blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
cd5cc4556e6d1854330409d0157e50db0125950f
3f9f7fe32c655e612f351302ad1945e92e514a31
/ut/scrap/xgoogle/sponsoredlinks.py
e3b4515c1a2095d5cb8875038664aca09f932b8a
[ "MIT" ]
permissive
thorwhalen/ut
12ea7e0fd9bc452d71b0cc3d8ecdb527335a3c17
72dbdf41b0250708ad525030128cc7c3948b3f41
refs/heads/master
2023-02-17T06:44:11.053826
2023-02-07T13:22:07
2023-02-07T13:22:07
32,152,452
6
4
MIT
2023-02-16T00:34:33
2015-03-13T11:32:31
Python
UTF-8
Python
false
false
7,973
py
#!/usr/bin/python # # Peteris Krumins ([email protected]) # http://www.catonmat.net -- good coders code, great reuse # # http://www.catonmat.net/blog/python-library-for-google-sponsored-links-search/ # # Code is licensed under MIT license. # import re import urllib.request, urllib.parse, urllib.error import random from html.entities import name2codepoint from .BeautifulSoup import BeautifulSoup from .browser import Browser, BrowserError # # TODO: join GoogleSearch and SponsoredLinks classes under a single base class # class SLError(Exception): """ Sponsored Links Error """ pass class SLParseError(Exception): """ Parse error in Google results. self.msg attribute contains explanation why parsing failed self.tag attribute contains BeautifulSoup object with the most relevant tag that failed to parse Thrown only in debug mode """ def __init__(self, msg, tag): self.msg = msg self.tag = tag def __str__(self): return self.msg def html(self): return self.tag.prettify() GET_ALL_SLEEP_FUNCTION = object() class SponsoredLink(object): """ a single sponsored link """ def __init__(self, title, url, display_url, desc): self.title = title self.url = url self.display_url = display_url self.desc = desc class SponsoredLinks(object): SEARCH_URL_0 = 'http://www.google.com/sponsoredlinks?q=%(query)s&btnG=Search+Sponsored+Links&hl=en' NEXT_PAGE_0 = ( 'http://www.google.com/sponsoredlinks?q=%(query)s&sa=N&start=%(start)d&hl=en' ) SEARCH_URL_1 = 'http://www.google.com/sponsoredlinks?q=%(query)s&num=%(num)d&btnG=Search+Sponsored+Links&hl=en' NEXT_PAGE_1 = 'http://www.google.com/sponsoredlinks?q=%(query)s&num=%(num)d&sa=N&start=%(start)d&hl=en' def __init__(self, query, random_agent=False, debug=False): self.query = query self.debug = debug self.browser = Browser(debug=debug) self._page = 0 self.eor = False self.results_info = None self._results_per_page = 10 if random_agent: self.browser.set_random_user_agent() @property def num_results(self): if not self.results_info: page = self._get_results_page() self.results_info = self._extract_info(page) if self.results_info['total'] == 0: self.eor = True return self.results_info['total'] def _get_results_per_page(self): return self._results_per_page def _set_results_par_page(self, rpp): self._results_per_page = rpp results_per_page = property(_get_results_per_page, _set_results_par_page) def get_results(self): if self.eor: return [] page = self._get_results_page() info = self._extract_info(page) if self.results_info is None: self.results_info = info if info['to'] == info['total']: self.eor = True results = self._extract_results(page) if not results: self.eor = True return [] self._page += 1 return results def _get_all_results_sleep_fn(self): return random.random() * 5 + 1 # sleep from 1 - 6 seconds def get_all_results(self, sleep_function=None): if sleep_function is GET_ALL_SLEEP_FUNCTION: sleep_function = self._get_all_results_sleep_fn if sleep_function is None: sleep_function = lambda: None ret_results = [] while True: res = self.get_results() if not res: return ret_results ret_results.extend(res) return ret_results def _maybe_raise(self, cls, *arg): if self.debug: raise cls(*arg) def _extract_info(self, soup): empty_info = {'from': 0, 'to': 0, 'total': 0} stats_span = soup.find('span', id='stats') if not stats_span: return empty_info txt = ''.join(stats_span.findAll(text=True)) txt = txt.replace(',', '').replace('&nbsp;', ' ') matches = re.search(r'Results (\d+) - (\d+) of (?:about )?(\d+)', txt) if not matches: return empty_info return { 'from': int(matches.group(1)), 'to': int(matches.group(2)), 'total': int(matches.group(3)), } def _get_results_page(self): if self._page == 0: if self._results_per_page == 10: url = SponsoredLinks.SEARCH_URL_0 else: url = SponsoredLinks.SEARCH_URL_1 else: if self._results_per_page == 10: url = SponsoredLinks.NEXT_PAGE_0 else: url = SponsoredLinks.NEXT_PAGE_1 safe_url = url % { 'query': urllib.parse.quote_plus(self.query), 'start': self._page * self._results_per_page, 'num': self._results_per_page, } try: page = self.browser.get_page(safe_url) except BrowserError as e: raise SLError('Failed getting %s: %s' % (e.url, e.error)) return BeautifulSoup(page) def _extract_results(self, soup): results = soup.findAll('div', {'class': 'g'}) ret_res = [] for result in results: eres = self._extract_result(result) if eres: ret_res.append(eres) return ret_res def _extract_result(self, result): title, url = self._extract_title_url(result) display_url = self._extract_display_url( result ) # Warning: removes 'cite' from the result desc = self._extract_description(result) if not title or not url or not display_url or not desc: return None return SponsoredLink(title, url, display_url, desc) def _extract_title_url(self, result): title_a = result.find('a') if not title_a: self._maybe_raise( SLParseError, 'Title tag in sponsored link was not found', result ) return None, None title = ''.join(title_a.findAll(text=True)) title = self._html_unescape(title) url = title_a['href'] match = re.search(r'q=(http[^&]+)&', url) if not match: self._maybe_raise( SLParseError, 'URL inside a sponsored link was not found', result ) return None, None url = urllib.parse.unquote(match.group(1)) return title, url def _extract_display_url(self, result): cite = result.find('cite') if not cite: self._maybe_raise(SLParseError, '<cite> not found inside result', result) return None return ''.join(cite.findAll(text=True)) def _extract_description(self, result): cite = result.find('cite') if not cite: return None cite.extract() desc_div = result.find('div', {'class': 'line23'}) if not desc_div: self._maybe_raise( ParseError, 'Description tag not found in sponsored link', result ) return None desc_strs = desc_div.findAll(text=True)[0:-1] desc = ''.join(desc_strs) desc = desc.replace('\n', ' ') desc = desc.replace(' ', ' ') return self._html_unescape(desc) def _html_unescape(self, str): def entity_replacer(m): entity = m.group(1) if entity in name2codepoint: return chr(name2codepoint[entity]) else: return m.group(0) def ascii_replacer(m): cp = int(m.group(1)) if cp <= 255: return chr(cp) else: return m.group(0) s = re.sub(r'&#(\d+);', ascii_replacer, str, re.U) return re.sub(r'&([^;]+);', entity_replacer, s, re.U)
3a3f5eca94ff903e351eda079b55486e241fbaf2
ee4c4c2cc6c663d4233d8145b01ae9eb4fdeb6c0
/configs/FDDB/retinanet/cfgs_res50_fddb_v4.py
3d62297eb03eef39a8f72de29894929e06afd4ac
[ "Apache-2.0" ]
permissive
yangcyz/RotationDetection
c86f40f0be1142c30671d4fed91446aa01ee31c1
82706f4c4297c39a6824b9b53a55226998fcd2b2
refs/heads/main
2023-09-01T23:25:31.956004
2021-11-23T13:57:31
2021-11-23T13:57:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,992
py
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import import numpy as np from alpharotate.utils.pretrain_zoo import PretrainModelZoo from configs._base_.models.retinanet_r50_fpn import * from configs._base_.datasets.dota_detection import * from configs._base_.schedules.schedule_1x import * # schedule BATCH_SIZE = 1 GPU_GROUP = "0,1,2" NUM_GPU = len(GPU_GROUP.strip().split(',')) SAVE_WEIGHTS_INTE = 2000 * 2 DECAY_EPOCH = [8, 11, 20] MAX_EPOCH = 12 WARM_EPOCH = 1 / 16. DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE) # dataset DATASET_NAME = 'FDDB' CLASS_NUM = 1 # model # backbone pretrain_zoo = PretrainModelZoo() PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH) TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights') # bbox head NUM_SUBNET_CONV = 4 LEVEL = ['P3', 'P4', 'P5', 'P6', 'P7'] BASE_ANCHOR_SIZE_LIST = [32, 64, 128, 256, 512] ANCHOR_STRIDE = [8, 16, 32, 64, 128] ANCHOR_SCALES = [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)] ANCHOR_RATIOS = [1, 1 / 1.5, 1.5] # loss CLS_WEIGHT = 1.0 REG_WEIGHT = 1.0 / 5.0 REG_LOSS_MODE = None # eval USE_07_METRIC = False VERSION = 'RetinaNet_FDDB_2x_20211106' """ RetinaNet-H + 90 FLOPs: 830085163; Trainable params: 32159286 2007 cls : face|| Recall: 0.9648760330578512 || Precison: 0.5751231527093597|| AP: 0.9071560203590661 F1:0.9482526582400714 P:0.9697624190064795 R:0.9276859504132231 mAP is : 0.9071560203590661 2012 cls : face|| Recall: 0.9648760330578512 || Precison: 0.574887156339762|| AP: 0.959204678220418 F1:0.9482526582400714 P:0.9697624190064795 R:0.9276859504132231 mAP is : 0.959204678220418 AP50:95=0.5276534556388707 0.959204678220418 0.9301560772935049 0.8749958747257098 0.7844197465233099 0.683315839522552 0.558135300551797 0.3479441339258663 0.12669957890041392 0.011630901808271605 3.2424916862513164e-05 """
033a02153fd14c2d5475e0363c33629676f59c87
97ffb573b2f5f615c14347f9e2e8c12660c799a8
/libs/ignite_utils.py
26a021b900f7b27e00f4639a54305d87b4641b46
[]
no_license
GOSSAN0602/OCR-Ancient-characters
d2745ea133b9d4595e860f03afa1d3eed7ee2104
b118a9f40127af505f6e324aaabf0fccd2ce9d12
refs/heads/master
2020-12-22T21:10:30.266685
2020-01-31T07:20:36
2020-01-31T07:20:36
236,933,401
0
0
null
null
null
null
UTF-8
Python
false
false
4,756
py
import json from logging import getLogger import os from time import perf_counter import torch import pandas as pd from ignite.engine.engine import Engine, Events from ignite.metrics import Average from ignite.metrics.metric import Metric def save_json(filepath, params): with open(filepath, 'w') as f: json.dump(params, f, indent=4) class DictOutputTransform: def __init__(self, key, index=0): self.key = key self.index = index def __call__(self, x): if self.index >= 0: x = x[self.index] return x[self.key] def create_trainer(classifier, optimizer, device): classifier.to(device) def update_fn(engine, batch): classifier.train() optimizer.zero_grad() # batch = [elem.to(device) for elem in batch] x, y = [elem.to(device) for elem in batch] loss, metrics, pred_y = classifier(x, y) loss.backward() optimizer.step() return metrics, pred_y, y trainer = Engine(update_fn) for key in classifier.metrics_keys: Average(output_transform=DictOutputTransform(key)).attach(trainer, key) return trainer def create_evaluator(classifier, device): classifier.to(device) def update_fn(engine, batch): classifier.eval() with torch.no_grad(): # batch = [elem.to(device) for elem in batch] x, y = [elem.to(device) for elem in batch] _, metrics, pred_y = classifier(x, y) return metrics, pred_y, y evaluator = Engine(update_fn) for key in classifier.metrics_keys: Average(output_transform=DictOutputTransform(key)).attach(evaluator, key) return evaluator class LogReport: def __init__(self, evaluator=None, dirpath=None, logger=None): self.evaluator = evaluator self.dirpath = str(dirpath) if dirpath is not None else None self.logger = logger or getLogger(__name__) self.reported_dict = {} # To handle additional parameter to monitor self.history = [] self.start_time = perf_counter() def report(self, key, value): self.reported_dict[key] = value def __call__(self, engine): elapsed_time = perf_counter() - self.start_time elem = {'epoch': engine.state.epoch, 'iteration': engine.state.iteration} elem.update({f'train/{key}': value for key, value in engine.state.metrics.items()}) if self.evaluator is not None: elem.update({f'valid/{key}': value for key, value in self.evaluator.state.metrics.items()}) elem.update(self.reported_dict) elem['elapsed_time'] = elapsed_time self.history.append(elem) if self.dirpath: save_json(os.path.join(self.dirpath, 'log.json'), self.history) self.get_dataframe().to_csv(os.path.join(self.dirpath, 'log.csv'), index=False) # --- print --- msg = '' for key, value in elem.items(): if key in ['iteration']: # skip printing some parameters... continue elif isinstance(value, int): msg += f'{key} {value: >6d} ' else: msg += f'{key} {value: 8f} ' # self.logger.warning(msg) print(msg) # --- Reset --- self.reported_dict = {} def get_dataframe(self): df = pd.DataFrame(self.history) return df class SpeedCheckHandler: def __init__(self, iteration_interval=10, logger=None): self.iteration_interval = iteration_interval self.logger = logger or getLogger(__name__) self.prev_time = perf_counter() def __call__(self, engine: Engine): if engine.state.iteration % self.iteration_interval == 0: cur_time = perf_counter() spd = self.iteration_interval / (cur_time - self.prev_time) self.logger.warning(f'{spd} iter/sec') # reset self.prev_time = cur_time def attach(self, engine: Engine): engine.add_event_handler(Events.ITERATION_COMPLETED, self) class ModelSnapshotHandler: def __init__(self, model, filepath='model_{count:06}.pt', interval=1, logger=None): self.model = model self.filepath: str = str(filepath) self.interval = interval self.logger = logger or getLogger(__name__) self.count = 0 def __call__(self, engine: Engine): self.count += 1 if self.count % self.interval == 0: filepath = self.filepath.format(count=self.count) torch.save(self.model.state_dict(), filepath) # self.logger.warning(f'save model to {filepath}...')
7be016d715c3f91b6565881bab25ad196f486f3e
0266077854f9dd6e2b55f4e8e71f77f42bd20b21
/apps/childcount/migrations/0021_auto__add_field_pregnancyregistrationreport_husband__chg_field_pregnan.py
b83efee908b56322835f5372190f738fffb7c778
[]
no_license
techpub/rapidsms
5af55880d4aa4c6035ea16d3fb1f6ea4524893d7
b71f4c5ce93fe8ac7b1cf0b8522b698361904dbb
refs/heads/ccstable
2020-12-03T09:19:56.397816
2013-05-15T07:37:46
2013-05-15T07:37:46
46,684,087
0
0
null
2015-11-22T22:41:45
2015-11-22T22:41:45
null
UTF-8
Python
false
false
35,171
py
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'PregnancyRegistrationReport.husband' db.add_column('cc_pregregrpt', 'husband', self.gf('django.db.models.fields.related.ForeignKey')(blank=True, related_name='husband', null=True, to=orm['childcount.Patient']), keep_default=False) # Changing field 'PregnancyRegistrationReport.married' db.alter_column('cc_pregregrpt', 'married', self.gf('django.db.models.fields.CharField')(max_length=1)) def backwards(self, orm): # Deleting field 'PregnancyRegistrationReport.husband' db.delete_column('cc_pregregrpt', 'husband_id') # Changing field 'PregnancyRegistrationReport.married' db.alter_column('cc_pregregrpt', 'married', self.gf('django.db.models.fields.BooleanField')(blank=True)) models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'blank': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'childcount.antenatalvisitreport': { 'Meta': {'object_name': 'AntenatalVisitReport', 'db_table': "'cc_iavrpt'", '_ormbases': ['childcount.CCReport']}, 'blood_drawn': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'expected_on': ('django.db.models.fields.DateTimeField', [], {}), 'hiv': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'pregnancy_week': ('django.db.models.fields.PositiveSmallIntegerField', [], {}) }, 'childcount.appointmentreport': { 'Meta': {'object_name': 'AppointmentReport', 'db_table': "'cc_appointment'", '_ormbases': ['childcount.CCReport']}, 'appointment_date': ('django.db.models.fields.DateTimeField', [], {}), 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}) }, 'childcount.bcpillreport': { 'Meta': {'object_name': 'BCPillReport', 'db_table': "'cc_bcprpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'pills': ('django.db.models.fields.PositiveSmallIntegerField', [], {}) }, 'childcount.bednetissuedreport': { 'Meta': {'object_name': 'BednetIssuedReport', 'db_table': "'cc_bdnstc_rpt'", '_ormbases': ['childcount.CCReport']}, 'bednet_received': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}) }, 'childcount.bednetreport': { 'Meta': {'object_name': 'BedNetReport', 'db_table': "'cc_bnrpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'damaged_nets': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'earlier_nets': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'function_nets': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'sleeping_sites': ('django.db.models.fields.PositiveSmallIntegerField', [], {}) }, 'childcount.bednetutilization': { 'Meta': {'object_name': 'BednetUtilization', 'db_table': "'cc_bdnutil_rpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'child_lastnite': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'child_underfive': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'hanging_bednet': ('django.db.models.fields.SmallIntegerField', [], {}), 'reason': ('django.db.models.fields.CharField', [], {'max_length': '2', 'null': 'True', 'blank': 'True'}) }, 'childcount.birthreport': { 'Meta': {'object_name': 'BirthReport', 'db_table': "'cc_birthrpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'clinic_delivery': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'weight': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}) }, 'childcount.case': { 'Meta': {'object_name': 'Case', 'db_table': "'cc_case'"}, 'created_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'expires_on': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'patient': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.Patient']"}), 'reports': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['childcount.CCReport']", 'symmetrical': 'False'}), 'status': ('django.db.models.fields.SmallIntegerField', [], {'default': '0'}), 'type': ('django.db.models.fields.SmallIntegerField', [], {}), 'updated_on': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'childcount.ccreport': { 'Meta': {'object_name': 'CCReport', 'db_table': "'cc_ccrpt'"}, 'encounter': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.Encounter']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'polymorphic_ctype': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'polymorphic_childcount.ccreport_set'", 'null': 'True', 'to': "orm['contenttypes.ContentType']"}) }, 'childcount.chw': { 'Meta': {'object_name': 'CHW', 'db_table': "'cc_chw'", '_ormbases': ['reporters.Reporter']}, 'clinic': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'stationed_chw'", 'null': 'True', 'to': "orm['childcount.Clinic']"}), 'manager': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.CHW']", 'null': 'True', 'blank': 'True'}), 'reporter_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['reporters.Reporter']", 'unique': 'True', 'primary_key': 'True'}) }, 'childcount.chwhealthid': { 'Meta': {'object_name': 'CHWHealthId', 'db_table': "'cc_chwhealthid'"}, 'chw': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.CHW']", 'null': 'True', 'blank': 'True'}), 'health_id': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.HealthId']", 'unique': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'issued_on': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'used': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}) }, 'childcount.clinic': { 'Meta': {'object_name': 'Clinic', 'db_table': "'cc_clinic'", '_ormbases': ['locations.Location']}, 'location_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['locations.Location']", 'unique': 'True', 'primary_key': 'True'}) }, 'childcount.codeditem': { 'Meta': {'unique_together': "(('type', 'code'),)", 'object_name': 'CodedItem', 'db_table': "'cc_codeditem'"}, 'code': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '2'}) }, 'childcount.configuration': { 'Meta': {'unique_together': "(('key', 'value'),)", 'object_name': 'Configuration', 'db_table': "'cc_config'"}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}), 'value': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '255', 'blank': 'True'}) }, 'childcount.dangersignsreport': { 'Meta': {'object_name': 'DangerSignsReport', 'db_table': "'cc_dsrpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'danger_signs': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['childcount.CodedItem']", 'symmetrical': 'False'}) }, 'childcount.deadperson': { 'Meta': {'object_name': 'DeadPerson', 'db_table': "'cc_dead_person'"}, 'chw': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.CHW']"}), 'clinic': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.Clinic']", 'null': 'True', 'blank': 'True'}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'dob': ('django.db.models.fields.DateField', [], {}), 'dod': ('django.db.models.fields.DateField', [], {}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'household': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'deads_household_member'", 'null': 'True', 'to': "orm['childcount.Patient']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'location': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'deads_resident'", 'null': 'True', 'to': "orm['locations.Location']"}), 'mobile': ('django.db.models.fields.CharField', [], {'max_length': '16', 'null': 'True', 'blank': 'True'}), 'updated_on': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'childcount.deathreport': { 'Meta': {'object_name': 'DeathReport', 'db_table': "'cc_deathrpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'death_date': ('django.db.models.fields.DateField', [], {}) }, 'childcount.drinkingwaterreport': { 'Meta': {'object_name': 'DrinkingWaterReport', 'db_table': "'cc_drnkwater_rpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'treatment_method': ('django.db.models.fields.CharField', [], {'max_length': '2', 'blank': 'True'}), 'water_source': ('django.db.models.fields.CharField', [], {'max_length': '2'}) }, 'childcount.encounter': { 'Meta': {'object_name': 'Encounter', 'db_table': "'cc_encounter'"}, 'chw': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.CHW']"}), 'encounter_date': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'patient': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.Patient']"}), 'sync_omrs': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '1'}) }, 'childcount.familyplanningreport': { 'Meta': {'object_name': 'FamilyPlanningReport', 'db_table': "'cc_fprpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'women': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'women_using': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True', 'blank': 'True'}) }, 'childcount.familyplanningusage': { 'Meta': {'object_name': 'FamilyPlanningUsage', 'db_table': "'cc_fpusage'"}, 'count': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'fp_report': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.FamilyPlanningReport']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'method': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.CodedItem']"}) }, 'childcount.feverreport': { 'Meta': {'object_name': 'FeverReport', 'db_table': "'cc_fevrpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'rdt_result': ('django.db.models.fields.CharField', [], {'max_length': '1'}) }, 'childcount.followupreport': { 'Meta': {'object_name': 'FollowUpReport', 'db_table': "'cc_furpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'improvement': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'visited_clinic': ('django.db.models.fields.CharField', [], {'max_length': '1'}) }, 'childcount.formgroup': { 'Meta': {'object_name': 'FormGroup', 'db_table': "'cc_frmgrp'"}, 'backend': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['reporters.PersistantBackend']"}), 'encounter': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.Encounter']", 'null': 'True', 'blank': 'True'}), 'entered_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'encounters_entered'", 'null': 'True', 'to': "orm['reporters.Reporter']"}), 'entered_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'forms': ('django.db.models.fields.CharField', [], {'max_length': '150', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'childcount.healthid': { 'Meta': {'object_name': 'HealthId', 'db_table': "'cc_healthid'"}, 'generated_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'health_id': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '10'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'issued_on': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'issued_to': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.Patient']", 'null': 'True', 'blank': 'True'}), 'printed_on': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'revoked_on': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'default': "'G'", 'max_length': '1'}) }, 'childcount.householdvisitreport': { 'Meta': {'object_name': 'HouseholdVisitReport', 'db_table': "'cc_hhvisitrpt'", '_ormbases': ['childcount.CCReport']}, 'available': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'children': ('django.db.models.fields.SmallIntegerField', [], {'null': 'True', 'blank': 'True'}), 'counseling': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['childcount.CodedItem']", 'symmetrical': 'False', 'blank': 'True'}) }, 'childcount.immunizationnotification': { 'Meta': {'unique_together': "(('patient', 'immunization'),)", 'object_name': 'ImmunizationNotification', 'db_table': "'cc_immunnotif'"}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'immunization': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.ImmunizationSchedule']"}), 'notified_on': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'notify_on': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'patient': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.Patient']"}) }, 'childcount.immunizationschedule': { 'Meta': {'object_name': 'ImmunizationSchedule', 'db_table': "'cc_immunsched'"}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'immunization': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'period': ('django.db.models.fields.PositiveIntegerField', [], {}), 'period_type': ('django.db.models.fields.CharField', [], {'max_length': '10'}) }, 'childcount.medicinegivenreport': { 'Meta': {'object_name': 'MedicineGivenReport', 'db_table': "'cc_medsrpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'medicines': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['childcount.CodedItem']", 'symmetrical': 'False'}) }, 'childcount.neonatalreport': { 'Meta': {'object_name': 'NeonatalReport', 'db_table': "'cc_neorpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'clinic_visits': ('django.db.models.fields.PositiveSmallIntegerField', [], {}) }, 'childcount.nutritionreport': { 'Meta': {'object_name': 'NutritionReport', 'db_table': "'cc_nutrpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'muac': ('django.db.models.fields.SmallIntegerField', [], {'null': 'True', 'blank': 'True'}), 'oedema': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'status': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'weight': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}) }, 'childcount.patient': { 'Meta': {'object_name': 'Patient', 'db_table': "'cc_patient'"}, 'chw': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.CHW']"}), 'clinic': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.Clinic']", 'null': 'True', 'blank': 'True'}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'dob': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'estimated_dob': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'health_id': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '6', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'household': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'household_member'", 'null': 'True', 'to': "orm['childcount.Patient']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'location': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'resident'", 'null': 'True', 'to': "orm['locations.Location']"}), 'mobile': ('django.db.models.fields.CharField', [], {'max_length': '16', 'null': 'True', 'blank': 'True'}), 'mother': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'child'", 'null': 'True', 'to': "orm['childcount.Patient']"}), 'status': ('django.db.models.fields.SmallIntegerField', [], {'default': '1'}), 'updated_on': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'childcount.pregnancyregistrationreport': { 'Meta': {'object_name': 'PregnancyRegistrationReport', 'db_table': "'cc_pregregrpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'husband': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'husband'", 'null': 'True', 'to': "orm['childcount.Patient']"}), 'married': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'number_of_children': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'pregnancies': ('django.db.models.fields.PositiveSmallIntegerField', [], {}) }, 'childcount.pregnancyreport': { 'Meta': {'object_name': 'PregnancyReport', 'db_table': "'cc_pregrpt'", '_ormbases': ['childcount.CCReport']}, 'anc_visits': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'pregnancy_month': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'weeks_since_anc': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True', 'blank': 'True'}) }, 'childcount.referral': { 'Meta': {'object_name': 'Referral', 'db_table': "'cc_referral'"}, 'created_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {}), 'expires_on': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'patient': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.Patient']"}), 'ref_id': ('django.db.models.fields.CharField', [], {'max_length': '30', 'db_index': 'True'}), 'reports': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['childcount.CCReport']", 'symmetrical': 'False'}), 'status': ('django.db.models.fields.SmallIntegerField', [], {'default': '0'}), 'updated_on': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'childcount.referralreport': { 'Meta': {'object_name': 'ReferralReport', 'db_table': "'cc_refrpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'urgency': ('django.db.models.fields.CharField', [], {'max_length': '1'}) }, 'childcount.sanitationreport': { 'Meta': {'object_name': 'SanitationReport', 'db_table': "'cc_sanitation_rpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'share_toilet': ('django.db.models.fields.SmallIntegerField', [], {}), 'toilet_lat': ('django.db.models.fields.CharField', [], {'max_length': '2'}) }, 'childcount.sickmembersreport': { 'Meta': {'object_name': 'SickMembersReport', 'db_table': "'cc_sickrpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'on_treatment': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'positive_rdts': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'rdts': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'sick': ('django.db.models.fields.PositiveSmallIntegerField', [], {}) }, 'childcount.spregnancy': { 'Meta': {'object_name': 'SPregnancy', 'db_table': "'cc_sauri_pregrpt'", '_ormbases': ['childcount.PregnancyReport']}, 'cd4_count': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'folic_suppliment': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'iron_supplement': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'pmtc_arv': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['childcount.CodedItem']", 'null': 'True', 'blank': 'True'}), 'pregnancyreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.PregnancyReport']", 'unique': 'True', 'primary_key': 'True'}), 'tested_hiv': ('django.db.models.fields.CharField', [], {'max_length': '2'}) }, 'childcount.stillbirthmiscarriagereport': { 'Meta': {'object_name': 'StillbirthMiscarriageReport', 'db_table': "'cc_sbmcrpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'incident_date': ('django.db.models.fields.DateField', [], {}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}) }, 'childcount.sunderone': { 'Meta': {'object_name': 'SUnderOne', 'db_table': "'cc_sauri_uonerpt'", '_ormbases': ['childcount.UnderOneReport']}, 'underonereport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.UnderOneReport']", 'unique': 'True', 'primary_key': 'True'}), 'vaccine': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['childcount.Vaccine']", 'symmetrical': 'False'}) }, 'childcount.underonereport': { 'Meta': {'object_name': 'UnderOneReport', 'db_table': "'cc_uonerpt'", '_ormbases': ['childcount.CCReport']}, 'breast_only': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'immunized': ('django.db.models.fields.CharField', [], {'max_length': '1'}) }, 'childcount.vaccine': { 'Meta': {'object_name': 'Vaccine', 'db_table': "'cc_vaccine'"}, 'code': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '10'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'childcount.verbalautopsyreport': { 'Meta': {'object_name': 'VerbalAutopsyReport', 'db_table': "'cc_autopsyrpt'", '_ormbases': ['childcount.CCReport']}, 'ccreport_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['childcount.CCReport']", 'unique': 'True', 'primary_key': 'True'}), 'done': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}) }, 'contenttypes.contenttype': { 'Meta': {'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'locations.location': { 'Meta': {'object_name': 'Location'}, 'code': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latitude': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '6', 'blank': 'True'}), 'longitude': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '8', 'decimal_places': '6', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'to': "orm['locations.Location']"}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'locations'", 'null': 'True', 'to': "orm['locations.LocationType']"}) }, 'locations.locationtype': { 'Meta': {'object_name': 'LocationType'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'reporters.persistantbackend': { 'Meta': {'object_name': 'PersistantBackend'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '30'}) }, 'reporters.reporter': { 'Meta': {'object_name': 'Reporter', '_ormbases': ['auth.User']}, 'language': ('django.db.models.fields.CharField', [], {'max_length': '10', 'blank': 'True'}), 'location': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'reporters'", 'null': 'True', 'to': "orm['locations.Location']"}), 'user_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True', 'primary_key': 'True'}) } } complete_apps = ['childcount']
3cec55de5e490b496ba347b8d217cacfc2c13666
b82057c77dd4d00ff9bca9a979a1a3075f0528c4
/Exicom_gateway/checks/ec500_dg_run_hrs_status
f262c1d3c3aca62ea1088f680672de55d4d0d89f
[]
no_license
subhash-007/photography-blog
7ee0c4f930fee29d76106c45b09e6b76cb19cf56
b1ae66794b48bfe3862cb6e727a3a15a6ef79024
refs/heads/master
2020-03-31T04:33:00.276628
2019-07-12T06:00:39
2019-07-12T06:00:39
151,910,256
0
0
null
null
null
null
UTF-8
Python
false
false
2,669
#!/usr/bin/python """ dgRunHrs of poller device. This is part of device application. Poller script determines the dgRunHrs of device. poller script takes the snmp value of OID .1.3.6.1.4.1.38016.14.19.4 from snmp agent of device at specific interval. Device dgRunHrs is sent to device application """ # ###################################################################### # Function: check_ec500_dg_run_hrs_status # # Parameters: info (SNMP Ouput) params (No Parameters) # # Output: device dg_run_hrs # ###################################################################### ec500_dg_run_hrs_default_levels = () def check_ec500_dg_run_hrs_status(item, params, info): """ check_ec500_dg_run_hrs_status function fetches the dgRunHrs Args: item (str) Specific item on SNMP output on which we want to filter results Kwargs: params (tuple) Check parameters for critical and warning state of service Returns: state (int) : 0 : OK 1 : Warning 2: Critical 3: unknown infotext(string): plugin output Example : OK - ;;;; Raises: Exception """ state = 3 infotext = "unknown_value" perf_data = [''] if info: try: state = 0 try : ec500_dg_run_hrs = float(info[0][0]) except Exception,e: ec500_dg_run_hrs = str(info[0][0].replace(" ","@")) perf_data = [("ec500_dg_run_hrs", ec500_dg_run_hrs)] return (state, "ec500_dg_run_hrs=%s" % ec500_dg_run_hrs, perf_data) except Exception,e: return (3, "ec500_dg_run_hrs=%s" % infotext.replace(" ","@"), perf_data) else: return (state, "ec500_dg_run_hrs=%s" %"No data retrieved".replace(" ","@"), perf_data) # This check works on all SNMP hosts """ Dictionary-based declaration of all check types """ check_info["ec500_dg_run_hrs_status"] = { 'check_function': check_ec500_dg_run_hrs_status, 'service_description': 'ec500_dg_run_hrs_status', 'has_perfdata': True, } ######################################################################### # SNMP OID for the device dgRunHrs ######################################################################### snmp_info["ec500_dg_run_hrs_status"] = ('.1.3.6.1.4.1.38016.14', ['19.4'])
64c49ca2cb4c7c43f39de8540150f88edbcf456f
09b22d1bd1263e4082e6bba7afa2f2b7a66afd4a
/2 Panda/Merging Joining and concatenating.py
90dcad0a206666caa8afe348c070f41b30c17891
[]
no_license
yogeshkushwahait/Machine-Learning-Using-Python
b70bc5334c4178fecc175451b8b7e04e50a60917
8102ce7b0cba5d48e923f979ae0a8e71c25857b1
refs/heads/master
2022-03-28T05:21:24.332537
2019-11-05T06:34:00
2020-01-09T16:06:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,079
py
# coding: utf-8 # In[1]: import numpy as np # In[2]: import pandas as pd # In[8]: df1 = pd.DataFrame({'A':['A0','A1','A2','A3'], 'B':['B0','B1','B2','B3'], 'C':['C0','C1','C2','C3'], 'D':['D0','D1','D2','D3']}, index=[0,1,2,3]) # In[9]: df2 = pd.DataFrame({'A':['A4','A5','A6','A7'], 'B':['B4','B5','B6','B7'], 'C':['C4','C5','C6','C7'], 'D':['D4','D5','D6','D7']}, index=[4,5,6,7]) # In[10]: df3 = pd.DataFrame({'A':['A8','A9','A10','A11'], 'B':['B8','B9','B10','B11'], 'C':['C8','C9','C10','C11'], 'D':['D8','D9','D10','D11']}, index=[8,9,10,11]) # In[11]: df1 # In[12]: df2 # In[13]: df3 # In[14]: pd.concat([df1,df2,df3]) # In[15]: pd.concat([df1,df2,df3],axis=1) # In[18]: left = pd.DataFrame({'key':['K0','K1','K2','K3'], 'A':['A0','A1','A2','A3'], 'B':['B0','B1','B2','B3']}) # In[19]: right = pd.DataFrame({'key':['K0','K1','K2','K3'], 'C':['C0','C1','C2','C3'], 'D':['D0','D1','D2','D3']}) # In[20]: left # In[21]: right # In[22]: pd.merge(left,right,how='inner',on='key') #By default inner # In[27]: left = pd.DataFrame({'key1':['K0','K0','K1','K2'], 'key2':['K0','K1','K0','K1'], 'A':['A0','A1','A2','A3'], 'B':['B0','B1','B2','B3']}) right = pd.DataFrame({'key1':['K0','K1','K1','K2'], 'key2':['K0','K0','K0','K0'], 'C':['C0','C1','C2','C3'], 'D':['D0','D1','D2','D3']}) # In[28]: left # In[29]: right # In[30]: pd.merge(left,right,on=['key1','key2']) # In[31]: pd.merge(left,right,how='outer', on=['key1','key2']) # In[32]: pd.merge(left,right,how='right', on=['key1','key2']) # In[34]: pd.merge(left,right,how='left', on=['key1','key2'])
86967f12db84d645c96b6fcc9ce73c7e7323e057
fcdfe976c9ed60b18def889692a17dc18a8dd6d7
/ros/py_ros/ur/follow_q_traj2.py
aefc0a0a5ab2d97e9674f530bc544538ff3fa55e
[]
no_license
akihikoy/ay_test
4907470889c9bda11cdc84e8231ef3156fda8bd7
a24dfb720960bfedb94be3b4d147e37616e7f39a
refs/heads/master
2023-09-02T19:24:47.832392
2023-08-27T06:45:20
2023-08-27T06:45:20
181,903,332
6
3
null
null
null
null
UTF-8
Python
false
false
1,998
py
#!/usr/bin/python #\file follow_q_traj1.py #\brief Follow a joint angle trajectory. #\author Akihiko Yamaguchi, [email protected] #\version 0.1 #\date Jun.12, 2018 #Based on: ../baxter/follow_q_traj1.py import roslib import rospy import actionlib import control_msgs.msg import trajectory_msgs.msg import time, math, sys, copy from get_q1 import GetState if __name__=='__main__': rospy.init_node('ur_test') joint_names= ['shoulder_pan_joint', 'shoulder_lift_joint', 'elbow_joint', 'wrist_1_joint', 'wrist_2_joint', 'wrist_3_joint'] client= actionlib.SimpleActionClient('/follow_joint_trajectory', control_msgs.msg.FollowJointTrajectoryAction) client.cancel_goal() #Ensure to cancel the ongoing goal. # Wait some seconds for the head action server to start or exit if not client.wait_for_server(rospy.Duration(5.0)): rospy.logerr('Exiting - Joint Trajectory Action Server Not Found') rospy.signal_shutdown('Action Server not found') sys.exit(1) goal= control_msgs.msg.FollowJointTrajectoryGoal() #goal.goal_time_tolerance= rospy.Time(0.1) goal.trajectory.joint_names= joint_names #NOTE: We need to specify velocities. Otherwise: #error_code: -1 #error_string: "Received a goal without velocities" def add_point(goal, time, positions, velocities): point= trajectory_msgs.msg.JointTrajectoryPoint() point.positions= copy.deepcopy(positions) point.velocities= copy.deepcopy(velocities) point.time_from_start= rospy.Duration(time) goal.trajectory.points.append(point) angles= GetState().position add_point(goal, 0.0, angles, [0.0]*6) add_point(goal, 1.0, [q+0.02 for q in angles], [0.0]*6) add_point(goal, 3.0, [q-0.02 for q in angles], [0.0]*6) add_point(goal, 4.0, angles, [0.0]*6) goal.trajectory.header.stamp= rospy.Time.now() client.send_goal(goal) #client.cancel_goal() #client.wait_for_result(timeout=rospy.Duration(20.0)) print client.get_result() #rospy.signal_shutdown('Done.')
1a1e06233c6c3a7141c912a01c8cfff5ff0c0416
9b64f0f04707a3a18968fd8f8a3ace718cd597bc
/huaweicloud-sdk-cdn/huaweicloudsdkcdn/v1/model/url_object.py
301b5c0fb38a39a4473ea350b7066e607b8d92f6
[ "Apache-2.0" ]
permissive
jaminGH/huaweicloud-sdk-python-v3
eeecb3fb0f3396a475995df36d17095038615fba
83ee0e4543c6b74eb0898079c3d8dd1c52c3e16b
refs/heads/master
2023-06-18T11:49:13.958677
2021-07-16T07:57:47
2021-07-16T07:57:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,090
py
# coding: utf-8 import re import six class UrlObject: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'id': 'str', 'url': 'str', 'status': 'str', 'create_time': 'int', 'task_id': 'str', 'process_reason': 'str' } attribute_map = { 'id': 'id', 'url': 'url', 'status': 'status', 'create_time': 'create_time', 'task_id': 'task_id', 'process_reason': 'process_reason' } def __init__(self, id=None, url=None, status=None, create_time=None, task_id=None, process_reason=None): """UrlObject - a model defined in huaweicloud sdk""" self._id = None self._url = None self._status = None self._create_time = None self._task_id = None self._process_reason = None self.discriminator = None if id is not None: self.id = id if url is not None: self.url = url if status is not None: self.status = status if create_time is not None: self.create_time = create_time if task_id is not None: self.task_id = task_id if process_reason is not None: self.process_reason = process_reason @property def id(self): """Gets the id of this UrlObject. 任务id :return: The id of this UrlObject. :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this UrlObject. 任务id :param id: The id of this UrlObject. :type: str """ self._id = id @property def url(self): """Gets the url of this UrlObject. url的地址。 :return: The url of this UrlObject. :rtype: str """ return self._url @url.setter def url(self, url): """Sets the url of this UrlObject. url的地址。 :param url: The url of this UrlObject. :type: str """ self._url = url @property def status(self): """Gets the status of this UrlObject. url的状态 processing, succeed, failed,分别表示处理中,完成,失败。 :return: The status of this UrlObject. :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this UrlObject. url的状态 processing, succeed, failed,分别表示处理中,完成,失败。 :param status: The status of this UrlObject. :type: str """ self._status = status @property def create_time(self): """Gets the create_time of this UrlObject. url创建时间,相对于UTC 1970-01-01到当前时间相隔的毫秒数。 :return: The create_time of this UrlObject. :rtype: int """ return self._create_time @create_time.setter def create_time(self, create_time): """Sets the create_time of this UrlObject. url创建时间,相对于UTC 1970-01-01到当前时间相隔的毫秒数。 :param create_time: The create_time of this UrlObject. :type: int """ self._create_time = create_time @property def task_id(self): """Gets the task_id of this UrlObject. url所属task的id。 :return: The task_id of this UrlObject. :rtype: str """ return self._task_id @task_id.setter def task_id(self, task_id): """Sets the task_id of this UrlObject. url所属task的id。 :param task_id: The task_id of this UrlObject. :type: str """ self._task_id = task_id @property def process_reason(self): """Gets the process_reason of this UrlObject. 标记处理原因。 :return: The process_reason of this UrlObject. :rtype: str """ return self._process_reason @process_reason.setter def process_reason(self, process_reason): """Sets the process_reason of this UrlObject. 标记处理原因。 :param process_reason: The process_reason of this UrlObject. :type: str """ self._process_reason = process_reason def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): import simplejson as json return json.dumps(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, UrlObject): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
f91cda1a698a8414cfa6864362ce4e7d7c5b3a8e
6a1eba9825c67782102972aee1759f0e59c9eef7
/naeval/morph/models/__init__.py
9b598a2c2e6add867c5e7b31ef389418ccf23090
[]
no_license
buriy/naeval
6d238592ba6c02a625ccf7b643af84350b913de8
455cfb07047140aff2e4700a1630db7682c4d06a
refs/heads/master
2022-08-08T00:19:06.185029
2020-05-05T06:52:05
2020-05-05T06:52:05
264,369,308
0
0
null
2020-05-16T05:52:04
2020-05-16T05:52:03
null
UTF-8
Python
false
false
338
py
from .udpipe import UDPipeModel # noqa from .spacy import SpacyModel # noqa from .maru import MaruModel # noqa from .rnnmorph import RNNMorphModel # noqa from .deeppavlov import DeeppavlovModel, DeeppavlovBERTModel # noqa from .rupostagger import RuPosTaggerModel # noqa from .slovnet import SlovnetModel, SlovnetBERTModel # noqa
45393a6b428b0bd41d5ee54fb12cc5590f3ea26f
7f761492df0e0d1ae0fb77811ad462941854b7de
/pytorch_translate/research/unsupervised_morphology/bilingual_bpe.py
5ff4d17a838bffa980f82c424810400d95e8f426
[ "BSD-3-Clause" ]
permissive
blufb/translate
f5f9ee19818592dd1591d8d556bbdce82ab989f2
4a3465b846927dab3d53e98e57b3da1c7085fa17
refs/heads/master
2020-05-22T20:01:41.723629
2019-05-11T06:41:52
2019-05-11T06:48:31
186,503,354
0
0
null
2019-05-13T22:17:52
2019-05-13T22:17:52
null
UTF-8
Python
false
false
8,419
py
#!/usr/bin/env python3 import logging from collections import defaultdict from optparse import OptionParser from typing import Dict, List, Set, Tuple from pytorch_translate.research.unsupervised_morphology.bpe import BPE from pytorch_translate.research.unsupervised_morphology.char_ibm_model1 import ( Word2CharIBMModel1, ) logging.basicConfig(level=logging.INFO, format="%(asctime)s %(message)s") logger = logging.getLogger(__name__) def get_arg_parser(): parser = OptionParser() parser.add_option( "--src-file", dest="src_train_file", help="Source raw text as training data.", metavar="FILE", default=None, ) parser.add_option( "--dst-file", dest="dst_train_file", help="Target raw text as training data.", metavar="FILE", default=None, ) parser.add_option( "--vocab-size", type="int", dest="vocab_size", help="Source vocabulary Size.", default=20000, ) parser.add_option( "--train-out", dest="train_output_file", help="BPE tokenized source train file.", metavar="FILE", default=None, ) parser.add_option( "--ibm-iters", type="int", dest="num_ibm_iters", help="Number of training epochs for character IBM models.", default=3, ) parser.add_option("--model", type="str", dest="model_path", help="Model Path.") return parser class BilingualBPE(BPE): """ An extension of the BPE model that is cross-lingual wrt parallel data. """ def _init_params(self, ibm_model_path: str, src_txt_path: str, dst_txt_path: str): """ Args: src_txt_path: Text path for source language in parallel data. dst_txt_path: Text path for target language in parallel data. num_ibm_iters: Number of training epochs for the IBM model. """ logger.info("calculating alignment-based BPE type probs.") self.bpe_probs_from_alignment = self._calc_bpe_prob_from_alignment( ibm_model_path=ibm_model_path, dst_txt_path=dst_txt_path ) # Need to call this at the end, because this funciton calls the # _init_candidate_frequencies method (in this case, it needs dst2src_ibm_model). self._init_vocab(txt_path=src_txt_path) def _calc_word_probs(self, txt_path: str) -> Dict[str, float]: """ Calculates the probability of each word from raw counts in a text file. """ vocab = defaultdict(float) with open(txt_path) as txt_file: for line in txt_file: for word in line.strip().split(): vocab[word] += 1 denom = sum(vocab.values()) for word in vocab.keys(): vocab[word] /= denom return vocab def _calc_bpe_prob_from_alignment( self, ibm_model_path: str, dst_txt_path: str ) -> Dict[str, float]: """ p(subword=s) = sum_{t in target} p(s|t) p(t) where p(t) is target_word_prob[t] from _calc_word_probs and p(s|t) = self.dst2src_ibm_model.translation_prob[t][s] """ dst2src_ibm_model = Word2CharIBMModel1() dst2src_ibm_model.load(file_path=ibm_model_path) target_word_probs = self._calc_word_probs(txt_path=dst_txt_path) bpe_alignment_prob = defaultdict(float) for dst_word_id in list(dst2src_ibm_model.translation_prob.keys()): dst_word = dst2src_ibm_model.int2str(dst_word_id) target_word_prob = target_word_probs[dst_word] alignment_probs = dst2src_ibm_model.translation_prob[dst_word_id] for src_subword_id in list(alignment_probs.keys()): src_subword = dst2src_ibm_model.int2str(src_subword_id) bpe_alignment_prob[src_subword] += ( alignment_probs[src_subword] * target_word_prob ) for src_subword in bpe_alignment_prob.keys(): bpe_alignment_prob[src_subword] = max( bpe_alignment_prob[src_subword], 1e-30 ) return bpe_alignment_prob def _init_candidate_frequencies(self) -> None: self.merge_candidate_indices: Dict[Tuple[str, str], Set[int]] = defaultdict(set) self.merge_candidate_freq: Dict[Tuple(str, str), float] = defaultdict(float) for word_index, (seg, freq) in enumerate(self.current_train_data): (seg, freq) = self.current_train_data[word_index] for i in range(len(seg) - 1): bpe_key = (seg[i], seg[i + 1]) bpe_token = "".join(bpe_key) self.merge_candidate_freq[bpe_key] += self.bpe_alignment_prob( bpe_token, freq ) self.merge_candidate_indices[bpe_key].add(word_index) self.vocab[seg[i]] += freq self.vocab[seg[-1]] += freq def bpe_alignment_prob(self, bpe_token: str, freq: int): if bpe_token in self.bpe_probs_from_alignment: return self.bpe_probs_from_alignment[bpe_token] else: # In cases where the alignment model did not cover long character # sequences in training data. return freq * 1e-30 def update_candidate_frequencies( self, data_index: int, old_tokens: List[str], new_tokens: List[str] ): """ After each merge operation, we have to update the frequencies of the BPE candidates, including the ones that are deprecated (old_tokens), and the new ones (new_tokens) with respect to a training word (in data_index). """ freq = self.current_train_data[data_index][1] for i in range(len(new_tokens) - 1): self.vocab[new_tokens[i]] += freq bpe_candidate = (new_tokens[i], new_tokens[i + 1]) bpe_token = "".join(bpe_candidate) self.merge_candidate_freq[bpe_candidate] += self.bpe_alignment_prob( bpe_token, freq ) self.merge_candidate_indices[bpe_candidate].add(data_index) self.vocab[new_tokens[-1]] += freq for i in range(len(old_tokens) - 1): self.vocab[old_tokens[i]] -= freq if self.vocab[old_tokens[i]] == 0: del self.vocab[old_tokens[i]] bpe_candidate = (old_tokens[i], old_tokens[i + 1]) bpe_token = "".join(bpe_candidate) pfreq = self.bpe_alignment_prob(bpe_token, freq) if pfreq > 0: # just in case there is an underflow in value. self.merge_candidate_freq[bpe_candidate] -= pfreq if self.merge_candidate_freq[bpe_candidate] == 0: del self.merge_candidate_freq[bpe_candidate] del self.merge_candidate_indices[bpe_candidate] self.vocab[old_tokens[-1]] -= freq if self.vocab[old_tokens[-1]] == 0: del self.vocab[old_tokens[-1]] def build_vocab( self, ibm_model_path: str, src_txt_path: str, dst_txt_path: str, vocab_size: int ): """ Note that except initalization, other parts are the same as the original bpe build_vocab method. """ self._init_params( ibm_model_path=ibm_model_path, src_txt_path=src_txt_path, dst_txt_path=dst_txt_path, ) return self._build_vocab_loop(vocab_size=vocab_size) if __name__ == "__main__": arg_parser = get_arg_parser() options, args = arg_parser.parse_args() # Note the reverse side of the model. Target is word based, that is why # we give it a reverse order. dst2src_ibm_model = Word2CharIBMModel1() dst2src_ibm_model.learn_ibm_parameters( src_path=options.dst_train_file, dst_path=options.src_train_file, num_iters=options.num_ibm_iters, ) dst2src_ibm_model.save(file_path=options.model_path + ".ibm") bpe_model = BilingualBPE() bpe_model.build_vocab( ibm_model_path=options.model_path + ".ibm", src_txt_path=options.src_train_file, dst_txt_path=options.dst_train_file, vocab_size=options.vocab_size, ) bpe_model.segment_txt( input_path=options.src_train_file, output_path=options.train_output_file ) bpe_model.save(file_path=options.model_path)
bb46203f0ac1b4d9b9656df02a3f5910772f7b1a
3017b7399869057a8be7fb11ee9341b9c8f97ba4
/genfiles/legacysky_randoms.py
12bc592ff3e947e2d5310237717d2e385ab9a3ea
[]
no_license
michaelJwilson/SV-QA
8f486422eb71b3fbd0d395904fd654ba432bd777
dd6095d570442852bb28ac9da0f18be7b83cddce
refs/heads/master
2020-07-29T16:04:55.759155
2019-12-20T14:37:23
2019-12-20T14:37:23
209,872,086
0
0
null
null
null
null
UTF-8
Python
false
false
10,717
py
import os import sys import json import glob import fitsio import matplotlib import pylab as pl import pandas as pd import numpy as np import astropy.io.fits as fits import matplotlib.pyplot as plt import numpy.lib.recfunctions as rfn import healpy as hp from mpl_toolkits.axes_grid1 import make_axes_locatable from fast_scatter import fast_scatter from matplotlib import rc from astropy.table import Table, vstack from desitarget.targets import encode_targetid from desitarget.geomask import is_in_box from desitarget.targetmask import desi_mask from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.axes_grid1.inset_locator import inset_axes from make_mask import get_hone ## plt.style.use(['dark_background']) rc('font', **{'family':'serif', 'serif':['Times']}) rc('text', usetex=True) nside = np.int(sys.argv[1]) camera = str.encode(sys.argv[2]) ## [b'90prime', b'mosaic', b'decam'] band = str.encode(sys.argv[3]) ## [b'g', b'r', b'z'] recompute = False noplot = False plot_elgs = True if camera == b'mosaic': band = b'z' nrandom = np.int(20000) ## Sky rms for the entire image (in counts). ## Our pipeline (not the CP) estimate of the sky level, average over the image, in ADU. ## Standard deviation of our sky level. ## Sky surface brightness (in AB mag/arcsec2). ## Min. of our sky level. ## Max. of our sky level. ## FWHM (in pixels) measured by the CP. ## Community pipeline number. cols = ['expnum', 'camera', 'filter', 'ra_center', 'dec_center', 'ra0', 'dec0', 'ra1', 'dec1', 'ra2', 'dec2', 'ra3', 'dec3'] skies = ['exptime',\ 'skyrms',\ 'meansky',\ 'stdsky',\ 'ccdskysb',\ 'minsky',\ 'maxsky',\ 'fwhm',\ 'plver',\ 'airmass'] def remap(x, printit=False): uentries, cnts = np.unique(x, return_counts = True) result = np.zeros(len(x), dtype=[('plverf', np.float32)]) for u in uentries: entry = u.decode('UTF-8')[1:].replace('.', '').strip() lentry = len(entry) rentry = np.float(entry) / 10. ** (lentry - 1) print('Remapping {}, {} ({}) {}.'.format(u, entry, lentry, rentry)) result[x == u] = rentry ## print(result['plverf']) ## print(np.unique(result['plverf'], return_counts=True)) return result ## randoms = fitsio.FITS('/project/projectdirs/desi/target/catalogs/dr8/0.31.0/randoms/randoms-inside-dr8-0.31.0-2.fits') randoms = randoms[1]['RA', 'DEC'][:nrandom] ## randoms = Table(fits.open('/project/projectdirs/desi/target/catalogs/dr8/0.31.0/randoms/randoms-inside-dr8-0.31.0-2.fits')[1].data) ## randoms.pprint() _file = '/global/cscratch1/sd/mjwilson/BGS/SV-ASSIGN/skies/skies_{}_{}.txt'.format(camera.decode('UTF-8'), band.decode('UTF-8')) nfail = 0 if (not os.path.exists(_file)) | recompute: print('{} not found, recalculating.'.format(_file)) ccd = fitsio.FITS('/global/cscratch1/sd/mjwilson/BGS/SV-ASSIGN/ccds/ccds-annotated-{}-dr8.fits'.format(camera.decode('UTF-8'))) dtype = ccd[1].get_rec_dtype()[0] ccd = ccd[1].read(vstorage='object') ccd = np.array(ccd, dtype=dtype)[cols + skies] plverf = remap(ccd['plver']) ## np.array(remap(ccd['plver']), dtype=[('plverf', np.float32)]) ## ccd = rfn.merge_arrays([ccd, plverf], flatten = True, usemask = False) skies.remove('plver') skies = skies + ['plverf'] ccd = ccd[cols + skies] exps = ccd[ccd['filter'] == band] result = np.zeros(len(randoms) * len(skies)).reshape(len(randoms), len(skies)) count = np.zeros(len(randoms), dtype=np.int32) for i, x in enumerate(exps): try: ## http://legacysurvey.org/ccdordering/ if camera == b'decam': inccd = is_in_box(randoms, [x['ra3'], x['ra1'], x['dec3'], x['dec1']]) elif camera == b'90prime': ## BASS inccd = is_in_box(randoms, [x['ra2'], x['ra0'], x['dec2'], x['dec0']]) elif camera == b'mosaic': ## MzLS inccd = is_in_box(randoms, [x['ra0'], x['ra2'], x['dec0'], x['dec2']]) else: raise ValueError('Invalid inut for camera.') except: nfail += 1 print('Failed for {}'.format([x['ra0'], x['ra2'], x['dec0'], x['dec2']])) continue ## if len(inccd) > 0: print('Solving for {} of {}.'.format(i, len(exps))) toadd = np.array(list(x[skies])) result[inccd] += toadd count[inccd] += 1 ## result[count > 0] /= count[count > 0].astype(np.float)[:,None] np.savetxt(_file, result, fmt='%.6le') if noplot: exit(0) else: result = np.loadtxt(_file) ## Make room for Airmass in plot. skies.remove('plver') skies = skies + ['plverf'] result = Table(data=result, names=skies) ## del result['minsky'] del result['maxsky'] ## skies.remove('minsky') skies.remove('maxsky') result.pprint() ## skies = skies + ['HI'] ## ncol = 2 nrow = np.int(np.ceil(len(skies) / 2)) ## fig, axarr = plt.subplots(nrows=np.int(np.ceil(len(skies) / 2)), ncols=2, figsize=(10, 10)) ## plt.subplots_adjust(left = 0.05, right = 0.95, hspace=0.6, wspace=0.4, top = 0.925, bottom = 0.05) ## Wrap randoms randoms['RA'][randoms['RA'] > 300.] -= 360. randoms['RA'] += 60. ## Cut to non-DES. result = result[(-30. < randoms['DEC'])] randoms = randoms[(-30. < randoms['DEC'])] if camera == b'decam': result, randoms = [result[(randoms['DEC'] < 30.)], randoms[(randoms['DEC'] < 30.)]] else: result, randoms = [result[(randoms['DEC'] > 35.)], randoms[(randoms['DEC'] > 35.)]] ## for i, _ in enumerate(skies): row = i % nrow col = i % 2 print(i, row, col, _) if _ == 'HI': hpra, hpdec, values = get_hone() ## Cut to non-DES. isin = hpdec > -30. values = values[isin] hpra = hpra[isin] hpdec = hpdec[isin] if camera == b'decam': isin = hpdec < 30. values = values[isin] hpra = hpra[isin] hpdec = hpdec[isin] else: isin = hpdec > 35. values = values[isin] hpra = hpra[isin] hpdec = hpdec[isin] ## Wrap randoms hpra[hpra > 300.] -= 360. hpra += 60. vmin = values.min() vmax = values.max() else: nresult = result[_] isin = np.isfinite(nresult) nresult = nresult[isin] ## nresult = nresult - np.median(nresult) ## nresult /= np.std(nresult) parea = hp.nside2pixarea(nside, degrees = True) hppix = hp.ang2pix(nside, (90. - randoms['DEC'][isin]) * np.pi / 180., randoms['RA'][isin] * np.pi / 180., nest=False) hpind, cnts = np.unique(hppix, return_counts=True) theta,phi = hp.pix2ang(nside, hpind, nest=False) hpra, hpdec = 180. / np.pi * phi, 90. -180. / np.pi * theta values = np.array([np.mean(nresult[hppix == x]) for x in hpind]) vmin = np.quantile(values, 0.05) vmax = np.quantile(values, 0.95) ## fast_scatter(axarr[row][col], hpra, hpdec, values, vmin, vmax, 50, markersize=0.7, cmap='jet') if i == 0: ylims = axarr[row][col].get_ylim() axarr[row][col].set_title(skies[i].upper()) axarr[row][col].set_xlim(360., 0.) ## if plot_elgs: nside = 512 binary = np.load('/global/cscratch1/sd/mjwilson/BGS/SV-ASSIGN/healmaps/elg_tdensity_{}.npy'.format(nside)) hpind = binary[:,0].astype(np.int) hpra = binary[:,1] hpdec = binary[:,2] tdensity = binary[:,3] pix_mask = np.load('/global/cscratch1/sd/mjwilson/BGS/SV-ASSIGN/elgs/pix_area.npy') mhpind = pix_mask[:,0] mhpra = pix_mask[:,1] mhpdec = pix_mask[:,2] mask = pix_mask[:,3] ## ## inmask = hpind[mask[hpind] > 0.0] ## tinmask = [x in inmask for x in hpind] ## ## tdensity[tinmask] /= mask[inmask] ## Cut to non-DES. hpra = hpra[hpdec > -30.] tdensity = tdensity[hpdec > -30.] hpdec = hpdec[hpdec > -30.] if camera == b'decam': hpra = hpra[hpdec < 30.] tdensity = tdensity[hpdec < 30.] hpdec = hpdec[hpdec < 30.] else: hpra = hpra[hpdec > 35.] tdensity = tdensity[hpdec > 35.] hpdec = hpdec[hpdec > 35.] ## Wrap randoms. hpra[hpra > 300.] -= 360. hpra += 60. ## Digitize. vmin = np.quantile(tdensity, 0.001) vmax = np.quantile(tdensity, 0.999) fast_scatter(axarr[-1][-1], hpra, hpdec, tdensity, vmin, vmax, 50, cmap='jet') axarr[-1][-1].set_title('ELG DENSITY') axarr[-1][-1].set_xlim(365., -5.) axarr[-1][-1].set_ylim(ylims) ## fig.suptitle(r'{} ${}$-band'.format(camera.decode('UTF-8').upper(), band.decode('UTF-8')), fontsize=14) print('Number of failures: {}'.format(nfail)) pl.savefig('skydepths/skydepth_{}_{}.png'.format(camera.decode('UTF-8'), band.decode('UTF-8'))) print('\n\nDone.\n\n')
e3c18ae427bff89a74c4a155958e3776f118fc9d
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_142/828.py
0dd233e9b038c694d7b9e783862aca4c210c8aa3
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,573
py
import sys,math cases = int(raw_input()) plays = [] def skeleton(string): last_char = string[0] skel = last_char for char in string[1:]: if char != last_char: skel += char last_char = char return skel def is_possible(strings): skel = skeleton(strings[0]) for string in strings[1:]: if skeleton(string) != skel: return False return True def mean_length(strings): #print strings cum = 0 for string in strings: cum += len(string) #print cum m = float(cum) / len(strings) m = int(round(m)) nearest_to_mean = 0 for i in range(len(strings)): if (len(strings[i])-m)*(len(strings[i])-m) < (len(strings[nearest_to_mean])-m)*(len(strings[nearest_to_mean])-m): nearest_to_mean = i return nearest_to_mean def numberLetter(string, letter, group): n = 0 last_char = '' curr = -1 for char in string: if last_char != char and char == letter: curr+=1 if char == letter and group == curr: n+=1 last_char = char return n def vass(num): if num > 0: return num else: return -num def moves(skeleton,string,target): m = 0 for i in range(len(skeleton)): letter = skeleton[i] curr = 0 for j in range(i): if skeleton[j] == letter: curr+=1 m += vass(numberLetter(string,letter,curr)- numberLetter(target,letter,curr)) return m def target(strings,skel): target = "" for i in range(len(skel)): letter = skel[i] curr = 0 for j in range(i): if skel[j] == letter: curr+=1 cum = 0 for string in strings: cum += numberLetter(string,letter,curr) num = int(round(float(cum)/len(strings))) #print "letter " + letter + " : " + str(num) for i in range(num): target += letter return target for i in range(cases): n_strings = int(raw_input()) #print answer strings = [] for j in range(n_strings): strings.append(raw_input()) plays.append(strings) case = 0 for strings in plays: case += 1 sys.stdout.write("Case #"+str(case)+": ") #print rows if is_possible(strings): skel = skeleton(strings[0]) tg = target(strings,skel) #print strings #print tg tot_moves = 0 for string in strings: tot_moves += moves(skel,string,tg) print tot_moves else: print "Fegla Won";
ac6c1b5d5cf591fdb17877696c50099d56778da8
ae7b262ecd72f2fac76c7fe2cff3b8efd7224cb9
/ContainsDuplicateII.py
cfe3bcb7c5be59b9be1922b3e736ae55d010407c
[]
no_license
FengFengHan/LeetCode
02a8041f7413b14bed5ac17af1ba68237b159959
c2d449f2a93815f31c432805a6b4b8008d09d3df
refs/heads/master
2021-01-10T18:44:06.374304
2016-04-16T13:18:55
2016-04-16T13:18:55
56,384,615
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
class Solution(object): def containsNearbyDuplicate(self, nums, k): """ :type nums: List[int] :type k: int :rtype: bool """ indexs = {} for i in range(len(nums)): indexs.setdefault(nums[i], []) indexs[nums[i]].append(i) for lis in indexs.values(): if len(lis) > 1: for j in range(1,len(lis)): if (lis[j] - lis[j-1]) <= k: return True return False
542da5ea76d78e1c3c42f517cd2c7ba1233314d2
43530c02696704af51742144638df037b151a259
/apps/friend/migrations/0001_initial.py
f45900443d3e401f9a587a9677a99737475e2e2d
[]
no_license
LAdkins81/friends
58160f4eb5096d96f5a59edc45de38ba5cd388f7
8f189965fede9fb13fb94ecbd6d0f9912a0162cf
refs/heads/master
2021-01-17T08:00:08.866341
2017-03-03T18:05:48
2017-03-03T18:05:48
83,826,999
0
0
null
null
null
null
UTF-8
Python
false
false
856
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-03-03 15:57 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('login_reg', '0002_auto_20170303_0957'), ] operations = [ migrations.CreateModel( name='Friend', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('friend', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='userfriend', to='login_reg.User')), ], ), ]
84fa63fb19d08df62b8211a7894d160f837f3aae
2e0396c23d592338bec48daf73d5fd1e423b4f41
/use_max_rssi_localization.py
44ac3535ce9d92bfdafdf4445680de04dfbdea3f
[]
no_license
wystephen/localization-wifi
4504e8fd819847e9b18641641769bf93c081c4f9
5dca0d0df6bced8a519f02711692c6ddfaa57e12
refs/heads/master
2016-09-11T13:01:17.162633
2015-12-29T01:32:29
2015-12-29T01:32:29
31,436,755
1
0
null
null
null
null
UTF-8
Python
false
false
4,559
py
__author__ = 'Administrator' # -*- coding:utf-8 -*- import numpy import data_transfor import data_preprocessing import matplotlib.pyplot as plt def pose_of_max_rssi(pose, wifi, max_rssi): ''' 找到某个ap达到最大值的第一个pose的序号 :param pose: :param wifi: :param max_rssi: :return: ''' max_rssi_index = numpy.zeros(len(max_rssi)) for i in range(len(wifi[:, 1])): for j in range(len(max_rssi)): if max_rssi[j] == wifi[i, j]: max_rssi_index[j] = i print 'max_rssi_index_len:', len(max_rssi_index) pose_array = numpy.zeros([len(max_rssi_index), 2]) for i in range(len(max_rssi_index)): pose_array[i, :] = pose[max_rssi_index[i], :] return max_rssi_index, pose_array def simple_location(pose, wifi, pose_array): ''' 根据信号最强的三个ap估计自己的位置 :param pose: 实际上貌似没用到,以后再改 :param wifi: 输入wifi的特征数组 :param pose_array: 有多少个ap就有多少个点,保存的是距这个ap(理想是最近)较近的点 :return:输出估计的坐标 ''' out_pose = numpy.zeros([len(pose[:, 1]), 2]) max_rssi_tmp = numpy.zeros(2) for i in range(len(pose[:, 1])): #find max 4 index in the wifi max_rssi = numpy.zeros([4, 2]) for j in range(len(wifi[i, :])): if wifi[i, j] > max_rssi[3, 1]: max_rssi[3,0] = j max_rssi[3,1] = wifi[i,j] for k in range(0,2): k = 2-k if max_rssi[k+1,1] > max_rssi[k,1]: max_rssi_tmp[:] = max_rssi[k,:] max_rssi[k,:] = max_rssi[k+1,:] max_rssi[k+1,:] = max_rssi_tmp[:] out_pose[i,0] = pose_array[max_rssi[0,0],0]/4.0 +\ pose_array[max_rssi[1,0],0]/4.0+\ pose_array[max_rssi[2,0],0]/4.0+\ pose_array[max_rssi[3,0],0]/4.0 out_pose[i,1] = pose_array[max_rssi[0,0],1]/4.0 +\ pose_array[max_rssi[1,0],1]/4.0+\ pose_array[max_rssi[2,0],1]/4.0+\ pose_array[max_rssi[3,0],1]/4.0 #测试直接用最大的那个 看误差,效果不好 #out_pose[i,0] = pose_array[max_rssi[0,0],0] #out_pose[i,1] = pose_array[max_rssi[0,0],1] return out_pose if __name__ == '__main__': pose, wifi = data_preprocessing.read_end_data('20153221527end_wifi.txt', '20153221527end_pose.txt') pose2, wifi2 = data_preprocessing.read_end_data('20153141218end_wifi.txt', '20153141218end_pose.txt') pose3, wifi3 = data_preprocessing.read_end_data('20153141231end_wifi.txt', '20153141231end_pose.txt') pose4, wifi4 = data_preprocessing.read_end_data('20153221517end_wifi.txt', '20153221517end_pose.txt') max_rssi = data_preprocessing.find_ap_pose(pose, wifi) max_rssi2 = data_preprocessing.find_ap_pose(pose2, wifi2) max_rssi3 = data_preprocessing.find_ap_pose(pose3, wifi3) max_rssi4 = data_preprocessing.find_ap_pose(pose4, wifi4) max_rssi_index, pose_array = pose_of_max_rssi(pose, wifi, max_rssi) max_rssi_index2, pose_array2 = pose_of_max_rssi(pose2, wifi2, max_rssi2) max_rssi_index3, pose_array3 = pose_of_max_rssi(pose3, wifi3, max_rssi3) max_rssi_index4, pose_array4 = pose_of_max_rssi(pose4, wifi4, max_rssi4) # print pose_array plt.figure(1) #plt.axis([-50, 200, -50, 200]) #plt.plot(pose_array[:,0],pose_array[:, 1], 'o') plt.plot(pose_array2[:, 0], pose_array2[:, 1], 'o') plt.plot(pose_array3[:, 0], pose_array3[:, 1], 'o') #plt.plot(pose_array4[:,0],pose_array4[:,1], 'o') plt.grid(1) plt.figure(2) source_pose_array = pose_array/4.0+pose_array2/4.0+pose_array3/4.0+pose_array4/4.0 #source_pose_array = pose_array3 out_pose1 = simple_location(pose,wifi,source_pose_array) err1 = data_preprocessing.pose_dis(out_pose1,pose) plt.plot(err1,'r') out_pose2 = simple_location(pose2,wifi2,source_pose_array) err2 = data_preprocessing.pose_dis(out_pose2,pose2) plt.plot(err2,'b') out_pose3 = simple_location(pose3,wifi3,source_pose_array) err3 = data_preprocessing.pose_dis(out_pose3,pose3) plt.plot(err3,'y') out_pose4 = simple_location(pose4,wifi4,source_pose_array) err4 = data_preprocessing.pose_dis(out_pose4,pose4) plt.plot(err4,'g') plt.grid(2) plt.figure(3) ok_times = 0 for i in range(len(err1)): if err1[i] < 5: ok_times+=1 print 'acc:', ok_times*1.0/len(err1) plt.show()
7e1d7f9452e893ef89f39038ead722d31fe328a4
3481356e47dcc23d06e54388153fe6ba795014fa
/swig_test/pybuffer/pybuffer.py
b1375b20698a70cb441ca9be087f2906c4867c61
[]
no_license
Chise1/pyhk
c09a4c5a06ce93e7fe50c0cc078429f7f63fcb2f
44bdb51e1772efad9d0116feab1c991c601aa68a
refs/heads/master
2021-01-03T08:24:47.255171
2020-02-29T04:05:30
2020-02-29T04:05:30
239,998,705
1
0
null
2020-02-28T07:35:46
2020-02-12T11:40:39
C
UTF-8
Python
false
false
3,056
py
# This file was automatically generated by SWIG (http://www.swig.org). # Version 3.0.12 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info as _swig_python_version_info if _swig_python_version_info >= (2, 7, 0): def swig_import_helper(): import importlib pkg = __name__.rpartition('.')[0] mname = '.'.join((pkg, '_pybuffer')).lstrip('.') try: return importlib.import_module(mname) except ImportError: return importlib.import_module('_pybuffer') _pybuffer = swig_import_helper() del swig_import_helper elif _swig_python_version_info >= (2, 6, 0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_pybuffer', [dirname(__file__)]) except ImportError: import _pybuffer return _pybuffer try: _mod = imp.load_module('_pybuffer', fp, pathname, description) finally: if fp is not None: fp.close() return _mod _pybuffer = swig_import_helper() del swig_import_helper else: import _pybuffer del _swig_python_version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. try: import builtins as __builtin__ except ImportError: import __builtin__ def _swig_setattr_nondynamic(self, class_type, name, value, static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name, None) if method: return method(self, value) if (not static): if _newclass: object.__setattr__(self, name, value) else: self.__dict__[name] = value else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self, class_type, name, value): return _swig_setattr_nondynamic(self, class_type, name, value, 0) def _swig_getattr(self, class_type, name): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name, None) if method: return method(self) raise AttributeError("'%s' object has no attribute '%s'" % (class_type.__name__, name)) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except __builtin__.Exception: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except __builtin__.Exception: class _object: pass _newclass = 0 # This file is compatible with both classic and new-style classes.
cb58f01bb96d29b45a0501db61d84089565b32e1
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02853/s487102081.py
d4f290c3634e67a7bf9d48e374c08fa37acc1935
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
250
py
x,y = map(int,input().split()) def point(a): if a == 1: return 300000 elif a == 2: return 200000 elif a == 3: return 100000 else: return 0 c = point(x) b = point(y) if x == 1 and y == 1: print(1000000) else: print(c+b)
ff177921548f852db1a384ec33200275af66728e
94c1805df5a09c39159d502f420d19ad54b567fc
/runtime/deps/gyp/test/configurations/invalid/gyptest-configurations.py
bd844b95dd8a330a237123acbaf741c1c816187d
[ "BSD-3-Clause", "Apache-2.0", "LicenseRef-scancode-public-domain", "LicenseRef-scancode-unknown-license-reference" ]
permissive
tmikov/jscomp
9805a5a4d06520549c57380f0df4a1c0aa0dab56
83828441cb38ec96603a6a60be06977d4852940a
refs/heads/develop
2021-01-19T02:56:35.102659
2016-04-12T06:19:30
2016-04-12T06:19:30
36,981,674
237
13
Apache-2.0
2018-10-14T09:48:12
2015-06-06T13:49:26
C
UTF-8
Python
false
false
923
py
#!/usr/bin/env python # Copyright (c) 2010 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Verifies build of an executable in three different configurations. """ import TestGyp # Keys that do not belong inside a configuration dictionary. invalid_configuration_keys = [ 'actions', 'all_dependent_settings', 'configurations', 'dependencies', 'direct_dependent_settings', 'libraries', 'link_settings', 'sources', 'standalone_static_library', 'target_name', 'type', ] test = TestGyp.TestGyp() for test_key in invalid_configuration_keys: test.run_gyp('%s.gyp' % test_key, status=1, stderr=None) expect = ['%s not allowed in the Debug configuration, found in target ' '%s.gyp:configurations#target' % (test_key, test_key)] test.must_contain_all_lines(test.stderr(), expect) test.pass_test()
867fbd9385ee1f515de8c6bdcfc4433562c0711f
5e324af46c554b88b97ee26886b05c88457ff0f5
/clients/api/client_list.py
c29315aecdbe43ce46d49900a6fc6013ae660bf1
[]
no_license
doubleclickdetroit/dindintonight
1bda8851e49782d4dc16ca77d46e4b1f431c2b52
9769e1a96730b02511d25af8828b075dff5c35b5
refs/heads/master
2016-08-04T22:01:08.083566
2014-07-26T18:58:58
2014-07-26T18:58:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,198
py
from clients.models import Client, ClientUser from clients.serializers import ClientSerializer from core.api import RESTView class ClientList(RESTView): """ Client List API Class Example URLs: /api/v1/clients/ """ URL_NAME = 'api-v1-client-list' def _handle_get(self, request, *args, **kwargs): results = Client.objects.all() user = request.GET.get('user', None) if user is not None: results = results.filter(users__pk=user) return self.list_results(request, results, ClientSerializer, use_cache=True, cache_time=self.CACHE_30_DAYS, cache_version=1) def _handle_post(self, request, *args, **kwargs): """ Sample post data: { "name": "Test by Rob" } """ serializer = ClientSerializer(data=request.DATA) if serializer.is_valid(): serializer.save() # create the user to link them to the client they just created ClientUser.objects.create(client=serializer.object, user=request.user) return serializer.data return self.raise_bad_request(serializer.errors)
450b6295dff2b84499d8e5a4ad95db6e63d3b811
6c8305ea1df9687df1c0d2b0ace56733516c6322
/readthedocs/builds/migrations/0044_alter_version_documentation_type.py
86ad50cfe4c8429849bfd08a5e13b50d29d23d61
[ "MIT" ]
permissive
readthedocs/readthedocs.org
9806083aa744c2308267919480a692e1e003e45d
bf88ce6d1085d922322a5fadce63a22c5544c830
refs/heads/main
2023-09-05T20:22:34.281891
2023-09-05T12:41:52
2023-09-05T12:41:52
841,835
2,894
1,509
MIT
2023-09-14T20:36:00
2010-08-16T19:18:06
Python
UTF-8
Python
false
false
958
py
# Generated by Django 3.2.13 on 2022-05-30 10:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("builds", "0043_add_cancelled_state"), ] operations = [ migrations.AlterField( model_name="version", name="documentation_type", field=models.CharField( choices=[ ("sphinx", "Sphinx Html"), ("mkdocs", "Mkdocs"), ("sphinx_htmldir", "Sphinx HtmlDir"), ("sphinx_singlehtml", "Sphinx Single Page HTML"), ("mkdocs_html", "Mkdocs Html Pages"), ("generic", "Generic"), ], default="sphinx", help_text="Type of documentation the version was built with.", max_length=20, verbose_name="Documentation type", ), ), ]
63b02058dd9984a335a7f72ff4650f3fda2d6879
b9bc60cca34c6b4f8a750af6062f357f18dfcae2
/tensorflow/contrib/copy_graph/python/util/copy_test.py
68865fab497d3b72ff411643e196c193ac79df2e
[ "Apache-2.0" ]
permissive
lidenghui1110/tensorflow-0.12.0-fpga
7c96753aafab5fe79d5d0c500a0bae1251a3d21b
f536d3d0b91f7f07f8e4a3978d362cd21bad832c
refs/heads/master
2022-11-20T11:42:11.461490
2017-07-28T09:28:37
2017-07-28T09:28:37
98,633,565
3
2
Apache-2.0
2022-11-15T05:22:07
2017-07-28T09:29:01
C++
UTF-8
Python
false
false
3,323
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.copy_graph.python.util.copy.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.contrib.framework.python.framework import tensor_util graph1 = tf.Graph() graph2 = tf.Graph() class CopyVariablesTest(tf.test.TestCase): def testVariableCopy(self): with graph1.as_default(): #Define a Variable in graph1 some_var = tf.Variable(2) #Initialize session sess1 = tf.Session() #Initialize the Variable tf.global_variables_initializer().run(session=sess1) #Make a copy of some_var in the defsult scope in graph2 copy1 = tf.contrib.copy_graph.copy_variable_to_graph( some_var, graph2) #Make another copy with different scope copy2 = tf.contrib.copy_graph.copy_variable_to_graph( some_var, graph2, "test_scope") #Initialize both the copies with graph2.as_default(): #Initialize Session sess2 = tf.Session() #Initialize the Variables tf.global_variables_initializer().run(session=sess2) #Ensure values in all three variables are the same v1 = some_var.eval(session=sess1) v2 = copy1.eval(session=sess2) v3 = copy2.eval(session=sess2) assert isinstance(copy1, tf.Variable) assert isinstance(copy2, tf.Variable) assert v1 == v2 == v3 == 2 class CopyOpsTest(tf.test.TestCase): def testOpsCopy(self): with graph1.as_default(): #Initialize a basic expression y = ax + b x = tf.placeholder("float") a = tf.Variable(3.0) b = tf.constant(4.0) ax = tf.mul(x, a) y = tf.add(ax, b) #Initialize session sess1 = tf.Session() #Initialize the Variable tf.global_variables_initializer().run(session=sess1) #First, initialize a as a Variable in graph2 a1 = tf.contrib.copy_graph.copy_variable_to_graph( a, graph2) #Initialize a1 in graph2 with graph2.as_default(): #Initialize session sess2 = tf.Session() #Initialize the Variable tf.global_variables_initializer().run(session=sess2) #Initialize a copy of y in graph2 y1 = tf.contrib.copy_graph.copy_op_to_graph( y, graph2, [a1]) #Now that y has been copied, x must be copied too. #Get that instance x1 = tf.contrib.copy_graph.get_copied_op(x, graph2) #Compare values of y & y1 for a sample input #and check if they match v1 = y.eval({x: 5}, session=sess1) v2 = y1.eval({x1: 5}, session=sess2) assert v1 == v2 if __name__ == "__main__": tf.test.main()
9392be60bb332ad98a912eadab328e3f523a5a0c
200ec10b652f9c504728890f6ed7d20d07fbacae
/views.py
d236861e828287d0c761fe880d0bf9fc996219ee
[]
no_license
Ks-Ksenia/flask_shop
f4edc17669c29ae02a89e836c3c48230147ae84f
9eb44fd22bf99913c9824ea35e3922cb14ef2451
refs/heads/master
2023-03-01T13:55:20.749127
2021-02-14T09:29:04
2021-02-14T09:29:04
338,767,599
0
0
null
null
null
null
UTF-8
Python
false
false
2,331
py
from app import app, db from flask import render_template, redirect, request, flash, url_for from flask_login import login_required, login_user, logout_user, current_user from models import User, Product from forms import LoginForm, RegistrationForm @app.route('/') def index(): return redirect(url_for('menu.catalog')) @app.route('/search/') def search(): q = request.args.get('q') page = request.args.get('page') if page and page.isdigit(): page = int(page) else: page = 1 pages, products = [], [] if q: products = Product.query.filter(Product.product_name.contains(q)|Product.product_name.contains(q)) pages = products.paginate(page=page, per_page=1) return render_template('search.html', products=products, pages=pages, q=q) @app.login_manager.user_loader def load_user(user_id): return db.session.query(User).get(user_id) @app.route('/login', methods=['POST', 'GET']) def login(): if not current_user.is_authenticated: form = LoginForm() if form.validate_on_submit(): user = User.query.filter(User.email == form.email.data).first() if user and user.check_password(form.password.data): login_user(user, remember=form.remember.data) return redirect(request.args.get('next') or url_for('index')) else: flash('Неверный email или пароль') return render_template('login.html', form=form, title="Вход") return redirect(url_for('index')) @app.route('/logout') @login_required def logout(): logout_user() return redirect(url_for('login')) @app.route('/register', methods=['POST', 'GET']) def registration(): form = RegistrationForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if not user: user = User(username=form.username.data, email=form.email.data) user.set_password(form.password1.data) db.session.add(user) db.session.commit() return redirect(url_for('login')) else: flash('Пользователь с таким email уже существует') return render_template('singup.html', form=form, title='Регистрация')
c7100455f984252260f69c417f013297d223251a
5147c18763fcc9624c5796e332c8fa1b2b91e063
/project_name/settings.py
520d956f350443aade6ce68126c37c03a9da2c87
[ "MIT" ]
permissive
upeu-2018-pro/heroku-django-template-upeu
c0b259fdde50b702750066a3eea4bb3bf38010e5
e7917ac14476b4dcd043be692ea5578bd5955804
refs/heads/master
2021-08-29T14:40:06.786471
2017-12-14T04:55:43
2017-12-14T04:55:43
113,873,492
0
1
null
null
null
null
UTF-8
Python
false
false
10,115
py
""" Django settings for {{ project_name }} project on Heroku. For more info, see: https://github.com/heroku/heroku-django-template-upeu For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os import dj_database_url from django.urls import reverse_lazy # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = "{{ secret_key }}" # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True # Application definition INSTALLED_APPS = [ #'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', # Disable Django's own staticfiles handling in favour of WhiteNoise, for # greater consistency between gunicorn and `./manage.py runserver`. See: # http://whitenoise.evans.io/en/stable/django.html#using-whitenoise-in-development 'whitenoise.runserver_nostatic', 'django.contrib.staticfiles', 'social_django', 'core', # if AUTH_USER_MODEL = 'core.User' and SOCIAL_AUTH_USER_MODEL = 'core.User' 'accounts', 'django.contrib.admin', 'bootstrap3', 'django.contrib.admindocs', 'oauth2_provider', 'rest_framework', 'corsheaders', # Add your apps here. ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = '{{ project_name }}.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'social_django.context_processors.backends', 'social_django.context_processors.login_redirect', ], 'debug': DEBUG, }, }, ] WSGI_APPLICATION = '{{ project_name }}.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } DATABASESx = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'd6rvmpj68r6l4n', 'USER': 'vouyocdcjggiwt', 'PASSWORD': 'a59df75e117f358691a9e2b460c2d41fc9d2371286e840791a9cafb8219b6463', 'HOST': 'ec2-54-221-204-213.compute-1.amazonaws.com', 'PORT': '5432', } } AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Change 'default' database configuration with $DATABASE_URL. DATABASES['default'].update(dj_database_url.config(conn_max_age=500)) # Honor the 'X-Forwarded-Proto' header for request.is_secure() SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # Allow all host headers ALLOWED_HOSTS = ['*'] # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_ROOT = os.path.join(PROJECT_ROOT, 'staticfiles') STATIC_URL = '/static/' # Extra places for collectstatic to find static files. STATICFILES_DIRS = [ os.path.join(PROJECT_ROOT, 'static'), ] # Simplified static file serving. # https://warehouse.python.org/project/whitenoise/ STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # add vars MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') AUTH_USER_MODEL = 'core.User' # if 'core' app in INSTALLED_APPS SOCIAL_AUTH_USER_MODEL = 'core.User' # if 'core' app in INSTALLED_APPS LOGIN_REDIRECT_URL = reverse_lazy('dashboard') LOGIN_URL = reverse_lazy('login') LOGOUT_URL = reverse_lazy('logout') # 設定 Django 在 console 中輸出 e-mail 內容來代替通過 SMTP 服務發送郵件 # EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # EMAIL EMAIL_HOST = 'smtp.gmail.com' EMAIL_HOST_USER = '[email protected]' EMAIL_HOST_PASSWORD = '12345678a' EMAIL_PORT = 587 EMAIL_USE_TLS = True DEFAULT_FROM_EMAIL = '[email protected]' AUTHENTICATION_BACKENDS = ( 'social_core.backends.facebook.FacebookOAuth2', 'social_core.backends.github.GithubOAuth2', 'social_core.backends.google.GoogleOAuth2', 'social_core.backends.twitter.TwitterOAuth', 'django.contrib.auth.backends.ModelBackend', 'accounts.authentication.EmailAuthBackend', #'oauth2_provider.backends.OAuth2Backend', ) AUTHENTICATION_BACKENDSx = ( 'oauth2_provider.backends.OAuth2Backend', # Uncomment following if you want to access the admin 'django.contrib.auth.backends.ModelBackend', ) SOCIAL_AUTH_URL_NAMESPACE = 'social' SOCIAL_AUTH_FACEBOOK_KEY = '1505995752817741' SOCIAL_AUTH_FACEBOOK_SECRET = 'a1b671143334bf268f0881655dd7f08c' SOCIAL_AUTH_FACEBOOK_SCOPE = ['email'] SOCIAL_AUTH_FACEBOOK_PROFILE_EXTRA_PARAMS = { 'fields': 'id, name, email' } SOCIAL_AUTH_GITHUB_KEY = 'ddcde373489a4be6deec' SOCIAL_AUTH_GITHUB_SECRET = '39319ff7120c0f1cb57af7130f323ebf7cb35669' SOCIAL_AUTH_GITHUB_SCOPE = ['email'] SOCIAL_AUTH_GITHUB_PROFILE_EXTRA_PARAMS = { 'fields': 'id, name, email' } SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = '1082996671890-fbu61vmp0gfehh7tg0tgs7feenqr95qj.apps.googleusercontent.com' SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = 'kYj_RFjlDyDQbt6SnscPrC1j' SOCIAL_AUTH_GOOGLE_OAUTH2_SCOPE = ['email'] SOCIAL_AUTH_GOOGLE_PROFILE_EXTRA_PARAMS = { 'fields': 'id, name, email' } #SOCIAL_AUTH_GOOGLE_OAUTH2_WHITELISTED_DOMAINS = ['upeu.edu.pe', ] SOCIAL_AUTH_TWITTER_KEY = 'SYaVSEKyHbeoFrUJm6zEU1XVa' SOCIAL_AUTH_TWITTER_SECRET = 'deltB2apIjLqThoJXDRPkPVI8ure7x9Ik5RD3g6mF6H64gOrnJ' SOCIAL_AUTH_TWITTER_OAUTH2_SCOPE = ['email'] SOCIAL_AUTH_TWITTER_PROFILE_EXTRA_PARAMS = { 'fields': 'id, name, email' } #CSRF_USE_SESSIONS = False CORS_ORIGIN_ALLOW_ALL = True # False CORS_ALLOW_CREDENTIALS = True CORS_ORIGIN_WHITELIST = ('127.0.0.1:9001', '127.0.0.1:9003', 'localhost:9003', 'localhost:8003') # Also OAUTH2_PROVIDER = { # this is the list of available scopes 'SCOPES': { 'read': 'Read scope', 'write': 'Write scope', 'openid': 'Access to your openid connect', 'home': 'Access to your home page', 'backend': 'Access to your backend app', 'catalogo': 'Access to your catalogo app', 'ubigeo': 'Access to your ubigeo app', 'eventos': 'Access to your admision app', 'acuerdos': 'Access to your admision app', 'admision': 'Access to your admision app', } } REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( #'rest_framework.authentication.SessionAuthentication', 'oauth2_provider.contrib.rest_framework.OAuth2Authentication', ) } import datetime LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'verbose0': { 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' }, 'verbose': { 'format': "[%(asctime)s] [%(levelname)s] [%(name)s:%(lineno)s] [%(path)s] [%(ip)s] [%(user)s] [%(method)s] %(message)s", 'datefmt': "%Y-%m-%d %H:%M:%S" }, 'simple': { 'format': '%(levelname)s %(message)s' }, 'verbose_dj': { 'format': "[%(asctime)s] %(levelname)s [%(name)s:%(lineno)s] %(message)s", 'datefmt': "%Y-%m-%d %H:%M:%S" }, }, 'handlers': { 'file_django': { 'level': 'DEBUG', #'level': os.getenv('DJANGO_LOG_LEVEL', 'INFO'), 'class': 'logging.FileHandler', 'filename': os.path.join( BASE_DIR, 'temp/logs', 'dj%s.txt' % (datetime.datetime.now().strftime("%Y-%m-%d")) ), 'formatter': 'verbose_dj' }, 'file_log': { 'level': 'DEBUG', 'class': 'logging.FileHandler', 'filename': os.path.join( BASE_DIR, 'temp/logs', 'log%s.txt' % (datetime.datetime.now().strftime("%Y-%m-%d")) ), 'formatter': 'verbose' }, 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose0' }, }, 'loggers': { 'django': { 'handlers': ['file_django'], 'propagate': False, 'level': 'DEBUG', }, 'apps': { 'handlers': ['file_log'], 'level': 'DEBUG', }, }, 'root': { 'handlers': ['console', 'file_log', ], 'level': 'INFO' }, } # Backup/restore database https://code.djangoproject.com/wiki/Fixtures FIXTURE_DIRS = ( os.path.join(BASE_DIR, 'fixtures'), )
c4565b937eb19cdaaa5ebe8be80861d3cd91b7e1
eb9c3dac0dca0ecd184df14b1fda62e61cc8c7d7
/google/container/v1beta1/container-v1beta1-py/google/container_v1beta1/services/cluster_manager/__init__.py
84b9194002cdc5f4efa095c5b0833921af9178e8
[ "Apache-2.0" ]
permissive
Tryweirder/googleapis-gen
2e5daf46574c3af3d448f1177eaebe809100c346
45d8e9377379f9d1d4e166e80415a8c1737f284d
refs/heads/master
2023-04-05T06:30:04.726589
2021-04-13T23:35:20
2021-04-13T23:35:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
771
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from .client import ClusterManagerClient from .async_client import ClusterManagerAsyncClient __all__ = ( 'ClusterManagerClient', 'ClusterManagerAsyncClient', )
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
5f8498060a4d282003fadb26e8a0b61c79616b80
deb31ab5397c8a669e30bea0f428afaf8a2ebd30
/web/migrations/0024_auto_20190412_0008.py
fe783346d9264b6a461c6b470fdf443e9bf853dc
[]
no_license
zgd0228/product_base
1b8bcc43f0a96e5bac09e77f363ed97b582b48cc
83948b0b929c852c52503bca3c66b55f3f352f1c
refs/heads/master
2020-05-15T03:59:17.727156
2019-04-18T13:07:05
2019-04-18T13:07:05
182,077,112
0
0
null
null
null
null
UTF-8
Python
false
false
1,393
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2019-04-11 16:08 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('web', '0023_auto_20190411_2317'), ] operations = [ migrations.CreateModel( name='ScoreRecord', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content', models.TextField(verbose_name='理由')), ('score', models.IntegerField(help_text='违纪扣分写负值,表现邮寄加分写正值', verbose_name='分值')), ], ), migrations.AddField( model_name='student', name='score', field=models.IntegerField(default=100, verbose_name='积分'), ), migrations.AddField( model_name='scorerecord', name='student', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='web.Student', verbose_name='学生'), ), migrations.AddField( model_name='scorerecord', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='web.UserInfo', verbose_name='执行人'), ), ]
10a026637a4917ff43db50d14672d19b4e50d5ef
cf5b2850dc9794eb0fc11826da4fd3ea6c22e9b1
/xlsxwriter/test/comparison/test_merge_cells01.py
a5c44bfd4b9d19ec1b384c2313ced7464f9620a3
[ "BSD-2-Clause" ]
permissive
glasah/XlsxWriter
bcf74b43b9c114e45e1a3dd679b5ab49ee20a0ec
1e8aaeb03000dc2f294ccb89b33806ac40dabc13
refs/heads/main
2023-09-05T03:03:53.857387
2021-11-01T07:35:46
2021-11-01T07:35:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,075
py
############################################################################### # # Tests for XlsxWriter. # # SPDX-License-Identifier: BSD-2-Clause # Copyright (c), 2013-2021, John McNamara, [email protected] # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('merge_cells01.xlsx') def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() format = workbook.add_format({'align': 'center'}) worksheet.set_selection('A4') worksheet.merge_range('A1:A2', 'col1', format) worksheet.merge_range('B1:B2', 'col2', format) worksheet.merge_range('C1:C2', 'col3', format) worksheet.merge_range('D1:D2', 'col4', format) workbook.close() self.assertExcelEqual()
fa053c5bed1b6394b9372bb95a76023cf9f6d614
2d0da5d8f45e1906bb2a2eee0901e7fddd5dc7ad
/scripts/python_scripts/lgreader/lgreader.py
9eee17bdc185300229171f768f5ea820ada4d9ac
[ "MIT" ]
permissive
akazachk/pha
09afd2fa6764ef9133a8ae91bb189e2896e076c6
4120f70554cb0a149d5ab52e04409302e78059fa
refs/heads/master
2021-09-25T01:02:42.488470
2021-09-15T17:51:34
2021-09-15T17:51:34
194,751,798
1
0
null
null
null
null
UTF-8
Python
false
false
63,878
py
from os import environ PHA_DIR = environ['PHA_DIR'] ADD_TO_PATH = PHA_DIR + '/scripts/python_scripts' from sys import path path.append(ADD_TO_PATH) from processcsv import ProcessCSV from processcsv import StatEnum import sys import utility as util import copy import csv import numpy as np from itertools import izip #import matplotlib #matplotlib.use('Agg') #import matplotlib.pyplot as plt from scipy import stats import shutil import os class LGReader(ProcessCSV): """ class LGReader Performs various functions related to the output file from PHA code """ default_data_dir = os.environ['PHA_DIR'] + '/data' default_results_dir = os.environ['PHA_DIR'] + '/results' default_ip_opt_fname = default_data_dir + '/' + "ip_opt.csv" default_in_fname = default_results_dir + '/' + "pha.csv" max_num_dec_places = 10 # Column names colname_inst = "INSTANCE" colname_lpobj = "LP OBJ" colname_lpopt = "LP OBJ" colname_lpbound = "LP OBJ" colname_ipopt = "IP OBJ" colname_ipobj = "IP OBJ" colname_ipbound = "IP OBJ" colname_numrows = "NUM ROWS" colname_numcols = "NUM COLS" colname_fraccore = "FRAC CORE" colname_numpoints = "NUM POINTS (TOTAL)" colname_numfinalpoints = "NUM FINAL POINTS (TOTAL)" colname_numsics = "NUM SIC" colname_numpha = "NUM PHA" colname_sicbound = "SIC BOUND" colname_phabound = "PHA BOUND" colname_allcutsbound = "ALL CUTS (WITH SIC)" colname_activesics = "ACTIVE SIC" colname_activegics = "ACTIVE PHA" colname_objtried = "OBJ" colname_dupsicfails = "DUPLICATE_SIC_FAILS" colname_dupgicfails = "DUPLICATE_GIC_FAILS" colname_totaltime = "TOTAL_TIME" colname_cutfails = [ "DUAL_CUT_SOLVER_FAILS", "DUPLICATE_SIC_FAILS", "DUPLICATE_GIC_FAILS", "ORTHOGONALITY_FAILS", "TIMELIMIT_FAILS", "ITERATION_FAILS", "ABANDONED_FAILS", "NON_CUTTING_FAILS", "SCALING_FAILS", "UNSPEC_FAILS", "CUT_LIMIT_FAILS", "PRIMAL_CUT_SOLVER_FAILS", "PRIMAL_CUT_SOLVER_NO_OBJ_FAILS", "NUMERICAL_ISSUES_WARNING_NO_OBJ", "NUMERICAL_ISSUES_NO_OBJ" ] colname_numcuts = [ "CUT_VERTICES_CUT_HEUR", # "DUMMY_OBJ_CUT_HEUR", "ITER_BILINEAR_CUT_HEUR", "UNIT_VECTORS_CUT_HEUR", "TIGHT_POINTS_CUT_HEUR", "SPLIT_SHARE_CUT_HEUR" ] colname_activecuts = [ "ACTIVE CUT_VERTICES_CUT_HEUR", "ACTIVE DUMMY_OBJ_CUT_HEUR", "ACTIVE ITER_BILINEAR_CUT_HEUR", "ACTIVE UNIT_VECTORS_CUT_HEUR", "ACTIVE TIGHT_POINTS_CUT_HEUR", "ACTIVE SPLIT_SHARE_CUT_HEUR" ] def __init__(self, in_fname = None, hasipval = None, fill_ip_vals = None, ip_opt_fname = None, out_fname = None, inst_name = None, col_info = None, num_header_lines = None, compute_gap_closed = True): """ Constructor, sets reader object and instances to all instances """ if (in_fname is None): self._in_fname = copy.deepcopy(self.default_in_fname) else: self._in_fname = copy.deepcopy(in_fname) if __debug__: print( "\n## In LGReader(): Opening file %s for reading ##" % self._in_fname ) # If requested, set IP values if they are not available if (fill_ip_vals is None): fill_ip_vals = False if (hasipval is None): self._hasipval = True # This is so we do not needlessly recreate the ip file else: self._hasipval = hasipval if (ip_opt_fname is not None): self._ip_opt_fname = copy.deepcopy(ip_opt_fname) else: self._ip_opt_fname = copy.deepcopy(self.default_ip_opt_fname) if ((not self._hasipval) and fill_ip_vals): self.fill_ip_opt(out_fname = self._in_fname) # Do overwrite the input file self._hasipval = True super(LGReader, self).__init__(self._in_fname, inst_name, col_info, num_header_lines, compute_gap_closed) # If the IP values exist, calculate gap closed # Note that we check the hasipval boolean, since otherwise gap_closed() # will grab the IP values whether or not fill_ip_vals is True if ((inst_name is not None) and (self._hasipval) and (not hasattr(self, '_ip_opt'))): self.get_ip_opt() if (compute_gap_closed): self.gap_closed() def set_inst(self, inst_name = None, compute_gap_closed = True): """ Override set_inst from parent class so class values will be reset """ super(LGReader, self).set_inst(inst_name, compute_gap_closed) if ((inst_name is not None) and (self._hasipval)): self._ip_opt = None self.get_ip_opt() if (compute_gap_closed): self.gap_closed() def get_ip_opt(self, ip_opt_fname = None): """ Grabs IP optimum values from ip_opt file, only for relevant instances Saves the values internally as self._ip_opt, a numpy array """ # TODO fix bug here that ip_opt_fname might have changed... really not a bug if ((hasattr(self, '_ip_opt')) and (self._ip_opt is not None)): return self._ip_opt if (ip_opt_fname is None): ip_opt_fname = copy.deepcopy(self._ip_opt_fname) if __debug__: print( "\n## Reading IP file: %s ##" % ip_opt_fname ) # Read IP opt file in ip_opt_reader = ProcessCSV(ip_opt_fname, num_header_lines = 1) ip_opt_reader._num_dec_places = self.max_num_dec_places inst_names = super(LGReader, self).get_param(self.colname_inst) self._ip_opt = ['' for i in range(len(inst_names))] for inst in range(len(inst_names)): curr_inst = inst_names[inst] # find_first_val returns a table, with a header row # The first row contains all the column information val_str = ip_opt_reader.find_first_val(col_info = self.colname_ipobj, inst_name = curr_inst)[1][1] if (len(val_str) > 0): curr_inst_ip_obj = float(val_str) self._ip_opt[inst] = curr_inst_ip_obj if __debug__: print( "Instance: %s\tIP obj: %f" % (curr_inst, curr_inst_ip_obj) ) elif __debug__: print( "Instance %s not found in IP file" % curr_inst ) del ip_opt_reader self._ip_opt = np.asarray(self._ip_opt) return self._ip_opt def inst_info(self, inst_name = None, pha_act_option = None, num_alg2_rounds = None, num_rays_cut = None, max_frac_var = None, cut_limit = None, use_split_share = None, num_cuts_iter_bilinear = None, use_unit_vectors_heur = None, use_cut_vert_heur = None, cut_presolve = None): """ Get instance basic information (rows, columns, avg time) """ stat = [StatEnum.FIRST, StatEnum.FIRST, StatEnum.AVG] col_info = [self.colname_numrows, self.colname_numcols, self.colname_totaltime] typecol = [int, int, float] if (inst_name is None): inst_name = super(LGReader, self).get_param(self.colname_inst) tab = super(LGReader, self).stat_col(stat, col_info, typecol, inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, cut_presolve) # Remove the columns that are not relevant tab = [[tab[i][j] for j in [0,1,3,5]] for i in range(len(tab))] tab[0] = ["Instance", "Rows", "Cols", "Time"] # num_rows col_index = 1 self._num_rows = np.asarray([int(round(float(tab[i][col_index]))) for i in range(1,len(tab))]) # num_cols col_index += 1 self._num_cols = np.asarray([int(round(float(tab[i][col_index]))) for i in range(1,len(tab))]) util.print_pretty_table(tab) return tab def get_best_row(self, inst_name = None, pha_act_option = None, num_alg2_rounds = None, num_rays_cut = None, max_frac_var = None, cut_limit = None, use_split_share = None, num_cuts_iter_bilinear = None, use_unit_vectors_heur = None, use_cut_vert_heur = None, use_tight_points_heur = None, cut_presolve = None): """ Get best-performing row per instance """ stat = [StatEnum.MAX] col_info = [self.colname_allcutsbound] #[self.colname_activesics, self.colname_numpha, self.colname_activegics] typecol = [float] #[int, int, int] secondary_stat = [StatEnum.MAXRATIO] secondary_col_info = [[self.colname_activegics, self.colname_numpha]] tab = super(LGReader, self).stat_col(stat, col_info, typecol, inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve, secondary_stat = secondary_stat, secondary_col_info = secondary_col_info) # Get best row for each instance self._best_row = [int(tab[i][2]) for i in range(1,len(tab))] def obj_fails_table(self, inst_name = None, pha_act_option = None, num_alg2_rounds = None, num_rays_cut = None, max_frac_var = None, cut_limit = None, use_split_share = None, num_cuts_iter_bilinear = None, use_unit_vectors_heur = None, use_cut_vert_heur = None, cut_presolve = None): """ Analyze number of cuts generated in relation to maximum possible, as well as some potential common problems (e.g., duplicate SICs in the cut LP) Returns 2D list with the information [instance, num splits, num sics, num active sics, num gics, num active gics, obj tried, fails...] """ if (inst_name is None): inst_name = super(LGReader, self).get_param(self.colname_inst) num_inst = len(inst_name) if (not hasattr(self, '_best_row')): self.get_best_row(inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve) #stat = [StatEnum.MAX] #col_info = [self.colname_activesics, self.colname_numpha, self.colname_activegics] #typecol = [int, int, int] #tab = super(LGReader, self).stat_col(stat, col_info, typecol, inst_name, pha_act_option, # num_alg2_rounds, num_rays_cut, cut_limit, # use_split_share, num_cuts_iter_bilinear, # use_cut_vert_heur, cut_presolve) out_tab = [[ "Instance", "Splits", "SICs", "Active SICs", "GICs", "Active GICs", "Obj", #"Duplicate tilt", "Unbounded tilt", "Unbounded", "Dup SIC", "Dup GIC", "Orth", "Time limit", "Iter limit", "Abandoned", "Non-cutting", "Scaling", "Unspec", "Cut limit", "Primal infeas", "Primal infeas (setup)", "Numerics warnings", "Numerics errors"]] outcol_obj_tried = out_tab[0].index("Obj"); numcols_out_tab = len(out_tab[0]); np_out_tab = np.zeros(shape = (num_inst, numcols_out_tab), dtype=int) # Get column indices for each of the relevant stats index_numsplits = super(LGReader, self).get_col_index(self.colname_fraccore) index_numsics = super(LGReader, self).get_col_index(self.colname_numsics) index_activesics = super(LGReader, self).get_col_index(self.colname_activesics) index_numpha = super(LGReader, self).get_col_index(self.colname_numpha) index_activegics = super(LGReader, self).get_col_index(self.colname_activegics) index_objtried = super(LGReader, self).get_col_index(self.colname_objtried) index_cutfail = [-1 for i in range(len(self.colname_cutfails))] for i in range(len(self.colname_cutfails)): index_cutfail[i] = super(LGReader, self).get_col_index(self.colname_cutfails[i]) for i in range(len(np_out_tab)): if __debug__: print( "## Obj_fails_table: Filling in information for instance %d with name %s ##" % (i,inst_name[i]) ) if self._best_row[i] >= 0: row = super(LGReader, self).get_row(self._best_row[i]) np_out_tab[i,1] = int(row[index_numsplits]) np_out_tab[i,2] = int(row[index_numsics]) np_out_tab[i,3] = int(row[index_activesics]) np_out_tab[i,4] = int(row[index_numpha]) np_out_tab[i,5] = int(row[index_activegics]) obj_tried = int(row[index_objtried]) np_out_tab[i,outcol_obj_tried] = obj_tried for j in range(len(index_cutfail)): curr_fail = int(row[index_cutfail[j]]) np_out_tab[i,outcol_obj_tried+1+j] = 100. * curr_fail / obj_tried else: for j in range(len(index_cutfail)): np_out_tab[i,outcol_obj_tried+1+j] = 0 out_tab.extend(np_out_tab.tolist()) for i in range(1,num_inst+1): out_tab[i][0] = inst_name[i-1] util.print_pretty_table(out_tab) return out_tab def active_cuts_table(self, inst_name = None, pha_act_option = None, num_alg2_rounds = None, num_rays_cut = None, max_frac_var = None, cut_limit = None, use_split_share = None, num_cuts_iter_bilinear = None, use_unit_vectors_heur = None, use_cut_vert_heur = None, use_tight_points_heur = None, cut_presolve = None): """ Analyze which heuristics led to most active cuts Returns 2D list with the information [instance, num sics, num active sics, num gics, num active gics, active from which heur...] """ if (inst_name is None): inst_name = super(LGReader, self).get_param(self.colname_inst) num_inst = len(inst_name) if (not hasattr(self, '_best_row')): self.get_best_row(inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve) out_tab = [[ "Instance", "SICs", "Active SICs", "GICs", "Active GICs", "V", "Active V", # "B", "Active B", "R", "Active R", "T", "Active T", "S", "Active S" ]] numcols_out_tab = len(out_tab[0]); np_out_tab = np.zeros(shape = (num_inst, numcols_out_tab), dtype=int) # Get column indices for number of each type of cut # Number active of that type is the subsequent column (be aware could change) colindex_first = [super(LGReader, self).get_col_index(self.colname_numsics), super(LGReader, self).get_col_index(self.colname_activesics), super(LGReader, self).get_col_index(self.colname_numpha), super(LGReader, self).get_col_index(self.colname_activegics)] colindex_numcuts = [super(LGReader, self).get_col_index(self.colname_numcuts[i]) for i in range(len(self.colname_numcuts))] for i in range(len(np_out_tab)): if __debug__: print( "## Active_cuts_table: Filling in information for instance %d with name %s ##" % (i,inst_name[i]) ) if self._best_row[i] >= 0: curr_row = super(LGReader, self).get_row(self._best_row[i]) for j in range(len(colindex_first)): np_out_tab[i,j+1] = curr_row[colindex_first[j]] for j in range(len(colindex_numcuts)): np_out_tab[i,2*j+1+len(colindex_first)] = curr_row[colindex_numcuts[j]] np_out_tab[i,2*j+1+len(colindex_first)+1] = curr_row[colindex_numcuts[j]+1] else: for j in range(len(colindex_first)): np_out_tab[i,j+1] = 0 for j in range(len(colindex_numcuts)): np_out_tab[i,2*j+1+len(colindex_first)] = 0 np_out_tab[i,2*j+1+len(colindex_first)+1] = 0 out_tab.extend(np_out_tab.tolist()) for i in range(1,num_inst+1): out_tab[i][0] = inst_name[i-1] util.print_pretty_table(out_tab) return out_tab def write_best_params(self, out_dir = None): """ Writes best parameters for each instance to file """ if (out_dir is None): out_dir = self.default_data_dir + "/params" try: os.makedirs(out_dir) except OSError: # for the race condition, however unlikely if not os.path.isdir(out_dir): raise #num_params = super(LGReader, self)._param_container.num_params num_params = self._param_container.num_params inst_names = super(LGReader, self).get_param(self.colname_inst) if (not hasattr(self, '_best_row')): self.get_best_row(inst_names, cut_limit=[1000], cut_presolve=[0]) # these are current defaults we want to report for, but this can be confusing if we forget we set it... out_tab = [copy.deepcopy(self._header[0])] out_tab.append(copy.deepcopy(self._header[1])) for i in range(len(inst_names)): inst = inst_names[i] row = super(LGReader, self).get_row(self._best_row[i]) if self._best_row[i] >= 0 else [0 for i in range(num_params)] out_tab.append(row) curr_fname = out_dir + '/' + inst + "_params.txt" with open(curr_fname, 'wb') as out_f: if __debug__: print( "## Writing parameters for %s ##" % inst ) for p in range(1,num_params): out_f.write(str(self._param_container.param_names[p]).lower() + ' ') curr_val = self._param_container.type_param[p](row[p]) out_f.write(str(curr_val) + '\n') # Save parameter information with open(out_dir + '/' + "best_runs.csv", 'wb') as out_f: out_writer = csv.writer(out_f) out_writer.writerows(out_tab) del out_writer def gap_closed(self, inst_name = None, pha_act_option = None, num_alg2_rounds = None, num_rays_cut = None, max_frac_var = None, cut_limit = None, use_split_share = None, num_cuts_iter_bilinear = None, use_unit_vectors_heur = None, use_cut_vert_heur = None, use_tight_points_heur = None, cut_presolve = None, recompute_best_row = None): """ Adds gap closed information to the instance of LGReader In addition, keeps lp opt, ip opt, osic best, and all cuts best Defaults to all instances, unless inst_name is specified """ # Make sure that ip values are available # (i.e., reread the file if necessary with ip values filled) if (not self._hasipval): self.fill_ip_opt(out_fname = self._in_fname) self._hasipval = True # Get best_row if (not hasattr(self, '_best_row')) or recompute_best_row: self.get_best_row(inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve) # Set defaults col_info = [self.colname_lpobj, self.colname_sicbound, self.colname_allcutsbound] stat = [StatEnum.FIRST, StatEnum.MAX, StatEnum.MAX] typecol = [float, float, float] if (inst_name is None): inst_name = super(LGReader, self).get_param(self.colname_inst) # Save the current number of output decimal places, and set current outputted decimal places saved_num_dec_places = self._num_dec_places self._num_dec_places = self.max_num_dec_places if __debug__: print( "\n## Calculating gap_closed ##" ) # tab will have columns # [inst, lp opt, row, osic opt, row, all cut opt, row, num rows] tab = super(LGReader, self).stat_col(stat, col_info, typecol, inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve) self._num_dec_places = saved_num_dec_places #self._best_row = [int(tab[i][6]) for i in range(1,len(tab))] # ip opt if (not hasattr(self, '_ip_opt')): self.get_ip_opt() # Add information from instances lp_col_index = super(LGReader, self).get_col_index(self.colname_lpobj) sics_col_index = super(LGReader, self).get_col_index(self.colname_sicbound) allcuts_col_index = super(LGReader, self).get_col_index(self.colname_allcutsbound) self._lp_opt = [] self._sic_opt= [] self._sics_gap = [] self._allcuts_opt = [] self._allcuts_gap = [] self._gap_closed = [] for i in range(len(inst_name)): if self._best_row[i] >= 0: curr_row = super(LGReader, self).get_row(self._best_row[i]) self._lp_opt.append(float(curr_row[lp_col_index])) self._sic_opt.append(float(curr_row[sics_col_index])) self._sics_gap.append(100 * (self._sic_opt[i] - self._lp_opt[i]) / (self._ip_opt[i] - self._lp_opt[i])) self._allcuts_opt.append(float(curr_row[allcuts_col_index])) self._allcuts_gap.append(100 * (self._allcuts_opt[i] - self._lp_opt[i]) / (self._ip_opt[i] - self._lp_opt[i])) self._gap_closed.append(100 * (self._allcuts_opt[i] - self._sic_opt[i]) / (self._ip_opt[i] - self._lp_opt[i])) else: self._lp_opt.append(0.0) self._sic_opt.append(0.0) self._sics_gap.append(0.0) self._allcuts_opt.append(0.0) self._allcuts_gap.append(0.0) self._gap_closed.append(0.0) return self._gap_closed def gap_closed_table(self, inst_name = None, pha_act_option = None, num_alg2_rounds = None, num_rays_cut = None, max_frac_var = None, cut_limit = None, use_split_share = None, num_cuts_iter_bilinear = None, use_unit_vectors_heur = None, use_cut_vert_heur = None, use_tight_points_heur = None, cut_presolve = None, recompute = False): """ Create table with gap closed information """ if (not hasattr(self, '_gap_closed')) or recompute: self.gap_closed(inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve, recompute) if (not hasattr(self, '_num_rows') or not hasattr(self, '_num_cols')): self.inst_info() if (not hasattr(self, '_best_row')): self.get_best_row(inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve) append_average = True eps = 1e-5 nonzero_gap_indices = [i for i in range(len(self._gap_closed)) if (self._allcuts_gap[i] > eps)] zero_gap_indices = [i for i in range(len(self._gap_closed)) if (self._allcuts_gap[i] <= eps)] # Set up transpose of out_table out_tab_tr = [[super(LGReader, self).get_param(self.colname_inst)[i] for i in nonzero_gap_indices]] out_tab_tr.append(np.around([self._num_rows[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._num_cols[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._lp_opt[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._ip_opt[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._sic_opt[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._allcuts_opt[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._sics_gap[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._allcuts_gap[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._gap_closed[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) # Also add num SICs, num active SICs, num GICs, num active GICs numsics_col_index = super(LGReader, self).get_col_index(self.colname_numsics) activesics_col_index = super(LGReader, self).get_col_index(self.colname_activesics) numpha_col_index = super(LGReader, self).get_col_index(self.colname_numpha) activegics_col_index = super(LGReader, self).get_col_index(self.colname_activegics) num_sics_tab = [] num_active_sics_tab = [] num_gics_tab = [] num_active_gics_tab = [] percent_active_tab = [] for i in nonzero_gap_indices: if self._best_row[i] >= 0: curr_row = super(LGReader, self).get_row(self._best_row[i]) num_sics_tab.append(int(curr_row[numsics_col_index])) num_active_sics_tab.append(int(curr_row[activesics_col_index])) num_gics_tab.append(int(curr_row[numpha_col_index])) num_active_gics_tab.append(int(curr_row[activegics_col_index])) num_pha = float(curr_row[numpha_col_index]) percent_active_tab.append( (100. * float(curr_row[activegics_col_index]) / num_pha) if num_pha > 0 else 0) else: num_sics_tab.append(0) num_active_sics_tab.append(0) num_gics_tab.append(0) num_active_gics_tab.append(0) percent_active_tab.append(0.0) out_tab_tr.append(num_sics_tab) # num SICs out_tab_tr.append(num_active_sics_tab) # active SICs out_tab_tr.append(num_gics_tab) # num GICs out_tab_tr.append(num_active_gics_tab) # active GICs out_tab_tr.append(percent_active_tab) # % active # Header out_tab = [ [ '', '', '', "Opt", "Opt", "Opt", "Opt", "Best % gap closed", "Best % gap closed", "Best % gap closed", "# cuts", "# cuts", "# cuts", "# cuts", '' ], [ "Instance", "Rows", "Cols", "LP", "IP", "SIC", "GIC+SIC", "SIC", "GIC", "Diff", "SICs", "Active SICs", "GICs", "Active GICs", "% active" ] ] out_tab.extend([list(t) for t in izip(*out_tab_tr)]) if (append_average): out_tab.append( [ "Average",'','','','','','', np.around(np.mean([self._sics_gap[i] for i in nonzero_gap_indices], dtype=np.float64), decimals=self._num_dec_places), np.around(np.mean([self._allcuts_gap[i] for i in nonzero_gap_indices], dtype=np.float64), decimals=self._num_dec_places), np.around(np.mean([self._gap_closed[i] for i in nonzero_gap_indices], dtype=np.float64), decimals=self._num_dec_places), '','','','', np.around(np.mean(percent_active_tab, dtype=np.float64), decimals=self._num_dec_places) ] ) out_tab_tr_zero = [[super(LGReader, self).get_param(self.colname_inst)[i] for i in zero_gap_indices]] out_tab_tr_zero.append(np.around([self._num_rows[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._num_cols[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._lp_opt[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._ip_opt[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._sic_opt[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._allcuts_opt[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._sics_gap[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._allcuts_gap[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._gap_closed[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) num_sics_tab = [] num_active_sics_tab = [] num_gics_tab = [] num_active_gics_tab = [] percent_active_tab = [] for i in zero_gap_indices: if self._best_row[i] >= 0: curr_row = super(LGReader, self).get_row(self._best_row[i]) num_sics_tab.append(int(curr_row[numsics_col_index])) num_active_sics_tab.append(int(curr_row[activesics_col_index])) num_gics_tab.append(int(curr_row[numpha_col_index])) num_active_gics_tab.append(int(curr_row[activegics_col_index])) num_pha = float(curr_row[numpha_col_index]) percent_active_tab.append( (100. * float(curr_row[activegics_col_index]) / num_pha) if num_pha > 0 else 0) else: num_sics_tab.append(0) num_active_sics_tab.append(0) num_gics_tab.append(0) num_active_gics_tab.append(0) percent_active_tab.append(0.0) out_tab_tr_zero.append(num_sics_tab) # num SICs out_tab_tr_zero.append(num_active_sics_tab) # active SICs out_tab_tr_zero.append(num_gics_tab) # num GICs out_tab_tr_zero.append(num_active_gics_tab) # active GICs out_tab_tr_zero.append(percent_active_tab) # % active out_tab.extend([list(t) for t in izip(*out_tab_tr_zero)]) util.print_pretty_table(out_tab) return out_tab def hplane_analysis(self, hh_start = 0, hh_end = 2, num_act_start = 0, num_act_end = 4): """ Sees effect of the various hplane selection heuristics, as well as the number of activated hyperplanes Outputs 2D list with the data """ if (not hasattr(self, '_gap_closed')): self.gap_closed() col_name = [self.colname_allcutsbound] stat = StatEnum.MAX make_int = False inst_names = super(LGReader, self).get_param(self.colname_inst) numpoints_col_index = super(LGReader, self).get_col_index(self.colname_numpoints) numfinalpoints_col_index = super(LGReader, self).get_col_index(self.colname_numfinalpoints) points_tab_tr = [] finalpoints_tab_tr = [] out_tab_tr = [super(LGReader, self).get_param(self.colname_inst)] out_tab_tr.append(np.around(self._sics_gap, self._num_dec_places).tolist()) out_tab_tr.append(np.around(self._allcuts_gap, self._num_dec_places).tolist()) out_tab_tr.append(np.around(self._gap_closed, self._num_dec_places).tolist()) append_average = True if (append_average): out_tab_tr[0].append("Average") out_tab_tr[1].append(np.around(np.mean(self._sics_gap, dtype=np.float64), self._num_dec_places)) out_tab_tr[2].append(np.around(np.mean(self._allcuts_gap, dtype=np.float64), self._num_dec_places)) out_tab_tr[3].append(np.around(np.mean(self._gap_closed, dtype=np.float64), self._num_dec_places)) saved_num_dec_places = self._num_dec_places # First, best results for Alg 3 on its own for hh in range(hh_start,hh_end+1): self._num_dec_places = self.max_num_dec_places tab = super(LGReader, self).stat_col(col_info = col_name, pha_act_option = hh, stat = stat, num_alg2_rounds = 0) self._num_dec_places = saved_num_dec_places for c in range(len(col_name)): if (stat in [StatEnum.MIN, StatEnum.MAX, StatEnum.FIRST]): tab_col_index = 1 + 2 * c # tab cols are [inst, stat, row, stat, row, ..., num_inst] elif (stat in [StatEnum.AVG]): tab_col_index = 1 + c # tab cols are [inst, stat, stat, ..., num_inst] curr_gap = self.helper_col_analysis(col_name, stat, tab = tab, tab_col_index = tab_col_index, append_average = append_average) out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) curr_col = [] for inst in range(len(inst_names)): curr_row = int(tab[inst+1][2]) curr_col.append(super(LGReader, self).get_entry(curr_row, [numpoints_col_index, numfinalpoints_col_index])) points_tab_tr.append([int(curr_col[i][0]) for i in range(len(inst_names))]) finalpoints_tab_tr.append([int(curr_col[i][1]) for i in range(len(inst_names))]) # Now, best results for Alg 3 w/Alg 2, best among all hyperplane activation choices for num_act in range(num_act_start,num_act_end+1): self._num_dec_places = self.max_num_dec_places tab = super(LGReader, self).stat_col(col_info = col_name, num_alg2_rounds = num_act, stat = stat) self._num_dec_places = saved_num_dec_places for c in range(len(col_name)): if (stat in [StatEnum.MIN, StatEnum.MAX, StatEnum.FIRST]): tab_col_index = 1 + 2 * c # tab cols are [inst, stat, row, stat, row, ..., num_inst] elif (stat in [StatEnum.AVG]): tab_col_index = 1 + c # tab cols are [inst, stat, stat, ..., num_inst] curr_gap = self.helper_col_analysis(col_name, stat, tab = tab, tab_col_index = tab_col_index, append_average = append_average) out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) curr_col = [] for inst in range(len(inst_names)): curr_row = int(tab[inst+1][2]) curr_col.append(super(LGReader, self).get_entry(curr_row, [numpoints_col_index, numfinalpoints_col_index])) points_tab_tr.append([int(curr_col[i][0]) for i in range(len(inst_names))]) finalpoints_tab_tr.append([int(curr_col[i][1]) for i in range(len(inst_names))]) # Lastly, best results for Alg 2 on its own for num_act in range(num_act_start+1,num_act_end+1): # +1 because we do not want 0 alg 2 activations self._num_dec_places = self.max_num_dec_places tab = super(LGReader, self).stat_col(col_info = col_name, num_alg2_rounds = -1*num_act, stat = stat) self._num_dec_places = saved_num_dec_places for c in range(len(col_name)): if (stat in [StatEnum.MIN, StatEnum.MAX, StatEnum.FIRST]): tab_col_index = 1 + 2 * c # tab cols are [inst, stat, row, stat, row, ..., num_inst] elif (stat in [StatEnum.AVG]): tab_col_index = 1 + c # tab cols are [inst, stat, stat, ..., num_inst] curr_gap = self.helper_col_analysis(col_name, stat, tab = tab, tab_col_index = tab_col_index, append_average = append_average) out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) curr_col = [] for inst in range(len(inst_names)): curr_row = int(tab[inst+1][2]) curr_col.append(super(LGReader, self).get_entry(curr_row, [numpoints_col_index, numfinalpoints_col_index])) points_tab_tr.append([int(curr_col[i][0]) for i in range(len(inst_names))]) finalpoints_tab_tr.append([int(curr_col[i][1]) for i in range(len(inst_names))]) #out_tab_tr.extend(points_tab_tr) #out_tab_tr.extend(finalpoints_tab_tr) out_tab = [ [ '' ] + 3 * [ '' ] + 3 * [ 'Only Alg. 3' ] + 5 * [ 'Alg. 3 with Alg. 2' ] + 4 * [ 'Only Alg. 2' ], # + (hh_end-hh_start+1 + num_act_end-num_act_start+1 + 4) * ['Points'] # + (hh_end-hh_start+1 + num_act_end-num_act_start+1 + 4) * ['Final Points'], ["Instance", "SIC", "Best", "Diff"] + ["H"+str(hh) for hh in range(hh_start+1,hh_end+2)] + [ "T+"+str(act) for act in range(num_act_start,num_act_end+1)] + [ "+"+str(act) for act in range(1,4+1)] # + ["H"+str(hh) for hh in range(hh_start+1,hh_end+2)] # + [ "T+"+str(act) for act in range(num_act_start,num_act_end+1)] # + [ "+"+str(act) for act in range(1,4+1)] # + ["H"+str(hh) for hh in range(hh_start+1,hh_end+2)] # + [ "T+"+str(act) for act in range(num_act_start,num_act_end+1)] # + [ "+"+str(act) for act in range(1,4+1)] ] out_tab.extend([list(x) for x in izip(*out_tab_tr)]) util.print_pretty_table(out_tab) return out_tab def hplane_point_analysis(self, hh_start = 0, hh_end = 2, num_act_start = 0, num_act_end = 3): """ Sees effect of the various hplane selection heuristics, as well as the number of activated hyperplanes, on the number of points and final points Outputs 2D list with the data """ if (not hasattr(self, '_gap_closed')): self.gap_closed() col_name = [self.colname_allcutsbound] stat = StatEnum.MAX make_int = False numpoints_col_index = super(LGReader, self).get_col_index(self.colname_numpoints) numfinalpoints_col_index = super(LGReader, self).get_col_index(self.colname_numfinalpoints) inst_names = super(LGReader, self).get_param(self.colname_inst) out_tab_tr = [inst_names] points_tab_tr = [] finalpoints_tab_tr = [] saved_num_dec_places = self._num_dec_places for hh in range(hh_start,hh_end+1): self._num_dec_places = self.max_num_dec_places tab = super(LGReader, self).stat_col(col_info = col_name, pha_act_option = hh, stat = stat, num_alg2_rounds = 0) self._num_dec_places = saved_num_dec_places curr_col = [] for inst in range(len(inst_names)): curr_row = int(tab[inst+1][2]) curr_col.append(super(LGReader, self).get_entry(curr_row, [numpoints_col_index, numfinalpoints_col_index])) points_tab_tr.append([int(curr_col[i][0]) for i in range(len(inst_names))]) finalpoints_tab_tr.append([int(curr_col[i][1]) for i in range(len(inst_names))]) for num_act in range(num_act_start,num_act_end+1): self._num_dec_places = self.max_num_dec_places tab = super(LGReader, self).stat_col(col_info = col_name, num_alg2_rounds = num_act, stat = stat) self._num_dec_places = saved_num_dec_places curr_col = [] for inst in range(len(inst_names)): curr_row = int(tab[inst+1][2]) curr_col.append(super(LGReader, self).get_entry(curr_row, [numpoints_col_index, numfinalpoints_col_index])) points_tab_tr.append([int(curr_col[i][0]) for i in range(len(inst_names))]) finalpoints_tab_tr.append([int(curr_col[i][1]) for i in range(len(inst_names))]) for num_act in range(1,4+1): self._num_dec_places = self.max_num_dec_places tab = super(LGReader, self).stat_col(col_info = col_name, num_alg2_rounds = -1*num_act, stat = stat) self._num_dec_places = saved_num_dec_places curr_col = [] for inst in range(len(inst_names)): curr_row = int(tab[inst+1][2]) curr_col.append(super(LGReader, self).get_entry(curr_row, [numpoints_col_index, numfinalpoints_col_index])) points_tab_tr.append([int(curr_col[i][0]) for i in range(len(inst_names))]) finalpoints_tab_tr.append([int(curr_col[i][1]) for i in range(len(inst_names))]) out_tab_tr.extend(points_tab_tr) out_tab_tr.extend(finalpoints_tab_tr) out_tab = [ [ '' ] + (hh_end-hh_start+1 + num_act_end-num_act_start+1 + 4) * ['Points'] + (hh_end-hh_start+1 + num_act_end-num_act_start+1 + 4) * ['Final Points'], ["Instance"] + ["HH"+str(hh) for hh in range(hh_start+1,hh_end+2)] + [ "+"+str(act)+"H" for act in range(num_act_start,num_act_end+1)] + [ "-"+str(act)+"H" for act in range(1,4+1)] + ["HH"+str(hh) for hh in range(hh_start+1,hh_end+2)] + [ "+"+str(act)+"H" for act in range(num_act_start,num_act_end+1)] + [ "-"+str(act)+"H" for act in range(1,4+1)]] out_tab.extend([list(x) for x in izip(*out_tab_tr)]) util.print_pretty_table(out_tab) return out_tab def cut_heur_analysis(self): """ Analyzes effect of different cut selection heuristics that were used Outputs 2D list with the data """ col_name = [self.colname_allcutsbound] stat = StatEnum.MAX out_tab_tr = [super(LGReader, self).get_param(self.colname_inst)] append_average = True if (append_average): out_tab_tr[0].append("Average") saved_num_dec_places = self._num_dec_places # Best out_tab_tr.append(np.around(self._allcuts_gap, self._num_dec_places).tolist()) if (append_average): out_tab_tr[1].append(np.around(np.mean(self._allcuts_gap, dtype=np.float64), self._num_dec_places)) # R self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = [], use_split_share = 0, num_cuts_iter_bilinear = 0, use_cut_vert_heur = 0, use_tight_points_heur = 0) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # S self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = 0, use_split_share = [], num_cuts_iter_bilinear = 0, use_cut_vert_heur = 0, use_tight_points_heur = 0) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # T self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = 0, use_split_share = 0, num_cuts_iter_bilinear = 0, use_cut_vert_heur = 0, use_tight_points_heur = []) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # V self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = 0, use_split_share = 0, num_cuts_iter_bilinear = 0, use_cut_vert_heur = [], use_tight_points_heur = 0) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) if False: # B self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = 0, use_split_share = 0, num_cuts_iter_bilinear = [], use_cut_vert_heur = 0, use_tight_points_heur = 0) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # B+R self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = [], use_split_share = 0, num_cuts_iter_bilinear = [], use_cut_vert_heur = 0, use_tight_points_heur = 0) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # B+S self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = 0, use_split_share = [], num_cuts_iter_bilinear = [], use_cut_vert_heur = 0, use_tight_points_heur = 0) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # B+T self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = 0, use_split_share = 0, num_cuts_iter_bilinear = [], use_cut_vert_heur = 0, use_tight_points_heur = []) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # B+V self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = 0, use_split_share = 0, num_cuts_iter_bilinear = [], use_cut_vert_heur = [], use_tight_points_heur = 0) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # B+R+S self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = [], use_split_share = [], num_cuts_iter_bilinear = [], use_cut_vert_heur = 0, use_tight_points_heur = 0) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # B+R+T self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = [], use_split_share = 0, num_cuts_iter_bilinear = [], use_cut_vert_heur = 0, use_tight_points_heur = []) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # B+R+V self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = [], use_split_share = 0, num_cuts_iter_bilinear = [], use_cut_vert_heur = [], use_tight_points_heur = 0) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # R+S self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = [], use_split_share = [], num_cuts_iter_bilinear = 0, use_cut_vert_heur = 0, use_tight_points_heur = 0) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # R+T self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = [], use_split_share = 0, num_cuts_iter_bilinear = 0, use_cut_vert_heur = 0, use_tight_points_heur = []) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # R+V self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = [], use_split_share = 0, num_cuts_iter_bilinear = 0, use_cut_vert_heur = [], use_tight_points_heur = 0) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # S+T self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = 0, use_split_share = [], num_cuts_iter_bilinear = 0, use_cut_vert_heur = 0, use_tight_points_heur = []) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # S+V self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = 0, use_split_share = [], num_cuts_iter_bilinear = 0, use_cut_vert_heur = [], use_tight_points_heur = 0) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # T+V self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = 0, use_split_share = 0, num_cuts_iter_bilinear = 0, use_cut_vert_heur = [], use_tight_points_heur = []) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # R+S+T self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = [], use_split_share = [], num_cuts_iter_bilinear = 0, use_cut_vert_heur = 0, use_tight_points_heur = []) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # R+S+V self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = [], use_split_share = [], num_cuts_iter_bilinear = 0, use_cut_vert_heur = [], use_tight_points_heur = 0) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # R+T+V self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = [], use_split_share = 0, num_cuts_iter_bilinear = 0, use_cut_vert_heur = [], use_tight_points_heur = []) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # S+T+V self._num_dec_places = self.max_num_dec_places curr_gap = self.helper_col_analysis(col_name, stat, append_average = append_average, use_unit_vectors_heur = 0, use_split_share = [], num_cuts_iter_bilinear = 0, use_cut_vert_heur = [], use_tight_points_heur = []) self._num_dec_places = saved_num_dec_places out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) # Set header and transpose out_tab = [["Instance", "Best", "R", "S", "T", "V", #"B", #"B+R", "B+S", "B+T", "B+V", #"B+R+S", "B+R+T", "B+R+V", "B+V+S", "B+V+T", "B+S+T", "R+S", "R+T", "R+V", "S+T", "S+V", "T+V", "R+S+T", "R+S+V", "R+T+V", "S+T+V"]] out_tab.extend([list(x) for x in izip(*out_tab_tr)]) #util.print_pretty_table(out_tab_tr) util.print_pretty_table(out_tab) return out_tab def point_analysis(self): """ Analyzes number of points and final points Outputs 2D list with the data """ col_name = [self.colname_numpoints, self.colname_numfinalpoints] stat = StatEnum.MAX make_int = True out_tab_tr = [super(LGReader, self).get_param(self.colname_inst)] total_num_act = 4 for num_act in range(0,total_num_act): tab = super(LGReader, self).stat_col(col_info = col_name, num_alg2_rounds = num_act, stat = stat) for c in range(len(col_name)): if (stat in [StatEnum.MIN, StatEnum.MAX, StatEnum.FIRST]): curr_index = 1 + 2 * c # tab cols are [inst, stat, row, stat, row, ..., num_inst] elif (stat in [StatEnum.AVG]): curr_index = 1 + c # tab cols are [inst, stat, stat, ..., num_inst] if (make_int): curr_col = [int(float(tab[i][curr_index])) for i in range(1,len(tab))] # one header row else: curr_col = [float(tab[i][curr_index]) for i in range(1,len(tab))] # one header row out_tab_tr.append(curr_col) # Rearrange (same columns should be next to each other) out_tab_tr = [ out_tab_tr[0], out_tab_tr[1], out_tab_tr[3], out_tab_tr[5], out_tab_tr[7], out_tab_tr[2], out_tab_tr[4], out_tab_tr[6], out_tab_tr[8] ] nInst = len(out_tab_tr[0]) percent_final_points = [ [ round(100. * float(out_tab_tr[j][i]) / out_tab_tr[j-total_num_act][i], self._num_dec_places) if out_tab_tr[j-total_num_act][i] != 0 else 0 for j in range(5,9) ] for i in range(nInst) ] max_index = [percent_final_points[i].index(max(percent_final_points[i])) for i in range(nInst)] #percent_final_points =\ # [ # round(max( # [100. * float(out_tab_tr[j][i]) / out_tab_tr[j-4][i] # if out_tab_tr[j-4][i] != 0 # else 0 # for j in range(5,9)] # ), self._num_dec_places) # for i in range(nInst) # ] out_tab = [["Instance", "Points", "Final", "% final"]] out_tab.extend([ [out_tab_tr[0][i], out_tab_tr[1+max_index[i]][i], out_tab_tr[1+max_index[i]+total_num_act][i], percent_final_points[i][max_index[i]]] for i in range(nInst) ]) #out_tab = [ # # ['']+4*["Points"]+4*["Final points"]+[''], # ["Instance", "+0H", "+1H", "+2H", "+3H", # "+0H", "+1H", "+2H", "+3H", "% final"] # ] #out_tab.extend([list(x) for x in izip(*tmp_out_tab_tr)]) util.print_pretty_table(out_tab) return out_tab def helper_col_analysis(self, col_name, stat, tab = None, tab_col_index = None, make_int = None, return_gap_closed = None, append_average = None, use_unit_vectors_heur = None, use_split_share = None, num_cuts_iter_bilinear = None, use_cut_vert_heur = None, use_tight_points_heur = None, cut_limit = None): """ Helper function (saves repeating of same lines) Calculates gap closed from best result for each instance using the given options If tab is given, then do not recalculate it Returns the numpy array with the gap closed for each instance or the column as a row """ # Defaults if (tab_col_index is None): tab_col_index = 1 if (make_int is None): make_int = False if (return_gap_closed is None): return_gap_closed = True if (append_average is None): append_average = True if (tab is None): tab = super(LGReader, self).stat_col(col_info = col_name, stat = stat, use_unit_vectors_heur = use_unit_vectors_heur, use_split_share = use_split_share, num_cuts_iter_bilinear = num_cuts_iter_bilinear, use_cut_vert_heur = use_cut_vert_heur, use_tight_points_heur = use_tight_points_heur, cut_limit = cut_limit) nonzero_indices = [i-1 for i in range(1,len(tab)) if tab[i][3] > 0] if (make_int): curr_col = [ int(round(float(tab[i][tab_col_index]))) if tab[i][3] > 0 else 0 for i in range(1,len(tab)) ] # one header row else: curr_col = [ float(tab[i][tab_col_index]) if tab[i][3] > 0 else 0 for i in range(1,len(tab)) ] # one header row if (return_gap_closed): #out_col = 100 * np.true_divide(np.asarray(curr_col) - self._lp_opt, self._ip_opt - self._lp_opt) - self._sics_gap out_col = [ 100 * (curr_col[i] - self._lp_opt[i]) / (self._ip_opt[i] - self._lp_opt[i]) #- self._sics_gap[i] if tab[i+1][3] > 0 else 0 for i in range(0,len(tab)-1) ] else: out_col = curr_col if (append_average): if (isinstance(out_col, np.ndarray)): #avg = np.around(np.mean(out_col, dtype=np.float64), self._num_dec_places) avg = np.around(np.mean([out_col[i] for i in nonzero_indices], dtype=np.float64), self._num_dec_places) out_col = np.append(out_col, avg) elif (type(out_col) is list): if (len(nonzero_indices) > 0): avg = float(sum([out_col[i] for i in nonzero_indices])) / len(nonzero_indices) else: avg = 0 out_col.append(avg) else: raise TypeError("Somehow out_col is not list or numpy.ndarray. Has type %s." % type(out_col)) if (make_int is not True): out_col = np.around(out_col, self._num_dec_places) return out_col def param_analysis(self, cut_limit = None): """ CURRENTLY NON FUNCTIONING Checks effect of # rays cut, limit cuts per split, and cut presolve Outputs 2D list with the data """ if (not hasattr(self, '_gap_closed')): self.gap_closed() col_name = [self.colname_allcutsbound] stat = StatEnum.MAX make_int = False out_tab_tr = [super(LGReader, self).get_param(self.colname_inst)] out_tab_tr.append(np.around(self._sics_gap, self._num_dec_places).tolist()) out_tab_tr.append(np.around(self._allcuts_gap, self._num_dec_places).tolist()) out_tab_tr.append(np.around(self._gap_closed, self._num_dec_places).tolist()) append_average = True if (append_average): out_tab_tr[0].append("Average") out_tab_tr[1].append(np.around(np.mean(self._sics_gap, dtype=np.float64), self._num_dec_places)) out_tab_tr[2].append(np.around(np.mean(self._allcuts_gap, dtype=np.float64), self._num_dec_places)) out_tab_tr[3].append(np.around(np.mean(self._gap_closed, dtype=np.float64), self._num_dec_places)) saved_num_dec_places = self._num_dec_places self._num_dec_places = self.max_num_dec_places for val in [0,1]: tab = super(LGReader, self).stat_col(col_info = col_name, stat = stat, limit_cuts_per_cgs = val, cut_limit = cut_limit) self._num_dec_places = saved_num_dec_places for c in range(len(col_name)): if (stat in [StatEnum.MIN, StatEnum.MAX, StatEnum.FIRST]): tab_col_index = 1 + 2 * c # tab cols are [inst, stat, row, stat, row, ..., num_inst] elif (stat in [StatEnum.AVG]): tab_col_index = 1 + c # tab cols are [inst, stat, stat, ..., num_inst] curr_gap = self.helper_col_analysis(col_name, stat, tab = tab, tab_col_index = tab_col_index, append_average = append_average) out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) for val in [0,1]: tab = super(LGReader, self).stat_col(col_info = col_name, stat = stat, cut_presolve = val, cut_limit = cut_limit) self._num_dec_places = saved_num_dec_places for c in range(len(col_name)): if (stat in [StatEnum.MIN, StatEnum.MAX, StatEnum.FIRST]): tab_col_index = 1 + 2 * c # tab cols are [inst, stat, row, stat, row, ..., num_inst] elif (stat in [StatEnum.AVG]): tab_col_index = 1 + c # tab cols are [inst, stat, stat, ..., num_inst] curr_gap = self.helper_col_analysis(col_name, stat, tab = tab, tab_col_index = tab_col_index, append_average = append_average) out_tab_tr.append(np.around(curr_gap, self._num_dec_places).tolist()) out_tab = [["Instance", "SIC", "GIC", "Best", "Limit 0", "Limit 1", "Presolve 0", "Presolve 1"]] out_tab.extend([list(x) for x in izip(*out_tab_tr)]) util.print_pretty_table(out_tab) return out_tab #def plotScatter(self, data_x, data_y, xTitle, yTitle, plotTitle, saveAsFile, folder): # """ # Makes scatter plot # """ # plt.plot(data_x, data_y, 'o') # plt.xlabel(xTitle) # plt.ylabel(yTitle) # #plt.axis([0,100,0,100]) # plt.grid(False) # plt.title(plotTitle + ' scatter') # plt.savefig('/home/akazachk/repos/pointcuts4/data/figs/' + folder + '/' + saveAsFile + '_scatter.png') # #plt.savefig('./figs/'+saveAsFile + '_scatter.png') # plt.clf() def run_param_regression(self, inst_list = None, pha_act_option = None, num_alg2_rounds = None, num_rays_cut = None, cut_limit = None, limit_cuts_per_cgs = None, use_split_share = None, num_cuts_iter_bilinear = None, use_cut_vert_heur = None, use_tight_points_heur = None, cut_presolve = None): """ Reports correlation and p-val of gap closed vs. various statistics (1) # FP, (2) # points, (3) % FP, (4) depth, (5) # cuts """ if (not hasattr(self, '_gap_closed')): self.gap_closed(inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, cut_limit, limit_cuts_per_cgs, use_split_share, num_cuts_iter_bilinear, use_cut_vert_heur, use_tight_points_heur, cut_presolve) if (inst_list is None): inst_list = super(LGReader, self).get_param("INSTANCE") for inst_index in range(len(inst_list)): inst_name = inst_list[inst_index] if __debug__: print( "## Regressions for %s ##" % inst_name ) # Points regression tab = super(LGReader, self).create_table([inst_name],['NUM FINAL POINTS (TOTAL)', 'NUM POINTS (TOTAL)', 'ALL CUTS (WITH SIC)', 'NUM PHA', 'SIC DEPTH POINTS (AVG)']) x_final_points = [(int)(tab[i][0]) for i in range(len(tab))] x_total_points = [(int)(tab[i][1]) for i in range(len(tab))] x_percent_fp = [100 * (float) (x_final_points[i])/x_total_points[i] for i in range (len(x_final_points))] x_num_pha = [(int)(tab[i][3]) for i in range(len(tab))] x_depth_points = [(float)(tab[i][4]) for i in range(len(tab))] curr_lp_opt = self._lp_opt[inst_index] curr_sic_opt = self._sic_opt[inst_index] curr_ip_opt = self._ip_opt[inst_index] y_gap = [100. * ((float)(tab[i][2]) - curr_lp_opt)/(curr_ip_opt - curr_lp_opt) for i in range(len(tab))] y_diff_gap = [100. * ((float)(tab[i][2]) - curr_sic_opt)/(curr_ip_opt - curr_lp_opt) for i in range(len(tab))] x = x_final_points y = y_gap self.plotScatter(x,y,'Num Final Points','% Gap Closed','Num FP vs Gap',inst_name,'NumFP') y = y_diff_gap self.plotScatter(x,y,'Num Final Points','Diff % Gap Closed','Num FP vs Diff Gap',inst_name + '_Diff','Diff/NumFP') x = x_total_points y = y_gap self.plotScatter(x,y,'Num Total Points','% Gap Closed','Num Points vs Gap',inst_name,'NumPoints') y = y_diff_gap self.plotScatter(x,y,'Num Total Points','Diff % Gap Closed','Num Points vs Diff Gap',inst_name + '_Diff','Diff/NumPoints') x = x_percent_fp y = y_gap self.plotScatter(x,y,'% Final Points','% Gap Closed','% FP vs Gap',inst_name,'PercentFP') y = y_diff_gap self.plotScatter(x,y,'% Final Points','Diff % Gap Closed','% FP vs Diff Gap',inst_name + '_Diff','Diff/PercentFP') x = x_num_pha y = y_gap self.plotScatter(x,y,'Num PHA','% Gap Closed','Num PHA vs Gap',inst_name,'NumCuts') y = y_diff_gap self.plotScatter(x,y,'Num PHA','Diff % Gap Closed','Num PHA vs Diff Gap',inst_name + '_Diff','Diff/NumCuts') x = x_depth_points y = y_gap self.plotScatter(x,y,'SIC Depth Points (Avg)','% Gap Closed','SIC Depth vs Gap',inst_name,'SICDepth') y = y_diff_gap self.plotScatter(x,y,'SIC Depth Points (Avg)','Diff % Gap Closed','SIC Depth vs Diff Gap',inst_name + '_Diff','Diff/SICDepth') #(slope,intercept,rval,pval,stderr)=stats.linregress(x,y) #print('inst=%s regression: slope=%f intercept=%f, rval=%f, pval=%f, std error= %f' % (inst_name,slope,intercept,rval,pval,stderr)) def fill_ip_opt(self, ip_opt_fname = None, out_fname = None, overwrite = None): """ Fills in IP opt for each instance in the relevant column Creates a processcsv.ProcessCSV instance for lg_info and ip_opt Finds IP opt for each row in lg_info, and creates a new file (out_f) with all info """ if __debug__: print( "## Filling in IP values ##" ) if (overwrite is None): overwrite = False # Process parameters assert self._in_fname is not None find_dot = util.index_of('.', self._in_fname) if (find_dot >= 0): in_fname_stub = self._in_fname[:find_dot] else: in_fname_stub = copy.deepcopy(self._in_fname) if (out_fname is None): out_fname = in_fname_stub + "_ip.csv" elif (out_fname == self._in_fname): overwrite = True out_fname = in_fname_stub + "_ip.csv" else: # In case user mistakenly set overwrite = True overwrite = False if __debug__: print( "Infile: %s, Outfile: %s" % (self._in_fname, out_fname) ) # Read IP opt file in self.get_ip_opt(ip_opt_fname) # Open out file out_f = open(out_fname, 'wb') output = csv.writer(out_f) # Write file line by line lg_ip_obj_col = super(LGReader, self).get_col_index(self.colname_ipobj) assert lg_ip_obj_col >= 0 # Write header #for i in range(len(super(LGReader, self)._header)): # output.writerow(super(LGReader, self)._header[i]) for i in range(len(self._header)): output.writerow(self._header[i]) # Write each row with filled-in value super(LGReader, self).restart_reader() #for row in super(LGReader, self)._reader: for row in self._reader: curr_inst = row[super(LGReader, self).inst_col] curr_inst_index = super(LGReader, self).get_inst(curr_inst) # find_first_val returns a table, with a header row # The first row contains all the column information #val_str = ip_opt_reader.find_first_val(col_info = self.colname_ipobj, inst_name = curr_inst)[1][1] print( "Curr inst: %s, curr_inst_index: %d" % (curr_inst, curr_inst_index) ) val_str = str(self._ip_opt[curr_inst_index]) # Might be a float already, but might be the '' string if (len(val_str) > 0): curr_inst_ip_obj = float(val_str) if __debug__: print( "Instance: %s\tIP obj: %f" % (curr_inst, curr_inst_ip_obj) ) row[lg_ip_obj_col] = curr_inst_ip_obj elif __debug__: print( "Instance %s not found in IP file" % curr_inst ) output.writerow(row) # Close out_f.close() del output # Overwrite if out_fname and in_fname coincide if (overwrite): # Necessarily will need to recreate it later super(LGReader, self).close_f() # Overwite in_fname shutil.move(out_fname, self._in_fname) # Restart the file super(LGReader, self).reopen_reader() def get_command(self, row_info, inst_dir = None, out_dir = None): """ Get PointCuts command from row """ if (inst_dir is None): inst_dir = "../" elif (inst_dir[-1] is not '/'): inst_dir = inst_dir + '/' if (out_dir is None): out_dir = "." if (type(row_info) is int): row = super(LGReader, self).get_row(row_info)[0:self._param_container.num_params-2] elif (type(row_info) is list): assert(len(row_info) >= self._param_container.num_params-2) row = row_info[0:self._param_container.num_params-2] else: raise TypeError("Type of row is not int (for row number) or list (the row itself), but is %s." % type(row_info)) return "$POINTCUTS" + " " + inst_dir + row[0] + ".mps" + " " + out_dir + " " + " ".join(row[1:]) def __del__(self): """ Destructor """ super(LGReader, self).__del__() def main(argv): from os import environ HOME_DIR = os.environ['HOME'] test_dir = HOME_DIR + "/repos/pha2/results/saved_results" test_name_stub = "pha.csv" test_name = test_dir + '/' + test_name_stub reader = LGReader(test_name); #reader = LGReader("/Users/akazachk/repos/pha2/results/pha.csv"); reader.set_param("CUT_LIMIT",1000); reader.set_param("CUT_PRESOLVE",0); reader.set_inst("mas74"); #tab = reader.gap_closed_table() #reader.hplane_point_analysis() #tab = reader.inst_info() #tab = reader.point_analysis() #tab = reader.hplane_analysis() #tab = reader.cut_heur_analysis() #reader.write_best_params() #tab = reader.obj_fails_table() if __name__ == "__main__": main(sys.argv)
[ "None" ]
None
77564f1e0f6f6a59e0bc5ce08ac4e1446e6b1360
8ba62e9ceb9307f2fe81db0cbfaed79fee12f51a
/Baekjoon/Dynamic Programming - New/타일 채우기.py
29441bfd83cbaa189fa5b02b88ba0feaa001b0e0
[]
no_license
Seoyoung2/Algorithm_Study
9478e2ef183eed60c9670a05688cd835a2f69acd
ea2073e788f3c67a03b1168bbeaa9609e5e6e1bf
refs/heads/master
2023-02-13T05:04:46.045416
2021-01-14T08:01:37
2021-01-14T08:01:37
199,292,037
0
0
null
null
null
null
UTF-8
Python
false
false
565
py
# 3×N 크기의 벽을 2×1, 1×2 크기의 타일로 채우는 경우의 수를 구해보자. # 입력 : 첫째 줄에 n이 주어진다. (1 ≤ n ≤ 30) # 출력 : 첫째 줄에 경우의 수를 출력한다. # dp[n] = 3 * dp[n-2] + 2 * (dp[n-4] + dp[n-6] + ... + dp[0]) # n이 홀수면 타일로 채우기 불가능 import sys n = int(sys.stdin.readline()) dp = [0 for _ in range(31)] dp[0], dp[1], dp[2] = 1, 0, 3 for i in range(4, n+1, 2): dp[i] = 3 * dp[i-2] for j in range(4, i+1, 2): dp[i] += 2 * dp[i-j] print(dp[n])
d64a3757a6473ecc106814852095fdc3456b4424
d18ed72d6f8d27dd8a13eab5c6366f9dca48aa6b
/espresso/vinil/content/actors/test/index.odb
20b348324b0ce513e258e924725f89b2f08481d1
[ "Apache-2.0" ]
permissive
danse-inelastic/AbInitio
6f1dcdd26a8163fa3026883fb3c40f63d1105b0c
401e8d5fa16b9d5ce42852b002bc2e4274afab84
refs/heads/master
2021-01-10T19:16:35.770411
2011-04-12T11:04:52
2011-04-12T11:04:52
34,972,670
1
2
null
null
null
null
UTF-8
Python
false
false
1,696
odb
#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Alex Dementsov # California Institute of Technology # (C) 2009 All Rights Reserved # # {LicenseText} # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # from luban.content import select from luban.content.Paragraph import Paragraph from luban.content.Document import Document from luban.content import load from luban.content.Link import Link from vinil.components.Actor import Actor as base class Actor(base): class Inventory(base.Inventory): import pyre.inventory id = pyre.inventory.str('id') def content(self, director): document = Document() # Implement tests for jmd: # 1. Echo # 2. Simple calculator document.add(Link(label="Test jmd", onclick=select(id='test-jmd').replaceContent(Paragraph(text="World", id="test-jmd")) ) ) document.add(Paragraph(text=director.blah, id="test-jmd")) # "Hello"director.blah return document def pathlist(self, director): self.pathlist = (["Home", None, None],) return self.pathlist def __init__(self, *args, **kwds): super(Actor, self).__init__(*args, **kwds) return def _configure(self): super(Actor, self)._configure() self.id = self.inventory.id return def _init(self): super(Actor, self)._init() return def actor(): return Actor('test/index') __date__ = "$Nov 12, 2009 1:26:34 PM$"
7f75e3a4e524969dd57adf3d766bf1a31c84bf50
9709a98a04285d86acad6112bc335e8f2995e9b1
/Widgets/RearrangeMod/DialogMod.py
dcfb00442446b74f3667febe598df5138812543d
[]
no_license
redhog/webwidgets
37eb56d92c7421207f78f73961a8b58dc7592ebb
cd0094db9f9f1348ab380d7aef40ab23a7b8b1ba
refs/heads/master
2021-01-17T02:59:45.566859
2013-04-06T21:14:34
2013-04-06T21:14:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,056
py
#! /bin/env python # -*- coding: utf-8 -*- # vim: set fileencoding=utf-8 : # Webwidgets web developement framework # Copyright (C) 2006 uAnywhere, Egil Moeller <[email protected]> # Copyright (C) 2007 Egil Moeller <[email protected]> # Copyright (C) 2007 FreeCode AS, Egil Moeller <[email protected]> # Copyright (C) 2007 FreeCode AS, Axel Liljencrantz <[email protected]> # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """Widgets for user input. """ import types import Webwidgets.Utils import Webwidgets.Constants import Webwidgets.Widgets.Base import Webwidgets.Widgets.ApplicationMod.WindowMod import Webwidgets.Widgets.InputMod.BaseInput import Webwidgets.Widgets.FormattingMod.BaseFormatting class InfoFrame(Webwidgets.Widgets.Base.StaticComposite): def draw_head(self, children, output_options): if 'Head' not in children: children['Head'] = children['Body'].title return """<div class="%(html_head_classes)s" id="%(ww_untranslated__html_id)s-head"> %(Head)s </div>""" % children def draw_body(self, children, output_options): return """<div class="%(html_body_classes)s" id="%(ww_untranslated__html_id)s-body"> %(Body)s </div>""" % children def draw_foot(self, children, output_options): return "" def draw(self, output_options): children = self.draw_children( output_options, invisible_as_empty = True, include_attributes = True) children['html_head_classes'] = Webwidgets.Utils.classes_to_css_classes(self.ww_classes, ['head']) children['html_body_classes'] = Webwidgets.Utils.classes_to_css_classes(self.ww_classes, ['body']) children['html_foot_classes'] = Webwidgets.Utils.classes_to_css_classes(self.ww_classes, ['foot']) children['head'] = self.draw_head(children, output_options) children['body'] = self.draw_body(children, output_options) children['foot'] = self.draw_foot(children, output_options) return """ <div %(html_attributes)s> %(head)s %(body)s %(foot)s </div> """ % children class StaticDialog(InfoFrame): """Dialogs provides an easy way to let the user select one of a few different options, while providing the user with some longer explanation/description of the options. Options are described using a dictionary of description-value pairs.""" __wwml_html_override__ = False buttons = {'Cancel': '0', 'Ok': '1'} def draw_foot(self, children, output_options): return """<div class="%(html_foot_classes)s" id="%(ww_untranslated__html_id)s-foot"> %(Buttons)s </div>""" % children class Buttons(Webwidgets.Widgets.InputMod.BaseInput.ButtonArray): def selected(self, path, value): self.parent.notify('selected', value) raise StopIteration class Buttons(object): def __get__(self, instance, owner): if not instance.parent: return None return instance.parent.buttons buttons = Buttons() class AbstractDialog(StaticDialog, Webwidgets.Widgets.Base.DirectoryServer): remove_on_close = False def draw(self, output_options): Webwidgets.Widgets.ApplicationMod.WindowMod.HtmlWindow.register_script_link( self, self.calculate_url_to_directory_server( 'Webwidgets.Dialog', ['Dialog','dialog_iefix.js'], output_options)) return StaticDialog.draw(self, output_options) def close(self): if self.remove_on_close: del self.parent[self.name] else: self.visible = False def selected(self, path, value): if path != self.path: return self.close() class Dialog(AbstractDialog): pass class AbstractInfoDialog(AbstractDialog): pass class InfoDialog(AbstractInfoDialog): buttons = {'Ok': '1'} class ConfirmationDialog(AbstractInfoDialog): class Head(Webwidgets.Widgets.FormattingMod.BaseFormatting.Html): html = """Really perform action?""" class Body(Webwidgets.Widgets.FormattingMod.BaseFormatting.Html): html = """Do you really want to perform this action?""" class DisableConfirmationDialog(ConfirmationDialog): class Head(Webwidgets.Widgets.FormattingMod.BaseFormatting.Html): html = """Really disable this item?""" class Body(Webwidgets.Widgets.FormattingMod.BaseFormatting.Html): html = """Do you really want to disable this item?""" class DeleteConfirmationDialog(ConfirmationDialog): class Head(Webwidgets.Widgets.FormattingMod.BaseFormatting.Html): html = """Really delete this item?""" class Body(Webwidgets.Widgets.FormattingMod.BaseFormatting.Html): html = """Do you really want to delete this item?""" class DialogContainer(Webwidgets.Widgets.FormattingMod.BaseFormatting.Div): is_dialog_container = True __wwml_html_override__ = False html = "%(Dialogs)s%(Body)s" class Dialogs(Webwidgets.Widgets.FormattingMod.BaseFormatting.ReplacedList): pass class Body(Webwidgets.Widgets.FormattingMod.BaseFormatting.Html): pass def add_dialog(self, dialog, name = None): if name is None: name = str(len(self['Dialogs'].children)) self['Dialogs'][name] = dialog dialog.remove_on_close = True def add_dialog_to_nearest(cls, widget, dialog, name = None): widget.get_ansestor_by_attribute( "is_dialog_container", True ).add_dialog(dialog, name) add_dialog_to_nearest = classmethod(add_dialog_to_nearest) class Hide(Webwidgets.Widgets.Base.StaticComposite): """ A hide/show widget Change the value of the title variable to change the text in the button. TODO: Implement an alternative javascript implementation for faster update at the expense of longer reloads """ class HideButton(Webwidgets.Widgets.InputMod.BaseInput.ToggleButton): true_title = "Hide" false_title = "Show" def draw(self, path): self['Child'].visible = self['HideButton'].value children = self.draw_children(path, invisible_as_empty=True, include_attributes=True) return """<div %(html_attributes)s>%(HideButton)s %(Child)s</div>""" % children
dac6b6d0e619f601a6ec338da6db45412c183f49
6191bad7750404bc0bcaec43a8dea51b52980f04
/Seção_06/Exercício_51.py
0228181ef57c32ca0fe87335b02289edbf78a35c
[]
no_license
Lehcs-py/guppe
abfbab21c1b158b39251fa6234a4a98ce5f31c2a
2ff007bce88e065e6d3020971efd397ec7f7084b
refs/heads/main
2023-02-26T18:43:06.052699
2021-02-07T18:22:53
2021-02-07T18:22:53
330,180,078
0
0
null
null
null
null
UTF-8
Python
false
false
541
py
print(""" 51. Um funcionário recebe aumento anual. Em 1995 foi contratado por 2000 reais. Em 1996 recebeu aumento de 1.5%. A partir de 1997, os aumentos sempre correspondem ao dobro do ano anterior. Faça programa que determine o salário atual do funcionário. """) salario_variavel = 2000 salario_final = 0 porcento = 0.75 for num in range((2021 - 1995) + 1): porcento *= 2 salario_final = (salario_variavel + ((salario_variavel / 100) * porcento)) salario_variavel = salario_final print(f'Salário final: {salario_final}')
2193b859ac3796c8cbc52c1b23cf377f2ce0eeb6
bb150497a05203a718fb3630941231be9e3b6a32
/inference/python_api_test/test_int8_model/base_mkldnn_int8.py
36875b65f27555bcf814ad671a8399dc9eea69a8
[]
no_license
PaddlePaddle/PaddleTest
4fb3dec677f0f13f7f1003fd30df748bf0b5940d
bd3790ce72a2a26611b5eda3901651b5a809348f
refs/heads/develop
2023-09-06T04:23:39.181903
2023-09-04T11:17:50
2023-09-04T11:17:50
383,138,186
42
312
null
2023-09-13T11:13:35
2021-07-05T12:44:59
Python
UTF-8
Python
false
false
5,869
py
""" mkldnn_int8 base values """ mkldnn_int8 = { "PPYOLOE": { "model_name": "PPYOLOE", "jingdu": { "value": 0.008505799229272469, "unit": "mAP", "th": 0.05, }, "xingneng": { "value": 284.9, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "PicoDet": { "model_name": "PicoDet", "jingdu": { "value": 0.29576267147717544, "unit": "mAP", "th": 0.05, }, "xingneng": { "value": 15.6, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "YOLOv5s": { "model_name": "YOLOv5s", "jingdu": { "value": 0.337513986405508, "unit": "mAP", "th": 0.05, }, "xingneng": { "value": 41.9, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "YOLOv6s": { "model_name": "YOLOv6s", "jingdu": { "value": 0.38167538696759734, "unit": "mAP", "th": 0.05, }, "xingneng": { "value": 36.3, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "YOLOv7": { "model_name": "YOLOv7", "jingdu": { "value": 0.4599616751537943, "unit": "mAP", "th": 0.05, }, "xingneng": { "value": 101.8, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "ResNet_vd": { "model_name": "ResNet_vd", "jingdu": { "value": 0.78542, "unit": "acc", "th": 0.05, }, "xingneng": { "value": 6.6, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "MobileNetV3_large": { "model_name": "MobileNetV3_large", "jingdu": { "value": 0.70114, "unit": "acc", "th": 0.05, }, "xingneng": { "value": 4.8, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "PPLCNetV2": { "model_name": "PPLCNetV2", "jingdu": { "value": 0.75986, "unit": "acc", "th": 0.05, }, "xingneng": { "value": 3.8, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "PPHGNet_tiny": { "model_name": "PPHGNet_tiny", "jingdu": { "value": 0.77626, "unit": "acc", "th": 0.05, }, "xingneng": { "value": 8.0, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "EfficientNetB0": { "model_name": "EfficientNetB0", "jingdu": { "value": 0.75366, "unit": "acc", "th": 0.05, }, "xingneng": { "value": 9.6, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "PP-HumanSeg-Lite": { "model_name": "PP-HumanSeg-Lite", "jingdu": { "value": 0.9596980417424789, "unit": "mIoU", "th": 0.05, }, "xingneng": { "value": 42.2, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "PP-Liteseg": { "model_name": "PP-Liteseg", "jingdu": { "value": 0.6646508698054427, "unit": "mIoU", "th": 0.05, }, "xingneng": { "value": 375.9, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "HRNet": { "model_name": "HRNet", "jingdu": { "value": 0.7899464457999261, "unit": "mIoU", "th": 0.05, }, "xingneng": { "value": 532.6, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "UNet": { "model_name": "UNet", "jingdu": { "value": 0.6434970135618086, "unit": "mIoU", "th": 0.05, }, "xingneng": { "value": 1105.8, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "Deeplabv3-ResNet50": { "model_name": "Deeplabv3-ResNet50", "jingdu": { "value": 0.7900994083314681, "unit": "mIoU", "th": 0.05, }, "xingneng": { "value": 861.7, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, "ERNIE_3.0-Medium": { "model_name": "ERNIE_3.0-Medium", "jingdu": { "value": 0.6809545875810936, "unit": "acc", "th": 0.05, }, "xingneng": { "value": 102.71, "unit": "ms", "batch_size": 32, "th": 0.05, }, }, "PP-MiniLM": { "model_name": "PP-MiniLM", "jingdu": { "value": 0.6899907321594069, "unit": "acc", "th": 0.05, }, "xingneng": { "value": 115.12, "unit": "ms", "batch_size": 32, "th": 0.05, }, }, "BERT_Base": { "model_name": "BERT_Base", "jingdu": { "value": 0.051546658541685234, "unit": "acc", "th": 0.05, }, "xingneng": { "value": 18.94, "unit": "ms", "batch_size": 1, "th": 0.05, }, }, }
8210ae56f9b2440b7514fbf2b9ffd550ffa01dbd
b9481ebae49cf19de3b5718c69b84f1b59a8e421
/apps/quotes/migrations/0001_initial.py
feb7681a9e81c817dc6330890a45b12644142612
[]
no_license
arun-skaria/eracks
06db7e3715afa2c6992fe09f05d6546520c65459
532d8a2be31199e7b78ca5e29944deb0a1400753
refs/heads/master
2023-01-08T01:40:10.036585
2017-07-13T13:10:42
2017-07-13T13:10:42
97,123,722
0
0
null
2022-12-26T20:16:17
2017-07-13T13:08:12
HTML
UTF-8
Python
false
false
3,357
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('customers', '0001_initial'), ] operations = [ migrations.CreateModel( name='Quote', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('quote_number', models.CharField(help_text=b'eRacks quote id - letters/numbers/underscore/dashes ok, no spaces', unique=True, max_length=20)), ('valid_for', models.IntegerField(default=10, help_text=b'Number of days the quote is valid for')), ('purchase_order', models.CharField(help_text=b'Customer Purchase Order number, etc', max_length=20, blank=True)), ('customer_reference', models.CharField(help_text=b'Other customer reference number, RFQ, contact name, etc', max_length=30, blank=True)), ('terms', models.CharField(default=b'ccard', help_text=b'Net 5, Wire Transfer, ccard, etc', max_length=20)), ('discount', models.FloatField(default=0, help_text=b'Dollars or percent, according to type', blank=True)), ('discount_type', models.CharField(default=b'$', max_length=1, blank=True, choices=[(b'$', b'Dollars'), (b'%', b'Percent')])), ('shipping', models.FloatField(help_text=b'Estimated weight - lbs', blank=True)), ('shipping_method', models.CharField(help_text=b'UPS, FedEx, Freight, 3-Day, etc', max_length=40, blank=True)), ('target', models.FloatField(help_text=b"The customer's budget, or where the customer would like the quote to be")), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('approved_by', models.ForeignKey(default=2, to=settings.AUTH_USER_MODEL, help_text=b'Manager or admin person approving quote')), ('customer', models.ForeignKey(blank=True, to='customers.Customer', help_text=b'click "+" to create new', null=True)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='QuoteLineItem', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('model', models.CharField(help_text=b'eRacks Model name, eg "OPTERNATOR", or make one up for custom quotes', max_length=60)), ('quantity', models.IntegerField()), ('description', models.TextField(help_text=b'Start with a line for general description, then one config item per line for components')), ('cost', models.FloatField(help_text=b'our cost')), ('price', models.FloatField(help_text=b'customer price')), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('quote', models.ForeignKey(to='quotes.Quote')), ], options={ }, bases=(models.Model,), ), ]
6a5765f8581e4dd9031765969d6f25ba5aa1ed0b
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_butterfly.py
59efacbed543d8dcd7c2d0e9cc28ef78436400d2
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
744
py
#calss header class _BUTTERFLY(): def __init__(self,): self.name = "BUTTERFLY" self.definitions = [u'a type of insect with large, often brightly coloured wings', u'a person who is not responsible or serious, and who is likely to change activities easily or only be interested in pleasure: ', u'the small metal part put on the back of a stud (= piece of jewellery worn in the ear) that keeps it in place', u'a way of swimming on your front by kicking with your legs while raising your arms together out of the water and then bringing them down in front of you '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
8c98a7a678031de0e2fecb6ae93884089c5bd54c
b3699724907850fd26cbce4509fec83a33b89760
/python/ray/tests/test_stress_failure.py
83d9f40f24ed0cf0cf2dfd01e93fedf4bb1ecd74
[ "Apache-2.0", "MIT" ]
permissive
BonsaiAI/ray
5e2f26a81d865a795261d11f9182aca7f07c7b97
941d30f082fe879ea30618af14327c25b5a21a74
refs/heads/master
2023-06-12T05:15:29.370188
2021-05-06T07:03:53
2021-05-06T07:03:53
233,708,687
3
5
Apache-2.0
2023-05-27T08:06:37
2020-01-13T22:41:47
Python
UTF-8
Python
false
false
11,936
py
import numpy as np import pytest import sys import time import ray from ray.cluster_utils import Cluster import ray.ray_constants as ray_constants from ray.test_utils import get_error_message @pytest.fixture(params=[1, 4]) def ray_start_reconstruction(request): num_nodes = request.param plasma_store_memory = int(0.5 * 10**9) cluster = Cluster( initialize_head=True, head_node_args={ "num_cpus": 1, "object_store_memory": plasma_store_memory // num_nodes, "redis_max_memory": 10**8, "_system_config": { "object_timeout_milliseconds": 200 } }) for i in range(num_nodes - 1): cluster.add_node( num_cpus=1, object_store_memory=plasma_store_memory // num_nodes) ray.init(address=cluster.address) yield plasma_store_memory, num_nodes, cluster # Clean up the Ray cluster. ray.shutdown() cluster.shutdown() @pytest.mark.skip(reason="Failing with new GCS API on Linux.") def test_simple(ray_start_reconstruction): plasma_store_memory, num_nodes, cluster = ray_start_reconstruction # Define the size of one task's return argument so that the combined # sum of all objects' sizes is at least twice the plasma stores' # combined allotted memory. num_objects = 100 size = int(plasma_store_memory * 1.5 / (num_objects * 8)) # Define a remote task with no dependencies, which returns a numpy # array of the given size. @ray.remote def foo(i, size): array = np.zeros(size) array[0] = i return array # Launch num_objects instances of the remote task. args = [] for i in range(num_objects): args.append(foo.remote(i, size)) # Get each value to force each task to finish. After some number of # gets, old values should be evicted. for i in range(num_objects): value = ray.get(args[i]) assert value[0] == i # Get each value again to force reconstruction. for i in range(num_objects): value = ray.get(args[i]) assert value[0] == i # Get values sequentially, in chunks. num_chunks = 4 * num_nodes chunk = num_objects // num_chunks for i in range(num_chunks): values = ray.get(args[i * chunk:(i + 1) * chunk]) del values assert cluster.remaining_processes_alive() def sorted_random_indexes(total, output_num): random_indexes = [np.random.randint(total) for _ in range(output_num)] random_indexes.sort() return random_indexes @pytest.mark.skip(reason="Failing with new GCS API on Linux.") def test_recursive(ray_start_reconstruction): plasma_store_memory, num_nodes, cluster = ray_start_reconstruction # Define the size of one task's return argument so that the combined # sum of all objects' sizes is at least twice the plasma stores' # combined allotted memory. num_objects = 100 size = int(plasma_store_memory * 1.5 / (num_objects * 8)) # Define a root task with no dependencies, which returns a numpy array # of the given size. @ray.remote def no_dependency_task(size): array = np.zeros(size) return array # Define a task with a single dependency, which returns its one # argument. @ray.remote def single_dependency(i, arg): arg = np.copy(arg) arg[0] = i return arg # Launch num_objects instances of the remote task, each dependent on # the one before it. arg = no_dependency_task.remote(size) args = [] for i in range(num_objects): arg = single_dependency.remote(i, arg) args.append(arg) # Get each value to force each task to finish. After some number of # gets, old values should be evicted. for i in range(num_objects): value = ray.get(args[i]) assert value[0] == i # Get each value again to force reconstruction. for i in range(num_objects): value = ray.get(args[i]) assert value[0] == i # Get 10 values randomly. random_indexes = sorted_random_indexes(num_objects, 10) for i in random_indexes: value = ray.get(args[i]) assert value[0] == i # Get values sequentially, in chunks. num_chunks = 4 * num_nodes chunk = num_objects // num_chunks for i in range(num_chunks): values = ray.get(args[i * chunk:(i + 1) * chunk]) del values assert cluster.remaining_processes_alive() @pytest.mark.skip(reason="This test often hangs or fails in CI.") def test_multiple_recursive(ray_start_reconstruction): plasma_store_memory, _, cluster = ray_start_reconstruction # Define the size of one task's return argument so that the combined # sum of all objects' sizes is at least twice the plasma stores' # combined allotted memory. num_objects = 100 size = plasma_store_memory * 2 // (num_objects * 8) # Define a root task with no dependencies, which returns a numpy array # of the given size. @ray.remote def no_dependency_task(size): array = np.zeros(size) return array # Define a task with multiple dependencies, which returns its first # argument. @ray.remote def multiple_dependency(i, arg1, arg2, arg3): arg1 = np.copy(arg1) arg1[0] = i return arg1 # Launch num_args instances of the root task. Then launch num_objects # instances of the multi-dependency remote task, each dependent on the # num_args tasks before it. num_args = 3 args = [] for i in range(num_args): arg = no_dependency_task.remote(size) args.append(arg) for i in range(num_objects): args.append(multiple_dependency.remote(i, *args[i:i + num_args])) # Get each value to force each task to finish. After some number of # gets, old values should be evicted. args = args[num_args:] for i in range(num_objects): value = ray.get(args[i]) assert value[0] == i # Get each value again to force reconstruction. for i in range(num_objects): value = ray.get(args[i]) assert value[0] == i # Get 10 values randomly. random_indexes = sorted_random_indexes(num_objects, 10) for i in random_indexes: value = ray.get(args[i]) assert value[0] == i assert cluster.remaining_processes_alive() def wait_for_errors(p, error_check): # Wait for errors from all the nondeterministic tasks. errors = [] time_left = 100 while time_left > 0: errors.extend(get_error_message(p, 1)) if error_check(errors): break time_left -= 1 time.sleep(1) # Make sure that enough errors came through. assert error_check(errors) return errors @pytest.mark.skip("This test does not work yet.") def test_nondeterministic_task(ray_start_reconstruction, error_pubsub): p = error_pubsub plasma_store_memory, num_nodes, cluster = ray_start_reconstruction # Define the size of one task's return argument so that the combined # sum of all objects' sizes is at least twice the plasma stores' # combined allotted memory. num_objects = 1000 size = plasma_store_memory * 2 // (num_objects * 8) # Define a nondeterministic remote task with no dependencies, which # returns a random numpy array of the given size. This task should # produce an error on the driver if it is ever reexecuted. @ray.remote def foo(i, size): array = np.random.rand(size) array[0] = i return array # Define a deterministic remote task with no dependencies, which # returns a numpy array of zeros of the given size. @ray.remote def bar(i, size): array = np.zeros(size) array[0] = i return array # Launch num_objects instances, half deterministic and half # nondeterministic. args = [] for i in range(num_objects): if i % 2 == 0: args.append(foo.remote(i, size)) else: args.append(bar.remote(i, size)) # Get each value to force each task to finish. After some number of # gets, old values should be evicted. for i in range(num_objects): value = ray.get(args[i]) assert value[0] == i # Get each value again to force reconstruction. for i in range(num_objects): value = ray.get(args[i]) assert value[0] == i def error_check(errors): if num_nodes == 1: # In a single-node setting, each object is evicted and # restarted exactly once, so exactly half the objects will # produce an error during reconstruction. min_errors = num_objects // 2 else: # In a multinode setting, each object is evicted zero or one # times, so some of the nondeterministic tasks may not be # reexecuted. min_errors = 1 return len(errors) >= min_errors errors = wait_for_errors(p, error_check) # Make sure all the errors have the correct type. assert all(error.type == ray_constants.HASH_MISMATCH_PUSH_ERROR for error in errors) assert cluster.remaining_processes_alive() @pytest.mark.skip(reason="Failing with new GCS API on Linux.") @pytest.mark.parametrize( "ray_start_object_store_memory", [10**9], indirect=True) def test_driver_put_errors(ray_start_object_store_memory, error_pubsub): p = error_pubsub plasma_store_memory = ray_start_object_store_memory # Define the size of one task's return argument so that the combined # sum of all objects' sizes is at least twice the plasma stores' # combined allotted memory. num_objects = 100 size = plasma_store_memory * 2 // (num_objects * 8) # Define a task with a single dependency, a numpy array, that returns # another array. @ray.remote def single_dependency(i, arg): arg = np.copy(arg) arg[0] = i return arg # Launch num_objects instances of the remote task, each dependent on # the one before it. The first instance of the task takes a numpy array # as an argument, which is put into the object store. args = [] arg = single_dependency.remote(0, np.zeros(size)) for i in range(num_objects): arg = single_dependency.remote(i, arg) args.append(arg) # Get each value to force each task to finish. After some number of # gets, old values should be evicted. for i in range(num_objects): value = ray.get(args[i]) assert value[0] == i # Get each value starting from the beginning to force reconstruction. # Currently, since we're not able to reconstruct `ray.put` objects that # were evicted and whose originating tasks are still running, this # for-loop should hang on its first iteration and push an error to the # driver. ray.wait([args[0]], timeout=30) def error_check(errors): return len(errors) > 1 errors = wait_for_errors(p, error_check) assert all(error.type == ray_constants.PUT_RECONSTRUCTION_PUSH_ERROR or "ray.exceptions.ObjectLostError" in error.error_messages for error in errors) # NOTE(swang): This test tries to launch 1000 workers and breaks. # TODO(rkn): This test needs to be updated to use pytest. # class WorkerPoolTests(unittest.TestCase): # # def tearDown(self): # ray.shutdown() # # def testBlockingTasks(self): # @ray.remote # def f(i, j): # return (i, j) # # @ray.remote # def g(i): # # Each instance of g submits and blocks on the result of another remote # # task. # object_refs = [f.remote(i, j) for j in range(10)] # return ray.get(object_refs) # # ray.init(num_workers=1) # ray.get([g.remote(i) for i in range(1000)]) # ray.shutdown() if __name__ == "__main__": import pytest sys.exit(pytest.main(["-v", __file__]))
0e5b50178ecfb886cf916bcefd9725dbee4c4d43
cfa08425d0a457e0c673543b6e16f0a02effe05f
/projects/admm_cigre/source/admm_agent.py
06bba2bf24c0fa1d7eb29fa83d61e894e209d329
[]
no_license
missinglpf/Distributed_optimization
5b3dfea8b2a29225761537531322e421be83d7a8
84040eebd3f04acf4c09e5e4ff2e59e752bf3fae
refs/heads/master
2020-08-01T03:42:36.455932
2018-06-25T15:59:44
2018-06-25T15:59:44
210,850,421
1
0
null
2019-09-25T13:20:11
2019-09-25T13:20:10
null
UTF-8
Python
false
false
32,623
py
import threading import time from concurrent import futures import grpc import admm_pb2 import admm_pb2_grpc import admin_pb2 import admin_pb2_grpc import json from optparse import OptionParser from acopf_nlopt_agent import ACopf_nlopt from acopf_pips_agent import ACopf_pips import os import sys import logging import csv import datetime import re from numpy import * from ReadConfigFile import ReadConfiguration import datetime import urllib2 # sys.path.append('D:/phd/These_asys/source/nlopt_test/admm/opf_pypower') # admm events start_event = threading.Event() all_beta_event = threading.Event() all_z_event = threading.Event() # prim_ctrl_finished_event = threading.Event() # system events # agent_enabled_event = threading.Event() # reconfiguration_event = threading.Event() # system locks measurement_lock = threading.Lock() # manages the access to the measurement signals references_lock = threading.Lock() # manages the access to the reference signals beta_lock = threading.Lock() # manages the access to the beta & beta_received variables z_lock = threading.Lock() # manages the access to the z & z_received variables x0_lock = threading.Lock() # manages the access to the x0 variable # the grpc server server = grpc.server(futures.ThreadPoolExecutor(max_workers=2)) # flag for stopping the agent running = True # variables for timing the performance of the agent rpc_counter = 0 rpc_total_time = 0 opal_total_time = 0 opal_counter = 0 opt_total_time = 0 opt_counter = 0 trigger_counter = 0 # measurement signals of the agent v_real_meas = 0.0 v_imag_meas = 0.0 p_meas = 0.0 q_meas = 0.0 # reference signals of the agent computed by the secondary control p_ref = 0.0 q_ref = 0.0 # in case the communication with OPAL will have some errors, count them opal_com_error_count = 0 admin_ip = "169.254.35.100" admin_port = 8000 MAX_ADMIN_COMM_RETRY = 5 # number of communication retries, in case of failing to contact the admin MAX_OPAL_COMM_RETRY = 10 # number of communication retries, in case of failing to contact OPAL-RT MEASUREMENTS_TO_ADMIN_DOWNSAMPLE = 500 # send to the admin each 500th measurement taken from OPAL-RT MEASUREMENTS_TO_NEIGH_DOWNSAMPLE = 20 # send to the neighbours each 20th measurement taken from OPAL-RT TRIGGER_SAMPLES = 50 # number of samples that have to meet a condition before taking any decision NON_TRIVIAL_DV = 0.001 # voltage deviation that is considered serious and that should trigger a system wide # recalculation of set-points RAMP_TIME_OF_PRIMARY = 15.0 # apply the reference from the secondary control as a ramp lasting 15 seconds DATA_LOG_PERIOD = 1 # write a line to the data_log_file every second # global variables and price vectors for the ADMM algorithm. we keep the history of all the iterations # for debugging reasons admm_it = 0 admm_running = False x = {} beta = {} z = {} nu = {} z_received = {} beta_received = {} x0 = [] lb = [] ub = [] class AgentServer(admm_pb2_grpc.ADMMAgentServicer): # ========================== Functions for the RPC server that can be called remotely # starts the admm algorithm # def start_admm(self, request, context): # try: # start_event.set() # return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('SUCCESS')) # except Exception as exc: # logging.critical(exc.message) # return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('FAILED'), message=exc.message) # sets a beta value in the beta vector # function called by the neighbours to set their corresponding beta value in the beta vector def set_beta_element(self, request, context): try: set_local_beta_element(request.value_real, request.value_imag, request.agent_id, request.admm_it) return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('SUCCESS')) except Exception as exc: logging.critical(exc.message) return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('FAILED'), message=exc.message) # function called by the neighbours to set their corresponding z value in the z vector def set_z_element(self, request, context): try: set_local_z_element(request.value_real, request.value_imag, request.agent_id, request.admm_it) return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('SUCCESS')) except Exception as exc: logging.critical(exc.message) return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('FAILED'), message=exc.message) # set a x0 value in the x0 vector def set_x0_element(self, request, context): try: set_local_x0_element(request.value_real, request.value_imag, request.agent_id) return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('SUCCESS')) except Exception as exc: logging.critical(exc.message) return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('FAILED'), message=exc.message) # sets the step size for the admm algorithm def set_admm_rho(self, request, context): global config try: config.rho = request.value except Exception as exc: logging.critical(exc.message) return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('FAILED'), message=exc.message) # sets the number of iterations for the admm algorithm def set_admm_max_iter(self, request, context): global config try: config.max_iter = request.value except Exception as exc: logging.critical(exc.message) return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('FAILED'), message=exc.message) # function called by the administrator to set the configuration of the communication links # def set_comm_link_to_neigh(self, request, context): # try: # set_local_comm_link_to_neigh(request.neigh_id, request.delay, request.loss) # return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('SUCCESS')) # except Exception as exc: # logging.critical(exc.message) # return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('FAILED'), message=exc.message) def set_measurement_webserver(self, request, context): try: config.url_opal = "http://" + request.server_ip + ":" + str(request.server_port) + "/asyncsrv/" return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('SUCCESS')) except Exception as exc: logging.critical(exc.message) return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('FAILED'), message=exc.message) # shuts down the agent remotely def remote_shutdown(self, request, context): global running try: running = False return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('SUCCESS')) except Exception as exc: logging.critical(exc.message) return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('FAILED'), message=exc.message) # sets the step size for the admm algorithm def set_admm_rho(self, request, context): global config try: config.rho = request.value except Exception as exc: logging.critical(exc.message) return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('FAILED'), message=exc.message) # sets the number of iterations for the admm algorithm def set_admm_max_iter(self, request, context): global config try: config.max_iter = request.value except Exception as exc: logging.critical(exc.message) return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('FAILED'), message=exc.message) # enable the agent # def enable(self, request, context): # try: # agent_enabled_event.set() # return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('SUCCESS')) # except Exception as exc: # logging.critical(exc.message) # return admm_pb2.CommReply(status=admm_pb2.OperationStatus.Value('FAILED'), message=exc.message) # def configure_comm_links(): # if config.running_on_wireless: # device = "wlan0" # else: # device = "eth0" # config_script = "sudo tc qdisc del dev " + device + " root;" \ # "sudo tc qdisc add dev " + device + " handle 1: root htb;" \ # "sudo tc class add dev " + device + " parent 1: classid 1:1 htb rate 100Mbps;" # for p in config.partners: # tmpl = "sudo tc class add dev " + device + " parent 1:1 classid 1:1{0} htb rate 100Mbps;" \ # "sudo tc qdisc add dev " + device + " parent 1:1{0} handle lamda10{0}: netem delay {3}s loss {4}%;" \ # "sudo tc filter add dev " + device + " protocol ip parent 1:0 prio 3 u32 match ip dport {2} 0xffff match ip dst {1} flowid 1:1{0};" # # id, ip, port, delay, loss # config_script += tmpl.format(p[0], p[1], p[2], p[3], p[4]) # #print(config_script) # os.system(config_script) # def set_local_comm_link_to_neigh(neighbour, delay, loss): # if config.running_on_wireless: # device = "wlan0" # else: # device = "eth0" # for p in config.partners: # if p[0] == neighbour: # command = "sudo tc qdisc change dev " + device + " handle lamda10{0}: netem delay {1}s loss {2}%;".format(p[0], delay, loss) # os.system(command) # def pool_opal(): # # if not agent_enabled_event.isSet(): # # logging.info("Waiting for the agent to be enabled") # # agent_enabled_event.wait() # blocking call until the enable event is detected # global opal_com_error_count # global q_meas, v_meas, p_meas # measurement signals # # make access to shared resources thread safe # # key_p = "valout" + str(config.opal_get_ids["P"]) # # key_q = "valout" + str(config.opal_get_ids["Q"]) # # key_v = "valout" + str(config.opal_get_ids["V"]) # # # compose the URL for the webserver # # get_url = config.url_opal + 'get?' + 'name0=' + key_p + '&' + 'name1=' + key_q + \ # # '&' + 'name2=' + key_v # # # # req = urllib2.Request(url=get_url) # # try: # # tic = datetime.datetime.now() # # f = urllib2.urlopen(req, timeout=1) # # toc = datetime.datetime.now() # # response = f.read() # # delta = (toc - tic).total_seconds() # # get_opal_statistics(delta) # # d = json.loads(response) # # with measurement_lock: # measurements are accessed from several threads, therefore they need to be protected # # p_meas = float(d[key_p]) # # q_meas = float(d[key_q]) # # v_meas = float(d[key_v]) # # # test_if_secondary_control_should_start() # # except Exception as exc: # # opal_com_error_count += 1 # # # if opal_com_error_count >= MAX_OPAL_COMM_RETRY: # # # notify_administrator("There seems to be a problem with the WEB-SERVER") # # # notify_administrator(exc.message) # # # opal_com_error_count = 0 # # logging.critical(exc.message) # # # reschedule the function to start again # t = threading.Timer(config.ts_opal, pool_opal) # # t = threading.Timer(config.ts_opal, pool_opal, args=(agent_enabled_event,)) # t.name = "measurement-thread" # t.daemon = True # if running: # t.start() # set the initial voltage and power values in OPAL's web server # ATTENTION! remember the sign change for the power reference. in opal the load power is with positive sign while in # the optimization problem is with a negative sign def init_opal(): set_url = config.url_opal + 'set?valin' + \ str(config.opal_set_ids["P"]) + '=' + str(-config.opal_default_set["P"]) + \ '&valin' + str(config.opal_set_ids["Q"]) + '=' + str(-config.opal_default_set["Q"]) global p_ref, q_ref with references_lock: p_ref = config.opal_default_set["P"] q_ref = config.opal_default_set["Q"] # req = urllib2.Request(url=set_url) # f = urllib2.urlopen(req) # response = f.read() # if 'Ok' not in response: # notify_administrator("Cannot set initial voltage & power references in OPAL-RT") def get_optimization_statistics(delta): global opt_total_time, opt_counter opt_total_time += delta opt_counter += 1 def get_rpc_statistics(delta): global rpc_total_time, rpc_counter rpc_total_time += delta rpc_counter += 1 def get_opal_statistics(delta): global opal_total_time, opal_counter opal_total_time += delta opal_counter += 1 # if opal_counter % MEASUREMENTS_TO_ADMIN_DOWNSAMPLE == 0: # notify_administrator("measurements") # ========================== ADMM Algorithm def opf(all_beta_event, all_z_event): global admm_it, x, nu, x, z, admm_running, x0, config, lb, ub, p_ref, q_ref while running: logging.debug('Waiting for admm_start event') start_event.wait() # blocking wait call until the event is detected admm_running = True # notify_administrator("admm_started") admm_it = 0 for i in range(1, config.max_iter+1): # set the iteration number # admm step 1 - update the local variables # run the local optimization and compute the local variables # =========================non-linear approach======================= # problem = ACopf_nlopt(x0, config.z_pk, config.z_qk, lb, ub, config.pd, config.qd, # config.p_max, config.p_min, config.q_max, config.q_min, config.node_type, # config.n, z[admm_it], nu[admm_it], config.rho) # ==================================================================== # print(nu[admm_it],z[admm_it]) problem = ACopf_pips(x0, config.z_pk, config.z_qk, lb, ub, config.pd, config.qd, config.p_max, config.p_min, config.q_max, config.q_min, config.node_type, config.n, z[admm_it], nu[admm_it], config.rho) # ==================================================================== tic = datetime.datetime.now() results = problem.solve_opf() toc = datetime.datetime.now() delta = (toc - tic).total_seconds() # print(delta) get_optimization_statistics(delta) xopt = results[0] logging.info( "Agent " + str(config.me[0][0]) + "========ADMM iteration " + str(admm_it) + " solved in " + str(delta) + " [s]") # save the local results of the optimization admm_it += 1 x[admm_it] = xopt # compute the beta variable that is shared with the neighbours beta2distr = (1 / config.rho) * nu[admm_it-1] + xopt # admm step 2 - update the global variables # distribute the beta values to the neighbours distribute_beta(beta2distr) # wait to receive all the betas from the neighbours logging.info(" Waiting to receive all betas") all_beta_event.wait() # compute the z value corresponding to this agent z_real2distr = float(sum(beta[admm_it][0:config.n]) / float(config.n)) z_imag2distr = float(sum(beta[admm_it][config.n:(2*config.n)]) / float(config.n)) # distribute the z value to the neighbours distribute_z(z_real2distr, z_imag2distr) # wait to receive all the z values from the neighbours logging.info(" Waiting to receive all z's") all_z_event.wait() # admm step 3 - update the lagrange multipliers nu[admm_it] = nu[admm_it - 1] + config.rho * (x[admm_it] - z[admm_it]) data_snapshot_to_file(include_admm_data=True) all_beta_event.clear() all_z_event.clear() logging.info("Agent " + str(config.me[0][0]) + ": algorithm finished " + str(config.max_iter) + " iterations") admm_running = False idx = config.all_ids.index(config.me[0][0]) x1 = asmatrix(x[admm_it]) p = x1 * config.z_pk * x1.T + config.pd q = x1 * config.z_qk * x1.T + config.qd p_ref = float(p[idx]) q_ref = float(q[idx]) # notify_administrator("admm_finished") logging.info("Agent " + str(config.me[0][0]) + ": waiting for the primary to finish") # send_references_to_opal() # prim_ctrl_finished_event.wait() # re-initialize the buffers init_admm_buffers() # start_event.clear() all_beta_event.clear() all_z_event.clear() def set_local_beta_element(value_real, value_imag, agent_id, admm_it): idx = config.all_ids.index(agent_id) # get the position in the vector where this value should go with beta_lock: try: if admm_it not in beta: beta[admm_it] = zeros(2*config.n, dtype=float_) beta_received[admm_it] = zeros(config.n, dtype=float_) beta[admm_it][idx] = value_real beta[admm_it][idx + config.n] = value_imag beta_received[admm_it][idx] = 1.0 logging.debug("Agent " + str(config.me[0][0]) + ": Beta[" + str(admm_it) + "]=" + str(beta[admm_it]) + "-> from Agent " + str(agent_id)) # received all the information if sum(beta_received[admm_it]) == config.n: logging.info("Agent " + str(config.me[0][0]) + ": Received all beta info for iteration " + str(admm_it) + ". Updating z.") all_beta_event.set() except KeyError as exc: logging.critical( "Agent " + str(config.me[0][0]) + ": WTFFF!!! Iteration:" + str(admm_it) + " Beta:" + str(beta)) logging.critical(exc.message) def distribute_beta(beta2distr): # distribute the beta variable # first locally # idx = config.all_ids.index(config.me[0]) value_real = float(beta2distr[0]) value_imag = float(beta2distr[config.n]) set_local_beta_element(value_real, value_imag, config.me[0][0], admm_it) logging.info(" finish set local beta") # and then to the neighbours for p in config.partners: idx = config.all_ids.index(p[0]) # get the index of the neighbour value_real = float(beta2distr[idx]) # get the value of beta to be sent value_imag = float(beta2distr[idx + config.n]) # get the value of beta to be sent try: req = admm_pb2.SetBetaRequest(value_real=value_real, value_imag=value_imag, agent_id=config.me[0][0], admm_it=admm_it) tic = datetime.datetime.now() p[-1].set_beta_element(req) # call RPC for each neighbour toc = datetime.datetime.now() delta = (toc - tic).total_seconds() get_rpc_statistics(delta) except Exception as exc: logging.critical( "Agent " + str(config.me[0][0]) + ": Can't contact agent " + str(p[0]) + " for setting beta = ") logging.exception(exc.message) logging.info("Agent " + str(config.me[0][0]) + ": I finished distributing all betas") def distribute_z(z_real2distr, z_imag2distr): global rpc_total_time, rpc_counter # distribute the z variable # first locally set_local_z_element(z_real2distr, z_imag2distr, config.me[0][0], admm_it) # and then to the neighbours for p in config.partners: try: req = admm_pb2.SetZRequest(value_real=z_real2distr, value_imag=z_imag2distr, agent_id=config.me[0][0], admm_it=admm_it) tic = datetime.datetime.now() p[-1].set_z_element(req) toc = datetime.datetime.now() delta = (toc - tic).total_seconds() get_rpc_statistics(delta) except Exception as exc: logging.critical( "Agent " + str(config.me[0][0]) + ": can't contact agent " + str(p[0]) + " for setting z = ") logging.exception(exc.message) def set_local_z_element(z_value_real, z_value_imag, agent_id, admm_it): try: idx = config.all_ids.index(agent_id) # get the position in the vector where this value should go # access the z variable in a thread safe manner with z_lock: if admm_it not in z: z[admm_it] = zeros(2*config.n, dtype=float_) z_received[admm_it] = zeros(config.n, dtype=float_) z[admm_it][idx] = z_value_real z[admm_it][idx + config.n] = z_value_imag z_received[admm_it][idx] = 1.0 logging.debug("Agent " + str(config.me[0][0]) + ": Z[" + str(admm_it) + "]=" + str(z[admm_it])) # received all the information if sum(z_received[admm_it]) == config.n: logging.info("Agent " + str(config.me[0][0]) + ": Received all z info for iteration " + str( admm_it) + ". Updating nu.") all_z_event.set() except KeyError as exc: logging.critical( "Agent " + str(config.me[0][0]) + ": WTFFF!!! Iteration:" + str(admm_it) + " Z:" + str(z)) logging.critical(exc.message) def set_local_x0_element(x0_value, agent_id): global x0 idx = config.all_ids.index(agent_id) with x0_lock: x0[idx] = x0_value logging.debug("Agent " + str(config.me[0][0]) + ": X0 = " + str(x0)) def init_admm_buffers(): global admm_it, z, nu, x, beta, beta_received, z_received, x0, lb, ub if admm_it == 0: # cold start of the ADMM logging.info("Agent " + str(config.me[0][0]) + " initialized the ADMM buffers. First run. Populating first iteration with a cold start.") # global variables and price vectors for the ADMM algorithm. we keep the history of all the iterations # for debugging reasons z = {} nu = {} z[admm_it] = ones(2*config.n, dtype=float_) * 1.1 nu[admm_it] = zeros(2*config.n, dtype=float_) else: # warm start of the ADMM. Using the last values for nu and z logging.info("Agent " + str(config.me[0][0]) + " re-initialized the ADMM buffers. Populating first iteration with a warm start") z_in = z[admm_it] nu_in = nu[admm_it] admm_it = 0 z = {} nu = {} z[admm_it] = z_in nu[admm_it] = nu_in x = {} beta = {} z_received = {} beta_received = {} beta[admm_it] = zeros(2*config.n, dtype=float_) beta_received[admm_it] = zeros(2*config.n, dtype=float_) z_received[admm_it] = zeros(2*config.n, dtype=float_) x0 = ones(2*config.n, dtype=float_) x0[config.n:(2*config.n)] = zeros(config.n, dtype=float) lb = ones(2*config.n, dtype=float_) * (-1.1) ub = ones(2*config.n, dtype=float_) * 1.1 if config.node_type == 3: lb[0] = 1.0 ub[0] = 1.0 + 1e-5 lb[config.n] = 0.0 ub[config.n] = 0.0 + 1e-5 def data_snapshot_to_file(include_admm_data): global x, nu, z, admm_it, config try: if not os.path.isfile(dataFile): header = ['Id', 'Time', 'ADMM_IT'] header += ['X_real'] header += ['X_imag'] header += ['Nu_real'] header += ['Nu_imag'] header += ['Z_real'] header += ['Z_imag'] header += ['P'] header += ['Q'] with open(dataFile, 'w') as f: writer = csv.writer(f) writer.writerow(header) fields = [] if include_admm_data: fields += [admm_it] fields += [x[admm_it][0]] fields += [x[admm_it][config.n]] fields += [nu[admm_it][0]] fields += [nu[admm_it][config.n]] fields += [z[admm_it][0]] fields += [z[admm_it][config.n]] # P = V.*(G*V) # pz = np.multiply(z[admm_it], np.dot(config.G, z[admm_it])) x1 = asmatrix(x[admm_it]) p = x1 * config.z_pk * x1.T + config.pd q = x1 * config.z_qk * x1.T + config.qd fields += [p[0,0]] fields += [q[0,0]] else: fields += [0] * 9 # add zeros to the file in order to create a consistent .csv table with open(dataFile, 'a') as f: writer = csv.writer(f) time_stamp = time.time() line = [config.me[0][0], time_stamp] line += ['{:3.4f}'.format(xval) for xval in fields] writer.writerow(line) except Exception as ex: print(ex.message) # def send_references_to_opal(): # global p_ref, q_ref, z # # change the references only if you are a generator. don't forget about the sign change for the power # if config.node_type > 1: # set_url = config.url_opal + 'set?valin' + \ # str(config.opal_set_ids["P"]) + '=' + str(-p_ref) + '&valin' + \ # str(config.opal_set_ids["Q"]) + '=' + str(-q_ref) # req = urllib2.Request(url=set_url) # f = urllib2.urlopen(req) # response = f.read() # if 'Ok' not in response: # notify_administrator("Cannot send the new references to the OPAL-RT") # notify the secondary when the primary is finished ramping towards the new reference # time.sleep(RAMP_TIME_OF_PRIMARY) # just wait the amount of time required by the primary # in a real system the primary would notify the secondary when done # prim_ctrl_finished_event.set() # notify the secondary # ========================== Functions for communicating with the administrator and data logging # handles the communication with the administrator # def notify_administrator(topic): # comm_error_count = 0 # while comm_error_count < MAX_ADMIN_COMM_RETRY: # try: # if topic is "online": # req = admin_pb2.AgentRequest(agent_id=config.me[0]) # admin_stub.agent_online(req) # elif topic is "offline": # req = admin_pb2.AgentRequest(agent_id=config.me[0]) # admin_stub.agent_offline(req) # elif topic is "admm_started": # req = admin_pb2.AgentRequest(agent_id=config.me[0]) # admin_stub.agent_started_admm(req) # elif topic is "admm_finished": # req = admin_pb2.ADMMResults(agent_id=config.me[0], avg_opt_time = opt_total_time * 1000 / opt_counter, # avg_rpc_time=rpc_total_time * 1000 / rpc_counter, p_ref=p_ref, q_ref = q_ref) # admin_stub.agent_finished_admm(req) # elif topic is "measurements": # req = admin_pb2.Measurements(agent_id=config.me[0], avg_opal_time=opal_total_time * 1000 / opal_counter, # v_meas=v_meas, p_meas=p_meas, trip=t_meas) # admin_stub.agent_measurements(req) # else: # if topic not in list send a general message to the admin # req = admin_pb2.GenericMessage(agent_id=config.me[0], text=topic) # admin_stub.agent_general_use_message(req) # break # except Exception as exc: # logging.error("Agent " + str(config.me[0]) + ": Can't contact the administrator for sending data") # comm_error_count += 1 # if comm_error_count >= MAX_ADMIN_COMM_RETRY: # logging.critical("Agent " + str(config.me[0]) + ": Something is definetly wrong. ABORTING!") # logging.exception(exc.message) # else: # logging.info( # "Agent " + str(config.me[0]) + ": The communication might be busy. I will retry in lamda10 ms!") # time.sleep(0.01) def log_experiment_data_loop(): # if not agent_enabled_event.isSet(): # logging.info("Waiting for the agent to be enabled") # agent_enabled_event.wait() if not admm_running: data_snapshot_to_file(include_admm_data=False) t = threading.Timer(DATA_LOG_PERIOD, log_experiment_data_loop) t.daemon = True t.name = "log-thread" if running: t.start() optp = OptionParser() optp.add_option("-f", "--filename", dest="jsonFile", help="json file containing the configuration of the agent") opts, args = optp.parse_args() if opts.jsonFile is None: opts.jsonFile = raw_input("Name of the json file containing the configuration of the agent:") # log = "logs/log_A_" + re.search(r'\d+', opts.jsonFile).group() + ".txt" log = "logs/log_A_" + re.search(r'\d+', "agent32").group() + ".txt" print(log) dataFile = "data/data_A_" + re.search(r'\d+', opts.jsonFile).group() + ".csv" # log to file logging.basicConfig(level=logging.DEBUG, filename=log, filemode="w", format='%(asctime)s (%(threadName)-9s) %(levelname)s: %(message)s') logging.info("Reading the configuration file") # read the configuration of the agent # print(opts.jsonFile) config = ReadConfiguration(opts.jsonFile) logging.info("Setting the initial values in OPAL-RT") # set the voltage in the opal init_opal() # logging.info("Configuring the communication links") # # configure the communication links # configure_comm_links() logging.info("Initializing the ADMM buffers") # initialize the ADMM buffers init_admm_buffers() time.sleep(5) logging.info("Opening communication channels to neighbours") # open communication channels towards the neighbours for p in config.partners: channel = grpc.insecure_channel(p[1] + ":" + str(p[2])) stub = admm_pb2_grpc.ADMMAgentStub(channel) p += [stub] # store the rpc stub in the config.partners collection # logging.info("Opening the communication channels to the admin") # open the communication channel to the admin # admin_channel = grpc.insecure_channel(admin_ip + ":" + str(admin_port)) # admin_stub = admin_pb2_grpc.AdminStub(channel=admin_channel) # logging.info("Starting the measurement thread") # # configure and start the program threads # # meas_thread = threading.Thread(name='measurement-thread', target=pool_opal, args=(agent_enabled_event,)) # meas_thread = threading.Thread(name='measurement-thread', target=pool_opal) # meas_thread.daemon = True # meas_thread.start() # start the measurement thread logging.info("Starting the data loging thread") log_thread = threading.Thread(name='log-thread', target=log_experiment_data_loop) log_thread.daemon = True log_thread.start() # start the log thread logging.info("Starting the opf thread") admm_ctrl_thread = threading.Thread(name='opf-thread', target=opf, args=(all_beta_event, all_z_event)) admm_ctrl_thread.daemon = True admm_ctrl_thread.start() # start the admm thread # create the RPC server for the agent logging.info("Starting the agent's RPC server") admm_pb2_grpc.add_ADMMAgentServicer_to_server(AgentServer(), server) server.add_insecure_port(config.me[0][1] + ":" + str(config.me[0][2])) server.start() logging.info("Agent " + str(config.me[0][0]) + " starting at:" + config.me[0][1] + ":" + str(config.me[0][2])) # notify the administrator that I am online # notify_administrator("online") # time.sleep(lamda10) while running: try: time.sleep(1) except KeyboardInterrupt: running = False # notify_administrator("offline") server.stop(0)
f5aed57a1d491a9acda13887ef8b3b19ee883a79
4ef80242cf22a1ccd0d7a2042476b5b6ac1eb03e
/scadparser/commands/cmd_deps.py
121d7db81fe8369ef421c06396e918c8d957676c
[]
no_license
rblack42/ScadParser
71081adb99ec03e78bc78b4101562b7fa1bab134
a9cc10b23c6515a53065dfb58b23881d0145f88d
refs/heads/master
2023-07-11T03:51:53.434534
2021-08-27T02:03:37
2021-08-27T02:03:37
397,718,873
0
0
null
null
null
null
UTF-8
Python
false
false
279
py
from scadparser import __version__ import click from scadparser.cli import pass_environment @click.command("deps", help="Display dependency versions.") @pass_environment def cli(ctx): """Display current dependency versions.""" click.echo(f"scadparser: {__version__}")
90cd71d7b8c6e81838f40845f2a33e8dd698090e
ae7ba9c83692cfcb39e95483d84610715930fe9e
/yubinbai/pcuva-problems/UVa 10496 - Collecting Beepers/main.py
bee7a62d1be3255db3c7266bb98c3130f4d8cc08
[]
no_license
xenron/sandbox-github-clone
364721769ea0784fb82827b07196eaa32190126b
5eccdd8631f8bad78eb88bb89144972dbabc109c
refs/heads/master
2022-05-01T21:18:43.101664
2016-09-12T12:38:32
2016-09-12T12:38:32
65,951,766
5
7
null
null
null
null
UTF-8
Python
false
false
2,456
py
''' Created on Jul 15, 2013 @author: Yubin Bai ''' import time from multiprocessing.pool import Pool parallelSolve = False INF = 1 << 31 def solve(par): N, M, startI, startJ, nBeepers, beepers = par minCost = [INF] path = set() def backtrack(step, i, j, cost): if cost > minCost: return if step == nBeepers: cost += abs(i - startI) + abs(j - startJ) minCost[0] = min(minCost[0], cost) return for i1, j1 in beepers: if (i1, j1) not in path: dist = abs(i1 - i) + abs(j1 - j) path.add((i1, j1)) backtrack(step + 1, i1, j1, cost + dist) path.remove((i1, j1)) backtrack(0, startI, startJ, 0) return 'The shortest path has length %d' % minCost[0] class Solver: def getInput(self): self.numOfTests = int(self.fIn.readline().strip()) self.input = [] for iterTest in range(self.numOfTests): N, M = map(int, self.fIn.readline().strip().split()) startI, startJ = map(int, self.fIn.readline().strip().split()) nBeepers = int(self.fIn.readline()) beepers = [] for i in range(nBeepers): beepers.append(tuple(map(int, self.fIn.readline().split()))) self.input.append((N, M, startI, startJ, nBeepers, beepers)) def __init__(self): self.fIn = open('input.txt') self.fOut = open('output.txt', 'w') self.results = [] def parallel(self): self.getInput() p = Pool(4) millis1 = int(round(time.time() * 1000)) self.results = p.map(solve, self.input) millis2 = int(round(time.time() * 1000)) print("Time in milliseconds: %d " % (millis2 - millis1)) self.makeOutput() def sequential(self): self.getInput() millis1 = int(round(time.time() * 1000)) for i in self.input: self.results.append(solve(i)) millis2 = int(round(time.time() * 1000)) print("Time in milliseconds: %d " % (millis2 - millis1)) self.makeOutput() def makeOutput(self): for test in range(self.numOfTests): self.fOut.write("%s\n" % self.results[test]) self.fIn.close() self.fOut.close() if __name__ == '__main__': solver = Solver() if parallelSolve: solver.parallel() else: solver.sequential() 9
77a03933e3ee5d0b0c5d43fbcc2f04d949a0cbd2
1dacbf90eeb384455ab84a8cf63d16e2c9680a90
/lib/python2.7/site-packages/nltk/chat/zen.py
69114e88353e699c061f61489ea174946a3acd32
[ "Python-2.0", "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-unknown" ]
permissive
wangyum/Anaconda
ac7229b21815dd92b0bd1c8b7ec4e85c013b8994
2c9002f16bb5c265e0d14f4a2314c86eeaa35cb6
refs/heads/master
2022-10-21T15:14:23.464126
2022-10-05T12:10:31
2022-10-05T12:10:31
76,526,728
11
10
Apache-2.0
2022-10-05T12:10:32
2016-12-15T05:26:12
Python
UTF-8
Python
false
false
10,281
py
# Natural Language Toolkit: Zen Chatbot # # Copyright (C) 2001-2015 NLTK Project # Author: Amy Holland <[email protected]> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT """ Zen Chatbot talks in gems of Zen wisdom. This is a sample conversation with Zen Chatbot: ZC: Welcome, my child. me: Good afternoon. ZC: Ask the question you have come to ask. me: How can I achieve enlightenment? ZC: How do you suppose? me: Through meditation. ZC: Form is emptiness, and emptiness form. me: How can I empty my mind of worldly troubles? ZC: Will an answer to that really help in your search for enlightenment? me: Yes. ZC: It is better to be right than to be certain. me: I seek truth and wisdom. ZC: The search for truth is a long journey. me: Are you sure? ZC: Maybe sure, maybe not sure. The chatbot structure is based on that of chat.eliza. Thus, it uses a translation table to convert from question to response i.e. "I am" --> "you are" Of course, since Zen Chatbot does not understand the meaning of any words, responses are very limited. Zen Chatbot will usually answer very vaguely, or respond to a question by asking a different question, in much the same way as Eliza. """ from __future__ import print_function from nltk.chat.util import Chat, reflections # responses are matched top to bottom, so non-specific matches occur later # for each match, a list of possible responses is provided responses = ( # Zen Chatbot opens with the line "Welcome, my child." The usual # response will be a greeting problem: 'good' matches "good morning", # "good day" etc, but also "good grief!" and other sentences starting # with the word 'good' that may not be a greeting (r'(hello(.*))|(good [a-zA-Z]+)', ( "The path to enlightenment is often difficult to see.", "Greetings. I sense your mind is troubled. Tell me of your troubles.", "Ask the question you have come to ask.", "Hello. Do you seek englightenment?")), # "I need" and "I want" can be followed by a thing (eg 'help') # or an action (eg 'to see you') # # This is a problem with this style of response - # person: "I need you" # chatbot: "me can be achieved by hard work and dedication of the mind" # i.e. 'you' is not really a thing that can be mapped this way, so this # interpretation only makes sense for some inputs # (r'i need (.*)', ( "%1 can be achieved by hard work and dedication of the mind.", "%1 is not a need, but a desire of the mind. Clear your mind of such concerns.", "Focus your mind on%1, and you will find what you need.")), (r'i want (.*)', ( "Desires of the heart will distract you from the path to enlightenment.", "Will%1 help you attain enlightenment?", "Is%1 a desire of the mind, or of the heart?")), # why questions are separated into three types: # "why..I" e.g. "why am I here?" "Why do I like cake?" # "why..you" e.g. "why are you here?" "Why won't you tell me?" # "why..." e.g. "Why is the sky blue?" # problems: # person: "Why can't you tell me?" # chatbot: "Are you sure I tell you?" # - this style works for positives (e.g. "why do you like cake?") # but does not work for negatives (e.g. "why don't you like cake?") (r'why (.*) i (.*)\?', ( "You%1%2?", "Perhaps you only think you%1%2")), (r'why (.*) you(.*)\?', ( "Why%1 you%2?", "%2 I%1", "Are you sure I%2?")), (r'why (.*)\?', ( "I cannot tell you why%1.", "Why do you think %1?" )), # e.g. "are you listening?", "are you a duck" (r'are you (.*)\?', ( "Maybe%1, maybe not%1.", "Whether I am%1 or not is God's business.")), # e.g. "am I a duck?", "am I going to die?" (r'am i (.*)\?', ( "Perhaps%1, perhaps not%1.", "Whether you are%1 or not is not for me to say.")), # what questions, e.g. "what time is it?" # problems: # person: "What do you want?" # chatbot: "Seek truth, not what do me want." (r'what (.*)\?', ( "Seek truth, not what%1.", "What%1 should not concern you.")), # how questions, e.g. "how do you do?" (r'how (.*)\?', ( "How do you suppose?", "Will an answer to that really help in your search for enlightenment?", "Ask yourself not how, but why.")), # can questions, e.g. "can you run?", "can you come over here please?" (r'can you (.*)\?', ( "I probably can, but I may not.", "Maybe I can%1, and maybe I cannot.", "I can do all, and I can do nothing.")), # can questions, e.g. "can I have some cake?", "can I know truth?" (r'can i (.*)\?', ( "You can%1 if you believe you can%1, and have a pure spirit.", "Seek truth and you will know if you can%1.")), # e.g. "It is raining" - implies the speaker is certain of a fact (r'it is (.*)', ( "How can you be certain that%1, when you do not even know yourself?", "Whether it is%1 or not does not change the way the world is.")), # e.g. "is there a doctor in the house?" (r'is there (.*)\?', ( "There is%1 if you believe there is.", "It is possible that there is%1.")), # e.g. "is it possible?", "is this true?" (r'is(.*)\?', ( "%1 is not relevant.", "Does this matter?")), # non-specific question (r'(.*)\?', ( "Do you think %1?", "You seek the truth. Does the truth seek you?", "If you intentionally pursue the answers to your questions, the answers become hard to see.", "The answer to your question cannot be told. It must be experienced.")), # expression of hate of form "I hate you" or "Kelly hates cheese" (r'(.*) (hate[s]?)|(dislike[s]?)|(don\'t like)(.*)', ( "Perhaps it is not about hating %2, but about hate from within.", "Weeds only grow when we dislike them", "Hate is a very strong emotion.")), # statement containing the word 'truth' (r'(.*) truth(.*)', ( "Seek truth, and truth will seek you.", "Remember, it is not the spoon which bends - only yourself.", "The search for truth is a long journey.")), # desire to do an action # e.g. "I want to go shopping" (r'i want to (.*)', ( "You may %1 if your heart truly desires to.", "You may have to %1.")), # desire for an object # e.g. "I want a pony" (r'i want (.*)', ( "Does your heart truly desire %1?", "Is this a desire of the heart, or of the mind?")), # e.g. "I can't wait" or "I can't do this" (r'i can\'t (.*)', ( "What we can and can't do is a limitation of the mind.", "There are limitations of the body, and limitations of the mind.", "Have you tried to%1 with a clear mind?")), # "I think.." indicates uncertainty. e.g. "I think so." # problem: exceptions... # e.g. "I think, therefore I am" (r'i think (.*)', ( "Uncertainty in an uncertain world.", "Indeed, how can we be certain of anything in such uncertain times.", "Are you not, in fact, certain that%1?")), # "I feel...emotions/sick/light-headed..." (r'i feel (.*)', ( "Your body and your emotions are both symptoms of your mind." "What do you believe is the root of such feelings?", "Feeling%1 can be a sign of your state-of-mind.")), # exclaimation mark indicating emotion # e.g. "Wow!" or "No!" (r'(.*)!', ( "I sense that you are feeling emotional today.", "You need to calm your emotions.")), # because [statement] # e.g. "because I said so" (r'because (.*)', ( "Does knowning the reasons behind things help you to understand" " the things themselves?", "If%1, what else must be true?")), # yes or no - raise an issue of certainty/correctness (r'(yes)|(no)', ( "Is there certainty in an uncertain world?", "It is better to be right than to be certain.")), # sentence containing word 'love' (r'(.*)love(.*)', ( "Think of the trees: they let the birds perch and fly with no intention to call them when they come, and no longing for their return when they fly away. Let your heart be like the trees.", "Free love!")), # sentence containing word 'understand' - r (r'(.*)understand(.*)', ( "If you understand, things are just as they are;" " if you do not understand, things are just as they are.", "Imagination is more important than knowledge.")), # 'I', 'me', 'my' - person is talking about themself. # this breaks down when words contain these - eg 'Thyme', 'Irish' (r'(.*)(me )|( me)|(my)|(mine)|(i)(.*)', ( "'I', 'me', 'my'... these are selfish expressions.", "Have you ever considered that you might be a selfish person?", "Try to consider others, not just yourself.", "Think not just of yourself, but of others.")), # 'you' starting a sentence # e.g. "you stink!" (r'you (.*)', ( "My path is not of conern to you.", "I am but one, and you but one more.")), # say goodbye with some extra Zen wisdom. (r'exit', ( "Farewell. The obstacle is the path.", "Farewell. Life is a journey, not a destination.", "Good bye. We are cups, constantly and quietly being filled." "\nThe trick is knowning how to tip ourselves over and let the beautiful stuff out.")), # fall through case - # when stumped, respond with generic zen wisdom # (r'(.*)', ( "When you're enlightened, every word is wisdom.", "Random talk is useless.", "The reverse side also has a reverse side.", "Form is emptiness, and emptiness is form.", "I pour out a cup of water. Is the cup empty?")) ) zen_chatbot = Chat(responses, reflections) def zen_chat(): print('*'*75) print("Zen Chatbot!".center(75)) print('*'*75) print('"Look beyond mere words and letters - look into your mind"'.center(75)) print("* Talk your way to truth with Zen Chatbot.") print("* Type 'quit' when you have had enough.") print('*'*75) print("Welcome, my child.") zen_chatbot.converse() def demo(): zen_chat() if __name__ == "__main__": demo()
c2f985cc04425adca0e7b65ce826d18b573f9ce1
8acffb8c4ddca5bfef910e58d3faa0e4de83fce8
/ml-flask/Lib/site-packages/flair/models/tars_tagger_model.py
ab659471cf8a9dab55842904ddabec9cb67d5ac5
[ "MIT" ]
permissive
YaminiHP/SimilitudeApp
8cbde52caec3c19d5fa73508fc005f38f79b8418
005c59894d8788c97be16ec420c0a43aaec99b80
refs/heads/master
2023-06-27T00:03:00.404080
2021-07-25T17:51:27
2021-07-25T17:51:27
389,390,951
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:0d1594783dc93d010b71f1a23fcc38fb70ad5f99f0cf54f87f6b88c38486bc74 size 30192
f44282bae37f63740ff1b8c780ad60d944f81ef9
64bf39b96a014b5d3f69b3311430185c64a7ff0e
/intro-ansible/venv3/lib/python3.8/site-packages/ansible_collections/cisco/asa/plugins/terminal/asa.py
83f339186d356b8421c95976a5f8e5b3f2cf6792
[ "MIT", "GPL-3.0-only", "LicenseRef-scancode-unknown-license-reference", "GPL-3.0-or-later" ]
permissive
SimonFangCisco/dne-dna-code
7072eba7da0389e37507b7a2aa5f7d0c0735a220
2ea7d4f00212f502bc684ac257371ada73da1ca9
refs/heads/master
2023-03-10T23:10:31.392558
2021-02-25T15:04:36
2021-02-25T15:04:36
342,274,373
0
0
MIT
2021-02-25T14:39:22
2021-02-25T14:39:22
null
UTF-8
Python
false
false
2,532
py
# # (c) 2016 Red Hat Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # from __future__ import absolute_import, division, print_function __metaclass__ = type import re import json from ansible.errors import AnsibleConnectionFailure from ansible.module_utils._text import to_text, to_bytes from ansible.plugins.terminal import TerminalBase class TerminalModule(TerminalBase): terminal_stdout_re = [ re.compile(br"[\r\n]?[\w+\-\.:\/\[\]]+(?:\([^\)]+\)){,3}(?:>|#) ?$"), re.compile(br"\[\w+\@[\w\-\.]+(?: [^\]])\] ?[>#\$] ?$"), ] terminal_stderr_re = [ re.compile(br"error:", re.I), re.compile(br"Removing.* not allowed, it is being used"), re.compile(br"^Command authorization failed\r?$", re.MULTILINE), ] def on_open_shell(self): if self._get_prompt().strip().endswith(b"#"): self.disable_pager() def disable_pager(self): try: self._exec_cli_command(u"no terminal pager") except AnsibleConnectionFailure: raise AnsibleConnectionFailure("unable to disable terminal pager") def on_become(self, passwd=None): if self._get_prompt().strip().endswith(b"#"): return cmd = {u"command": u"enable"} if passwd: # Note: python-3.5 cannot combine u"" and r"" together. Thus make # an r string and use to_text to ensure it's text on both py2 and py3. cmd[u"prompt"] = to_text( r"[\r\n]?[Pp]assword: $", errors="surrogate_or_strict" ) cmd[u"answer"] = passwd try: self._exec_cli_command( to_bytes(json.dumps(cmd), errors="surrogate_or_strict") ) except AnsibleConnectionFailure: raise AnsibleConnectionFailure( "unable to elevate privilege to enable mode" ) self.disable_pager()
1d2133d364a2de163a1af19cd4f8ebc83f4cb579
a84dfa25c827a2979a811513ac888288d378b980
/OpenCV/list15_8.py
314a875e0f200a5038a1a8889d9cceca9c0ed694
[]
no_license
sunho-park/study1
d49b9d27b0069dbeb7cc31199177f6771a84d3be
0386fbea0282c2135407cad608b4ffa84b02d298
refs/heads/master
2022-12-16T23:17:14.746575
2020-09-11T06:04:06
2020-09-11T06:04:06
264,140,456
0
0
null
null
null
null
UTF-8
Python
false
false
591
py
import numpy as np import cv2 img = cv2.imread("./OpenCV/sample.jpg") size = img.shape # 이미지를 나타내는 행렬의 일부를 꺼내면 그것이 트리밍이 됩니다. # n등분하려면 가로와 세로 크기를 나눕니다. my_img = img[: size[0]//2, size[1]//3] # 여기에서는 원래의 배율을 유지하면서 폭과 높이를 각각 2배로 합니다. 크기를 지정할 때는 (폭, 높이) 순서라는 점을 유의하세요 my_img = cv2.resize(my_img, (my_img.shape[1]*2, my_img.shape[0]*2)) cv2.imshow("sample", my_img) cv2.imwrite("list15_8.jpg", my_img)
a8dbeb3447ef7323b9161b5593319f0d7991ffac
c71af56951d1c661a5819db72da1caccd9130df2
/javascript/cpp-libraries/test1/binding.gyp
d1876d8625fb7543597db12f5121ca3f738e8656
[]
no_license
adrianpoplesanu/personal-work
2940a0dc4e4e27e0cc467875bae3fdea27dd0d31
adc289ecb72c1c6f98582f3ea9ad4bf2e8e08d29
refs/heads/master
2023-08-23T06:56:49.363519
2023-08-21T17:20:51
2023-08-21T17:20:51
109,451,981
0
1
null
2022-10-07T04:53:24
2017-11-03T23:36:21
Python
UTF-8
Python
false
false
406
gyp
{ "targets": [ { "target_name": "greet", "cflags!": [ "-fno-exceptions" ], "cflags_cc!": [ "-fno-exceptions" ], "sources": [ "./src/greeting.cpp", "./src/search.cpp", "./src/index.cpp" ], "include_dirs": [ "<!@(node -p \"require('node-addon-api').include\")" ], 'defines': [ 'NAPI_DISABLE_CPP_EXCEPTIONS' ], } ] }
8039568ad432cafc9c4e614d96115a4addf76f96
dd6ee732613966b899df8a514f2907084e433c3f
/setup.py
4358797461aff42c90277e9271152ad16a5e1ec1
[]
no_license
rixx/ramble
410588025f0cfae04d75078c5c007a53538b526e
f838171517035edfa03c1afacb0bd8cb157eb90a
refs/heads/master
2023-05-12T17:20:50.744796
2023-04-29T13:30:19
2023-04-29T13:30:19
244,879,387
1
0
null
2022-07-22T05:34:06
2020-03-04T11:08:16
Python
UTF-8
Python
false
false
424
py
from setuptools import setup setup( name="ramble-rixx-de", author="Tobias Kunze", author_email="[email protected]", url="https://github.com/rixx/ramble.rixx.de", packages=["scripts"], entry_points=""" [console_scripts] posts=scripts.cli:cli """, install_requires=[ "click", "inquirer==2.6.*", "python-frontmatter==0.5.*", "unidecode==1.1.*", ], )
9b0ec8b0123f758441aa60a40a32b9f3d96346c3
b3330bd3365767b89afb9c432f4deb722b39ac1c
/python/last_nth_element.py
899c425e6c5110fa5844947eec110e1d1acb856e
[]
no_license
hguochen/algorithms
944df332d5b39220bd59cbd62dc74b12e335fb9e
703e71a5cd9e002d800340df879ed475a404d092
refs/heads/master
2022-02-27T12:11:10.607042
2022-02-18T21:04:00
2022-02-18T21:04:00
13,767,503
5
7
null
null
null
null
UTF-8
Python
false
false
919
py
################################## ### Title: Last Nth element ###### ### Author: GuoChen Hou ######## ################################## # Implement an algorithm to find the nth to last element of a # singly linked list. from ADT.LinkedList import LinkedList class NthLinkedList(LinkedList): def nth_to_last(self, position): if self.size is 0: return # get the node position counting from head node_position = self.size - position - 1 # offset since node starts at 1 instead of 0 trav = self.head while trav is not None and node_position is not 0: trav = trav.next node_position -= 1 return trav.data if __name__ == "__main__": test_list = NthLinkedList() test_list.insert(1) test_list.insert(2) test_list.insert(3) test_list.insert(4) test_list.print_list() print test_list.nth_to_last(2)
e0410615b113f2b713aca3503c38d512f4309812
941c1bfd4edf4619c4b66391453abe8994ccc0bc
/src/api/admin.py
1ca790712ac550adfc72a4853ebdc86d2bb83b80
[ "MIT" ]
permissive
websiteinspiration/back-end
11a0da9fb1b252557305b56867b1adc82c5da66b
e9762149aaa3ce08278e357950b35ac168122d95
refs/heads/master
2020-06-08T20:39:36.513962
2019-06-21T14:38:15
2019-06-21T14:38:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,496
py
from django.contrib import admin from api.models import ( CodeSchool, Location, Scholarship, ScholarshipApplication, TeamMember, ) @admin.register(Scholarship) class ScholarshipAdmin(admin.ModelAdmin): list_display = ( "name", "location", "open_time", "close_time", "created_at", "updated_at", ) @admin.register(ScholarshipApplication) class ScholarshipApplicationAdmin(admin.ModelAdmin): list_display = ("user", "scholarship", "terms_accepted", "created_at", "updated_at") @admin.register(TeamMember) class TeamMemberAdmin(admin.ModelAdmin): list_display = ("name", "email", "role", "group", "image_src") @admin.register(Location) class LocationAdmin(admin.ModelAdmin): list_display = ( "code_school", "va_accepted", "address1", "address2", "city", "state", "zip", ) @admin.register(CodeSchool) class CodeSchoolAdmin(admin.ModelAdmin): list_display = ( "name", "url", "full_time", "hardware_included", "has_online", "online_only", "has_housing", "mooc", "is_partner", "rep_name", "rep_email", ) list_filter = ( "full_time", "hardware_included", "has_online", "online_only", "has_housing", "mooc", "is_partner", ) search_fields = ("name", "rep_name", "rep_email", "url")
486c7da5a8c0c5378fe0a03acb83e39ba404cc7c
ad16b0c0178e4543d0c44ad3d90f90c6beeb4f5a
/filter_array_by_column.py
f45a6bb704a3f3db5b46886e74be352c30600a4b
[]
no_license
timmonspatrick/HemoDub
09cb61e8e33ee8b64c9e6011d4ae8679d07950d9
4e6cceb44456c498cc1d6d55f8369099d0d5d947
refs/heads/master
2021-04-27T09:34:40.935684
2018-05-31T08:29:04
2018-05-31T08:29:04
122,491,500
0
0
null
null
null
null
UTF-8
Python
false
false
600
py
# -*- coding: utf-8 -*- """ Created on Fri Mar 2 12:20:31 2018 @author: Patrick """ import numpy as np def filter_array_by_column(X, cut_off=0.95): n_cols = X.shape[1] bad_cols = set() for n in range(n_cols): Y = X[:,n] unique, counts = np.unique(Y, return_counts=True) counts_sum = sum(counts) counts = [i / counts_sum for i in counts] if len([i for i in counts if i >= cut_off]) > 0: bad_cols.add(n) good_cols = [i for i in range(n_cols) if i not in bad_cols] X_new = X[:,good_cols] return X_new
6caaa7467d19c252f251757d6eb6c91863cc3273
fb124e51024917d6479fa626d9607ff10f7a3aba
/storm-control/storm_control/steve/qtdesigner/steve_ui.py
221af7d78ac059e59e624ce48a2a75c603c577dc
[ "MIT" ]
permissive
BehnamAbaie/storm-control
054bd7bbd903ed9635e4d1121c30544f58473c4f
0c686321142eccad62ce3365eae22c3b69229b0d
refs/heads/main
2023-06-18T08:04:01.108874
2021-07-14T00:51:15
2021-07-14T00:51:15
342,049,487
0
0
null
null
null
null
UTF-8
Python
false
false
6,764
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'steve.ui' # # Created by: PyQt5 UI code generator 5.11.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(1148, 831) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.horizontalLayout = QtWidgets.QHBoxLayout(self.centralwidget) self.horizontalLayout.setObjectName("horizontalLayout") self.tabWidget = QtWidgets.QTabWidget(self.centralwidget) self.tabWidget.setObjectName("tabWidget") self.mosaicTab = QtWidgets.QWidget() self.mosaicTab.setObjectName("mosaicTab") self.tabWidget.addTab(self.mosaicTab, "") self.sectionsTab = QtWidgets.QWidget() self.sectionsTab.setObjectName("sectionsTab") self.tabWidget.addTab(self.sectionsTab, "") self.horizontalLayout.addWidget(self.tabWidget) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 1148, 22)) self.menubar.setObjectName("menubar") self.menuFile = QtWidgets.QMenu(self.menubar) self.menuFile.setObjectName("menuFile") self.menuMosaic = QtWidgets.QMenu(self.menubar) self.menuMosaic.setObjectName("menuMosaic") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.actionQuit = QtWidgets.QAction(MainWindow) self.actionQuit.setObjectName("actionQuit") self.actionConnect = QtWidgets.QAction(MainWindow) self.actionConnect.setObjectName("actionConnect") self.actionDisconnect = QtWidgets.QAction(MainWindow) self.actionDisconnect.setObjectName("actionDisconnect") self.actionSave_Positions = QtWidgets.QAction(MainWindow) self.actionSave_Positions.setObjectName("actionSave_Positions") self.actionSave_Mosaic = QtWidgets.QAction(MainWindow) self.actionSave_Mosaic.setObjectName("actionSave_Mosaic") self.actionSet_Working_Directory = QtWidgets.QAction(MainWindow) self.actionSet_Working_Directory.setObjectName("actionSet_Working_Directory") self.actionLoad_Mosaic = QtWidgets.QAction(MainWindow) self.actionLoad_Mosaic.setObjectName("actionLoad_Mosaic") self.actionDelete_Images = QtWidgets.QAction(MainWindow) self.actionDelete_Images.setObjectName("actionDelete_Images") self.actionLoad_Positions = QtWidgets.QAction(MainWindow) self.actionLoad_Positions.setObjectName("actionLoad_Positions") self.actionSave_Snapshot = QtWidgets.QAction(MainWindow) self.actionSave_Snapshot.setObjectName("actionSave_Snapshot") self.actionLoad_Movies = QtWidgets.QAction(MainWindow) self.actionLoad_Movies.setObjectName("actionLoad_Movies") self.actionLoad_Dax_By_Pattern = QtWidgets.QAction(MainWindow) self.actionLoad_Dax_By_Pattern.setObjectName("actionLoad_Dax_By_Pattern") self.actionAdjust_Contrast = QtWidgets.QAction(MainWindow) self.actionAdjust_Contrast.setObjectName("actionAdjust_Contrast") self.menuFile.addAction(self.actionSet_Working_Directory) self.menuFile.addSeparator() self.menuFile.addAction(self.actionDelete_Images) self.menuFile.addAction(self.actionLoad_Movies) self.menuFile.addAction(self.actionLoad_Mosaic) self.menuFile.addAction(self.actionLoad_Positions) self.menuFile.addAction(self.actionSave_Mosaic) self.menuFile.addAction(self.actionSave_Positions) self.menuFile.addAction(self.actionSave_Snapshot) self.menuFile.addSeparator() self.menuFile.addAction(self.actionQuit) self.menuMosaic.addAction(self.actionAdjust_Contrast) self.menubar.addAction(self.menuFile.menuAction()) self.menubar.addAction(self.menuMosaic.menuAction()) self.retranslateUi(MainWindow) self.tabWidget.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Steve")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.mosaicTab), _translate("MainWindow", "Mosaic")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.sectionsTab), _translate("MainWindow", "Sections")) self.menuFile.setTitle(_translate("MainWindow", "Fi&le")) self.menuMosaic.setTitle(_translate("MainWindow", "Mosaic")) self.actionQuit.setText(_translate("MainWindow", "&Quit (Ctrl+Q)")) self.actionQuit.setShortcut(_translate("MainWindow", "Ctrl+Q")) self.actionConnect.setText(_translate("MainWindow", "Connect")) self.actionDisconnect.setText(_translate("MainWindow", "Disconnect")) self.actionSave_Positions.setText(_translate("MainWindow", "Sav&e Positions")) self.actionSave_Positions.setShortcut(_translate("MainWindow", "Ctrl+T")) self.actionSave_Mosaic.setText(_translate("MainWindow", "Sa&ve Mosaic")) self.actionSave_Mosaic.setShortcut(_translate("MainWindow", "Ctrl+S")) self.actionSet_Working_Directory.setText(_translate("MainWindow", "&Set Working Directory")) self.actionLoad_Mosaic.setText(_translate("MainWindow", "Load &Mosaic")) self.actionLoad_Mosaic.setShortcut(_translate("MainWindow", "Ctrl+M")) self.actionDelete_Images.setText(_translate("MainWindow", "&Delete Images")) self.actionDelete_Images.setShortcut(_translate("MainWindow", "Ctrl+D")) self.actionLoad_Positions.setText(_translate("MainWindow", "Load &Positions")) self.actionLoad_Positions.setShortcut(_translate("MainWindow", "Ctrl+P")) self.actionSave_Snapshot.setText(_translate("MainWindow", "Save S&napshot")) self.actionSave_Snapshot.setShortcut(_translate("MainWindow", "Ctrl+I")) self.actionLoad_Movies.setText(_translate("MainWindow", "&Load Movie(s)")) self.actionLoad_Movies.setShortcut(_translate("MainWindow", "Ctrl+L")) self.actionLoad_Dax_By_Pattern.setText(_translate("MainWindow", "Load Dax By Pattern")) self.actionAdjust_Contrast.setText(_translate("MainWindow", "Adjust Contrast"))
7b970c8b63cc83b8e1c803325c3ed9db37f2dbf2
f09dc121f213f2881df3572288b7ee5b39246d73
/aliyun-python-sdk-facebody/aliyunsdkfacebody/request/v20191230/ListFaceEntitiesRequest.py
ca3071dad2dcdc723906cf8526313cf463ec6eb4
[ "Apache-2.0" ]
permissive
hetw/aliyun-openapi-python-sdk
2f31378ad6be0896fb8090423f607e9c7d3ae774
7443eacee9fbbaa93c7975c6dbec92d3c364c577
refs/heads/master
2023-01-19T22:42:36.214770
2020-12-04T10:55:14
2020-12-04T10:55:14
318,689,093
1
0
NOASSERTION
2020-12-05T03:03:03
2020-12-05T03:03:03
null
UTF-8
Python
false
false
2,351
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkfacebody.endpoint import endpoint_data class ListFaceEntitiesRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'facebody', '2019-12-30', 'ListFaceEntities','facebody') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_EntityIdPrefix(self): return self.get_body_params().get('EntityIdPrefix') def set_EntityIdPrefix(self,EntityIdPrefix): self.add_body_params('EntityIdPrefix', EntityIdPrefix) def get_Limit(self): return self.get_body_params().get('Limit') def set_Limit(self,Limit): self.add_body_params('Limit', Limit) def get_Order(self): return self.get_body_params().get('Order') def set_Order(self,Order): self.add_body_params('Order', Order) def get_Offset(self): return self.get_body_params().get('Offset') def set_Offset(self,Offset): self.add_body_params('Offset', Offset) def get_Token(self): return self.get_body_params().get('Token') def set_Token(self,Token): self.add_body_params('Token', Token) def get_Labels(self): return self.get_body_params().get('Labels') def set_Labels(self,Labels): self.add_body_params('Labels', Labels) def get_DbName(self): return self.get_body_params().get('DbName') def set_DbName(self,DbName): self.add_body_params('DbName', DbName)
e7f9ef879ca1ae30a2bd11327b902db8fc44b076
3f5a1ef51620fd8c35ef38064ca5aa00776ab6f4
/ds_and_algo_educative/Doubly_LinkedList/Reverse.py
80a3dfd6673c3b0a39f02c490c0536c87db82c1b
[]
no_license
poojagmahajan/python_exercises
1b290a5c0689f703538caf89bca5bc6c1fdb392a
65539cf31c5b2ad5768d652ed5fe95054ce5f63f
refs/heads/master
2022-11-12T03:52:13.533781
2020-07-04T20:50:29
2020-07-04T20:54:46
263,151,942
0
0
null
null
null
null
UTF-8
Python
false
false
978
py
class Node: def __init__(self, data): self.data = data self.next = None self.prev = None class DoublyLinkedList: def __init__(self): self.head = None def append(self, data): if self.head is None: new_node = Node(data) new_node.prev = None self.head = new_node else: new_node = Node(data) cur = self.head while cur.next: cur = cur.next cur.next = new_node new_node.prev = cur new_node.next = None def print_list(self): cur = self.head while cur: print(cur.data) cur = cur.next def reverse(self): tmp = None cur = self.head while cur: tmp = cur.prev cur.prev = cur.next cur.next = tmp cur = cur.prev if tmp: self.head = tmp.prev dllist = DoublyLinkedList() dllist.append(1) dllist.append(2) dllist.append(3) dllist.append(4) dllist.print_list() print("\n Reverse list is:") dllist.reverse() dllist.print_list()
d1cece45846995c7aadd790e8a6b01fc5cea7f56
7dc65b6d2e857c807bd2f75e2586af5f8e933fe5
/tcutils/parsers/pingparse.py
51a28244cc66ce56730f37eb0238cc8ccf493219
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
vkolli/contrail-test-perf
d6fdc20f4a2004066c5a6316afd915ecdc9366c2
db04b8924a2c330baabe3059788b149d957a7d67
refs/heads/master
2021-01-18T15:36:18.120487
2017-03-30T19:19:30
2017-03-30T19:19:30
86,661,522
1
0
null
null
null
null
UTF-8
Python
false
false
786
py
"parser to parse the ping output.""" import re class PingParser(object): """Parser to parse the ping output.""" def __init__(self, output): self.output = output self.parsed_output = {} self.parse() def parse(self): match = re.search( "rtt\s+(min/avg/max/mdev)\s+=\s+(\d+.\d+/\d+.\d+/\d+.\d+/\d+.\d+)\s+(\w+)", self.output) output_req = [] output_req.append(match.group(1)) output_req.append(match.group(2)) self.parsed_output = dict( zip(output_req[0].split('/'), output_req[1].split('/'))) self.parsed_output['unit'] = match.group(3) def get_ping_latency(self): ping_output=self.parsed_output['avg']+" "+self.parsed_output['unit'] return ping_output
cef019d360cd07dab58312341d87ea996f7a6c32
abc1a497c41ddd8669c8c41da18af65d08ca54e4
/Analysis2gamma/fit/admin.py
230d2f8df1a1fe4c5666176d8b51793ebc0ade35
[]
no_license
gerakolt/direxeno_privet
fcef5e3b654720e277c48935acc168472dfd8ecc
75e88fb1ed44fce32fce02677f64106121259f6d
refs/heads/master
2022-12-20T22:01:30.825891
2020-10-04T06:01:07
2020-10-04T06:01:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,162
py
import multiprocessing import numpy as np import sys import time from memory_profiler import profile # Rec=np.recarray(5000, dtype=[ # ('Q', 'f8', len(pmts)), # ('T', 'f8', len(pmts)), # ('St', 'f8', len(pmts)), # ('mu', 'f8', 1), # ('N', 'f8', 1), # ('F', 'f8', 1), # ('Tf', 'f8', 1), # ('Ts', 'f8', 1), # ('R', 'f8', 1), # ('a', 'f8', 1), # ('eta', 'f8', 1), # ]) n=6 def make_glob_array(p): Q=multiprocessing.Array('d', p[:n]) T=multiprocessing.Array('d', p[n:2*n]) St=multiprocessing.Array('d', p[2*n:3*n]) mu=multiprocessing.Array('d', [p[3*n]]) W=multiprocessing.Array('d', [p[3*n+1]]) g=multiprocessing.Array('d', [p[3*n+2]]) F=multiprocessing.Array('d', [p[3*n+3]]) Tf=multiprocessing.Array('d', [p[3*n+4]]) Ts=multiprocessing.Array('d', [p[3*n+5]]) R=multiprocessing.Array('d', [p[3*n+6]]) a=multiprocessing.Array('d', [p[3*n+7]]) return Q, T, St, mu, W, g, F, Tf, Ts, R, a def make_iter(N, Q, T, St, F, Tf, Ts, R, a, v): for i in range(len(N)): np.random.seed(int(i*time.time()%2**32)) yield [Q, T, St, N[i], F, Tf, Ts, R, a, v[i]]
4f359ebcc8ffaef000df67e034006f85c9765a5f
f0b741f24ccf8bfe9bd1950425d83b6291d21b10
/samples/v2/pipeline_with_volume.py
47b9099c6e00ae80368dc3da8796a43c37d26cab
[ "Apache-2.0" ]
permissive
kubeflow/pipelines
e678342b8a325559dec0a6e1e484c525fdcc8ce8
3fb199658f68e7debf4906d9ce32a9a307e39243
refs/heads/master
2023-09-04T11:54:56.449867
2023-09-01T19:07:33
2023-09-01T19:12:27
133,100,880
3,434
1,675
Apache-2.0
2023-09-14T20:19:06
2018-05-12T00:31:47
Python
UTF-8
Python
false
false
1,890
py
# Copyright 2023 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pipeline with volume creation, mount and deletion in v2 engine pipeline.""" from kfp import dsl from kfp import kubernetes @dsl.component def producer() -> str: with open('/data/file.txt', 'w') as file: file.write('Hello world') with open('/data/file.txt', 'r') as file: content = file.read() print(content) return content @dsl.component def consumer() -> str: with open('/data/file.txt', 'r') as file: content = file.read() print(content) return content @dsl.pipeline def pipeline_with_volume(): pvc1 = kubernetes.CreatePVC( pvc_name_suffix='-my-pvc', access_modes=['ReadWriteOnce'], size='5Mi', storage_class_name='standard', ) task1 = producer() task2 = consumer().after(task1) kubernetes.mount_pvc( task1, pvc_name=pvc1.outputs['name'], mount_path='/data', ) kubernetes.mount_pvc( task2, pvc_name=pvc1.outputs['name'], mount_path='/data', ) delete_pvc1 = kubernetes.DeletePVC( pvc_name=pvc1.outputs['name']).after(task2) if __name__ == '__main__': # execute only if run as a script compiler.Compiler().compile( pipeline_func=pipeline_with_volume, package_path='pipeline_with_volume.json')
505d724b709f9a90e03e85a4ff7a185472bcbe00
2c22736309a50968896b4724df4a7a1d1a150d88
/0x0F-python-object_relational_mapping/12-model_state_update_id_2.py
0c0445e0c1b773c8f23caefc87d4363ffd43d9b0
[]
no_license
gcifuentess/holbertonschool-higher_level_programming
ce9f263c0eef07facc1e02b719a8ae7193233d6d
75e405ec7f1aa9138aa54e86f7b41aa08ead7f2a
refs/heads/master
2023-06-18T08:36:22.580908
2021-07-18T20:46:40
2021-07-18T20:46:40
291,871,342
0
0
null
null
null
null
UTF-8
Python
false
false
718
py
#!/usr/bin/python3 ''' Query with SQLAlchemy, changes the name of a State object from the database hbtn_0e_6_usa ''' from sys import argv from model_state import Base, State from sqlalchemy import (create_engine) from sqlalchemy.orm import sessionmaker if __name__ == "__main__": engine = create_engine('mysql+mysqldb://{}:{}@localhost:3306/{}' .format(argv[1], argv[2], argv[3]), encoding='utf-8', pool_pre_ping=True) Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) session = Session() to_update = session.query(State).filter_by(id=2).first() to_update.name = "New Mexico" session.commit() session.close()
036fd1629ac4f8c3c9ece01c9b37124bd5d8a92b
759f52976ad2cd9236da561ca254e11e08003487
/part5/ex32/proc/guess_number_core.py
1cfa8a70b0f502de992f5608518efcd3bacb1b16
[]
no_license
mbaeumer/fiftyseven
57b571c3e09640a2ab0ed41e5d06643c12b48001
d79b603d5b37bf1f4127d9253f8526ea3897dc08
refs/heads/master
2020-06-10T20:52:25.311992
2017-11-15T18:28:38
2017-11-15T18:28:38
75,877,462
0
0
null
null
null
null
UTF-8
Python
false
false
1,701
py
#!/usr/bin/python import random from level import Difficulty from comparison_result import ComparisonResult def generate_my_number(difficulty_level): max = 10 if difficulty_level == Difficulty.MEDIUM: max = 50 elif difficulty_level == Difficulty.HARD: max = 100 number = random.randint(0,max) return number # get the user's input as string def get_user_guess(attempts): message = "What is your next guess: " if attempts == 1: message = "Make the first guess: " guess = input(message) return guess def get_difficulty_level(): choice = 0 while choice < 1 or choice > 3: print("Select difficulty") print("Easy \t - 1") print("Medium \t - 2") print("Hard \t - 3") try: choice = int(input("Your choice: ")) except ValueError: print("ERROR: Please enter a valid choice!") choice = 0 difficulty_level = Difficulty(choice) print(difficulty_level) return difficulty_level def get_play_again(): user_input = '' while user_input != 'y' and user_input != 'n': user_input = input("Play again? ") return user_input == 'y' def isValidGuess(guess_as_string): try: guess = int(guess_as_string) return True except ValueError: return False def validateGuess(guess, my_number): if my_number > guess: return ComparisonResult.HIGHER elif my_number < guess: return ComparisonResult.LOWER return ComparisonResult.EQUAL def get_validation_message(comparison_result): message = "You got it" if comparison_result == ComparisonResult.HIGHER: message = "The number is higher" elif comparison_result == ComparisonResult.LOWER: message = "The number is lower" return message
12a2a28e54708661a3440be67a2a67a961697c4d
fb98249ee3dece1f3ec5a7b2ba541a5ca07d170b
/python/developer.usr.py
86e797cfd9a3b14372b77b83c10b4ecd3db8ec43
[]
no_license
polikashechkin/developer
5d4f50783c96fbe2078423ff689d91ab47408f05
f9c6193440457ba4e78d4b5430a1d21c34cd9af1
refs/heads/main
2023-02-10T03:39:40.175655
2021-01-04T23:30:09
2021-01-04T23:30:09
326,832,873
0
0
null
null
null
null
UTF-8
Python
false
false
8,115
py
#!/usr/bin/python3.6 import sys, os, shutil, json #os.chdir(os.dirname(__file__)) from domino.core import log, Version, Server, ProductInfo, VersionInfo, DOMINO_ROOT from domino.jobs import Job, Задача from domino.globalstore import GlobalStore from domino.cli import Console, print_error, print_comment, print_warning, print_help def arg(n): try: return sys.argv[n].lower() except: return None class PRODUCT: @staticmethod def create(product): draft = max(Server.get_drafts('domino')) product_folder = Server.product_folder(product) version_folder = Server.version_folder(product, draft) os.makedirs(version_folder, exist_ok=True) os.makedirs(os.path.join(version_folder, 'web'), exist_ok=True) os.makedirs(os.path.join(version_folder, 'python'), exist_ok=True) with open(os.path.join(product_folder, 'info.json'), 'w') as f: json.dump({'id':product},f) info = VersionInfo() info.version = draft info.product = product info.write(version_folder) #manifest = {'', 'products' : []} def help(): print(os.path.abspath(__file__)) print('') print('product.create\tСоздание нового продукта') print('') def последняя_версия_продукта(product): последняя_версия = None for name in os.listdir(f'/DOMINO/products/{product}'): try: версия = Version.parse(name) if версия is not None and версия.is_draft: if последняя_версия is None or последняя_версия < версия: последняя_версия = версия except: pass return последняя_версия def hard_link(file_name, common_folder, product_folder): common_file = os.path.join(common_folder, file_name) product_file = os.path.join(product_folder, file_name) if not os.path.isfile(common_file): print_warning(f'Нет файла "{common_file}"') return os.makedirs(os.path.dirname(product_file), exist_ok=True) if os.path.isfile(product_file): os.remove(product_file) os.link(common_file, product_file) print_help(file_name) print_comment(f'{common_file} => {product_file}') def copy_folder(product, draft, folder): draft = f'{draft}' product_dir = os.path.join(DOMINO_ROOT, 'products', product, f'{draft}', 'python', 'domino', folder) common_dir = os.path.join(DOMINO_ROOT,'products','_system','python', folder) for name0 in os.listdir(common_dir): dir0 = os.path.join(common_dir, name0) if os.path.isdir(dir0): for name1 in os.listdir(dir0): dir1 = os.path.join(dir0, name1) if os.path.isdir(dir1): for name2 in os.listdir(dir1): dir2 = os.path.join(dir1, name2) if os.path.isdir(dir2): pass else: hard_link(os.path.join(name0, name1, name2), common_dir, product_dir) else: hard_link(os.path.join(name0, name1), common_dir, product_dir) else: hard_link(name0, common_dir, product_dir) if __name__ == "__main__": dir = os.path.dirname(os.path.abspath(__file__)) gs = GlobalStore() action = arg(1) if action is None: help() elif action == 'create_next': product = arg(2) #draft = max(Server.get_drafts(product), default = None) draft = последняя_версия_продукта(product) if draft is None: raise Exception(f'Не найдено последней версии продукта "{product}"') #if draft is None: # print (f'Не найдено рабочего макета для "{product}"') proc = os.path.join(dir, 'create_next_version.py') os.system(f'python3.6 {proc} {product} {draft}') elif action == 'download': path = arg(2) file = arg(3) if file is None: file = os.path.basename(path) gs.download(path, file) elif action == 'upload': gs.upload(arg(2), arg(3)) elif action == 'upload_distro': gs.upload_distro(arg(2), arg(3), arg(4)) elif action == 'listdir': for name in gs.listdir(arg(2)): print(name) elif action == 'get_versions': for version in gs.get_versions(arg(2)): print(version.id) elif action == 'download_distro': gs.download_distro(arg(2), arg(3), arg(4)) elif action == 'include': c = Console() product = arg(2) if product is None: print_warning('Формат вызова: domino include <продукт> <модуль>') print_warning(' <модуль> := <имя модуля> | domino | templates | exists > ') sys.exit() module = arg(3) if module is None: c.error(f'Не задан модуль') sys.exit() else: print_comment(f'{module}') product_draft = max(Server.get_drafts(product), default = None) if product_draft is None: c.error(f'Нет макета для "{product}"') print_comment(f'{product}.{product_draft}') filenames = [] # определение директорй if module == 'templates': product_folder = f'/DOMINO/products/{product}/{product_draft}/python/templates' common_folder = '/DOMINO/products/_system/python/templates' # определение списка файлов for filename in os.listdir(common_folder): filenames.append(filename) elif module == 'tables': product_folder = f'/DOMINO/products/{product}/{product_draft}/python/domino/tables' common_folder = '/DOMINO/products/_system/python/tables' for database_name in os.listdir(common_folder): database_folder = os.path.join(common_folder, database_name) if os.path.isdir(database_folder): for table_name in os.listdir(database_folder): hard_link(os.path.join(database_name, table_name), common_folder, product_folder) elif module in ['components', 'responses', 'pages', 'databases', 'dicts', 'enums']: copy_folder(product, product_draft, module) elif module == 'all': for module in ['components', 'responses', 'pages', 'databases', 'dicts', 'enums', 'tables']: copy_folder(product, product_draft, module) elif module == 'domino': product_folder = f'/DOMINO/products/{product}/{product_draft}/python/domino' common_folder = '/DOMINO/products/_system/python/domino' for filename in os.listdir(common_folder): filenames.append(filename) else: product_folder = f'/DOMINO/products/{product}/{product_draft}/python/domino' common_folder = '/DOMINO/products/_system/python/domino' # определение списка файлов if module == 'exists': filenames = os.listdir(product_folder) else: for filename in os.listdir(common_folder): #print(filename) if filename.startswith(module): filenames.append(filename) for address, dirs, files in os.walk(common_folder): print('------------') print(address, dirs, files) #print(f'From "{common_folder}"') #print(f'To "{product_folder}"') #print(f'{filenames}') #print(f'{filenames}') for filename in filenames: hard_link(filename, common_folder, product_folder) else: print(f'Неизвестная команда {action}')
8ea7cda1c1ee33ae5c76fa40f4c8bb4b8f4314c3
45e376ae66b78b17788b1d3575b334b2cb1d0b1c
/tests/cloudformation/checks/resource/aws/test_AmazonMQBrokerPublicAccess.py
37710ba33578e981c9f2a0828d48921faa7ce386
[ "Apache-2.0" ]
permissive
bridgecrewio/checkov
aeb8febed2ed90e61d5755f8f9d80b125362644d
e64cbd27ffb6f09c2c9f081b45b7a821a3aa1a4d
refs/heads/main
2023-08-31T06:57:21.990147
2023-08-30T23:01:47
2023-08-30T23:01:47
224,386,599
5,929
1,056
Apache-2.0
2023-09-14T20:10:23
2019-11-27T08:55:14
Python
UTF-8
Python
false
false
1,444
py
import os import unittest from checkov.cloudformation.checks.resource.aws.AmazonMQBrokerPublicAccess import check from checkov.cloudformation.runner import Runner from checkov.runner_filter import RunnerFilter class TestAmazonMQBrokerPublicAccess(unittest.TestCase): def test_summary(self): runner = Runner() current_dir = os.path.dirname(os.path.realpath(__file__)) test_files_dir = current_dir + "/example_AmazonMQBrokerPublicAccess" report = runner.run(root_folder=test_files_dir,runner_filter=RunnerFilter(checks=[check.id])) summary = report.get_summary() passing_resources = { "AWS::AmazonMQ::Broker.PrivateBroker0", "AWS::AmazonMQ::Broker.PrivateBroker1", } failing_resources = { "AWS::AmazonMQ::Broker.PublicBroker0", "AWS::AmazonMQ::Broker.PublicBroker1", } passed_check_resources = set([c.resource for c in report.passed_checks]) failed_check_resources = set([c.resource for c in report.failed_checks]) self.assertEqual(summary['passed'], 2) self.assertEqual(summary['failed'], 2) self.assertEqual(summary['skipped'], 0) self.assertEqual(summary['parsing_errors'], 0) self.assertEqual(passing_resources, passed_check_resources) self.assertEqual(failing_resources, failed_check_resources) if __name__ == '__main__': unittest.main()
7f41a27952caaadddc38b8c99ca3115a8f56128a
cc2fcc1a0c5ea9789f98ec97614d7b25b03ba101
/st2common/st2common/persistence/trigger.py
9a01acf09952ed40a2b9784989224410b6b9a9bd
[ "Apache-2.0" ]
permissive
Junsheng-Wu/st2
6451808da7de84798641882ca202c3d1688f8ba8
c3cdf657f7008095f3c68b4132b9fe76d2f52d81
refs/heads/master
2022-04-30T21:32:44.039258
2020-03-03T07:03:57
2020-03-03T07:03:57
244,301,363
0
0
Apache-2.0
2022-03-29T22:04:26
2020-03-02T06:53:58
Python
UTF-8
Python
false
false
3,200
py
# Licensed to the StackStorm, Inc ('StackStorm') under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from st2common import log as logging from st2common import transport from st2common.exceptions.db import StackStormDBObjectNotFoundError from st2common.models.db.trigger import triggertype_access, trigger_access, triggerinstance_access from st2common.persistence.base import (Access, ContentPackResource) from st2common.transport import utils as transport_utils LOG = logging.getLogger(__name__) class TriggerType(ContentPackResource): impl = triggertype_access @classmethod def _get_impl(cls): return cls.impl class Trigger(ContentPackResource): impl = trigger_access publisher = None @classmethod def _get_impl(cls): return cls.impl @classmethod def _get_publisher(cls): if not cls.publisher: cls.publisher = transport.reactor.TriggerCUDPublisher( urls=transport_utils.get_messaging_urls()) return cls.publisher @classmethod def delete_if_unreferenced(cls, model_object, publish=True, dispatch_trigger=True): # Found in the innards of mongoengine. # e.g. {'pk': ObjectId('5609e91832ed356d04a93cc0')} delete_query = model_object._object_key delete_query['ref_count__lte'] = 0 cls._get_impl().delete_by_query(**delete_query) # Since delete_by_query cannot tell if teh delete actually happened check with a get call # if the trigger was deleted. Unfortuantely, this opens up to races on delete. confirmed_delete = False try: cls.get_by_id(model_object.id) except (StackStormDBObjectNotFoundError, ValueError): confirmed_delete = True # Publish internal event on the message bus if confirmed_delete and publish: try: cls.publish_delete(model_object) except Exception: LOG.exception('Publish failed.') # Dispatch trigger if confirmed_delete and dispatch_trigger: try: cls.dispatch_delete_trigger(model_object) except Exception: LOG.exception('Trigger dispatch failed.') return model_object class TriggerInstance(Access): impl = triggerinstance_access @classmethod def _get_impl(cls): return cls.impl @classmethod def delete_by_query(cls, *args, **query): return cls._get_impl().delete_by_query(*args, **query)
88a459054fe086e6f2a96d15ab8e887f827114b3
1180c0bfe29959d95f3c131e6e839950e528d4ee
/42/pgmilenkov/regex.py
db3e891349a6a6ed5fab6a8521b5513867ebd992
[]
no_license
pybites/challenges
e3e461accd8e7f890aee8007ba5070086ef983fc
02b77652d0901e6e06cb9b1e7cb3e59c675445c2
refs/heads/community
2023-08-20T18:19:02.982214
2022-11-17T09:23:31
2022-11-17T09:23:31
78,264,928
764
3,115
null
2023-07-21T05:58:19
2017-01-07T07:17:50
Jupyter Notebook
UTF-8
Python
false
false
2,457
py
import re def extract_course_times(): '''Use re.findall to capture all mm:ss timestamps in a list''' flask_course = ('Introduction 1 Lecture 01:47' 'The Basics 4 Lectures 32:03' 'Getting Technical! 4 Lectures 41:51' 'Challenge 2 Lectures 27:48' 'Afterword 1 Lecture 05:02') return re.findall(r'\d{2}:\d{2}', flask_course) def split_on_multiple_chars(): '''Use re.split to split log line by ; , . but not on the last ... so list should have len of 4 (hint check re.split docs for extra switches)''' logline = ('2017-11-03T01:00:02;challenge time,regex!.' 'hope you join ... soon') return re.split(r';|,|\.',logline, maxsplit=3) def get_all_hashtags_and_links(): '''Use re.findall to extract the URL and 2 hashtags of this tweet''' tweet = ('New PyBites article: Module of the Week - Requests-cache ' 'for Repeated API Calls - http://pybit.es/requests-cache.html ' '#python #APIs') # return re.findall(r'#\S+',tweet) return re.findall(r'(http\S+|#\S+)',tweet) def match_first_paragraph(): '''Use re.sub to extract the content of the first paragraph (excl tags)''' html = ('<p>pybites != greedy</p>' '<p>not the same can be said REgarding ...</p>') return re.sub(r'<p>(.*?)</p>.*',r'\1',html) def find_double_words(): '''Use re.search(regex, text).group() to find the double word''' text = 'Spain is so nice in the the spring' result = re.search(r'' r'\b' # begin of word r'(' # start group r'[a-z' # lower case letters r'A-Z' # upper case letters r'0-9]' # digits r'+' # zero or more occurences r')' # end of group r'\s+' # whitespaces r'\1' # match group r'\b', # end of word text,re.VERBOSE) text = text[:result.span()[0]] + result.group(1) + text[result.span()[1]:] return result def match_ip_v4_address(ip): '''Use re.match to match an ip v4 address (no need for exact IP ranges)''' return re.match(r'(\d{1,3}\.){3}\d{1,3}',ip) if __name__ == '__main__': print(match_first_paragraph())
b02027bdd2169431f6313f70a90f250241b4c30e
531c47c15b97cbcb263ec86821d7f258c81c0aaf
/sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2018_10_01/aio/operations_async/_virtual_machine_extension_images_operations_async.py
296bc94769725b14078d4c3f9f390e439d4c9718
[ "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later", "MIT" ]
permissive
YijunXieMS/azure-sdk-for-python
be364d3b88204fd3c7d223df23756386ff7a3361
f779de8e53dbec033f98f976284e6d9491fd60b3
refs/heads/master
2021-07-15T18:06:28.748507
2020-09-04T15:48:52
2020-09-04T15:48:52
205,457,088
1
2
MIT
2020-06-16T16:38:15
2019-08-30T21:08:55
Python
UTF-8
Python
false
false
10,925
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar import warnings from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VirtualMachineExtensionImagesOperations: """VirtualMachineExtensionImagesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.compute.v2018_10_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def get( self, location: str, publisher_name: str, type: str, version: str, **kwargs ) -> "models.VirtualMachineExtensionImage": """Gets a virtual machine extension image. :param location: The name of a supported Azure region. :type location: str :param publisher_name: :type publisher_name: str :param type: :type type: str :param version: :type version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VirtualMachineExtensionImage, or the result of cls(response) :rtype: ~azure.mgmt.compute.v2018_10_01.models.VirtualMachineExtensionImage :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualMachineExtensionImage"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-10-01" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'publisherName': self._serialize.url("publisher_name", publisher_name, 'str'), 'type': self._serialize.url("type", type, 'str'), 'version': self._serialize.url("version", version, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VirtualMachineExtensionImage', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmextension/types/{type}/versions/{version}'} # type: ignore async def list_types( self, location: str, publisher_name: str, **kwargs ) -> List["models.VirtualMachineExtensionImage"]: """Gets a list of virtual machine extension image types. :param location: The name of a supported Azure region. :type location: str :param publisher_name: :type publisher_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of VirtualMachineExtensionImage, or the result of cls(response) :rtype: list[~azure.mgmt.compute.v2018_10_01.models.VirtualMachineExtensionImage] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["models.VirtualMachineExtensionImage"]] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-10-01" # Construct URL url = self.list_types.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'publisherName': self._serialize.url("publisher_name", publisher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('[VirtualMachineExtensionImage]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_types.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmextension/types'} # type: ignore async def list_versions( self, location: str, publisher_name: str, type: str, filter: Optional[str] = None, top: Optional[int] = None, orderby: Optional[str] = None, **kwargs ) -> List["models.VirtualMachineExtensionImage"]: """Gets a list of virtual machine extension image versions. :param location: The name of a supported Azure region. :type location: str :param publisher_name: :type publisher_name: str :param type: :type type: str :param filter: The filter to apply on the operation. :type filter: str :param top: :type top: int :param orderby: :type orderby: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of VirtualMachineExtensionImage, or the result of cls(response) :rtype: list[~azure.mgmt.compute.v2018_10_01.models.VirtualMachineExtensionImage] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["models.VirtualMachineExtensionImage"]] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-10-01" # Construct URL url = self.list_versions.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'publisherName': self._serialize.url("publisher_name", publisher_name, 'str'), 'type': self._serialize.url("type", type, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if filter is not None: query_parameters['$filter'] = self._serialize.query("filter", filter, 'str') if top is not None: query_parameters['$top'] = self._serialize.query("top", top, 'int') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('[VirtualMachineExtensionImage]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_versions.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmextension/types/{type}/versions'} # type: ignore
00c4adf04fdb31e76a8271a3d839b907cf5d21fd
a508ffe0942f75721d4623fcda9e57808f93f07d
/input_test/s.py
a5aa5c9bcccbb47b880e6950bb649080e34c2a96
[]
no_license
ag8/magic
3a14a81f3c06fa67cd77de07045ee3dc3899ca7f
2768fc7490e6cc55b522be68926ad24d3caa939c
refs/heads/master
2021-01-22T06:49:29.561849
2017-10-30T23:34:57
2017-10-30T23:34:57
102,300,107
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
import pickle with open('/data/affinity/2d/overlap_micro/OVERLAP_AREAS') as fp: overlap_areas = pickle.load(fp) print(overlap_areas)
2fb669fc4597c7fbbb01eb650d16264493c9fb0f
33c1c5d0f48ad952776fe546a85350a441d6cfc2
/ABC/102/D.py
65484cf137a326b30baf30c052b7b04eae161ddc
[]
no_license
hisyatokaku/Competition
985feb14aad73fda94804bb1145e7537b057e306
fdbf045a59eccb1b2502b018cab01810de4ea894
refs/heads/master
2021-06-30T18:48:48.256652
2020-11-16T11:55:12
2020-11-16T11:55:12
191,138,764
0
0
null
null
null
null
UTF-8
Python
false
false
3,310
py
import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools from collections import deque sys.setrecursionlimit(10**7) inf = 10**20 mod = 10**9 + 7 DR = [1, -1, 0, 0] DC = [0, 0, 1, -1] def LI(): return [int(x) for x in sys.stdin.readline().split()] def LI_(): return [int(x)-1 for x in sys.stdin.readline().split()] def LF(): return [float(x) for x in sys.stdin.readline().split()] def LS(): return sys.stdin.readline().split() def I(): return int(sys.stdin.readline()) def F(): return float(sys.stdin.readline()) def S(): return input() def main(): N = I() A = LI() cumsum = [0 for _ in range(N+1)] for i in range(N): cumsum[i+1] = cumsum[i] + A[i] def get_cumsum(a, b): # get cumsum from [a, b] element return cumsum[b+1] - cumsum[a] def separate_opt_sum(l, r, offset): tot_sum = get_cumsum(l, r) targ = offset + tot_sum / 2 left_i = bisect.bisect_left(cumsum, targ) diff1 = inf diff2 = inf diff3 = inf left_sum1, right_sum1, left_sum2, right_sum2 = inf, inf, inf, inf left_sum3, right_sum3 = inf, inf if l <= left_i - 2: left_sum3 = get_cumsum(l, left_i - 2) right_sum3 = tot_sum - left_sum3 diff3 = abs(right_sum3 - left_sum3) if l <= left_i - 1: left_sum1 = get_cumsum(l, left_i - 1) right_sum1 = tot_sum - left_sum1 diff1 = abs(right_sum1 - left_sum1) if left_i < r: left_sum2 = get_cumsum(l, left_i) right_sum2 = tot_sum - left_sum2 diff2 = abs(right_sum2 - left_sum2) if min(diff1, diff2, diff3) == diff1: return left_sum1, right_sum1 elif min(diff1, diff2, diff3) == diff2: return left_sum2, right_sum2 return left_sum3, right_sum3 def _separate_opt_sum(l, r): # find arr1, arr2 s.t. |arr1 - arr2| = min # arr1 = get_cumsum(l, k), arr2 = get_cumsum(k+1, r) tot_sum = get_cumsum(l, r) m = (l + r) // 2 m_min = l - 1 m_max = r + 1 cur_min_diff = abs(2 * get_cumsum(l, m) - tot_sum) cur_min_m = m while m_min < m and m < m_max: left_sum = get_cumsum(l, m) right_sum = tot_sum - left_sum cur_diff = abs(left_sum - right_sum) if cur_diff < cur_min_diff: cur_min_diff = cur_diff cur_min_m = m if left_sum < right_sum: m_min = m m = (m + r) // 2 elif left_sum > right_sum: m_max = m m = (l + m) // 2 else: break l_ans = get_cumsum(l, cur_min_m) r_ans = get_cumsum(cur_min_m + 1, r) return l_ans, r_ans ans = inf for sep in range(1, N-2): left_S = get_cumsum(0, sep) right_S = get_cumsum(sep+1, N-1) # import pdb # pdb.set_trace() p, q = separate_opt_sum(0, sep, 0) r, s = separate_opt_sum(sep+1, N-1, left_S) # print('sep:', sep, ' ', p, q, r, s) # print('\tleft_S:', left_S, ' right_S:', right_S) ans = min(ans, max(p, q, r, s) - min(p, q, r, s)) print(ans) main()
bcd820a2e7d5a5a1cc617759d8a7456ea44b3f69
7e8cee08e8a583cfcefbf86f9272a65bca4dd2e4
/Test/Wx/GridCustEditor.py
90505b7730f05f209dc030190c349d8991dff6f1
[]
no_license
PREM1980/ecomstore
01adb86b8423100421806097a518df08ab30c4c8
0a01e1826699c8656fdb2502741f8b638948a6e4
refs/heads/master
2016-09-05T16:58:30.396618
2013-05-02T23:15:35
2013-05-02T23:15:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,967
py
import string import wx import wx.grid as gridlib #--------------------------------------------------------------------------- class MyCellEditor(gridlib.PyGridCellEditor): """ This is a sample GridCellEditor that shows you how to make your own custom grid editors. All the methods that can be overridden are shown here. The ones that must be overridden are marked with "*Must Override*" in the docstring. """ def __init__(self, log): self.log = log self.log.write("MyCellEditor ctor\n") gridlib.PyGridCellEditor.__init__(self) def Create(self, parent, id, evtHandler): """ Called to create the control, which must derive from wx.Control. *Must Override* """ self.log.write("MyCellEditor: Create\n") self._tc = wx.TextCtrl(parent, id, "") self._tc.SetInsertionPoint(0) self.SetControl(self._tc) if evtHandler: self._tc.PushEventHandler(evtHandler) def SetSize(self, rect): """ Called to position/size the edit control within the cell rectangle. If you don't fill the cell (the rect) then be sure to override PaintBackground and do something meaningful there. """ self.log.write("MyCellEditor: SetSize %s\n" % rect) self._tc.SetDimensions(rect.x, rect.y, rect.width+2, rect.height+2, wx.SIZE_ALLOW_MINUS_ONE) def Show(self, show, attr): """ Show or hide the edit control. You can use the attr (if not None) to set colours or fonts for the control. """ self.log.write("MyCellEditor: Show(self, %s, %s)\n" % (show, attr)) super(MyCellEditor, self).Show(show, attr) def PaintBackground(self, rect, attr): """ Draws the part of the cell not occupied by the edit control. The base class version just fills it with background colour from the attribute. In this class the edit control fills the whole cell so don't do anything at all in order to reduce flicker. """ self.log.write("MyCellEditor: PaintBackground\n") def BeginEdit(self, row, col, grid): """ Fetch the value from the table and prepare the edit control to begin editing. Set the focus to the edit control. *Must Override* """ self.log.write("MyCellEditor: BeginEdit (%d,%d)\n" % (row, col)) self.startValue = grid.GetTable().GetValue(row, col) self._tc.SetValue(self.startValue) self._tc.SetInsertionPointEnd() self._tc.SetFocus() # For this example, select the text self._tc.SetSelection(0, self._tc.GetLastPosition()) def EndEdit(self, row, col, grid): """ Complete the editing of the current cell. Returns True if the value has changed. If necessary, the control may be destroyed. *Must Override* """ self.log.write("MyCellEditor: EndEdit (%d,%d)\n" % (row, col)) changed = False val = self._tc.GetValue() if val != self.startValue: changed = True grid.GetTable().SetValue(row, col, val) # update the table self.startValue = '' self._tc.SetValue('') return changed def Reset(self): """ Reset the value in the control back to its starting value. *Must Override* """ self.log.write("MyCellEditor: Reset\n") self._tc.SetValue(self.startValue) self._tc.SetInsertionPointEnd() def IsAcceptedKey(self, evt): """ Return True to allow the given key to start editing: the base class version only checks that the event has no modifiers. F2 is special and will always start the editor. """ self.log.write("MyCellEditor: IsAcceptedKey: %d\n" % (evt.GetKeyCode())) ## We can ask the base class to do it #return super(MyCellEditor, self).IsAcceptedKey(evt) # or do it ourselves return (not (evt.ControlDown() or evt.AltDown()) and evt.GetKeyCode() != wx.WXK_SHIFT) def StartingKey(self, evt): """ If the editor is enabled by pressing keys on the grid, this will be called to let the editor do something about that first key if desired. """ self.log.write("MyCellEditor: StartingKey %d\n" % evt.GetKeyCode()) key = evt.GetKeyCode() ch = None if key in [ wx.WXK_NUMPAD0, wx.WXK_NUMPAD1, wx.WXK_NUMPAD2, wx.WXK_NUMPAD3, wx.WXK_NUMPAD4, wx.WXK_NUMPAD5, wx.WXK_NUMPAD6, wx.WXK_NUMPAD7, wx.WXK_NUMPAD8, wx.WXK_NUMPAD9 ]: ch = ch = chr(ord('0') + key - wx.WXK_NUMPAD0) elif key < 256 and key >= 0 and chr(key) in string.printable: ch = chr(key) if ch is not None: # For this example, replace the text. Normally we would append it. #self._tc.AppendText(ch) self._tc.SetValue(ch) self._tc.SetInsertionPointEnd() else: evt.Skip() def StartingClick(self): """ If the editor is enabled by clicking on the cell, this method will be called to allow the editor to simulate the click on the control if needed. """ self.log.write("MyCellEditor: StartingClick\n") def Destroy(self): """final cleanup""" self.log.write("MyCellEditor: Destroy\n") super(MyCellEditor, self).Destroy() def Clone(self): """ Create a new object which is the copy of this one *Must Override* """ self.log.write("MyCellEditor: Clone\n") return MyCellEditor(self.log) #--------------------------------------------------------------------------- class GridEditorTest(gridlib.Grid): def __init__(self, parent, log): gridlib.Grid.__init__(self, parent, -1) self.log = log self.CreateGrid(10, 3) # Somebody changed the grid so the type registry takes precedence # over the default attribute set for editors and renderers, so we # have to set null handlers for the type registry before the # default editor will get used otherwise... #self.RegisterDataType(wxGRID_VALUE_STRING, None, None) #self.SetDefaultEditor(MyCellEditor(self.log)) # Or we could just do it like this: #self.RegisterDataType(wx.GRID_VALUE_STRING, # wx.GridCellStringRenderer(), # MyCellEditor(self.log)) # ) # but for this example, we'll just set the custom editor on one cell self.SetCellEditor(1, 0, MyCellEditor(self.log)) self.SetCellValue(1, 0, "Try to edit this box") # and on a column attr = gridlib.GridCellAttr() attr.SetEditor(MyCellEditor(self.log)) self.SetColAttr(2, attr) self.SetCellValue(1, 2, "or any in this column") self.SetColSize(0, 150) self.SetColSize(1, 150) self.SetColSize(2, 150) #--------------------------------------------------------------------------- class TestFrame(wx.Frame): def __init__(self, parent, log): wx.Frame.__init__(self, parent, -1, "Custom Grid Cell Editor Test", size=(640,480)) grid = GridEditorTest(self, log) #--------------------------------------------------------------------------- if __name__ == '__main__': import sys app = wx.PySimpleApp() frame = TestFrame(None, sys.stdout) frame.Show(True) app.MainLoop()
172a466d5f80f6441ed6b874517a024f13c5aa06
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_123/656.py
d804f5541e5fb0795836e9f5a04694acf4147beb
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,797
py
# # By Allan Douglas R. de Oliveira # This program is under public license # ######################## # makes python 2.x behave like python 3k from __future__ import print_function, unicode_literals, division # common imports import sys import operator import math from io import StringIO from itertools import chain, combinations, product, permutations, islice from collections import namedtuple from functools import reduce if sys.version_info[0] >= 3: #import numpy as np pass else: # for pypy until it doesn't support py3k from itertools import izip as zip, ifilter as filter, imap as map range = xrange # numpypy may not work well on windows, yet #import numpypy as np # integer square root def isqrt(n): x = n y = (x + n // x) // 2 while y < x: x = y y = (x + n // x) // 2 return x # Parallel map with switch to serial map def pmap(f, iterable, parallel=True): if parallel: from multiprocessing import Pool p = Pool(7) return p.imap(f, iterable, chunksize=1) else: return map(f, iterable) def dot_product(v1, v2, sum=sum, map=map, mul=operator.mul): return sum(map(mul, v1, v2)) # some linalg utility definitions Line = namedtuple('Line', 'A, B, C') # Line is Ax + By = C Point = namedtuple('Point', 'x, y') def iszero(n): return abs(n) < 1e-12 def point_to_line(p1, m): A, B, C = (m, -1, m*p1.x - p1.y) return Line(A, B, C) def points_to_line(p1, p2): L = p2.y - p1.y K = p2.x - p1.x A, B, C = (L, -K, L * p1.x - K * p1.y) return Line(A, B, C) def line_intersection2D(line1, line2): A1, B1, C1 = line1 A2, B2, C2 = line2 det = A1*B2 - A2*B1 if iszero(det): # parallel return None else: x = (B2*C1 - B1*C2) / det y = (A1*C2 - A2*C1) / det return Point(x, y) def calc_coord_y(line, x): y = (line.C - line.A * x) / line.B return y # end of standard stuff ######################## sample_input = StringIO('''4 2 2 2 1 2 4 2 1 1 6 10 4 25 20 9 100 1 4 1 1 1 1''') def check(motes_ordered, A): for i, mote in enumerate(motes_ordered): if A > mote: A += mote else: return (i, A) return None def try_delete(i, motes_ordered, A, changes): #print ('try delete', A, changes, motes_ordered) motes_deleted = motes_ordered[i:-1] return process(motes_deleted, A, changes + 1) def try_add(i, motes_ordered, A, changes): #print ('try add', A, changes, motes_ordered) #minimum_new_mote_size = motes_ordered[i] - A + 1 #assert minimum_new_mote_size > 0 if A <= 1: return None maximum_new_mote_size = A - 1 results = [] for new_mote_size in range(maximum_new_mote_size, maximum_new_mote_size+1): motes_added_new = [new_mote_size] + motes_ordered[i:] process_result = process(motes_added_new, A, changes + 1) if process_result is not None: results.append(process_result) return None if len(results) == 0 else min(results) def process(motes_ordered, A, changes): #print (A, changes, motes_ordered) if len(motes_ordered) == 0: #print ('empty list, returning') return changes result = check(motes_ordered, A) if result is None: return changes else: i, a = result result_delete = try_delete(i, motes_ordered, a, changes) result_add = try_add(i, motes_ordered, a, changes) assert result_delete is not None or result_add is not None if result_delete is None: return result_add elif result_add is None: return result_delete else: return min(result_add, result_delete) def process_test_case(inputs): A, N, motes = inputs motes_ordered = sorted(motes) changes = 0 process_result = process(motes_ordered, A, changes) assert process_result is not None return process_result def read_test_case(f): A, N = [int(x) for x in f.readline().split()] motes = [int(x) for x in f.readline().split()] return (A, N, motes) def print_result(i, result): if result is None: print('Case #%d: %s' % (i+1, 'Error')) else: print('Case #%d: %d' % (i+1, result)) ########################## # basic test case reading and processing skeleton def read_test_cases(f): T = int(f.readline()) return [read_test_case(f) for t in range(T)] def main(stream, parallel): for i, result in enumerate(pmap(process_test_case, read_test_cases(stream), parallel=parallel)): print_result(i, result) if __name__ == '__main__': if len(sys.argv) > 1: main(open(sys.argv[1]), True) else: main(sample_input, False) ##########################
39d1e033b8bb386f1fc6b9d116ec599b624a8828
dd4d1a61ec680a86d4b569490bf2a898ea0d7557
/appengine/predator/analysis/test/clusterfuzz_data_test.py
d1d1f2e8d5719c1e04bee66fb5c8919fa642a706
[ "BSD-3-Clause" ]
permissive
mcgreevy/chromium-infra
f1a68914b47bcbe3cd8a424f43741dd74fedddf4
09064105713603f7bf75c772e8354800a1bfa256
refs/heads/master
2022-10-29T23:21:46.894543
2017-05-16T06:22:50
2017-05-16T06:22:50
91,423,078
1
1
BSD-3-Clause
2022-10-01T18:48:03
2017-05-16T06:23:34
Python
UTF-8
Python
false
false
5,279
py
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import mock from analysis.analysis_testcase import AnalysisTestCase from analysis.clusterfuzz_data import ClusterfuzzData from analysis.clusterfuzz_parser import ClusterfuzzParser from analysis.stacktrace import CallStack from analysis.stacktrace import StackFrame from analysis.stacktrace import Stacktrace from analysis.type_enums import CrashClient from analysis.type_enums import SanitizerType from libs.deps.chrome_dependency_fetcher import ChromeDependencyFetcher from libs.deps.dependency import Dependency from libs.deps.dependency import DependencyRoll class CusterfuzzDataTest(AnalysisTestCase): """Tests ``ClusterfuzzData`` class.""" def testProperties(self): """Tests ``ClusterfuzzData`` specific properties.""" raw_crash_data = self.GetDummyClusterfuzzData(sanitizer='ASAN') crash_data = ClusterfuzzData(raw_crash_data) self.assertEqual(crash_data.crashed_address, raw_crash_data['customized_data']['crashed_address']) self.assertEqual(crash_data.crashed_type, raw_crash_data['customized_data']['crashed_type']) self.assertEqual(crash_data.sanitizer, SanitizerType.ADDRESS_SANITIZER) self.assertEqual(crash_data.job_type, raw_crash_data['customized_data']['job_type']) self.assertEqual(crash_data.regression_range, raw_crash_data['customized_data']['regression_range']) self.assertEqual(crash_data.testcase, raw_crash_data['customized_data']['testcase']) @mock.patch('analysis.clusterfuzz_parser.ClusterfuzzParser.Parse') def testParseStacktraceFailed(self, mock_parse): """Tests that ``stacktrace`` is None when failed to pars stacktrace.""" mock_parse.return_value = None crash_data = ClusterfuzzData(self.GetDummyClusterfuzzData()) self.assertIsNone(crash_data.stacktrace) def testParseStacktraceSucceeded(self): """Tests parsing ``stacktrace``.""" crash_data = ClusterfuzzData(self.GetDummyClusterfuzzData()) stack = CallStack(0) stacktrace = Stacktrace([stack], stack) with mock.patch( 'analysis.clusterfuzz_parser.ClusterfuzzParser.Parse') as mock_parse: mock_parse.return_value = stacktrace self._VerifyTwoStacktracesEqual(crash_data.stacktrace, stacktrace) def testParseStacktraceReturnsCache(self): """Tests that ``stacktrace`` returns cached ``_stacktrace`` value.""" crash_data = ClusterfuzzData(self.GetDummyClusterfuzzData()) stack = CallStack(1) stacktrace = Stacktrace([stack], stack) crash_data._stacktrace = stacktrace self._VerifyTwoStacktracesEqual(crash_data.stacktrace, stacktrace) def testDependencies(self): """Tests ``dependencies`` property.""" dep = Dependency('src/', 'https://repo', 'rev1') crash_data = ClusterfuzzData(self.GetDummyClusterfuzzData( dependencies=[{'dep_path': dep.path, 'repo_url': dep.repo_url, 'revision': dep.revision}])) self.assertEqual(len(crash_data.dependencies), 1) self.assertTrue(dep.path in crash_data.dependencies) self.assertEqual(crash_data.dependencies[dep.path].path, dep.path) self.assertEqual(crash_data.dependencies[dep.path].repo_url, dep.repo_url) self.assertEqual(crash_data.dependencies[dep.path].revision, dep.revision) def testDependenciesReturnsCache(self): """Tests that ``dependencies`` returns cached ``_dependencies`` value.""" crash_data = ClusterfuzzData(self.GetDummyClusterfuzzData()) deps = {'src/': Dependency('src/', 'https://repo', 'rev')} crash_data._dependencies = deps self.assertEqual(crash_data.dependencies, deps) def testDependencyRollsReturnsCache(self): """Tests that ``dependency_rolls`` returns cached ``_dependency_rolls``.""" crash_data = ClusterfuzzData(self.GetDummyClusterfuzzData()) dep_roll = {'src/': DependencyRoll('src/', 'https://repo', 'rev0', 'rev3')} crash_data._dependency_rolls = dep_roll self.assertEqual(crash_data.dependency_rolls, dep_roll) def testDependencyRolls(self): """Tests ``regression_rolls`` property.""" dep_roll = DependencyRoll('src/', 'https://repo', 'rev1', 'rev6') crash_data = ClusterfuzzData(self.GetDummyClusterfuzzData( dependency_rolls=[{'dep_path': dep_roll.path, 'repo_url': dep_roll.repo_url, 'old_revision': dep_roll.old_revision, 'new_revision': dep_roll.new_revision}])) self.assertEqual(len(crash_data.dependency_rolls), 1) self.assertTrue(dep_roll.path in crash_data.dependency_rolls) self.assertEqual(crash_data.dependency_rolls[dep_roll.path].path, dep_roll.path) self.assertEqual(crash_data.dependency_rolls[dep_roll.path].repo_url, dep_roll.repo_url) self.assertEqual(crash_data.dependency_rolls[dep_roll.path].old_revision, dep_roll.old_revision) self.assertEqual(crash_data.dependency_rolls[dep_roll.path].new_revision, dep_roll.new_revision)
35d07eeece96e275825fbdd83830f5c389cb5f9c
6b8b6e5c7a31342b781909623d4fe60a563482d4
/sensor/DS18B20.py
ec091e5f56edd07f7219f5a7edd77bf711220b0d
[]
no_license
ariebroere/sensor
7d3d4cd6ef5348bf5f3e3bdc6731c7b237200447
1ede75d51d67622352cb4a3e918255f5cae3c061
refs/heads/master
2021-01-18T22:50:02.361613
2017-04-02T06:29:40
2017-04-02T06:29:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,926
py
# The MIT License (MIT) # # Copyright (c) 2015 Nick Lee # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Include the sensor directory, so this file may be run as a test script. if __name__ == "__main__" and __package__ is None: import os, sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import subprocess import sensor from sensor.util import Temperature class DS18B20(sensor.SensorBase): def __init__(self, addr): super(DS18B20, self).__init__(self._update_sensor_data) self._device = '/sys/bus/w1/devices/%s/w1_slave' % addr self._temperature = None def temperature(self): self._update() return Temperature(C=self._temperature) if self._temperature is not None else None @sensor.w1_lock def _update_sensor_data(self): # Try at most 3 times for i in range(0,3): # Split output into separate lines. lines = subprocess.check_output(['cat', self._device]).split('\n') # If the first line does not end with 'YES', try again. if lines[0][-3:] != 'YES': time.sleep(0.2) continue # If the second line does not have a 't=', try again. pos = lines[1].find('t=') if pos < 0: time.sleep(0.2) continue # Extract the temperature. self._temperature = float(lines[1][pos+2:]) / 1000.0 return # Failed reading self._temperature = None """ Run this file as a test script 1. Find the sensor's 1-wire address $ cd /sys/bus/w1/devices $ ls Look for '28-..........'. That is the address. Then: $ python DS18B20.py <address> """ if __name__ == '__main__': import sys, time ds = DS18B20(sys.argv[1]) for i in range(0, 30): print ds.temperature() time.sleep(1)
4fddac42ee4bc07489ef1b4e274f85afb21e0de4
a6e4a6f0a73d24a6ba957277899adbd9b84bd594
/sdk/python/pulumi_azure_native/azuredata/v20170301preview/get_sql_server_registration.py
212ce2e8e70f2e01cb921271035d0102a9a6da0b
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
MisinformedDNA/pulumi-azure-native
9cbd75306e9c8f92abc25be3f73c113cb93865e9
de974fd984f7e98649951dbe80b4fc0603d03356
refs/heads/master
2023-03-24T22:02:03.842935
2021-03-08T21:16:19
2021-03-08T21:16:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,406
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = [ 'GetSqlServerRegistrationResult', 'AwaitableGetSqlServerRegistrationResult', 'get_sql_server_registration', ] @pulumi.output_type class GetSqlServerRegistrationResult: """ A SQL server registration. """ def __init__(__self__, id=None, location=None, name=None, property_bag=None, resource_group=None, subscription_id=None, tags=None, type=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if property_bag and not isinstance(property_bag, str): raise TypeError("Expected argument 'property_bag' to be a str") pulumi.set(__self__, "property_bag", property_bag) if resource_group and not isinstance(resource_group, str): raise TypeError("Expected argument 'resource_group' to be a str") pulumi.set(__self__, "resource_group", resource_group) if subscription_id and not isinstance(subscription_id, str): raise TypeError("Expected argument 'subscription_id' to be a str") pulumi.set(__self__, "subscription_id", subscription_id) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def id(self) -> str: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> str: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="propertyBag") def property_bag(self) -> Optional[str]: """ Optional Properties as JSON string """ return pulumi.get(self, "property_bag") @property @pulumi.getter(name="resourceGroup") def resource_group(self) -> Optional[str]: """ Resource Group Name """ return pulumi.get(self, "resource_group") @property @pulumi.getter(name="subscriptionId") def subscription_id(self) -> Optional[str]: """ Subscription Id """ return pulumi.get(self, "subscription_id") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableGetSqlServerRegistrationResult(GetSqlServerRegistrationResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetSqlServerRegistrationResult( id=self.id, location=self.location, name=self.name, property_bag=self.property_bag, resource_group=self.resource_group, subscription_id=self.subscription_id, tags=self.tags, type=self.type) def get_sql_server_registration(resource_group_name: Optional[str] = None, sql_server_registration_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSqlServerRegistrationResult: """ A SQL server registration. :param str resource_group_name: Name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param str sql_server_registration_name: Name of the SQL Server registration. """ __args__ = dict() __args__['resourceGroupName'] = resource_group_name __args__['sqlServerRegistrationName'] = sql_server_registration_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:azuredata/v20170301preview:getSqlServerRegistration', __args__, opts=opts, typ=GetSqlServerRegistrationResult).value return AwaitableGetSqlServerRegistrationResult( id=__ret__.id, location=__ret__.location, name=__ret__.name, property_bag=__ret__.property_bag, resource_group=__ret__.resource_group, subscription_id=__ret__.subscription_id, tags=__ret__.tags, type=__ret__.type)
610b9ee40927adccd43e1fe32dcc8a11699359b4
50008b3b7fb7e14f793e92f5b27bf302112a3cb4
/recipes/Python/442497_Pattern_List/recipe-442497.py
7a7e212a314061dc34d2a57bd9d425d6b849bcf9
[ "Python-2.0", "MIT" ]
permissive
betty29/code-1
db56807e19ac9cfe711b41d475a322c168cfdca6
d097ca0ad6a6aee2180d32dce6a3322621f655fd
refs/heads/master
2023-03-14T08:15:47.492844
2021-02-24T15:39:59
2021-02-24T15:39:59
341,878,663
0
0
MIT
2021-02-24T15:40:00
2021-02-24T11:31:15
Python
UTF-8
Python
false
false
800
py
import re class PatternList( object ): """A Patternlist is a list of regular expressions. the 'in' operator allows a string to be compared against each expression (using search NOT match)""" def __init__(self , patterns = []): self.patterns = [] for p in patterns: self.add( p ) def add( self , pattern ): pat = re.compile( pattern ) self.patterns.append( pat ) def __contains__(self , item ): ret = False for p in self.patterns: if p.search( item ): ret= True break return ret if __name__=="__main__": examplelist = PatternList( [ ".*txt$" , ".*doc$" ]) assert( "test.txt" in examplelist ) assert( "test.xls" not in examplelist )
96038f0fdec7f1c6c7c9e3d1da8063fe493d6e40
1674e40a5dab691961ae676b3d6752870df1c60b
/.cache/JetBrains/PyCharm2020.2/python_stubs/-988789078/_multibytecodec.py
fdb881ed202160e3f7d75a9bd8465130cfb97a9a
[]
no_license
AiperiAkhumbai/group_project
a7c0efacbdcfc4a35d62b6321b255e3ed9e3436c
9c62b9964776306ab85901b501536eb667d3c337
refs/heads/main
2023-01-23T08:12:47.433544
2020-11-24T18:57:49
2020-11-24T18:57:49
313,209,027
0
0
null
null
null
null
UTF-8
Python
false
false
4,428
py
# encoding: utf-8 # module _multibytecodec # from /usr/lib/python3.8/lib-dynload/_multibytecodec.cpython-38-x86_64-linux-gnu.so # by generator 1.147 # no doc # no imports # functions def __create_codec(*args, **kwargs): # real signature unknown pass # classes class MultibyteIncrementalDecoder(object): # no doc def decode(self, *args, **kwargs): # real signature unknown pass def getstate(self, *args, **kwargs): # real signature unknown pass def reset(self, *args, **kwargs): # real signature unknown pass def setstate(self, *args, **kwargs): # real signature unknown pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __init__(self, *args, **kwargs): # real signature unknown pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass errors = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """how to treat errors""" class MultibyteIncrementalEncoder(object): # no doc def encode(self, *args, **kwargs): # real signature unknown pass def getstate(self, *args, **kwargs): # real signature unknown pass def reset(self, *args, **kwargs): # real signature unknown pass def setstate(self, *args, **kwargs): # real signature unknown pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __init__(self, *args, **kwargs): # real signature unknown pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass errors = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """how to treat errors""" class MultibyteStreamReader(object): # no doc def read(self, *args, **kwargs): # real signature unknown pass def readline(self, *args, **kwargs): # real signature unknown pass def readlines(self, *args, **kwargs): # real signature unknown pass def reset(self, *args, **kwargs): # real signature unknown pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __init__(self, *args, **kwargs): # real signature unknown pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass errors = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """how to treat errors""" stream = property(lambda self: object(), lambda self, v: None, lambda self: None) # default class MultibyteStreamWriter(object): # no doc def reset(self, *args, **kwargs): # real signature unknown pass def write(self, *args, **kwargs): # real signature unknown pass def writelines(self, *args, **kwargs): # real signature unknown pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __init__(self, *args, **kwargs): # real signature unknown pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass errors = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """how to treat errors""" stream = property(lambda self: object(), lambda self, v: None, lambda self: None) # default # variables with complex values __loader__ = None # (!) real value is '<_frozen_importlib_external.ExtensionFileLoader object at 0x7f4bd3248460>' __spec__ = None # (!) real value is "ModuleSpec(name='_multibytecodec', loader=<_frozen_importlib_external.ExtensionFileLoader object at 0x7f4bd3248460>, origin='/usr/lib/python3.8/lib-dynload/_multibytecodec.cpython-38-x86_64-linux-gnu.so')"
f6342e270e1ecba03ce71951ba4143ce52143b96
8d753bb8f19b5b1f526b0688d3cb199b396ed843
/osp_sai_2.1.8/system/apps/openconfig/python_module/oc_lr/local_routes/static_routes/static/next_hops/next_hop/config/__init__.py
25073b2cc082c56c4acfc713abb347fbea0fd845
[]
no_license
bonald/vim_cfg
f166e5ff650db9fa40b564d05dc5103552184db8
2fee6115caec25fd040188dda0cb922bfca1a55f
refs/heads/master
2023-01-23T05:33:00.416311
2020-11-19T02:09:18
2020-11-19T02:09:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,369
py
from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int unicode = str elif six.PY2: import __builtin__ class config(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-local-routing - based on the path /local-routes/static-routes/static/next-hops/next-hop/config. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Configuration parameters relating to the next-hop entry """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_extmethods', '__index','__next_hop','__metric','__recurse',) _yang_name = 'config' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__index = YANGDynClass(base=unicode, is_leaf=True, yang_name="index", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='string', is_config=True) self.__metric = YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='uint32', is_config=True) self.__next_hop = YANGDynClass(base=[RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'^(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$'}),RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'^(([0-9a-fA-F]{1,4}:){7}[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,7}:|([0-9a-fA-F]{1,4}:){1,6}:[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,5}(:[0-9a-fA-F]{1,4}){1,2}|([0-9a-fA-F]{1,4}:){1,4}(:[0-9a-fA-F]{1,4}){1,3}|([0-9a-fA-F]{1,4}:){1,3}(:[0-9a-fA-F]{1,4}){1,4}|([0-9a-fA-F]{1,4}:){1,2}(:[0-9a-fA-F]{1,4}){1,5}|[0-9a-fA-F]{1,4}:((:[0-9a-fA-F]{1,4}){1,6})|:((:[0-9a-fA-F]{1,4}){1,7}|:))$'}),RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'DROP': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}, u'oc-loc-rt:LOCAL_LINK': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}, u'oc-loc-rt:DROP': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}, u'LOCAL_LINK': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}},),], is_leaf=True, yang_name="next-hop", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='union', is_config=True) self.__recurse = YANGDynClass(base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="recurse", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='boolean', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'local-routes', u'static-routes', u'static', u'next-hops', u'next-hop', u'config'] def _get_index(self): """ Getter method for index, mapped from YANG variable /local_routes/static_routes/static/next_hops/next_hop/config/index (string) YANG Description: An user-specified identifier utilised to uniquely reference the next-hop entry in the next-hop list. The value of this index has no semantic meaning other than for referencing the entry. """ return self.__index def _set_index(self, v, load=False): """ Setter method for index, mapped from YANG variable /local_routes/static_routes/static/next_hops/next_hop/config/index (string) If this variable is read-only (config: false) in the source YANG file, then _set_index is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_index() directly. YANG Description: An user-specified identifier utilised to uniquely reference the next-hop entry in the next-hop list. The value of this index has no semantic meaning other than for referencing the entry. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=unicode, is_leaf=True, yang_name="index", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """index must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=unicode, is_leaf=True, yang_name="index", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='string', is_config=True)""", }) self.__index = t if hasattr(self, '_set'): self._set() def _unset_index(self): self.__index = YANGDynClass(base=unicode, is_leaf=True, yang_name="index", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='string', is_config=True) def _get_next_hop(self): """ Getter method for next_hop, mapped from YANG variable /local_routes/static_routes/static/next_hops/next_hop/config/next_hop (union) YANG Description: The next-hop that is to be used for the static route - this may be specified as an IP address, an interface or a pre-defined next-hop type - for instance, DROP or LOCAL_LINK. When this leaf is not set, and the interface-ref value is specified for the next-hop, then the system should treat the prefix as though it is directly connected to the interface. """ return self.__next_hop def _set_next_hop(self, v, load=False): """ Setter method for next_hop, mapped from YANG variable /local_routes/static_routes/static/next_hops/next_hop/config/next_hop (union) If this variable is read-only (config: false) in the source YANG file, then _set_next_hop is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_next_hop() directly. YANG Description: The next-hop that is to be used for the static route - this may be specified as an IP address, an interface or a pre-defined next-hop type - for instance, DROP or LOCAL_LINK. When this leaf is not set, and the interface-ref value is specified for the next-hop, then the system should treat the prefix as though it is directly connected to the interface. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=[RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'^(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$'}),RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'^(([0-9a-fA-F]{1,4}:){7}[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,7}:|([0-9a-fA-F]{1,4}:){1,6}:[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,5}(:[0-9a-fA-F]{1,4}){1,2}|([0-9a-fA-F]{1,4}:){1,4}(:[0-9a-fA-F]{1,4}){1,3}|([0-9a-fA-F]{1,4}:){1,3}(:[0-9a-fA-F]{1,4}){1,4}|([0-9a-fA-F]{1,4}:){1,2}(:[0-9a-fA-F]{1,4}){1,5}|[0-9a-fA-F]{1,4}:((:[0-9a-fA-F]{1,4}){1,6})|:((:[0-9a-fA-F]{1,4}){1,7}|:))$'}),RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'DROP': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}, u'oc-loc-rt:LOCAL_LINK': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}, u'oc-loc-rt:DROP': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}, u'LOCAL_LINK': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}},),], is_leaf=True, yang_name="next-hop", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='union', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """next_hop must be of a type compatible with union""", 'defined-type': "openconfig-local-routing:union", 'generated-type': """YANGDynClass(base=[RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'^(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$'}),RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'^(([0-9a-fA-F]{1,4}:){7}[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,7}:|([0-9a-fA-F]{1,4}:){1,6}:[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,5}(:[0-9a-fA-F]{1,4}){1,2}|([0-9a-fA-F]{1,4}:){1,4}(:[0-9a-fA-F]{1,4}){1,3}|([0-9a-fA-F]{1,4}:){1,3}(:[0-9a-fA-F]{1,4}){1,4}|([0-9a-fA-F]{1,4}:){1,2}(:[0-9a-fA-F]{1,4}){1,5}|[0-9a-fA-F]{1,4}:((:[0-9a-fA-F]{1,4}){1,6})|:((:[0-9a-fA-F]{1,4}){1,7}|:))$'}),RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'DROP': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}, u'oc-loc-rt:LOCAL_LINK': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}, u'oc-loc-rt:DROP': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}, u'LOCAL_LINK': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}},),], is_leaf=True, yang_name="next-hop", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='union', is_config=True)""", }) self.__next_hop = t if hasattr(self, '_set'): self._set() def _unset_next_hop(self): self.__next_hop = YANGDynClass(base=[RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'^(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$'}),RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'^(([0-9a-fA-F]{1,4}:){7}[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,7}:|([0-9a-fA-F]{1,4}:){1,6}:[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,5}(:[0-9a-fA-F]{1,4}){1,2}|([0-9a-fA-F]{1,4}:){1,4}(:[0-9a-fA-F]{1,4}){1,3}|([0-9a-fA-F]{1,4}:){1,3}(:[0-9a-fA-F]{1,4}){1,4}|([0-9a-fA-F]{1,4}:){1,2}(:[0-9a-fA-F]{1,4}){1,5}|[0-9a-fA-F]{1,4}:((:[0-9a-fA-F]{1,4}){1,6})|:((:[0-9a-fA-F]{1,4}){1,7}|:))$'}),RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'DROP': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}, u'oc-loc-rt:LOCAL_LINK': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}, u'oc-loc-rt:DROP': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}, u'LOCAL_LINK': {'@namespace': u'http://openconfig.net/yang/local-routing', '@module': u'openconfig-local-routing'}},),], is_leaf=True, yang_name="next-hop", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='union', is_config=True) def _get_metric(self): """ Getter method for metric, mapped from YANG variable /local_routes/static_routes/static/next_hops/next_hop/config/metric (uint32) YANG Description: A metric which is utilised to specify the preference of the next-hop entry when it is injected into the RIB. The lower the metric, the more preferable the prefix is. When this value is not specified the metric is inherited from the default metric utilised for static routes within the network instance that the static routes are being instantiated. When multiple next-hops are specified for a static route, the metric is utilised to determine which of the next-hops is to be installed in the RIB. When multiple next-hops have the same metric (be it specified, or simply the default) then these next-hops should all be installed in the RIB """ return self.__metric def _set_metric(self, v, load=False): """ Setter method for metric, mapped from YANG variable /local_routes/static_routes/static/next_hops/next_hop/config/metric (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_metric is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_metric() directly. YANG Description: A metric which is utilised to specify the preference of the next-hop entry when it is injected into the RIB. The lower the metric, the more preferable the prefix is. When this value is not specified the metric is inherited from the default metric utilised for static routes within the network instance that the static routes are being instantiated. When multiple next-hops are specified for a static route, the metric is utilised to determine which of the next-hops is to be installed in the RIB. When multiple next-hops have the same metric (be it specified, or simply the default) then these next-hops should all be installed in the RIB """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='uint32', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """metric must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='uint32', is_config=True)""", }) self.__metric = t if hasattr(self, '_set'): self._set() def _unset_metric(self): self.__metric = YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='uint32', is_config=True) def _get_recurse(self): """ Getter method for recurse, mapped from YANG variable /local_routes/static_routes/static/next_hops/next_hop/config/recurse (boolean) YANG Description: Determines whether the next-hop should be allowed to be looked up recursively - i.e., via a RIB entry which has been installed by a routing protocol, or another static route - rather than needing to be connected directly to an interface of the local system within the current network instance. When the interface reference specified within the next-hop entry is set (i.e., is not null) then forwarding is restricted to being via the interface specified - and recursion is hence disabled. """ return self.__recurse def _set_recurse(self, v, load=False): """ Setter method for recurse, mapped from YANG variable /local_routes/static_routes/static/next_hops/next_hop/config/recurse (boolean) If this variable is read-only (config: false) in the source YANG file, then _set_recurse is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_recurse() directly. YANG Description: Determines whether the next-hop should be allowed to be looked up recursively - i.e., via a RIB entry which has been installed by a routing protocol, or another static route - rather than needing to be connected directly to an interface of the local system within the current network instance. When the interface reference specified within the next-hop entry is set (i.e., is not null) then forwarding is restricted to being via the interface specified - and recursion is hence disabled. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="recurse", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='boolean', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """recurse must be of a type compatible with boolean""", 'defined-type': "boolean", 'generated-type': """YANGDynClass(base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="recurse", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='boolean', is_config=True)""", }) self.__recurse = t if hasattr(self, '_set'): self._set() def _unset_recurse(self): self.__recurse = YANGDynClass(base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="recurse", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/local-routing', defining_module='openconfig-local-routing', yang_type='boolean', is_config=True) index = __builtin__.property(_get_index, _set_index) next_hop = __builtin__.property(_get_next_hop, _set_next_hop) metric = __builtin__.property(_get_metric, _set_metric) recurse = __builtin__.property(_get_recurse, _set_recurse) _pyangbind_elements = {'index': index, 'next_hop': next_hop, 'metric': metric, 'recurse': recurse, }
cec0a70d5e0bcd8539d350cd0653bff447945982
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_natural.py
32e26c958383409ba88754ec0a96fc02003e41a2
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
#calss header class _NATURAL(): def __init__(self,): self.name = "NATURAL" self.definitions = [u'someone who was born with the right characteristics or abilities for doing a particular thing: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
669697f1390a3820e77ef4494a2cc4471ac77157
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa3/sample/list_set_element_oob_1-9.py
cd195199cb937479e44117a2d333d4b0b0041d98
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
80
py
x:[int] = $Literal x = [1, 2, 3] x[-1] = 4 print(x[0]) print(x[1]) print(x[2])
88de148d9408767a1d93796ed6d7be6a97acbda6
36957a9ce540846d08f151b6a2c2d582cff1df47
/VR/Python/Python36/Lib/site-packages/django/views/generic/__init__.py
00119bf785b030b880c58b3e822cbc718741626b
[]
no_license
aqp1234/gitVR
60fc952307ef413e396d31e0d136faffe087ed2b
e70bd82c451943c2966b8ad1bee620a0ee1080d2
refs/heads/master
2022-12-29T15:30:12.540947
2020-10-07T15:26:32
2020-10-07T15:26:32
290,163,043
0
1
null
2020-08-25T09:15:40
2020-08-25T08:47:36
C#
UTF-8
Python
false
false
128
py
version https://git-lfs.github.com/spec/v1 oid sha256:5939f31179cac89ab31e52eefd5b17227620f86a240cd042518355fd4e94fa89 size 822
e9b75525afbde18fac325b06becac1b37aafe034
9c85d132b2ed8c51f021f42ed9f20652827bca45
/source/res/scripts/client/gui/Scaleform/framework/tooltip_mgr.py
541c0f410e6c97aa6b1628f62d9bec9ec2b250a1
[]
no_license
Mododejl/WorldOfTanks-Decompiled
0f4063150c7148184644768b55a9104647f7e098
cab1b318a58db1e428811c41efc3af694906ba8f
refs/heads/master
2020-03-26T18:08:59.843847
2018-06-12T05:40:05
2018-06-12T05:40:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,025
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/gui/Scaleform/framework/tooltip_mgr.py import logging import Keys from gui.Scaleform.framework.entities.abstract.ToolTipMgrMeta import ToolTipMgrMeta from gui.Scaleform.genConsts.TOOLTIPS_CONSTANTS import TOOLTIPS_CONSTANTS from gui.shared import events from gui.shared.tooltips import builders from gui.app_loader import g_appLoader from gui import InputHandler _logger = logging.getLogger(__name__) class ToolTip(ToolTipMgrMeta): def __init__(self, settings, advComplexSettings, *noTooltipSpaceIDs): super(ToolTip, self).__init__() self._areTooltipsDisabled = False self._isAllowedTypedTooltip = True self._noTooltipSpaceIDs = noTooltipSpaceIDs self._complex = builders.ComplexBuilder(TOOLTIPS_CONSTANTS.DEFAULT, TOOLTIPS_CONSTANTS.COMPLEX_UI, advComplexSettings) self._builders = builders.LazyBuildersCollection(settings) self._builders.addBuilder(builders.SimpleBuilder(TOOLTIPS_CONSTANTS.DEFAULT, TOOLTIPS_CONSTANTS.COMPLEX_UI)) self._dynamic = {} self.__fastRedraw = False self.__isAdvancedKeyPressed = False self.__isComplex = False self.__tooltipID = None self.__args = None self.__stateType = None return def show(self, data, linkage): self.as_showS(data, linkage, self.__fastRedraw) def handleKeyEvent(self, event): tooltipType = self.__tooltipID altPressed = event.key == Keys.KEY_LALT or event.key == Keys.KEY_RALT self.__isAdvancedKeyPressed = event.isKeyDown() and altPressed if tooltipType is None or not altPressed: return else: args = self.__args isSupportAdvanced = self.isSupportAdvanced(tooltipType, *args) if isSupportAdvanced: self.__fastRedraw = True if self.__isComplex: self.onCreateComplexTooltip(tooltipType, self.__stateType) else: self.onCreateTypedTooltip(tooltipType, args, self.__stateType) return def onCreateTypedTooltip(self, tooltipType, args, stateType): if self._areTooltipsDisabled: return elif not self._isAllowedTypedTooltip: return else: builder = self._builders.getBuilder(tooltipType) if builder is not None: data = builder.build(self, stateType, self.__isAdvancedKeyPressed, *args) else: _logger.warning('Tooltip can not be displayed: type "%s" is not found', tooltipType) return self.__cacheTooltipData(False, tooltipType, args, stateType) if data is not None and data.isDynamic(): data.changeVisibility(True) if tooltipType not in self._dynamic: self._dynamic[tooltipType] = data return def onCreateComplexTooltip(self, tooltipID, stateType): if self._areTooltipsDisabled: return self._complex.build(self, stateType, self.__isAdvancedKeyPressed, tooltipID) self.__cacheTooltipData(True, tooltipID, tuple(), stateType) def onHideTooltip(self, tooltipId): if not self._areTooltipsDisabled and tooltipId in self._dynamic: self._dynamic[tooltipId].changeVisibility(False) self.__tooltipID = None self.__fastRedraw = False return def _populate(self): super(ToolTip, self)._populate() g_appLoader.onGUISpaceEntered += self.__onGUISpaceEntered self.addListener(events.AppLifeCycleEvent.CREATING, self.__onAppCreating) InputHandler.g_instance.onKeyDown += self.handleKeyEvent InputHandler.g_instance.onKeyUp += self.handleKeyEvent def _dispose(self): self._builders.clear() g_appLoader.onGUISpaceEntered -= self.__onGUISpaceEntered self.removeListener(events.AppLifeCycleEvent.CREATING, self.__onAppCreating) while self._dynamic: _, data = self._dynamic.popitem() data.stopUpdates() InputHandler.g_instance.onKeyDown -= self.handleKeyEvent InputHandler.g_instance.onKeyUp -= self.handleKeyEvent super(ToolTip, self)._dispose() def __onGUISpaceEntered(self, spaceID): self._isAllowedTypedTooltip = spaceID not in self._noTooltipSpaceIDs def __onAppCreating(self, appNS): if self.app.appNS != appNS: self._areTooltipsDisabled = True def isSupportAdvanced(self, tooltipType, *args): builder = self._complex if self.__isComplex else self._builders.getBuilder(tooltipType) return False if builder is None else builder.supportAdvanced(tooltipType, *args) def __cacheTooltipData(self, isComplex, tooltipID, args, stateType): self.__isComplex = isComplex self.__tooltipID = tooltipID self.__args = args self.__stateType = stateType
91bde4973cd20d507e01377170f7db767aba6dc2
ca59d18e503ef22fbc920c6de48ffc8eac5a1443
/tools/Polygraphy/tests/util/test_misc.py
fc3978c829d4d1d3d5bd3621ac14202fb4aa9d29
[ "Apache-2.0", "BSD-3-Clause", "ISC", "BSD-2-Clause", "MIT" ]
permissive
boh-inspur/TensorRT
9fc0ae0ad4e31da040d10728b63d9dc284852b67
e4d2f7f4406f1c8f4632cc67de33728cef90ca29
refs/heads/master
2023-04-13T21:24:13.912673
2021-04-23T09:55:18
2021-04-23T09:55:18
265,431,588
0
0
Apache-2.0
2021-04-23T09:55:19
2020-05-20T02:49:58
null
UTF-8
Python
false
false
3,213
py
# # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from polygraphy.util import misc import numpy as np import pytest VOLUME_CASES = [ ((1, 1, 1), 1), ((2, 3, 4), 24), (tuple(), 1), ] @pytest.mark.parametrize("case", VOLUME_CASES) def test_volume(case): it, vol = case assert misc.volume(it) == vol class FindInDictCase(object): def __init__(self, name, map, index, expected): self.name = name self.map = map self.index = index self.expected = expected FIND_IN_DICT_CASES = [ FindInDictCase("resnet50_v1.5/output/Softmax:0", map={"resnet50_v1.5/output/Softmax:0": "x"}, index=None, expected="resnet50_v1.5/output/Softmax:0"), FindInDictCase("resnet50_v1.5/output/Softmax:0", map={"resnet50_v1.5/output/softmax:0": "x"}, index=None, expected="resnet50_v1.5/output/softmax:0"), ] @pytest.mark.parametrize("case", FIND_IN_DICT_CASES) def test_find_in_dict(case): actual = misc.find_in_dict(case.name, case.map, case.index) assert actual == case.expected SHAPE_OVERRIDE_CASES = [ ((1, 3, 224, 224), (None, 3, 224, 224), True), ] @pytest.mark.parametrize("case", SHAPE_OVERRIDE_CASES) def test_is_valid_shape_override(case): override, shape, expected = case assert misc.is_valid_shape_override(new_shape=override, original_shape=shape) == expected SHAPE_MATCHING_CASES = [ (np.zeros((1, 1, 3, 3)), (3, 3), (3, 3)), # Squeeze array shape (np.zeros((1, 3, 3, 1)), (1, 1, 3, 3), (1, 1, 3, 3)), # Permute (np.zeros((3, 3)), (1, 1, 3, 3), (3, 3)), # Squeeze specified shape (np.zeros((3, 3)), (-1, 3), (3, 3)), # Infer dynamic (np.zeros((3 * 224 * 224)), (None, 3, 224, 224), (1, 3, 224, 224)), # Reshape and Permute (np.zeros((1, 3, 224, 224)), (None, 224, 224, 3), (1, 224, 224, 3)), # Permute ] @pytest.mark.parametrize("case", SHAPE_MATCHING_CASES) def test_shape_matching(case): out, shape, expected_shape = case out = misc.try_match_shape(out, shape) assert out.shape == expected_shape UNPACK_ARGS_CASES = [ ((0, 1, 2), 3, (0, 1, 2)), # no extras ((0, 1, 2), 4, (0, 1, 2, None)), # 1 extra ((0, 1, 2), 2, (0, 1)), # 1 fewer ] @pytest.mark.parametrize("case", UNPACK_ARGS_CASES) def test_unpack_args(case): args, num, expected = case assert misc.unpack_args(args, num) == expected UNIQUE_LIST_CASES = [ ([], []), ([3, 1, 2], [3, 1, 2]), ([1, 2, 3, 2, 1], [1, 2, 3]), ([0, 0, 0, 0, 1, 0, 0], [0, 1]), ([5, 5, 5, 5, 5], [5]), ] @pytest.mark.parametrize("case", UNIQUE_LIST_CASES) def test_unique_list(case): lst, expected = case assert misc.unique_list(lst) == expected
280bb1419d313f14f695994d51b7b7c91de537e3
834d7ea5179414f17d37f3bb58164b8f6ac11b24
/python/ThirteenTeV/DisappTrksAMSB/createPoints.py
579c1c5a331e3b70880d28547c2fb1073e64627e
[]
no_license
diracyoon/genproductions
aa9ee41ac1dde9e14ed039496c3259328ece7073
a7740f4d28c7bfff4e71827dc807d57d974e29b7
refs/heads/master
2021-01-11T11:22:44.685243
2018-11-23T14:05:36
2018-11-23T14:05:36
72,719,084
1
0
null
2016-11-03T07:21:29
2016-11-03T07:21:29
null
UTF-8
Python
false
false
2,089
py
#!/usr/bin/env python import os def insertSLHA(outputName, massValue): with open(outputName, 'r+') as f: for x in range(5): f.readline() pos = f.tell() f_remainder = f.read() f.seek(pos) with open('slha/AMSB_chargino_%dGeV_Isajet780.slha' % massValue, 'r') as slhaFile: f.write(slhaFile.read()) f.write(f_remainder) def findMassValue(fileName, particleName): inputFile = open(fileName, 'r') for line in inputFile: if particleName in line: return line.split()[1] baseConfigFile = 'AMSB_chargino_M-XXXGeV_CTau-YYYcm_TuneCP5_13TeV_pythia8_cff.py' baseParticleFile = 'geant4_AMSB_chargino.slha' c = 299792458.0 * 100.0 # cm/s # xsecs[mass in GeV] = xsec (pb) xsecs = { 100 : 34.282, 200 : 2.709959, 300 : 0.577095, 400 : 0.179644, 500 : 0.06848, 600 : 0.029636, 700 : 0.013949, 800 : 0.0069704, 900 : 0.00364968 } ctaus = [10, 100, 1000, 10000] # cm for mass in xsecs: for ctau in ctaus: outputConfigFile = 'test/AMSB_chargino_M-%dGeV_CTau-%dcm_TuneCP5_13TeV_pythia8_cff.py' % (mass, ctau) outputParticleFile = 'test/geant4_AMSB_chargino_%dGeV_ctau%dcm.slha' % (mass, ctau) os.system('sed "s/XXX/' + str(mass) + '/g" ' + baseConfigFile + ' > ' + outputConfigFile) os.system('sed -i "s/YYY/' + str(int(ctau * 10.0)) + '/g" ' + outputConfigFile) # mm os.system('sed -i "s/ZZZ/' + str(xsecs[mass]) + '/g" ' + outputConfigFile) insertSLHA(outputConfigFile, mass) mW1ss = findMassValue(outputConfigFile, 'w1ss') mZ1ss = findMassValue(outputConfigFile, 'z1ss') tau = ctau / c * 1.e9 # ns width = (1.97326979e-14 / ctau) # GeV os.system('sed "s/_MW1SS/' + str(mW1ss) + '/g" ' + baseParticleFile + ' > ' + outputParticleFile) os.system('sed -i "s/_MZ1SS/' + str(mZ1ss) + '/g" ' + outputParticleFile) os.system('sed -i "s/_CTAU/' + str(ctau) + '/g" ' + outputParticleFile) os.system('sed -i "s/_TAU/' + str(tau) + '/g" ' + outputParticleFile) os.system('sed -i "s/_WIDTH/' + str(width) + '/g" ' + outputParticleFile) print 'Created configuration fragments and particle files in directory: ' + os.getcwd() + '/test/'
675ef227f915e22fa1d680d51d7ffb08fa130735
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/pliabl.py
157b7fecb973a84a5b8b21fe598713d03a5ba164
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
158
py
ii = [('RennJIT.py', 2), ('AubePRP.py', 1), ('AdamWEP.py', 3), ('CarlTFR.py', 1), ('LandWPA.py', 2), ('MedwTAI.py', 2), ('WilkJMC.py', 1), ('MartHRW2.py', 1)]
673f619abea67c616bf67a61024d4c5ad5f2befe
698176804e16c7ae59f66ccebdff746f74998662
/python/piketty/generatetmslice.py
62a1d462742ae093a247c9e9e1d7dd2c61d159c3
[ "MIT" ]
permissive
tedunderwood/GenreProject
a7e30883123523b967214af28f4a137c60f3564b
7577f39f0cc89b9e85d0fbe67ae3e7797033588f
refs/heads/master
2021-01-23T19:12:59.786921
2016-03-17T16:11:36
2016-03-17T16:11:36
10,231,792
1
1
null
null
null
null
UTF-8
Python
false
false
324
py
with open('/Users/tunder/Dropbox/GenreProject/metadata/topicmodelingsample.tsv', encoding = 'utf-8') as f: filelines = f.readlines() with open('/Users/tunder/Dropbox/GenreProject/metadata/tmslice.txt', mode = 'w', encoding = 'utf-8') as f: for line in filelines[1:]: label = line.split('\t')[0] f.write(label + '\n')
223b84417602ea6d36d639b9d8f1ed616d760904
fd55b40f4279c25c0d06dccd6bcd77b9a7dbff28
/bivariate2/plotting/plot_dkgrid.py
b3d619043556f39ab6cdb029873b011d26915a84
[]
no_license
albertfxwang/mypytools
0e30420e2a570a3e18564fd28fc56eb55ecccbf9
c6cdc8f1914cbc3a5b94dd25501782a3daf542f5
refs/heads/master
2020-04-10T19:06:54.193920
2015-04-20T01:36:37
2015-04-20T01:36:37
30,038,302
1
1
null
2015-01-29T19:55:09
2015-01-29T19:55:09
null
UTF-8
Python
false
false
8,296
py
#!/usr/bin/env python import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import AxesGrid import pickle_util as pu from pygoods import * from my_mplfonts import Helvetica from bivariate2 import dropout_kernels as dk from scipy.interpolate import interp1d, RectBivariateSpline, UnivariateSpline import pickle_util as pu import os import pmscolors class PlotDKGrid(object): """ A class for making plots of the dropout-selection kernel grid. """ def __init__(self, dkgrid, field): self.dkgrid = dkgrid self.field = field # self.grid are for showing things like selection/detection completeness # in each (M, logR) bin self.grid = np.zeros((dkgrid.Nx, dkgrid.Ny)) if dkgrid.interpolated: self.zlimits = dkgrid.zlimits_old self.dz = dkgrid.dz_old self.Nz = dkgrid.Nz_old else: self.zlimits = dkgrid.zlimits self.dz = dkgrid.dz self.Nz = dkgrid.Nz self.grid_zedges = np.linspace(self.zlimits[0], self.zlimits[1], num=self.Nz+1) self.grid_shape = self.grid.shape self.vmin = 0. self.vmax = 1. self.xname = dkgrid.xname self.yname = dkgrid.yname self.xticks = dkgrid.xedges()[::2] self.yticks = dkgrid.yedges()[::2] self.title = "" def combine_kernels(self, m1500_lim, logr_lim): """ Combine the statistics (Ninput, Ndetect, Nselect) from all kernels within the specified range. """ assert (m1500_lim[1] > m1500_lim[0]) assert (logr_lim[1] > logr_lim[0]) # Find the range of kernel indices i0 = self.dkgrid.find_bin(m1500_lim[0], logr_lim[0]) i1 = self.dkgrid.find_bin(m1500_lim[1], logr_lim[1]) # Now add all kernels within the range to klist klist = [] for ix in range(i0[0], i1[0]+1): for iy in range(i0[1], i1[1]+1): klist += [self.dkgrid.kernels[(ix, iy)]] # Figure out what the redshift range is # Assume that self.dkgrid.interpolated == True zrange = np.linspace(*self.zlimits, num=self.Nz) zcenters = zrange + self.dz / 2. n_zbins = len(zcenters) # Add the statistics from all kernels Ninput = np.zeros(n_zbins, 'int') Ndetect = np.zeros(n_zbins, 'int') Nselect = np.zeros(n_zbins, 'int') for k in klist: Ninput = Ninput + k.Ninput Ndetect = Ndetect + k.Ndetect Nselect = Nselect + k.Nselect return zcenters, Ninput, Ndetect, Nselect def plot_Pz_single(self, m1500_lim, logr_lim, ax=None, **plot_kwargs): """ Plot P(z) for a combination of kernels within the specified limits. """ zcenters0, N_in, N_det, N_sel = self.combine_kernels(m1500_lim, logr_lim) # interpolate Pz0 = N_sel / np.maximum(N_in, 1).astype('float') f = interp1d(zcenters0, Pz0, kind='cubic') # evaluate at the new redshift values Pz_new = f(self.dkgrid.zcenters()) Pz_new = np.maximum(Pz_new, 0.) # Now plot if ax == None: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(self.dkgrid.zcenters(), Pz_new, **plot_kwargs) ax.set_ylim(0., 1.) return ax def show_grid(self, ax=None, vmin=-1., vmax=-1.): """ Show self.grid """ if ax == None: fig = plt.figure() ax = fig.add_subplot(111) if vmin < 0: vmin = self.vmin if vmax < 0: vmax = self.vmax m = ax.imshow(self.grid.T, extent=(0,self.grid_shape[0],0,self.grid_shape[1]), vmin=vmin, vmax=vmax) ax.set_title(self.title, size=20) ax.set_xticks(np.arange(self.dkgrid.Nx)[::2]) ax.set_xticklabels(map(lambda x:'%.1f'%x, self.xticks)) ax.set_yticks(np.arange(self.dkgrid.Ny)[::2]) ax.set_yticklabels(map(lambda y:'%.1f'%y, self.yticks)) ax.set_xlabel(self.xname, size=16) ax.set_ylabel(self.yname, size=16) plt.colorbar(m) def selection_completeness(self, z0=None, z1=None, detect_only=False, show=True, ax=None, vmax=-1): if z0 == None: z0 = self.zlimits[0] if z1 == None: z1 = self.zlimits[1] assert (z1 - z0) > self.dz, "z1 must be at least z0 + self.dz" iz0 = np.searchsorted(self.grid_zedges, z0) - 1 iz0 = np.maximum(iz0, 0) iz0 = np.minimum(iz0, self.Nz-1) iz1 = np.searchsorted(self.grid_zedges, z1) - 1 iz1 = np.maximum(iz1, 0) iz1 = np.minimum(iz1, self.Nz-1) for k in self.dkgrid.kernels: kern = self.dkgrid.kernels[k] if detect_only: N_input = kern.Ndetect[iz0:iz1+1].sum() else: N_input = kern.Ninput[iz0:iz1+1].sum() N_select = kern.Nselect[iz0:iz1+1].sum() comp = float(N_select) / float(np.maximum(N_input, 1)) self.grid[k[0], k[1]] = comp self.title = "%s\nSelection Completeness z=[%.1f,%.1f] in %s" % (self.dkgrid.filename, z0, z1, self.field.upper()) self.vmin = 0. if vmax < 0: self.vmax = self.grid.max() else: self.vmax = vmax if show: self.show_grid(ax=ax) ## Define arguments for plotting P(z) grid ## The panel grid should have this arrangement: ## ------------------- ## 1 | 2 | ## ------------------- ## 3 | 4 | ## ------------------- dkgrid_dir = '/Users/khuang/Dropbox/Research/bivariate/bivariate_fit/dropsim_kernels' dkgrid3 = pu.load_pickle(os.path.join(dkgrid_dir, 'udrops_gds_deep_kgrid_m2h_140815.p')) dkgrid4 = pu.load_pickle(os.path.join(dkgrid_dir, 'bdrops_goods_kgrid_140317.p')) dkgrid5 = pu.load_pickle(os.path.join(dkgrid_dir, 'vdrops_goods_kgrid_140402.p')) dkgrid6 = pu.load_pickle(os.path.join(dkgrid_dir, 'idrops_gds_deep_kgrid_140228.p')) dkgrid_list = [dkgrid3, dkgrid4, dkgrid5, dkgrid6] pms = pmscolors.pmscolors() colors = map(pms, ['Blue Purples', 'Periwinkle', 'Olive Green', 'Bright Red']) m1500_lims = np.array([[-23.,-21.], [-21.,-19.], [-23.,-21.], [-21.,-19]]) logr_lims = np.array([[-0.5,0.5], [-0.5,0.5], [-1.5,0.5], [-1.5,0.5]]) def plot_dkgrid_multiple(dkgrids=dkgrid_list, colors=colors, m1500_lims=m1500_lims, logr_lims=logr_lims, nrows=2, zrange=[2.,7.], axes_pad=0.1): """ Plot multiple P(z) kernels on a grid of plots. All P(z) kernels are supposed to be for different redshift ranges but in the same field. dkgrids -- a list of P(z) kernel grids colors -- colors for each curve (same across all panels) ## len(dkgrids) == len(colors) is the number of kernel grids shown in each panel. m1500_lims -- the M_1500 limits in each panel logr_lims -- the log(R) limits (in arcsec) in each panel ## len(m1500_lims) == len(logr_lims) is the number of panels. nrows -- the number of rows for the grid of plots zrange -- the redshift range shown in each panel """ fig = plt.figure(figsize=(11,9)) ngrids = len(m1500_lims) ncols = ngrids / nrows print ngrids % nrows if ngrids % nrows > 0: ncols += 1 # First initialize each kernel grids plots = [] for i in range(len(dkgrids)): plots += [PlotDKGrid(dkgrids[i], 'DEEP')] grid = AxesGrid(fig, 111, nrows_ncols=(nrows, ncols), axes_pad=axes_pad, share_all=True, label_mode="L", aspect=False) for j in range(len(m1500_lims)): ax_j = grid[j] for i in range(len(dkgrids)): plots[i].plot_Pz_single(m1500_lims[j], logr_lims[j], ax=ax_j, lw=2, color=colors[i]) bintext = r"$%.1f \leq M_{1500} \leq %.1f$" % tuple(m1500_lims[j]) bintext = bintext + '\n' bintext = bintext + r"$%.1f \leq \log R_e \leq %.1f$" % tuple(logr_lims[j]) ax_j.text(0.95, 0.95, bintext, ha='right', va='top', size='large', transform=ax_j.transAxes, bbox=dict(boxstyle='round', facecolor='none')) ax_j.set_xlim(zrange) ax_j.set_ylim(0., 1.1) ax_j.set_xlabel('Redshift') ax_j.set_xticks(np.linspace(3., 6., 4)) ax_j.set_ylabel('P(z)') ax_j.set_yticks(np.linspace(0.25, 1.0, 4)) plt.draw() return grid
df60d9fd72aee467d847e5b7e7a8ec3c8ae8a680
7f20b1bddf9f48108a43a9922433b141fac66a6d
/csplugins/trunk/ucsd/rsaito/rs_Progs/rs_Python/rs_Python_Pack/tags/rs_Python_Pack090515/IVV_Packages/YO_IP/example2.py
4744447119df04b6f11f0fa2c5a5507d576157f6
[]
no_license
ahdahddl/cytoscape
bf783d44cddda313a5b3563ea746b07f38173022
a3df8f63dba4ec49942027c91ecac6efa920c195
refs/heads/master
2020-06-26T16:48:19.791722
2013-08-28T04:08:31
2013-08-28T04:08:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
829
py
#!/usr/bin/env python from lpsolve55 import * lp = lpsolve('make_lp', 0, 4) #lpsolve('set_verbose', lp, IMPORTANT) lpsolve('set_obj_fn', lp, [1, 3, 6.24, 0.1]) lpsolve('add_constraint', lp, [0, 78.26, 0, 2.9], GE, 92.3) lpsolve('add_constraint', lp, [0.24, 0, 11.31, 0], LE, 14.8) lpsolve('add_constraint', lp, [12.68, 0, 0.08, 0.9], GE, 4) lpsolve('set_lowbo', lp, [28.6, 0, 0, 18]) lpsolve('set_upbo', lp, [Infinite, Infinite, Infinite, 48.98]) lpsolve('set_col_name', lp, ['COLONE', 'COLTWO', 'COLTHREE', 'COLFOUR']) lpsolve('set_row_name', lp, ['THISROW', 'THATROW', 'LASTROW']) lpsolve('write_lp', lp, 'a.lp') print lpsolve('get_mat', lp)[0] lpsolve('solve', lp) print lpsolve('get_objective', lp) print lpsolve('get_variables', lp)[0] print lpsolve('get_constraints', lp)[0] lpsolve('delete_lp', lp)
[ "rsaito@0ecc0d97-ab19-0410-9704-bfe1a75892f5" ]
rsaito@0ecc0d97-ab19-0410-9704-bfe1a75892f5
7e6d9fee92beb15c5d4c3f6610393baa76668ab6
05643b9b4d20db912c3dbfbc191cadea3143016c
/instrumentation/opentelemetry-instrumentation-grpc/tests/test_client_interceptor_filter.py
a15268464b46f90712c7b6a39cc406d65ca2390f
[ "Apache-2.0" ]
permissive
open-telemetry/opentelemetry-python-contrib
35566cd088aa0b23ca977109fcd435ee480784b9
0871dd455c0adfa125a2f258a0b55c47a5da5227
refs/heads/main
2023-08-26T07:30:40.212226
2023-08-21T16:42:12
2023-08-21T16:42:12
220,524,743
476
401
Apache-2.0
2023-09-14T21:36:33
2019-11-08T18:23:43
Python
UTF-8
Python
false
false
23,591
py
# Copyright The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from unittest import mock import grpc from tests.protobuf import ( # pylint: disable=no-name-in-module test_server_pb2_grpc, ) import opentelemetry.instrumentation.grpc from opentelemetry import context, trace from opentelemetry.instrumentation.grpc import GrpcInstrumentorClient, filters from opentelemetry.instrumentation.grpc._client import ( OpenTelemetryClientInterceptor, ) from opentelemetry.instrumentation.grpc.grpcext._interceptor import ( _UnaryClientInfo, ) from opentelemetry.instrumentation.utils import _SUPPRESS_INSTRUMENTATION_KEY from opentelemetry.propagate import get_global_textmap, set_global_textmap from opentelemetry.semconv.trace import SpanAttributes from opentelemetry.test.mock_textmap import MockTextMapPropagator from opentelemetry.test.test_base import TestBase from ._client import ( bidirectional_streaming_method, client_streaming_method, server_streaming_method, simple_method, simple_method_future, ) from ._server import create_test_server from .protobuf.test_server_pb2 import Request # User defined interceptor. Is used in the tests along with the opentelemetry client interceptor. class Interceptor( grpc.UnaryUnaryClientInterceptor, grpc.UnaryStreamClientInterceptor, grpc.StreamUnaryClientInterceptor, grpc.StreamStreamClientInterceptor, ): def __init__(self): pass def intercept_unary_unary( self, continuation, client_call_details, request ): return self._intercept_call(continuation, client_call_details, request) def intercept_unary_stream( self, continuation, client_call_details, request ): return self._intercept_call(continuation, client_call_details, request) def intercept_stream_unary( self, continuation, client_call_details, request_iterator ): return self._intercept_call( continuation, client_call_details, request_iterator ) def intercept_stream_stream( self, continuation, client_call_details, request_iterator ): return self._intercept_call( continuation, client_call_details, request_iterator ) @staticmethod def _intercept_call( continuation, client_call_details, request_or_iterator ): return continuation(client_call_details, request_or_iterator) class TestClientProtoFilterMethodName(TestBase): def setUp(self): super().setUp() GrpcInstrumentorClient( filter_=filters.method_name("SimpleMethod") ).instrument() self.server = create_test_server(25565) self.server.start() # use a user defined interceptor along with the opentelemetry client interceptor interceptors = [Interceptor()] self.channel = grpc.insecure_channel("localhost:25565") self.channel = grpc.intercept_channel(self.channel, *interceptors) self._stub = test_server_pb2_grpc.GRPCTestServerStub(self.channel) def tearDown(self): super().tearDown() GrpcInstrumentorClient().uninstrument() self.server.stop(None) self.channel.close() def test_unary_unary_future(self): simple_method_future(self._stub).result() spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertEqual(span.name, "/GRPCTestServer/SimpleMethod") self.assertIs(span.kind, trace.SpanKind.CLIENT) # Check version and name in span's instrumentation info self.assertEqualSpanInstrumentationInfo( span, opentelemetry.instrumentation.grpc ) def test_unary_unary(self): simple_method(self._stub) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertEqual(span.name, "/GRPCTestServer/SimpleMethod") self.assertIs(span.kind, trace.SpanKind.CLIENT) # Check version and name in span's instrumentation info self.assertEqualSpanInstrumentationInfo( span, opentelemetry.instrumentation.grpc ) self.assertSpanHasAttributes( span, { SpanAttributes.RPC_METHOD: "SimpleMethod", SpanAttributes.RPC_SERVICE: "GRPCTestServer", SpanAttributes.RPC_SYSTEM: "grpc", SpanAttributes.RPC_GRPC_STATUS_CODE: grpc.StatusCode.OK.value[ 0 ], }, ) def test_unary_stream(self): server_streaming_method(self._stub) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) def test_stream_unary(self): client_streaming_method(self._stub) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) def test_stream_stream(self): bidirectional_streaming_method(self._stub) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) def test_error_simple(self): with self.assertRaises(grpc.RpcError): simple_method(self._stub, error=True) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertIs( span.status.status_code, trace.StatusCode.ERROR, ) def test_error_stream_unary(self): with self.assertRaises(grpc.RpcError): client_streaming_method(self._stub, error=True) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) def test_error_unary_stream(self): with self.assertRaises(grpc.RpcError): server_streaming_method(self._stub, error=True) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) def test_error_stream_stream(self): with self.assertRaises(grpc.RpcError): bidirectional_streaming_method(self._stub, error=True) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) def test_client_interceptor_trace_context_propagation( self, ): # pylint: disable=no-self-use """ensure that client interceptor correctly inject trace context into all outgoing requests.""" previous_propagator = get_global_textmap() try: set_global_textmap(MockTextMapPropagator()) interceptor = OpenTelemetryClientInterceptor(trace.NoOpTracer()) carrier = tuple() def invoker(request, metadata): nonlocal carrier carrier = metadata return {} request = Request(client_id=1, request_data="data") interceptor.intercept_unary( request, {}, _UnaryClientInfo( full_method="/GRPCTestServer/SimpleMethod", timeout=None ), invoker=invoker, ) assert len(carrier) == 2 assert carrier[0][0] == "mock-traceid" assert carrier[0][1] == "0" assert carrier[1][0] == "mock-spanid" assert carrier[1][1] == "0" finally: set_global_textmap(previous_propagator) class TestClientProtoFilterMethodPrefix(TestBase): def setUp(self): super().setUp() GrpcInstrumentorClient( filter_=filters.method_prefix("Simple") ).instrument() self.server = create_test_server(25565) self.server.start() # use a user defined interceptor along with the opentelemetry client interceptor interceptors = [Interceptor()] self.channel = grpc.insecure_channel("localhost:25565") self.channel = grpc.intercept_channel(self.channel, *interceptors) self._stub = test_server_pb2_grpc.GRPCTestServerStub(self.channel) def tearDown(self): super().tearDown() GrpcInstrumentorClient().uninstrument() self.server.stop(None) self.channel.close() def test_unary_unary_future(self): simple_method_future(self._stub).result() spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertEqual(span.name, "/GRPCTestServer/SimpleMethod") self.assertIs(span.kind, trace.SpanKind.CLIENT) # Check version and name in span's instrumentation info self.assertEqualSpanInstrumentationInfo( span, opentelemetry.instrumentation.grpc ) def test_unary_unary(self): simple_method(self._stub) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertEqual(span.name, "/GRPCTestServer/SimpleMethod") self.assertIs(span.kind, trace.SpanKind.CLIENT) # Check version and name in span's instrumentation info self.assertEqualSpanInstrumentationInfo( span, opentelemetry.instrumentation.grpc ) self.assertSpanHasAttributes( span, { SpanAttributes.RPC_METHOD: "SimpleMethod", SpanAttributes.RPC_SERVICE: "GRPCTestServer", SpanAttributes.RPC_SYSTEM: "grpc", SpanAttributes.RPC_GRPC_STATUS_CODE: grpc.StatusCode.OK.value[ 0 ], }, ) def test_unary_stream(self): server_streaming_method(self._stub) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) def test_stream_unary(self): client_streaming_method(self._stub) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) def test_stream_stream(self): bidirectional_streaming_method(self._stub) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) def test_error_simple(self): with self.assertRaises(grpc.RpcError): simple_method(self._stub, error=True) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertIs( span.status.status_code, trace.StatusCode.ERROR, ) def test_error_stream_unary(self): with self.assertRaises(grpc.RpcError): client_streaming_method(self._stub, error=True) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) def test_error_unary_stream(self): with self.assertRaises(grpc.RpcError): server_streaming_method(self._stub, error=True) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) def test_error_stream_stream(self): with self.assertRaises(grpc.RpcError): bidirectional_streaming_method(self._stub, error=True) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) def test_client_interceptor_trace_context_propagation( self, ): # pylint: disable=no-self-use """ensure that client interceptor correctly inject trace context into all outgoing requests.""" previous_propagator = get_global_textmap() try: set_global_textmap(MockTextMapPropagator()) interceptor = OpenTelemetryClientInterceptor(trace.NoOpTracer()) carrier = tuple() def invoker(request, metadata): nonlocal carrier carrier = metadata return {} request = Request(client_id=1, request_data="data") interceptor.intercept_unary( request, {}, _UnaryClientInfo( full_method="/GRPCTestServer/SimpleMethod", timeout=None ), invoker=invoker, ) assert len(carrier) == 2 assert carrier[0][0] == "mock-traceid" assert carrier[0][1] == "0" assert carrier[1][0] == "mock-spanid" assert carrier[1][1] == "0" finally: set_global_textmap(previous_propagator) class TestClientProtoFilterByEnv(TestBase): def setUp(self): with mock.patch.dict( os.environ, { "OTEL_PYTHON_GRPC_EXCLUDED_SERVICES": "GRPCMockServer,GRPCTestServer" }, ): super().setUp() GrpcInstrumentorClient().instrument() self.server = create_test_server(25565) self.server.start() # use a user defined interceptor along with the opentelemetry client interceptor interceptors = [Interceptor()] self.channel = grpc.insecure_channel("localhost:25565") self.channel = grpc.intercept_channel(self.channel, *interceptors) self._stub = test_server_pb2_grpc.GRPCTestServerStub(self.channel) def tearDown(self): super().tearDown() GrpcInstrumentorClient().uninstrument() self.server.stop(None) self.channel.close() def test_unary_unary_future(self): simple_method_future(self._stub).result() spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) def test_unary_unary(self): simple_method(self._stub) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 0) class TestClientProtoFilterByEnvAndOption(TestBase): def setUp(self): with mock.patch.dict( os.environ, {"OTEL_PYTHON_GRPC_EXCLUDED_SERVICES": "GRPCMockServer"}, ): super().setUp() GrpcInstrumentorClient( filter_=filters.service_prefix("GRPCTestServer") ).instrument() self.server = create_test_server(25565) self.server.start() # use a user defined interceptor along with the opentelemetry client interceptor interceptors = [Interceptor()] self.channel = grpc.insecure_channel("localhost:25565") self.channel = grpc.intercept_channel(self.channel, *interceptors) self._stub = test_server_pb2_grpc.GRPCTestServerStub(self.channel) def tearDown(self): super().tearDown() GrpcInstrumentorClient().uninstrument() self.server.stop(None) self.channel.close() def test_unary_unary_future(self): simple_method_future(self._stub).result() spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertEqual(span.name, "/GRPCTestServer/SimpleMethod") self.assertIs(span.kind, trace.SpanKind.CLIENT) # Check version and name in span's instrumentation info self.assertEqualSpanInstrumentationInfo( span, opentelemetry.instrumentation.grpc ) def test_unary_unary(self): simple_method(self._stub) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertEqual(span.name, "/GRPCTestServer/SimpleMethod") self.assertIs(span.kind, trace.SpanKind.CLIENT) # Check version and name in span's instrumentation info self.assertEqualSpanInstrumentationInfo( span, opentelemetry.instrumentation.grpc ) self.assertSpanHasAttributes( span, { SpanAttributes.RPC_METHOD: "SimpleMethod", SpanAttributes.RPC_SERVICE: "GRPCTestServer", SpanAttributes.RPC_SYSTEM: "grpc", SpanAttributes.RPC_GRPC_STATUS_CODE: grpc.StatusCode.OK.value[ 0 ], }, ) def test_unary_stream(self): server_streaming_method(self._stub) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertEqual(span.name, "/GRPCTestServer/ServerStreamingMethod") self.assertIs(span.kind, trace.SpanKind.CLIENT) # Check version and name in span's instrumentation info self.assertEqualSpanInstrumentationInfo( span, opentelemetry.instrumentation.grpc ) self.assertSpanHasAttributes( span, { SpanAttributes.RPC_METHOD: "ServerStreamingMethod", SpanAttributes.RPC_SERVICE: "GRPCTestServer", SpanAttributes.RPC_SYSTEM: "grpc", SpanAttributes.RPC_GRPC_STATUS_CODE: grpc.StatusCode.OK.value[ 0 ], }, ) def test_stream_unary(self): client_streaming_method(self._stub) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertEqual(span.name, "/GRPCTestServer/ClientStreamingMethod") self.assertIs(span.kind, trace.SpanKind.CLIENT) # Check version and name in span's instrumentation info self.assertEqualSpanInstrumentationInfo( span, opentelemetry.instrumentation.grpc ) self.assertSpanHasAttributes( span, { SpanAttributes.RPC_METHOD: "ClientStreamingMethod", SpanAttributes.RPC_SERVICE: "GRPCTestServer", SpanAttributes.RPC_SYSTEM: "grpc", SpanAttributes.RPC_GRPC_STATUS_CODE: grpc.StatusCode.OK.value[ 0 ], }, ) def test_stream_stream(self): bidirectional_streaming_method(self._stub) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertEqual( span.name, "/GRPCTestServer/BidirectionalStreamingMethod" ) self.assertIs(span.kind, trace.SpanKind.CLIENT) # Check version and name in span's instrumentation info self.assertEqualSpanInstrumentationInfo( span, opentelemetry.instrumentation.grpc ) self.assertSpanHasAttributes( span, { SpanAttributes.RPC_METHOD: "BidirectionalStreamingMethod", SpanAttributes.RPC_SERVICE: "GRPCTestServer", SpanAttributes.RPC_SYSTEM: "grpc", SpanAttributes.RPC_GRPC_STATUS_CODE: grpc.StatusCode.OK.value[ 0 ], }, ) def test_error_simple(self): with self.assertRaises(grpc.RpcError): simple_method(self._stub, error=True) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertIs( span.status.status_code, trace.StatusCode.ERROR, ) def test_error_stream_unary(self): with self.assertRaises(grpc.RpcError): client_streaming_method(self._stub, error=True) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertIs( span.status.status_code, trace.StatusCode.ERROR, ) def test_error_unary_stream(self): with self.assertRaises(grpc.RpcError): server_streaming_method(self._stub, error=True) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertIs( span.status.status_code, trace.StatusCode.ERROR, ) def test_error_stream_stream(self): with self.assertRaises(grpc.RpcError): bidirectional_streaming_method(self._stub, error=True) spans = self.memory_exporter.get_finished_spans() self.assertEqual(len(spans), 1) span = spans[0] self.assertIs( span.status.status_code, trace.StatusCode.ERROR, ) def test_client_interceptor_trace_context_propagation( self, ): # pylint: disable=no-self-use """ensure that client interceptor correctly inject trace context into all outgoing requests.""" previous_propagator = get_global_textmap() try: set_global_textmap(MockTextMapPropagator()) interceptor = OpenTelemetryClientInterceptor(trace.NoOpTracer()) carrier = tuple() def invoker(request, metadata): nonlocal carrier carrier = metadata return {} request = Request(client_id=1, request_data="data") interceptor.intercept_unary( request, {}, _UnaryClientInfo( full_method="/GRPCTestServer/SimpleMethod", timeout=None ), invoker=invoker, ) assert len(carrier) == 2 assert carrier[0][0] == "mock-traceid" assert carrier[0][1] == "0" assert carrier[1][0] == "mock-spanid" assert carrier[1][1] == "0" finally: set_global_textmap(previous_propagator) def test_unary_unary_with_suppress_key(self): token = context.attach( context.set_value(_SUPPRESS_INSTRUMENTATION_KEY, True) ) try: simple_method(self._stub) spans = self.memory_exporter.get_finished_spans() finally: context.detach(token) self.assertEqual(len(spans), 0) def test_unary_stream_with_suppress_key(self): token = context.attach( context.set_value(_SUPPRESS_INSTRUMENTATION_KEY, True) ) try: server_streaming_method(self._stub) spans = self.memory_exporter.get_finished_spans() finally: context.detach(token) self.assertEqual(len(spans), 0) def test_stream_unary_with_suppress_key(self): token = context.attach( context.set_value(_SUPPRESS_INSTRUMENTATION_KEY, True) ) try: client_streaming_method(self._stub) spans = self.memory_exporter.get_finished_spans() finally: context.detach(token) self.assertEqual(len(spans), 0) def test_stream_stream_with_suppress_key(self): token = context.attach( context.set_value(_SUPPRESS_INSTRUMENTATION_KEY, True) ) try: bidirectional_streaming_method(self._stub) spans = self.memory_exporter.get_finished_spans() finally: context.detach(token) self.assertEqual(len(spans), 0)
31d0b3108fb5597fc1566914fe1a6fd5bae45ff6
9db1103b05dc5053a984c2f46491e71216cbe13d
/everest/cascade/hierarchy.py
52bb27c03bc4a861f478cc873914137eda4e144c
[ "MIT" ]
permissive
rsbyrne/everest
f396d11743fc0633992bb49bf40d6d5851c3fffa
1ec06301cdeb7c2b7d85daf6075d996c5529247e
refs/heads/master
2023-07-27T12:55:06.426748
2021-06-18T00:31:21
2021-06-18T00:31:21
222,559,267
2
1
MIT
2021-06-18T00:31:22
2019-11-18T22:43:49
Python
UTF-8
Python
false
false
4,292
py
############################################################################### '''''' ############################################################################### from collections.abc import Mapping as _Mapping from functools import lru_cache as _lru_cache from . import _reseed def flatten_hierarchy(hierarchy): return dict(_flatten_hierarchy(hierarchy)) def _flatten_hierarchy(hierarchy): for k, v in hierarchy.items(): if isinstance(v, Hierarchy): for sk, sv in _flatten_hierarchy(v): yield sk, sv else: yield k, v.value class Item: __slots__ = ('key', '_value') def __init__(self, key, val, /): self.key = key self._value = val @property def value(self): return self._value @value.setter def value(self, newval): self._value = newval def __str__(self): return repr(self.value) def __repr__(self): return f'{type(self).__name__}({self.key}: {str(self)})' class Hierarchy(_Mapping): __slots__ = ('content', 'parent', 'subs', 'randhash') # def __init__(self, *args, parent=None, **kwargs): # super().__init__(*args, **kwargs) def __init__(self, *args, parent = None, **kwargs): self.content = dict(*args, **kwargs) self.parent = parent self.subs = dict() self.randhash = _reseed.rdigits() def flatten(self) -> dict: return flatten_hierarchy(self) # def remove_ghosts(self): # for key, val in list(self.items()): # if key.startswith('_'): # del self[key] # elif isinstance(val, type(self)): # val.remove_ghosts() def sub(self, key) -> 'Hierarchy': self.subs[key] = subhier = type(self)(parent=self) self.content.__setitem__(key, subhier) return subhier def __iter__(self): return iter(self.content) def __len__(self): return len(self.content) def __getitem__(self, arg, /): out = self.raw_getitem(arg) if isinstance(out, Item): return out.value return out @_lru_cache def raw_getitem(self, arg) -> Item: if isinstance(arg, tuple): out = self for subarg in arg: out = out.raw_getitem(subarg) return out try: return super().__getitem__(arg) except KeyError as exc: for sub in self.subs.values(): try: return sub.raw_getitem(arg) except KeyError: pass raise KeyError from exc def __setitem__(self, key, val): try: targ = self.raw_getitem(key) if isinstance(targ, Item): targ.value = val else: raise ValueError("Cannot manually set hierarchy.") except KeyError: if isinstance(val, Hierarchy): sub = self.sub(key) sub.update(val) else: if isinstance(val, Item): val = val.value self.content.__setitem__(key, Item(key, val)) def __delitem__(self, key): self.content.__delitem__(key) def update(self, source): for key in source: self[key] = source[key] def __hash__(self): return self.randhash def __repr__(self): return type(self).__name__ + super().__repr__() def _repr_pretty_(self, p, cycle): typnm = type(self).__name__ if cycle: p.text(typnm + '{...}') else: with p.group(4, typnm + '({', '})'): for idx, (key, val) in enumerate(self.items()): if isinstance(val, Item): val = val.value if idx: p.text(',') p.breakable() p.pretty(key) p.text(': ') p.pretty(val) p.breakable() def copy(self): return type(self)(**self) ############################################################################### ###############################################################################
763815d5ec1337053e3915354962c8fc3b3256e0
758c60aed145cf6b780d3cee4a79eb603452e3bd
/code/CNN/CNNemTest.py
213b23b7898a7ead17d80e5e2dfb81391bcaca11
[]
no_license
aiedward/CCIR
8be5d9b49a1cd653564c4fc00c2ef60f1f1d292d
215179ac38fbde3899e55b078622606b31595d2d
refs/heads/master
2020-03-24T09:55:45.382723
2018-04-07T14:15:30
2018-04-07T14:15:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,485
py
# -*-coding: utf-8 -*- from keras.layers import Input, Dense, Dropout, Flatten, merge,concatenate from keras.layers import Conv2D, MaxPooling2D, Embedding, Reshape from keras.models import Model import numpy as np from keras import backend as K from keras.optimizers import Adam from keras.losses import hinge from keras.models import load_model, model_from_json from keras import regularizers from keras import initializers from keras.utils.np_utils import to_categorical from get_words_for_CCIR import * import os import sys reload(sys) sys.setdefaultencoding("utf-8") def compute_score(model, length_a, length_q, q, item): train_file_dir = './' train_file_name = 'train.1.json' # [q, item] = process_train_file(train_file_dir, train_file_name) train_file_name = 'CCIR_train_word_num.txt' word, word_remove, count = word_table(train_file_dir, train_file_name) Total_score_dcg3 = [] Total_score_dcg5 = [] for echo in range(100): print 'the echo is', echo [test_question, test_answer] = get_test_data(length_a, length_q, echo*5+4000, q, item, word) test_label = get_test_label(echo*5+4000) for i in range(len(test_question)): temp = model.predict([test_question[i], test_answer[i]], batch_size=len(test_question[i])) print len(test_question[i]), len(test_answer[i]) temp_label = test_label[i] temp_score = [] for my_number2 in range(len(temp)): temp_score.append(temp[my_number2][0]) temp_score = np.array(temp_score) # 在这里将我们测试出来的score和最后的label写入文件 #if not os.path.exists('./CNNModel2'): # os.makedirs('./CNNModel2') #file_object = open('./CNNModel2/%d' % (echo*5+i), 'w') print temp_score #for my_number in range(len(temp_score)): # a = "%d %lf \n" % (temp_label[my_number], temp_score[my_number]) # file_object.write(a) temp_sort = np.argsort(temp_score) temp_sort = temp_sort[-1::-1] Dcg3 = 0 Dcg5 = 0 print temp_label for number in range(1, 4, 1): a = temp_sort[number-1] a = int(a) Dcg3 = Dcg3 + (np.power(2, temp_label[a])-1) / np.log2(number+1) for number in range(1, 6, 1): a = temp_sort[number-1] a = int(a) Dcg5 = Dcg5 + (np.power(2, temp_label[a])-1) / np.log2(number+1) Total_score_dcg3.append(Dcg3) Total_score_dcg5.append(Dcg5) print 'The score for Dcg3 is', np.mean(Total_score_dcg3) print 'The score for Dcg5 is', np.mean(Total_score_dcg5) del q del item M = np.mean(Total_score_dcg3) print M return M def get_test_data(length_a, length_q, start, q, item, word): question, answer = get_word_vector(start, q, item, word, word_remove, start + 5) answer2, question2 = my_padding(question, answer, length_a, length_q) question_new = [] for i in range(len(question2)): question_new.append([]) for j in range(len(answer2[i])): question_new[i].append(question2[i]) del question del question2 height_q = len(question_new[0][0]) height_a = len(answer2[0][0]) data_question = np.array(question_new) data_answer = np.array(answer2) question_data = [] for i in range(len(question_new)): data_question[i] = np.array(data_question[i]) temp = data_question[i].reshape((len(question_new[i]), height_q, 1)) question_data.append(temp) answer_data = [] for i in range(len(answer2)): data_answer[i] = np.array(data_answer[i]) temp = data_answer[i].reshape((len(answer2[i]), height_a, 1)) answer_data.append(temp) return question_data, answer_data def word_table(train_file_dir,train_file_name): f = open(os.path.join(train_file_dir, train_file_name), 'r') lines = f.readlines() word = {} word_remove = [] count = 0 for line in lines: a = line.replace("\n","").split(" ") if len(a) == 1: continue if int(a[1]) < 100: count = count + 1 word[str(a[0])] = int(count) continue word_remove.append(a[0]) #for i in range(len(word)): # print word[i] return word, word_remove, count def my_padding(data_q, data_a, length_a, length_q): if length_q != 0 and length_a != 0: for i in range(len(data_q)): m = len(data_q[i]) a = int((length_q - m)/2) b = length_q - m - a for j in range(a): temp = 0 data_q[i].append(temp) for j in range(b): temp = 0 data_q[i].insert(0, temp) for i in range(len(data_a)): for j in range(len(data_a[i])): m = len(data_a[i][j]) a = int((length_a-m))/2 b = length_a-m-a for number in range(a): temp = 0 data_a[i][j].append(temp) for number in range(b): temp = 0 data_a[i][j].insert(0, temp) return data_a, data_q def get_word_vector(start, q, item, word, word_remove, end): question_matrix = [] answer_matrix = [] for i in range(start, end, 1): question_matrix.append([]) for j in range(len(q[i])): if q[i][j] in word_remove: continue if q[i][j] in word.keys(): question_matrix[i - start].append(word[str(q[i][j])]) for i in range(start, end, 1): answer_matrix.append([]) for j in range(len(item[i])): answer_matrix[i - start].append([]) for k in range(len(item[i][j])): if item[i][j][k] in word_remove: continue if item[i][j][k] in word.keys(): answer_matrix[i - start][j].append(word[str(item[i][j][k])]) return question_matrix, answer_matrix def get_train_data(start, lengtha, lengthq, q, item, word, word_remove): question, answer = get_word_vector(start, q, item, word, word_remove, start+1) answer2, question2 = my_padding(question, answer, lengtha, lengthq) question_new = [] for i in range(len(question2)): question_new.append([]) for j in range(len(answer2[i])): question_new[i].append(question2[i]) del question del answer del question2 final_question = [] final_answer = [] height_q = len(question_new[0][0]) height_a = len(answer2[0][0]) for i in range(len(question_new)): for j in range(len(question_new[i])): temp1 = np.array(question_new[i][j]) temp2 = temp1.reshape(height_q, 1) final_question.append(temp2) for i in range(len(answer2)): for j in range(len(answer2[i])): temp1 = np.array(answer2[i][j]) temp2 = temp1.reshape(height_a, 1) final_answer.append(temp2) del answer2 del question_new final_answer = np.array(final_answer) final_question = np.array(final_question) return final_question, final_answer, height_a, height_q def cnn(height_a, height_q, count): question_input = Input(shape=(height_q, 1), name='question_input') embedding_q = Embedding(input_dim=count, output_dim=128, input_length=height_q)(question_input) re_q = Reshape((height_q, 128, 1), input_shape=(height_q,))(embedding_q) conv1_Q = Conv2D(512, (2, 128), activation='sigmoid', padding='valid', kernel_regularizer=regularizers.l2(0.02), kernel_initializer=initializers.random_normal(mean=0.0, stddev=0.05))(re_q) Max1_Q = MaxPooling2D((29, 1), strides=(1, 1), padding='valid')(conv1_Q) F1_Q = Flatten()(Max1_Q) Drop1_Q = Dropout(0.5)(F1_Q) predictQ = Dense(64, activation='relu', kernel_regularizer=regularizers.l2(0.02), kernel_initializer=initializers.random_normal(mean=0.0, stddev=0.05))(Drop1_Q) # kernel_initializer=initializers.random_normal(mean=0.0, stddev=0.01) answer_input = Input(shape=(height_a, 1), name='answer_input') embedding_a = Embedding(input_dim=count, output_dim=128, input_length=height_a)(answer_input) re_a = Reshape((height_a, 128, 1), input_shape=(height_a,))(embedding_a) conv1_A = Conv2D(512, (2, 128), activation='sigmoid', padding='valid', kernel_regularizer=regularizers.l2(0.02), kernel_initializer=initializers.random_normal(mean=0.0, stddev=0.05))(re_a) Max1_A = MaxPooling2D((399, 1), strides=(1, 1), padding='valid')(conv1_A) F1_A = Flatten()(Max1_A) Drop1_A = Dropout(0.5)(F1_A) predictA = Dense(64, activation='relu', kernel_regularizer=regularizers.l2(0.02), kernel_initializer=initializers.random_normal(mean=0.0, stddev=0.05))(Drop1_A) predictions = merge([predictA, predictQ], mode='dot') model = Model(inputs=[question_input, answer_input], outputs=predictions) model.compile(loss='mean_squared_error', optimizer=Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)) # model.compile(loss='mean_squared_error', # optimizer='nadam') return model def get_label(start): train_file_dir = './' train_file_name = 'train.1.json' f = open(os.path.join(train_file_dir, train_file_name), 'r') label = [] count = 0 for line in f: if count < start: count = count + 1 continue if count >= start + 1: break file_dict_temp = json.loads(line) passages_list = file_dict_temp['passages'] label.append([]) for item in passages_list: temp = item['label'] if temp == 0: temp = 0 elif temp == 1: temp = 1 elif temp == 2: temp = 2 label[count-start].append(temp) count = count + 1 final_label = [] for i in range(len(label)): for j in range(len(label[i])): final_label.append(label[i][j]) del label final_label = np.array(final_label) return final_label def get_test_label(start): train_file_dir = './' train_file_name = 'train.1.json' f = open(os.path.join(train_file_dir, train_file_name), 'r') label = [] count = 0 for line in f: if count < start: count = count + 1 continue if count >= start + 5: break file_dict_temp = json.loads(line) passages_list = file_dict_temp['passages'] label.append([]) for item in passages_list: temp = item['label'] label[count-start].append(temp) count = count + 1 label = np.array(label) return label if __name__ == '__main__': train_file_dir = './' train_file_name = 'train.1.json' [q, item] = process_train_file(train_file_dir, train_file_name) train_file_name = 'CCIR_train_word_num.txt' word, word_remove, count = word_table(train_file_dir, train_file_name) # a = word.keys() height_a = 400 height_q = 30 #model = cnn(height_a, height_q, count) model = model_from_json(open('my_model_architecture3.json').read()) model.load_weights('my_model_weights3.h5') for echo in range(4000): continue if echo == 2392: continue print 'the echo is', echo final_question, final_answer, height_a, height_q = get_train_data(echo, height_a, height_q, q, item, word, word_remove) label = get_label(echo) t = model.train_on_batch([final_question, final_answer], label) print 'loss=', t json_string = model.to_json() open('my_model_architecture3.json', 'w').write(json_string) model.save_weights('my_model_weights3.h5') del final_question del final_answer del label #model.save('my_model3.h5') #model.save_weights('my_model_weights3.h5') #print(model.summary()) M = compute_score(model, height_a, height_q, q, item)
86d43341acd4d75d7e9f6444a05667b88c3356c0
42b9bafc3c757543328d93fb60269ad4255aae17
/env/lib/python3.7/site-packages/jet/tests/settings.py
0c8cb379fe107502b4dc3633895113b84b4a7f85
[ "MIT" ]
permissive
mejeng/kasir
4fe66d1828e72b64d770426d71185cdd3c54127e
cc6f9158b61c0cb45078ddf798af9588c8771311
refs/heads/master
2020-09-25T03:36:10.144439
2019-11-30T07:59:23
2019-11-30T07:59:23
225,908,795
2
0
MIT
2019-12-04T16:21:15
2019-12-04T16:21:15
null
UTF-8
Python
false
false
1,945
py
import os import django from django.conf import global_settings BASE_DIR = os.path.dirname(os.path.dirname(__file__)) SECRET_KEY = '!DJANGO_JET_TESTS!' DEBUG = True TEMPLATE_DEBUG = DEBUG DEBUG_PROPAGATE_EXCEPTIONS = True ROOT_URLCONF = 'jet.tests.urls' INSTALLED_APPS = ( 'jet.dashboard', 'jet', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.admin', 'jet.tests', ) MIDDLEWARE = MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ) if django.VERSION[:2] < (1, 9): TEMPLATE_CONTEXT_PROCESSORS = tuple(global_settings.TEMPLATE_CONTEXT_PROCESSORS) + ( 'django.core.context_processors.request', ) else: TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': ( 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ) }, }, ] DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', } } TIME_ZONE = 'UTC' LANGUAGE_CODE = 'en-US' USE_I18N = True USE_L10N = True MEDIA_ROOT = '' MEDIA_URL = '' STATIC_URL = '/static/' JET_INDEX_DASHBOARD = 'jet.tests.dashboard.TestIndexDashboard' JET_APP_INDEX_DASHBOARD = 'jet.tests.dashboard.TestAppIndexDashboard'
731d0f6696c9cae00ba15f73151571a42ef6dae3
877bd731bc97f220c363914d1e66970e2d9e599e
/python_stack/_django/full_stack/tv_shows/tv_shows_app/migrations/0003_auto_20200604_0321.py
4dac5bd390a36b9dc89b42752fc9a70c942eba9d
[]
no_license
mpresto/dojo
eaccc08465298d35ae5a8e0d60e547a90bc24e05
aec14ee041950eea7c35003fa03b0728b4606754
refs/heads/master
2021-05-26T00:15:16.551562
2020-10-04T00:09:48
2020-10-04T00:09:48
253,975,631
0
0
null
null
null
null
UTF-8
Python
false
false
387
py
# Generated by Django 2.2 on 2020-06-04 03:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tv_shows_app', '0002_auto_20200603_0658'), ] operations = [ migrations.AlterField( model_name='show', name='title', field=models.CharField(max_length=255), ), ]
1bd128680cb0beaed2787f330cbaf980eefe2ce1
01552dc88e7c170de857f5ff0b52178326d5f003
/guild/query_cmd.py
00e09e3036d434e24efa3924aaef22b73e522633
[ "Apache-2.0" ]
permissive
guildai/_guild-python-legacy
b8516f38b3dd4f27859850ec07fe9c4747f4fd8b
e552eff820d8edcfeb10b26bd5c8651548507b4a
refs/heads/master
2021-01-01T15:52:35.875726
2017-09-27T18:58:59
2017-09-27T18:58:59
97,719,256
0
0
Apache-2.0
2018-10-20T23:44:54
2017-07-19T13:28:21
HTML
UTF-8
Python
false
false
880
py
import os import sys import guild.cmd_support import guild.db import guild.op_util def main(args): run = guild.cmd_support.run_for_args(args) if args.details == "series": _print_series(run) elif args.details == "files": _print_files(run) else: _print_header(run) def _print_header(run): rundir = run.opdir run_name = os.path.basename(rundir) status = guild.op_util.extended_op_status(rundir) sys.stdout.write("%s\t%s\n" % (run_name, status)) def _print_series(run): db = guild.db.init_for_opdir(run.opdir) for key in db.series_keys(): sys.stdout.write(key) sys.stdout.write("\n") def _print_files(run): cwd = os.path.abspath(".") for root, _dirs, files in os.walk(run.opdir): for f in files: path = os.path.join(root, f) print(os.path.relpath(path, cwd))
bffb24fdd89319ceb3cdb0061dc12f8695ef8b9d
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03157/s695062063.py
8c31e11022db6359dcc34abd1270b221bad01b66
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,052
py
from collections import deque h,w=map(int,input().split()) p=['-'*(w+2)] for i in range(h): p.append('-'+input()+'-') p.append('-'*(w+2)) isl=[] v=[[0 for i in range(w+2)] for j in range(h+2)] d=[[0,1],[1,0],[-1,0],[0,-1]] def bfs(x,y): if v[x][y]!=0: return q=deque() q.append((x,y)) v[x][y]=1 br,wh=0,0 cnt=0 while len(q)>0: ch,cw=q.popleft() #v[ch][cw]=1 if p[ch][cw]=='#': br+=1 for dh,dw in d: if p[ch+dh][cw+dw]=='.' and v[ch+dh][cw+dw]==0: q.append((ch+dh,cw+dw)) v[ch+dh][cw+dw]=1 elif p[ch][cw]=='.': wh+=1 for dh,dw in d: if p[ch+dh][cw+dw]=='#' and v[ch+dh][cw+dw]==0: q.append((ch+dh,cw+dw)) v[ch+dh][cw+dw]=1 #print('xy=',x,y,'chw=',ch,cw,'bw=',br,wh,q) isl.append((br,wh)) for i in range(1,h+1): for j in range(1,w+1): bfs(i,j) ans=0 for br,wh in isl: ans+=br*wh print(ans)
dad6dabb0c0bf27caff808349deda0c12cdca566
21bf726bf895569a41a8b8d2db6772dc51f46cfd
/MachineLearning/machine_learning_examples/unsupervised_class/hcluster.py
4f40738d7ea106f838ee6efa0df6eb069eda4234
[]
no_license
jeffsnguyen/Python-1
dd924d25337cd6ac21e321d7b2c5ac17c065d94b
463d32a61a760d076656c73c9f8c9fadf262438d
refs/heads/master
2022-03-23T09:50:04.476094
2019-12-23T12:32:49
2019-12-23T12:32:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,161
py
# https://deeplearningcourses.com/c/cluster-analysis-unsupervised-machine-learning-python # https://www.udemy.com/cluster-analysis-unsupervised-machine-learning-python import numpy as np import matplotlib.pyplot as plt from scipy.cluster.hierarchy import dendrogram, linkage def main(): D = 2 # so we can visualize it more easily s = 4 # separation so we can control how far apart the means are mu1 = np.array([0, 0]) mu2 = np.array([s, s]) mu3 = np.array([0, s]) N = 900 # number of samples X = np.zeros((N, D)) X[:300, :] = np.random.randn(300, D) + mu1 X[300:600, :] = np.random.randn(300, D) + mu2 X[600:, :] = np.random.randn(300, D) + mu3 Z = linkage(X, 'ward') print "Z.shape:", Z.shape # Z has the format [idx1, idx2, dist, sample_count] # therefore, its size will be (N-1, 4) plt.title("Ward") dendrogram(Z) plt.show() Z = linkage(X, 'single') plt.title("Single") dendrogram(Z) plt.show() Z = linkage(X, 'complete') plt.title("Complete") dendrogram(Z) plt.show() if __name__ == '__main__': main()
0b6e69480371618c0daeb8640584b5d89d5114f4
9218fe2f12a3f8209a71a7775178a084da4212c0
/crawler/dspider/spiders/stockFinancialDisclosureTimeSpider.py
be04e6013553e5a05b5bfff82e3a794c736eec91
[]
no_license
betterManzZ/smart_deal_tool
678e7f7ecf431df4fb6cef5faf9c5c1ddd397697
a74cbab04393d60dc829c0110a98c625ba896f22
refs/heads/master
2020-06-12T03:31:29.404228
2019-06-23T08:05:34
2019-06-23T08:05:34
194,182,470
2
0
null
2019-06-28T00:57:13
2019-06-28T00:57:12
null
UTF-8
Python
false
false
7,762
py
# -*- coding: utf-8 -*- import os import re import time import datetime import const as ct import pandas as pd from datetime import datetime from scrapy import FormRequest from scrapy.http import TextResponse, HtmlResponse from pyquery import PyQuery as pq from dspider.myspider import BasicSpider from urllib.request import urlopen, Request from base.cdate import report_date_list_with, one_report_date_list from dspider.straight_flush import StraightFlushSession from dspider.items import StockFinancialDisclosureTimeItem import ssl ssl._create_default_https_context = ssl._create_unverified_context class StockFinancialDisclosureTimeSpider(BasicSpider): name = 'stockFinancialDisclosureTimeSpider' custom_settings = { 'ROBOTSTXT_OBEY': False, 'COOKIES_ENABLED': True, 'RETRY_ENABLED': False, 'REFERER_ENABLED': False, 'SPIDERMON_ENABLED': False, 'DOWNLOAD_DELAY': 5, 'DOWNLOAD_TIMEOUT': 20.0, 'RANDOMIZE_DOWNLOAD_DELAY': True, 'CONCURRENT_REQUESTS_PER_IP': 1, 'CONCURRENT_REQUESTS_PER_DOMAIN': 1, 'DOWNLOADER_MIDDLEWARES': { 'dspider.proxy.RandomProxy':100, 'dspider.user_agent.RandomUserAgent': 200, 'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': None, 'scrapy.downloadermiddlewares.retry.RetryMiddleware': None }, 'USER_AGENTS': ct.USER_AGENTS, 'SIGNEWNYM_RATE': 60, # new ip rate, minimal value is 60 (seconds) 'PROXY_HOST': 'http://ip_proxy-container:5010', 'NEW_IP_HTTP_CODES': [500, 502, 503, 504, 522, 524, 408, 429, 403, 407, 404] } data_dict = dict() #date_list = report_date_list_with() date_list = one_report_date_list(datetime.now().strftime('%Y-%m-%d')) sfsession = StraightFlushSession() allowed_domains = ['data.10jqka.com.cn', 's.thsi.cn'] start_urls = ['https://s.thsi.cn/js/chameleon/time.{}.js', 'http://data.10jqka.com.cn/financial/yypl/date/{}/board/ALL/field/stockcode/order/DESC/page/{}/ajax/1/'] repatten = 'http://data.10jqka.com.cn/financial/yypl/date/(.+?)/board/ALL/field/stockcode/order/DESC/page/(.+?)/ajax/1/' headers = {"Accept-Language": "en-US,en;q=0.5","Connection": "keep-alive"} def start_requests(self): if len(self.date_list) > 0: while not self.update_cookie(): time.sleep(3) mdate = self.date_list.pop() self.data_dict[mdate] = list() mcookie = {"v": self.sfsession.encode()} page_url = self.start_urls[1].format(mdate, 1) self.logger.info("start_request:%s", page_url) yield FormRequest(url = page_url, headers = self.headers, cookies = mcookie, method = 'GET', callback = self.parse_item) def parse_item(self, response): try: url = response.url self.update_cookie() mcookie = {"v": self.sfsession.encode()} if type(response) is TextResponse: time.sleep(60) print("parse_item3", response.url) yield FormRequest(url = url, headers = self.headers, cookies = mcookie, method = 'GET', callback = self.parse_item, errback=self.errback_httpbin, dont_filter=True) else: reg = re.compile(self.repatten) if reg.search(url) is not None: doc = pq(response.text) max_page = self.get_max_page(doc) cur_date, cur_page = reg.search(url).groups() cur_page = int(cur_page) if not self.update_data(doc, cur_date): print("empty url", url) if cur_page < max_page: cur_page += 1 page_url = self.start_urls[1].format(cur_date, cur_page) print("parse_item1", page_url) yield FormRequest(url = page_url, headers = self.headers, cookies = mcookie, method = 'GET', callback = self.parse_item, errback=self.errback_httpbin) else: self.store_items(cur_date) if len(self.date_list) > 0: mdate = self.date_list.pop() self.data_dict[mdate] = list() page_url = self.start_urls[1].format(mdate, 1) print("parse_item2", page_url) yield FormRequest(url = page_url, headers = self.headers, cookies = mcookie, method = 'GET', callback = self.parse_item, errback=self.errback_httpbin) else: print("parse_item4", url) yield FormRequest(url = url, headers = self.headers, cookies = mcookie, method = 'GET', callback = self.parse_item, errback = self.errback_httpbin, dont_filter = True) except: print("parse_item exception", e) def errback_httpbin(self, failure): print("errback", repr(failure)) if failure.check(HttpError): response = failure.value.response print('HttpError on %s', response.url) elif failure.check(DNSLookupError): request = failure.request print('DNSLookupError on %s', request.url) elif failure.check(TimeoutError): request = failure.request print('TimeoutError on %s', request.url) else: request = failure.request print('Other Error on %s', request.url) def store_items(self, cur_date): df = pd.DataFrame(self.data_dict[cur_date], columns=["code", "first", "change", "actual"]) df = df.sort_values(['code'], ascending = 1) filepath = os.path.join(ct.STOCK_FINANCIAL_REPORT_ANNOUNCEMENT_DATE_PATH, "%s.csv" % cur_date) df.to_csv(filepath, index=False, mode="w", encoding='utf8') self.data_dict[cur_date].clear() def update_cookie(self): self.sfsession = StraightFlushSession() time_stamp = int(time.time()) time_url = self.start_urls[0].format(int(time_stamp/1200)) request = Request(time_url) request.add_header("Connection", "close") request.add_header("Accept-Language", "en-US,en;q=0.5") request.add_header("User-Agent", 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36') try: response = urlopen(request, timeout=50) if response.status == 200: server_time = float(response.read().decode("utf-8").split('=')[1].split(';')[0]) self.sfsession.update_server_time(server_time) return True except Exception as e: print("update_cookie", e) return False def get_max_page(self, doc): span_text = doc("div.m-page.J-ajax-page span").text() last_page = span_text.split("/") max_page = int(last_page[1]) return max_page def update_data(self, doc, cur_date): tr_node = doc("table tbody tr") if tr_node.length == 0: return False for tr in tr_node.items(): code = tr.children("td").eq(1).text().strip(' ') #股票代码 first = tr.children("td").eq(3).text().strip(' ') # 首次预约时间 changed = tr.children("td").eq(4).text().strip(' ') # 变更时间 actual = tr.children("td").eq(5).text().strip(' ') # 实际披露时间 first = first.replace("-", "").replace("00000000", "") changed = changed.replace("-", "") actual = actual.replace("-", "").replace("00000000", "") self.data_dict[cur_date].append([code, first, changed, actual]) return True
f4be8acda03bcb0ffbd7f9c766fc0c1947499472
7370127fe73970fdf0882f0696c1dbbf1e818745
/pds-queries/2020-spring-census/list-unresponsive.py
8fe4b8cd3cd420681dcd508b13497b717197e856
[]
no_license
epiphany40223/epiphany
ab5ef0590ac67d2e353592c45177b8e5f7e22457
32956e735f0c5e3fc9231449796431d23b4817f0
refs/heads/main
2023-09-01T05:12:17.013064
2023-08-27T19:57:16
2023-08-27T19:57:16
41,978,574
5
11
null
2023-09-11T02:00:09
2015-09-05T23:06:07
Python
UTF-8
Python
false
false
5,765
py
#!/usr/bin/env python3 # Basic script to create a list of families which have not responded to the # 2020 spring census. This version is based on a CSV file import, so you will # need to retrieve the latest file. import sys sys.path.insert(0, '../../python') import csv import ECC import PDSChurch import helpers from constants import jotform_member_fields from pprint import pprint from pprint import pformat ############################################################################# def read_jotform_results(filename, log): log.info("Reading results spreadsheet...") fids = dict() with open(filename, encoding='utf-8') as csvfile: csvreader = csv.DictReader(csvfile) for row in csvreader: fids[int(row['fid'])] = True l = len(fids.keys()) log.info(f"Found {l} unique Familes in the Jotform results") return fids.keys() ############################################################################# # Of the families in the PDS database, find the ones with: # - a spouse with a valid email address, or # - a head of household with a valid email address, or # - a Famile with a valid email address def find_pds_census_families(log): log.info("Loading PDS database...") # Load the PDS database (pds, families, members) = PDSChurch.load_families_and_members(filename='pdschurch.sqlite3', log=log) # Search for Families that match the desired criteria # Do it in FID order, just for repeatability output_families = list() family_only_emails = dict() fids = sorted(families) for fid in fids: f = families[fid] # We skipped some Families with too many Members if len(f['members']) > len(jotform_member_fields): log.debug(f"--- Skipping Familiy {f['Name']} because they have too many Members") continue have_email = False for m in f['members']: if helpers.member_is_hoh_or_spouse(m): em = PDSChurch.find_any_email(m) if em: have_email = True break # If we have no email, check the Family record itself for an email if not have_email: em = PDSChurch.find_any_email(f) if f: # Sadness. This looks like a bug in make-and-send-emails.py :-( #have_email = True log.info(f"Family-only email: {f['Name']} / fid {fid} / env {f['ParKey']}") family_only_emails[fid] = f # We have no email for the Family. Get phone numbers. if not have_email: log.debug(f"--- Have no HoH/Spouse/Family emails for Family {f['Name']} -- skipping") continue log.debug(f"+++ Family {f['Name']} has an email address") output_families.append(f) l = len(output_families) log.info(f"Found {l} PDS Families with emails") l = len(family_only_emails) log.info(F"Found {l} PDS Familes with Family-only email") return output_families, family_only_emails ############################################################################# def check_families_only_email_results(families_only_email, fids_replied, log): for fid, family in families_only_email.items(): if fid in fids_replied: log.info(f"Happy day! Family-only email FID {fid} has Jotform results!") ############################################################################# def cross_reference(families_with_email, fids_replied, log): not_replied_envelope_ids = list() not_replied_fids = list() for family in families_with_email: fid = family['FamRecNum'] if fid not in fids_replied: log.debug(f"Family did NOT reply: {family['Name']} ({fid} / {family['FamRecNum']})") not_replied_envelope_ids.append(family['ParKey'].strip()) not_replied_fids.append(fid) else: log.debug(f"Family did reply: {family['Name']} ({fid} / {family['FamRecNum']})") # JMS DOUBLE CHECK for fid in not_replied_fids: if fid in fids_replied: log.error(f"ERROR: Found double FID! {fid}") return not_replied_envelope_ids ############################################################################# def write_output_files(not_replied_envelope_ids, filename_base, num_per_file, log): ids = not_replied_envelope_ids.copy() file_number = 1 while len(ids) > 0: ids_to_write = ids[:num_per_file] if len(ids_to_write) <= 0: break filename = f'{filename_base}.{file_number}.txt' with open(filename, 'w') as f: f.write(','.join(ids_to_write) + '\n') l = len(ids_to_write) log.info(f"Wrote {l} envelope IDs to {filename}") ids = ids[num_per_file:] file_number += 1 ############################################################################# def main(): log = ECC.setup_logging(debug=False) # Read in the Jotform results filename = 'ECC census update - Sheet1.csv' fids_replied = read_jotform_results(filename, log) # Read in PDS Families with emails families_with_email, families_only_email = find_pds_census_families(log) # Check for Family-only emails in the results check_families_only_email_results(families_only_email, fids_replied, log) # Cross reference the two lists and see what PDS Families with emails # did not respond to the census not_replied_envelope_ids = cross_reference(families_with_email, fids_replied, log) # Write output files filename_base = 'unresponsives' write_output_files(not_replied_envelope_ids, filename_base, 100, log) main()
7f5067f65e16a598942794e6419451da5869da52
c65af972b843e4f11a9aa9005104ac54a283032d
/practice2/second.py
2dc4335141cb0ae8f34bc1f2bca7306385900aba
[]
no_license
ljeleven/mypython
a63438c4246606082f000967a5d47256fa297aeb
b652338be3937543f0b35a9111dd0d346eb913b5
refs/heads/master
2023-05-24T19:30:37.001198
2020-04-09T15:40:40
2020-04-09T15:40:40
240,815,098
0
0
null
2023-05-22T22:41:00
2020-02-16T01:46:29
Python
UTF-8
Python
false
false
728
py
#__author:"longjin" #date: 2019/6/9 def bonus(n): bonus = 0 if n <= 100000: bonus = n*0.1 elif 100000 < n <= 200000: bonus = 100000*0.1 + (n-100000)*0.075 elif 200000 < n <= 400000: bonus = 100000*0.1 + 100000*0.075 + (n-200000)*0.05 elif 400000 < n <= 600000: bonus = 100000 * 0.1 + 100000 * 0.075 + 200000 * 0.05 + (n-400000)*0.03 elif 600000 < n <= 1000000: bonus = 100000 * 0.1 + 100000 * 0.075 + 200000 * 0.05 + 200000 * 0.03 + (n-600000)*0.015 elif 10000000 < n: bonus = 100000 * 0.1 + 100000 * 0.075 + 200000 * 0.05 + 200000*0.03 + 400000*0.015 + (n-1000000)*0.01 return bonus n = int(input('please input your profit: ')) print(bonus(n))
864ef80c8f12deaf341abf42e44b085fa2dfb5ad
5ade44090b99ba19edd5cc0b07e4ebf1f8cc416e
/introduction.to.programming.with.turtle/2-3.triangle.py
348245d3846c5d3332b8ac3cb95229421d5f1f07
[ "MIT" ]
permissive
Mito445/programming_with_python
af2f201fc3f13cab88fdaa708ecda6da05ad1b46
1114eaa7432ea8581d880bcebd1813a9fb873cce
refs/heads/master
2020-05-27T13:00:53.085344
2019-05-21T07:59:18
2019-05-21T07:59:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
from easygraphics.turtle import * create_world() for i in range(3): fd(100) lt(120) pause() close_world()
abc96381576d91e73fd9c07972847fb15b2ae392
9b422078f4ae22fe16610f2ebc54b8c7d905ccad
/xlsxwriter/test/comparison/test_ignore_error05.py
63452115f9c827a96269ffee2d9f92da2fd2a24a
[ "BSD-2-Clause-Views" ]
permissive
projectsmahendra/XlsxWriter
73d8c73ea648a911deea63cb46b9069fb4116b60
9b9d6fb283c89af8b6c89ad20f72b8208c2aeb45
refs/heads/master
2023-07-21T19:40:41.103336
2023-07-08T16:54:37
2023-07-08T16:54:37
353,636,960
0
0
NOASSERTION
2021-04-01T08:57:21
2021-04-01T08:57:20
null
UTF-8
Python
false
false
1,015
py
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2019, John McNamara, [email protected] # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('ignore_error05.xlsx') self.ignore_files = ['xl/calcChain.xml', '[Content_Types].xml', 'xl/_rels/workbook.xml.rels'] def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.write_string('A1', '123') worksheet.write_formula('A2', '=1/0', None, '#DIV/0!') worksheet.ignore_errors({'number_stored_as_text': 'A1', 'eval_error': 'A2'}) workbook.close() self.assertExcelEqual()
c25b620107cf61d98745b98607852eb71b1016f7
bf9a77bd51ba2dd5bf9c6e7cbf0ec9ec403f0b4f
/tests/test_lib_wordpress.py
71bdb09f5d3ff37d3d02219681a284be863e3876
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
s672/clld
bf3e53698ef19b71181ca8e837b863d8ea423afe
cce7abeb504e0e29b61e7d14e93a1dc1d2294a3b
refs/heads/master
2023-03-30T06:22:06.732159
2021-04-07T06:57:20
2021-04-07T06:57:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,419
py
from clld.lib.wordpress import * def _requests(mocker, c, status=200): return mocker.Mock(get=lambda *a, **kw: mocker.Mock(text=c, status_code=status)) def test_sluggify(): assert sluggify('a and B') == 'a-and-b' def test_Client(mocker): client = Client('blog.example.org', 'user', 'password') mocker.patch('clld.lib.wordpress.requests', _requests(mocker, '', status=404)) client.get_post_id_from_path('/post') mocker.patch('clld.lib.wordpress.requests', _requests(mocker, '<div class="post" id="post-1">')) client.get_post_id_from_path('/post') mocker.patch( 'clld.lib.wordpress.requests', _requests(mocker, '<input type="hidden" name="comment_post_ID" value="1" />')) client.get_post_id_from_path('/post') client.server = mocker.MagicMock() client.set_categories([{'name': 'cat', 'description': 'desc'}]) client.set_categories([{'name': 'cat', 'description': 'desc'}], post_id=3) client.create_post( 'title', 'content', date=1, tags=['tag'], custom_fields={'a': 'x'}, categories=[{'name': 'cat', 'description': 'desc'}]) client.server = mocker.MagicMock(wp=mocker.Mock(getCategories=mocker.Mock(return_value=[{ 'categoryName': 'n', 'categoryId': '1'}]))) client.get_categories() client.get_categories(name='n') client.set_categories([{'name': 'n', 'description': 'desc'}])
ff1b51789b5b92e740b1589c7ae516bcf3bfc011
a342b1d6c7451cf3982b835dfc81924efe0509b4
/tests/fixpath.py
6e87fe37d75741be878ccbd0cf94c64ffdc6390d
[]
no_license
phaustin/eoas_canvas
23bbc27a99f5d0654dce13be3fc3cbcc022d9250
79544df2095c7e536f35c29bbd9f568a0ff3633c
refs/heads/master
2021-04-03T05:12:50.232463
2019-03-01T01:21:31
2019-03-01T01:21:31
124,586,559
0
0
null
null
null
null
UTF-8
Python
false
false
360
py
""" import this in your main function to add the parent to the folder holding the script to the front of sys.path """ from pathlib import Path import sys, os import site the_path=Path(sys.argv[0]).resolve() print(f'fixpath: inserting package directory in path: {the_path}') the_path=the_path.parents[1] sys.path.insert(0, str(the_path)) site.removeduppaths()
5e52e7f42b5a8b03de3b12096468a57d982485b9
1cfb54adac19bfd69cc58ab23918925a800494c4
/youtube_project/youtube_app/urls.py
5cce935a401be7be76fbf852834bf410a85a1441
[]
no_license
SatishNitk/youtube_clone
f743bae04190d4a3c0881a2a1b3daf23d9d9e468
698c94d5ef9689428da6a35b01928fd071978772
refs/heads/master
2020-06-18T20:08:56.113547
2019-07-28T04:56:52
2019-07-28T04:56:52
196,431,093
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
from django.urls import path,include from youtube_app.views import * urlpatterns = [ path('', HomeView.as_view()), path('login/',LoginView.as_view()), path('register/',RegisterView.as_view()), path('video/',NewVideo.as_view()), path('logout/',LogoutView.as_view()), path('comment/',CommentView.as_view()), path('video/<int:id>', VideoView.as_view()), path('get_video/<file_name>', VideoFileView.as_view()), ]
a8567ccd2b5a4624126ca8ab8456180bbdc05fc2
64cee8c8f33ae6be8edf0daa7a3a83efee86c82c
/doc/source/conf.py
654ff054fca0e5c2a439fd8b5ba07d4f6f22ccd0
[ "MIT" ]
permissive
shengyongniu/cemba_data
52881061dac63c5dca4bbedf9bc7f1f345b13575
6d076ed7f19ac76650d91fe9172393cc6c10e686
refs/heads/master
2021-10-09T14:31:43.849987
2018-12-29T23:19:53
2018-12-29T23:19:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,946
py
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('../../cemba_data')) # -- Project information ----------------------------------------------------- project = 'cemba_data' copyright = '2018, Hanqing Liu' author = 'Hanqing Liu' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '0.1.1' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'cemba_datadoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'cemba_data.tex', 'cemba\\_data Documentation', 'Hanqing Liu', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'cemba_data', 'cemba_data Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'cemba_data', 'cemba_data Documentation', author, 'cemba_data', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project epub_author = author epub_publisher = author epub_copyright = copyright # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} # -- Options for t_o_d_o extension ---------------------------------------------- # If true, `t_o_d_o` and `todoList` produce output, else they produce nothing. todo_include_todos = True
6d9f788e635eba1977d3eee0524bb2eada7ec450
5f1c3a2930b20c3847496a249692dc8d98f87eee
/Pandas/Excel_DataAnalysis/Question5.py
272e1db4934d35b2c84d146a8f2e7f6ac7cee2c9
[]
no_license
AmbyMbayi/CODE_py
c572e10673ba437d06ec0f2ae16022d7cbe21d1c
5369abf21a8db1b54a5be6cbd49432c7d7775687
refs/heads/master
2020-04-24T05:01:46.277759
2019-02-22T08:26:04
2019-02-22T08:26:04
171,723,155
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
"""Write a pandas program to insert a column in the sixth position of the said excel sheet and fill it with NaN values """ import pandas as pd import numpy as np df = pd.read_excel('coalpublic2013.xls') df.insert(3, "column1", np.nan) print(df.head)
315888a36f3671ad0377b488fbeba896827df303
09fd456a6552f42c124c148978289fae1af2d5c3
/Graph/210.py
b37dc35636fc78cbaea209ecf36234d07c89537d
[]
no_license
hoang-ng/LeetCode
60b4e68cbcf54cbe763d1f98a70f52e628ab32fb
5407c6d858bfa43325363503c31134e560522be3
refs/heads/master
2021-04-10T11:34:35.310374
2020-07-28T10:22:05
2020-07-28T10:22:05
248,932,393
0
0
null
null
null
null
UTF-8
Python
false
false
2,123
py
# 210. Course Schedule II # There are a total of n courses you have to take, labeled from 0 to n-1. # Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1] # Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses. # There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array. # Example 1: # Input: 2, [[1,0]] # Output: [0,1] # Explanation: There are a total of 2 courses to take. To take course 1 you should have finished # course 0. So the correct course order is [0,1] . # Example 2: # Input: 4, [[1,0],[2,0],[3,1],[3,2]] # Output: [0,1,2,3] or [0,2,1,3] # Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both # courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. # So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3] . # Note: # The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented. # You may assume that there are no duplicate edges in the input prerequisites. import collections class Solution: def findOrder(self, numCourses, prerequisites): graph = collections.defaultdict(list) res = [] for u, v in prerequisites: graph[u].append(v) visited = [0 for x in range(numCourses)] for i in range(numCourses): if not self.dfs(i, graph, visited, res): return [] return res def dfs(self, node, graph, visited, res): if visited[node] == -1: return False if visited[node] == 1: return True visited[node] = -1 for i in graph[node]: if not self.dfs(i, graph, visited, res): return False visited[node] = 1 res.append(node) return True
ce55db8946daf7db06859e2c0e253fee52256393
039f2c747a9524daa1e45501ada5fb19bd5dd28f
/Typical DP Contest/TDPCa2.py
0e482b3d312d102ca64129efa5e8468a4aad6f79
[ "Unlicense" ]
permissive
yuto-moriizumi/AtCoder
86dbb4f98fea627c68b5391bf0cc25bcce556b88
21acb489f1594bbb1cdc64fbf8421d876b5b476d
refs/heads/master
2023-03-25T08:10:31.738457
2021-03-23T08:48:01
2021-03-23T08:48:01
242,283,632
0
0
null
null
null
null
UTF-8
Python
false
false
481
py
n = int(input()) p = list(map(int, input().split())) dp = [[None for i in range(sum(p)+1)] for _ in range(n+1)] def canMake(i, v): if (i == 0): return v == 0 if (dp[i][v] != None): return dp[i][v] # print(i) if (v - p[i-1] >= 0): dp[i][v] = canMake(i-1, v) or canMake(i-1, v-p[i-1]) else: dp[i][v] = canMake(i-1, v) return dp[i][v] ans = 0 for i in range(sum(p) + 1): if (canMake(n, i)): ans += 1 print(ans)