blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
1dc90019573b41fd04ccda4e3a6b90bc90a27b7a
48b6546e0cf0aeba23f802c005dbcb863f8ceecb
/searching-algorithms/linear_search.py
1da3586fe8a61e11198ed6a4335d78e697ab93b3
[]
no_license
panu2306/Data-Structure-Programs
42bc1b592fc070eed9c16a192d27103593723061
a4cb5fb496b672492e19468868a2da266d7d76aa
refs/heads/master
2022-11-14T23:04:20.609617
2022-11-14T18:01:21
2022-11-14T18:01:21
148,877,607
1
0
null
null
null
null
UTF-8
Python
false
false
343
py
def linearSearch(a, searchElement): arraySize = len(a) for i in range(0, arraySize): if(a[i] == searchElement): return 1 return -1 a = [1, 4, 2, 5, 3] searchElement = 5 result = linearSearch(a, searchElement) print("Element is not present in array") if(result == -1) else print("Element is present in array")
4206b96806030b27e6a032f97cb22dfdb1822a45
d42f7d4f2377f67797d41b2f75347c5330d34953
/fabfile/france.local.py
319441ef820b3e39735a14277588f4449a76011b
[ "WTFPL" ]
permissive
phreephree/addok
8d92893b791416e0169e6c74f5842868833478e9
320d145e72964d54eb33742f0329e9f46f5c5ab5
refs/heads/master
2021-08-24T06:51:04.971611
2017-12-08T13:44:40
2017-12-08T13:44:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
QUERY_PROCESSORS_PYPATHS = [ 'addok.helpers.text.check_query_length', "addok_france.extract_address", "addok_france.clean_query", "addok_france.remove_leading_zeros", ] SEARCH_RESULT_PROCESSORS_PYPATHS = [ "addok.helpers.results.match_housenumber", "addok_france.make_labels", "addok.helpers.results.score_by_importance", "addok.helpers.results.score_by_autocomplete_distance", "addok.helpers.results.score_by_ngram_distance", "addok.helpers.results.score_by_geo_distance", ] PROCESSORS_PYPATHS = [ "addok.helpers.text.tokenize", "addok.helpers.text.normalize", "addok_france.glue_ordinal", "addok_france.fold_ordinal", "addok_france.flag_housenumber", "addok.helpers.text.synonymize", "addok_fr.phonemicize", ] SQLITE_DB_PATH = '/srv/addok/addok.db'
d2619d839aa6f5611e6030cf62cb0f38db8c7b50
c3cff86728d436e4e7b522b1382d96f8e32611ff
/minidjango/utils/types.py
6df56e1950ad1a53a82390965a13bada3545b9c2
[]
no_license
pahaz/lesson2
6189ce3d3c06c040b27d283ae0754eed6c496b43
aea2e09e98e5562476a5d15447e15e127f900d43
refs/heads/master
2023-08-26T20:27:08.697314
2016-04-15T12:26:09
2016-04-15T12:26:09
55,223,164
1
2
null
null
null
null
UTF-8
Python
false
false
3,387
py
import collections from io import BytesIO import io __author__ = 'pahaz' class MultiValueDict(collections.UserDict): """ >>> d = MultiValueDict() >>> d['foo'] = ['bar'] >>> d['foo'] 'bar' >>> d = MultiValueDict({'foo': ['v1', 'v2']}) >>> d['foo'] 'v1' >>> d.getlist('foo') ['v1', 'v2'] >>> list(d.items()) [('foo', 'v1')] >>> dict(MultiValueDict({'foo': ['v1', 'v2']})) {'foo': 'v1'} >>> dict(MultiValueDict({'foo': ['v1']})) {'foo': 'v1'} """ def __iter__(self): a = super().__iter__() for x in a: yield x def __getitem__(self, key): val = super().__getitem__(key) if isinstance(val, (list, tuple)): val = val[0] else: raise RuntimeError('Invalid MultiValueDict inner state') return val def __setitem__(self, key, item): if not isinstance(item, (list, tuple)): raise TypeError("Can't set not a multi value") if not item: raise ValueError("Can't set empty multi value") self.data[key] = item def getlist(self, key, default=None): val = self.data.get(key, default) if not isinstance(val, (list, tuple)): raise RuntimeError('Invalid MultiValueDict inner state') return val class LimitedStream(io.IOBase): """ LimitedStream wraps another stream in order to not allow reading from it past specified amount of bytes. >>> import io >>> bio = io.BytesIO(b"some -- long -- byte string") >>> lbio = LimitedStream(bio, 4) >>> lbio.read() b'some' >>> lbio.read() b'' >>> bio = io.BytesIO(b"s\\nome -- long -- byte string") >>> lbio = LimitedStream(bio, 4) >>> lbio.readline() b's\\n' >>> lbio.read() b'om' >>> lbio.read() b'' """ def __init__(self, stream, limit, buf_size=64 * 1024 * 1024): self.stream = stream self.remaining = limit self.buffer = b'' self.buf_size = buf_size def _read_limited(self, size=None): if size is None or size > self.remaining: size = self.remaining if size == 0: return b'' result = self.stream.read(size) self.remaining -= len(result) return result def read(self, size=None): if size is None: result = self.buffer + self._read_limited() self.buffer = b'' elif size < len(self.buffer): result = self.buffer[:size] self.buffer = self.buffer[size:] else: # size >= len(self.buffer) result = self.buffer + self._read_limited(size - len(self.buffer)) self.buffer = b'' return result def readline(self, size=None): while b'\n' not in self.buffer and \ (size is None or len(self.buffer) < size): if size: # since size is not None here, len(self.buffer) < size chunk = self._read_limited(size - len(self.buffer)) else: chunk = self._read_limited() if not chunk: break self.buffer += chunk sio = BytesIO(self.buffer) if size: line = sio.readline(size) else: line = sio.readline() self.buffer = sio.read() return line
5b5cfdbc293e4fea4032ad37a2ddd1f57d91ab27
4999d470db3128d6b2d904babf1446d62a9a6cc2
/flask_project/app.py
ae20cc5f3b6b108c0d979f90fd5d9a9704534c78
[]
no_license
love-adela/jungle_admission
2ade66d7a828965f250f5eac9b971a9a84eddb88
bf3c3f52c61c6dded256245e28aaf30ab2ec5ffa
refs/heads/main
2023-01-01T17:16:16.756328
2020-10-29T09:27:55
2020-10-29T09:27:55
306,814,071
0
0
null
null
null
null
UTF-8
Python
false
false
612
py
from flask import Flask, render_template app = Flask(__name__) @app.route('/') def home(): return render_template('index.html') @app.route('/test', methods=['GET']) def test_get(): received_title = request.args.get('given_title') print(received_title) return jsonify({'result': 'success', 'msg': '이 요청은 GET!'}) @app.route('/test', methods=['POST']) def test_post(): received_title = request.form('given_title') print(received_title) return jsonify({'result':'success', 'msg': '이 요청은 POST!'}) if __name__ == '__main__': app.run('0.0.0.0', port=5000, debug=True)
7ff6e8fd5a803d6d9e9157afe6eacd17efe5e4a0
0c3f4769e91bf7bea8f9ce74a6dd11e092638bc4
/tests/test_ingest_title.py
613caef04600cc33de74fa6ad3a98fe50d745030
[ "MIT" ]
permissive
ourresearch/journalsdb
392ea36282b17154289f1845628cc4706d3c59e9
718b118b8e97da9a07f89c2cd2bae207a9217b66
refs/heads/main
2022-10-29T10:05:59.410041
2022-10-26T18:31:21
2022-10-26T18:31:21
331,048,946
9
0
null
2021-04-03T16:34:12
2021-01-19T16:56:22
Python
UTF-8
Python
false
false
728
py
from ingest.journals.journals_new_journal import NewJournal from models.journal import ISSNMetaData def test_clean_title_print(): issn_md = ISSNMetaData() nj = NewJournal(issn_md) title_with_print = nj.clean_title("Cooking Today (Print)") assert title_with_print == "Cooking Today" def test_clean_title_electronic(): issn_md = ISSNMetaData() nj = NewJournal(issn_md) title_with_electronic = nj.clean_title("Cooking Today (electronic)") assert title_with_electronic == "Cooking Today" def test_clean_title_trailing_period(): issn_md = ISSNMetaData() nj = NewJournal(issn_md) title_with_period = nj.clean_title("Cooking today. ") assert title_with_period == "Cooking today"
ae4a4cd38051c792e2d024de49626d30f9f91601
8c917dc4810e2dddf7d3902146280a67412c65ea
/v_7/NISS/common_shamil_v3/hr_custom/report/promotion_report.py
28508ee80d1f425d9b4ed82fa841a66a554347f0
[]
no_license
musabahmed/baba
d0906e03c1bbd222d3950f521533f3874434b993
0b997095c260d58b026440967fea3a202bef7efb
refs/heads/master
2021-10-09T02:37:32.458269
2018-12-20T06:00:00
2018-12-20T06:00:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,012
py
import time import pooler #import rml_parse import copy from report import report_sxw import pdb import re class promotion_report(report_sxw.rml_parse): _name = 'report.promotion.report' def __init__(self, cr, uid, name, context): super(promotion_report, self).__init__(cr, uid, name, context=context) self.localcontext.update({ 'time': time, '_get_emp':self._get_emp, 'line5':self.get_promotion_total, }) self.context = context def get_promotion_total(self,data,choice,date1_v,date2_v): process_archive=self.pool.get('hr.process.archive') # res = process_archive.self(self,choice,'promotion_date','promotion_date',date1_v,date2_v) res = process_archive._archive_count(self,choice,'promotion_date','promotion_date',date1_v,date2_v) return res def _get_emp(self,data): prom_obj=self.pool.get('hr.process.archive') date1 = data['form']['fromm'] date2 = data['form']['to'] ids_list=prom_obj.search(self.cr,self.uid, [('approve_date', '>=', date1),('approve_date', '<=', date2)],context=self.context) #for l in ids_list: # degree_id=prom_obj.browse(self.cr,self.uid,l,context=self.context).reference.id self.cr.execute(''' SELECT ROW_NUMBER ( ) OVER (order by p.id) as no,e.emp_code as code,r.name as emp,p.approve_date as date, d.name AS degree FROM hr_process_archive AS p left join hr_employee AS e on (p.employee_id=e.id) left join resource_resource AS r on (e.resource_id=r.id) left join hr_salary_degree AS d on (e.degree_id=d.id) where e.employment_date < p.approve_date and p.approve_date between %s and %s ''',(date1,date2)) res = self.cr.dictfetchall() return res report_sxw.report_sxw('report.promotion.report', 'hr.process.archive','addons/hr_custom/report/promotion_report.rml', parser=promotion_report, header=True)
dd31b52d075a85e5b53ed2def7f9ba0e2cdb578c
6813299c28aab1e49f724c0b62c147b201cfaad4
/keystone/manage/__init__.py
899bf4a64f2e122f26e7b33a0a2b07789f3e92d7
[]
no_license
emonty/test-deb-keystone
dbe460bc29f667d625c9b13d2006ebdfc2a96cdb
1d374a52fc2c91c604abfc448d12324922a585a6
refs/heads/master
2021-01-22T06:54:26.712546
2011-08-19T20:59:54
2011-08-19T20:59:54
2,236,393
0
0
null
null
null
null
UTF-8
Python
false
false
8,989
py
#!/usr/bin/env python # vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2011 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Keystone Identity Server - CLI Management Interface """ import sys import logging import optparse import keystone from keystone.common import config from keystone.manage.api import * class RaisingOptionParser(optparse.OptionParser): def error(self, msg): self.print_usage(sys.stderr) raise optparse.OptParseError(msg) def parse_args(args=None): usage = "usage: %prog [options] type command [id [attributes]]" # Initialize a parser for our configuration paramaters parser = RaisingOptionParser(usage, version='%%prog %s' % keystone.version()) _common_group = config.add_common_options(parser) config.add_log_options(parser) # Parse command-line and load config (options, args) = config.parse_options(parser, args) _config_file, conf = config.load_paste_config('admin', options, args) config.setup_logging(options, conf) db.configure_backends(conf.global_conf) return args def process(*args): """ Usage: keystone-manage [options] type command [id [attributes]] type : role, tenant, user, token, endpoint, endpointTemplates command : add, list, disable, delete, grant, revoke id : name or id attributes : depending on type... users : password, tenant tokens : user, tenant, expiration role list [tenant] will list roles granted on that tenant options -c | --config-file : config file to use -d | --debug : debug mode Example: keystone-manage user add Admin P@ssw0rd """ # Check arguments if len(args) == 0: raise optparse.OptParseError( 'No obj type specified for first argument') object_type = args[0] if object_type not in ['user', 'tenant', 'role', 'service', 'endpointTemplates', 'token', 'endpoint', 'credentials']: raise optparse.OptParseError( '%s is not a supported obj type' % object_type) if len(args) == 1: raise optparse.OptParseError( 'No command specified for second argument') command = args[1] if command not in ['add', 'list', 'disable', 'delete', 'grant', 'revoke']: raise optparse.OptParseError('add, disable, delete, and list are the ' 'only supported commands (right now)') if len(args) == 2: if command != 'list': raise optparse.OptParseError('No id specified for third argument') if len(args) > 2: object_id = args[2] # Helper functions def require_args(args, min, msg): """Ensure there are at least `min` arguments""" if len(args) < min: raise optparse.OptParseError(msg) optional_arg = (lambda x: len(args) > x and args[x] or None) def print_table(header_row, rows): """Prints a lists of lists as table in a human readable format""" print "\t".join(header_row) print '-' * 79 rows = [[str(col) for col in row] for row in rows] print "\n".join(["\t".join(row) for row in rows]) # Execute command if (object_type, command) == ('user', 'add'): require_args(args, 4, 'No password specified for fourth argument') if add_user(id=object_id, password=args[3], tenant=optional_arg(4)): print "SUCCESS: User %s created." % object_id elif (object_type, command) == ('user', 'disable'): if disable_user(id=object_id): print "SUCCESS: User %s disabled." % object_id elif (object_type, command) == ('user', 'list'): print_table(('id', 'enabled', 'tenant'), list_users()) elif (object_type, command) == ('tenant', 'add'): if add_tenant(id=object_id): print "SUCCESS: Tenant %s created." % object_id elif (object_type, command) == ('tenant', 'list'): print_table(('tenant', 'enabled'), list_tenants()) elif (object_type, command) == ('tenant', 'disable'): if disable_tenant(id=object_id): print "SUCCESS: Tenant %s disabled." % object_id elif (object_type, command) == ('role', 'add'): if add_role(id=object_id): print "SUCCESS: Role %s created successfully." % object_id elif (object_type, command) == ('role', 'list'): tenant = optional_arg(2) if tenant: # print with users print 'Role assignments for tenant %s' % tenant print_table(('User', 'Role'), list_roles(tenant=tenant)) else: # print without tenants print_table(('id'), list_roles()) elif (object_type, command) == ('role', 'grant'): require_args(args, 4, "Missing arguments: role grant 'role' 'user' " "'tenant (optional)'") tenant = len(args) > 4 and args[4] or None if grant_role(object_id, args[3], tenant): print("SUCCESS: Granted %s the %s role on %s." % (object_id, args[3], tenant)) elif (object_type, command) == ('endpointTemplates', 'add'): require_args(args, 9, "Missing arguments: endpointTemplates add " "'region' 'service' 'publicURL' 'adminURL' 'internalURL' " "'enabled' 'global'") if add_endpoint_template(region=args[2], service=args[3], public_url=args[4], admin_url=args[5], internal_url=args[6], enabled=args[7], is_global=args[8]): print("SUCCESS: Created EndpointTemplates for %s pointing to %s." % (args[3], args[4])) elif (object_type, command) == ('endpointTemplates', 'list'): tenant = optional_arg(2) if tenant: print 'Endpoints for tenant %s' % tenant print_table(('service', 'region', 'Public URL'), list_tenant_endpoints()) else: print 'All EndpointTemplates' print_table(('service', 'region', 'Public URL'), list_endpoint_templates()) elif (object_type, command) == ('endpoint', 'add'): require_args(args, 4, "Missing arguments: endPoint add tenant " "endPointTemplate") if add_endpoint(tenant=args[2], endpoint_template=args[3]): print("SUCCESS: Endpoint %s added to tenant %s." % (args[3], args[2])) elif (object_type, command) == ('token', 'add'): require_args(args, 6, 'Creating a token requires a token id, user, ' 'tenant, and expiration') if add_token(token=object_id, user=args[3], tenant=args[4], expires=args[5]): print "SUCCESS: Token %s created." % (object_id,) elif (object_type, command) == ('token', 'list'): print_table(('token', 'user', 'expiration', 'tenant'), list_tokens()) elif (object_type, command) == ('token', 'delete'): if delete_token(token=object_id): print 'SUCCESS: Token %s deleted.' % (object_id,) elif (object_type, command) == ('service', 'add'): if add_service(service=object_id): print "SUCCESS: Service %s created successfully." % (object_id,) elif (object_type, command) == ('service', 'list'): print_table(('service'), list_services()) elif (object_type, command) == ('credentials', 'add'): require_args(args, 6, 'Creating a credentials requires a type, key, ' 'secret, and tenant_id (id is user_id)') if add_credentials(user=object_id, type=args[3], key=args[4], secrete=args[5], tenant=optional_arg(6)): print "SUCCESS: Credentials %s created." % result.id else: # Command not handled print ("ERROR: unrecognized command %s %s" % (object_type, command)) def main(): try: process(*parse_args()) except optparse.OptParseError as exc: print >> sys.stderr, exc sys.exit(2) except Exception as exc: try: info = exc.args[1] except IndexError: print "ERROR: %s" % (exc,) logging.error(str(exc)) else: print "ERROR: %s: %s" % (exc.args[0], info) logging.error(exc.args[0], exc_info=info) sys.exit(1) if __name__ == '__main__': main()
ce3e467bee2432e67dcc978a34ac48c49a0424b6
466912406272829982f75854cf0104c6ce8c9814
/data/nlp/fund/gongshang.py
818b29f17f8deb811cc1922bc2142c0840229a65
[]
no_license
logonmy/Codes
9631fa103fc499663361fa7eeccd7cedb9bb08e4
92723efdeccfc193f9ee5d0ab77203c254f34bc2
refs/heads/master
2021-09-21T18:07:22.985184
2018-08-30T05:53:26
2018-08-30T05:53:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,884
py
# -*- coding: utf-8 -*- __author__ = 'victor' import os import sys reload(sys) sys.setdefaultencoding('utf-8') sys.path.append(os.path.join(os.path.split(os.path.realpath(__file__))[0], '..')) sys.path.append(os.path.join(os.path.split(os.path.realpath(__file__))[0], '../../util')) import db as dbcon import loghelper from common import dbutil from datetime import datetime, timedelta from bson.objectid import ObjectId loghelper.init_logger("gsf", stream=True) logger_gsf = loghelper.get_logger('gsf') class GongshangFundEvent(object): def __init__(self, check_period=1): self.db = dbcon.connect_torndb() self.mongo = dbcon.connect_mongo() self.check_period = check_period def generate_gs_fund_event(self): global logger_gsf yesterday = datetime.now() - timedelta(days=self.check_period) logger_gsf.info('Gongshang Fund starts') for tpm in dbutil.get_topic_messages(self.db, 44, yesterday): logger_gsf.info('Processing %s' % tpm.id) change_date = tpm.get('comments') # update funding cids = self.mongo.article.news.find_one({'_id': ObjectId(tpm.relateId)}).get('companyIds', []) for cid in cids: cprtid = dbutil.get_company_corporate_id(self.db, cid) dbutil.update_gongshang_funding(self.db, cid, cprtid, change_date) # generate task news self.mongo.task.news.update({'news_id': tpm.relateId}, {'news_id': tpm.relateId, 'news_date': datetime.now(), 'type': 'fund', 'createTime': datetime.utcnow(), 'processStatus': int(0), 'source': 'gongshang', 'companyIds': cids}, True) if __name__ == '__main__': gsfe = GongshangFundEvent() gsfe.generate_gs_fund_event()
ed8d5a9e266a052caacfc08d036eb4aa9618228c
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02886/s131934757.py
9c2208d916bb0fd3e3065d0aabe691293dfc81f2
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
#!/usr/bin/env python3 N = int(input()) D = [int(s) for s in input().split()] life = 0 for i in range(N): for j in range(i+1, N): life += D[i] * D[j] print(life)
36a6f635c959bf4b4b5b30b9756599e5d0831ffd
108db0d378354947b94b0d649fdb2779c8b7957f
/jwtauth/jwtauth/settings.py
51713e79093067e6196f4aa3a8c2f50e6eee1390
[]
no_license
P-iyushRaj/DRF-WORK
25f2676f62694ea5619397a2e10aca0947dbe902
21ca80a6027f110e7213fe7ee3e783bcfe357089
refs/heads/master
2023-03-27T13:25:03.928779
2021-03-27T04:14:20
2021-03-27T04:14:20
346,010,139
0
0
null
null
null
null
UTF-8
Python
false
false
3,372
py
""" Django settings for jwtauth project. Generated by 'django-admin startproject' using Django 3.0.1. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'z5ubsq2gb+^a4@^!tucy@(bv7u#1z6ksja(wq724&i5__6+3im' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'knox', 'api', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'jwtauth.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'jwtauth.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': [ # 'rest_framework.authentication.BasicAuthentication', # 'rest_framework.authentication.SessionAuthentication', 'knox.auth.TokenAuthentication', ] }
00d156d0f2a3e03443c4a9aa53137d649e2d9735
18a846d1d598d193976437fbefdf144a13e0404b
/mezzanine/utils/models.py
ff1d2ea8f18a782a0a0e607e836138d0e185fa25
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
kowalej/mezzanine
8282195c99717625856510474f4f9583a36c7cf6
96915c33325fd74277a630c27069e4c92482e951
refs/heads/master
2021-01-17T22:25:25.495684
2012-04-16T11:59:21
2012-04-16T11:59:21
3,392,468
0
0
null
null
null
null
UTF-8
Python
false
false
3,343
py
from django.core.exceptions import ImproperlyConfigured from django.db.models import Model, Field def base_concrete_model(abstract, instance): """ Used in methods of abstract models to find the super-most concrete (non abstract) model in the inheritance chain that inherits from the given abstract model. This is so the methods in the abstract model can query data consistently across the correct concrete model. Consider the following:: class Abstract(models.Model) class Meta: abstract = True def concrete(self): return base_concrete_model(Abstract, self) class Super(Abstract): pass class Sub(Super): pass sub = Sub.objects.create() sub.concrete() # returns Super In actual Mezzanine usage, this allows methods in the ``Displayable`` and ``Orderable`` abstract models to access the ``Page`` instance when instances of custom content types, (eg: models that inherit from ``Page``) need to query the ``Page`` model to determine correct values for ``slug`` and ``_order`` which are only relevant in the context of the ``Page`` model and not the model of the custom content type. """ for cls in reversed(instance.__class__.__mro__): if issubclass(cls, abstract) and not cls._meta.abstract: return cls return instance.__class__ class ModelMixinBase(type): """ Metaclass for ``ModelMixin`` which is ued for injecting model fields and methods into models defined outside of a project. """ def __new__(cls, name, bases, attrs): """ Checks for an inner ``Meta`` class with a ``mixin_for`` attribute containing the model that this model will be mixed into. Once found, copy over any model fields and methods onto the model being mixed into, and return it as the actual class definition for the mixin. """ if name == "ModelMixin": # Actual ModelMixin class definition. return super(ModelMixinBase, cls).__new__(cls, name, bases, attrs) try: mixin_for = attrs.pop("Meta").mixin_for if not issubclass(mixin_for, Model): raise TypeError except (TypeError, KeyError, AttributeError): raise ImproperlyConfigured("The ModelMixin class '%s' requires " "an inner Meta class with the " "``mixin_for`` attribute defined, " "with a value that is a valid model.") # Copy fields and methods onto the model being mixed into, and # return it as the definition for the mixin class itself. for k, v in attrs.items(): if isinstance(v, Field): v.contribute_to_class(mixin_for, k) elif k != "__module__": setattr(mixin_for, k, v) return mixin_for class ModelMixin(object): """ Used as a subclass for mixin models that inject their behaviour onto models defined outside of a project. The subclass should define an inner ``Meta`` class with a ``mixin_for`` attribute containing the model that will be mixed into. """ __metaclass__ = ModelMixinBase
b1cbfa625f10b9e309d35cfdf8103961d6a183cb
2dd4b89f60bd22d96ca6043666816069ba060875
/TPplots/circos_convert_contigs_coords.py
4458d301054967ca4be4740ced7df70f80b3440b
[]
no_license
liaochenlanruo/TPplots
4d65b970f3a105c48a1a66aeb176e299f4bb3cea
4d0ed24f9b5b7fcd80942abb5f22167d1aba38c6
refs/heads/master
2023-07-19T13:22:25.278304
2021-09-07T14:13:01
2021-09-07T14:13:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,444
py
#!/usr/bin/env python # python 2.7.5 requires biopython ########### promer2circos ############ def get_contig(location, contig_coordlist, contig_pos): # print 'location', location # print contig_coordlist for i, one_contig in enumerate(contig_coordlist): if location >= one_contig[1] and location <= one_contig[2]: # print 'match!' return one_contig, contig_coordlist[i + 1:len(contig_coordlist)], location elif location > contig_coordlist[i - 1][2] and location <= one_contig[1]: # print 'between contigs!' if contig_pos == 'start': # print "start located between contigs,------", location, '-->new start:', one_contig[1] # print one_contig # print contig_coordlist[i+1:len(contig_coordlist)] # return contig start as location return one_contig, contig_coordlist[i + 1:len(contig_coordlist)], one_contig[1] else: # print "end located between contigs-------", location, '-->new end:', contig_coordlist[i-1][2] # end of contig located between contigs, return previous contig data # print 'contig', contig_coordlist[i-1] # print 'following contigs', contig_coordlist[i:len(contig_coordlist)] return contig_coordlist[i - 1], contig_coordlist[i:len(contig_coordlist)], contig_coordlist[i - 1][2] else: # print "partial match, probably overlap between end contig and gap region", one_contig continue return False, False, False def rename_karyotype(contig_coords, data_list): ''' :param contig_coords: chr - NZ_JSAM00000000_1 NZ_JSAM00000000_1 0 104228 spectral-5-div-4 ==> keep 3, 4 et 5 :param data_list: list of contig coords: [[contig_X, start, end],[...]] :return: ''' import copy renamed_data = [] for i, data in enumerate(data_list): start = int(data[1]) end = int(data[2]) # print i, data contig_start, following_contigs1, position1 = get_contig(start, contig_coords, contig_pos="start") contig_end, following_contigs2, position2 = get_contig(end, contig_coords, contig_pos="end") if (contig_start is False) or (contig_end is False): # print 'one falese!' # print start, end, contig_start, contig_end if start > contig_coords[-1][1]: # print 'last contig' contig_start, following_contigs1, position1 = contig_coords[-1], [], start contig_end, following_contigs2, position2 = contig_coords[-1], [], contig_coords[-1][2] if contig_end is False: continue # print 'contig_start', contig_start # print 'contig_end', contig_end data[1] = position1 data[2] = position2 # if position2-position1>1000: # print 'current range:', position1, position2 if contig_start[0] == contig_end[0]: data[0] = contig_start[0] renamed_data.append(data) else: # print 'new start end', position1, position2 # print 'contig start', contig_start # print 'contig end', contig_end # print 'spanning several contigs!' # span across 2 contigs: make 2 coordinates (until the end of the first contig and from the begining of the second) data_1 = copy.copy(data) data_1[0] = contig_start[0] data_1[2] = contig_start[2] renamed_data.append(data_1) # enumerate following contigs until we match the final one for contig2 in following_contigs1: # final contig of the range, add it and break the inner loop if contig2[0] == contig_end[0]: data_2 = copy.copy(data) data_2[0] = contig_end[0] # start from the first position of the second contig data_2[1] = contig_end[1] renamed_data.append(data_2) break else: #print contig_end #print 'entire contig within the range! %s bp long' % (int(contig2[2]) - int(contig2[1])), contig2 # entire contig comprised within the range # add it entiely to the new list renamed_data.append(contig2) ''' for one_contig in contig_coords: # within contig if start >= one_contig[1] and end <=one_contig[2]: data[0] = one_contig[0] renamed_data.append(data) # overlap between two contigs elif start >= one_contig[1] and start <=one_contig[2] and end >one_contig[2]: data_1 = data data_2 = data ''' return renamed_data def read_circos_file(circos_file): data_list = [] with open(circos_file) as f: for row in f: data = row.rstrip().split(' ') if len(data) < 3: data = row.rstrip().split('\t') data_list.append(data) return data_list if __name__ == '__main__': ###Argument handling. import argparse arg_parser = argparse.ArgumentParser(description=''); # arg_parser.add_argument("coords_input", help="Directory to show-coords tab-delimited input file."); arg_parser.add_argument("-i", "--reference_karyotype", help="ref karyotype") arg_parser.add_argument("-t", "--target_karyotype", help="target karyotype") arg_parser.add_argument("-o", "--out_name", help="output name") args = arg_parser.parse_args() if not args.out_name: out_name = args.target_karyotype.split('.')[0] + '_renamed.' + args.target_karyotype.split('.')[1] with open(args.reference_karyotype, 'r') as f: contig_coords = [] for row in f: data = row.rstrip().split(' ') if len(data) < 3: data = row.rstrip().split('\t') contig_coords.append([data[3], int(data[4]), int(data[5])]) data_list = read_circos_file(args.target_karyotype) renamed_data = rename_karyotype(contig_coords, data_list) with open(out_name, 'w') as new_circos_file: for row in renamed_data: row = [str(i) for i in row] new_circos_file.write('\t'.join(row) + '\n')
d08097d57e86dac2468c68b27434003012380081
17cad1d357380875243b804ffd13882f1a7d61a8
/0x01-python-if_else_loops_functions/5-print_comb2.py
261080a0c9b07790c69df208dff6f370a248541f
[]
no_license
Abdou-Hidoussi/holbertonschool-higher_level_programming
9a0c0714b63ccd9823798adb51eb4f395ab375dc
1dd37cc5f848d1f37884e6ffbe9598eae8c4f30e
refs/heads/master
2023-03-05T00:02:25.283646
2021-02-18T20:42:26
2021-02-18T20:42:26
291,713,076
0
0
null
null
null
null
UTF-8
Python
false
false
95
py
#!/usr/bin/python3 for x in range(0, 99): print("{:02d}, ".format(x), end='') print(x + 1)
8020130f940f8f456909b2b56cec135d85f0a20b
8bf56892667d732c67ed0ae43fe7b08923893c71
/version4.py
2d633cee8aa4adf9a88167e0e1eb32f2e21b3da3
[]
no_license
erhan-orun/BuildTable
8a3ff82a979a19f7f2b975b88c690a5f769510a0
546e14a548d22d0ac237c2c8e544e152e33002bd
refs/heads/master
2023-09-01T16:27:32.695756
2021-11-02T06:22:15
2021-11-02T06:22:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,908
py
import datetime as dt import tkinter as tk from tkinter import * from tkinter import ttk class App(tk.Tk): def __init__(self, *args, **kwargs): tk.Tk.__init__(self, *args, **kwargs) self.root = tk.Tk() self.tree = ttk.Treeview(self.root, selectmode='extended') self.tree["columns"] = ("1", "2", "3", "4") self.tree.column("1", width=125, minwidth=30, anchor='c') self.tree.column("2", width=125, minwidth=30, anchor='c') self.tree.column("3", width=125, minwidth=30, anchor='c') self.tree.column("4", width=125, minwidth=30, anchor='c') self.tree.bind('<ButtonRelease-1>', self.selectItem) self.tree.heading("1", text="ID") self.tree.heading("2", text="Sensor No") self.tree.heading("3", text="IP") self.tree.heading("4", text="Time") self.tree['show'] = 'headings' self.root.geometry('540x400') self.root.title("Sensor Insert") self.root.grid() self.tree.grid(row=1, column=1, columnspan=4, padx=20, pady=20) verscrlbar = ttk.Scrollbar(self.root, orient="vertical", command=self.tree.yview) self.tree.configure(xscrollcommand=verscrlbar.set) self.time_data = dt.datetime.now().strftime('%Y-%m-%d %X') self.add_label = tk.Label(self.root, text='Add Sensor', font=('Helvetica', 16), width=30, anchor="c") self.add_label.grid(row=2, column=1, columnspan=4) self.name_label = tk.Label(self.root, text='Sensor No: ', width=10, anchor="c") self.name_label.grid(row=3, column=1) self.t1 = tk.Text(self.root, height=1, width=16, bg='white') self.t1.grid(row=3, column=2) self.l3 = tk.Label(self.root, text='Sensor IP: ', width=10) self.l3.grid(row=5, column=1) self.t3 = tk.Text(self.root, height=1, width=16, bg='white') self.t3.grid(row=5, column=2) self.b1 = tk.Button(self.root, text='Save', width=10, command=lambda: self.add_data()) self.b1.grid(row=6, column=2) self.my_str = tk.StringVar() self.l5 = tk.Label(self.root, textvariable=self.my_str, width=10) self.l5.grid(row=8, column=1) self.i = 0 # self.root.mainloop() def selectItem(self, event): global cell_value curItem = self.tree.item(self.tree.focus()) col = self.tree.identify_column(event.x) print('curItem = ', curItem) print('col = ', col) if col == '#0': cell_value = curItem['text'] elif col == '#1': cell_value = curItem['values'][0] elif col == '#2': cell_value = curItem['values'][1] elif col == '#3': cell_value = curItem['values'][2] elif col == '#4': cell_value = curItem['values'][3] print('cell_value = ', cell_value) def add_data(self): sensor_name = self.t1.get("1.0", END) sensor_ip = self.t3.get("1.0", END) global i self.i = self.i + 1 self.tree.insert("", 'end', values=(int(self.i), sensor_name, sensor_ip, str(self.time_data))) self.t1.delete('1.0', END) # reset the text entry box self.t3.delete('1.0', END) # reset the text entry box self.my_str.set("Sensor Added !") self.t1.focus() self.l5.after(3000, lambda: self.my_str.set('')) # remove the message '''def record_data(): myclient = pymongo.MongoClient("mongodb://localhost:27017/") mydb = myclient["Sensor_Record"] mycol = mydb["data1"] mycol.insert_one() ''' '''if __name__ == "__main__": app = App() app.mainloop()''' '''def main(): #run mianloop root = tk.Tk() app = Window1(root) root.mainloop() if __name__ == '__main__': main()''' app = App() app.mainloop()
1750d9bd2d2d74e5249e0afd3dbfb651013e01bd
cf7d6b1f45efe4d97389da2918b4f1b04673e66f
/utils/utils.py
310d39b1f1996389d1f52e5ffaffd0b292de8091
[]
no_license
metehancekic/deep_noise_rejection
4d1379c16fe57ed95aa152d39f33bf36d1c501a9
fd8e260e489f421fe7bd30c7ab8e9d397305247a
refs/heads/master
2022-06-18T09:07:52.907752
2020-05-12T18:46:07
2020-05-12T18:46:07
262,714,744
0
0
null
null
null
null
UTF-8
Python
false
false
3,431
py
""" Utilities PyTorch Example Run python -m deep_adv.utils.utils """ import torch import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn import numpy as np import os from tqdm import tqdm from deepillusion.torchattacks import PGD def save_perturbed_images(args, model, device, data_loader, data_params, attack_params): # Set phase to testing model.eval() test_loss = 0 correct = 0 all_images = [] all_labels = [] all_preds = [] for data, target in tqdm(data_loader): data, target = data.to(device), target.to(device) # Attacks pgd_args = dict(net=model, x=data, y_true=target, data_params=data_params, attack_params=attack_params) perturbs = PGD(**pgd_args) data += perturbs output = model(data) test_loss += F.cross_entropy(output, target, reduction="sum").item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() all_images.append(data.detach().cpu().numpy()) all_labels.append(target.detach().cpu().numpy()) all_preds.append(pred.detach().cpu().numpy()) # Divide summed-up loss by the number of datapoints in dataset test_loss /= len(data_loader.dataset) # Print out Loss and Accuracy for test set print( f"\nAdversarial test set (l_{attack_params['norm']}): Average loss: {test_loss:.2f}, Accuracy: {correct}/{len(data_loader.dataset)} ({100. * correct / len(data_loader.dataset):.2f}%)\n" ) all_images = np.array(all_images) all_labels = np.array(all_labels) all_preds = np.array(all_preds) if not os.path.exists(args.directory + "data/attacked_images/"): os.makedirs(args.directory + "data/attacked_images/") np.savez_compressed( args.directory + "data/attacked_images/" + args.model, images=all_images, labels=all_labels, preds=all_preds, ) def main(): from ..CIFAR10.read_datasets import cifar10 from ..CIFAR10.parameters import get_arguments from ..CIFAR10.models.resnet import ResNet34 args = get_arguments() # Get same results for each training with same parameters !! torch.manual_seed(args.seed) use_cuda = not args.no_cuda and torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") train_loader, test_loader = cifar10(args) x_min = 0.0 x_max = 1.0 # Decide on which model to use if args.model == "ResNet": model = ResNet34().to(device) else: raise NotImplementedError if device == "cuda": model = torch.nn.DataParallel(model) cudnn.benchmark = True model.load_state_dict( torch.load(args.directory + "checkpoints/" + args.model + ".pt") ) data_params = {"x_min": x_min, "x_max": x_max} attack_params = { "norm": "inf", "eps": args.epsilon, "step_size": args.step_size, "num_steps": args.num_iterations, "random_start": args.rand, "num_restarts": args.num_restarts, } save_perturbed_images( args, model, device, test_loader, data_params=data_params, attack_params=attack_params, ) if __name__ == "__main__": main()
21d2f7e2323d617b60c05ef764ccd5f70ec6a1c2
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/34/usersdata/82/13368/submittedfiles/moedas.py
7c8cb901e522ee6f3565298cf8f75f60a478e842
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
# -*- coding: utf-8 -*- from __future__ import division a= int(input('Digite o valor de a:')) b= int(input('Digite o valor de b:')) c= int(input('Digite o valor de c:')) qa= 0 qb= 0 contador=0 while qa<=(c//a): qb=(c-qa*a)//b if qa*a+qb*b==c: contador=contador+1 break else: qa=qa+1 if contador>0: print (%qa) print (%qb) else: print ('N')
afaefeacf6a86365775689c2eb6cfda2d6b6b824
7f031e500bb73f084f932a166c3398672a3b8027
/config.py
0dbbc38f5b3b39dd4a87cfdac60b95503a2eff92
[]
no_license
Guangzhan/nlp_demo
109fb0ed7f6bfc3469ac71cc59106449c1927ec5
4e88515968156461326dff3046c8bba14a12e32f
refs/heads/master
2020-09-13T16:38:58.744704
2019-11-20T03:37:56
2019-11-20T03:37:56
222,843,808
0
0
null
2019-11-20T03:35:08
2019-11-20T03:35:07
null
UTF-8
Python
false
false
1,025
py
__author__ = 'yangbin1729' import os basedir = os.path.abspath(os.path.dirname(__file__)) class Config: SECRET_KEY = '123@456#789$012%' class DevelopmentConfig(Config): DEBUG = True MODEL_DIR = os.path.join(basedir, 'models') Word2Vec_DIR = os.path.join(MODEL_DIR, 'word2vec\wiki_corpus_above200.model') LTP_DATA_DIR = os.path.join(MODEL_DIR, 'ltp') CLASSIFIER_DIR = os.path.join(MODEL_DIR, 'classifier') TOKENIZER = os.path.join(CLASSIFIER_DIR, 'tokenizer.pickle') class ProductionConfig(Config): DEBUG = False MODEL_DIR = r'/home/student/project/project-01/noam/project01/models' Word2Vec_DIR = os.path.join(MODEL_DIR, 'word2vec/wiki_corpus_above200.model') LTP_DATA_DIR = os.path.join(MODEL_DIR, 'ltp') CLASSIFIER_DIR = os.path.join(MODEL_DIR, 'classifier') TOKENIZER = os.path.join(CLASSIFIER_DIR, 'tokenizer.pickle') config = {'development': DevelopmentConfig, 'production': ProductionConfig, }
15106812cf7653e88c461073845014f9006b8bb3
8b4bb6cc0478b0bb535cc1bcf619b67bddf6c155
/sorting/Frequency_Queries .py
a2fa8ac8735c99dcab94e98f8a7927fb8a7dc2e4
[]
no_license
PiyushChandra17/HackerRank_DSA
2da943fcbc09918ba09757b6b0849c42f49bbd22
609b8272bf56006833aa8d5385ef331605bcc0e1
refs/heads/master
2022-12-02T17:56:26.648609
2020-08-08T18:37:11
2020-08-08T18:37:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
989
py
#!/bin/python3 import math import os import random import re import sys from collections import Counter # Complete the freqQuery function below. def freqQuery(queries): freq = Counter() cnt = Counter() arr = [] for q in queries: if q[0] == 1: cnt[freq[q[1]]] -= 1 freq[q[1]] += 1 cnt[freq[q[1]]] += 1 elif q[0] == 2: if freq[q[1]] > 0: cnt[freq[q[1]]] -= 1 freq[q[1]] -= 1 cnt[freq[q[1]]] += 1 else: if cnt[q[1]] > 0: arr.append(1) else: arr.append(0) return arr if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') q = int(input().strip()) queries = [] for _ in range(q): queries.append(list(map(int, input().rstrip().split()))) ans = freqQuery(queries) fptr.write('\n'.join(map(str, ans))) fptr.write('\n') fptr.close()
bd5bfdad4fb1f2096c2f1618a38e3041863b7c38
958fc2764dedf880b0027bcc00d4f042e0fb61b0
/natas5.py
2e2861fe33ce2f0ffd5ed00472e3b163cebfe8c4
[]
no_license
marciopocebon/overthewire_natas_solutions
ee950249341abd639042efea8fd817c0951c68b9
67c726c74f9e7c0840a4b1c3b633a4bbc185f4a3
refs/heads/master
2021-01-04T01:06:18.654269
2018-10-15T22:33:38
2018-10-15T22:33:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
562
py
#!/usr/bin/env python import requests import re username = 'natas5' password = 'iX6IOfmpN7AYOQGPwtn3fXpbaJVJcHfq' # headers = { "Referer" : "http://natas5.natas.labs.overthewire.org/" } cookies = { "loggedin" : "1" } url = 'http://%s.natas.labs.overthewire.org/' % username # response = requests.get(url, auth = (username, password), headers = headers ) session = requests.Session() response = session.get(url, auth = (username, password), cookies = cookies ) content = response.text # print content print re.findall(' natas6 is (.*)</div>', content)[0]
2cbf15f90fb9026a383dca7a34fb3f4ca4d06a7d
fa89ef4a8eb06dc2015d7116637f230b6891eb8d
/refinery/units/formats/pe/dotnet/__init__.py
187abebc117fd0d022f710618937f9f2e1c730b3
[ "BSD-3-Clause" ]
permissive
binref/refinery
f61878d9fddf616fee8edf226df22f6a35238940
4c7c3717ae45543b9d7bae60a4af4c00993cf719
refs/heads/master
2023-08-17T17:02:34.357138
2023-08-14T08:43:05
2023-08-14T08:43:05
228,019,736
439
48
NOASSERTION
2023-09-11T10:26:02
2019-12-14T12:32:06
Python
UTF-8
Python
false
false
2,459
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import json from typing import Any from enum import Enum from hashlib import md5, sha1, sha256, sha512 from zlib import crc32 from refinery.units import Arg, Unit from refinery.units.encoding.hex import hex from refinery.units.encoding.esc import esc from refinery.units.encoding.url import url from refinery.units.encoding.b64 import b64 from refinery.lib.json import BytesAsArrayEncoder from refinery.lib.dotnet.types import Blob class UNIT(Enum): HEX = hex ESC = esc URL = url B64 = b64 class HASH(Enum): MD5 = md5 CRC32 = crc32 SHA1 = sha1 SHA256 = sha256 SHA512 = sha512 class DotNetEncoder(BytesAsArrayEncoder): def default(self, obj): if isinstance(obj, Blob): obj = bytes(obj) try: return super().default(obj) except TypeError: return str(obj) class JSONEncoderUnit(Unit, abstract=True): """ An abstract unit that provides the interface for displaying parsed data as JSON. By default, binary data is converted into integer arrays. """ def __init__( self, encode: Arg.Option('-e', group='BIN', choices=UNIT, help=( 'Select an encoder unit used to represent binary data in the JSON output. Available are: {choices}.')) = None, digest: Arg.Option('-d', group='BIN', choices=HASH, help=( 'Select a hashing algorithm to digest binary data; instead of the data, only the hash will be displayed. The ' 'available algorithms are: {choices}.')) = None, **keywords ): encode = Arg.AsOption(encode, UNIT) digest = Arg.AsOption(digest, HASH) super().__init__(**keywords) if encode is not None and digest is not None: raise ValueError('Only one binary data conversion can be specified.') elif encode is not None: unit = encode.value() class CustomEncoder(DotNetEncoder): # noqa def encode_bytes(self, obj): return unit.reverse(obj).decode('utf8') elif digest is not None: class CustomEncoder(DotNetEncoder): def encode_bytes(self, obj): return digest(obj).hexdigest() else: CustomEncoder = DotNetEncoder self.encoder = CustomEncoder def to_json(self, obj: Any) -> bytes: return json.dumps(obj, cls=self.encoder, indent=4).encode(self.codec)
c90c46d63978b7b8df5aa9b6761c81c9b33f0160
ce9d475cebeaec9cf10c467c577cb05c3b431fad
/code/chapter_22_example_07.py
14c8271ee19d7a4d7aae1a0b9ae7a72b488b3952
[]
no_license
Sundarmax/two-scoops-of-django-2.0-code-examples
9c8f98d145aaa5498bb558fc5125379cd39003e5
a15b2d4c240e879c03d2facf8592a644e27eb348
refs/heads/master
2022-04-19T10:14:53.795688
2020-03-04T15:16:25
2020-03-04T15:16:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,147
py
""" Using This Code Example ========================= The code examples provided are provided by Daniel Greenfeld and Audrey Roy of Two Scoops Press to help you reference Two Scoops of Django: Best Practices for Django 1.11 for Django 2.0 projects. Code Samples follow PEP-0008, with exceptions made for the purposes of improving book formatting. Example code is provided "as is", and is not intended to be, and should not be considered or labeled as "tutorial code". Permissions ============ In general, you may use the code we've provided with this book in your programs and documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the code or using it in commercial distributions. Examples: * Writing a program that uses several chunks of code from this course does not require permission. * Selling or distributing a digital package from material taken from this book does require permission. * Answering a question by citing this book and quoting example code does not require permission. * Incorporating a significant amount of example code from this book into your product's documentation does require permission. Attributions usually include the title, author, publisher and an ISBN. For example, "Two Scoops of Django: Best Practices for Django 1.11, by Daniel Roy Greenfeld and Audrey Roy Greenfeld. Copyright 2017 Two Scoops Press (978-0-692-91572-1)." If you feel your use of code examples falls outside fair use of the permission given here, please contact us at [email protected]. """ @mock.patch.object(requests, 'get') def test_request_failure(self, get) """Test if the target site is innaccessible.""" get.side_effect = requests.exception.ConnectionError() with self.assertRaises(CantListFlavors): list_flavors_sorted() @mock.patch.object(requests, 'get') def test_request_failure(self, get) """Test if we can handle SSL problems elegantly.""" get.side_effect = requests.exception.SSLError() with self.assertRaises(CantListFlavors): list_flavors_sorted()
d6ab0ddce5ea53451beeea5d56de10025e55a93e
f805cf2eef884fa0670332208b1b70ed8549751d
/parametres/urls.py
3cc11de2d7d0e22a6ae2ac1a737dbbceacd4524a
[]
no_license
parheto10/agro_tracability
8314ad73f2504dd90af4600938065ca18d93ab07
42520a3a2753707ed1100b5cdfb680bf7e00c80f
refs/heads/master
2023-08-05T16:17:02.481499
2021-10-08T16:54:10
2021-10-08T16:54:10
414,891,821
0
2
null
null
null
null
UTF-8
Python
false
false
6,456
py
from django.urls import path # from cooperatives.views import parcelle_list from .views import ( connexion, loggout, index, detail_coop, map_parcelles, coop_parcelles, catre_parcelles, catre_parcelles_coop # projet, # # pepiniere, # # detail_pepiniere, # # formation, # detail_proj, # localisation, # # chart, # prod_coop, # parcelle_coop, # localisation_coop, # section_coop, # # PlantingApiView, # sous_section_coop, # Stats_coop, Production_plan, # Stats_semences, stat_prod_coop, plants_coop, semences_coop, formations, detail_formation, site_pepinieres, # coop_pepiniere, pepiniere, pepiniere_coop, export_prods_to_pdf, export_parcelles_to_pdf, export_prod_xls, # export_parcelle_xls, export_plant_xls, export_formation_xls, ParcellesMapView, ProducteurApiView, ParcelleApiView, # ParcelleJson, PepiniereJson, PepiniereApiView, FormationApiView, folium_map, # planting_coop, planting_list, produteur_list, parcelles_list, details_planting_list, # DetailPlantingJson, DetailPlantingApiView, detail_planting, folium_palntings_map, # Plantings, detailPlantings, plantings_coop, plantingcoop, update_projet, delete_projet # , ParcelleCooperativeApi # detail_formation, ) urlpatterns = [ path('', connexion, name='connexion'), path('logout', loggout, name='logout'), path('index/', index, name='accueil'), path('detail_coop/<int:id>', detail_coop, name='detail_coop'), # path('projets/', projet, name='projets'), # path('projets/<int:id>/update/', update_projet, name='update_projet'), # path('projets/<int:id>/delete/', delete_projet, name='delete_projet'), # path('pepinieres/', pepiniere, name='pepinieres'), # path('pepiniere_coop/<int:id>', pepiniere_coop, name='pepiniere_coop'), # path('formation/<int:id>', formations, name='formations'), # path('formation/<int:id>/<int:_id>', detail_formation, name='formation'), # path('Stats_coop/', Stats_coop, name='stats_coop'), # path('Stats_semences/', Stats_semences, name='stats_semences'), # path('Plantings/', Plantings, name='Plantings'), # path('detailPlantings/', detailPlantings, name='detailPlantings'), # path('plantings_coop/<int:id>', plantings_coop, name='plantings_coop'), # path('Production_plan/', Production_plan, name='production_plan'), # path('stat_prod_coop/<int:id>', stat_prod_coop, name='stat_prod_coop'), # path('plants_coop/<int:id>', plants_coop, name='plants_coop'), # path('semences_coop/<int:id>', semences_coop, name='semences_coop'), # # path('pepiniere/', pepiniere, name='pepiniere'), # # path('formations/', formation, name='formations'), # path('producteurs/<int:id>', prod_coop, name='prod_coop'), # path('parcelles/<int:id>', parcelle_coop, name='parcelle_coop'), # path('sections/<int:id>', section_coop, name='section_coop'), # path('sous_sections/<int:id>', sous_section_coop, name='sous_section_coop'), # path('plantings/<int:id>', planting_coop, name='planting_coop'), # path('planting/<int:id>/<int:_id>', detail_planting, name='planting'), # path('coordonnes/<int:id>', localisation_coop, name='localisation_coop'), # path('planting_coop/<int:id>', plantingcoop, name='plantingcoop'), # path('localisation/', localisation, name='localisation'), # path('detail_proj/<int:id>', detail_proj, name='detail_proj'), # path('site_pepinieres/', site_pepinieres, name='site_pepinieres'), # path('coop_pepiniere/<int:id>', coop_pepiniere, name='coop_pepiniere'), # # path('detail_pepiniere/<int:id>', detail_pepiniere, name='detail_pepiniere'), # # path('formation/<int:id>', detail_formation, name='formation'), # path('chart/<int:id>', chart, name='chart'), #Export to Excel # path('cooperative/<int:id>/producteurs/xls/', export_prod_xls, name='export_prod_xls'), # # path('sections/xls/', export_section_xls, name='export_section_xls'), # # path('sous_sections/xls/', export_sous_section_xls, name='export_sous_section_xls'), # path('cooperative/<int:id>/parcelles/xls/', export_parcelle_xls, name='export_parcelle_xls'), # path('cooperative/<int:id>/plants/xls/', export_plant_xls, name='export_plant_xls'), # path('cooperative/<int:id>/formations/xls/', export_formation_xls, name='export_formation_xls'), # Export Données EN PDF # path('producteurs/pdf/<int:id>', export_prods_to_pdf, name='export_prods_to_pdf'), # path('parcelles/pdf/<int:id>', export_parcelles_to_pdf, name='export_parcelles_to_pdf'), #Api Urls # path('api/producteurs', ProducteurApiView.as_view(), name="producteurs_api"), # path('api/parcelles', ParcelleApiView.as_view(), name="parcelles_api"), # path('api/details_plantings', DetailPlantingApiView.as_view(), name="detail_plantings_api"), # # path('api/parcelles_coop', ParcelleCooperativeApi.as_view(), name="coop_parcelles_api"), # path('api/pepinieres', PepiniereApiView.as_view(), name="pepinieres_api"), # path('api/formations', FormationApiView.as_view(), name="formations_api"), #map leaflet # path('pepinieres_json/', PepiniereJson.as_view(), name="pepinieres_json"), # # path('geolocalisation/', ParcelleJson.as_view(), name='geolocalisation'), # path('geolocalisation/', ParcelleJson, name='geolocalisation'), # path('details_planting/', DetailPlantingJson.as_view(), name='details_planting'), # # path('parcelles/data', ParcellesView.as_view(), name="data"), # path('parcelles/data', parcelle_list, name="data"), #Folium Map # path('folium_map/', folium_map, name="folium_map"), # path('folium_palntings_map/', folium_palntings_map, name="folium_palntings_map"), # Api path('api/v1/map_parcelles/', map_parcelles, name='map_parcelles'), path('map_parcelles/', catre_parcelles, name='catre_parcelles'), path('api/v1/coop_parcelles/<int:id>', coop_parcelles, name='coop_parcelles'), path('coop_parcelles/', catre_parcelles_coop, name='carte_parcelles_coop'), # path('plantings/api/v1/', planting_list, name="plantings"), # path('producteurs/api/v1/', produteur_list, name="producteurs"), # path('parcelles/api/v1/', parcelles_list, name="parcelles"), # path('plantings/api/v1/', planting_list, name="plantings"), # path('details_plantings/api/v1/', details_planting_list, name="details_plantings"), ]
6578c2d9e7c4ebe710d7ec7ba3661cb86e8b6c35
411a600c355e34f8a3d158a1de6b22f0f509aa18
/hw2/hw2-copy-figures.py
0440c833791a9c594c3ed8532298d41ec10fc7cf
[]
no_license
eggachecat/pynn
e216e6cd5f0c9671ef5009e1422bdaa801f7b0f4
74a75ee56483be22b520b418b5a52ae176f4a8e1
refs/heads/master
2021-01-11T00:37:58.010712
2016-12-31T17:25:38
2016-12-31T17:25:38
70,506,707
0
0
null
null
null
null
UTF-8
Python
false
false
762
py
import shutil, errno import os def copyanything(src, dst): try: shutil.copytree(src, dst) except OSError as exc: # python >2.5 if exc.errno == errno.ENOTDIR: shutil.copy(src, dst) else: raise results = [988970911, 941530379, 349685028, 783952587, 156884050, 449777493, 983956549, 106841919, 994865007, 87401771, 782990781, 666671943, 944565074, 195339946, 312443606, 721505406, 41157021, 790121321, 805213998, 963255433] root_src = os.path.join(os.path.dirname(__file__ ) + "\exp_figures\\") root_dst = "d:\\good_exp_figures" if not os.path.exists(root_dst): os.makedirs(root_dst) for dirname in results: src = root_src + "\\" + str(dirname) dst = root_dst + "\\" + str(dirname) copyanything(src, dst)
76cc67eda36092c76628d9d8c651dd0f974afeda
786027545626c24486753351d6e19093b261cd7d
/ghidra9.2.1_pyi/ghidra/app/cmd/data/CreateDataInStructureBackgroundCmd.pyi
5722a33e1967b7c8c164d39a1314696abfc50abb
[ "MIT" ]
permissive
kohnakagawa/ghidra_scripts
51cede1874ef2b1fed901b802316449b4bf25661
5afed1234a7266c0624ec445133280993077c376
refs/heads/main
2023-03-25T08:25:16.842142
2021-03-18T13:31:40
2021-03-18T13:31:40
338,577,905
14
1
null
null
null
null
UTF-8
Python
false
false
3,914
pyi
import ghidra.framework.cmd import ghidra.framework.model import ghidra.util.task import java.lang class CreateDataInStructureBackgroundCmd(ghidra.framework.cmd.BackgroundCommand): """ Background command to create data across a selection inside of a structure. """ @overload def __init__(self, addr: ghidra.program.model.address.Address, startPath: List[int], length: int, dt: ghidra.program.model.data.DataType): """ Constructs a command for applying dataTypes within an existing structure across a range of components. Simple pointer conversion will NOT be performed. @param addr The address of the existing structure. @param startPath the componentPath where to begin applying the datatype. @param length the number of bytes to apply the data type to. @param dt the datatype to be applied to the range of components. """ ... @overload def __init__(self, addr: ghidra.program.model.address.Address, startPath: List[int], length: int, dt: ghidra.program.model.data.DataType, stackPointers: bool): """ This is the same as {@link #CreateDataInStructureBackgroundCmd(Address, int[], int, DataType )} except that it allows the caller to control whether or not a pointer data type is created when a non-pointer data type is applied at a location that previously contained a pointer data type. @param addr The address of the existing structure. @param startPath the componentPath where to begin applying the datatype. @param length the number of bytes to apply the data type to. @param dt the datatype to be applied to the range of components. @param stackPointers True will convert the given data type to a pointer if it is not one and the previous type was a pointer; false will not make this conversion """ ... @overload def applyTo(self, obj: ghidra.framework.model.DomainObject) -> bool: ... @overload def applyTo(self, obj: ghidra.framework.model.DomainObject, monitor: ghidra.util.task.TaskMonitor) -> bool: """ @see ghidra.framework.cmd.BackgroundCommand#applyTo(ghidra.framework.model.DomainObject, ghidra.util.task.TaskMonitor) """ ... def canCancel(self) -> bool: """ Check if the command can be canceled. @return true if this command can be canceled """ ... def dispose(self) -> None: """ Called when this command is going to be removed/canceled without running it. This gives the command the opportunity to free any temporary resources it has hold of. """ ... def equals(self, __a0: object) -> bool: ... def getClass(self) -> java.lang.Class: ... def getName(self) -> unicode: ... def getStatusMsg(self) -> unicode: ... def hasProgress(self) -> bool: """ Check if the command provides progress information. @return true if the command shows progress information """ ... def hashCode(self) -> int: ... def isModal(self) -> bool: """ Check if the command requires the monitor to be modal. No other command should be allowed, and the GUI will be locked. @return true if no other operation should be going on while this command is in progress. """ ... def notify(self) -> None: ... def notifyAll(self) -> None: ... def taskCompleted(self) -> None: """ Called when the task monitor is completely done with indicating progress. """ ... def toString(self) -> unicode: ... @overload def wait(self) -> None: ... @overload def wait(self, __a0: long) -> None: ... @overload def wait(self, __a0: long, __a1: int) -> None: ...
554ddb63741d0c1664dbeb9b2eae63e3ea3ff840
d60ee49abaee6c74c5b777f8f112a7f75f71f029
/genome/variants2/filter/VCF/somatic/genes/indels/common_rsid.py
e24057ae9cd0d708b82f81fa0fea1cf630326aea
[]
no_license
ak352/melanomics
41530f623b4bfdbd5c7b952debcb47622d1a8e88
fc5e6fdb1499616fb25a8dc05259add8a65aeca0
refs/heads/master
2020-12-24T16:14:42.271416
2015-08-06T12:48:52
2015-08-06T12:48:52
18,439,919
0
0
null
null
null
null
UTF-8
Python
false
false
2,026
py
import sys def ParseFields(line): fields = {} var = line[:-1].split("\t") for x in range(0, len(var)): fields[var[x]] = x return fields def read_tsv(infile): with open(infile) as f: var = ParseFields(next(f)) for line in f: record = {} line = line[:-1].split("\t") for x in var: record[x] = line[var[x]] record["all"] = "\t".join(line) yield record def read_vcf(infile, count=False): with open(infile) as f: line = next(f) while line.startswith("##"): line = next(f) assert line.startswith("#CHROM") var = ParseFields(line) num_lines = 0 for line in f: record = {} line = line[1:-1].split("\t") for x in var: record[x] = line[var[x]] record["all"] = "\t".join(line) num_lines += 1 if count: if num_lines % 1000000: sys.stderr.write("%d lines processed...\n" % num_lines) yield record def read_dbsnp_vcf(): # common_variants = set() # for record in read_vcf(vcf): # for info in record["INFO"].split(";"): # info = info.split("=") # if info[0] == "COMMON": # if info[1] == "1": # iden = record["ID"] # assert # common_variants.add() # values.add(info[1]) # print values return def report(line, log): for s in sys.stderr, log: s.write(line) def get_non_flagged(): vcf="/work/projects/isbsequencing/data/dbsnp/hg19/dbSNP138/00-All.vcf" infile = "/work/projects/melanomics/tools/annovar/2015Mar22/annovar/humandb/hg19_snp138NonFlagged.wheader.txt.rsids" stderr = sys.stderr stderr.write("dbSNP Non-flagged file: %s\n" % infile) ids = set([line[:-1] for line in open(infile)]) return ids
4e44339e8aa9e97762dd77cc73821e37bf44948a
8613ec7f381a6683ae24b54fb2fb2ac24556ad0b
/boot/hard/knight.py
906fb70920ec67cbdcdac0eaf27502fa1a44eb0f
[]
no_license
Forest-Y/AtCoder
787aa3c7dc4d999a71661465349428ba60eb2f16
f97209da3743026920fb4a89fc0e4d42b3d5e277
refs/heads/master
2023-08-25T13:31:46.062197
2021-10-29T12:54:24
2021-10-29T12:54:24
301,642,072
0
0
null
null
null
null
UTF-8
Python
false
false
358
py
x, y = map(int, input().split()) mod = 10 ** 9 + 7 if (x + y) % 3 != 0: ans = 0 else: n, m = (2 * x - y) / 3, (2 * y - x) / 3 ans = 0 if n >= 0 and m >= 0: n, m = int(n), int(m) ans = 1 for i in range(min(m, n)): ans = ans * (n + m - i) % mod ans *= pow(i + 1, mod - 2, mod) print(ans % mod)
dbf7273504313e2c22795c47ad2dc7bcb84860ae
2f86dda1ede21eb5fd0ad9bd32efb7de4c268efd
/citizen/spiders/spider.py
71e50c1ffc85a415075fb41f56e5e3ced9e7f37f
[]
no_license
SimeonYS/citizen
5a08c0108f2d1509ee34c4c40234a4bd406ca026
69dd47e459e251e18d6ecd18a8b6b86df64ceb59
refs/heads/main
2023-04-01T08:50:36.399086
2021-03-30T13:18:29
2021-03-30T13:18:29
353,007,978
0
0
null
null
null
null
UTF-8
Python
false
false
1,073
py
import re import scrapy from scrapy.loader import ItemLoader from ..items import CitizenItem from itemloaders.processors import TakeFirst pattern = r'(\xa0)?' class CitizenSpider(scrapy.Spider): name = 'citizen' start_urls = ['https://www.citizens-bank.com/news/'] def parse(self, response): post_links = response.xpath('//h2/a/@href').getall() yield from response.follow_all(post_links, self.parse_post) def parse_post(self, response): date = response.xpath('//span[@class="fl-post-info-date"]/text()').get() title = response.xpath('//h1/span/text()').get() content = response.xpath('//div[@class="fl-module fl-module-fl-post-content fl-node-599c6b46b54ad"]//text()').getall() content = [p.strip() for p in content if p.strip()] content = re.sub(pattern, "",' '.join(content)) item = ItemLoader(item=CitizenItem(), response=response) item.default_output_processor = TakeFirst() item.add_value('title', title) item.add_value('link', response.url) item.add_value('content', content) item.add_value('date', date) yield item.load_item()
0dc7a3414e2450000801ac10defe6303bb854684
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/ml/azure-ai-ml/azure/ai/ml/_restclient/v2023_02_01_preview/operations/_code_versions_operations.py
75708494a685cf14484d28bba1f2f28657048b8f
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-python-cwi", "PSF-2.0", "LGPL-2.0-or-later", "GPL-3.0-or-later", "GPL-1.0-or-later", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "Python-2.0", "MPL-2.0", "LicenseRef-scancode-other-copyleft", "HPND", "ODbL-1.0", "GPL-3.0-only", "ZPL-2.1", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-free-unknown" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
22,838
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from msrest import Serializer from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error, ) from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models from .._vendor import _convert_request, _format_url_section if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Iterable, Optional, TypeVar T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False # fmt: off def build_list_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = kwargs.pop('api_version', "2023-02-01-preview") # type: str order_by = kwargs.pop('order_by', None) # type: Optional[str] top = kwargs.pop('top', None) # type: Optional[int] skip = kwargs.pop('skip', None) # type: Optional[str] accept = "application/json" # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions") # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "name": _SERIALIZER.url("name", name, 'str'), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] _query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') if order_by is not None: _query_parameters['$orderBy'] = _SERIALIZER.query("order_by", order_by, 'str') if top is not None: _query_parameters['$top'] = _SERIALIZER.query("top", top, 'int') if skip is not None: _query_parameters['$skip'] = _SERIALIZER.query("skip", skip, 'str') # Construct headers _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=_url, params=_query_parameters, headers=_header_parameters, **kwargs ) def build_delete_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str name, # type: str version, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = kwargs.pop('api_version', "2023-02-01-preview") # type: str accept = "application/json" # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}") # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "name": _SERIALIZER.url("name", name, 'str'), "version": _SERIALIZER.url("version", version, 'str'), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] _query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="DELETE", url=_url, params=_query_parameters, headers=_header_parameters, **kwargs ) def build_get_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str name, # type: str version, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = kwargs.pop('api_version', "2023-02-01-preview") # type: str accept = "application/json" # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}") # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "name": _SERIALIZER.url("name", name, 'str'), "version": _SERIALIZER.url("version", version, 'str'), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] _query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=_url, params=_query_parameters, headers=_header_parameters, **kwargs ) def build_create_or_update_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str name, # type: str version, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = kwargs.pop('api_version', "2023-02-01-preview") # type: str content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL _url = kwargs.pop("template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}") # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str', min_length=1), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "name": _SERIALIZER.url("name", name, 'str', pattern=r'^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$'), "version": _SERIALIZER.url("version", version, 'str'), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] _query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="PUT", url=_url, params=_query_parameters, headers=_header_parameters, **kwargs ) # fmt: on class CodeVersionsOperations(object): """CodeVersionsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.machinelearningservices.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def list( self, resource_group_name, # type: str workspace_name, # type: str name, # type: str order_by=None, # type: Optional[str] top=None, # type: Optional[int] skip=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Iterable["_models.CodeVersionResourceArmPaginatedResult"] """List versions. List versions. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. :type workspace_name: str :param name: Container name. This is case-sensitive. :type name: str :param order_by: Ordering of list. :type order_by: str :param top: Maximum number of records to return. :type top: int :param skip: Continuation token for pagination. :type skip: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CodeVersionResourceArmPaginatedResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.CodeVersionResourceArmPaginatedResult] :raises: ~azure.core.exceptions.HttpResponseError """ api_version = kwargs.pop("api_version", "2023-02-01-preview") # type: str cls = kwargs.pop("cls", None) # type: ClsType["_models.CodeVersionResourceArmPaginatedResult"] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) def prepare_request(next_link=None): if not next_link: request = build_list_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, name=name, api_version=api_version, order_by=order_by, top=top, skip=skip, template_url=self.list.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, name=name, api_version=api_version, order_by=order_by, top=top, skip=skip, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("CodeVersionResourceArmPaginatedResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data) list.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions"} # type: ignore @distributed_trace def delete( # pylint: disable=inconsistent-return-statements self, resource_group_name, # type: str workspace_name, # type: str name, # type: str version, # type: str **kwargs # type: Any ): # type: (...) -> None """Delete version. Delete version. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. :type workspace_name: str :param name: Container name. This is case-sensitive. :type name: str :param version: Version identifier. This is case-sensitive. :type version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop("cls", None) # type: ClsType[None] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) api_version = kwargs.pop("api_version", "2023-02-01-preview") # type: str request = build_delete_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, name=name, version=version, api_version=api_version, template_url=self.delete.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}"} # type: ignore @distributed_trace def get( self, resource_group_name, # type: str workspace_name, # type: str name, # type: str version, # type: str **kwargs # type: Any ): # type: (...) -> "_models.CodeVersion" """Get version. Get version. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. :type workspace_name: str :param name: Container name. This is case-sensitive. :type name: str :param version: Version identifier. This is case-sensitive. :type version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CodeVersion, or the result of cls(response) :rtype: ~azure.mgmt.machinelearningservices.models.CodeVersion :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop("cls", None) # type: ClsType["_models.CodeVersion"] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) api_version = kwargs.pop("api_version", "2023-02-01-preview") # type: str request = build_get_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, name=name, version=version, api_version=api_version, template_url=self.get.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("CodeVersion", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}"} # type: ignore @distributed_trace def create_or_update( self, resource_group_name, # type: str workspace_name, # type: str name, # type: str version, # type: str body, # type: "_models.CodeVersion" **kwargs # type: Any ): # type: (...) -> "_models.CodeVersion" """Create or update version. Create or update version. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. :type workspace_name: str :param name: Container name. This is case-sensitive. :type name: str :param version: Version identifier. This is case-sensitive. :type version: str :param body: Version entity to create or update. :type body: ~azure.mgmt.machinelearningservices.models.CodeVersion :keyword callable cls: A custom type or function that will be passed the direct response :return: CodeVersion, or the result of cls(response) :rtype: ~azure.mgmt.machinelearningservices.models.CodeVersion :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop("cls", None) # type: ClsType["_models.CodeVersion"] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) api_version = kwargs.pop("api_version", "2023-02-01-preview") # type: str content_type = kwargs.pop("content_type", "application/json") # type: Optional[str] _json = self._serialize.body(body, "CodeVersion") request = build_create_or_update_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, name=name, version=version, api_version=api_version, content_type=content_type, json=_json, template_url=self.create_or_update.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize("CodeVersion", pipeline_response) if response.status_code == 201: deserialized = self._deserialize("CodeVersion", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}"} # type: ignore
0dbf512149e37a7f23588db495fee8f788b3ee6c
edf510cc5bbbe24469d8ff262c022b33b4d80a75
/tacotron2/data/text/symbols.py
3608a7a394aeac2cffae9ed87a7c4183ba9886b1
[ "Apache-2.0", "MIT" ]
permissive
rheehot/Tacotron2
e8b8a4be614708800b10b9fa7829264407510fa8
ddbe55b426397d40cadd14f5040c55ba7c25615d
refs/heads/master
2022-12-26T14:13:39.966498
2020-10-06T18:34:57
2020-10-06T18:34:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
736
py
""" from https://github.com/keithito/tacotron """ ''' Defines the set of symbols used in text input to the model. The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. ''' from tacotron2.data.text import cmudict _pad = '_' _punctuation = '!\'(),.:;? ' _special = '-' _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' # Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters): _arpabet = ['@' + s for s in cmudict.valid_symbols] # Export all symbols: symbols = [_pad] + list(_special) + list(_punctuation) + list(_letters) + _arpabet
8d2bea60b5b2b31185d035449eb07b04603efb6d
f76ba1e72ed81d85450f2584ddbb9b033396a3db
/alembic/versions/20210306_212825_.py
303ec6cd6ce7b1e84e2bc2a92f015e4e69b8404b
[ "MIT" ]
permissive
webclinic017/magnet-migrade
0e4823c32a6734628b0d3fc119f9c20ea1f9a167
b5669b34a6a3b845df8df96dfedaf967df6b88e2
refs/heads/main
2023-05-07T02:45:20.594756
2021-06-08T02:14:24
2021-06-08T02:14:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,800
py
"""empty message Revision ID: 20210306_212825 Revises: 20210306_151508 Create Date: 2021-03-06 21:28:25.744854 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "20210306_212825" down_revision = "20210306_151508" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "trade_account", sa.Column("id", sa.Integer(), nullable=False), sa.Column("user_id", sa.Integer(), nullable=True), sa.Column("version", sa.Integer(), nullable=False), sa.Column("name", sa.String(length=255), nullable=False), sa.Column("description", sa.String(length=1024), nullable=False), sa.Column("provider", sa.String(length=255), nullable=False), sa.Column("market", sa.String(length=255), nullable=False), sa.Column("margin", sa.DECIMAL(), nullable=False), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], onupdate="RESTRICT", ondelete="CASCADE" ), sa.PrimaryKeyConstraint("id"), ) op.create_table( "trade_virtual_account", sa.Column("id", sa.Integer(), nullable=False), sa.Column("user_id", sa.Integer(), nullable=True), sa.Column("trade_account_id", sa.Integer(), nullable=True), sa.Column("version", sa.Integer(), nullable=False), sa.Column("name", sa.String(length=255), nullable=False), sa.Column("description", sa.String(length=1024), nullable=False), sa.Column("product", sa.String(length=255), nullable=False), sa.Column("periods", sa.Integer(), nullable=False), sa.Column("allocated_margin", sa.DECIMAL(), nullable=False), sa.Column("allocation_rate", sa.DECIMAL(), nullable=False), sa.Column("ask_limit_rate", sa.DECIMAL(), nullable=True), sa.Column("ask_loss_rate", sa.DECIMAL(), nullable=True), sa.Column("bid_limit_rate", sa.DECIMAL(), nullable=True), sa.Column("bid_loss_rate", sa.DECIMAL(), nullable=True), sa.Column("position", sa.JSON(), nullable=True), sa.ForeignKeyConstraint( ["trade_account_id"], ["trade_account.id"], onupdate="RESTRICT", ondelete="CASCADE", ), sa.ForeignKeyConstraint( ["user_id"], ["users.id"], onupdate="RESTRICT", ondelete="CASCADE" ), sa.PrimaryKeyConstraint("id"), sa.UniqueConstraint("trade_account_id", "name"), ) op.drop_table("trade_acount") # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "trade_acount", sa.Column("id", sa.INTEGER(), autoincrement=True, nullable=False), sa.Column("version", sa.INTEGER(), autoincrement=False, nullable=False), sa.Column("name", sa.VARCHAR(length=255), autoincrement=False, nullable=False), sa.Column( "description", sa.VARCHAR(length=1024), autoincrement=False, nullable=False ), sa.Column( "provider", sa.VARCHAR(length=255), autoincrement=False, nullable=False ), sa.Column( "market", sa.VARCHAR(length=255), autoincrement=False, nullable=False ), sa.Column( "accounts", postgresql.JSON(astext_type=sa.Text()), autoincrement=False, nullable=False, ), sa.Column("margin", sa.NUMERIC(), autoincrement=False, nullable=False), sa.PrimaryKeyConstraint("id", name="trade_acount_pkey"), ) op.drop_table("trade_virtual_account") op.drop_table("trade_account") # ### end Alembic commands ###
31bb29c24f4df0a7d8e86690e72edab6a5cdcf44
a2b6bc9bdd2bdbe5871edb613065dd2397175cb3
/easy/Linked List Cycle.py
ef76a4e5ca516e9b8d0abae3a86665e3f9b96c72
[]
no_license
Asunqingwen/LeetCode
ed8d2043a31f86e9e256123439388d7d223269be
b7c59c826bcd17cb1333571eb9f13f5c2b89b4ee
refs/heads/master
2022-09-26T01:46:59.790316
2022-09-01T08:20:37
2022-09-01T08:20:37
95,668,066
0
0
null
null
null
null
UTF-8
Python
false
false
1,722
py
# -*- coding: utf-8 -*- # @Time : 2019/9/25 0025 15:17 # @Author : 没有蜡笔的小新 # @E-mail : [email protected] # @FileName: Linked List Cycle.py # @Software: PyCharm # @Blog :https://blog.csdn.net/Asunqingwen # @GitHub :https://github.com/Asunqingwen """ Given a linked list, determine if it has a cycle in it. To represent a cycle in the given linked list, we use an integer pos which represents the position (0-indexed) in the linked list where tail connects to. If pos is -1, then there is no cycle in the linked list.   Example 1: Input: head = [3,2,0,-4], pos = 1 Output: true Explanation: There is a cycle in the linked list, where tail connects to the second node. Example 2: Input: head = [1,2], pos = 0 Output: true Explanation: There is a cycle in the linked list, where tail connects to the first node. Example 3: Input: head = [1], pos = -1 Output: false Explanation: There is no cycle in the linked list.   Follow up: Can you solve it using O(1) (i.e. constant) memory? """ class ListNode: def __init__(self, x): self.val = x self.next = None def listToListNode(data: list) -> ListNode: listRoot = ListNode(0) ptr = listRoot for d in data: ptr.next = ListNode(d) ptr = ptr.next ptr = listRoot.next return ptr def printListNode(l: ListNode) -> None: p = l val_list = [] while p: val_list.append(str(p.val)) p = p.next print(' -> '.join(val_list)) def hasCycle(head): if not head: return False f, s = head, head while s.next and s.next.next: f = f.next s = s.next.next if f == s: return True return False if __name__ == '__main__': input = [3, 2, 0, -4] head = listToListNode(input) result = hasCycle(head) print(result)
8b90d101850fc61cbc1c2b0fdcc37cce6600ae8c
058f1b9c83aa55c4803851f7880de00767491c00
/test/test_search.py
28b1174531fa143844710aced51a3f97565242a1
[ "MIT" ]
permissive
samsammurphy/sat-search
f9a017ded12486e95826f62cc67fc2533010cbd5
d81e4774a41990b73b55db4b1e05b21062dd957c
refs/heads/master
2020-05-22T15:17:31.071946
2019-02-14T21:37:34
2019-02-14T21:37:34
186,404,233
0
0
MIT
2019-05-13T11:12:42
2019-05-13T11:12:42
null
UTF-8
Python
false
false
3,123
py
import os import glob import json import unittest import satsearch.config as config from satstac import Item from satsearch.search import SatSearchError, Search class Test(unittest.TestCase): path = os.path.dirname(__file__) results = [] @classmethod def setUpClass(cls): fnames = glob.glob(os.path.join(cls.path, '*-item*.json')) for fname in fnames: with open(fname) as f: cls.results.append(json.load(f)) def get_searches(self): """ Initialize and return search object """ return [Search(datetime=r['properties']['datetime']) for r in self.results] def test_search_init(self): """ Initialize a search object """ search = self.get_searches()[0] dts = [r['properties']['datetime'] for r in self.results] assert(len(search.kwargs) == 1) assert('time' in search.kwargs) for kw in search.kwargs: self.assertTrue(search.kwargs[kw] in dts) def test_search_for_items_by_date(self): """ Search for specific item """ search = self.get_searches()[0] sids = [r['id'] for r in self.results] items = search.items() assert(len(items) == 1) for s in items: self.assertTrue(s.id in sids) def test_empty_search(self): """ Perform search for 0 results """ search = Search(datetime='2001-01-01') self.assertEqual(search.found(), 0) def test_geo_search(self): """ Perform simple query """ with open(os.path.join(self.path, 'aoi1.geojson')) as f: aoi = json.dumps(json.load(f)) search = Search(datetime='2018-09-25', intersects=aoi) assert(search.found() == 2) items = search.items() assert(len(items) == 2) assert(isinstance(items[0], Item)) def test_search_sort(self): """ Perform search with sort """ with open(os.path.join(self.path, 'aoi1.geojson')) as f: aoi = json.dumps(json.load(f)) search = Search.search(datetime='2018-01-01/2018-01-15', intersects=aoi, sort=['<datetime']) items = search.items() assert(len(items) == 33) def test_get_items_by_id(self): """ Get Items by ID """ ids = ['LC80340332018034LGN00', 'LC80340322018034LGN00'] items = Search.items_by_id(ids, collection='landsat-8-l1') assert(len(items) == 2) def test_get_ids_search(self): """ Get Items by ID through normal search """ ids = ['LC80340332018034LGN00', 'LC80340322018034LGN00'] search = Search.search(ids=ids, collection='landsat-8-l1') items = search.items() assert(search.found() == 2) assert(len(items) == 2) def test_get_ids_without_collection(self): with self.assertRaises(SatSearchError): search = Search.search(ids=['LC80340332018034LGN00']) items = search.items() def test_query_bad_url(self): with self.assertRaises(SatSearchError): Search.query(url=os.path.join(config.API_URL, 'collections/nosuchcollection'))
dd6003a357da5d293ef2ebc35647330ad910df9f
17e9441138f8ad09eab3d017c0fa13fa27951589
/blog19-Iris/test07-show.py
6f86adb80886cf72e2411f2a744018f4f6a03e69
[]
no_license
My-lsh/Python-for-Data-Mining
159a09e76b35efd46ca3e32ad6dd2174847d5ec4
f2dd0b8f3c4f5f51a10613dff99041bca4fd64c5
refs/heads/master
2023-03-26T08:48:32.088713
2021-03-25T14:57:07
2021-03-25T14:57:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
import pandas import matplotlib.pyplot as plt url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class'] dataset = pandas.read_csv(url, names=names) from pandas.plotting import scatter_matrix scatter_matrix(dataset, alpha=0.2, figsize=(6, 6), diagonal='kde') plt.show()
bceaaba35117b38f3ff8200721312099d8f48e8f
53dd5d2cfb79edc87f6c606bbfb7d0bedcf6da61
/.history/EMR/SBSteat_20190605153204.py
aa2a19ba3ef7566408312123afa1ed7895fdf977
[]
no_license
cyc19950621/python
4add54894dc81187211aa8d45e5115903b69a182
d184b83e73334a37d413306d3694e14a19580cb0
refs/heads/master
2020-04-11T20:39:34.641303
2019-07-02T12:54:49
2019-07-02T12:54:49
162,078,640
0
0
null
null
null
null
UTF-8
Python
false
false
951
py
def SBS(A,B): if A==0 or B ==0: return 0 elif set(A)<=set(B) or set(B)<=set(A): return 1 else: return len(set(A)&set(B)) /len(set(A)|set(B)) def StrToList(A): C=[] for i in A: C.append(i) return C import re f = open('D:\DeepLearning ER\Z1006014.txt','r',errors='ignore') g = open(r'C:\Users\Administrator\Desktop\ICD-10.txt','r',errors='ignore') line_re=[] lines = f.readlines() dics=g.readlines() out = [] for line in lines: line=re.sub('\n','',line) line=re.sub(' ','',line) line = re.sub(r'\?|?', '',line) line = re.sub(r'\,|\.|;','',line) line_re.append(line) while '' in line_re: line_re.remove('') for line in line_re: for dic in dics: dic=re.sub('\n','',dic) if set(line) == set(dic): out.append(dic) elif SBS(line,dic)>0.8 and SBS(line,dic) <1: out.append(dic) import EMRdef out=EMRdef.delre(out) emr
566ff4df4c434e2553096332053b6321ca1e06a3
0e8e9bef32f40f5d0fd8c302293ae66732770b66
/2015/pythonlearn/fromLiaoxuefeng/0078aiohttp.py
f04a0ede82976e6b39b25ff3a8cc8145103a4a43
[]
no_license
tuouo/selfstudy
4a33ec06d252388816ad38aa44838e2b728178d4
139a0d63477298addfff5b9ea8d39fab96734f25
refs/heads/master
2021-01-24T18:37:31.023908
2018-03-01T02:55:16
2018-03-01T02:55:16
84,453,967
0
0
null
null
null
null
UTF-8
Python
false
false
773
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import asyncio from aiohttp import web def index(rerquest): return web.Response(body = b'<h1>Index</h1>') def hi(request): yield from asyncio.sleep(0.5) text = '<h1>hello, %s!</h1>' % request.match_info['name'] return web.Response(body = text.encode('utf-8')) @asyncio.coroutine def init(loop): app = web.Application(loop = loop) app.router.add_route('GET', '/', index) app.router.add_route('GET', '/hello/{name}', hi) srv = yield from loop.create_server(app.make_handler(), '127.0.0.1', 8000) print('Server started at http:// 127.0.0.1:8000 ...') return srv loop = asyncio.get_event_loop() loop.run_until_complete(init(loop)) # init() is coroutine for aiohttp loop.run_forever()
0df5d9ca5055a7189593c2e924ba6b44c8cfa9cc
172d4078d886b05cea2abdcf7aa458308c48458b
/apache/staging.wsgi
16c1eba3c84abcd084102c377378178d0c68aecb
[]
no_license
elhoyos/forest
9066569e42266bcd529c1d6d510119a23a819a65
55fca9770a4e24e7c35b8a47d3b27225a760625e
refs/heads/master
2020-05-16T13:50:33.403078
2019-03-26T19:58:26
2019-03-26T19:58:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
468
wsgi
import os, sys, site # enable the virtualenv site.addsitedir('/var/www/forest/forest/ve/lib/python2.6/site-packages') # paths we might need to pick up the project's settings sys.path.append('/var/www/') sys.path.append('/var/www/forest/') sys.path.append('/var/www/forest/forest/') os.environ['DJANGO_SETTINGS_MODULE'] = 'forest.settings_staging' import django.core.handlers.wsgi import django django.setup() application = django.core.handlers.wsgi.WSGIHandler()
d097f3000c69a5e673b71706ec7a9dd3bdfa960b
3b3eac834008a2f4df4506d8dc2ba4364a7b67e2
/nail_model_test.py
c0f962cae3a7e7d12e3c498b6bca757bb120dbf5
[]
no_license
pokepetter/ggj2020_orion_oregano
37811f1a8b65b95bada0c1e5f6cd35d57e160e8f
439e4e64018e51e52a7cfb3c6c0b1617aba6056f
refs/heads/master
2020-12-26T11:01:28.343068
2020-02-03T18:34:34
2020-02-03T18:34:34
237,488,524
1
0
null
null
null
null
UTF-8
Python
false
false
264
py
from ursina import * app = Ursina() nail_model = Entity( model=Prismatoid( base_shape=Circle(10), path=(Vec3(0,0,0), Vec3(0,.9+.5,0), Vec3(0,.91+.5,0), Vec3(0,1+.5,0)), thicknesses=(.2,.2,1,1), )) EditorCamera() app.run()
16ec1caa2a401310021e53bf465c49945a16b916
11a809229e50f113eaa4528bd7dc05c30183ad4a
/SWS4D/_version.py
16771c1acf41206d071238bc85bb1c58ad7ae281
[]
no_license
davidmashburn/SWS4D
24468fe809ad2ddbd6a8b77fe8f738509c9c7878
aea8ee3d8c46aa7273c9522bdcbf63609431c126
refs/heads/master
2021-01-19T23:32:35.938005
2016-12-06T20:39:45
2016-12-06T20:39:45
88,991,494
0
0
null
null
null
null
UTF-8
Python
false
false
79
py
__version_info__ = (0,2,7,0) __version__ = '.'.join(map(str,__version_info__))
29bb0154e69c61470509628247e814b0b21d2bdd
7af3888ea81123df246a73aa12c3b88c3b1e8440
/darwinist/sdef.py
dd58f41cda23cd9c54436cbec32e6dbae69547c3
[]
no_license
gregorynicholas/darwinist
b29a08b2fe966e662cd94cc25d659406b3dce263
2a5e3d027a569b61ad54096463e2d97c95f9c029
refs/heads/master
2020-05-29T09:53:16.669213
2015-03-21T16:37:36
2015-03-21T16:37:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,309
py
#!/usr/bin/env python """ Module to create application dictionaries for appscript using command line sdef tool """ import os from subprocess import check_output from lxml import etree as ET class SDEFError(Exception): def __str__(self): return self.args[0] class SDEF(object): def __init__(self,path): self.path = path if not os.path.isdir(path): raise SDEFError('Not a directory: %s' % path) self.tree = ET.fromstring(check_output(['sdef',path])) def __getattr__(self,attr): if attr == 'terms': return self.__generate_terms() def __generate_terms(self): output = 'version = 1.1\npath = %s' % self.path classes = [] enums = [] properties = [] elements = [] commands = [] for suite in self.tree.xpath('suite'): for node in suite.xpath('class'): name = node.get('name').replace(' ','_') code = node.get('code') classes.append((name,code)) if node.get('inherits') is None: continue element = node.get('plural').replace(' ','_') elements.append((element,code)) for node in suite.xpath('enumeration/enumerator'): name = node.get('name').replace(' ','_') code = node.get('code') enums.append((name,code)) for node in suite.xpath('class/property'): name = node.get('name').replace(' ','_') code = node.get('code') properties.append((name,code)) for node in suite.xpath('command'): name = node.get('name').replace(' ','_') code = node.get('code') cparams = [] for p in node.xpath('parameter'): pname = p.get('name').replace(' ','_') pcode = p.get('code') cparams.append((pname,pcode)) commands.append((name,code,cparams)) output += '\nclasses = %s' % classes output += '\nenums = %s' % enums output += '\nproperties = %s' % properties output += '\nelements = %s' % elements output += '\ncommands = %s' % commands return output
9646828aff8f61b37679c1833438c421c508b961
46234633cc7b66684af52f5b131834955115c80e
/train/gen/adv/models/particles/v4_Adam_trunc4_limit100/lib.py
12d4000398f71ed515e5ef88ffa57b4285c6e13c
[ "MIT" ]
permissive
sammysiegel/SubtLeNet
80d2ee5d3beb1699702ddb78162d10eee95eb051
94d1507a8a7c60548b59400109b6c4086ad83141
refs/heads/master
2022-09-05T05:25:53.701377
2020-06-01T15:39:36
2020-06-01T15:39:36
268,620,433
0
0
MIT
2020-06-01T20:04:08
2020-06-01T20:04:08
null
UTF-8
Python
false
false
6,556
py
#!/usr/bin/env python2.7 from _common import * from ..generators.gen import make_coll, generate, get_dims from ..generators import gen as generator ''' some global definitions ''' NEPOCH = 50 VERSION = 4 MODELDIR = environ.get('MODELDIR', 'models/') + '/particles/' BASEDIR = environ['BASEDIR'] OPTIMIZER = 'Adam' _APOSTLE = None train_opts = { 'learn_mass' : True, 'learn_pt' : True, } # must be called! def instantiate(trunc=4, limit=50): global _APOSTLE generator.truncate = trunc config.limit = limit _APOSTLE = 'v%s_trunc%i_limit%i'%(str(VERSION), generator.truncate, config.limit) system('mkdir -p %s/%s/'%(MODELDIR,_APOSTLE)) system('cp -v %s %s/%s/trainer.py'%(sys.argv[0], MODELDIR, _APOSTLE)) system('cp -v %s %s/%s/lib.py'%(__file__.replace('.pyc','.py'), MODELDIR, _APOSTLE)) # instantiate data loaders top = make_coll(BASEDIR + '/PARTITION/Top_*_CATEGORY.npy') qcd = make_coll(BASEDIR + '/PARTITION/QCD_*_CATEGORY.npy') data = [top, qcd] dims = get_dims(top) with open('%s/%s/setup.py'%(MODELDIR, _APOSTLE),'w') as fsetup: fsetup.write(''' from subtlenet import config from subtlenet.generators import gen as generator config.limit = %i generator.truncate = %i '''%(config.limit, generator.truncate)) return data, dims ''' first build the classifier! ''' # set up data def setup_data(data): opts = {}; opts.update(train_opts) gen = { 'train' : generate(data, partition='train', batch=500, **opts), 'validation' : generate(data, partition='validate', batch=2000, **opts), 'test' : generate(data, partition='test', batch=10, **opts), } return gen def setup_adv_data(data): opts = {'decorr_mass':True}; opts.update(train_opts) gen = { 'train' : generate(data, partition='train', batch=1000, **opts), 'validation' : generate(data, partition='validate', batch=2000, **opts), 'test' : generate(data, partition='test', batch=10, **opts), } return gen # this is purely a discriminatory classifier def build_classifier(dims): input_particles = Input(shape=(dims[1], dims[2]), name='input_particles') input_mass = Input(shape=(1,), name='input_mass') input_pt = Input(shape=(1,), name='input_pt') inputs = [input_particles, input_mass, input_pt] # now build the particle network h = BatchNormalization(momentum=0.6)(input_particles) h = Conv1D(32, 2, activation='relu', kernel_initializer='lecun_uniform', padding='same')(h) h = BatchNormalization(momentum=0.6)(h) h = Conv1D(16, 4, activation='relu', kernel_initializer='lecun_uniform', padding='same')(h) h = BatchNormalization(momentum=0.6)(h) h = CuDNNLSTM(100)(h) h = BatchNormalization(momentum=0.6)(h) h = Dense(100, activation='relu', kernel_initializer='lecun_uniform')(h) particles_final = BatchNormalization(momentum=0.6)(h) # merge everything to_merge = [particles_final, input_mass, input_pt] h = concatenate(to_merge) for i in xrange(1,5): h = Dense(50, activation='tanh')(h) # if i%2: # h = Dropout(0.1)(h) h = BatchNormalization(momentum=0.6)(h) y_hat = Dense(config.n_truth, activation='softmax', name='y_hat')(h) classifier = Model(inputs=inputs, outputs=[y_hat]) #classifier.compile(optimizer=Adam(lr=0.0002), classifier.compile(optimizer=getattr(keras_objects, OPTIMIZER)(lr=0.0005), loss='categorical_crossentropy', metrics=['accuracy']) print '########### CLASSIFIER ############' classifier.summary() print '###################################' return classifier def build_adversary(clf, loss, scale, w_clf, w_adv): y_hat = clf.outputs[0] inputs= clf.inputs kin_hats = Adversary(config.n_decorr_bins, n_outputs=1, scale=scale)(y_hat) adversary = Model(inputs=inputs, outputs=[y_hat]+kin_hats) adversary.compile(optimizer=getattr(keras_objects, OPTIMIZER)(lr=0.00025), loss=['categorical_crossentropy']+[loss for _ in kin_hats], loss_weights=[w_clf]+[w_adv for _ in kin_hats]) print '########### ADVERSARY ############' adversary.summary() print '###################################' return adversary # train any model def train(model, name, train_gen, validation_gen, save_clf_params=None): if save_clf_params is not None: callbacks = [PartialModelCheckpoint(filepath='%s/%s/%s_clf_best.h5'%(MODELDIR,_APOSTLE,name), save_best_only=True, verbose=True, **save_clf_params)] save_clf = save_clf_params['partial_model'] else: save_clf = model callbacks = [] callbacks += [ModelCheckpoint('%s/%s/%s_best.h5'%(MODELDIR,_APOSTLE,name), save_best_only=True, verbose=True)] def save_classifier(name_=name, model_=save_clf): model_.save('%s/%s/%s.h5'%(MODELDIR,_APOSTLE,name_)) def save_and_exit(signal=None, frame=None): save_classifier() exit(1) signal.signal(signal.SIGINT, save_and_exit) model.fit_generator(train_gen, steps_per_epoch=3000, epochs=NEPOCH, validation_data=validation_gen, validation_steps=2000, callbacks = callbacks, ) save_classifier() def infer(modelh5, name): model = load_model(modelh5, custom_objects={'DenseBroadcast':DenseBroadcast}) model.summary() coll = generator.make_coll(BASEDIR + '/PARTITION/*_CATEGORY.npy') msd_norm_factor = 1. / config.max_mass pt_norm_factor = 1. / (config.max_pt - config.min_pt) msd_index = config.gen_singletons['msd'] pt_index = config.gen_singletons['pt'] def predict_t(data): msd = data['singletons'][:,msd_index] * msd_norm_factor pt = (data['singletons'][:,pt_index] - config.min_pt) * pt_norm_factor if msd.shape[0] > 0: particles = data['particles'][:,:config.limit,:generator.truncate] r_t = model.predict([particles,msd,pt])[:,config.n_truth-1] else: r_t = np.empty((0,)) return r_t print 'loaded from',modelh5, print 'saving to',name coll.infer(['singletons','particles'], f=predict_t, name=name, partition='test')
3f51f53d28ce16889a1cd818a02b4b9acc096912
7bf1dc58ba0884ed957efdb5459ae44851b2b36e
/practice_450/strings/15_paranthesis_checker.py
907deb421b02d77c80a2ca9f344a5fbccafb12d0
[]
no_license
ksaubhri12/ds_algo
672260f07f41bcfc33f8ac23a64085a1f27ab4a5
46505b89371cae3321f48609dd755c7e5cfed302
refs/heads/master
2023-05-12T08:37:06.789111
2023-05-03T03:06:49
2023-05-03T03:06:49
211,793,312
0
0
null
null
null
null
UTF-8
Python
false
false
1,096
py
def parenthesis_checker(string_value: str): opening_brackets = {'[': ']', '(': ')', '{': '}'} opening_brackets_stack = [] answers = True n = len(string_value) for i in range(0, n): element = string_value[i] if element in opening_brackets: opening_brackets_stack.append(element) else: if len(opening_brackets_stack) > 0: element_in_stack = opening_brackets_stack.pop() if not check_pair(element_in_stack, element): answers = False break else: answers = False break if answers and len(opening_brackets_stack) == 0: return 'balanced' else: return 'not balanced' def check_pair(opening_element, closing_element): opening_brackets = {'[': ']', '(': ')', '{': '}'} return closing_element == opening_brackets[opening_element] if __name__ == '__main__': print(parenthesis_checker('[()]{}{[()()]()}')) print(parenthesis_checker(' [(])')) print(parenthesis_checker('('))
6e8a3770b5d99511676953e6783f1fc9a9f5ef80
d659810b24ebc6ae29a4d7fbb3b82294c860633a
/aliyun-python-sdk-imageprocess/aliyunsdkimageprocess/request/v20200320/ScreenChestCTRequest.py
9210dc80c110a33d88b645318846fed2be3f7c99
[ "Apache-2.0" ]
permissive
leafcoder/aliyun-openapi-python-sdk
3dd874e620715173b6ccf7c34646d5cb8268da45
26b441ab37a5cda804de475fd5284bab699443f1
refs/heads/master
2023-07-31T23:22:35.642837
2021-09-17T07:49:51
2021-09-17T07:49:51
407,727,896
0
0
NOASSERTION
2021-09-18T01:56:10
2021-09-18T01:56:09
null
UTF-8
Python
false
false
2,190
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkimageprocess.endpoint import endpoint_data class ScreenChestCTRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'imageprocess', '2020-03-20', 'ScreenChestCT','imageprocess') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_OrgName(self): return self.get_body_params().get('OrgName') def set_OrgName(self,OrgName): self.add_body_params('OrgName', OrgName) def get_Mask(self): return self.get_body_params().get('Mask') def set_Mask(self,Mask): self.add_body_params('Mask', Mask) def get_DataFormat(self): return self.get_body_params().get('DataFormat') def set_DataFormat(self,DataFormat): self.add_body_params('DataFormat', DataFormat) def get_URLLists(self): return self.get_body_params().get('URLList') def set_URLLists(self, URLLists): for depth1 in range(len(URLLists)): if URLLists[depth1].get('URL') is not None: self.add_body_params('URLList.' + str(depth1 + 1) + '.URL', URLLists[depth1].get('URL')) def get_OrgId(self): return self.get_body_params().get('OrgId') def set_OrgId(self,OrgId): self.add_body_params('OrgId', OrgId)
98ea4fafb6fc58089c1c4fd892af8ba9a7e65f51
bdaed512916fcf96e5dc915538fe8598aeb2d3cf
/mcex/distributions/special.py
a97815d40b32299438cac098d8f416c9cb2e2a25
[]
no_license
jsalvatier/mcex
9657cc2e8083f4e4dd013baaaceba08f9a48754e
040f49bfd6eb467ef4d50d15de25033b1ba52c55
refs/heads/master
2021-06-18T19:02:07.055877
2017-01-22T01:10:01
2017-01-22T01:10:01
1,455,409
9
3
null
2012-06-21T18:07:36
2011-03-08T17:02:42
Python
UTF-8
Python
false
false
3,820
py
''' Created on Mar 17, 2011 @author: jsalvatier ''' from theano import scalar,tensor import numpy from scipy import special, misc class GammaLn(scalar.UnaryScalarOp): """ Compute gammaln(x) """ @staticmethod def st_impl(x): return special.gammaln(x) def impl(self, x): return GammaLn.st_impl(x) def grad(self, inp, grads): x, = inp gz, = grads return [gz * scalar_psi(x)] def c_code(self, node, name, inp, out, sub): x, = inp z, = out if node.inputs[0].type in [scalar.float32, scalar.float64]: return """%(z)s = lgamma(%(x)s);""" % locals() raise NotImplementedError('only floatingpoint is implemented') def __eq__(self, other): return type(self) == type(other) def __hash__(self): return hash(type(self)) scalar_gammaln = GammaLn(scalar.upgrade_to_float, name='scalar_gammaln') gammaln = tensor.Elemwise(scalar_gammaln, name='gammaln') class Psi(scalar.UnaryScalarOp): """ Compute derivative of gammaln(x) """ @staticmethod def st_impl(x): return special.psi(x) def impl(self, x): return Psi.st_impl(x) #def grad() no gradient now def c_support_code(self): return ( """ #ifndef _PSIFUNCDEFINED #define _PSIFUNCDEFINED double _psi(double x){ /*taken from Bernardo, J. M. (1976). Algorithm AS 103: Psi (Digamma) Function. Applied Statistics. 25 (3), 315-317. http://www.uv.es/~bernardo/1976AppStatist.pdf */ double y, R, psi_ = 0; double S = 1.0e-5; double C = 8.5; double S3 = 8.333333333e-2; double S4 = 8.333333333e-3; double S5 = 3.968253968e-3; double D1 = -0.5772156649 ; y = x; if (y <= 0.0) return psi_; if (y <= S ) return D1 - 1.0/y; while (y < C){ psi_ = psi_ - 1.0 / y; y = y + 1;} R = 1.0 / y; psi_ = psi_ + log(y) - .5 * R ; R= R*R; psi_ = psi_ - R * (S3 - R * (S4 - R * S5)); return psi_;} #endif """ ) def c_code(self, node, name, inp, out, sub): x, = inp z, = out if node.inputs[0].type in [scalar.float32, scalar.float64]: return """%(z)s = _psi(%(x)s);""" % locals() raise NotImplementedError('only floatingpoint is implemented') def __eq__(self, other): return type(self) == type(other) def __hash__(self): return hash(type(self)) scalar_psi = Psi(scalar.upgrade_to_float, name='scalar_psi') psi = tensor.Elemwise(scalar_psi, name='psi') class FactLn(scalar.UnaryScalarOp): """ Compute factln(x) """ @staticmethod def st_impl(x): return numpy.log(misc.factorial(x)) def impl(self, x): return FactLn.st_impl(x) #def grad() no gradient now def c_support_code(self): return ( """ double factln(int n){ static double cachedfl[100]; if (n < 0) return -1.0; // need to return -inf here at some point if (n <= 1) return 0.0; if (n < 100) return cachedfl[n] ? cachedfl[n] : (cachedfl[n]=lgammln(n + 1.0)); else return lgammln(n+1.0);} """ ) def c_code(self, node, name, inp, out, sub): x, = inp z, = out if node.inputs[0].type in [scalar.float32, scalar.float64]: return """%(z)s = factln(%(x)s);""" % locals() raise NotImplementedError('only floatingpoint is implemented') def __eq__(self, other): return type(self) == type(other) def __hash__(self): return hash(type(self)) scalar_factln = Psi(scalar.upgrade_to_float, name='scalar_factln') factln = tensor.Elemwise(scalar_factln, name='factln')
52a83fa3c2634369a6ddf6a2f9101569c9c107c6
32a6db4d595ef4d308ac0e2ef37c57f65a777bfc
/ZYCami_00_彭小钗/PO/Wx_Element.py
5f9021ea65cb3db03881e667b4966af054d6d0fb
[]
no_license
wangdan377/Python_UI
1c8f0b3d46272d72f849f242c39e035c6b20720b
6c3e23b301ffe14cbd27a5211e48c8f79169dcf9
refs/heads/master
2023-02-17T02:37:34.353523
2021-01-19T11:58:22
2021-01-19T11:58:22
311,855,691
0
0
null
null
null
null
UTF-8
Python
false
false
5,981
py
#!/usr/bin/python # -*- coding: utf-8 -*- from selenium.webdriver.common.by import By from PO.Base_page import Base_Page class Wx_Page(Base_Page): # 微信支付 File_wx = (By.ID, 'com.zhiyun.cama:id/btn_wx') # 微信支付方式的关闭按钮 File_wx_closed = (By.XPATH,'/hierarchy/android.widget.FrameLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.view.ViewGroup/android.widget.FrameLayout') # 立即支付 File_pay_wx = (By.ID, '立即支付') # 选择零钱按钮 File_Change_button = (By.XPATH,'//android.widget.FrameLayout[@content-desc=\"当前所在页面,支付\"]/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.widget.FrameLayout[1]/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.LinearLayout/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup[4]/android.view.ViewGroup[2]/com.tencent.mm.ui.MMImageView') # 选择零钱支付 File_Change_pay = (By.XPATH,'//android.widget.FrameLayout[@content-desc=\"当前所在页面,支付\"]/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.widget.FrameLayout[1]/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.LinearLayout/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup[2]/android.widget.ScrollView/android.view.ViewGroup/android.view.ViewGroup[1]/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup[2]/android.widget.TextView') # 选择建设银行支付 File_Construction_pay = (By.XPATH,'//android.widget.FrameLayout[@content-desc=\"当前所在页面,支付\"]/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.widget.FrameLayout[1]/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.LinearLayout/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup[2]/android.widget.ScrollView/android.view.ViewGroup/android.view.ViewGroup[2]/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup') # 选择江苏银行支付 File_jsu_pay = (By.XPATH,'//android.widget.FrameLayout[@content-desc=\"当前所在页面,支付\"]/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.widget.FrameLayout[1]/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.LinearLayout/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup[2]/android.widget.ScrollView/android.view.ViewGroup/android.view.ViewGroup[3]/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup') # 请输入支付密码框 File_pay_password = (By.XPATH,'//android.widget.FrameLayout[@content-desc=\"当前所在页面,支付\"]/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.widget.FrameLayout[1]/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.LinearLayout/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup/android.view.ViewGroup[5]/android.widget.RelativeLayout/android.widget.RelativeLayout') # 关闭支付密码页面弹框 File_closed_password = (By.XPATH,'//android.view.ViewGroup[@content-desc=\"关闭\"]/android.view.ViewGroup/com.tencent.mm.ui.MMImageView') # 支付页面左上角的X File_pay_x = (By.ID, '返回') # 继续支付 File_connectinue_pay = (By.ID, 'com.tencent.mm:id/dom') # 放弃 File_give_up_pay = (By.ID, 'com.tencent.mm:id/doz') #支付成功,返回商家 File_return_app = (By.ID, '返回商家') #密码输入错误,重试 File_doz = (By.ID, 'com.tencent.mm:id/doz') # 支付页面左上角的X def click_File_pay_x(self): self.find_element(*self.File_pay_x).click() # 继续支付 def click_File_connectinue_pay(self): self.find_element(*self.File_connectinue_pay).click() # 放弃 def click_File_give_up_pay(self): self.find_element(*self.File_give_up_pay).click() # 选择微信支付 def click_File_wx(self): self.find_element(*self.File_wx).click() # 微信支付方式的关闭按钮 def click_File_wx_closed(self): self.find_element(*self.File_wx_closed).click() # 立即支付 def click_File_pay_wx(self): self.find_element(*self.File_pay_wx).click() # 选择零钱按钮 def click_File_Change_button(self): self.find_element(*self.File_Change_button).click() # 选择零钱支付 def click_File_Change_pay(self): self.find_element(*self.File_Change_pay).click() # 选择建设银行支付 def click_File_Construction_pay(self): self.find_element(*self.File_Construction_pay).click() # 选择江苏银行支付 def click_File_jsu_pay(self): self.find_element(*self.File_jsu_pay).click() # 请输入支付密码框 def click_File_pay_password(self): self.find_element(*self.File_pay_password).click() # 关闭支付密码页面弹框 def click_File_closed_password(self): self.find_element(*self.File_closed_password).click() #返回商家 def click_File_return_app(self): self.find_element(*self.File_return_app).click() # 密码输入错误,重试 def click_File_doz(self): self.find_element(*self.File_doz).click()
edcb570bd7fd632da38d368049889cb40b88c7f0
2d0da5d8f45e1906bb2a2eee0901e7fddd5dc7ad
/scripts/run_scripts/pha/run_pha_full1.py
d4a5fdb586a3f61ebb2138440d1c83f19148e4f7
[ "MIT" ]
permissive
akazachk/pha
09afd2fa6764ef9133a8ae91bb189e2896e076c6
4120f70554cb0a149d5ab52e04409302e78059fa
refs/heads/master
2021-09-25T01:02:42.488470
2021-09-15T17:51:34
2021-09-15T17:51:34
194,751,798
1
0
null
null
null
null
UTF-8
Python
false
false
5,410
py
#### ## The inputted file is either [filename].instances or [file].batch. ## (The extension is not important.) ## The first line of this file will be the directory ``stub'', ## and output will be sent to ${PROJ_DIR}/results/instances/stub if batch mode is off, ## and to ${PROJ_DIR}/results/instances/batches/stub/batchname if it is on. ## Each line contains either a relative input path to an instance (with or without the extension) or a batch name. ## The path is relative to ${PROJ_DIR}/data/instances, e.g., the line will be miplib2/bm23. ## A batch name is distinguished by having the batch end with a '/', e.g., '2/' or 'batch2/'. ## Set up proper path variables import os PROJ_DIR = os.path.abspath(os.environ['PHA_DIR']) EXECUTABLE = PROJ_DIR + "/Release/PHA" ## Solver options phaActOptions = [1] numAlg2Rounds = [0,1,2,3,4,-1,-2,-3,-4] #numRaysToBeCut = [0] cutLimit = [1000] # negative means divide the limit across splits useSplitShare = [0,1000] numCutsIterBilinear = [0] useUnitVectorsHeur = [0,1] useCutVertHeur = [0,1] useTightPointsHeur = [0,1000] usePresolve = [0,1] ## Set up output and input folders results_path = PROJ_DIR + '/results' paramfile = PROJ_DIR + '/data/params/pha_params.txt' #instances_path = os.getcwd() instances_path = PROJ_DIR + "/data/instances" instances_file = instances_path + '/' + "test.instances" outinfo_stub = 'pha-full' + str(phaActOptions[0]) outinfo_dir = results_path ## Get arguments from sys import argv use_batches = False # set to true/false depending on if mps files are all in one folder or divided up into subfolders if (len(argv) > 1): use_batches = True if argv[1] in ['true', 'True', '1', 't'] else False if (use_batches and len(argv) < 2): raise ValueError('When using batches, specifying the folder is required') if (len(argv) > 2): instances_file = os.path.abspath(argv[2]) ## Where are the instances? with open(instances_file) as f_in: list_to_use = list(filter(None, (line.rstrip() for line in f_in))) ## The first line will be the name of the directory we should use dir_stub = list_to_use[0] list_to_use = list_to_use[1:] #instances_file_name = instances_file.split('/')[-1] #instances_file_name_split_by_dot = instances_file_name.split('.') #dir_stub = '.'.join(instances_file_name_split_by_dot[0:len(instances_file_name_split_by_dot)-1]) if use_batches: dir_stub = "batches/" + dir_stub ## Finalize outinfo outinfo_dir = outinfo_dir + '/' + dir_stub os.system("mkdir -p " + outinfo_dir) # make the dir if it does not exist ## Choose order so that deepest for loop are the results you want to see first, fixing all others batch_name = '' for usepresolve in usePresolve: # for numrays in numRaysToBeCut: for cutlimit in cutLimit: for numiterblp in numCutsIterBilinear: for splitshareopt in useSplitShare: for usecutvert in useCutVertHeur: for useunitvec in useUnitVectorsHeur: for usetight in useTightPointsHeur: for numalg2 in numAlg2Rounds: for actoption in phaActOptions: ## Skip if all zeroes for cut generation if (splitshareopt == 0) and (numiterblp == 0) and (useunitvec == 0) and (usecutvert == 0) and (usetight == 0): continue for inst in list_to_use: ## Check if batch name if (inst[-1] == '/'): batch_name = inst continue ## Check if need to add "mps" inst_name = inst if (inst[-4:] != '.mps') and (inst[-3:] != '.lp') and (inst[-7:] != '.mps.gz') and (inst[-6:] != '.lp.gz'): inst_name = inst_name + '.mps' ## Run on instances_path/inst.mps infile = instances_path + '/' + inst_name curr_out_dir = outinfo_dir + '/' + batch_name outinfo = curr_out_dir + outinfo_stub ## In case the out directory does not exist os.system("mkdir -p " + curr_out_dir) ## Arguments extraparams = \ ' --opt_file=' + PROJ_DIR + '/data/ip_opt.csv' + \ " --hplane_scoring_fn=" + str(actoption) + \ " --num_alg2_rounds=" + str(numalg2) + \ " --cut_limit=" + str(cutlimit) + \ " --use_split_share=" + str(splitshareopt) + \ " --num_cuts_iter_bilinear=" + str(numiterblp) + \ " --use_unit_vectors_heur=" + str(useunitvec) + \ " --use_cut_vert_heur=" + str(usecutvert) + \ " --use_tight_points_heur=" + str(usetight) + \ " --cut_presolve=" + str(usepresolve) + \ " --rounds=" + str(1) print(EXECUTABLE + " -i " + infile + " -o " + curr_out_dir + " --log_file=" + outinfo + " -p " + paramfile + extraparams) os.system(EXECUTABLE + " -i " + infile + " -o " + curr_out_dir + " --log_file=" + outinfo + " -p " + paramfile + extraparams + " > /dev/null 2>&1")
[ "None" ]
None
bc842ccaa11ef55ed6395e29a362c7dbae9cc52a
da49837553eab1d9e89b7cf1106776959b8da3b7
/STPT.py
8c7707bdf2641c2b0a62295dadb00be4a8238d98
[]
no_license
sunomon/100at10low10
ee9717450eb081c5a3105411d84b71079414c456
0ea7bd0458a42e0773285d12812168c2c0a3d3a2
refs/heads/main
2023-06-19T09:05:14.678018
2021-07-06T22:50:51
2021-07-06T22:50:51
383,526,471
0
0
null
null
null
null
UTF-8
Python
false
false
10,117
py
import time import pyupbit import datetime import schedule from fbprophet import Prophet access = "PgXnWWPxxv88s7z2PSnz4aoqaYL0gxkRxReK0WDK" secret = "wgCfiEmQVH76s9sblwFKQsOKOp91t2ic3XAHuNsK" def get_target1_price(ticker, k): df = pyupbit.get_ohlcv(ticker, interval="day", count=2) target1_price = df.iloc[0]['close'] + (df.iloc[0]['high'] - df.iloc[0]['low']) * k return target1_price def get_target2_price(ticker, k): df = pyupbit.get_ohlcv(ticker, interval="day", count=2) target2_price = df.iloc[0]['close'] + (df.iloc[0]['high'] - df.iloc[0]['low']) * k return target2_price def get_target3_price(ticker, k): df = pyupbit.get_ohlcv(ticker, interval="day", count=2) target3_price = df.iloc[0]['close'] + (df.iloc[0]['high'] - df.iloc[0]['low']) * k return target3_price def get_target4_price(ticker, k): df = pyupbit.get_ohlcv(ticker, interval="day", count=2) target4_price = df.iloc[0]['close'] + (df.iloc[0]['high'] - df.iloc[0]['low']) * k return target4_price def get_target5_price(ticker, k): df = pyupbit.get_ohlcv(ticker, interval="day", count=2) target5_price = df.iloc[0]['close'] + (df.iloc[0]['high'] - df.iloc[0]['low']) * k return target5_price def get_target6_price(ticker, k): df = pyupbit.get_ohlcv(ticker, interval="day", count=2) target6_price = df.iloc[0]['close'] + (df.iloc[0]['high'] - df.iloc[0]['low']) * k return target6_price def get_target7_price(ticker, k): df = pyupbit.get_ohlcv(ticker, interval="day", count=2) target7_price = df.iloc[0]['close'] + (df.iloc[0]['high'] - df.iloc[0]['low']) * k return target7_price def get_target8_price(ticker, k): df = pyupbit.get_ohlcv(ticker, interval="day", count=2) target8_price = df.iloc[0]['close'] + (df.iloc[0]['high'] - df.iloc[0]['low']) * k return target8_price def get_target9_price(ticker, k): df = pyupbit.get_ohlcv(ticker, interval="day", count=2) target9_price = df.iloc[0]['close'] + (df.iloc[0]['high'] - df.iloc[0]['low']) * k return target9_price def get_target10_price(ticker, k): df = pyupbit.get_ohlcv(ticker, interval="day", count=2) target10_price = df.iloc[0]['close'] + (df.iloc[0]['high'] - df.iloc[0]['low']) * k return target10_price def get_start_time(ticker): df = pyupbit.get_ohlcv(ticker, interval="day", count=1) start_time = df.index[0] return start_time def get_balance(ticker): balances = upbit.get_balances() for b in balances: if b['currency'] == ticker: if b['balance'] is not None: return float(b['balance']) else: return 0 return 0 def get_current_price(ticker): return pyupbit.get_orderbook(tickers=ticker)[0]["orderbook_units"][0]["ask_price"] predicted_close_price = 0 def predict_price(ticker): global predicted_close_price df = pyupbit.get_ohlcv(ticker, interval="minute60") df = df.reset_index() df['ds'] = df['index'] df['y'] = df['close'] data = df[['ds','y']] model = Prophet() model.fit(data) future = model.make_future_dataframe(periods=24, freq='H') forecast = model.predict(future) closeDf = forecast[forecast['ds'] == forecast.iloc[-1]['ds'].replace(hour=9)] if len(closeDf) == 0: closeDf = forecast[forecast['ds'] == data.iloc[-1]['ds'].replace(hour=9)] closeValue = closeDf['yhat'].values[0] predicted_close_price = closeValue predict_price("KRW-STPT") schedule.every().hour.do(lambda: predict_price("KRW-STPT")) upbit = pyupbit.Upbit(access, secret) print("autotrade start") while True: try: now = datetime.datetime.now() start_time = get_start_time("KRW-STPT") middle1_time = start_time + datetime.timedelta(hours=3) middle2_time = start_time + datetime.timedelta(hours=9) middle3_time = start_time + datetime.timedelta(hours=15) end_time = start_time + datetime.timedelta(days=1) schedule.run_pending() if start_time < now < end_time - datetime.timedelta(hours=1): target1_price = get_target1_price("KRW-STPT", 0.1) target2_price = get_target2_price("KRW-STPT", 0.2) target3_price = get_target3_price("KRW-STPT", 0.3) target4_price = get_target4_price("KRW-STPT", 0.4) target5_price = get_target5_price("KRW-STPT", 0.5) target6_price = get_target6_price("KRW-STPT", 0.6) target7_price = get_target7_price("KRW-STPT", 1) target8_price = get_target8_price("KRW-STPT", 1.5) target9_price = get_target9_price("KRW-STPT", 2) target10_price = get_target10_price("KRW-STPT", 3) current_price = get_current_price("KRW-STPT") krw = get_balance("KRW") stpt = get_balance("STPT") if target1_price <= current_price < target1_price*1.02 and target1_price*1.1 <= predicted_close_price: if krw >= 1000000 and stpt < 10000/(target1_price*1.02): upbit.buy_market_order("KRW-STPT", 1000000) if 5000 < krw < 1000000 and stpt < 10000/(target1_price*1.02): upbit.buy_market_order("KRW-STPT", krw*0.9995) if target2_price <= current_price < target2_price*1.02 and target2_price*1.125 <= predicted_close_price: if krw >= 1000000 and stpt < 10000/(target2_price*1.02): upbit.buy_market_order("KRW-STPT", 1000000) if 5000 < krw < 1000000 and stpt < 10000/(target2_price*1.02): upbit.buy_market_order("KRW-STPT", krw*0.9995) if target3_price <= current_price < target3_price*1.02 and target3_price*1.15 <= predicted_close_price: if krw >= 1000000 and stpt < 10000/(target3_price*1.02): upbit.buy_market_order("KRW-STPT", 1000000) if 5000 < krw < 1000000 and stpt < 10000/(target3_price*1.02): upbit.buy_market_order("KRW-STPT", krw*0.9995) if target4_price <= current_price < target4_price*1.02 and target4_price*1.175 <= predicted_close_price: if krw >= 1000000 and stpt < 10000/(target4_price*1.02): upbit.buy_market_order("KRW-STPT", 1000000) if 5000 < krw < 1000000 and stpt < 10000/(target4_price*1.02): upbit.buy_market_order("KRW-STPT", krw*0.9995) if target5_price <= current_price < target5_price*1.02 and target5_price*1.2 <= predicted_close_price: if krw >= 1000000 and stpt < 10000/(target5_price*1.02): upbit.buy_market_order("KRW-STPT", 1000000) if 5000 < krw < 1000000 and stpt < 10000/(target5_price*1.02): upbit.buy_market_order("KRW-STPT", krw*0.9995) if target6_price <= current_price < target6_price*1.02 and target6_price*1.25 <= predicted_close_price: if krw >= 1000000 and stpt < 10000/(target6_price*1.02): upbit.buy_market_order("KRW-STPT", 1000000) if 5000 < krw < 1000000 and stpt < 10000/(target6_price*1.02): upbit.buy_market_order("KRW-STPT", krw*0.9995) if target7_price <= current_price < target7_price*1.02 and target7_price*1.2 <= predicted_close_price: if krw >= 1000000 and stpt < 10000/(target7_price*1.02): upbit.buy_market_order("KRW-STPT", 1000000) if 5000 < krw < 1000000 and stpt < 10000/(target7_price*1.02): upbit.buy_market_order("KRW-STPT", krw*0.9995) if target8_price <= current_price < target8_price*1.02 and target8_price*1.3 <= predicted_close_price: if krw >= 1000000 and stpt < 10000/(target8_price*1.02): upbit.buy_market_order("KRW-STPT", 1000000) if 5000 < krw < 1000000 and stpt < 10000/(target8_price*1.02): upbit.buy_market_order("KRW-STPT", krw*0.9995) if target9_price <= current_price < target9_price*1.02 and target9_price*1.4 <= predicted_close_price: if krw >= 1000000 and stpt < 10000/(target9_price*1.02): upbit.buy_market_order("KRW-STPT", 1000000) if 5000 < krw < 1000000 and stpt < 10000/(target9_price*1.02): upbit.buy_market_order("KRW-STPT", krw*0.9995) if target10_price <= current_price < target10_price*1.02 and target10_price*2 <= predicted_close_price: if krw >= 1000000 and stpt < 10000/(target10_price*1.02): upbit.buy_market_order("KRW-STPT", 1000000) if 5000 < krw < 1000000 and stpt < 10000/(target10_price*1.02): upbit.buy_market_order("KRW-STPT", krw*0.9995) if stpt > 1000000*1.001*1.2/current_price: upbit.sell_market_order("KRW-STPT", stpt*0.9995) elif middle1_time < now < middle2_time: stpt = get_balance("STPT") current_price = get_current_price("KRW-STPT") if stpt > 1000000*1.001*1.1/current_price: upbit.sell_market_order("KRW-STPT", stpt*0.9995) elif middle2_time < now < middle3_time: stpt = get_balance("STPT") current_price = get_current_price("KRW-STPT") if stpt > 1000000*1.001*1.05/current_price: upbit.sell_market_order("KRW-STPT", stpt*0.9995) elif middle3_time < now < end_time - datetime.timedelta(hours=1): stpt = get_balance("STPT") current_price = get_current_price("KRW-STPT") if stpt > 1000000*1.001*1.03/current_price or current_price > predicted_close_price: upbit.sell_market_order("KRW-STPT", stpt*0.9995) else: stpt = get_balance("STPT") current_price = get_current_price("KRW-STPT") if stpt > 1000000*1.001/current_price: upbit.sell_market_order("KRW-STPT", stpt*0.9995) time.sleep(1) except Exception as e: print(e) time.sleep(1)
8a46b42a2d6965726648fa8823414ef23617c636
8c382ed6073bfc2dc3fda97d8344628ac669d548
/api/views.py
9cd911c86b7585e256c99cc284ffdbbc84072291
[]
no_license
dmaras1808/ghiro
7a428d69944a2e4173b6603240a2c195c21ed7f4
439d395a1311ac6f802d0ee1402d37e99aeb5f95
refs/heads/master
2021-01-24T01:59:59.225272
2015-08-03T21:40:28
2015-08-03T21:40:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,569
py
# Ghiro - Copyright (C) 2013-2015 Ghiro Developers. # This file is part of Ghiro. # See the file 'docs/LICENSE.txt' for license terms. import json from django.views.decorators.http import require_POST from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt from django.shortcuts import get_object_or_404 from ghiro.common import log_activity from ghiro.authorization import api_authenticate from analyses.models import Case, Analysis from lib.db import save_file from lib.utils import create_thumb @require_POST @csrf_exempt def new_case(request): """Creates a new case.""" user = api_authenticate(request.POST.get("api_key")) if request.POST.get("name"): case = Case(name=request.POST.get("name"), description=request.POST.get("description"), owner=user) case.save() # Auditing. log_activity("C", "Created new case via API %s" % case.name, request, user) response_data = {"id": case.id} return HttpResponse(json.dumps(response_data), content_type="application/json") else: return HttpResponse("Request not valid", status=400) @require_POST @csrf_exempt def new_image(request): """Upload a new image.""" user = api_authenticate(request.POST.get("api_key")) if request.POST.get("case_id"): case = get_object_or_404(Case, pk=request.POST.get("case_id")) # Security check. if not case.can_write(user): return HttpResponse("You are not authorized to add image to this", status=400) if case.state == "C": return HttpResponse("You cannot add an image to a closed case", status=400) else: case = None task = Analysis.add_task(request.FILES["image"].temporary_file_path(), file_name=request.FILES["image"].name, case=case, user=user, content_type=request.FILES["image"].content_type, image_id=save_file(file_path=request.FILES["image"].temporary_file_path(), content_type=request.FILES["image"].content_type), thumb_id=create_thumb(request.FILES["image"].temporary_file_path())) # Auditing. log_activity("I", "Created new analysis via API %s" % task.file_name, request, user=user) response_data = {"id": task.id} return HttpResponse(json.dumps(response_data), content_type="application/json")
5ef49b95a868b1d76d979ef9518a54c565787183
481517a085014aefba963d29ff52b56bef6a393e
/abstractdemo.py
77dfa21d3b7352b51566e8f50caccc1c0957b0c9
[]
no_license
27Saidou/cours_python
6d916fe63652e0463bd995dbb9a3ec72c74f4c3d
91820b826ced24bed98525429096e32ff4c036db
refs/heads/main
2022-01-09T09:58:32.514032
2022-01-04T18:37:56
2022-01-04T18:37:56
214,328,534
0
0
null
null
null
null
UTF-8
Python
false
false
374
py
from abc import ABC, abstractmethod class A(ABC): def __init__(self,value): self.value = value @abstractmethod def add(self): pass @abstractmethod def sub(self): pass class Y(A): def add(self): return self.value +100 def sub(self): return self.value -10 obj=Y(100) print(obj.add()) print(obj.sub())
438c15de02438222ef6d1d703b882cb426c13720
2a8a6327fb9a7ce8696aa15b197d5170661fb94f
/test/test_invoice_processing_options.py
c8b97d17768201adb01b23cc30c300ec51eeb16a
[]
no_license
moderndatainc/zuora-client
8b88e05132ddf7e8c411a6d7dad8c0baabaa6dad
d50da49ce1b8465c76723496c2561a3b8ebdf07d
refs/heads/master
2021-09-21T19:17:34.752404
2018-08-29T23:24:07
2018-08-29T23:24:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
38,764
py
# coding: utf-8 """ Zuora API Reference # Introduction Welcome to the reference for the Zuora REST API! <a href=\"http://en.wikipedia.org/wiki/REST_API\" target=\"_blank\">REST</a> is a web-service protocol that lends itself to rapid development by using everyday HTTP and JSON technology. The Zuora REST API provides a broad set of operations and resources that: * Enable Web Storefront integration from your website. * Support self-service subscriber sign-ups and account management. * Process revenue schedules through custom revenue rule models. * Enable manipulation of most objects in the Zuora Object Model. Want to share your opinion on how our API works for you? <a href=\"https://community.zuora.com/t5/Developers/API-Feedback-Form/gpm-p/21399\" target=\"_blank\">Tell us how you feel </a>about using our API and what we can do to make it better. ## Access to the API If you have a Zuora tenant, you can access the Zuora REST API via one of the following endpoints: | Tenant | Base URL for REST Endpoints | |-------------------------|-------------------------| |US Production | https://rest.zuora.com | |US API Sandbox | https://rest.apisandbox.zuora.com| |US Performance Test | https://rest.pt1.zuora.com | |EU Production | https://rest.eu.zuora.com | |EU Sandbox | https://rest.sandbox.eu.zuora.com | The Production endpoint provides access to your live user data. API Sandbox tenants are a good place to test code without affecting real-world data. If you would like Zuora to provision an API Sandbox tenant for you, contact your Zuora representative for assistance. **Note:** If you have a tenant in the Production Copy Environment, submit a request at <a href=\"http://support.zuora.com/\" target=\"_blank\">Zuora Global Support</a> to enable the Zuora REST API in your tenant and obtain the base URL for REST endpoints. If you do not have a Zuora tenant, go to <a href=\"https://www.zuora.com/resource/zuora-test-drive\" target=\"_blank\">https://www.zuora.com/resource/zuora-test-drive</a> and sign up for a Production Test Drive tenant. The tenant comes with seed data, including a sample product catalog. # API Changelog You can find the <a href=\"https://community.zuora.com/t5/Developers/API-Changelog/gpm-p/18092\" target=\"_blank\">Changelog</a> of the API Reference in the Zuora Community. # Authentication ## OAuth v2.0 Zuora recommends that you use OAuth v2.0 to authenticate to the Zuora REST API. Currently, OAuth is not available in every environment. See [Zuora Testing Environments](https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/D_Zuora_Environments) for more information. Zuora recommends you to create a dedicated API user with API write access on a tenant when authenticating via OAuth, and then create an OAuth client for this user. See <a href=\"https://knowledgecenter.zuora.com/CF_Users_and_Administrators/A_Administrator_Settings/Manage_Users/Create_an_API_User\" target=\"_blank\">Create an API User</a> for how to do this. By creating a dedicated API user, you can control permissions of the API user without affecting other non-API users. If a user is deactivated, all of the user's OAuth clients will be automatically deactivated. Authenticating via OAuth requires the following steps: 1. Create a Client 2. Generate a Token 3. Make Authenticated Requests ### Create a Client You must first [create an OAuth client](https://knowledgecenter.zuora.com/CF_Users_and_Administrators/A_Administrator_Settings/Manage_Users#Create_an_OAuth_Client_for_a_User) in the Zuora UI. To do this, you must be an administrator of your Zuora tenant. This is a one-time operation. You will be provided with a Client ID and a Client Secret. Please note this information down, as it will be required for the next step. **Note:** The OAuth client will be owned by a Zuora user account. If you want to perform PUT, POST, or DELETE operations using the OAuth client, the owner of the OAuth client must have a Platform role that includes the \"API Write Access\" permission. ### Generate a Token After creating a client, you must make a call to obtain a bearer token using the [Generate an OAuth token](https://www.zuora.com/developer/api-reference/#operation/createToken) operation. This operation requires the following parameters: - `client_id` - the Client ID displayed when you created the OAuth client in the previous step - `client_secret` - the Client Secret displayed when you created the OAuth client in the previous step - `grant_type` - must be set to `client_credentials` **Note**: The Client ID and Client Secret mentioned above were displayed when you created the OAuth Client in the prior step. The [Generate an OAuth token](https://www.zuora.com/developer/api-reference/#operation/createToken) response specifies how long the bearer token is valid for. Call [Generate an OAuth token](https://www.zuora.com/developer/api-reference/#operation/createToken) again to generate a new bearer token. ### Make Authenticated Requests To authenticate subsequent API requests, you must provide a valid bearer token in an HTTP header: `Authorization: Bearer {bearer_token}` If you have [Zuora Multi-entity](https://www.zuora.com/developer/api-reference/#tag/Entities) enabled, you need to set an additional header to specify the ID of the entity that you want to access. You can use the `scope` field in the [Generate an OAuth token](https://www.zuora.com/developer/api-reference/#operation/createToken) response to determine whether you need to specify an entity ID. If the `scope` field contains more than one entity ID, you must specify the ID of the entity that you want to access. For example, if the `scope` field contains `entity.1a2b7a37-3e7d-4cb3-b0e2-883de9e766cc` and `entity.c92ed977-510c-4c48-9b51-8d5e848671e9`, specify one of the following headers: - `Zuora-Entity-Ids: 1a2b7a37-3e7d-4cb3-b0e2-883de9e766cc` - `Zuora-Entity-Ids: c92ed977-510c-4c48-9b51-8d5e848671e9` **Note**: For a limited period of time, Zuora will accept the `entityId` header as an alternative to the `Zuora-Entity-Ids` header. If you choose to set the `entityId` header, you must remove all \"-\" characters from the entity ID in the `scope` field. If the `scope` field contains a single entity ID, you do not need to specify an entity ID. ## Other Supported Authentication Schemes Zuora continues to support the following additional legacy means of authentication: * Use username and password. Include authentication with each request in the header: * `apiAccessKeyId` * `apiSecretAccessKey` Zuora recommends that you create an API user specifically for making API calls. See <a href=\"https://knowledgecenter.zuora.com/CF_Users_and_Administrators/A_Administrator_Settings/Manage_Users/Create_an_API_User\" target=\"_blank\">Create an API User</a> for more information. * Use an authorization cookie. The cookie authorizes the user to make calls to the REST API for the duration specified in **Administration > Security Policies > Session timeout**. The cookie expiration time is reset with this duration after every call to the REST API. To obtain a cookie, call the [Connections](https://www.zuora.com/developer/api-reference/#tag/Connections) resource with the following API user information: * ID * Password * For CORS-enabled APIs only: Include a 'single-use' token in the request header, which re-authenticates the user with each request. See below for more details. ### Entity Id and Entity Name The `entityId` and `entityName` parameters are only used for [Zuora Multi-entity](https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/Multi-entity \"Zuora Multi-entity\"). These are the legacy parameters that Zuora will only continue to support for a period of time. Zuora recommends you to use the `Zuora-Entity-Ids` parameter instead. The `entityId` and `entityName` parameters specify the Id and the [name of the entity](https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/Multi-entity/B_Introduction_to_Entity_and_Entity_Hierarchy#Name_and_Display_Name \"Introduction to Entity and Entity Hierarchy\") that you want to access, respectively. Note that you must have permission to access the entity. You can specify either the `entityId` or `entityName` parameter in the authentication to access and view an entity. * If both `entityId` and `entityName` are specified in the authentication, an error occurs. * If neither `entityId` nor `entityName` is specified in the authentication, you will log in to the entity in which your user account is created. To get the entity Id and entity name, you can use the GET Entities REST call. For more information, see [API User Authentication](https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/Multi-entity/A_Overview_of_Multi-entity#API_User_Authentication \"API User Authentication\"). ### Token Authentication for CORS-Enabled APIs The CORS mechanism enables REST API calls to Zuora to be made directly from your customer's browser, with all credit card and security information transmitted directly to Zuora. This minimizes your PCI compliance burden, allows you to implement advanced validation on your payment forms, and makes your payment forms look just like any other part of your website. For security reasons, instead of using cookies, an API request via CORS uses **tokens** for authentication. The token method of authentication is only designed for use with requests that must originate from your customer's browser; **it should not be considered a replacement to the existing cookie authentication** mechanism. See [Zuora CORS REST](https://knowledgecenter.zuora.com/DC_Developers/REST_API/A_REST_basics/G_CORS_REST \"Zuora CORS REST\") for details on how CORS works and how you can begin to implement customer calls to the Zuora REST APIs. See [HMAC Signatures](https://www.zuora.com/developer/api-reference/#operation/POSTHMACSignature \"HMAC Signatures\") for details on the HMAC method that returns the authentication token. # Requests and Responses ## Request IDs As a general rule, when asked to supply a \"key\" for an account or subscription (accountKey, account-key, subscriptionKey, subscription-key), you can provide either the actual ID or the number of the entity. ## HTTP Request Body Most of the parameters and data accompanying your requests will be contained in the body of the HTTP request. The Zuora REST API accepts JSON in the HTTP request body. No other data format (e.g., XML) is supported. ### Data Type ([Actions](https://www.zuora.com/developer/api-reference/#tag/Actions) and CRUD operations only) We recommend that you do not specify the decimal values with quotation marks, commas, and spaces. Use characters of `+-0-9.eE`, for example, `5`, `1.9`, `-8.469`, and `7.7e2`. Also, Zuora does not convert currencies for decimal values. ## Testing a Request Use a third party client, such as [curl](https://curl.haxx.se \"curl\"), [Postman](https://www.getpostman.com \"Postman\"), or [Advanced REST Client](https://advancedrestclient.com \"Advanced REST Client\"), to test the Zuora REST API. You can test the Zuora REST API from the Zuora API Sandbox or Production tenants. If connecting to Production, bear in mind that you are working with your live production data, not sample data or test data. ## Testing with Credit Cards Sooner or later it will probably be necessary to test some transactions that involve credit cards. For suggestions on how to handle this, see [Going Live With Your Payment Gateway](https://knowledgecenter.zuora.com/CB_Billing/M_Payment_Gateways/C_Managing_Payment_Gateways/B_Going_Live_Payment_Gateways#Testing_with_Credit_Cards \"C_Zuora_User_Guides/A_Billing_and_Payments/M_Payment_Gateways/C_Managing_Payment_Gateways/B_Going_Live_Payment_Gateways#Testing_with_Credit_Cards\" ). ## Concurrent Request Limits Zuora enforces tenant-level concurrent request limits. See <a href=\"https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/Policies/Concurrent_Request_Limits\" target=\"_blank\">Concurrent Request Limits</a> for more information. ## Timeout Limit If a request does not complete within 120 seconds, the request times out and Zuora returns a Gateway Timeout error. ## Error Handling Responses and error codes are detailed in [Responses and errors](https://knowledgecenter.zuora.com/DC_Developers/REST_API/A_REST_basics/3_Responses_and_errors \"Responses and errors\"). # Pagination When retrieving information (using GET methods), the optional `pageSize` query parameter sets the maximum number of rows to return in a response. The maximum is `40`; larger values are treated as `40`. If this value is empty or invalid, `pageSize` typically defaults to `10`. The default value for the maximum number of rows retrieved can be overridden at the method level. If more rows are available, the response will include a `nextPage` element, which contains a URL for requesting the next page. If this value is not provided, no more rows are available. No \"previous page\" element is explicitly provided; to support backward paging, use the previous call. ## Array Size For data items that are not paginated, the REST API supports arrays of up to 300 rows. Thus, for instance, repeated pagination can retrieve thousands of customer accounts, but within any account an array of no more than 300 rate plans is returned. # API Versions The Zuora REST API are version controlled. Versioning ensures that Zuora REST API changes are backward compatible. Zuora uses a major and minor version nomenclature to manage changes. By specifying a version in a REST request, you can get expected responses regardless of future changes to the API. ## Major Version The major version number of the REST API appears in the REST URL. Currently, Zuora only supports the **v1** major version. For example, `POST https://rest.zuora.com/v1/subscriptions`. ## Minor Version Zuora uses minor versions for the REST API to control small changes. For example, a field in a REST method is deprecated and a new field is used to replace it. Some fields in the REST methods are supported as of minor versions. If a field is not noted with a minor version, this field is available for all minor versions. If a field is noted with a minor version, this field is in version control. You must specify the supported minor version in the request header to process without an error. If a field is in version control, it is either with a minimum minor version or a maximum minor version, or both of them. You can only use this field with the minor version between the minimum and the maximum minor versions. For example, the `invoiceCollect` field in the POST Subscription method is in version control and its maximum minor version is 189.0. You can only use this field with the minor version 189.0 or earlier. If you specify a version number in the request header that is not supported, Zuora will use the minimum minor version of the REST API. In our REST API documentation, if a field or feature requires a minor version number, we note that in the field description. You only need to specify the version number when you use the fields require a minor version. To specify the minor version, set the `zuora-version` parameter to the minor version number in the request header for the request call. For example, the `collect` field is in 196.0 minor version. If you want to use this field for the POST Subscription method, set the `zuora-version` parameter to `196.0` in the request header. The `zuora-version` parameter is case sensitive. For all the REST API fields, by default, if the minor version is not specified in the request header, Zuora will use the minimum minor version of the REST API to avoid breaking your integration. ### Minor Version History The supported minor versions are not serial. This section documents the changes made to each Zuora REST API minor version. The following table lists the supported versions and the fields that have a Zuora REST API minor version. | Fields | Minor Version | REST Methods | Description | |:--------|:--------|:--------|:--------| | invoiceCollect | 189.0 and earlier | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Generates an invoice and collects a payment for a subscription. | | collect | 196.0 and later | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Collects an automatic payment for a subscription. | | invoice | 196.0 and 207.0| [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Generates an invoice for a subscription. | | invoiceTargetDate | 196.0 and earlier | [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\") |Date through which charges are calculated on the invoice, as `yyyy-mm-dd`. | | invoiceTargetDate | 207.0 and earlier | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Date through which charges are calculated on the invoice, as `yyyy-mm-dd`. | | targetDate | 207.0 and later | [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\") |Date through which charges are calculated on the invoice, as `yyyy-mm-dd`. | | targetDate | 211.0 and later | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Date through which charges are calculated on the invoice, as `yyyy-mm-dd`. | | includeExisting DraftInvoiceItems | 196.0 and earlier| [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") | Specifies whether to include draft invoice items in subscription previews. Specify it to be `true` (default) to include draft invoice items in the preview result. Specify it to be `false` to excludes draft invoice items in the preview result. | | includeExisting DraftDocItems | 207.0 and later | [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") | Specifies whether to include draft invoice items in subscription previews. Specify it to be `true` (default) to include draft invoice items in the preview result. Specify it to be `false` to excludes draft invoice items in the preview result. | | previewType | 196.0 and earlier| [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") | The type of preview you will receive. The possible values are `InvoiceItem`(default), `ChargeMetrics`, and `InvoiceItemChargeMetrics`. | | previewType | 207.0 and later | [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") | The type of preview you will receive. The possible values are `LegalDoc`(default), `ChargeMetrics`, and `LegalDocChargeMetrics`. | | runBilling | 211.0 and later | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Generates an invoice or credit memo for a subscription. **Note:** Credit memos are only available if you have the Invoice Settlement feature enabled. | | invoiceDate | 214.0 and earlier | [Invoice and Collect](https://www.zuora.com/developer/api-reference/#operation/POST_TransactionInvoicePayment \"Invoice and Collect\") |Date that should appear on the invoice being generated, as `yyyy-mm-dd`. | | invoiceTargetDate | 214.0 and earlier | [Invoice and Collect](https://www.zuora.com/developer/api-reference/#operation/POST_TransactionInvoicePayment \"Invoice and Collect\") |Date through which to calculate charges on this account if an invoice is generated, as `yyyy-mm-dd`. | | documentDate | 215.0 and later | [Invoice and Collect](https://www.zuora.com/developer/api-reference/#operation/POST_TransactionInvoicePayment \"Invoice and Collect\") |Date that should appear on the invoice and credit memo being generated, as `yyyy-mm-dd`. | | targetDate | 215.0 and later | [Invoice and Collect](https://www.zuora.com/developer/api-reference/#operation/POST_TransactionInvoicePayment \"Invoice and Collect\") |Date through which to calculate charges on this account if an invoice or a credit memo is generated, as `yyyy-mm-dd`. | | memoItemAmount | 223.0 and earlier | [Create credit memo from charge](https://www.zuora.com/developer/api-reference/#operation/POST_CreditMemoFromPrpc \"Create credit memo from charge\"); [Create debit memo from charge](https://www.zuora.com/developer/api-reference/#operation/POST_DebitMemoFromPrpc \"Create debit memo from charge\") | Amount of the memo item. | | amount | 224.0 and later | [Create credit memo from charge](https://www.zuora.com/developer/api-reference/#operation/POST_CreditMemoFromPrpc \"Create credit memo from charge\"); [Create debit memo from charge](https://www.zuora.com/developer/api-reference/#operation/POST_DebitMemoFromPrpc \"Create debit memo from charge\") | Amount of the memo item. | | subscriptionNumbers | 222.4 and earlier | [Create order](https://www.zuora.com/developer/api-reference/#operation/POST_Order \"Create order\") | Container for the subscription numbers of the subscriptions in an order. | | subscriptions | 223.0 and later | [Create order](https://www.zuora.com/developer/api-reference/#operation/POST_Order \"Create order\") | Container for the subscription numbers and statuses in an order. | #### Version 207.0 and Later The response structure of the [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\") and [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") methods are changed. The following invoice related response fields are moved to the invoice container: * amount * amountWithoutTax * taxAmount * invoiceItems * targetDate * chargeMetrics # Zuora Object Model The following diagram presents a high-level view of the key Zuora objects. Click the image to open it in a new tab to resize it. <a href=\"https://www.zuora.com/wp-content/uploads/2017/01/ZuoraERD.jpeg\" target=\"_blank\"><img src=\"https://www.zuora.com/wp-content/uploads/2017/01/ZuoraERD.jpeg\" alt=\"Zuora Object Model Diagram\"></a> See the following articles for information about other parts of the Zuora business object model: * <a href=\"https://knowledgecenter.zuora.com/CB_Billing/Invoice_Settlement/D_Invoice_Settlement_Object_Model\" target=\"_blank\">Invoice Settlement Object Model</a> * <a href=\"https://knowledgecenter.zuora.com/BC_Subscription_Management/Orders/BA_Orders_Object_Model\" target=\"_blank\">Orders Object Model</a> You can use the [Describe object](https://www.zuora.com/developer/api-reference/#operation/GET_Describe) operation to list the fields of each Zuora object that is available in your tenant. When you call the operation, you must specify the API name of the Zuora object. The following table provides the API name of each Zuora object: | Object | API Name | |-----------------------------------------------|--------------------------------------------| | Account | `Account` | | Accounting Code | `AccountingCode` | | Accounting Period | `AccountingPeriod` | | Amendment | `Amendment` | | Application Group | `ApplicationGroup` | | Billing Run | <p>`BillingRun`</p><p>**Note:** The API name of this object is `BillingRun` in the [Describe object](https://www.zuora.com/developer/api-reference/#operation/GET_Describe) operation and Export ZOQL queries only. Otherwise, the API name of this object is `BillRun`.</p> | | Contact | `Contact` | | Contact Snapshot | `ContactSnapshot` | | Credit Balance Adjustment | `CreditBalanceAdjustment` | | Credit Memo | `CreditMemo` | | Credit Memo Application | `CreditMemoApplication` | | Credit Memo Application Item | `CreditMemoApplicationItem` | | Credit Memo Item | `CreditMemoItem` | | Credit Memo Part | `CreditMemoPart` | | Credit Memo Part Item | `CreditMemoPartItem` | | Credit Taxation Item | `CreditTaxationItem` | | Custom Exchange Rate | `FXCustomRate` | | Debit Memo | `DebitMemo` | | Debit Memo Item | `DebitMemoItem` | | Debit Taxation Item | `DebitTaxationItem` | | Discount Applied Metrics | `DiscountAppliedMetrics` | | Entity | `Tenant` | | Gateway Reconciliation Event | `PaymentGatewayReconciliationEventLog` | | Gateway Reconciliation Job | `PaymentReconciliationJob` | | Gateway Reconciliation Log | `PaymentReconciliationLog` | | Invoice | `Invoice` | | Invoice Adjustment | `InvoiceAdjustment` | | Invoice Item | `InvoiceItem` | | Invoice Item Adjustment | `InvoiceItemAdjustment` | | Invoice Payment | `InvoicePayment` | | Journal Entry | `JournalEntry` | | Journal Entry Item | `JournalEntryItem` | | Journal Run | `JournalRun` | | Order | `Order` | | Order Action | `OrderAction` | | Order ELP | `OrderElp` | | Order Item | `OrderItem` | | Order MRR | `OrderMrr` | | Order Quantity | `OrderQuantity` | | Order TCB | `OrderTcb` | | Order TCV | `OrderTcv` | | Payment | `Payment` | | Payment Application | `PaymentApplication` | | Payment Application Item | `PaymentApplicationItem` | | Payment Method | `PaymentMethod` | | Payment Method Snapshot | `PaymentMethodSnapshot` | | Payment Method Transaction Log | `PaymentMethodTransactionLog` | | Payment Method Update | `UpdaterDetail` | | Payment Part | `PaymentPart` | | Payment Part Item | `PaymentPartItem` | | Payment Run | `PaymentRun` | | Payment Transaction Log | `PaymentTransactionLog` | | Processed Usage | `ProcessedUsage` | | Product | `Product` | | Product Rate Plan | `ProductRatePlan` | | Product Rate Plan Charge | `ProductRatePlanCharge` | | Product Rate Plan Charge Tier | `ProductRatePlanChargeTier` | | Rate Plan | `RatePlan` | | Rate Plan Charge | `RatePlanCharge` | | Rate Plan Charge Tier | `RatePlanChargeTier` | | Refund | `Refund` | | Refund Application | `RefundApplication` | | Refund Application Item | `RefundApplicationItem` | | Refund Invoice Payment | `RefundInvoicePayment` | | Refund Part | `RefundPart` | | Refund Part Item | `RefundPartItem` | | Refund Transaction Log | `RefundTransactionLog` | | Revenue Charge Summary | `RevenueChargeSummary` | | Revenue Charge Summary Item | `RevenueChargeSummaryItem` | | Revenue Event | `RevenueEvent` | | Revenue Event Credit Memo Item | `RevenueEventCreditMemoItem` | | Revenue Event Debit Memo Item | `RevenueEventDebitMemoItem` | | Revenue Event Invoice Item | `RevenueEventInvoiceItem` | | Revenue Event Invoice Item Adjustment | `RevenueEventInvoiceItemAdjustment` | | Revenue Event Item | `RevenueEventItem` | | Revenue Event Item Credit Memo Item | `RevenueEventItemCreditMemoItem` | | Revenue Event Item Debit Memo Item | `RevenueEventItemDebitMemoItem` | | Revenue Event Item Invoice Item | `RevenueEventItemInvoiceItem` | | Revenue Event Item Invoice Item Adjustment | `RevenueEventItemInvoiceItemAdjustment` | | Revenue Event Type | `RevenueEventType` | | Revenue Schedule | `RevenueSchedule` | | Revenue Schedule Credit Memo Item | `RevenueScheduleCreditMemoItem` | | Revenue Schedule Debit Memo Item | `RevenueScheduleDebitMemoItem` | | Revenue Schedule Invoice Item | `RevenueScheduleInvoiceItem` | | Revenue Schedule Invoice Item Adjustment | `RevenueScheduleInvoiceItemAdjustment` | | Revenue Schedule Item | `RevenueScheduleItem` | | Revenue Schedule Item Credit Memo Item | `RevenueScheduleItemCreditMemoItem` | | Revenue Schedule Item Debit Memo Item | `RevenueScheduleItemDebitMemoItem` | | Revenue Schedule Item Invoice Item | `RevenueScheduleItemInvoiceItem` | | Revenue Schedule Item Invoice Item Adjustment | `RevenueScheduleItemInvoiceItemAdjustment` | | Subscription | `Subscription` | | Taxable Item Snapshot | `TaxableItemSnapshot` | | Taxation Item | `TaxationItem` | | Updater Batch | `UpdaterBatch` | | Usage | `Usage` | # noqa: E501 OpenAPI spec version: 2018-08-23 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import zuora_client from zuora_client.models.invoice_processing_options import InvoiceProcessingOptions # noqa: E501 from zuora_client.rest import ApiException class TestInvoiceProcessingOptions(unittest.TestCase): """InvoiceProcessingOptions unit test stubs""" def setUp(self): pass def tearDown(self): pass def testInvoiceProcessingOptions(self): """Test InvoiceProcessingOptions""" # FIXME: construct object with mandatory attributes with example values # model = zuora_client.models.invoice_processing_options.InvoiceProcessingOptions() # noqa: E501 pass if __name__ == '__main__': unittest.main()
591439930127cc0ca00096c759275babb9b9f783
a943cb6da95ec1e06cb480887ba1062a5783527f
/2012-oss-hrs/plot-mg-k.py
fcb7775822791a3f8c6194f2e6dd460fa6fb664e
[]
no_license
andycasey/papers
1b2c882c20b0c65b5899d70dc95825ec53cc9fe2
3d585ad4b6b1c3b40227185fd7b22ea9bdeb8e02
refs/heads/master
2021-01-19T17:24:48.788580
2013-08-13T08:51:02
2013-08-13T08:51:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,266
py
import numpy as np mucciarelli_headers = 'ID Teff logg vt [Fe/H] [Fe/H]_err [Mg/Fe] [Mg/Fe]_err [K/Fe] [K/Fe]_err [Ti/Fe] [Ti/Fe]_err [Ca/Fe] [Ca/Fe]_err' mg_fe, mg_fe_err, k_fe, k_fe_err = range(4) mucciarelli_columns = ['[Mg/Fe]', '[Mg/Fe]_err', '[K/Fe]', '[K/Fe]_err'] mucciarelli_column_indices = [mucciarelli_headers.split().index(item) for item in mucciarelli_columns] mucciarelli = np.loadtxt('ngc2419-mucciarelli.txt', usecols=mucciarelli_column_indices) fig = plt.figure() fig.subplots_adjust(left=0.10, right=0.95, bottom=0.07, wspace=0, hspace=0.14, top=0.95) ax = fig.add_subplot(111) ax.errorbar(mucciarelli[:, mg_fe], mucciarelli[:, k_fe], xerr=mucciarelli[:, mg_fe_err], yerr=mucciarelli[:, k_fe_err], fmt=None, ecolor='k') ax.scatter(mucciarelli[:, mg_fe], mucciarelli[:, k_fe], facecolor='k', edgecolor='k', label='Mucciarelli et al. (DEIMOS; 2012)') # Cohen data cohen = np.loadtxt('ngc2419-cohen.txt', usecols=(1,2,3,4, )) ax.errorbar(cohen[:, mg_fe], cohen[:, k_fe], xerr=cohen[:, mg_fe_err], yerr=cohen[:, k_fe_err], fmt=None, ecolor='g') ax.scatter(cohen[:, mg_fe], cohen[:, k_fe], marker='s', edgecolor='g', facecolor='g', label='Cohen et al. (HIRES; 2011, 2012)') ax.set_ylabel('[K/Fe]') ax.set_xlabel('[Mg/Fe]') ax.legend(loc=3)
f4f7422e1d5486fb475b159c62317c606ffa5580
421d58c6b93b81e0724f8f4576119300eb344252
/influencers/core/migrations/0012_auto_20190130_1417.py
ebc63a175e53a43e7c2a89b47f2eb951d1aca9ef
[]
no_license
momen/influencers
7728228c92a552bdff9ae62f85986ad03bce186e
f9c76cfc2970440112967f9579dc31f77063cb25
refs/heads/master
2020-06-03T22:20:03.881411
2019-06-15T07:48:43
2019-06-15T07:48:43
191,754,739
0
0
null
null
null
null
UTF-8
Python
false
false
487
py
# Generated by Django 2.1.4 on 2019-01-30 14:17 from django.db import migrations import partial_index class Migration(migrations.Migration): dependencies = [ ('core', '0011_auto_20190130_1305'), ] operations = [ migrations.AddIndex( model_name='bank', index=partial_index.PartialIndex(fields=['swift', 'deleted'], name='core_bank_swift_db8a53_partial', unique=True, where=partial_index.PQ(deleted__isnull=True)), ), ]
e7f6bcc4646a64093c53c52df316962e702eb6fe
2ea8f0e3d7c2eb709e126b069a551e24bb9d40aa
/bin/basenji_test_folds.py
ef85e1bc357503cee43d76187ccb16d7c6ebc442
[ "Apache-2.0" ]
permissive
eniktab/basenji
b593136330a9a8292d665a14ab147ae0b08bfce9
90ce1c19a17f7a9edd4d95039f11755f6865fd8a
refs/heads/master
2022-12-19T05:16:19.952806
2020-09-26T17:32:26
2020-09-26T17:32:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,161
py
#!/usr/bin/env python # Copyright 2019 Calico LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========================================================================= from optparse import OptionParser, OptionGroup import glob import json import os import pdb import shutil import sys from natsort import natsorted import numpy as np import pandas as pd from scipy.stats import wilcoxon, ttest_rel import matplotlib.pyplot as plt import seaborn as sns import slurm """ basenji_test_folds.py Train Basenji model replicates using given parameters and data. """ ################################################################################ # main ################################################################################ def main(): usage = 'usage: %prog [options] <exp_dir> <params_file> <data_dir>' parser = OptionParser(usage) parser.add_option('-a', '--alt', dest='alternative', default='two-sided', help='Statistical test alternative [Default: %default]') parser.add_option('-c', dest='crosses', default=1, type='int', help='Number of cross-fold rounds [Default:%default]') parser.add_option('-e', dest='conda_env', default='tf2-gpu', help='Anaconda environment [Default: %default]') parser.add_option('--l1', dest='label1', default='Reference', help='Reference label [Default: %default]') parser.add_option('--l2', dest='label2', default='Experiment', help='Experiment label [Default: %default]') parser.add_option('--name', dest='name', default='test', help='SLURM name prefix [Default: %default]') parser.add_option('-o', dest='out_stem', default=None, help='Outplut plot stem [Default: %default]') parser.add_option('-q', dest='queue', default='gtx1080ti') parser.add_option('-r', dest='ref_dir', default=None, help='Reference directory for statistical tests') parser.add_option('--rc', dest='rc', default=False, action='store_true', help='Average forward and reverse complement predictions [Default: %default]') parser.add_option('--shifts', dest='shifts', default='0', type='str', help='Ensemble prediction shifts [Default: %default]') parser.add_option('--spec', dest='specificity', default=False, action='store_true', help='Test specificity [Default: %default]') parser.add_option('--train', dest='train', default=False, action='store_true', help='Test on the training set, too [Default: %default]') (options, args) = parser.parse_args() if len(args) != 3: parser.error('Must provide parameters file and data directory') else: exp_dir = args[0] params_file = args[1] data_dir = args[2] # read data parameters data_stats_file = '%s/statistics.json' % data_dir with open(data_stats_file) as data_stats_open: data_stats = json.load(data_stats_open) # count folds num_folds = len([dkey for dkey in data_stats if dkey.startswith('fold')]) ################################################################ # test check ################################################################ jobs = [] if options.train: for ci in range(options.crosses): for fi in range(num_folds): it_dir = '%s/f%d_c%d' % (exp_dir, fi, ci) # check if done acc_file = '%s/test_train/acc.txt' % it_dir if os.path.isfile(acc_file): print('%s already generated.' % acc_file) else: # basenji test basenji_cmd = '. /home/drk/anaconda3/etc/profile.d/conda.sh;' basenji_cmd += ' conda activate %s;' % options.conda_env basenji_cmd += ' basenji_test.py' basenji_cmd += ' -o %s/test_train' % it_dir if options.rc: basenji_cmd += ' --rc' if options.shifts: basenji_cmd += ' --shifts %s' % options.shifts basenji_cmd += ' --split train' basenji_cmd += ' %s' % params_file basenji_cmd += ' %s/train/model_check.h5' % it_dir basenji_cmd += ' %s/data' % it_dir name = '%s-testtr-f%dc%d' % (options.name, fi, ci) basenji_job = slurm.Job(basenji_cmd, name=name, out_file='%s/test_train.out'%it_dir, err_file='%s/test_train.err'%it_dir, queue=options.queue, cpu=1, gpu=1, mem=23000, time='4:00:00') jobs.append(basenji_job) ################################################################ # test best ################################################################ for ci in range(options.crosses): for fi in range(num_folds): it_dir = '%s/f%d_c%d' % (exp_dir, fi, ci) # check if done acc_file = '%s/test/acc.txt' % it_dir if os.path.isfile(acc_file): print('%s already generated.' % acc_file) else: # basenji test basenji_cmd = '. /home/drk/anaconda3/etc/profile.d/conda.sh;' basenji_cmd += ' conda activate %s;' % options.conda_env basenji_cmd += ' basenji_test.py' basenji_cmd += ' -o %s/test' % it_dir if options.rc: basenji_cmd += ' --rc' if options.shifts: basenji_cmd += ' --shifts %s' % options.shifts basenji_cmd += ' %s' % params_file basenji_cmd += ' %s/train/model_best.h5' % it_dir basenji_cmd += ' %s/data' % it_dir name = '%s-test-f%dc%d' % (options.name, fi, ci) basenji_job = slurm.Job(basenji_cmd, name=name, out_file='%s/test.out'%it_dir, err_file='%s/test.err'%it_dir, queue=options.queue, cpu=1, gpu=1, mem=23000, time='4:00:00') jobs.append(basenji_job) ################################################################ # test best specificity ################################################################ if options.specificity: for ci in range(options.crosses): for fi in range(num_folds): it_dir = '%s/f%d_c%d' % (exp_dir, fi, ci) # check if done acc_file = '%s/test_spec/acc.txt' % it_dir if os.path.isfile(acc_file): print('%s already generated.' % acc_file) else: # basenji test basenji_cmd = '. /home/drk/anaconda3/etc/profile.d/conda.sh;' basenji_cmd += ' conda activate %s;' % options.conda_env basenji_cmd += ' basenji_test_specificity.py' basenji_cmd += ' -o %s/test_spec' % it_dir if options.rc: basenji_cmd += ' --rc' if options.shifts: basenji_cmd += ' --shifts %s' % options.shifts basenji_cmd += ' %s' % params_file basenji_cmd += ' %s/train/model_best.h5' % it_dir basenji_cmd += ' %s/data' % it_dir name = '%s-spec-f%dc%d' % (options.name, fi, ci) basenji_job = slurm.Job(basenji_cmd, name=name, out_file='%s/test_spec.out'%it_dir, err_file='%s/test_spec.err'%it_dir, queue=options.queue, cpu=1, gpu=1, mem=60000, time='6:00:00') jobs.append(basenji_job) slurm.multi_run(jobs, verbose=True) if options.ref_dir is not None: # classification or regression with open('%s/f0_c0/test/acc.txt' % exp_dir) as test0_open: header = test0_open.readline().split() if 'pearsonr' in header: metric = 'pearsonr' else: metric = 'auprc' ################################################################ # compare checkpoint on training set ################################################################ if options.train: ref_glob_str = '%s/*/test_train/acc.txt' % options.ref_dir ref_cors, ref_mean, ref_stdm = read_metrics(ref_glob_str, metric) exp_glob_str = '%s/*/test_train/acc.txt' % exp_dir exp_cors, exp_mean, exp_stdm = read_metrics(exp_glob_str, metric) mwp, tp = stat_tests(ref_cors, exp_cors, options.alternative) print('\nTrain:') print('%12s %s: %.4f (%.4f)' % (options.label1, metric, ref_mean, ref_stdm)) print('%12s %s: %.4f (%.4f)' % (options.label2, metric, exp_mean, exp_stdm)) print('Mann-Whitney U p-value: %.3g' % mwp) print('T-test p-value: %.3g' % tp) if options.out_stem is not None: jointplot(ref_cors, exp_cors, '%s_train.pdf' % options.out_stem, options.label1, options.label2) ################################################################ # compare best on test set ################################################################ ref_glob_str = '%s/*/test/acc.txt' % options.ref_dir ref_cors, ref_mean, ref_stdm = read_metrics(ref_glob_str, metric) exp_glob_str = '%s/*/test/acc.txt' % exp_dir exp_cors, exp_mean, exp_stdm = read_metrics(exp_glob_str, metric) mwp, tp = stat_tests(ref_cors, exp_cors, options.alternative) print('\nTest:') print('%12s %s: %.4f (%.4f)' % (options.label1, metric, ref_mean, ref_stdm)) print('%12s %s: %.4f (%.4f)' % (options.label2, metric, exp_mean, exp_stdm)) print('Mann-Whitney U p-value: %.3g' % mwp) print('T-test p-value: %.3g' % tp) if options.out_stem is not None: jointplot(ref_cors, exp_cors, '%s_test.pdf' % options.out_stem, options.label1, options.label2) ################################################################ # compare best on test set specificity ################################################################ if options.specificity: ref_glob_str = '%s/*/test_spec/acc.txt' % options.ref_dir ref_cors, ref_mean, ref_stdm = read_metrics(ref_glob_str, metric) exp_glob_str = '%s/*/test_spec/acc.txt' % exp_dir exp_cors, exp_mean, exp_stdm = read_metrics(exp_glob_str, metric) mwp, tp = stat_tests(ref_cors, exp_cors, options.alternative) print('\nSpecificity:') print('%12s %s: %.4f (%.4f)' % (options.label1, metric, ref_mean, ref_stdm)) print('%12s %s: %.4f (%.4f)' % (options.label2, metric, exp_mean, exp_stdm)) print('Mann-Whitney U p-value: %.3g' % mwp) print('T-test p-value: %.3g' % tp) if options.out_stem is not None: jointplot(ref_cors, exp_cors, '%s_spec.pdf' % options.out_stem, options.label1, options.label2) def jointplot(ref_cors, exp_cors, out_pdf, label1, label2): vmin = min(np.min(ref_cors), np.min(exp_cors)) vmax = max(np.max(ref_cors), np.max(exp_cors)) vspan = vmax - vmin vbuf = vspan * 0.1 vmin -= vbuf vmax += vbuf g = sns.jointplot(ref_cors, exp_cors, space=0) eps = 0.05 g.ax_joint.text(1-eps, eps, 'Mean: %.4f' % np.mean(ref_cors), horizontalalignment='right', transform=g.ax_joint.transAxes) g.ax_joint.text(eps, 1-eps, 'Mean: %.4f' % np.mean(exp_cors), verticalalignment='top', transform=g.ax_joint.transAxes) g.ax_joint.plot([vmin,vmax], [vmin,vmax], linestyle='--', color='orange') g.ax_joint.set_xlabel(label1) g.ax_joint.set_ylabel(label2) plt.tight_layout(w_pad=0, h_pad=0) plt.savefig(out_pdf) def read_metrics(acc_glob_str, metric='pearsonr'): rep_cors = [] acc_files = natsorted(glob.glob(acc_glob_str)) for acc_file in acc_files: try: # tf2 version acc_df = pd.read_csv(acc_file, sep='\t', index_col=0) rep_cors.append(acc_df.loc[:,metric].mean()) except: # tf1 version cors = [] for line in open(acc_file): a = line.split() cors.append(float(a[3])) rep_cors.append(np.mean(cors)) cors_mean = np.mean(rep_cors) cors_stdm = np.std(rep_cors) / np.sqrt(len(rep_cors)) return rep_cors, cors_mean, cors_stdm def stat_tests(ref_cors, exp_cors, alternative): _, mwp = wilcoxon(ref_cors, exp_cors, alternative=alternative) tt, tp = ttest_rel(ref_cors, exp_cors) if alternative == 'less': if tt > 0: tp = 1 - (1-tp)/2 else: tp /= 2 elif alternative == 'greater': if tt <= 0: tp /= 2 else: tp = 1 - (1-tp)/2 return mwp, tp ################################################################################ # __main__ ################################################################################ if __name__ == '__main__': main()
1d6583954d27d890d2ca28e0d0374a7fff088f35
a721e4ca65b79ce725c7b5b43539c963a3b55290
/Happy_Ladybugs.py
29beb1c6e1f59afc9ca77efce3b5bba9bf91db6d
[]
no_license
joydas65/Hackerrank-Problems
0832d7cfd1de7e5df4dba76326ede735edc9afea
a16b3b0ebb65e7597f8f6417047da4d415a818c7
refs/heads/master
2022-06-21T12:47:55.241409
2022-06-18T18:21:08
2022-06-18T18:21:08
159,071,834
9
0
null
null
null
null
UTF-8
Python
false
false
978
py
for _ in range(int(input())): n = int(input()) b = input() d = dict() flag = 0 for i in b: if i != '_': d[i] = 0 for i in b: if i != '_': d[i] += 1 for i in d.keys(): if d[i] == 1: flag = 1 break if flag == 1: print("NO") else: if b.count('_') == 0: flag = 0 for i in range(1,len(b)-1): if b[i] == b[i-1]: continue if b[i] == b[i+1]: continue flag = 1 break if flag == 0: print("YES") else: print("NO") else: print("YES")
aeb6d7fa4b40ab287c90e598989a0f927c0abae8
cb94a4cdd7a9df17f9c6f1a03f8f4ff12c916cf3
/Learning_Python_Generators/Exercise_Files/Ch1/01_03/reverse_capital.py
90ff072bda4cd2f9b2ffdfe04074e5da1265685b
[]
no_license
sedstan/LinkedIn-Learning-Python-Course
2b936d0f00703a6e66a872220ed47572123dc7fd
b4584218355bf07aa3d2939b950911eae67adb0b
refs/heads/master
2021-10-11T10:19:13.675662
2019-01-24T17:55:20
2019-01-24T17:55:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
334
py
# list of names names_list = ['Adam','Anne','Barry','Brianne','Charlie','Cassandra','David','Dana'] # too long # reverse_uppercase = (name[::-1] for name in (name.upper() for name in names_list)) # breaking it up uppercase = (name.upper() for name in names_list) reverse_uppercase = (name[::-1] for name in uppercase)
f9ab9a7d39cfc7a0dec43be133584c96e9afa1ef
93b3a69da031d3fa8402ca787cd5d22db9c09bb9
/__init__.py
68076caa6613a8ece58a6522f432a1bd21625059
[]
no_license
Teifion/communique
ab93335d7042776410da34ac28ff8cacda62f73f
d7f96d6c9c524fa5ea03dce37edf57f1424d6710
refs/heads/master
2021-01-01T05:49:43.936323
2013-10-10T21:58:41
2013-10-10T21:58:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,772
py
from .api import register, send def communique_nimblescan(): try: from ..nimblescan import api as ns_api except ImportError: try: from ...nimblescan import api as ns_api except ImportError: return ns_api.register('communique.home', "Notifications", ['communique'], (lambda r: True), ns_api.make_forwarder("communique.home")) def includeme(config): from . import views communique_nimblescan() """ Pass this to your configurator object like so: from . import communique config.include(communique, route_prefix="communique") """ # Standard views config.add_route('communique.home', '/home') config.add_route('communique.action', '/action/{action}') config.add_route('communique.view', '/view/{notification_id}') config.add_route('communique.mini_home', '/mini_home') config.add_route('communique.home_count', '/home_count/{user_id}') config.add_route('communique.create', '/create') # Now link the views config.add_view(views.home, route_name='communique.home', renderer='templates/home.pt', permission='loggedin') config.add_view(views.action, route_name='communique.action', permission='loggedin') config.add_view(views.mini_home, route_name='communique.mini_home', renderer='string', permission='loggedin') config.add_view(views.home_count, route_name='communique.home_count', renderer='string') config.add_view(views.view, route_name='communique.view', renderer="string", permission='loggedin') # Not sure what you use but this is the dev type permission I've got on my system config.add_view(views.create, route_name='communique.create', permission='code') return config
f45761d59529cdbe88da05d923c51475464181fa
22fc1933698e339f9de1c7cd8eb0062ef3a8711e
/examples/old-examples/snippets/mgl_new_example_glut.py
1dd466a064a85f41965edb3b9bfdbb29ba08927b
[ "MIT" ]
permissive
einarf/ModernGL
f9a4929e529c560ca3dcc139994b7ff84a271a3f
e4a7f53289043a0ac06130c67edc75b878484a0e
refs/heads/master
2020-04-14T03:53:20.054962
2019-02-28T07:05:19
2019-02-28T07:05:19
163,619,410
1
0
MIT
2018-12-30T21:40:33
2018-12-30T21:40:32
null
UTF-8
Python
false
false
958
py
import sys import struct from OpenGL.GLUT import ( GLUT_DEPTH, GLUT_DOUBLE, GLUT_RGB, glutCreateWindow, glutDisplayFunc, glutInit, glutInitDisplayMode, glutInitWindowSize, glutMainLoop, glutSwapBuffers, ) import ModernGL glutInit(sys.argv) glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH) glutInitWindowSize(800, 600) glutCreateWindow(b'') ctx = ModernGL.create_context() vert = ctx.vertex_shader(''' #version 330 in vec2 vert; void main() { gl_Position = vec4(vert, 0.0, 1.0); } ''') frag = ctx.fragment_shader(''' #version 330 out vec4 color; void main() { color = vec4(0.30, 0.50, 1.00, 1.0); } ''') prog = ctx.program(vert, frag]) vbo = ctx.buffer(struct.pack('6f', 0.0, 0.8, -0.6, -0.8, 0.6, -0.8)) vao = ctx.simple_vertex_array(prog, vbo, ['vert']) def display(): ctx.clear(0.9, 0.9, 0.9) vao.render() glutSwapBuffers() glutDisplayFunc(display) glutMainLoop()
de7019587d7e630b0b56aa865769304de2aa1f8f
6b79174551f8c5eee7ba5c3d4efe3c921b281d62
/models/register/employee.py
82aee95339589340a18b0e04bce9c8eac6b72852
[]
no_license
Trilokan/manjal
5d99dea0703cdf4e4f4553b2710cfb3ac5f05023
064fd6f3ad429837dd46c59790a54927e9622e1b
refs/heads/master
2020-05-04T20:45:08.449320
2019-05-06T12:41:50
2019-05-06T12:41:50
179,449,768
0
0
null
null
null
null
UTF-8
Python
false
false
5,783
py
# -*- coding: utf-8 -*- from odoo import models, fields, api BLOOD_GROUP = [('a+', 'A+'), ('b+', 'B+'), ('ab+', 'AB+'), ('o+', 'O+'), ('a-', 'A-'), ('b-', 'B-'), ('ab-', 'AB-'), ('o-', 'O-')] GENDER = [('male', 'Male'), ('female', 'Female')] MARITAL_STATUS = [('single', 'Single'), ('married', 'Married'), ('divorced', 'Divorced')] class Employee(models.Model): _name = "hr.employee" name = fields.Char(string="Name", required=True) employee_uid = fields.Char(string="Employee ID", readonly=True) image = fields.Binary(string="Image") small_image = fields.Binary(string="Small Image") user_id = fields.Many2one(comodel_name="res.users", string="User") person_id = fields.Many2one(comodel_name="arc.person", string="Person") # Contact Details email = fields.Char(string="e-Mail") mobile = fields.Char(string="Mobile") phone = fields.Char(string="Phone") # Address in Detail door_no = fields.Char(string="Door No") building_name = fields.Char(string="Building Name") street_1 = fields.Char(string="Street 1") street_2 = fields.Char(string="Street 2") locality = fields.Char(string="locality") landmark = fields.Char(string="landmark") city = fields.Char(string="City") state_id = fields.Many2one(comodel_name="res.country.state", string="State", default=lambda self: self.env.user.company_id.state_id.id) country_id = fields.Many2one(comodel_name="res.country", string="Country") pin_code = fields.Char(string="Pincode") # Account Details bank = fields.Char(string="Bank") account_no = fields.Char(string="Account No") aadhaar_card = fields.Char(string="Aadhaar Card") pan_card = fields.Char(string="Pan Card") driving_license = fields.Char(string="Driving License") passport = fields.Char(string="Passport") epf_no = fields.Char(string="EPF No") epf_nominee = fields.Char(string="EPF Nominee") identity_ids = fields.One2many(comodel_name="arc.identity", inverse_name="employee_id") # HR Details doj = fields.Date(string="Date of Joining", required=True) date_of_relieving = fields.Date(string="Date of Relieving") department_id = fields.Many2one(comodel_name="hr.department", string="Department") designation_id = fields.Many2one(comodel_name="hr.designation", string="Designation") reporting_to_id = fields.Many2one(comodel_name="hr.employee", string="Reporting To") category_id = fields.Many2one(comodel_name="hr.category", string="Employee Category", required=True) qualification_ids = fields.One2many(comodel_name="arc.qualification", inverse_name="employee_id") experience_ids = fields.One2many(comodel_name="hr.experience", inverse_name="employee_id") # Personnel Details age = fields.Integer(string="Age") blood_group = fields.Selection(selection=BLOOD_GROUP, string="Blood Group") marital_status = fields.Selection(selection=MARITAL_STATUS, string="Marital Status") gender = fields.Selection(selection=GENDER, string="Gender") caste = fields.Char(string="Caste") religion_id = fields.Many2one(comodel_name="arc.religion", string="Religion") physically_challenged = fields.Boolean(string="Physically Challenged") nationality_id = fields.Many2one(comodel_name="res.country") mother_tongue_id = fields.Many2one(comodel_name="arc.language", string="Mother Tongue") language_known_ids = fields.Many2many(comodel_name="arc.language", string="Language Known") personnel_mobile = fields.Char(string="Personnel Mobile") personnel_email = fields.Char(string="Personnel Email") permanent_address = fields.Text(string="Permanent Address") family_member_ids = fields.One2many(comodel_name="arc.address", inverse_name="employee_id") # Leave leave_level_id = fields.Many2one(comodel_name="leave.level", string="Leave Level") # Attachment attachment_ids = fields.Many2many(comodel_name="ir.attachment", string="Attachment") # Smart Button # View Complaint def action_view_complaint(self): pass # View Promotion def action_view_promotion(self): pass # View Payslip def action_view_payslip(self): pass # View Work Sheet def action_view_work_sheet(self): pass # View Attendance def action_view_attendance(self): pass def update_person_address(self): recs = {} recs["name"] = self.name recs["person_uid"] = self.employee_uid recs["image"] = self.image recs["small_image"] = self.small_image recs["email"] = self.email recs["mobile"] = self.mobile recs["phone"] = self.phone recs["door_no"] = self.door_no recs["building_name"] = self.building_name recs["street_1"] = self.street_1 recs["street_2"] = self.street_2 recs["locality"] = self.locality recs["landmark"] = self.landmark recs["city"] = self.city recs["state_id"] = self.state_id.id recs["country_id"] = self.country_id.id recs["pin_code"] = self.pin_code recs["is_employee"] = True self.person_id.write(recs) @api.multi def write(self, vals): rec = super(Employee, self).write(vals) self.update_person_address() return rec @api.model def create(self, vals): data = {"person_uid": self.env["ir.sequence"].next_by_code(self._name), "is_employee": True, "name": vals["name"]} data.update(vals) person_id = self.env["arc.person"].create(data) vals["person_id"] = person_id.id vals["employee_uid"] = data["person_uid"] return super(Employee, self).create(vals)
0e251945353b6973051c3cbc43b6db7207b75a99
5a07e47aa8c065622d8d384c6b3b17981b24f0ae
/Batch_6_30/bye.py
ee8b169ee8edd349c32d61494e1f173ffd5f661d
[]
no_license
neelshrma/Old_Python_Codes
629a7c113d56e96014c0d4b8d11126c79789335c
410de97e8d581e55fe53822528a8e38f15e349ef
refs/heads/master
2020-03-29T22:31:03.993335
2018-09-25T13:34:25
2018-09-25T13:34:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
x = int(input("Enter X : ")) y = int(input("Enter Y : ")) z = int(input("Enter Z : ")) print("Value of x = ",x) print("Value of x = ",y) print("Value of z = ",z) print("Yeah vim is awesome")
d635ad120b4155bf1fcdd14cfcada14d8a4f3fb9
f6eb98db168908a99e5c62f440d39acca608b934
/python/pyspark/mllib/recommendation.py
1ee41df2831f55611298884b56c0d69095ec94c0
[]
no_license
BigDataTeng/spark-parent_2.11
64abb51cf77a16d86a2a5314dafb4f33e03d98f3
9e679b5daefea69a29236305e1c8bf2e21ad9190
refs/heads/master
2022-12-14T09:06:08.199862
2019-08-27T09:48:37
2019-08-27T09:48:37
204,673,011
0
0
null
2022-12-05T23:35:44
2019-08-27T09:53:23
Scala
UTF-8
Python
false
false
12,047
py
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import array from collections import namedtuple from pyspark import SparkContext, since from pyspark.rdd import RDD from pyspark.mllib.common import JavaModelWrapper, callMLlibFunc, inherit_doc from pyspark.mllib.util import JavaLoader, JavaSaveable from pyspark.sql import DataFrame __all__ = ['MatrixFactorizationModel', 'ALS', 'Rating'] class Rating(namedtuple("Rating", ["user", "product", "rating"])): """ Represents a (user, product, rating) tuple. >>> r = Rating(1, 2, 5.0) >>> (r.user, r.product, r.rating) (1, 2, 5.0) >>> (r[0], r[1], r[2]) (1, 2, 5.0) .. versionadded:: 1.2.0 """ def __reduce__(self): return Rating, (int(self.user), int(self.product), float(self.rating)) @inherit_doc class MatrixFactorizationModel(JavaModelWrapper, JavaSaveable, JavaLoader): """A matrix factorisation model trained by regularized alternating least-squares. >>> r1 = (1, 1, 1.0) >>> r2 = (1, 2, 2.0) >>> r3 = (2, 1, 2.0) >>> ratings = sc.parallelize([r1, r2, r3]) >>> model = ALS.trainImplicit(ratings, 1, seed=10) >>> model.predict(2, 2) 0.4... >>> testset = sc.parallelize([(1, 2), (1, 1)]) >>> model = ALS.train(ratings, 2, seed=0) >>> model.predictAll(testset).collect() [Rating(user=1, product=1, rating=1.0...), Rating(user=1, product=2, rating=1.9...)] >>> model = ALS.train(ratings, 4, seed=10) >>> model.userFeatures().collect() [(1, array('d', [...])), (2, array('d', [...]))] >>> model.recommendUsers(1, 2) [Rating(user=2, product=1, rating=1.9...), Rating(user=1, product=1, rating=1.0...)] >>> model.recommendProducts(1, 2) [Rating(user=1, product=2, rating=1.9...), Rating(user=1, product=1, rating=1.0...)] >>> model.rank 4 >>> first_user = model.userFeatures().take(1)[0] >>> latents = first_user[1] >>> len(latents) 4 >>> model.productFeatures().collect() [(1, array('d', [...])), (2, array('d', [...]))] >>> first_product = model.productFeatures().take(1)[0] >>> latents = first_product[1] >>> len(latents) 4 >>> products_for_users = model.recommendProductsForUsers(1).collect() >>> len(products_for_users) 2 >>> products_for_users[0] (1, (Rating(user=1, product=2, rating=...),)) >>> users_for_products = model.recommendUsersForProducts(1).collect() >>> len(users_for_products) 2 >>> users_for_products[0] (1, (Rating(user=2, product=1, rating=...),)) >>> model = ALS.train(ratings, 1, nonnegative=True, seed=10) >>> model.predict(2, 2) 3.73... >>> df = sqlContext.createDataFrame([Rating(1, 1, 1.0), Rating(1, 2, 2.0), Rating(2, 1, 2.0)]) >>> model = ALS.train(df, 1, nonnegative=True, seed=10) >>> model.predict(2, 2) 3.73... >>> model = ALS.trainImplicit(ratings, 1, nonnegative=True, seed=10) >>> model.predict(2, 2) 0.4... >>> import os, tempfile >>> path = tempfile.mkdtemp() >>> model.save(sc, path) >>> sameModel = MatrixFactorizationModel.load(sc, path) >>> sameModel.predict(2, 2) 0.4... >>> sameModel.predictAll(testset).collect() [Rating(... >>> from shutil import rmtree >>> try: ... rmtree(path) ... except OSError: ... pass .. versionadded:: 0.9.0 """ @since("0.9.0") def predict(self, user, product): """ Predicts rating for the given user and product. """ return self._java_model.predict(int(user), int(product)) @since("0.9.0") def predictAll(self, user_product): """ Returns a list of predicted ratings for input user and product pairs. """ assert isinstance(user_product, RDD), "user_product should be RDD of (user, product)" first = user_product.first() assert len(first) == 2, "user_product should be RDD of (user, product)" user_product = user_product.map(lambda u_p: (int(u_p[0]), int(u_p[1]))) return self.call("predict", user_product) @since("1.2.0") def userFeatures(self): """ Returns a paired RDD, where the first element is the user and the second is an array of features corresponding to that user. """ return self.call("getUserFeatures").mapValues(lambda v: array.array('d', v)) @since("1.2.0") def productFeatures(self): """ Returns a paired RDD, where the first element is the product and the second is an array of features corresponding to that product. """ return self.call("getProductFeatures").mapValues(lambda v: array.array('d', v)) @since("1.4.0") def recommendUsers(self, product, num): """ Recommends the top "num" number of users for a given product and returns a list of Rating objects sorted by the predicted rating in descending order. """ return list(self.call("recommendUsers", product, num)) @since("1.4.0") def recommendProducts(self, user, num): """ Recommends the top "num" number of products for a given user and returns a list of Rating objects sorted by the predicted rating in descending order. """ return list(self.call("recommendProducts", user, num)) def recommendProductsForUsers(self, num): """ Recommends the top "num" number of products for all users. The number of recommendations returned per user may be less than "num". """ return self.call("wrappedRecommendProductsForUsers", num) def recommendUsersForProducts(self, num): """ Recommends the top "num" number of users for all products. The number of recommendations returned per product may be less than "num". """ return self.call("wrappedRecommendUsersForProducts", num) @property @since("1.4.0") def rank(self): """Rank for the features in this model""" return self.call("rank") @classmethod @since("1.3.1") def load(cls, sc, path): """Load a model from the given path""" model = cls._load_java(sc, path) wrapper = sc._jvm.org.apache.spark.mllib.api.python.MatrixFactorizationModelWrapper(model) return MatrixFactorizationModel(wrapper) class ALS(object): """Alternating Least Squares matrix factorization .. versionadded:: 0.9.0 """ @classmethod def _prepare(cls, ratings): if isinstance(ratings, RDD): pass elif isinstance(ratings, DataFrame): ratings = ratings.rdd else: raise TypeError("Ratings should be represented by either an RDD or a DataFrame, " "but got %s." % type(ratings)) first = ratings.first() if isinstance(first, Rating): pass elif isinstance(first, (tuple, list)): ratings = ratings.map(lambda x: Rating(*x)) else: raise TypeError("Expect a Rating or a tuple/list, but got %s." % type(first)) return ratings @classmethod @since("0.9.0") def train(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, nonnegative=False, seed=None): """ Train a matrix factorization model given an RDD of ratings by users for a subset of products. The ratings matrix is approximated as the product of two lower-rank matrices of a given rank (number of features). To solve for these features, ALS is run iteratively with a configurable level of parallelism. :param ratings: RDD of `Rating` or (userID, productID, rating) tuple. :param rank: Number of features to use (also referred to as the number of latent factors). :param iterations: Number of iterations of ALS. (default: 5) :param lambda_: Regularization parameter. (default: 0.01) :param blocks: Number of blocks used to parallelize the computation. A value of -1 will use an auto-configured number of blocks. (default: -1) :param nonnegative: A value of True will solve least-squares with nonnegativity constraints. (default: False) :param seed: Random seed for initial matrix factorization model. A value of None will use system time as the seed. (default: None) """ model = callMLlibFunc("trainALSModel", cls._prepare(ratings), rank, iterations, lambda_, blocks, nonnegative, seed) return MatrixFactorizationModel(model) @classmethod @since("0.9.0") def trainImplicit(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, alpha=0.01, nonnegative=False, seed=None): """ Train a matrix factorization model given an RDD of 'implicit preferences' of users for a subset of products. The ratings matrix is approximated as the product of two lower-rank matrices of a given rank (number of features). To solve for these features, ALS is run iteratively with a configurable level of parallelism. :param ratings: RDD of `Rating` or (userID, productID, rating) tuple. :param rank: Number of features to use (also referred to as the number of latent factors). :param iterations: Number of iterations of ALS. (default: 5) :param lambda_: Regularization parameter. (default: 0.01) :param blocks: Number of blocks used to parallelize the computation. A value of -1 will use an auto-configured number of blocks. (default: -1) :param alpha: A constant used in computing confidence. (default: 0.01) :param nonnegative: A value of True will solve least-squares with nonnegativity constraints. (default: False) :param seed: Random seed for initial matrix factorization model. A value of None will use system time as the seed. (default: None) """ model = callMLlibFunc("trainImplicitALSModel", cls._prepare(ratings), rank, iterations, lambda_, blocks, alpha, nonnegative, seed) return MatrixFactorizationModel(model) def _test(): import doctest import pyspark.mllib.recommendation from pyspark.sql import SQLContext globs = pyspark.mllib.recommendation.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['sc'] = sc globs['sqlContext'] = SQLContext(sc) (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: exit(-1) if __name__ == "__main__": _test()
ae8681babbdc166cc37dcc1a309547c0d4cd968b
551b75f52d28c0b5c8944d808a361470e2602654
/huaweicloud-sdk-smn/huaweicloudsdksmn/v2/model/resource_tag.py
9f8339f814ea3c3cb36b356419316355ec49a31a
[ "Apache-2.0" ]
permissive
wuchen-huawei/huaweicloud-sdk-python-v3
9d6597ce8ab666a9a297b3d936aeb85c55cf5877
3683d703f4320edb2b8516f36f16d485cff08fc2
refs/heads/master
2023-05-08T21:32:31.920300
2021-05-26T08:54:18
2021-05-26T08:54:18
370,898,764
0
0
NOASSERTION
2021-05-26T03:50:07
2021-05-26T03:50:07
null
UTF-8
Python
false
false
3,930
py
# coding: utf-8 import pprint import re import six class ResourceTag: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'key': 'str', 'value': 'str' } attribute_map = { 'key': 'key', 'value': 'value' } def __init__(self, key=None, value=None): """ResourceTag - a model defined in huaweicloud sdk""" self._key = None self._value = None self.discriminator = None self.key = key self.value = value @property def key(self): """Gets the key of this ResourceTag. 键,表示要匹配的字段。 当前key的参数值只能取“resource_name”,此时value的参数值为云服务器名称。 - key不能重复,value为匹配的值。 - 此字段为固定字典值。 - 不允许为空字符串。 :return: The key of this ResourceTag. :rtype: str """ return self._key @key.setter def key(self, key): """Sets the key of this ResourceTag. 键,表示要匹配的字段。 当前key的参数值只能取“resource_name”,此时value的参数值为云服务器名称。 - key不能重复,value为匹配的值。 - 此字段为固定字典值。 - 不允许为空字符串。 :param key: The key of this ResourceTag. :type: str """ self._key = key @property def value(self): """Gets the value of this ResourceTag. 值。 当前key的参数值只能取“resource_name”,此时value的参数值为云服务器名称。 - 每个值最大长度255个unicode字符。 - 不可以为空。 :return: The value of this ResourceTag. :rtype: str """ return self._value @value.setter def value(self, value): """Sets the value of this ResourceTag. 值。 当前key的参数值只能取“resource_name”,此时value的参数值为云服务器名称。 - 每个值最大长度255个unicode字符。 - 不可以为空。 :param value: The value of this ResourceTag. :type: str """ self._value = value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ResourceTag): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
b1baa12a4f9b71aa7c00c72ad4e34ce790b6cb4e
b66746b1d1c0a2800faab41488f2a67ed43255b8
/Knn.py
5c5aa5ea0c3cc8ec1b0c652f9d7fde2654e23aea
[]
no_license
yzsxjhft/emg
28a0501810a86962f6a510fbe9f6d22346b4d963
96075c7124d0e50983221a7b4b4a8a5fba7bb352
refs/heads/master
2020-04-14T13:00:41.374480
2019-09-28T07:02:02
2019-09-28T07:02:02
163,856,955
0
0
null
null
null
null
UTF-8
Python
false
false
2,485
py
import numpy as np import sys class Knn: def __init__(self, k=5): self.k = k self.train_data = None self.train_target = None def fit(self, train_data, train_target): self.train_data = train_data self.train_target = train_target def predict(self, test_data): y = list() for params in test_data: distance = list() for i in range(len(self.train_data)): data = self.train_data[i] dist = 0 for j in range(len(data)): row = data[j] dist += self.dtw_distance(params[j], row) distance.append(dist/8.0) indexs = np.argsort(np.array(distance), axis=0)[:self.k] labels = np.array([self.train_target[x] for x in indexs]) y.append(np.argmax(np.bincount(labels))) return y def dtw_distance(self, ts_a, ts_b): """Returns the DTW similarity distance between two 2-D timeseries numpy arrays. Arguments --------- ts_a, ts_b : array of shape [n_samples, n_timepoints] Two arrays containing n_samples of timeseries data whose DTW distance between each sample of A and B will be compared d : DistanceMetric object (default = abs(x-y)) the distance measure used for A_i - B_j in the DTW dynamic programming function Returns ------- DTW distance between A and B """ d = lambda x, y: abs(x - y) max_warping_window = 10000 # Create cost matrix via broadcasting with large int ts_a, ts_b = np.array(ts_a), np.array(ts_b) M, N = len(ts_a), len(ts_b) cost = sys.maxsize * np.ones((M, N)) # Initialize the first row and column cost[0, 0] = d(ts_a[0], ts_b[0]) for i in range(1, M): cost[i, 0] = cost[i - 1, 0] + d(ts_a[i], ts_b[0]) for j in range(1, N): cost[0, j] = cost[0, j - 1] + d(ts_a[0], ts_b[j]) # Populate rest of cost matrix within window for i in range(1, M): for j in range(max(1, i - max_warping_window), min(N, i + max_warping_window)): choices = cost[i - 1, j - 1], cost[i, j - 1], cost[i - 1, j] cost[i, j] = min(choices) + d(ts_a[i], ts_b[j]) # Return DTW distance given window return cost[-1, -1]
[ "=" ]
=
5f75c3f5fff85007685d9fa593e2ad9569ba3121
866b6a443c10038b91346d86f6f5054d08de66cc
/main.py
57fe09173644599c48c67cde6f8901aba4bd1393
[]
no_license
Introduction-to-Programming-OSOWSKI/2-2-addition-checker-DevinGoede23
b7422b62f1681713c6d8eea2211be2b11d734f4d
5248b1b21f55f93bd87aaac4e36f7cfb6ec77986
refs/heads/master
2023-08-30T20:08:42.350900
2021-11-11T20:25:25
2021-11-11T20:25:25
427,133,530
0
0
null
null
null
null
UTF-8
Python
false
false
21
py
#WRITE YOUR CODE HERE
[ "66690702+github-classroom[bot]@users.noreply.github.com" ]
66690702+github-classroom[bot]@users.noreply.github.com
1e95b79a26ebe3af47d29ddc95baa5d79727e5b6
6fe0a724e9c5d3975ddb95eebe3032eb213f8840
/tensorflow_datasets/core/visualization/show_examples.py
6d9ac13abe6f9146269e8b465bd6b53e02a37b35
[ "Apache-2.0" ]
permissive
Yohnhahahage/datasets
caf8b7001046bbf1729d016abdeae7f69d75152b
08cf7709095860fe50ec10ea503c4095b69a5cb1
refs/heads/master
2022-12-09T09:36:40.123816
2020-09-22T19:03:15
2020-09-22T19:03:15
297,893,222
1
0
Apache-2.0
2020-09-23T07:46:27
2020-09-23T07:46:26
null
UTF-8
Python
false
false
5,033
py
# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Show example util. """ from typing import Any import tensorflow.compat.v2 as tf from tensorflow_datasets.core import dataset_info from tensorflow_datasets.core import lazy_imports_lib from tensorflow_datasets.core import splits from tensorflow_datasets.core import utils from tensorflow_datasets.core.visualization import image_visualizer from tensorflow_metadata.proto.v0 import statistics_pb2 _ALL_VISUALIZERS = [ image_visualizer.ImageGridVisualizer(), ] def show_examples( ds: tf.data.Dataset, ds_info: dataset_info.DatasetInfo, **options_kwargs: Any ): """Visualize images (and labels) from an image classification dataset. This function is for interactive use (Colab, Jupyter). It displays and return a plot of (rows*columns) images from a tf.data.Dataset. Usage: ```python ds, ds_info = tfds.load('cifar10', split='train', with_info=True) fig = tfds.show_examples(ds, ds_info) ``` Args: ds: `tf.data.Dataset`. The tf.data.Dataset object to visualize. Examples should not be batched. Examples will be consumed in order until (rows * cols) are read or the dataset is consumed. ds_info: The dataset info object to which extract the label and features info. Available either through `tfds.load('mnist', with_info=True)` or `tfds.builder('mnist').info` **options_kwargs: Additional display options, specific to the dataset type to visualize. Are forwarded to `tfds.visualization.Visualizer.show`. See the `tfds.visualization` for a list of available visualizers. Returns: fig: The `matplotlib.Figure` object """ if not isinstance(ds_info, dataset_info.DatasetInfo): # Arguments inverted # `absl.logging` does not appear on Colab by default, so uses print instead. print('WARNING: For consistency with `tfds.load`, the `tfds.show_examples` ' 'signature has been modified from (info, ds) to (ds, info).\n' 'The old signature is deprecated and will be removed. ' 'Please change your call to `tfds.show_examples(ds, info)`') ds, ds_info = ds_info, ds # Pack `as_supervised=True` datasets if ( ds_info.supervised_keys and isinstance(ds.element_spec, tuple) and len(ds.element_spec) == 2 ): x_key, y_key = ds_info.supervised_keys ds = ds.map(lambda x, y: {x_key: x, y_key: y}) for visualizer in _ALL_VISUALIZERS: if visualizer.match(ds_info): return visualizer.show(ds, ds_info, **options_kwargs) raise ValueError( 'Visualisation not supported for dataset `{}`'.format(ds_info.name) ) def show_statistics( ds_info: dataset_info.DatasetInfo, split: splits.Split = splits.Split.TRAIN, disable_logging: bool = True, ) -> None: """Display the datasets statistics on a Colab/Jupyter notebook. `tfds.show_statistics` is a wrapper around [tensorflow_data_validation](https://www.tensorflow.org/tfx/data_validation/get_started) which calls `tfdv.visualize_statistics`. Statistics are displayed using [FACETS OVERVIEW](https://pair-code.github.io/facets/). Usage: ``` builder = tfds.builder('mnist') tfds.show_statistics(builder.info) ``` Or: ``` ds, ds_info = tfds.load('mnist', with_info) tfds.show_statistics(ds_info) ``` Note: In order to work, `tensorflow_data_validation` must be installed and the dataset info object must contain the statistics. For "official" datasets, only datasets which have been added/updated recently will contains statistics. For "custom" datasets, you need to generate the dataset with `tensorflow_data_validation` installed to have the statistics. Args: ds_info: The `tfds.core.DatasetInfo` object containing the statistics. split: Split for which generate the statistics. disable_logging: `bool`, if True, disable the tfdv logs which can be too verbose. Returns: `None` """ tfdv = lazy_imports_lib.lazy_imports.tensorflow_data_validation if split not in ds_info.splits: raise ValueError( 'Invalid requested split: \'{}\'. Only {} are availables.'.format( split, list(ds_info.splits))) # Creates the statistics. statistics = statistics_pb2.DatasetFeatureStatisticsList() statistics.datasets.add().CopyFrom(ds_info.splits[split].statistics) with utils.disable_logging() if disable_logging else utils.nullcontext(): return tfdv.visualize_statistics(statistics)
7e508f48a7e431f6b7f9011cf995cb87ad12f846
973da85ebe773dc35d6539397e754726e87171b8
/lcopt/parameters.py
ea0570fdab8b51a2f67fdec7f0d0392e27c0746c
[ "BSD-3-Clause" ]
permissive
pjamesjoyce/lcopt
14c49f79a43e9dce220ef760fa9b207105779568
a167ecfa258e62e91af7dac6cbf70be5d63fff93
refs/heads/development
2023-05-22T20:45:50.252163
2020-04-02T09:53:07
2020-04-02T09:53:07
76,573,839
23
6
BSD-3-Clause
2018-10-04T13:38:48
2016-12-15T15:55:48
JavaScript
UTF-8
Python
false
false
4,633
py
from bw2parameters.parameter_set import ParameterSet from collections import OrderedDict from copy import deepcopy class LcoptParameterSet(ParameterSet): """ Subclass of `bw2parameters.parameter_set.ParameterSet` that takes a `lcopt.LcoptModel` and delegates parameter ordering and evaluation to `bw2parameters` TODO: Add more documentation and write tests """ def __init__(self, modelInstance): self.modelInstance = modelInstance self.norm_params = self.normalise_parameters() self.check_production_parameters_exist() self.all_params = {**self.modelInstance.params, **self.modelInstance.production_params, **self.norm_params, **self.modelInstance.allocation_params} self.bw2_params, self.bw2_global_params, self.bw2_export_params = self.lcopt_to_bw2_params(0) super().__init__(self.bw2_params, self.bw2_global_params) self.evaluated_parameter_sets = self.preevaluate_exchange_params() def lcopt_to_bw2_params(self, ps_key): k0 = list(self.modelInstance.parameter_sets.keys())[ps_key] ps1 = self.modelInstance.parameter_sets[k0] bw2_params = {k:{(x if x != 'function' else 'formula'):y for x, y in v.items()} for k,v in self.all_params.items()} for k in bw2_params.keys(): bw2_params[k]['amount'] = ps1.get(k,0) bw2_global_params = {x['name']: ps1.get(x['name'],x['default']) for x in self.modelInstance.ext_params} bw2_export_params = [] for k, v in bw2_params.items(): to_append = {'name': k} if v.get('formula'): to_append['formula'] = v['formula'] else: to_append['amount'] = v['amount'] bw2_export_params.append(to_append) for k, v in bw2_global_params.items(): bw2_export_params.append({'name':k, 'amount':v}) return bw2_params, bw2_global_params, bw2_export_params def normalise_parameters(self): param_copy = deepcopy(self.modelInstance.params) #production_params = deepcopy(self.modelInstance.production_params) #allocation_params = deepcopy(self.modelInstance.allocation_params) norm_params = OrderedDict() for k, v in param_copy.items(): norm_params['n_{}'.format(k)] = {} for key, item in v.items(): if key == 'function': if not item: norm_function = '{} / {}'.format(k, v['normalisation_parameter']) else: norm_function = '({}) / {}'.format(item, v['normalisation_parameter']) norm_params['n_{}'.format(k)][key] = norm_function else: norm_params['n_{}'.format(k)][key] = item return norm_params def preevaluate_exchange_params(self): evaluated_params = OrderedDict() for n, k in enumerate(self.modelInstance.parameter_sets.keys()): self.params, self.global_params, _ = self.lcopt_to_bw2_params(n) self.evaluate_and_set_amount_field() this_set = {} for j, v in self.params.items(): this_set[j] = v['amount'] evaluated_params[k] = this_set self.params, self.global_params , _ = self.lcopt_to_bw2_params(0) self.evaluate_and_set_amount_field() return evaluated_params def check_production_parameters_exist(self): """ old versions of models won't have produciton parameters, leading to ZeroDivision errors and breaking things""" for k, v in self.modelInstance.parameter_sets.items(): for p_id in self.modelInstance.production_params.keys(): if v.get(p_id): #print('{} already exists'.format(p_id)) pass else: #print('No production parameter called {} - setting it to 1'.format(p_id)) v[p_id] = 1.0 for p_id in self.modelInstance.allocation_params.keys(): if v.get(p_id): #print('{} already exists'.format(p_id)) pass else: #print('No production parameter called {} - setting it to 1'.format(p_id)) v[p_id] = 1.0
9298cc195bdd4bd86918dd770c297a04612887b4
1ebf853638e6e0344e3498f5840f055d29d5a311
/code/broadcast_send.py
1a39a6443466904ea4c72734c4f67e1909024233
[]
no_license
LzWaiting/02.PythonNet
07d8b159d5fe3f89100dc1daf262b46bfa7d6fcb
adc317b5c19c339395fbb50c94f843880f03af7a
refs/heads/master
2020-06-09T01:56:20.984921
2019-06-23T12:52:31
2019-06-23T12:52:31
193,347,906
0
0
null
null
null
null
UTF-8
Python
false
false
383
py
from socket import * from time import sleep # 设置目标地址 dest = ('192.168.10.255',9999) s = socket(AF_INET,SOCK_DGRAM) # 设置能够发送广播 s.setsockopt(SOL_SOCKET,SO_BROADCAST,1) while True: sleep(2) try: s.sendto('来呀,带你去看蓝色土耳其'.encode(),dest) except (KeyboardInterrupt,SyntaxError): raise except Exception as e: print(e) s.close()
dce6fb53f680c6e959e0f66f2fa901accf10520f
15c140fa5f116bcfacb9340aac77692bb4fa3d00
/rafa_care/ext/helpers/tz.py
be3f65e53299ec530b7105d95e1ecba1eda74d25
[]
no_license
thcborges/rafa-care
76ceac3b93a4995729b36539c603ada77350b2fe
9cd2d39938aa998c9ffaf0ecd82027db26a9b514
refs/heads/main
2023-07-14T02:08:25.554888
2021-08-01T14:17:14
2021-08-01T14:17:14
383,315,896
0
0
null
null
null
null
UTF-8
Python
false
false
183
py
from datetime import datetime, timedelta, timezone def convert_tz(timestamp: datetime, diff: int = -3) -> datetime: return timestamp.astimezone(timezone(timedelta(hours=diff)))
844c6961ba63d9ffe3c2f7755dd9152b2c57135d
f6dfd2373ba1d23ea71a7fd8447e16d797d34138
/hot_100/206_recursive.py
4a1a7fd59583000a6564c313e17743c343ead589
[]
no_license
hwngenius/leetcode
284e65dc1727446a95a1c18edd6ef994692430ba
52f7974f986bfb3802defd214dea5b0f9b280193
refs/heads/master
2023-02-12T02:23:38.003197
2021-01-07T13:55:42
2021-01-07T13:55:42
266,340,286
2
0
null
null
null
null
UTF-8
Python
false
false
345
py
# Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def reverseList(self, head: ListNode) -> ListNode: if not (head and head.next): return head ans=self.reverseList(head.next) head.next.next=head return ans
86d9aa7ff24333c6fabe99130510cfa0aca8fd98
01aa3e4a81500081265bdaec2d127a76ffafbfab
/meraki/api/splash_login_attempts.py
5c7ddb302332314e8d45c7c623be67bf47e2f3e6
[ "MIT" ]
permissive
itbj/meraki-dashboard
0f4ded074a615bf2d3c749779f5efc3165d88446
aa730d4f95b4a0fec180c610eeea56bd71ff48b4
refs/heads/master
2020-12-07T17:29:20.168805
2020-01-09T08:59:46
2020-01-09T08:59:46
232,761,086
2
0
MIT
2020-01-09T08:35:24
2020-01-09T08:35:23
null
UTF-8
Python
false
false
1,473
py
class SplashLoginAttempts(object): def __init__(self, session): super(SplashLoginAttempts, self).__init__() self._session = session def getNetworkSplashLoginAttempts(self, networkId: str, **kwargs): """ **List the splash login attempts for a network** https://api.meraki.com/api_docs#list-the-splash-login-attempts-for-a-network - networkId (string) - ssidNumber (integer): Only return the login attempts for the specified SSID - loginIdentifier (string): The username, email, or phone number used during login - timespan (integer): The timespan, in seconds, for the login attempts. The period will be from [timespan] seconds ago until now. The maximum timespan is 3 months """ kwargs.update(locals()) if 'ssidNumber' in kwargs: options = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] assert kwargs['ssidNumber'] in options, f'''"ssidNumber" cannot be "{kwargs['ssidNumber']}", & must be set to one of: {options}''' metadata = { 'tags': ['Splash login attempts'], 'operation': 'getNetworkSplashLoginAttempts', } resource = f'/networks/{networkId}/splashLoginAttempts' query_params = ['ssidNumber', 'loginIdentifier', 'timespan'] params = {k: v for (k, v) in kwargs.items() if k in query_params} return self._session.get(metadata, resource, params)
e2600ece0f6e74188c8315daaa20a443fa2f8d35
044833841a6ccbb53f42eb83aa8b7d7fc2f3fc1d
/devito/core/gpu_openmp.py
f41ed6ffa4a92c80ebeb86bdce46bc50b2f80788
[ "MIT" ]
permissive
rawsh/devito
dea02233f34a8e7f62f70ee75e735e469d870044
6aa03bb38b74224f742beb1dbe8df814b45941a0
refs/heads/master
2022-09-04T06:27:09.224315
2020-05-14T17:55:53
2020-05-14T17:55:53
264,086,021
1
0
MIT
2020-05-15T03:25:48
2020-05-15T03:25:48
null
UTF-8
Python
false
false
12,569
py
from functools import partial, singledispatch import cgen as c from devito.core.operator import OperatorCore from devito.data import FULL from devito.exceptions import InvalidOperator from devito.ir.iet import Callable, ElementalFunction, MapExprStmts from devito.logger import warning from devito.mpi.routines import CopyBuffer, SendRecv, HaloUpdate from devito.passes.clusters import (Lift, cire, cse, eliminate_arrays, extract_increments, factorize, fuse, optimize_pows) from devito.passes.iet import (DataManager, Storage, Ompizer, ParallelIteration, ParallelTree, optimize_halospots, mpiize, hoist_prodders, iet_pass) from devito.tools import as_tuple, filter_sorted, generator, timed_pass __all__ = ['DeviceOpenMPNoopOperator', 'DeviceOpenMPOperator', 'DeviceOpenMPCustomOperator'] class DeviceOpenMPIteration(ParallelIteration): @classmethod def _make_construct(cls, **kwargs): return 'omp target teams distribute parallel for' @classmethod def _make_clauses(cls, **kwargs): kwargs['chunk_size'] = False return super(DeviceOpenMPIteration, cls)._make_clauses(**kwargs) class DeviceOmpizer(Ompizer): COLLAPSE_NCORES = 1 """ Always collapse when possible. """ COLLAPSE_WORK = 1 """ Always collapse when possible. """ lang = dict(Ompizer.lang) lang.update({ 'map-enter-to': lambda i, j: c.Pragma('omp target enter data map(to: %s%s)' % (i, j)), 'map-enter-alloc': lambda i, j: c.Pragma('omp target enter data map(alloc: %s%s)' % (i, j)), 'map-update': lambda i, j: c.Pragma('omp target update from(%s%s)' % (i, j)), 'map-release': lambda i, j: c.Pragma('omp target exit data map(release: %s%s)' % (i, j)), 'map-exit-delete': lambda i, j: c.Pragma('omp target exit data map(delete: %s%s)' % (i, j)), }) _Iteration = DeviceOpenMPIteration @classmethod def _map_data(cls, f): if f.is_Array: return f.symbolic_shape else: return tuple(f._C_get_field(FULL, d).size for d in f.dimensions) @classmethod def _map_to(cls, f): return cls.lang['map-enter-to'](f.name, ''.join('[0:%s]' % i for i in cls._map_data(f))) @classmethod def _map_alloc(cls, f): return cls.lang['map-enter-alloc'](f.name, ''.join('[0:%s]' % i for i in cls._map_data(f))) @classmethod def _map_present(cls, f): raise NotImplementedError @classmethod def _map_update(cls, f): return cls.lang['map-update'](f.name, ''.join('[0:%s]' % i for i in cls._map_data(f))) @classmethod def _map_release(cls, f): return cls.lang['map-release'](f.name, ''.join('[0:%s]' % i for i in cls._map_data(f))) @classmethod def _map_delete(cls, f): return cls.lang['map-exit-delete'](f.name, ''.join('[0:%s]' % i for i in cls._map_data(f))) @classmethod def _map_pointers(cls, f): raise NotImplementedError def _make_threaded_prodders(self, partree): # no-op for now return partree def _make_partree(self, candidates, nthreads=None): """ Parallelize the `candidates` Iterations attaching suitable OpenMP pragmas for GPU offloading. """ assert candidates root = candidates[0] # Get the collapsable Iterations collapsable = self._find_collapsable(root, candidates) ncollapse = 1 + len(collapsable) # Prepare to build a ParallelTree # Create a ParallelTree body = self._Iteration(ncollapse=ncollapse, **root.args) partree = ParallelTree([], body, nthreads=nthreads) collapsed = [partree] + collapsable return root, partree, collapsed def _make_parregion(self, partree): # no-op for now return partree def _make_guard(self, partree, *args): # no-op for now return partree def _make_nested_partree(self, partree): # no-op for now return partree class DeviceOpenMPDataManager(DataManager): _Parallelizer = DeviceOmpizer def _alloc_array_on_high_bw_mem(self, obj, storage): if obj in storage._high_bw_mem: return super(DeviceOpenMPDataManager, self)._alloc_array_on_high_bw_mem(obj, storage) decl, alloc, free = storage._high_bw_mem[obj] alloc = c.Collection([alloc, self._Parallelizer._map_alloc(obj)]) free = c.Collection([self._Parallelizer._map_delete(obj), free]) storage._high_bw_mem[obj] = (decl, alloc, free) def _map_function_on_high_bw_mem(self, obj, storage, read_only=False): """Place a Function in the high bandwidth memory.""" if obj in storage._high_bw_mem: return alloc = self._Parallelizer._map_to(obj) if read_only is False: free = c.Collection([self._Parallelizer._map_update(obj), self._Parallelizer._map_release(obj)]) else: free = self._Parallelizer._map_delete(obj) storage._high_bw_mem[obj] = (None, alloc, free) @iet_pass def place_ondevice(self, iet, **kwargs): @singledispatch def _place_ondevice(iet): return iet @_place_ondevice.register(Callable) def _(iet): # Collect written and read-only symbols writes = set() reads = set() for i, v in MapExprStmts().visit(iet).items(): if not i.is_Expression: # No-op continue if not any(isinstance(j, self._Parallelizer._Iteration) for j in v): # Not an offloaded Iteration tree continue if i.write.is_DiscreteFunction: writes.add(i.write) reads = (reads | {r for r in i.reads if r.is_DiscreteFunction}) - writes # Populate `storage` storage = Storage() for i in filter_sorted(writes): self._map_function_on_high_bw_mem(i, storage) for i in filter_sorted(reads): self._map_function_on_high_bw_mem(i, storage, read_only=True) iet = self._dump_storage(iet, storage) return iet @_place_ondevice.register(ElementalFunction) def _(iet): return iet @_place_ondevice.register(CopyBuffer) @_place_ondevice.register(SendRecv) @_place_ondevice.register(HaloUpdate) def _(iet): return iet iet = _place_ondevice(iet) return iet, {} class DeviceOpenMPNoopOperator(OperatorCore): CIRE_REPEATS_INV = 2 """ Number of CIRE passes to detect and optimize away Dimension-invariant expressions. """ CIRE_REPEATS_SOPS = 2 """ Number of CIRE passes to detect and optimize away redundant sum-of-products. """ @classmethod def _normalize_kwargs(cls, **kwargs): options = kwargs['options'] # Strictly unneccesary, but make it clear that this Operator *will* # generate OpenMP code, bypassing any `openmp=False` provided in # input to Operator options.pop('openmp') options['cire-repeats'] = { 'invariants': options.pop('cire-repeats-inv') or cls.CIRE_REPEATS_INV, 'sops': options.pop('cire-repeats-sops') or cls.CIRE_REPEATS_SOPS } return kwargs @classmethod @timed_pass(name='specializing.Clusters') def _specialize_clusters(cls, clusters, **kwargs): options = kwargs['options'] platform = kwargs['platform'] # To create temporaries counter = generator() template = lambda: "r%d" % counter() # Toposort+Fusion (the former to expose more fusion opportunities) clusters = fuse(clusters, toposort=True) # Hoist and optimize Dimension-invariant sub-expressions clusters = cire(clusters, template, 'invariants', options, platform) clusters = Lift().process(clusters) # Reduce flops (potential arithmetic alterations) clusters = extract_increments(clusters, template) clusters = cire(clusters, template, 'sops', options, platform) clusters = factorize(clusters) clusters = optimize_pows(clusters) # Reduce flops (no arithmetic alterations) clusters = cse(clusters, template) # Lifting may create fusion opportunities, which in turn may enable # further optimizations clusters = fuse(clusters) clusters = eliminate_arrays(clusters, template) return clusters @classmethod @timed_pass(name='specializing.IET') def _specialize_iet(cls, graph, **kwargs): options = kwargs['options'] # Distributed-memory parallelism if options['mpi']: mpiize(graph, mode=options['mpi']) # GPU parallelism via OpenMP offloading DeviceOmpizer().make_parallel(graph) # Symbol definitions data_manager = DeviceOpenMPDataManager() data_manager.place_ondevice(graph) data_manager.place_definitions(graph) data_manager.place_casts(graph) return graph class DeviceOpenMPOperator(DeviceOpenMPNoopOperator): @classmethod @timed_pass(name='specializing.IET') def _specialize_iet(cls, graph, **kwargs): options = kwargs['options'] # Distributed-memory parallelism optimize_halospots(graph) if options['mpi']: mpiize(graph, mode=options['mpi']) # GPU parallelism via OpenMP offloading DeviceOmpizer().make_parallel(graph) # Misc optimizations hoist_prodders(graph) # Symbol definitions data_manager = DeviceOpenMPDataManager() data_manager.place_ondevice(graph) data_manager.place_definitions(graph) data_manager.place_casts(graph) return graph class DeviceOpenMPCustomOperator(DeviceOpenMPOperator): _known_passes = ('optcomms', 'openmp', 'mpi', 'prodders') _known_passes_disabled = ('blocking', 'denormals', 'wrapping', 'simd') assert not (set(_known_passes) & set(_known_passes_disabled)) @classmethod def _make_passes_mapper(cls, **kwargs): options = kwargs['options'] ompizer = DeviceOmpizer() return { 'optcomms': partial(optimize_halospots), 'openmp': partial(ompizer.make_parallel), 'mpi': partial(mpiize, mode=options['mpi']), 'prodders': partial(hoist_prodders) } @classmethod def _build(cls, expressions, **kwargs): # Sanity check passes = as_tuple(kwargs['mode']) for i in passes: if i not in cls._known_passes: if i in cls._known_passes_disabled: warning("Got explicit pass `%s`, but it's unsupported on an " "Operator of type `%s`" % (i, str(cls))) else: raise InvalidOperator("Unknown pass `%s`" % i) return super(DeviceOpenMPCustomOperator, cls)._build(expressions, **kwargs) @classmethod @timed_pass(name='specializing.IET') def _specialize_iet(cls, graph, **kwargs): options = kwargs['options'] passes = as_tuple(kwargs['mode']) # Fetch passes to be called passes_mapper = cls._make_passes_mapper(**kwargs) # Call passes for i in passes: try: passes_mapper[i](graph) except KeyError: pass # Force-call `mpi` if requested via global option if 'mpi' not in passes and options['mpi']: passes_mapper['mpi'](graph) # GPU parallelism via OpenMP offloading if 'openmp' not in passes: passes_mapper['openmp'](graph) # Symbol definitions data_manager = DeviceOpenMPDataManager() data_manager.place_ondevice(graph) data_manager.place_definitions(graph) data_manager.place_casts(graph) return graph
93881258ce594158332f7e31cfd3a016023ab6d3
9e5304efaffe2a3661211b63bbd9617624339448
/test/espnet2/train/test_reporter.py
a1f9dc35ab2add53dc3f3fc29f64e8ba3ad2e15c
[ "Apache-2.0" ]
permissive
sw005320/espnet-1
bf2749cf6a95e9a42b59d402f4fb7113acc656e9
6ecde88045e1b706b2390f98eb1950ce4075a07d
refs/heads/master
2023-08-05T18:54:33.626616
2020-10-02T18:16:33
2020-10-02T18:16:33
114,056,236
4
1
Apache-2.0
2020-11-22T11:20:02
2017-12-13T01:03:47
Python
UTF-8
Python
false
false
12,347
py
from distutils.version import LooseVersion import logging from pathlib import Path import uuid import numpy as np import pytest import torch from espnet2.train.reporter import aggregate from espnet2.train.reporter import Average from espnet2.train.reporter import ReportedValue from espnet2.train.reporter import Reporter if LooseVersion(torch.__version__) >= LooseVersion("1.1.0"): from torch.utils.tensorboard import SummaryWriter else: from tensorboardX import SummaryWriter @pytest.mark.parametrize("weight1,weight2", [(None, None), (19, np.array(9))]) def test_register(weight1, weight2): reporter = Reporter() reporter.set_epoch(1) with reporter.observe(uuid.uuid4().hex) as sub: stats1 = { "float": 0.6, "int": 6, "np": np.random.random(), "torch": torch.rand(1), } sub.register(stats1, weight1) sub.next() stats2 = { "float": 0.3, "int": 100, "np": np.random.random(), "torch": torch.rand(1), } sub.register(stats2, weight2) sub.next() assert sub.get_epoch() == 1 with pytest.raises(RuntimeError): sub.register({}) desired = {} for k in stats1: if stats1[k] is None: continue if weight1 is None: desired[k] = (stats1[k] + stats2[k]) / 2 else: weight1 = float(weight1) weight2 = float(weight2) desired[k] = float(weight1 * stats1[k] + weight2 * stats2[k]) desired[k] /= weight1 + weight2 for k1, k2 in reporter.get_all_keys(): if k2 in ("time", "total_count"): continue np.testing.assert_allclose(reporter.get_value(k1, k2), desired[k2]) @pytest.mark.parametrize("mode", ["min", "max", "foo"]) def test_sort_epochs_and_values(mode): reporter = Reporter() key1 = uuid.uuid4().hex stats_list = [{"aa": 0.3}, {"aa": 0.5}, {"aa": 0.2}] for e in range(len(stats_list)): reporter.set_epoch(e + 1) with reporter.observe(key1) as sub: sub.register(stats_list[e]) sub.next() if mode not in ("min", "max"): with pytest.raises(ValueError): reporter.sort_epochs_and_values(key1, "aa", mode) return else: sort_values = reporter.sort_epochs_and_values(key1, "aa", mode) if mode == "min": sign = 1 else: sign = -1 desired = sorted( [(e + 1, stats_list[e]["aa"]) for e in range(len(stats_list))], key=lambda x: sign * x[1], ) for e in range(len(stats_list)): assert sort_values[e] == desired[e] def test_sort_epochs_and_values_no_key(): reporter = Reporter() key1 = uuid.uuid4().hex stats_list = [{"aa": 0.3}, {"aa": 0.5}, {"aa": 0.2}] for e in range(len(stats_list)): reporter.set_epoch(e + 1) with reporter.observe(key1) as sub: sub.register(stats_list[e]) sub.next() with pytest.raises(KeyError): reporter.sort_epochs_and_values("foo", "bar", "min") def test_get_value_not_found(): reporter = Reporter() with pytest.raises(KeyError): reporter.get_value("a", "b") def test_sort_values(): mode = "min" reporter = Reporter() key1 = uuid.uuid4().hex stats_list = [{"aa": 0.3}, {"aa": 0.5}, {"aa": 0.2}] for e in range(len(stats_list)): reporter.set_epoch(e + 1) with reporter.observe(key1) as sub: sub.register(stats_list[e]) sub.next() sort_values = reporter.sort_values(key1, "aa", mode) desired = sorted( [stats_list[e]["aa"] for e in range(len(stats_list))], ) for e in range(len(stats_list)): assert sort_values[e] == desired[e] def test_sort_epochs(): mode = "min" reporter = Reporter() key1 = uuid.uuid4().hex stats_list = [{"aa": 0.3}, {"aa": 0.5}, {"aa": 0.2}] for e in range(len(stats_list)): reporter.set_epoch(e + 1) with reporter.observe(key1) as sub: sub.register(stats_list[e]) sub.next() sort_values = reporter.sort_epochs(key1, "aa", mode) desired = sorted( [(e + 1, stats_list[e]["aa"]) for e in range(len(stats_list))], key=lambda x: x[1], ) for e in range(len(stats_list)): assert sort_values[e] == desired[e][0] def test_best_epoch(): mode = "min" reporter = Reporter() key1 = uuid.uuid4().hex stats_list = [{"aa": 0.3}, {"aa": 0.5}, {"aa": 0.2}] for e in range(len(stats_list)): reporter.set_epoch(e + 1) with reporter.observe(key1) as sub: sub.register(stats_list[e]) sub.next() best_epoch = reporter.get_best_epoch(key1, "aa", mode) assert best_epoch == 3 def test_check_early_stopping(): mode = "min" reporter = Reporter() key1 = uuid.uuid4().hex stats_list = [{"aa": 0.3}, {"aa": 0.2}, {"aa": 0.4}, {"aa": 0.3}] patience = 1 results = [] for e in range(len(stats_list)): reporter.set_epoch(e + 1) with reporter.observe(key1) as sub: sub.register(stats_list[e]) sub.next() truefalse = reporter.check_early_stopping(patience, key1, "aa", mode) results.append(truefalse) assert results == [False, False, False, True] def test_logging(tmp_path): reporter = Reporter() key1 = uuid.uuid4().hex key2 = uuid.uuid4().hex stats_list = [ {"aa": 0.3, "bb": 3.0}, {"aa": 0.5, "bb": 3.0}, {"aa": 0.2, "bb": 3.0}, ] writer = SummaryWriter(tmp_path) for e in range(len(stats_list)): reporter.set_epoch(e + 1) with reporter.observe(key1) as sub: sub.register(stats_list[e]) sub.next() with reporter.observe(key2) as sub: sub.register(stats_list[e]) sub.next() logging.info(sub.log_message()) logging.info(sub.log_message(-1)) logging.info(sub.log_message(0, 1)) sub.tensorboard_add_scalar(writer, -1) with pytest.raises(RuntimeError): logging.info(sub.log_message()) logging.info(reporter.log_message()) with reporter.observe(key1) as sub: sub.register({"aa": 0.1, "bb": 0.4}) sub.next() sub.register({"aa": 0.1}) sub.next() def test_has_key(): reporter = Reporter() reporter.set_epoch(1) key1 = uuid.uuid4().hex with reporter.observe(key1) as sub: stats1 = {"aa": 0.6} sub.register(stats1) sub.next() assert reporter.has(key1, "aa") def test_get_Keys(): reporter = Reporter() reporter.set_epoch(1) key1 = uuid.uuid4().hex with reporter.observe(key1) as sub: stats1 = {"aa": 0.6} sub.register(stats1) sub.next() assert reporter.get_keys() == (key1,) def test_get_Keys2(): reporter = Reporter() reporter.set_epoch(1) key1 = uuid.uuid4().hex with reporter.observe(key1) as sub: stats1 = {"aa": 0.6} sub.register(stats1) sub.next() assert reporter.get_keys2(key1) == ("aa",) def test_matplotlib_plot(tmp_path: Path): reporter = Reporter() reporter.set_epoch(1) key1 = uuid.uuid4().hex with reporter.observe(key1) as sub: stats1 = {"aa": 0.6} sub.register(stats1) sub.next() reporter.set_epoch(1) with reporter.observe(key1) as sub: # Skip epoch=2 sub.register({}) sub.next() reporter.set_epoch(3) with reporter.observe(key1) as sub: stats1 = {"aa": 0.6} sub.register(stats1) sub.next() reporter.matplotlib_plot(tmp_path) assert (tmp_path / "aa.png").exists() def test_tensorboard_add_scalar(tmp_path: Path): reporter = Reporter() reporter.set_epoch(1) key1 = uuid.uuid4().hex with reporter.observe(key1) as sub: stats1 = {"aa": 0.6} sub.register(stats1) sub.next() reporter.set_epoch(1) with reporter.observe(key1) as sub: # Skip epoch=2 sub.register({}) sub.next() reporter.set_epoch(3) with reporter.observe(key1) as sub: stats1 = {"aa": 0.6} sub.register(stats1) sub.next() writer = SummaryWriter(tmp_path) reporter.tensorboard_add_scalar(writer) def test_state_dict(): reporter = Reporter() reporter.set_epoch(1) with reporter.observe("train") as sub: stats1 = {"aa": 0.6} sub.register(stats1) sub.next() with reporter.observe("eval") as sub: stats1 = {"bb": 0.6} sub.register(stats1) sub.next() state = reporter.state_dict() reporter2 = Reporter() reporter2.load_state_dict(state) state2 = reporter2.state_dict() assert state == state2 def test_get_epoch(): reporter = Reporter(2) assert reporter.get_epoch() == 2 def test_total_count(): reporter = Reporter(2) assert reporter.get_epoch() == 2 with reporter.observe("train", 1) as sub: sub.register({}) sub.next() with reporter.observe("train", 2) as sub: sub.register({}) sub.next() sub.register({}) sub.next() assert sub.get_total_count() == 3 def test_change_epoch(): reporter = Reporter() with pytest.raises(RuntimeError): with reporter.observe("train", 1): reporter.set_epoch(2) def test_minus_epoch(): with pytest.raises(ValueError): Reporter(-1) def test_minus_epoch2(): reporter = Reporter() with pytest.raises(ValueError): reporter.set_epoch(-1) reporter.start_epoch("aa", 1) with pytest.raises(ValueError): reporter.start_epoch("aa", -1) def test_register_array(): reporter = Reporter() with reporter.observe("train", 1) as sub: with pytest.raises(ValueError): sub.register({"a": np.array([0, 1])}) sub.next() with pytest.raises(ValueError): sub.register({"b": 1}, weight=np.array([1, 2])) sub.next() def test_zero_weight(): reporter = Reporter() with reporter.observe("train", 1) as sub: sub.register({"a": 1}, weight=0) sub.next() def test_register_nan(): reporter = Reporter() with reporter.observe("train", 1) as sub: sub.register({"a": np.nan}, weight=1.0) sub.next() def test_no_register(): reporter = Reporter() with reporter.observe("train", 1): pass def test_mismatch_key2(): reporter = Reporter() with reporter.observe("train", 1) as sub: sub.register({"a": 2}) sub.next() with reporter.observe("train", 2) as sub: sub.register({"b": 3}) sub.next() def test_reserved(): reporter = Reporter() with reporter.observe("train", 1) as sub: with pytest.raises(RuntimeError): sub.register({"time": 2}) sub.next() with pytest.raises(RuntimeError): sub.register({"total_count": 3}) sub.next() def test_different_type(): reporter = Reporter() with pytest.raises(ValueError): with reporter.observe("train", 1) as sub: sub.register({"a": 2}, weight=1) sub.next() sub.register({"a": 3}) sub.next() def test_start_middle_epoch(): reporter = Reporter() with reporter.observe("train", 2) as sub: sub.register({"a": 3}) sub.next() def test__plot_stats_input_str(): reporter = Reporter() with pytest.raises(TypeError): reporter._plot_stats("aaa", "a") class DummyReportedValue(ReportedValue): pass def test_aggregate(): vs = [Average(0.1), Average(0.3)] assert aggregate(vs) == 0.2 vs = [] assert aggregate(vs) is np.nan with pytest.raises(NotImplementedError): vs = [DummyReportedValue()] aggregate(vs) def test_measure_time(): reporter = Reporter() with reporter.observe("train", 2) as sub: with sub.measure_time("foo"): pass sub.next() def test_measure_iter_time(): reporter = Reporter() with reporter.observe("train", 2) as sub: for _ in sub.measure_iter_time(range(3), "foo"): sub.next()
420b6a0e980b2356a5ca6e2268c92fde01251ec9
683876019cad0b0d562ac7f9da8c679cb310cfb2
/2015/day07/part2.py
c267b7c7b3336aca216adb0658c6aee619228c27
[]
no_license
CoachEd/advent-of-code
d028bc8c21235361ad31ea55922625adf743b5c8
10850d5d477c0946ef73756bfeb3a6db241cc4b2
refs/heads/master
2023-05-11T05:20:26.951224
2023-05-09T18:54:16
2023-05-09T18:54:16
160,375,311
0
0
null
null
null
null
UTF-8
Python
false
false
2,194
py
import sys import time import numpy as np start_secs = time.time() def hasInstr(s): if s.find('AND') != -1 or s.find('OR') != -1 or s.find('NOT') != -1 or s.find('LSHIFT') != -1 or s.find('RSHIFT') != -1: return True else: return False # read in input file l=[] my_file = open("inp.txt", "r") lines = my_file.readlines() for line in lines: l.append(line.strip()) d = dict() i = 0 while len(l) > 0: if hasInstr(l[i]): arr = l[i].split('->') var = arr[-1].strip() arr2 = arr[0].strip().split() if l[i].find('NOT') != -1: operand = arr2[1].strip() if operand in d: d[var] = ~d[operand] del l[i] else: b1 = False b2 = False lft = arr2[0] op = arr2[1] rgt = arr2[2] if lft.isdigit(): lft = int(lft) b1 = True if rgt.isdigit(): rgt = int(rgt) b2 = True if not b1: b1 = lft in d if b1: lft = d[lft] if not b2: b2 = rgt in d if b2: rgt = d[rgt] if b1 and b2: # have operands, do cmd if op == 'AND': d[var] = lft & rgt elif op == 'OR': d[var] = lft | rgt elif op == 'LSHIFT': d[var] = lft << rgt elif op == 'RSHIFT': d[var] = lft >> rgt del l[i] else: # no instr arr = l[i].split('->') var = arr[1].strip() val = arr[0].strip() if val.isdigit(): val = int(val) d[var] = val if var == 'b': d[var] = 956 # override for Part 2 del l[i] else: if val in d: d[var] = d[val] del l[i] i = i + 1 if i >= len(l): i = 0 print('part 1: ' + str(np.uint16(d['a']))) end_secs = time.time() print(str(end_secs-start_secs))
8fa326a6592555adfd01b1e25a06052b11d92f22
04f4558aa0dc904b8d7c0ab79b80ec11c34f8ccf
/test/test_boatroom.py
af2a4b21de7d53df004de2db2a6c8b49de755108
[ "Apache-2.0" ]
permissive
scubawhere/scubawhere-api-python-client
0fc23ffb97446b0bb0825c93528f954e7d642cf4
9f8578e251492c7667f785df7b7c9d66e71f5c8e
refs/heads/master
2020-12-24T11:10:34.880348
2016-11-08T12:20:45
2016-11-08T12:20:45
73,180,951
0
0
null
null
null
null
UTF-8
Python
false
false
1,515
py
# coding: utf-8 """ Scubawhere API Documentation This is the documentation for scubawhere's RMS API. This API is only to be used by authorized parties with valid auth tokens. [Learn about scubawhere](http://www.scubawhere.com) to become an authorized consumer of our API OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import os import sys import unittest import swagger_client from swagger_client.rest import ApiException from swagger_client.models.boatroom import Boatroom class TestBoatroom(unittest.TestCase): """ Boatroom unit test stubs """ def setUp(self): pass def tearDown(self): pass def testBoatroom(self): """ Test Boatroom """ model = swagger_client.models.boatroom.Boatroom() if __name__ == '__main__': unittest.main()
7d4c853c7c60f91bc251797865adca42be00b83e
b9972ae24a4f261a87997fea963f537abe741dbe
/Chapter01/randint.py
1a1c576a8bd8c0bfcc8b096767c7fb0218d03782
[ "MIT" ]
permissive
PacktPublishing/Secret-Recipes-of-the-Python-Ninja
90503ea9b7dfc59e45f596e8548a3371641162c1
3325cd5a4ed314be5c75552bfa4675f7fe17f8e2
refs/heads/master
2023-02-03T03:01:09.242951
2023-01-30T08:23:38
2023-01-30T08:23:38
133,922,003
18
7
null
2018-05-18T08:00:42
2018-05-18T07:52:51
Python
UTF-8
Python
false
false
183
py
>>> randint(0, 1000) Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'randint' is not defined >>> import random >>> random.randint(0, 1000) 607
194f89b148d7a3b080f6222eddd19b767acc7d69
58a16d44136c7481d855910c39b07798c09c878c
/shotaro/microblog/bin/wheel
e39af8b96b470cd08d9db497e62669844d914041
[]
no_license
shotaro0726/microblog
6af1ffe170bab36d6e7a3055069b3bc1411fbc02
98b493799b9416b644b0a100fdbe4c64c6e94b89
refs/heads/master
2022-04-16T22:18:03.587413
2020-04-18T02:49:25
2020-04-18T02:49:25
256,655,119
0
0
null
null
null
null
UTF-8
Python
false
false
235
#!/Users/macuser/shotaro/microblog/bin/python # -*- coding: utf-8 -*- import re import sys from wheel.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
f34fc930bab5ce3a714ffba25d5ebe66941772a3
9949275a60ee6267d59091cab5977b6a45515452
/antspynet/utilities/get_antsxnet_data.py
a74be4812a9140f35641bf127c4c325278cc8ed8
[]
no_license
papasanimohansrinivas/ANTsPyNet
d81be45c984ce260385d28ef9e1bb51463f055b4
8e16b2d17be769d1d8913de7c3a68135e5ebe5ed
refs/heads/master
2023-06-25T02:04:43.456534
2021-07-22T13:51:29
2021-07-22T13:51:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,818
py
import tensorflow as tf def get_antsxnet_data(file_id=None, target_file_name=None, antsxnet_cache_directory=None): """ Download data such as prefabricated templates and spatial priors. Arguments --------- file_id string One of the permitted file ids or pass "show" to list all valid possibilities. Note that most require internet access to download. target_file_name string Optional target filename. antsxnet_cache_directory string Optional target output. If not specified these data will be downloaded to the subdirectory ~/.keras/ANTsXNet/. Returns ------- A filename string Example ------- >>> template_file = get_antsxnet_data('biobank') """ def switch_data(argument): switcher = { "biobank": "https://ndownloader.figshare.com/files/22429242", "croppedMni152": "https://ndownloader.figshare.com/files/22933754", "croppedMni152Priors": "https://ndownloader.figshare.com/files/27688437", "deepFlashPriors": "", "deepFlashTemplateT1": "", "deepFlashTemplateT2": "", "mprage_hippmapp3r": "https://ndownloader.figshare.com/files/24984689", "protonLungTemplate": "https://ndownloader.figshare.com/files/22707338", "ctLungTemplate": "https://ndownloader.figshare.com/files/22707335", "luna16LungPriors": "https://ndownloader.figshare.com/files/28253796", "priorDktLabels": "https://ndownloader.figshare.com/files/24139802", "S_template3": "https://ndownloader.figshare.com/files/22597175", "priorDeepFlashLeftLabels": "https://ndownloader.figshare.com/files/25422098", "priorDeepFlashRightLabels": "https://ndownloader.figshare.com/files/25422101", "adni": "https://ndownloader.figshare.com/files/25516361", "ixi": "https://ndownloader.figshare.com/files/25516358", "kirby": "https://ndownloader.figshare.com/files/25620107", "mni152": "https://ndownloader.figshare.com/files/25516349", "nki": "https://ndownloader.figshare.com/files/25516355", "nki10": "https://ndownloader.figshare.com/files/25516346", "oasis": "https://ndownloader.figshare.com/files/25516352" } return(switcher.get(argument, "Invalid argument.")) if file_id == None: raise ValueError("Missing file id.") valid_list = ("biobank", "croppedMni152", "croppedMni152Priors", "deepFlashPriors", "deepFlashTemplateT1", "deepFlashTemplateT2", "mprage_hippmapp3r", "protonLungTemplate", "ctLungTemplate", "luna16LungPriors", "S_template3", "priorDktLabels", "priorDeepFlashLeftLabels", "priorDeepFlashRightLabels", "adni", "ixi", "kirby", "mni152", "nki", "nki10", "oasis", "show") if not file_id in valid_list: raise ValueError("No data with the id you passed - try \"show\" to get list of valid ids.") if file_id == "show": return(valid_list) url = switch_data(file_id) if target_file_name == None: target_file_name = file_id + ".nii.gz" if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" target_file_name_path = tf.keras.utils.get_file(target_file_name, url, cache_subdir=antsxnet_cache_directory) return(target_file_name_path)
3100deb0f29b301a5dd06ce1413538c7df022b75
ec61b57a99d7683a668f4910c9fad4b1c9335525
/todo/41-firstMissingPositive.py
39b5bd971a07978100e79c13e9e1cb2c2b77d0d0
[]
no_license
savadev/leetcode-2
906f467e793b9636965ab340c7753d9fc15bc70a
20f37130236cc68224082ef056dacd6accb374e3
refs/heads/master
2020-12-28T12:54:08.355317
2018-08-06T00:44:24
2018-08-06T00:44:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
651
py
class Solution(object): def firstMissingPositive(self, nums): """ :type nums: List[int] :rtype: int """ if nums == []: return 1 MIN = min(nums) MAX = max(nums) SUM = sum(nums) acc = 0 for x in range(MIN, MAX + 1): acc+= x print ('acc', acc) print ('sum', SUM) print('res', acc - SUM) if acc - SUM == 0: if MIN != 0: return MIN - 1 return MAX + 1 return acc - SUM r = Solution() res = r.firstMissingPositive([1]) print (res)
8b4c76e48970902fe165375a9bff089f9bd8547a
25e99a0af5751865bce1702ee85cc5c080b0715c
/python/src/pyprogbook/第二版(博碩)課本範例程式/ch8/RC_8_1.py
917a5b5f0a7c5398cc8649d18a378e6983072f0a
[]
no_license
jasonblog/note
215837f6a08d07abe3e3d2be2e1f183e14aa4a30
4471f95736c60969a718d854cab929f06726280a
refs/heads/master
2023-05-31T13:02:27.451743
2022-04-04T11:28:06
2022-04-04T11:28:06
35,311,001
130
67
null
2023-02-10T21:26:36
2015-05-09T02:04:40
C
UTF-8
Python
false
false
624
py
#RC_8_1: 定義貨幣時間價值的類別 class TimeValue: #終值 def fvfix(self, pv, i, n): #fvfix: 計算終值公式 fv=pv*(1+i)**n return(fv) #現值 def pvfix(self, fv, i, n): #pvfix: 計算現值公式 pv=fv/((1+i)**n) return(pv) #設定初始值 pv=100 fv=115.92740743 i=0.03 n=5 #呼叫TimeValue類別,建構物實體 tv1=TimeValue() #呼叫物件實體的方法 print('%d年後的終值 = %10.4f' %(n, tv1.fvfix(pv, i, n))) print('%d年後的現值 = %10.4f' %(n, tv1.pvfix(fv, i, n)))
[ "jason_yao" ]
jason_yao
de72efb471a01079e3b835086bdf362a43ce075b
fc29ccdcf9983a54ae2bbcba3c994a77282ae52e
/Leetcode/813-dp_interval.py
eebabd32aa4ba9891a08ae004244921141caf878
[]
no_license
linnndachen/coding-practice
d0267b197d9789ab4bcfc9eec5fb09b14c24f882
5e77c3d7a0632882d16dd064f0aad2667237ef37
refs/heads/master
2023-09-03T19:26:25.545006
2021-10-16T16:29:50
2021-10-16T16:29:50
299,794,608
0
0
null
null
null
null
UTF-8
Python
false
false
1,774
py
# max(score of sum of avg of each group) class Solution: def largestSumOfAverages(self, A: List[int], K: int) -> float: n = len(A) prefix_sum = [0] * (n+1) # dp = [[0] * (K+1) for _ in range(n)] memo = {} for i in range(n): prefix_sum[i+1] = A[i] + prefix_sum[i] def avg(i,j): ag = (prefix_sum[j] - prefix_sum[i]) / (j - i) return ag def dfs(idx, k): if (idx, k) in memo: return memo[(idx, k)] if k==1: # base case return (prefix_sum[-1] - prefix_sum[idx]) / (n - idx) res = 0 for i in range(idx, n-k+1): # avg of 0~i + divide what's left into k groups res = max(res, avg(idx,i+1) + dfs(i+1, k-1)) memo[(idx, k)] = res return res return dfs(0, K) """ def largestSumOfAverages(self, A: List[int], K: int) -> float: N = len(A) prefix_sum = [0] * (N+1) for i in range(1, len(A)+1): prefix_sum[i] = prefix_sum[i-1] + A[i-1] dp = [self._average(prefix_sum, i, N) for i in range(N)] print(dp) # only 1 group, 2 groups and etc for k in range(1, min(N, K)): for i in range(N): # if we have already decided a group, find the rest k for j in range(i+1, N): dp[i] = max(dp[i], self._average(prefix_sum, i, j) + dp[j]) return dp[0] def _average(self, prefix_arr, i, j): return (prefix_arr[j] - prefix_arr[i]) / float(j - i) """ # 0..........j j+1.....i (total needs k groups) # dp[k-1][j] 1 group # from 0 - j, divide it into k - 1 group
b3fcc97c7467ef879e7c063a68bc03ed11f438e1
ffad717edc7ab2c25d5397d46e3fcd3975ec845f
/Python/pyesri/EXAMPLES/try_finally.py
403502b28258223cd220ecccdbaf6d4ea091d6d2
[]
no_license
shaunakv1/esri-developer-conference-2015-training
2f74caea97aa6333aa38fb29183e12a802bd8f90
68b0a19aac0f9755202ef4354ad629ebd8fde6ba
refs/heads/master
2021-01-01T20:35:48.543254
2015-03-09T22:13:14
2015-03-09T22:13:14
31,855,365
0
0
null
null
null
null
UTF-8
Python
false
false
157
py
#!/usr/bin/python try: x = 5 y = "cheese" z = x + y print "Bottom of try" except Exception as err: print err exit() finally: print "Cleaning up..."
b0cc56f055ae7cc4900fceed8dec1cb1322b507b
e63a36870512edb7fd947b809631cf153b028997
/surveil/api/hooks.py
18a8ba224fc1247642016889a8ab4fdf84124df5
[ "Apache-2.0" ]
permissive
titilambert/surveil
632c7e65d10e03c675d78f278822015346f5c47a
8feeb64e40ca2bd95ebd60506074192ecdf627b6
refs/heads/master
2020-05-25T13:36:59.708227
2015-06-29T14:07:07
2015-06-29T14:07:07
38,249,530
1
0
null
2015-06-29T13:38:04
2015-06-29T13:38:03
null
UTF-8
Python
false
false
1,253
py
# Copyright 2014 - Savoir-Faire Linux inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import influxdb from pecan import hooks import pymongo class DBHook(hooks.PecanHook): def __init__(self, mongo_url, ws_arbiter_url, influxdb_url): self.mongo_url = mongo_url self.ws_arbiter_url = ws_arbiter_url self.influxdb_url = influxdb_url def before(self, state): self.mongoclient = pymongo.MongoClient(self.mongo_url) state.request.mongo_connection = self.mongoclient state.request.ws_arbiter_url = self.ws_arbiter_url state.request.influxdb_client = influxdb.InfluxDBClient.from_DSN( self.influxdb_url ) def after(self, state): self.mongoclient.close()
12ec553dc3a74926d2a8d0a31bcb4162d631e912
c68b99bf1671d1fb5a1a5a0d6df7bb164dd1d20d
/Medium/**1111-MaximumNestingDepthOfTwoValidParenthesesStrings.py
58c02a74e38a8ba9adc21370c7f5e9fadd219265
[]
no_license
r50206v/Leetcode-Practice
8db9333e2e3d2a335f439d7e9e57e8c36b69ae6d
f9302e93c441f06cc14949605da20978c4289202
refs/heads/master
2022-05-17T18:09:48.857263
2022-04-27T01:02:12
2022-04-27T01:02:12
192,258,017
0
1
null
null
null
null
UTF-8
Python
false
false
1,762
py
# Solution ''' Runtime: 44 ms, faster than 31.28% of Python online submissions for Maximum Nesting Depth of Two Valid Parentheses Strings. Memory Usage: 12.2 MB, less than 100.00% of Python online submissions for Maximum Nesting Depth of Two Valid Parentheses Strings. from: https://leetcode.com/problems/maximum-nesting-depth-of-two-valid-parentheses-strings/discuss/329010/Python-O(n) ''' class Solution(object): def maxDepthAfterSplit(self, seq): stack = [] n = len(seq) res = [0] * n for i in range(n): s = seq[i] if s == "(": if stack: res[i] = 1 - res[stack[-1]] stack.append(i) elif s == ")": res[i] = res[stack[-1]] stack.pop() return res # Solution ''' Runtime: 36 ms, faster than 76.78% of Python online submissions for Maximum Nesting Depth of Two Valid Parentheses Strings. Memory Usage: 12 MB, less than 100.00% of Python online submissions for Maximum Nesting Depth of Two Valid Parentheses Strings. from contest winners~ https://leetcode.com/contest/weekly-contest-144/ranking/ ''' class Solution: def maxDepthAfterSplit(self, seq: str) -> List[int]: a = 0 b = 0 n = len(seq) ans = [0] * n for i, c in enumerate(seq): if c == '(': if a < b: a += 1 ans[i] = 0 else: b += 1 ans[i] = 1 else: if a < b: b -= 1 ans[i] = 1 else: a -= 1 ans[i] = 0 return ans
5e03456ca1fac16e1a05a8cc6d80041b70bfde5c
be55991401aef504c42625c5201c8a9f14ca7c3b
/python全栈3期/IO模型/selectorsDemo01.py
532bbf1784d32868773b2e07e5aa460d2c260c73
[ "Apache-2.0" ]
permissive
BillionsRichard/pycharmWorkspace
adc1f8bb15b58ded489fc8dec0df397601823d2c
709e2681fc6d85ff52fb25717215a365f51073aa
refs/heads/master
2021-09-14T21:12:59.839963
2021-08-08T09:05:37
2021-08-08T09:05:37
143,610,481
0
0
null
null
null
null
UTF-8
Python
false
false
1,131
py
# encoding: utf-8 """ @version: v1.0 @author: Richard @license: Apache Licence @contact: [email protected] @site: @software: PyCharm @file: selectorsDemo01.py @time: 2018/6/2 18:53 """ from pprint import pprint as P import selectors import socket SELECTOR = selectors.DefaultSelector() def accept_fun(socket, mask): client_skt, client_addr = socket.accept() client_port = client_addr[1] P('client coming:%s' % client_port) SELECTOR.register(client_skt, selectors.EVENT_READ, read_fun) def read_fun(socket, mask): data = socket.recv(1000).decode('utf8') if data: print('received:%s' % data) socket.send(data.upper().encode('utf8')) else: P('no data received....') server_sock = socket.socket() server_sock.bind(("127.0.0.1", 8080)) server_sock.listen(100) server_sock.setblocking(False) SELECTOR.register(server_sock, selectors.EVENT_READ, accept_fun) while True: events = SELECTOR.select() #循环监听事件。 for key, mask in events: callback = key.data callback(key.fileobj, mask) #调用事先注册的回掉函数。
c8c79098eb281dfb93aa7a5c3ba0399c3f545203
0ff0bd21faecdeebc3a29fc5860d25fb8f079aae
/rep_k.py
c43b3903b48080a05e6bffc887c6778d0b1d9245
[]
no_license
Ponkiruthika112/codesetkataset2
652297278e84de07d5d3fc5dfa2eb3f995258cab
bd8a96d2fb357ff571f2650fdfca911fba8cc999
refs/heads/master
2020-04-15T09:49:55.421089
2019-02-18T16:18:55
2019-02-18T16:18:55
164,567,329
0
0
null
null
null
null
UTF-8
Python
false
false
204
py
n=list(map(int,input().split())) k=l[-1] a=list(map(int,input().split())) l=list(set(a)) s="" for i in range(0,len(l)): if a.count(l[i])==k: s=s+str(l[i])+" " print(s.strip()) #repeat k times
8df66b74e02e272a2ac172cbc9aba54662670f75
b50f43c7c8cba1c0f349870596f12d1a333e6f42
/axonius_api_client/cli/grp_system/grp_settings/cmd_update_section.py
cce5589c8ccc9641e146f3457660e8495c6476f7
[ "MIT" ]
permissive
zahediss/axonius_api_client
190ca466e5de52a98af9b527a5d1c132fd8a5020
8321788df279ffb7794f179a4bd8943fe1ac44c4
refs/heads/master
2023-08-01T14:35:17.095559
2021-09-13T21:04:23
2021-09-13T21:04:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,329
py
# -*- coding: utf-8 -*- """Command line interface for Axonius API Client.""" from ....tools import json_dump from ...context import CONTEXT_SETTINGS, click from ...options import AUTH, SPLIT_CONFIG_OPT, add_options from .grp_common import EXPORT, SECTION, str_section OPTIONS = [*AUTH, EXPORT, SECTION, SPLIT_CONFIG_OPT] @click.command(name="update-section", context_settings=CONTEXT_SETTINGS) @add_options(OPTIONS) @click.pass_context def cmd( ctx, url, key, secret, config, section, export_format, **kwargs, ): """Update a section from arguments.""" client = ctx.obj.start_client(url=url, key=key, secret=secret) new_config = dict(config) apiname = ctx.parent.command.name.replace("-", "_") apiobj = getattr(client, apiname) with ctx.obj.exc_wrap(wraperror=ctx.obj.wraperror): settings = apiobj.update_section(section=section, **new_config) ctx.obj.echo_ok(f"Updated {section!r} with configuration {new_config}") if export_format == "str": str_section(meta=settings) ctx.exit(0) if export_format == "json-config": config = settings["config"] click.secho(json_dump(config)) ctx.exit(0) if export_format == "json-full": click.secho(json_dump(settings)) ctx.exit(0) ctx.exit(1)
28b92fed6d4c115fe7c615905f1a41b510587860
b44ae8c215c7577616ce94bbddda57d46ff46577
/experiments/convergence/movielens_100K/gaussian_exponential.py
a143962077d68e7428eb01f52aa54a4f6ed764b5
[]
no_license
changchunli/BMF_Priors
06a74d89198b11c0c3ba673a1d4869986cd7bc2d
15b20537eefd36347ed84617882eeea1c453e162
refs/heads/master
2020-03-21T07:50:08.081910
2018-06-10T10:22:04
2018-06-10T10:22:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,267
py
''' Measure convergence on the MovieLens 100K dataset, with the Gaussian + Exponential model. ''' import sys, os project_location = os.path.dirname(__file__)+"/../../../../" sys.path.append(project_location) from BMF_Priors.code.models.bmf_gaussian_exponential import BMF_Gaussian_Exponential from BMF_Priors.data.movielens.load_data import load_movielens_100K from BMF_Priors.experiments.convergence.convergence_experiment import measure_convergence_time import matplotlib.pyplot as plt ''' Run the experiment. ''' R, M = load_movielens_100K() model_class = BMF_Gaussian_Exponential settings = { 'R': R, 'M': M, 'K': 20, 'hyperparameters': { 'alpha':1., 'beta':1., 'lamb':0.1 }, 'init': 'random', 'iterations': 200, } fout_performances = './results/performances_gaussian_exponential.txt' fout_times = './results/times_gaussian_exponential.txt' repeats = 10 performances, times = measure_convergence_time( repeats, model_class, settings, fout_performances, fout_times) ''' Plot the times, and performance vs iterations. ''' plt.figure() plt.title("Performance against average time") plt.plot(times, performances) plt.ylim(0,2000) plt.figure() plt.title("Performance against iteration") plt.plot(performances) plt.ylim(0,2000)
041808402b9a434766690092176281e5cd6fc449
168bccd6fbd54025edeb526a497f4cd143390608
/Datascience/Bee_Word_Project_old/Bee_Word_Project_bkup/asgi.py
348f1b65e1c401a5530a6c199f263c2a0ada07ce
[]
no_license
mbegumgit/Mumtaz
4e9cdd2b9a9b437cb5b3e0534a673aecc1366bd0
2edbc5e828ba6803580ff90beaf4c7cc7ace23de
refs/heads/master
2022-03-05T18:41:28.474102
2022-02-18T07:33:06
2022-02-18T07:33:06
210,820,610
0
0
null
2022-02-18T09:50:24
2019-09-25T10:43:55
HTML
UTF-8
Python
false
false
409
py
""" ASGI config for Bee_Word_Project project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Bee_Word_Project.settings') application = get_asgi_application()
598046ba24df38670274f2af60bbeef0dfaf8a4e
268b22da698310c1fd0471f94d61e02782cbaf37
/Week6/week6work/test/app.py
b05a86a61e85ac24690e059365b0a5e5c58330f3
[]
no_license
jayquake/DI-Excersises
0c1147863753fb29a6f688bd73bdd9acc047c180
02cb0ee9baed7fd7736273e8fc68317ba4356e39
refs/heads/master
2020-12-10T11:38:12.225341
2020-05-06T08:34:35
2020-05-06T08:34:35
233,582,928
0
0
null
null
null
null
UTF-8
Python
false
false
687
py
from flask import Flask from flask import render_template import users from forms import LoginForm from flask import request from flask import session from flask import flash app = Flask(__name__) users = users.create_database() app.config['SECRET_KEY'] = 'you-will-never-guess' @app.route('/') def home(): html = render_template('index.html') return html @app.route('/login', methods=['POST']) def login(): form = LoginForm() login =render_template('login.html',form = form) if request.form['password'] == 'password' and request.form['username'] == 'admin': session['logged_in'] = True else: flash('wrong password!') if __name__ == '__main__': app.run()
8066a57e0fc178c600664597a65ee9595bc1c3a3
06525f75c7fe5ba75b0737d7b93e48cca9c24706
/django_gotolong/jsched/tasks.py
f08ea74499eb6979c7339b33a028882120f323fd
[ "BSD-2-Clause", "BSD-3-Clause" ]
permissive
webclinic017/gotolong
029314121c9cb6ce66c95fab6a237aca9a3ecd6c
3bb5ec7c7a5734e7121d308769a3ed8bb01e7f30
refs/heads/master
2022-04-21T08:06:11.669599
2022-04-02T20:13:11
2022-04-02T20:13:11
247,398,353
0
0
null
null
null
null
UTF-8
Python
false
false
1,845
py
# Create your views here. # Create your views here. from django.shortcuts import redirect from django.http import HttpResponseRedirect from datetime import date, timedelta from apscheduler.schedulers.background import BackgroundScheduler from django_gotolong.bhav.views import bhav_fetch from django_gotolong.ftwhl.views import ftwhl_fetch from django.utils import timezone # from background_task import background import requests import sys # notify_user(user.id, schedule=90) # 90 seconds from now # notify_user(user.id, schedule=timedelta(minutes=20)) # 20 minutes from now # notify_user(user.id, schedule=timezone.now()) # at a specific time # @background(schedule=15) def jsched_task_bg(): print('tasks.py : notify_nse') # redirect('bhav-fetch') # redirect('ftwhl-fetch') def jsched_task_daily(): print('tasks.py : jsched_task_daily: to be fixed later') return if True: tmodules = ['bhav', 'ftwhl'] for tmod in tmodules: try: url = 'http://127.0.0.1:8000/' + tmod + '/fetch/' # connect timeout - 5 sec # read timeout - 14 sec response = requests.get(url, allow_redirects=False, timeout=(15, 60)) print(url, response.url, response.status_code) except: print("Unexpected error:", url, sys.exc_info()) def jsched_task_common(): print('tasks.py : common tasks') # HttpResponseRedirect(reverse('bhav-fetch')) # HttpResponseRedirect(reverse('ftwhl-fetch')) # redirect('bhav-fetch') # redirect('ftwhl-fetch') def jsched_task_startup(): print('tasks.py : start') # notify_nse(repeat=Task.DAILY, repeat_until=None) # scheduler = BackgroundScheduler() # scheduler.add_job(jsched_task_common, 'interval', days=1) # scheduler.start()
30297a3554de37ae2bbeae152c60ce87fa548148
d2c4934325f5ddd567963e7bd2bdc0673f92bc40
/tests/model_control/detailed/transf_RelativeDifference/model_control_one_enabled_RelativeDifference_ConstantTrend_Seasonal_WeekOfYear_ARX.py
301a6ea127790f581fe24c9e7a8e24a8c81520e9
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
jmabry/pyaf
797acdd585842474ff4ae1d9db5606877252d9b8
afbc15a851a2445a7824bf255af612dc429265af
refs/heads/master
2020-03-20T02:14:12.597970
2018-12-17T22:08:11
2018-12-17T22:08:11
137,104,552
0
0
BSD-3-Clause
2018-12-17T22:08:12
2018-06-12T17:15:43
Python
UTF-8
Python
false
false
180
py
import pyaf.tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['RelativeDifference'] , ['ConstantTrend'] , ['Seasonal_WeekOfYear'] , ['ARX'] );
0a3851483a7c2783d20f9210c909db95e5a3effb
ce2e307f8725b7bbe4c9177ed0f6b8bd74ae6cbe
/src/cw_20/models.py
3aec0e1efda9e87be7b828ff9e1b79bcdfbc6885
[]
no_license
alexshchegretsov/Teach_Me_Skills_Django_homeworks
f2a096f60bf8fe2e45693dd2352341529007327c
dcde073292e1cfb15708cdb3dd8d539fae37143a
refs/heads/master
2020-05-25T00:07:36.348802
2019-06-06T12:21:35
2019-06-06T12:21:35
187,528,506
0
0
null
null
null
null
UTF-8
Python
false
false
355
py
from django.db import models class Customer(models.Model): first_name = models.CharField(max_length=200,null=False) last_name = models.CharField(max_length=200, null=False) profession = models.CharField(max_length=200, null=True) age = models.IntegerField() def __str__(self): return f'{self.first_name} {self.last_name}'
df4b35ec2d7b11d26059caeb6712174bde347a30
b8cb10a3c99961f44ac758b3683523627d032680
/runoschool/runo/migrations/0008_auto_20201020_0530.py
735a3a0d26c067a411e76cd8bf585ce29bf7dc25
[]
no_license
samuelatuma1/runoschool
4a2183be4a7e856723fc5368c90edcb79d6ed29e
ed75fb4077cf5ff86b7d546d3346fc4625bee97e
refs/heads/master
2023-01-29T20:22:25.160805
2020-12-14T08:33:13
2020-12-14T08:33:13
312,167,155
1
0
null
null
null
null
UTF-8
Python
false
false
674
py
# Generated by Django 3.1.1 on 2020-10-20 04:30 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('runo', '0007_auto_20201019_1750'), ] operations = [ migrations.RenameField( model_name='welcleaders', old_name='extraImg1', new_name='extraLeader1', ), migrations.RenameField( model_name='welcleaders', old_name='extraImg2', new_name='extraLeader2', ), migrations.RenameField( model_name='welcleaders', old_name='welcImg', new_name='welcLeader', ), ]
6a0feedd97724c95d4013b2c5c578158cfa386b9
c558fb26ab6cdc46c0a5ad292a34c20b52f96f42
/crud/employee/forms.py
8625d6cb27a789ac7671469062b188b1de343091
[]
no_license
VaultHRMS/HRMS
9dad7e5416f008075ce4e50226e76ca86ae7d9b0
de714c63494a1a1260116a66e54fac8c032fd661
refs/heads/master
2020-08-15T07:37:02.311773
2019-11-05T10:09:44
2019-11-05T10:09:44
215,301,571
0
1
null
null
null
null
UTF-8
Python
false
false
168
py
from django import forms from employee.models import Employee class EmployeeForm(forms.ModelForm): class Meta: model = Employee fields = "__all__"
5d62effa01623bbc899e69cedeac320b1a623569
e8501308efed70829ba70332d5ed7b956a245a41
/Lab/Lab11/Lab11-4.py
9ce9d856102df3c1961115034eac8160b5366c1b
[]
no_license
Jinmin-Goh/DeepLearningPractice
293f7c41144d64c1044d27dadf16f563d7caabb4
b13cff775ad350deb0fde982610276c7b2fc7798
refs/heads/master
2021-02-28T07:21:51.231203
2020-03-20T17:15:42
2020-03-20T17:15:42
245,673,920
0
0
null
null
null
null
UTF-8
Python
false
false
4,843
py
# Lab 11-4 # Made by: Jinmin Goh # Date: 20200318 # TF layers, fancy coding import tensorflow as tf # import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data tf.set_random_seed(777) # reproducibility mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # Check out https://www.tensorflow.org/get_started/mnist/beginners for # more information about the mnist dataset # hyper parameters learning_rate = 0.001 training_epochs = 15 batch_size = 100 class Model: def __init__(self, sess, name): self.sess = sess self.name = name self._build_net() def _build_net(self): with tf.variable_scope(self.name): # dropout (keep_prob) rate 0.7~0.5 on training, but should be 1 # for testing self.training = tf.placeholder(tf.bool) # input place holders self.X = tf.placeholder(tf.float32, [None, 784]) # img 28x28x1 (black/white), Input Layer X_img = tf.reshape(self.X, [-1, 28, 28, 1]) self.Y = tf.placeholder(tf.float32, [None, 10]) # Convolutional Layer #1 conv1 = tf.layers.conv2d(inputs=X_img, filters=32, kernel_size=[3, 3], padding="SAME", activation=tf.nn.relu) # Pooling Layer #1 pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], padding="SAME", strides=2) dropout1 = tf.layers.dropout(inputs=pool1, rate=0.3, training=self.training) # Convolutional Layer #2 and Pooling Layer #2 conv2 = tf.layers.conv2d(inputs=dropout1, filters=64, kernel_size=[3, 3], padding="SAME", activation=tf.nn.relu) pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], padding="SAME", strides=2) dropout2 = tf.layers.dropout(inputs=pool2, rate=0.3, training=self.training) # Convolutional Layer #2 and Pooling Layer #2 conv3 = tf.layers.conv2d(inputs=dropout2, filters=128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu) pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], padding="same", strides=2) dropout3 = tf.layers.dropout(inputs=pool3, rate=0.3, training=self.training) # Dense Layer with Relu flat = tf.reshape(dropout3, [-1, 128 * 4 * 4]) dense4 = tf.layers.dense(inputs=flat, units=625, activation=tf.nn.relu) dropout4 = tf.layers.dropout(inputs=dense4, rate=0.5, training=self.training) # Logits (no activation) Layer: L5 Final FC 625 inputs -> 10 outputs self.logits = tf.layers.dense(inputs=dropout4, units=10) # define cost/loss & optimizer self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( logits=self.logits, labels=self.Y)) self.optimizer = tf.train.AdamOptimizer( learning_rate=learning_rate).minimize(self.cost) correct_prediction = tf.equal( tf.argmax(self.logits, 1), tf.argmax(self.Y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) def predict(self, x_test, training=False): return self.sess.run(self.logits, feed_dict={self.X: x_test, self.training: training}) def get_accuracy(self, x_test, y_test, training=False): return self.sess.run(self.accuracy, feed_dict={self.X: x_test, self.Y: y_test, self.training: training}) def train(self, x_data, y_data, training=True): return self.sess.run([self.cost, self.optimizer], feed_dict={ self.X: x_data, self.Y: y_data, self.training: training}) # initialize sess = tf.Session() m1 = Model(sess, "m1") sess.run(tf.global_variables_initializer()) print('Learning Started!') # train my model for epoch in range(training_epochs): avg_cost = 0 total_batch = int(mnist.train.num_examples / batch_size) for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) c, _ = m1.train(batch_xs, batch_ys) avg_cost += c / total_batch print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost)) print('Learning Finished!') # Test model and check accuracy print('Accuracy:', m1.get_accuracy(mnist.test.images, mnist.test.labels))
7889902c32c8f1e1a6044d9fe5c296b950de76b0
7b102f9c8f2e3f9240090d1d67af50333a2ba98d
/gbd_2019/mortality_code/full_life_tables/full_lt_run_all.py
267733953868b1857c52050eb98c3f6414fc2308
[]
no_license
Nermin-Ghith/ihme-modeling
9c8ec56b249cb0c417361102724fef1e6e0bcebd
746ea5fb76a9c049c37a8c15aa089c041a90a6d5
refs/heads/main
2023-04-13T00:26:55.363986
2020-10-28T19:51:51
2020-10-28T19:51:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,413
py
import os import sys import argparse import pandas as pd import datetime import random import subprocess import numpy as np import rpy2.robjects as robjects from subprocess import call from multiprocessing import Process from shutil import move from sqlalchemy import create_engine from jobmon.client.swarm.workflow.workflow import Workflow from jobmon.client.swarm.workflow.bash_task import BashTask from jobmon.client.swarm.workflow.python_task import PythonTask from mort_wrappers.call_mort_function import call_mort_function class full_life_table: def __init__(self, username, process_run_table, run_finalizer, aggregate_full_lts, gbd_year, upload, enable_assertions_flag, mark_best, aggregate_locations): self.no_shock_death_number_estimate_version = process_run_table['no shock death number estimate'] self.no_shock_life_table_estimate_version = process_run_table['no shock life table estimate'] self.shock_aggregator_version = process_run_table['shock aggregator'] self.age_sex_estimate_version = process_run_table['age sex estimate'] self.population_estimate_version = process_run_table['population estimate'] self.population_single_year_estimate_version = process_run_table['population single year estimate'] self.shock_death_number_estimate = process_run_table['shock death number estimate'] self.shock_life_table_estimate = process_run_table['shock life table estimate'] self.full_life_table_estimate_version = process_run_table['full life table estimate'] self.mlt_life_table_estimate_version = process_run_table['mlt life table estimate'] self.hiv_run_name = process_run_table['hiv'] self.user = username self.gbd_year = gbd_year self.mark_best = mark_best self.upload_all_lt_params_flag = "True" self.enable_assertions_flag = enable_assertions_flag self.run_finalizer = run_finalizer self.aggregate_full_lts = aggregate_full_lts self.upload = upload self.aggregate_locations = aggregate_locations self.code_dir = "FILEPATH" self.finalizer_code_dir = "FILEPATH" self.r_singularity_shell = "FILEPATH" self.r_singularity_shell_3501 = "FILEPATH" self.stdout = "FILEPATH" self.stderr = "FILEPATH" self.master_dir = "FILEPATH" self.input_dir = "{}/inputs".format(self.master_dir) self.reckoning_output_dir = "FILEPATH + self.no_shock_death_number_estimate_version" self.full_lt_dir = "{}/full_lt".format(self.master_dir) self.abridged_lt_dir = "{}/abridged_lt".format(self.master_dir) self.upload_dir = "{}/upload".format(self.master_dir) self.log_dir = "{}/logs".format(self.master_dir) def create_directories(self, master_dir, subdirs=[]): # Create initial set of directories if not os.path.exists(master_dir): os.makedirs(master_dir) for dir in subdirs: new_dir = master_dir + "/" + dir if not os.path.exists(new_dir): os.makedirs(new_dir) def generate_save_inputs_task(self, upstream_tasks): job_hash_name = "agg_save_inputs_{}".format(self.no_shock_death_number_estimate_version) num_cores = 4 m_mem_free = "36G" runfile = "{}/01_save_inputs.R".format(self.code_dir) args = ["--no_shock_death_number_estimate_version", str(self.no_shock_death_number_estimate_version), "--population_estimate_version", str(self.population_estimate_version), "--population_single_year_estimate_version", str(self.population_single_year_estimate_version), "--gbd_year", str(self.gbd_year)] argsstr = " ".join(args) command = "{r_shell} {codefile} {passargs}".format( r_shell=self.r_singularity_shell, codefile=runfile, passargs=argsstr) return BashTask(command=command, upstream_tasks=upstream_tasks, name=job_hash_name, num_cores=num_cores, m_mem_free = m_mem_free, max_runtime_seconds = 9000, j_resource = True, queue = "all.q") def generate_full_lt_task(self, upstream_tasks, loc): job_hash_name = "full_lt_{loc}_{version}".format(loc=loc, version=self.no_shock_death_number_estimate_version) num_cores = 3 m_mem_free = "30G" runfile = "{}/02_full_lt.R".format(self.code_dir) args = ["--no_shock_death_number_estimate_version", str(self.no_shock_death_number_estimate_version), "--mlt_life_table_estimate_version", str(self.mlt_life_table_estimate_version), "--hiv_run", self.hiv_run_name, "--loc", str(loc), "--shock_aggregator_version", str(self.shock_aggregator_version), "--gbd_year", str(self.gbd_year), "--enable_assertions_flag", str(self.enable_assertions_flag)] argsstr = " ".join(args) command = "{r_shell} {codefile} {passargs}".format( r_shell=self.r_singularity_shell, codefile=runfile, passargs=argsstr) return BashTask(command=command, upstream_tasks=upstream_tasks, name=job_hash_name, num_cores=num_cores, m_mem_free = m_mem_free, max_runtime_seconds = 90000, j_resource = True, queue = "all.q") def generate_aggregate_lt_task(self, upstream_tasks, loc, lt_type, num_children): job_hash_name = "agg_full_lts_{loc}_{lt_type}_{version}".format(loc=loc, lt_type=lt_type, version = self.no_shock_death_number_estimate_version) if num_children < 10: num_cores = 10 m_mem_free = "100G" elif num_children >= 10 and num_children < 50: num_cores = 20 m_mem_free = "300G" else: num_cores = 30 m_mem_free = "500G" runfile = "{}/03_aggregate_lts.R".format(self.code_dir) args = ["--no_shock_death_number_estimate_version", str(self.no_shock_death_number_estimate_version), "--loc", str(loc), "--lt_type", lt_type, "--gbd_year", str(self.gbd_year), "--enable_assertions_flag", str(self.enable_assertions_flag)] argsstr = " ".join(args) command = "{r_shell} {codefile} {passargs}".format( r_shell=self.r_singularity_shell_3501, codefile=runfile, passargs=argsstr) return BashTask(command=command, upstream_tasks=upstream_tasks, name=job_hash_name, num_cores=num_cores, m_mem_free = m_mem_free, max_runtime_seconds = 90000, j_resource = True, queue = "all.q") def generate_full_upload_task(self, upstream_tasks): job_hash_name = "full_life_table_upload_{}".format(self.no_shock_death_number_estimate_version) num_cores = 10 m_mem_free = "50G" runfile = "{}/04_compile_upload_results.R".format(self.code_dir) args = ["--no_shock_death_number_estimate_version", str(self.no_shock_death_number_estimate_version), "--gbd_year", str(self.gbd_year), "--full_life_table_estimate_version", str(self.full_life_table_estimate_version), "--upload_all_lt_params_flag", str(self.upload_all_lt_params_flag)] argsstr = " ".join(args) command = "{r_shell} {codefile} {passargs}".format( r_shell=self.r_singularity_shell_3501, codefile=runfile, passargs=argsstr) return BashTask(command=command, upstream_tasks=upstream_tasks, name=job_hash_name, num_cores=num_cores, m_mem_free = m_mem_free, max_runtime_seconds = 90000, queue = "all.q") def generate_finalizer_task(self, upstream_tasks): job_hash_name = "finalizer_run_{}".format(self.no_shock_death_number_estimate_version) num_cores = 1 m_mem_free = "2G" runfile = "{}/finalizer_run_all.py".format(self.finalizer_code_dir) # How do we pass args to the finalizer run_all? args = ["--shock_death_number_estimate_version", self.shock_death_number_estimate, "--shock_life_table_estimate_version", self.shock_life_table_estimate, "--no_shock_death_number_estimate_version", self.no_shock_death_number_estimate_version, "--no_shock_life_table_estimate_version", self.no_shock_life_table_estimate_version, "--username", self.user, "--gbd_year", self.gbd_year, "--mark_best", self.mark_best, "--shock_version_id", self.shock_aggregator_version, "--aggregate_locations", self.aggregate_locations, "--workflow_args", self.shock_death_number_estimate] return PythonTask(name = job_hash_name, num_cores = num_cores, m_mem_free = m_mem_free, script = runfile, args = args, upstream_tasks = upstream_tasks, queue = "long.q", max_runtime_seconds = 180000, j_resource = True, max_attempts = 1) def generate_workflow(self, wf_name): wf = Workflow(workflow_args=wf_name, project="proj_mortenvelope", stdout=self.stdout, stderr=self.stderr, seconds_until_timeout = 777600, resume = True) self.create_directories(master_dir=self.master_dir, subdirs=['inputs', 'shock_numbers', 'hiv_adjust', 'logs', 'upload', 'abridged_lt', 'full_lt']) self.create_directories(master_dir=self.reckoning_output_dir, subdirs=['lt_whiv', 'lt_hivdel', 'envelope_whiv', 'envelope_hivdel']) self.create_directories(master_dir=self.full_lt_dir, subdirs=['no_hiv', 'with_hiv', 'with_shock']) self.create_directories(master_dir=self.abridged_lt_dir, subdirs=['no_hiv', 'with_hiv', 'with_shock']) self.create_directories(master_dir=self.abridged_lt_dir, subdirs=['no_hiv', 'with_hiv', 'with_shock']) self.create_directories(master_dir=self.upload_dir) self.create_directories(master_dir=self.log_dir, subdirs=['full_with_hiv_mx_vs_no_hiv', 'full_shock_mx_vs_with_hiv', 'abridged_with_hiv_mx_vs_no_hiv', 'abridged_shock_mx_vs_with_hiv', 'abridged_no_hiv_qx_1_5', 'abridged_with_hiv_qx_1_5', 'abridged_shock_qx_1_5', 'shock_rate_compare', 'ax_compare']) # Get locations most_detail_locations = call_mort_function("get_locations", {"level" : "lowest", "gbd_year" : self.gbd_year}) most_detail_loc_ids = most_detail_locations.location_id.tolist() # Generate save inputs task # job name: agg_save_inputs_{} # script being ran: save_inputs.R save_inputs_task = self.generate_save_inputs_task(upstream_tasks=[]) wf.add_task(save_inputs_task) # Generate full lt tasks # job name: gen_full_{loc}_{version} # script being ran: full_lt.R full_lt_tasks = {} for loc in most_detail_loc_ids: full_lt_tasks[loc] = self.generate_full_lt_task(upstream_tasks=[save_inputs_task], loc=loc) wf.add_task(full_lt_tasks[loc]) # Run finalizer if self.run_finalizer: finalizer_run_task = self.generate_finalizer_task(upstream_tasks=full_lt_tasks.values()) wf.add_task(finalizer_run_task) # Generate rest of full_lt tasks and add to the workflow # job names: "agg_full_{loc}_{lt_type}_{version}" # script being ran: aggregate_lts.R if self.aggregate_full_lts: # Get aggregate locations locations = call_mort_function("get_locations", {"level" : "all", "gbd_year" : self.gbd_year}) agg_locations = locations[(locations.level == 3) & (~locations.location_id.isin(most_detail_loc_ids))] agg_loc_ids = agg_locations.location_id.tolist() # Generate agg tasks agg_tasks = {} for loc in agg_loc_ids: num_children = len(most_detail_locations.loc[most_detail_locations.path_to_top_parent.str.contains("," + str(loc) + ",")]) for lt_type in ['with_shock', 'with_hiv', 'no_hiv']: agg_task_key = str(loc) + "_" + lt_type agg_tasks[agg_task_key] = self.generate_aggregate_lt_task(upstream_tasks=full_lt_tasks.values(), loc=loc, lt_type=lt_type, num_children=num_children) wf.add_task(agg_tasks[agg_task_key]) # Generate upload task # job name: full_life_table_upload_{} # script name: compile_upload_results.R if self.upload: upload_task = self.generate_full_upload_task(upstream_tasks=agg_tasks.values()) wf.add_task(upload_task) return wf def run(self): d = datetime.datetime.now() wf_name = "full_lt_{}".format(self.shock_death_number_estimate) wf = self.generate_workflow(wf_name) success = wf.run() if success == 0: print("Completed!") if(self.mark_best == "True"): command = """ library(mortdb, lib = "FILEPATH/r-pkg") update_status(model_name = "full life table", model_type = "estimate", run_id = {}, new_status = "best", send_slack = TRUE) """.format(self.full_life_table_estimate_version) else: command = """ library(mortdb, lib = "FILEPATH/r-pkg") update_status(model_name = "full life table", model_type = "estimate", run_id = {}, new_status = "completed", send_slack = TRUE) """.format(self.full_life_table_estimate_version) robjects.r(command) else: print("FAILED!!!") command = """ library(mortdb, lib = "FILEPATH/r-pkg") send_slack_message() """.format(version_id) robjects.r(command) raise Exception() def main(): parser = argparse.ArgumentParser() parser.add_argument('--version_id', type=int, required=True, action='store', help="Version id of full life table") parser.add_argument('--shock_death_number_estimate_version', type=int, required=False, action='store', help="Version id of with shock death number estimate") parser.add_argument('--shock_life_table_estimate_version', type=int, required=False, action='store', help="Version id of with shock life table estimate") parser.add_argument('--mark_best', type=str, required=True, action='store', help="True/False mark run as best") parser.add_argument('--gbd_year', type=int, required=True, action='store', help="GBD Year") parser.add_argument('--username', type=str, required=True, action='store', help="User conducting the run") parser.add_argument('--run_finalizer', type=int, required=True, action='store', help="True/False run finalizer") parser.add_argument('--aggregate_full_lts', type=int, required=True, action='store', help="True/False aggregate full lt's") parser.add_argument('--upload', type=int, required=True, action='store', help="True/False upload full life table estimate") parser.add_argument('--enable_assertions_flag', type=str, required=True, action='store', help="True/False whether or not to assert qx") parser.add_argument('--aggregate_locations', type=str, required=True, action='store', help="True/False whether or not to aggregate locations") args = parser.parse_args() full_lt_version_id = args.version_id shock_death_number_estimate = args.shock_death_number_estimate_version shock_life_table_estimate = args.shock_life_table_estimate_version mark_best = args.mark_best gbd_year = args.gbd_year username = args.username run_finalizer = args.run_finalizer aggregate_full_lts = args.aggregate_full_lts upload = args.upload enable_assertions_flag = args.enable_assertions_flag aggregate_locations = args.aggregate_locations # Get gbd round id based on gbd_year gbd_round_id = int(call_mort_function("get_gbd_round", {"gbd_year" : gbd_year})) # Pull shock aggregator version external_inputs = call_mort_function("get_external_input_map", {"process_name" : "full life table estimate", "run_id" : full_lt_version_id}) external_inputs = dict(zip(external_inputs.external_input_name, external_inputs.external_input_version)) shock_version_id = external_inputs['shock_aggregator'] hiv_run_name = external_inputs['hiv'] run_parents = call_mort_function("get_proc_lineage", {"model_name" : "full life table", "model_type" : "estimate", "run_id" : full_lt_version_id}) run_parents = dict(zip(run_parents.parent_process_name, run_parents.parent_run_id)) run_parents['shock aggregator'] = shock_version_id run_parents['hiv'] = hiv_run_name run_parents['shock death number estimate'] = shock_death_number_estimate run_parents['shock life table estimate'] = shock_life_table_estimate run_parents['full life table estimate'] = full_lt_version_id full_lt = full_life_table(username, run_parents, run_finalizer, aggregate_full_lts, gbd_year, upload, enable_assertions_flag, mark_best, aggregate_locations) full_lt.run() if __name__ == "__main__": main() # DONE
d46f12c676788ef01cdfbb69ba6c673db8a4a50d
affe6c648b9ce2434919ccbd88d36d969a619f94
/moya/containers.py
84db000ed363867ba8e37c4deb4c9f275fc93932
[ "BSD-3-Clause" ]
permissive
thiagocalheiros/weasyprint_for_awslambda
578c4e8c10aef40f82e36f0a9de5ec31032335f8
4080c49a3fb5fc94fca75bf38e8b10ee1acfb7ce
refs/heads/master
2020-03-18T18:19:08.855086
2018-05-31T19:32:40
2018-05-31T19:32:40
135,084,321
0
0
null
2018-05-27T21:52:46
2018-05-27T21:52:46
null
UTF-8
Python
false
false
3,050
py
from __future__ import unicode_literals from __future__ import print_function from .compat import PY2, text_type, implements_to_string from .urltools import urlencode from threading import Lock if PY2: from urlparse import parse_qsl else: from urllib.parse import parse_qsl from collections import OrderedDict class LRUCache(OrderedDict): """A dictionary-like container that stores a given maximum items. If an additional item is added when the LRUCache is full, the least recently used key is discarded to make room for the new item. """ def __init__(self, cache_size=None): self.cache_size = cache_size self.lock = Lock() super(LRUCache, self).__init__() def __reduce__(self): return self.__class__, (self.cache_size,) def __setitem__(self, key, value): with self.lock: if self.cache_size is not None and key not in self: if len(self) >= self.cache_size: self.popitem(last=False) OrderedDict.__setitem__(self, key, value) def lookup(self, key): with self.lock: value = OrderedDict.__getitem__(self, key) del self[key] OrderedDict.__setitem__(self, key, value) return value @implements_to_string class QueryData(OrderedDict): """A container for data encoded in a url query string""" @classmethod def from_qs(cls, qs, change_callback=None): qd = cls() for k, v in parse_qsl(qs, keep_blank_values=True, strict_parsing=False): qd.setdefault(k, []).append(v) return qd def copy(self): return OrderedDict(self) def update(self, d): """Specialized update, setting a value to None will delete it. Also ensures that the query data contains lists""" for k, v in d.items(): if v is None: if k in self: del self[k] else: if isinstance(v, (list, set, tuple, dict)) or hasattr(v, 'items'): self[k] = list(v) else: if v is None: v = '' elif not isinstance(v, text_type): v = text_type(v) self[k] = [v] def __str__(self): return urlencode(self) def __repr__(self): return '<querydata "{}">'.format(urlencode(self)) def __setitem__(self, k, v): if v is None: ret = self.__delitem__(k) else: if isinstance(v, (set, tuple)): v = list(v) if not isinstance(v, list): v = [text_type(v)] ret = super(QueryData, self).__setitem__(k, v) return ret def __delitem__(self, k): ret = super(QueryData, self).__delitem__(k) return ret if __name__ == "__main__": qd = QueryData.from_qs('foo=bar&a=1&b=2&hobbit=frodo&hobbit=sam') print(qd.items()) qd.update({'foo': None}) print(qd.items())
3f9fb9d22bc078f7448e8a2437c435ac8a8a2f3c
9a7c84122bb5d52a4feeea37e6434adf844fe10a
/drf/SpiderPlatform/SpiderPlatform/wsgi.py
fcd3b77ab8b295e18bfa4df1b7562bfd1d0cb535
[]
no_license
yangwen1997/code
f4dc17850b186860d6304efb8dd92a189f6b5e12
e697ca24405372c9320ed170478b16b4d539b13f
refs/heads/master
2022-12-10T21:50:37.361086
2020-08-14T01:02:12
2020-08-14T01:02:12
148,280,123
5
0
null
2022-12-08T10:49:07
2018-09-11T07:44:21
HTML
UTF-8
Python
false
false
406
py
""" WSGI config for SpiderPlatform project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'SpiderPlatform.settings') application = get_wsgi_application()
daff31afed353adf8d2c6c28cfc9180c89b9fffc
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_corning.py
55f3a44638ba8fcc4697231b72956c80f298f130
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
#calss header class _CORNING(): def __init__(self,): self.name = "CORNING" self.definitions = corn self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['corn']
46fef4fb96cf282a8ebbeeff3f92d583c9c9beca
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_058/ch23_2019_09_16_18_49_35_451655.py
ff62dbbbbbfe3a0b1e8e382db69bd27edc33dfd8
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
def verifica_idade(x): if x>=21: return "Libeirado EUA e BRASIL" elif x>=18: return "Liberado EUA" else: return "Não está liberado"
8370c8f3e10ffb2ae7e3c1ef790b16d98bc32461
4114e7371af1da819a1c7a11ccc63a7961fd3c11
/tensorbridge/src/main/python/TFServer.py
8c272f4ca236cb6aba45066135f3da4938be9f43
[ "Apache-2.0" ]
permissive
BBN-E/LearnIt
dad4e71da2e2028875807545ce75801067a7dd37
4f602f113cac9f4a7213b348a42c0fef23e2739c
refs/heads/master
2022-12-18T22:15:11.877626
2021-09-09T04:28:31
2021-09-09T04:28:31
193,987,875
8
2
Apache-2.0
2022-12-10T21:02:36
2019-06-26T22:53:56
Java
UTF-8
Python
false
false
1,494
py
from flask import Flask, request, g, Response, jsonify import sys import json import os def initDecoder(decoderClass,paramsFile): if len(decoderClass) == 0: print "Empty decoder class not permitted" sys.exit(1) parts = decoderClass.split('.') module = ".".join(parts[:-1]) print "Attempting to import module: %s" % module m = __import__(module) print dir(m) for part in parts[1:]: print "Processing part %s" % part m = getattr(m, part) return m(paramsFile) app = Flask(__name__) app.config.from_envvar('TF_SERVER_PARAMS') decoder = initDecoder(app.config['DECODER_CLASS'], app.config['PARAMS']) print "Decoder object initialized" @app.route("/ready", methods=['GET']) def ready(): return "true" @app.route("/decode", methods=['POST']) def decode(): decoded ={'labelToClassificationScore' : decoder.decode(request.get_json())} newName = json['name'][::-1] newVal = json['value'] + 100 return { 'name': newName, 'value' : newVal } return jsonify(decoded) @app.route("/shutdown", methods=['POST']) def shutdown(): decoder.shutdown() # see http://flask.pocoo.org/snippets/67/ shutdown_func = request.environ.get("werkzeug.server.shutdown") if shutdown_func is None: raise RuntimeError("Could not get shutdown function") shutdown_func() return "bye" port = os.environ['TF_SERVER_PORT'] print "Running Tensorflow server on port %s" % port app.run(port=port)
43bb0e8f257aadaa0d1d098de741248fe249b3d3
a12a4be7e8c792b4c1f2765d3e7a43056e9196b0
/17-letter-combinations-of-a-phone-number/17-letter-combinations-of-a-phone-number.py
dcf91ce053c7b299be5f62a8c2801c58805c2e6d
[]
no_license
fdas3213/Leetcode
d4b7cfab70446b3f6a961252a55b36185bc87712
1335d5759c41f26eb45c8373f33ee97878c4a638
refs/heads/master
2022-05-28T16:24:15.856679
2022-05-19T21:56:35
2022-05-19T21:56:35
94,024,751
0
0
null
null
null
null
UTF-8
Python
false
false
885
py
class Solution: def letterCombinations(self, digits: str) -> List[str]: #2. backtrack res = [] if not digits: return res self.digit_map = {"1":"", "2":"abc","3":"def","4":"ghi", "5":"jkl","6":"mno","7":"pqrs","8":"tuv", "9":"wxyz"} def backtrack(start: int, cur: str): if start==len(digits): res.append(cur) return for i in range(start, len(digits)): #to avoid cases like start=0, i=1, so "d" or "e" or "f" is added to the result list if i > start: continue digit = digits[i] for letter in self.digit_map[digit]: backtrack(i+1, cur+letter) backtrack(0, "") return res