef83608bb78a55a63405e17106e4dee814
refs/heads/master
2022-11-17T19:09:00.967055
2020-07-09T00:34:10
2020-07-09T00:34:10
279,119,345
1
0
null
2020-07-12T17:58:50
2020-07-12T17:58:50
null
UTF-8
Python
false
false
5,146
py
import os import numpy as np from dm_control.suite import common from dm_control.utils import io as resources import xmltodict _SUITE_DIR = os.path.dirname(os.path.dirname(__file__)) _FILENAMES = [ "./common/materials.xml", "./common/skybox.xml", "./common/visual.xml", ] def get_model_and_assets_from_setting_kwargs(model_fname, setting_kwargs=None): """"Returns a tuple containing the model XML string and a dict of assets.""" assets = {filename: resources.GetResource(os.path.join(_SUITE_DIR, filename)) for filename in _FILENAMES} if setting_kwargs is None: return common.read_model(model_fname), assets # Convert XML to dicts model = xmltodict.parse(common.read_model(model_fname)) materials = xmltodict.parse(assets['./common/materials.xml']) skybox = xmltodict.parse(assets['./common/skybox.xml']) # Edit lighting if 'light_pos' in setting_kwargs: assert isinstance(setting_kwargs['light_pos'], (list, tuple, np.ndarray)) light_pos = f'{setting_kwargs["light_pos"][0]} {setting_kwargs["light_pos"][1]} {setting_kwargs["light_pos"][2]}' if 'light' in model['mujoco']['worldbody']: model['mujoco']['worldbody']['light']['@pos'] = light_pos elif 'light' in model['mujoco']['worldbody']['body']: model['mujoco']['worldbody']['body']['light']['@pos'] = light_pos else: raise NotImplementedError('model xml does not contain entity light') # Edit camera if 'cam_pos' in setting_kwargs: assert isinstance(setting_kwargs['cam_pos'], (list, tuple, np.ndarray)) cam_pos = f'{setting_kwargs["cam_pos"][0]} {setting_kwargs["cam_pos"][1]} {setting_kwargs["cam_pos"][2]}' if 'camera' in model['mujoco']['worldbody']: model['mujoco']['worldbody']['camera'][0]['@pos'] = cam_pos elif 'camera' in model['mujoco']['worldbody']['body']: model['mujoco']['worldbody']['body']['camera'][0]['@pos'] = cam_pos else: raise NotImplementedError('model xml does not contain entity camera') # Edit distractor if 'distractor_pos' in setting_kwargs: assert isinstance(setting_kwargs['distractor_pos'], (list, tuple, np.ndarray)) distractor_pos = f'{setting_kwargs["distractor_pos"][0]} {setting_kwargs["distractor_pos"][1]} {setting_kwargs["distractor_pos"][2]}' assert model['mujoco']['worldbody']['body'][-1]['@name'] == 'distractor', 'distractor must be in worldbody' model['mujoco']['worldbody']['body'][-1]['geom']['@pos'] = distractor_pos # Edit grid floor if 'grid_rgb1' in setting_kwargs: assert isinstance(setting_kwargs['grid_rgb1'], (list, tuple, np.ndarray)) materials['mujoco']['asset']['texture']['@rgb1'] = \ f'{setting_kwargs["grid_rgb1"][0]} {setting_kwargs["grid_rgb1"][1]} {setting_kwargs["grid_rgb1"][2]}' if 'grid_rgb2' in setting_kwargs: assert isinstance(setting_kwargs['grid_rgb2'], (list, tuple, np.ndarray)) materials['mujoco']['asset']['texture']['@rgb2'] = \ f'{setting_kwargs["grid_rgb2"][0]} {setting_kwargs["grid_rgb2"][1]} {setting_kwargs["grid_rgb2"][2]}' if 'grid_texrepeat' in setting_kwargs: assert isinstance(setting_kwargs['grid_texrepeat'], (list, tuple, np.ndarray)) materials['mujoco']['asset']['material'][0]['@texrepeat'] = \ f'{setting_kwargs["grid_texrepeat"][0]} {setting_kwargs["grid_texrepeat"][1]}' if 'grid_reflectance' in setting_kwargs: materials['mujoco']['asset']['material'][0]['@reflectance'] = \ str(setting_kwargs["grid_reflectance"]) # Edit self if 'self_rgb' in setting_kwargs: assert isinstance(setting_kwargs['self_rgb'], (list, tuple, np.ndarray)) materials['mujoco']['asset']['material'][1]['@rgba'] = \ f'{setting_kwargs["self_rgb"][0]} {setting_kwargs["self_rgb"][1]} {setting_kwargs["self_rgb"][2]} 1' # Edit skybox if 'skybox_rgb' in setting_kwargs: assert isinstance(setting_kwargs['skybox_rgb'], (list, tuple, np.ndarray)) skybox['mujoco']['asset']['texture']['@rgb1'] = \ f'{setting_kwargs["skybox_rgb"][0]} {setting_kwargs["skybox_rgb"][1]} {setting_kwargs["skybox_rgb"][2]}' if 'skybox_rgb2' in setting_kwargs: assert isinstance(setting_kwargs['skybox_rgb2'], (list, tuple, np.ndarray)) skybox['mujoco']['asset']['texture']['@rgb2'] = \ f'{setting_kwargs["skybox_rgb2"][0]} {setting_kwargs["skybox_rgb2"][1]} {setting_kwargs["skybox_rgb2"][2]}' if 'skybox_markrgb' in setting_kwargs: assert isinstance(setting_kwargs['skybox_markrgb'], (list, tuple, np.ndarray)) skybox['mujoco']['asset']['texture']['@markrgb'] = \ f'{setting_kwargs["skybox_markrgb"][0]} {setting_kwargs["skybox_markrgb"][1]} {setting_kwargs["skybox_markrgb"][2]}' # Convert back to XML model_xml = xmltodict.unparse(model) assets['./common/materials.xml'] = xmltodict.unparse(materials) assets['./common/skybox.xml'] = xmltodict.unparse(skybox) return model_xml, assets
d90cd378e2025596ceacb07d965c298a1359589d
719da820d1aad1d352544badc022e0422f1f7588
/tools/demo.py
e8a5d14474411fbf6d0447c7a38e38b2c4bd3789
[ "MIT", "LicenseRef-scancode-generic-cla", "BSD-2-Clause" ]
permissive
yuhan210/py-faster-rcnn
b0886628ba7c0f01fd4ccbd6b35b14835dfbd922
dbf36cc2a327d6d58b92ce4b973fdca45cf9d14e
refs/heads/master
2021-01-10T00:57:05.152454
2016-03-14T16:38:11
2016-03-14T16:38:11
53,615,448
0
0
null
null
null
null
UTF-8
Python
false
false
5,090
py
#!/usr/bin/env python # -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """ Demo script showing detections in sample images. See README.md for installation instructions before running. """ import _init_paths from fast_rcnn.config import cfg from fast_rcnn.test import im_detect from fast_rcnn.nms_wrapper import nms from utils.timer import Timer import matplotlib.pyplot as plt import numpy as np import scipy.io as sio import caffe, os, sys, cv2 import argparse CLASSES = ('__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') NETS = {'vgg16': ('VGG16', 'VGG16_faster_rcnn_final.caffemodel'), 'zf': ('ZF', 'ZF_faster_rcnn_final.caffemodel')} def vis_detections(im, class_name, dets, thresh=0.5): """Draw detected bounding boxes.""" inds = np.where(dets[:, -1] >= thresh)[0] if len(inds) == 0: return im = im[:, :, (2, 1, 0)] fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') for i in inds: bbox = dets[i, :4] score = dets[i, -1] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='red', linewidth=3.5) ) ax.text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') ax.set_title(('{} detections with ' 'p({} | box) >= {:.1f}').format(class_name, class_name, thresh), fontsize=14) plt.axis('off') plt.tight_layout() plt.savefig('test.jpg') plt.draw() def demo(net, image_name): """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name) im = cv2.imread(im_file) # Detect all object classes and regress object bounds timer = Timer() timer.tic() scores, boxes = im_detect(net, im) timer.toc() print ('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]) # Visualize detections for each class CONF_THRESH = 0.8 NMS_THRESH = 0.3 for cls_ind, cls in enumerate(CLASSES[1:]): cls_ind += 1 # because we skipped background cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)] cls_scores = scores[:, cls_ind] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] vis_detections(im, cls, dets, thresh=CONF_THRESH) def parse_args(): """Parse input arguments.""" parser = argparse.ArgumentParser(description='Faster R-CNN demo') parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) parser.add_argument('--cpu', dest='cpu_mode', help='Use CPU mode (overrides --gpu)', action='store_true') parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]', choices=NETS.keys(), default='vgg16') args = parser.parse_args() return args if __name__ == '__main__': cfg.TEST.HAS_RPN = True # Use RPN for proposals args = parse_args() prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0], 'faster_rcnn_alt_opt', 'faster_rcnn_test.pt') caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models', NETS[args.demo_net][1]) if not os.path.isfile(caffemodel): raise IOError(('{:s} not found.\nDid you run ./data/script/' 'fetch_faster_rcnn_models.sh?').format(caffemodel)) if args.cpu_mode: caffe.set_mode_cpu() else: caffe.set_mode_gpu() caffe.set_device(args.gpu_id) cfg.GPU_ID = args.gpu_id #print prototxt, caffemodel net = caffe.Net(prototxt, caffemodel, caffe.TEST) print '\n\nLoaded network {:s}'.format(caffemodel) # Warmup on a dummy image im = 128 * np.ones((300, 500, 3), dtype=np.uint8) for i in xrange(2): _, _= im_detect(net, im) im_names = ['000456.jpg', '000542.jpg', '001150.jpg', '001763.jpg', '004545.jpg'] for im_name in im_names: print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Demo for data/demo/{}'.format(im_name) demo(net, im_name) plt.show()
c6e1e16d3f9cac75006e39850baa427f272dee11
05b3d499424e0ac49a1c7489e1455a48b02439de
/playhouse/dataset.py
09d63fb2688a5af414cd2d8be4bce1f936cda952
[ "MIT" ]
permissive
manipuladordedados/peewee
c5d6e0debd33e8163bfbe41e1107003734be0d7f
82a71566b1f0d76430ac5efccb2bc09f491faedc
refs/heads/master
2020-12-11T05:56:20.679084
2014-11-05T09:17:16
2014-11-05T09:17:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,375
py
import csv import datetime from decimal import Decimal import json import operator try: from urlparse import urlparse except ImportError: from urllib.parse import urlparse import sys from peewee import * from playhouse.db_url import connect from playhouse.migrate import migrate from playhouse.migrate import SchemaMigrator from playhouse.reflection import Introspector if sys.version_info[0] == 3: basestring = str from functools import reduce class DataSet(object): def __init__(self, url): self._url = url parse_result = urlparse(url) self._database_path = parse_result.path[1:] # Connect to the database. self._database = connect(url) self._database.connect() # Introspect the database and generate models. self._introspector = Introspector.from_database(self._database) self._models = self._introspector.generate_models() self._migrator = SchemaMigrator.from_database(self._database) class BaseModel(Model): class Meta: database = self._database self._base_model = BaseModel self._export_formats = self.get_export_formats() def __repr__(self): return '<DataSet: %s>' % self._database_path def get_export_formats(self): return { 'csv': CSVExporter, 'json': JSONExporter} def __getitem__(self, table): return Table(self, table, self._models.get(table)) @property def tables(self): return self._database.get_tables() def __contains__(self, table): return table in self.tables def connect(self): self._database.connect() def close(self): self._database.close() def __enter__(self): self.connect() return self def __exit__(self, exc_type, exc_val, exc_tb): if not self._database.is_closed(): self.close() def query(self, sql, params=None, commit=True): return self._database.execute_sql(sql, params, commit) def transaction(self): if self._database.transaction_depth() == 0: return self._database.transaction() else: return self._database.savepoint() def freeze(self, query, format='csv', filename=None, file_obj=None, **kwargs): if filename and file_obj: raise ValueError('file is over-specified. Please use either ' 'filename or file_obj, but not both.') if not filename and not file_obj: raise ValueError('A filename or file-like object must be ' 'specified.') if format not in self._export_formats: valid_formats = ', '.join(sorted(self._export_formats.keys())) raise ValueError('Unsupported format "%s". Use one of %s.' % ( format, valid_formats)) if filename: file_obj = open(filename, 'w') exporter = self._export_formats[format](query) exporter.export(file_obj, **kwargs) if filename: file_obj.close() class Table(object): def __init__(self, dataset, name, model_class): self.dataset = dataset self.name = name if model_class is None: model_class = self._create_model() model_class.create_table() self.dataset._models[name] = model_class self.model_class = model_class def __repr__(self): return '<Table: %s>' % self.name def __len__(self): return self.find().count() def __iter__(self): return iter(self.find().iterator()) def _create_model(self): return type(str(self.name), (self.dataset._base_model,), {}) def create_index(self, columns, unique=False): self.dataset._database.create_index( self.model_class, columns, unique=unique) def _guess_field_type(self, value): if isinstance(value, basestring): return TextField if isinstance(value, (datetime.date, datetime.datetime)): return DateTimeField elif value is True or value is False: return BooleanField elif isinstance(value, int): return IntegerField elif isinstance(value, float): return FloatField elif isinstance(value, Decimal): return DecimalField return TextField @property def columns(self): return self.model_class._meta.get_field_names() def _migrate_new_columns(self, data): new_keys = set(data) - set(self.model_class._meta.fields) if new_keys: operations = [] for key in new_keys: field_class = self._guess_field_type(data[key]) field = field_class(null=True) operations.append( self.dataset._migrator.add_column(self.name, key, field)) field.add_to_class(self.model_class, key) migrate(*operations) def insert(self, **data): self._migrate_new_columns(data) return self.model_class.insert(**data).execute() def _apply_where(self, query, filters, conjunction=None): conjunction = conjunction or operator.and_ if filters: expressions = [ (self.model_class._meta.fields[column] == value) for column, value in filters.items()] query = query.where(reduce(conjunction, expressions)) return query def update(self, columns=None, conjunction=None, **data): self._migrate_new_columns(data) filters = {} if columns: for column in columns: filters[column] = data.pop(column) return self._apply_where( self.model_class.update(**data), filters, conjunction).execute() def _query(self, **query): return self._apply_where(self.model_class.select(), query) def find(self, **query): return self._query(**query).dicts() def find_one(self, **query): try: return self.find(**query).get() except self.model_class.DoesNotExist: return None def all(self): return self.find() def delete(self, **query): return self._apply_where(self.model_class.delete(), query).execute() class Exporter(object): def __init__(self, query): self.query = query def export(self, file_obj): raise NotImplementedError class JSONExporter(Exporter): @staticmethod def default(o): if isinstance(o, (datetime.datetime, datetime.date, datetime.time)): return o.isoformat() elif isinstance(o, Decimal): return str(o) raise TypeError('Unable to serialize %r as JSON.' % o) def export(self, file_obj, **kwargs): json.dump( list(self.query), file_obj, default=JSONExporter.default, **kwargs) class CSVExporter(Exporter): def export(self, file_obj, header=True, **kwargs): writer = csv.writer(file_obj, **kwargs) if header and hasattr(self.query, '_select'): writer.writerow([field.name for field in self.query._select]) for row in self.query.tuples(): writer.writerow(row)
7ef62aaf8b814aafa9e209c301de90e59413b19d
84b81ad47af6a4f40c1f2fa7b513b9ede260d038
/MyDiary_Backend/test_user.py
93f3fd647bbf531a6f5a990eba6ee1d81235dd9f
[]
no_license
michael-basweti/michael-basweti.github.io
ebc219f69943f55779a888ae7b54cae14a5b09de
34581d8560b2f7f60a0cf67d7e631e1ef9b89d7e
refs/heads/flask_api
2022-12-24T21:57:02.396825
2018-10-26T10:19:08
2018-10-26T10:19:08
140,665,411
0
1
null
2022-07-29T22:33:35
2018-07-12T05:32:05
JavaScript
UTF-8
Python
false
false
993
py
""" nose tests for the api """ from nose.tools import assert_true import requests def test_get_all(): """ test all returns :return: """ response = requests.get('http://127.0.0.1:5000/mydiary/api/v1.0/entries/get') assert_true(response.ok) def test_post(): """ test post :return: """ response = requests.post('http://127.0.0.1:5000/mydiary/api/v1.0/entries/post') assert_true(response.ok) def test_get_one(): """ test get one :return: """ response = requests.get('http://127.0.0.1:5000/mydiary/api/v1.0/entries/get/1') assert_true(response.ok) def test_edit_one(): """ test editing :return: """ response = requests.put('http://127.0.0.1:5000/mydiary/api/v1.0/entries/edit/1') assert_true(response.ok) def test_delete_one(): """ test delete :return: """ response = requests.delete('http://127.0.0.1:5000/mydiary/api/v1.0/entries/delete/1') assert_true(response.ok)
26b00c725a10bf052e14ac1f9e8a0e04d851fb2b
e3ce9a14ba58eaf7a684f2b6088a6172fa08bf41
/02 Estructuras de control/condicional_anidados.py
9528be679e9b51cafd89aa1cd194fdf697c8c464
[]
no_license
edwinhrojasm/python_basico_20203
f2134170f9ffe7d42fad590f795a8201293771c7
54fa3da2d9df3684bd3c07c8b95118ad5f0b7684
refs/heads/master
2022-12-30T17:16:31.406874
2020-10-22T00:45:27
2020-10-22T00:45:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
276
py
x = int(input("Ingrese un valor entero: ")) print("Usted ingreso el: " + str(x)) if x % 4 == 0: x /= 4 else: if x % 2 == 0: x /= 2 else: if x % 3 == 0: x /= 3 else: x += 1 print("Ahora el valor es: " + str(x))
77a42a6aed8161e58c41bcbd33af724bea02d78d
79e45a6e4846927da432087aba845036b11c5622
/PROD/bin/MarketData/Daily/EOGdailyOHLC_withvol.py
8bce941f7a85afe3b14750dc940bee4bec6e7c77
[]
no_license
mjserpico/Scarlett-Trading
cba2bcfaacf886b9d851d978683b4ce641c8f6ad
9778717393dbb0818ee026356996d1806345a6c2
refs/heads/master
2020-03-21T21:39:51.108503
2019-05-09T02:06:26
2019-05-09T02:06:26
139,076,454
0
0
null
null
null
null
UTF-8
Python
false
false
13,162
py
# -*- coding: utf-8 -*- """ Created on Sun Jan 08 09:16:43 2017 @author: Michael """ import mysql.connector from ib.opt import Connection from ib.ext.Contract import Contract import time import logging import datetime import datalink #universal logins for environment import math Flag = 0 CCY1 = "E" CCY2 = "OG" Table = 'EOG' yClose = 0 logging.basicConfig(filename='DailyOHLC' + str(datetime.date.today()) + '.txt', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger() logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') fh = logging.FileHandler('DailyOHLC' + str(datetime.date.today()) + '.txt') fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) logger.addHandler(fh) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) ch.setFormatter(formatter) logger.addHandler(ch) logger.debug('Starting DailyOHLC') def truncate(f, n): '''Truncates/pads a float f to n decimal places without rounding''' s = '{}'.format(f) if 'e' in s or 'E' in s: return '{0:.{1}f}'.format(f, n) i, p, d = s.partition('.') return '.'.join([i, (d+'0'*n)[:n]]) def reply_handler(msg): #print(msg.value) logger.debug('In beginning of Reply Handler') print("Reply:", msg) test = msg.open test2 = msg.high test3 = msg.low test4 = msg.close test5 = msg.volume logger.debug('test %s', test) logger.debug('test5 %s', test5) global Flag logger.debug('Flag %s', Flag) #test5 - msg.volume logger.debug('In Reply Handler') if float(test) != -1: import time logger.debug('Valid Price Found (OPEN NOT -1)') #cnx = mysql.connector.connect(user='mjserpico', password='UrzE8B66',host="scar01.cqxmc7cib5oh.us-east-1.rds.amazonaws.com", database='SCAR01') #cnx = mysql.connector.connect(user='Scarlett01', password='scar01lett',host="serpdb01.cqxmc7cib5oh.us-east-1.rds.amazonaws.com", database='SERPDB01') cnx = mysql.connector.connect(user=datalink.DB_User, password=datalink.DB_Pass,host=datalink.DB_Host, database=datalink.DB_Path) logger.debug('Connected to Database') cur = cnx.cursor() cur.execute("Insert Into "+ Table + """(Date, Open, High, Low, Close) values(%s,%s,%s,%s,%s)""",(time.strftime("%m/%d/%Y"),float(test),float(test2),float(test3),float(test4))) cnx.commit() logger.debug('Ran Insert Script') today = datetime.date.today( ) dayofweek = datetime.datetime.today().weekday() if dayofweek == 0: #if Today is Monday yesterday = today - datetime.timedelta(days=3) #Get Friday month = (str(0) + str(yesterday.month)) day = (str(0)+ str(yesterday.day)) yesterday2 = (month[-2:] +"/"+ day[-2:] +"/"+str(yesterday.year)) logger.debug('Yesterday2 was %s', str(yesterday2)) else: yesterday = today - datetime.timedelta(days=1) #Take 1 Day back month = (str(0) + str(yesterday.month)) day = (str(0)+ str(yesterday.day)) yesterday2 = (month[-2:] +"/"+ day[-2:] +"/"+str(yesterday.year)) logger.debug('Yesterday2 was %s', str(yesterday2)) #MovingAverage Calculation #Step 1 Get earliest Date to calculate avg from #reformat date to DB convention first logger.debug('Today is still %s', today) backdate = today - datetime.timedelta(days=13) logger.debug('Date shifted back 10 is %s', backdate) dayofweek = backdate.weekday() month = (str(0) + str(backdate.month)) day = (str(0)+ str(backdate.day)) backdate2 = (month[-2:] +"/"+ day[-2:] +"/"+str(backdate.year)) logger.debug('First Date of Moving Average is %s', backdate2) query = ("SELECT max(ID) from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID1 = ID logger.debug('ID1 is %s', ID1) query = ("SELECT (max(ID)-20) from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID2 = ID logger.debug('ID1 is %s', ID1) logger.debug('ID2 is %s', ID2) query = ("SELECT (max(ID)-1) from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID3 = ID logger.debug('ID3 is %s', ID3) #Pull ATR Length From RiskParameter Table query = ("Select RiskParametersValue from RiskParameters where RiskParametersName = 'ATRlength';") logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: atrlength = ID logger.debug('ID4 is %s', atrlength) #ID for ATR length start point query = ("SELECT (max(ID)-" + str(atrlength[0]) + ") from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID4 = ID logger.debug('ID4 is %s', ID4) #Pull MovingAvg Length RiskParameter Table query = ("Select RiskParametersValue from RiskParameters where RiskParametersName = 'MovAvgLength';") logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: movavglength = ID logger.debug('ID is %s', atrlength) #ID for MovAvg length start point query = ("SELECT (max(ID)-" + str(movavglength[0]) + ") from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID5 = ID logger.debug('ID5 is %s', ID5) query = ("SELECT (max(ID)-30) from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID30 = ID logger.debug('ID30 is %s', ID30) query = ("SELECT (max(ID)-60) from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID60 = ID logger.debug('ID60 is %s', ID60) query = ("SELECT (max(ID)-90) from " + CCY1 + CCY2) logger.debug('Query is %s', query) cur.execute(query) for (ID) in cur: ID90 = ID logger.debug('ID90 is %s', ID90) query = ("SELECT Close from " + CCY1 + CCY2 + " where ID = " + str(ID3[0]) + ";") cur.execute(query) for (Close) in cur: yClose = Close logger.debug('yClose is %s', yClose[0]) query = ("SELECT Close from " + CCY1 + CCY2 + " where ID = " + str(ID1[0]) + ";") cur.execute(query) for (Close) in cur: tClose = Close logger.debug('tClose is %s', tClose[0]) #Interday Return CloseReturn = float(tClose[0]) yCloseReturn = float(yClose[0]) logger.debug('yClose is %s', yClose[0]) logger.debug('Close is %s', tClose[0]) returns = round(((CloseReturn / yCloseReturn) - 1) * 100,2) logger.debug('Return is %s', returns) query = ("UPDATE " + CCY1 + CCY2 + " SET PercentReturn = " + str(returns) + " where ID = " + str(ID1[0]) +";") logger.debug('Query is %s', query) cur.execute(query) cnx.commit() # period Moving Average query = ("SELECT round(Avg(Close),2) as Avg from " + CCY1 + CCY2 + " where ID BETWEEN " + str(ID5[0]) + " AND " + str(ID1[0]) + ";") logger.debug('Query is %s', query) cur.execute(query) for (Avg) in cur: BBMovAvg = Avg #Final Moving Average Value logger.debug('MovAvg is %s', BBMovAvg) ##Puts Moving Average Value in hasPosition Table for Reference with intraday strategies query = ("UPDATE hasPosition SET MovingAvgValue = " + str(BBMovAvg[0]) + " where CCY =\'" + CCY1 + CCY2 +"\';") logger.debug('Query is %s', query) cur.execute(query) cnx.commit() #True Range TR1 = (test2-test3) TR2 = abs(test2-float(yClose[0])) TR3 = abs(test3-float(yClose[0])) TR = truncate(max(TR1,TR2,TR3),4) print(TR) print(TR1) print(TR2) print(TR3) query = ("UPDATE "+ Table +" SET TrueRange = " + str(TR) + " where ID =\'" + str(ID1[0]) +"\';") logger.debug('Query is %s', query) print(query) cur.execute(query) cnx.commit() #ATR Daily query = ("SELECT round(Avg(TrueRange),2) as Avg from " + CCY1 + CCY2 + " where ID BETWEEN " + str(ID4[0]) + " AND " + str(ID1[0]) + ";") logger.debug('Query is %s', query) print(query) cur.execute(query) for (Avg) in cur: ATRAvg = Avg #Final Moving Average Value logger.debug('ATR is %s', ATRAvg) ##Puts ATR in hasPosition Table for Reference with intraday strategies query = ("UPDATE hasPosition SET ATRValue = " + str(ATRAvg[0]) + " where CCY =\'" + CCY1 + CCY2 +"\';") logger.debug('Query is %s', query) cur.execute(query) print(query) cnx.commit() #Calculate 30D Vol query = ("SELECT round(stddev(PercentReturn),2) as vol30 from " + CCY1 + CCY2 + " where ID BETWEEN " + str(ID30[0]) + " AND " + str(ID1[0]) + ";") logger.debug('Query is %s', query) cur.execute(query) for (vol30) in cur: thirtyd = truncate((vol30[0] * math.sqrt(252)),2) #Final Moving Average Value logger.debug('30d is %s', thirtyd) query = ("UPDATE "+ Table +" SET thirtyvol = " + str(thirtyd) + " where ID =\'" + str(ID1[0]) +"\';") logger.debug('Query is %s', query) print(query) cur.execute(query) cnx.commit() #Calculate 60D Vol query = ("SELECT round(stddev(PercentReturn),2) as vol60 from " + CCY1 + CCY2 + " where ID BETWEEN " + str(ID60[0]) + " AND " + str(ID1[0]) + ";") logger.debug('Query is %s', query) cur.execute(query) for (vol60) in cur: sixtyd = truncate((vol60[0] * math.sqrt(252)),2) #Final Moving Average Value logger.debug('sixtyd is %s', sixtyd) query = ("UPDATE "+ Table +" SET sixtyvol = " + str(sixtyd) + " where ID =\'" + str(ID1[0]) +"\';") logger.debug('Query is %s', query) print(query) cur.execute(query) cnx.commit() #Calculate 90D Vol query = ("SELECT round(stddev(PercentReturn),2) as vol90 from " + CCY1 + CCY2 + " where ID BETWEEN " + str(ID90[0]) + " AND " + str(ID1[0]) + ";") logger.debug('Query is %s', query) cur.execute(query) for (vol90) in cur: ninetyd = truncate((vol90[0] * math.sqrt(252)),2) #Final Moving Average Value logger.debug('ninetyd is %s', ninetyd) query = ("UPDATE "+ Table +" SET ninetyvol = " + str(ninetyd) + " where ID =\'" + str(ID1[0]) +"\';") logger.debug('Query is %s', query) print(query) cur.execute(query) cnx.commit() Flag = 1 logger.debug('Flag set to %s', Flag) print(Flag) return(Flag) while Flag == 0: logger.debug('Flag set to %s', Flag) conn = Connection.create(port=4002, clientId=999) conn.connect() logger.debug('Connecting to Server') time.sleep(1) conn.register(reply_handler,'HistoricalData') #By registering "HistoricalData" --the Method name only --we can eliminate all the open order garbage logger.debug('Registered HistoricalData Reply Handler') time.sleep(1) qqq = Contract() qqq.m_symbol = Table qqq.m_secType = 'STK' qqq.m_exchange = 'SMART:ISLAND' qqq.m_currency = 'USD' logger.debug('Requesting historical data') conn.reqHistoricalData(1, qqq, '', '1 D', '1 day', 'TRADES', 0, 1) logger.debug('Returned from Reply Handler') time.sleep(1) #give IB time to send us messages logger.debug('Disconnecting from Server') conn.disconnect() logger.debug('Finished Daily OHLC')
8e729bdeca6812df6854b6e2437387c139da97d3
223fde0acac1b6100277e8ad2a7cb0233b4fbce7
/src/pyMission/multipoint_derivatives.py
172ace25b7fa21169998aa55a84d802e626152d2
[]
no_license
hwangjt/pyMission-1
26cf5646bf79560a7d52d2db56ecde0b535bdc85
316c738afde8b29225586a6a13eea0b97aaa894d
refs/heads/master
2020-12-25T10:08:39.327912
2015-04-02T20:42:20
2015-04-02T20:42:20
30,985,983
0
0
null
2015-02-26T19:28:24
2015-02-18T20:45:25
OpenEdge ABL
UTF-8
Python
false
false
5,825
py
''' Analysis with multiple mission segments in parallel ''' import time import numpy as np from openmdao.main.api import set_as_top, Driver, Assembly from openmdao.main.mpiwrap import MPI from openmdao.main.test.simpledriver import SimpleDriver from openmdao.lib.casehandlers.api import BSONCaseRecorder from pyoptsparse_driver.pyoptsparse_driver import pyOptSparseDriver from pyMission.segment import MissionSegment # Same discretization for each segment for now. num_elem = 250 num_cp = 50 model = set_as_top(Assembly()) #------------------------ # Mission Segment 1 #------------------------ x_range = 9000.0 # nautical miles # define bounds for the flight path angle gamma_lb = np.tan(-35.0 * (np.pi/180.0))/1e-1 gamma_ub = np.tan(35.0 * (np.pi/180.0))/1e-1 takeoff_speed = 83.3 landing_speed = 72.2 altitude = 10 * np.sin(np.pi * np.linspace(0,1,num_elem+1)) start = time.time() x_range *= 1.852 x_init = x_range * 1e3 * (1-np.cos(np.linspace(0, 1, num_cp)*np.pi))/2/1e6 M_init = np.ones(num_cp)*0.82 h_init = 10 * np.sin(np.pi * x_init / (x_range/1e3)) model.add('seg1', MissionSegment(num_elem=num_elem, num_cp=num_cp, x_pts=x_init, surr_file='crm_surr')) # Initial value of the parameter model.seg1.h_pt = h_init model.seg1.M_pt = M_init model.seg1.set_init_h_pt(altitude) # Calculate velocity from the Mach we have specified. model.seg1.SysSpeed.v_specified = False # Initial design parameters model.seg1.S = 427.8/1e2 model.seg1.ac_w = 210000*9.81/1e6 model.seg1.thrust_sl = 1020000.0/1e6 model.seg1.SFCSL = 8.951*9.81 model.seg1.AR = 8.68 model.seg1.oswald = 0.8 # Flag for making sure we run serial if we do an mpirun model.seg1.driver.system_type = 'serial' model.seg1.coupled_solver.system_type = 'serial' #------------------------ # Mission Segment 2 #------------------------ x_range = 7000.0 # nautical miles # define bounds for the flight path angle gamma_lb = np.tan(-35.0 * (np.pi/180.0))/1e-1 gamma_ub = np.tan(35.0 * (np.pi/180.0))/1e-1 takeoff_speed = 83.3 landing_speed = 72.2 altitude = 10 * np.sin(np.pi * np.linspace(0,1,num_elem+1)) start = time.time() x_range *= 1.852 x_init = x_range * 1e3 * (1-np.cos(np.linspace(0, 1, num_cp)*np.pi))/2/1e6 M_init = np.ones(num_cp)*0.82 h_init = 10 * np.sin(np.pi * x_init / (x_range/1e3)) model.add('seg2', MissionSegment(num_elem=num_elem, num_cp=num_cp, x_pts=x_init, surr_file='crm_surr')) # Initial value of the parameter model.seg2.h_pt = h_init model.seg2.M_pt = M_init model.seg2.set_init_h_pt(altitude) # Calculate velocity from the Mach we have specified. model.seg2.SysSpeed.v_specified = False # Initial design parameters model.seg2.S = 427.8/1e2 model.seg2.ac_w = 210000*9.81/1e6 model.seg2.thrust_sl = 1020000.0/1e6 model.seg2.SFCSL = 8.951*9.81 model.seg2.AR = 8.68 model.seg2.oswald = 0.8 # Flag for making sure we run serial if we do an mpirun model.seg2.driver.system_type = 'serial' model.seg2.coupled_solver.system_type = 'serial' #------------------------ # Mission Segment 3 #------------------------ x_range = 5000.0 # nautical miles # define bounds for the flight path angle gamma_lb = np.tan(-35.0 * (np.pi/180.0))/1e-1 gamma_ub = np.tan(35.0 * (np.pi/180.0))/1e-1 takeoff_speed = 83.3 landing_speed = 72.2 altitude = 10 * np.sin(np.pi * np.linspace(0,1,num_elem+1)) start = time.time() x_range *= 1.852 x_init = x_range * 1e3 * (1-np.cos(np.linspace(0, 1, num_cp)*np.pi))/2/1e6 M_init = np.ones(num_cp)*0.82 h_init = 10 * np.sin(np.pi * x_init / (x_range/1e3)) model.add('seg3', MissionSegment(num_elem=num_elem, num_cp=num_cp, x_pts=x_init, surr_file='crm_surr')) # Initial value of the parameter model.seg3.h_pt = h_init model.seg3.M_pt = M_init model.seg3.set_init_h_pt(altitude) # Calculate velocity from the Mach we have specified. model.seg3.SysSpeed.v_specified = False # Initial design parameters model.seg3.S = 427.8/1e2 model.seg3.ac_w = 210000*9.81/1e6 model.seg3.thrust_sl = 1020000.0/1e6 model.seg3.SFCSL = 8.951*9.81 model.seg3.AR = 8.68 model.seg3.oswald = 0.8 # Flag for making sure we run serial if we do an mpirun model.seg3.driver.system_type = 'serial' model.seg3.coupled_solver.system_type = 'serial' #---------------------- # Prepare to Run #---------------------- model.driver.workflow.add(['seg1', 'seg2', 'seg3']) #model._setup() #from openmdao.util.dotgraph import plot_system_tree #plot_system_tree(model._system) model.replace('driver', SimpleDriver()) model.driver.add_objective('seg1.fuelburn + seg2.fuelburn + seg3.fuelburn') model.driver.add_constraint('seg1.h[0] = 0.0') model.driver.add_constraint('seg2.h[0] = 0.0') model.driver.add_constraint('seg3.h[0] = 0.0') model.driver.add_constraint('seg1.h[-1] = 0.0') model.driver.add_constraint('seg2.h[-1] = 0.0') model.driver.add_constraint('seg3.h[-1] = 0.0') model.driver.add_constraint('seg1.Tmin < 0.0') model.driver.add_constraint('seg2.Tmin < 0.0') model.driver.add_constraint('seg3.Tmin < 0.0') model.driver.add_constraint('seg1.Tmax < 0.0') model.driver.add_constraint('seg2.Tmax < 0.0') model.driver.add_constraint('seg3.Tmax < 0.0') model.driver.add_parameter('seg1.h_pt', low=0.0, high=14.1) model.driver.add_parameter('seg2.h_pt', low=0.0, high=14.1) model.driver.add_parameter('seg3.h_pt', low=0.0, high=14.1) model.driver.gradient_options.iprint = 1 model.driver.gradient_options.lin_solver = 'linear_gs' model.driver.gradient_options.maxiter = 1 #model.driver.gradient_options.lin_solver = 'petsc_ksp' start = time.time() model.run() J = model.driver.workflow.calc_gradient(return_format='dict') print "." if MPI: J = model.driver.workflow._system.get_combined_J(J) if MPI.COMM_WORLD.rank == 0: print J else: print "J", J print 'Simulation TIME:', time.time() - start
3d8dc115afb63ed44f0989c80921541c2a63bb00
2aed68d1ee14eb3fc344fe1e0db99b20f0c9a166
/xnr_0313/xnr/timed_python_files/community/community_find_weibo.py
ff05052ca2aaca67b9456c264b651a3863fdd17c
[]
no_license
zhhhzhang/xnr1
a8ab151d99e74124eae2ec15c61281a32cb9ce8d
bfa621916c9a787bcdff4573a06d12056e25c556
refs/heads/master
2020-03-19T04:56:22.330912
2018-05-30T12:00:12
2018-05-30T12:00:12
135,883,486
0
1
null
2018-06-03T07:35:36
2018-06-03T07:35:35
null
UTF-8
Python
false
false
11,090
py
# -*- coding: utf-8 -*- import os import json import time import sys from elasticsearch import Elasticsearch import networkx as nx from community_shuaijian_gailv import find_community import json,os,time,community sys.path.append('../../') from global_utils import es_flow_text,retweet_index_name_pre,retweet_index_type,\ comment_index_name_pre,comment_index_type,\ weibo_bci_history_index_name,weibo_bci_history_index_type,\ weibo_sensitive_history_index_name,weibo_sensitive_history_index_type from global_config import S_TYPE,R_BEGIN_TIME,S_DATE from time_utils import ts2datetime,datetime2ts from parameter import DAY sys.path.append('../../timed_python_files/community/') from weibo_publicfunc import get_compelete_wbxnr from weibo_create_target_user import create_xnr_targetuser r_beigin_ts = datetime2ts(R_BEGIN_TIME) ##########定义公共变量 PATH = '' FILE_NAME = 'graph_edges1.txt' user_es = es_flow_text def get_db_num(timestamp): date = ts2datetime(timestamp) date_ts = datetime2ts(date) db_number = ((date_ts - r_beigin_ts) / (DAY*7)) % 2 + 1 #run_type if S_TYPE == 'test': db_number = 1 return db_number now_ts = time.time() db_number = get_db_num(now_ts) retweet_index = retweet_index_name_pre + str(db_number) retweet_type = retweet_index_type comment_index = comment_index_name_pre + str(db_number) comment_type = comment_index_type influence_index = weibo_bci_history_index_name influence_type = weibo_bci_history_index_type #bci_week_ave sensitive_index = weibo_sensitive_history_index_name sensitive_type = weibo_sensitive_history_index_type #sensitive_week_ave def get_users(xnr_user_no,nodes=None): if not nodes: print 'get xnr es...' # result = xnr_es.search(index=save_index,doc_type=save_type,body={'query':{'match_all':{}},'size':999999}) # result = result['hits']['hits'] # uids = [i['_source']['uid'] for i in result] uids = create_xnr_targetuser(xnr_user_no) else: print 'have input nodes...' uids = nodes retweet_result = user_es.mget(index=retweet_index, doc_type=retweet_type,body={'ids':uids}, _source=True)['docs'] comment_result = user_es.mget(index=comment_index, doc_type=comment_type,body={'ids':uids}, _source=True)['docs'] G = nx.Graph() for i in retweet_result: print 'i:',i if not i['found']: continue uid_retweet = json.loads(i['_source']['uid_retweet']) max_count = max([int(n) for n in uid_retweet.values()]) G.add_weighted_edges_from([(i['_source']['uid'],j,float(uid_retweet[j])/max_count) for j in uid_retweet.keys() if j != i['_source']['uid'] and j and i['_source']['uid']]) for i in comment_result: print 'comment_i:',i if not i['found']: continue uid_comment = json.loads(i['_source']['uid_comment']) max_count = max([int(n) for n in uid_comment.values()]) G.add_weighted_edges_from([(i['_source']['uid'],j,float(uid_comment[j])/max_count) for j in uid_comment.keys() if j != i['_source']['uid'] and j and i['_source']['uid']]) return G def find_from_uid_list(xnr_user_no,nodes=None,path=PATH,file_name=FILE_NAME,com_type='copra',G=None): #得到用户集 print 'get users...',type(G) if not G: G = get_users(xnr_user_no,nodes) else: G = G.subgraph(nodes,xnr_user_no) node_clus = nx.clustering(G) #50w print 'number of users:',len(node_clus) nodes = [i for i in node_clus if node_clus[i]>0]#7w print 'node clustering > 0:',len(nodes) allG = G print 'allg',allG.number_of_nodes() #根据聚集系数大于0筛选用户 G = G.subgraph(nodes) try: G.remove_node('') except: pass # G.remove_nodes_from(list(set(node_clus)-set(nodes))) #80w边 # G.remove_node('') print 'number of edges:',G.number_of_edges(),' number of nodes:',G.number_of_nodes() degree_dict = nx.degree_centrality(G) print 'find coms using ',com_type start = time.time() #选择采用的划分方法 if com_type in ['oslom','slpa']: #存到文件里,调包用 f = open(path+file_name,'w') count = 0 for s,r in G.edges(): if s and r: f.write(s+' '+r+' '+str(G[s][r]['weight'])+'\n') count += 1 if count % 100 == 0: print count f.close() print('total nodes count:',len(nodes),' total edges count:',count) if com_type == 'oslom': coms = oslom_coms(path,file_name) else: coms = slpa_coms(path,file_name) coms_list = coms.values() else: #传边 file_path = './weibo_data/' + ts2datetime(int(time.time())) + '_' + str(int(time.time())) coms_list = find_community(degree_dict,G,file_path) print 'find community time:',time.time()-start print 'post process...' coms_list = post_process(allG,coms_list) return G,allG,coms_list def post_process(G,coms_list): #处理社区 过滤少于3的社区;对大于10000的社区再次划分 new_coms = [] count = 0 for v in coms_list: if len(v) < 3: continue elif len(v) > 10000: sub_g,sub_coms = find_from_uid_list(v,G=G) for sub_v in sub_coms: if len(sub_v)>=3: new_coms.append(sub_v) else: new_coms.append(v) print 'len coms:',len(new_coms) return new_coms def group_evaluate(xnr_user_no,nodes,all_influence,all_sensitive,G=None): result = {} result['xnr_user_no'] = xnr_user_no result['nodes'] = nodes result['num'] = len(nodes) if G: sub_g = G.subgraph(nodes) else: sub_g = get_users(xnr_user_no,nodes) result['density'] = nx.density(sub_g) result['cluster'] = nx.average_clustering(sub_g) result['transitivity'] = nx.transitivity(sub_g) # for i in user_es.mget(index=sensitive_index, doc_type=sensitive_type,body={'ids':nodes}, fields=['sensitive_week_ave'],_source=False)['docs']: # print i#['fields']['sensitive_week_ave'] influence_result = [float(i['fields']['bci_week_ave'][0]) if i['found'] else 0 for i in user_es.mget(index=influence_index, doc_type=influence_type,body={'ids':nodes}, fields=['bci_week_ave'],_source=False)['docs']] sensitive_result = [float(i['fields']['sensitive_week_ave'][0]) if i['found'] else 0 for i in user_es.mget(index=sensitive_index, doc_type=sensitive_type,body={'ids':nodes}, fields=['sensitive_week_ave'],_source=False)['docs']] result['max_influence'] = max(influence_result)/float(all_influence) result['mean_influence'] = (sum(influence_result)/len(influence_result))/float(all_influence) result['max_sensitive'] = max(sensitive_result)/float(all_sensitive) result['mean_sensitive'] = (sum(sensitive_result)/len(sensitive_result))/float(all_sensitive) return result def get_evaluate_max(index_name,index_type,field): query_body = { 'query':{ 'match_all':{} }, 'size':1, 'sort':[{field: {'order': 'desc'}}] } try: result = user_es.search(index=index_name, doc_type=index_type, body=query_body)['hits']['hits'] except Exception, e: raise e max_evaluate = result[0]['_source'][field] return max_evaluate def oslom_coms(path,name): #1222.24431992秒 t1 = time.time() print os.getcwd() os.system('cp '+path+name+' OSLOM2/OSLOM2/') os.system('OSLOM2/OSLOM2/./oslom_undir -f OSLOM2/OSLOM2/'+name+' -hr 0 -w') print time.time()-t1 with open('OSLOM2/OSLOM2/'+name+'_oslo_files/tp') as f: #coms = collections.defaultdict(list) coms = {} i = 0 j = 0 lines = f.readlines() for line in lines: j += 1 if j%2 == 0: coms[i] = line.split() i += 1 #print 'coms',coms return coms def slpa_coms(path,name): t1 = time.time() os.chdir('/home/jiangln/own_weibo/code/GANXiS_v3.0.2') os.system('java -jar GANXiSw.jar -i ../'+path+name)#+' -Sym 1' print name,time.time()-t1 with open('output/SLPAw_'+name.split('.')[0]+'_run1_r0.4_v3_T100.icpm') as f: # os.system('java -jar GANXiSw.jar -i 107_m_6.txt -Sym 1') # print time.time()-t1 # with open('output/SLPAw_107_m_6_run1_r0.4_v3_T100.icpm') as f: #coms = collections.defaultdict(list) coms = {} i = 0 lines = f.readlines() for line in lines: coms[i] = line.split() i += 1 #print 'coms:::',coms return coms def ExtendQ(G,coms_list): #获取每个节点属于的标签数 o = {} r = {} s = 0 for i in coms_list: for j in i: try: o[j] += 1 except: o[j] = 1 final_g = G.subgraph(o.keys()) for i in final_g.adjacency(): #i: ('a', {'c': {'weight': 2}, 'b': {'weight': 1}, 'd': {'weight': 1}}) r[i[0]] = sum([j['weight'] for j in i[1].values()]) s += r[i[0]] EQ = 0.0 for com in coms_list: for i in com: for j in com: if i == j: continue try: EQ += (final_g.adj[i][j]['weight']-(r[i]*r[j])/s)/float(o[i]*o[j]) except: continue EQ = EQ/s return EQ #组织社区生成 def create_weibo_community(): # xnr_user_no_list = get_compelete_wbxnr() xnr_user_no_list = ['WXNR0004'] for xnr_user_no in xnr_user_no_list: #给定的nodes可能会因为网络结构或排序被删掉 s = time.time() #得到划分的社区 G,allG,coms_list = find_from_uid_list(xnr_user_no) print 'group evaluate...' all_influence = get_evaluate_max(influence_index,influence_type,'bci_week_ave') all_sensitive = get_evaluate_max(sensitive_index,sensitive_type,'sensitive_week_ave') print 'allG nodes:',allG.number_of_nodes() print 'G nodes:',G.number_of_nodes() file_path = './weibo_data/' + xnr_user_no + '_' + ts2datetime(int(time.time())) + '_' +'save_com.json' print 'file_path:',file_path f = open(file_path,'w') for k,v in enumerate(coms_list): #计算评价指标 f.write(json.dumps(group_evaluate(xnr_user_no,v,all_influence,all_sensitive,G))+'\n') print 'total time:',time.time()-s print 'eq:',ExtendQ(allG,coms_list) if __name__ == '__main__': create_weibo_community()
d6ed7c947efd9d5100b44e9a063b25dac284ccc0
b68c2043016baec884e8fb7edcda53243a9807b8
/src/storage/storage.py
fd44d652b0d77394ca916177b3f979d69662dff8
[]
no_license
INP-Group/SystemJ
7a1dcf4867591c663e96be0c41089151cc31887d
c48ada6386653402ed1b6a8895ae223846873158
refs/heads/master
2020-04-05T23:20:11.972621
2015-07-19T03:34:03
2015-07-19T03:34:03
39,321,263
0
0
null
null
null
null
UTF-8
Python
false
false
1,026
py
# -*- encoding: utf-8 -*- from project.settings import POSTGRESQL_DB, \ POSTGRESQL_HOST, POSTGRESQL_PASSWORD, POSTGRESQL_TABLE, \ POSTGRESQL_USER, ZEROMQ_HOST, ZEROMQ_PORT from src.storage.berkeley import BerkeleyStorage from src.storage.postgresql import PostgresqlStorage from src.storage.zeromqserver import ZeroMQServer class Storage(object): def __init__(self): self.sql_storage = PostgresqlStorage(database=POSTGRESQL_DB, user=POSTGRESQL_USER, password=POSTGRESQL_PASSWORD, tablename=POSTGRESQL_TABLE, host=POSTGRESQL_HOST) self.berkeley_db = BerkeleyStorage(sql_storage=self.sql_storage) self.zeromq = ZeroMQServer(host=ZEROMQ_HOST, port=ZEROMQ_PORT, berkeley_db=self.berkeley_db) def start(self): self.zeromq.start()
3731cf807cb614a2393e21e6bdc30eece5399cf1
690cdb4acc7becf3c18955e3c2732ec5b0735b2c
/python-demos/concurrent_parallel_demos/cpu_bound_parallel.py
b0e9e2b7975ba3b0740bc754929bc91af41d7692
[ "MIT" ]
permissive
t4d-classes/advanced-python_04192021
30ba51cad9bc6af96fae2b9e2998fdb60244d6ba
a30cd924d918bf41c0775a1235eef849746a5f3d
refs/heads/master
2023-04-08T03:22:01.145375
2021-04-23T22:35:18
2021-04-23T22:35:18
357,016,064
1
1
null
null
null
null
UTF-8
Python
false
false
1,150
py
""" cpu bound single demo """ from collections.abc import Generator import itertools import time import multiprocessing as mp def fibonacci() -> Generator[int, None, None]: """ generate an infinite fibonacci sequence """ num_1 = 0 num_2 = 1 yield num_1 yield num_2 while True: next_num = num_1 + num_2 yield next_num num_1 = num_2 num_2 = next_num def calc_fib_total(p_results: list[int]) -> None: """ calc fib total and add to list """ total = 0 for num in itertools.islice(fibonacci(), 0, 500000): total += num p_results.append(total) if __name__ == "__main__": start_time = time.time() with mp.Manager() as manager: results: list[int] = manager.list() processes: list[mp.Process] = [] for _ in range(8): a_process = mp.Process(target=calc_fib_total, args=(results,)) a_process.start() processes.append(a_process) for a_process in processes: a_process.join() time_elapsed = time.time() - start_time print(len(results)) print(time_elapsed)
c7050b95df428a9e2e0aba7c94567211af4cf38f
bb6ce2f4fc53dc9d2fc7a701cd4683b23ecf30b2
/tests/py/test_browsing.py
4897ee674d4f844978c35362aa7bff14e17d8d0c
[ "CC0-1.0", "LicenseRef-scancode-public-domain" ]
permissive
liberapay/liberapay.com
2640b9f830efaadd17009e3aed72eadd19c0f94e
a02eea631f89b17ac8179bdd37e5fa89ac54ede8
refs/heads/master
2023-08-31T10:44:04.235477
2023-08-27T07:29:47
2023-08-27T07:29:47
36,075,352
1,586
282
null
2023-09-03T09:23:26
2015-05-22T14:03:52
Python
UTF-8
Python
false
false
4,611
py
import os import re from pando import Response import pytest from liberapay.billing.payday import Payday from liberapay.testing import EUR, Harness from liberapay.utils import find_files overescaping_re = re.compile(r'&amp;(#[0-9]+|#x[0-9a-f]+|[a-z0-9]+);') class BrowseTestHarness(Harness): @classmethod def setUpClass(cls): super().setUpClass() i = len(cls.client.www_root) def f(spt): if spt[spt.rfind('/')+1:].startswith('index.'): return spt[i:spt.rfind('/')+1] return spt[i:-4] urls = {} for url in sorted(map(f, find_files(cls.client.www_root, '*.spt'))): url = url.replace('/%username/membership/', '/team/membership/') \ .replace('/team/membership/%action', '/team/membership/join') \ .replace('/%username/news/%action', '/%username/news/subscribe') \ .replace('/for/%name/', '/for/wonderland/') \ .replace('/for/wonderland/%action', '/for/wonderland/leave') \ .replace('/%platform', '/github') \ .replace('/%user_name/', '/liberapay/') \ .replace('/%redirect_to', '/giving') \ .replace('/%back_to', '/') \ .replace('/%provider', '/stripe') \ .replace('/%payment_id', '/') \ .replace('/%payin_id', '/') \ .replace('/payday/%id', '/payday/') \ .replace('/%type', '/receiving.js') urls[url.replace('/%username/', '/david/')] = None urls[url.replace('/%username/', '/team/')] = None cls.urls = list(urls) def browse_setup(self): self.david = self.make_participant('david') self.team = self.make_participant('team', kind='group') c = self.david.create_community('Wonderland') self.david.upsert_community_membership(True, c.id) self.team.add_member(self.david) self.org = self.make_participant('org', kind='organization') self.invoice_id = self.db.one(""" INSERT INTO invoices (sender, addressee, nature, amount, description, details, documents, status) VALUES (%s, %s, 'expense', ('28.04','EUR'), 'badges and stickers', null, '{}'::jsonb, 'new') RETURNING id """, (self.david.id, self.org.id)) Payday.start().run() def browse(self, **kw): for url in self.urls: if url.endswith('/%exchange_id') or '/receipts/' in url: continue url = url.replace('/team/invoices/%invoice_id', '/org/invoices/%s' % self.invoice_id) url = url.replace('/%invoice_id', '/%s' % self.invoice_id) assert '/%' not in url try: r = self.client.GET(url, **kw) except Response as e: if e.code == 404 or e.code >= 500: raise r = e assert r.code != 404 assert r.code < 500 assert not overescaping_re.search(r.text) class TestBrowsing(BrowseTestHarness): def test_anon_can_browse_in_french(self): self.browse_setup() self.browse(HTTP_ACCEPT_LANGUAGE=b'fr') def test_new_participant_can_browse(self): self.browse_setup() self.browse(auth_as=self.david) def test_active_participant_can_browse(self): self.browse_setup() self.add_payment_account(self.david, 'stripe') bob = self.make_participant('bob') self.add_payment_account(bob, 'paypal') bob.set_tip_to(self.david, EUR('1.00')) bob_card = self.upsert_route(bob, 'stripe-card') self.make_payin_and_transfer(bob_card, self.david, EUR('2.00')) self.david.set_tip_to(bob, EUR('0.50')) david_paypal = self.upsert_route(self.david, 'paypal') self.make_payin_and_transfer(david_paypal, bob, EUR('20.00')) self.browse(auth_as=self.david) def test_admin_can_browse(self): self.browse_setup() admin = self.make_participant('admin', privileges=1) self.browse(auth_as=admin) @pytest.mark.skipif( os.environ.get('LIBERAPAY_I18N_TEST') != 'yes', reason="this is an expensive test, we don't want to run it every time", ) class TestTranslations(BrowseTestHarness): def test_all_pages_in_all_supported_langs(self): self.browse_setup() for _, l in self.client.website.lang_list: self.browse(HTTP_ACCEPT_LANGUAGE=l.tag.encode('ascii'))
506efc67add5dd69127142ed921f92fd83266cd6
1bfad01139237049eded6c42981ee9b4c09bb6de
/RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/rip/router/router.py
67c75801f0a30a3cc4d2221e5d627163ebf81cfc
[ "MIT" ]
permissive
kakkotetsu/IxNetwork
3a395c2b4de1488994a0cfe51bca36d21e4368a5
f9fb614b51bb8988af035967991ad36702933274
refs/heads/master
2020-04-22T09:46:37.408010
2019-02-07T18:12:20
2019-02-07T18:12:20
170,284,084
0
0
MIT
2019-02-12T08:51:02
2019-02-12T08:51:01
null
UTF-8
Python
false
false
10,795
py
# Copyright 1997 - 2018 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class Router(Base): """The Router class encapsulates a user managed router node in the ixnetwork hierarchy. An instance of the class can be obtained by accessing the Router property from a parent instance. The internal properties list will be empty when the property is accessed and is populated from the server using the find method. The internal properties list can be managed by the user by using the add and remove methods. """ _SDM_NAME = 'router' def __init__(self, parent): super(Router, self).__init__(parent) @property def RouteRange(self): """An instance of the RouteRange class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.rip.router.routerange.routerange.RouteRange) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.rip.router.routerange.routerange import RouteRange return RouteRange(self) @property def AuthorizationPassword(self): """If enableAuthorization is set, this is the 16-character password to be used. Only simple password authentication is supported. Returns: str """ return self._get_attribute('authorizationPassword') @AuthorizationPassword.setter def AuthorizationPassword(self, value): self._set_attribute('authorizationPassword', value) @property def EnableAuthorization(self): """Indicates whether authorization is included in update messages. Returns: bool """ return self._get_attribute('enableAuthorization') @EnableAuthorization.setter def EnableAuthorization(self, value): self._set_attribute('enableAuthorization', value) @property def Enabled(self): """Enables or disables the simulated router. Returns: bool """ return self._get_attribute('enabled') @Enabled.setter def Enabled(self, value): self._set_attribute('enabled', value) @property def InterfaceId(self): """The ID associated with the simulated interface. Returns: str(None|/api/v1/sessions/1/ixnetwork/vport?deepchild=interface) """ return self._get_attribute('interfaceId') @InterfaceId.setter def InterfaceId(self, value): self._set_attribute('interfaceId', value) @property def ReceiveType(self): """Filters the RIP version of messages this router will receive. Returns: str(receiveVersion1|receiveVersion2|receiveVersion1And2) """ return self._get_attribute('receiveType') @ReceiveType.setter def ReceiveType(self, value): self._set_attribute('receiveType', value) @property def ResponseMode(self): """Controls the manner in which received routes are repeated back to their source. The modes are split horizon, no split horizon, and split horizon with poison reverse. Returns: str(default|splitHorizon|poisonReverse|splitHorizonSpaceSaver|silent) """ return self._get_attribute('responseMode') @ResponseMode.setter def ResponseMode(self, value): self._set_attribute('responseMode', value) @property def SendType(self): """The method for sending RIP packets. Returns: str(multicast|broadcastV1|broadcastV2) """ return self._get_attribute('sendType') @SendType.setter def SendType(self, value): self._set_attribute('sendType', value) @property def TrafficGroupId(self): """The name of the group to which this port is assigned, for the purpose of creating traffic streams among source/destination members of the group. Returns: str(None|/api/v1/sessions/1/ixnetwork/traffic?deepchild=trafficGroup) """ return self._get_attribute('trafficGroupId') @TrafficGroupId.setter def TrafficGroupId(self, value): self._set_attribute('trafficGroupId', value) @property def UpdateInterval(self): """The time, in seconds, between transmitted update messages. Returns: number """ return self._get_attribute('updateInterval') @UpdateInterval.setter def UpdateInterval(self, value): self._set_attribute('updateInterval', value) @property def UpdateIntervalOffset(self): """A random percentage of the time value, expressed in seconds, is added to or subtracted from the update interval to stagger the transmission of messages. Returns: number """ return self._get_attribute('updateIntervalOffset') @UpdateIntervalOffset.setter def UpdateIntervalOffset(self, value): self._set_attribute('updateIntervalOffset', value) def add(self, AuthorizationPassword=None, EnableAuthorization=None, Enabled=None, InterfaceId=None, ReceiveType=None, ResponseMode=None, SendType=None, TrafficGroupId=None, UpdateInterval=None, UpdateIntervalOffset=None): """Adds a new router node on the server and retrieves it in this instance. Args: AuthorizationPassword (str): If enableAuthorization is set, this is the 16-character password to be used. Only simple password authentication is supported. EnableAuthorization (bool): Indicates whether authorization is included in update messages. Enabled (bool): Enables or disables the simulated router. InterfaceId (str(None|/api/v1/sessions/1/ixnetwork/vport?deepchild=interface)): The ID associated with the simulated interface. ReceiveType (str(receiveVersion1|receiveVersion2|receiveVersion1And2)): Filters the RIP version of messages this router will receive. ResponseMode (str(default|splitHorizon|poisonReverse|splitHorizonSpaceSaver|silent)): Controls the manner in which received routes are repeated back to their source. The modes are split horizon, no split horizon, and split horizon with poison reverse. SendType (str(multicast|broadcastV1|broadcastV2)): The method for sending RIP packets. TrafficGroupId (str(None|/api/v1/sessions/1/ixnetwork/traffic?deepchild=trafficGroup)): The name of the group to which this port is assigned, for the purpose of creating traffic streams among source/destination members of the group. UpdateInterval (number): The time, in seconds, between transmitted update messages. UpdateIntervalOffset (number): A random percentage of the time value, expressed in seconds, is added to or subtracted from the update interval to stagger the transmission of messages. Returns: self: This instance with all currently retrieved router data using find and the newly added router data available through an iterator or index Raises: ServerError: The server has encountered an uncategorized error condition """ return self._create(locals()) def remove(self): """Deletes all the router data in this instance from server. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ self._delete() def find(self, AuthorizationPassword=None, EnableAuthorization=None, Enabled=None, InterfaceId=None, ReceiveType=None, ResponseMode=None, SendType=None, TrafficGroupId=None, UpdateInterval=None, UpdateIntervalOffset=None): """Finds and retrieves router data from the server. All named parameters support regex and can be used to selectively retrieve router data from the server. By default the find method takes no parameters and will retrieve all router data from the server. Args: AuthorizationPassword (str): If enableAuthorization is set, this is the 16-character password to be used. Only simple password authentication is supported. EnableAuthorization (bool): Indicates whether authorization is included in update messages. Enabled (bool): Enables or disables the simulated router. InterfaceId (str(None|/api/v1/sessions/1/ixnetwork/vport?deepchild=interface)): The ID associated with the simulated interface. ReceiveType (str(receiveVersion1|receiveVersion2|receiveVersion1And2)): Filters the RIP version of messages this router will receive. ResponseMode (str(default|splitHorizon|poisonReverse|splitHorizonSpaceSaver|silent)): Controls the manner in which received routes are repeated back to their source. The modes are split horizon, no split horizon, and split horizon with poison reverse. SendType (str(multicast|broadcastV1|broadcastV2)): The method for sending RIP packets. TrafficGroupId (str(None|/api/v1/sessions/1/ixnetwork/traffic?deepchild=trafficGroup)): The name of the group to which this port is assigned, for the purpose of creating traffic streams among source/destination members of the group. UpdateInterval (number): The time, in seconds, between transmitted update messages. UpdateIntervalOffset (number): A random percentage of the time value, expressed in seconds, is added to or subtracted from the update interval to stagger the transmission of messages. Returns: self: This instance with matching router data retrieved from the server available through an iterator or index Raises: ServerError: The server has encountered an uncategorized error condition """ return self._select(locals()) def read(self, href): """Retrieves a single instance of router data from the server. Args: href (str): An href to the instance to be retrieved Returns: self: This instance with the router data from the server available through an iterator or index Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ return self._read(href)
8d1ba021d13c75f5e8887ecec97357f511760b85
993ef8924418866f932396a58e3ad0c2a940ddd3
/Production/python/PrivateSamples/SVJ_2017_mZprime-1100_mDark-20_rinv-0p3_alpha-peak_n-2000_cff.py
d4d743d32e51d3a0fd33d110eea3d4204c870ddc
[]
no_license
TreeMaker/TreeMaker
48d81f6c95a17828dbb599d29c15137cd6ef009a
15dd7fe9e9e6f97d9e52614c900c27d200a6c45f
refs/heads/Run2_UL
2023-07-07T15:04:56.672709
2023-07-03T16:43:17
2023-07-03T16:43:17
29,192,343
16
92
null
2023-07-03T16:43:28
2015-01-13T13:59:30
Python
UTF-8
Python
false
false
7,432
py
import FWCore.ParameterSet.Config as cms maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) readFiles = cms.untracked.vstring() secFiles = cms.untracked.vstring() source = cms.Source ("PoolSource",fileNames = readFiles, secondaryFileNames = secFiles) readFiles.extend( [ '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-1.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-2.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-3.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-4.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-5.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-6.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-7.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-8.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-9.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-10.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-11.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-12.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-13.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-14.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-15.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-16.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-17.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-18.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-19.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-20.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-21.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-22.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-23.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-24.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-25.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-26.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-27.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-28.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-29.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-30.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-31.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-32.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-33.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-34.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-35.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-36.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-37.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-38.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-39.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-40.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-41.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-42.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-43.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-44.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-45.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-46.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-47.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-48.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-49.root', '/store/user/lpcsusyhad/SVJ2017/ProductionV3/2017/MINIAOD/step4_MINIAOD_mZprime-1100_mDark-20_rinv-0.3_alpha-peak_n-2000_part-50.root', ] )
f2b2b4d9515fcb5e791cf75aec0382ee54e71dfc
2d4b9ef6aa8c3e39999206cbfd1d1bb60e170077
/cup/version.py
ef9dfc6395747ccf22e0131a2940f38f9781ecab
[ "MIT", "Apache-2.0" ]
permissive
IsaacjlWu/CUP
786ff784c7a22854d083e9cd041b605a1934072e
5c985cd33ee7dc6f1f052a491d1c7b8915670942
refs/heads/master
2023-05-11T23:31:51.975880
2018-07-16T08:54:59
2018-07-16T08:54:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
#!/usr/bin/python # -*- coding: utf-8 -* # ############################################################################# # # Copyright (c) Baidu.com, Inc. All Rights Reserved # # ############################################################################# """ :author: Guannan Ma maguannan @mythmgn """ VERSION = '1.6.1' AUTHOR = 'nfs-qa' # vi:set tw=0 ts=4 sw=4 nowrap fdm=indent
d58a13c2b21ea0a06e363f887cb465d9d2d70886
9680c27718346be69cf7695dba674e7a0ec662ca
/game-Python/Python Challenge-Math Game.py
9bfe4c62b34c305859a22614baca17bad957cb14
[]
no_license
Md-Monirul-Islam/Python-code
5a2cdbe7cd3dae94aa63298b5b0ef7e0e31cd298
df98f37dd9d21784a65c8bb0e46d47a646259110
refs/heads/main
2023-01-19T05:15:04.963904
2020-11-19T06:10:09
2020-11-19T06:10:09
314,145,135
0
0
null
null
null
null
UTF-8
Python
false
false
793
py
import random import operator score = 0 def random_problem(): operators = { "+": operator.add, "-": operator.sub, "*":operator.mul, "/":operator.truediv, } num_1 = random.randint(1,10) num_2 = random.randint(1,10) operation = random.choice(list(operators.keys())) answer = operators.get(operation)(num_1,num_2) print(f"What is {num_1} {operation} {num_2}?") return answer def ask_question(): answer = random_problem() guess = float(input()) return guess==answer def game(): print("How well do you math?\n") score = 0 for i in range(5): if ask_question()==True: score += 1 print("Correct") else: print("Incorrect") print(f"Your score is {score}") game()
459b4624310b53ddf1066b5c175112767f16b74e
60f7d711cb3f743f148ca4be4c507244a61d823d
/gaphor/diagram/classes/__init__.py
2c89e61845c0a50239c9e661f4a18d4de9e98b58
[ "Apache-2.0" ]
permissive
paulopperman/gaphor
84ffd8c18ac4f015668fbd44662cbb3ae43b9016
6986c4f3469720a1618a9e8526cb6f826aea626a
refs/heads/master
2020-05-24T21:57:54.252307
2019-05-16T22:51:50
2019-05-16T22:51:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
from gaphor.diagram.classes.association import AssociationItem from gaphor.diagram.classes.dependency import DependencyItem from gaphor.diagram.classes.generalization import GeneralizationItem from gaphor.diagram.classes.implementation import ImplementationItem from gaphor.diagram.classes.interface import InterfaceItem from gaphor.diagram.classes.klass import ClassItem from gaphor.diagram.classes.package import PackageItem def _load(): from gaphor.diagram.classes import ( classconnect, interfaceconnect, classespropertypages, ) _load()
74c35250f7819ac52063403afc93980734d0a8ca
255e19ddc1bcde0d3d4fe70e01cec9bb724979c9
/dockerized-gists/781a8eb20c5b32f8e378353cde4daa51/snippet.py
1042a5ba0a6f94ea25c9ea17708bc9b21544c48c
[ "MIT" ]
permissive
gistable/gistable
26c1e909928ec463026811f69b61619b62f14721
665d39a2bd82543d5196555f0801ef8fd4a3ee48
refs/heads/master
2023-02-17T21:33:55.558398
2023-02-11T18:20:10
2023-02-11T18:20:10
119,861,038
76
19
null
2020-07-26T03:14:55
2018-02-01T16:19:24
Python
UTF-8
Python
false
false
2,545
py
# [filter size, stride, padding] #Assume the two dimensions are the same #Each kernel requires the following parameters: # - k_i: kernel size # - s_i: stride # - p_i: padding (if padding is uneven, right padding will higher than left padding; "SAME" option in tensorflow) # #Each layer i requires the following parameters to be fully represented: # - n_i: number of feature (data layer has n_1 = imagesize ) # - j_i: distance (projected to image pixel distance) between center of two adjacent features # - r_i: receptive field of a feature in layer i # - start_i: position of the first feature's receptive field in layer i (idx start from 0, negative means the center fall into padding) import math convnet = [[11,4,0],[3,2,0],[5,1,2],[3,2,0],[3,1,1],[3,1,1],[3,1,1],[3,2,0],[6,1,0], [1, 1, 0]] layer_names = ['conv1','pool1','conv2','pool2','conv3','conv4','conv5','pool5','fc6-conv', 'fc7-conv'] imsize = 227 def outFromIn(conv, layerIn): n_in = layerIn[0] j_in = layerIn[1] r_in = layerIn[2] start_in = layerIn[3] k = conv[0] s = conv[1] p = conv[2] n_out = math.floor((n_in - k + 2*p)/s) + 1 actualP = (n_out-1)*s - n_in + k pR = math.ceil(actualP/2) pL = math.floor(actualP/2) j_out = j_in * s r_out = r_in + (k - 1)*j_in start_out = start_in + ((k-1)/2 - pL)*j_in return n_out, j_out, r_out, start_out def printLayer(layer, layer_name): print(layer_name + ":") print("\t n features: %s \n \t jump: %s \n \t receptive size: %s \t start: %s " % (layer[0], layer[1], layer[2], layer[3])) layerInfos = [] if __name__ == '__main__': #first layer is the data layer (image) with n_0 = image size; j_0 = 1; r_0 = 1; and start_0 = 0.5 print ("-------Net summary------") currentLayer = [imsize, 1, 1, 0.5] printLayer(currentLayer, "input image") for i in range(len(convnet)): currentLayer = outFromIn(convnet[i], currentLayer) layerInfos.append(currentLayer) printLayer(currentLayer, layer_names[i]) print ("------------------------") layer_name = raw_input ("Layer name where the feature in: ") layer_idx = layer_names.index(layer_name) idx_x = int(raw_input ("index of the feature in x dimension (from 0)")) idx_y = int(raw_input ("index of the feature in y dimension (from 0)")) n = layerInfos[layer_idx][0] j = layerInfos[layer_idx][1] r = layerInfos[layer_idx][2] start = layerInfos[layer_idx][3] assert(idx_x < n) assert(idx_y < n) print ("receptive field: (%s, %s)" % (r, r)) print ("center: (%s, %s)" % (start+idx_x*j, start+idx_y*j))
975ef2a3f509bb2905399cf97654bef2b7ff076f
f4b60f5e49baf60976987946c20a8ebca4880602
/lib/python2.7/site-packages/acimodel-1.3_2j-py2.7.egg/cobra/modelimpl/fabric/acdropexcesshist1d.py
0ab471b7eb43f5a3c7a4993b0f156a96b13d4623
[]
no_license
cqbomb/qytang_aci
12e508d54d9f774b537c33563762e694783d6ba8
a7fab9d6cda7fadcc995672e55c0ef7e7187696e
refs/heads/master
2022-12-21T13:30:05.240231
2018-12-04T01:46:53
2018-12-04T01:46:53
159,911,666
0
0
null
2022-12-07T23:53:02
2018-12-01T05:17:50
Python
UTF-8
Python
false
false
31,834
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2016 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class AcDropExcessHist1d(Mo): """ A class that represents historical statistics for drop packets in a 1 day sampling interval. This class updates every hour. """ meta = StatsClassMeta("cobra.model.fabric.AcDropExcessHist1d", "drop packets") counter = CounterMeta("excessPktPercentage", CounterCategory.GAUGE, "percentage", "excess percentage") counter._propRefs[PropCategory.IMPLICIT_MIN] = "excessPktPercentageMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "excessPktPercentageMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "excessPktPercentageAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "excessPktPercentageSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "excessPktPercentageThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "excessPktPercentageTr" meta._counters.append(counter) counter = CounterMeta("dropPktPercentage", CounterCategory.GAUGE, "percentage", "drop percentage") counter._propRefs[PropCategory.IMPLICIT_MIN] = "dropPktPercentageMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "dropPktPercentageMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "dropPktPercentageAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "dropPktPercentageSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "dropPktPercentageThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "dropPktPercentageTr" meta._counters.append(counter) counter = CounterMeta("excessPkt", CounterCategory.COUNTER, "packets", "excess packets") counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "excessPktCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "excessPktPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "excessPktMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "excessPktMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "excessPktAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "excessPktSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "excessPktThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "excessPktTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "excessPktRate" meta._counters.append(counter) counter = CounterMeta("dropPkt", CounterCategory.COUNTER, "packets", "dropped packets") counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "dropPktCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "dropPktPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "dropPktMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "dropPktMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "dropPktAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "dropPktSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "dropPktThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "dropPktTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "dropPktRate" meta._counters.append(counter) meta.moClassName = "fabricAcDropExcessHist1d" meta.rnFormat = "HDfabricAcDropExcess1d-%(index)s" meta.category = MoCategory.STATS_HISTORY meta.label = "historical drop packets stats in 1 day" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = True meta.parentClasses.add("cobra.model.fabric.Path") meta.parentClasses.add("cobra.model.fabric.Trail") meta.superClasses.add("cobra.model.stats.Item") meta.superClasses.add("cobra.model.stats.Hist") meta.superClasses.add("cobra.model.fabric.AcDropExcessHist") meta.rnPrefixes = [ ('HDfabricAcDropExcess1d-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "dropPktAvg", "dropPktAvg", 9129, PropCategory.IMPLICIT_AVG) prop.label = "dropped packets average value" prop.isOper = True prop.isStats = True meta.props.add("dropPktAvg", prop) prop = PropMeta("str", "dropPktCum", "dropPktCum", 9125, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "dropped packets cumulative" prop.isOper = True prop.isStats = True meta.props.add("dropPktCum", prop) prop = PropMeta("str", "dropPktMax", "dropPktMax", 9128, PropCategory.IMPLICIT_MAX) prop.label = "dropped packets maximum value" prop.isOper = True prop.isStats = True meta.props.add("dropPktMax", prop) prop = PropMeta("str", "dropPktMin", "dropPktMin", 9127, PropCategory.IMPLICIT_MIN) prop.label = "dropped packets minimum value" prop.isOper = True prop.isStats = True meta.props.add("dropPktMin", prop) prop = PropMeta("str", "dropPktPer", "dropPktPer", 9126, PropCategory.IMPLICIT_PERIODIC) prop.label = "dropped packets periodic" prop.isOper = True prop.isStats = True meta.props.add("dropPktPer", prop) prop = PropMeta("str", "dropPktPercentageAvg", "dropPktPercentageAvg", 9151, PropCategory.IMPLICIT_AVG) prop.label = "drop percentage average value" prop.isOper = True prop.isStats = True meta.props.add("dropPktPercentageAvg", prop) prop = PropMeta("str", "dropPktPercentageMax", "dropPktPercentageMax", 9150, PropCategory.IMPLICIT_MAX) prop.label = "drop percentage maximum value" prop.isOper = True prop.isStats = True meta.props.add("dropPktPercentageMax", prop) prop = PropMeta("str", "dropPktPercentageMin", "dropPktPercentageMin", 9149, PropCategory.IMPLICIT_MIN) prop.label = "drop percentage minimum value" prop.isOper = True prop.isStats = True meta.props.add("dropPktPercentageMin", prop) prop = PropMeta("str", "dropPktPercentageSpct", "dropPktPercentageSpct", 9152, PropCategory.IMPLICIT_SUSPECT) prop.label = "drop percentage suspect count" prop.isOper = True prop.isStats = True meta.props.add("dropPktPercentageSpct", prop) prop = PropMeta("str", "dropPktPercentageThr", "dropPktPercentageThr", 9153, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "drop percentage thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("dropPktPercentageThr", prop) prop = PropMeta("str", "dropPktPercentageTr", "dropPktPercentageTr", 9154, PropCategory.IMPLICIT_TREND) prop.label = "drop percentage trend" prop.isOper = True prop.isStats = True meta.props.add("dropPktPercentageTr", prop) prop = PropMeta("str", "dropPktRate", "dropPktRate", 9133, PropCategory.IMPLICIT_RATE) prop.label = "dropped packets rate" prop.isOper = True prop.isStats = True meta.props.add("dropPktRate", prop) prop = PropMeta("str", "dropPktSpct", "dropPktSpct", 9130, PropCategory.IMPLICIT_SUSPECT) prop.label = "dropped packets suspect count" prop.isOper = True prop.isStats = True meta.props.add("dropPktSpct", prop) prop = PropMeta("str", "dropPktThr", "dropPktThr", 9131, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "dropped packets thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("dropPktThr", prop) prop = PropMeta("str", "dropPktTr", "dropPktTr", 9132, PropCategory.IMPLICIT_TREND) prop.label = "dropped packets trend" prop.isOper = True prop.isStats = True meta.props.add("dropPktTr", prop) prop = PropMeta("str", "excessPktAvg", "excessPktAvg", 9177, PropCategory.IMPLICIT_AVG) prop.label = "excess packets average value" prop.isOper = True prop.isStats = True meta.props.add("excessPktAvg", prop) prop = PropMeta("str", "excessPktCum", "excessPktCum", 9173, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "excess packets cumulative" prop.isOper = True prop.isStats = True meta.props.add("excessPktCum", prop) prop = PropMeta("str", "excessPktMax", "excessPktMax", 9176, PropCategory.IMPLICIT_MAX) prop.label = "excess packets maximum value" prop.isOper = True prop.isStats = True meta.props.add("excessPktMax", prop) prop = PropMeta("str", "excessPktMin", "excessPktMin", 9175, PropCategory.IMPLICIT_MIN) prop.label = "excess packets minimum value" prop.isOper = True prop.isStats = True meta.props.add("excessPktMin", prop) prop = PropMeta("str", "excessPktPer", "excessPktPer", 9174, PropCategory.IMPLICIT_PERIODIC) prop.label = "excess packets periodic" prop.isOper = True prop.isStats = True meta.props.add("excessPktPer", prop) prop = PropMeta("str", "excessPktPercentageAvg", "excessPktPercentageAvg", 9199, PropCategory.IMPLICIT_AVG) prop.label = "excess percentage average value" prop.isOper = True prop.isStats = True meta.props.add("excessPktPercentageAvg", prop) prop = PropMeta("str", "excessPktPercentageMax", "excessPktPercentageMax", 9198, PropCategory.IMPLICIT_MAX) prop.label = "excess percentage maximum value" prop.isOper = True prop.isStats = True meta.props.add("excessPktPercentageMax", prop) prop = PropMeta("str", "excessPktPercentageMin", "excessPktPercentageMin", 9197, PropCategory.IMPLICIT_MIN) prop.label = "excess percentage minimum value" prop.isOper = True prop.isStats = True meta.props.add("excessPktPercentageMin", prop) prop = PropMeta("str", "excessPktPercentageSpct", "excessPktPercentageSpct", 9200, PropCategory.IMPLICIT_SUSPECT) prop.label = "excess percentage suspect count" prop.isOper = True prop.isStats = True meta.props.add("excessPktPercentageSpct", prop) prop = PropMeta("str", "excessPktPercentageThr", "excessPktPercentageThr", 9201, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "excess percentage thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("excessPktPercentageThr", prop) prop = PropMeta("str", "excessPktPercentageTr", "excessPktPercentageTr", 9202, PropCategory.IMPLICIT_TREND) prop.label = "excess percentage trend" prop.isOper = True prop.isStats = True meta.props.add("excessPktPercentageTr", prop) prop = PropMeta("str", "excessPktRate", "excessPktRate", 9181, PropCategory.IMPLICIT_RATE) prop.label = "excess packets rate" prop.isOper = True prop.isStats = True meta.props.add("excessPktRate", prop) prop = PropMeta("str", "excessPktSpct", "excessPktSpct", 9178, PropCategory.IMPLICIT_SUSPECT) prop.label = "excess packets suspect count" prop.isOper = True prop.isStats = True meta.props.add("excessPktSpct", prop) prop = PropMeta("str", "excessPktThr", "excessPktThr", 9179, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "excess packets thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("excessPktThr", prop) prop = PropMeta("str", "excessPktTr", "excessPktTr", 9180, PropCategory.IMPLICIT_TREND) prop.label = "excess packets trend" prop.isOper = True prop.isStats = True meta.props.add("excessPktTr", prop) prop = PropMeta("str", "index", "index", 6419, PropCategory.REGULAR) prop.label = "History Index" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True meta.props.add("index", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) meta.namingProps.append(getattr(meta.props, "index")) def __init__(self, parentMoOrDn, index, markDirty=True, **creationProps): namingVals = [index] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
789d91f20f5e4d64ac0bfbc79cc982f2bf8ddde4
20cef5de28d025d4d37eb86ba2b1f832d52c089d
/src/gallium/drivers/zink/zink_extensions.py
6d01052c39f122aec5bcd098d634e276e7171d12
[]
no_license
martinmullins/mesa-emscripten
73da0a64901b7664468f951ef09fb9a462134660
b4225e327b67fd7eef411cc046c1c0fecb3900de
refs/heads/main
2023-03-27T03:38:19.037337
2021-03-29T19:17:22
2021-03-29T19:17:22
352,753,658
1
0
null
null
null
null
UTF-8
Python
false
false
4,925
py
# Copyright © 2020 Hoe Hao Cheng # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice (including the next # paragraph) shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # class Version: device_version : (1,0,0) struct_version : (1,0) def __init__(self, version, struct=()): self.device_version = version if not struct: self.struct_version = (version[0], version[1]) else: self.struct_version = struct # e.g. "VK_MAKE_VERSION(1,2,0)" def version(self): return ("VK_MAKE_VERSION(" + str(self.device_version[0]) + "," + str(self.device_version[1]) + "," + str(self.device_version[2]) + ")") # e.g. "10" def struct(self): return (str(self.struct_version[0])+str(self.struct_version[1])) # the sType of the extension's struct # e.g. VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT # for VK_EXT_transform_feedback and struct="FEATURES" def stype(self, struct: str): return ("VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_" + str(self.struct_version[0]) + "_" + str(self.struct_version[1]) + '_' + struct) class Extension: name : str = None alias : str = None is_required : bool = False enable_conds : [str] = None # these are specific to zink_device_info.py: has_properties : bool = False has_features : bool = False guard : bool = False # these are specific to zink_instance.py: core_since : Version = None instance_funcs : [str] = None def __init__(self, name, alias="", required=False, properties=False, features=False, conditions=None, guard=False, core_since=None, functions=None): self.name = name self.alias = alias self.is_required = required self.has_properties = properties self.has_features = features self.enable_conds = conditions self.guard = guard self.core_since = core_since self.instance_funcs = functions if alias == "" and (properties == True or features == True): raise RuntimeError("alias must be available when properties and/or features are used") # e.g.: "VK_EXT_robustness2" -> "robustness2" def pure_name(self): return '_'.join(self.name.split('_')[2:]) # e.g.: "VK_EXT_robustness2" -> "EXT_robustness2" def name_with_vendor(self): return self.name[3:] # e.g.: "VK_EXT_robustness2" -> "Robustness2" def name_in_camel_case(self): return "".join([x.title() for x in self.name.split('_')[2:]]) # e.g.: "VK_EXT_robustness2" -> "VK_EXT_ROBUSTNESS2_EXTENSION_NAME" # do note that inconsistencies exist, i.e. we have # VK_EXT_ROBUSTNESS_2_EXTENSION_NAME defined in the headers, but then # we also have VK_KHR_MAINTENANCE1_EXTENSION_NAME def extension_name(self): return self.name.upper() + "_EXTENSION_NAME" # generate a C string literal for the extension def extension_name_literal(self): return '"' + self.name + '"' # get the field in zink_device_info that refers to the extension's # feature/properties struct # e.g. rb2_<suffix> for VK_EXT_robustness2 def field(self, suffix: str): return self.alias + '_' + suffix # the sType of the extension's struct # e.g. VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT # for VK_EXT_transform_feedback and struct="FEATURES" def stype(self, struct: str): return ("VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_" + self.pure_name().upper() + '_' + struct + '_' + self.vendor()) # e.g. EXT in VK_EXT_robustness2 def vendor(self): return self.name.split('_')[1] # Type aliases Layer = Extension
c4dffc3e3d2d97e40aea2ee1a8c985b1198d34c9
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p04005/s016124663.py
dbda349dc94067bc2bed8bd607675a19ba22e8d3
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
114
py
A,B,C = map(int, input().split()) if A*B*C%2==0: print(0) exit() mylist=[A*B,B*C,A*C] print(min(mylist))
cf2b1104c97b1464770fe039124140845851493c
8b40a2959b8d2a2faca09f017e529bb6e02c0030
/backend/manga/asgi.py
29cb53e8774243095ab48245d7c364e42a77d799
[ "MIT" ]
permissive
linea-it/manga
80d0982ec83590abcec10a4d09510425d39c289d
26add95475345d6c7f34465848d4d33a7a6b63b7
refs/heads/master
2023-09-05T20:05:50.471757
2023-09-04T15:45:18
2023-09-04T15:45:18
212,671,416
0
0
MIT
2023-09-12T19:31:22
2019-10-03T20:15:19
Jupyter Notebook
UTF-8
Python
false
false
403
py
""" ASGI config for manga project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'manga.settings') application = get_asgi_application()
5be29987b306b8975af2a9ab57afca0a1aa21f8a
3b99e2863db4bcd3707e6f13641ddd9156289bc6
/tilemap/part 13/settings.py
e9b72d78360aa52426696357aa16353739911721
[ "MIT" ]
permissive
m-julian/pygame_tutorials
500a5be3b4fad86fad577a7ea5493ac09ca41168
be57d865de4ac0c18148e1785443c05445159779
refs/heads/master
2022-07-18T00:15:01.335459
2020-05-12T15:39:45
2020-05-12T15:39:45
263,055,700
0
0
MIT
2020-05-11T13:48:49
2020-05-11T13:48:48
null
UTF-8
Python
false
false
1,016
py
import pygame as pg vec = pg.math.Vector2 # define some colors (R, G, B) WHITE = (255, 255, 255) BLACK = (0, 0, 0) DARKGREY = (40, 40, 40) LIGHTGREY = (100, 100, 100) GREEN = (0, 255, 0) RED = (255, 0, 0) YELLOW = (255, 255, 0) BROWN = (106, 55, 5) CYAN = (0, 255, 255) # game settings WIDTH = 1024 # 16 * 64 or 32 * 32 or 64 * 16 HEIGHT = 768 # 16 * 48 or 32 * 24 or 64 * 12 FPS = 60 TITLE = "Tilemap Demo" BGCOLOR = BROWN TILESIZE = 64 GRIDWIDTH = WIDTH / TILESIZE GRIDHEIGHT = HEIGHT / TILESIZE WALL_IMG = 'tileGreen_39.png' # Player settings PLAYER_HEALTH = 100 PLAYER_SPEED = 280 PLAYER_ROT_SPEED = 200 PLAYER_IMG = 'manBlue_gun.png' PLAYER_HIT_RECT = pg.Rect(0, 0, 35, 35) BARREL_OFFSET = vec(30, 10) # Gun settings BULLET_IMG = 'bullet.png' BULLET_SPEED = 500 BULLET_LIFETIME = 1000 BULLET_RATE = 150 KICKBACK = 200 GUN_SPREAD = 5 BULLET_DAMAGE = 10 # Mob settings MOB_IMG = 'zombie1_hold.png' MOB_SPEED = 150 MOB_HIT_RECT = pg.Rect(0, 0, 30, 30) MOB_HEALTH = 100 MOB_DAMAGE = 10 MOB_KNOCKBACK = 20
232a9fa2ac5e25b2aad3b20924a51dcc73d3f9b1
349f39b27a7c3157a1f3db65f35b96bcdb2f5919
/03/xx/07-sklearn/16-deep-learning/cnn.py
12a3bc7c6707c150b18a6aa9e0a89c549f22e8bb
[]
no_license
microgenios/cod
5f870c9cefbb80d18690909baa4c9d8b9be463c2
0805609cc780244c640963dc4c70052e3df57b4e
refs/heads/master
2022-12-08T20:10:11.742940
2020-02-29T10:37:10
2020-02-29T10:37:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,855
py
#!/usr/bin/python import argparse import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data def build_arg_parser(): parser = argparse.ArgumentParser(description="Build a CNN classifier using MNIST data") parser.add_argument("--input-dir", dest="input_dir", type=str, default="./mnist_data", help="Directory for storing data") return parser def get_weights(shape): data = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(data) def get_biases(shape): data = tf.constant(0.1, shape=shape) return tf.Variable(data) def create_layer(shape): W = get_weights(shape) # Get the weights and biases b = get_biases([shape[-1]]) return W, b def convolution_2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME") def max_pooling(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") if __name__ == "__main__": args = build_arg_parser().parse_args() mnist = input_data.read_data_sets(args.input_dir, one_hot=True) # Get the MNIST data x = tf.placeholder(tf.float32, [None, 784]) # with 784 neurons (28x28=784) # The images are 28x28, so create the input layer x_image = tf.reshape(x, [-1, 28, 28, 1]) # Reshape 'x' into a 4D tensor W_conv1, b_conv1 = create_layer([5, 5, 1, 32]) # Define the first convolutional layer h_conv1 = tf.nn.relu(convolution_2d(x_image, W_conv1) + b_conv1) # bias, and then apply the ReLU function # Convolve the image with weight tensor, add the h_pool1 = max_pooling(h_conv1) # Apply the max pooling operator W_conv2, b_conv2 = create_layer([5, 5, 32, 64]) # Define the second convolutional layer h_conv2 = tf.nn.relu(convolution_2d(h_pool1, W_conv2) + b_conv2) # the ReLU function # weight tensor, add the bias, and then apply # Convolve the output of previous layer with the h_pool2 = max_pooling(h_conv2) # Apply the max pooling operator W_fc1, b_fc1 = create_layer([7 * 7 * 64, 1024]) # Define the fully connected layer h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) # Reshape the output of the previous layer h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # the ReLU function # weight tensor, add the bias, and then apply # Multiply the output of previous layer by the keep_prob = tf.placeholder(tf.float32) # for all the neurons # Define the dropout layer using a probability placeholder h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2, b_fc2 = create_layer([1024, 10]) # Define the readout layer (output layer) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 y_loss = tf.placeholder(tf.float32, [None, 10]) # Define the entropy loss and the optimizer loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_loss)) optimizer = tf.train.AdamOptimizer(1e-4).minimize(loss) predicted = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_loss, 1)) # Define the accuracy computation accuracy = tf.reduce_mean(tf.cast(predicted, tf.float32)) sess = tf.InteractiveSession() # Create and run a session init = tf.initialize_all_variables() sess.run(init) num_iterations = 21000 # Start training batch_size = 75 print("\nTraining the model....") for i in range(num_iterations): batch = mnist.train.next_batch(batch_size) # Get the next batch of images if i % 50 == 0: # Print progress cur_accuracy = accuracy.eval(feed_dict={x: batch[0], y_loss: batch[1], keep_prob: 1.0}) print("Iteration", i, ", Accuracy =", cur_accuracy) optimizer.run(feed_dict={x: batch[0], y_loss: batch[1], keep_prob: 0.5}) # Train on the current batch print("Test accuracy =", accuracy.eval(feed_dict={x: mnist.test.images, y_loss: mnist.test.labels, keep_prob: 1.0})) # Compute accuracy using test data
ef444176e36f44038492a44d71ac8e6aca7a16c7
d1c352676563b2decacfad19120001959b043f05
/superset/migrations/versions/c5756bec8b47_time_grain_sqla.py
13eb8c9b65479c0103f6fddc7aee44249354651c
[ "CC-BY-4.0", "Apache-2.0", "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
permissive
Affirm/incubator-superset
c9a09a10289b4ebf8a09284a483bca93725a4b51
421183d3f46c48215e88e9d7d285f2dc6c7ccfe6
refs/heads/master
2023-07-06T11:34:38.538178
2019-05-22T23:39:01
2019-05-22T23:39:01
128,005,001
1
3
Apache-2.0
2023-03-20T19:49:14
2018-04-04T04:02:42
JavaScript
UTF-8
Python
false
false
2,190
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Time grain SQLA Revision ID: c5756bec8b47 Revises: e502db2af7be Create Date: 2018-06-04 11:12:59.878742 """ # revision identifiers, used by Alembic. revision = 'c5756bec8b47' down_revision = 'e502db2af7be' from alembic import op import json from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, Text from superset import db Base = declarative_base() class Slice(Base): __tablename__ = 'slices' id = Column(Integer, primary_key=True) params = Column(Text) def upgrade(): bind = op.get_bind() session = db.Session(bind=bind) for slc in session.query(Slice).all(): try: params = json.loads(slc.params) if params.get('time_grain_sqla') == 'Time Column': params['time_grain_sqla'] = None slc.params = json.dumps(params, sort_keys=True) except Exception: pass session.commit() session.close() def downgrade(): bind = op.get_bind() session = db.Session(bind=bind) for slc in session.query(Slice).all(): try: params = json.loads(slc.params) if params.get('time_grain_sqla') is None: params['time_grain_sqla'] = 'Time Column' slc.params = json.dumps(params, sort_keys=True) except Exception: pass session.commit() session.close()
5fd0656ad77ea794a18064b517e5d366cbc9653d
d6ac41c1b17deb7d870a1658b0a613a7ee38e907
/ex02/2_4.py
9c77b1f7fbfbcdfb9f102387759955b680037861
[]
no_license
sarangkhim/sk_python
9e76a14ad6180420ecbe6f17009f7ac4450ef5b1
cc3d8f600e343d6f8d967c684cab04ad8e0011d1
refs/heads/master
2020-03-10T07:17:31.147720
2018-04-12T15:15:51
2018-04-12T15:15:51
129,259,793
0
0
null
null
null
null
UTF-8
Python
false
false
51
py
count = 1 count = count + 1 count = 1 print(count)
898ac4865128e40a00c0e6ebf4e83bf0a1cdff2e
43fd8b12dc1b6a2fc7cf4d9b8a80d3f1ae0fac66
/Visualization/11. 3D绘图函数-Points3d().py
b763a01b925d2dfae930f78b64abb6ea2a8b557b
[]
no_license
gxiang666/python_file
e707f829b2c35e6126bea79e299333faabe76b19
2ee0f52d53892d193dc83c10564f7326e0bad0da
refs/heads/master
2022-12-07T04:16:29.166707
2019-10-25T02:59:26
2019-10-25T02:59:26
139,252,161
1
0
null
2022-11-22T02:38:40
2018-06-30T13:35:14
Python
UTF-8
Python
false
false
305
py
import numpy as np from mayavi import mlab # 建立数据 t = np.linspace(0, 4 * np.pi, 20) # 0-4pi之间均匀的20个数 x = np.sin(2 * t) y = np.cos(t) z = np.cos(2 * t) s = 2 + np.sin(t) # 对数据进行可视化 points = mlab.points3d(x, y, z, s, colormap="Greens", scale_factor=.25) mlab.show()
a48d2e017f789758b775bae34f5ef4309987a757
458b1133df5b38a017f3a690a624a54f0f43fda7
/PaperExperiments/XHExp076/parameters.py
6f436fa18bf3398fcd04dd8ad45ea24a61fd102c
[ "MIT" ]
permissive
stefan-c-kremer/TE_World2
9c7eca30ee6200d371183c5ba32b3345a4cc04ee
8e1fae218af8a1eabae776deecac62192c22e0ca
refs/heads/master
2020-12-18T14:31:00.639003
2020-02-04T15:55:49
2020-02-04T15:55:49
235,413,951
0
0
null
null
null
null
UTF-8
Python
false
false
3,604
py
# parameters.py """ Exp 76 - {'Initial_genes': '5000', 'Host_mutation_rate': '0.30', 'TE_progeny': '0.15, 0, 0.55, 1, 0.30, 2', 'TE_Insertion_Distribution': 'Flat()', 'Carrying_capacity': '300', 'TE_excision_rate': '0.5', 'Junk_BP': '1.4', 'Gene_Insertion_Distribution': 'Flat()', 'mutation_effect': '0.01', 'TE_death_rate': '0.005'} """ from TEUtil import *; # note that "#" indicates a comment # set the following to True if you want messages printed to the screen # while the program runs - search for these keywords in TESim.py to see # what each one prints out output = { "SPLAT": False, "SPLAT FITNESS": False, "INITIALIZATION": False, "GENERATION": True, "HOST EXTINCTION": True, "TE EXTINCTION": True, "TRIAL NO": True, "GENE INIT": False, "TE INIT": False, }; TE_Insertion_Distribution = Flat(); Gene_Insertion_Distribution = Flat(); # Triangle( pmax, pzero ) generates values between pmax and pzero with # a triangular probability distribution, where pmax is the point of highest # probability, and pzero is the point of lowest probability # - you can change the orientation of the triangle by reversing the values # of pmax and pzero # Flat() generates values between 0 and 1 with uniform probability Gene_length = 1000; # use 1000? TE_length = 1000; # use 1000? TE_death_rate = 0.005; TE_excision_rate = 0.5; # set this to zero for retro transposons # for retro transposons this is the probability of the given number of progeny # for dna transposons this is the probability of the given number of progeny # ___PLUS___ the original re-inserting TE_progeny = ProbabilityTable( 0.15, 0, 0.55, 1, 0.30, 2 ); Initial_genes = 5000; Append_gene = True; # True: when the intialization routine tries to place # a gene inside another gene, it instead appends it # at the end of the original gene (use this with small # amounts of Junk_BP). # False: when the intialization routine tries to place # a gene inside another gene, try to place it somewhere # else again (don't use theis option with samll amounts # of Junk_BP). Initial_TEs = 1; MILLION = 1000000; Junk_BP = 1.4 * MILLION; Host_start_fitness = 1.0; Host_mutation_rate = 0.30; Host_mutation = ProbabilityTable( 0.40, lambda fit: 0.0, 0.30, lambda fit: fit - random.random()*0.01, 0.15, lambda fit: fit, 0.15, lambda fit: fit + random.random()*0.01 ); # what happens when a TA hits a gene Insertion_effect = ProbabilityTable(0.30, lambda fit: 0.0, 0.20, lambda fit: fit - random.random()*0.01, 0.30, lambda fit: fit, 0.20, lambda fit: fit + random.random()*0.01 ); Carrying_capacity = 300; Host_reproduction_rate = 1; # how many offspring each host has Host_survival_rate = lambda propfit: min( Carrying_capacity * propfit, 0.95 ); # propfit = proportion of fitness owned by this individual Maximum_generations = 1500; Terminate_no_TEs = True; # end simulation if there are no TEs left # seed = 0; seed = None; # if seed = None, the random number generator's initial state is # set "randomly" save_frequency = 50; # Frequency with with which to save state of experiment saved = None; # if saved = None then we start a new simulation from scratch # if saves = string, then we open that file and resume a simulation
df03d7cf506c83750e564807e2c690429a10ca18
e0b750751b22e2d3d93c72f0947b3dd3d173ce54
/runtests.py
b59af0a0dfe8c95546d7382b46d18af15e8bdf10
[ "MIT" ]
permissive
CryptAxe/pinax-images
8deac776c534a2d3ab2d66df364ab654fb02b8df
d041993671cdec6ed3011f6d7ffa499591e7cc9a
refs/heads/master
2021-01-17T22:27:44.849972
2016-02-22T14:38:13
2016-02-22T14:38:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,254
py
#!/usr/bin/env python import os import sys import django from django.conf import settings DEFAULT_SETTINGS = dict( INSTALLED_APPS=[ "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sites", "pinax.images", "pinax.images.tests" ], MIDDLEWARE_CLASSES=[], DATABASES={ "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": ":memory:", } }, SITE_ID=1, ROOT_URLCONF="pinax.images.tests.urls", SECRET_KEY="notasecret", ) def runtests(*test_args): if not settings.configured: settings.configure(**DEFAULT_SETTINGS) django.setup() parent = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, parent) try: from django.test.runner import DiscoverRunner runner_class = DiscoverRunner test_args = ["pinax.images.tests"] except ImportError: from django.test.simple import DjangoTestSuiteRunner runner_class = DjangoTestSuiteRunner test_args = ["tests"] failures = runner_class(verbosity=1, interactive=True, failfast=False).run_tests(test_args) sys.exit(failures) if __name__ == "__main__": runtests(*sys.argv[1:])
eba9ca8e639338e02363bdde79d0a78a05881186
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/sieve-big-6860.py
9d6702f59fb7fd8b3f78e657ca25242a0b170f23
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
31,752
py
# A resizable list of integers class Vector(object): items: [int] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A resizable list of integers class Vector2(object): items: [int] = None items2: [int] = None size: int = 0 size2: int = 0 def __init__(self:"Vector2"): self.items = [0] # Returns current capacity def capacity(self:"Vector2") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector2") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector2", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector2", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector2", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector2", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector2", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector2", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector2", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector2", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector2") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector2") -> int: return self.size # A resizable list of integers class Vector3(object): items: [int] = None items2: [int] = None items3: [int] = None size: int = 0 size2: int = 0 size3: int = 0 def __init__(self:"Vector3"): self.items = [0] # Returns current capacity def capacity(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector3") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector3", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector3", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector3", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector3", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector3", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector3", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector3", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector3", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector3", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector3", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector3", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector3", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector3") -> int: return self.size # A resizable list of integers class Vector4(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 def __init__(self:"Vector4"): self.items = [0] # Returns current capacity def capacity(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector4") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector4", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector4", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector4", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector4", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector4", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector4", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector4", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector4", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector4", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector4", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector4", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector4", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector4") -> int: return self.size # A resizable list of integers class Vector5(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None items5: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 size5: int = 0 def __init__(self:"Vector5"): self.items = [0] # Returns current capacity def capacity(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity5(self:"Vector5") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity5(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector5", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector5", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector5", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector5", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append5(self:"Vector5", item: int, item2: int, item3: int, item4: int, item5: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector5", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector5", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all5(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int], new_items5: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 item5:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector5", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector5", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector5", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector5", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector5", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector5", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves an item at a given index def get5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length5(self:"Vector5") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector2(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector3(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + $Member else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector4(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector5(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 doubling_limit5:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity5(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange2(i:int, j:int, i2:int, j2:int) -> Vector: v:Vector = None v2:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange3(i:int, j:int, i2:int, j2:int, i3:int, j3:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange4(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange5(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int, i5:int, j5:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve2(v:Vector, v2:Vector) -> object: i:int = 0 i2:int = 0 j:int = 0 j2:int = 0 k:int = 0 k2:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve3(v:Vector, v2:Vector, v3:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 j:int = 0 j2:int = 0 j3:int = 0 k:int = 0 k2:int = 0 k3:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve4(v:Vector, v2:Vector, v3:Vector, v4:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve5(v:Vector, v2:Vector, v3:Vector, v4:Vector, v5:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 j5:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 k5:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 n2:int = 50 n3:int = 50 n4:int = 50 n5:int = 50 # Data v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch v = vrange(2, n) v2 = vrange(2, n) v3 = vrange(2, n) v4 = vrange(2, n) v5 = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
ecacc3a564ffcaf31f442d38ff3d813c6c585b53
73d8089381b92b1965e2ac2a5f7c80d9293af2f5
/main.py
6a0a75f799a93f53747575c949df0934a27cee92
[]
no_license
Fufuhu/python_movie_transcoder
b92e420bc0433676863f57c154cc2a7f3d939384
ddce7f230c52ff532a74b1e1f5b0a5d16fa7bbaf
refs/heads/master
2021-01-20T04:50:15.511316
2017-04-29T14:40:44
2017-04-29T14:40:44
89,738,548
0
0
null
null
null
null
UTF-8
Python
false
false
578
py
import sys from python_movie_transformer.ffmpeg.image_file import ImageFile from python_movie_transformer.ffmpeg.options import ImageFileOptions from python_movie_transformer.ffmpeg.manipulater import FFmpegManipulater in_file = sys.argv[1] out_file = sys.argv[2] out_file_options = ImageFileOptions() out_file_options.set_scale(width=640) in_file_image = ImageFile(file_name=in_file) out_file_image = ImageFile(file_name=out_file, options=out_file_options) manipulater = FFmpegManipulater(input_file = in_file_image, output_file=out_file_image) manipulater.manipulate()
55bc19097227723308c5974a0b3429268e833458
03bf031efc1f171f0bb3cf8a565d7199ff073f96
/apps/splash/utils.py
55a7485240634ae9178da8eacef57efa57c85d31
[ "MIT" ]
permissive
emilps/onlineweb4
a213175678ac76b1fbede9b0897c538c435a97e2
6f4aca2a4522698366ecdc6ab63c807ce5df2a96
refs/heads/develop
2020-03-30T01:11:46.941170
2019-05-10T19:49:21
2019-05-10T19:49:21
150,564,330
0
0
MIT
2019-05-10T19:49:22
2018-09-27T09:43:32
Python
UTF-8
Python
false
false
699
py
import icalendar from django.utils import timezone from apps.events.utils import Calendar from apps.splash.models import SplashEvent class SplashCalendar(Calendar): def add_event(self, event): cal_event = icalendar.Event() cal_event.add('dtstart', event.start_time) cal_event.add('dtend', event.end_time) cal_event.add('summary', event.title) cal_event.add('description', event.content) cal_event.add('uid', 'splash-' + str(event.id) + '@online.ntnu.no') self.cal.add_component(cal_event) def events(self): self.add_events(SplashEvent.objects.filter(start_time__year=timezone.now().year)) self.filename = 'events'
bbb5385859b86e8e0d16e6fb2b6b59981333724f
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_binaries.py
57ef5dd6379ebd43cd7d9aa73601d47f274634a6
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
#calss header class _BINARIES(): def __init__(self,): self.name = "BINARIES" self.definitions = binary self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['binary']
c39122b83132e528602a47b61c9c2da7e5a93bbb
302442c32bacca6cde69184d3f2d7529361e4f3c
/servidores/servidor_7-nao-comitados/code2py/migra_cass_1.py
483f945ca021c1c77c6c6c22f65b373840ff8c82
[]
no_license
fucknoob/WebSemantic
580b85563072b1c9cc1fc8755f4b09dda5a14b03
f2b4584a994e00e76caccce167eb04ea61afa3e0
refs/heads/master
2021-01-19T09:41:59.135927
2015-02-07T02:11:23
2015-02-07T02:11:23
30,441,659
1
0
null
null
null
null
UTF-8
Python
false
false
6,202
py
import pycassa from pycassa.pool import ConnectionPool from pycassa import index from pycassa.columnfamily import ColumnFamily pool1 = ConnectionPool('MINDNET', ['localhost:9160'],timeout=1000000) pool2 = ConnectionPool('MINDNET', ['213.136.81.102:9160'],timeout=1000000) def migr(tab1,tab2,tb): #r1=tab1.get_range() #tab2.truncate() ind=0 while True: cach=[] r1=tab1.get_range() for ky,col in r1: cach.append([ky,col]) if len(cach) %1000==0: print 'collect(',tb,'):',len(cach) if len(cach) >= 500000: break if len(cach) == 0: break b1 = tab2.batch(55000) b2 = tab1.batch(55000) indc=0 for ky,col in cach: tab2.insert(ky,col) tab1.remove(ky) indc+=1 if indc % 50000==0: b1.send() b2.send() b1 = tab2.batch(55000) b2 = tab1.batch(55000) print tb,'->',ind b1.send() b2.send() print tb,'->',ind web_cache10_1 = pycassa.ColumnFamily(pool1, 'web_cache10') web_cache10_2 = pycassa.ColumnFamily(pool2, 'web_cache10') migr(web_cache10_1,web_cache10_2,'web_cache10') fz_store_sufix_1 = pycassa.ColumnFamily(pool1, 'fz_store_sufix') fz_store_sufix_2 = pycassa.ColumnFamily(pool2, 'fz_store_sufix') #migr(fz_store_sufix_1,fz_store_sufix_2,'fz_store_sufix') SEMANTIC_RELACTIONS_1 = pycassa.ColumnFamily(pool1, 'SEMANTIC_RELACTIONS') SEMANTIC_RELACTIONS_2 = pycassa.ColumnFamily(pool2, 'SEMANTIC_RELACTIONS') #migr(SEMANTIC_RELACTIONS_1,SEMANTIC_RELACTIONS_2,'semantic_relactions') SEMANTIC_OBJECT_1 = pycassa.ColumnFamily(pool1, 'SEMANTIC_OBJECT') SEMANTIC_OBJECT_2 = pycassa.ColumnFamily(pool2, 'SEMANTIC_OBJECT') #migr(SEMANTIC_OBJECT_1,SEMANTIC_OBJECT_2,'semantic_object') # fz_store_defs_1 = pycassa.ColumnFamily(pool1, 'fz_store_defs') fz_store_defs_2 = pycassa.ColumnFamily(pool2, 'fz_store_defs') #migr(fz_store_defs_1,fz_store_defs_2,'fz_store_defs') SEMANTIC_RELACTIONS3_1 = pycassa.ColumnFamily(pool1, 'SEMANTIC_RELACTIONS3') SEMANTIC_RELACTIONS3_2 = pycassa.ColumnFamily(pool2, 'SEMANTIC_RELACTIONS3') #migr(SEMANTIC_RELACTIONS3_1,SEMANTIC_RELACTIONS3_2,'semantic_relactions3') knowledge_manager_1 = pycassa.ColumnFamily(pool1, 'knowledge_manager') knowledge_manager_2 = pycassa.ColumnFamily(pool2, 'knowledge_manager') #migr(knowledge_manager_1,knowledge_manager_2,'kwnolegde_manager') SEMANTIC_OBJECT3_1_4_1 = pycassa.ColumnFamily(pool1, 'SEMANTIC_OBJECT3_1_4') SEMANTIC_OBJECT3_1_4_2 = pycassa.ColumnFamily(pool2, 'SEMANTIC_OBJECT3_1_4') #migr(SEMANTIC_OBJECT3_1_4_1,SEMANTIC_OBJECT3_1_4_2,'semantic_object3_1_4') web_cache3_1 = pycassa.ColumnFamily(pool1, 'web_cache3') web_cache3_2 = pycassa.ColumnFamily(pool2, 'web_cache3') #migr(web_cache3_1,web_cache3_2,'web_cache3') fcb_users1_1 = pycassa.ColumnFamily(pool1, 'fcb_users1') fcb_users1_2 = pycassa.ColumnFamily(pool2, 'fcb_users1') #migr(fcb_users1_1,fcb_users1_2,'fcb_users1') fz_store_refer_1 = pycassa.ColumnFamily(pool1, 'fz_store_refer') fz_store_refer_2 = pycassa.ColumnFamily(pool2, 'fz_store_refer') #migr(fz_store_refer_1,fz_store_refer_2,'fz_store_refer') DATA_BEHAVIOUR_CODE_PY_1 = pycassa.ColumnFamily(pool1, 'DATA_BEHAVIOUR_CODE_PY') DATA_BEHAVIOUR_CODE_PY_2 = pycassa.ColumnFamily(pool2, 'DATA_BEHAVIOUR_CODE_PY') #migr(DATA_BEHAVIOUR_CODE_PY_1,DATA_BEHAVIOUR_CODE_PY_2,'data_behaviour_code_py') SEMANTIC_OBJECT_DT_1 = pycassa.ColumnFamily(pool1, 'SEMANTIC_OBJECT_DT') SEMANTIC_OBJECT_DT_2 = pycassa.ColumnFamily(pool2, 'SEMANTIC_OBJECT_DT') #migr(SEMANTIC_OBJECT_DT_1,SEMANTIC_OBJECT_DT_2,'semantic_object_dt') SEMANTIC_OBJECT3_1 = pycassa.ColumnFamily(pool1, 'SEMANTIC_OBJECT3') SEMANTIC_OBJECT3_2 = pycassa.ColumnFamily(pool2, 'SEMANTIC_OBJECT3') #migr(SEMANTIC_OBJECT3_1,SEMANTIC_OBJECT3_2,'semantic_object3') to_posting_1 = pycassa.ColumnFamily(pool1, 'to_posting') to_posting_2 = pycassa.ColumnFamily(pool2, 'to_posting') #migr(to_posting_1,to_posting_2,'to_posting') SEMANTIC_RELACTIONS3_1_4_1 = pycassa.ColumnFamily(pool1, 'SEMANTIC_RELACTIONS3_1_4') SEMANTIC_RELACTIONS3_1_4_2 = pycassa.ColumnFamily(pool2, 'SEMANTIC_RELACTIONS3_1_4') #migr(SEMANTIC_RELACTIONS3_1_4_1,SEMANTIC_RELACTIONS3_1_4_2,'semantic_relactions3_1_4') SEMANTIC_OBJECT_DT3_1_4_1 = pycassa.ColumnFamily(pool1, 'SEMANTIC_OBJECT_DT3_1_4') SEMANTIC_OBJECT_DT3_1_4_2 = pycassa.ColumnFamily(pool2, 'SEMANTIC_OBJECT_DT3_1_4') #migr(SEMANTIC_OBJECT_DT3_1_4_1,SEMANTIC_OBJECT_DT3_1_4_2,'semantic_object_dt3_1_4') fuzzy_store_1 = pycassa.ColumnFamily(pool1, 'fuzzy_store') fuzzy_store_2 = pycassa.ColumnFamily(pool2, 'fuzzy_store') #migr(fuzzy_store_1,fuzzy_store_2,'fuzzy_store') cache_products_1 = pycassa.ColumnFamily(pool1, 'cache_products') cache_products_2 = pycassa.ColumnFamily(pool2, 'cache_products') #migr(cache_products_1,cache_products_2,'cache_products') cache_links_1 = pycassa.ColumnFamily(pool1, 'cache_links') cache_links_2 = pycassa.ColumnFamily(pool2, 'cache_links') #migr(cache_links_1,cache_links_2,'cache_links') DATA_BEHAVIOUR_PY_1 = pycassa.ColumnFamily(pool1, 'DATA_BEHAVIOUR_PY') DATA_BEHAVIOUR_PY_2 = pycassa.ColumnFamily(pool2, 'DATA_BEHAVIOUR_PY') #migr(DATA_BEHAVIOUR_PY_1,DATA_BEHAVIOUR_PY_2,'data_behaviour_py') SEMANTIC_OBJECT_DT3_1 = pycassa.ColumnFamily(pool1, 'SEMANTIC_OBJECT_DT3') SEMANTIC_OBJECT_DT3_2 = pycassa.ColumnFamily(pool2, 'SEMANTIC_OBJECT_DT3') #migr(SEMANTIC_OBJECT_DT3_1,SEMANTIC_OBJECT_DT3_2,'semantic_object_dt3') to_posting2_1 = pycassa.ColumnFamily(pool1, 'to_posting2') to_posting2_2 = pycassa.ColumnFamily(pool2, 'to_posting2') #migr(to_posting2_1,to_posting2_2,'to_posting2') fz_store_pref_1 = pycassa.ColumnFamily(pool1, 'fz_store_pref') fz_store_pref_2 = pycassa.ColumnFamily(pool2, 'fz_store_pref') #migr(fz_store_pref_1,fz_store_pref_2,'fz_store_pref') web_cache1_1 = pycassa.ColumnFamily(pool1, 'web_cache1') web_cache1_2 = pycassa.ColumnFamily(pool2, 'web_cache1') #migr(web_cache1_1,web_cache1_2,'web_cache1') fz_arround_points_1 = pycassa.ColumnFamily(pool1, 'fz_arround_points') fz_arround_points_2 = pycassa.ColumnFamily(pool2, 'fz_arround_points') #migr(fz_arround_points_1,fz_arround_points_2,'fz_arround_points')
41184d6766f09a040692ad47e6ee2ba8729e2760
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02842/s678047490.py
06867a1e60f0fc09c8a80429d6de00e18537b2ab
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
N = int(input()) n = int(N/1.08) while int(n*1.08) <= N: if int(n*1.08) == N: print(n) break else: n += 1 else: print(":(")
f73b1d1ae70592ed57aa30e7311dcf68cb0ae8bf
691c70d88aa242ef97c2b5587de210e94854148a
/omega_miya/plugins/bilibili_dynamic_monitor/monitor.py
0a86cf1b574a40b34b60614fd103dd63d21f19ce
[ "Python-2.0", "MIT" ]
permissive
yekang-wu/omega-miya
bf632e28c788f06c74b61056142de23da9201282
53a6683fccb0618e306abe9e103cec78445f3796
refs/heads/master
2023-08-27T13:54:56.756272
2021-10-07T11:31:23
2021-10-07T11:31:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,673
py
import asyncio import random from typing import List from nonebot import logger, require, get_bots, get_driver from nonebot.adapters.cqhttp import MessageSegment from nonebot.adapters.cqhttp.bot import Bot from omega_miya.database import DBSubscription, DBDynamic from omega_miya.utils.bilibili_utils import BiliUser, BiliDynamic, BiliRequestUtils from omega_miya.utils.omega_plugin_utils import MsgSender from .config import Config __global_config = get_driver().config plugin_config = Config(**__global_config.dict()) ENABLE_DYNAMIC_CHECK_POOL_MODE = plugin_config.enable_dynamic_check_pool_mode # 检查池模式使用的检查队列 checking_pool = [] # 启用检查动态状态的定时任务 scheduler = require("nonebot_plugin_apscheduler").scheduler # 创建用于更新数据库里面UP名称的定时任务 @scheduler.scheduled_job( 'cron', # year=None, # month=None, # day='*/1', # week=None, # day_of_week=None, hour='3', minute='3', second='22', # start_date=None, # end_date=None, # timezone=None, id='dynamic_db_upgrade', coalesce=True, misfire_grace_time=60 ) async def dynamic_db_upgrade(): logger.debug('dynamic_db_upgrade: started upgrade subscription info') sub_res = await DBSubscription.list_sub_by_type(sub_type=2) for sub_id in sub_res.result: sub = DBSubscription(sub_type=2, sub_id=sub_id) user_info_result = await BiliUser(user_id=int(sub_id)).get_info() if user_info_result.error: logger.error(f'dynamic_db_upgrade: 更新用户信息失败, uid: {sub_id}, error: {user_info_result.info}') continue up_name = user_info_result.result.name _res = await sub.add(up_name=up_name, live_info='B站动态') if not _res.success(): logger.error(f'dynamic_db_upgrade: 更新用户信息失败, uid: {sub_id}, error: {_res.info}') continue logger.debug('dynamic_db_upgrade: upgrade subscription info completed') # 处理图片序列 async def pic_to_seg(pic_list: list) -> str: # 处理图片序列 pic_segs = [] for pic_url in pic_list: pic_result = await BiliRequestUtils.pic_to_file(url=pic_url) if pic_result.error: logger.warning(f'BiliDynamic get base64pic failed, error: {pic_result.info}, pic url: {pic_url}') pic_segs.append(str(MessageSegment.image(pic_result.result))) pic_seg = '\n'.join(pic_segs) return pic_seg # 检查单个用户动态的函数 async def dynamic_checker(user_id: int, bots: List[Bot]): # 获取动态并返回动态类型及内容 user_dynamic_result = await BiliUser(user_id=user_id).get_dynamic_history() if user_dynamic_result.error: logger.error(f'bilibili_dynamic_monitor: 获取用户 {user_id} 动态失败, error: {user_dynamic_result.info}') # 解析动态内容 dynamics_data = [] for data in user_dynamic_result.result: data_parse_result = BiliDynamic.data_parser(dynamic_data=data) if data_parse_result.error: logger.error(f'bilibili_dynamic_monitor: 解析新动态时发生了错误, error: {data_parse_result.info}') continue dynamics_data.append(data_parse_result) # 用户所有的动态id exist_dynamic_result = await DBDynamic.list_dynamic_by_uid(uid=user_id) if exist_dynamic_result.error: logger.error(f'bilibili_dynamic_monitor: 获取用户 {user_id} 已有动态失败, error: {exist_dynamic_result.info}') return user_dynamic_list = [int(x) for x in exist_dynamic_result.result] new_dynamic_data = [data for data in dynamics_data if data.result.dynamic_id not in user_dynamic_list] subscription = DBSubscription(sub_type=2, sub_id=str(user_id)) for data in new_dynamic_data: dynamic_info = data.result dynamic_card = dynamic_info.data dynamic_id = dynamic_info.dynamic_id user_name = dynamic_info.user_name desc = dynamic_info.desc url = dynamic_info.url content = dynamic_card.content title = dynamic_card.title description = dynamic_card.description # 转发的动态 if dynamic_info.type == 1: # 转发的动态还需要获取原动态信息 orig_dy_info_result = await BiliDynamic(dynamic_id=dynamic_info.orig_dy_id).get_info() if orig_dy_info_result.success(): orig_dy_data_result = BiliDynamic.data_parser(dynamic_data=orig_dy_info_result.result) if orig_dy_data_result.success(): # 原动态type=2, 8 或 4200, 带图片 if orig_dy_data_result.result.type in [2, 8, 4200]: # 处理图片序列 pic_seg = await pic_to_seg(pic_list=orig_dy_data_result.result.data.pictures) orig_user = orig_dy_data_result.result.user_name orig_contant = orig_dy_data_result.result.data.content if not orig_contant: orig_contant = orig_dy_data_result.result.data.title msg = f"{user_name}{desc}!\n\n“{content}”\n{url}\n{'=' * 16}\n" \ f"@{orig_user}: {orig_contant}\n{pic_seg}" # 原动态type=32 或 512, 为番剧类型 elif orig_dy_data_result.result.type in [32, 512]: # 处理图片序列 pic_seg = await pic_to_seg(pic_list=orig_dy_data_result.result.data.pictures) orig_user = orig_dy_data_result.result.user_name orig_title = orig_dy_data_result.result.data.title msg = f"{user_name}{desc}!\n\n“{content}”\n{url}\n{'=' * 16}\n" \ f"@{orig_user}: {orig_title}\n{pic_seg}" # 原动态为其他类型, 无图 else: orig_user = orig_dy_data_result.result.user_name orig_contant = orig_dy_data_result.result.data.content if not orig_contant: orig_contant = orig_dy_data_result.result.data.title msg = f"{user_name}{desc}!\n\n“{content}”\n{url}\n{'=' * 16}\n" \ f"@{orig_user}: {orig_contant}" else: msg = f"{user_name}{desc}!\n\n“{content}”\n{url}\n{'=' * 16}\n@Unknown: 获取原动态失败" else: msg = f"{user_name}{desc}!\n\n“{content}”\n{url}\n{'=' * 16}\n@Unknown: 获取原动态失败" # 原创的动态(有图片) elif dynamic_info.type == 2: # 处理图片序列 pic_seg = await pic_to_seg(pic_list=dynamic_info.data.pictures) msg = f"{user_name}{desc}!\n\n“{content}”\n{url}\n{pic_seg}" # 原创的动态(无图片) elif dynamic_info.type == 4: msg = f"{user_name}{desc}!\n\n“{content}”\n{url}" # 视频 elif dynamic_info.type == 8: # 处理图片序列 pic_seg = await pic_to_seg(pic_list=dynamic_info.data.pictures) if content: msg = f"{user_name}{desc}!\n\n《{title}》\n\n“{content}”\n{url}\n{pic_seg}" else: msg = f"{user_name}{desc}!\n\n《{title}》\n\n{description}\n{url}\n{pic_seg}" # 小视频 elif dynamic_info.type == 16: msg = f"{user_name}{desc}!\n\n“{content}”\n{url}" # 番剧 elif dynamic_info.type in [32, 512]: # 处理图片序列 pic_seg = await pic_to_seg(pic_list=dynamic_info.data.pictures) msg = f"{user_name}{desc}!\n\n《{title}》\n\n{content}\n{url}\n{pic_seg}" # 文章 elif dynamic_info.type == 64: # 处理图片序列 pic_seg = await pic_to_seg(pic_list=dynamic_info.data.pictures) msg = f"{user_name}{desc}!\n\n《{title}》\n\n{content}\n{url}\n{pic_seg}" # 音频 elif dynamic_info.type == 256: # 处理图片序列 pic_seg = await pic_to_seg(pic_list=dynamic_info.data.pictures) msg = f"{user_name}{desc}!\n\n《{title}》\n\n{content}\n{url}\n{pic_seg}" # B站活动相关 elif dynamic_info.type == 2048: if description: msg = f"{user_name}{desc}!\n\n【{title} - {description}】\n\n“{content}”\n{url}" else: msg = f"{user_name}{desc}!\n\n【{title}】\n“{content}”\n\n{url}" else: logger.warning(f"未知的动态类型: {type}, id: {dynamic_id}") continue # 向群组和好友推送消息 for _bot in bots: msg_sender = MsgSender(bot=_bot, log_flag='BiliDynamicNotice') await msg_sender.safe_broadcast_groups_subscription(subscription=subscription, message=msg) await msg_sender.safe_broadcast_friends_subscription(subscription=subscription, message=msg) # 更新动态内容到数据库 # 向数据库中写入动态信息 dynamic = DBDynamic(uid=user_id, dynamic_id=dynamic_id) _res = await dynamic.add(dynamic_type=dynamic_info.type, content=content) if _res.success(): logger.info(f"向数据库写入动态信息: {dynamic_id} 成功") else: logger.error(f"向数据库写入动态信息: {dynamic_id} 失败, error: {_res.info}") # 用于首次订阅时刷新数据库动态信息 async def init_user_dynamic(user_id: int): # 暂停计划任务避免中途检查更新 scheduler.pause() await dynamic_checker(user_id=user_id, bots=[]) scheduler.resume() logger.info(f'Init new subscription user {user_id} dynamic completed.') # 动态检查主函数 async def bilibili_dynamic_monitor(): logger.debug(f"bilibili_dynamic_monitor: checking started") # 获取当前bot列表 bots = [bot for bot_id, bot in get_bots().items()] # 获取订阅表中的所有动态订阅 sub_res = await DBSubscription.list_sub_by_type(sub_type=2) check_sub = [int(x) for x in sub_res.result] if not check_sub: logger.debug(f'bilibili_dynamic_monitor: no dynamic subscription, ignore.') return # 启用了检查池模式 if ENABLE_DYNAMIC_CHECK_POOL_MODE: global checking_pool # checking_pool为空则上一轮检查完了, 重新往里面放新一轮的uid if not checking_pool: checking_pool.extend(check_sub) # 看下checking_pool里面还剩多少 waiting_num = len(checking_pool) # 默认单次检查并发数为3, 默认检查间隔为20s logger.debug(f'bili dynamic pool mode debug info, B_checking_pool: {checking_pool}') if waiting_num >= 3: # 抽取检查对象 now_checking = random.sample(checking_pool, k=3) # 更新checking_pool checking_pool = [x for x in checking_pool if x not in now_checking] else: now_checking = checking_pool.copy() checking_pool.clear() logger.debug(f'bili dynamic pool mode debug info, A_checking_pool: {checking_pool}') logger.debug(f'bili dynamic pool mode debug info, now_checking: {now_checking}') # 检查now_checking里面的直播间(异步) tasks = [] for uid in now_checking: tasks.append(dynamic_checker(user_id=uid, bots=bots)) try: await asyncio.gather(*tasks) logger.debug(f"bilibili_dynamic_monitor: pool mode enable, checking completed, " f"checked: {', '.join([str(x) for x in now_checking])}.") except Exception as e: logger.error(f'bilibili_dynamic_monitor: pool mode enable, error occurred in checking: {repr(e)}') # 没有启用检查池模式 else: # 检查所有在订阅表里面的动态(异步) tasks = [] for uid in check_sub: tasks.append(dynamic_checker(user_id=uid, bots=bots)) try: await asyncio.gather(*tasks) logger.debug(f"bilibili_dynamic_monitor: pool mode disable, checking completed, " f"checked: {', '.join([str(x) for x in check_sub])}.") except Exception as e: logger.error(f'bilibili_dynamic_monitor: pool mode disable, error occurred in checking {repr(e)}') # 根据检查池模式初始化检查时间间隔 if ENABLE_DYNAMIC_CHECK_POOL_MODE: # 检查池启用 scheduler.add_job( bilibili_dynamic_monitor, 'cron', # year=None, # month=None, # day='*/1', # week=None, # day_of_week=None, # hour='9-23', # minute='*/3', second='*/20', # start_date=None, # end_date=None, # timezone=None, id='bilibili_dynamic_monitor_pool_enable', coalesce=True, misfire_grace_time=20 ) else: # 检查池禁用 scheduler.add_job( bilibili_dynamic_monitor, 'cron', # year=None, # month=None, # day='*/1', # week=None, # day_of_week=None, # hour=None, minute='*/3', # second='*/30', # start_date=None, # end_date=None, # timezone=None, id='bilibili_dynamic_monitor_pool_disable', coalesce=True, misfire_grace_time=30 ) __all__ = [ 'scheduler', 'init_user_dynamic' ]
13a1236df74a65225769b76df44b5338409bbc7a
51af810c46774818dbc1c59712164080a3724055
/miniflow/ops.py
98d537fddf8e026755c4d69c60e40742361b0f13
[ "Apache-2.0" ]
permissive
BenJamesbabala/miniflow
bf626f53d887370c5f12bec4892fe8891e62ebc1
cd92726fc63c2ae9cb52e02a8e9771081a7253a7
refs/heads/master
2020-12-02T21:09:34.852835
2017-07-04T16:23:39
2017-07-04T16:23:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,807
py
# Copyright 2017 The Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module contains all the basic operations.""" import logging import math import os import sys import graph # Enable swig by environment variable if os.environ.has_key("ENABLE_SWIG_OP"): logging.info("Enable swig operations by environment variable") sys.path.append("../") import swig.op class Op(object): """The basic class for all operation.""" def __init__(self): pass def forward(self): raise NotImplementedError def grad(self): raise NotImplementedError def __add__(self, other): return AddOp(self, other) def __radd__(self, other): return self.__add__(other) def __sub__(self, other): return MinusOp(self, other) def __rsub__(self, other): return MinusOp(other, self) def __mul__(self, other): return MultipleOp(self, other) def __rmul__(self, other): return self.__mul__(other) def __div__(self, other): return DivideOp(self, other) def __rdiv__(self, other): return DivideOp(other, self) def __pow__(self, power, modulo=None): return PowerOp(self, power) class PlaceholderOp(Op): """The placeholer operation which value is set when Session.run()""" def __init__(self, dtype=None, shape=None, name="Placeholder"): # TODO: Use dtype and shape self.dtype = dtype self.shape = shape self.name = name # The value is None util Session.run() with feed_dict parameter self.value = None # TODO: Support other graph instance self.graph = graph.get_default_graph() self.graph.add_to_graph(self) def set_value(self, value): self.value = value def get_value(self): return self.value def forward(self): return self.value def grad(self, partial_derivative_opname=None): return 0 class ConstantOp(Op): """The constant operation which contains one initialized value.""" def __init__(self, value, name="Constant"): self.value = value self.name = name self.graph = graph.get_default_graph() self.graph.add_to_graph(self) # TODO: Not allow to set the value def get_value(self): return self.value def forward(self): return self.value def grad(self, partial_derivative_opname=None): return 0 class VariableOp(Op): """ The variable operation which contains one variable. The variable may be trainable or not-trainable. This is used to define the machine learning models. """ def __init__(self, value, is_trainable=True, name="Variable"): self.value = value self.is_trainable = is_trainable self.name = name self.graph = graph.get_default_graph() self.graph.add_to_graph(self) if self.is_trainable: self.graph.add_to_trainable_variables_collection(self.name, self) def get_value(self): return self.value def set_value(self, value): self.value = value def forward(self): return self.value def grad(self, partial_derivative_opname=None): if partial_derivative_opname is None: grad = 1 else: if self.name == partial_derivative_opname: # Specify to compute this derivative grad = 1 else: # Specify to compute other derivative grad = 0 return grad def test_VariableOp(): x = 10 variable = VariableOp(x) print("X: {}, forward: {}, grad: {}".format( x, variable.forward(), variable.grad())) class PowerOp(Op): def __init__(self, input, power, name="Power"): if not isinstance(input, Op): self.op = ConstantOp(input) else: self.op = input self.power = power self.name = name self.graph = graph.get_default_graph() self.graph.add_to_graph(self) def forward(self): result = pow(self.op.forward(), self.power) return result def grad(self, partial_derivative_opname=None): if isinstance(self.op, PlaceholderOp) or isinstance(self.op, ConstantOp): # op is the constant grad = 0 elif isinstance(self.op, VariableOp): # op is the variable grad = self.power * pow(self.op.forward(), self.power - 1) else: # op is other complex operation and use chain rule grad = self.power * pow(self.op.forward(), self.power - 1 ) * self.op.grad(partial_derivative_opname) return grad class SquareOp(PowerOp): def __init__(self, input, name="Square"): super(SquareOp, self).__init__(input, 2, name) class SquareOpOld(Op): def __init__(self, input, name="Square"): if not isinstance(input, Op): self.op = ConstantOp(input) else: self.op = input self.name = name self.graph = graph.get_default_graph() self.graph.add_to_graph(self) def forward(self): if os.environ.has_key("ENABLE_SWIG_OP"): result = swig.op.square(self.op.forward()) else: result = pow(self.op.forward(), 2) return result def grad(self, partial_derivative_opname=None): if isinstance(self.op, PlaceholderOp) or isinstance(self.op, ConstantOp): # op is the constant grad = 0 elif isinstance(self.op, VariableOp): # op is the variable if os.environ.has_key("ENABLE_SWIG_OP"): grad = swig.op.multiple(2, self.op.forward()) else: grad = 2 * self.op.forward() else: # op is other complex operation and use chain rule grad = 2 * self.op.forward() * self.op.grad(partial_derivative_opname) return grad class CubicOp(PowerOp): def __init__(self, input, name="Cubic"): super(CubicOp, self).__init__(input, 3, name) class CubicOpOld(Op): def __init__(self, input, name="Cubic"): if not isinstance(input, Op): self.op = ConstantOp(input) else: self.op = input self.name = name self.graph = graph.get_default_graph() self.graph.add_to_graph(self) def forward(self): if os.environ.has_key("ENABLE_SWIG_OP"): result = swig.op.cubic(self.op.forward()) else: result = math.pow(self.op.forward(), 3) return result def grad(self, partial_derivative_opname=None): if isinstance(self.op, PlaceholderOp) or isinstance(self.op, ConstantOp): # op is the constant grad = 0 elif isinstance(self.op, VariableOp): # op is the variable if os.environ.has_key("ENABLE_SWIG_OP"): grad = swig.op.multiple(3, swig.op.square(self.op.forward())) else: grad = 3 * math.pow(self.op.forward(), 2) else: # op is other complex operation grad = 3 * math.pow(self.op.forward(), 2) * self.op.grad(partial_derivative_opname) return grad def test_CubicOp(): x = 10 variable = CubicOp(x) print("X: {}, forward: {}, grad: {}".format( x, variable.forward(), variable.grad())) def SigmoidOp(Op): def __init__(self, value, name="Sigmoid"): pass class AddOp(Op): """ The addition operation which has only two inputs. The input can be primitive, ConstantOp, PlaceholerOp, VariableOp or other ops. """ def __init__(self, input1, input2, name="Add"): if not isinstance(input1, Op): self.op1 = ConstantOp(input1) else: self.op1 = input1 if not isinstance(input2, Op): self.op2 = ConstantOp(input2) else: self.op2 = input2 self.name = name self.graph = graph.get_default_graph() self.graph.add_to_graph(self) def forward(self): result = self.op1.forward() + self.op2.forward() return result def grad(self, partial_derivative_opname=None): result = self.op1.grad(partial_derivative_opname) + self.op2.grad( partial_derivative_opname) return result class MinusOp(Op): """ The minus operation. """ def __init__(self, input1, input2, name="Minus"): if not isinstance(input1, Op): self.op1 = ConstantOp(input1) else: self.op1 = input1 if not isinstance(input2, Op): self.op2 = ConstantOp(input2) else: self.op2 = input2 self.name = name self.graph = graph.get_default_graph() self.graph.add_to_graph(self) def forward(self): result = self.op1.forward() - self.op2.forward() return result def grad(self, partial_derivative_opname=None): result = self.op1.grad(partial_derivative_opname) - self.op2.grad( partial_derivative_opname) return result class AddNOp(Op): def __init__(self, *inputs): # TODO: Support user defined name in the parameter self.name = "AddN" self.ops = [] for input in inputs: if not isinstance(input, Op): input = ConstantOp(input) self.ops.append(input) self.graph = graph.get_default_graph() self.graph.add_to_graph(self) def forward(self): result = 0 for op in self.ops: result += op.forward() return result def grad(self, partial_derivative_opname=None): result = 0 for op in self.ops: result += op.grad(partial_derivative_opname) return result # TODO: Can not support operations like "x * x", only "x * 3" class MultipleOp(Op): def __init__(self, input1, input2, name="Multiple"): if not isinstance(input1, Op): self.op1 = ConstantOp(input1) else: self.op1 = input1 if not isinstance(input2, Op): self.op2 = ConstantOp(input2) else: self.op2 = input2 self.name = name self.graph = graph.get_default_graph() self.graph.add_to_graph(self) def forward(self): result = self.op1.forward() * self.op2.forward() return result def grad(self, partial_derivative_opname=None): if isinstance(self.op1, PlaceholderOp) or isinstance(self.op1, ConstantOp): # op1 is the coefficient of this formula op1_grad = self.op1.forward() if isinstance(self.op2, PlaceholderOp) or isinstance( self.op2, ConstantOp): # two elements are both constant values op2_grad = 0 else: # op2 may has VariableOp op2_grad = self.op2.grad(partial_derivative_opname) elif isinstance(self.op2, PlaceholderOp) or isinstance( self.op2, ConstantOp): # op2 is the coefficient of this formula op2_grad = self.op2.forward() # op1 may has VariableOp op1_grad = self.op1.grad(partial_derivative_opname) else: # op1 and op2 may has VariableOp logging.error( "Not support complex formula which has multiple VariableOp") raise NotImplementedError result = op1_grad * op2_grad return result class MultipleNOp(Op): """The multiple operation for n inputs.""" def __init__(self, *inputs): self.name = "MultipleN" self.ops = [] for input in inputs: if not isinstance(input, Op): input = ConstantOp(input) self.ops.append(input) self.graph = graph.get_default_graph() self.graph.add_to_graph(self) def forward(self): result = 1 for op in self.ops: result *= op.forward() return result def grad(self, partial_derivative_opname=None): # TODO: Check the type of op to compute gradients result = 1 for op in self.ops: result *= op.grad(partial_derivative_opname) return result class DivideOp(Op): def __init__(self, input1, input2, name="Divide"): if not isinstance(input1, Op): self.op1 = ConstantOp(input1) else: self.op1 = input1 if not isinstance(input2, Op): self.op2 = ConstantOp(input2) else: self.op2 = input2 self.name = name self.graph = graph.get_default_graph() self.graph.add_to_graph(self) def forward(self): result = self.op1.forward() / self.op2.forward() return result def grad(self, partial_derivative_opname=None): result = self.op1.grad(partial_derivative_opname) / self.op2.grad( partial_derivative_opname) return result class UpdateVariableOp(Op): def __init__(self, variableOp, value, name="UpdateVariableOp"): self.variableOp = variableOp self.value = value self.name = name self.graph = graph.get_default_graph() self.graph.add_to_graph(self) def forward(self): self.variableOp.set_value(self.value) return self.value # TODO: Add grad() if needed class UpdateVariableNOp(Op): def __init__(self, variableop_value_map, name="UpdateVariableNOp"): self.variableop_value_map = variableop_value_map self.name = name self.graph = graph.get_default_graph() self.graph.add_to_graph(self) def forward(self): # TODO: Need to test the loop for variableOp, value in enumerate(self.variableop_value_map): variableOp.set_value(value) return self.variableop_value_map def test_SquareOp(): w = VariableOp(10) b = VariableOp(20) x = PlaceholderOp(float) x.set_value(2.0) y = PlaceholderOp(float) y.set_value(3.0) loss = SquareOp(y - (w * x + b)) print("w: {}, forward: {}, grad: {}".format(w.get_value(), loss.forward(), loss.grad(w.name))) # 148.0 print("b: {}, forward: {}, grad: {}".format(b.get_value(), loss.forward(), loss.grad(b.name))) # 74.0 def global_variables_initializer(): pass def local_variables_initializer(): pass
54dcbee3deeff946bab62193875ecf7f2be7928b
eddb3dfb5e1a0a3e58254f285c3700b45dce76d9
/mountaintools/mlprocessors/registry.py
959fb39fb2b78e11dd4457f64337724e13bb1063
[ "Apache-2.0" ]
permissive
tjd2002/spikeforest2
f2281a8d3103b3fbdd85829c176819a5e6d310d0
2e393564b858b2995aa2ccccd9bd73065681b5de
refs/heads/master
2020-04-25T07:55:19.997810
2019-02-26T01:19:23
2019-02-26T01:19:23
172,628,686
0
0
Apache-2.0
2019-02-26T03:11:27
2019-02-26T03:11:26
null
UTF-8
Python
false
false
4,238
py
#!/usr/bin/env python import json import os import traceback import argparse from .execute import execute import types class ProcessorRegistry: def __init__(self, processors=[], namespace=None): self.processors = processors self.namespace = namespace if namespace: for proc in self.processors: proc.NAME = "{}.{}".format(namespace, proc.NAME) proc.NAMESPACE = namespace def spec(self): s = {} s['processors'] = [cls.spec() for cls in self.processors] return s def find(self, **kwargs): for P in self.processors: for key in kwargs: if not hasattr(P, key): continue if getattr(P, key) != kwargs[key]: continue return P def get_processor_by_name(self, name): return self.find(NAME=name) def test(self, args, **kwargs): procname = args[0] proc = self.find(NAME=procname) if not proc: raise KeyError("Unable to find processor %s" % procname) if not hasattr(proc, 'test') or not callable(proc.test): raise AttributeError("No test function defined for %s" % proc.NAME) print("----------------------------------------------") print("Testing", proc.NAME) try: result = proc.test() print("SUCCESS" if result else "FAILURE") except Exception as e: print("FAILURE:", e) if kwargs.get('trace', False): traceback.print_exc() finally: print("----------------------------------------------") def process(self, args): parser = argparse.ArgumentParser(prog=args[0]) subparsers = parser.add_subparsers(dest='command', help='main help') parser_spec = subparsers.add_parser( 'spec', help='Print processor specs') parser_spec.add_argument('processor', nargs='?') parser_test = subparsers.add_parser('test', help='Run processor tests') parser_test.add_argument('processor') parser_test.add_argument('args', nargs=argparse.REMAINDER) for proc in self.processors: proc.invoke_parser(subparsers) opts = parser.parse_args(args[1:]) opcode = opts.command if not opcode: parser.print_usage() return if opcode == 'spec': if opts.processor: try: proc = self.get_processor_by_name(opts.processor) print(json.dumps(proc.spec(), sort_keys=True, indent=4)) except: print("Processor {} not found".format(opts.processor)) return print(json.dumps(self.spec(), sort_keys=True, indent=4)) return if opcode == 'test': try: self.test([opts.processor]+opts.args, trace=os.getenv('TRACEBACK', False) not in ['0', 0, 'False', 'F', False]) except KeyError as e: # taking __str__ from Base to prevent adding quotes to KeyError print(BaseException.__str__(e)) except Exception as e: print(e) finally: return if opcode in [x.NAME for x in self.processors]: try: self.invoke(self.get_processor_by_name(opcode), args[2:]) except: import sys sys.exit(-1) else: print("Processor {} not found".format(opcode)) def invoke(self, proc, args): return proc.invoke(args) def register(self, proc): if self.namespace and not proc.NAMESPACE: proc.NAME = "{}.{}".format(self.namespace, proc.NAME) proc.NAMESPACE = self.namespace self.processors.append(proc) def register_processor(registry): def decor(cls): cls = mlprocessor(cls) registry.register(cls) return cls return decor def mlprocessor(cls): cls.execute = types.MethodType(execute, cls) return cls registry = ProcessorRegistry()
9df227dc90f6ac68fe20815bb42614b23252771e
42cc27460f455808e251148cdbf672b04d468156
/maya/rbRrSubmit/rbRrSubmit.py
4d5208459d1a393a0bacb22e8a8eb8a5bdc18192
[]
no_license
cgguo/rugbybugs
dc5f76a48bb0315ae336e8192cdad5d13b087f65
df66aa2e3a8e38a34224627a7222d6854aa1597f
refs/heads/master
2020-12-25T05:03:11.905437
2015-05-26T18:48:46
2015-05-26T18:48:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,597
py
#rbRrSubmit Module #------------------------------------------------------------------ ''' Description: Saves and submits the current scene to the rrSubmitter ''' ''' ToDo: ''' #Imports #------------------------------------------------------------------ import os, sys import maya.cmds as cmds import pymel.core as pm #RbRrSubmit class #------------------------------------------------------------------ class RbRrSubmit(): #Constructor / Main Procedure def __init__(self): #Instance Vars #------------------------------------------------------------------ self.verbose = True #Methods #------------------------------------------------------------------ #saveAndSubmitToRr @staticmethod def saveAndSubmitToRr(*args, **kwargs): try: # Get the current scene name. curName, curExt = os.path.splitext(cmds.file(query=True, sceneName=True)) # Determine the file type. if(curExt == ".ma"): curType = "mayaAscii" if(curExt == ".mb"): curType = "mayaBinary" #save file cmds.file(f=True, type=curType, save=True) #Check if animation in Render settings is on, otherwise print warning if(pm.getAttr('defaultRenderGlobals.animation') == 0): print('No Animation specified in Renderglobals. RRSubmitter will not open file to get settings') #print to output window sys.__stdout__.write('No Animation specified in Renderglobals. RRSubmitter will not open file to get settings \n') #get rrSubmiterDir rrSubmiterDir = os.environ['RR_Root'] #get scenePath scenePath = cmds.file(q = True, sceneName = True) #Check if scene path true, if so start submit if (scenePath): if ((sys.platform.lower() == "win32") or (sys.platform.lower() == "win64")): os.system(rrSubmiterDir+"\\win__rrSubmitter.bat \""+scenePath+"\"") elif (sys.platform.lower() == "darwin"): os.system(rrSubmiterDir+"/bin/mac/rrSubmitter.app/Contents/MacOS/rrSubmitter \""+scenePath+"\"") else: os.system(rrSubmiterDir+"/lx__rrSubmitter.sh \""+scenePath+"\"") print('Successfully submited scene to RRSubmitter') except: print('Error submitting scene to RRSubmitter') #Shared Methods #------------------------------------------------------------------ #Execute TMP #------------------------------------------------------------------ ''' from rugbyBugs.maya.rbRrSubmit import rbRrSubmit reload(rbRrSubmit) rbRrSubmit.RbRrSubmit.saveAndSubmitToRr() RbRrSubmitInstance = rbRrSubmit.RbRrSubmit() RbRrSubmitInstance.saveAndSubmitToRr() '''
2fd741f3bbfaaaae1940e8b8e48323a38f156a35
aa0083936eff7afc66fdf62cb7f632e5b3f26d20
/Implementation/Boj 10816.py
be340f087f29a435538965a4916c5b3dd5927778
[]
no_license
b8goal/Boj
ab31a8e1a414125bb4a0eb243db7dce2dda1ed4a
b7e395191eda01427a6db8a886a5ce3c49b03abf
refs/heads/master
2022-02-03T13:15:26.904488
2021-12-30T11:58:07
2021-12-30T11:58:07
161,286,778
1
0
null
null
null
null
UTF-8
Python
false
false
60
py
a,b=0,1 for i in range(int(input())): a,b=a+b,a print(a)
e128911fbf66839c06d7fca59b87cd5b97dee95f
cc096d321ab5c6abf54fdcea67f10e77cd02dfde
/flex-backend/pypy/translator/c/gc.py
b4dab2aed4db908b150f72af0a3e773bbbde0a49
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
limweb/flex-pypy
310bd8fcd6a9ddc01c0b14a92f0298d0ae3aabd2
05aeeda183babdac80f9c10fca41e3fb1a272ccb
refs/heads/master
2021-01-19T22:10:56.654997
2008-03-19T23:51:59
2008-03-19T23:51:59
32,463,309
0
0
null
null
null
null
UTF-8
Python
false
false
12,221
py
import sys from pypy.translator.c.support import cdecl from pypy.translator.c.node import ContainerNode from pypy.rpython.lltypesystem.lltype import \ typeOf, Ptr, ContainerType, RttiStruct, \ RuntimeTypeInfo, getRuntimeTypeInfo, top_container from pypy.rpython.memory.gctransform import \ refcounting, boehm, framework, stacklessframework from pypy.rpython.lltypesystem import lltype, llmemory class BasicGcPolicy(object): requires_stackless = False def __init__(self, db, thread_enabled=False): self.db = db self.thread_enabled = thread_enabled def common_gcheader_definition(self, defnode): return [] def common_gcheader_initdata(self, defnode): return [] def struct_gcheader_definition(self, defnode): return self.common_gcheader_definition(defnode) def struct_gcheader_initdata(self, defnode): return self.common_gcheader_initdata(defnode) def array_gcheader_definition(self, defnode): return self.common_gcheader_definition(defnode) def array_gcheader_initdata(self, defnode): return self.common_gcheader_initdata(defnode) def struct_after_definition(self, defnode): return [] def gc_libraries(self): return [] def pre_pre_gc_code(self): # code that goes before include g_prerequisite.h return [] def pre_gc_code(self): return ['typedef void *GC_hidden_pointer;'] def gc_startup_code(self): return [] def struct_setup(self, structdefnode, rtti): return None def array_setup(self, arraydefnode): return None def rtti_type(self): return '' def OP_GC_PUSH_ALIVE_PYOBJ(self, funcgen, op): expr = funcgen.expr(op.args[0]) if expr == 'NULL': return '' return 'Py_XINCREF(%s);' % expr def OP_GC_POP_ALIVE_PYOBJ(self, funcgen, op): expr = funcgen.expr(op.args[0]) return 'Py_XDECREF(%s);' % expr class RefcountingInfo: static_deallocator = None from pypy.rlib.objectmodel import CDefinedIntSymbolic class RefcountingGcPolicy(BasicGcPolicy): transformerclass = refcounting.RefcountingGCTransformer def common_gcheader_definition(self, defnode): if defnode.db.gctransformer is not None: HDR = defnode.db.gctransformer.HDR return [(name, HDR._flds[name]) for name in HDR._names] else: return [] def common_gcheader_initdata(self, defnode): if defnode.db.gctransformer is not None: gct = defnode.db.gctransformer hdr = gct.gcheaderbuilder.header_of_object(top_container(defnode.obj)) HDR = gct.HDR return [getattr(hdr, fldname) for fldname in HDR._names] else: return [] # for structs def struct_setup(self, structdefnode, rtti): if rtti is not None: transformer = structdefnode.db.gctransformer fptr = transformer.static_deallocation_funcptr_for_type( structdefnode.STRUCT) structdefnode.gcinfo = RefcountingInfo() structdefnode.gcinfo.static_deallocator = structdefnode.db.get(fptr) # for arrays def array_setup(self, arraydefnode): pass # for rtti node def rtti_type(self): return 'void (@)(void *)' # void dealloc_xx(struct xx *) def rtti_node_factory(self): return RefcountingRuntimeTypeInfo_OpaqueNode # zero malloc impl def OP_GC_CALL_RTTI_DESTRUCTOR(self, funcgen, op): args = [funcgen.expr(v) for v in op.args] line = '%s(%s);' % (args[0], ', '.join(args[1:])) return line def OP_GC_FREE(self, funcgen, op): args = [funcgen.expr(v) for v in op.args] return 'OP_FREE(%s);' % (args[0], ) def OP_GC_FETCH_EXCEPTION(self, funcgen, op): result = funcgen.expr(op.result) return ('%s = RPyFetchExceptionValue();\n' 'RPyClearException();') % (result, ) def OP_GC_RESTORE_EXCEPTION(self, funcgen, op): argh = funcgen.expr(op.args[0]) return 'if (%s != NULL) RPyRaiseException(RPYTHON_TYPE_OF_EXC_INST(%s), %s);' % (argh, argh, argh) def OP_GC__COLLECT(self, funcgen, op): return '' class RefcountingRuntimeTypeInfo_OpaqueNode(ContainerNode): nodekind = 'refcnt rtti' globalcontainer = True typename = 'void (@)(void *)' def __init__(self, db, T, obj): assert T == RuntimeTypeInfo assert isinstance(obj.about, RttiStruct) self.db = db self.T = T self.obj = obj defnode = db.gettypedefnode(obj.about) self.implementationtypename = 'void (@)(void *)' self.name = defnode.gcinfo.static_deallocator self.ptrname = '((void (*)(void *)) %s)' % (self.name,) def enum_dependencies(self): return [] def implementation(self): return [] class BoehmInfo: finalizer = None # for MoreExactBoehmGcPolicy malloc_exact = False class BoehmGcPolicy(BasicGcPolicy): transformerclass = boehm.BoehmGCTransformer def array_setup(self, arraydefnode): pass def struct_setup(self, structdefnode, rtti): pass def rtti_type(self): return BoehmGcRuntimeTypeInfo_OpaqueNode.typename def rtti_node_factory(self): return BoehmGcRuntimeTypeInfo_OpaqueNode def gc_libraries(self): if sys.platform == 'win32': return ['gc_pypy'] return ['gc'] def pre_pre_gc_code(self): if sys.platform == "linux2": yield "#define _REENTRANT 1" yield "#define GC_LINUX_THREADS 1" if sys.platform != "win32": # GC_REDIRECT_TO_LOCAL is not supported on Win32 by gc6.8 yield "#define GC_REDIRECT_TO_LOCAL 1" yield "#define GC_I_HIDE_POINTERS 1" yield '#include <gc/gc.h>' yield '#define USING_BOEHM_GC' def pre_gc_code(self): return [] def gc_startup_code(self): if sys.platform == 'win32': pass # yield 'assert(GC_all_interior_pointers == 0);' else: yield 'GC_all_interior_pointers = 0;' yield 'GC_init();' def OP_GC_FETCH_EXCEPTION(self, funcgen, op): result = funcgen.expr(op.result) return ('%s = RPyFetchExceptionValue();\n' 'RPyClearException();') % (result, ) def OP_GC_RESTORE_EXCEPTION(self, funcgen, op): argh = funcgen.expr(op.args[0]) return 'if (%s != NULL) RPyRaiseException(RPYTHON_TYPE_OF_EXC_INST(%s), %s);' % (argh, argh, argh) def OP_GC__COLLECT(self, funcgen, op): return 'GC_gcollect(); GC_invoke_finalizers();' class BoehmGcRuntimeTypeInfo_OpaqueNode(ContainerNode): nodekind = 'boehm rtti' globalcontainer = True typename = 'char @' def __init__(self, db, T, obj): assert T == RuntimeTypeInfo assert isinstance(obj.about, RttiStruct) self.db = db self.T = T self.obj = obj defnode = db.gettypedefnode(obj.about) self.implementationtypename = self.typename self.name = self.db.namespace.uniquename('g_rtti_v_'+ defnode.barename) self.ptrname = '(&%s)' % (self.name,) def enum_dependencies(self): return [] def implementation(self): yield 'char %s /* uninitialized */;' % self.name class FrameworkGcRuntimeTypeInfo_OpaqueNode(BoehmGcRuntimeTypeInfo_OpaqueNode): nodekind = 'framework rtti' class MoreExactBoehmGcPolicy(BoehmGcPolicy): """ policy to experiment with giving some layout information to boehm. Use new class to prevent breakage. """ def __init__(self, db, thread_enabled=False): super(MoreExactBoehmGcPolicy, self).__init__(db, thread_enabled) self.exactly_typed_structs = {} def get_descr_name(self, defnode): # XXX somewhat illegal way of introducing a name return '%s__gc_descr__' % (defnode.name, ) def pre_pre_gc_code(self): for line in super(MoreExactBoehmGcPolicy, self).pre_pre_gc_code(): yield line yield "#include <gc/gc_typed.h>" def struct_setup(self, structdefnode, rtti): T = structdefnode.STRUCT if T._is_atomic(): malloc_exact = False else: if T._is_varsize(): malloc_exact = T._flds[T._arrayfld]._is_atomic() else: malloc_exact = True if malloc_exact: if structdefnode.gcinfo is None: structdefnode.gcinfo = BoehmInfo() structdefnode.gcinfo.malloc_exact = True self.exactly_typed_structs[structdefnode.STRUCT] = structdefnode def struct_after_definition(self, defnode): if defnode.gcinfo and defnode.gcinfo.malloc_exact: yield 'GC_descr %s;' % (self.get_descr_name(defnode), ) def gc_startup_code(self): for line in super(MoreExactBoehmGcPolicy, self).gc_startup_code(): yield line for TYPE, defnode in self.exactly_typed_structs.iteritems(): T = defnode.gettype().replace("@", "") yield "{" yield "GC_word T_bitmap[GC_BITMAP_SIZE(%s)] = {0};" % (T, ) for field in TYPE._flds: if getattr(TYPE, field) == lltype.Void: continue yield "GC_set_bit(T_bitmap, GC_WORD_OFFSET(%s, %s));" % ( T, defnode.c_struct_field_name(field)) yield "%s = GC_make_descriptor(T_bitmap, GC_WORD_LEN(%s));" % ( self.get_descr_name(defnode), T) yield "}" # to get an idea how it looks like with no refcount/gc at all class NoneGcPolicy(BoehmGcPolicy): gc_libraries = RefcountingGcPolicy.gc_libraries.im_func gc_startup_code = RefcountingGcPolicy.gc_startup_code.im_func def pre_pre_gc_code(self): yield '#define USING_NO_GC' class FrameworkGcPolicy(BasicGcPolicy): transformerclass = framework.FrameworkGCTransformer def struct_setup(self, structdefnode, rtti): if rtti is not None and hasattr(rtti._obj, 'destructor_funcptr'): destrptr = rtti._obj.destructor_funcptr # make sure this is seen by the database early, i.e. before # finish_helpers() on the gctransformer self.db.get(destrptr) # the following, on the other hand, will only discover ll_finalizer # helpers. The get() sees and records a delayed pointer. It is # still important to see it so that it can be followed as soon as # the mixlevelannotator resolves it. gctransf = self.db.gctransformer fptr = gctransf.finalizer_funcptr_for_type(structdefnode.STRUCT) self.db.get(fptr) def array_setup(self, arraydefnode): pass def rtti_type(self): return FrameworkGcRuntimeTypeInfo_OpaqueNode.typename def rtti_node_factory(self): return FrameworkGcRuntimeTypeInfo_OpaqueNode def pre_pre_gc_code(self): yield '#define USING_FRAMEWORK_GC' def gc_startup_code(self): fnptr = self.db.gctransformer.frameworkgc_setup_ptr.value yield '%s();' % (self.db.get(fnptr),) def OP_GC_RELOAD_POSSIBLY_MOVED(self, funcgen, op): args = [funcgen.expr(v) for v in op.args] # XXX this more or less assumes mark-and-sweep gc return '' # proper return value for moving GCs: # %s = %s; /* for moving GCs */' % (args[1], args[0]) def common_gcheader_definition(self, defnode): return defnode.db.gctransformer.gc_fields() def common_gcheader_initdata(self, defnode): o = top_container(defnode.obj) return defnode.db.gctransformer.gc_field_values_for(o) class StacklessFrameworkGcPolicy(FrameworkGcPolicy): transformerclass = stacklessframework.StacklessFrameworkGCTransformer requires_stackless = True name_to_gcpolicy = { 'boehm': BoehmGcPolicy, 'exact_boehm': MoreExactBoehmGcPolicy, 'ref': RefcountingGcPolicy, 'none': NoneGcPolicy, 'framework': FrameworkGcPolicy, 'stacklessgc': StacklessFrameworkGcPolicy, }
[ "lucio.torre@dbd81ab4-9648-0410-a770-9b81666e587d" ]
lucio.torre@dbd81ab4-9648-0410-a770-9b81666e587d
eb3ad9c31d3ebfe873ad9cae4a6722addf5dd306
946111147d7e3c2e9bc75f41e2c1fccaa365ae2d
/EdgeDetector.py
cfa70d7d305fe923db485f288522b479b83e557c
[ "MIT" ]
permissive
Sid2697/Image-Processing
3c779c2be82e430f2f207ef2fc9d134dc0400196
d25628d9b90e238b1df0881ec55359c41692ebbb
refs/heads/master
2021-04-29T17:45:35.239800
2018-02-15T20:23:34
2018-02-15T20:23:34
121,676,811
2
0
MIT
2018-02-15T20:23:35
2018-02-15T20:06:34
Python
UTF-8
Python
false
false
284
py
import cv2 import numpy as np cap=cv2.VideoCapture(0) while True: _,frame = cap.read() Black=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) edges=cv2.Canny(frame,100,130) cv2.imshow('Edges',edges) if cv2.waitKey(2) & 0xFF == ord(' '): break cv2.destroyAllWindows() cap.release()
f965f55a5bd74cc12296683f04052d1b179291c4
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_jostles.py
e3ce9b04d14de25bb110e8ff39d95f207397bd36
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
222
py
#calss header class _JOSTLES(): def __init__(self,): self.name = "JOSTLES" self.definitions = jostle self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['jostle']
61f5914638bc300b27e0e1bbddc6ba9a4dfdcc4a
967de4753954f8a7988446c9edc5fbb14e3013a5
/conf/wsgi.py
b98642582f06de1bf7b21bac19ed12f6c73a3ef8
[ "MIT" ]
permissive
uktrade/directory-ui-verification
20e199c9f4da180d82328a26f306f382736f10e1
e95b0e51c23ac2b79c8fab8b40cbc30808e3ea47
refs/heads/master
2020-03-18T11:34:07.562385
2018-06-18T11:13:53
2018-06-18T11:13:53
134,679,321
0
0
MIT
2018-06-18T11:13:54
2018-05-24T07:39:17
Python
UTF-8
Python
false
false
494
py
""" WSGI config for directory-verification project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application from whitenoise.django import DjangoWhiteNoise os.environ.setdefault("DJANGO_SETTINGS_MODULE", "conf.settings") application = get_wsgi_application() application = DjangoWhiteNoise(application)
a2b3aac32895d4ae785523f896686c3d758b2889
9f9f4280a02f451776ea08365a3f119448025c25
/plans/hsppw/qcut_hsp-l_005_pwcc_linear_hs.py
77e7cf7c8225054e48851cd9a3b74fcb28338848
[ "BSD-2-Clause" ]
permissive
dbis-uibk/hit-prediction-code
6b7effb2313d2499f49b2b14dd95ae7545299291
c95be2cdedfcd5d5c27d0186f4c801d9be475389
refs/heads/master
2023-02-04T16:07:24.118915
2022-09-22T12:49:50
2022-09-22T12:49:50
226,829,436
2
2
null
null
null
null
UTF-8
Python
false
false
2,070
py
"""Plan using all features.""" import os.path from dbispipeline.evaluators import CvEpochEvaluator from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import MinMaxScaler import hit_prediction_code.common as common from hit_prediction_code.dataloaders import ClassLoaderWrapper from hit_prediction_code.dataloaders import EssentiaLoader from hit_prediction_code.dataloaders import QcutLoaderWrapper import hit_prediction_code.evaluations as evaluations from hit_prediction_code.models.pairwise import PairwiseOrdinalModel from hit_prediction_code.result_handlers import print_results_as_json from hit_prediction_code.transformers.label import compute_hit_score_on_df PATH_PREFIX = 'data/hit_song_prediction_msd_bb_lfm_ab/processed' number_of_classes = 5 dataloader = ClassLoaderWrapper( wrapped_loader=QcutLoaderWrapper( wrapped_loader=EssentiaLoader( dataset_path=os.path.join( PATH_PREFIX, 'hsp-l_acousticbrainz.parquet', ), features=[ *common.all_no_year_list(), ], label='yang_hit_score', nan_value=0, data_modifier=lambda df: compute_hit_score_on_df( df, pc_column='lastfm_playcount', lc_column='lastfm_listener_count', hit_score_column='yang_hit_score', ), ), number_of_bins=number_of_classes, ), labels=list(range(number_of_classes)), ) pipeline = Pipeline([ ('scale', MinMaxScaler()), ('model', PairwiseOrdinalModel( wrapped_model=LinearRegression(), pairs_factor=3., threshold_type='average', pair_strategy='random', pair_encoding='concat', threshold_sample_training=False, )), ]) evaluator = CvEpochEvaluator( cv=evaluations.cv(), scoring=evaluations.metrics.ordinal_classifier_scoring(), scoring_step_size=1, ) result_handlers = [ print_results_as_json, ]
849c7944c6f42de4793f349e57f2d1419d86a881
7361493342853a2bd9a3225eb71819c3cfd39985
/python-numpy-to-cnn/Momentum.py
7989051e0e6a566f7ee4e8fd25fac6a1921d6eef
[]
no_license
brightparagon/learn-machine-learning
234df2c1298f9d0a34b0db010d9f870f97f1b867
3e6fe095d416317b97827615dbb7aa538261d117
refs/heads/master
2021-05-01T10:45:55.661458
2018-05-26T15:54:45
2018-05-26T15:54:45
121,107,145
2
0
null
null
null
null
UTF-8
Python
false
false
431
py
import numpy as np class Momentum: def __init__(self, lr=0.01, momentum=0.9): self.lr = lr self.momentum = momentum self.v = None def update(self, params, grads): if self.v is None: self.v = {} for key, val in params.items(): self.v[key] = np.zeros_like(val) for key in params.key(): self.v[key] = self.momentum*self.v[key] - self.lr*grads[key] params[key] += self.v[key]
e91e8d0a0d428aa8bb747635a2c022adadbd95bc
9ac405635f3ac9332e02d0c7803df757417b7fee
/cotizaciones/migrations/0076_cotizacionpagoproyectadoacuerdopago_motivo.py
d72a7ebf5cd297d779fd188093e3930c7e98020e
[]
no_license
odecsarrollo/07_intranet_proyectos
80af5de8da5faeb40807dd7df3a4f55f432ff4c0
524aeebb140bda9b1bf7a09b60e54a02f56fec9f
refs/heads/master
2023-01-08T04:59:57.617626
2020-09-25T18:01:09
2020-09-25T18:01:09
187,250,667
0
0
null
2022-12-30T09:36:37
2019-05-17T16:41:35
JavaScript
UTF-8
Python
false
false
475
py
# Generated by Django 2.2.6 on 2020-07-29 19:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cotizaciones', '0075_auto_20200729_1345'), ] operations = [ migrations.AddField( model_name='cotizacionpagoproyectadoacuerdopago', name='motivo', field=models.CharField(default='Falloooo', max_length=100), preserve_default=False, ), ]
def10769c95cfd6a081ef74f1f9c3574746eb34b
a4830a0189c325c35c9021479a5958ec870a2e8b
/routing/signals.py
c84cfbc1a8c76acc691ca275dec3a812c4b8c014
[]
no_license
solutionprovider9174/steward
044c7d299a625108824c854839ac41f51d2ca3fd
fd681593a9d2d339aab0f6f3688412d71cd2ae32
refs/heads/master
2022-12-11T06:45:04.544838
2020-08-21T02:56:55
2020-08-21T02:56:55
289,162,699
0
0
null
null
null
null
UTF-8
Python
false
false
373
py
# Python import datetime # Django from django.db.models.signals import post_save from django.dispatch import receiver # Application from routing import models @receiver(post_save, sender=models.Record) def route_post_save(sender, **kwargs): instance = kwargs['instance'] instance.route.numbers.all().update(modified=datetime.datetime.now()) print(instance)
06565d34f279d486d103d05a7560479d58d6a764
45eb50864138759adbcc7f8d9742c9f6c8102604
/remind_me/services/ping.py
1903aa1947bed8b5c31a86dd4b5ce54fa8521f32
[]
no_license
bbelderbos/remind_me
bc8df4b24f701bb96edf336f9b310ee43dbbd9b4
d432d4fb9632aa9531ee6e101f80de233d97ce56
refs/heads/master
2023-08-29T06:39:08.127091
2021-04-28T17:51:44
2021-04-28T17:51:44
409,145,017
0
0
null
2021-09-22T09:40:07
2021-09-22T09:40:06
null
UTF-8
Python
false
false
1,066
py
from datetime import datetime, timedelta import requests from apscheduler.schedulers.background import BackgroundScheduler from dateutil.parser import parse from remind_me.data import db_session from remind_me.data.events import Events from remind_me.schedule_jobs import timezones from remind_me.sms import send scheduler = BackgroundScheduler() @scheduler.scheduled_job('interval', minutes=20) def ping_site() -> None: session = db_session.create_session() all_events = session.query(Events).filter(Events.sent == False).all() print(all_events) for ev in all_events: event_time = parse(ev.date_and_time) + timedelta(hours=timezones[ev.timezone]) current_time = datetime.now() if current_time > event_time: ev.sent = True session.commit() send(ev.event, ev.phone_number, ev.carrier) response = requests.get('https://desolate-garden-98632.herokuapp.com/') print(response.status_code) session.close() def make_pings(): scheduler.start() print(scheduler.get_jobs())
5647ac16de076973951bdb0f0c028435874b9b27
5b40c6df03e477f3109fda9dc9b15a347df6c2ca
/ch04_bayes/monoDemo.py
bbd883492c4566a90337f9ee56d6ff09de3171b9
[]
no_license
yphacker/machinelearninginaction
e40dfebd4634fd8fa48473c497ce5c9184cd6513
886a86e0cb1f5e61828774d4337cd08d2b2c54ed
refs/heads/master
2020-03-28T02:09:38.090126
2019-12-06T11:54:25
2019-12-06T11:54:25
147,551,547
0
0
null
null
null
null
UTF-8
Python
false
false
360
py
# coding=utf-8 # author=yphacker from numpy import * import matplotlib import matplotlib.pyplot as plt t = arange(0.0, 0.5, 0.01) s = sin(2*pi*t) logS = log(s) fig = plt.figure() ax = fig.add_subplot(211) ax.plot(t,s) ax.set_ylabel('f(x)') ax.set_xlabel('x') ax = fig.add_subplot(212) ax.plot(t,logS) ax.set_ylabel('ln(f(x))') ax.set_xlabel('x') plt.show()
a1606ca7c6c07c8ac5fa8713cd5d9e1a21a4b4d0
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/96/usersdata/218/52922/submittedfiles/estatistica.py
ee08c21d7372d72bf781c64fa80059a6fcfa769b
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
951
py
# -*- coding: utf-8 -*- def media(lista): soma = 0 for i in range(0,len(lista),1): soma = soma + lista[i] resultado = soma/len(lista) return resultado #Baseado na função acima, escreva a função para calcular o desvio padrão de uma lista def desvio(lista): soma=0 for i in range(0,len(lista),1): soma=soma+(lista[i]-media(lista))**2 d=(soma/(len(lista)-1))**0,5 return d #Por último escreva o programa principal, que pede a entrada e chama as funções criadas. n=int(input('escreva o numero de elementos das listas:')) a=[] for i in range(0,n,1): valor=float(input('digite o numero a ser anexado a lista:')) a.append(valor) b=[] for i in range(0,n,1): valor=float(input('digite o numero a ser anexado a segunda lista:')) b.append(valor) ma=media(a) print('%.2f'%ma) dsva=desvio(a) print('%.2f'% dsva) mb=media(b) print('%.2f'%mb) dsvb=desvio(b) print('%.2f'%dsvb)
4bb8a72949aeb629e53475884686f226216061d6
45560786af3eddd0a538edcbf3027bd688b9a763
/wed2/wed2/wsgi.py
9cb3ca2445f8dfd3fc744d7fb89317e7fc684f08
[]
no_license
MunSeoHee/gachonlikelion8th
9c1d2470fcf27b87558c933afd14c1c748cb6ff6
9eff4a10e09764ac7ae6d6156f6b6c81eac4f2da
refs/heads/master
2023-03-31T05:57:50.094402
2020-08-18T09:53:50
2020-08-18T09:53:50
273,183,296
1
0
null
null
null
null
UTF-8
Python
false
false
385
py
""" WSGI config for wed2 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'wed2.settings') application = get_wsgi_application()
fd892f61cc3cebc966b6d92a58fa0b4f1b3e556f
a857d1911a118b8aa62ffeaa8f154c8325cdc939
/toontown/safezone/DistributedDLTreasure.py
1eebfe55516411c19e8b8c7a936f73b8fe62096a
[ "MIT" ]
permissive
DioExtreme/TT-CL-Edition
761d3463c829ec51f6bd2818a28b667c670c44b6
6b85ca8352a57e11f89337e1c381754d45af02ea
refs/heads/main
2023-06-01T16:37:49.924935
2021-06-24T02:25:22
2021-06-24T02:25:22
379,310,849
0
0
MIT
2021-06-22T15:07:31
2021-06-22T15:07:30
null
UTF-8
Python
false
false
333
py
import DistributedSZTreasure class DistributedDLTreasure(DistributedSZTreasure.DistributedSZTreasure): def __init__(self, cr): DistributedSZTreasure.DistributedSZTreasure.__init__(self, cr) self.modelPath = 'phase_8/models/props/zzz_treasure' self.grabSoundPath = 'phase_4/audio/sfx/SZ_DD_treasure.ogg'
1a8c7ee320b8aa83c9b60017f7c089b22d17f1f6
70fa6468c768d4ec9b4b14fc94fa785da557f1b5
/lib/surface/iam/service_accounts/get_iam_policy.py
b17087b6af89786547df27eda790cbdb2de1bd61
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
kylewuolle/google-cloud-sdk
d43286ef646aec053ecd7eb58566ab2075e04e76
75f09ebe779e99fdc3fd13b48621fe12bfaa11aa
refs/heads/master
2020-04-20T22:10:41.774132
2019-01-26T09:29:26
2019-01-26T09:29:26
169,131,028
0
0
NOASSERTION
2019-02-04T19:04:40
2019-02-04T18:58:36
Python
UTF-8
Python
false
false
2,191
py
# -*- coding: utf-8 -*- # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for getting IAM policies for service accounts.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import textwrap from googlecloudsdk.api_lib.iam import util from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.iam import iam_util class GetIamPolicy(base.ListCommand): """Get the IAM policy for a service account. This command gets the IAM policy for a service account. If formatted as JSON, the output can be edited and used as a policy file for set-iam-policy. The output includes an "etag" field identifying the version emitted and allowing detection of concurrent policy updates; see $ gcloud iam service-accounts set-iam-policy for additional details. """ detailed_help = { 'EXAMPLES': textwrap.dedent("""\ To print the IAM policy for a given service account, run: $ {command} [email protected] """), 'DESCRIPTION': '\n\n'.join([ '{description}', iam_util.GetHintForServiceAccountResource('get the iam policy of')]) } @staticmethod def Args(parser): iam_util.AddServiceAccountNameArg( parser, action='whose policy to get') base.URI_FLAG.RemoveFromParser(parser) def Run(self, args): client, messages = util.GetClientAndMessages() return client.projects_serviceAccounts.GetIamPolicy( messages.IamProjectsServiceAccountsGetIamPolicyRequest( resource=iam_util.EmailToAccountResourceName(args.service_account)))
457b1a12a0a97fa73a7741275fd78efe40fc3593
00b762e37ecef30ed04698033f719f04be9c5545
/scripts/test_results/keras_test_results/conflicts/22_convolutional_actual.py
558cdd4d8b8eeeea857b7fd396dcb456440dc194
[]
no_license
kenji-nicholson/smerge
4f9af17e2e516333b041727b77b8330e3255b7c2
3da9ebfdee02f9b4c882af1f26fe2e15d037271b
refs/heads/master
2020-07-22T02:32:03.579003
2018-06-08T00:40:53
2018-06-08T00:40:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,277
py
# -*- coding: utf-8 -*- from __future__ import absolute_import import theano import theano.tensor as T from theano.tensor.signal import downsample from .. import activations, initializations, regularizers, constraints from ..utils.theano_utils import shared_zeros, on_gpu from ..layers.core import Layer if on_gpu(): from theano.sandbox.cuda import dnn def conv_output_length(input_length, filter_size, border_mode, stride): assert border_mode in {'same', 'full', 'valid'} if border_mode == 'same': output_length = input_length elif border_mode == 'full': output_length = input_length + filter_size - 1 elif border_mode == 'valid': output_length = input_length - filter_size + 1 return (output_length + stride - 1) // stride def pool_output_length(input_length, pool_size, ignore_border, stride): if ignore_border: output_length = input_length - pool_size + 1 output_length = (output_length + stride - 1) // stride else: if pool_size == input_length: output_length = min(input_length, stride - stride % 2) if output_length <= 0: output_length = 1 elif stride >= pool_size: output_length = (input_length + stride - 1) // stride else: output_length = (input_length - pool_size + stride - 1) // stride if output_length <= 0: output_length = 1 else: output_length += 1 return output_length class Convolution1D(Layer): def __init__(self, input_dim, nb_filter, filter_length, init='uniform', activation='linear', weights=None, border_mode='valid', subsample_length=1, W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None): if border_mode not in {'valid', 'full', 'same'}: raise Exception('Invalid border mode for Convolution1D:', border_mode) super(Convolution1D, self).__init__() self.nb_filter = nb_filter self.input_dim = input_dim self.filter_length = filter_length self.subsample_length = subsample_length self.init = initializations.get(init) self.activation = activations.get(activation) self.subsample = (subsample_length, 1) self.border_mode = border_mode self.input = T.tensor3() self.W_shape = (nb_filter, input_dim, filter_length, 1) self.W = self.init(self.W_shape) self.b = shared_zeros((nb_filter,)) self.params = [self.W, self.b] self.regularizers = [] self.W_regularizer = regularizers.get(W_regularizer) if self.W_regularizer: self.W_regularizer.set_param(self.W) self.regularizers.append(self.W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) if self.b_regularizer: self.b_regularizer.set_param(self.b) self.regularizers.append(self.b_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) if self.activity_regularizer: self.activity_regularizer.set_layer(self) self.regularizers.append(self.activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.constraints = [self.W_constraint, self.b_constraint] if weights is not None: self.set_weights(weights) @property def output_shape(self): length = conv_output_length(self.input_shape[1], self.filter_length, self.border_mode, self.subsample[0]) return (self.input_shape[0], length, self.nb_filter) def get_output(self, train=False): X = self.get_input(train) X = T.reshape(X, (X.shape[0], X.shape[1], X.shape[2], 1)).dimshuffle(0, 2, 1, 3) <<<<<<< REMOTE if on_gpu() and dnn.dnn_available(): if border_mode == 'same': assert(self.subsample_length == 1) pad_x = (self.filter_length - self.subsample_length) // 2 conv_out = dnn.dnn_conv(img=X, kerns=self.W, border_mode=(pad_x, 0)) else: conv_out = dnn.dnn_conv(img=X, kerns=self.W, border_mode=border_mode, subsample=self.subsample) ======= if border_mode == 'same': border_mode = 'full' assert self.subsample == (1, 1) >>>>>>> LOCAL else: if border_mode == 'same': border_mode = 'full' conv_out = T.nnet.conv.conv2d(X, self.W, border_mode=border_mode, subsample=self.subsample) if self.border_mode == 'same': shift_x = (self.filter_length - 1) // 2 conv_out = conv_out[:, :, shift_x:X.shape[2] + shift_x, :] border_mode = self.border_mode output = self.activation(conv_out + self.b.dimshuffle('x', 0, 'x', 'x')) output = T.reshape(output, (output.shape[0], output.shape[1], output.shape[2])).dimshuffle(0, 2, 1) return output def get_config(self): return {"name": self.__class__.__name__, "input_dim": self.input_dim, "nb_filter": self.nb_filter, "filter_length": self.filter_length, "init": self.init.__name__, "activation": self.activation.__name__, "border_mode": self.border_mode, "subsample_length": self.subsample_length, "W_regularizer": self.W_regularizer.get_config() if self.W_regularizer else None, "b_regularizer": self.b_regularizer.get_config() if self.b_regularizer else None, "activity_regularizer": self.activity_regularizer.get_config() if self.activity_regularizer else None, "W_constraint": self.W_constraint.get_config() if self.W_constraint else None, "b_constraint": self.b_constraint.get_config() if self.b_constraint else None} class Convolution2D(Layer): def __init__(self, nb_filter, stack_size, nb_row, nb_col, init='glorot_uniform', activation='linear', weights=None, border_mode='valid', subsample=(1, 1), W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None): if border_mode not in {'valid', 'full', 'same'}: raise Exception('Invalid border mode for Convolution2D:', border_mode) super(Convolution2D, self).__init__() self.init = initializations.get(init) self.activation = activations.get(activation) self.subsample = tuple(subsample) self.border_mode = border_mode self.nb_filter = nb_filter self.stack_size = stack_size self.nb_row = nb_row self.nb_col = nb_col self.input = T.tensor4() self.W_shape = (nb_filter, stack_size, nb_row, nb_col) self.W = self.init(self.W_shape) self.b = shared_zeros((nb_filter,)) self.params = [self.W, self.b] self.regularizers = [] self.W_regularizer = regularizers.get(W_regularizer) if self.W_regularizer: self.W_regularizer.set_param(self.W) self.regularizers.append(self.W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) if self.b_regularizer: self.b_regularizer.set_param(self.b) self.regularizers.append(self.b_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) if self.activity_regularizer: self.activity_regularizer.set_layer(self) self.regularizers.append(self.activity_regularizer) self.W_constraint = constraints.get(W_constraint) self.b_constraint = constraints.get(b_constraint) self.constraints = [self.W_constraint, self.b_constraint] if weights is not None: self.set_weights(weights) @property def output_shape(self): input_shape = self.input_shape rows = input_shape[2] cols = input_shape[3] rows = conv_output_length(rows, self.nb_row, self.border_mode, self.subsample[0]) cols = conv_output_length(cols, self.nb_col, self.border_mode, self.subsample[1]) return (input_shape[0], self.nb_filter, rows, cols) def get_output(self, train=False): X = self.get_input(train) border_mode = self.border_mode if on_gpu() and dnn.dnn_available(): if border_mode == 'same': assert(self.subsample == (1, 1)) pad_x = (self.nb_row - self.subsample[0]) // 2 pad_y = (self.nb_col - self.subsample[1]) // 2 conv_out = dnn.dnn_conv(img=X, kerns=self.W, border_mode=(pad_x, pad_y)) else: conv_out = dnn.dnn_conv(img=X, kerns=self.W, border_mode=border_mode, subsample=self.subsample) else: return self.activation(conv_out + self.b.dimshuffle('x', 0, 'x', 'x')) def get_config(self): return {"name": self.__class__.__name__, "nb_filter": self.nb_filter, "stack_size": self.stack_size, "nb_row": self.nb_row, "nb_col": self.nb_col, "init": self.init.__name__, "activation": self.activation.__name__, "border_mode": self.border_mode, "subsample": self.subsample, "W_regularizer": self.W_regularizer.get_config() if self.W_regularizer else None, "b_regularizer": self.b_regularizer.get_config() if self.b_regularizer else None, "activity_regularizer": self.activity_regularizer.get_config() if self.activity_regularizer else None, "W_constraint": self.W_constraint.get_config() if self.W_constraint else None, "b_constraint": self.b_constraint.get_config() if self.b_constraint else None} class MaxPooling1D(Layer): def __init__(self, pool_length=2, stride=1, ignore_border=True): super(MaxPooling1D, self).__init__() if type(stride) is not int or not stride: raise Exception('"stride" argument in MaxPooling1D should be an int > 0.') self.pool_length = pool_length <<<<<<< REMOTE else: self.st = None ======= self.st = (self.stride, 1) >>>>>>> LOCAL self.stride = stride self.input = T.tensor3() self.poolsize = (pool_length, 1) self.ignore_border = ignore_border @property def output_shape(self): input_shape = self.input_shape length = pool_output_length(input_shape[1], self.pool_length, self.ignore_border, self.stride) return (input_shape[0], length, input_shape[2]) def get_output(self, train=False): X = self.get_input(train) X = T.reshape(X, (X.shape[0], X.shape[1], X.shape[2], 1)).dimshuffle(0, 2, 1, 3) output = downsample.max_pool_2d(X, ds=self.poolsize, st=self.st, ignore_border=self.ignore_border) output = output.dimshuffle(0, 2, 1, 3) return T.reshape(output, (output.shape[0], output.shape[1], output.shape[2])) def get_config(self): return {"name": self.__class__.__name__, "stride": self.stride, "pool_length": self.pool_length, "ignore_border": self.ignore_border} class MaxPooling2D(Layer): def __init__(self, poolsize=(2, 2), stride=(1, 1), ignore_border=True): super(MaxPooling2D, self).__init__() self.input = T.tensor4() self.poolsize = tuple(poolsize) self.stride = tuple(stride) self.ignore_border = ignore_border @property def output_shape(self): input_shape = self.input_shape rows = pool_output_length(input_shape[2], self.poolsize[0], self.ignore_border, self.stride[0]) cols = pool_output_length(input_shape[3], self.poolsize[1], self.ignore_border, self.stride[1]) return (input_shape[0], input_shape[1], rows, cols) def get_output(self, train=False): X = self.get_input(train) output = downsample.max_pool_2d(X, ds=self.poolsize, st=self.stride, ignore_border=self.ignore_border) return output def get_config(self): return {"name": self.__class__.__name__, "poolsize": self.poolsize, "ignore_border": self.ignore_border, "stride": self.stride} class UpSample1D(Layer): def __init__(self, length=2): super(UpSample1D, self).__init__() self.length = length self.input = T.tensor3() @property def output_shape(self): input_shape = self.input_shape return (input_shape[0], self.length * input_shape[1], input_shape[2]) def get_output(self, train=False): X = self.get_input(train) output = theano.tensor.extra_ops.repeat(X, self.length, axis=1) return output def get_config(self): return {"name": self.__class__.__name__, "length": self.length} class UpSample2D(Layer): def __init__(self, size=(2, 2)): super(UpSample2D, self).__init__() self.input = T.tensor4() self.size = tuple(size) @property def output_shape(self): input_shape = self.input_shape return (input_shape[0], input_shape[1], self.size[0] * input_shape[2], self.size[1] * input_shape[3]) def get_output(self, train=False): X = self.get_input(train) Y = theano.tensor.extra_ops.repeat(X, self.size[0], axis=2) output = theano.tensor.extra_ops.repeat(Y, self.size[1], axis=3) return output def get_config(self): return {"name": self.__class__.__name__, "size": self.size} class ZeroPadding2D(Layer): def __init__(self, pad=(1, 1)): super(ZeroPadding2D, self).__init__() self.pad = tuple(pad) self.input = T.tensor4() @property def output_shape(self): input_shape = self.input_shape return (input_shape[0], input_shape[1], input_shape[2] + 2 * self.pad[0], input_shape[3] + 2 * self.pad[1]) def get_output(self, train=False): X = self.get_input(train) pad = self.pad in_shape = X.shape out_shape = (in_shape[0], in_shape[1], in_shape[2] + 2 * pad[0], in_shape[3] + 2 * pad[1]) out = T.zeros(out_shape) indices = (slice(None), slice(None), slice(pad[0], in_shape[2] + pad[0]), slice(pad[1], in_shape[3] + pad[1])) return T.set_subtensor(out[indices], X) def get_config(self): return {"name": self.__class__.__name__, "pad": self.pad}
cc15763bac4ad87f4375500cf02cf860c4a57dec
ecd4b06d5d5368b71fd72a1c2191510a03b728fd
/8 - statistical thinking in python - part 1/quantitative exploratory data analysis/computing the ECDF.py
2ed8e62c2f0144dda23cca03c57322c98d0e5f72
[ "MIT" ]
permissive
Baidaly/datacamp-samples
86055db5e326b59bfdce732729c80d76bf44629e
37b4f78a967a429e0abca4a568da0eb9d58e4dff
refs/heads/master
2022-07-27T01:18:00.700386
2022-07-18T19:27:23
2022-07-18T19:27:23
123,827,284
0
0
null
null
null
null
UTF-8
Python
false
false
1,070
py
''' In this exercise, you will write a function that takes as input a 1D array of data and then returns the x and y values of the ECDF. You will use this function over and over again throughout this course and its sequel. ECDFs are among the most important plots in statistical analysis. You can write your own function, foo(x,y) according to the following skeleton: def foo(a,b): """State what function does here""" # Computation performed here return x, y The function foo() above takes two arguments a and b and returns two values x and y. The function header def foo(a,b): contains the function signature foo(a,b), which consists of the function name, along with its parameters. For more on writing your own functions, see DataCamp's course Python Data Science Toolbox (Part 1) here! ''' def ecdf(data): """Compute ECDF for a one-dimensional array of measurements.""" # Number of data points: n n = len(data) # x-data for the ECDF: x x = np.sort(data) # y-data for the ECDF: y y = np.arange(1, n + 1) / n return x, y
990da7948f16010dbffcd011ca083b1ea177b02e
fed6c6bdb6276d195bc565e527c3f19369d22b74
/test/multi_shear.py
39dd5a7acffb39105c56fd9dc77b27df6c74ef91
[]
no_license
hekunlie/astrophy-research
edbe12d8dde83e0896e982f08b463fdcd3279bab
7b2b7ada7e7421585e8993192f6111282c9cbb38
refs/heads/master
2021-11-15T05:08:51.271669
2021-11-13T08:53:33
2021-11-13T08:53:33
85,927,798
0
0
null
null
null
null
UTF-8
Python
false
false
1,327
py
import numpy import os from sys import path,argv path.append("E:/Github/astrophy-research/my_lib") from Fourier_Quad import Fourier_Quad import tool_box import time from astropy.io import fits import matplotlib.pyplot as plt import h5py rng = numpy.random.RandomState(123) fq = Fourier_Quad(12,122) bin_num = 20 gh_num = 150 gh = numpy.linspace(-0.07, 0.07, gh_num) signals = [0.05, -0.05] sigmas = [2, 2] nums = [50*1.e4, 50*1.e4] datas = [rng.normal(signals[i], sigmas[i], int(nums[i])).reshape((int(nums[i]),1)) for i in range(len(signals))] for i in range(len(datas)): if i == 0: data = datas[i] else: data = numpy.row_stack((data, datas[i])) print(data.shape) print(bin_num, data.shape) bins = fq.set_bin(data, bin_num) print("Bin length: ", bins.shape) plt.scatter(bins, [0 for i in range(len(bins))]) plt.show() # each single signal for i in range(len(datas)): chisq = [] for j in range(gh_num): chisq.append(fq.G_bin(datas[i], 1, gh[j], bins, 0)) plt.scatter(gh, chisq) plt.show() plt.close() est_g, est_g_sig = fq.fmin_g_new(datas[i], 1, bin_num) print(signals[i], est_g, est_g_sig) chisq = [] for i in range(gh_num): chisq.append(fq.G_bin(data, 1, gh[i], bins, 0)) plt.figure(figsize=(16,12)) plt.scatter(gh, chisq) plt.show() plt.close()
994ed213b18ce3f3062cdf14bd95b41d0758b7f6
8afb5afd38548c631f6f9536846039ef6cb297b9
/MY_REPOS/Lambda-Resource-Static-Assets/2-resources/_External-learning-resources/02-pyth/python-patterns-master/tests/behavioral/test_observer.py
821f97a61aa7a46e2b10c705af230637a92179e0
[ "MIT" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
876
py
from unittest.mock import Mock, patch import pytest from patterns.behavioral.observer import Data, DecimalViewer, HexViewer @pytest.fixture def observable(): return Data("some data") def test_attach_detach(observable): decimal_viewer = DecimalViewer() assert len(observable._observers) == 0 observable.attach(decimal_viewer) assert decimal_viewer in observable._observers observable.detach(decimal_viewer) assert decimal_viewer not in observable._observers def test_one_data_change_notifies_each_observer_once(observable): observable.attach(DecimalViewer()) observable.attach(HexViewer()) with patch( "patterns.behavioral.observer.DecimalViewer.update", new_callable=Mock() ) as mocked_update: assert mocked_update.call_count == 0 observable.data = 10 assert mocked_update.call_count == 1
4bcf70c72206f3613479dcdf9297012a0979000b
099b57613250ae0a0c3c75cc2a9b8095a5aac312
/leetcode/Tree/235. 二叉搜索树的最近公共祖先.py
1acbf0c219561464eeeca8a6ce5a098e67523a47
[]
no_license
MitsurugiMeiya/Leetcoding
36e41c8d649b777e5c057a5241007d04ad8f61cd
87a6912ab4e21ab9be4dd6e90c2a6f8da9c68663
refs/heads/master
2022-06-17T19:48:41.692320
2020-05-13T16:45:54
2020-05-13T16:45:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,028
py
""" Given a binary search tree (BST), find the lowest common ancestor (LCA)最小公共祖先 of two given nodes in the BST. """ class Solution(object): def lowestCommonAncestor(self, root, p, q): """ :type root: TreeNode :type p: TreeNode :type q: TreeNode :rtype: TreeNode """ if root.val > p.val and root.val > q.val: return self.lowestCommonAncestor(root.right,p,q) if root.val < p.val and root.val < q.val: return self.lowestCommonAncestor(root.left,p,q) return root """ 答案: 236的简化版,已知BST 1.假如说p,q的值小于root,说明这两个node在root的左子树,找 2.假如说p,q的值大于root,说明这两个node在root的右子树 3.假如终于发现分叉了,说明最小公共节点就是这个root 或者是一个就是root,另一个小或大,那也不满足1,2的同小或同大 这种写法检查不了,p,q不在树上的情况,且能通过官方的所有测试条件 """
79f3fc754229d3f7b6c4f441ef53015c1b039e64
b595a24b07662a89826a1b6d334dfcaa3ec1c4b0
/venv/lib/python3.6/site-packages/storages/backends/mogile.py
d6194194368306a8bb32dfed8b8bdf42f24f7c91
[ "CC0-1.0" ]
permissive
kentarofujiy/base1
4629b638f96b3ed091ea695c81b3b7837af1ec79
f820b9b379cda86ca5b446c63800fbe4bb8f3bce
refs/heads/master
2021-07-13T02:06:01.371773
2017-03-11T12:43:19
2017-03-11T12:43:19
84,649,225
0
1
CC0-1.0
2020-07-26T01:08:25
2017-03-11T12:43:32
Python
UTF-8
Python
false
false
4,079
py
from __future__ import print_function import mimetypes import warnings from django.conf import settings from django.core.cache import cache from django.utils.deconstruct import deconstructible from django.utils.text import force_text from django.http import HttpResponse, HttpResponseNotFound from django.core.exceptions import ImproperlyConfigured from django.core.files.storage import Storage try: import mogilefs except ImportError: raise ImproperlyConfigured("Could not load mogilefs dependency.\ \nSee http://mogilefs.pbworks.com/Client-Libraries") warnings.warn( 'MogileFSStorage is unmaintained and will be removed in the next django-storages version' 'See https://github.com/jschneier/django-storages/issues/202', PendingDeprecationWarning ) @deconstructible class MogileFSStorage(Storage): """MogileFS filesystem storage""" def __init__(self, base_url=settings.MEDIA_URL): # the MOGILEFS_MEDIA_URL overrides MEDIA_URL if hasattr(settings, 'MOGILEFS_MEDIA_URL'): self.base_url = settings.MOGILEFS_MEDIA_URL else: self.base_url = base_url for var in ('MOGILEFS_TRACKERS', 'MOGILEFS_DOMAIN',): if not hasattr(settings, var): raise ImproperlyConfigured("You must define %s to use the MogileFS backend." % var) self.trackers = settings.MOGILEFS_TRACKERS self.domain = settings.MOGILEFS_DOMAIN self.client = mogilefs.Client(self.domain, self.trackers) def get_mogile_paths(self, filename): return self.client.get_paths(filename) # The following methods define the Backend API def filesize(self, filename): raise NotImplemented #return os.path.getsize(self._get_absolute_path(filename)) def path(self, filename): paths = self.get_mogile_paths(filename) if paths: return self.get_mogile_paths(filename)[0] else: return None def url(self, filename): return urlparse.urljoin(self.base_url, filename).replace('\\', '/') def open(self, filename, mode='rb'): raise NotImplemented #return open(self._get_absolute_path(filename), mode) def exists(self, filename): return filename in self.client def save(self, filename, raw_contents, max_length=None): filename = self.get_available_name(filename, max_length) if not hasattr(self, 'mogile_class'): self.mogile_class = None # Write the file to mogile success = self.client.send_file(filename, BytesIO(raw_contents), self.mogile_class) if success: print("Wrote file to key %s, %s@%s" % (filename, self.domain, self.trackers[0])) else: print("FAILURE writing file %s" % (filename)) return force_text(filename.replace('\\', '/')) def delete(self, filename): self.client.delete(filename) def serve_mogilefs_file(request, key=None): """ Called when a user requests an image. Either reproxy the path to perlbal, or serve the image outright """ # not the best way to do this, since we create a client each time mimetype = mimetypes.guess_type(key)[0] or "application/x-octet-stream" client = mogilefs.Client(settings.MOGILEFS_DOMAIN, settings.MOGILEFS_TRACKERS) if hasattr(settings, "SERVE_WITH_PERLBAL") and settings.SERVE_WITH_PERLBAL: # we're reproxying with perlbal # check the path cache path = cache.get(key) if not path: path = client.get_paths(key) cache.set(key, path, 60) if path: response = HttpResponse(content_type=mimetype) response['X-REPROXY-URL'] = path[0] else: response = HttpResponseNotFound() else: # we don't have perlbal, let's just serve the image via django file_data = client[key] if file_data: response = HttpResponse(file_data, mimetype=mimetype) else: response = HttpResponseNotFound() return response
7ab2153783df2bde81ef89f4762af1316f8b3a5c
6ef3b1919e7acbc72e5706b2dc6d716f8929e3d2
/transformers/commands/convert.py
8c3f952f4a73fb49cf88b2f47e54fcb22282ebb7
[ "MIT" ]
permissive
linshaoxin-maker/taas
04f7dcc7c0d2818718e6b245531e017ca5370231
34e11fab167a7beb78fbe6991ff8721dc9208793
refs/heads/main
2023-01-19T20:58:04.459980
2020-11-27T02:28:36
2020-11-27T02:28:36
329,522,465
6
0
MIT
2021-01-14T06:02:08
2021-01-14T06:02:07
null
UTF-8
Python
false
false
7,151
py
from argparse import ArgumentParser, Namespace from transformers.commands import BaseTransformersCLICommand from ..utils import logging def convert_command_factory(args: Namespace): """ Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint. :return: ServeCommand """ return ConvertCommand( args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name ) class ConvertCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli :param parser: Root parser to register command-specific arguments :return: """ train_parser = parser.add_parser( "convert", help="CLI tool to run convert model from original " "author checkpoints to Transformers PyTorch checkpoints.", ) train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.") train_parser.add_argument( "--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch savd model output." ) train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.") train_parser.add_argument( "--finetuning_task_name", type=str, default=None, help="Optional fine-tuning task name if the TF model was a finetuned model.", ) train_parser.set_defaults(func=convert_command_factory) def __init__( self, model_type: str, tf_checkpoint: str, pytorch_dump_output: str, config: str, finetuning_task_name: str, *args ): self._logger = logging.get_logger("transformers-cli/converting") self._logger.info("Loading model {}".format(model_type)) self._model_type = model_type self._tf_checkpoint = tf_checkpoint self._pytorch_dump_output = pytorch_dump_output self._config = config self._finetuning_task_name = finetuning_task_name def run(self): if self._model_type == "albert": try: from transformers.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: msg = ( "transformers can only be used from the commandline to convert TensorFlow models in PyTorch, " "In that case, it requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise ImportError(msg) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "bert": try: from transformers.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: msg = ( "transformers can only be used from the commandline to convert TensorFlow models in PyTorch, " "In that case, it requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise ImportError(msg) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "gpt": from transformers.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from transformers.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: msg = ( "transformers can only be used from the commandline to convert TensorFlow models in PyTorch, " "In that case, it requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise ImportError(msg) if "ckpt" in self._tf_checkpoint.lower(): TF_CHECKPOINT = self._tf_checkpoint TF_DATASET_FILE = "" else: TF_DATASET_FILE = self._tf_checkpoint TF_CHECKPOINT = "" convert_transfo_xl_checkpoint_to_pytorch( TF_CHECKPOINT, self._config, self._pytorch_dump_output, TF_DATASET_FILE ) elif self._model_type == "gpt2": try: from transformers.convert_gpt2_original_tf_checkpoint_to_pytorch import ( convert_gpt2_checkpoint_to_pytorch, ) except ImportError: msg = ( "transformers can only be used from the commandline to convert TensorFlow models in PyTorch, " "In that case, it requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise ImportError(msg) convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "xlnet": try: from transformers.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: msg = ( "transformers can only be used from the commandline to convert TensorFlow models in PyTorch, " "In that case, it requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise ImportError(msg) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name ) elif self._model_type == "xlm": from transformers.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output) else: raise ValueError("--model_type should be selected in the list [bert, gpt, gpt2, transfo_xl, xlnet, xlm]")
87cb1e514667d13033ff73c89aa8f2625c17fd15
b2260e6588f60f0830248757a858be8c129350f4
/QLabel img.py
c876389f8ade045218cc263cac41cfe34549d9d6
[]
no_license
nengkya/PyQt
1fe04aeb23532f4a5b92248a3414ac000d41d078
06068556348c6906198d4db7efc979889263fd56
refs/heads/master
2023-02-08T01:10:20.970167
2023-01-20T18:03:57
2023-01-20T18:03:57
105,175,866
5
0
null
null
null
null
UTF-8
Python
false
false
768
py
import sys #from PyQt5.QtGui import * #from PyQt5.QtCore import * from PyQt5.QtWidgets import * class MainForm(QWidget): def __init__(self): super().__init__() self.setupUi() def setupUi(self): self.resize(400, 200) self.move(300, 300) self.setWindowTitle('Demo QLabel') self.label1 = QLabel() self.label1.setText('Demo menampilkan gambar dengan QLabel') self.label2 = QLabel() self.label2.setText('<img src = PyPassContinue.png>') layout = QVBoxLayout() layout.addWidget(self.label1) layout.addWidget(self.label2) self.setLayout(layout) if __name__ == '__main__': a = QApplication(sys.argv) form = MainForm() form.show() a.exec()
53dd9814341ea2b91a56c29803edfa507a2eaf25
08ee36e0bb1c250f7f2dfda12c1a73d1984cd2bc
/src/mnistk/networks/conv3dsigmoid_11.py
5c9ca5cdb81a4e3052630d571bc92b9b040cf256
[]
no_license
ahgamut/mnistk
58dadffad204602d425b18549e9b3d245dbf5486
19a661185e6d82996624fc6fcc03de7ad9213eb0
refs/heads/master
2021-11-04T07:36:07.394100
2021-10-27T18:37:12
2021-10-27T18:37:12
227,103,881
2
1
null
2020-02-19T22:07:24
2019-12-10T11:33:09
Python
UTF-8
Python
false
false
1,460
py
# -*- coding: utf-8 -*- """ conv3dsigmoid_11.py :copyright: (c) 2019 by Gautham Venkatasubramanian. :license: MIT """ import torch from torch import nn class Conv3dSigmoid_11(nn.Module): def __init__(self): nn.Module.__init__(self) self.f0 = nn.Conv3d(in_channels=1, out_channels=12, kernel_size=(4, 4, 4), stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), groups=1, bias=False, padding_mode='zeros') self.f1 = nn.Sigmoid() self.f2 = nn.Conv3d(in_channels=12, out_channels=32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), groups=1, bias=False, padding_mode='zeros') self.f3 = nn.Sigmoid() self.f4 = nn.Conv3d(in_channels=32, out_channels=10, kernel_size=(1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), groups=1, bias=False, padding_mode='zeros') self.f5 = nn.Sigmoid() self.f6 = nn.Conv3d(in_channels=10, out_channels=10, kernel_size=(11, 2, 2), stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), groups=1, bias=False, padding_mode='zeros') self.f7 = nn.LogSoftmax(dim=1) def forward(self, *inputs): x = inputs[0] x = x.view(x.shape[0],1,16,7,7) x = self.f0(x) x = self.f1(x) x = self.f2(x) x = self.f3(x) x = self.f4(x) x = self.f5(x) x = self.f6(x) x = x.view(x.shape[0],10) x = self.f7(x) return x
203728418ef83b30a6c1a44c18db32698264f957
e68c3cbb9d6291fcdd51adae8a55616dcfafe55c
/spf/parser/ccg/cky/chart/cell.py
e6c2ec2917c119fdfa78536df3e673831ccf333b
[]
no_license
Oneplus/pyspf
26126f5094065960d5f034fea2be4709aa1a4c50
175f90b4f837aa60fd660cba850d10a82dd578a1
refs/heads/master
2016-08-12T15:18:25.606712
2015-11-22T02:49:07
2015-11-22T02:49:07
45,725,414
1
0
null
null
null
null
UTF-8
Python
false
false
454
py
#!/usr/bin/env python from spf.utils.log import get_logger class Cell(object): LOG = get_logger(__name__) def __init__(self, parse_step, start, end, is_complete_span): """ :param CKYParseStepI parse_step: :param int start: :param int end: :param bool is_complete_span: :return: """ self.is_complete_span = is_complete_span self.is_full_parse = parse_step.is_full_parse()
c53065dc8d2be291b77cd95ecce9adf660a7552e
a0dbc48f31cf3fbddd3cc7672cf3db415cb391c4
/compiler/datasheet/__init__.py
369ba8feafaf111065bcf9505df5044d9a93ff82
[ "BSD-3-Clause" ]
permissive
wangyaobsz/OpenRAM
4178ef93816b233bac0aaecc580e2cbd235ac39d
0d616ae072e6c42a0d8a006eebc681408502e956
refs/heads/master
2022-08-23T07:51:39.745708
2022-07-21T16:37:24
2022-07-21T16:37:24
113,813,373
1
0
null
2017-12-11T04:47:53
2017-12-11T04:47:52
null
UTF-8
Python
false
false
41
py
from .datasheet_gen import datasheet_gen
0a58b79c5071070e9cbe7f8dc945427cbf48c695
fea10afefd89f5138a57fd4d6ac1a87844cf6e7c
/robocrys/condense/component.py
98ff05f3b524ef9f9e298c3ed5fd346b31066453
[ "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-hdf5", "BSD-2-Clause", "BSD-3-Clause" ]
permissive
mukhtarbayerouniversity/robocrystallographer
ed192898acb60b7f18af4740cbf1524a2865bb79
11b39bfac157624d84d704dd4e7602e76b45a5b9
refs/heads/main
2023-06-12T16:23:00.260579
2021-07-05T18:12:35
2021-07-05T18:12:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,425
py
""" This module implements functions for handling structure components. """ from copy import deepcopy from typing import Any, Dict, List, Tuple import networkx as nx import numpy as np from monty.fractions import gcd from pymatgen.analysis.structure_matcher import StructureMatcher from pymatgen.core.composition import Composition from pymatgen.core.periodic_table import get_el_sp from pymatgen.core.structure import PeriodicSite, Structure from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from pymatgen.util.string import formula_double_format from robocrys import common_formulas from robocrys.condense.fingerprint import get_structure_fingerprint Component = Dict[str, Any] def get_structure_inequiv_components( components: List[Component], use_structure_graph: bool = False, fingerprint_tol: int = 0.01, ) -> List[Component]: """Gets and counts the structurally inequivalent components. Supports matching through StructureMatcher or by a combined structure graph/ site fingerprint approach. For the latter method, the component data has to have been generated with ``inc_graph=True``. Args: components: A list of structure components, generated using :obj:`pymatgen.analysis.dimensionality.get_structure_components`. If ``use_structure_graph=True``, the components should be generated with ``inc_graph=True``. use_structure_graph: Whether to use the bonding graph and site fingerprints to determine if components are structurally equivalent. If ``False``, :obj:`pymatgen.analysis.structure_matcher.StructureMatcher` will be used to compare the components. fingerprint_tol: The fingerprint tolerance to determine whether two components have a matching fingerprint. This option is ignored if ``use_structure_graph=False``. Returns: A list of the structurally inequivalent components. Any duplicate components will only be returned once. The component objects are in the same format is given by :obj:`pymatgen.analysis.dimensionality.get_structure_components` but have an additional field: - ``"count"`` (:obj:`int`): The number of times this component appears in the structure. """ components = deepcopy(components) for component in components: component["count"] = 1 if use_structure_graph: # check fingerprints match and components are isomorphic. fingerprints = [ get_structure_fingerprint(c["structure_graph"].structure) for c in components ] seen_components = [components[0]] seen_fingers = [fingerprints[0]] for component, fingerprint in zip(components[1:], fingerprints[1:]): graph_match = [ components_are_isomorphic(component, c) for c in seen_components ] finger_match = [ np.linalg.norm(fingerprint - c) < fingerprint_tol for c in seen_fingers ] structure_match = [i and f for i, f in zip(graph_match, finger_match)] if any(structure_match): # there should only ever be a single match so we take index of # the first match and increment the component count loc = np.where(structure_match)[0][0] seen_components[loc]["count"] += 1 else: seen_components.append(component) seen_fingers.append(fingerprint) else: sm = StructureMatcher() seen_components = [components[0]] for component in components[1:]: structure_match = [ sm.fit( component["structure_graph"].structure, c["structure_graph"].structure, ) for c in seen_components ] if any(structure_match): # there should only ever be a single match so we take index of # the first match and increment the component count loc = np.where(structure_match)[0][0] seen_components[loc]["count"] += 1 else: seen_components.append(component) return seen_components def components_are_isomorphic( component_a: Component, component_b: Component, use_weights: bool = False ): """Determines whether the graphs of two components are isomorphic. Only takes into account graph connectivity and not local geometry (e.g. bond angles and distances). Args: component_a: The first component. component_b: The second component. use_weights: Whether to use the graph edge weights in comparing graphs. Returns: Whether the components are isomorphic. """ def node_match(n1, n2): return n1["specie"] == n2["specie"] def edge_match(e1, e2): if use_weights: return e1["weight"] == e2["weight"] else: return True graph_a = component_a["structure_graph"].graph graph_b = component_b["structure_graph"].graph species_a = { n: {"specie": str(component_a["structure_graph"].structure[n].specie)} for n in graph_a } species_b = { n: {"specie": str(component_b["structure_graph"].structure[n].specie)} for n in graph_b } nx.set_node_attributes(graph_a, species_a) nx.set_node_attributes(graph_b, species_b) return nx.is_isomorphic( graph_a, graph_b, node_match=node_match, edge_match=edge_match ) def get_sym_inequiv_components( components: List[Component], spg_analyzer: SpacegroupAnalyzer ) -> List[Component]: """Gets and counts the symmetrically inequivalent components. Component data has to have been generated with ``inc_site_ids=True``. Args: components: A list of structure components, generated using :obj:`pymatgen.analysis.dimensionality.get_structure_components`, with ``inc_site_ids=True``. spg_analyzer: A `pymatgen.symmetry.analyzer.SpacegroupAnalyzer` analyzer object for the structure containing the components. Returns: A list of the symmetrically inequivalent components. Any duplicate components will only be returned once. The component objects are in the same format is given by :obj:`pymatgen.analysis.dimensionality.get_structure_components` but the additional property: - ``"count"`` (:obj:`int`): The number of times this component appears in the structure. """ components = deepcopy(components) sym_inequiv_components = {} equivalent_atoms = spg_analyzer.get_symmetry_dataset()["equivalent_atoms"] for component in components: sym_indices = frozenset(equivalent_atoms[x] for x in component["site_ids"]) # if two components are composed of atoms that are symmetrically # equivalent they are the same. if sym_indices in sym_inequiv_components: sym_inequiv_components[sym_indices]["count"] += 1 continue component["count"] = 1 sym_inequiv_components[sym_indices] = component return list(sym_inequiv_components.values()) def get_formula_inequiv_components( components: List[Component], use_iupac_formula: bool = True, use_common_formulas: bool = True, ) -> List[Component]: """Gets and counts the inequivalent components based on their formuula. Note that the counting of compounds is different to in ``get_sym_inequiv_equivalent``. I.e. the count is not the number of components with the same formula. For example, the count of the formula "GaAs" in a system with two Ga2As2 components would be 4. Args: components: A list of structure components, generated using :obj:`pymatgen.analysis.dimensionality.get_structure_components`, with ``inc_site_ids=True``. use_iupac_formula (bool, optional): Whether to order formulas by the iupac "electronegativity" series, defined in Table VI of "Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005)". This ordering effectively follows the groups and rows of the periodic table, except the Lanthanides, Actanides and hydrogen. If set to ``False``, the elements will be ordered according to the electronegativity values. use_common_formulas: Whether to use the database of common formulas. The common formula will be used preferentially to the iupac or reduced formula. Returns: A list of the compositionally inequivalent components. Any duplicate components will only be returned once. The component objects are in the same format is given by :obj:`pymatgen.analysis.dimensionality.get_structure_components` but have two additional fields: - ``"count"`` (:obj:`int`): The number of formula units of this component. Note, this is not the number of components with the same formula. For example, the count of the formula "GaAs" in a system with two Ga2As2 components would be 4. - ``"formula"`` (``list[int]``): The reduced formula of the component. """ components = deepcopy(components) inequiv_components = {} for component in components: formula, factor = get_component_formula_and_factor( component, use_iupac_formula=use_iupac_formula, use_common_formulas=use_common_formulas, ) # if two components have the same composition we treat them as the same if formula in inequiv_components: inequiv_components[formula]["count"] += factor continue component["count"] = factor component["formula"] = formula inequiv_components[formula] = component return list(inequiv_components.values()) def filter_molecular_components( components: List[Component], ) -> Tuple[List[Component], List[Component]]: """Separate list of components into molecular and non-molecular components. Args: components: A list of structure components, generated using :obj:`pymatgen.analysis.dimensionality.get_structure_components`. Returns: The filtered components as a tuple of ``(molecular_components, other_components)``. """ molecular_components = [c for c in components if c["dimensionality"] == 0] other_components = [c for c in components if c["dimensionality"] != 0] return molecular_components, other_components def get_reconstructed_structure( components: List[Component], simplify_molecules: bool = True ) -> Structure: """Reconstructs a structure from a list of components. Has the option to simplify molecular components into a single site positioned at the centre of mass of the molecular. If using this option, the components must have been generated with ``inc_molecule_graph=True``. Args: components: A list of structure components, generated using :obj:`pymatgen.analysis.dimensionality.get_structure_components`, with ``inc_molecule_graph=True``. simplify_molecules: Whether to simplify the molecular components into a single site positioned at the centre of mass of the molecule. Returns: The reconstructed structure. """ mol_sites = [] other_sites = [] if simplify_molecules: mol_components, components = filter_molecular_components(components) if mol_components: lattice = mol_components[0]["structure_graph"].structure.lattice mol_sites = [ PeriodicSite( c["structure_graph"].structure[0].specie, c["molecule_graph"].molecule.center_of_mass, lattice, coords_are_cartesian=True, ) for c in mol_components ] if components: other_sites = [ site for c in components for site in c["structure_graph"].structure ] return Structure.from_sites(other_sites + mol_sites) def get_component_formula_and_factor( component: Component, use_iupac_formula: bool = True, use_common_formulas: bool = True, ) -> Tuple[str, int]: """Gets the reduced formula and factor of a single component. Args: component: A structure component, generated using :obj:`pymatgen.analysis.dimensionality.get_structure_components`. use_iupac_formula (bool, optional): Whether to order formulas by the iupac "electronegativity" series, defined in Table VI of "Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005)". This ordering effectively follows the groups and rows of the periodic table, except the Lanthanides, Actanides and hydrogen. If set to ``False``, the elements will be ordered according to the electronegativity values. use_common_formulas: Whether to use the database of common formulas. The common formula will be used preferentially to the iupac or reduced formula. Returns: The formula and factor of the component. """ formula, factor = component[ "structure_graph" ].structure.composition.get_reduced_formula_and_factor( iupac_ordering=use_iupac_formula ) reduced_formula = component["structure_graph"].structure.composition.reduced_formula if use_common_formulas and reduced_formula in common_formulas: formula = common_formulas[reduced_formula] return formula, factor def get_component_formula( component: Component, use_iupac_formula: bool = True, use_common_formulas: bool = True, ) -> str: """Gets the reduced formula of a single component. Args: component: A structure component, generated using :obj:`pymatgen.analysis.dimensionality.get_structure_components`. use_iupac_formula (bool, optional): Whether to order formulas by the iupac "electronegativity" series, defined in Table VI of "Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005)". This ordering effectively follows the groups and rows of the periodic table, except the Lanthanides, Actanides and hydrogen. If set to ``False``, the elements will be ordered according to the electronegativity values. use_common_formulas: Whether to use the database of common formulas. The common formula will be used preferentially to the iupac or reduced formula. Returns: The formula and factor of the component. """ return get_component_formula_and_factor( component, use_iupac_formula=use_iupac_formula, use_common_formulas=use_common_formulas, )[0] def get_formula_from_components( components: List[Component], molecules_first: bool = False, use_iupac_formula: bool = True, use_common_formulas: bool = True, ) -> str: """Reconstructs a chemical formula from structure components. The chemical formulas for the individual components will be grouped together. If two components share the same composition, they will be treated as equivalent. Args: components: A list of structure components, generated using :obj:`pymatgen.analysis.dimensionality.get_structure_components`. molecules_first: Whether to put any molecules (zero-dimensional components) at the beginning of the formula. use_iupac_formula (bool, optional): Whether to order formulas by the iupac "electronegativity" series, defined in Table VI of "Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005)". This ordering effectively follows the groups and rows of the periodic table, except the Lanthanides, Actanides and hydrogen. If set to ``False``, the elements will be ordered according to the electronegativity values. use_common_formulas: Whether to use the database of common formulas. The common formula will be used preferentially to the iupac or reduced formula. Returns: The chemical formula. """ def order(comp_formula): composition = Composition(comp_formula) if use_iupac_formula: return sum( [get_el_sp(s).iupac_ordering for s in composition.elements] ) / len(composition.elements) else: return composition.average_electroneg components = get_formula_inequiv_components( components, use_iupac_formula=use_iupac_formula, use_common_formulas=use_common_formulas, ) if molecules_first: mol_comps, other_comps = filter_molecular_components(components) else: mol_comps = [] other_comps = components formulas = sorted([c["formula"] for c in mol_comps], key=order) + sorted( [c["formula"] for c in other_comps], key=order ) # if components include special formulas, then the count can be 0.5 # therefore if any non integer amounts we can just use a factor of 2 all_int = all(v["count"] % 1 == 0 for v in components) prefactor = 1 if all_int else 2 form_count_dict = {c["formula"]: int(c["count"] * prefactor) for c in components} # the following is based on ``pymatgen.core.composition.reduce_formula`` num_comps = len(formulas) factor = abs(gcd(*(form_count_dict.values()))) reduced_form = [] for i in range(0, num_comps): formula = formulas[i] normamt = form_count_dict[formula] * 1.0 / factor formatted_formula = formula if normamt == 1 else f"({formula})" reduced_form.append(formatted_formula) reduced_form.append(formula_double_format(normamt)) reduced_form = "".join(reduced_form) return reduced_form def components_are_vdw_heterostructure(components: List[Component]) -> bool: """Whether a list of components form a van der Waals heterostructure. A heterostructure is defined here as a structure with more than one formula inequivalent 2D component. Args: components: A list of structure components, generated using :obj:`pymatgen.analysis.dimensionality.get_structure_components`. Returns: Whether the list of components from a heterostructure. """ components = get_formula_inequiv_components(components) if len([c for c in components if c["dimensionality"] == 2]): return True else: return False def get_vdw_heterostructure_information( components: List[Component], use_iupac_formula: bool = True, use_common_formulas: bool = True, inc_ordered_components: bool = False, inc_intercalants: bool = False, ) -> Dict[str, Any]: """Gets information about ordering of components in a vdw heterostructure. Args: components: A list of structure components, generated using :obj:`pymatgen.analysis.dimensionality.get_structure_components` with ``inc_orientation=True``. use_iupac_formula (bool, optional): Whether to order formulas by the iupac "electronegativity" series, defined in Table VI of "Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005)". This ordering effectively follows the groups and rows of the periodic table, except the Lanthanides, Actanides and hydrogen. If set to ``False``, the elements will be ordered according to the electronegativity values. use_common_formulas: Whether to use the database of common formulas. The common formula will be used preferentially to the iupac or reduced formula. inc_ordered_components: Whether to return a list of the ordered components. If False, just the component formulas will be returned. inc_intercalants: Whether to return a list of the intercalants. If False, just the intercalant formulas will be returned. Returns: Information on the heterostructure, as an :obj:`dict` with they keys: - ``"repeating_unit"`` (``list[str]``): A :obj:`List` of formulas of the smallest repeating series of components. For example. if the structure consists of A and B components ordered as "A B A B A B", the repeating unit is "A B". - ``"num_repetitions"`` (:obj:`int`): The number of repetitions of the repeating unit that forms the overall structure. For example. if the structure consists of A and B components ordered as "A B A B A B", the number of repetitions is 3. - ``"intercalant_formulas"`` (:obj:`list[str]`): The formulas of the intercalated compounds. - ``"ordered_components"`` (``list[component]``): If ``inc_ordered_components``, a :obj:`List` of components, ordered as they appear in the heteostructure stacking direction. - ``"intercalants"`` (``list[component]``: If ``inc_intercalants``, a :obj:`List` of intercalated components. """ if not components_are_vdw_heterostructure(components): raise ValueError("Components do not form a heterostructure.") try: millers = {c["orientation"] for c in components if c["dimensionality"] == 2} except KeyError as e: if "orientation" in str(e): raise KeyError("Components not generated with inc_orientation=True") else: raise e if len(millers) != 1: raise ValueError("2D components don't all have the same orientation.") cart_miller = ( components[0]["structure_graph"] .structure.lattice.get_cartesian_coords(millers.pop()) .tolist() ) # plane is used to find the distances of all components along a certain axis # should use normal vector of plane to get exact distances but we just care # about relative distances. def distances_to_plane(points): return [np.dot(cart_miller, pp) for pp in points] min_distances = [ min(distances_to_plane(c["structure_graph"].structure.cart_coords)) for c in components ] # sort the components by distance to plane ordering = np.argsort(min_distances) ordered_components = [components[x] for x in ordering] # only consider the layered components formulae ordered_layers = [c for c in ordered_components if c["dimensionality"] == 2] ordered_layers_formula = [ get_component_formula( c, use_iupac_formula=use_iupac_formula, use_common_formulas=use_common_formulas, ) for c in ordered_layers ] num_layer_formulas = len(set(ordered_layers_formula)) repeating_formula = ordered_layers_formula num_repetitions = 1 # depending on the number of inequivalent formulae, there is a maximum # number of repetitions that can occur. To avoid unnecessary work we start # from this number of repetitions and move to 1 repetition (e.g. no # repetition) max_repetitions = int(np.floor(len(ordered_layers) / num_layer_formulas)) for n in range(max_repetitions, 0, -1): if ( all( [ len(set(ordered_layers_formula[i::num_layer_formulas])) == 1 for i in range(n) ] ) and len(ordered_layers) % n == 0 ): repeating_formula = ordered_layers_formula[: int(len(ordered_layers) / n)] num_repetitions = n break intercalants = [c for c in components if c["dimensionality"] < 2] intercalant_formulas = [get_component_formula(c) for c in intercalants] data = { "repeating_unit": repeating_formula, "num_repetitions": num_repetitions, "intercalant_formulas": intercalant_formulas, } if inc_intercalants: data["intercalants"] = intercalants if inc_ordered_components: data["ordered_components"] = ordered_components return data
6fc0344b9b9c4a260c80ee9f7f61a9f1d948ca1e
40d371136f2d7de9c95bfe40fd3c0437095e9819
/build/rbx1/rbx1_nav/catkin_generated/pkg.develspace.context.pc.py
a74ba9f55c2c3dd4d7c607c520ce9e56cd9b59fa
[]
no_license
marine0131/ros_ws
b4e6c5cf317260eaae1c406fb3ee234b3a3e67d5
6ddded3a92a717879bb646e7f2df1fea1a2d46b2
refs/heads/master
2021-07-05T06:29:43.054275
2017-09-28T08:29:14
2017-09-28T08:29:14
100,458,679
1
0
null
null
null
null
UTF-8
Python
false
false
452
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/whj/catkin_ws/devel/include".split(';') if "/home/whj/catkin_ws/devel/include" != "" else [] PROJECT_CATKIN_DEPENDS = "dynamic_reconfigure".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "rbx1_nav" PROJECT_SPACE_DIR = "/home/whj/catkin_ws/devel" PROJECT_VERSION = "0.4.0"
4ab744495bdd71914089b3fabd09162e9ee06ce5
4c77c3f68ddd280ad26ed78a9f4927ff9eb5e1f1
/src/ledger/lib/python2.7/site-packages/pip/_internal/commands/freeze.py
ac562d7d84b626944ef398efbea2d4f93b40da0b
[ "MIT" ]
permissive
neoscoin/neos-core
5f4a4e9fcdf13a21d1dbedfc7c01a8a8ba454a98
22cecda54875e3554e7c2a4569551c042fa6c0a2
refs/heads/master
2020-03-23T18:54:58.602764
2019-08-04T16:44:27
2019-08-04T16:44:27
141,940,658
4
4
MIT
2018-07-28T21:39:26
2018-07-23T00:05:03
C++
UTF-8
Python
false
false
3,320
py
from __future__ import absolute_import import sys from pip._internal import index from pip._internal.basecommand import Command from pip._internal.cache import WheelCache from pip._internal.compat import stdlib_pkgs from pip._internal.operations.freeze import freeze DEV_PKGS = {'pip', 'setuptools', 'distribute', 'wheel'} class FreezeCommand(Command): """ Output installed packages in requirements format. packages are listed in a case-insensitive sorted order. """ name = 'freeze' usage = """ %prog [options]""" summary = 'Output installed packages in requirements format.' log_streams = ("ext://sys.stderr", "ext://sys.stderr") def __init__(self, *args, **kw): super(FreezeCommand, self).__init__(*args, **kw) self.cmd_opts.add_option( '-r', '--requirement', dest='requirements', action='append', default=[], metavar='file', help="Use the order in the given requirements file and its " "comments when generating output. This option can be " "used multiple times.") self.cmd_opts.add_option( '-f', '--find-links', dest='find_links', action='append', default=[], metavar='URL', help='URL for finding packages, which will be added to the ' 'output.') self.cmd_opts.add_option( '-l', '--local', dest='local', action='store_true', default=False, help='If in a virtualenv that has global access, do not output ' 'globally-installed packages.') self.cmd_opts.add_option( '--user', dest='user', action='store_true', default=False, help='Only output packages installed in user-site.') self.cmd_opts.add_option( '--all', dest='freeze_all', action='store_true', help='Do not skip these packages in the output:' ' %s' % ', '.join(DEV_PKGS)) self.cmd_opts.add_option( '--exclude-editable', dest='exclude_editable', action='store_true', help='Exclude editable package from output.') self.parser.insert_option_group(0, self.cmd_opts) def run(self, options, args): format_control = index.FormatControl(set(), set()) wheel_cache = WheelCache(options.cache_dir, format_control) skip = set(stdlib_pkgs) if not options.freeze_all: skip.update(DEV_PKGS) freeze_kwargs = dict( requirement=options.requirements, find_links=options.find_links, local_only=options.local, user_only=options.user, skip_regex=options.skip_requirements_regex, isolated=options.isolated_mode, wheel_cache=wheel_cache, skip=skip, exclude_editable=options.exclude_editable, ) try: for line in freeze(**freeze_kwargs): sys.stdout.write(line + '\n') finally: wheel_cache.cleanup()
0e888f3c5656339bfcd90422c0e0e3b11133b3ef
c94662c1c58f4b75e01195da6e2446993eada579
/core/cooggerapp/signals/__init__.py
96b341230d38d951150ab6786ad691283328fec6
[ "MIT" ]
permissive
ozcanyarimdunya/coogger
e8f74ac215630473f88b612e6c236bd5441b32a8
832b9af196cf68917dabaa5b9c5ab0b80725ca6e
refs/heads/master
2020-07-12T03:59:41.928819
2019-08-27T08:33:09
2019-08-27T08:33:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
301
py
from .topic import when_utopic_create, increase_utopic_view from .userextra import follow_and_repos_update, create_userprofile, send_mail_to_follow from .issue import when_issue_delete, issue_counter from .content import when_content_delete, when_content_create from .commit import when_commit_create
851aede55bcaefdea7999c415c35cdc90ce4b200
518bf342bc4138982af3e2724e75f1d9ca3ba56c
/solutions/2808. Minimum Seconds to Equalize a Circular Array/2808.py
5390dcc57938a36fa03a978735ee042ecbc01463
[ "MIT" ]
permissive
walkccc/LeetCode
dae85af7cc689882a84ee5011f0a13a19ad97f18
a27be41c174565d365cbfe785f0633f634a01b2a
refs/heads/main
2023-08-28T01:32:43.384999
2023-08-20T19:00:45
2023-08-20T19:00:45
172,231,974
692
302
MIT
2023-08-13T14:48:42
2019-02-23T15:46:23
C++
UTF-8
Python
false
false
622
py
class Solution: def minimumSeconds(self, nums: List[int]) -> int: n = len(nums) ans = n numToIndices = collections.defaultdict(list) for i, num in enumerate(nums): numToIndices[num].append(i) def getSeconds(i: int, j: int) -> int: """Returns the number of seconds required to make nums[i..j] the same.""" return (i - j) // 2 for indices in numToIndices.values(): seconds = getSeconds(indices[0] + n, indices[-1]) for i in range(1, len(indices)): seconds = max(seconds, getSeconds(indices[i], indices[i - 1])) ans = min(ans, seconds) return ans
11a1ce5dc526b7604a7b8b1257f22f55b26ae5e1
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/cirq_new/cirq_program/startCirq_noisy383.py
552ed9b1b74d4b568697c570d633b3c387234b8a
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
2,185
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=17 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[1])) # number=7 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.CNOT.on(input_qubit[3],input_qubit[0])) # number=5 c.append(cirq.H.on(input_qubit[0])) # number=12 c.append(cirq.CZ.on(input_qubit[3],input_qubit[0])) # number=13 c.append(cirq.H.on(input_qubit[0])) # number=14 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=8 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=9 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=10 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=11 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=15 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=16 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2820 circuit = circuit.with_noise(cirq.depolarize(p=0.01)) simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq_noisy383.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
5c491fba4b421a9a4742e951f5c6d9f00279d088
88d8eed7081167bf5f81766dc5758ea4074eb9e5
/opt2q_examples/cell_death_data_calibration/calibration_fixed_measurement_model_p9_pysb_timout_arg.py
7be59c473e49651616e8b3bb052ae553721a3e2a
[]
no_license
michael-irvin/Opt2Q
e28ee272dc1630f1f1cbc6ef2692888d9a09b6b2
58c18fd7ecab11857ce386202f13a8586c329836
refs/heads/master
2023-04-20T00:12:09.985042
2021-05-15T06:20:27
2021-05-15T06:20:27
143,816,890
0
0
null
null
null
null
UTF-8
Python
false
false
7,691
py
import numpy as np import datetime as dt from scipy.stats import norm, invgamma from pydream.core import run_dream from pydream.convergence import Gelman_Rubin from pydream.parameters import SampledParam from multiprocessing import current_process from opt2q.calibrator import objective_function from opt2q_examples.cell_death_data_calibration.cell_death_data_calibration_setup \ import shift_and_scale_heterogeneous_population_to_new_params as sim_population from opt2q_examples.cell_death_data_calibration.cell_death_data_calibration_setup \ import set_up_simulator, pre_processing, true_params, set_up_classifier, synth_data, \ time_axis, handle_timeouts, TimeoutException from pysb.simulator import ScipyOdeSimulator from opt2q_examples.apoptosis_model import model import time import signal # Model name now = dt.datetime.now() model_name = f'apoptosis_model_tbid_cell_death_data_calibration_fmm_{now.year}{now.month}{now.day}' # Priors nu = 100 noisy_param_stdev = 0.20 alpha = int(np.ceil(nu/2.0)) beta = alpha/noisy_param_stdev**2 sampled_params_0 = [SampledParam(norm, loc=true_params, scale=1.5), SampledParam(invgamma, *[alpha], scale=beta)] n_chains = 4 n_iterations = 100000 # iterations per file-save burn_in_len = 50000 # number of iterations during burn-in max_iterations = 100000 # Simulator # opt2q_solver doesn't run on Power9, but has useful methods for handling simulation results opt2q_solver = set_up_simulator('cupsoda') delattr(opt2q_solver, 'sim') delattr(opt2q_solver, 'solver') solver = ScipyOdeSimulator(model, tspan=time_axis, **{'integrator': 'lsoda', 'integrator_options': {'mxstep': 2**20}}) # Measurement Model slope = 4 intercept = slope * -0.25 # Intercept (-0.25) unr_coef = slope * 0.00 # "Unrelated_Signal" coef (0.00) tbid_coef = slope * 0.25 # "tBID_obs" coef (0.25) time_coef = slope * -1.00 # "time" coef (-1.00) classifier = set_up_classifier() classifier.set_params(**{'coefficients__apoptosis__coef_': np.array([[unr_coef, tbid_coef, time_coef]]), 'coefficients__apoptosis__intercept_': np.array([intercept]), 'do_fit_transform': False}) # likelihood function def likelihood(x): params_df = sim_population(x) # simulate heterogeneous population around new param values opt2q_solver.param_values = params_df # Add scipyodesolver using parameter values from Opt2Q solver params_array = opt2q_solver._param_values_run start_time = time.time() try: results = solver.run(param_values=params_array, num_processors=2, timeout=60) # run model new_results = opt2q_solver.opt2q_dataframe(results.dataframe).reset_index() features = pre_processing(new_results) # run fixed classifier prediction = classifier.transform( features[['simulation', 'tBID_obs', 'time', 'Unrelated_Signal', 'TRAIL_conc']]) # calculate likelihood ll = sum(np.log(prediction[synth_data.apoptosis == 1]['apoptosis__1'])) ll += sum(np.log(prediction[synth_data.apoptosis == 0]['apoptosis__0'])) elapsed_time = time.time() - start_time print("Elapsed time: ", elapsed_time) print(x[:len(true_params)]) print(ll) return ll except (ValueError, ZeroDivisionError, TypeError, TimeoutException): elapsed_time = time.time() - start_time print("Elapsed time: ", elapsed_time) print(x[:len(true_params)]) return -1e10 # -------- Calibration ------- # Model Inference via PyDREAM if __name__ == '__main__': ncr = 25 gamma_levels = 8 p_gamma_unity = 0.1 print(ncr, gamma_levels, p_gamma_unity) # Run DREAM sampling. Documentation of DREAM options is in Dream.py. converged = False total_iterations = n_iterations sampled_params, log_ps = run_dream(parameters=sampled_params_0, likelihood=likelihood, niterations=n_iterations, nchains=n_chains, multitry=False, nCR=ncr, gamma_levels=gamma_levels, adapt_gamma=True, p_gamma_unity=p_gamma_unity, history_thin=1, model_name=model_name, verbose=True, crossover_burnin=min(n_iterations, burn_in_len), ) # Save sampling output (sampled parameter values and their corresponding logps). for chain in range(len(sampled_params)): np.save(model_name + '_' + str(chain) + '_' + str(total_iterations) + '_' + 'parameters', sampled_params[chain]) np.save(model_name + '_' + str(chain) + '_' + str(total_iterations) + '_' + 'log_p', log_ps[chain]) GR = Gelman_Rubin(sampled_params) burn_in_len = max(burn_in_len - n_iterations, 0) print('At iteration: ', total_iterations, ' GR = ', GR) print(f'At iteration: {total_iterations}, {burn_in_len} steps of burn-in remain.') np.savetxt(model_name + str(total_iterations) + '.txt', GR) old_samples = sampled_params if np.isnan(GR).any() or np.any(GR > 1.2): # append sample with a re-run of the pyDream algorithm while not converged or (total_iterations < max_iterations): starts = [sampled_params[chain][-1, :] for chain in range(n_chains)] total_iterations += n_iterations sampled_params, log_ps = run_dream(parameters=sampled_params_0, likelihood=likelihood, niterations=n_iterations, nchains=n_chains, multitry=False, nCR=ncr, gamma_levels=gamma_levels, adapt_gamma=True, p_gamma_unity=p_gamma_unity, history_thin=1, model_name=model_name, verbose=True, restart=True, # restart at the last sampled position start=starts, crossover_burnin=min(n_iterations, burn_in_len)) # Save sampling output (sampled parameter values and their corresponding logps). for chain in range(len(sampled_params)): np.save(model_name + '_' + str(chain) + '_' + str(total_iterations) + '_' + 'parameters', sampled_params[chain]) np.save(model_name + '_' + str(chain) + '_' + str(total_iterations) + '_' + 'log_p', log_ps[chain]) old_samples = [np.concatenate((old_samples[chain], sampled_params[chain])) for chain in range(n_chains)] GR = Gelman_Rubin(old_samples) burn_in_len = max(burn_in_len - n_iterations, 0) print('At iteration: ', total_iterations, ' GR = ', GR) print(f'At iteration: {total_iterations}, {burn_in_len} steps of burn-in remain.') np.savetxt(model_name + str(total_iterations) + '.txt', GR) if np.all(GR < 1.2): converged = True
07a4523135d60b04ed51747157c9e44b0f036a7f
dd3bbd4e7aaee7a8a5f26b927ce28ac472c855a5
/eggs/Products.CMFQuickInstallerTool-3.0.5-py2.7.egg/Products/CMFQuickInstallerTool/tests/test_install.py
159fd3c8b974543f139c8c6551b4c3dc743d10b2
[]
no_license
nacho22martin/tesis
ea0a822f8bdbdef6f13f41276ecd4d6e85427ca5
e137eb6225cc5e724bee74a892567796166134ac
refs/heads/master
2020-12-24T13:20:58.334839
2013-11-09T12:42:41
2013-11-09T12:42:41
14,261,570
0
1
null
null
null
null
UTF-8
Python
false
false
1,366
py
import doctest import unittest from Products.CMFTestCase import CMFTestCase from Products.GenericSetup import EXTENSION, profile_registry from Testing.ZopeTestCase import FunctionalDocFileSuite as Suite CMFTestCase.installProduct('CMFQuickInstallerTool') CMFTestCase.installProduct('CMFCalendar') CMFTestCase.setupCMFSite() OPTIONFLAGS = (doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) def registerTestProfile(test): profile_registry.registerProfile('test', 'CMFQI test profile', 'Test profile for CMFQuickInstallerTool', 'profiles/test', 'Products.CMFQuickInstallerTool', EXTENSION, for_=None) def test_suite(): return unittest.TestSuite(( Suite('actions.txt', optionflags=OPTIONFLAGS, package='Products.CMFQuickInstallerTool.tests', setUp=registerTestProfile, test_class=CMFTestCase.FunctionalTestCase), Suite('profiles.txt', optionflags=OPTIONFLAGS, package='Products.CMFQuickInstallerTool.tests', test_class=CMFTestCase.FunctionalTestCase), Suite('install.txt', optionflags=OPTIONFLAGS, package='Products.CMFQuickInstallerTool.tests', test_class=CMFTestCase.FunctionalTestCase), ))
[ "ignacio@plone.(none)" ]
ignacio@plone.(none)
a0ae43e473fed201713fb7ef16cd61bf0708f846
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/zqr6f8dRD84K8Lvzk_3.py
cf260be9367695b002d1e201a20f2264da1b9dae
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,722
py
""" As stated on the [On-Line Encyclopedia of Integer Sequences](https://oeis.org/A003215): > The hexagonal lattice is the familiar 2-dimensional lattice in which each > point has 6 neighbors. A **centered hexagonal number** is a centered figurate number that represents a hexagon with a dot in the center and all other dots surrounding the center dot in a hexagonal lattice. At the end of that web page the following illustration is shown: Illustration of initial terms: . . o o o o . o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o . o o o o . . 1 7 19 37 . Write a function that takes an integer `n` and returns `"Invalid"` if `n` is not a **centered hexagonal number** or its illustration as a multiline rectangular string otherwise. ### Examples hex_lattice(1) ➞ " o " # o hex_lattice(7) ➞ " o o \n o o o \n o o " # o o # o o o # o o hex_lattice(19) ➞ " o o o \n o o o o \n o o o o o \n o o o o \n o o o " # o o o # o o o o # o o o o o # o o o o # o o o hex_lattice(21) ➞ "Invalid" ### Notes N/A """ def hex_lattice(n): r = (3 + (12 * n - 3)**0.5) / 6 layers = int(r) if layers != r : return "Invalid" rlen = layers*4 -1 prnt = [] d = (layers-1)*2 for _ in range(layers): prnt.append('{: ^{}}'.format('o '*d + 'o', rlen)) d -= 1 return '\n'.join(prnt[1:][::-1] + prnt)
654481ab224a9394d1a33536a5456ad7582ecd1a
c6070314ce23ede0f7b10cf3a4126b3575909e57
/canvas2nbgrader.py
5248ec5c33aa093d864dec72c8d1e31de970075e
[]
no_license
vahtras/canvas2nbgrader
b4615b49c4ebdd041a3a91d9be6d4c2fd7275349
b880e478b9c98c9976005df63620a264d257d134
refs/heads/master
2020-03-08T10:40:08.219057
2018-04-04T19:13:24
2018-04-04T19:13:24
128,078,942
0
0
null
null
null
null
UTF-8
Python
false
false
1,474
py
#!/usr/bin/env python """Import student id from Canvas (Exported Grade table)""" import sys import csv def get_records(csv_file): return list(csv.DictReader(csv_file)) def split_names(records): new = [] for r in records: s = r['Student'] if s == 'Studenttest' or s.strip() == 'Points Possible': pass else: last, first = r['Student'].split(', ') d = dict(first_name=first, last_name=last) new.append({**r, **d}) return new def out_dict(records): select = [] for r in records: select.append( { 'id': r["ID"], 'first_name': r["first_name"], 'last_name': r["last_name"], "email": r["SIS Login ID"], } ) with open('students.csv', 'w') as csvfile: writer = csv.DictWriter( csvfile, fieldnames=["id", "first_name", "last_name", "email"] ) writer.writeheader() for r in select: writer.writerow(r) def main(): try: csv_file = sys.argv[1] except IndexError: print("Usage: {} csv_file".format(sys.argv[0])) sys.exit(1) with open(csv_file) as f: #Remove BOM character in file lines = [line.replace('\ufeff', '') for line in f] records = split_names(get_records(lines)) out_dict(records) if __name__ == "__main__": sys.exit(main())
e2840943beaeff8e715d3e36a75da31ff4fa3a26
fb3b5ec37b2a56f1170cd750e1e30fce9a6dc125
/test2020013004_dev_1562/urls.py
57cd70ddd1e5bbfefbda3653605aa9b87e7edcd1
[]
no_license
crowdbotics-apps/test2020013004-dev-1562
cd3d2b88cbf6c0172ddb80bced1dcfa8a1843098
a2bea260fe854574ffd38315a88953560bb335f2
refs/heads/master
2022-04-02T18:38:24.481241
2020-02-05T22:41:23
2020-02-05T22:41:23
237,356,550
0
0
null
null
null
null
UTF-8
Python
false
false
1,994
py
"""test2020013004_dev_1562 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), path("home/", include("home.urls")), ] admin.site.site_header = "Test2020013004" admin.site.site_title = "Test2020013004 Admin Portal" admin.site.index_title = "Test2020013004 Admin" # swagger schema_view = get_schema_view( openapi.Info( title="Test2020013004 API", default_version="v1", description="API documentation for Test2020013004 App", ), public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ]
61e0747aab767e96bb13632b74f3de7fa9282af3
e146d44875fb44a13b3b004604694bccaa23ddf2
/docs/Amadeus-master/pactravel-master/swagger_client/models/flight_search_bound.py
5fd17c599197fd7743dbc3b5a7ee7b5989daf56d
[]
no_license
shopglobal/travel
8d959b66d77f2e1883b671628c856daf0f3b21bb
0c33467cd2057da6e01f9240be2fd4b8f5490539
refs/heads/master
2022-12-23T00:13:02.597730
2017-09-26T06:03:15
2017-09-26T06:03:15
104,405,869
0
0
null
2022-12-08T00:35:36
2017-09-21T22:43:23
PHP
UTF-8
Python
false
false
3,993
py
# coding: utf-8 """ Amadeus Travel Innovation Sandbox No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 1.2 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class FlightSearchBound(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'flights': 'list[FlightSearchSegment]', 'duration': 'str' } attribute_map = { 'flights': 'flights', 'duration': 'duration' } def __init__(self, flights=None, duration=None): """ FlightSearchBound - a model defined in Swagger """ self._flights = None self._duration = None self.flights = flights if duration is not None: self.duration = duration @property def flights(self): """ Gets the flights of this FlightSearchBound. :return: The flights of this FlightSearchBound. :rtype: list[FlightSearchSegment] """ return self._flights @flights.setter def flights(self, flights): """ Sets the flights of this FlightSearchBound. :param flights: The flights of this FlightSearchBound. :type: list[FlightSearchSegment] """ if flights is None: raise ValueError("Invalid value for `flights`, must not be `None`") self._flights = flights @property def duration(self): """ Gets the duration of this FlightSearchBound. The duration of this bound, including layover time, expressed in the format hh:mm :return: The duration of this FlightSearchBound. :rtype: str """ return self._duration @duration.setter def duration(self, duration): """ Sets the duration of this FlightSearchBound. The duration of this bound, including layover time, expressed in the format hh:mm :param duration: The duration of this FlightSearchBound. :type: str """ self._duration = duration def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, FlightSearchBound): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
de52fcf01c00c0c8c33658cec50f0c1df04688f3
32eba552c1a8bccb3a329d3d152b6b042161be3c
/9_pj_mcw.pyw
3ed748fdabe7367b51ed1ef4ff3088848476a0c4
[]
no_license
ilmoi/ATBS
d3f501dbf4b1099b76c42bead3ec48de3a935a86
7f6993751e2ad18af36de04168d32b049d85a9c1
refs/heads/master
2022-07-11T21:56:23.284871
2020-05-15T05:26:06
2020-05-15T05:26:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,518
pyw
import pyperclip import sys import shelve # uncomment and run once! # TEXT = {'agree': """Yes, I agree. That sounds fine to me.""", # 'busy': """Sorry, can we do this later this week or next week?""", # 'upsell': """Would you consider making this a monthly donation?"""} # file =shelve.open('phrase_db') # for key, value in list(TEXT.items()): # file[key] = value # # test # print(file['agree']) # file.close() if len(sys.argv) < 2: print('Usage: python 9_pj_mcw [action - save / list / item to load]') sys.exit() first = sys.argv[1] file = shelve.open('phrase_db') if first == 'save': keyword = sys.argv[2] text = pyperclip.paste() file[keyword] = text elif first == 'delete': second = sys.argv[2] if second == 'all': confirm = input('are you sure you want to wipe the dic?') if confirm == 'yes': for key in file.keys(): del file[key] print("done! clean like a baby's ass?[wtf]") else: second = sys.argv[2] if second in file.keys(): del file[second] print('deleted!') else: print('no such keyword') sys.exit() elif first == 'list': print('___current contents are:___') for key, value in list(file.items()): print(f'{key}: {value}') else: if first in file.keys(): pyperclip.copy(file[first]) print('copied to clipboard!') else: print('no such keyword') sys.exit() file.close()
b99eaded4ce9e40c473b322f7ef3d19ceb146945
3299ee49e292fc5f4a0f1c0e364eb27cd539521a
/lesson_33_homework/test_site/Articles/views.py
0ae598994470e23fd2cc65f5fba238d2c49aba5f
[]
no_license
alexeypodorozhnyi/Python_course_django_part
5258db76b5ca0592ed62f1d2d7a5bf8f80353bf1
9b51531f8b2d042210797c707d5f38b398897977
refs/heads/master
2020-11-26T01:52:13.467747
2020-01-29T20:55:23
2020-01-29T20:55:23
228,926,004
0
0
null
null
null
null
UTF-8
Python
false
false
1,076
py
from django.http import HttpResponse from django.shortcuts import render class MyClass: string = '' def __init__(self, s): self.string = s def index(request): my_list = [1,2,3,4,5,6] return render(request, 'index.html', { 'my_list': my_list }) def new(request): return HttpResponse("Hey your new News!") def edit(request): return HttpResponse("Hey you can edit News!") def lock(request): return HttpResponse("Hey your can lock News!") def add(request, item_id): if item_id: return HttpResponse('Add new news with item id:' + str(item_id)) def processing(request, mode, item_id): if mode == 'add': if item_id: return HttpResponse('Add new articles with item id:' + str(item_id)) elif mode == 'delete': if item_id: return HttpResponse('Delete articles with item id:' + str(item_id)) else: return HttpResponse('Error chouse correct mode') def return_code(request, code): if code: return HttpResponse('Article code:' + str(code))
a8efba78448b1dc04d5429185122c8a008f4251c
a560269290749e10466b1a29584f06a2b8385a47
/Notebooks/py/tsai90k/dnn-titanic/dnn-titanic.py
05f82ff728e796c5618951fe9f09ab2533515609
[]
no_license
nischalshrestha/automatic_wat_discovery
c71befad1aa358ae876d5494a67b0f4aa1266f23
982e700d8e4698a501afffd6c3a2f35346c34f95
refs/heads/master
2022-04-07T12:40:24.376871
2020-03-15T22:27:39
2020-03-15T22:27:39
208,379,586
2
1
null
null
null
null
UTF-8
Python
false
false
35,685
py
#!/usr/bin/env python # coding: utf-8 # ## Setup environment # In[ ]: # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from matplotlib import pyplot as plt # for plotting graphs import seaborn # statistical data visualization library from functools import cmp_to_key import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) import xgboost as xgb from sklearn import metrics import math import copy import sys import glob # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory import os print(os.listdir("../input/")) # Any results you write to the current directory are saved as output. # In[ ]: class BucketMapper(object): def __init__(self, field_info, assume_no_na = False): self.field_info = copy.copy(field_info) self.digit_keys = list(self.field_info.keys()) self.digit_keys.sort() self.digits = [] self.digits_rev = [] self.multipiliers = [] self.total_comb = 1 self.assume_no_na = assume_no_na self.add_for_na = 1 if self.assume_no_na == True: self.add_for_na = 0 # for example: # 1. (consider N/A) If field_info = {'A':['a','b'],'B':['x']} # then combinations will be 3 * 2: # 0 -> 0 0 -> (na, na) -> [1, 0, 0, 0, 0, 0] # 1 -> 0 1 -> (na, 'x') -> [0, 1, 0, 0, 0, 0] # 2 -> 1 0 -> ('a', na) -> [0, 0, 1, 0, 0, 0] # 3 -> 1 1 -> ('a', 'x') -> [0, 0, 0, 1, 0, 0] # 4 -> 2 0 -> ('b', na) -> [0, 0, 0, 0, 1, 0] # 5 -> 2 1 -> ('b', 'x') -> [0, 0, 0, 0, 0, 1] # # then self.digit_keys = ['A','B'] # then self.digits will become # [ # {'a':1, 'b':2}, # implies that N/A = 0 # {'x':1}, # implies that N/A = 0 # ] # and self.multipiliers will become # [ # 2, # multipiliers of digits of 'A' field # 1, # multipiliers of digits of 'B' field # ] # # so ('a', 'x') will be (1*2) + (1*1) = 3 # and ('b', 'x') will be (2*2) + (1*1) = 5 # # 2. (assume no N/A) If the field info = {'A':['a','b','c'],'B':['x','y']} # NOTE: if there is no N/A, then a field MUST have at least 2 categories. # then combination will be 3 * 2: # 0 -> 0 0 -> ('a', 'x') -> [1, 0, 0, 0, 0, 0] # 1 -> 0 1 -> ('a', 'y') -> [0, 1, 0, 0, 0, 0] # 2 -> 1 0 -> ('b', 'x') -> [0, 0, 1, 0, 0, 0] # 3 -> 1 1 -> ('b', 'y') -> [0, 0, 0, 1, 0, 0] # 4 -> 2 0 -> ('c', 'x') -> [0, 0, 0, 0, 1, 0] # 5 -> 2 1 -> ('c', 'y') -> [0, 0, 0, 0, 0, 1] # # then self.digit_keys = ['A','B'] # then self.digits will become # [ # {'a':0, 'b':1, 'c':2}, # {'x':0, 'y':1}, # ] # and self.multipiliers will become # [ # 2, # multipiliers of digits of 'A' field # 1, # multipiliers of digits of 'B' field # ] # # so ('a', 'x') will be (0*2) + (0*1) = 0 # and ('b', 'y') will be (1*2) + (1*1) = 3 # check each field to ensure every felds have at least 2 categories # include or not include N/A for k in self.digit_keys: if (len(self.field_info[k]) + self.add_for_na) < 2: if self.assume_no_na == True: raise ValueError('the field %s must have at least 2 categories') else: raise ValueError('the field %s must have at least 1 category') for i in range(0, len(self.digit_keys)): k = self.digit_keys[i] next_i = i + 1 # a higher digit's base (mul) is decided by variation of its lower digit mul = 1 if next_i < len(self.digit_keys): next_k = self.digit_keys[next_i] mul = len(self.field_info[next_k]) + self.add_for_na dig = copy.copy(self.field_info[k]) self.total_comb *= (len(dig) + self.add_for_na) dig_d = {} # with N/A, i starts from 1 (0 for N/A) # without N/A, i starts from 0 i = self.add_for_na for v in dig: dig_d[v] = i i += 1 self.multipiliers.append(1) self.multipiliers = [_m * mul for _m in self.multipiliers] self.digits.append(dig_d) self.digits_rev.append(dict([(_v,_k) for (_k,_v) in dig_d.items()])) def fields_to_bucket_id(self, fields): n = 0 for i in range(0, len(fields)): mul = self.multipiliers[i] dig_d = self.digits[i] k = fields[i] try: n += (dig_d[k] * mul) except KeyError as e: if self.assume_no_na == True: raise ValueError('unexpected value: %s is not allowed because assume_no_na is True' % (str(e))) else: n += 0 return n def bucket_id_to_fields(self, bucket_id): fields = [] for i in range(0, len(self.digit_keys)): mul = self.multipiliers[i] dig_rev_d = self.digits_rev[i] digit = bucket_id // mul bucket_id = bucket_id % mul try: fields.append(str(dig_rev_d[digit])) except KeyError as e: if self.assume_no_na == True: raise ValueError('unexpected value: %s is not allowed because assume_no_na is True' % (str(e))) else: fields.append('na') return str.join('_', fields) def to_bucketlized(self, df, name): df1 = df[self.digit_keys] df2 = pd.DataFrame() s = [] for i in range(0, len(df1)): r = [n for n in df1.iloc[i]] bucket_id = self.fields_to_bucket_id(r) s.append(bucket_id) df2[name] = s return df2 def to_one_hot(self, df, name): df1 = df[self.digit_keys] df2 = pd.DataFrame() s = [] for i in range(0, self.total_comb): s.append([]) for i in range(0, len(df1)): r = [n for n in df1.iloc[i]] bucket_id = self.fields_to_bucket_id(r) for j in range(0, self.total_comb): s[j].append(0) s[bucket_id][-1] = 1 for i in range(0, self.total_comb): field_name = self.bucket_id_to_fields(i) df2['%s_%s' % (name, field_name)] = s[i] return df2 # ## Examine the data first # In[ ]: df_train = pd.read_csv('../input/train.csv') df_train.describe() print('record number of df_train = %d' % (len(df_train))) # In[ ]: df_train.head(50) # In[ ]: df_test = pd.read_csv('../input/test.csv') df_test.describe() print('record number of df_test = %d' % (len(df_test))) # In[ ]: # combine training data and test data df_all = df_test.copy() df_all = df_all.append(df_train, ignore_index = True) # In[ ]: # list all fields print('total fields = %d' % (len(df_train.keys()))) print('fields = %s' % (df_train.keys())) # In[ ]: # check N/A fields df_all.drop('Survived', axis = 1).loc[:,df_all.isnull().any()].isnull().sum() # In[ ]: def log_no_error(n): if n <= 0: return 0.0 else: return np.log1p(n) def min2(l, default = 0.0): if len(l) == 0: return default else: return min(l) def max2(l, default = 0.0): if len(l) == 0: return default else: return max(l) def avg2(l, default = 0.0): if len(l) == 0: return default else: return float(sum(l)) / float(len(l)) def std2(l, default = 0.0): if len(l) == 0: return default else: return np.std(l) def histogram_for_non_numerical_series(s): d = {} for v in s: d[v] = d.get(v, 0) + 1 bin_s_label = list(d.keys()) bin_s_label.sort() bin_s = list(range(0, len(bin_s_label))) hist_s = [d[v] for v in bin_s_label] bin_s.append(len(bin_s)) bin_s_label.insert(0, '_') return (hist_s, bin_s, bin_s_label) def plot_hist_with_target3(plt, df, feature, target, histogram_bins = 10): # reference: # https://stackoverflow.com/questions/33328774/box-plot-with-min-max-average-and-standard-deviation # https://matplotlib.org/gallery/api/two_scales.html # https://matplotlib.org/1.2.1/examples/pylab_examples/errorbar_demo.html # https://matplotlib.org/2.0.0/examples/color/named_colors.html # https://matplotlib.org/api/_as_gen/matplotlib.pyplot.xticks.html title = feature plt.title(title) s = df[feature] t = df[target] t_max = max(t) # get histogram of the feature bin_s_label = None # fillna with 0.0 or '_N/A_' na_cnt = sum(s.isna()) if na_cnt > 0: if True in [type(_) == str for _ in s]: print('found %d na in string field %s' % (na_cnt, feature)) s = s.fillna('_N/A_') else: print('found %d na in numerical field %s' % (na_cnt, feature)) s = s.fillna(0.0) try: hist_s, bin_s = np.histogram(s, bins = histogram_bins) except Exception as e: # print('ERROR: failed to draw histogram for %s: %s: %s' % (name, type(e).__name__, str(e))) hist_s, bin_s, bin_s_label = histogram_for_non_numerical_series(s) # return # histogram of target by distribution of feature hist_t_by_s_cnt = [0] * (len(bin_s) - 1) hist_t_by_s = [] for i in range(0, (len(bin_s) - 1)): hist_t_by_s.append([]) # get target histogram for numerical feature if bin_s_label is None: for (sv, tv) in zip(s, t): pos = 0 for i in range(0, len(bin_s) - 1): if sv >= bin_s[i]: pos = i hist_t_by_s_cnt[pos] += 1 hist_t_by_s[pos].append(tv) bin_s_new = [] hist_t_by_s_new = [] bin_s_new.append(bin_s[0]) for (bv, hv) in zip(bin_s[1:], hist_t_by_s): if len(hv) != 0: bin_s_new.append(bv) hist_t_by_s_new.append(hv) bin_s_err = bin_s_new hist_t_by_s = hist_t_by_s_new # print('target_hist:\n%s(%d)\n%s(%d)' % (bin_s, len(bin_s), hist_t_by_s, len(hist_t_by_s))) else: for (sv, tv) in zip(s, t): pos = bin_s_label.index(sv) - 1 hist_t_by_s_cnt[pos] += 1 hist_t_by_s[pos].append(tv) # count avg, to re-sort bin_s and bin_s_label by avg hist_t_by_s_avg = [float(avg2(n)) for n in hist_t_by_s] # hist_t_by_s_std = [float(std2(n)) for n in hist_t_by_s] # hist_t_by_s_adj = list(np.array(hist_t_by_s_avg) + np.array(hist_t_by_s_std)) hist_t_by_s_adj = hist_t_by_s_avg # print('before sort:\n%s\n%s\n%s' % (bin_s, bin_s_label, hist_t_by_s_adj)) bin_hist_label = list(zip(bin_s[1:], hist_t_by_s_adj, bin_s_label[1:])) bin_hist_label.sort(key = cmp_to_key(lambda x, y: x[1] - y[1])) (bin_s, hist_t_by_s_adj, bin_s_label) = zip(*bin_hist_label) bin_s = list(bin_s) hist_t_by_s_adj = list(hist_t_by_s_adj) bin_s_label = list(bin_s_label) bin_s.insert(0, 0) bin_s_label.insert(0, '_') # re-arrange hist_s and hist_t_by_s hist_s_new = [] hist_t_by_s_new = [] for i in bin_s[1:]: hist_s_new.append(hist_s[i - 1]) hist_t_by_s_new.append(hist_t_by_s[i - 1]) hist_s = hist_s_new hist_t_by_s = hist_t_by_s_new # print('after sort:\n%s\n%s\n%s' % (bin_s, bin_s_label, hist_t_by_s_adj)) # reset bin_s's ordering bin_s.sort() bin_s_err = bin_s hist_s = list(hist_s) if len(hist_s) < len(bin_s): hist_s.insert(0, 0.0) hist_s_max = max(hist_s) plt.fill_between(bin_s, hist_s, step = 'mid', alpha = 0.5, label = feature) if bin_s_label is not None: plt.xticks(bin_s, bin_s_label) plt.xticks(rotation = 90) # just to show legend for ax2 # plt.errorbar([], [], yerr = [], fmt = 'ok', lw = 3, ecolor = 'sienna', mfc = 'sienna', label = target) plt.legend(loc = 'upper right') hist_t_by_s = list(hist_t_by_s) if len(hist_t_by_s) < len(bin_s): hist_t_by_s.insert(0, [0.0]) hist_t_by_s_min = [float(min2(n)) for n in hist_t_by_s] hist_t_by_s_max = [float(max2(n)) for n in hist_t_by_s] hist_t_by_s_avg = [float(avg2(n)) for n in hist_t_by_s] # hist_t_by_s_std = [float(std2(n)) for n in hist_t_by_s][1:] hist_t_by_s_25_percentile = [float(np.percentile(n, 25)) for n in hist_t_by_s] hist_t_by_s_75_percentile = [float(np.percentile(n, 75)) for n in hist_t_by_s] hist_t_by_s_std = [[max(0, _) for _ in (np.array(hist_t_by_s_avg) - np.array(hist_t_by_s_25_percentile))[1:]], [max(0, _) for _ in (np.array(hist_t_by_s_75_percentile) - np.array(hist_t_by_s_avg))[1:]]] hist_t_by_s_err = [(np.array(hist_t_by_s_avg) - np.array(hist_t_by_s_min))[1:], (np.array(hist_t_by_s_max) - np.array(hist_t_by_s_avg))[1:]] plt.xlabel(feature) plt.ylabel('Count') ax2 = plt.twinx() ax2.grid(False) ax2.errorbar(bin_s_err[1:], hist_t_by_s_avg[1:], yerr = hist_t_by_s_err, fmt='.k', lw = 1, ecolor = 'sienna') ax2.errorbar(bin_s_err[1:], hist_t_by_s_avg[1:], yerr = hist_t_by_s_std, fmt='ok', lw = 3, ecolor = 'sienna', mfc = 'sienna', label = target) ax2.set_ylabel(target) plt.legend(loc = 'upper left') plt.tight_layout() def plot_df(df, y, fields = None): if fields is None: fields = df.keys() figs = len(fields) cols = 4 rows = int(figs / cols) if (rows * cols) < figs: rows += 1 plt.figure(figsize = (5 * cols, 5 * rows)) i = 1 for name in fields: if name == y: continue plt.subplot(rows, cols, i) plot_hist_with_target3(plt, df, name, y, histogram_bins = 'rice') i += 1 plt.tight_layout() # In[ ]: # draw relationship between target and features plot_df(df_train.drop('Name', axis = 1), y = 'Survived') # In[ ]: plt.figure(figsize = (10, 10)) seaborn.heatmap(df_train.corr()) # In[ ]: _df = df_train.copy() # ### Pclass # Female and male have very different Survived distribution on Pclass # In[ ]: plot_df(_df[['Pclass','Survived']], y = 'Survived') # #### Female and Pclass # In[ ]: plot_df(_df[_df['Sex'] == 'female'][['Pclass','Survived']], y = 'Survived') # #### Male and Pclass # In[ ]: plot_df(_df[_df['Sex'] == 'male'][['Pclass','Survived']], y = 'Survived') # ### Cabin # If we categorize cabin by the prefix alphabet, we can see there are 4 groups: # - B, E, D: 70 ~ 80% of survive rate # - C, F: 60% of survive rate # - A, G: 50% of survive rate # - nan: 30% of survive rate # - T: 0% of survive rate # # In[ ]: _df['Cabin'] = df_train['Cabin'].apply(lambda x: x[0] if type(x) == str else 'nan') plot_df(_df[['Cabin','Survived']], y = 'Survived') # #### Female and Cabin # Female has 100% survive rate at some categories: A, B, D, F, if we just categorize by average survive rate, A will not be in highest survive rate category... # In[ ]: plot_df(_df[_df['Sex'] == 'female'][['Cabin','Survived']], y = 'Survived') # #### Male and Cabin # In[ ]: plot_df(_df[_df['Sex'] == 'male'][['Cabin','Survived']], y = 'Survived') # ### Ticket # If we categorize ticket id by prefix alphabet (if no prefix, set is as 'num' category), we can see there are some groups: # - 9: 100 % of survive rate # - 1,P: 60 ~ 65% of survive rate # - F: 50 ~ 60% of survive rate # - 2,C,S: 30% ~ 40% of survive rate # - L,3,4,6,W,7: 15% ~ 30% of survive rate # - A,5,8: 10% of survive rate # In[ ]: _df['Ticket'] = df_train['Ticket'].apply(lambda x: x[0] if type(x) == str else 'num') plot_df(_df[['Ticket','Survived']], y = 'Survived') # #### Female and Ticket # Some female have 100% of survive rate at 9,F category, and have 0% of survive rate at A,7 category, and have low survive rate at W,4 category. # In[ ]: plot_df(_df[_df['Sex'] == 'female'][['Ticket','Survived']], y = 'Survived') # #### Male and Ticket # - Some male have 0% of survive rate in some categories: 4,5,8,F,W # In[ ]: plot_df(_df[_df['Sex'] == 'male'][['Ticket', 'Survived']], y = 'Survived') # ### Age # In[ ]: # convert N/A age to 100 to see its distribution _df2 = _df.copy() _df2['Age'] = _df2['Age'].fillna(100) plot_df(_df2[['Age', 'Survived']], y = 'Survived') # #### Female and Age # In[ ]: plot_df(_df2[_df2['Sex'] == 'female'][['Age', 'Survived']], y = 'Survived') # N/A value of female age should can be filled with median age of female # In[ ]: _df[_df['Sex'] == 'female']['Age'].median() # #### Male and Age # Male older then 62 have almost 0% of survive rate (except 80) # In[ ]: plot_df(_df2[_df2['Sex'] == 'male'][['Age', 'Survived']], y = 'Survived') # In[ ]: _df[(_df['Age'] > 62) & (_df['Sex'] == 'male')] # N/A value of male age should can be filled with median of male age # In[ ]: _df[_df['Sex'] == 'male']['Age'].median() # ### Fare # Use median value as N/A value # In[ ]: _df['Fare'].median() # In[ ]: plot_df(_df[['Fare', 'Survived']], y = 'Survived') # #### Female and Fare # Female in some fare range has 100% of survive rate # In[ ]: plot_df(_df[_df['Sex'] == 'female'][['Fare', 'Survived']], y = 'Survived') # #### Male and Fare # Male in lowst fare range has lowest survive rate, and has 0% of survive rate when fale between 200 ~ 500, and has 100% survive rate when rate > 500. # In[ ]: plot_df(_df[_df['Sex'] == 'male'][['Fare', 'Survived']], y = 'Survived') # In[ ]: _df[(_df['Sex'] == 'male') & (_df['Fare'] > 200) & (_df['Fare'] < 500)].sort_values(by = ['Fare']) # In[ ]: _df[(_df['Sex'] == 'male') & (_df['Fare'] > 500)].sort_values(by = ['Fare']) # ### SibSp # In[ ]: plot_df(_df[['SibSp', 'Survived']], y = 'Survived') # #### Female and SibSp # In[ ]: plot_df(_df[_df['Sex'] == 'female'][['SibSp', 'Survived']], y = 'Survived') # #### Male and SibSp # In[ ]: plot_df(_df[_df['Sex'] == 'male'][['SibSp', 'Survived']], y = 'Survived') # ### Parch # In[ ]: plot_df(_df[['Parch', 'Survived']], y = 'Survived') # #### Female and Parch # In[ ]: plot_df(_df[_df['Sex'] == 'female'][['Parch', 'Survived']], y = 'Survived') # #### Male and Parch # In[ ]: plot_df(_df[_df['Sex'] == 'male'][['SibSp', 'Survived']], y = 'Survived') # ### Embarked # In[ ]: plot_df(_df[['Embarked', 'Survived']], y = 'Survived') # #### Female and Embarked # 2 N/A records are all survived, maybe just set their Embarked to C # In[ ]: plot_df(_df[_df['Sex'] == 'female'][['Embarked', 'Survived']], y = 'Survived') # #### Male and Embarked # In[ ]: plot_df(_df[_df['Sex'] == 'male'][['Embarked', 'Survived']], y = 'Survived') # ### SibSp and Parch # Seems that adding SibSp and Parch can not separate Survived well. # In[ ]: _df['SibSp_Parch'] = _df['SibSp'] + _df['Parch'] plot_df(_df[['SibSp_Parch', 'SibSp', 'Parch', 'Survived']], y = 'Survived') # #### Female and SibSp_Parch # In[ ]: plot_df(_df[_df['Sex'] == 'female'][['SibSp_Parch', 'SibSp', 'Parch', 'Survived']], y = 'Survived') # #### Male and SibSp_Parch # In[ ]: plot_df(_df[_df['Sex'] == 'male'][['SibSp_Parch', 'SibSp', 'Parch', 'Survived']], y = 'Survived') # In[ ]: fix_funcs = [] ''' Following fields sohuld be categorical fields - Pclass ''' def fix_df_pclass_to_cat(df): df1 = df.copy() for k in ['Pclass']: s = df1[k] df1[k] = s.astype(str) return df1 fix_funcs.append(fix_df_pclass_to_cat) ''' 1. The first latter of Cabin will be the category name, replace N/A with 'nan' category 2. The first latter of Ticket will be the category name, replace N/A with 'nan' category ''' def fix_df_cabin_and_ticket(df): df1 = df.copy() for k in ['Cabin', 'Ticket']: df1[k] = df1[k].apply(lambda x: x[0] if type(x) == str else 'nan') return df1 fix_funcs.append(fix_df_cabin_and_ticket) ''' 1. Add SibSp and Parch + 1 as faimly number 2. Convert Fare to 4 level 3. Convert Age to 5 level ''' def wrap_fix_df_copied_from_kaggle(): d = {} def _fix_df_copied_from_kaggle(df): df1 = df.copy() # FamilyNum df1['FamilyNum'] = df1['SibSp'] + df1['Parch'] + 1 # IsAlone, single passenger? # df1['IsAlone'] = df1['FamilyNum'].apply(lambda x: 1 if x == 1 else 0) # bucketlize Fare to 4 quantilies if not ('fare_med' in d): d['fare_med'] = df1['Fare'].median() fare_med = d['fare_med'] df1['FareLevel'] = df1['Fare'].fillna(fare_med) if not ('fare_bin' in d): d['fare_bin'] = list(pd.qcut(df1['FareLevel'], 4).unique()) d['fare_bin'].sort() fare_bin = d['fare_bin'] df1['FareLevel'] = df1['FareLevel'].apply(lambda x: sum([x >= b.left for b in fare_bin])) # bucketlize Age to 5 buckets if not ('age_med' in d): d['age_med'] = df1['Age'].median() age_med = d['age_med'] df1['AgeLevel'] = df1['Age'].fillna(age_med) if not ('age_bin' in d): d['age_bin'] = list(pd.cut(df1['AgeLevel'], 5).unique()) d['age_bin'].sort() age_bin = d['age_bin'] df1['AgeLevel'] = df1['AgeLevel'].apply(lambda x: sum([x >= b.left for b in age_bin])) return df1 return _fix_df_copied_from_kaggle # fix_funcs.append(wrap_fix_df_copied_from_kaggle()) ''' Converts Age to categorical feature, 20 years a category Age has N/A value, use median value. ''' def wrap_fix_age(): med_l = [] def _fix_age(df): df1 = df.copy() if len(med_l) == 0: med_l.append(df1['Age'].median()) med = med_l[0] df1['Age'] = df1['Age'].fillna(med) df1['Age'] = df1['Age'].apply(lambda x: str(int(x / 10) * 10)) return df1 return _fix_age fix_funcs.append(wrap_fix_age()) ''' Converts Fare to categorical feature, 100 a category Fare has N/A value, use median value. ''' def wrap_fix_fare(): med_l = [] def _fix_fare(df): df1 = df.copy() if len(med_l) == 0: med_l.append(df1['Fare'].median()) med = med_l[0] df1['Fare'] = df1['Fare'].fillna(med) df1['Fare'] = df1['Fare'].apply(lambda x: str(int(x / 100) * 100)) return df1 return _fix_fare fix_funcs.append(wrap_fix_fare()) ''' Converts SibSp to no(0), less(1~2), Many(3+) ''' def fix_sibsp(df): df1 = df.copy() df1['SibSp'] = df1['SibSp'].apply(lambda x: 'no' if x == 0 else 'less' if x <= 2 else 'many') return df1 fix_funcs.append(fix_sibsp) ''' Converts Parch to no(0), less(0~3), Many(4+) ''' def fix_parch(df): df1 = df.copy() df1['Parch'] = df1['Parch'].apply(lambda x: 'no' if x == 0 else 'less' if x <= 3 else 'many') return df1 fix_funcs.append(fix_parch) ''' Converts N/A in Embarked to a new category most repeated value ''' def fix_embarked(df): df1 = df.copy() most_repeated_value = df1['Embarked'].mode()[0] df1['Embarked'] = df1['Embarked'].fillna(most_repeated_value) return df1 fix_funcs.append(fix_embarked) ''' Convert categorical fields to binned fields and do cross features ''' def wrap_fix_bin_and_cross(): bm_d = {} def _fix_bin_and_cross(df): df1 = df.copy() for kl in [ ['SibSp','Parch'], ['Sex','Age'], ['Sex'], ['Cabin'], ['Pclass'], ['SibSp'], ['Parch'], ['Fare'], ['Ticket'], ['Embarked'], ['Age'] ]: kname = str.join('_', kl) if not (kname in bm_d): field_info = {} for k in kl: field_info[k] = df1[k].unique() bm_d[kname] = BucketMapper(field_info, assume_no_na = True) bm = bm_d[kname] df_kl = df1[kl] df_bin = bm.to_one_hot(df_kl, kname) df1 = df1.join(df_bin) return df1 return _fix_bin_and_cross fix_funcs.append(wrap_fix_bin_and_cross()) ''' Drop fields ''' def fix_df_drop_fields(df): df1 = df.copy() for k in [ 'Name', 'PassengerId', 'Sex', 'Pclass', 'Cabin', 'Parch', 'Fare', 'SibSp', 'Ticket', 'Embarked', 'Age' ]: df1.drop(k, axis = 1, inplace = True) return df1 fix_funcs.append(fix_df_drop_fields) def fix_df(df, funcs): df1 = df.copy() for func in funcs: df1 = func(df1) return df1 df_train[df_train['Sex'] == 'male'] print('fix df_train2') df_train2 = fix_df(df_train, fix_funcs) print('fix df_test2') df_test2 = fix_df(df_test, fix_funcs) print('features in df_train2 (%d) = %s' % (len(df_train2.keys()), list(df_train2.keys()))) print('features in df_test2 (%d) = %s' % (len(df_test2.keys()), list(df_test2.keys()))) features = list(df_train2.keys()) features.remove('Survived') # In[ ]: # draw relationship between target and features # plot_df(df_train2, y = 'Survived') # ### DNN model # In[ ]: def construct_feature_columns(input_features): """Construct the TensorFlow Feature Columns. Args: input_features: The names of the numerical input features to use. Returns: A set of feature columns """ return set([tf.feature_column.numeric_column(my_feature) for my_feature in input_features]) def train_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None): """Input function for training Args: features: pandas DataFrame of features targets: pandas DataFrame of targets batch_size: Size of batches to be passed to the model shuffle: True or False. Whether to shuffle the data. num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely Returns: Tuple of (features, labels) for next data batch """ # Convert pandas data into a dict of np arrays. #features = {key:np.array(value) for key,value in dict(features).items()} features = dict(features) # Construct a dataset, and configure batching/repeating. ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) # Shuffle the data, if specified. if shuffle: ds = ds.shuffle(10000) # Return the next batch of data. features, labels = ds.make_one_shot_iterator().get_next() return features, labels def pred_input_fn(features, batch_size=1): """Input function for prediction Args: features: pandas DataFrame of features targets: pandas DataFrame of targets batch_size: Size of batches to be passed to the model shuffle: True or False. Whether to shuffle the data. num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely Returns: Tuple of (features, labels) for next data batch """ # Convert pandas data into a dict of np arrays. #features = {key:np.array(value) for key,value in dict(features).items()} features = dict(features) # Construct a dataset, and configure batching/repeating. ds = Dataset.from_tensor_slices(features) # warning: 2GB limit ds = ds.batch(batch_size) # Return the next batch of data. features = ds.make_one_shot_iterator().get_next() return features def calc_err_at_threshold(y_prob, y_true, threshold): y_true = np.array(y_true) y_prob = np.array(y_prob) y_pred = np.array([1 if p >= threshold else 0 for p in y_prob]) err = sum(y_pred != y_true).astype(float) / len(y_true) return err def split_train_validate(df, ratio): train_num = int(len(df) * ratio) validate_num = len(df) - train_num return df.head(train_num), df.tail(validate_num) def train_dnn_classifier(hidden_units, learning_rate, steps, batch_size, df_train, df_validate, features, target, threshold): """Trains a dnn classification model. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, and a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. df_train: A `DataFrame` containing the training features and labels. df_validate: A `DataFrame` containing the validation features and labels. Returns: The trained `DNNClassifier` object. """ periods = 10 steps_per_period = steps / periods # prepare features and targets train_features = df_train[features] train_targets = df_train[target] validate_features = df_validate[features] validate_targets = df_validate[target] # create the input functions. train_fn = lambda: train_input_fn(features = train_features, targets = train_targets, batch_size = batch_size, shuffle = True, num_epochs = None) train_pred_fn = lambda: train_input_fn(features = train_features, targets = train_targets, batch_size = 1, shuffle = False, num_epochs = 1) validate_pred_fn = lambda: train_input_fn(features = validate_features, targets = validate_targets, batch_size = 1, shuffle = False, num_epochs = 1) # Create a DNNClassifier object. my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( hidden_units = hidden_units, feature_columns=construct_feature_columns(train_features), optimizer=my_optimizer, config=tf.estimator.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") train_validate_metrics = pd.DataFrame() for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn = train_fn, steps = steps_per_period ) # Take a break and compute probabilities. train_pred = list(classifier.predict(input_fn=train_pred_fn)) train_prob = np.array([item['probabilities'] for item in train_pred]) validate_pred = list(classifier.predict(input_fn=validate_pred_fn)) validate_prob = np.array([item['probabilities'] for item in validate_pred]) # Compute training and validation errors. train_metrics = { 'train-logloss': [metrics.log_loss(train_targets, train_prob)], 'test-logloss': [metrics.log_loss(validate_targets, validate_prob)], 'train-error': [calc_err_at_threshold([p[1] for p in train_prob], train_targets, threshold)], 'test-error': [calc_err_at_threshold([p[1] for p in validate_prob], validate_targets, threshold)], } # Occasionally print the current loss. print(" period %02d (%d samples): LogLoss: %0.2f/%0.2f, Error: %0.2f/%0.2f" % (period, (period + 1) * steps_per_period * batch_size, train_metrics['train-logloss'][0], train_metrics['test-logloss'][0], train_metrics['train-error'][0], train_metrics['test-error'][0])) # Add the loss metrics from this period to our list. train_validate_metrics = train_validate_metrics.append(train_metrics, ignore_index = True) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Output a graph of loss metrics over periods. plt.figure(figsize = (10, 5)) plt.subplot(1, 2, 1) plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(list(train_validate_metrics['train-logloss']), label="training") plt.plot(list(train_validate_metrics['test-logloss']), label="validation") plt.legend() # Output a graph of error metrics over periods. plt.subplot(1, 2, 2) plt.ylabel("Error") plt.xlabel("Periods") plt.title("Error vs. Periods") plt.plot(list(train_validate_metrics['train-error']), label="training") plt.plot(list(train_validate_metrics['test-error']), label="validation") plt.legend() plt.tight_layout() return classifier # ### Use DNN # In[ ]: df_train3 = df_train2.reindex(np.random.permutation(df_train2.index)) df_train3 = df_train3.reset_index(drop = True) (df_train4, df_validate4) = split_train_validate(df_train3, 0.7) dnn_classifier = train_dnn_classifier(hidden_units = [30], learning_rate = 0.03, steps = 1000, batch_size = 30, df_train = df_train4, df_validate = df_validate4, features = features, target = 'Survived', threshold = 0.5) # In[ ]: # predict the test data test_predict_fn = lambda: pred_input_fn(features = df_test2, batch_size = 1) test_pred = list(dnn_classifier.predict(input_fn = test_predict_fn)) test_prob = np.array([item['probabilities'] for item in test_pred]) test_label = np.array([1 if p[1] >= 0.5 else 0 for p in test_prob]) df_submit = pd.DataFrame() df_submit['PassengerId'] = df_test['PassengerId'] df_submit['Survived'] = test_label df_submit.to_csv('./test_prediction_dnn.csv', index = False) print(df_submit.head(20))
a88b2e2e2cbe66502e17b460f6c306fee092a54e
660e87488effa7f3e6c043cf45a11bc59b31a1e9
/setup.py
59eae9dd4f0ecf542ee3dfeaa1513f436fa1a424
[]
no_license
bramwelt/alabaster
df967aa165ea15678cce0b960d2993cff058c697
65876483837ecdd4e6798b4a5c5b1842f598f4f2
refs/heads/master
2021-01-17T15:48:51.117359
2014-01-01T03:07:10
2014-01-01T03:07:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
779
py
#!/usr/bin/env python from setuptools import setup # Version info -- read without importing _locals = {} with open('alabaster/_version.py') as fp: exec(fp.read(), None, _locals) version = _locals['__version__'] setup( name='alabaster', version=version, description='A configurable sidebar-enabled Sphinx theme', author='Jeff Forcier', author_email='[email protected]', url='https://github.com/bitprophet/sphinx-theme', packages=['alabaster'], include_package_data=True, classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Topic :: Documentation', 'Topic :: Software Development :: Documentation', ], )
a0f34dfff064add39a5a0e2c24fef9d5508e159a
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_1/schcha027/question2.py
592328ec8d41a424a62af6a489e967d7653733b3
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
hours=eval(input("Enter the hours:\n")) minutes=eval(input("Enter the minutes:\n")) seconds=eval(input("Enter the seconds:\n")) if 0<=hours<=23: checkH=1 else: checkH=0 if 0<=minutes<=59: checkM=1 else: checkM=0 if 0<=seconds<=59: checkS=1 else: checkS=0 #print("H: ",checkH , " M: ",checkM , " S: ",checkS ) if checkM==1 & checkH==1 & checkS==1: print("Your time is valid.") else: print("Your time is invalid.")
2c4948d9b6fb6d08543014d62e1eec37adfb6f85
4dbe3b1b2af3ff77e8086ec32ab58dcf47849a3e
/dynamo3/connection.py
51e7dfcbb584766f04e06a7e9a35022cfd55775a
[ "MIT" ]
permissive
mnpk/dynamo3
b83dc700345972ea2336ac8ca842fd9f23edf5c2
51eacee60bdf8d058831a9ab3583a2cfe9f91ca9
refs/heads/master
2021-01-16T21:54:32.089114
2016-04-30T00:53:55
2016-04-30T00:53:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
50,842
py
""" Connection class for DynamoDB """ from contextlib import contextmanager import time import warnings import botocore.session import six from botocore.exceptions import ClientError from .batch import BatchWriter, encode_query_kwargs from .constants import NONE, COUNT, INDEXES, READ_COMMANDS from .exception import translate_exception, DynamoDBError, ThroughputException from .fields import Throughput, Table from .result import (ResultSet, GetResultSet, Result, Count, ConsumedCapacity, TableResultSet, Limit) from .types import Dynamizer, is_null def build_expected(dynamizer, expected): """ Build the Expected parameters from a dict """ ret = {} for k, v in six.iteritems(expected): if is_null(v): ret[k] = { 'Exists': False, } else: ret[k] = { 'Exists': True, 'Value': dynamizer.encode(v), } return ret def build_expression_values(dynamizer, expr_values, kwargs): """ Build ExpresionAttributeValues from a value or kwargs """ if expr_values: values = expr_values return dynamizer.encode_keys(values) elif kwargs: values = dict(((':' + k, v) for k, v in six.iteritems(kwargs))) return dynamizer.encode_keys(values) class DynamoDBConnection(object): """ Connection to DynamoDB. You should generally call :meth:`~.connect` instead of the constructor. Parameters ---------- client : :class:`~botocore.client.BaseClient`, optional The botocore client that will be used for requests dynamizer : :class:`~dynamo3.types.Dynamizer`, optional The Dynamizer object to use for encoding/decoding values Attributes ---------- request_retries : int Number of times to retry an API call if the throughput is exceeded (default 10) default_return_capacity : bool If true, all relevant calls will default to fetching the ConsumedCapacity """ def __init__(self, client=None, dynamizer=Dynamizer()): self.client = client self.dynamizer = dynamizer self.request_retries = 10 self.default_return_capacity = False self._hooks = None self.clear_hooks() self.rate_limiters = [] @property def host(self): """ The address of the endpoint """ return self.client.meta.endpoint_url @property def region(self): """ The name of the current connected region """ return self.client.meta.region_name @classmethod def connect_to_region(cls, region, session=None, access_key=None, secret_key=None, **kwargs): """ Connect to an AWS region. This method has been deprecated in favor of :meth:`~.connect` Parameters ---------- region : str Name of an AWS region session : :class:`~botocore.session.Session`, optional The Session object to use for the connection access_key : str, optional If session is None, set this access key when creating the session secret_key : str, optional If session is None, set this secret key when creating the session **kwargs : dict Keyword arguments to pass to the constructor """ warnings.warn("connect_to_region is deprecated and will be removed. " "Use connect instead.") if session is None: session = botocore.session.get_session() if access_key is not None: session.set_credentials(access_key, secret_key) client = session.create_client('dynamodb', region) return cls(client, **kwargs) @classmethod def connect_to_host(cls, host='localhost', port=8000, is_secure=False, session=None, access_key=None, secret_key=None, **kwargs): """ Connect to a specific host. This method has been deprecated in favor of :meth:`~.connect` Parameters ---------- host : str, optional Address of the host (default 'localhost') port : int, optional Connect to the host on this port (default 8000) is_secure : bool, optional Enforce https connection (default False) session : :class:`~botocore.session.Session`, optional The Session object to use for the connection access_key : str, optional If session is None, set this access key when creating the session secret_key : str, optional If session is None, set this secret key when creating the session **kwargs : dict Keyword arguments to pass to the constructor """ warnings.warn("connect_to_host is deprecated and will be removed. " "Use connect instead.") if session is None: session = botocore.session.get_session() if access_key is not None: session.set_credentials(access_key, secret_key) url = "http://%s:%d" % (host, port) client = session.create_client('dynamodb', 'local', endpoint_url=url, use_ssl=is_secure) return cls(client, **kwargs) @classmethod def connect(cls, region, session=None, access_key=None, secret_key=None, host=None, port=80, is_secure=True, **kwargs): """ Connect to an AWS region. Parameters ---------- region : str Name of an AWS region session : :class:`~botocore.session.Session`, optional The Session object to use for the connection access_key : str, optional If session is None, set this access key when creating the session secret_key : str, optional If session is None, set this secret key when creating the session host : str, optional Address of the host. Use this to connect to a local instance. port : int, optional Connect to the host on this port (default 80) is_secure : bool, optional Enforce https connection (default True) **kwargs : dict Keyword arguments to pass to the constructor """ if session is None: session = botocore.session.get_session() if access_key is not None: session.set_credentials(access_key, secret_key) url = None if host is not None: protocol = 'https' if is_secure else 'http' url = "%s://%s:%d" % (protocol, host, port) client = session.create_client('dynamodb', region, endpoint_url=url, use_ssl=is_secure) return cls(client, **kwargs) def call(self, command, **kwargs): """ Make a request to DynamoDB using the raw botocore API Parameters ---------- command : str The name of the Dynamo command to execute **kwargs : dict The parameters to pass up in the request Raises ------ exc : :class:`~.DynamoDBError` Returns ------- data : dict """ for hook in self._hooks['precall']: hook(self, command, kwargs) op = getattr(self.client, command) attempt = 0 while True: try: data = op(**kwargs) break except ClientError as e: exc = translate_exception(e, kwargs) attempt += 1 if isinstance(exc, ThroughputException): if attempt > self.request_retries: exc.re_raise() self.exponential_sleep(attempt) else: exc.re_raise() for hook in self._hooks['postcall']: hook(self, command, kwargs, data) if 'ConsumedCapacity' in data: is_read = command in READ_COMMANDS consumed = data['ConsumedCapacity'] if isinstance(consumed, list): data['consumed_capacity'] = [ ConsumedCapacity.from_response(cap, is_read) for cap in consumed ] else: capacity = ConsumedCapacity.from_response(consumed, is_read) data['consumed_capacity'] = capacity if 'consumed_capacity' in data: if isinstance(data['consumed_capacity'], list): all_caps = data['consumed_capacity'] else: all_caps = [data['consumed_capacity']] for hook in self._hooks['capacity']: for cap in all_caps: hook(self, command, kwargs, data, cap) return data def exponential_sleep(self, attempt): """ Sleep with exponential backoff """ if attempt > 1: time.sleep(0.1 * 2 ** attempt) def subscribe(self, event, hook): """ Subscribe a callback to an event Parameters ---------- event : str Available events are 'precall', 'postcall', and 'capacity'. precall is called with: (connection, command, query_kwargs) postcall is called with: (connection, command, query_kwargs, response) capacity is called with: (connection, command, query_kwargs, response, capacity) hook : callable """ if hook not in self._hooks[event]: self._hooks[event].append(hook) def unsubscribe(self, event, hook): """ Unsubscribe a hook from an event """ if hook in self._hooks[event]: self._hooks[event].remove(hook) def add_rate_limit(self, limiter): """ Add a RateLimit to the connection """ if limiter not in self.rate_limiters: self.subscribe('capacity', limiter.on_capacity) self.rate_limiters.append(limiter) def remove_rate_limit(self, limiter): """ Remove a RateLimit from the connection """ if limiter in self.rate_limiters: self.unsubscribe('capacity', limiter.on_capacity) self.rate_limiters.remove(limiter) @contextmanager def limit(self, limiter): """ Context manager that applies a RateLimit to the connection """ self.add_rate_limit(limiter) try: yield finally: self.remove_rate_limit(limiter) def clear_hooks(self): """ Remove all hooks from all events """ self._hooks = { 'precall': [], 'postcall': [], 'capacity': [], } def _default_capacity(self, value): """ Get the value for ReturnConsumedCapacity from provided value """ if value is not None: return value if self.default_return_capacity or self.rate_limiters: return INDEXES return NONE def _count(self, method, limit, keywords): """ Do a scan or query and aggregate the results into a Count """ # The limit will be mutated, so copy it and leave the original intact limit = limit.copy() has_more = True count = None while has_more: limit.set_request_args(keywords) response = self.call(method, **keywords) limit.post_fetch(response) count += Count.from_response(response) last_evaluated_key = response.get('LastEvaluatedKey') has_more = last_evaluated_key is not None and not limit.complete if has_more: keywords['ExclusiveStartKey'] = last_evaluated_key return count def list_tables(self, limit=None): """ List all tables. Parameters ---------- limit : int, optional Maximum number of tables to return Returns ------- tables : Iterator Iterator that returns table names as strings """ return TableResultSet(self, limit) def describe_table(self, tablename): """ Get the details about a table Parameters ---------- tablename : str Name of the table Returns ------- table : :class:`~dynamo3.fields.Table` """ try: response = self.call( 'describe_table', TableName=tablename)['Table'] return Table.from_response(response) except DynamoDBError as e: if e.kwargs['Code'] == 'ResourceNotFoundException': return None else: # pragma: no cover raise def create_table(self, tablename, hash_key, range_key=None, indexes=None, global_indexes=None, throughput=None): """ Create a table Parameters ---------- tablename : str Name of the table hash_key : :class:`~dynamo3.fields.DynamoKey` The key to use as the Hash key range_key : :class:`~dynamo3.fields.DynamoKey`, optional The key to use as the Range key indexes : list, optional List of :class:`~dynamo3.fields.LocalIndex` global_indexes : list, optional List of :class:`~dynamo3.fields.GlobalIndex` throughput : :class:`~dynamo3.fields.Throughput`, optional The throughput of the table """ if throughput is None: throughput = Throughput() all_attrs = set([hash_key]) if range_key is not None: all_attrs.add(range_key) key_schema = [hash_key.hash_schema()] if range_key is not None: key_schema.append(range_key.range_schema()) kwargs = { 'TableName': tablename, 'KeySchema': key_schema, 'ProvisionedThroughput': throughput.schema(), } if indexes: kwargs['LocalSecondaryIndexes'] = [ idx.schema(hash_key) for idx in indexes ] for idx in indexes: all_attrs.add(idx.range_key) if global_indexes: kwargs['GlobalSecondaryIndexes'] = [ idx.schema() for idx in global_indexes ] for idx in global_indexes: all_attrs.add(idx.hash_key) if idx.range_key is not None: all_attrs.add(idx.range_key) kwargs['AttributeDefinitions'] = [attr.definition() for attr in all_attrs] return self.call('create_table', **kwargs) def delete_table(self, tablename): """ Delete a table Parameters ---------- tablename : str Name of the table to delete Returns ------- response : bool True if the table was deleted, False if no table exists """ try: self.call('delete_table', TableName=tablename) return True except DynamoDBError as e: if e.kwargs['Code'] == 'ResourceNotFoundException': return False else: # pragma: no cover raise def put_item(self, tablename, item, expected=None, returns=NONE, return_capacity=None, expect_or=False, **kwargs): """ Store an item, overwriting existing data This uses the older version of the DynamoDB API. See also: :meth:`~.put_item2`. Parameters ---------- tablename : str Name of the table to write item : dict Item data expected : dict, optional DEPRECATED (use **kwargs instead). If present, will check the values in Dynamo before performing the write. If values do not match, will raise an exception. (Using None as a value checks that the field does not exist). returns : {NONE, ALL_OLD}, optional If ALL_OLD, will return any data that was overwritten (default NONE) return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) expect_or : bool, optional If True, the **kwargs conditionals will be OR'd together. If False, they will be AND'd. (default False). **kwargs : dict, optional Conditional filter on the PUT. Same format as the kwargs for :meth:`~.scan`. """ keywords = {} if kwargs: keywords['Expected'] = encode_query_kwargs(self.dynamizer, kwargs) if len(keywords['Expected']) > 1: keywords['ConditionalOperator'] = 'OR' if expect_or else 'AND' elif expected is not None: keywords['Expected'] = build_expected(self.dynamizer, expected) keywords['ReturnConsumedCapacity'] = \ self._default_capacity(return_capacity) item = self.dynamizer.encode_keys(item) ret = self.call('put_item', TableName=tablename, Item=item, ReturnValues=returns, **keywords) if ret: return Result(self.dynamizer, ret, 'Attributes') def put_item2(self, tablename, item, expr_values=None, alias=None, condition=None, returns=NONE, return_capacity=None, return_item_collection_metrics=NONE, **kwargs): """ Put a new item into a table For many parameters you will want to reference the DynamoDB API: http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html Parameters ---------- tablename : str Name of the table to update item : dict Item data expr_values : dict, optional See docs for ExpressionAttributeValues. See also: kwargs alias : dict, optional See docs for ExpressionAttributeNames condition : str, optional See docs for ConditionExpression returns : {NONE, ALL_OLD}, optional Return nothing or the old values from the item that was overwritten, if any (default NONE) return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) return_item_collection_metrics : (NONE, SIZE), optional SIZE will return statistics about item collections that were modified. **kwargs : dict, optional If expr_values is not provided, the kwargs dict will be used as the ExpressionAttributeValues (a ':' will be automatically prepended to all keys). """ keywords = { 'TableName': tablename, 'Item': self.dynamizer.encode_keys(item), 'ReturnValues': returns, 'ReturnConsumedCapacity': self._default_capacity(return_capacity), 'ReturnItemCollectionMetrics': return_item_collection_metrics, } values = build_expression_values(self.dynamizer, expr_values, kwargs) if values: keywords['ExpressionAttributeValues'] = values if alias: keywords['ExpressionAttributeNames'] = alias if condition: keywords['ConditionExpression'] = condition result = self.call('put_item', **keywords) if result: return Result(self.dynamizer, result, 'Attributes') def get_item(self, tablename, key, attributes=None, consistent=False, return_capacity=None): """ Fetch a single item from a table This uses the older version of the DynamoDB API. See also: :meth:`~.get_item2`. Parameters ---------- tablename : str Name of the table to fetch from key : dict Primary key dict specifying the hash key and, if applicable, the range key of the item. attributes : list, optional If present, only fetch these attributes from the item consistent : bool, optional Perform a strongly consistent read of the data (default False) return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) """ kwargs = { 'TableName': tablename, 'Key': self.dynamizer.encode_keys(key), 'ConsistentRead': consistent, 'ReturnConsumedCapacity': self._default_capacity(return_capacity), } if attributes is not None: kwargs['AttributesToGet'] = attributes data = self.call('get_item', **kwargs) return Result(self.dynamizer, data, 'Item') def get_item2(self, tablename, key, attributes=None, alias=None, consistent=False, return_capacity=None): """ Fetch a single item from a table Parameters ---------- tablename : str Name of the table to fetch from key : dict Primary key dict specifying the hash key and, if applicable, the range key of the item. attributes : str or list, optional See docs for ProjectionExpression. If list, it will be joined by commas. alias : dict, optional See docs for ExpressionAttributeNames consistent : bool, optional Perform a strongly consistent read of the data (default False) return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) """ kwargs = { 'TableName': tablename, 'Key': self.dynamizer.encode_keys(key), 'ConsistentRead': consistent, 'ReturnConsumedCapacity': self._default_capacity(return_capacity), } if attributes is not None: if not isinstance(attributes, six.string_types): attributes = ', '.join(attributes) kwargs['ProjectionExpression'] = attributes if alias: kwargs['ExpressionAttributeNames'] = alias data = self.call('get_item', **kwargs) return Result(self.dynamizer, data, 'Item') def delete_item(self, tablename, key, expected=None, returns=NONE, return_capacity=None, expect_or=False, **kwargs): """ Delete an item This uses the older version of the DynamoDB API. See also: :meth:`~.delete_item2`. Parameters ---------- tablename : str Name of the table to delete from key : dict Primary key dict specifying the hash key and, if applicable, the range key of the item. expected : dict, optional DEPRECATED (use **kwargs instead). If present, will check the values in Dynamo before performing the write. If values do not match, will raise an exception. (Using None as a value checks that the field does not exist). returns : {NONE, ALL_OLD}, optional If ALL_OLD, return the data that was deleted (default NONE) return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) expect_or : bool, optional If True, the **kwargs conditionals will be OR'd together. If False, they will be AND'd. (default False). **kwargs : dict, optional Conditional filter on the DELETE. Same format as the kwargs for :meth:`~.scan`. """ key = self.dynamizer.encode_keys(key) keywords = { 'ReturnConsumedCapacity': self._default_capacity(return_capacity), } if kwargs: keywords['Expected'] = encode_query_kwargs(self.dynamizer, kwargs) if len(keywords['Expected']) > 1: keywords['ConditionalOperator'] = 'OR' if expect_or else 'AND' elif expected is not None: keywords['Expected'] = build_expected(self.dynamizer, expected) ret = self.call('delete_item', TableName=tablename, Key=key, ReturnValues=returns, **keywords) if ret: return Result(self.dynamizer, ret, 'Attributes') def delete_item2(self, tablename, key, expr_values=None, alias=None, condition=None, returns=NONE, return_capacity=None, return_item_collection_metrics=NONE, **kwargs): """ Delete an item from a table For many parameters you will want to reference the DynamoDB API: http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html Parameters ---------- tablename : str Name of the table to update key : dict Primary key dict specifying the hash key and, if applicable, the range key of the item. expr_values : dict, optional See docs for ExpressionAttributeValues. See also: kwargs alias : dict, optional See docs for ExpressionAttributeNames condition : str, optional See docs for ConditionExpression returns : {NONE, ALL_OLD, UPDATED_OLD, ALL_NEW, UPDATED_NEW}, optional Return either the old or new values, either all attributes or just the ones that changed. (default NONE) return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) return_item_collection_metrics : (NONE, SIZE), optional SIZE will return statistics about item collections that were modified. **kwargs : dict, optional If expr_values is not provided, the kwargs dict will be used as the ExpressionAttributeValues (a ':' will be automatically prepended to all keys). """ keywords = { 'TableName': tablename, 'Key': self.dynamizer.encode_keys(key), 'ReturnValues': returns, 'ReturnConsumedCapacity': self._default_capacity(return_capacity), 'ReturnItemCollectionMetrics': return_item_collection_metrics, } values = build_expression_values(self.dynamizer, expr_values, kwargs) if values: keywords['ExpressionAttributeValues'] = values if alias: keywords['ExpressionAttributeNames'] = alias if condition: keywords['ConditionExpression'] = condition result = self.call('delete_item', **keywords) if result: return Result(self.dynamizer, result, 'Attributes') def batch_write(self, tablename, return_capacity=None, return_item_collection_metrics=NONE): """ Perform a batch write on a table Parameters ---------- tablename : str Name of the table to write to return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) return_item_collection_metrics : (NONE, SIZE), optional SIZE will return statistics about item collections that were modified. Examples -------- .. code-block:: python with connection.batch_write('mytable') as batch: batch.put({'id': 'id1', 'foo': 'bar'}) batch.delete({'id': 'oldid'}) """ return_capacity = self._default_capacity(return_capacity) return BatchWriter(self, tablename, return_capacity=return_capacity, return_item_collection_metrics=return_item_collection_metrics) def batch_get(self, tablename, keys, attributes=None, alias=None, consistent=False, return_capacity=None): """ Perform a batch get of many items in a table Parameters ---------- tablename : str Name of the table to fetch from keys : list or iterable List or iterable of primary key dicts that specify the hash key and the optional range key of each item to fetch attributes : str or list, optional See docs for ProjectionExpression. If list, it will be joined by commas. alias : dict, optional See docs for ExpressionAttributeNames consistent : bool, optional Perform a strongly consistent read of the data (default False) return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) """ keys = [self.dynamizer.encode_keys(k) for k in keys] return_capacity = self._default_capacity(return_capacity) ret = GetResultSet(self, tablename, keys, consistent=consistent, attributes=attributes, alias=alias, return_capacity=return_capacity) return ret def update_item(self, tablename, key, updates, returns=NONE, return_capacity=None, expect_or=False, **kwargs): """ Update a single item in a table This uses the older version of the DynamoDB API. See also: :meth:`~.update_item2`. Parameters ---------- tablename : str Name of the table to update key : dict Primary key dict specifying the hash key and, if applicable, the range key of the item. updates : list List of :class:`~dynamo3.batch.ItemUpdate` returns : {NONE, ALL_OLD, UPDATED_OLD, ALL_NEW, UPDATED_NEW}, optional Return either the old or new values, either all attributes or just the ones that changed. (default NONE) return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) expect_or : bool, optional If True, the updates conditionals will be OR'd together. If False, they will be AND'd. (default False). **kwargs : dict, optional Conditional filter on the PUT. Same format as the kwargs for :meth:`~.scan`. Notes ----- There are two ways to specify the expected values of fields. The simplest is via the list of updates. Each updated field may specify a constraint on the current value of that field. You may pass additional constraints in via the **kwargs the same way you would for put_item. This is necessary if you have constraints on fields that are not being updated. """ key = self.dynamizer.encode_keys(key) attr_updates = {} expected = {} keywords = { 'ReturnConsumedCapacity': self._default_capacity(return_capacity), } for update in updates: attr_updates.update(update.attrs(self.dynamizer)) expected.update(update.expected(self.dynamizer)) # Pull the 'expected' constraints from the kwargs for k, v in six.iteritems(encode_query_kwargs(self.dynamizer, kwargs)): if k in expected: raise ValueError("Cannot have more than one condition on a single field") expected[k] = v if expected: keywords['Expected'] = expected if len(expected) > 1: keywords['ConditionalOperator'] = 'OR' if expect_or else 'AND' result = self.call('update_item', TableName=tablename, Key=key, AttributeUpdates=attr_updates, ReturnValues=returns, **keywords) if result: return Result(self.dynamizer, result, 'Attributes') def update_item2(self, tablename, key, expression, expr_values=None, alias=None, condition=None, returns=NONE, return_capacity=None, return_item_collection_metrics=NONE, **kwargs): """ Update a single item in a table For many parameters you will want to reference the DynamoDB API: http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html Parameters ---------- tablename : str Name of the table to update key : dict Primary key dict specifying the hash key and, if applicable, the range key of the item. expression : str See docs for UpdateExpression expr_values : dict, optional See docs for ExpressionAttributeValues. See also: kwargs alias : dict, optional See docs for ExpressionAttributeNames condition : str, optional See docs for ConditionExpression returns : {NONE, ALL_OLD, UPDATED_OLD, ALL_NEW, UPDATED_NEW}, optional Return either the old or new values, either all attributes or just the ones that changed. (default NONE) return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) return_item_collection_metrics : (NONE, SIZE), optional SIZE will return statistics about item collections that were modified. **kwargs : dict, optional If expr_values is not provided, the kwargs dict will be used as the ExpressionAttributeValues (a ':' will be automatically prepended to all keys). """ keywords = { 'TableName': tablename, 'Key': self.dynamizer.encode_keys(key), 'UpdateExpression': expression, 'ReturnValues': returns, 'ReturnConsumedCapacity': self._default_capacity(return_capacity), 'ReturnItemCollectionMetrics': return_item_collection_metrics, } values = build_expression_values(self.dynamizer, expr_values, kwargs) if values: keywords['ExpressionAttributeValues'] = values if alias: keywords['ExpressionAttributeNames'] = alias if condition: keywords['ConditionExpression'] = condition result = self.call('update_item', **keywords) if result: return Result(self.dynamizer, result, 'Attributes') def scan(self, tablename, attributes=None, count=False, limit=None, return_capacity=None, filter_or=False, exclusive_start_key=None, **kwargs): """ Perform a full-table scan This uses the older version of the DynamoDB API. See also: :meth:`~.scan2`. Parameters ---------- tablename : str Name of the table to scan attributes : list If present, only fetch these attributes from the item count : bool, optional If True, return a count of matched items instead of the items themselves (default False) limit : int, optional Maximum number of items to return return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) filter_or : bool, optional If True, multiple filter kwargs will be OR'd together. If False, they will be AND'd together. (default False) exclusive_start_key : dict, optional The ExclusiveStartKey to resume a previous query **kwargs : dict, optional Filter arguments (examples below) Examples -------- You may pass in constraints using the Django-style '__' syntax. For example: .. code-block:: python connection.scan('mytable', tags__contains='searchtag') connection.scan('mytable', name__eq='dsa') connection.scan('mytable', action__in=['wibble', 'wobble']) """ keywords = { 'TableName': tablename, 'ReturnConsumedCapacity': self._default_capacity(return_capacity), } if attributes is not None: keywords['AttributesToGet'] = attributes if exclusive_start_key is not None: keywords['ExclusiveStartKey'] = \ self.dynamizer.maybe_encode_keys(exclusive_start_key) if kwargs: keywords['ScanFilter'] = encode_query_kwargs( self.dynamizer, kwargs) if len(kwargs) > 1: keywords['ConditionalOperator'] = 'OR' if filter_or else 'AND' if not isinstance(limit, Limit): limit = Limit(limit) if count: keywords['Select'] = COUNT return self._count('scan', limit, keywords) else: return ResultSet(self, limit, 'scan', **keywords) def scan2(self, tablename, expr_values=None, alias=None, attributes=None, consistent=False, select=None, index=None, limit=None, return_capacity=None, filter=False, segment=None, total_segments=None, exclusive_start_key=None, **kwargs): """ Perform a full-table scan For many parameters you will want to reference the DynamoDB API: http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Scan.html Parameters ---------- tablename : str Name of the table to scan expr_values : dict, optional See docs for ExpressionAttributeValues. See also: kwargs alias : dict, optional See docs for ExpressionAttributeNames attributes : str or list, optional See docs for ProjectionExpression. If list, it will be joined by commas. consistent : bool, optional Perform a strongly consistent read of the data (default False) select : str, optional See docs for Select index : str, optional The name of the index to query limit : int, optional Maximum number of items to return return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) filter : str, optional See docs for FilterExpression segment : int, optional When doing a parallel scan, the unique thread identifier for this scan. If present, total_segments must also be present. total_segments : int, optional When doing a parallel scan, the total number of threads performing the scan. exclusive_start_key : dict, optional The ExclusiveStartKey to resume a previous query **kwargs : dict, optional If expr_values is not provided, the kwargs dict will be used as the ExpressionAttributeValues (a ':' will be automatically prepended to all keys). Examples -------- .. code-block:: python connection.scan2('mytable', filter='contains(tags, :search)', search='text) connection.scan2('mytable', filter='id = :id', expr_values={':id': 'dsa'}) """ keywords = { 'TableName': tablename, 'ReturnConsumedCapacity': self._default_capacity(return_capacity), 'ConsistentRead': consistent, } values = build_expression_values(self.dynamizer, expr_values, kwargs) if values: keywords['ExpressionAttributeValues'] = values if attributes is not None: if not isinstance(attributes, six.string_types): attributes = ', '.join(attributes) keywords['ProjectionExpression'] = attributes if index is not None: keywords['IndexName'] = index if alias: keywords['ExpressionAttributeNames'] = alias if select: keywords['Select'] = select if filter: keywords['FilterExpression'] = filter if segment is not None: keywords['Segment'] = segment if total_segments is not None: keywords['TotalSegments'] = total_segments if exclusive_start_key is not None: keywords['ExclusiveStartKey'] = \ self.dynamizer.maybe_encode_keys(exclusive_start_key) if not isinstance(limit, Limit): limit = Limit(limit) if select == COUNT: return self._count('scan', limit, keywords) else: return ResultSet(self, limit, 'scan', **keywords) def query(self, tablename, attributes=None, consistent=False, count=False, index=None, limit=None, desc=False, return_capacity=None, filter=None, filter_or=False, exclusive_start_key=None, **kwargs): """ Perform an index query on a table This uses the older version of the DynamoDB API. See also: :meth:`~.query2`. Parameters ---------- tablename : str Name of the table to query attributes : list If present, only fetch these attributes from the item consistent : bool, optional Perform a strongly consistent read of the data (default False) count : bool, optional If True, return a count of matched items instead of the items themselves (default False) index : str, optional The name of the index to query limit : int, optional Maximum number of items to return desc : bool, optional If True, return items in descending order (default False) return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) filter : dict, optional Query arguments. Same format as **kwargs, but these arguments filter the results on the server before they are returned. They will NOT use an index, as that is what the **kwargs are for. filter_or : bool, optional If True, multiple filter args will be OR'd together. If False, they will be AND'd together. (default False) exclusive_start_key : dict, optional The ExclusiveStartKey to resume a previous query **kwargs : dict, optional Query arguments (examples below) Examples -------- You may pass in constraints using the Django-style '__' syntax. For example: .. code-block:: python connection.query('mytable', foo__eq=5) connection.query('mytable', foo__eq=5, bar__lt=22) connection.query('mytable', foo__eq=5, bar__between=(1, 10)) """ keywords = { 'TableName': tablename, 'ReturnConsumedCapacity': self._default_capacity(return_capacity), 'ConsistentRead': consistent, 'ScanIndexForward': not desc, 'KeyConditions': encode_query_kwargs(self.dynamizer, kwargs), } if attributes is not None: keywords['AttributesToGet'] = attributes if index is not None: keywords['IndexName'] = index if filter is not None: if len(filter) > 1: keywords['ConditionalOperator'] = 'OR' if filter_or else 'AND' keywords['QueryFilter'] = encode_query_kwargs(self.dynamizer, filter) if exclusive_start_key is not None: keywords['ExclusiveStartKey'] = \ self.dynamizer.maybe_encode_keys(exclusive_start_key) if not isinstance(limit, Limit): limit = Limit(limit) if count: keywords['Select'] = COUNT return self._count('query', limit, keywords) else: return ResultSet(self, limit, 'query', **keywords) def query2(self, tablename, key_condition_expr, expr_values=None, alias=None, attributes=None, consistent=False, select=None, index=None, limit=None, desc=False, return_capacity=None, filter=None, exclusive_start_key=None, **kwargs): """ Perform an index query on a table For many parameters you will want to reference the DynamoDB API: http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html Parameters ---------- tablename : str Name of the table to query key_condition_expr : str See docs for KeyConditionExpression expr_values : dict, optional See docs for ExpressionAttributeValues. See also: kwargs alias : dict, optional See docs for ExpressionAttributeNames attributes : str or list, optional See docs for ProjectionExpression. If list, it will be joined by commas. consistent : bool, optional Perform a strongly consistent read of the data (default False) select : str, optional See docs for Select index : str, optional The name of the index to query limit : int, optional Maximum number of items to return desc : bool, optional If True, return items in descending order (default False) return_capacity : {NONE, INDEXES, TOTAL}, optional INDEXES will return the consumed capacity for indexes, TOTAL will return the consumed capacity for the table and the indexes. (default NONE) filter : str, optional See docs for FilterExpression exclusive_start_key : dict, optional The ExclusiveStartKey to resume a previous query **kwargs : dict, optional If expr_values is not provided, the kwargs dict will be used as the ExpressionAttributeValues (a ':' will be automatically prepended to all keys). Examples -------- .. code-block:: python connection.query2('mytable', 'foo = :foo', foo=5) connection.query2('mytable', 'foo = :foo', expr_values={':foo': 5}) """ values = build_expression_values(self.dynamizer, expr_values, kwargs) keywords = { 'TableName': tablename, 'ReturnConsumedCapacity': self._default_capacity(return_capacity), 'ConsistentRead': consistent, 'KeyConditionExpression': key_condition_expr, 'ExpressionAttributeValues': values, 'ScanIndexForward': not desc, } if attributes is not None: if not isinstance(attributes, six.string_types): attributes = ', '.join(attributes) keywords['ProjectionExpression'] = attributes if index is not None: keywords['IndexName'] = index if alias: keywords['ExpressionAttributeNames'] = alias if select: keywords['Select'] = select if filter: keywords['FilterExpression'] = filter if exclusive_start_key is not None: keywords['ExclusiveStartKey'] = \ self.dynamizer.maybe_encode_keys(exclusive_start_key) if not isinstance(limit, Limit): limit = Limit(limit) if select == COUNT: return self._count('query', limit, keywords) else: return ResultSet(self, limit, 'query', **keywords) def update_table(self, tablename, throughput=None, global_indexes=None, index_updates=None): """ Update the throughput of a table and/or global indexes Parameters ---------- tablename : str Name of the table to update throughput : :class:`~dynamo3.fields.Throughput`, optional The new throughput of the table global_indexes : dict, optional DEPRECATED. Use index_updates now. Map of index name to :class:`~dynamo3.fields.Throughput` index_updates : list of :class:`~dynamo3.fields.IndexUpdate`, optional List of IndexUpdates to perform """ kwargs = { 'TableName': tablename } all_attrs = set() if throughput is not None: kwargs['ProvisionedThroughput'] = throughput.schema() if index_updates is not None: updates = [] for update in index_updates: all_attrs.update(update.get_attrs()) updates.append(update.serialize()) kwargs['GlobalSecondaryIndexUpdates'] = updates elif global_indexes is not None: kwargs['GlobalSecondaryIndexUpdates'] = [ { 'Update': { 'IndexName': key, 'ProvisionedThroughput': value.schema(), } } for key, value in six.iteritems(global_indexes) ] if all_attrs: attr_definitions = [attr.definition() for attr in all_attrs] kwargs['AttributeDefinitions'] = attr_definitions return self.call('update_table', **kwargs)
b17e57c7ad95e495e68871a72f53d9b3fa51a4f5
bf5dcdc1cb57ed72a47e0c444bb2fb631d3f0933
/setup.py
3d40c4fdc4479440f3c1e2913596de9a253375ae
[]
no_license
vphpersson/twitter_osint
3e2128f1d9944053ee127ec748a56ede55cefcac
a437825d488afa2d5b15c221348cc72157f25227
refs/heads/master
2023-07-05T08:44:29.579442
2021-08-22T09:12:28
2021-08-22T09:12:28
398,564,383
0
0
null
null
null
null
UTF-8
Python
false
false
440
py
from setuptools import setup, find_packages setup( name='twitter_osint', version='0.1', packages=find_packages(), install_requires=[ 'httpx', 'httpx_oauth @ git+ssh://[email protected]/vphpersson/httpx_oauth.git#egg=httpx_oauth', 'pyutils @ git+ssh://[email protected]/vphpersson/pyutils.git#egg=pyutils' 'twitter_api @ git+ssh://[email protected]/vphpersson/twitter_api.git#egg=twitter_api' ] )
893741290acaa4737579c1cfb54e07484866c834
70b0d4b4440a97b648a08de0d89cc536e8f4c569
/1313.py
69aedd9d90dbd61fabe97a8b396f434ba1868c40
[]
no_license
seoseokbeom/leetcode
01c9ca8a23e38a3d3c91d2de26f0b2a3a1710487
9d68de2271c2d5666750c8060407b56abbf6f45d
refs/heads/master
2023-03-27T20:20:24.790750
2021-03-25T04:43:50
2021-03-25T04:43:50
273,779,517
1
0
null
null
null
null
UTF-8
Python
false
false
332
py
class Solution(object): def decompressRLElist(self, nums): freq = 0 arr = [] for i, v in enumerate(nums): if i % 2 == 0: freq = nums[i] else: arr.extend(([nums[i]]*freq)) return arr a = Solution() print(a.decompressRLElist([1, 1, 2, 3]))
1d8792acf20db18580b85389fa2d5f8108a2d512
b3e9a8963b9aca334b93b95bc340c379544e1046
/euler/59.py
eab411b4784038d836ba37febc29bd02a82d47d8
[]
no_license
protocol7/euler.py
86ea512c2c216968e6c260b19469c0c8d038feb7
e2a8e46a9b07e6d0b039a5496059f3bf73aa5441
refs/heads/master
2022-09-08T22:49:47.486631
2022-08-23T20:07:00
2022-08-23T20:07:00
169,478,759
0
0
null
null
null
null
UTF-8
Python
false
false
568
py
#!/usr/bin/env python3 from string import ascii_lowercase from itertools import permutations, cycle def read_cipher(): with open("p059_cipher.txt") as f: s = f.read().strip() return [int(i) for i in s.split(",")] c = read_cipher() def to_string(l): return "".join([chr(x) for x in l]) def find(): for key in permutations(ascii_lowercase, 3): key = cycle([ord(x) for x in key]) pt = list(map(lambda x: x[0] ^ x[1], zip(c, key))) if " the " in to_string(pt): return sum(pt) assert 129448 == find()
010cfa1c616d88a8f9af32b2216f527d47fe7ef3
dd3b8bd6c9f6f1d9f207678b101eff93b032b0f0
/basis/AbletonLive10.1_MIDIRemoteScripts/ableton/v2/control_surface/elements/optional.py
f4cef1c4ec91e78d8434b687f1a2ab8f8b7de8ca
[]
no_license
jhlax/les
62955f57c33299ebfc4fca8d0482b30ee97adfe7
d865478bf02778e509e61370174a450104d20a28
refs/heads/master
2023-08-17T17:24:44.297302
2019-12-15T08:13:29
2019-12-15T08:13:29
228,120,861
3
0
null
2023-08-03T16:40:44
2019-12-15T03:02:27
Python
UTF-8
Python
false
false
1,432
py
# uncompyle6 version 3.4.1 # Python bytecode 2.7 (62211) # Decompiled from: Python 2.7.16 (v2.7.16:413a49145e, Mar 2 2019, 14:32:10) # [GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] # Embedded file name: /Users/versonator/Jenkins/live/output/mac_64_static/Release/python-bundle/MIDI Remote Scripts/ableton/v2/control_surface/elements/optional.py # Compiled at: 2019-04-09 19:23:45 from __future__ import absolute_import, print_function, unicode_literals from ...base import listens from .combo import ToggleElement class ChoosingElement(ToggleElement): u""" An Element wrapper that enables one of the nested elements based on the value of the given flag. """ def __init__(self, flag=None, *a, **k): super(ChoosingElement, self).__init__(*a, **k) self.__on_flag_changed.subject = flag self.__on_flag_changed(flag.value) @listens('value') def __on_flag_changed(self, value): self.set_toggled(value) class OptionalElement(ChoosingElement): u""" An Element wrapper that enables the nested element IFF some given flag is set to a specific value. """ def __init__(self, control=None, flag=None, value=None, *a, **k): on_control = control if value else None off_control = None if value else control super(OptionalElement, self).__init__(on_control=on_control, off_control=off_control, flag=flag, *a, **k) return
fbba06a4b19bbae28afe04b3603983a619889f87
a6f9e8412682d8a9f21b2a3bf54b7088f7149cc9
/pytest/Compiler/constants32.py
df0f657cfab914f20431d61a087c5fe902148935
[ "Apache-2.0", "LLVM-exception" ]
permissive
stellaraccident/mlir-npcomp
49a3c285d728d43db4caf7d18cb5919be40d6206
a9d7610f9d6740e984cbeb55854abac1f92414f9
refs/heads/master
2021-09-26T18:24:46.630327
2020-07-13T23:15:42
2020-07-13T23:15:42
250,896,585
9
0
null
null
null
null
UTF-8
Python
false
false
616
py
# RUN: %PYTHON %s | npcomp-opt -split-input-file | FileCheck %s --dump-input=fail # Subset of constant tests which verify against a GenericTarget32. from npcomp.compiler import test_config from npcomp.compiler.target import * import_global = test_config.create_import_dump_decorator( target_factory=GenericTarget32) # CHECK-LABEL: func @integer_constants @import_global def integer_constants(): # CHECK: %[[A:.*]] = constant 100 : i32 a = 100 return a # CHECK-LABEL: func @float_constants @import_global def float_constants(): # CHECK: %[[A:.*]] = constant 2.200000e+00 : f32 a = 2.2 return a
c939c29a265c9ad2c8e60bbe024d8471ccb7348d
480e33f95eec2e471c563d4c0661784c92396368
/Geometry/CMSCommonData/test/dd4hep/2026D35.py
fcd71f1b6cde299aae8e0ce696f2cf7e34257bba
[ "Apache-2.0" ]
permissive
cms-nanoAOD/cmssw
4d836e5b76ae5075c232de5e062d286e2026e8bd
4eccb8a758b605875003124dd55ea58552b86af1
refs/heads/master-cmsswmaster
2021-01-23T21:19:52.295420
2020-08-27T08:01:20
2020-08-27T08:01:20
102,867,729
7
14
Apache-2.0
2022-05-23T07:58:09
2017-09-08T14:03:57
C++
UTF-8
Python
false
false
1,228
py
import FWCore.ParameterSet.Config as cms from Configuration.Eras.Era_Phase2C4_cff import Phase2C4 process = cms.Process("HcalParametersTest",Phase2C4) process.load('Geometry.HcalCommonData.hcalParameters_cff') process.load('Geometry.HcalCommonData.hcalSimulationParameters_cff') process.load('FWCore.MessageService.MessageLogger_cfi') process.source = cms.Source("EmptySource") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.DDDetectorESProducer = cms.ESSource("DDDetectorESProducer", confGeomXMLFiles = cms.FileInPath('Geometry/CMSCommonData/data/dd4hep/cmsExtendedGeometry2026D35.xml'), appendToDataLabel = cms.string('') ) process.DDCompactViewESProducer = cms.ESProducer("DDCompactViewESProducer", appendToDataLabel = cms.string('') ) process.hpa = cms.EDAnalyzer("HcalParametersAnalyzer") process.hcalParameters.fromDD4Hep = cms.bool(True) process.hcalSimulationParameters.fromDD4Hep = cms.bool(True) process.Timing = cms.Service("Timing") process.SimpleMemoryCheck = cms.Service("SimpleMemoryCheck") process.p1 = cms.Path(process.hpa)
051b8fc4c4f9b655d4722a097ae2ebb6b6478ded
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_appended.py
d4a4abe95c2c87fcc180869b9bcb91fd2dea25b1
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
#calss header class _APPENDED(): def __init__(self,): self.name = "APPENDED" self.definitions = append self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['append']
54dd5c9c96fe3d34d65d41b7cc7943a8ad1da41a
e41b86e0b25edc055167aa13a55bd2da14869b73
/summarizer_app/apps.py
3ea7b8aad2120fb39dd02f2f970052c1010f2ffb
[]
no_license
tejasa97/django-summarizer
9ce21ba3ff9176e4cf341531b380415e03cda150
5be990ab95358adb002cc8ed62cf8b56cfe85130
refs/heads/master
2023-02-16T12:52:52.172337
2021-01-04T18:42:36
2021-01-04T18:42:36
325,529,463
7
0
null
null
null
null
UTF-8
Python
false
false
102
py
from django.apps import AppConfig class SummarizerAppConfig(AppConfig): name = 'summarizer_app'
5ad4df840871267cc1bb83ec88e485f0153556e0
25d081c82bf9adc2a8d96c254df0239a9f982a71
/museum_api/apps.py
cc4d3156bb67434fd105904f896d8798cb30922c
[ "MIT" ]
permissive
asiekierka/z2
f102de582aaa9fc51b6b598a1fb07c58be4f540f
d926408423dc98d71d5e7fc2fda3202c03c309de
refs/heads/master
2021-06-15T15:09:41.614135
2021-02-23T02:44:54
2021-02-23T02:44:54
146,348,922
1
0
MIT
2018-08-27T20:14:46
2018-08-27T20:14:46
null
UTF-8
Python
false
false
94
py
from django.apps import AppConfig class MuseumApiConfig(AppConfig): name = 'museum_api'
544bcce07294878710767c945f78174e204c8843
af669dbef653dd69474f4c0836582bf14262c80f
/price-test/frame/lib/deploylib/confparser.py
2aaf1de62efdfe8dc17d1dc8b90fe1dbe81695cb
[]
no_license
siki320/fishtest
7a3f91639d8d4cee624adc1d4d05563611b435e9
7c3f024192e1c48214b53bc45105bdf9e746a013
refs/heads/master
2021-01-19T21:58:36.807126
2017-04-19T09:56:37
2017-04-19T09:56:37
88,729,049
0
0
null
null
null
null
GB18030
Python
false
false
12,050
py
# -*- coding: GB18030 -*- """ @author: lipeilong @date: Mar 28, 2012 @summary: 负责拓扑配置文件的解析 @version: 1.0.0.0 @copyright: Copyright (c) 2012 XX, Inc. All Rights Reserved """ import os import string import ConfigParser from frame.lib.commonlib.configure.configure import Configure class EnvConfigHelper(object): """ @author:maqi @note:Env拓扑配置Helper类 """ @staticmethod def get_conf(file_dir,file): """ @note:生成Env拓扑配置 """ if file is None: return None try: conf = EnvMMConfigParser(file_dir, file) if conf.get_conf_version() == "3": conf = EnvMMUbConfigParser(file_dir, file) except ConfigParser.MissingSectionHeaderError: conf = EnvSMConfigParser(file_dir,file) return conf class EnvSMConfigParser(object): """ @author:maqi @note:解析单机部署Env的拓扑结构 """ def __init__(self,file_dir,file): self.type = 'sm' if file == None: self.lines = None else: f = open(file_dir+file, 'r') self.lines = f.readlines() f.close() def get_conf_version(self): return "1" def parse_topology(self): return_topology_list = [] line_count = 0 for line in self.lines: line_count += 1 if False == self._check_line_validity(line): #只有非注释行 #if False == self._check_line_is_comments(line): continue up_module, down_module = self._parse_module_name(line) return_topology_list.append([up_module,down_module]) return return_topology_list def _check_line_is_empty(self, line): ''' @note: 检查是否为空行 ''' if "\n" != line[-1]: return False for c in line[:-1]: if " " != c: return False return True def _check_line_is_comments(self, line): ''' @note: 检查line是不是一个注释行,空行 ''' if True == self._check_line_is_empty(line): return True #不包含“#”,肯定不是注释行 pos = string.find(line, "#") if -1 == pos: return False #注意只判断第一个“#”, line的第一个非空格字符是“#”,表示被注释了 #这里考虑了有效行尾的注释 ret = True for c in line[:pos]: if " " != c: ret = False break return ret def _check_line_validity(self, line): ''' @note:检查line的合法性 ''' ret = True #line中既 不包含“->”,又不包含“<-” if -1 == string.find(line, "->") and -1 == string.find(line, "<-"): ret = False #line中既 包含“->”,又包含“<-” if -1 != string.find(line, "->") and -1 != string.find(line, "<-"): ret = False #检查是不是注释行 if True == self._check_line_is_comments(line): ret = False return ret def _parse_module_name(self, line): ''' @note: 从合法的line中parse出上下游模块名 ''' sep_list = ["->", "<-"] for s in sep_list: if -1 != string.find(line, s): sep = s break module_name_list = line.split(sep) # 合法line的中含有说明类注释,过滤掉注释 if -1 != module_name_list[1].find("#"): module_name_list[1] = module_name_list[1][0:module_name_list[1].index("#")] #由 "->", "<-"判断上下游模块 up_module_name = module_name_list[sep_list.index(sep)].strip() down_module_name = module_name_list[1 - sep_list.index(sep)].strip() return up_module_name, down_module_name class EnvMMConfigParser(object): """ @author:youguiyan01 @note:解析Env的拓扑结构 """ def __init__(self,file_dir,file): self.type = 'mm' self.conf = ConfigParser.SafeConfigParser() self.conf.read(file_dir+file) def get_conf_version(self): return str(self._get_info("conf","version")) def _get_section(self,section): if not self.conf.has_section(section): return None return self.conf.items(section) def _get_info(self,section_name, key_name): if self.conf.has_option(section_name, key_name) == False: return None info = self.conf.get(section_name, key_name) return info def parse_host_module(self): """ @note: 读取host中的所有host的信息,然后对于每一个host, 寻找该host下面的模块信息,然后进行拼接 @return return_module_list:模块信息列表,该list中每一个元素都一个模块信息,具体包含 模块名,类名,类描述文件,搭建地址,主机,用户名,密码 """ return_host_list = [] return_module_list = [] host_list = self._get_section("host") if host_list == None: return None for host in host_list: host_name = host[0] temp_info = host[1].split("\t") host_info={} host_info["host_name"] = temp_info[0] host_info["user"] = temp_info[1] host_info["password"] = temp_info[2] return_host_list.append(host_info) module_info_list = self._get_section(host_name) if module_info_list == None: #return None continue for one_module_info in module_info_list: module_name = one_module_info[0] temp_info = one_module_info[1].split("\t") module_info = {} module_info["module_name"] = module_name module_info["class_name"] = temp_info[0] module_info["conf_file"] = temp_info[1] module_info["remote_path"] = temp_info[2] module_info.update(host_info) return_module_list.append(module_info) return return_host_list,return_module_list def parse_topology(self): """ @note:解析拓扑 @return return_topology_list:拓扑列表,每个元素是一个关联关系 (up_module,down_module) """ return_topology_list = [] topology_list = self._get_section("topology") if topology_list == None: return return_topology_list for topology in topology_list: topology_info = topology[1].split("->") if len(topology_info) <= 1: continue up_module = topology_info[0].strip(" ") down_module = topology_info[1].strip(" ") return_topology_list.append([up_module,down_module]) return return_topology_list class EnvMMUbConfigParser(object): """ @author:lipeilong @note:解析新版本的Env拓扑结构配置文件,支持多级section配置,conf.version=3 """ def __init__(self, conf_dir, conf_file): self.type = 'mmub' self.conf=Configure() self.conf.load(conf_dir, conf_file) self.dir = conf_dir self.file = conf_file def get_conf_version(self): return str(self._get_info("conf","version")) def _get_section(self,section): key_value_list = self.conf[section].get_key_value() return key_value_list def _get_info(self,section_name, key_name): info = self.conf[section_name][key_name] if info == None: return None value = str(info) return value def parse_module_name_dict(self): """ @note: 读取lib class对应的lib路径信息 """ return_module_name_dict={} if self.conf["module_class"] == None: return None for module_name in self.conf["module_class"].get_key_value(): return_module_name_dict[module_name[0]] = module_name[1] return return_module_name_dict def parse_host_module(self): """ @note: 读取host中的所有host的信息,然后对于每一个host, 寻找该host下面的模块信息,然后进行拼接 @return return_module_list:模块信息列表,该list中每一个元素都一个模块信息,具体包含 模块名,类名,类描述文件,搭建地址,主机,用户名,密码 """ return_host_list = [] return_module_list = [] index = 0 host_num = len(self.conf["deploy"]["host"]) while index < host_num: host_info={} host_info["host_name"] = str(self.conf["deploy"]["host"][index]["name"]) if self.conf["deploy"]["host"][index].has_key('user'): host_info["user"] = str(self.conf["deploy"]["host"][index]["user"]) if self.conf["deploy"]["host"][index].has_key('password'): host_info["password"] = str(self.conf["deploy"]["host"][index]["password"]) return_host_list.append(host_info) #解析module信息 index_module = 0 module_num = len(self.conf["deploy"]["host"][index]["module"]) while index_module < module_num: module_info = {} module_info["module_name"] = str(self.conf["deploy"]["host"][index]["module"][index_module]["name"]) module_info["class_name"] = str(self.conf["deploy"]["host"][index]["module"][index_module]["class"]) module_info["conf_file"] = str(self.conf["deploy"]["host"][index]["module"][index_module]["conf"]) if self.conf["deploy"]["host"][index]["module"][index_module].has_key("remote_path"): module_info["remote_path"] = str(self.conf["deploy"]["host"][index]["module"][index_module]["remote_path"]) else: module_info["remote_path"] = module_info["module_name"] if self.conf["deploy"]["host"][index]["module"][index_module].has_key("cpuCoreNum"): module_info["cpuCoreNum"] = str(self.conf["deploy"]["host"][index]["module"][index_module]['cpuCoreNum']) if self.conf["deploy"]["host"][index]["module"][index_module].has_key("mem"): module_info["mem"] = str(self.conf["deploy"]["host"][index]["module"][index_module]['mem']) if self.conf["deploy"]["host"][index]["module"][index_module].has_key("disk"): module_info["disk"] = str(self.conf["deploy"]["host"][index]["module"][index_module]['disk']) if self.conf["deploy"]["host"][index]["module"][index_module].has_key("exclusive"): module_info["exclusive"] = str(self.conf["deploy"]["host"][index]["module"][index_module]['exclusive']) module_info.update(host_info) return_module_list.append(module_info) index_module = index_module + 1 index = index + 1 return return_host_list, return_module_list def parse_topology(self): """ @note:解析拓扑 @return return_topology_list:拓扑列表,每个元素是一个关联关系 (up_module,down_module) """ return_topology_list = [] index = 0 topo_list = self.conf["deploy"]["topology"].get_key_value() for relation in topo_list: topology_info = relation[1].split("->") if len(topology_info) <= 1: continue up_module = topology_info[0].strip(" ") down_module = topology_info[1].strip(" ") return_topology_list.append([up_module,down_module]) index = index + 1 return return_topology_list
d93e55450c39085ee035efdef32eaa204a90914b
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-gsn-edf/gsn-edf_ut=3.5_rd=0.8_rw=0.04_rn=4_u=0.075-0.35_p=harmonic-2/sched=RUN_trial=9/params.py
de9ca510da01c4ee2e0649bfbafc64737c8bc56b
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
{'cpus': 4, 'duration': 30, 'final_util': '3.531929', 'max_util': '3.5', 'periods': 'harmonic-2', 'release_master': False, 'res_distr': '0.8', 'res_nmb': '4', 'res_weight': '0.04', 'scheduler': 'GSN-EDF', 'trial': 9, 'utils': 'uni-medium-3'}
195af1a86103dd62444c59e3c5fb1c2951f026c8
924147cf4ce118a1856bf0e6107d3dac671e6ac4
/test_app/urls.py
44861043de0c4c84c4ec4b65c1d706a9b60d1cc0
[ "BSD-3-Clause" ]
permissive
jlongster/django-waffle
4a3ec12477a7a2a783c8b3c661a4dbe313311d7c
acc8e4adb41e7713be9778460fc3e99e034b7511
refs/heads/master
2020-04-08T16:19:11.434019
2012-01-26T18:54:29
2012-01-26T18:54:29
3,734,066
2
0
null
null
null
null
UTF-8
Python
false
false
721
py
from django.conf.urls.defaults import patterns, url, include from django.contrib import admin from django.http import HttpResponseNotFound, HttpResponseServerError from test_app import views from waffle.views import wafflejs handler404 = lambda r: HttpResponseNotFound() handler500 = lambda r: HttpResponseServerError() admin.autodiscover() urlpatterns = patterns('', url(r'^flag_in_view', views.flag_in_view, name='flag_in_view'), url(r'^wafflejs$', wafflejs, name='wafflejs'), url(r'^switch-on', views.switched_view), url(r'^switch-off', views.switched_off_view), url(r'^flag-on', views.flagged_view), url(r'^flag-off', views.flagged_off_view), (r'^admin/', include(admin.site.urls)) )
b4c9f4150acaabb1e1e2cf5d3ca2ba4d4604b129
793e9eeaa2b3018fac9fd7964eb2e5ebd11a4fa2
/phd_thesis/pyROOT/readfile.py
fccfa452ee30e02324499f1d8122911e4dfefcc7
[]
no_license
attikis/rootMacros
2c516456c1e39e4306eb433925f5ca39f9ad9599
64e7e779f5b19bfbe2b28a2058b829c57b953c3d
refs/heads/master
2021-05-09T21:41:31.447907
2019-07-18T07:15:07
2019-07-18T07:15:07
118,733,665
3
0
null
null
null
null
UTF-8
Python
false
false
15,720
py
#!/usr/bin env python ### to execute: |myLinux> python readfile.py testFile.dat ### System imports import os, sys from array import array ### ROOT imports from ROOT import * ### HiggsAnalysis imports from HiggsAnalysis.HeavyChHiggsToTauNu.tools.dataset import * from HiggsAnalysis.HeavyChHiggsToTauNu.tools.histograms import * from HiggsAnalysis.HeavyChHiggsToTauNu.tools.tdrstyle import * import HiggsAnalysis.HeavyChHiggsToTauNu.tools.styles as styles ### User imports from bayes import * from myArrays import * ### Provide the name of the file to be opened if len(sys.argv) > 1: file = sys.argv[1] ### Otherwise ose as default the name file.dat else: file = 'file.dat' ### If the file already exists remove it since the script will automatically generate one. #if os.path.exists(file): # os.system('rm %s'%(file)) #os.system('hplusPrintCounters3.py --mode xsect --mainCounterOnly > %s ; echo "EOF" >> %s'%(file,file)) ###################################################################################### ### Options verbosity = false ### false to suppress most "print" commands ###################################################################################### ### Open file for processing file = open('%s'%(file), 'r') ### Define lists to be used DataSetName = [] CutNamesAndValues = [] DataSetAndXSectAndNormFact = [] ###################################################################################### ### Loop over lines and save the cut-flow info (Cross Section for MC, Events for data) lim = True while file: line = file.readline() # split the line and puts elements in list s as strings s = line.split() if 'EOF' in s: break n = len(s) # 10 is the number of columns ### Investigate lists which have three elements (i.e. 3 is the number of columns of each list) if n == 3: ### Save the names of the datasets, cross section and normalisation factor DataSetAndXSectAndNormFact.append([s[0], s[1], s[2]]) if n == 10: if lim == True: for i in range(n): DataSetName.append(s[i]) lim = False else: #print "CutNamesAndValues\tCut\tValue" for i in range(1,n): CutNamesAndValues.append([DataSetName[i],s[0],float(s[i])]) #print "%s\t%s\t%.0f"%(DataSetName[i],s[0],float(s[i])) ### Print the DataSet Name, Cross Section and MC Normalisation Factor (ib this order) #print "DataSetAndXSectAndNormFact", DataSetAndXSectAndNormFact #print "DataSetAndXSectAndNormFact[0][0] = ", DataSetAndXSectAndNormFact[0][0] #print "DataSetAndXSectAndNormFact[0][1] = ", DataSetAndXSectAndNormFact[0][1] #print "DataSetAndXSectAndNormFact[0][2] = ", DataSetAndXSectAndNormFact[0][2] ### Define lists that will hold the information (Cut Name and Xsection/Events surviving Cut) WJets = [] qcd30to50 = [] qcd50to80 = [] qcd80to120 = [] qcd120to170 = [] qcd170to230 = [] qcd230to300 = [] TTbarJets = [] TTbar = [] # hplus90 = [] # hplus100 = [] # hplus120 = [] # hplus140 = [] # hplus160 = [] ###################################################################################### ### Loop over all cut names and create new lists according to the DataSet Name for item in CutNamesAndValues: name = item[0] tmp = [item[1],item[2]] if name == 'WJets': WJets.append(tmp) if name == 'QCD_Pt30to50': qcd30to50.append(tmp) if name == 'QCD_Pt50to80': qcd50to80.append(tmp) if name == 'QCD_Pt80to120': qcd80to120.append(tmp) if name == 'QCD_Pt120to170': qcd120to170.append(tmp) if name == 'QCD_Pt170to230': qcd170to230.append(tmp) if name == 'QCD_Pt230to300': qcd230to300.append(tmp) if name == 'TTbarJets': TTbarJets.append(tmp) if name == 'TTbar': TTbar.append(tmp) ###################################################################################### ### Print lists if verbosity == True: print print "***************************************************" print "* Printing cut-flow for each CutNamesAndValuesset *" print "***************************************************" print 'qcd30to50' print qcd30to50 print print 'qcd50to80' print qcd50to80 print print 'qcd80to120' print qcd80to120 print print 'qcd120to170' print qcd120to170 print print 'qcd170to230' print qcd170to230 print print 'qcd230to300' print qcd230to300 print print 'TTbarJets' print TTbarJets print print 'TTbar' print TTbar print print 'W+Jets' print WJets print "***************************************************************************************************************" ###################################################################################### ### Calculate contamination from EWK XSectTotalEWK = TTbar[4][1]+WJets[4][1] XSectPassedEWK = TTbar[-1][1]+WJets[-1][1] ### Calculations for combined QCD XSectTotalQCD = qcd30to50[4][1]+qcd50to80[4][1]+qcd80to120[4][1]+qcd120to170[4][1]+qcd170to230[4][1]+qcd230to300[4][1] XSectPassedQCD = qcd30to50[-1][1]+qcd50to80[-1][1]+qcd80to120[-1][1]+qcd120to170[-1][1]+qcd170to230[-1][1]+qcd230to300[-1][1] ### Calculate total QCD purity QCD_purity = XSectPassedQCD/(XSectPassedEWK+XSectPassedQCD) QCD_efficiency = XSectPassedQCD/XSectTotalQCD ### Declare (double) arrays to be filled with efficiencies and purities effArray = array("d",[ ]) purArray = array("d",[ ]) # purArray_errDown = effArray = array("d",[ ]) purArray_errUp = effArray = array("d",[ ]) # effArray_errDown = effArray = array("d",[ ]) effArray_errUp = effArray = array("d",[ ]) ###################################################################################### ### Calculate Efficiency using the ROOT class "bayesDivide", for each QCD DataSet if verbosity == True: print print "****************************" print "* Calculating Efficiencies *" print "****************************" print "..." print "***************************************************************************************************************" effObj = bayesDivide(qcd30to50[-1][1], qcd30to50[4][1]) eff = effObj.GetY()[0] eff_errUp = effObj.GetEYhigh()[0] eff_errDown = effObj.GetEYlow()[0] ### If zero events survive the cut-flow try to get an upper limit for efficiency as: eff = 1 Evt/Total Evts (for xSection 1 Evt = Norm Factor) if eff == 0: eff = float(DataSetAndXSectAndNormFact[1][2])/qcd30to50[4][1] if verbosity == True: print "DataSetAndXSectAndNormFact[1][0]", DataSetAndXSectAndNormFact[1][0], " eff = ", eff effArray.append(eff) effArray_errDown.append(eff_errDown) effArray_errUp.append(eff_errUp) effObj = bayesDivide(qcd50to80[-1][1], qcd50to80[4][1]) eff = effObj.GetY()[0] eff_errUp = effObj.GetEYhigh()[0] eff_errDown = effObj.GetEYlow()[0] ### If zero events survive the cut-flow try to get an upper limit for efficiency as: eff = 1 Evt/Total Evts (for xSection 1 Evt = Norm Factor) if eff == 0: eff = float(DataSetAndXSectAndNormFact[2][2])/qcd30to50[4][1] if verbosity == True: print "DataSetAndXSectAndNormFact[2][0]", DataSetAndXSectAndNormFact[2][0], " eff = ", eff effArray.append(eff) effArray_errDown.append(eff_errDown) effArray_errUp.append(eff_errUp) effObj = bayesDivide(qcd80to120[-1][1], qcd80to120[4][1]) eff = effObj.GetY()[0] eff_errUp = effObj.GetEYhigh()[0] eff_errDown = effObj.GetEYlow()[0] ### If zero events survive the cut-flow try to get an upper limit for efficiency as: eff = 1 Evt/Total Evts (for xSection 1 Evt = Norm Factor) if eff == 0: eff = float(DataSetAndXSectAndNormFact[3][2])/qcd30to50[4][1] if verbosity == True: print "DataSetAndXSectAndNormFact[3][0]", DataSetAndXSectAndNormFact[3][0], " eff = ", eff effArray.append(eff) effArray_errDown.append(eff_errDown) effArray_errUp.append(eff_errUp) effObj = bayesDivide(qcd120to170[-1][1], qcd120to170[4][1]) eff = effObj.GetY()[0] eff_errUp = effObj.GetEYhigh()[0] eff_errDown = effObj.GetEYlow()[0] ### If zero events survive the cut-flow try to get an upper limit for efficiency as: eff = 1 Evt/Total Evts (for xSection 1 Evt = Norm Factor) if eff == 0: eff = float(DataSetAndXSectAndNormFact[4][2])/qcd30to50[4][1] if verbosity == True: print "DataSetAndXSectAndNormFact[4][0]", DataSetAndXSectAndNormFact[4][0], " eff = ", eff effArray.append(eff) effArray_errDown.append(eff_errDown) effArray_errUp.append(eff_errUp) effObj = bayesDivide(qcd170to230[-1][1], qcd170to230[4][1]) eff = effObj.GetY()[0] eff_errUp = effObj.GetEYhigh()[0] eff_errDown = effObj.GetEYlow()[0] ### If zero events survive the cut-flow try to get an upper limit for efficiency as: eff = 1 Evt/Total Evts (for xSection 1 Evt = Norm Factor) if eff == 0: eff = float(DataSetAndXSectAndNormFact[5][2])/qcd30to50[4][1] if verbosity == True: print "DataSetAndXSectAndNormFact[5][0]", DataSetAndXSectAndNormFact[5][0], " eff = ", eff effArray.append(eff) effArray_errDown.append(eff_errDown) effArray_errUp.append(eff_errUp) effObj = bayesDivide(qcd230to300[-1][1], qcd230to300[4][1]) eff = effObj.GetY()[0] eff_errUp = effObj.GetEYhigh()[0] eff_errDown = effObj.GetEYlow()[0] ### If zero events survive the cut-flow try to get an upper limit for efficiency as: eff = 1 Evt/Total Evts (for xSection 1 Evt = Norm Factor) if eff == 0: eff = float(DataSetAndXSectAndNormFact[6][2])/qcd30to50[4][1] if verbosity == True: print "DataSetAndXSectAndNormFact[6][0]", DataSetAndXSectAndNormFact[6][0], " eff = ", eff effArray.append(eff) effArray_errDown.append(eff_errDown) effArray_errUp.append(eff_errUp) ###################################################################################### ### Calculate Purity if verbosity == True: print print "************************" print "* Calculating Purities *" print "************************" print "..." print "***************************************************************************************************************" purObj = bayesDivide(qcd30to50[-1][1], qcd30to50[4][1]+XSectPassedEWK) pur = purObj.GetY()[0] pur_errUp = purObj.GetEYhigh()[0] pur_errDown = purObj.GetEYlow()[0] if pur == 0: pur = float(DataSetAndXSectAndNormFact[1][2])/(qcd30to50[4][1]+XSectPassedEWK) if verbosity == True: print "DataSetAndXSectAndNormFact[1][0]", DataSetAndXSectAndNormFact[1][0], " pur = ", pur purArray.append(pur) purArray_errDown.append(pur_errDown) purArray_errUp.append(pur_errUp) purObj = bayesDivide(qcd50to80[-1][1], qcd50to80[4][1]+XSectPassedEWK) pur = purObj.GetY()[0] pur_errUp = purObj.GetEYhigh()[0] pur_errDown = purObj.GetEYlow()[0] if pur == 0: pur = float(DataSetAndXSectAndNormFact[2][2])/(qcd30to50[4][1]+XSectPassedEWK) if verbosity == True: print "DataSetAndXSectAndNormFact[2][0]", DataSetAndXSectAndNormFact[2][0], " pur = ", pur purArray.append(pur) purArray_errDown.append(pur_errDown) purArray_errUp.append(pur_errUp) purObj = bayesDivide(qcd80to120[-1][1], qcd80to120[4][1]+XSectPassedEWK) pur = purObj.GetY()[0] pur_errUp = purObj.GetEYhigh()[0] pur_errDown = purObj.GetEYlow()[0] if pur == 0: pur = float(DataSetAndXSectAndNormFact[3][2])/(qcd30to50[4][1]+XSectPassedEWK) if verbosity == True: print "DataSetAndXSectAndNormFact[3][0]", DataSetAndXSectAndNormFact[3][0], " pur = ", pur purArray.append(pur) purArray_errDown.append(pur_errDown) purArray_errUp.append(pur_errUp) purObj = bayesDivide(qcd120to170[-1][1], qcd120to170[4][1]+XSectPassedEWK) pur = purObj.GetY()[0] pur_errUp = purObj.GetEYhigh()[0] pur_errDown = purObj.GetEYlow()[0] if pur == 0: pur = float(DataSetAndXSectAndNormFact[4][2])/(qcd30to50[4][1]+XSectPassedEWK) if verbosity == True: print "DataSetAndXSectAndNormFact[4][0]", DataSetAndXSectAndNormFact[4][0], " pur = ", pur purArray.append(pur) purArray_errDown.append(pur_errDown) purArray_errUp.append(pur_errUp) purObj = bayesDivide(qcd170to230[-1][1], qcd170to230[4][1]+XSectPassedEWK) pur = purObj.GetY()[0] pur_errUp = purObj.GetEYhigh()[0] pur_errDown = purObj.GetEYlow()[0] if pur == 0: pur = float(DataSetAndXSectAndNormFact[5][2])/(qcd30to50[4][1]+XSectPassedEWK) if verbosity == True: print "DataSetAndXSectAndNormFact[5][0]", DataSetAndXSectAndNormFact[5][0], " pur = ", pur purArray.append(pur) purArray_errDown.append(pur_errDown) purArray_errUp.append(pur_errUp) purObj = bayesDivide(qcd230to300[-1][1], qcd230to300[4][1]+XSectPassedEWK) pur = purObj.GetY()[0] pur_errUp = purObj.GetEYhigh()[0] pur_errDown = purObj.GetEYlow()[0] if pur == 0: pur = float(DataSetAndXSectAndNormFact[6][2])/(qcd30to50[4][1]+XSectPassedEWK) if verbosity == True: print "DataSetAndXSectAndNormFact[6][0]", DataSetAndXSectAndNormFact[6][0], " pur = ", pur purArray.append(pur) purArray_errDown.append(pur_errDown) purArray_errUp.append(pur_errUp) # ### Remove/Fix the entries below # purArray.append(QCD_purity) # purArray_errDown.append(0.01) # purArray_errUp.append(0.01) # effArray.append(QCD_efficiency) # effArray_errDown.append(0.0001) # effArray_errUp.append(0.01) ###################################################################################### if verbosity == True: print print "**************" print "* Efficiency *" print "**************" print "effArray = ", effArray print print "effArray_errDown = ", effArray_errDown print print "effArray_errUp = ", effArray_errUp print print "**********" print "* Purity *" print "**********" print "purArray = ", purArray print print "purArray_errDown = ", purArray_errDown print print "purArray_errUp = ", purArray_errDown ### print print "--> Info: Total Purity of QCD Sample = ", QCD_purity print ###################################################################################### ### Customise ROOT gROOT.Reset() ROOT.gROOT.SetBatch(False) style = TDRStyle() style.setPalettePretty() style.setWide(True) purArray_alt = array("d",[ ]) purArray_errDown_alt = array("d",[ ]) purArray_errUp_alt = array("d",[ ]) purObj_alt = bayesDivide(XSectPassedQCD, XSectPassedQCD+XSectPassedEWK) pur_alt = purObj_alt.GetY()[0] pur_errUp_alt = purObj_alt.GetEYhigh()[0] pur_errDown_alt = purObj_alt.GetEYlow()[0] for i in range(0,6): #print i purArray_alt.append(pur_alt) purArray_errDown_alt.append(pur_errDown) purArray_errUp_alt.append(pur_errUp) # purArray_alt = array("d",[QCD_purity,QCD_purity,QCD_purity,QCD_purity,QCD_purity,QCD_purity ]) ### Draw TGraph with Asymmetric Error Bars using Bayesian Statistical Tools # graph = TGraphAsymmErrors(6, purArray, effArray, purArray_errDown, purArray_errUp, effArray_errDown, effArray_errUp) ### works graph = TGraphAsymmErrors(6, purArray_alt, effArray, purArray_errDown_alt, purArray_errUp_alt, effArray_errDown, effArray_errUp) ### works graph.Draw("AP") graph.SetMarkerStyle(kFullCircle) graph.SetMarkerColor(2) #graph.GetXaxis().SetRangeUser( 0.0 , 1.0) #??? #graph.GetYaxis().SetRangeUser( 0.0 , 1.0) #??? graph.SetTitle( "#epsilon Vs QCD purities (EWK)" ) graph.GetYaxis().SetTitle("Efficiency (#epsilon) of selection") graph.GetXaxis().SetTitle("Purity of QCD Sample") ### Customise gPad gPad.SetLogy(1) gPad.Update() # ### Test Histogram with efficiencies only # hEff=TH1F('efficiencies', '#epsilon', 1000, 0.0, 0.002) # hEff.Fill(effArray[0]) # hEff.Fill(effArray[1]) # hEff.Fill(effArray[2]) # hEff.Fill(effArray[3]) # hEff.Fill(effArray[4]) # hEff.Fill(effArray[5]) # hEff.Draw() ################ print raw_input('Press \"Enter\" to exit to terminal ...')