blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
902bff8182253dc5452804b38313cae134a0b77a
e24cdd3433911fb9e7193de488811c80d5b97746
/ByTags/Design/362. Design Hit Counter.py
b74743e6ef81c7fa6ee85683eb7f02fb3da89e51
[]
no_license
lynkeib/LeetCode
753f6a07270d956ca802632edfb0480029fe6f51
8a82905d40b882b20a9b6f862942f8f3e4bebcf0
refs/heads/master
2021-06-16T11:33:17.830068
2021-02-18T07:17:20
2021-02-18T07:17:20
165,439,180
0
0
null
null
null
null
UTF-8
Python
false
false
1,156
py
class HitCounter(object): def __init__(self): """ Initialize your data structure here. """ self.counter = [[0, i + 1] for i in range(300)] def hit(self, timestamp): """ Record a hit. @param timestamp - The current timestamp (in seconds granularity). :type timestamp: int :rtype: None """ index = (timestamp - 1) % 300 if self.counter[index][1] == timestamp: self.counter[index][0] += 1 else: self.counter[index][0] = 1 self.counter[index][1] = timestamp def getHits(self, timestamp): """ Return the number of hits in the past 5 minutes. @param timestamp - The current timestamp (in seconds granularity). :type timestamp: int :rtype: int """ res = 0 for x in self.counter: hits, time = x[0], x[1] if timestamp - time < 300: res += hits return res # Your HitCounter object will be instantiated and called as such: # obj = HitCounter() # obj.hit(timestamp) # param_2 = obj.getHits(timestamp)
360daec8504d31ef81d10f54ec8ad22ae5f25ff8
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/u9rnDxsJRDdvRmFai_5.py
46788572927af8035136536ea75c987317eff0b3
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
39
py
import re ​ pattern = 'best\sb\w+'
038a2afe4dbd87146aadaa7a5e7d1b80e3d07b78
0306bea08e9aab18f34a799ce8a73e86921f90f7
/medium/EvaluareReversePolishNotation.py
f4166dc5308c8152784f3331a6b0a9e6cfd0e66d
[]
no_license
GeorgianBadita/LeetCode
78686fde88ef65b64f84fb7c2a22ba37ef21b8d9
e3b0571182369c5308e0c29fb87106bb0b0d615a
refs/heads/master
2022-10-21T00:23:26.479943
2022-10-14T20:27:27
2022-10-14T20:27:27
251,733,951
3
0
null
null
null
null
UTF-8
Python
false
false
1,047
py
# https://leetcode.com/explore/interview/card/top-interview-questions-medium/114/others/823/ from typing import List class Solution: def __init__(self) -> None: self.__operators = "+-*/" def apply_operator(self, op1, op, op2): if op == '+': return op1 + op2 if op == '-': return op1 - op2 if op == '/': return int(op1 / op2) if op == '*': return op1 * op2 def evalRPN(self, tokens: List[str]) -> int: if not tokens: return 0 operands_stack = [] for token in tokens: if token in self.__operators: op2 = operands_stack.pop() op1 = operands_stack.pop() operands_stack.append(self.apply_operator(op1, token, op2)) else: operands_stack.append(int(token)) return operands_stack.pop() print(Solution().evalRPN(["10", "6", "9", "3", "+", "-11", "*", "/", "*", "17", "+", "5", "+"]))
28140476e361402bc2865261bdff072d090b730d
b5cba88ce8c86740c8c3453134610fd5bafbb8c4
/Leetcode/17. Letter Combinations of a Phone Number/solution.py
d023f235fd394de279c5c4e274ffb3348e3e229f
[]
no_license
EduardoSantos7/Algorithms4fun
55fcf9d515ea3b70b93298ac96a58d2ae68dee11
6ff182ed596b6322322b087f29e6ad98baec3f97
refs/heads/master
2023-07-23T01:38:08.216313
2023-07-23T01:35:58
2023-07-23T01:35:58
227,448,848
1
1
null
null
null
null
UTF-8
Python
false
false
716
py
class Solution: def letterCombinations(self, digits: str) -> List[str]: if not digits: return [] letters = { '2': ['a', 'b', 'c'], '3': ['d', 'e', 'f'], '4': ['g', 'h', 'i'], '5': ['j', 'k', 'l'], '6': ['m', 'n', 'o'], '7': ['p', 'q', 'r', 's'], '8': ['t', 'u', 'v'], '9': ['w', 'x', 'y', 'z'], } ans = [] def helper(acum): if acum and len(acum) == len(digits): ans.append(acum) return for letter in letters[digits[len(acum)]]: helper(acum + letter) helper('') return ans
550581cdb8b24a81f41dad30bf26ba3cb86a88a4
505963904ce8fedd73caf562ffe993feb98e1043
/home/urls.py
113b829e90992f2b6b7a4471dee27cb26be8ce71
[]
no_license
madmax330/Jobin
05f0c3be31c1fce10d8df48047affd78c57c45ed
b06d04878ff9f4de1bf9d8cd64cd1c4322610d31
refs/heads/Develop
2020-12-08T22:22:44.283964
2018-05-30T07:23:27
2018-05-30T07:23:27
67,643,755
0
2
null
2018-05-30T07:12:30
2016-09-07T21:07:10
JavaScript
UTF-8
Python
false
false
1,426
py
from django.conf.urls import url from . import views app_name = 'home' urlpatterns = [ url(r'^$', views.index_view, name='index'), url(r'^login/student/$', views.login_student, name='student_login'), url(r'^login/company/$', views.login_company, name='company_login'), url(r'^send/contact/message/$', views.send_contact_message, name='send_contact_message'), url(r'^register/student/$', views.register_student, name='register_student'), url(r'^register/company/$', views.register_company, name='register_company'), url(r'^verify/$', views.verify, name='verify'), url(r'^activate/company/(?P<key>.+)/$', views.activate_company, name='activate_company'), url(r'^activate/student/(?P<key>.+)/$', views.activate_student, name='activate_student'), url(r'^new-activation/$', views.new_verification, name='new_activation'), url(r'^new/password/(?P<ut>\w+)/$', views.new_password_view, name='new_password'), url(r'^change/user/info/(?P<ut>\w+)/$', views.ChangeUserInfo.as_view(), name='change_info'), url(r'^logout/$', views.user_logout, name='logout'), url(r'^privacy-policy/$', views.privacy_policy, name='policy'), url(r'^terms-and-conditions/$', views.terms_and_conditions, name='terms'), url(r'^create/content/(?P<n>[0-9]+)/$', views.create_test_content, name='gen_content'), url(r'^clear/content/$', views.clear_test_content, name='clear_content'), ]
8bd8704b983c3d96858f8d0d288946e59f30920a
10bfea81cdde6710c6abd4a4ef48a99112d286f8
/crm/models.py
7505c38e26858acf86545000549f77849846fab2
[]
no_license
egAhmed/Django_KMA_Apps
f6b3971a5d2d08f91d7e6d2d76208db1e2877f4e
83a7491b8c5afe6f60ab78d9bdb826b783c80d08
refs/heads/master
2022-12-02T10:28:09.526611
2020-08-18T13:24:19
2020-08-18T13:24:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,911
py
from django.db import models from django.urls import reverse # from django.contrib.admin import widgets # from datetime import datetime # from django.utils import timezone # from django.utils.timezone import now # Create your models here. class Registration(models.Model): name = models.CharField(max_length=150) username = models.CharField(max_length=50) email = models.EmailField(blank=True, max_length=254) password = models.CharField(max_length=50) bio = models.TextField(blank=True) #this class for # class Choices(models.Model): # description = models.CharField(max_length=100) class Clients(models.Model): # record = models.ForeignKey(RecordFirm, on_delete=models.CASCADE) name = models.CharField(max_length=200) phone = models.CharField(max_length=20, blank=True, null=True) mobile = models.CharField(max_length=20, blank=True, null=True) address = models.CharField(max_length=200, blank=True, null=True) photo = models.ImageField(upload_to='Clients_pics', blank=True) identityNo = models.CharField(max_length=200, blank=True, null=True) notes = models.CharField(max_length=2000, blank=True, null=True) def __str__(self): return self.name #+ " | " + str(self.photo) def get_absolute_url(self): return reverse('crm:clients_update', kwargs={'id': self.id}) def goto_home(self): return reverse('crm:home') class RecordFirm(models.Model): #now = timezone.now() Currency = ( ('EGY', 'Egy Pound'), ('USD', 'US Dollar') ) # Tax_Choice = ('taxno', 'Tax No.') # Part_Choice=('partno', 'Part No.') # Purchase_Choice=('purchaseno', 'Purchase No.') client_id = models.ForeignKey(Clients, on_delete=models.CASCADE, default=False, null=False) firm_name = models.CharField(max_length=200, blank=True, null=True, name='Company Name') # name= 'Company Name' manager = models.CharField(max_length=200, blank=True, null=True) repres_name = models.CharField(max_length=200, blank=True, null=True) last_visit = models.DateField() notes = models.TextField() type = models.CharField(max_length=3, choices=Currency, null=True) #paper = models.ManyToManyField(Choices) tax_no = models.BooleanField(default=False) part_no = models.BooleanField(default=False) purchase_no = models.BooleanField(default=False) # client_id = models. def __str__(self): return self.client_id def get_url(self): return reverse('crm:firm_update', kwargs={'id': self.id}) def go_home(self): return reverse('crm:regdata') # , kwargs={'id': self.id}
d1acfdd2bd0014aee0b1f83318cc3cd27a0d2093
db0b0935c069a877a7e583cc6cbbe006f3ea271d
/Section2/053.py
bc374f36e5ecb74356822b407f3291a39fd70eda
[]
no_license
partrita/biopython
9294033c8809441190ea861e484b7678dbb2909a
a488559820980bd054b67395756e01cffa738965
refs/heads/master
2020-05-05T13:28:12.465422
2019-04-08T06:03:49
2019-04-08T06:03:49
180,078,766
4
1
null
2019-04-08T05:51:39
2019-04-08T05:51:39
null
UTF-8
Python
false
false
180
py
#053.py a = [3, 5, 2, 1, 4] b = [8, 10, 7, 6, 9] print("sorted(a)") print(sorted(a, reverse=True)) print("a") print(a) print("") b.sort(reverse=True) print("b.sort()") print(b)
861c5f70e7ecb76286b4a0b2647c81904eed9c51
44b2743ff70ce0631e9714ce78c44720fa63a9ad
/app/config/urls.py
00d26fff98d1af869b8364b221e013f52296ccf8
[ "MIT" ]
permissive
hoelsner/product-database
1b1b4db8e968f5bc149605093e4639c48a9ae1ad
c649569fb82bc4b0a5e9ef9615fff8a364ce652f
refs/heads/master
2023-07-24T21:39:01.870692
2023-07-09T17:03:56
2023-07-09T17:03:56
43,767,455
43
27
MIT
2023-04-16T19:17:25
2015-10-06T17:44:50
Python
UTF-8
Python
false
false
683
py
""" Product Database Config URL configuration (namespace "productdb_config") """ from django.conf.urls import url from app.config import views # namespace: productdb_config urlpatterns = [ # user views url(r'^change/$', views.change_configuration, name='change_settings'), url(r'^status/$', views.status, name='status'), url(r'^flush_cache/$', views.flush_cache, name='flush_cache'), url(r'^messages/$', views.server_messages_list, name='notification-list'), url(r'^messages/add/$', views.add_notification, name='notification-add'), url(r'^messages/(?P<message_id>\d+)/$', views.server_message_detail, name='notification-detail'), ] app_name = "config"
171a3cc32d02abfa9872ea2167a3e1182d2aae6a
a6e4a6f0a73d24a6ba957277899adbd9b84bd594
/sdk/python/pulumi_azure_native/consumption/latest/__init__.py
f3e9e2805ca06f72ddd2b242d2c80d0413d13a4a
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
MisinformedDNA/pulumi-azure-native
9cbd75306e9c8f92abc25be3f73c113cb93865e9
de974fd984f7e98649951dbe80b4fc0603d03356
refs/heads/master
2023-03-24T22:02:03.842935
2021-03-08T21:16:19
2021-03-08T21:16:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,283
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** # Export this package's modules as members: from ._enums import * from .budget import * from .budget_by_resource_group_name import * from .get_budget import * from .get_budget_by_resource_group_name import * from ._inputs import * from . import outputs def _register_module(): import pulumi from ... import _utilities class Module(pulumi.runtime.ResourceModule): _version = _utilities.get_semver_version() def version(self): return Module._version def construct(self, name: str, typ: str, urn: str) -> pulumi.Resource: if typ == "azure-native:consumption/latest:Budget": return Budget(name, pulumi.ResourceOptions(urn=urn)) elif typ == "azure-native:consumption/latest:BudgetByResourceGroupName": return BudgetByResourceGroupName(name, pulumi.ResourceOptions(urn=urn)) else: raise Exception(f"unknown resource type {typ}") _module_instance = Module() pulumi.runtime.register_resource_module("azure-native", "consumption/latest", _module_instance) _register_module()
a709e84115ad3c609b6e6e41d13916caa6b916ed
6044b98e65c38233fb587b3fd40290a7be0b4c6d
/uni_ticket/migrations/0036_ticketreply_read.py
592ee30f86fc243801323666f87cac4ffb684a03
[ "Apache-2.0" ]
permissive
libremente/uniTicket
f5bef4ff85edb03a799b5e87a49050becd1822fa
6f41f0ce9bd0f1238bffcde1c4e12a38266c781b
refs/heads/master
2022-04-23T05:21:39.528135
2020-04-22T16:11:29
2020-04-22T16:11:29
257,953,451
0
0
Apache-2.0
2020-04-22T16:11:01
2020-04-22T16:11:00
null
UTF-8
Python
false
false
393
py
# Generated by Django 2.2.3 on 2019-07-30 09:48 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('uni_ticket', '0035_auto_20190725_1632'), ] operations = [ migrations.AddField( model_name='ticketreply', name='read', field=models.BooleanField(default=False), ), ]
02ece8aff15fad1464676b60c95f4ee8493c447c
31a928cff4960236923b6bc3b68e34bb2f46f470
/ctc-executioner/setup.py
768b03ff56cb33d23f6cf759647c444e12ae35e2
[ "BSD-3-Clause" ]
permissive
webclinic017/ml_monorepo
707df2afd2f986eb0721d26430e6135c917817c6
945f0a83d6b94282c547bb6f4805f3381ad9c16a
refs/heads/master
2021-10-19T21:02:53.322944
2019-02-19T20:58:51
2019-02-23T20:06:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
291
py
from setuptools import setup setup(name='gym_ctc_executioner', packages=['gym_ctc_executioner'], version='0.0.1', install_requires=['gym'] ) setup(name='gym_ctc_marketmaker', packages=['gym_ctc_marketmaker'], version='0.0.1', install_requires=['gym'] )
e1be4b994675e0158566681530cd9169bb10ece9
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/p3BR/R1/benchmark/startPyquil447.py
b50d0c38f7773bb40682486d38291f1927f81bbc
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
2,898
py
# qubit number=2 # total number=83 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += H(0) # number=1 prog += H(1) # number=70 prog += RX(-0.09738937226128368,2) # number=2 prog += H(1) # number=33 prog += Y(2) # number=56 prog += CZ(2,1) # number=34 prog += H(1) # number=35 prog += H(1) # number=3 prog += H(0) # number=45 prog += H(1) # number=77 prog += CZ(2,1) # number=78 prog += H(1) # number=79 prog += CZ(1,0) # number=46 prog += H(0) # number=47 prog += Y(1) # number=15 prog += H(0) # number=66 prog += CZ(1,0) # number=67 prog += H(0) # number=68 prog += H(1) # number=19 prog += CZ(0,1) # number=20 prog += RX(-0.6000441968356504,1) # number=28 prog += H(1) # number=21 prog += H(1) # number=30 prog += CZ(0,1) # number=31 prog += H(1) # number=32 prog += H(1) # number=57 prog += CZ(0,1) # number=58 prog += H(1) # number=59 prog += CNOT(0,1) # number=51 prog += CNOT(0,1) # number=71 prog += X(1) # number=72 prog += CNOT(0,1) # number=73 prog += CNOT(0,1) # number=53 prog += H(1) # number=80 prog += CZ(0,1) # number=81 prog += H(1) # number=82 prog += Y(2) # number=69 prog += H(2) # number=29 prog += H(1) # number=36 prog += X(1) # number=64 prog += CZ(0,1) # number=37 prog += Y(2) # number=44 prog += H(1) # number=38 prog += Z(1) # number=55 prog += H(1) # number=61 prog += CZ(0,1) # number=62 prog += Z(2) # number=65 prog += H(1) # number=63 prog += Z(1) # number=11 prog += RX(-1.1780972450961724,2) # number=54 prog += H(1) # number=42 prog += H(0) # number=39 prog += CZ(1,0) # number=40 prog += H(0) # number=41 prog += CNOT(2,1) # number=26 prog += Y(1) # number=14 prog += CNOT(1,0) # number=5 prog += CNOT(0,1) # number=74 prog += X(1) # number=75 prog += CNOT(0,1) # number=76 prog += Z(1) # number=8 prog += X(1) # number=7 prog += H(2) # number=43 prog += RX(-2.42845112122491,1) # number=25 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('1q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil447.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
27bb58ea731197cadd74122bc2818fb29224ab4e
90d9610ab5a878966868858b1b261cb6be5f6f97
/test/parser_test/log_line_test.py
e817f891780930044bfe3b69da50f507a998eeec
[]
no_license
torbjoernk/pfasst_py
fd4c68cd63592feca8c811b9d994c66a470b541c
9309734a41a17ff0e617a242d1c8ebfd75a89698
refs/heads/master
2021-01-10T01:55:54.256722
2015-11-04T13:07:22
2015-11-04T13:07:22
45,114,179
0
0
null
null
null
null
UTF-8
Python
false
false
2,411
py
# coding=utf-8 """ .. moduleauthor:: Torbjörn Klatt <[email protected]> """ import datetime import unittest from pfasst_py.parser.log_line import LogLine class LogLineTest(unittest.TestCase): def setUp(self): self.msg_normal = "04.11.2015 13:51:15,37 [PFASST , INFO , MPI 0] PFASST Prediction step" self.msg_no_text = "04.11.2015 13:51:15,37 [PFASST , INFO , MPI 0] " self.msg_no_mpi = "04.11.2015 13:51:15,37 [SDC , INFO ] PFASST Prediction step" self.msg_no_mpi_no_text = "04.11.2015 13:51:15,37 [SDC , INFO ] " def test_emits_a_warning_for_wrongly_formatted_log_lines(self): with self.assertLogs('pfasst_py', level='WARNING') as cptr: LogLine('not a log line') self.assertRegex('\n'.join(cptr.output), "Log line could not be parsed") def test_parse_mpi_line_with_message(self): obj = LogLine(self.msg_normal) self.assertEqual(obj.timestamp.value, datetime.datetime(2015, 11, 4, 13, 51, 15, 370000)) self.assertEqual(obj.logger.value, 'PFASST') self.assertEqual(obj.level.value, 'INFO') self.assertEqual(obj.rank.value, '0') self.assertEqual(obj.message.value, 'PFASST Prediction step') def test_parse_mpi_line_without_message(self): obj = LogLine(self.msg_no_text) self.assertEqual(obj.timestamp.value, datetime.datetime(2015, 11, 4, 13, 51, 15, 370000)) self.assertEqual(obj.logger.value, 'PFASST') self.assertEqual(obj.level.value, 'INFO') self.assertEqual(obj.rank.value, '0') self.assertEqual(obj.message.value, '') def test_parse_non_mpi_line_with_message(self): obj = LogLine(self.msg_no_mpi) self.assertEqual(obj.timestamp.value, datetime.datetime(2015, 11, 4, 13, 51, 15, 370000)) self.assertEqual(obj.logger.value, 'SDC') self.assertEqual(obj.level.value, 'INFO') self.assertIsNone(obj.rank) self.assertEqual(obj.message.value, 'PFASST Prediction step') def test_parse_non_mpi_line_without_message(self): obj = LogLine(self.msg_no_mpi_no_text) self.assertEqual(obj.timestamp.value, datetime.datetime(2015, 11, 4, 13, 51, 15, 370000)) self.assertEqual(obj.logger.value, 'SDC') self.assertEqual(obj.level.value, 'INFO') self.assertIsNone(obj.rank) self.assertEqual(obj.message.value, '')
5631ee24c00d9fdae2e324a445b848c7cf580bf8
6a898e59343d0b3ea4f9580f489ef76d888b2b7e
/ecommerce/migrations/0010_stock_first_quantity.py
61dafb7c5d1ec221bb519674e006100650c3d362
[]
no_license
oujri/ecommerce
4b08b0316671e24206e810a38728d71c77fdc396
3fd8095dd2ed771a6951ed7fff08ca11ef0b94a1
refs/heads/master
2020-03-19T03:39:36.002373
2018-06-01T22:09:31
2018-06-01T22:09:31
135,749,651
0
0
null
null
null
null
UTF-8
Python
false
false
392
py
# Generated by Django 2.0.4 on 2018-05-05 00:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('ecommerce', '0009_auto_20180505_0126'), ] operations = [ migrations.AddField( model_name='stock', name='first_quantity', field=models.IntegerField(default=0), ), ]
ce29c2926f8ae832ab67ad03400bf494c196277d
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/contrib/cv/semantic_segmentation/PSPNet/mmcv_replace/version.py
b67226251d80062997136a3247b76992815b9730
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
833
py
# Copyright (c) Open-MMLab. All rights reserved. __version__ = '1.2.7' def parse_version_info(version_str): """Parse a version string into a tuple. Args: version_str (str): The version string. Returns: tuple[int | str]: The version info, e.g., "1.3.0" is parsed into (1, 3, 0), and "2.0.0rc1" is parsed into (2, 0, 0, 'rc1'). """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__) __all__ = ['__version__', 'version_info', 'parse_version_info']
1da3ef21d2bb5e19ae2f2df7650686cf980d2119
bfa81e9ebd6c394fb7ff27afd063bca6e5cf48c1
/signal_example/apps.py
daa5ee116228405237999efc5ff5f8cee079ea3a
[ "MIT" ]
permissive
bluebamus/django_miscellaneous_book
b0dea3b856323304faca1d41edb8f70f2b8c6455
22e0851b3a07aeef94bb723b334f036ed5c17f72
refs/heads/main
2023-07-09T17:15:56.206762
2021-08-11T10:36:47
2021-08-11T10:36:49
382,425,361
0
0
null
null
null
null
UTF-8
Python
false
false
159
py
from django.apps import AppConfig class SignalExampleConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'signal_example'
a5a08d451a68ff1a255c4cf0f9c08783a001317a
926b3c52070f6e309567c8598248fd5c57095be9
/src/onnx/onnx/test/shape_inference_test.py
bdb1048542e988f7a7bdbed1a6310da680325c1b
[ "Apache-2.0" ]
permissive
fengbingchun/PyTorch_Test
410f7cd2303707b0141d433fb9d144a961e1f4c8
df5c2169f0b699bcd6e74adb4cb0e57f7dcd9348
refs/heads/master
2023-05-23T16:42:29.711338
2023-03-25T11:31:43
2023-03-25T11:31:43
167,339,907
15
4
null
2023-03-25T11:31:45
2019-01-24T09:24:59
C++
UTF-8
Python
false
false
228,993
py
# SPDX-License-Identifier: Apache-2.0 from __future__ import annotations from onnx import checker, helper, numpy_helper, TensorProto, NodeProto, GraphProto, ValueInfoProto, ModelProto, ONNX_ML, SparseTensorProto, TypeProto from onnx.defs import ONNX_DOMAIN, ONNX_ML_DOMAIN, AI_ONNX_PREVIEW_TRAINING_DOMAIN from onnx.helper import make_node, make_tensor, make_tensor_value_info, make_empty_tensor_value_info, make_opsetid, make_tensor_sequence_value_info from typing import Sequence, Union, Tuple, Type, List, Any, Optional import onnx.shape_inference import unittest import os import numpy as np # type: ignore class TestShapeInference(unittest.TestCase): def _make_graph(self, seed_values: Sequence[Union[str, Tuple[str, TensorProto.DataType, Any]]], nodes: List[NodeProto], value_info: List[ValueInfoProto], initializer: Optional[Sequence[TensorProto]] = None ) -> GraphProto: if initializer is None: initializer = [] names_in_initializer = {x.name for x in initializer} input_value_infos = [] # If the starting values are not also initializers, # introduce the starting values as the output of reshape, # so that the sizes are guaranteed to be unknown for seed_value in seed_values: if isinstance(seed_value, tuple): seed_name, proto_type = seed_value[:2] seed_value_info = make_tensor_value_info(*seed_value) else: seed_name, proto_type = seed_value, TensorProto.UNDEFINED seed_value_info = make_empty_tensor_value_info(seed_value) if seed_name in names_in_initializer: input_value_infos.append(seed_value_info) else: value_info.append(seed_value_info) input_value_infos.append(make_tensor_value_info('SEED_' + seed_name, proto_type, ())) input_value_infos.append(make_tensor_value_info('UNKNOWN_SHAPE_' + seed_name, TensorProto.INT64, ())) nodes[:0] = [make_node("Reshape", ['SEED_' + seed_name, 'UNKNOWN_SHAPE_' + seed_name], [seed_name])] return helper.make_graph(nodes, "test", input_value_infos, [], initializer=initializer, value_info=value_info) def _inferred(self, graph: GraphProto, **kwargs: Any) -> ModelProto: kwargs['producer_name'] = 'onnx-test' data_prop = kwargs.pop('data_prop', False) orig_model = helper.make_model(graph, **kwargs) inferred_model = onnx.shape_inference.infer_shapes(orig_model, strict_mode=True, data_prop=data_prop) checker.check_model(inferred_model) return inferred_model def _assert_inferred(self, graph: GraphProto, vis: List[ValueInfoProto], **kwargs: Any) -> None: names_in_vis = {x.name for x in vis} vis = list(x for x in graph.value_info if x.name not in names_in_vis) + vis inferred_model = self._inferred(graph, **kwargs) inferred_vis = list(inferred_model.graph.value_info) vis = list(sorted(vis, key=lambda x: x.name)) inferred_vis = list(sorted(inferred_vis, key=lambda x: x.name)) assert len(vis) == len(inferred_vis) for i in range(len(vis)): self._compare_value_infos(vis[i].type, inferred_vis[i].type) def _compare_value_infos(self, vi_type: TypeProto, inferred_vi_type: TypeProto) -> None: if vi_type.HasField('tensor_type'): assert inferred_vi_type.HasField('tensor_type') assert vi_type.tensor_type.HasField('elem_type') assert inferred_vi_type.tensor_type.HasField('elem_type') assert vi_type.tensor_type.elem_type == inferred_vi_type.tensor_type.elem_type assert vi_type.tensor_type.HasField('shape') == inferred_vi_type.tensor_type.HasField('shape') if vi_type.tensor_type.HasField('shape'): assert len(vi_type.tensor_type.shape.dim) == len(inferred_vi_type.tensor_type.shape.dim) for dim_i in range(len(vi_type.tensor_type.shape.dim)): dim = vi_type.tensor_type.shape.dim[dim_i] inferred_dim = inferred_vi_type.tensor_type.shape.dim[dim_i] # if it is a symbolic shape, make sure the inferred symbol has generated (dim_param) if dim.dim_param: assert dim.dim_param == inferred_dim.dim_param, f'\n{vi_type}\n{inferred_vi_type}\n' else: assert dim.dim_value == inferred_dim.dim_value, f'\n{vi_type}\n{inferred_vi_type}\n' elif vi_type.HasField('sequence_type'): assert inferred_vi_type.HasField('sequence_type') vi = vi_type.sequence_type.elem_type inferred_vi = inferred_vi_type.sequence_type.elem_type self._compare_value_infos(vi, inferred_vi) elif vi_type.HasField('optional_type'): assert inferred_vi_type.HasField('optional_type') vi = vi_type.optional_type.elem_type inferred_vi = inferred_vi_type.optional_type.elem_type self._compare_value_infos(vi, inferred_vi) else: raise NotImplementedError( "Unrecognized value info type in _compare_value_infos: ", str(vi_type)) def test_empty_graph(self) -> None: graph = self._make_graph( ['y'], [], []) self.assertRaises(onnx.shape_inference.InferenceError, self._inferred, graph) def _identity_prop(self, op: str, **kwargs: Any) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5))], [make_node(op, 'x', 'y', **kwargs)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (30, 4, 5))]) def test_transpose(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (3, 2, 4))]) def test_transpose_preexisting(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2])], [make_tensor_value_info("Y", TensorProto.FLOAT, None)]) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (3, 2, 4))]) def test_transpose_partial(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2])], [make_tensor_value_info("Y", TensorProto.UNDEFINED, (3, "a", "b"))]) # type: ignore self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (3, 2, 4))]) def test_transpose_preexisting_incorrect_shape(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2])], [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 5, 5))]) self.assertRaises(onnx.shape_inference.InferenceError, self._inferred, graph) def test_transpose_preexisting_incorrect_type(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2])], [make_tensor_value_info("Y", TensorProto.STRING, (3, 2, 4))]) self.assertRaises(onnx.shape_inference.InferenceError, self._inferred, graph) def test_transpose_incorrect_repeated_perm(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 1])], []) self.assertRaises(onnx.shape_inference.InferenceError, self._inferred, graph) def _make_matmul_test_all_dims_known(self, shape1: Sequence[int], shape2: Sequence[int]) -> None: expected_out_shape = np.matmul(np.arange(np.product(shape1)).reshape(shape1), np.arange(np.product(shape2)).reshape(shape2)).shape graph = self._make_graph( [('x', TensorProto.FLOAT, shape1), ('y', TensorProto.FLOAT, shape2)], [make_node('MatMul', ['x', 'y'], ['z'])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, expected_out_shape)]) def test_matmul_all_dims_known(self) -> None: self._make_matmul_test_all_dims_known((2,), (2,)) self._make_matmul_test_all_dims_known((4, 2), (2, 4)) self._make_matmul_test_all_dims_known((5, 2), (2, 4)) self._make_matmul_test_all_dims_known((5, 2), (2, 1)) self._make_matmul_test_all_dims_known((1, 2), (2, 3)) self._make_matmul_test_all_dims_known((2,), (2, 3)) self._make_matmul_test_all_dims_known((4, 2), (2,)) self._make_matmul_test_all_dims_known((1, 4, 2), (3, 2, 3)) self._make_matmul_test_all_dims_known((3, 4, 2), (3, 2, 3)) self._make_matmul_test_all_dims_known((5, 1, 4, 2), (1, 3, 2, 3)) self._make_matmul_test_all_dims_known((4, 2), (3, 2, 3)) def _make_matmul_test_allow_unknown(self, shape1: Any, shape2: Any, expected_out_shape: Any) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, shape1), ('y', TensorProto.FLOAT, shape2)], [make_node('MatMul', ['x', 'y'], ['z'])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, expected_out_shape)]) def test_matmul_allow_unknown(self) -> None: self._make_matmul_test_allow_unknown((None,), (None,), ()) self._make_matmul_test_allow_unknown((3,), (None,), ()) self._make_matmul_test_allow_unknown((2,), (2, "a"), ("a",)) self._make_matmul_test_allow_unknown((4, 2), (2, "a"), (4, "a")) self._make_matmul_test_allow_unknown((4, None), (2, "a"), (4, "a")) self._make_matmul_test_allow_unknown((4, None), (None, "a"), (4, "a")) self._make_matmul_test_allow_unknown((1, 4, 2), ("a", 2, 5), ("a", 4, 5)) self._make_matmul_test_allow_unknown((1, 3, 4, 2), ("a", 2, 5), (1, 3, 4, 5)) self._make_matmul_test_allow_unknown((3,), None, None) self._make_matmul_test_allow_unknown(None, None, None) def test_cast(self) -> None: graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 4, 3))], [make_node("Cast", ["x"], ["y"], to=TensorProto.UINT8)], []) self._assert_inferred(graph, [make_tensor_value_info("y", TensorProto.UINT8, (2, 4, 3))]) def test_cast_like(self) -> None: graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 4, 3)), ("t", TensorProto.FLOAT16, ("N",))], [make_node("CastLike", ["x", "t"], ["y"])], []) self._assert_inferred(graph, [make_tensor_value_info("y", TensorProto.FLOAT16, (2, 4, 3))]) def test_concat(self) -> None: graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 4, 3)), ("y", TensorProto.FLOAT, (7, 4, 3))], [make_node("Concat", ['x', 'y'], ['z'], axis=0)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (9, 4, 3))]) def test_concat_missing_shape(self) -> None: graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 4, 3)), "y", ("z", TensorProto.FLOAT, (None, None, None))], [make_node("Concat", ['x', 'y', 'z'], ['out'], axis=0)], []) self.assertRaises(onnx.shape_inference.InferenceError, self._inferred, graph) def test_concat_3d_axis_2(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 2, 2)), ('y', TensorProto.FLOAT, (2, 2, 2))], [make_node('Concat', ['x', 'y'], ['z'], axis=2)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, 2, 4))]) def test_concat_param(self) -> None: graph = self._make_graph( [("x", TensorProto.FLOAT, ("a", 2)), ("y", TensorProto.FLOAT, ("a", 3))], [make_node("Concat", ['x', 'y'], ['z'], axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, ("a", 5))]) def test_concat_param_single_input(self) -> None: graph = self._make_graph( [("x", TensorProto.FLOAT, ("a", 2))], [make_node("Concat", ['x'], ['z'], axis=0)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, ("a", 2))]) def test_reshape_dynamic_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (2, 4, 3)), ('shape', TensorProto.INT64, (2,))], [make_node("Reshape", ['x', 'shape'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, None)]) def test_reshape_static_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (2, 4, 3)), ('shape', TensorProto.INT64, (2,))], [make_node("Reshape", ['x', 'shape'], ['y'])], [], initializer=[make_tensor('shape', TensorProto.INT64, (2,), (3, 8))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (3, 8))]) def test_reshape_static_shape_inferred(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (2, 4, 3)), ('shape', TensorProto.INT64, (3,))], [make_node("Reshape", ['x', 'shape'], ['y'])], [], initializer=[make_tensor('shape', TensorProto.INT64, (3,), (0, 3, -1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (2, 3, 4))]) def test_reshape_static_shape_zero(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (1, 1, 1)), ('shape', TensorProto.INT64, (3,))], [make_node("Reshape", ['x', 'shape'], ['y'])], [], initializer=[make_tensor('shape', TensorProto.INT64, (3,), (0, 1, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (1, 1, 1))]) def test_reshape_static_shape_allowzero(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (1, 0, 0)), ('shape', TensorProto.INT64, (3,))], [make_node("Reshape", ['x', 'shape'], ['y'], allowzero=1)], [], initializer=[make_tensor('shape', TensorProto.INT64, (3,), (0, 1, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (0, 1, 1))]) def test_reshape_static_shape_constant(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (2, 4, 3))], [make_node("Constant", [], ['shape'], value=make_tensor('shape', TensorProto.INT64, (2,), (3, 8))), make_node("Reshape", ['x', 'shape'], ['y'])], []) self._assert_inferred(graph, [ make_tensor_value_info('shape', TensorProto.INT64, (2,)), make_tensor_value_info('y', TensorProto.UINT8, (3, 8))]) def test_upsample(self) -> None: graph = self._make_graph( [('x', TensorProto.INT32, (2, 4, 3, 5)), ('scales', TensorProto.FLOAT, (4,))], [make_node("Upsample", ['x', 'scales'], ['y'])], [], initializer=[make_tensor('scales', TensorProto.FLOAT, (4,), (1.0, 1.1, 1.3, 1.9))]) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (2, 4, 3, 9))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 9)]) def test_upsample_raw_data(self) -> None: graph = self._make_graph( [('x', TensorProto.INT32, (2, 4, 3, 5)), ('scales', TensorProto.FLOAT, (4,))], [make_node("Upsample", ['x', 'scales'], ['y'])], [], initializer=[make_tensor('scales', TensorProto.FLOAT, (4,), vals=np.array([1.0, 1.1, 1.3, 1.9], dtype='<f4').tobytes(), raw=True)]) # Feed raw bytes (force little endian ordering like onnx standard) for test purpose self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (2, 4, 3, 9))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 9)]) def test_upsample_raw_data_v7(self) -> None: graph = self._make_graph( [('x', TensorProto.INT32, (1, 3, 4, 5))], [make_node("Upsample", ['x'], ['y'], scales=[2.0, 1.1, 2.3, 1.9])], []) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (2, 3, 9, 9))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 7)]) def test_expand(self) -> None: graph = self._make_graph( [('x', TensorProto.INT32, (3, 1)), ('shape', TensorProto.INT64, (3,))], [make_node("Expand", ['x', 'shape'], ['y'])], [], initializer=[make_tensor('shape', TensorProto.INT64, (3,), (2, 1, 6))]) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (2, 3, 6))]) def test_expand_scalar_input(self) -> None: graph = self._make_graph( [('x', TensorProto.INT32, ()), ('shape', TensorProto.INT64, (2,))], [make_node("Expand", ['x', 'shape'], ['y'])], [], initializer=[make_tensor('shape', TensorProto.INT64, (2,), (4, 8))]) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (4, 8))]) def test_expand_raw_data(self) -> None: graph = self._make_graph( [('x', TensorProto.INT32, (3, 1)), ('shape', TensorProto.INT64, (2,))], [make_node("Expand", ['x', 'shape'], ['y'])], [], initializer=[make_tensor('shape', TensorProto.INT64, (2,), vals=np.array([3, 4], dtype='<i8').tobytes(), raw=True)]) # Feed raw bytes (force little endian ordering like onnx standard) for test purpose self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (3, 4))]) def test_expand_symbolic_input(self) -> None: graph = self._make_graph( [('x', TensorProto.INT32, (3, 1, 2)), ('y', TensorProto.INT32, (1, 4, 2))], [make_node("Shape", ['y'], ['shape']), make_node("Expand", ['x', 'shape'], ['z'])], []) self._assert_inferred(graph, [ make_tensor_value_info('shape', TensorProto.INT64, (3,)), make_tensor_value_info('z', TensorProto.INT32, (3, 4, 2))], data_prop=True) def test_expand_dynamic_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.INT32, (1, 2, None)), ('shape', TensorProto.INT64, (3,))], [make_node("Expand", ['x', 'shape'], ['y'])], [], initializer=[]) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (None, 2, None))]) def test_expand_symbolic_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.INT32, (1, 2, None)), ('shape', TensorProto.INT64, ('unk__0',))], [make_node("Expand", ['x', 'shape'], ['y'])], [], initializer=[]) # if giving a symbolic shape, Expand should not infer any shape or rank inference self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, None)]) def test_resize_size(self) -> None: graph = self._make_graph( [('x', TensorProto.INT32, (2, 4, 3, 5)), ('roi', TensorProto.FLOAT, (8,)), ('scales', TensorProto.FLOAT, (4,)), ('sizes', TensorProto.INT64, (4,))], [make_node("Resize", ['x', 'roi', 'scales', 'sizes'], ['y'])], [], initializer=[make_tensor('sizes', TensorProto.INT64, (4,), (3, 5, 6, 7))]) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (3, 5, 6, 7))]) def test_resize_scale(self) -> None: graph = self._make_graph( [('x', TensorProto.INT32, (2, 4, 3, 5)), ('roi', TensorProto.FLOAT, (8,)), ('scales', TensorProto.FLOAT, (4,))], [make_node("Resize", ['x', 'roi', 'scales'], ['y'])], [], initializer=[make_tensor('scales', TensorProto.FLOAT, (4,), (1.0, 1.1, 1.3, 1.9))]) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (2, 4, 3, 9))]) def test_resize_scale_raw_data(self) -> None: graph = self._make_graph( [('x', TensorProto.INT32, (1, 3, 4, 5)), ('roi', TensorProto.FLOAT, (8,)), ('scales', TensorProto.FLOAT, (4,))], [make_node("Resize", ['x', 'roi', 'scales'], ['y'])], [], initializer=[make_tensor('scales', TensorProto.FLOAT, (4,), vals=np.array([2.0, 1.1, 2.3, 1.9], dtype='<f4').tobytes(), raw=True)]) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (2, 3, 9, 9))]) def test_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 4, 3))], [make_node("Shape", ['x'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (3,))]) def test_shape_start_1(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 4, 3))], [make_node("Shape", ['x'], ['y'], start=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (2,))]) def test_shape_end_1(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 4, 3))], [make_node("Shape", ['x'], ['y'], end=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (1,))]) def test_shape_negative_start(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 4, 3))], [make_node("Shape", ['x'], ['y'], start=-1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (1,))]) def test_shape_clip1(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 4, 3))], [make_node("Shape", ['x'], ['y'], start=-5)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (3,))]) def test_shape_clip2(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 4, 3))], [make_node("Shape", ['x'], ['y'], end=10)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (3,))]) def test_size(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 4, 3))], [make_node("Size", ['x'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, ())]) def test_gather(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 3)), ('i', TensorProto.INT64, (2,))], [make_node("Gather", ['x', 'i'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 3))]) # type: ignore def test_gather_axis1(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 3, 5)), ('i', TensorProto.INT64, (1, 2))], [make_node("Gather", ['x', 'i'], ['y'], axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (4, 1, 2, 5))]) # type: ignore def test_gather_into_scalar(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3,)), ('i', TensorProto.INT64, ())], [make_node("Gather", ['x', 'i'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, ())]) def test_gather_elements(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 2)), ('i', TensorProto.INT64, (2, 2))], [make_node("GatherElements", ['x', 'i'], ['y'], axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 2))]) # type: ignore def test_gather_elements_axis0(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 3)), ('i', TensorProto.INT64, (2, 3))], [make_node("GatherElements", ['x', 'i'], ['y'], axis=0)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 3))]) # type: ignore def test_scatter(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 3)), ('i', TensorProto.INT64, (2, 3)), ('u', TensorProto.FLOAT, (2, 3))], [make_node("Scatter", ['x', 'i', 'u'], ['y'])], []) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 3))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 10)]) # type: ignore def test_scatter_axis1(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (1, 5)), ('i', TensorProto.INT64, (1, 2)), ('u', TensorProto.FLOAT, (1, 2))], [make_node("Scatter", ['x', 'i', 'u'], ['y'], axis=1)], []) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 5))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 10)]) # type: ignore def test_scatter_elements(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 3)), ('i', TensorProto.INT64, (2, 3)), ('u', TensorProto.FLOAT, (2, 3))], [make_node("ScatterElements", ['x', 'i', 'u'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 3))]) # type: ignore def test_scatter_elements_axis1(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (1, 5)), ('i', TensorProto.INT64, (1, 2)), ('u', TensorProto.FLOAT, (1, 2))], [make_node("ScatterElements", ['x', 'i', 'u'], ['y'], axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 5))]) # type: ignore def test_scatternd(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('indices', TensorProto.INT64, (3, 3, 2)), ('updates', TensorProto.FLOAT, (3, 3, 6))], [make_node("ScatterND", ['x', 'indices', 'updates'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (4, 5, 6))]) # type: ignore def test_scatternd_noshape(self) -> None: # The shape of 'x_reshaped' cannot be inferred, since it is the output of a dynamic reshape. # Thus the shape of 'y' is also None. graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('indices', TensorProto.INT64, (3, 3, 2)), ('updates', TensorProto.FLOAT, (3, 3, 6)), ('shape', TensorProto.INT64, (2,))], [make_node("Reshape", ['x', 'shape'], ['x_reshaped']), make_node("ScatterND", ['x_reshaped', 'indices', 'updates'], ['y'])], []) self._assert_inferred(graph, [ make_tensor_value_info('x_reshaped', TensorProto.FLOAT, None), make_tensor_value_info('y', TensorProto.FLOAT, None)]) # type: ignore def test_squeeze(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (1, 3, 1, 1, 2, 1)), ('axes', TensorProto.INT64, (4,))], [make_node('Squeeze', ['x', 'axes'], 'y')], [], initializer=[make_tensor('axes', TensorProto.INT64, (4,), (0, 2, 3, 5))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 2))]) def test_unsqueeze_regular(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('axes', TensorProto.INT64, (4,))], [make_node('Unsqueeze', ['x', 'axes'], 'y')], [], initializer=[make_tensor('axes', TensorProto.INT64, (4,), (0, 1, 3, 5))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 1, 3, 1, 2, 1))]) def test_unsqueeze_unsorted_axes(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5)), ('axes', TensorProto.INT64, (2,))], [make_node('Unsqueeze', ['x', 'axes'], 'y')], [], initializer=[make_tensor('axes', TensorProto.INT64, (2,), (4, 0))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 3, 4, 5, 1))]) def test_unsqueeze_negative_axes(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5)), ('axes', TensorProto.INT64, (2,))], [make_node('Unsqueeze', ['x', 'axes'], 'y')], [], initializer=[make_tensor('axes', TensorProto.INT64, (2,), (0, -1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 3, 4, 5, 1))]) def test_unsqueeze_scalar(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, ()), ('axes', TensorProto.INT64, ())], [make_node('Unsqueeze', ['x', 'axes'], 'y')], [], initializer=[make_tensor('axes', TensorProto.INT64, (), (-1,))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1,))]) def test_slice_without_input_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (1,)), ('ends', TensorProto.INT64, (1,))], [make_node('Slice', ['x', 'starts', 'ends'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, None)]) def test_slice_with_input_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (2, )), ('ends', TensorProto.INT64, (2, ))], [make_node('Slice', ['x', 'starts', 'ends'], ['y'])], [], initializer=[make_tensor('starts', TensorProto.INT64, (2, ), vals=np.array([1, 0], dtype='<i8').tobytes(), raw=True), # Feed raw bytes (force little endian ordering like onnx standard) for test purpose make_tensor('ends', TensorProto.INT64, (2, ), (2, 2))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 2))]) def test_slice_with_input_shape_containing_dim_params(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (1, 'a', 1)), ('starts', TensorProto.INT64, (3,)), ('ends', TensorProto.INT64, (3,))], [make_node('Slice', ['x', 'starts', 'ends'], ['y'])], [], initializer=[make_tensor('starts', TensorProto.INT64, (3,), (0, 0, 0)), make_tensor('ends', TensorProto.INT64, (3,), (1, 1, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, None, 1))]) # type: ignore def test_slice_with_input_shape_steps(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 6, 7)), ('starts', TensorProto.INT64, (3,)), ('ends', TensorProto.INT64, (3,)), ('axes', TensorProto.INT64, (None)), ('steps', TensorProto.INT64, (3,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes', 'steps'], ['y'])], [], initializer=[make_tensor('starts', TensorProto.INT64, (3,), (1, 0, 0)), make_tensor('ends', TensorProto.INT64, (3,), (2, 6, 6)), make_tensor('steps', TensorProto.INT64, (3,), (1, 4, 3))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 2, 2))]) def test_slice_with_input_shape_axes(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 6, 2)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,)), ('steps', TensorProto.INT64, (None))], [make_node('Slice', ['x', 'starts', 'ends', 'axes', 'steps'], ['y'])], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, 0)), make_tensor('ends', TensorProto.INT64, (2,), (2, 2)), make_tensor('axes', TensorProto.INT64, (2,), (0, 2))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 6, 2))]) def test_slice_unsorted_axes(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, 0)), make_tensor('ends', TensorProto.INT64, (2,), (2, 2)), make_tensor('axes', TensorProto.INT64, (2,), (1, 0))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 1))]) # can handle unsorted axes def test_slice_giant_number(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, 0)), make_tensor('ends', TensorProto.INT64, (2,), (200, 22000)), make_tensor('axes', TensorProto.INT64, (2,), (0, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 2))]) def test_slice_giant_step(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,)), ('steps', TensorProto.INT64, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes', 'steps'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, 0)), make_tensor('ends', TensorProto.INT64, (2,), (200, 200)), make_tensor('axes', TensorProto.INT64, (2,), (0, 1)), make_tensor('steps', TensorProto.INT64, (2,), (1, 200))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 1))]) def test_slice_negative_end(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, 0)), make_tensor('ends', TensorProto.INT64, (2,), (200, -1)), # negative end means begin from end of a dimension (here end = 2 - 1 = 1) make_tensor('axes', TensorProto.INT64, (2,), (0, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 1))]) # type: ignore def test_slice_negative_start(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, -2)), # negative start means begin from end of a dimension (here end = 2 - 2 = 0) make_tensor('ends', TensorProto.INT64, (2,), (200, 3)), make_tensor('axes', TensorProto.INT64, (2,), (0, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 2))]) # type: ignore def test_slice_negative_step(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,)), ('steps', TensorProto.INT64, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes', 'steps'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, 4)), # 4 will be clamped to 3 since we are negative stepping make_tensor('ends', TensorProto.INT64, (2,), (200, 0)), make_tensor('axes', TensorProto.INT64, (2,), (0, 1)), make_tensor('steps', TensorProto.INT64, (2,), (1, -1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 3))]) # type: ignore def test_slice_variable_copy(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, ("a", 2)), ('starts', TensorProto.INT64, (1,)), ('ends', TensorProto.INT64, (1,)), ('axes', TensorProto.INT64, (1,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (1,), (1,)), make_tensor('ends', TensorProto.INT64, (1,), (200,)), make_tensor('axes', TensorProto.INT64, (1,), (1,))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, ("a", 1))]) # type: ignore def test_slice_variable_input_types(self) -> None: graph = self._make_graph( [('x', TensorProto.DOUBLE, (3, 2)), ('starts', TensorProto.INT32, (2,)), ('ends', TensorProto.INT32, (2,)), ('axes', TensorProto.INT32, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT32, (2,), (1, 0)), make_tensor('ends', TensorProto.INT32, (2,), (200, 22000)), make_tensor('axes', TensorProto.INT32, (2,), (0, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.DOUBLE, (2, 2))]) def test_conv(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 6, 7)), ('y', TensorProto.FLOAT, (5, 4, 2, 4, 3))], [make_node('Conv', ['x', 'y'], 'z', pads=[0, 1, 1, 0, 0, 1], dilations=[1, 2, 2], strides=[1, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (3, 5, 4, 1, 3))]) def test_conv_1d_simple(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y', TensorProto.FLOAT, (50, 4, 2))], [make_node('Conv', ['x', 'y'], 'z', dilations=[1])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 4))]) def test_conv_dilations(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 8, 8, 8)), ('y', TensorProto.FLOAT, (50, 4, 3, 3, 3))], [make_node('Conv', ['x', 'y'], 'z', dilations=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 6, 4, 2))]) def test_conv_strides(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 8, 8, 8)), ('y', TensorProto.FLOAT, (50, 4, 3, 3, 3))], [make_node('Conv', ['x', 'y'], 'z', strides=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 6, 3, 2))]) def test_conv_pads(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 7, 6, 4)), ('y', TensorProto.FLOAT, (50, 4, 3, 3, 3))], [make_node('Conv', ['x', 'y'], 'z', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 6, 6, 6))]) def test_conv_auto_pad(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 7, 6, 4)), ('y', TensorProto.FLOAT, (50, 4, 4, 3, 2))], [make_node('Conv', ['x', 'y'], 'z', auto_pad='SAME_UPPER')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 7, 6, 4))]) def test_conv_auto_pads(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 7, 6, 4)), ('y', TensorProto.FLOAT, (50, 4, 4, 3, 2))], [make_node('Conv', ['x', 'y'], 'z', auto_pad='SAME_UPPER', strides=[2, 2, 1])], []) self._assert_inferred( graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 4, 3, 4))]) def test_conv_auto_pad_dilation(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 65, 64, 63)), ('y', TensorProto.FLOAT, (50, 4, 4, 3, 2))], [make_node('Conv', ['x', 'y'], 'z', auto_pad='SAME_UPPER', dilations=[2, 3, 4])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 65, 64, 63))]) def test_conv_group(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 8, 8, 8)), ('y', TensorProto.FLOAT, (4, 1, 8, 8, 8))], [make_node('Conv', ['x', 'y'], 'z', group=4)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 4, 1, 1, 1))]) def test_conv_only_one_pos(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y', TensorProto.FLOAT, (50, 4, 5))], [make_node('Conv', ['x', 'y'], 'z', strides=[2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 1))]) def test_conv_partial_missing_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, None, 6, 4)), ('y', TensorProto.FLOAT, (50, 4, 3, 3, 3))], [make_node('Conv', ['x', 'y'], 'z', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, None, 6, 6))]) # type: ignore def test_conv_partial_missing_weight_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 7, 6, 4)), ('y', TensorProto.FLOAT, (50, 4, None, 3, 3))], [make_node('Conv', ['x', 'y'], 'z', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, None)]) def test_average_pool_auto_pads(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 7, 6, 4))], [make_node('AveragePool', ['x'], 'z', auto_pad='SAME_UPPER', kernel_shape=[4, 3, 2], strides=[2, 2, 1])], []) self._assert_inferred( graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 4, 4, 3, 4))]) def test_relu(self) -> None: self._identity_prop('Relu') def test_identity(self) -> None: self._identity_prop('Identity') def test_identity_sequence(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 5, 4))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('Identity', ['in_sequence'], ['output_sequence'])], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, None, 4)), # type: ignore make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, None, 4))]) # type: ignore def test_identity_optional(self) -> None: graph = self._make_graph( [('in_tensor', TensorProto.FLOAT, (2, 3, 4))], [make_node('Optional', ['in_tensor'], ['in_optional']), make_node('Identity', ['in_optional'], ['output_optional'])], []) tensor_type_proto = helper.make_tensor_type_proto(TensorProto.FLOAT, (2, 3, 4)) optional_type_proto = helper.make_optional_type_proto(tensor_type_proto) self._assert_inferred( graph, [helper.make_value_info('in_optional', optional_type_proto), # type: ignore helper.make_value_info('output_optional', optional_type_proto)]) # type: ignore def test_identity_optional_sequence(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 5, 4))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('Optional', ['in_sequence'], ['in_optional']), make_node('Identity', ['in_optional'], ['output_optional'])], []) tensor_type_proto = helper.make_tensor_type_proto(TensorProto.FLOAT, (2, None, 4)) sequence_type_proto = helper.make_sequence_type_proto(tensor_type_proto) optional_type_proto = helper.make_optional_type_proto(sequence_type_proto) self._assert_inferred( graph, [helper.make_value_info('in_sequence', sequence_type_proto), # type: ignore helper.make_value_info('in_optional', optional_type_proto), # type: ignore helper.make_value_info('output_optional', optional_type_proto)]) # type: ignore def test_add(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y', TensorProto.FLOAT, (30, 4, 5))], [make_node('Add', ['x', 'y'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 4, 5))]) def test_pow(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y', TensorProto.FLOAT, (30, 4, 5))], [make_node('Pow', ['x', 'y'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 4, 5))]) def test_bitshift(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT32, (2, 3, 1)), ('y', TensorProto.UINT32, (2, 3, 1))], [make_node('BitShift', ['x', 'y'], 'z', direction="RIGHT")], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.UINT32, (2, 3, 1))]) def test_bitshift_broadcast_to_first(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT32, (16, 4, 1)), ('y', TensorProto.UINT32, (1,))], [make_node('BitShift', ['x', 'y'], 'z', direction="RIGHT")], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.UINT32, (16, 4, 1))]) def test_bitshift_broadcast_to_second(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT32, (1,)), ('y', TensorProto.UINT32, (2, 3, 1))], [make_node('BitShift', ['x', 'y'], 'z', direction="RIGHT")], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.UINT32, (2, 3, 1))]) def test_sum_single(self) -> None: self._identity_prop('Sum') def test_sum_multi(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y', TensorProto.FLOAT, (30, 4, 5)), ('z', TensorProto.FLOAT, (30, 4, 5))], [make_node('Sum', ['x', 'y', 'z'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (30, 4, 5))]) def test_sum_multi_broadcasting(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 1, 5)), ('y', TensorProto.FLOAT, ("a", 4, 1)), ('z', TensorProto.FLOAT, (4, "b"))], [make_node('Sum', ['x', 'y', 'z'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (30, 4, 5))]) def test_sum_broadcasting_param(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, ("a", 1, 5)), ('y', TensorProto.FLOAT, ("a", 4, 1))], [make_node('Sum', ['x', 'y'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, ("a", 4, 5))]) def test_random_normal(self) -> None: graph = self._make_graph( [], [make_node('RandomNormal', [], ['out'], dtype=TensorProto.DOUBLE, shape=(3, 4, 5))], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.DOUBLE, (3, 4, 5))]) def test_random_normal_like(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node('RandomNormalLike', ['X'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (2, 3, 4))]) def test_random_normal_like_with_dtype(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node('RandomNormalLike', ['X'], ['out'], dtype=TensorProto.DOUBLE,)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.DOUBLE, (2, 3, 4))]) def test_bernoulli(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4))], [make_node('Bernoulli', ['x'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (3, 4))]) # type: ignore def test_bernoulli_with_dtype(self) -> None: graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 3, 4))], [make_node('Bernoulli', ['x'], ['out'], dtype=TensorProto.DOUBLE,)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.DOUBLE, (2, 3, 4))]) # type: ignore def _logical_binary_op(self, op: str, input_type: TensorProto.DataType) -> None: graph = self._make_graph( [('x', input_type, (30, 4, 5)), ('y', input_type, (30, 4, 5))], [make_node(op, ['x', 'y'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.BOOL, (30, 4, 5))]) def _logical_binary_op_with_broadcasting(self, op: str, input_type: TensorProto.DataType) -> None: graph = self._make_graph( [('x', input_type, (1, 5)), ('y', input_type, (30, 4, 5))], [make_node(op, ['x', 'y'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.BOOL, (30, 4, 5))]) def test_logical_and(self) -> None: self._logical_binary_op('And', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('And', TensorProto.BOOL) def test_logical_or(self) -> None: self._logical_binary_op('Or', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('Or', TensorProto.BOOL) def test_logical_xor(self) -> None: self._logical_binary_op('Xor', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('Xor', TensorProto.BOOL) def test_greater(self) -> None: self._logical_binary_op('Greater', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('Greater', TensorProto.BOOL) def test_less(self) -> None: self._logical_binary_op('Less', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('Less', TensorProto.BOOL) def test_equal(self) -> None: self._logical_binary_op('Equal', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('Equal', TensorProto.BOOL) def test_logical_not(self) -> None: graph = self._make_graph( [('x', TensorProto.BOOL, (30, 4, 5))], [make_node('Not', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.BOOL, (30, 4, 5))]) def test_less_or_equal(self) -> None: self._logical_binary_op('LessOrEqual', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('LessOrEqual', TensorProto.BOOL) def test_greater_or_equal(self) -> None: self._logical_binary_op('GreaterOrEqual', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('GreaterOrEqual', TensorProto.BOOL) def test_flatten(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3, 4, 5))], [make_node('Flatten', ['x'], ['z'], axis=2)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (6, 20))]) def test_flatten_default_axis(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3, 4, 5))], [make_node('Flatten', ['x'], ['z'])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, 60))]) def test_flatten_zero_axis(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3, 4, 5))], [make_node('Flatten', ['x'], ['z'], axis=0)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (1, 120))]) def test_flatten_unknown_dim(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 'N', 4, 5))], [make_node('Flatten', ['x'], ['z'], axis=2)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, 20))]) # type: ignore def test_space_to_depth(self) -> None: b = 10 graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3, 100, 100))], [make_node('SpaceToDepth', ['x'], ['z'], blocksize=b)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, 300, 10, 10))]) def test_space_to_depth_unknown_dim(self) -> None: b = 10 graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 'N', 100, 100))], [make_node('SpaceToDepth', ['x'], ['z'], blocksize=b)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, None, 10, 10))]) # type: ignore def test_depth_to_space(self) -> None: b = 10 graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 300, 10, 10))], [make_node('DepthToSpace', ['x'], ['z'], blocksize=b, mode='DCR')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, 3, 100, 100))]) def _rnn_forward(self, seqlen: int, batchsize: int, inpsize: int, hiddensize: int) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (seqlen, batchsize, inpsize)), ('w', TensorProto.FLOAT, (1, hiddensize, inpsize)), ('r', TensorProto.FLOAT, (1, hiddensize, hiddensize))], [make_node('RNN', ['x', 'w', 'r'], ['all', 'last'], hidden_size=hiddensize)], []) self._assert_inferred(graph, [ make_tensor_value_info('all', TensorProto.FLOAT, (seqlen, 1, batchsize, hiddensize)), make_tensor_value_info('last', TensorProto.FLOAT, (1, batchsize, hiddensize))]) def test_rnn_forward(self) -> None: self._rnn_forward(64, 32, 10, 4) def _rnn_bidirectional(self, seqlen: int, batchsize: int, inpsize: int, hiddensize: int) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (seqlen, batchsize, inpsize)), ('w', TensorProto.FLOAT, (2, hiddensize, inpsize)), ('r', TensorProto.FLOAT, (2, hiddensize, hiddensize))], [make_node('RNN', ['x', 'w', 'r'], ['all', 'last'], hidden_size=hiddensize, direction="bidirectional")], []) self._assert_inferred(graph, [ make_tensor_value_info('all', TensorProto.FLOAT, (seqlen, 2, batchsize, hiddensize)), make_tensor_value_info('last', TensorProto.FLOAT, (2, batchsize, hiddensize))]) def test_rnn_layout(self) -> None: self._rnn_layout(64, 32, 10, 4) self._rnn_layout(64, 32, 10, 4, 'bidirectional') def _rnn_layout(self, seqlen: int, batchsize: int, inpsize: int, hiddensize: int, direction: str = 'forward') -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (batchsize, seqlen, inpsize)), ('w', TensorProto.FLOAT, (1, hiddensize, inpsize)), ('r', TensorProto.FLOAT, (1, hiddensize, hiddensize))], [make_node('RNN', ['x', 'w', 'r'], ['all', 'last'], hidden_size=hiddensize, layout=1, direction=direction)], []) if(direction == 'bidirectional'): num_directions = 2 else: num_directions = 1 self._assert_inferred(graph, [ make_tensor_value_info('all', TensorProto.FLOAT, (batchsize, seqlen, num_directions, hiddensize)), make_tensor_value_info('last', TensorProto.FLOAT, (batchsize, num_directions, hiddensize))]) def test_rnn_bidirectional(self) -> None: self._rnn_bidirectional(64, 32, 10, 4) def _lstm_forward(self, seqlen: int, batchsize: int, inpsize: int, hiddensize: int) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (seqlen, batchsize, inpsize)), ('w', TensorProto.FLOAT, (1, 4 * hiddensize, inpsize)), ('r', TensorProto.FLOAT, (1, 4 * hiddensize, hiddensize))], [make_node('LSTM', ['x', 'w', 'r'], ['all', 'hidden', 'last'], hidden_size=hiddensize)], []) self._assert_inferred(graph, [ make_tensor_value_info('all', TensorProto.FLOAT, (seqlen, 1, batchsize, hiddensize)), make_tensor_value_info('hidden', TensorProto.FLOAT, (1, batchsize, hiddensize)), make_tensor_value_info('last', TensorProto.FLOAT, (1, batchsize, hiddensize))]) def test_lstm_forward(self) -> None: self._lstm_forward(64, 32, 10, 4) def test_topk_default_axis(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 10))], [make_node('TopK', ['x', 'k'], ['y', 'z'])], [], initializer=[make_tensor('k', TensorProto.INT64, (1,), (2,))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 4, 5, 2)), make_tensor_value_info('z', TensorProto.INT64, (3, 4, 5, 2))]) def test_topk(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 10))], [make_node('TopK', ['x', 'k'], ['y', 'z'], axis=2)], [], initializer=[make_tensor('k', TensorProto.INT64, (1,), (2,))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 4, 2, 10)), make_tensor_value_info('z', TensorProto.INT64, (3, 4, 2, 10))]) def test_topk_raw_data(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 10))], [make_node('TopK', ['x', 'k'], ['y', 'z'], axis=2)], [], initializer=[make_tensor('k', TensorProto.INT64, (1,), vals=np.array([3], dtype='<i8').tobytes(), raw=True)]) # Feed raw bytes (force little endian ordering like onnx standard) for test purpose self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 4, 3, 10)), make_tensor_value_info('z', TensorProto.INT64, (3, 4, 3, 10))]) def test_topk_missing_k_value_output_rank_check(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 10)), ('k', TensorProto.INT64, (1,))], [make_node('TopK', ['x', 'k'], ['y', 'z'], axis=2)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (None, None, None, None)), # type: ignore make_tensor_value_info('z', TensorProto.INT64, (None, None, None, None))]) # type: ignore def test_gemm(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (7, 5)), ('y', TensorProto.FLOAT, (5, 11)), ('z', TensorProto.FLOAT, None)], [make_node('Gemm', ['x', 'y', 'z'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (7, 11))]) def test_gemm_transA(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 7)), ('y', TensorProto.FLOAT, (5, 11)), ('z', TensorProto.FLOAT, None)], [make_node('Gemm', ['x', 'y', 'z'], ['out'], transA=1)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (7, 11))]) def test_gemm_transB(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (7, 5)), ('y', TensorProto.FLOAT, (11, 5)), ('z', TensorProto.FLOAT, None)], [make_node('Gemm', ['x', 'y', 'z'], ['out'], transB=1)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (7, 11))]) def test_gemm_transA_and_transB(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 7)), ('y', TensorProto.FLOAT, (11, 5)), ('z', TensorProto.FLOAT, None)], [make_node('Gemm', ['x', 'y', 'z'], ['out'], transA=1, transB=1)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (7, 11))]) def test_gemm_no_bias(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (13, 7)), ('y', TensorProto.FLOAT, (7, 17))], [make_node('Gemm', ['x', 'y'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (13, 17))]) def test_reduce_op_shape_2_axis(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ReduceL1', 'x', 'y', axes=(1, 2), keepdims=0)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (24,))]) def test_reduce_op_shape_keep_dims(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ReduceL1', 'x', 'y', axes=(1, 2), keepdims=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (24, 1, 1))]) def test_reduce_op_shape_default_value(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ReduceL1', 'x', 'y')], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 1, 1))]) def test_reduce_op_shape_no_axes_do_not_keep_dims(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ReduceL1', 'x', 'y', keepdims=0)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, tuple())]) def test_reduce_op_shape_negative_axis(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ReduceL1', 'x', 'y', axes=(-1, -2))], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (24, 1, 1))]) def test_argmax_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ArgMax', 'x', 'y', axis=1, keepdims=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (24, 1, 11))]) def test_argmax_shape_keepdims(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ArgMax', 'x', 'y', axis=0, keepdims=0)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (4, 11))]) def test_argmax_shape_default_value(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ArgMax', 'x', 'y')], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (1, 4, 11))]) def test_argmax_shape_negative_axis(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ArgMax', 'x', 'y', axis=-2)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (24, 1, 11))]) def test_dropout(self) -> None: graph = self._make_graph( [('data', TensorProto.FLOAT, (3, 4, 5,)), ('ratio', TensorProto.FLOAT, ())], [make_node('Dropout', ['data', 'ratio'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (3, 4, 5,))]) def test_LRN(self) -> None: self._identity_prop('LRN', alpha=0.5, beta=0.5, size=1) def test_batch_norm(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 6, 7)), ('scale', TensorProto.FLOAT, (4,)), ('b', TensorProto.FLOAT, (4,)), ('mean', TensorProto.FLOAT, (4,)), ('var', TensorProto.FLOAT, (4,))], [make_node('BatchNormalization', ['x', 'scale', 'b', 'mean', 'var'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (3, 4, 5, 6, 7))]) def test_batch_norm_rank1(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (128,)), # 1-dimensional permitted ('scale', TensorProto.FLOAT, (1,)), ('b', TensorProto.FLOAT, (1,)), ('mean', TensorProto.FLOAT, (1,)), ('var', TensorProto.FLOAT, (1,))], [make_node('BatchNormalization', ['x', 'scale', 'b', 'mean', 'var'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (128,))]) def test_batch_norm_invalid(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (128,)), ('scale', TensorProto.FLOAT, (1, 2)), # invalid rank ('b', TensorProto.FLOAT, (1,)), ('mean', TensorProto.FLOAT, (1,)), ('var', TensorProto.FLOAT, (1,))], [make_node('BatchNormalization', ['x', 'scale', 'b', 'mean', 'var'], ['out'])], []) self.assertRaises(onnx.shape_inference.InferenceError, self._inferred, graph) def test_split_negative_axis(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 4))], [make_node('Split', ['x'], ['y', 'z'], axis=-1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 2)), make_tensor_value_info('z', TensorProto.FLOAT, (2, 2))]) def test_split_with_split_attribute(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 4)), ('split', TensorProto.INT64, (2,))], [make_node('Split', ['x', 'split'], ['y', 'z'], axis=1)], [], initializer=[make_tensor('split', TensorProto.INT64, (2,), (3, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 3)), make_tensor_value_info('z', TensorProto.FLOAT, (2, 1))]) def test_split_with_split_attribute_unknown_split_dim(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 'a', 'b')), ('split', TensorProto.INT64, (2,))], [make_node('Split', ['x', 'split'], ['y', 'z'], axis=1)], [], initializer=[make_tensor('split', TensorProto.INT64, (2,), (3, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, None, 'b')), # type: ignore make_tensor_value_info('z', TensorProto.FLOAT, (2, None, 'b'))]) # type: ignore def test_split_from_GLU(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 6, 7))], [make_node('Split', ['x'], ['y', 'z'], axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (5, 3, 7)), make_tensor_value_info('z', TensorProto.FLOAT, (5, 3, 7))]) def test_GLU_partial(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 6, 7))], [make_node('Split', ['x'], ['y', 'z'], axis=1), make_node('Sigmoid', ['z'], ['a'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (5, 3, 7)), make_tensor_value_info('z', TensorProto.FLOAT, (5, 3, 7)), make_tensor_value_info('a', TensorProto.FLOAT, (5, 3, 7))]) def test_GLU(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 6, 7))], [make_node('Split', ['x'], ['y', 'z'], axis=1), make_node('Sigmoid', ['z'], ['a']), make_node('Mul', ['y', 'a'], ['b'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (5, 3, 7)), make_tensor_value_info('z', TensorProto.FLOAT, (5, 3, 7)), make_tensor_value_info('a', TensorProto.FLOAT, (5, 3, 7)), make_tensor_value_info('b', TensorProto.FLOAT, (5, 3, 7))]) def test_softmax_2d(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5))], [make_node('Softmax', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5))]) def test_softmax_3d(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6))], [make_node('Softmax', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5, 6))]) def test_hardmax_2d(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5))], [make_node('Hardmax', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5))]) def test_hardmax_3d(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6))], [make_node('Hardmax', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5, 6))]) def test_logsoftmax_2d(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5))], [make_node('LogSoftmax', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5))]) def test_logsoftmax_3d(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6))], [make_node('LogSoftmax', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5, 6))]) def test_logsoftmax_3d_negative_axis(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6))], [make_node('LogSoftmax', ['x'], 'z', axis=-1)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5, 6))]) def test_maxpool(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3))]) def test_maxpool_with_indices(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y", "Z"], kernel_shape=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3)), make_tensor_value_info("Z", TensorProto.INT64, (5, 3, 3, 3))]) def test_maxpool_3D(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3, 3))]) def test_maxpool_with_padding(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2], pads=[1, 1, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 6, 6))]) def test_maxpool_with_padding_and_stride(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2], pads=[1, 1, 2, 2], strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3))]) def test_maxpool_with_floor_mode(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (32, 288, 35, 35))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2], strides=[2, 2], ceil_mode=False)], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (32, 288, 17, 17))]) def test_maxpool_with_ceil_mode(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (32, 288, 35, 35))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2], strides=[2, 2], ceil_mode=True)], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (32, 288, 18, 18))]) def test_maxpool_ceil(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (1, 1, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[3, 3], strides=[2, 2], ceil_mode=True)], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (1, 1, 2, 2))]) def test_maxpool_with_dilations(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2], dilations=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 2, 2))]) def test_maxpool_with_same_upper_padding_and_stride(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], auto_pad="SAME_UPPER", kernel_shape=[2, 2], strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 2, 2))]) def test_maxpool_with_same_upper_padding_and_stride_and_dilation(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], auto_pad="SAME_UPPER", kernel_shape=[2, 2], strides=[2, 2], dilations=[2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 2, 2))]) def test_maxpool_with_same_upper_padding_and_stride_one(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], auto_pad="SAME_UPPER", kernel_shape=[2, 2], strides=[1, 1])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 4, 4))]) def test_maxpool_with_same_lower_padding_and_stride(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 9, 9))], [make_node("MaxPool", ["X"], ["Y"], auto_pad="SAME_LOWER", kernel_shape=[2, 2], strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 5, 5))]) def test_maxpool_with_same_lower_padding_and_stride_and_dilation(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 9, 9))], [make_node("MaxPool", ["X"], ["Y"], auto_pad="SAME_LOWER", kernel_shape=[2, 2], strides=[2, 2], dilations=[2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 5, 5))]) def test_maxpool_with_same_lower_padding_and_big_stride(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], auto_pad="SAME_LOWER", kernel_shape=[2, 2], strides=[4, 4])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 1, 1))]) def test_averagepool(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("AveragePool", ["X"], ["Y"], kernel_shape=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3))]) def test_averagepool_3D(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4, 4))], [make_node("AveragePool", ["X"], ["Y"], kernel_shape=[2, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3, 3))]) def test_averagepool_with_padding(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("AveragePool", ["X"], ["Y"], kernel_shape=[2, 2], pads=[1, 1, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 6, 6))]) def test_averagepool_with_padding_and_stride(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("AveragePool", ["X"], ["Y"], kernel_shape=[2, 2], pads=[1, 1, 2, 2], strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3))]) def test_averagepool_ceil(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (1, 1, 4, 4))], [make_node("AveragePool", ["X"], ["Y"], kernel_shape=[3, 3], strides=[2, 2], ceil_mode=True)], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (1, 1, 2, 2))]) def test_lppool(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("LpPool", ["X"], ["Y"], kernel_shape=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3))]) def test_lppool_3D(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4, 4))], [make_node("LpPool", ["X"], ["Y"], kernel_shape=[2, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3, 3))]) def test_lppool_with_padding(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("LpPool", ["X"], ["Y"], kernel_shape=[2, 2], pads=[1, 1, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 6, 6))]) def test_lppool_with_padding_and_stride(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("LpPool", ["X"], ["Y"], kernel_shape=[2, 2], pads=[1, 1, 2, 2], strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3))]) def test_roipool(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4)), ("rois", TensorProto.INT64, (2, 5))], [make_node("MaxRoiPool", ["X", "rois"], ["Y"], pooled_shape=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (2, 3, 2, 2))]) def test_lp_norm(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 6, 7))], [make_node('LpNormalization', ['x'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (3, 4, 5, 6, 7))]) def test_instance_norm(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 6, 7)), ('scale', TensorProto.FLOAT, (4,)), ('b', TensorProto.FLOAT, (4,))], [make_node('InstanceNormalization', ['x', 'scale', 'b'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (3, 4, 5, 6, 7))]) def test_global_maxpool(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("GlobalMaxPool", ["X"], ["Y"])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 1, 1))]) def test_global_averagepool(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("GlobalAveragePool", ["X"], ["Y"])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 1, 1))]) def test_global_lppool(self) -> None: graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("GlobalLpPool", ["X"], ["Y"])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 1, 1))]) def test_conv_transpose(self) -> None: graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, 3, 3))], [make_node('ConvTranspose', ['X', 'W'], 'Y', strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 32, 33, 33))]) def test_conv_transpose_with_pads(self) -> None: graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, 3, 3))], [make_node('ConvTranspose', ['X', 'W'], 'Y', strides=[2, 2], pads=[1, 1, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 32, 30, 30))]) def test_conv_transpose_with_output_shape(self) -> None: graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, 3, 3))], [make_node('ConvTranspose', ['X', 'W'], 'Y', strides=[2, 2], pads=[1, 1, 2, 2], output_shape=[36, 36])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 32, 36, 36))]) def test_conv_transpose_with_kernel_shape(self) -> None: graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, None, None))], [make_node('ConvTranspose', ['X', 'W'], 'Y', kernel_shape=[3, 3], strides=[2, 2], pads=[1, 1, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 32, 30, 30))]) def test_conv_transpose_with_dilations(self) -> None: graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, 3, 3))], [make_node('ConvTranspose', ['X', 'W'], 'Y', strides=[2, 2], pads=[1, 1, 2, 2], dilations=[3, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 32, 34, 34))]) def test_conv_transpose_with_group(self) -> None: graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, 3, 3))], [make_node('ConvTranspose', ['X', 'W'], 'Y', strides=[2, 2], pads=[1, 1, 2, 2], group=2)], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 64, 30, 30))]) def test_conv_transpose_with_group_and_output_shape(self) -> None: graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, 3, 3))], [make_node('ConvTranspose', ['X', 'W'], 'Y', strides=[2, 2], pads=[1, 1, 2, 2], group=2, output_shape=[36, 36])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 64, 36, 36))]) def test_conv_transpose_with_pads_and_auto_pads(self) -> None: # This test should fail because pads cannot be used simultaneously with auto_pad graph = self._make_graph( [('X', TensorProto.FLOAT, (1, 1, 2, 2)), ('W', TensorProto.FLOAT, (1, 1, 3, 3)), ('B', TensorProto.FLOAT, (1, ))], [make_node('ConvTranspose', ['X', 'W', 'B'], 'Y', auto_pad="SAME_UPPER", strides=[1, 1], pads=[0, 1, 1, 0])], []) self.assertRaises(onnx.shape_inference.InferenceError, onnx.shape_inference.infer_shapes, helper.make_model(graph), strict_mode=True) def test_conv_transpose_auto_pads(self) -> None: graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, 3, 3))], [make_node('ConvTranspose', ['X', 'W'], 'Y', auto_pad="SAME_UPPER", strides=[2, 2])], []) self._assert_inferred( graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 32, 32, 32))]) def test_mvn_function_output_shape(self) -> None: graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16))], [make_node('MeanVarianceNormalization', 'X', 'Y', axes=[0, 2, 3])], [] ) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 48, 16, 16))]) def test_scan(self) -> None: batch_size = 1 seq_len = 'sequence' input_size = 2 loop_state_size = 3 # can't use self._make_graph for the subgraph as it add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the number of inputs passed from Scan to match # the GraphProto, but Scan knows nothing about the additional inputs. input_value_infos = [make_tensor_value_info('loop_state_in', TensorProto.UNDEFINED, None), make_tensor_value_info('input', TensorProto.UNDEFINED, None)] output_value_infos = [make_tensor_value_info('loop_state_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.UNDEFINED, None)] subgraph = helper.make_graph( [make_node('Identity', ['loop_state_in'], ['loop_state_out']), make_node('Identity', ['input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('loop_state_orig', TensorProto.FLOAT, (batch_size, loop_state_size)), ('scan_input', TensorProto.FLOAT, (batch_size, seq_len, input_size))], [make_node('Scan', ['', 'loop_state_orig', 'scan_input'], ['loop_state_final', 'scan_output'], num_scan_inputs=1, body=subgraph)], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_state_final', TensorProto.FLOAT, (batch_size, loop_state_size)), make_tensor_value_info('scan_output', TensorProto.FLOAT, (batch_size, seq_len, input_size))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 8)]) def test_scan_opset9(self) -> None: seq_len = 'sequence' input_size = 2 loop_state_size = 3 # can't use self._make_graph for the subgraph as it add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the number of inputs passed from Scan to match # the GraphProto, but Scan knows nothing about the additional inputs. input_value_infos = [make_tensor_value_info('loop_state_in', TensorProto.UNDEFINED, None), make_tensor_value_info('input', TensorProto.UNDEFINED, None)] output_value_infos = [make_tensor_value_info('loop_state_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.UNDEFINED, None)] subgraph = helper.make_graph( [make_node('Identity', ['loop_state_in'], ['loop_state_out']), make_node('Identity', ['input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('loop_state_orig', TensorProto.FLOAT, (loop_state_size,)), ('scan_input', TensorProto.FLOAT, (seq_len, input_size))], [make_node('Scan', ['loop_state_orig', 'scan_input'], ['loop_state_final', 'scan_output'], num_scan_inputs=1, body=subgraph)], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_state_final', TensorProto.FLOAT, (loop_state_size,)), make_tensor_value_info('scan_output', TensorProto.FLOAT, (seq_len, input_size))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 9)]) def test_scan_opset9_axes(self) -> None: axis_0_len = 'axis0' seq_len = 'sequence' input_size = 2 loop_state_size = 3 # can't use self._make_graph for the subgraph as it add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the number of inputs passed from Scan to match # the GraphProto, but Scan knows nothing about the additional inputs. input_value_infos = [make_tensor_value_info('loop_state_in', TensorProto.UNDEFINED, None), make_tensor_value_info('input', TensorProto.UNDEFINED, None)] output_value_infos = [make_tensor_value_info('loop_state_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.UNDEFINED, None)] subgraph = helper.make_graph( [make_node('Identity', ['loop_state_in'], ['loop_state_out']), make_node('Identity', ['input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('loop_state_orig', TensorProto.FLOAT, (loop_state_size,)), ('scan_input', TensorProto.FLOAT, (axis_0_len, seq_len, input_size))], [make_node('Scan', ['loop_state_orig', 'scan_input'], ['loop_state_final', 'scan_output'], num_scan_inputs=1, body=subgraph, scan_input_axes=[1])], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_state_final', TensorProto.FLOAT, (loop_state_size,)), make_tensor_value_info('scan_output', TensorProto.FLOAT, (seq_len, axis_0_len, input_size))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 9)]) def test_scan_opset9_output_axes(self) -> None: axis_0_len = 'axis0' seq_len = 'sequence' input_size = 2 loop_state_size = 3 input_value_infos = [make_tensor_value_info('loop_state_in', TensorProto.UNDEFINED, None), make_tensor_value_info('input', TensorProto.UNDEFINED, None)] output_value_infos = [make_tensor_value_info('loop_state_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.UNDEFINED, None)] subgraph = helper.make_graph( [make_node('Identity', ['loop_state_in'], ['loop_state_out']), make_node('Identity', ['input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('loop_state_orig', TensorProto.FLOAT, (loop_state_size,)), ('scan_input', TensorProto.FLOAT, (axis_0_len, seq_len, input_size))], [make_node('Scan', ['loop_state_orig', 'scan_input'], ['loop_state_final', 'scan_output'], num_scan_inputs=1, body=subgraph, scan_input_axes=[1], scan_output_axes=[1])], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_state_final', TensorProto.FLOAT, (loop_state_size,)), make_tensor_value_info('scan_output', TensorProto.FLOAT, (axis_0_len, seq_len, input_size))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 9)]) def test_scan_opset9_negative_axes(self) -> None: axis_0_len = 'axis0' seq_len = 'sequence' input_size = 2 loop_state_size = 3 input_value_infos = [make_tensor_value_info('loop_state_in', TensorProto.UNDEFINED, None), make_tensor_value_info('input', TensorProto.UNDEFINED, None)] output_value_infos = [make_tensor_value_info('loop_state_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.UNDEFINED, None)] subgraph = helper.make_graph( [make_node('Identity', ['loop_state_in'], ['loop_state_out']), make_node('Identity', ['input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('loop_state_orig', TensorProto.FLOAT, (loop_state_size,)), ('scan_input', TensorProto.FLOAT, (axis_0_len, seq_len, input_size))], [make_node('Scan', ['loop_state_orig', 'scan_input'], ['loop_state_final', 'scan_output'], num_scan_inputs=1, body=subgraph, scan_input_axes=[-2], scan_output_axes=[-2])], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_state_final', TensorProto.FLOAT, (loop_state_size,)), make_tensor_value_info('scan_output', TensorProto.FLOAT, (axis_0_len, seq_len, input_size))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 9)]) def test_if_ver1(self) -> None: # Create a simple If node where the 'then' subgraph adds to the current value, and the 'else' subgraph # subtracts. # can't use self._make_graph for the subgraphs as that add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the subgraphs to have zero inputs then_subgraph = helper.make_graph( [make_node('Add', ['current_value', 'add_value'], ['then_output'])], "then_subgraph", [], # no inputs [make_tensor_value_info('then_output', TensorProto.UNDEFINED, None)], ) else_subgraph = helper.make_graph( [make_node('Sub', ['current_value', 'sub_value'], ['else_output'])], "else_subgraph", [], # no inputs [make_tensor_value_info('else_output', TensorProto.UNDEFINED, None)], ) graph = self._make_graph( [('cond', TensorProto.BOOL, (1,)), ('current_value', TensorProto.FLOAT, (1,)), ('add_value', TensorProto.FLOAT, (1,)), ('sub_value', TensorProto.FLOAT, (1,))], [make_node('If', ['cond'], ['if_output'], then_branch=then_subgraph, else_branch=else_subgraph)], [] ) self._assert_inferred( graph, [make_tensor_value_info('if_output', TensorProto.FLOAT, (1,))], opset_imports=[make_opsetid(ONNX_DOMAIN, 10)]) def test_if(self) -> None: # Create a simple If node where the 'then' subgraph adds to the current value, and the 'else' subgraph # subtracts. # can't use self._make_graph for the subgraphs as that add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the subgraphs to have zero inputs then_subgraph = helper.make_graph( [make_node('Add', ['current_value', 'add_value'], ['then_output'])], "then_subgraph", [], # no inputs [make_tensor_value_info('then_output', TensorProto.UNDEFINED, None)], ) else_subgraph = helper.make_graph( [make_node('Sub', ['current_value', 'sub_value'], ['else_output'])], "else_subgraph", [], # no inputs [make_tensor_value_info('else_output', TensorProto.UNDEFINED, None)], ) graph = self._make_graph( [('cond', TensorProto.BOOL, (1,)), ('current_value', TensorProto.FLOAT, (1,)), ('add_value', TensorProto.FLOAT, (1,)), ('sub_value', TensorProto.FLOAT, (1,))], [make_node('If', ['cond'], ['if_output'], then_branch=then_subgraph, else_branch=else_subgraph)], [] ) self._assert_inferred(graph, [make_tensor_value_info('if_output', TensorProto.FLOAT, (1,))]) def test_if_with_different_shapes_in_then_else_branches(self) -> None: # Create a simple If node where the 'then' subgraph adds to the current value, and the 'else' subgraph # subtracts. # can't use self._make_graph for the subgraphs as that add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the subgraphs to have zero inputs then_subgraph = helper.make_graph( [make_node('Add', ['current_value', 'add_value'], ['then_output'])], "then_subgraph", [], # no inputs [make_tensor_value_info('then_output', TensorProto.UNDEFINED, (1,))], ) else_subgraph = helper.make_graph( [make_node('Sub', ['current_value', 'sub_value'], ['else_output'])], "else_subgraph", [], # no inputs [make_tensor_value_info('else_output', TensorProto.UNDEFINED, (5,))], ) graph = self._make_graph( [('cond', TensorProto.BOOL, (1,)), ('current_value', TensorProto.FLOAT, (1,)), ('add_value', TensorProto.FLOAT, (1,)), ('sub_value', TensorProto.FLOAT, (5,))], [make_node('If', ['cond'], ['if_output'], then_branch=then_subgraph, else_branch=else_subgraph)], [] ) self._assert_inferred(graph, [make_tensor_value_info('if_output', TensorProto.FLOAT, (None,))]) # type: ignore def test_if_with_different_optional_shapes_in_then_else_branches(self) -> None: # Create a simple If node where the 'then' subgraph adds to the current value, and the 'else' subgraph # subtracts. # can't use self._make_graph for the subgraphs as that add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the subgraphs to have zero inputs then_tensor_proto = helper.make_tensor_type_proto(elem_type=TensorProto.UNDEFINED, shape=[1, ]) then_optional_type_proto = helper.make_optional_type_proto(then_tensor_proto) then_optional_vi = helper.make_value_info('then_optional_output', then_optional_type_proto) then_subgraph = helper.make_graph( [make_node('Optional', ['then_tensor_value'], ['then_optional_output'])], "then_subgraph", [], # no inputs [then_optional_vi], ) else_tensor_proto = helper.make_tensor_type_proto(elem_type=TensorProto.UNDEFINED, shape=[5, ]) else_optional_type_proto = helper.make_optional_type_proto(else_tensor_proto) else_optional_vi = helper.make_value_info('else_optional_output', else_optional_type_proto) else_subgraph = helper.make_graph( [make_node('Optional', ['else_tensor_value'], ['else_optional_output'])], "else_subgraph", [], # no inputs [else_optional_vi], ) graph = self._make_graph( [('cond', TensorProto.BOOL, (1,)), ('then_tensor_value', TensorProto.FLOAT, (1,)), ('else_tensor_value', TensorProto.FLOAT, (5,))], [make_node('If', ['cond'], ['if_output'], then_branch=then_subgraph, else_branch=else_subgraph)], [] ) output_tensor_proto = helper.make_tensor_type_proto(elem_type=TensorProto.FLOAT, shape=(None, )) output_optional_type_proto = helper.make_optional_type_proto(output_tensor_proto) output_optional_vi = helper.make_value_info('if_output', output_optional_type_proto) self._assert_inferred(graph, [output_optional_vi]) # type: ignore def test_maxunpool_shape_without_output_shape(self) -> None: graph = self._make_graph( [('xT', TensorProto.FLOAT, (1, 1, 2, 2)), ('xI', TensorProto.FLOAT, (1, 1, 2, 2))], [make_node('MaxUnpool', ['xT', 'xI'], 'Y', kernel_shape=[2, 2], strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (1, 1, 4, 4))]) def test_maxunpool_shape_with_output_shape(self) -> None: graph = self._make_graph( [('xT', TensorProto.FLOAT, (1, 1, 2, 2)), ('xI', TensorProto.FLOAT, (1, 1, 2, 2)), ('output_shape', TensorProto.FLOAT, (4, ))], [make_node('MaxUnpool', ['xT', 'xI', 'output_shape'], 'Y', kernel_shape=[2, 2], strides=[2, 2])], [make_tensor_value_info("Y", TensorProto.FLOAT, None)]) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, None)]) def test_onehot_without_axis(self) -> None: graph = self._make_graph( [('indices', TensorProto.INT64, (2, 2)), ('depth', TensorProto.INT64, ()), ('values', TensorProto.FLOAT, (2, ))], [make_node('OneHot', ['indices', 'depth', 'values'], 'Y')], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (2, 2, None))]) # type: ignore def test_onehot_with_axis(self) -> None: graph = self._make_graph( [('indices', TensorProto.INT64, (2, 3, 5)), ('depth', TensorProto.INT64, (1, )), ('values', TensorProto.FLOAT, (2, ))], [make_node('OneHot', ['indices', 'depth', 'values'], 'Y', axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (2, None, 3, 5))]) # type: ignore def test_loop(self) -> None: # can't use self._make_graph for the subgraph as it add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the number of inputs passed from Loop to match # the GraphProto, but Loop knows nothing about the additional inputs. input_value_infos = [make_tensor_value_info('iter_num_in', TensorProto.INT64, (1,)), make_tensor_value_info('cond_in', TensorProto.UNDEFINED, None), make_tensor_value_info('loop_state_in', TensorProto.UNDEFINED, ())] output_value_infos = [make_tensor_value_info('cond_out', TensorProto.UNDEFINED, None), make_tensor_value_info('loop_state_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.FLOAT, (3,))] subgraph = helper.make_graph( [make_node('Identity', ['cond_in'], ['cond_out']), make_node('Identity', ['loop_state_in'], ['loop_state_out']), make_node('Identity', ['outer_scope_input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('max_trip_count', TensorProto.INT64, (1,)), ('cond_orig', TensorProto.FLOAT, (1,)), ('loop_state_orig', TensorProto.FLOAT, (2,)), ('outer_scope_input', TensorProto.FLOAT, (3,))], [make_node('Loop', ['max_trip_count', 'cond_orig', 'loop_state_orig'], ['loop_state_final', 'loop_output'], body=subgraph)], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_state_final', TensorProto.FLOAT, None), # shape may change between iterations make_tensor_value_info('loop_output', TensorProto.FLOAT, (None, 3))]) # type: ignore def test_loop_no_state(self) -> None: input_value_infos = [make_tensor_value_info('iter_num_in', TensorProto.INT64, (1,)), make_tensor_value_info('cond_in', TensorProto.UNDEFINED, None)] output_value_infos = [make_tensor_value_info('cond_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.FLOAT, (3,))] subgraph = helper.make_graph( [make_node('Identity', ['cond_in'], ['cond_out']), make_node('Identity', ['outer_scope_input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('max_trip_count', TensorProto.INT64, (1,)), ('cond_orig', TensorProto.FLOAT, (1,)), ('outer_scope_input', TensorProto.FLOAT, (3,))], [make_node('Loop', ['max_trip_count', 'cond_orig'], ['loop_output'], body=subgraph)], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_output', TensorProto.FLOAT, (None, 3))]) # type: ignore def test_constantofshape_with_input_shape(self) -> None: graph = self._make_graph([], [make_node("Constant", [], ['shape'], value=make_tensor('shape', TensorProto.INT64, (3,), (3, 4, 5))), make_node("ConstantOfShape", ['shape'], ['y'], value=make_tensor('value', TensorProto.INT32, (1, ), (2, )))], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.INT64, (3,)), make_tensor_value_info('y', TensorProto.INT32, (3, 4, 5))]) # type: ignore def test_constantofshape_without_input_shape(self) -> None: graph = self._make_graph([('shape', TensorProto.INT64, (3, ))], [make_node("ConstantOfShape", ['shape'], ['y'], value=make_tensor('value', TensorProto.UINT8, (1, ), (2, )))], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (None, None, None))]) # type: ignore def test_constantofshape_with_symbolic_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5))], [make_node("Shape", ['x'], ['shape']), make_node("ConstantOfShape", ['shape'], ['y'], value=make_tensor('value', TensorProto.INT32, (1, ), (2, )))], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.INT64, (3,)), make_tensor_value_info('y', TensorProto.INT32, (3, 4, 5))], data_prop=True) # type: ignore def test_constantofshape_without_input_shape_scalar(self) -> None: graph = self._make_graph([('shape', TensorProto.INT64, (0, ))], [make_node("ConstantOfShape", ['shape'], ['y'], value=make_tensor('value', TensorProto.UINT8, (1, ), (2, )))], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, ())]) # type: ignore def test_constantofshape_with_shape_zero(self) -> None: graph = self._make_graph([], [make_node("Constant", [], ['shape'], value=make_tensor('shape', TensorProto.INT64, (1,), (0,))), make_node("ConstantOfShape", ['shape'], ['y'], value=make_tensor('value', TensorProto.INT32, (1, ), (2, )))], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.INT64, (1,)), make_tensor_value_info('y', TensorProto.INT32, (0,))]) # type: ignore def test_convinteger(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (3, 4, 5, 6, 7)), ('y', TensorProto.UINT8, (5, 4, 2, 4, 3))], [make_node('ConvInteger', ['x', 'y'], 'z', pads=[0, 1, 1, 0, 0, 1], dilations=[1, 2, 2], strides=[1, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, (3, 5, 4, 1, 3))]) def test_convinetger_dilations(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 8, 8, 8)), ('y', TensorProto.INT8, (50, 4, 3, 3, 3)), ('x_zero_point', TensorProto.UINT8, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('ConvInteger', ['x', 'y', 'x_zero_point', 'y_zero_point'], 'z', dilations=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, (30, 50, 6, 4, 2))]) def test_convinteger_strides(self) -> None: graph = self._make_graph( [('x', TensorProto.INT8, (30, 4, 8, 8, 8)), ('y', TensorProto.INT8, (50, 4, 3, 3, 3)), ('x_zero_point', TensorProto.UINT8, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('ConvInteger', ['x', 'y', 'x_zero_point', 'y_zero_point'], 'z', strides=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, (30, 50, 6, 3, 2))]) def test_convineteger_pads(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 7, 6, 4)), ('y', TensorProto.INT8, (50, 4, 3, 3, 3))], [make_node('ConvInteger', ['x', 'y'], 'z', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, (30, 50, 6, 6, 6))]) def test_convineteger_group(self) -> None: graph = self._make_graph( [('x', TensorProto.INT8, (30, 4, 8, 8, 8)), ('y', TensorProto.INT8, (4, 1, 8, 8, 8))], [make_node('ConvInteger', ['x', 'y'], 'z', group=4)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, (30, 4, 1, 1, 1))]) def test_convineteger_partial_missing_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, None, 6, 4)), ('y', TensorProto.UINT8, (50, 4, 3, 3, 3)), ('x_zero_point', TensorProto.UINT8, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('ConvInteger', ['x', 'y', 'x_zero_point', 'y_zero_point'], 'z', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, (30, 50, None, 6, 6))]) # type: ignore def test_convineteger_partial_missing_weight_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 7, 6, 4)), ('y', TensorProto.UINT8, (50, 4, None, 3, 3))], [make_node('ConvInteger', ['x', 'y'], 'z', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, None)]) def test_qlinearconv(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (3, 4, 5, 6, 7)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.UINT8, ()), ('w', TensorProto.UINT8, (5, 4, 2, 4, 3)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.UINT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', pads=[0, 1, 1, 0, 0, 1], dilations=[1, 2, 2], strides=[1, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (3, 5, 4, 1, 3))]) def test_qlinearconv_dilations(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 8, 8, 8)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.UINT8, ()), ('w', TensorProto.UINT8, (50, 4, 3, 3, 3)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.UINT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', dilations=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (30, 50, 6, 4, 2))]) def test_qlinearconv_strides(self) -> None: graph = self._make_graph( [('x', TensorProto.INT8, (30, 4, 8, 8, 8)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.INT8, ()), ('w', TensorProto.INT8, (50, 4, 3, 3, 3)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.INT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.INT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', strides=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT8, (30, 50, 6, 3, 2))]) def test_qlinearconv_pads(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 7, 6, 4)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.UINT8, ()), ('w', TensorProto.INT8, (50, 4, 3, 3, 3)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.INT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (30, 50, 6, 6, 6))]) def test_qlinearconv_group(self) -> None: graph = self._make_graph( [('x', TensorProto.INT8, (30, 4, 8, 8, 8)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.INT8, ()), ('w', TensorProto.INT8, (4, 1, 8, 8, 8)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.INT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.INT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', group=4)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT8, (30, 4, 1, 1, 1))]) def test_qlinearconv_partial_missing_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, None, 6, 4)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.UINT8, ()), ('w', TensorProto.UINT8, (50, 4, 3, 3, 3)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.UINT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (30, 50, None, 6, 6))]) # type: ignore def test_qlinearconv_partial_missing_weight_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 7, 6, 4)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.UINT8, ()), ('w', TensorProto.UINT8, (50, 4, None, 3, 3)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.UINT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, None)]) def _make_qlinearmatmul_test(self, shape1: Sequence[int], shape2: Sequence[int]) -> None: expected_out_shape = np.matmul(np.arange(np.product(shape1)).reshape(shape1), np.arange(np.product(shape2)).reshape(shape2)).shape graph = self._make_graph( [('a', TensorProto.UINT8, shape1), ('a_scale', TensorProto.FLOAT, ()), ('a_zero_point', TensorProto.UINT8, ()), ('b', TensorProto.UINT8, shape2), ('b_scale', TensorProto.FLOAT, ()), ('b_zero_point', TensorProto.UINT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearMatMul', ['a', 'a_scale', 'a_zero_point', 'b', 'b_scale', 'b_zero_point', 'y_scale', 'y_zero_point'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, expected_out_shape)]) def test_qlinearmatmul(self) -> None: self._make_qlinearmatmul_test((3,), (3,)) self._make_qlinearmatmul_test((4, 2), (2, 4)) self._make_qlinearmatmul_test((2,), (2, 3)) self._make_qlinearmatmul_test((4, 2), (2,)) self._make_qlinearmatmul_test((5, 1, 4, 2), (1, 3, 2, 3)) self._make_qlinearmatmul_test((4, 2), (3, 2, 3)) def _make_qlinearmatmul_test_allow_unknown(self, shape1: Any, shape2: Any, expected_out_shape: Any) -> None: graph = self._make_graph( [('a', TensorProto.UINT8, shape1), ('a_scale', TensorProto.FLOAT, ()), ('a_zero_point', TensorProto.UINT8, ()), ('b', TensorProto.UINT8, shape2), ('b_scale', TensorProto.FLOAT, ()), ('b_zero_point', TensorProto.UINT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearMatMul', ['a', 'a_scale', 'a_zero_point', 'b', 'b_scale', 'b_zero_point', 'y_scale', 'y_zero_point'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, expected_out_shape)]) def test_qlinearmatmul_allow_unknown(self) -> None: self._make_qlinearmatmul_test_allow_unknown((None,), (None,), ()) self._make_qlinearmatmul_test_allow_unknown((3,), (None,), ()) self._make_qlinearmatmul_test_allow_unknown((2,), (2, "a"), ("a",)) self._make_qlinearmatmul_test_allow_unknown((4, 2), (2, "a"), (4, "a")) self._make_qlinearmatmul_test_allow_unknown((4, None), (2, "a"), (4, "a")) self._make_qlinearmatmul_test_allow_unknown((4, None), (None, "a"), (4, "a")) self._make_qlinearmatmul_test_allow_unknown((1, 4, 2), ("a", 2, 5), ("a", 4, 5)) self._make_qlinearmatmul_test_allow_unknown((1, 3, 4, 2), ("a", 2, 5), (1, 3, 4, 5)) self._make_qlinearmatmul_test_allow_unknown(None, ("a", 2, 5), None) self._make_qlinearmatmul_test_allow_unknown(None, None, None) def _make_matmulinteger_test(self, shape1: Sequence[int], shape2: Sequence[int]) -> None: expected_out_shape = np.matmul(np.arange(np.product(shape1)).reshape(shape1), np.arange(np.product(shape2)).reshape(shape2)).shape graph = self._make_graph( [('A', TensorProto.UINT8, shape1), ('B', TensorProto.UINT8, shape2), ('a_zero_point', TensorProto.UINT8, ()), ('b_zero_point', TensorProto.UINT8, ())], [make_node('MatMulInteger', ['A', 'B', 'a_zero_point', 'b_zero_point'], ['Y'])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.INT32, expected_out_shape)]) def test_matmulinteger(self) -> None: self._make_matmulinteger_test((2,), (2,)) self._make_matmulinteger_test((1, 2), (2, 3)) self._make_matmulinteger_test((2,), (2, 3)) self._make_matmulinteger_test((4, 2), (2,)) self._make_matmulinteger_test((5, 1, 4, 2), (1, 3, 2, 3)) self._make_matmulinteger_test((4, 2), (3, 2, 3)) def test_quantizelinear(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QuantizeLinear', ['x', 'y_scale', 'y_zero_point'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (30, 4, 5))]) def test_quantizelinear_default_zp(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y_scale', TensorProto.FLOAT, ())], [make_node('QuantizeLinear', ['x', 'y_scale'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (30, 4, 5))]) def test_quantizelinear_optional_input(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y_scale', TensorProto.FLOAT, ())], [make_node('QuantizeLinear', ['x', 'y_scale', ''], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (30, 4, 5))]) def test_dequantizelinear(self) -> None: graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 5)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.UINT8, ())], [make_node('DequantizeLinear', ['x', 'x_scale', 'x_zero_point'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (30, 4, 5))]) def test_dynamicquantizelinear(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5))], [make_node('DynamicQuantizeLinear', ['x'], ['y', 'y_scale', 'y_zero_point'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (30, 4, 5)), make_tensor_value_info('y_scale', TensorProto.FLOAT, ()), make_tensor_value_info('y_zero_point', TensorProto.UINT8, ())]) def test_reversesequence(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('sequence_lens', TensorProto.INT64, (5,))], [make_node('ReverseSequence', ['x', 'sequence_lens'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (4, 5, 6))]) def test_unique_without_axis(self) -> None: graph = self._make_graph( [('X', TensorProto.FLOAT, (2, 4, 2))], [make_node('Unique', ['X'], ['Y', 'indices', 'inverse_indices', 'counts'])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (None,)), # type: ignore make_tensor_value_info('indices', TensorProto.INT64, (None,)), # type: ignore make_tensor_value_info('inverse_indices', TensorProto.INT64, (None,)), # type: ignore make_tensor_value_info('counts', TensorProto.INT64, (None,))]) # type: ignore def test_unique_with_axis(self) -> None: graph = self._make_graph( [('X', TensorProto.FLOAT, (2, 4, 2))], [make_node('Unique', ['X'], ['Y', 'indices', 'inverse_indices', 'counts'], axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (2, None, 2)), # type: ignore make_tensor_value_info('indices', TensorProto.INT64, (None,)), # type: ignore make_tensor_value_info('inverse_indices', TensorProto.INT64, (None,)), # type: ignore make_tensor_value_info('counts', TensorProto.INT64, (None,))]) # type: ignore def test_det(self) -> None: graph = self._make_graph( [('X', TensorProto.FLOAT, (3, 3))], [make_node('Det', ['X'], ['Y'])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, ())]) graph = self._make_graph( [('X', TensorProto.FLOAT, (4, 5, 6, 7, 7))], [make_node('Det', ['X'], ['Y'])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (4, 5, 6))]) def test_tile(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('repeats', TensorProto.INT64, (3,))], [make_node('Tile', ['x', 'repeats'], ['y'])], [], initializer=[make_tensor('repeats', TensorProto.INT64, (3,), (1, 2, 3))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (4, 10, 18))]) def test_tile_raw_input_data(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('repeats', TensorProto.INT64, (3,))], [make_node('Tile', ['x', 'repeats'], ['y'])], [], initializer=[make_tensor('repeats', TensorProto.INT64, (3,), vals=np.array([1, 2, 3], dtype='<i8').tobytes(), raw=True)]) # Feed raw bytes (force little endian ordering like onnx standard) for test purpose self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (4, 10, 18))]) def test_tile_rank_inference(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('repeats', TensorProto.INT64, (3,))], [make_node('Tile', ['x', 'repeats'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (None, None, None))]) # type: ignore def test_linearclassifier_1D_input(self) -> None: if ONNX_ML: graph = self._make_graph( [('x', TensorProto.FLOAT, (5,))], [make_node('LinearClassifier', ['x'], ['y', 'z'], domain=ONNX_ML_DOMAIN, coefficients=[0.0008, -0.0008], intercepts=[2.0, 2.0], classlabels_ints=[1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (1,)), make_tensor_value_info('z', TensorProto.FLOAT, (1, 2))], opset_imports=[make_opsetid(ONNX_ML_DOMAIN, 1), make_opsetid(ONNX_DOMAIN, 11)]) def test_linearclassifier_2D_input(self) -> None: if ONNX_ML: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5))], [make_node('LinearClassifier', ['x'], ['y', 'z'], domain=ONNX_ML_DOMAIN, coefficients=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], intercepts=[2.0, 2.0, 3.0], classlabels_ints=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (4,)), make_tensor_value_info('z', TensorProto.FLOAT, (4, 3))], opset_imports=[make_opsetid(ONNX_ML_DOMAIN, 1), make_opsetid(ONNX_DOMAIN, 11)]) def test_roialign_symbolic(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, ('N', 'C', 'H', 'W')), ('rois', TensorProto.FLOAT, ('num_rois', 4)), ('batch_indices', TensorProto.INT64, ('num_rois',))], [make_node('RoiAlign', ['x', 'rois', 'batch_indices'], ['y'], output_height=10, output_width=5)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, ('num_rois', 'C', 10, 5))]) # type: ignore def test_roialign_symbolic_defaults(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, ('N', 'C', 'H', 'W')), ('rois', TensorProto.FLOAT, ('num_rois', 4)), ('batch_indices', TensorProto.INT64, ('num_rois',))], [make_node('RoiAlign', ['x', 'rois', 'batch_indices'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, ('num_rois', 'C', 1, 1))]) # type: ignore def test_roialign_num_rois(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, ('N', 'C', 'H', 'W')), ('rois', TensorProto.FLOAT, ('num_rois', 4)), ('batch_indices', TensorProto.INT64, (15,))], [make_node('RoiAlign', ['x', 'rois', 'batch_indices'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (15, 'C', 1, 1))]) # type: ignore def test_label_encoder_string_int64(self) -> None: if ONNX_ML: string_list = ['A', 'm', 'y'] float_list = [94.17, 36.00] int64_list = [12, 28, 86] graph = self._make_graph( [('x', TensorProto.STRING, (6, 1))], [make_node('LabelEncoder', ['x'], ['y'], domain=ONNX_ML_DOMAIN, keys_strings=string_list, values_int64s=int64_list)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (6, 1))], opset_imports=[make_opsetid(ONNX_ML_DOMAIN, 2), make_opsetid(ONNX_DOMAIN, 11)]) graph = self._make_graph( [('x', TensorProto.INT64, (2, 3))], [make_node('LabelEncoder', ['x'], ['y'], domain=ONNX_ML_DOMAIN, keys_int64s=int64_list, values_strings=string_list)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.STRING, (2, 3))], opset_imports=[make_opsetid(ONNX_ML_DOMAIN, 2), make_opsetid(ONNX_DOMAIN, 11)]) graph = self._make_graph( [('x', TensorProto.FLOAT, (2,))], [make_node('LabelEncoder', ['x'], ['y'], domain=ONNX_ML_DOMAIN, keys_floats=float_list, values_int64s=int64_list)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (2,))], opset_imports=[make_opsetid(ONNX_ML_DOMAIN, 2), make_opsetid(ONNX_DOMAIN, 11)]) graph = self._make_graph( [('x', TensorProto.INT64, (8,))], [make_node('LabelEncoder', ['x'], ['y'], domain=ONNX_ML_DOMAIN, keys_int64s=int64_list, values_floats=float_list)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (8,))], opset_imports=[make_opsetid(ONNX_ML_DOMAIN, 2), make_opsetid(ONNX_DOMAIN, 11)]) graph = self._make_graph( [('x', TensorProto.FLOAT, ())], [make_node('LabelEncoder', ['x'], ['y'], domain=ONNX_ML_DOMAIN, keys_floats=float_list, values_strings=string_list)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.STRING, ())], opset_imports=[make_opsetid(ONNX_ML_DOMAIN, 2), make_opsetid(ONNX_DOMAIN, 11)]) graph = self._make_graph( [('x', TensorProto.STRING, (1, 2))], [make_node('LabelEncoder', ['x'], ['y'], domain=ONNX_ML_DOMAIN, keys_strings=string_list, values_floats=float_list)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 2))], opset_imports=[make_opsetid(ONNX_ML_DOMAIN, 2), make_opsetid(ONNX_DOMAIN, 11)]) def make_sparse(self, shape: Sequence[int], values: Sequence[int], indices_shape: Sequence[int], indices: Sequence[int] ) -> SparseTensorProto: sparse = SparseTensorProto() sparse.dims.extend(shape) nnz = len(values) sparse.values.CopyFrom(helper.make_tensor('spval', TensorProto.INT64, (nnz,), values)) sparse.indices.CopyFrom(helper.make_tensor('spind', TensorProto.INT64, indices_shape, indices)) return sparse def test_constant_sparse(self) -> None: y_shape = [100] y_value = self.make_sparse(y_shape, [13, 17, 19], [3], [9, 27, 81]) graph = self._make_graph( [], [make_node('Constant', [], ['y'], sparse_value=y_value)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, y_shape)]) # type: ignore def test_constant_value_int(self) -> None: graph = self._make_graph( [], [make_node('Constant', [], ['y'], value_int=42)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, [])]) def test_constant_value_ints(self) -> None: value_ints = [1, 2, 3] graph = self._make_graph( [], [make_node('Constant', [], ['y'], value_ints=value_ints)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, [len(value_ints)])]) def test_constant_value_float(self) -> None: graph = self._make_graph( [], [make_node('Constant', [], ['y'], value_float=1.42)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, [])]) def test_constant_value_floats(self) -> None: value_floats = [1.0, 1.1, 1.2] graph = self._make_graph( [], [make_node('Constant', [], ['y'], value_floats=value_floats)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, [len(value_floats)])]) def test_constant_value_string(self) -> None: graph = self._make_graph( [], [make_node('Constant', [], ['y'], value_string="String value")], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.STRING, [])]) def test_constant_value_strings(self) -> None: value_strings = ["o", "n", "n", "x"] graph = self._make_graph( [], [make_node('Constant', [], ['y'], value_strings=value_strings)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.STRING, [len(value_strings)])]) def test_range(self) -> None: graph = self._make_graph( [('start', TensorProto.FLOAT, ()), ('limit', TensorProto.FLOAT, ()), ('delta', TensorProto.FLOAT, ())], [make_node('Range', ['start', 'limit', 'delta'], ['output'])], [], initializer=[make_tensor('start', TensorProto.FLOAT, (), (1,)), make_tensor('limit', TensorProto.FLOAT, (), (5,)), make_tensor('delta', TensorProto.FLOAT, (), (2,))]) self._assert_inferred(graph, [make_tensor_value_info('output', TensorProto.FLOAT, (2,))]) def test_range_rank_inference(self) -> None: graph = self._make_graph( [('start', TensorProto.INT32, ()), ('limit', TensorProto.INT32, ()), ('delta', TensorProto.INT32, ())], [make_node('Range', ['start', 'limit', 'delta'], ['output'])], [], initializer=[make_tensor('start', TensorProto.INT32, (), (1,)), make_tensor('limit', TensorProto.INT32, (), (5,))]) # Missing 'delta' initializer self._assert_inferred(graph, [make_tensor_value_info('output', TensorProto.INT32, (None,))]) # type: ignore def test_gathernd(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('indices', TensorProto.INT64, (2,))], [make_node('GatherND', ['x', 'indices'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (6,))]) def test_gathernd_batchdim_1(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 2, 2)), ('indices', TensorProto.INT64, (2, 1))], [make_node('GatherND', ['x', 'indices'], ['y'], batch_dims=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 2))]) def test_cumsum(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3)), ('axis', TensorProto.FLOAT, (1,))], [make_node('CumSum', ['x', 'axis'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, 3))]) def test_nonmaxsuppression(self) -> None: graph = self._make_graph( [('boxes', TensorProto.FLOAT, (1, 3, 4)), ('scores', TensorProto.FLOAT, (1, 5, 3))], [make_node('NonMaxSuppression', ['boxes', 'scores'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (None, 3))]) # type: ignore def test_sequence_empty(self) -> None: graph = self._make_graph( [], [make_node('SequenceEmpty', [], ['output'])], []) self._assert_inferred(graph, [make_tensor_sequence_value_info('output', TensorProto.FLOAT, None)]) # type: ignore def test_sequence_construct(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 3, 4))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['output_sequence'])], []) self._assert_inferred(graph, [make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, 3, 4))]) # type: ignore def test_sequence_construct_one_input(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4))], [make_node('SequenceConstruct', ['input1'], ['output_sequence'])], []) self._assert_inferred(graph, [make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, 3, 4))]) # type: ignore def test_sequence_construct_diff_rank(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3)), ('input3', TensorProto.FLOAT, (2, 3))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['output_sequence'])], []) self._assert_inferred(graph, [make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, None)]) # type: ignore def test_sequence_construct_diff_dim_size(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 5)), ('input3', TensorProto.FLOAT, (2, 3, 6))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['output_sequence'])], []) self._assert_inferred(graph, [make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, 3, None))]) # type: ignore def test_sequence_insert(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 3, 4)), ('input4', TensorProto.FLOAT, (2, 3, 4))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceInsert', ['in_sequence', 'input4'], ['output_sequence'])], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 4)), make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, 3, 4))]) # type: ignore def test_sequence_insert_diff_rank(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 3, 4)), ('input4', TensorProto.FLOAT, (2, 3))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceInsert', ['in_sequence', 'input4'], ['output_sequence'])], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 4)), make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, None)]) # type: ignore def test_sequence_insert_diff_shape(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 5, 4)), ('input4', TensorProto.FLOAT, (2, 5, 2))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceInsert', ['in_sequence', 'input4'], ['output_sequence'])], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, None, 4)), # type: ignore make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, None, None))]) # type: ignore def test_sequence_at(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 3, 4)), ('ind', TensorProto.INT64, ())], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceAt', ['in_sequence', 'ind'], ['output'])], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 4)), make_tensor_value_info('output', TensorProto.FLOAT, (2, 3, 4))]) # type: ignore def test_sequence_at_unknown_shape(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3)), ('input3', TensorProto.FLOAT, (2, 3, 4)), ('ind', TensorProto.INT64, ())], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceAt', ['in_sequence', 'ind'], ['output'])], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, None), make_tensor_value_info('output', TensorProto.FLOAT, None)]) # type: ignore def test_sequence_at_unknown_dim_size(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 5)), ('input3', TensorProto.FLOAT, (2, 3, 4)), ('ind', TensorProto.INT64, ())], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceAt', ['in_sequence', 'ind'], ['output'])], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, None)), # type: ignore make_tensor_value_info('output', TensorProto.FLOAT, (2, 3, None))]) # type: ignore def test_sequence_erase(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 3, 4)), ('ind', TensorProto.INT64, ())], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceErase', ['in_sequence', 'ind'], ['output_sequence'])], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 4)), make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, 3, 4))]) # type: ignore def test_sequence_erase_diff_dim_size(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 3, 'x')), ('input3', TensorProto.FLOAT, (2, 5, 'x')), ('ind', TensorProto.INT64, ())], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceErase', ['in_sequence', 'ind'], ['output_sequence'])], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, None, 'x')), # type: ignore make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, None, 'x'))]) # type: ignore def test_sequence_length(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 3, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceLength', ['in_sequence'], ['len'])], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 'x')), make_tensor_value_info('len', TensorProto.INT64, ())]) # type: ignore def test_split_to_sequence(self) -> None: graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4)), ('split', TensorProto.INT32, (2,))], [make_node('SplitToSequence', ['input', 'split'], ['output_sequence'])], [], initializer=[make_tensor('split', TensorProto.INT32, (2,), (3, 3))]) self._assert_inferred(graph, [make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (3, 4))]) # type: ignore def test_split_to_sequence_scalar(self) -> None: graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4)), ('split', TensorProto.INT32, ())], [make_node('SplitToSequence', ['input', 'split'], ['output_sequence'])], [], initializer=[make_tensor('split', TensorProto.INT32, (), (2, ))]) self._assert_inferred(graph, [make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, 4))]) # type: ignore def test_split_to_sequence_keepdims(self) -> None: graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4))], [make_node('SplitToSequence', ['input'], ['output_sequence'], keepdims=1)], []) self._assert_inferred(graph, [make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (1, 4))]) # type: ignore def test_split_to_sequence_not_keepdims(self) -> None: graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4))], [make_node('SplitToSequence', ['input'], ['output_sequence'], keepdims=0)], []) self._assert_inferred(graph, [make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (4, ))]) # type: ignore def test_split_to_sequence_ignore_keepdims(self) -> None: graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4)), ('split', TensorProto.INT32, (2,))], [make_node('SplitToSequence', ['input', 'split'], ['output_sequence'], keepdims=0)], [], initializer=[make_tensor('split', TensorProto.INT32, (2,), (3, 3))]) self._assert_inferred(graph, [make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (3, 4))]) # type: ignore def test_split_to_sequence_axis(self) -> None: graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4))], [make_node('SplitToSequence', ['input'], ['output_sequence'], axis=1)], []) self._assert_inferred(graph, [make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (6, 1))]) # type: ignore def test_split_to_sequence_neg_axis(self) -> None: graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4))], [make_node('SplitToSequence', ['input'], ['output_sequence'], axis=-2)], []) self._assert_inferred(graph, [make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (1, 4))]) # type: ignore def test_split_to_sequence_split_sizes(self) -> None: graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4)), ('split', TensorProto.INT32, (3,))], [make_node('SplitToSequence', ['input', 'split'], ['output_sequence'])], [], initializer=[make_tensor('split', TensorProto.INT32, (3,), (2, 1, 3))]) self._assert_inferred(graph, [make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (None, 4))]) # type: ignore def test_split_to_sequence_non_divisible(self) -> None: graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4)), ('split', TensorProto.INT32, ())], [make_node('SplitToSequence', ['input', 'split'], ['output_sequence'])], [], initializer=[make_tensor('split', TensorProto.INT32, (), (4, ))]) self._assert_inferred(graph, [make_tensor_sequence_value_info('output_sequence', TensorProto.FLOAT, (None, 4))]) # type: ignore def test_concat_from_sequence(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 3, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=0)], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 'x')), make_tensor_value_info('out', TensorProto.FLOAT, (None, 3, 'x'))]) # type: ignore def test_concat_from_sequence_unknown_shape(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 3)), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=0)], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, None), make_tensor_value_info('out', TensorProto.FLOAT, None)]) # type: ignore def test_concat_from_sequence_unknown_dim_size(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 4, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=0)], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, None, 'x')), # type: ignore make_tensor_value_info('out', TensorProto.FLOAT, (None, None, 'x'))]) # type: ignore def test_concat_from_sequence_axis(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 4, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=2)], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, None, 'x')), # type: ignore make_tensor_value_info('out', TensorProto.FLOAT, (2, None, None))]) # type: ignore def test_concat_from_sequence_neg_axis(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 4, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=-3)], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, None, 'x')), # type: ignore make_tensor_value_info('out', TensorProto.FLOAT, (None, None, 'x'))]) # type: ignore def test_concat_from_sequence_new_axis(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 3, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=2, new_axis=1)], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 'x')), make_tensor_value_info('out', TensorProto.FLOAT, (2, 3, None, 'x'))]) # type: ignore def test_concat_from_sequence_neg_new_axis(self) -> None: graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 3, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=-1, new_axis=1)], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 'x')), make_tensor_value_info('out', TensorProto.FLOAT, (2, 3, 'x', None))]) # type: ignore def test_adagrad(self) -> None: graph = self._make_graph( [('R', TensorProto.FLOAT, ()), # scalar's shape is () ('T', TensorProto.INT64, ()), # scalar's shape is () ('X', TensorProto.FLOAT, (1, 2)), ('G', TensorProto.FLOAT, (1, 2)), ('H', TensorProto.FLOAT, (1, 2))], [make_node('Adagrad', ['R', 'T', 'X', 'G', 'H'], ['X_new', 'H_new'], domain=AI_ONNX_PREVIEW_TRAINING_DOMAIN)], []) self._assert_inferred( graph, [make_tensor_value_info('X_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('H_new', TensorProto.FLOAT, (1, 2))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 12), helper.make_opsetid(AI_ONNX_PREVIEW_TRAINING_DOMAIN, 1)]) def test_adagrad_multiple(self) -> None: graph = self._make_graph( [('R', TensorProto.FLOAT, ()), # scalar's shape is () ('T', TensorProto.INT64, ()), # scalar's shape is () ('X1', TensorProto.FLOAT, (1, 2)), ('X2', TensorProto.FLOAT, (3, 4)), ('G1', TensorProto.FLOAT, (1, 2)), ('G2', TensorProto.FLOAT, (3, 4)), ('H1', TensorProto.FLOAT, (1, 2)), ('H2', TensorProto.FLOAT, (3, 4))], [make_node('Adagrad', ['R', 'T', 'X1', 'X2', 'G1', 'G2', 'H1', 'H2'], ['X1_new', 'X2_new', 'H1_new', 'H2_new'], domain=AI_ONNX_PREVIEW_TRAINING_DOMAIN)], []) self._assert_inferred(graph, [make_tensor_value_info('X1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('X2_new', TensorProto.FLOAT, (3, 4)), make_tensor_value_info('H1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('H2_new', TensorProto.FLOAT, (3, 4))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 12), helper.make_opsetid(AI_ONNX_PREVIEW_TRAINING_DOMAIN, 1)]) def test_momentum(self) -> None: graph = self._make_graph( [('R', TensorProto.FLOAT, ()), # scalar's shape is () ('T', TensorProto.INT64, ()), # scalar's shape is () ('X', TensorProto.FLOAT, (1, 2)), ('G', TensorProto.FLOAT, (1, 2)), ('V', TensorProto.FLOAT, (1, 2))], [make_node('Momentum', ['R', 'T', 'X', 'G', 'V'], ['X_new', 'V_new'], alpha=0.9, beta=1.0, norm_coefficient=0.02, mode='standard', domain=AI_ONNX_PREVIEW_TRAINING_DOMAIN)], []) self._assert_inferred( graph, [make_tensor_value_info('X_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('V_new', TensorProto.FLOAT, (1, 2))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 12), helper.make_opsetid(AI_ONNX_PREVIEW_TRAINING_DOMAIN, 1)]) def test_momentum_multiple(self) -> None: graph = self._make_graph( [('R', TensorProto.FLOAT, ()), # scalar's shape is () ('T', TensorProto.INT64, ()), # scalar's shape is () ('X1', TensorProto.FLOAT, (1, 2)), ('X2', TensorProto.FLOAT, (3, 4)), ('G1', TensorProto.FLOAT, (1, 2)), ('G2', TensorProto.FLOAT, (3, 4)), ('V1', TensorProto.FLOAT, (1, 2)), ('V2', TensorProto.FLOAT, (3, 4))], [make_node('Momentum', ['R', 'T', 'X1', 'X2', 'G1', 'G2', 'V1', 'V2'], ['X1_new', 'X2_new', 'V1_new', 'V2_new'], alpha=0.9, beta=1.0, norm_coefficient=0.02, mode='nesterov', domain=AI_ONNX_PREVIEW_TRAINING_DOMAIN)], []) self._assert_inferred( graph, [make_tensor_value_info('X1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('X2_new', TensorProto.FLOAT, (3, 4)), make_tensor_value_info('V1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('V2_new', TensorProto.FLOAT, (3, 4))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 12), helper.make_opsetid(AI_ONNX_PREVIEW_TRAINING_DOMAIN, 1)]) def test_adam(self) -> None: graph = self._make_graph( [('R', TensorProto.FLOAT, ()), # scalar's shape is () ('T', TensorProto.INT64, ()), # scalar's shape is () ('X', TensorProto.FLOAT, (1, 2)), ('G', TensorProto.FLOAT, (1, 2)), ('V', TensorProto.FLOAT, (1, 2)), ('H', TensorProto.FLOAT, (1, 2))], [make_node('Adam', ['R', 'T', 'X', 'G', 'V', 'H'], ['X_new', 'V_new', 'H_new'], domain=AI_ONNX_PREVIEW_TRAINING_DOMAIN, alpha=0.9, beta=1.0, norm_coefficient=0.02)], []) infos = [make_tensor_value_info('X_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('V_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('H_new', TensorProto.FLOAT, (1, 2))] self._assert_inferred( graph, infos, opset_imports=[make_opsetid(AI_ONNX_PREVIEW_TRAINING_DOMAIN, 1), make_opsetid(ONNX_DOMAIN, 12)]) def test_adam_multiple(self) -> None: graph = self._make_graph( [('R', TensorProto.FLOAT, ()), # scalar's shape is () ('T', TensorProto.INT64, ()), # scalar's shape is () ('X1', TensorProto.FLOAT, (1, 2)), ('X2', TensorProto.FLOAT, (3, 4)), ('G1', TensorProto.FLOAT, (1, 2)), ('G2', TensorProto.FLOAT, (3, 4)), ('V1', TensorProto.FLOAT, (1, 2)), ('V2', TensorProto.FLOAT, (3, 4)), ('H1', TensorProto.FLOAT, (1, 2)), ('H2', TensorProto.FLOAT, (3, 4))], [make_node('Adam', ['R', 'T', 'X1', 'X2', 'G1', 'G2', 'V1', 'V2', 'H1', 'H2'], ['X1_new', 'X2_new', 'V1_new', 'V2_new', 'H1_new', 'H2_new'], domain=AI_ONNX_PREVIEW_TRAINING_DOMAIN, alpha=0.9, beta=1.0, norm_coefficient=0.02)], []) infos = [make_tensor_value_info('X1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('X2_new', TensorProto.FLOAT, (3, 4)), make_tensor_value_info('V1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('V2_new', TensorProto.FLOAT, (3, 4)), make_tensor_value_info('H1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('H2_new', TensorProto.FLOAT, (3, 4))] self._assert_inferred( graph, infos, opset_imports=[make_opsetid(AI_ONNX_PREVIEW_TRAINING_DOMAIN, 1), make_opsetid(ONNX_DOMAIN, 12)]) def test_pad_opset10(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (1, None, 2))], [make_node('Pad', 'x', 'y', pads=[1, 3, 1, 1, 0, 1])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, None, 4))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 10)]) # type: ignore def test_constant_pad_2d_opset10(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3, 4, 4))], [make_node('Pad', 'x', 'y', pads=[0, 0, 3, 1, 0, 0, 4, 2], mode="constant", value=2.0)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 3, 11, 7))], opset_imports=[helper.make_opsetid(ONNX_DOMAIN, 10)]) def test_pad(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (1, None, 2)), ('pads', TensorProto.INT64, (6,))], [make_node('Pad', ['x', 'pads'], 'y')], [], initializer=[make_tensor('pads', TensorProto.INT64, (6,), (1, 3, 1, 1, 0, 1,))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, None, 4))]) # type: ignore def test_gatherelements_basic(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (6,)), ('indices', TensorProto.INT64, (2,))], [make_node('GatherElements', ['x', 'indices'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2,))]) def test_gatherelements_indices_missing_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (6,)), ('indices', TensorProto.INT64, None)], # type: ignore [make_node('GatherElements', ['x', 'indices'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, None)]) # type: ignore def test_einsum_transpose(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4))], [make_node('Einsum', ['x'], ['y'], equation='ij->ji')], [],) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (None, None))]) # type: ignore def test_einsum_dot(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (1,)), ('y', TensorProto.FLOAT, (1,))], [make_node('Einsum', ['x', 'y'], ['z'], equation='i,i->')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, ())]) # type: ignore def test_einsum_scalar(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, ()), ('y', TensorProto.FLOAT, ())], [make_node('Einsum', ['x', 'y'], ['z'], equation=',->')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, ())]) # type: ignore def test_einsum_outer_prod(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 5)), ('y', TensorProto.FLOAT, (7, 9))], [make_node('Einsum', ['x', 'y'], ['z'], equation='ij,ab->ijab')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None, None, None))]) # type: ignore def test_einsum_sum_along_dim(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4))], [make_node('Einsum', ['x'], ['y'], equation='i j->i ')], [],) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (None, ))]) # type: ignore def test_einsum_ellipsis(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 4))], [make_node('Einsum', ['x'], ['y'], equation='... ii ->... i')], [],) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (None, None))]) # type: ignore def test_einsum_ellipsis_2(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 2, 2)), ('y', TensorProto.FLOAT, (2, 2, 2))], [make_node('Einsum', ['x', 'y'], ['z'], equation='...ij,...jk->...ik')], [], ) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None, None))]) # type: ignore def test_einsum_ellipsis_3(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 2, 2)), ('y', TensorProto.FLOAT, (2, 2, 2))], [make_node('Einsum', ['x', 'y'], ['z'], equation='...ij,...jk')], [], ) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None, None))]) # type: ignore def test_einsum_contraction(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 6, 7, 8)), ('y', TensorProto.FLOAT, (8, 9, 10))], [make_node('Einsum', ['x', 'y'], ['z'], equation='abcd,dfg->abcfg')], [], ) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None, None, None, None))]) # type: ignore def test_einsum_contraction_2(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5)), ('y', TensorProto.FLOAT, (3, 5))], [make_node('Einsum', ['x', 'y'], ['z'], equation='ijk,ik->jk')], [], ) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None))]) # type: ignore def test_einsum_batch_matmul(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 2, 3)), ('y', TensorProto.FLOAT, (5, 3, 4))], [make_node('Einsum', ['x', 'y'], ['z'], equation='bij , b jk-> bik')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None, None))]) # type: ignore def test_einsum_left_hand_eqn(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3)), ('y', TensorProto.FLOAT, (3, 4))], [make_node('Einsum', ['x', 'y'], ['z'], equation='ij,kl')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None, None, None))]) # type: ignore def test_einsum_incorrect_num_inputs(self) -> None: graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 3)), ("y", TensorProto.FLOAT, (2, 3)), ("z", TensorProto.FLOAT, (2, 3))], [make_node('Einsum', ['x', 'y'], ['z'], equation='i,...j, k, l-> i')], []) self.assertRaises(onnx.shape_inference.InferenceError, self._inferred, graph) def test_negative_log_likehood_shape_is_NCdd(self) -> None: N, C = 3, 4 graph = self._make_graph( [('input', TensorProto.FLOAT, (N, C)), ('target', TensorProto.INT64, (N,))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target'], ['loss'], reduction='none')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, (N, ))]) # type: ignore def test_negative_log_likehood_shape_is_NC_with_weight(self) -> None: N, C = 3, 4 graph = self._make_graph( [('input', TensorProto.FLOAT, (N, C)), ('target', TensorProto.INT64, (N,)), ('weight', TensorProto.FLOAT, (C,))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target', 'weight'], ['loss'], reduction='none')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, (N, ))]) # type: ignore def test_negative_log_likehood_shape_is_NC_reduction_mean(self) -> None: N, C = 3, 4 graph = self._make_graph( [('input', TensorProto.FLOAT, (N, C)), ('target', TensorProto.INT64, (N,))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target'], ['loss'], reduction='mean')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, ())]) # type: ignore def test_negative_log_likehood_shape_is_NC_with_weight_reduction_mean(self) -> None: N, C = 3, 4 graph = self._make_graph( [('input', TensorProto.FLOAT, (N, C)), ('target', TensorProto.INT64, (N,)), ('weight', TensorProto.FLOAT, (C,))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target', 'weight'], ['loss'], reduction='mean')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, ())]) # type: ignore def test_negative_log_likehood_shape_is_NCd1d2(self) -> None: N, C, d1, d2 = 3, 4, 5, 6 graph = self._make_graph( [("input", TensorProto.FLOAT, (N, C, d1, d2)), ("target", TensorProto.INT64, (N, d1, d2))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target'], ['loss'], reduction='none')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, (N, d1, d2))]) # type: ignore def test_negative_log_likehood_shape_is_NCd1d2_with_weight(self) -> None: N, C, d1, d2 = 3, 4, 5, 6 graph = self._make_graph( [("input", TensorProto.FLOAT, (N, C, d1, d2)), ("target", TensorProto.INT64, (N, d1, d2)), ("weight", TensorProto.FLOAT, (C,))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target', 'weight'], ['loss'], reduction='none')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, (N, d1, d2))]) # type: ignore def test_negative_log_likehood_shape_is_NCd1d2_reduction_sum(self) -> None: N, C, d1, d2 = 3, 4, 5, 6 graph = self._make_graph( [("input", TensorProto.FLOAT, (N, C, d1, d2)), ("target", TensorProto.INT64, (N, d1, d2))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target'], ['loss'], reduction='sum')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, ())]) # type: ignore def test_negative_log_likehood_shape_is_NCd1d2_with_weight_reduction_mean(self) -> None: N, C, d1, d2 = 3, 4, 5, 6 graph = self._make_graph( [("input", TensorProto.FLOAT, (N, C, d1, d2)), ("target", TensorProto.INT64, (N, d1, d2)), ("weight", TensorProto.FLOAT, (C,))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target', 'weight'], ['loss'], reduction='mean')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, ())]) # type: ignore def test_negative_log_likehood_input_target_shape_mismatch(self) -> None: N, C, d1, d2 = 3, 4, 5, 6 graph = self._make_graph( [("input", TensorProto.FLOAT, (N, d1, d2)), ("target", TensorProto.INT64, (N, d1 + 1, d2)), ("weight", TensorProto.FLOAT, (C,)), ("loss", TensorProto.FLOAT, ())], [make_node('NegativeLogLikelihoodLoss', ['input', 'target', 'weight'], ['loss'], reduction='mean')], []) self.assertRaises(onnx.shape_inference.InferenceError, self._inferred, graph) def test_negative_log_likehood_input_weight_shape_mismatch(self) -> None: N, C, d1, d2 = 3, 4, 5, 6 graph = self._make_graph( [("input", TensorProto.FLOAT, (N, C, d1, d2)), ("target", TensorProto.INT64, (N, d1, d2)), ("weight", TensorProto.FLOAT, (C + 1,)), ("loss", TensorProto.FLOAT, (N, d1, d2))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target', 'weight'], ['loss'], reduction='none')], []) self.assertRaises(checker.ValidationError, self._inferred, graph) def test_softmax_cross_entropy_none(self) -> None: graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 3)), ("y", TensorProto.FLOAT, (2,))], [make_node('SoftmaxCrossEntropyLoss', ['x', 'y'], ['z'], reduction='none')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2,))]) # type: ignore def test_softmax_cross_entropy_mean(self) -> None: graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 3)), ("y", TensorProto.FLOAT, (2,))], [make_node('SoftmaxCrossEntropyLoss', ['x', 'y'], ['z'], reduction='mean')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, ())]) # type: ignore def test_softmax_cross_entropy_none_NCD1D2(self) -> None: graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 3, 5, 8)), ("y", TensorProto.FLOAT, (2, 5, 8))], [make_node('SoftmaxCrossEntropyLoss', ['x', 'y'], ['z'], reduction='none')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, 5, 8))]) # type: ignore def test_softmax_cross_entropy_mean_NCD1D2(self) -> None: graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 3, 4, 5)), ("y", TensorProto.FLOAT, (2, 4, 5))], [make_node('SoftmaxCrossEntropyLoss', ['x', 'y'], ['z'], reduction='mean')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, ())]) # type: ignore def test_celu_function_output_shape(self) -> None: graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16))], [make_node('Celu', ['X'], ['Y'], alpha=2.0)], [] ) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 48, 16, 16))]) def prepare_input_initializer_tensors(self, initializer_shape, input_shape): # type: ignore nodes = [make_node('Add', ['x', 'y'], 'z')] if initializer_shape is None: initializer = [] # type: ignore else: size = 1 for d in initializer_shape: size = size * d vals = [0.0 for i in range(size)] initializer = [make_tensor("x", TensorProto.FLOAT, initializer_shape, vals), # type: ignore make_tensor("y", TensorProto.FLOAT, initializer_shape, vals)] if input_shape is None: inputs = [] # type: ignore else: inputs = [helper.make_tensor_value_info('x', TensorProto.FLOAT, input_shape), # type: ignore helper.make_tensor_value_info('y', TensorProto.FLOAT, input_shape)] graph = helper.make_graph(nodes, "test", inputs=inputs, outputs=[], initializer=initializer, value_info=[]) return helper.make_model(graph) def test_infer_with_initializer_without_input_above_ir4(self) -> None: # This is for testing IR>=4: some tensors can only exist in initializer and not in input # So shape_inference should make use of initializer shapes initializer_shape = (8, 7) original_model = self.prepare_input_initializer_tensors(initializer_shape, None) inferred_model = onnx.shape_inference.infer_shapes(original_model, strict_mode=True) # If shape inference fails, it will throw IndexError z_tenor = inferred_model.graph.value_info.pop() z_shape = (z_tenor.type.tensor_type.shape.dim[0].dim_value, z_tenor.type.tensor_type.shape.dim[1].dim_value) assert z_shape == initializer_shape def test_infer_with_initializer_without_input_below_ir4(self) -> None: # This is for testing IR<4: tensors must exist both in initializer and input # So shape_inference should not make use of initializer shapes # Use (None, None) as empty input initializer_shape = (8, 7) input_shape = (None, None) original_model = self.prepare_input_initializer_tensors(initializer_shape, input_shape) original_model.ir_version = 3 # test ir_version < 4 inferred_model = onnx.shape_inference.infer_shapes(original_model, strict_mode=True) z_tenor = inferred_model.graph.value_info.pop() z_shape = (z_tenor.type.tensor_type.shape.dim[0].dim_value, z_tenor.type.tensor_type.shape.dim[1].dim_value) # If the input is not updated by the initializer, the output shape will keep empty (0, 0) assert z_shape == (0, 0) def test_infer_initializer_input_mismatch(self) -> None: # Catch error if initializer and input mismatch initializer_shape = (8, 7) input_shape = (4, 3) original_model = self.prepare_input_initializer_tensors(initializer_shape, input_shape) # Inferred shape and existing shape differ in dimension 0 self.assertRaises(onnx.shape_inference.InferenceError, onnx.shape_inference.infer_shapes, original_model, strict_mode=True) def test_infer_initializer_input_consistency_all_none(self) -> None: initializer_shape = (8, 7) input_shape = (None, None) # accepatble original_model = self.prepare_input_initializer_tensors(initializer_shape, input_shape) onnx.shape_inference.infer_shapes(original_model, strict_mode=True) def test_infer_initializer_input_consistency_single_none(self) -> None: initializer_shape = (8, 7) input_shape = (None, 7) # accepatble original_model = self.prepare_input_initializer_tensors(initializer_shape, input_shape) onnx.shape_inference.infer_shapes(original_model, strict_mode=True) def test_infer_initializer_input_consistency_differnt_rank(self) -> None: initializer_shape = (8, 7, 9) input_shape = (None, 7) # accepatble original_model = self.prepare_input_initializer_tensors(initializer_shape, input_shape) # Inferred shape and existing shape differ in rank: (3) vs (2) self.assertRaises(onnx.shape_inference.InferenceError, onnx.shape_inference.infer_shapes, original_model, strict_mode=True) def test_infer_initializer_input_consistency_all_none_serialized(self) -> None: # Reuse test_infer_initializer_input_consistency_all_none test case and check with # Serialized model initializer_shape = (8, 7) input_shape = (None, None) # accepatble original_model = self.prepare_input_initializer_tensors(initializer_shape, input_shape) onnx.shape_inference.infer_shapes(original_model.SerializeToString(), strict_mode=True) def test_trilu_upper(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5)), ('k', TensorProto.INT64, ())], [make_node('Trilu', ['x', 'k'], ['y'])], [], initializer=[make_tensor('k', TensorProto.INT64, (), (2,))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 4, 5))]) # type: ignore def test_trilu_lower(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5)), ('k', TensorProto.INT64, ())], [make_node('Trilu', ['x', 'k'], ['y'], upper=0)], [], initializer=[make_tensor('k', TensorProto.INT64, (), (10,))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 4, 5))]) # type: ignore def test_trilu_upper_zero(self) -> None: graph = self._make_graph( [('x', TensorProto.INT64, (0, 5)), ('k', TensorProto.INT64, ())], [make_node('Trilu', ['x', 'k'], ['y'], upper=1)], [], initializer=[make_tensor('k', TensorProto.INT64, (), (5,))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (0, 5))]) # type: ignore def test_trilu_lower_one(self) -> None: graph = self._make_graph( [('x', TensorProto.INT32, (3, 1, 5))], [make_node('Trilu', ['x'], ['y'], upper=0)], [],) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT32, (3, 1, 5))]) # type: ignore def test_batch_norm_train(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 6, 7)), ('scale', TensorProto.FLOAT, (4,)), ('b', TensorProto.FLOAT, (4,)), ('input_mean', TensorProto.FLOAT, (4,)), ('input_var', TensorProto.FLOAT, (4,))], [make_node('BatchNormalization', ['x', 'scale', 'b', 'input_mean', 'input_var'], ['out', 'output_mean', 'output_var'], training_mode=1)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (3, 4, 5, 6, 7)), # type: ignore make_tensor_value_info('output_mean', TensorProto.FLOAT, (4,)), # type: ignore make_tensor_value_info('output_var', TensorProto.FLOAT, (4,)), # type: ignore ]) def test_batch_norm_train_dim_param(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 'C', 5, 6, 7)), ('scale', TensorProto.FLOAT, ('C',)), ('b', TensorProto.FLOAT, ('C',)), ('input_mean', TensorProto.FLOAT, ('C',)), ('input_var', TensorProto.FLOAT, ('C',))], [make_node('BatchNormalization', ['x', 'scale', 'b', 'input_mean', 'input_var'], ['out', 'output_mean', 'output_var'], training_mode=1)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (3, 'C', 5, 6, 7)), # type: ignore make_tensor_value_info('output_mean', TensorProto.FLOAT, ('C',)), # type: ignore make_tensor_value_info('output_var', TensorProto.FLOAT, ('C',)), # type: ignore ]) def test_batch_norm_train_with_diff_type(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT16, (3, 4, 5, 6, 7)), ('scale', TensorProto.FLOAT16, (4,)), ('b', TensorProto.FLOAT16, (4,)), ('input_mean', TensorProto.FLOAT, (4,)), ('input_var', TensorProto.FLOAT, (4,))], [make_node('BatchNormalization', ['x', 'scale', 'b', 'input_mean', 'input_var'], ['out', 'output_mean', 'output_var'], training_mode=1)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT16, (3, 4, 5, 6, 7)), # type: ignore make_tensor_value_info('output_mean', TensorProto.FLOAT, (4,)), # type: ignore make_tensor_value_info('output_var', TensorProto.FLOAT, (4,)), # type: ignore ]) def test_batch_norm_test(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 6, 7)), ('scale', TensorProto.FLOAT, (4,)), ('b', TensorProto.FLOAT, (4,)), ('input_mean', TensorProto.FLOAT, (4,)), ('input_var', TensorProto.FLOAT, (4,))], [make_node('BatchNormalization', ['x', 'scale', 'b', 'input_mean', 'input_var'], ['out'], training_mode=0)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (3, 4, 5, 6, 7))]) # type: ignore def test_batch_norm_test_no_dim(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, None, None, None)), ('scale', TensorProto.FLOAT, (4,)), ('b', TensorProto.FLOAT, (4,)), ('input_mean', TensorProto.FLOAT, (None,)), ('input_var', TensorProto.FLOAT, (4,))], [make_node('BatchNormalization', ['x', 'scale', 'b', 'input_mean', 'input_var'], ['out'], training_mode=0)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (3, 4, None, None, None))]) # type: ignore def test_batch_norm_train_no_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, None), ('scale', TensorProto.FLOAT, None), ('b', TensorProto.FLOAT, None), ('input_mean', TensorProto.FLOAT, ('C',)), ('input_var', TensorProto.FLOAT, ('C',))], [make_node('BatchNormalization', ['x', 'scale', 'b', 'input_mean', 'input_var'], ['out', 'running_mean', 'running_var'], training_mode=1)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, None), # type: ignore make_tensor_value_info('running_mean', TensorProto.FLOAT, ('C',)), # type: ignore make_tensor_value_info('running_var', TensorProto.FLOAT, ('C',)), # type: ignore ]) def test_nonzero(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (None,))], [make_node('NonZero', ['x'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.INT64, (1, None))]) # type: ignore def test_nonzero_no_shape(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, None)], [make_node('NonZero', ['x'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.INT64, (None, None))]) # type: ignore def test_nonzero_existing_dim_param(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (3,))], [make_node('NonZero', ['x'], ['y'])], [make_tensor_value_info('y', TensorProto.INT64, (None, 'NZ'))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (1, 'NZ'))]) # type: ignore def test_nonzero_scalar(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, ())], [make_node('NonZero', ['x'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.INT64, (0, None))]) # type: ignore def test_optional_construct_empty_tensor(self) -> None: tensor_type_proto = helper.make_tensor_type_proto(elem_type=TensorProto.FLOAT, shape=[1, 2, 3]) optional_type_proto = helper.make_optional_type_proto(tensor_type_proto) optional_val_info = helper.make_value_info( name='output', type_proto=optional_type_proto) graph = self._make_graph( [], [make_node('Optional', [], ['output'], type=tensor_type_proto)], []) self._assert_inferred(graph, [optional_val_info]) # type: ignore def test_optional_construct_empty_sequence(self) -> None: tensor_type_proto = helper.make_tensor_type_proto(elem_type=TensorProto.INT32, shape=[1, 2, 3]) sequence_type_proto = helper.make_sequence_type_proto(tensor_type_proto) optional_type_proto = helper.make_optional_type_proto(sequence_type_proto) optional_val_info = helper.make_value_info( name='output_sequence', type_proto=optional_type_proto) graph = self._make_graph( [], [make_node('Optional', [], ['output_sequence'], type=sequence_type_proto)], []) self._assert_inferred(graph, [optional_val_info]) # type: ignore def test_optional_construct_tensor(self) -> None: tensor_type_proto = helper.make_tensor_type_proto(elem_type=TensorProto.FLOAT, shape=[2, 3, 4]) optional_type_proto = helper.make_optional_type_proto(tensor_type_proto) optional_val_info = helper.make_value_info( name='output', type_proto=optional_type_proto) graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4))], [make_node('Optional', ['input1'], ['output'])], []) self._assert_inferred(graph, [optional_val_info]) # type: ignore def test_optional_construct_sequence(self) -> None: tensor_type_proto = helper.make_tensor_type_proto(elem_type=TensorProto.INT64, shape=[2, 3, 0]) sequence_type_proto = helper.make_sequence_type_proto(tensor_type_proto) sequence_val_info = helper.make_value_info( name='input_sequence', type_proto=sequence_type_proto) optional_type_proto = helper.make_optional_type_proto(sequence_type_proto) optional_val_info = helper.make_value_info( name='output_sequence', type_proto=optional_type_proto) graph = self._make_graph( [('input1', TensorProto.INT64, (2, 3, 0))], [make_node('SequenceConstruct', ['input1'], ['input_sequence']), make_node('Optional', ['input_sequence'], ['output_sequence'])], []) self._assert_inferred(graph, [sequence_val_info, optional_val_info]) # type: ignore def test_optional_tensor_has_element(self) -> None: tensor_type_proto = helper.make_tensor_type_proto(elem_type=TensorProto.FLOAT, shape=[2, 3, 4]) optional_type_proto = helper.make_optional_type_proto(tensor_type_proto) optional_val_info = helper.make_value_info( name='sequence', type_proto=optional_type_proto) graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4))], [make_node('Optional', ['input1'], ['sequence']), make_node('OptionalHasElement', ['sequence'], ['output'])], []) self._assert_inferred(graph, [optional_val_info, make_tensor_value_info('output', TensorProto.BOOL, ())]) # type: ignore def test_optional_sequence_has_element(self) -> None: tensor_type_proto = helper.make_tensor_type_proto(elem_type=TensorProto.FLOAT, shape=[0, 3, 4]) sequence_type_proto = helper.make_sequence_type_proto(tensor_type_proto) sequence_val_info = helper.make_value_info( name='sequence', type_proto=sequence_type_proto) optional_type_proto = helper.make_optional_type_proto(sequence_type_proto) optional_val_info = helper.make_value_info( name='optional', type_proto=optional_type_proto) graph = self._make_graph( [('input1', TensorProto.FLOAT, (0, 3, 4))], [make_node('SequenceConstruct', ['input1'], ['sequence']), make_node('Optional', ['sequence'], ['optional']), make_node('OptionalHasElement', ['optional'], ['output'])], []) self._assert_inferred(graph, [sequence_val_info, optional_val_info, make_tensor_value_info('output', TensorProto.BOOL, ())]) # type: ignore def test_optional_tensor_get_element(self) -> None: tensor_type_proto = helper.make_tensor_type_proto(elem_type=TensorProto.DOUBLE, shape=[2, 1, 4]) tensor_val_into = helper.make_value_info( name='output', type_proto=tensor_type_proto) optional_type_proto = helper.make_optional_type_proto(tensor_type_proto) optional_val_info = helper.make_value_info( name='optional', type_proto=optional_type_proto) graph = self._make_graph( [('input1', TensorProto.DOUBLE, (2, 1, 4))], [make_node('Optional', ['input1'], ['optional']), make_node('OptionalGetElement', ['optional'], ['output'])], []) self._assert_inferred(graph, [optional_val_info, tensor_val_into]) # type: ignore def test_optional_sequence_get_element(self) -> None: tensor_type_proto = helper.make_tensor_type_proto(elem_type=TensorProto.INT32, shape=[2, 0, 4]) sequence_type_proto = helper.make_sequence_type_proto(tensor_type_proto) sequence_val_into = helper.make_value_info( name='sequence', type_proto=sequence_type_proto) optional_type_proto = helper.make_optional_type_proto(sequence_type_proto) optional_val_info = helper.make_value_info( name='optional', type_proto=optional_type_proto) output_val_into = helper.make_value_info( name='output', type_proto=sequence_type_proto) graph = self._make_graph( [('input1', TensorProto.INT32, (2, 0, 4))], [make_node('SequenceConstruct', ['input1'], ['sequence']), make_node('Optional', ['sequence'], ['optional']), make_node('OptionalGetElement', ['optional'], ['output'])], []) self._assert_inferred(graph, [optional_val_info, sequence_val_into, output_val_into]) # type: ignore def test_where_bfloat(self) -> None: graph = self._make_graph( [('cond', TensorProto.BOOL, (10,)), ('x', TensorProto.BFLOAT16, (10,)), ('y', TensorProto.BFLOAT16, (10,))], [make_node('Where', ['cond', 'x', 'y'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.BFLOAT16, (10,))]) # type: ignore def test_parse_data_with_unsupported_tensor_type(self) -> None: model = helper.make_model( graph=helper.make_graph( name='graph_with_unsupported_type', inputs=[], outputs=[helper.make_tensor_value_info('y', TensorProto.FLOAT, shape=None)], nodes=[make_node('ConstantOfShape', ['x'], ['y'])], # ConstantOfShape only accepts np.int64 instead of np.int32 initializer=[numpy_helper.from_array(np.array([4, 3], dtype=np.int32), name='x')])) # Strict shape inference should catch this invalid type error (int32 is not supported) self.assertRaises(onnx.shape_inference.InferenceError, onnx.shape_inference.infer_shapes, model, strict_mode=True) # Even nornmal shape inference should not produce any invalid shape due to wrong type for ParseData inferred_model = onnx.shape_inference.infer_shapes(model) self.assertFalse(inferred_model.graph.output[0].type.tensor_type.HasField('shape')) def test_parse_data_with_undefined_tensor_type(self) -> None: model = helper.make_model( graph=helper.make_graph( name='graph_with_undefined_type', inputs=[], outputs=[helper.make_tensor_value_info('y', TensorProto.FLOAT, shape=None)], nodes=[make_node('ConstantOfShape', ['x'], ['y'])], initializer=[numpy_helper.from_array(np.array([4, 3], dtype=np.int64), name='x')])) # Hardcode the tensor type as UNDEFINED to test catching undefined type error model.graph.initializer[0].data_type = TensorProto.UNDEFINED # Strict shape inference should catch this undefined type error self.assertRaises(onnx.shape_inference.InferenceError, onnx.shape_inference.infer_shapes, model, strict_mode=True) # Even nornmal shape inference should not produce any invalid shape due to undefined type for ParseData inferred_model = onnx.shape_inference.infer_shapes(model) self.assertFalse(inferred_model.graph.output[0].type.tensor_type.HasField('shape')) def test_gridsample(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, (1, 1, 3, 3)), ('grid', TensorProto.INT64, (1, 3, 3, 2))], [make_node("GridSample", ['x', 'grid'], ['y'], mode='nearest', padding_mode='border', align_corners=1)], []) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 1, 3, 3))]) # type: ignore def test_gridsample_defaults(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, ('N', 'C', 'H', 'W')), ('grid', TensorProto.FLOAT, ('N', 'H_out', 'W_out', 2))], [make_node("GridSample", ['x', 'grid'], ['y'])], []) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.FLOAT, ('N', 'C', 'H_out', 'W_out'))]) # type: ignore def test_gridsample_no_dim(self) -> None: graph = self._make_graph( [('x', TensorProto.FLOAT, ('N', 'C', None, None)), ('grid', TensorProto.FLOAT, ('N', None, None, 2))], [make_node("GridSample", ['x', 'grid'], ['y'], mode='bilinear', padding_mode='border')], []) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.FLOAT, ('N', 'C', None, None))]) # type: ignore def test_sequence_map_identity_known_dims(self): # type: () -> None input_value_infos = [make_tensor_value_info( 'input', TensorProto.FLOAT, (220, 220, 3))] output_value_infos = [make_tensor_value_info( 'output', TensorProto.FLOAT, (220, 220, 3))] body_graph = helper.make_graph( [make_node('Identity', ['input'], ['output'])], "body_graph", input_value_infos, output_value_infos ) graph = self._make_graph( [('input1', TensorProto.FLOAT, (220, 220, 3)), ('input2', TensorProto.FLOAT, (220, 220, 3)), ('input3', TensorProto.FLOAT, (220, 220, 3)), ], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceMap', ['in_sequence'], ['out_sequence'], body=body_graph)], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (220, 220, 3)), make_tensor_sequence_value_info('out_sequence', TensorProto.FLOAT, (220, 220, 3))] ) # type: ignore def test_sequence_map_identity_unknown_dims(self): # type: () -> None input_value_infos = [make_tensor_value_info( 'input', TensorProto.FLOAT, ('H', 'W', 3))] output_value_infos = [make_tensor_value_info( 'output', TensorProto.FLOAT, ('H', 'W', 3))] body_graph = helper.make_graph( [make_node('Identity', ['input'], ['output'])], "body_graph", input_value_infos, output_value_infos ) graph = self._make_graph( [('input1', TensorProto.FLOAT, (200, 300, 3)), ('input2', TensorProto.FLOAT, (100, 200, 3)), ('input3', TensorProto.FLOAT, (5, 1, 3)), ], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceMap', ['in_sequence'], ['out_sequence'], body=body_graph)], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (None, None, 3)), make_tensor_sequence_value_info('out_sequence', TensorProto.FLOAT, (None, None, 3))]) # type: ignore def test_sequence_map_slice_outs_known_dims(self): # type: () -> None body_graph = helper.make_graph( nodes=[make_node('Slice', ['x', 'starts1', 'ends1', 'axes', ''], ['y1']), make_node('Slice', ['x', 'starts2', 'ends2', 'axes', ''], ['y2'])], name='body_graph', inputs=[ onnx.helper.make_tensor_value_info( 'x', onnx.TensorProto.FLOAT, ('H', 'W', 3)) ], outputs=[ onnx.helper.make_tensor_value_info( 'y1', onnx.TensorProto.FLOAT, (10, 20, 3)), onnx.helper.make_tensor_value_info( 'y2', onnx.TensorProto.FLOAT, (30, 40, 3)), ], initializer=[make_tensor('axes', TensorProto.INT64, (2,), (0, 1)), make_tensor('starts1', TensorProto.INT64, (2,), (0, 0)), make_tensor('ends1', TensorProto.INT64, (2,), (10, 20)), make_tensor('starts2', TensorProto.INT64, (2,), (0, 0)), make_tensor('ends2', TensorProto.INT64, (2,), (30, 40)), ] ) # type: ignore graph = self._make_graph( [('input1', TensorProto.FLOAT, (220, 310, 3)), ('input2', TensorProto.FLOAT, (110, 210, 3)), ('input3', TensorProto.FLOAT, (90, 110, 3)), ], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceMap', ['in_sequence'], ['out_sequence1', 'out_sequence2'], body=body_graph)], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (None, None, 3)), make_tensor_sequence_value_info( 'out_sequence1', TensorProto.FLOAT, (10, 20, 3)), make_tensor_sequence_value_info( 'out_sequence2', TensorProto.FLOAT, (30, 40, 3)), ]) # type: ignore def test_sequence_map_slice_outs_unknown_dims(self): # type: () -> None body_graph = helper.make_graph( nodes=[make_node('Slice', ['x', 'starts1', 'ends1', 'axes', ''], ['y1']), make_node('Slice', ['x', 'starts2', 'ends2', 'axes', ''], ['y2'])], name='body_graph', inputs=[ onnx.helper.make_tensor_value_info( 'x', onnx.TensorProto.FLOAT, ('H', 'W', 3)) ], outputs=[ onnx.helper.make_tensor_value_info( 'y1', onnx.TensorProto.FLOAT, ('H1', 'W1', 3)), onnx.helper.make_tensor_value_info( 'y2', onnx.TensorProto.FLOAT, ('H2', 'W2', 3)), ], initializer=[make_tensor('axes', TensorProto.INT64, (2,), (0, 1)), make_tensor('starts1', TensorProto.INT64, (2,), (0, 0)), make_tensor('ends1', TensorProto.INT64, (2,), (10, 20)), make_tensor('starts2', TensorProto.INT64, (2,), (0, 0)), make_tensor('ends2', TensorProto.INT64, (2,), (30, 40)), ] ) # type: ignore graph = self._make_graph( [('input1', TensorProto.FLOAT, (220, 310, 3)), ('input2', TensorProto.FLOAT, (110, 210, 3)), ('input3', TensorProto.FLOAT, (90, 110, 3)), ], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceMap', ['in_sequence'], ['out_sequence1', 'out_sequence2'], body=body_graph)], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (None, None, 3)), make_tensor_sequence_value_info( 'out_sequence1', TensorProto.FLOAT, (None, None, 3)), make_tensor_sequence_value_info( 'out_sequence2', TensorProto.FLOAT, (None, None, 3)), ]) # type: ignore def test_sequence_map_different_tensor_type(self): # type: () -> None body_graph = helper.make_graph( nodes=[make_node('Shape', ['x'], ['shape'])], name='body_graph', inputs=[ onnx.helper.make_tensor_value_info( 'x', onnx.TensorProto.FLOAT, ('H', 'W', 'C')) ], outputs=[ onnx.helper.make_tensor_value_info( 'shape', onnx.TensorProto.INT64, (3,)) ], ) # type: ignore graph = self._make_graph( [('input1', TensorProto.FLOAT, (220, 310, 3)), ('input2', TensorProto.FLOAT, (110, 210, 3)), ('input3', TensorProto.FLOAT, (90, 110, 3)), ], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceMap', ['in_sequence'], ['shapes'], body=body_graph)], []) self._assert_inferred( graph, [make_tensor_sequence_value_info('in_sequence', TensorProto.FLOAT, (None, None, 3)), make_tensor_sequence_value_info('shapes', TensorProto.INT64, (3,)), ]) # type: ignore def test_hammingwindow(self): # type: () -> None graph = self._make_graph([], [make_node("Constant", [], ['shape'], value=make_tensor('shape', TensorProto.INT64, (), (10,))), make_node("HammingWindow", ['shape'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.INT64, ()), make_tensor_value_info('y', TensorProto.FLOAT, (10,))]) # type: ignore graph = self._make_graph([], [make_node("Constant", [], ['shape'], value=make_tensor('shape', TensorProto.INT64, (), (10,))), make_node("HammingWindow", ['shape'], ['y'], periodic=0)], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.INT64, ()), make_tensor_value_info('y', TensorProto.FLOAT, (10,))]) # type: ignore def test_hannwindow(self): # type: () -> None graph = self._make_graph([], [make_node("Constant", [], ['shape'], value=make_tensor('shape', TensorProto.INT64, (), (10,))), make_node("HannWindow", ['shape'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.INT64, ()), make_tensor_value_info('y', TensorProto.FLOAT, (10,))]) # type: ignore graph = self._make_graph([], [make_node("Constant", [], ['shape'], value=make_tensor('shape', TensorProto.INT64, (), (10,))), make_node("HannWindow", ['shape'], ['y'], periodic=0)], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.INT64, ()), make_tensor_value_info('y', TensorProto.FLOAT, (10,))]) # type: ignore def test_blackmanwindow(self): # type: () -> None graph = self._make_graph([], [make_node("Constant", [], ['shape'], value=make_tensor('shape', TensorProto.INT64, (), (10,))), make_node("BlackmanWindow", ['shape'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.INT64, ()), make_tensor_value_info('y', TensorProto.FLOAT, (10,))]) # type: ignore graph = self._make_graph([], [make_node("Constant", [], ['shape'], value=make_tensor('shape', TensorProto.INT64, (), (10,))), make_node("BlackmanWindow", ['shape'], ['y'], periodic=0)], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.INT64, ()), make_tensor_value_info('y', TensorProto.FLOAT, (10,))]) # type: ignore def test_dft_reals(self): # type: () -> None graph = self._make_graph([], [make_node("Constant", [], ['input'], value=make_tensor('input', TensorProto.FLOAT, (2, 5, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, ))), make_node("DFT", ['input', ''], ['output'])], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.FLOAT, (2, 5, 1)), make_tensor_value_info('y', TensorProto.FLOAT, (2, 5, 2))]) # type: ignore def test_dft_reals2(self): # type: () -> None graph = self._make_graph([], [make_node("Constant", [], ['input'], value=make_tensor('input', TensorProto.FLOAT, (1, 5, 10, 1,), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4))), make_node("DFT", ['input', ''], ['output'], axis=1, onesided=1)], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.FLOAT, (1, 5, 10, 1)), make_tensor_value_info('y', TensorProto.FLOAT, (1, 3, 10, 2))]) # type: ignore graph = self._make_graph([], [make_node("Constant", [], ['input'], value=make_tensor('input', TensorProto.FLOAT, (1, 5, 10, 1,), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4))), make_node("DFT", ['input', ''], ['output'], axis=2, onesided=1)], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.FLOAT, (1, 5, 10, 1)), make_tensor_value_info('y', TensorProto.FLOAT, (1, 5, 6, 2))]) # type: ignore graph = self._make_graph([], [make_node("Constant", [], ['input'], value=make_tensor('input', TensorProto.FLOAT, (1, 5, 10, 1,), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4))), make_node("DFT", ['input', ''], ['output'], axis=1, onesided=0)], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.FLOAT, (1, 5, 10, 1)), make_tensor_value_info('y', TensorProto.FLOAT, (1, 5, 10, 2))]) # type: ignore graph = self._make_graph([], [make_node("Constant", [], ['input'], value=make_tensor('input', TensorProto.FLOAT, (1, 5, 10, 1,), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4))), make_node("DFT", ['input', ''], ['output'], axis=2, onesided=0)], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.FLOAT, (1, 5, 10, 1)), make_tensor_value_info('y', TensorProto.FLOAT, (1, 5, 10, 2))]) # type: ignore def test_dft_complex(self): # type: () -> None graph = self._make_graph([], [make_node("Constant", [], ['input'], value=make_tensor('input', TensorProto.FLOAT, (2, 5, 2), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, ))), make_node("DFT", ['input', ''], ['output'])], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.FLOAT, (2, 5, 2)), make_tensor_value_info('y', TensorProto.FLOAT, (2, 5, 2))]) # type: ignore def test_dft_reals_onesided(self): # type: () -> None graph = self._make_graph([], [make_node("Constant", [], ['input'], value=make_tensor('input', TensorProto.FLOAT, (2, 5, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, ))), make_node("DFT", ['input', ''], ['output'], onesided=1)], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.FLOAT, (2, 5, 1)), make_tensor_value_info('y', TensorProto.FLOAT, (2, 3, 2))]) # type: ignore def test_dft_complex_onesided(self): # type: () -> None graph = self._make_graph([], [make_node("Constant", [], ['input'], value=make_tensor('input', TensorProto.FLOAT, (2, 5, 2), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, ))), make_node("DFT", ['input', ''], ['output'], onesided=1)], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.FLOAT, (2, 5, 2)), make_tensor_value_info('y', TensorProto.FLOAT, (2, 3, 2))]) # type: ignore def test_dft_reals_inverse(self): # type: () -> None graph = self._make_graph([], [make_node("Constant", [], ['input'], value=make_tensor('input', TensorProto.FLOAT, (2, 5, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, ))), make_node("DFT", ['input', ''], ['output'], inverse=1)], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.FLOAT, (2, 5, 1)), make_tensor_value_info('y', TensorProto.FLOAT, (2, 5, 2))]) # type: ignore def test_dft_complex_inverse(self): # type: () -> None graph = self._make_graph([], [make_node("Constant", [], ['input'], value=make_tensor('input', TensorProto.FLOAT, (2, 5, 2), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, ))), make_node("DFT", ['input', ''], ['output'], inverse=1)], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.FLOAT, (2, 5, 2)), make_tensor_value_info('y', TensorProto.FLOAT, (2, 5, 2))]) # type: ignore def test_stft_reals(self): # type: () -> None graph = self._make_graph( [], [ make_node("Constant", [], ['signal'], value=make_tensor('signal', TensorProto.FLOAT, (2, 10, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3))), make_node("Constant", [], ['frame_step'], value=make_tensor('frame_step', TensorProto.INT64, (), (2, ))), make_node("Constant", [], ['window'], value=make_tensor('window', TensorProto.INT64, (5, ), (1, 2, 3, 4, 5))), make_node("STFT", ['signal', 'frame_step', 'window'], ['output']), ], []) self._assert_inferred(graph, [ make_tensor_value_info('signal', TensorProto.FLOAT, (2, 10, 1)), make_tensor_value_info('frame_step', TensorProto.INT64, ()), make_tensor_value_info('window', TensorProto.INT64, (5, )), make_tensor_value_info('output', TensorProto.FLOAT, (2, 3, 5, 2)) ] ) # type: ignore graph = self._make_graph( [], [ make_node("Constant", [], ['signal'], value=make_tensor('signal', TensorProto.FLOAT, (2, 10, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3))), make_node("Constant", [], ['frame_step'], value=make_tensor('frame_step', TensorProto.INT64, (), (2, ))), make_node("Constant", [], ['window'], value=make_tensor('window', TensorProto.INT64, (5, ), (1, 2, 3, 4, 5))), make_node("Constant", [], ['frame_length'], value=make_tensor('frame_length', TensorProto.INT64, (), (5, ))), make_node("STFT", ['signal', 'frame_step', 'window'], ['output']), ], []) self._assert_inferred(graph, [ make_tensor_value_info('signal', TensorProto.FLOAT, (2, 10, 1)), make_tensor_value_info('frame_step', TensorProto.INT64, ()), make_tensor_value_info('window', TensorProto.INT64, (5, )), make_tensor_value_info('frame_length', TensorProto.INT64, ()), make_tensor_value_info('output', TensorProto.FLOAT, (2, 3, 5, 2)) ] ) # type: ignore graph = self._make_graph( [], [ make_node("Constant", [], ['signal'], value=make_tensor('signal', TensorProto.FLOAT, (2, 10, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3))), make_node("Constant", [], ['frame_step'], value=make_tensor('frame_step', TensorProto.INT64, (), (2, ))), make_node("Constant", [], ['frame_length'], value=make_tensor('frame_length', TensorProto.INT64, (), (5, ))), make_node("STFT", ['signal', 'frame_step', '', 'frame_length'], ['output']), ], []) self._assert_inferred(graph, [ make_tensor_value_info('signal', TensorProto.FLOAT, (2, 10, 1)), make_tensor_value_info('frame_step', TensorProto.INT64, ()), make_tensor_value_info('frame_length', TensorProto.INT64, ()), make_tensor_value_info('output', TensorProto.FLOAT, (2, 3, 5, 2)) ] ) # type: ignore def test_melweightmatrix(self): # type: () -> None graph = self._make_graph([], [ make_node("Constant", [], ['num_mel_bins'], value=make_tensor('num_mel_bins', TensorProto.INT64, (), (10,))), make_node("Constant", [], ['dft_length'], value=make_tensor('dft_length', TensorProto.INT64, (), (128,))), make_node("Constant", [], ['sample_rate'], value=make_tensor('sample_rate', TensorProto.INT64, (), (10,))), make_node("Constant", [], ['lower_edge_hertz'], value=make_tensor('lower_edge_hertz', TensorProto.FLOAT, (), (10.,))), make_node("Constant", [], ['upper_edge_hertz'], value=make_tensor('upper_edge_hertz', TensorProto.FLOAT, (), (100.,))), make_node("MelWeightMatrix", ['num_mel_bins', 'dft_length', 'sample_rate', 'lower_edge_hertz', 'upper_edge_hertz'], ['output'])], []) self._assert_inferred(graph, [ make_tensor_value_info('num_mel_bins', TensorProto.INT64, ()), make_tensor_value_info('dft_length', TensorProto.INT64, ()), make_tensor_value_info('sample_rate', TensorProto.INT64, ()), make_tensor_value_info('lower_edge_hertz', TensorProto.FLOAT, ()), make_tensor_value_info('upper_edge_hertz', TensorProto.FLOAT, ()), make_tensor_value_info('output', TensorProto.FLOAT, (65, 10)) ]) # type: ignore def test_melweightmatrix_with_output_datatype(self): # type: () -> None graph = self._make_graph([], [ make_node("Constant", [], ['num_mel_bins'], value=make_tensor('num_mel_bins', TensorProto.INT64, (), (10,))), make_node("Constant", [], ['dft_length'], value=make_tensor('dft_length', TensorProto.INT64, (), (128,))), make_node("Constant", [], ['sample_rate'], value=make_tensor('sample_rate', TensorProto.INT64, (), (10,))), make_node("Constant", [], ['lower_edge_hertz'], value=make_tensor('lower_edge_hertz', TensorProto.FLOAT, (), (10.,))), make_node("Constant", [], ['upper_edge_hertz'], value=make_tensor('upper_edge_hertz', TensorProto.FLOAT, (), (100.,))), make_node("MelWeightMatrix", ['num_mel_bins', 'dft_length', 'sample_rate', 'lower_edge_hertz', 'upper_edge_hertz'], ['output'], output_datatype=TensorProto.DOUBLE)], []) self._assert_inferred(graph, [ make_tensor_value_info('num_mel_bins', TensorProto.INT64, ()), make_tensor_value_info('dft_length', TensorProto.INT64, ()), make_tensor_value_info('sample_rate', TensorProto.INT64, ()), make_tensor_value_info('lower_edge_hertz', TensorProto.FLOAT, ()), make_tensor_value_info('upper_edge_hertz', TensorProto.FLOAT, ()), make_tensor_value_info('output', TensorProto.DOUBLE, (65, 10)) ]) # type: ignore if __name__ == '__main__': unittest.main()
ee2c193886ab22514a4005b23ceb595186d0e4bc
c68ca71a3ac9f62063e866ad3fe31be9e265835f
/Pycharm Lab04/grammar.py
fddb105697c460343abfa84e8a7495296a7b1c14
[]
no_license
Victor-Alexandru/Formal-Languages-and-Compiler-Design
971453887c2a83da434f7d622867fd6fd0615592
d36eaf96d200183165c3ebd3a2240e34fcf39e7d
refs/heads/master
2020-08-08T04:54:25.659844
2020-01-13T13:57:05
2020-01-13T13:57:05
213,719,498
0
0
null
null
null
null
UTF-8
Python
false
false
2,867
py
import re import tokenize # # A is defined as G = (N, E, P, S) where: # # N = set of non-terminals # E = set of terminals # P = set of productions # S = starting symbol class Grammar: @staticmethod def parseLine(line): equalPos = line.index('=') rhs = line[equalPos + 1:].strip('\n').strip(' ')[1:-1] return [symbol.strip() for symbol in rhs.split(',')] @staticmethod def fromFile(fileName): with open(fileName) as file: N = Grammar.parseLine(file.readline()) E = Grammar.parseLine(file.readline()) S = file.readline().split('=')[1].strip() P = Grammar.parseRules([line.strip('\n').strip(' ').strip(',') for line in file][1:-1]) return Grammar(N, E, P, S) @staticmethod def parseRules(rules): result = [] for rule in rules: lhs, rhs = rule.split('->') lhs = lhs.strip() rhs = [value.strip() for value in rhs.split('|')] for value in rhs: result.append((lhs, value.split())) return result def __init__(self, N, E, P, S): self.N = N self.E = E self.P = P self.S = S def isNonTerminal(self, value): return value in self.N def isTerminal(self, value): return value in self.E def isRegular(self): usedInRhs = dict() notAllowedInRhs = list() for rule in self.P: lhs, rhs = rule hasTerminal = False hasNonTerminal = False for char in rhs: if self.isNonTerminal(char): usedInRhs[char] = True hasNonTerminal = True elif self.isTerminal(char): if hasNonTerminal: return False hasTerminal = True if char == 'E': notAllowedInRhs.append(lhs) if hasNonTerminal and not hasTerminal: return False for char in notAllowedInRhs: if char in usedInRhs: return False return True def getProductionsFor(self, nonTerminal): if not self.isNonTerminal(nonTerminal): raise Exception('Can only show productions for non-terminals') return [prod for prod in self.P if prod[0] == nonTerminal] def showProductionsFor(self, nonTerminal): productions = self.getProductionsFor(nonTerminal) print(', '.join([' -> '.join(prod) for prod in productions])) def __str__(self): return 'N = { ' + ', '.join(self.N) + ' }\n' \ + 'E = { ' + ', '.join(self.E) + ' }\n' \ + 'P = { ' + ', '.join([' -> '.join([prod[0], ' '.join(prod[1])]) for prod in self.P]) + ' }\n' \ + 'S = ' + str(self.S) + '\n'
43504cf4ff2a416c1a81d72cfea563b923656089
792cceb9b573fdfff969404ded00448549e4aee7
/overextends/templatetags/overextends_tags.py
590b9e38862dbb754b27974876a34a6e959eeb85
[ "BSD-2-Clause" ]
permissive
stefanw/django-overextends
bdc604bbe84664a844f76d10818630d554925834
be53aaab7d7f9260c58ab22bcba1cf782c6224f3
refs/heads/master
2020-12-30T19:11:22.963138
2012-09-01T04:39:32
2012-09-01T04:39:32
12,434,593
0
0
null
null
null
null
UTF-8
Python
false
false
5,730
py
import os from django import template from django.template import Template, TemplateSyntaxError, TemplateDoesNotExist from django.template.loader_tags import ExtendsNode from django.template.loader import find_template_loader register = template.Library() class OverExtendsNode(ExtendsNode): """ Allows the template ``foo/bar.html`` to extend ``foo/bar.html``, given that there is another version of it that can be loaded. This allows templates to be created in a project that extend their app template counterparts, or even app templates that extend other app templates with the same relative name/path. We use our own version of ``find_template``, that uses an explict list of template directories to search for the template, based on the directories that the known template loaders (``app_directories`` and ``filesystem``) use. This list gets stored in the template context, and each time a template is found, its absolute path gets removed from the list, so that subsequent searches for the same relative name/path can find parent templates in other directories, which allows circular inheritance to occur. Django's ``app_directories``, ``filesystem``, and ``cached`` loaders are supported. The ``eggs`` loader, and any loader that implements ``load_template_source`` with a source string returned, should also theoretically work. """ def find_template(self, name, context, peeking=False): """ Replacement for Django's ``find_template`` that uses the current template context to keep track of which template directories it has used when finding a template. This allows multiple templates with the same relative name/path to be discovered, so that circular template inheritance can occur. """ # These imports want settings, which aren't available when this # module is imported to ``add_to_builtins``, so do them here. from django.template.loaders.app_directories import app_template_dirs from django.conf import settings # Store a dictionary in the template context mapping template # names to the lists of template directories available to # search for that template. Each time a template is loaded, its # origin directory is removed from its directories list. context_name = "OVEREXTENDS_DIRS" if context_name not in context: context[context_name] = {} if name not in context[context_name]: all_dirs = list(settings.TEMPLATE_DIRS) + list(app_template_dirs) # os.path.abspath is needed under uWSGI, and also ensures we # have consistent path separators across different OSes. context[context_name][name] = map(os.path.abspath, all_dirs) # Build a list of template loaders to use. For loaders that wrap # other loaders like the ``cached`` template loader, unwind its # internal loaders and add those instead. loaders = [] for loader_name in settings.TEMPLATE_LOADERS: loader = find_template_loader(loader_name) loaders.extend(getattr(loader, "loaders", [loader])) # Go through the loaders and try to find the template. When # found, removed its absolute path from the context dict so # that it won't be used again when the same relative name/path # is requested. for loader in loaders: dirs = context[context_name][name] try: source, path = loader.load_template_source(name, dirs) except TemplateDoesNotExist: pass else: # Only remove the absolute path for the initial call in # get_parent, and not when we're peeking during the # second call. if not peeking: remove_path = os.path.abspath(path[:-len(name) - 1]) context[context_name][name].remove(remove_path) return Template(source) raise TemplateDoesNotExist(name) def get_parent(self, context): """ Load the parent template using our own ``find_template``, which will cause its absolute path to not be used again. Then peek at the first node, and if its parent arg is the same as the current parent arg, we know circular inheritance is going to occur, in which case we try and find the template again, with the absolute directory removed from the search list. """ parent = self.parent_name.resolve(context) # If parent is a template object, just return it. if hasattr(parent, "render"): return parent template = self.find_template(parent, context) if (isinstance(template.nodelist[0], ExtendsNode) and template.nodelist[0].parent_name.resolve(context) == parent): return self.find_template(parent, context, peeking=True) return template @register.tag def overextends(parser, token): """ Extended version of Django's ``extends`` tag that allows circular inheritance to occur, eg a template can both be overridden and extended at once. """ bits = token.split_contents() if len(bits) != 2: raise TemplateSyntaxError("'%s' takes one argument" % bits[0]) parent_name = parser.compile_filter(bits[1]) nodelist = parser.parse() if nodelist.get_nodes_by_type(ExtendsNode): raise TemplateSyntaxError("'%s' cannot appear more than once " "in the same template" % bits[0]) return OverExtendsNode(nodelist, parent_name, None)
ef3750605dc1ceb4f6039d5fb4f9de3f419c88ba
58119a43f98d2d6387af04521ea6e577a12c3aed
/core/admin.py
66d903c333e89d7d2c21040e1fc567afddea8c5e
[]
no_license
raysandeep/handly-backend
21178b9580c3592d98c4b80bac7cbdcf704d6dba
512767881ad0f04fb7870b8fa31241817aab1fe2
refs/heads/master
2022-12-24T22:34:59.807195
2020-09-29T22:17:43
2020-09-29T22:17:43
267,828,315
0
0
null
2020-05-29T10:16:06
2020-05-29T10:16:04
null
UTF-8
Python
false
false
302
py
from django.contrib import admin from .models import ( Collections, OutputFiles, HandwritingInputLogger, InputFile ) # Register your models here. admin.site.register(Collections) admin.site.register(OutputFiles) admin.site.register(HandwritingInputLogger) admin.site.register(InputFile)
1682bd0197cf6a3cb8c7dbd041d629157afe7f2d
317d199d36556ecf5da06c660cb5cb655a86ea09
/Challenges/lisas_workbook/test_lisas_worbook.py
cc41dc87422cb6364030a186007bf9a595fbeac5
[]
no_license
baubrun/Challenges-PY
e109126a64a20128202e03c2ed359c179f523dcd
e2ca45cbca264f5790ce303807e25810a5d8d977
refs/heads/master
2022-12-17T03:24:43.308680
2020-09-14T12:37:24
2020-09-14T12:37:24
262,485,260
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
import pytest from lisas_workbook import workbook @pytest.mark.parametrize("n, k, arr, result", [ (5, 3, [4,2,6,1,10], 4) ] ) def test_workbook(n, k, arr, result): assert workbook(n, k, arr) == result
5180516dba72562eedf269560a7aef3602e6f7d9
0bf93a74ce5676e978f3ee79a98a1be90b0e20a5
/htdocs/plotting/auto/scripts/__init__.py
4a38e1e34555f0e92f3c8388885cd10dac45522d
[ "MIT" ]
permissive
claudemp/iem
3c926361c55fde3265157e15bc5119d64dbf2418
557deb8c46342aa9a18ac56cba59345c072cf225
refs/heads/master
2021-04-06T13:39:08.352676
2018-03-12T20:58:14
2018-03-12T20:58:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,127
py
""" Examples of widget types dict(type='date', name='date2', default='2012/03/15', label='Bogus2:', min="1893/01/01"), # Comes back to python as yyyy-mm-dd """ # Association of plots data = {'plots': [ {'label': 'Daily', 'options': [ {'id': "108", 'mw': True, "label": "Accumulated Station Departures of Precipitation/GDD/SDD"}, {'id': "172", 'mw': True, "label": "Accumulated Year to Date Precipitation"}, {'id': "149", 'mw': True, "label": "Arridity Index (High Temperature minus Precip Departures)"}, {'id': "11", 'label': "ASOS/AWOS Daily Min/Max Dew Point for a Year"}, {'id': "94", "label": "Bias of 24 Hour High+Low Computation by Hour"}, {'id': "96", "label": "Bias of 24 Hour Precipitation Computation by Hour"}, {'id': "82", 'label': "Calendar of Daily Observations from Automated Stations"}, {'id': "180", 'label': "Daily Temperature Climatology", 'mw': True}, {'id': "32", 'label': "Daily Temperature Departures for One Year", 'mw': True}, {'id': "21", 'label': "Change in NCDC 81 Daily Climatology over X Days"}, {'id': "174", 'label': "Compare Daily High/Low Temps for ASOS Stations"}, {'id': "91", 'mw': True, "label": "Consecutative Day Statistics of High+Low Temps / Precip"}, {'id': "66", 'mw': True, "label": ("Consecutative Days with High/Low Temp " "Above/Below Threshold")}, {'id': "176", 'mw': True, 'label': "Daily Records Beat Margin"}, {'id': "5", 'mw': True, 'label': "Daily Records for each month of year"}, {'id': "31", 'mw': True, 'label': "Extreme Jumps or Dips in High Temperature over X days"}, {'id': "147", 'mw': True, 'label': "Frequency of One Station Warmer/Wetter than Another"}, {'id': "7", 'mw': True, 'label': "Growing Degree Day Periods for One Year by Planting Date"}, {'id': "61", 'label': ("High/Low Temp above/below avg OR dry streaks " "by NWS CLI Sites")}, {'id': "19", 'mw': True, 'label': "Histogram of Daily High/Low Temperatures"}, {'id': "35", 'label': "Histogram of X Hour Temperature Changes"}, {'id': "60", 'label': ("Hourly Temperature/Dew Point Frequencies " "Above/Below Threshold")}, {'id': "86", 'mw': True, 'label': "IEM Daily Reanalysis Plots"}, {'id': "139", 'label': "Largest Local Calendar Day Temperature Differences"}, {'id': "168", 'mw': True, "label": "Latest Date of Year for High Temperature"}, {'id': "97", 'mw': True, "label": "Map of Departures/Stats over One Period of Days"}, {'id': "34", 'mw': True, 'label': "Max Stretch of Days with High/Low Above/Below Threshold"}, {'id': "26", 'label': "Min Daily Low after 1 July / Max Daily High before 1 July"}, {'id': "126", 'label': ("Mixing Ratio / Vapor Pressure Deficit Climatology " "and Yearly Timeseries Plot")}, {'id': "84", 'mw': True, 'label': ("MRMS Q3 / PRISM Estimated Precipitation " "(multiday summaries/departures too)")}, {'id': "185", 'mw': True, 'label': ("Number of Days to Accumulate an Amount of Precipitation" " (MRMS)")}, {'id': "164", 'label': ("Percentage of NWS CLI Sites Reporting Daily Above/Below " "Temps or Precip/Snow")}, {'id': "22", 'mw': True, 'label': ("Percentage of Years within Temperature Range " "from Averages")}, {'id': "83", 'mw': True, 'label': ("Period Averages or Totals of X days around a " "given day of the year")}, {'id': "140", 'label': ("Period Statistics of Temp/Precip/Wind for a date period " "each year [ASOS/Automated Stations]")}, {'id': "107", 'mw': True, 'label': ("Period Statistics of Temp/Precip for a date period " "each year [COOP/Climate Sites]")}, {'id': "182", 'mw': True, 'label': "Precipitation (MRMS) Coverage Efficiency by State"}, {'id': "43", 'label': "Recent (Past 2-3 Days) Timeseries (Meteogram)"}, {'id': "157", 'label': "Relative Humidity Max/Min/Avg by Day of Year"}, {'id': "62", 'mw': True, 'label': "Snow Depth"}, {'id': "38", 'mw': True, 'label': "Solar Radiation Estimates from NARR"}, {'id': "25", 'mw': True, 'label': "Spread of Daily High and Low Temperatures"}, {'id': "137", 'mw': True, 'label': "Start Date of Spring/Fall with Statistics"}, {'id': "4", 'mw': True, 'label': "State Areal Coverage of Precip Intensity over X Days"}, {'id': "89", 'mw': True, 'label': "State Areal Coverage/Efficiency of Precipitation"}, {'id': "81", 'mw': True, 'label': "Standard Deviation of Daily Temperatures"}, {'id': "28", 'mw': True, 'label': "Trailing Number of Days Precipitation Total Rank"}, {'id': "142", 'mw': True, 'label': "Trailing X Number of Days Temp/Precipitation Departures"}, {'id': "132", 'mw': True, 'label': "Top 10 Precip/Temperature Values by Month/Season"}, {'id': "190", 'mw': True, 'label': "Year of Daily High/Low Temperature Record"}, ]}, {'label': 'Monthly', 'options': [ {'id': "130", 'mw': True, 'label': "Average High/Low Temperature with/without Snowcover"}, {'id': "125", 'mw': True, 'label': "Climatological Maps of Annual/Monthly Averages"}, {'id': "1", 'mw': True, 'label': "Comparison of Multi-Month Totals/Averages"}, {'id': "55", 'label': "Daily Climatology Comparison"}, {'id': "17", 'label': "Daily High/Low Temps with Climatology"}, {'id': "129", 'mw': True, 'label': "Daily Observation Percentiles/Frequencies by Month"}, {'id': "15", 'mw': True, 'label': "Daily Temperature Change Frequencies by Month"}, {'id': "98", 'mw': True, 'label': "Day of Month Frequency of meeting temp/precip threshold"}, {'id': '65', 'mw': True, 'label': 'Day of the Month with the coldest/warmest temperature'}, {'id': '161', 'label': 'Days per month/season above/below some threshold'}, {'id': "29", 'label': "Frequency of Hourly Temperature within Range by Month"}, {'id': "9", 'mw': True, 'label': ("Growing Degree Day Climatology " "and Daily Values for one Year")}, {'id': "42", 'label': ("Hourly Temperature/Dew Point " "Streaks Above/Below Threshold")}, {'id': "154", 'label': "Hourly Temperature Averages by Month"}, {'id': "85", 'label': "Hourly Temperature Frequencies by Month"}, {'id': "177", 'mw': True, 'label': "ISU Soil Moisture Network Timeseries Plots"}, {'id': "2", 'mw': True, 'label': "Month Precipitation v Month Growing Degree Day Departures"}, {'id': "57", 'mw': True, 'label': "Monthly Precipitation/Temperature Records"}, {'id': "95", 'mw': True, 'label': "Monthly Precipitation/Temperature with El Nino Indices"}, {'id': "24", 'mw': True, 'label': ("Monthly Precipitation/Temperature " "Climate District Ranks/Arridity")}, {'id': "3", 'mw': True, 'label': "Monthly Precipitation/Temperature Statistics by Year"}, {'id': "6", 'mw': True, 'label': "Monthly Precipitation/Temperature Distributions"}, {'id': "8", 'mw': True, 'label': "Monthly Precipitation Reliability"}, {'id': "23", 'mw': True, 'label': "Monthly Station Departures + El Nino 3.4 Index"}, {'id': "36", 'mw': True, 'label': "Month warmer than other Month for Year"}, {'id': "58", 'mw': True, 'label': ("One Day's Precipitation Greater than X percentage " "of Monthly Total")}, {'id': "41", 'mw': True, 'label': ("Quantile / Quantile Plot of Daily Temperatures " "for Two Months/Periods")}, {'id': "20", 'label': "Hours of Precipitation by Month"}, {'id': "47", 'mw': True, 'label': "Snowfall vs Precipitation Total for a Month"}, {'id': "39", 'mw': True, 'label': "Scenarios for this month besting some previous month"}, {'id': "71", 'label': "Wind Speed and Wind Direction Daily Averages for Month"}, {'id': "138", 'label': "Wind Speed and Wind Direction Monthly Climatology"}, {'id': "173", 'label': "Wind Speed Hourly Climatology by Month or Period"}, ]}, {'label': 'Yearly', 'options': [ {'id': "135", 'mw': True, 'label': "Accumulated Days with High/Low Above/Below Threshold"}, {'id': "76", 'label': "Avg Dew Point / Vapor Pressure Deficit by Year or Season"}, {'id': "125", 'mw': True, 'label': "Climatological Maps of Annual/Monthly Averages"}, {'id': "151", 'mw': True, 'label': ("Difference between two periods or " "single period of years [map]")}, {'id': "128", 'mw': True, 'label': "Comparison of Yearly Summaries between two stations"}, {'id': "99", 'label': "Daily High + Low Temperatures with Departures", 'mw': True}, {'id': "12", 'mw': True, 'label': ("Days per year and first/latest date " "above/below given threshold")}, {'id': "184", 'mw': True, 'label': ("Days per year with High Temperature " "above temperature thresholds")}, {'id': "74", 'mw': True, 'label': ("Days per year by season or year with temperature " "above/below threshold")}, {'id': "181", 'mw': True, 'label': ("Days per year with temp/precip/snowfall " "within ranges")}, {'id': "13", 'mw': True, 'label': "End/Start Date of Summer (warmest 91 day period) per Year"}, {'id': "27", 'mw': True, 'label': "First Fall Temp Below Threshold (First Freeze/Frost)"}, {'id': "165", 'mw': True, 'label': "First Fall/Last Spring Temp Below Threshold [map]"}, {'id': "119", 'label': "Frequency of First Fall Low Temperature by Day of Year"}, {'id': "189", 'mw': True, 'label': ("General yearly totals with trend line fitted")}, {'id': "179", 'mw': True, 'label': ("Growing Degree Day Scenarios For This Year")}, {'id': "152", 'mw': True, 'label': ("Growing Season Differences Map between " "Two Periods")}, {'id': "148", 'mw': True, 'label': "Holiday or Same Day Daily Weather Observations each year"}, {'id': "53", 'label': ("Hourly Frequency of Temperature within " "Certain Ranges")}, {'id': "10", 'mw': True, 'label': ("Last Spring and First Fall Date " "above/below given threshold")}, {'id': '64', 'mw': True, 'label': 'Last or First Snowfall of Each Winter Season'}, {'id': "33", 'mw': True, 'label': "Maximum Low Temperature Drop"}, {'id': "188", 'mw': True, 'label': ("Max/Min High/Low after first " "temperature exceedence of season")}, {'id': "105", 'mw': True, 'label': "Maximum Period between Precipitation Amounts"}, {'id': "46", 'label': "Minimum Wind Chill Temperature"}, {'id': "30", 'mw': True, 'label': "Monthly Temperature Range"}, {'id': "44", 'label': "NWS Office Accumulated SVR+TOR Warnings"}, {'id': "69", 'mw': True, 'label': "Percentage of Days each Year Above Average"}, {'id': "77", 'mw': True, 'label': "Period between Last and First High Temperature for Year"}, {'id': "134", 'mw': True, 'label': "Period each year that was warmest/coldest/wettest"}, {'id': "75", 'mw': True, 'label': "Precipitation Totals by Season/Year"}, {'id': "63", 'mw': True, 'label': "Records Set by Year (Max High / Min Low)"}, {'id': "144", 'mw': True, 'label': "Soil Temperature Periods Above/Below Threshold in Spring"}, {'id': "145", 'mw': True, 'label': "Soil Temperature Daily Time Series by Year"}, {'id': "175", 'mw': True, 'label': "Snow Coverage Percentage for State For One Winter"}, {'id': "133", 'mw': True, 'label': "Snowfall Season Totals Split by Date within Season"}, {'id': "103", 'mw': True, 'label': "Step Ups in High Temp / Step Downs in Low Temp by Year"}, {'id': "100", 'mw': True, 'label': "Temperature / Precipitation Statistics by Year"}, {'id': "136", 'label': "Time per Winter Season below Wind Chill Threshold"}, {'id': "104", 'mw': True, 'label': "Trailing X day temp/precip departures (weather cycling)"}, {'id': "14", 'mw': True, 'label': "Yearly Precipitation Contributions by Daily Totals"}, ]}, {'label': 'Hydrology Plots', 'options': [ {'id': "160", 'label': ("River Guage Obs and Forecasts from HML Products")}, {'id': "178", 'label': ("NWS RFC Flash Flood Guidance Plots")}, {'id': "183", 'label': ("US Drought Monitor Areal Coverage by State")}, {'id': "186", 'label': ("US Drought Monitor Change in Areal Coverage by State")}, ]}, {'label': 'METAR ASOS Special Plots', 'options': [ {'id': "78", 'label': ("Average Dew Point/RH% by Air Temperature " "by Month or Season or Year")}, {'id': "79", 'label': ("Average Dew Point by Wind Direction " "by Month or Season or Year")}, {'id': "40", 'label': "Cloud Amount and Level Timeseries for One Month"}, {'id': "88", 'label': "Cloudiness Impact on Hourly Temperatures"}, {'id': "59", 'label': "Daily u and v Wind Component Climatologies"}, {'id': "54", 'label': ("Difference between morning low " "or afternoon high temperature between two sites")}, {'id': "167", 'label': ("Flight / Aviation Condition (VFR, MVFR, IFR, LIFR) " "hourly for one month")}, {'id': "87", 'label': ("Frequency of METAR Code (Thunder, etc) " "by week by hour")}, {'id': "131", 'label': ("Frequency of Overcast Clouds by Air Temperature " "by month/season")}, {'id': "93", 'label': ("Heat Index / Temperature / Dew Point / " "Wind Chill Hourly Histogram")}, {'id': "153", 'label': "Hourly Temp/Dew Point Extremes by Month/Season/Year"}, {'id': "159", 'label': "Hourly Temp/Dew Point Frequency by-year by-hour-of-day"}, {'id': "106", 'label': "Hourly temp distributions on days exceeding temperature"}, {'id': "169", 'label': "Largest Rise/Drop in Temperature over X Hours"}, {'id': "18", 'label': "Long term observation time series"}, {'id': "45", 'label': "Monthly Frequency of Overcast Conditions"}, {'id': "170", 'label': "Monthly Frequency of Present Weather Code in METAR Report"}, {'id': "67", 'label': "Monthly Frequency of Wind Speeds by Air Temperature"}, {'id': "37", 'label': "MOS Forecasted Temperature Ranges + Observations"}, {'id': "162", 'label': "Overcast Sky Condition 2D Histogram (Level by Week)"}, {'id': "146", 'label': "Temperature Frequency by Week During Precipitation"}, {'id': "155", 'label': "Top Ten Hourly Precipitation Reports"}, {'id': "16", 'label': "Wind Rose when specified criterion is meet"}, ]}, {'label': 'NASS Quickstats (USDA Crop Statistics)', 'options': [ {'id': "156", 'label': ("Crop Condition by Year for Six States")}, {'id': "127", 'label': ("Crop Progress by Year")}, ]}, {'label': 'NWS Warning Plots', 'options': [ {'id': "191", 'label': "Calendar Plot of Watch/Warn/Adv Daily Counts by WFO"}, {'id': "92", 'label': "Days since Last Watch/Warning/Advisory by WFO"}, {'id': "72", 'label': "Frequency of Issuance time for Watch/Warning/Advisories"}, {'id': "52", 'label': "Gaant Chart of WFO Issued Watch/Warning/Advisories"}, {'id': "163", 'label': "Local Storm Reports Issued by WFO [map]"}, {'id': "102", 'label': "Local Storm Report Source Type Ranks by Year"}, {'id': "44", 'label': "NWS Office Accumulated Warning/Warning/Advisories by Year"}, {'id': "68", 'label': "Number of Distinct Phenomena/Significance VTEC per Year"}, {'id': "73", 'label': "Number of Watch/Warning/Advisories Issued per Year"}, {'id': "171", 'label': ("Number of Watch/Warning/Advisories Issued " "per Year per Month")}, {'id': "70", 'label': "Period between First and Last VTEC Product Each Year"}, {'id': "166", 'label': "Storm Prediction Center Watches per Year for a State"}, {'id': "48", 'label': "Time of Day Frequency for Given Warning / UGC"}, {'id': "80", 'label': "Time Duration of a Watch/Warning/Advisory for a UGC"}, {'id': "101", 'label': "Top 25 Most Frequent VTEC Products by Office/NWS"}, {'id': "56", 'label': "Weekly Frequency of a Watch/Warning/Advisory"}, {'id': "109", 'label': "WFO VTEC Event Counts for a Given Period (map)"}, {'id': "90", 'label': ("UGC or Polygon SBW Statistics for " "Watch/Warning/Advisory by state/wfo")}, ]}, {'label': 'Sustainable Corn Project Plots', 'options': [ {'id': "49", 'mw': True, 'label': "Two Day Precipitation Total Frequencies"}, {'id': "50", 'mw': True, 'label': "Frequency of Measurable Daily Precipitation"}, {'id': "51", 'mw': True, 'label': "Frequency of No Daily Precipitation over 7 Days"}, ]}, {'label': 'Tall Towers Plots', 'options': [ {'id': "158", 'mw': True, 'label': "1 Second Interval Time Series "}, ]}, {'label': 'Upper Air / RAOB Sounding Plots', 'options': [ {'id': "150", 'label': ("Single Sounding Mandatory Level Percentile Ranks")}, ]}, ]}
4c7cc1da3d3db48d74d8801ee92a4e8e292c1dc1
538ca338d88598c1c671c502d03b94781fbebdff
/thriftworker/utils/imports.py
09ebd16a067c8e7e23e570bf62ed703035ec4809
[]
no_license
gdeetotdom/thriftworker
e12c94ac05eebe1b28f157415d3d6072ecf77876
c9b7554845a7f76de2e2076568e2fb779cacdfff
refs/heads/master
2021-01-10T19:22:53.608418
2013-11-11T08:18:59
2013-11-11T08:18:59
5,068,927
1
1
null
2013-11-11T08:19:00
2012-07-16T15:03:37
C
UTF-8
Python
false
false
3,550
py
from __future__ import absolute_import import os import sys import imp import importlib from contextlib import contextmanager import six def symbol_by_name(name, aliases={}, imp=None, package=None, sep='.', default=None, **kwargs): """Get symbol by qualified name. The name should be the full dot-separated path to the class:: modulename.ClassName Example:: celery.concurrency.processes.TaskPool ^- class name or using ':' to separate module and symbol:: celery.concurrency.processes:TaskPool If `aliases` is provided, a dict containing short name/long name mappings, the name is looked up in the aliases first. Examples: >>> symbol_by_name("celery.concurrency.processes.TaskPool") <class 'celery.concurrency.processes.TaskPool'> >>> symbol_by_name("default", { ... "default": "celery.concurrency.processes.TaskPool"}) <class 'celery.concurrency.processes.TaskPool'> # Does not try to look up non-string names. >>> from celery.concurrency.processes import TaskPool >>> symbol_by_name(TaskPool) is TaskPool True """ if imp is None: imp = importlib.import_module if not isinstance(name, basestring): return name # already a class name = aliases.get(name) or name sep = ':' if ':' in name else sep module_name, _, cls_name = name.rpartition(sep) if not module_name: cls_name, module_name = None, package if package else cls_name try: try: module = imp(module_name, package=package, **kwargs) except ValueError, exc: exc = ValueError("Couldn't import %r: %s" % (name, exc)) six.reraise(ValueError, exc, sys.exc_info()[2]) return getattr(module, cls_name) if cls_name else module except (ImportError, AttributeError): if default is None: raise return default def instantiate(name, *args, **kwargs): """Instantiate class by name. See :func:`symbol_by_name`. """ return symbol_by_name(name)(*args, **kwargs) def qualname(obj): if isinstance(obj, basestring): return obj if not hasattr(obj, '__name__') and hasattr(obj, '__class__'): return qualname(obj.__class__) return '.'.join([obj.__module__, obj.__name__]) def get_real_module(name): """Get the real Python module, regardless of any monkeypatching""" fp, pathname, description = imp.find_module(name) imp.acquire_lock() try: _realmodule = imp.load_module('_real_{0}'.format(name), fp, pathname, description) return _realmodule finally: imp.release_lock() if fp: fp.close() @contextmanager def cwd_in_path(): cwd = os.getcwd() if cwd in sys.path: yield else: sys.path.insert(0, cwd) try: yield cwd finally: try: sys.path.remove(cwd) except ValueError: # pragma: no cover pass def import_from_cwd(module, imp=None, package=None): """Import module, but make sure it finds modules located in the current directory. Modules located in the current directory has precedence over modules located in `sys.path`. """ if imp is None: imp = importlib.import_module with cwd_in_path(): return imp(module, package=package)
52e850e88c68b715b9fff51b8ed2477e68d341f2
79140b67cac1f5c8e3eb3ab3e7ad65a3a98866e8
/test/dnacode.py
a712a7e8dceed824582a9d407ad1ef22a93bd53f
[]
no_license
dlovemore/bible
63c1eceed4a919f7a6d2dfb76b6b084d05c49612
2594a2414a66c0abedd1278fef805415a8793f28
refs/heads/master
2021-01-03T07:17:45.527017
2020-05-16T17:54:18
2020-05-16T17:54:18
239,975,858
0
0
null
null
null
null
UTF-8
Python
false
false
4,549
py
# >>> from dna import * # >>> (Genesis[1]-Genesis[4]).midv() # Genesis 2:22 And the rib, which the LORD God had taken from man, made he a woman, and brought her unto the man. # Genesis 2:23 And Adam said, This is now bone of my bones, and flesh of my flesh: she shall be called Woman, because she was taken out of Man. # >>> # >>> b.book(5) # Deuteronomy 1:1-34:12 (959 verses) # >>> b.book(5)[5].vn() # 5055 # >>> tell(ssum,osum,'אלהימ') # א ל ה י מ # 1+30+5+10+40=86 # 1+12+5+10+13=41 # >>> tell(ssum,osum,'King') # K i n g # 20+9+50+7=86 # 11+9+14+7=41 # >>> tell(osum,ssum,'ברא') # ב ר א # 2+ 20+1= 23 # 2+200+1=203 # >>> tell('cre ate d') # cre ate d # 26+ 26+4=56 # >>> tell('God') # G o d # 7+15+4=26 # >>> tell(ssum,'LORD JEHOVAH') # LORD JEHOVAH # 184 + 492 =676 # >>> osum('God')**2 # 676 # >>> AY=AV+W+X+Y # >>> tell(ssum,'את') # א ת # 1+400=401 # >>> tell(ssum,'King') # K i n g # 20+9+50+7=86 # >>> AY # 3088286401 # >>> bin(AY) # '0b10111000000100111000001011000001' # >>> 23<<27|39<<15|11<<6|1 # 3088286401 # >>> tell('Ch ri st') # Ch ri st # 11+27+39=77 # >>> Isaiah[41:4] # Isaiah 41:4 Who hath wrought and done it, calling the generations from the beginning? I the LORD, the first, and with the last; I am he. # >>> b/'was'/'and is'/'to come' # 2 Samuel 7:19 And this was yet a small thing in thy sight, O Lord GOD; but thou hast spoken also of thy servant's house for a great while to come. And is this the manner of man, O Lord GOD? # Revelation 4:8 And the four beasts had each of them six wings about him; and they were full of eyes within: and they rest not day and night, saying, Holy, holy, holy, LORD God Almighty, which was, and is, and is to come. # >>> bin(975) # '0b1111001111' # >>> b/'ladder' # Genesis 28:12 And he dreamed, and behold a ladder set up on the earth, and the top of it reached to heaven: and behold the angels of God ascending and descending on it. # >>> _.tell() # And he dreamed, and behold a ladder set up on the earth, and the top of it reached to heaven: and behold the angels of God ascending and descending on it. # 19+13+ 50 + 19+ 46 +1+ 44 + 44+37+29+ 33+ 52 + 19+ 33+ 51+21+29+ 44 +35+ 55 + 19+ 46 + 33+ 58 +21+ 26+ 76 + 19+ 84 +29+ 29=1114 # >>> base(22,AV+W+X+Y) # [1, 5, 5, 5, 8, 9, 0, 13] # >>> int('1555890d',22) # 3088286401 # >>> base(12,AV+W+X+Y) # [7, 2, 2, 3, 1, 6, 9, 4, 1] # >>> base(23,AV+W+X+Y) # [20, 19, 18, 19, 18, 11, 18] # >>> int('KJIJIBI',23) # 3088286401 # >>> # >>> Ecclesiastes[7:27] # Ecclesiastes 7:27 Behold, this have I found, saith the preacher, counting one by one, to find out the account: # >>> Genesis/'divide'/'light' # Genesis 1:4,14,18 (3 verses) # >>> p(_) # Genesis 1 # 4 And God saw the light, that it was good: and God divided the light from the darkness. # 14 And God said, Let there be lights in the firmament of the heaven to divide the day from the night; and let them be for signs, and for seasons, and for days, and years: # 18 And to rule over the day and over the night, and to divide the light from the darkness: and God saw that it was good. # >>> # >>> AY-2**32 # -1206680895 # >>> AX=AV+W+X # >>> AX # 3031058986 # >>> 55055**2 # 3031053025 # >>> AX-55055**2 # 5961 # >>> pf(_) # Counter({3: 1, 1987: 1}) # >>> math.sqrt(.05414) # 0.23268003782017915 # >>> nF(414) # (14, 377, -37, 414, 196, 610, 15) # >>> ### >>> b/40000 ### Joshua 4:13;Judges 5:8;2 Samuel 10:18;1 Kings 4:26;1 Chronicles 12:36;19:18 (6 verses) ### >>> p(_) ### Joshua 4:13 About forty thousand prepared for war passed over before the LORD unto battle, to the plains of Jericho. ### Judges 5:8 They chose new gods; then was war in the gates: was there a shield or spear seen among forty thousand in Israel? ### 2 Samuel 10:18 And the Syrians fled before Israel; and David slew the men of seven hundred chariots of the Syrians, and forty thousand horsemen, and smote Shobach the captain of their host, who died there. ### 1 Kings 4:26 And Solomon had forty thousand stalls of horses for his chariots, and twelve thousand horsemen. ### 1 Chronicles 12:36 And of Asher, such as went forth to battle, expert in war, forty thousand. ### 1 Chronicles 19:18 But the Syrians fled before Israel; and David slew of the Syrians seven thousand men which fought in chariots, and forty thousand footmen, and killed Shophach the captain of the host. # >>> math.sqrt(40) # 6.324555320336759 # >>> math.sqrt(22) # 4.69041575982343 # >>> math.sqrt(14) # 3.7416573867739413 # >>> math.sqrt(2) # 1.4142135623730951 # >>>
d0dc44857bee01a251fbea954848bda531caf3e6
857da13a653162cc8c83a7d53a254e2caa97836d
/tensorpac/io.py
2e92c2212e409ac58f510be095da81bbd48b6f8a
[ "BSD-3-Clause" ]
permissive
EtienneCmb/tensorpac
18a5e844826b7f63796276ec435d9dc43c440e40
ac9058fd375d423757943810f613d63785fab85f
refs/heads/master
2023-05-22T16:54:09.656836
2023-02-08T09:42:45
2023-02-08T09:42:45
93,316,276
70
18
BSD-3-Clause
2023-03-08T22:12:03
2017-06-04T13:47:18
Python
UTF-8
Python
false
false
5,546
py
"""Define tensorpac logger. See : https://stackoverflow.com/questions/384076/how-can-i-color-python-logging-output """ import logging import sys import re BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8) RESET_SEQ = "\033[0m" COLOR_SEQ = "\033[1;%dm" BOLD_SEQ = "\033[1m" COLORS = { 'DEBUG': GREEN, 'PROFILER': MAGENTA, 'INFO': WHITE, 'WARNING': YELLOW, 'ERROR': RED, 'CRITICAL': RED, } FORMAT = {'compact': "$BOLD%(levelname)s | %(message)s", 'spacy': "$BOLD%(levelname)-19s$RESET | %(message)s", 'tensorpac': "$BOLD%(name)s-%(levelname)-19s$RESET | %(message)s", 'print': "%(message)s", } def formatter_message(message, use_color=True): """Format the message.""" return message.replace("$RESET", RESET_SEQ).replace("$BOLD", BOLD_SEQ) class _Formatter(logging.Formatter): """Formatter.""" def __init__(self, format_type='compact'): logging.Formatter.__init__(self, FORMAT[format_type]) self._format_type = format_type def format(self, record): name = record.levelname msg = record.getMessage() # If * in msg, set it in RED : if '*' in msg: regexp = '\*.*?\*' re_search = re.search(regexp, msg).group() to_color = COLOR_SEQ % (30 + RED) + re_search + COLOR_SEQ % ( 30 + WHITE) + RESET_SEQ msg_color = re.sub(regexp, to_color, msg) msg_color += RESET_SEQ record.msg = msg_color # Set level color : levelname_color = COLOR_SEQ % (30 + COLORS[name]) + name + RESET_SEQ record.levelname = levelname_color if record.levelno == 20: logging.Formatter.__init__(self, FORMAT['print']) else: logging.Formatter.__init__(self, FORMAT[self._format_type]) return formatter_message(logging.Formatter.format(self, record)) class _StreamHandler(logging.StreamHandler): """Stream handler allowing matching and recording.""" def __init__(self): logging.StreamHandler.__init__(self, sys.stderr) self.setFormatter(_lf) self._str_pattern = None self.emit = self._tensorpac_emit def _tensorpac_emit(self, record, *args): msg = record.getMessage() test = self._match_pattern(record, msg) if test: record.msg = test return logging.StreamHandler.emit(self, record) else: return def _match_pattern(self, record, message): if isinstance(self._str_pattern, str): if re.search(self._str_pattern, message): sub = '*{}*'.format(self._str_pattern) return re.sub(self._str_pattern, sub, message) else: return '' else: return message logger = logging.getLogger('tensorpac') _lf = _Formatter() _lh = _StreamHandler() # needs _lf to exist logger.addHandler(_lh) PROFILER_LEVEL_NUM = 1 logging.addLevelName(PROFILER_LEVEL_NUM, "PROFILER") def profiler_fcn(self, message, *args, **kws): # Yes, logger takes its '*args' as 'args'. if self.isEnabledFor(PROFILER_LEVEL_NUM): self._log(PROFILER_LEVEL_NUM, message, args, **kws) logging.Logger.profiler = profiler_fcn LOGGING_TYPES = dict(DEBUG=logging.DEBUG, INFO=logging.INFO, WARNING=logging.WARNING, ERROR=logging.ERROR, CRITICAL=logging.CRITICAL, PROFILER=PROFILER_LEVEL_NUM) def set_log_level(verbose=None, match=None): """Convenience function for setting the logging level. This function comes from the PySurfer package. See : https://github.com/nipy/PySurfer/blob/master/surfer/utils.py Parameters ---------- verbose : bool, str, int, or None The verbosity of messages to print. If a str, it can be either PROFILER, DEBUG, INFO, WARNING, ERROR, or CRITICAL. match : string | None Filter logs using a string pattern. """ # if verbose is None: # verbose = "INFO" logger = logging.getLogger('tensorpac') if isinstance(verbose, bool): verbose = 'INFO' if verbose else 'WARNING' if isinstance(verbose, str): if (verbose.upper() in LOGGING_TYPES): verbose = verbose.upper() verbose = LOGGING_TYPES[verbose] logger.setLevel(verbose) else: raise ValueError("verbose must be in " "%s" % ', '.join(LOGGING_TYPES)) if isinstance(match, str): _lh._str_pattern = match def progress_bar(value, endvalue, bar_length=20, pre_st=None): """Progress bar.""" percent = float(value) / endvalue arrow = '-' * int(round(percent * bar_length) - 1) + '>' spaces = ' ' * (bar_length - len(arrow)) pre_st = '' if not isinstance(pre_st, str) else pre_st sys.stdout.write("\r{0} [{1}] {2}%".format(pre_st, arrow + spaces, int(round(percent * 100)))) sys.stdout.flush() def is_pandas_installed(): """Test if pandas is installed.""" try: import pandas # noqa except: raise IOError("pandas not installed. See https://pandas.pydata.org/" "pandas-docs/stable/install.html") def is_statsmodels_installed(): """Test if statsmodels is installed.""" try: import statsmodels # noqa except: raise IOError("statsmodels not installed. See http://www.statsmodels." "org/stable/install.html")
13cfc887befe8ef7649877ee07af76ae36b68717
86da8c4d616a78afc7cd09711b0151e5f852a8b8
/pythonprograms/practice/set.py
ff360377c4e4240ec2d4af0caab010bd53b6dd66
[]
no_license
sharijamusthafa/luminarpython
d1d3274d23d93af2c5e4db7d2652e8cb46b133aa
8ebd75ea5f734e5061a7138153a2c6b1cd43a738
refs/heads/master
2022-12-23T22:45:40.194242
2020-10-07T16:40:09
2020-10-07T16:40:09
290,109,565
0
0
null
null
null
null
UTF-8
Python
false
false
66
py
st1={1,2,3,4,5} st2={3,4,6,7,8} st3=st1.difference(st2) print(st3)
0d3b33c17b727ca246bacc1905cedb882f75f976
ddf2274de833cbaa3422a0b4e1a6c70e98f9188f
/tensorflow/python/training/checkpointable/data_structures.py
c46af68155b596199a38969471c19fc697c90cab
[ "Apache-2.0" ]
permissive
TanguyUrvoy/tensorflow
98b4534a3ecc2ce0738fc864386c9594148f4755
ad683f866b465fa753731be283515bb0a67ad078
refs/heads/master
2020-04-16T14:49:40.864312
2019-01-14T14:51:47
2019-01-14T14:57:33
165,680,898
1
0
Apache-2.0
2019-01-14T15:02:37
2019-01-14T15:02:36
null
UTF-8
Python
false
false
28,048
py
"""Checkpointable data structures.""" # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import copy import operator import six from tensorflow.python.ops import variables from tensorflow.python.saved_model import revived_types from tensorflow.python.training.checkpointable import base from tensorflow.python.training.checkpointable import layer_utils class NoDependency(object): """Allows attribute assignment to `Checkpointable` objects with no dependency. Example usage: ```python obj = Checkpointable() obj.has_dependency = tf.Variable(0., name="dep") obj.no_dependency = NoDependency(tf.Variable(1., name="nodep")) assert obj.no_dependency.name == "nodep:0" ``` `obj` in this example has a dependency on the variable "dep", and both attributes contain un-wrapped `Variable` objects. `NoDependency` also works with `tf.keras.Model`, but only for checkpoint dependencies: wrapping a `Layer` in `NoDependency` will assign the (unwrapped) `Layer` to the attribute without a checkpoint dependency, but the `Model` will still track the `Layer` (so it will appear in `Model.layers`, and its variables will appear in `Model.variables`). """ def __init__(self, value): self.value = value def _wrap_or_unwrap(value): """Wraps basic data structures, unwraps NoDependency objects.""" if isinstance(value, NoDependency): return value.value if isinstance(value, base.CheckpointableBase): return value # Skip conversion for already checkpointable objects. elif isinstance(value, dict): return _DictWrapper(value) elif isinstance(value, list): return _ListWrapper(value) else: return value # TODO(allenl): Handle other common data structures. Tuples will require # special casing (tuple subclasses are not weak referenceable, so replacement # with a wrapper that subclasses tuple on attribute assignment works poorly, # and replacement with a wrapper that isn't a tuple is also problematic), # probably a tree traversal where the leaves are non-tuples(/namedtuples) to # come up with names. Dictionaries should look like lists. def sticky_attribute_assignment(checkpointable, name, value): """Adds dependencies, generally called from __setattr__. This behavior is shared between Checkpointable and Model. Respects NoDependency indicators, but otherwise makes checkpointable objects out of common data structures and tracks objects by their attribute names. Args: checkpointable: The object to add dependencies to (generally the one having an attribute assigned). name: The attribute name being assigned. value: The value being assigned. Not necessarily a checkpointable object. Returns: The value which should be stored in the attribute (unwrapped from a NoDependency object if necessary). """ if isinstance(value, NoDependency): add_dependency = False else: add_dependency = True value = _wrap_or_unwrap(value) if not add_dependency: return value if isinstance(value, base.CheckpointableBase): checkpointable._track_checkpointable( # pylint: disable=protected-access value, name=name, # Allow the user to switch the Checkpointable which is tracked by this # name, since assigning a new variable to an attribute has # historically been fine (e.g. Adam did this). overwrite=True) return value class CheckpointableDataStructure(base.CheckpointableBase): """Base class for data structures which contain checkpointable objects.""" def __init__(self): self.trainable = True self._extra_variables = [] def _track_value(self, value, name): """Add a dependency on `value`.""" value = sticky_attribute_assignment( checkpointable=self, value=value, name=name) if isinstance(value, variables.Variable): self._extra_variables.append(value) if not isinstance(value, base.CheckpointableBase): raise ValueError( ("Only checkpointable objects (such as Layers or Optimizers) may be " "stored in a List object. Got %s, which does not inherit from " "CheckpointableBase.") % (value,)) if hasattr(value, "_use_resource_variables"): # In subclassed models, legacy layers (tf.layers) must always use # resource variables. value._use_resource_variables = True # pylint: disable=protected-access return value @property def _values(self): """An iterable/sequence which may contain checkpointable objects.""" raise NotImplementedError("Abstract method") @property def _layers(self): """All Layers and Layer containers, including empty containers.""" # Filter objects on demand so that wrapper objects use values from the thing # they're wrapping if out of sync. collected = [] for obj in self._values: if (isinstance(obj, CheckpointableDataStructure) or layer_utils.is_layer(obj) or layer_utils.has_weights(obj)): collected.append(obj) return collected @property def layers(self): return layer_utils.filter_empty_layer_containers(self._layers) @property def trainable_weights(self): return layer_utils.gather_trainable_weights( trainable=self.trainable, sub_layers=self._layers, extra_variables=self._extra_variables) @property def non_trainable_weights(self): return layer_utils.gather_non_trainable_weights( trainable=self.trainable, sub_layers=self._layers, extra_variables=self._extra_variables) @property def weights(self): return self.trainable_weights + self.non_trainable_weights @property def trainable_variables(self): return self.trainable_weights @property def non_trainable_variables(self): return self.non_trainable_weights @property def variables(self): return self.weights @property def updates(self): """Aggregate updates from any `Layer` instances.""" # Updates and conditional losses are forwarded as-is rather than being # filtered based on inputs, since this is just a container and won't ever # have any inputs. aggregated = [] for layer in self.layers: if hasattr(layer, "updates"): aggregated += layer.updates return aggregated @property def losses(self): """Aggregate losses from any `Layer` instances.""" aggregated = [] for layer in self.layers: if hasattr(layer, "losses"): aggregated += layer.losses return aggregated def __hash__(self): # Support object-identity hashing, so these structures can be used as keys # in sets/dicts. return id(self) def __eq__(self, other): # Similar to Tensors, checkpointable data structures use object-identity # equality to support set/dict membership. return self is other class List(CheckpointableDataStructure, collections.Sequence): """An append-only sequence type which is checkpointable. Maintains checkpoint dependencies on its contents (which must also be checkpointable), and forwards any `Layer` metadata such as updates and losses. Note that `List` is purely a container. It lets a `tf.keras.Model` or other checkpointable object know about its contents, but does not call any `Layer` instances which are added to it. To indicate a sequence of `Layer` instances which should be called sequentially, use `tf.keras.Sequential`. Example usage: ```python class HasList(tf.keras.Model): def __init__(self): super(HasList, self).__init__() self.layer_list = tf.contrib.checkpoint.List([layers.Dense(3)]) self.layer_list.append(layers.Dense(4)) def call(self, x): aggregation = 0. for l in self.layer_list: x = l(x) aggregation += tf.reduce_sum(x) return aggregation ``` This kind of wrapping is necessary because `Checkpointable` objects do not (yet) deeply inspect regular Python data structures, so for example assigning a regular list (`self.layer_list = [layers.Dense(3)]`) does not create a checkpoint dependency and does not add the `Layer` instance's weights to its parent `Model`. """ def __init__(self, *args, **kwargs): """Construct a new sequence. Arguments are passed to `list()`.""" super(List, self).__init__() self._storage = self._make_storage(*args, **kwargs) for index, element in enumerate(self._storage): self._storage[index] = self._track_value( element, name=self._name_element(index)) def __copy__(self): return type(self)(copy.copy(self._storage)) def __deepcopy__(self, memo): return type(self)(copy.deepcopy(self._storage, memo)) def _make_storage(self, *args, **kwargs): """Determines the backing storage (overridden in subclasses).""" return list(*args, **kwargs) def _name_element(self, index): return "%d" % (index,) @property def _values(self): return self def append(self, value): """Add a new checkpointable value.""" value = self._track_value(value, self._name_element(len(self._storage))) self._storage.append(value) def extend(self, values): """Add a sequence of checkpointable values.""" for value in values: self._storage.append(self._track_value( value, name=self._name_element(len(self._storage)))) def __iadd__(self, values): self.extend(values) return self def __add__(self, other): if isinstance(other, List): return self.__class__(self._storage + other._storage) # pylint: disable=protected-access else: return self.__class__(self._storage + other) def __radd__(self, other): return self + other def __getitem__(self, key): return self._storage[key] def __len__(self): return len(self._storage) def __repr__(self): return "List(%s)" % (repr(self._storage),) class _ListWrapper(List, collections.MutableSequence, # Shadowed, but there for isinstance checks. list): """Wraps the built-in `list` to support restore-on-create for variables. Unlike `List`, this sequence type is mutable in the same ways built-in lists are. Instead of throwing an error immediately like `List`, it records problematic mutations (e.g. assigning a new element to a position already occupied, meaning both elements get the same names at different times) and refuses to save. On assignment to an attribute of a Model or Checkpointable object, Python lists are replaced with _ListWrapper. Wrapping a list in a `tf.contrib.checkpoint.NoDependency` object prevents this. """ def __init__(self, wrapped_list): """Construct a new list wrapper. Args: wrapped_list: The initial value of the data structure. A shallow copy may be maintained for error checking. `wrapped_list` itself should not be modified directly after constructing the `_ListWrapper`, and if changes are detected the `_ListWrapper` will throw an exception on save. """ # Monotonic flags which indicate this object would not be restored properly, # and therefore should throw an error on save to avoid giving the impression # that restoring it will work. self._non_append_mutation = False self._external_modification = False super(_ListWrapper, self).__init__(wrapped_list) self._last_wrapped_list_snapshot = list(self._storage) # pylint: disable=protected-access def __copy__(self): copied = super(_ListWrapper, self).__copy__() copied._non_append_mutation = self._non_append_mutation copied._external_modification = self._external_modification return copied def __deepcopy__(self, memo): copied = super(_ListWrapper, self).__deepcopy__(memo) copied._non_append_mutation = self._non_append_mutation copied._external_modification = self._external_modification return copied # pylint: enable=protected-access def _make_storage(self, wrapped_list): """Use the user's original list for storage.""" return wrapped_list def _check_external_modification(self): """Checks for any changes to the wrapped list not through the wrapper.""" if self._external_modification or self._non_append_mutation: return if self._storage != self._last_wrapped_list_snapshot: self._external_modification = True self._last_wrapped_list_snapshot = None def _update_snapshot(self): """Acknowledges tracked changes to the wrapped list.""" if self._external_modification or self._non_append_mutation: return self._last_wrapped_list_snapshot = list(self._storage) @property def _checkpoint_dependencies(self): self._check_external_modification() if self._non_append_mutation: raise ValueError( ("Unable to save the object %s (a list wrapper constructed to track " "checkpointable TensorFlow objects). A list element was replaced " "(__setitem__), deleted, or inserted. In order to support " "restoration on object creation, tracking is exclusively for " "append-only data structures.\n\nIf you don't need this list " "checkpointed, wrap it in a tf.contrib.checkpoint.NoDependency " "object; it will be automatically un-wrapped and subsequently " "ignored." % (self,))) if self._external_modification: raise ValueError( ("Unable to save the object %s (a list wrapper constructed to track " "checkpointable TensorFlow objects). The wrapped list was modified " "outside the wrapper (its final value was %s, its value when a " "checkpoint dependency was added was %s), which breaks restoration " "on object creation.\n\nIf you don't need this list checkpointed, " "wrap it in a tf.contrib.checkpoint.NoDependency object; it will be " "automatically un-wrapped and subsequently ignored." % ( self, self._storage, self._last_wrapped_list_snapshot))) return super(_ListWrapper, self)._checkpoint_dependencies def __delitem__(self, key): self._non_append_mutation = True del self._storage[key] def __setitem__(self, key, value): self._non_append_mutation = True self._storage[key] = value def append(self, value): """Add a new checkpointable value.""" self._check_external_modification() super(_ListWrapper, self).append(value) self._update_snapshot() def extend(self, values): """Add a sequence of checkpointable values.""" self._check_external_modification() super(_ListWrapper, self).extend(values) self._update_snapshot() def __eq__(self, other): return self._storage == getattr(other, "_storage", other) def __ne__(self, other): return self._storage != getattr(other, "_storage", other) def __lt__(self, other): return self._storage < getattr(other, "_storage", other) def __le__(self, other): return self._storage <= getattr(other, "_storage", other) def __gt__(self, other): return self._storage > getattr(other, "_storage", other) def __ge__(self, other): return self._storage >= getattr(other, "_storage", other) def __hash__(self): # List wrappers need to compare like regular lists, and so like regular # lists they don't belong in hash tables. raise TypeError("unhashable type: 'ListWrapper'") def insert(self, index, obj): self._non_append_mutation = True self._storage.insert(index, obj) def _track_value(self, value, name): """Allows storage of non-checkpointable objects.""" try: value = super(_ListWrapper, self)._track_value(value=value, name=name) except ValueError: # Even if this value isn't checkpointable, we need to make sure # NoDependency objects get unwrapped. value = sticky_attribute_assignment( checkpointable=self, value=value, name=name) return value def __repr__(self): return "ListWrapper(%s)" % (repr(self._storage),) class Mapping(CheckpointableDataStructure, collections.Mapping): """An append-only checkpointable mapping data structure with string keys. Maintains checkpoint dependencies on its contents (which must also be checkpointable), named based on its keys. Note that once a key has been added, it may not be deleted or replaced. If names may not be unique, see `tf.contrib.checkpoint.UniqueNameTracker`. """ def __init__(self, *args, **kwargs): """Construct a new sequence. Arguments are passed to `dict()`.""" super(Mapping, self).__init__() self._storage = self._make_storage(*args, **kwargs) self._storage.update( {key: self._track_value( value, name=self._name_element(key)) for key, value in self._storage.items()}) def __copy__(self): return type(self)(copy.copy(self._storage)) def __deepcopy__(self, memo): return type(self)(copy.deepcopy(self._storage, memo)) def _make_storage(self, *args, **kwargs): return dict(*args, **kwargs) @property def _values(self): # Sort items deterministically by key ordered = list(zip(*sorted(self.items(), key=lambda it: it[0]))) if ordered: return ordered[1] return [] def _name_element(self, key): if not isinstance(key, six.string_types): raise TypeError( "Mapping accepts only string keys, but got a key %s." % repr(key)) return str(key) def __setitem__(self, key, value): name = self._name_element(key) value = self._track_value(value, name=name) current_value = self._storage.setdefault(key, value) if current_value is not value: raise ValueError( ("Mappings are an append-only data structure. Tried to overwrite the " "key '%s' with value %s, but it already contains %s") % (key, value, current_value)) def update(self, *args, **kwargs): for key, value in dict(*args, **kwargs).items(): self[key] = value def __getitem__(self, key): return self._storage[key] def __len__(self): return len(self._storage) def __repr__(self): return "Mapping(%s)" % (repr(self._storage),) def __iter__(self): return iter(self._storage) # Unlike _ListWrapper, having _DictWrapper inherit from dict and pass isinstance # checks seems infeasible. CPython will not call Python methods/properties on # dictionary subclasses when running e.g. {}.update(dict_subclass), and instead # collects elements directly from dict_subclass's C structs. So subclassing dict # implies that the storage has to be "self" (i.e. the C structs for the object # must be updated correctly), but we also need that storage to be the wrapped # dictionary to avoid synchronization bugs (un-tracked external modifications # should still show up when the dict is accessed through the wrapper). Monkey # patching all of the "wrapped" dict's methods instead of creating a wrapper # object is an option, but not a very attractive one (replacing methods without # creating reference cycles is difficult, and then dicts would need to be # special cased everywhere as being checkpointable). class _DictWrapper(Mapping, collections.MutableMapping): """Wraps built-in dicts to support restore-on-create for variables. _DictWrapper is to Mapping as _ListWrapper is to List. Unlike Mapping, _DictWrapper allows non-string keys and values and arbitrary mutations (delete keys, reassign values). Like _ListWrapper, these mutations mean that _DictWrapper will raise an exception on save. """ def __new__(cls, *args): if len(args) == 1 and isinstance(args[0], dict): return super(_DictWrapper, cls).__new__(cls) else: # Allow construction from a sequence, e.g. for nest.pack_sequence_as. In # this case there's nothing to wrap, so we make a normal dictionary. Also # allows constructing empty instances of the _DictWrapper type, as Session # is wont to do (and again there's nothing to wrap, so a normal dictionary # makes more sense). return dict(*args) def __init__(self, wrapped_dict): self._non_string_key = False self._non_append_mutation = False self._external_modification = False super(_DictWrapper, self).__init__(wrapped_dict) self._update_snapshot() # pylint: disable=protected-access def __copy__(self): copied = super(_DictWrapper, self).__copy__() copied._non_append_mutation = self._non_append_mutation copied._external_modification = self._external_modification copied._non_string_key = self._non_string_key return copied def __deepcopy__(self, memo): copied = super(_DictWrapper, self).__deepcopy__(memo) copied._non_append_mutation = self._non_append_mutation copied._external_modification = self._external_modification copied._non_string_key = self._non_string_key return copied # pylint: enable=protected-access def _make_storage(self, wrapped_dict): """Re-use the wrapped dict for storage (to force them to be in sync).""" return wrapped_dict @property def _checkpoint_dependencies(self): """Check that the object is saveable before listing its dependencies.""" self._check_external_modification() if self._non_string_key: raise ValueError( "Unable to save the object %s (a dictionary wrapper constructed " "automatically on attribute assignment). The wrapped dictionary " "contains a non-string key which maps to a checkpointable object or " "mutable data structure.\n\nIf you don't need this dictionary " "checkpointed, wrap it in a tf.contrib.checkpoint.NoDependency " "object; it will be automatically un-wrapped and subsequently " "ignored." % (self,)) if self._non_append_mutation: raise ValueError( "Unable to save the object %s (a dictionary wrapper constructed " "automatically on attribute assignment). A key mapping to a " "checkpointable object was overwritten or deleted, which would " "cause problems for restoration.\n\nIf you don't need this " "dictionary checkpointed, wrap it in a " "tf.contrib.checkpoint.NoDependency object; it will be automatically " "un-wrapped and subsequently ignored." % (self,)) if self._external_modification: raise ValueError( "Unable to save the object %s (a dictionary wrapper constructed " "automatically on attribute assignment). The wrapped dictionary was " "modified outside the wrapper (its final value was %s, its value " "when a checkpoint dependency was added was %s), which breaks " "restoration on object creation.\n\nIf you don't need this " "dictionary checkpointed, wrap it in a " "tf.contrib.checkpoint.NoDependency object; it will be automatically " "un-wrapped and subsequently ignored." % ( self, self, self._last_wrapped_dict_snapshot)) assert not self._dirty # Any reason for dirtiness should have an exception. return super(_DictWrapper, self)._checkpoint_dependencies @property def _dirty(self): """Check if there has already been a mutation which prevents saving.""" return (self._external_modification or self._non_append_mutation or self._non_string_key) def _check_external_modification(self): """Checks for any changes to the wrapped dict not through the wrapper.""" if self._dirty: return if self != self._last_wrapped_dict_snapshot: self._external_modification = True self._last_wrapped_dict_snapshot = None def _update_snapshot(self): """Acknowledges tracked changes to the wrapped dict.""" if self._dirty: return self._last_wrapped_dict_snapshot = dict(self) def _track_value(self, value, name): """Allows storage of non-checkpointable objects.""" if isinstance(name, six.string_types): string_key = True else: name = "-non_string_key" string_key = False try: no_dependency = isinstance(value, NoDependency) value = super(_DictWrapper, self)._track_value(value=value, name=name) if not (string_key or no_dependency): # A non-string key maps to a checkpointable value. This data structure # is not saveable. self._non_string_key = True return value except ValueError: # Even if this value isn't checkpointable, we need to make sure # NoDependency objects get unwrapped. return sticky_attribute_assignment( checkpointable=self, value=value, name=name) def _name_element(self, key): """Don't throw errors for non-string keys.""" if isinstance(key, six.string_types): return super(_DictWrapper, self)._name_element(key) else: return key def __setitem__(self, key, value): """Allow any modifications, but possibly mark the wrapper as unsaveable.""" self._check_external_modification() no_dep = isinstance(value, NoDependency) if isinstance(key, six.string_types): existing_dependency = self._lookup_dependency(key) value = self._track_value(value, name=key) else: value = _wrap_or_unwrap(value) existing_dependency = None if not no_dep and isinstance(value, base.CheckpointableBase): # Non-string keys are OK as long as we have no reason to add a # dependency on the value (either because the value is not # checkpointable, or because it was wrapped in a NoDependency object). self._non_string_key = True current_value = self._storage.setdefault(key, value) if current_value is not value: if ((not no_dep and isinstance(value, base.CheckpointableBase)) # We don't want to just check that the existing object is # checkpointable, since it may have been wrapped in a NoDependency # object. or existing_dependency is not None): # A checkpointable object was replaced under the same key; this means # that restoring would be error-prone, so we'll throw an exception on # save. self._non_append_mutation = True self._storage[key] = value self._update_snapshot() def __delitem__(self, key): self._check_external_modification() existing_value = self[key] if isinstance(existing_value, base.CheckpointableBase): # Deleting tracked checkpointable values means restoring is problematic, # so we'll throw an exception on save. self._non_append_mutation = True del self._storage[key] self._update_snapshot() def __repr__(self): return "DictWrapper(%s)" % (repr(self._storage),) def __hash__(self): raise TypeError("unhashable type: 'DictWrapper'") def __eq__(self, other): return self._storage == getattr(other, "_storage", other) def update(self, *args, **kwargs): for key, value in dict(*args, **kwargs).items(): self[key] = value revived_types.register_revived_type( "checkpointable_dict_wrapper", lambda obj: isinstance(obj, _DictWrapper), versions=[revived_types.VersionedTypeRegistration( object_factory=lambda _: _DictWrapper({}), version=1, min_producer_version=1, min_consumer_version=1, setter=operator.setitem)])
a5aaebd396700872fe251036dd8234a37d473ff0
c2b777fdd5b92aa4cbd25594b1ea877d6b280fc7
/Max_number_of_zeroes.py
19b4743d441dd8a5da8e493cf03a6223269ea584
[]
no_license
pasbahar/python-practice
2baa09c474fa5744a11dabcc75507f03cd75c6a5
23bcd774becaa720588feb7ba3cf6ea04aafcf86
refs/heads/master
2020-12-04T05:50:40.382790
2020-02-27T17:25:23
2020-02-27T17:25:23
231,641,289
0
0
null
null
null
null
UTF-8
Python
false
false
1,119
py
'''Given an array of N values. Print the number which has maximum number of zeroes. If there are no zeroes then print -1. Note: If there are multiple numbers with same (max) number of zeroes then print the Maximum number among them. Input: The first line of input contains an integer T denoting the number of test cases. T testcases follow. Each testcase contains two lines of input. The first line consists of an integer N. The next line consists of N spaced integers. Output: For each testcase, print the number with maximum number of zeroes. Constraints: 1<=T<=100 1<=N<=107 1<=A[i]<=10100 Example: Input: 1 5 10 20 3000 9999 200 Output: 3000 Explanation: Testcase1: 3000 hsa maximum number of zeroes so we print it.''' for i in range(int(input())): n=int(input()) l=list(map(str,input().split())) max_c=0 res='-1' for x in l: count=0 for j in x: if j=='0': count+=1 if max_c<count: max_c=count res=x elif max_c==count and max_c!=0: if int(x)>int(res): res=x print(res)
231e25b593f6a5a2a5edfe24195d3197dd43078b
affdd053d94ec566c783eafabfc2483e77cf9fa8
/performer/fast_self_attention/fast_self_attention.py
41096dc71ddc7d9f6a2799990e6d747bd6196e94
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
bobisai/google-research
6cbf0fea8f2c6bd09f9e9db44ca981b9bf234535
8ee84eaf7afca5ef42c381d86fac3ca44b5922d2
refs/heads/master
2022-12-28T05:57:37.631395
2020-10-14T19:15:45
2020-10-14T19:23:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
27,090
py
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Core Fast Attention Module for Flax. Implementation of the approximate fast softmax and generalized attention mechanism leveraging structured random feature maps [RFM] techniques and low rank decomposition of the attention matrix. """ # pylint: disable=invalid-name, missing-function-docstring import abc from collections.abc import Iterable # pylint: disable=g-importing-member import functools from absl import logging import gin import jax from jax import lax from jax import random import jax.numpy as jnp import numpy as onp # Nonlinear mappings encoding different attention kernels. gin.external_configurable(jnp.cos, 'jcos') gin.external_configurable(jnp.sin, 'jsin') gin.external_configurable(jnp.tanh, 'jtanh') gin.external_configurable(jax.nn.sigmoid, 'jsigmoid') gin.external_configurable(jax.nn.relu, 'jrelu') gin.external_configurable(lambda x: x * x * (x > 0.0), 'jrequ') gin.external_configurable(jax.nn.gelu, 'jgelu') gin.external_configurable(jnp.exp, 'jexp') gin.external_configurable(lambda x: x, 'jidentity') def nonnegative_softmax_kernel_feature_creator(data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=True, eps=0.0001): """Constructs nonnegative kernel features for fast softmax attention. Args: data: input for which features are computes projection_matrix: random matrix used to compute features attention_dims_t: tuple of attention dimensions batch_dims_t: tuple of batch dimensions precision: precision parameter is_query: predicate indicating whether input data corresponds to queries or keys normalize_data: predicate indicating whether data should be normalized, eps: numerical stabilizer. Returns: Random features for fast softmax attention. """ del attention_dims_t if normalize_data: # We have e^{qk^T/sqrt{d}} = e^{q_norm k_norm^T}, where # w_norm = w * data_normalizer for w in {q,k}. data_normalizer = 1.0 / (jnp.sqrt(jnp.sqrt(data.shape[-1]))) else: data_normalizer = 1.0 ratio = 1.0 / jnp.sqrt(projection_matrix.shape[0]) data_mod_shape = data.shape[0:len(batch_dims_t)] + projection_matrix.shape data_thick_random_matrix = jnp.zeros(data_mod_shape) + projection_matrix data_dash = lax.dot_general( data_normalizer * data, data_thick_random_matrix, (((data.ndim - 1,), (data_thick_random_matrix.ndim - 1,)), (batch_dims_t, batch_dims_t)), precision=precision) diag_data = jnp.square(data) diag_data = jnp.sum(diag_data, axis=data.ndim - 1) diag_data = (diag_data / 2.0) * data_normalizer * data_normalizer diag_data = jnp.expand_dims(diag_data, axis=data.ndim - 1) if is_query: last_dims_t = (len(data_dash.shape) - 1,) data_dash = ratio * ( jnp.exp(data_dash - diag_data - jnp.max(data_dash, axis=last_dims_t, keepdims=True)) + eps) else: data_dash = ratio * ( jnp.exp(data_dash - diag_data - jnp.max(data_dash)) + eps) return data_dash def sincos_softmax_kernel_feature_creator(data, projection_matrix, attention_dims_t, batch_dims_t, precision, normalize_data=True): """Constructs kernel sin-cos features for fast softmax attention. Args: data: input for which features are computes projection_matrix: random matrix used to compute features attention_dims_t: tuple of attention dimensions batch_dims_t: tuple of batch dimensions precision: precision parameter normalize_data: predicate indicating whether data should be normalized. Returns: Random features for fast softmax attention. """ if normalize_data: # We have: exp(qk^T/sqrt{d}) = exp(|q|^2/2sqrt{d}) * exp(|k|^2/2sqrt{d}) * # exp(-(|q*c-k*c|^2)/2), where c = 1.0 / sqrt{sqrt{d}}. data_normalizer = 1.0 / (jnp.sqrt(jnp.sqrt(data.shape[-1]))) else: data_normalizer = 1.0 ratio = 1.0 / jnp.sqrt(projection_matrix.shape[0]) data_mod_shape = data.shape[0:len(batch_dims_t)] + projection_matrix.shape data_thick_random_matrix = jnp.zeros(data_mod_shape) + projection_matrix data_dash = lax.dot_general( data_normalizer * data, data_thick_random_matrix, (((data.ndim - 1,), (data_thick_random_matrix.ndim - 1,)), (batch_dims_t, batch_dims_t)), precision=precision) data_dash_cos = ratio * jnp.cos(data_dash) data_dash_sin = ratio * jnp.sin(data_dash) data_dash = jnp.concatenate((data_dash_cos, data_dash_sin), axis=-1) # Constructing D_data and data^{'} diag_data = jnp.square(data) diag_data = jnp.sum(diag_data, axis=data.ndim - 1) diag_data = (diag_data / 2.0) * data_normalizer * data_normalizer diag_data = jnp.expand_dims(diag_data, axis=data.ndim - 1) # Additional renormalization for numerical stability data_renormalizer = jnp.max(diag_data, attention_dims_t, keepdims=True) diag_data -= data_renormalizer diag_data = jnp.exp(diag_data) data_prime = data_dash * diag_data return data_prime def generalized_kernel_feature_creator(data, projection_matrix, batch_dims_t, precision, kernel_fn, kernel_epsilon, normalize_data): """Constructs kernel features for fast generalized attention. Args: data: input for which features are computes projection_matrix: matrix used to compute features batch_dims_t: tuple of batch dimensions precision: precision parameter kernel_fn: kernel function used kernel_epsilon: additive positive term added to every feature for numerical stability normalize_data: predicate indicating whether data should be normalized. Returns: Random features for fast generalized attention. """ if normalize_data: data_normalizer = 1.0 / (jnp.sqrt(jnp.sqrt(data.shape[-1]))) else: data_normalizer = 1.0 if projection_matrix is None: return kernel_fn(data_normalizer * data) + kernel_epsilon else: data_mod_shape = data.shape[0:len(batch_dims_t)] + projection_matrix.shape data_thick_random_matrix = jnp.zeros(data_mod_shape) + projection_matrix data_dash = lax.dot_general( data_normalizer * data, data_thick_random_matrix, (((data.ndim - 1,), (data_thick_random_matrix.ndim - 1,)), (batch_dims_t, batch_dims_t)), precision=precision) data_prime = kernel_fn(data_dash) + kernel_epsilon return data_prime @gin.configurable def make_fast_softmax_attention(qkv_dim, renormalize_attention=True, numerical_stabilizer=0.000001, nb_features=256, ortho_features=True, ortho_scaling=0.0, redraw_features=True, unidirectional=False, nonnegative_features=True, lax_scan_unroll=1): """Construct a fast softmax attention method.""" logging.info( 'Fast softmax attention: %s features and orthogonal=%s, renormalize=%s', nb_features, ortho_features, renormalize_attention) if ortho_features: matrix_creator = functools.partial( GaussianOrthogonalRandomMatrix, nb_features, qkv_dim, scaling=ortho_scaling) else: matrix_creator = functools.partial(GaussianUnstructuredRandomMatrix, nb_features, qkv_dim) if nonnegative_features: def kernel_feature_creator(data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=True): return nonnegative_softmax_kernel_feature_creator( data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data, numerical_stabilizer) else: def kernel_feature_creator(data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=True): del is_query return sincos_softmax_kernel_feature_creator(data, projection_matrix, attention_dims_t, batch_dims_t, precision, normalize_data) attention_fn = FastAttentionviaLowRankDecomposition( matrix_creator, kernel_feature_creator, renormalize_attention=renormalize_attention, numerical_stabilizer=numerical_stabilizer, redraw_features=redraw_features, unidirectional=unidirectional, lax_scan_unroll=lax_scan_unroll).dot_product_attention return attention_fn @gin.configurable def make_fast_generalized_attention(qkv_dim, renormalize_attention=True, numerical_stabilizer=0.0, nb_features=256, features_type='deterministic', kernel_fn=jax.nn.relu, kernel_epsilon=0.001, redraw_features=False, unidirectional=False, lax_scan_unroll=1): """Construct a fast generalized attention menthod.""" logging.info('Fast generalized attention.: %s features and renormalize=%s', nb_features, renormalize_attention) if features_type == 'ortho': matrix_creator = functools.partial( GaussianOrthogonalRandomMatrix, nb_features, qkv_dim, scaling=False) elif features_type == 'iid': matrix_creator = functools.partial(GaussianUnstructuredRandomMatrix, nb_features, qkv_dim) elif features_type == 'deterministic': matrix_creator = None else: raise ValueError('Unknown feature value type') def kernel_feature_creator(data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=False): del attention_dims_t del is_query return generalized_kernel_feature_creator(data, projection_matrix, batch_dims_t, precision, kernel_fn, kernel_epsilon, normalize_data) attention_fn = FastAttentionviaLowRankDecomposition( matrix_creator, kernel_feature_creator, renormalize_attention=renormalize_attention, numerical_stabilizer=numerical_stabilizer, redraw_features=redraw_features, unidirectional=unidirectional, lax_scan_unroll=lax_scan_unroll).dot_product_attention return attention_fn class RandomMatrix(object): r"""Abstract class providing a method for constructing 2D random arrays. Class is responsible for constructing 2D random arrays. """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def get_2d_array(self): raise NotImplementedError('Abstract method') class GaussianUnstructuredRandomMatrix(RandomMatrix): def __init__(self, nb_rows, nb_columns, key): self.nb_rows = nb_rows self.nb_columns = nb_columns self.key = key def get_2d_array(self): return random.normal(self.key, (self.nb_rows, self.nb_columns)) class GaussianOrthogonalRandomMatrix(RandomMatrix): r"""Class providing a method to create Gaussian orthogonal matrix. Class is responsible for constructing 2D Gaussian orthogonal arrays. """ def __init__(self, nb_rows, nb_columns, key, scaling=0): self.nb_rows = nb_rows self.nb_columns = nb_columns self.key = key self.scaling = scaling def get_2d_array(self): nb_full_blocks = int(self.nb_rows / self.nb_columns) block_list = [] rng = self.key for _ in range(nb_full_blocks): rng, rng_input = jax.random.split(rng) unstructured_block = random.normal(rng_input, (self.nb_columns, self.nb_columns)) q, _ = jnp.linalg.qr(unstructured_block) q = jnp.transpose(q) block_list.append(q) remaining_rows = self.nb_rows - nb_full_blocks * self.nb_columns if remaining_rows > 0: rng, rng_input = jax.random.split(rng) unstructured_block = random.normal(rng_input, (self.nb_columns, self.nb_columns)) q, _ = jnp.linalg.qr(unstructured_block) q = jnp.transpose(q) block_list.append(q[0:remaining_rows]) final_matrix = jnp.vstack(block_list) if self.scaling == 0: multiplier = jnp.linalg.norm( random.normal(self.key, (self.nb_rows, self.nb_columns)), axis=1) elif self.scaling == 1: multiplier = jnp.sqrt(float(self.nb_columns)) * jnp.ones((self.nb_rows)) else: raise ValueError('Scaling must be one of {0, 1}. Was %s' % self._scaling) return jnp.matmul(jnp.diag(multiplier), final_matrix) class FastAttention(object): r"""Abstract class providing a method for fast attention. Class is responsible for providing a method <dot_product_attention> for fast approximate attention. """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def dot_product_attention(self, query, key, value, dtype=jnp.float32, bias=None, axis=None, broadcast_dropout=True, dropout_rng=None, dropout_rate=0., deterministic=False, precision=None): """Computes dot-product attention given query, key, and value. This is the core function for applying fast approximate dot-product attention. It calculates the attention weights given query and key and combines the values using the attention weights. This function supports multi-dimensional inputs. Args: query: queries for calculating attention with shape of [batch_size, dim1, dim2, ..., dimN, num_heads, mem_channels]. key: keys for calculating attention with shape of [batch_size, dim1, dim2, ..., dimN, num_heads, mem_channels]. value: values to be used in attention with shape of [batch_size, dim1, dim2,..., dimN, num_heads, value_channels]. dtype: the dtype of the computation (default: float32) bias: bias for the attention weights. This can be used for incorporating autoregressive mask, padding mask, proximity bias. axis: axises over which the attention is applied. broadcast_dropout: bool: use a broadcasted dropout along batch dims. dropout_rng: JAX PRNGKey: to be used for dropout. dropout_rate: dropout rate. deterministic: bool, deterministic or not (to apply dropout). precision: numerical precision of the computation see `jax.lax.Precision` for details. Returns: Output of shape [bs, dim1, dim2, ..., dimN,, num_heads, value_channels]. """ raise NotImplementedError('Abstract method') def _numerator_fwd(z_slice_shape, precision, qs, ks, vs): def body(p, qkv): (q, k, v) = qkv p += jnp.einsum('...m,...d->...md', k, v, precision=precision) X_slice = jnp.einsum('...m,...md->...d', q, p, precision=precision) return p, X_slice init_value = jnp.zeros(z_slice_shape) p, W = lax.scan(body, init_value, (qs, ks, vs)) return W, (p, qs, ks, vs) def _numerator_bwd(z_slice_shape, precision, pqkv, W_ct): del z_slice_shape def body(carry, qkv_xct): p, p_ct = carry q, k, v, x_ct = qkv_xct q_ct = jnp.einsum('...d,...md->...m', x_ct, p, precision=precision) p_ct += jnp.einsum('...d,...m->...md', x_ct, q, precision=precision) k_ct = jnp.einsum('...md,...d->...m', p_ct, v, precision=precision) v_ct = jnp.einsum('...md,...m->...d', p_ct, k, precision=precision) p -= jnp.einsum('...m,...d->...md', k, v, precision=precision) return (p, p_ct), (q_ct, k_ct, v_ct) p, qs, ks, vs = pqkv _, (qs_ct, ks_ct, vs_ct) = lax.scan( body, (p, jnp.zeros_like(p)), (qs, ks, vs, W_ct), reverse=True) return qs_ct, ks_ct, vs_ct @functools.partial(jax.custom_vjp, nondiff_argnums=(0, 1)) def _numerator(z_slice_shape, precision, qs, ks, vs): W, _ = _numerator_fwd(z_slice_shape, precision, qs, ks, vs) return W _numerator.defvjp(_numerator_fwd, _numerator_bwd) def _denominator_fwd(t_slice_shape, precision, qs, ks): def body(p, qk): q, k = qk p += k x = jnp.einsum('...m,...m->...', q, p, precision=precision) return p, x p = jnp.zeros(t_slice_shape) p, R = lax.scan(body, p, (qs, ks)) return R, (qs, ks, p) def _denominator_bwd(_t_slice_shape, precision, qkp, R_ct): def body(carry, qkx): p, p_ct = carry q, k, x_ct = qkx q_ct = jnp.einsum('...,...m->...m', x_ct, p, precision=precision) p_ct += jnp.einsum('...,...m->...m', x_ct, q, precision=precision) k_ct = p_ct p -= k return (p, p_ct), (q_ct, k_ct) qs, ks, p = qkp _, (qs_ct, ks_ct) = lax.scan(body, (p, jnp.zeros_like(p)), (qs, ks, R_ct), reverse=True) return (qs_ct, ks_ct) @functools.partial(jax.custom_vjp, nondiff_argnums=(0, 1)) def _denominator(t_slice_shape, precision, qs, ks): R, _ = _denominator_fwd(t_slice_shape, precision, qs, ks) return R _denominator.defvjp(_denominator_fwd, _denominator_bwd) class FastAttentionviaLowRankDecomposition(FastAttention): r"""Class providing a method for fast attention via low rank decomposition. Class is responsible for providing a method <dot_product_attention> for fast dot-product attention with the use of low rank decomposition (e.g. with random feature maps). """ def __init__(self, matrix_creator, kernel_feature_creator, renormalize_attention, numerical_stabilizer, redraw_features, unidirectional, lax_scan_unroll=1): # For optimal GPU performance, set to 16. rng = random.PRNGKey(0) self.matrix_creator = matrix_creator self.projection_matrix = self.draw_weights(rng) self.kernel_feature_creator = kernel_feature_creator self.renormalize_attention = renormalize_attention self.numerical_stabilizer = numerical_stabilizer self.redraw_features = redraw_features self.unidirectional = unidirectional self.lax_scan_unroll = lax_scan_unroll def draw_weights(self, key): if self.matrix_creator is None: return None matrixrng, _ = random.split(key) projection_matrix = self.matrix_creator(key=matrixrng).get_2d_array() return projection_matrix def dot_product_attention(self, query, key, value, dtype=jnp.float32, bias=None, axis=None, broadcast_dropout=True, dropout_rng=None, dropout_rate=0., deterministic=False, precision=None): assert key.shape[:-1] == value.shape[:-1] assert (query.shape[0:1] == key.shape[0:1] and query.shape[-1] == key.shape[-1]) if axis is None: axis = tuple(range(1, key.ndim - 2)) if not isinstance(axis, Iterable): axis = (axis,) assert key.ndim == query.ndim assert key.ndim == value.ndim for ax in axis: if not (query.ndim >= 3 and 1 <= ax < query.ndim - 2): raise ValueError('Attention axis must be between the batch ' 'axis and the last-two axes.') n = key.ndim # Constructing projection tensor. if self.redraw_features: # TODO(kchoro): Get rid of the constant below. query_seed = lax.convert_element_type( jnp.ceil(jnp.sum(query) * 10000000.0), jnp.int32) rng = random.PRNGKey(query_seed) self.projection_matrix = self.draw_weights(rng) # batch_dims is <bs, <non-attention dims>, num_heads> batch_dims = tuple(onp.delete(range(n), axis + (n - 1,))) # q & k -> (bs, <non-attention dims>, num_heads, <attention dims>, channels) qk_perm = batch_dims + axis + (n - 1,) k_extra_perm = axis + batch_dims + (n - 1,) key_extra = key.transpose(k_extra_perm) key = key.transpose(qk_perm) query = query.transpose(qk_perm) # v -> (bs, <non-attention dims>, num_heads, <attention dims>, channels) v_perm = batch_dims + axis + (n - 1,) value = value.transpose(v_perm) batch_dims_t = tuple(range(len(batch_dims))) attention_dims_t = tuple( range(len(batch_dims), len(batch_dims) + len(axis))) # Constructing tensors Q^{'} and K^{'}. query_prime = self.kernel_feature_creator(query, self.projection_matrix, attention_dims_t, batch_dims_t, precision, True) key_prime = self.kernel_feature_creator(key, self.projection_matrix, attention_dims_t, batch_dims_t, precision, False) if self.unidirectional: index = attention_dims_t[0] z_slice_shape = key_prime.shape[0:len(batch_dims_t)] + ( key_prime.shape[-1],) + (value.shape[-1],) W = _numerator(z_slice_shape, precision, jnp.moveaxis(query_prime, index, 0), jnp.moveaxis(key_prime, index, 0), jnp.moveaxis(value, index, 0)) # Constructing W = (Q^{'}(K^{'})^{T})_{masked}V W = jnp.moveaxis(W, 0, index) if not self.renormalize_attention: # Unidirectional, not-normalized attention. perm_inv = _invert_perm(qk_perm) result = W.transpose(perm_inv) return result else: # Unidirectional, normalized attention. thick_all_ones = jnp.zeros(key.shape[0:-1]) + jnp.ones( key_extra.shape[0:len(axis)]) index = attention_dims_t[0] t_slice_shape = key_prime.shape[0:len(batch_dims_t)] + ( key_prime.shape[-1],) R = _denominator(t_slice_shape, precision, jnp.moveaxis(query_prime, index, 0), jnp.moveaxis(key_prime, index, 0)) R = jnp.moveaxis(R, 0, index) else: contract_query = tuple( range(len(batch_dims) + len(axis), len(batch_dims) + len(axis) + 1)) contract_z = tuple(range(len(batch_dims), len(batch_dims) + 1)) # Constructing Z = (K^{'})^{T}V # Z (bs, <non-attention dims>, num_heads, channels_m, channels_v) Z = lax.dot_general( key_prime, value, ((attention_dims_t, attention_dims_t), (batch_dims_t, batch_dims_t)), precision=precision) # Constructing W = Q^{'}Z = Q^{'}(K^{'})^{T}V # q (bs, <non-attention dims>, num_heads, <attention dims>, channels_m) # Z (bs, <non-attention dims>, num_heads, channels_m, channels_v) # W (bs, <non-attention dims>, num_heads, <attention dims>, channels_v) W = lax.dot_general( query_prime, Z, ((contract_query, contract_z), (batch_dims_t, batch_dims_t)), precision=precision) if not self.renormalize_attention: # Bidirectional, not-normalized attention. perm_inv = _invert_perm(qk_perm) result = W.transpose(perm_inv) return result else: # Bidirectional, normalized attention. thick_all_ones = jnp.zeros(key.shape[0:-1]) + jnp.ones( key_extra.shape[0:len(axis)]) contract_key = tuple( range(len(batch_dims), len(batch_dims) + len(axis))) contract_thick_all_ones = tuple( range(thick_all_ones.ndim - len(axis), thick_all_ones.ndim)) # Construct T = (K^{'})^{T} 1_L # k (bs, <non-attention dims>, num_heads, <attention dims>, channels) T = lax.dot_general( key_prime, thick_all_ones, ((contract_key, contract_thick_all_ones), (batch_dims_t, batch_dims_t)), precision=precision) # Construct partition function: R = Q^{'} T = Q^{'}(K^{'})^{T} 1_L # q_p (bs, <non-attention dims>, num_heads, <attention dims>, channs_m) # T (bs, <non-attention dims>, num_heads, channels_m) R = lax.dot_general( query_prime, T, (((query_prime.ndim - 1,), (T.ndim - 1,)), (batch_dims_t, range(0, len(T.shape) - 1))), precision=precision) R = R + 2 * self.numerical_stabilizer * ( jnp.abs(R) <= self.numerical_stabilizer) R = jnp.reciprocal(R) R = jnp.expand_dims(R, len(R.shape)) # W (bs, <non-attention dims>, num_heads, <attention dims>, channels_v) # R (bs, <non-attention dims>, num_heads, <attention dims>, extra_channel) result = W * R # back to (bs, dim1, dim2, ..., dimN, num_heads, channels) perm_inv = _invert_perm(qk_perm) result = result.transpose(perm_inv) return result def _invert_perm(perm): perm_inv = [0] * len(perm) for i, j in enumerate(perm): perm_inv[j] = i return tuple(perm_inv)
3f3511e74c158e797b7e8a76947e005431c1e9d0
4bed85e00fb4031d3f35051f645b224ec471d56a
/shadertoy/tests/__init__.py
3382ad5c3787e64f9f27c303cc44f571f61d61ae
[]
no_license
defgsus/shadertoz
04a8d56881eef5ccaca347993bb46d3b21f4016a
77d419063d590b9a1b271d09203226a8a8527efa
refs/heads/master
2020-04-12T00:44:35.049566
2019-06-23T20:20:35
2019-06-23T20:20:35
162,210,474
0
0
null
null
null
null
UTF-8
Python
false
false
42
py
from .test_shadertoy_crawler_api import *
72f8e492f29ea42a868c04f17d46f40e698fae2b
b0c8e0cafa4a8916faab3cce65756ae91426c43f
/study/Python/Week3/BOJ_4811_강의현.py
19de46f493609fe6e4c68e9e3a1f45dc0ea0fe68
[]
no_license
Rurril/IT-DA-3rd
b3e3ec3c2a5efbc75b76b84e9002c27a0ba4a1c4
9985e237cb1b90e9609656d534e0ed164723e281
refs/heads/master
2022-07-22T15:26:39.085369
2021-11-23T13:30:06
2021-11-23T13:30:06
288,980,334
3
29
null
2020-11-05T10:25:30
2020-08-20T10:49:17
Java
UTF-8
Python
false
false
451
py
#알약 import sys def pill(W,H): if dp[W][H]>0: return dp[W][H] if W==0: return 1 if W>0 and H==0: dp[W][H]+=pill(W-1,H+1) elif W>0 and H>0: dp[W][H]+=pill(W-1,H+1) dp[W][H]+=pill(W,H-1) return dp[W][H] while True: n=int(sys.stdin.readline()) dp=[[0 for _ in range(31)] for _ in range(31)] if n==0: break else: print(pill(n,0))
f997ff5c8dc2cf41a469ffa1bd14cc67aa74d335
7c5fb33929116bb77b438de3ead93b3978b5af71
/alf/examples/mbrl_pendulum.py
068e609c739320a78caa5b8f2e8628c80e621db8
[ "Apache-2.0" ]
permissive
HorizonRobotics/alf
d6dac891322a81ccb7e2a9749139627b1eda28cb
b00ff2fa5e660de31020338ba340263183fbeaa4
refs/heads/pytorch
2023-08-21T18:51:41.370566
2023-08-16T00:07:22
2023-08-16T00:07:22
178,459,453
288
57
Apache-2.0
2023-09-14T20:40:20
2019-03-29T18:44:07
Python
UTF-8
Python
false
false
1,653
py
# Copyright (c) 2020 Horizon Robotics and ALF Contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import alf # implement the respective reward functions for desired environments here @alf.configurable def reward_function_for_pendulum(obs, action): """Function for computing reward for gym Pendulum environment. It takes as input: (1) observation (Tensor of shape [batch_size, observation_dim]) (2) action (Tensor of shape [batch_size, num_actions]) and returns a reward Tensor of shape [batch_size]. """ def _observation_cost(obs): c_theta, s_theta, d_theta = obs[..., :1], obs[..., 1:2], obs[..., 2:3] theta = torch.atan2(s_theta, c_theta) cost = theta**2 + 0.1 * d_theta**2 cost = torch.sum(cost, dim=1) cost = torch.where( torch.isnan(cost), 1e6 * torch.ones_like(cost), cost) return cost def _action_cost(action): return 0.001 * torch.sum(action**2, dim=-1) cost = _observation_cost(obs) + _action_cost(action) # negative cost as reward reward = -cost return reward
7e580cd084da27021bf20c0df03fca7023304f10
768058e7f347231e06a28879922690c0b6870ed4
/venv/lib/python3.7/site-packages/numba/core/errors.py
f7bd215c811424896b1da3733c44869197e78dd1
[]
no_license
jciech/HeisenbergSpinChains
58b4238281d8c158b11c6c22dd0da82025fd7284
e43942bbd09f6675e7e2ff277f8930dc0518d08e
refs/heads/master
2022-12-18T08:04:08.052966
2020-09-29T12:55:00
2020-09-29T12:55:00
258,476,448
0
0
null
null
null
null
UTF-8
Python
false
false
24,528
py
""" Numba-specific errors and warnings. """ import abc import contextlib import os import sys import warnings import numba.core.config import numpy as np from collections import defaultdict from numba.core.utils import add_metaclass, reraise, chain_exception from functools import wraps from abc import abstractmethod from importlib import import_module from types import ModuleType # Filled at the end __all__ = [] class NumbaWarning(Warning): """ Base category for all Numba compiler warnings. """ def __init__( self, msg, loc=None, highlighting=True, ): self.msg = msg self.loc = loc if highlighting: highlight = termcolor().errmsg else: def highlight(x): return x if loc: super(NumbaWarning, self).__init__( highlight("%s\n%s\n" % (msg, loc.strformat())) ) else: super(NumbaWarning, self).__init__(highlight("%s" % (msg,))) class NumbaPerformanceWarning(NumbaWarning): """ Warning category for when an operation might not be as fast as expected. """ class NumbaDeprecationWarning(NumbaWarning): """ Warning category for use of a deprecated feature. """ class NumbaPendingDeprecationWarning(NumbaWarning): """ Warning category for use of a feature that is pending deprecation. """ class NumbaParallelSafetyWarning(NumbaWarning): """ Warning category for when an operation in a prange might not have parallel semantics. """ class NumbaTypeSafetyWarning(NumbaWarning): """ Warning category for unsafe casting operations. """ class NumbaExperimentalFeatureWarning(NumbaWarning): """ Warning category for using an experimental feature. """ # These are needed in the color formatting of errors setup @add_metaclass(abc.ABCMeta) class _ColorScheme(object): @abstractmethod def code(self, msg): pass @abstractmethod def errmsg(self, msg): pass @abstractmethod def filename(self, msg): pass @abstractmethod def indicate(self, msg): pass @abstractmethod def highlight(self, msg): pass class _DummyColorScheme(_ColorScheme): def __init__(self, theme=None): pass def code(self, msg): pass def errmsg(self, msg): pass def filename(self, msg): pass def indicate(self, msg): pass def highlight(self, msg): pass # holds reference to the instance of the terminal color scheme in use _termcolor_inst = None try: import colorama # If the colorama version is < 0.3.9 it can break stdout/stderr in some # situations, as a result if this condition is met colorama is disabled and # the user is warned. Note that early versions did not have a __version__. colorama_version = getattr(colorama, "__version__", "0.0.0") if tuple([int(x) for x in colorama_version.split(".")]) < (0, 3, 9): msg = ( "Insufficiently recent colorama version found. " "Numba requires colorama >= 0.3.9" ) # warn the user warnings.warn(msg) # trip the exception to disable color errors raise ImportError # If Numba is running in testsuite mode then do not use error message # coloring so CI system output is consistently readable without having # to read between shell escape characters. if os.environ.get("NUMBA_DISABLE_ERROR_MESSAGE_HIGHLIGHTING", None): raise ImportError # just to trigger the exception handler below except ImportError: class NOPColorScheme(_DummyColorScheme): def __init__(self, theme=None): if theme is not None: raise ValueError("specifying a theme has no effect") _DummyColorScheme.__init__(self, theme=theme) def code(self, msg): return msg def errmsg(self, msg): return msg def filename(self, msg): return msg def indicate(self, msg): return msg def highlight(self, msg): return msg def termcolor(): global _termcolor_inst if _termcolor_inst is None: _termcolor_inst = NOPColorScheme() return _termcolor_inst else: from colorama import init, reinit, deinit, Fore, Style class ColorShell(object): _has_initialized = False def __init__(self): init() self._has_initialized = True def __enter__(self): if self._has_initialized: reinit() def __exit__(self, *exc_detail): Style.RESET_ALL deinit() class reset_terminal(object): def __init__(self): self._buf = bytearray(b"") def __enter__(self): return self._buf def __exit__(self, *exc_detail): self._buf += bytearray(Style.RESET_ALL.encode("utf-8")) # define some default themes, if more are added, update the envvars docs! themes = {} # No color added, just bold weighting themes["no_color"] = { "code": None, "errmsg": None, "filename": None, "indicate": None, "highlight": None, } # suitable for terminals with a dark background themes["dark_bg"] = { "code": Fore.BLUE, "errmsg": Fore.YELLOW, "filename": Fore.WHITE, "indicate": Fore.GREEN, "highlight": Fore.RED, } # suitable for terminals with a light background themes["light_bg"] = { "code": Fore.BLUE, "errmsg": Fore.BLACK, "filename": Fore.MAGENTA, "indicate": Fore.BLACK, "highlight": Fore.RED, } # suitable for terminals with a blue background themes["blue_bg"] = { "code": Fore.WHITE, "errmsg": Fore.YELLOW, "filename": Fore.MAGENTA, "indicate": Fore.CYAN, "highlight": Fore.RED, } # suitable for use in jupyter notebooks themes["jupyter_nb"] = { "code": Fore.BLACK, "errmsg": Fore.BLACK, "filename": Fore.GREEN, "indicate": Fore.CYAN, "highlight": Fore.RED, } default_theme = themes["no_color"] class HighlightColorScheme(_DummyColorScheme): def __init__(self, theme=default_theme): self._code = theme["code"] self._errmsg = theme["errmsg"] self._filename = theme["filename"] self._indicate = theme["indicate"] self._highlight = theme["highlight"] _DummyColorScheme.__init__(self, theme=theme) def _markup(self, msg, color=None, style=Style.BRIGHT): features = "" if color: features += color if style: features += style with ColorShell(): with reset_terminal() as mu: mu += features.encode("utf-8") mu += (msg).encode("utf-8") return mu.decode("utf-8") def code(self, msg): return self._markup(msg, self._code) def errmsg(self, msg): return self._markup(msg, self._errmsg) def filename(self, msg): return self._markup(msg, self._filename) def indicate(self, msg): return self._markup(msg, self._indicate) def highlight(self, msg): return self._markup(msg, self._highlight) def termcolor(): global _termcolor_inst if _termcolor_inst is None: scheme = themes[numba.core.config.COLOR_SCHEME] _termcolor_inst = HighlightColorScheme(scheme) return _termcolor_inst feedback_details = """ Please report the error message and traceback, along with a minimal reproducer at: https://github.com/numba/numba/issues/new If more help is needed please feel free to speak to the Numba core developers directly at: https://gitter.im/numba/numba Thanks in advance for your help in improving Numba! """ unsupported_error_info = """ Unsupported functionality was found in the code Numba was trying to compile. If this functionality is important to you please file a feature request at: https://github.com/numba/numba/issues/new """ interpreter_error_info = """ Unsupported Python functionality was found in the code Numba was trying to compile. This error could be due to invalid code, does the code work without Numba? (To temporarily disable Numba JIT, set the `NUMBA_DISABLE_JIT` environment variable to non-zero, and then rerun the code). If the code is valid and the unsupported functionality is important to you please file a feature request at: https://github.com/numba/numba/issues/new To see Python/NumPy features supported by the latest release of Numba visit: http://numba.pydata.org/numba-doc/latest/reference/pysupported.html and http://numba.pydata.org/numba-doc/latest/reference/numpysupported.html """ constant_inference_info = ( """ Numba could not make a constant out of something that it decided should be a constant. This could well be a current limitation in Numba's internals, however please first check that your code is valid for compilation, particularly with respect to string interpolation (not supported!) and the requirement of compile time constants as arguments to exceptions: http://numba.pydata.org/numba-doc/latest/reference/pysupported.html?highlight=exceptions#constructs If the code is valid and the unsupported functionality is important to you please file a feature request at: https://github.com/numba/numba/issues/new If you think your code should work with Numba. %s """ % feedback_details ) typing_error_info = """ This is not usually a problem with Numba itself but instead often caused by the use of unsupported features or an issue in resolving types. To see Python/NumPy features supported by the latest release of Numba visit: http://numba.pydata.org/numba-doc/latest/reference/pysupported.html and http://numba.pydata.org/numba-doc/latest/reference/numpysupported.html For more information about typing errors and how to debug them visit: http://numba.pydata.org/numba-doc/latest/user/troubleshoot.html#my-code-doesn-t-compile If you think your code should work with Numba, please report the error message and traceback, along with a minimal reproducer at: https://github.com/numba/numba/issues/new """ reportable_issue_info = """ ------------------------------------------------------------------------------- This should not have happened, a problem has occurred in Numba's internals. You are currently using Numba version %s. %s """ % ( numba.__version__, feedback_details, ) error_extras = dict() error_extras["unsupported_error"] = unsupported_error_info error_extras["typing"] = typing_error_info error_extras["reportable"] = reportable_issue_info error_extras["interpreter"] = interpreter_error_info error_extras["constant_inference"] = constant_inference_info def deprecated(arg): """Define a deprecation decorator. An optional string should refer to the new API to be used instead. Example: @deprecated def old_func(): ... @deprecated('new_func') def old_func(): ...""" subst = arg if isinstance(arg, str) else None def decorator(func): def wrapper(*args, **kwargs): msg = 'Call to deprecated function "{}".' if subst: msg += '\n Use "{}" instead.' warnings.warn( msg.format(func.__name__, subst), category=DeprecationWarning, stacklevel=2, ) return func(*args, **kwargs) return wraps(func)(wrapper) if not subst: return decorator(arg) else: return decorator _moved_msg1 = ( "An import was requested from a module that has moved location." "\nImport requested from: '{}', please update to use " "'{}' or pin to Numba version 0.48.0. This alias will not be " "present in Numba version 0.50.0." ) _moved_msg2 = ( "An import was requested from a module that has moved location" ".\nImport of '{}' requested from: '{}', please update to use " "'{}' or pin to Numba version 0.48.0. This alias will not be " "present in Numba version 0.50.0." ) _moved_no_replacement = ( "No direct replacement for '{}' available. Visit " "https://gitter.im/numba/numba-dev to request help. " "Thanks!" ) def deprecate_moved_module(old_module, new_module, stacklevel=2): """Warn about a module level location move of some part of Numba's internals. stacklevel is 3 by default as most warning locations are from `numba.XYZ` shims. """ if new_module is None: msg = _moved_no_replacement.format(old_module) else: msg = _moved_msg1.format(old_module, new_module) warnings.warn(msg, category=NumbaDeprecationWarning, stacklevel=stacklevel + 1) class _MovedModule(ModuleType): def __init__(self, old_module_locals, new_module): old_module = old_module_locals["__name__"] super().__init__(old_module) # copy across dunders so that package imports work too for attr, value in old_module_locals.items(): if attr.startswith("__") and attr.endswith("__"): setattr(self, attr, value) self.__new_module = new_module deprecate_moved_module(old_module, new_module, stacklevel=3) def __getattr__(self, attr): """ warn users above modules moving locations """ try: # import from the moved module if self.__new_module is not None: mod = import_module(self.__new_module) ret_attr = getattr(mod, attr) msg = _moved_msg2.format(attr, self.__name__, self.__new_module) warnings.warn(msg, category=NumbaDeprecationWarning, stacklevel=2) return ret_attr else: # produce the usual error return super().__getattribute__(attr) except AttributeError: # not a package, so no submodules to attempt to import. # can't use hasattr here because that would recurse. if "__path__" not in self.__dict__: raise # perhaps this is a submodule name that was previous importer, but # is no longer try: return import_module("." + attr, package=self.__name__) except ModuleNotFoundError: raise AttributeError( "Moved module {!r} has no attribute or submodule {!r}".format( self.__name__, attr ) ) class WarningsFixer(object): """ An object "fixing" warnings of a given category caught during certain phases. The warnings can have their filename and lineno fixed, and they are deduplicated as well. """ def __init__(self, category): self._category = category # {(filename, lineno, category) -> messages} self._warnings = defaultdict(set) @contextlib.contextmanager def catch_warnings(self, filename=None, lineno=None): """ Store warnings and optionally fix their filename and lineno. """ with warnings.catch_warnings(record=True) as wlist: warnings.simplefilter("always", self._category) yield for w in wlist: msg = str(w.message) if issubclass(w.category, self._category): # Store warnings of this category for deduplication filename = filename or w.filename lineno = lineno or w.lineno self._warnings[filename, lineno, w.category].add(msg) else: # Simply emit other warnings again warnings.warn_explicit(msg, w.category, w.filename, w.lineno) def flush(self): """ Emit all stored warnings. """ def key(arg): # It is possible through codegen to create entirely identical # warnings, this leads to comparing types when sorting which breaks # on Python 3. Key as str() and if the worse happens then `id` # creates some uniqueness return str(arg) + str(id(arg)) for (filename, lineno, category), messages in sorted( self._warnings.items(), key=key ): for msg in sorted(messages): warnings.warn_explicit(msg, category, filename, lineno) self._warnings.clear() class NumbaError(Exception): def __init__(self, msg, loc=None, highlighting=True): self.msg = msg self.loc = loc if highlighting: highlight = termcolor().errmsg else: def highlight(x): return x if loc: super(NumbaError, self).__init__( highlight("%s\n%s\n" % (msg, loc.strformat())) ) else: super(NumbaError, self).__init__(highlight("%s" % (msg,))) @property def contexts(self): try: return self._contexts except AttributeError: self._contexts = lst = [] return lst def add_context(self, msg): """ Add contextual info. The exception message is expanded with the new contextual information. """ self.contexts.append(msg) f = termcolor().errmsg("{0}\n") + termcolor().filename("[{1}] During: {2}") newmsg = f.format(self, len(self.contexts), msg) self.args = (newmsg,) return self def patch_message(self, new_message): """ Change the error message to the given new message. """ self.args = (new_message,) + self.args[1:] class UnsupportedError(NumbaError): """ Numba does not have an implementation for this functionality. """ pass class UnsupportedRewriteError(UnsupportedError): """UnsupportedError from rewrite passes""" pass class IRError(NumbaError): """ An error occurred during Numba IR generation. """ pass class RedefinedError(IRError): """ An error occurred during interpretation of IR due to variable redefinition. """ pass class NotDefinedError(IRError): """ An undefined variable is encountered during interpretation of IR. """ def __init__(self, name, loc=None): self.name = name msg = "Variable '%s' is not defined." % name super(NotDefinedError, self).__init__(msg, loc=loc) class VerificationError(IRError): """ An error occurred during IR verification. Once Numba's internal representation (IR) is constructed it is then verified to ensure that terminators are both present and in the correct places within the IR. If it is the case that this condition is not met, a VerificationError is raised. """ pass class MacroError(NumbaError): """ An error occurred during macro expansion. """ pass class DeprecationError(NumbaError): """ Functionality is deprecated. """ pass class LoweringError(NumbaError): """ An error occurred during lowering. """ def __init__(self, msg, loc=None): super(LoweringError, self).__init__(msg, loc=loc) class UnsupportedParforsError(NumbaError): """ An error ocurred because parfors is not supported on the platform. """ pass class ForbiddenConstruct(LoweringError): """ A forbidden Python construct was encountered (e.g. use of locals()). """ pass class TypingError(NumbaError): """ A type inference failure. """ pass class UntypedAttributeError(TypingError): def __init__(self, value, attr, loc=None): module = getattr(value, "pymod", None) if module is not None and module == np: # unsupported numpy feature. msg = ( "Use of unsupported NumPy function 'numpy.%s' " "or unsupported use of the function." % attr ) else: msg = "Unknown attribute '{attr}' of type {type}" msg = msg.format(type=value, attr=attr) super(UntypedAttributeError, self).__init__(msg, loc=loc) class ByteCodeSupportError(NumbaError): """ Failure to extract the bytecode of the user's function. """ def __init__(self, msg, loc=None): super(ByteCodeSupportError, self).__init__(msg, loc=loc) class CompilerError(NumbaError): """ Some high-level error in the compiler. """ pass class ConstantInferenceError(NumbaError): """ Failure during constant inference. """ def __init__(self, value, loc=None): super(ConstantInferenceError, self).__init__(value, loc=loc) class InternalError(NumbaError): """ For wrapping internal error occured within the compiler """ def __init__(self, exception): super(InternalError, self).__init__(str(exception)) self.old_exception = exception class RequireLiteralValue(TypingError): """ For signalling that a function's typing requires a constant value for some of its arguments. """ pass class ForceLiteralArg(NumbaError): """A Pseudo-exception to signal the dispatcher to type an argument literally Attributes ---------- requested_args : frozenset[int] requested positions of the arguments. """ def __init__(self, arg_indices, fold_arguments=None, loc=None): """ Parameters ---------- arg_indices : Sequence[int] requested positions of the arguments. fold_arguments: callable A function ``(tuple, dict) -> tuple`` that binds and flattens the ``args`` and ``kwargs``. loc : numba.ir.Loc or None """ super(ForceLiteralArg, self).__init__( "Pseudo-exception to force literal arguments in the dispatcher", loc=loc, ) self.requested_args = frozenset(arg_indices) self.fold_arguments = fold_arguments def bind_fold_arguments(self, fold_arguments): """Bind the fold_arguments function""" e = ForceLiteralArg(self.requested_args, fold_arguments, loc=self.loc) return chain_exception(e, self) def combine(self, other): """Returns a new instance by or'ing the requested_args.""" if not isinstance(other, ForceLiteralArg): m = "*other* must be a {} but got a {} instead" raise TypeError(m.format(ForceLiteralArg, type(other))) return ForceLiteralArg(self.requested_args | other.requested_args) def __or__(self, other): """Same as self.combine(other)""" return self.combine(other) class LiteralTypingError(TypingError): """ Failure in typing a Literal type """ pass def _format_msg(fmt, args, kwargs): return fmt.format(*args, **kwargs) _numba_path = os.path.dirname(__file__) loc_info = {} @contextlib.contextmanager def new_error_context(fmt_, *args, **kwargs): """ A contextmanager that prepend contextual information to any exception raised within. If the exception type is not an instance of NumbaError, it will be wrapped into a InternalError. The exception class can be changed by providing a "errcls_" keyword argument with the exception constructor. The first argument is a message that describes the context. It can be a format string. If there are additional arguments, it will be used as ``fmt_.format(*args, **kwargs)`` to produce the final message string. """ errcls = kwargs.pop("errcls_", InternalError) loc = kwargs.get("loc", None) if loc is not None and not loc.filename.startswith(_numba_path): loc_info.update(kwargs) try: yield except NumbaError as e: e.add_context(_format_msg(fmt_, args, kwargs)) raise except Exception as e: newerr = errcls(e).add_context(_format_msg(fmt_, args, kwargs)) tb = sys.exc_info()[2] if numba.core.config.FULL_TRACEBACKS else None reraise(type(newerr), newerr, tb) __all__ += [ name for (name, value) in globals().items() if not name.startswith("_") and isinstance(value, type) and issubclass(value, (Exception, Warning)) ]
673f2d850b90b20a67a00755f8a9e59b28f7324f
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/sagemaker_write_2/human-task-ui_create.py
eebb4a0b6530ac76c1e2b8f1be0de382851e94ff
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
1,166
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_two_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-human-task-ui.html if __name__ == '__main__': """ delete-human-task-ui : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/delete-human-task-ui.html describe-human-task-ui : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/describe-human-task-ui.html list-human-task-uis : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/list-human-task-uis.html """ parameter_display_string = """ # human-task-ui-name : The name of the user interface you are creating. # ui-template : """ add_option_dict = {} add_option_dict["parameter_display_string"] = parameter_display_string # ex: add_option_dict["no_value_parameter_list"] = "--single-parameter" write_two_parameter("sagemaker", "create-human-task-ui", "human-task-ui-name", "ui-template", add_option_dict)
c78f086df8711a95739b5f59b62912beb82f0281
8574853abe4cfe95b5e03e0b41cf23d1ed865509
/pyqtgraph/ui_mainWindow.py
b5cadc315fd621cf5e8b4cdbaa0e70b6d0df7e37
[]
no_license
neutrons/GUI_Tools
7ae8b90aad2cc1dc129d75618fc820c1c362dcda
34932a86545b9d52b2fa63f01c7950aebde54d78
refs/heads/master
2021-01-17T04:48:06.202029
2016-11-09T18:31:57
2016-11-09T18:31:57
28,240,513
0
0
null
null
null
null
UTF-8
Python
false
false
4,394
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'ui_mainWindow.ui' # # Created by: PyQt4 UI code generator 4.11.4 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.resize(1535, 845) MainWindow.setMinimumSize(QtCore.QSize(300, 0)) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setMinimumSize(QtCore.QSize(0, 0)) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) self.verticalLayout = QtGui.QVBoxLayout(self.centralwidget) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.widget_1 = QtGui.QWidget(self.centralwidget) self.widget_1.setObjectName(_fromUtf8("widget_1")) self.verticalLayout.addWidget(self.widget_1) self.widget_2 = QtGui.QWidget(self.centralwidget) self.widget_2.setObjectName(_fromUtf8("widget_2")) self.verticalLayout.addWidget(self.widget_2) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtGui.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 1535, 22)) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.menubar.sizePolicy().hasHeightForWidth()) self.menubar.setSizePolicy(sizePolicy) self.menubar.setObjectName(_fromUtf8("menubar")) MainWindow.setMenuBar(self.menubar) self.action1_Data = QtGui.QAction(MainWindow) self.action1_Data.setObjectName(_fromUtf8("action1_Data")) self.action2_Normalization = QtGui.QAction(MainWindow) self.action2_Normalization.setEnabled(True) self.action2_Normalization.setObjectName(_fromUtf8("action2_Normalization")) self.action3_Binning = QtGui.QAction(MainWindow) self.action3_Binning.setObjectName(_fromUtf8("action3_Binning")) self.action4_Fitting = QtGui.QAction(MainWindow) self.action4_Fitting.setObjectName(_fromUtf8("action4_Fitting")) self.action5_Results = QtGui.QAction(MainWindow) self.action5_Results.setObjectName(_fromUtf8("action5_Results")) self.actionAbout = QtGui.QAction(MainWindow) self.actionAbout.setObjectName(_fromUtf8("actionAbout")) self.action1_Raw_Data = QtGui.QAction(MainWindow) self.action1_Raw_Data.setObjectName(_fromUtf8("action1_Raw_Data")) self.action2_Normalization_2 = QtGui.QAction(MainWindow) self.action2_Normalization_2.setObjectName(_fromUtf8("action2_Normalization_2")) self.action3_Normalized_Data = QtGui.QAction(MainWindow) self.action3_Normalized_Data.setObjectName(_fromUtf8("action3_Normalized_Data")) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow", None)) self.action1_Data.setText(_translate("MainWindow", "1. Data", None)) self.action2_Normalization.setText(_translate("MainWindow", "2. Normalization", None)) self.action3_Binning.setText(_translate("MainWindow", "4. Binning", None)) self.action4_Fitting.setText(_translate("MainWindow", "5. Fitting", None)) self.action5_Results.setText(_translate("MainWindow", "6. Strain Mapping", None)) self.actionAbout.setText(_translate("MainWindow", "About ...", None)) self.action1_Raw_Data.setText(_translate("MainWindow", "1. Raw Data", None)) self.action2_Normalization_2.setText(_translate("MainWindow", "2. Normalization", None)) self.action3_Normalized_Data.setText(_translate("MainWindow", "3. Normalized Data", None))
c4c4ad976f5a937b2721e07f86ceec98b86e7c4c
d82d8bce58a64e579e8a5e5d9e3fbc2b5274ea0a
/code/compile_list.py
ad8e5e99242fcfbfab31f7d23f459ca752478fb6
[]
no_license
annayqho/IcBL-master-list
2f58ad8fa092296d0c999dcca8b7700cb8f41ef7
c9d3884411fbdcb6f607ac76af72e5625a4266ba
refs/heads/master
2021-07-19T19:22:06.205001
2020-05-14T23:50:26
2020-05-14T23:50:26
163,516,921
0
0
null
null
null
null
UTF-8
Python
false
false
7,091
py
""" Compile a list of Ic-BL SNe """ import numpy as np import requests from astropy.table import Table from astropy.time import Time from astropy.coordinates import SkyCoord,Distance from astropy.cosmology import Planck15 from astropy.io import ascii DATA_DIR = "/Users/annaho/Dropbox/Projects/Research/IcBL/data" def todeg(ra, dec): """ convert XX:XX:XX to decimal degrees """ radeg = [] decdeg = [] for ii,raval in enumerate(ra): hh = raval.split(":")[0] mm = raval.split(":")[1] ss = raval.split(":")[2] radegval = hh+"h"+mm+"m"+ss+"s" dd = dec[ii].split(":")[0] mm = dec[ii].split(":")[1] ss = dec[ii].split(":")[2] decdegval = dd+"d"+mm+"m"+ss+"s" c = SkyCoord(radegval, decdegval, frame='icrs') radeg.append(c.ra.deg) decdeg.append(c.dec.deg) return np.array(radeg), np.array(decdeg) def opensn(): """ Automatically grab all of the Ic-BL SNe from the open SN catalog """ print("Connecting to the open SN catalog...") server = "https://api.sne.space/catalog" r = requests.get(server, params={'claimedtype': 'Ic BL', 'format': 'json'}) dat = r.json() # Retrieve the data you want nsn = len(dat.keys()) print("Found %s claimed Ic-BL SNe on the open SN catalog" %nsn) return dat def tns(): """ Run this to automatically grab all of the Ic-BL SNe from TNS """ print("Connecting to TNS server...") server = "https://wis-tns.weizmann.ac.il/search" r = requests.get(server, params={'objtype': 7, 'format': 'csv'}) alldat = r.text.split('\n') # Header header = np.array(alldat[0].split('","')) # Data dat = alldat[1:] # According to the formatting, you want to group things that live together # in double quotation marks. So, the real split between items is ",", not , for ii,row in enumerate(dat): dat[ii] = np.array(dat[ii].split('","')) dat = np.array(dat) # Retrieve the data you want nsn = dat.shape[0] print("Found %s Ic-BL SNe on TNS" %nsn) name = dat[:,np.where(header=='Name')[0][0]] ra = dat[:,np.where(header=='RA')[0][0]] dec = dat[:,np.where(header=='DEC')[0][0]] radeg, decdeg = todeg(ra,dec) z = dat[:,np.where(header=='Redshift')[0][0]] date = dat[:,np.where(header=='Discovery Date (UT)')[0][0]] ref = ['TNS'] * nsn return name, date, radeg, decdeg, z, ref def ptf(): """ the PTF/iPTF sample of 34 Ic-BL SNe I copied the table directly from the .tex file downloaded from the arXiv, then ran the following two commands %s/\\//g %s/ //g %s/\*//g %s/xx//g I also removed the commented-out lines In this paper, they give estimated explosion epochs (with a typical uncertainty of 2 days) for all of the SNe observed before and after r maximum brightness. A lot of them don't have an estimated explosion epoch, though. So what I should do is use the estimate for the ones that have it, and for the ones that don't have it, just report discovery date as I found it on the marshal. """ # Discovery dates on the Marshal, for the ones that aren't in Table 2 # 27 out of 34 leaves 7 disc = {} disc['PTF09sk'] = 2455002.74571 disc['PTF10cs'] = 2455203.74537 disc['PTF12grr'] = 2456117.84878 disc['iPTF14bfu'] = Time('2014-06-06T03:11:51.86').jd disc['iPTF15dld'] = 2457318.82184 disc['iPTF16coi'] = 2457625.72566 disc['iPTF17axg'] = 2457784.97286 dat = Table.read( "%s/taddia2018.dat" %DATA_DIR, delimiter='&', format='ascii.fast_no_header') # file with explosion epochs dat_expl = Table.read( "%s/taddia2018_t2.dat" %DATA_DIR, delimiter='&', format='ascii.fast_no_header') name_expl = dat_expl['col1'] texpl = dat_expl['col8'] name = dat['col1'] texpl = [] for n in name: try: ind = np.where(name_expl==n)[0][0] texpl.append(texpl[ind]) except: texpl.append(disc[n]) ra = dat['col2'] dec = dat['col3'] radeg, decdeg = todeg(ra, dec) z = dat['col5'] ref = ['T18']*len(name) return list(name), texpl, list(radeg), list(decdeg), list(z), ref def ztf(): """ The list of Ic-BL discovered in ZTF """ dat = Table.read( "%s/ztf.dat" %DATA_DIR, delimiter='&', format='ascii.fast_no_header') name = dat['col1'] date = dat['col3'] ra = dat['col5'] dec = dat['col6'] radeg, decdeg = todeg(ra, dec) z = dat['col7'] ref = ['ZTF']*len(name) return list(name), list(date), list(radeg), list(decdeg), list(z), ref def add(name, disc, ra, dec, redshift, ref, n, di, r, d, z, re): c = SkyCoord(ra, dec, unit='deg') cadd = SkyCoord(r, d, unit='deg') nadd = 0 for ii,val in enumerate(cadd): dist = c.separation(val).arcsec nopos = False noname = False # Is the position in there already? if sum(dist <= 2) == 0: nopos = True # Is the name in there already? if n[ii] not in name: noname = True if np.logical_and(nopos, noname): name.append(n[ii]) disc.append(di[ii]) ra.append(r[ii]) dec.append(d[ii]) redshift.append(z[ii]) ref.append(re[ii]) nadd += 1 else: print("%s is a duplicate, not adding" %n[ii]) print("added %s events" %str(nadd)) return name, disc, ra, dec, redshift, ref if __name__=="__main__": dat = opensn() names = np.array(list(dat.keys())) nsn = len(names) ra = [] dec = [] for key,val in dat.items(): if len(val['ra']) > 0: ra.append(val['ra'][0]['value']) dec.append(val['dec'][0]['value']) ra,dec = todeg(ra,dec) opensnpos = SkyCoord(ra, dec, unit='deg') # Question 1: are there any Ic-BL on TNS that are not on openSN? name, date, radeg, decdeg, z, ref = tns() name = np.array([val.replace(" ", "") for val in name]) missing = np.setdiff1d(name,names) if len(missing) > 0: print("There are TNS Ic-BL SNe missing from OpenSN") print(missing) else: print("All TNS Ic-BL SNe are on OpenSN") # Question 2: are there any Ic-BL from other papers that are not on openSN? # Yes, a whole bunch from PTF and ZTF. name, date, radeg, decdeg, z, ref = ztf() name = np.array(name) print(np.setdiff1d(name,names)) # compare positions, since some of these only have ZTF names... ptfpos = SkyCoord(radeg, decdeg, unit='deg') for ii,val in enumerate(ptfpos): if min(val.separation(opensnpos).arcsec) < 1: print("%s already in openSN" %name[ii]) else: print("%s not in openSN" %name[ii]) # # Name, Expl./Disc. Date, RA, Dec, Redshift, Reference # ascii.write( # [names], 'all_icbl.html', names=['Name'], delimiter=',', # overwrite=True, format='html')
c36c23782d5de4c8d32ff18fa5c495be5c8bbb9e
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/eventhub/azure-mgmt-eventhub/generated_samples/private_link_resources_get.py
09d9cb10ccc2b1df74331b0170522555e172219b
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
1,568
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.identity import DefaultAzureCredential from azure.mgmt.eventhub import EventHubManagementClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-eventhub # USAGE python private_link_resources_get.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = EventHubManagementClient( credential=DefaultAzureCredential(), subscription_id="subID", ) response = client.private_link_resources.get( resource_group_name="ArunMonocle", namespace_name="sdk-Namespace-2924", ) print(response) # x-ms-original-file: specification/eventhub/resource-manager/Microsoft.EventHub/stable/2021-11-01/examples/NameSpaces/PrivateLinkResourcesGet.json if __name__ == "__main__": main()
c3f9cd65dcb33f02e8541e83d77676f71f7713de
764e24bf9e8a4d68b3f06eb0e0b9e6c9140e72ba
/Deportes/Evento/form.py
c244a680e74e5c3e074d3387faf9f55f1eb7b198
[]
no_license
efnaranjo6/Deportes
27200d30f1f86364ed2d37f76342f63b657a5788
71f22790a8d059516aa35ac325cc9b284979712e
refs/heads/master
2021-03-28T00:09:42.513669
2020-04-27T16:45:41
2020-04-27T16:45:41
247,819,791
0
0
null
null
null
null
UTF-8
Python
false
false
511
py
from django import forms from Evento.models import Evento class Eventoform(forms.ModelForm): class Meta: model = Evento fields = ['nombre'] labels = {'nombre ': 'ingrese el nombre' } widget={'nombre' : forms.TextInput(), } def __init__(self,*args, **kwargs): super().__init__(*args, **kwargs) for field in iter(self.fields): self.fields[field].widget.attrs.update({ 'class':'form-control'})
0fe25c0230c5cbc00c32eedb12b54bfabfb330ae
1b87d5f7cba7e068f7b2ea902bba494599d20a78
/experimental/mt_media/drivers/directsound/__init__.py
17aadeb2836801d257ee41453f288279e24e81a4
[ "BSD-3-Clause" ]
permissive
jpaalasm/pyglet
906d03fe53160885665beaed20314b5909903cc9
bf1d1f209ca3e702fd4b6611377257f0e2767282
refs/heads/master
2021-01-25T03:27:08.941964
2014-01-25T17:50:57
2014-01-25T17:50:57
16,236,090
2
2
null
null
null
null
UTF-8
Python
false
false
18,147
py
#!/usr/bin/python # $Id:$ import ctypes import math import sys import threading import time import pyglet _debug = pyglet.options['debug_media'] import mt_media import lib_dsound as lib from pyglet.window.win32 import _user32, _kernel32 class DirectSoundException(mt_media.MediaException): pass def _db(gain): '''Convert linear gain in range [0.0, 1.0] to 100ths of dB.''' if gain <= 0: return -10000 return max(-10000, min(int(1000 * math.log(min(gain, 1))), 0)) class DirectSoundWorker(mt_media.MediaThread): _min_write_size = 9600 # Time to wait if there are players, but they're all full. _nap_time = 0.05 # Time to wait if there are no players. _sleep_time = None def __init__(self): super(DirectSoundWorker, self).__init__() self.players = set() def run(self): while True: # This is a big lock, but ensures a player is not deleted while # we're processing it -- this saves on extra checks in the # player's methods that would otherwise have to check that it's # still alive. if _debug: print 'DirectSoundWorker run attempt acquire' self.condition.acquire() if _debug: print 'DirectSoundWorker run acquire' if self.stopped: self.condition.release() break sleep_time = -1 if self.players: player = None write_size = 0 for p in self.players: s = p.get_write_size() if s > write_size: player = p write_size = s if write_size > self._min_write_size: player.refill(write_size) else: sleep_time = self._nap_time else: sleep_time = self._sleep_time self.condition.release() if _debug: print 'DirectSoundWorker run release' if sleep_time != -1: self.sleep(sleep_time) if _debug: print 'DirectSoundWorker exiting' def add(self, player): if _debug: print 'DirectSoundWorker add', player self.condition.acquire() self.players.add(player) self.condition.notify() self.condition.release() if _debug: print 'return DirectSoundWorker add', player def remove(self, player): if _debug: print 'DirectSoundWorker remove', player self.condition.acquire() try: self.players.remove(player) except KeyError: pass self.condition.notify() self.condition.release() if _debug: print 'return DirectSoundWorker remove', player class DirectSoundAudioPlayer(mt_media.AbstractAudioPlayer): # How many bytes the ring buffer should be _buffer_size = 44800 * 1 # Need to cache these because pyglet API allows update separately, but # DSound requires both to be set at once. _cone_inner_angle = 360 _cone_outer_angle = 360 def __init__(self, source_group, player): super(DirectSoundAudioPlayer, self).__init__(source_group, player) # Locking strategy: # All DirectSound calls should be locked. All instance vars relating # to buffering/filling/time/events should be locked (used by both # application and worker thread). Other instance vars (consts and # 3d vars) do not need to be locked. self._lock = threading.RLock() # Desired play state (may be actually paused due to underrun -- not # implemented yet). self._playing = False # Up to one audio data may be buffered if too much data was received # from the source that could not be written immediately into the # buffer. See refill(). self._next_audio_data = None # Theoretical write and play cursors for an infinite buffer. play # cursor is always <= write cursor (when equal, underrun is # happening). self._write_cursor = 0 self._play_cursor = 0 # Cursor position of end of data. Silence is written after # eos for one buffer size. self._eos_cursor = None # Indexes into DSound circular buffer. Complications ensue wrt each # other to avoid writing over the play cursor. See get_write_size and # write(). self._play_cursor_ring = 0 self._write_cursor_ring = 0 # List of (play_cursor, MediaEvent), in sort order self._events = [] # List of (cursor, timestamp), in sort order (cursor gives expiry # place of the timestamp) self._timestamps = [] audio_format = source_group.audio_format wfx = lib.WAVEFORMATEX() wfx.wFormatTag = lib.WAVE_FORMAT_PCM wfx.nChannels = audio_format.channels wfx.nSamplesPerSec = audio_format.sample_rate wfx.wBitsPerSample = audio_format.sample_size wfx.nBlockAlign = wfx.wBitsPerSample * wfx.nChannels // 8 wfx.nAvgBytesPerSec = wfx.nSamplesPerSec * wfx.nBlockAlign dsbdesc = lib.DSBUFFERDESC() dsbdesc.dwSize = ctypes.sizeof(dsbdesc) dsbdesc.dwFlags = (lib.DSBCAPS_GLOBALFOCUS | lib.DSBCAPS_GETCURRENTPOSITION2 | lib.DSBCAPS_CTRLFREQUENCY | lib.DSBCAPS_CTRLVOLUME) if audio_format.channels == 1: dsbdesc.dwFlags |= lib.DSBCAPS_CTRL3D dsbdesc.dwBufferBytes = self._buffer_size dsbdesc.lpwfxFormat = ctypes.pointer(wfx) # DSound buffer self._buffer = lib.IDirectSoundBuffer() driver._dsound.CreateSoundBuffer(dsbdesc, ctypes.byref(self._buffer), None) if audio_format.channels == 1: self._buffer3d = lib.IDirectSound3DBuffer() self._buffer.QueryInterface(lib.IID_IDirectSound3DBuffer, ctypes.byref(self._buffer3d)) else: self._buffer3d = None self._buffer.SetCurrentPosition(0) self.refill(self._buffer_size) def __del__(self): try: self.delete() except: pass def delete(self): if driver and driver.worker: driver.worker.remove(self) self.lock() self._buffer.Stop() self._buffer.Release() self._buffer = None if self._buffer3d: self._buffer3d.Release() self._buffer3d = None self.unlock() def lock(self): self._lock.acquire() def unlock(self): self._lock.release() def play(self): if _debug: print 'DirectSound play' driver.worker.add(self) self.lock() if not self._playing: self._playing = True self._buffer.Play(0, 0, lib.DSBPLAY_LOOPING) self.unlock() if _debug: print 'return DirectSound play' def stop(self): if _debug: print 'DirectSound stop' driver.worker.remove(self) self.lock() if self._playing: self._playing = False self._buffer.Stop() self.unlock() if _debug: print 'return DirectSound stop' def clear(self): if _debug: print 'DirectSound clear' self.lock() self._buffer.SetCurrentPosition(0) self._play_cursor_ring = self._write_cursor_ring = 0 self._play_cursor = self._write_cursor self._eos_cursor = None self._next_audio_data = None del self._events[:] del self._timestamps[:] self.unlock() def refill(self, write_size): self.lock() while write_size > 0: if _debug: print 'refill, write_size =', write_size # Get next audio packet (or remains of last one) if self._next_audio_data: audio_data = self._next_audio_data self._next_audio_data = None else: audio_data = self.source_group.get_audio_data(write_size) # Write it, or silence if there are no more packets if audio_data: # Add events for event in audio_data.events: event_cursor = self._write_cursor + event.timestamp * \ self.source_group.audio_format.bytes_per_second self._events.append((event_cursor, event)) # Add timestamp (at end of this data packet) ts_cursor = self._write_cursor + audio_data.length self._timestamps.append( (ts_cursor, audio_data.timestamp + audio_data.duration)) # Write data if _debug: print 'write', audio_data.length length = min(write_size, audio_data.length) self.write(audio_data, length) if audio_data.length: self._next_audio_data = audio_data write_size -= length else: # Write silence if self._eos_cursor is None: self._eos_cursor = self._write_cursor self._events.append( (self._eos_cursor, mt_media.MediaEvent(0, 'on_eos'))) self._events.append( (self._eos_cursor, mt_media.MediaEvent(0, 'on_source_group_eos'))) self._events.sort() if self._write_cursor > self._eos_cursor + self._buffer_size: self.stop() else: self.write(None, write_size) write_size = 0 self.unlock() def update_play_cursor(self): self.lock() play_cursor_ring = lib.DWORD() self._buffer.GetCurrentPosition(play_cursor_ring, None) if play_cursor_ring.value < self._play_cursor_ring: # Wrapped around self._play_cursor += self._buffer_size - self._play_cursor_ring self._play_cursor_ring = 0 self._play_cursor += play_cursor_ring.value - self._play_cursor_ring self._play_cursor_ring = play_cursor_ring.value # Dispatch pending events pending_events = [] while self._events and self._events[0][0] <= self._play_cursor: _, event = self._events.pop(0) pending_events.append(event) if _debug: print 'Dispatching pending events:', pending_events print 'Remaining events:', self._events # Remove expired timestamps while self._timestamps and self._timestamps[0][0] < self._play_cursor: del self._timestamps[0] self.unlock() for event in pending_events: event._sync_dispatch_to_player(self.player) def get_write_size(self): self.update_play_cursor() self.lock() play_cursor = self._play_cursor write_cursor = self._write_cursor self.unlock() return self._buffer_size - (write_cursor - play_cursor) def write(self, audio_data, length): # Pass audio_data=None to write silence if length == 0: return 0 self.lock() p1 = ctypes.c_void_p() l1 = lib.DWORD() p2 = ctypes.c_void_p() l2 = lib.DWORD() self._buffer.Lock(self._write_cursor_ring, length, ctypes.byref(p1), l1, ctypes.byref(p2), l2, 0) assert length == l1.value + l2.value if audio_data: ctypes.memmove(p1, audio_data.data, l1.value) audio_data.consume(l1.value, self.source_group.audio_format) if l2.value: ctypes.memmove(p2, audio_data.data, l2.value) audio_data.consume(l2.value, self.source_group.audio_format) else: ctypes.memset(p1, 0, l1.value) if l2.value: ctypes.memset(p2, 0, l2.value) self._buffer.Unlock(p1, l1, p2, l2) self._write_cursor += length self._write_cursor_ring += length self._write_cursor_ring %= self._buffer_size self.unlock() def get_time(self): self.lock() if self._timestamps: cursor, ts = self._timestamps[0] result = ts + (self._play_cursor - cursor) / \ float(self.source_group.audio_format.bytes_per_second) else: result = None self.unlock() return result def set_volume(self, volume): volume = _db(volume) self.lock() self._buffer.SetVolume(volume) self.unlock() def set_position(self, position): if self._buffer3d: x, y, z = position self.lock() self._buffer3d.SetPosition(x, y, -z, lib.DS3D_IMMEDIATE) self.unlock() def set_min_distance(self, min_distance): if self._buffer3d: self.lock() self._buffer3d.SetMinDistance(min_distance, lib.DS3D_IMMEDIATE) self.unlock() def set_max_distance(self, max_distance): if self._buffer3d: self.lock() self._buffer3d.SetMaxDistance(max_distance, lib.DS3D_IMMEDIATE) self.unlock() def set_pitch(self, pitch): frequency = int(pitch * self.audio_format.sample_rate) self.lock() self._buffer.SetFrequency(frequency) self.unlock() def set_cone_orientation(self, cone_orientation): if self._buffer3d: x, y, z = cone_orientation self.lock() self._buffer3d.SetConeOrientation(x, y, -z, lib.DS3D_IMMEDIATE) self.unlock() def set_cone_inner_angle(self, cone_inner_angle): if self._buffer3d: self._cone_inner_angle = int(cone_inner_angle) self._set_cone_angles() def set_cone_outer_angle(self, cone_outer_angle): if self._buffer3d: self._cone_outer_angle = int(cone_outer_angle) self._set_cone_angles() def _set_cone_angles(self): inner = min(self._cone_inner_angle, self._cone_outer_angle) outer = max(self._cone_inner_angle, self._cone_outer_angle) self.lock() self._buffer3d.SetConeAngles(inner, outer, lib.DS3D_IMMEDIATE) self.unlock() def set_cone_outer_gain(self, cone_outer_gain): if self._buffer3d: volume = _db(cone_outer_gain) self.lock() self._buffer3d.SetConeOutsideVolume(volume, lib.DS3D_IMMEDIATE) self.unlock() class DirectSoundDriver(mt_media.AbstractAudioDriver): def __init__(self): self._dsound = lib.IDirectSound() lib.DirectSoundCreate(None, ctypes.byref(self._dsound), None) # A trick used by mplayer.. use desktop as window handle since it # would be complex to use pyglet window handles (and what to do when # application is audio only?). hwnd = _user32.GetDesktopWindow() self._dsound.SetCooperativeLevel(hwnd, lib.DSSCL_NORMAL) # Create primary buffer with 3D and volume capabilities self._buffer = lib.IDirectSoundBuffer() dsbd = lib.DSBUFFERDESC() dsbd.dwSize = ctypes.sizeof(dsbd) dsbd.dwFlags = (lib.DSBCAPS_CTRL3D | lib.DSBCAPS_CTRLVOLUME | lib.DSBCAPS_PRIMARYBUFFER) self._dsound.CreateSoundBuffer(dsbd, ctypes.byref(self._buffer), None) # Create listener self._listener = lib.IDirectSound3DListener() self._buffer.QueryInterface(lib.IID_IDirectSound3DListener, ctypes.byref(self._listener)) # Create worker thread self.worker = DirectSoundWorker() self.worker.start() def __del__(self): try: if self._buffer: self.delete() except: pass def create_audio_player(self, source_group, player): return DirectSoundAudioPlayer(source_group, player) def delete(self): self.worker.stop() self._buffer.Release() self._buffer = None self._listener.Release() self._listener = None # Listener API def _set_volume(self, volume): self._volume = volume self._buffer.SetVolume(_db(volume)) def _set_position(self, position): self._position = position x, y, z = position self._listener.SetPosition(x, y, -z, lib.DS3D_IMMEDIATE) def _set_forward_orientation(self, orientation): self._forward_orientation = orientation self._set_orientation() def _set_up_orientation(self, orientation): self._up_orientation = orientation self._set_orientation() def _set_orientation(self): x, y, z = self._forward_orientation ux, uy, uz = self._up_orientation self._listener.SetOrientation(x, y, -z, ux, uy, -uz, lib.DS3D_IMMEDIATE) def create_audio_driver(): global driver driver = DirectSoundDriver() return driver # Global driver needed for access to worker thread and _dsound driver = None
46b2e0d46c51fbbd820fc3acb913dca4423c3fe0
3d2fa23d6df4f7e830ec0845f0f07c237eeed303
/tests/test_noise.py
1a82ff8603fe537f7a1fe92e5775c3f632700f6d
[ "BSD-2-Clause", "BSD-3-Clause" ]
permissive
hbrunie/GalSim
4e2595c5a8d65df3022acb9667ef20e50b737c33
332334a3e7593095779b22c789d7ad0c184d5261
refs/heads/master
2021-02-14T03:05:02.131834
2020-02-11T21:27:04
2020-02-11T21:27:04
244,760,764
0
0
NOASSERTION
2020-03-03T23:09:33
2020-03-03T23:09:32
null
UTF-8
Python
false
false
35,521
py
# Copyright (c) 2012-2019 by the GalSim developers team on GitHub # https://github.com/GalSim-developers # # This file is part of GalSim: The modular galaxy image simulation toolkit. # https://github.com/GalSim-developers/GalSim # # GalSim is free software: redistribution and use in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions, and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the disclaimer given in the documentation # and/or other materials provided with the distribution. # from __future__ import print_function import numpy as np import os import sys import galsim from galsim_test_helpers import * testseed = 1000 precision = 10 # decimal point at which agreement is required for all double precision tests precisionD = precision precisionF = 5 # precision=10 does not make sense at single precision precisionS = 1 # "precision" also a silly concept for ints, but allows all 4 tests to run in one go precisionI = 1 @timer def test_deviate_noise(): """Test basic functionality of the DeviateNoise class """ u = galsim.UniformDeviate(testseed) uResult = np.empty((10,10)) u.generate(uResult) noise = galsim.DeviateNoise(galsim.UniformDeviate(testseed)) # Test filling an image with random values testimage = galsim.ImageD(10,10) testimage.addNoise(noise) np.testing.assert_array_almost_equal( testimage.array, uResult, precision, err_msg='Wrong uniform random number sequence generated when applied to image.') # Test filling a single-precision image noise.rng.seed(testseed) testimage = galsim.ImageF(10,10) testimage.addNoise(noise) np.testing.assert_array_almost_equal( testimage.array, uResult, precisionF, err_msg='Wrong uniform random number sequence generated when applied to ImageF.') # Test filling an image with Fortran ordering noise.rng.seed(testseed) testimage = galsim.ImageD(np.zeros((10,10)).T) testimage.addNoise(noise) np.testing.assert_array_almost_equal( testimage.array, uResult, precision, err_msg="Wrong uniform randoms generated for Fortran-ordered Image") # Check picklability do_pickle(noise, drawNoise) do_pickle(noise) # Check copy, eq and ne noise2 = galsim.DeviateNoise(noise.rng.duplicate()) # Separate but equivalent rng chain. noise3 = noise.copy() # Always has exactly the same rng as noise. noise4 = noise.copy(rng=galsim.BaseDeviate(11)) # Always has a different rng than noise assert noise == noise2 assert noise == noise3 assert noise != noise4 assert noise.rng() == noise2.rng() assert noise == noise2 # Still equal because both chains incremented one place. assert noise == noise3 # Still equal because noise 3's rng is always equal to noise's rng. noise.rng() assert noise2 != noise3 # This is no longer equal, since only noise.rng is incremented. assert noise == noise3 assert_raises(TypeError, galsim.DeviateNoise, 53) assert_raises(NotImplementedError, galsim.BaseNoise().getVariance) assert_raises(NotImplementedError, galsim.BaseNoise().withVariance, 23) assert_raises(NotImplementedError, galsim.BaseNoise().withScaledVariance, 23) assert_raises(TypeError, noise.applyTo, 23) assert_raises(NotImplementedError, galsim.BaseNoise().applyTo, testimage) assert_raises(galsim.GalSimError, noise.getVariance) assert_raises(galsim.GalSimError, noise.withVariance, 23) assert_raises(galsim.GalSimError, noise.withScaledVariance, 23) @timer def test_gaussian_noise(): """Test Gaussian random number generator """ gSigma = 17.23 g = galsim.GaussianDeviate(testseed, sigma=gSigma) gResult = np.empty((10,10)) g.generate(gResult) noise = galsim.DeviateNoise(g) # Test filling an image testimage = galsim.ImageD(10,10) noise.rng.seed(testseed) testimage.addNoise(noise) np.testing.assert_array_almost_equal( testimage.array, gResult, precision, err_msg='Wrong Gaussian random number sequence generated when applied to image.') # Test filling a single-precision image noise.rng.seed(testseed) testimage = galsim.ImageF(10,10) testimage.addNoise(noise) np.testing.assert_array_almost_equal( testimage.array, gResult, precisionF, err_msg='Wrong Gaussian random number sequence generated when applied to ImageF.') # GaussianNoise is equivalent, but no mean allowed. gn = galsim.GaussianNoise(galsim.BaseDeviate(testseed), sigma=gSigma) testimage = galsim.ImageD(10,10) testimage.addNoise(gn) np.testing.assert_array_almost_equal( testimage.array, gResult, precision, err_msg="GaussianNoise applied to Images does not reproduce expected sequence") # Test filling an image with Fortran ordering gn.rng.seed(testseed) testimage = galsim.ImageD(np.zeros((10,10)).T) testimage.addNoise(gn) np.testing.assert_array_almost_equal( testimage.array, gResult, precision, err_msg="Wrong Gaussian noise generated for Fortran-ordered Image") # Check GaussianNoise variance: np.testing.assert_almost_equal( gn.getVariance(), gSigma**2, precision, err_msg="GaussianNoise getVariance returns wrong variance") np.testing.assert_almost_equal( gn.sigma, gSigma, precision, err_msg="GaussianNoise sigma returns wrong value") # Check that the noise model really does produce this variance. big_im = galsim.Image(2048,2048,dtype=float) gn.rng.seed(testseed) big_im.addNoise(gn) var = np.var(big_im.array) print('variance = ',var) print('getVar = ',gn.getVariance()) np.testing.assert_almost_equal( var, gn.getVariance(), 1, err_msg='Realized variance for GaussianNoise did not match getVariance()') # Check that GaussianNoise adds to the image, not overwrites the image. gal = galsim.Exponential(half_light_radius=2.3, flux=1.e4) gal.drawImage(image=big_im) gn.rng.seed(testseed) big_im.addNoise(gn) gal.withFlux(-1.e4).drawImage(image=big_im, add_to_image=True) var = np.var(big_im.array) np.testing.assert_almost_equal( var, gn.getVariance(), 1, err_msg='GaussianNoise wrong when already an object drawn on the image') # Check that DeviateNoise adds to the image, not overwrites the image. gal.drawImage(image=big_im) gn.rng.seed(testseed) big_im.addNoise(gn) gal.withFlux(-1.e4).drawImage(image=big_im, add_to_image=True) var = np.var(big_im.array) np.testing.assert_almost_equal( var, gn.getVariance(), 1, err_msg='DeviateNoise wrong when already an object drawn on the image') # Check withVariance gn = gn.withVariance(9.) np.testing.assert_almost_equal( gn.getVariance(), 9, precision, err_msg="GaussianNoise withVariance results in wrong variance") np.testing.assert_almost_equal( gn.sigma, 3., precision, err_msg="GaussianNoise withVariance results in wrong sigma") # Check withScaledVariance gn = gn.withScaledVariance(4.) np.testing.assert_almost_equal( gn.getVariance(), 36., precision, err_msg="GaussianNoise withScaledVariance results in wrong variance") np.testing.assert_almost_equal( gn.sigma, 6., precision, err_msg="GaussianNoise withScaledVariance results in wrong sigma") # Check arithmetic gn = gn.withVariance(0.5) gn2 = gn * 3 np.testing.assert_almost_equal( gn2.getVariance(), 1.5, precision, err_msg="GaussianNoise gn*3 results in wrong variance") np.testing.assert_almost_equal( gn.getVariance(), 0.5, precision, err_msg="GaussianNoise gn*3 results in wrong variance for original gn") gn2 = 5 * gn np.testing.assert_almost_equal( gn2.getVariance(), 2.5, precision, err_msg="GaussianNoise 5*gn results in wrong variance") np.testing.assert_almost_equal( gn.getVariance(), 0.5, precision, err_msg="GaussianNoise 5*gn results in wrong variance for original gn") gn2 = gn/2 np.testing.assert_almost_equal( gn2.getVariance(), 0.25, precision, err_msg="GaussianNoise gn/2 results in wrong variance") np.testing.assert_almost_equal( gn.getVariance(), 0.5, precision, err_msg="GaussianNoise 5*gn results in wrong variance for original gn") gn *= 3 np.testing.assert_almost_equal( gn.getVariance(), 1.5, precision, err_msg="GaussianNoise gn*=3 results in wrong variance") gn /= 2 np.testing.assert_almost_equal( gn.getVariance(), 0.75, precision, err_msg="GaussianNoise gn/=2 results in wrong variance") # Check starting with GaussianNoise() gn2 = galsim.GaussianNoise() gn2 = gn2.withVariance(9.) np.testing.assert_almost_equal( gn2.getVariance(), 9, precision, err_msg="GaussianNoise().withVariance results in wrong variance") np.testing.assert_almost_equal( gn2.sigma, 3., precision, err_msg="GaussianNoise().withVariance results in wrong sigma") gn2 = galsim.GaussianNoise() gn2 = gn2.withScaledVariance(4.) np.testing.assert_almost_equal( gn2.getVariance(), 4., precision, err_msg="GaussianNoise().withScaledVariance results in wrong variance") np.testing.assert_almost_equal( gn2.sigma, 2., precision, err_msg="GaussianNoise().withScaledVariance results in wrong sigma") # Check picklability do_pickle(gn, lambda x: (x.rng.serialize(), x.sigma)) do_pickle(gn, drawNoise) do_pickle(gn) # Check copy, eq and ne gn = gn.withVariance(gSigma**2) gn2 = galsim.GaussianNoise(gn.rng.duplicate(), gSigma) gn3 = gn.copy() gn4 = gn.copy(rng=galsim.BaseDeviate(11)) gn5 = galsim.GaussianNoise(gn.rng, 2.*gSigma) assert gn == gn2 assert gn == gn3 assert gn != gn4 assert gn != gn5 assert gn.rng.raw() == gn2.rng.raw() assert gn == gn2 assert gn == gn3 gn.rng.raw() assert gn != gn2 assert gn == gn3 @timer def test_variable_gaussian_noise(): """Test VariableGaussian random number generator """ # Make a checkerboard image with two values for the variance gSigma1 = 17.23 gSigma2 = 28.55 var_image = galsim.ImageD(galsim.BoundsI(0,9,0,9)) coords = np.ogrid[0:10, 0:10] var_image.array[ (coords[0] + coords[1]) % 2 == 1 ] = gSigma1**2 var_image.array[ (coords[0] + coords[1]) % 2 == 0 ] = gSigma2**2 print('var_image.array = ',var_image.array) g = galsim.GaussianDeviate(testseed, sigma=1.) vgResult = np.empty((10,10)) g.generate(vgResult) vgResult *= np.sqrt(var_image.array) # Test filling an image vgn = galsim.VariableGaussianNoise(galsim.BaseDeviate(testseed), var_image) testimage = galsim.ImageD(10,10) testimage.addNoise(vgn) np.testing.assert_array_almost_equal( testimage.array, vgResult, precision, err_msg="VariableGaussianNoise applied to Images does not reproduce expected sequence") # Test filling an image with Fortran ordering vgn.rng.seed(testseed) testimage = galsim.ImageD(np.zeros((10,10)).T) testimage.addNoise(vgn) np.testing.assert_array_almost_equal( testimage.array, vgResult, precision, err_msg="Wrong VariableGaussian noise generated for Fortran-ordered Image") # Check var_image property np.testing.assert_almost_equal( vgn.var_image.array, var_image.array, precision, err_msg="VariableGaussianNoise var_image returns wrong var_image") # Check that the noise model really does produce this variance. big_var_image = galsim.ImageD(galsim.BoundsI(0,2047,0,2047)) big_coords = np.ogrid[0:2048, 0:2048] mask1 = (big_coords[0] + big_coords[1]) % 2 == 0 mask2 = (big_coords[0] + big_coords[1]) % 2 == 1 big_var_image.array[mask1] = gSigma1**2 big_var_image.array[mask2] = gSigma2**2 big_vgn = galsim.VariableGaussianNoise(galsim.BaseDeviate(testseed), big_var_image) big_im = galsim.Image(2048,2048,dtype=float) big_im.addNoise(big_vgn) var = np.var(big_im.array) print('variance = ',var) print('getVar = ',big_vgn.var_image.array.mean()) np.testing.assert_almost_equal( var, big_vgn.var_image.array.mean(), 1, err_msg='Realized variance for VariableGaussianNoise did not match var_image') # Check realized variance in each mask print('rms1 = ',np.std(big_im.array[mask1])) print('rms2 = ',np.std(big_im.array[mask2])) np.testing.assert_almost_equal(np.std(big_im.array[mask1]), gSigma1, decimal=1) np.testing.assert_almost_equal(np.std(big_im.array[mask2]), gSigma2, decimal=1) # Check that VariableGaussianNoise adds to the image, not overwrites the image. gal = galsim.Exponential(half_light_radius=2.3, flux=1.e4) gal.drawImage(image=big_im) big_vgn.rng.seed(testseed) big_im.addNoise(big_vgn) gal.withFlux(-1.e4).drawImage(image=big_im, add_to_image=True) var = np.var(big_im.array) np.testing.assert_almost_equal( var, big_vgn.var_image.array.mean(), 1, err_msg='VariableGaussianNoise wrong when already an object drawn on the image') # Check picklability do_pickle(vgn, lambda x: (x.rng.serialize(), x.var_image)) do_pickle(vgn, drawNoise) do_pickle(vgn) # Check copy, eq and ne vgn2 = galsim.VariableGaussianNoise(vgn.rng.duplicate(), var_image) vgn3 = vgn.copy() vgn4 = vgn.copy(rng=galsim.BaseDeviate(11)) vgn5 = galsim.VariableGaussianNoise(vgn.rng, 2.*var_image) assert vgn == vgn2 assert vgn == vgn3 assert vgn != vgn4 assert vgn != vgn5 assert vgn.rng.raw() == vgn2.rng.raw() assert vgn == vgn2 assert vgn == vgn3 vgn.rng.raw() assert vgn != vgn2 assert vgn == vgn3 assert_raises(TypeError, vgn.applyTo, 23) assert_raises(ValueError, vgn.applyTo, galsim.ImageF(3,3)) assert_raises(galsim.GalSimError, vgn.getVariance) assert_raises(galsim.GalSimError, vgn.withVariance, 23) assert_raises(galsim.GalSimError, vgn.withScaledVariance, 23) @timer def test_poisson_noise(): """Test Poisson random number generator """ pMean = 17 p = galsim.PoissonDeviate(testseed, mean=pMean) pResult = np.empty((10,10)) p.generate(pResult) noise = galsim.DeviateNoise(p) # Test filling an image noise.rng.seed(testseed) testimage = galsim.ImageI(10, 10) testimage.addNoise(galsim.DeviateNoise(p)) np.testing.assert_array_equal( testimage.array, pResult, err_msg='Wrong poisson random number sequence generated when applied to image.') # The PoissonNoise version also subtracts off the mean value pn = galsim.PoissonNoise(galsim.BaseDeviate(testseed), sky_level=pMean) testimage.fill(0) testimage.addNoise(pn) np.testing.assert_array_equal( testimage.array, pResult-pMean, err_msg='Wrong poisson random number sequence generated using PoissonNoise') # Test filling a single-precision image pn.rng.seed(testseed) testimage = galsim.ImageF(10,10) testimage.addNoise(pn) np.testing.assert_array_almost_equal( testimage.array, pResult-pMean, precisionF, err_msg='Wrong Poisson random number sequence generated when applied to ImageF.') # Test filling an image with Fortran ordering pn.rng.seed(testseed) testimage = galsim.ImageD(10,10) testimage.addNoise(pn) np.testing.assert_array_almost_equal( testimage.array, pResult-pMean, err_msg="Wrong Poisson noise generated for Fortran-ordered Image") # Check PoissonNoise variance: np.testing.assert_almost_equal( pn.getVariance(), pMean, precision, err_msg="PoissonNoise getVariance returns wrong variance") np.testing.assert_almost_equal( pn.sky_level, pMean, precision, err_msg="PoissonNoise sky_level returns wrong value") # Check that the noise model really does produce this variance. big_im = galsim.Image(2048,2048,dtype=float) big_im.addNoise(pn) var = np.var(big_im.array) print('variance = ',var) print('getVar = ',pn.getVariance()) np.testing.assert_almost_equal( var, pn.getVariance(), 1, err_msg='Realized variance for PoissonNoise did not match getVariance()') # Check that PoissonNoise adds to the image, not overwrites the image. gal = galsim.Exponential(half_light_radius=2.3, flux=0.3) # Note: in this case, flux/size^2 needs to be << sky_level or it will mess up the statistics. gal.drawImage(image=big_im) big_im.addNoise(pn) gal.withFlux(-0.3).drawImage(image=big_im, add_to_image=True) var = np.var(big_im.array) np.testing.assert_almost_equal( var, pn.getVariance(), 1, err_msg='PoissonNoise wrong when already an object drawn on the image') # Check withVariance pn = pn.withVariance(9.) np.testing.assert_almost_equal( pn.getVariance(), 9., precision, err_msg="PoissonNoise withVariance results in wrong variance") np.testing.assert_almost_equal( pn.sky_level, 9., precision, err_msg="PoissonNoise withVariance results in wrong sky_level") # Check withScaledVariance pn = pn.withScaledVariance(4.) np.testing.assert_almost_equal( pn.getVariance(), 36, precision, err_msg="PoissonNoise withScaledVariance results in wrong variance") np.testing.assert_almost_equal( pn.sky_level, 36., precision, err_msg="PoissonNoise withScaledVariance results in wrong sky_level") # Check arithmetic pn = pn.withVariance(0.5) pn2 = pn * 3 np.testing.assert_almost_equal( pn2.getVariance(), 1.5, precision, err_msg="PoissonNoise pn*3 results in wrong variance") np.testing.assert_almost_equal( pn.getVariance(), 0.5, precision, err_msg="PoissonNoise pn*3 results in wrong variance for original pn") pn2 = 5 * pn np.testing.assert_almost_equal( pn2.getVariance(), 2.5, precision, err_msg="PoissonNoise 5*pn results in wrong variance") np.testing.assert_almost_equal( pn.getVariance(), 0.5, precision, err_msg="PoissonNoise 5*pn results in wrong variance for original pn") pn2 = pn/2 np.testing.assert_almost_equal( pn2.getVariance(), 0.25, precision, err_msg="PoissonNoise pn/2 results in wrong variance") np.testing.assert_almost_equal( pn.getVariance(), 0.5, precision, err_msg="PoissonNoise 5*pn results in wrong variance for original pn") pn *= 3 np.testing.assert_almost_equal( pn.getVariance(), 1.5, precision, err_msg="PoissonNoise pn*=3 results in wrong variance") pn /= 2 np.testing.assert_almost_equal( pn.getVariance(), 0.75, precision, err_msg="PoissonNoise pn/=2 results in wrong variance") # Check starting with PoissonNoise() pn = galsim.PoissonNoise() pn = pn.withVariance(9.) np.testing.assert_almost_equal( pn.getVariance(), 9., precision, err_msg="PoissonNoise().withVariance results in wrong variance") np.testing.assert_almost_equal( pn.sky_level, 9., precision, err_msg="PoissonNoise().withVariance results in wrong sky_level") pn = pn.withScaledVariance(4.) np.testing.assert_almost_equal( pn.getVariance(), 36, precision, err_msg="PoissonNoise().withScaledVariance results in wrong variance") np.testing.assert_almost_equal( pn.sky_level, 36., precision, err_msg="PoissonNoise().withScaledVariance results in wrong sky_level") # Check picklability do_pickle(pn, lambda x: (x.rng.serialize(), x.sky_level)) do_pickle(pn, drawNoise) do_pickle(pn) # Check copy, eq and ne pn = pn.withVariance(pMean) pn2 = galsim.PoissonNoise(pn.rng.duplicate(), pMean) pn3 = pn.copy() pn4 = pn.copy(rng=galsim.BaseDeviate(11)) pn5 = galsim.PoissonNoise(pn.rng, 2*pMean) assert pn == pn2 assert pn == pn3 assert pn != pn4 assert pn != pn5 assert pn.rng.raw() == pn2.rng.raw() assert pn == pn2 assert pn == pn3 pn.rng.raw() assert pn != pn2 assert pn == pn3 @timer def test_ccdnoise(): """Test CCD Noise generator """ # Start with some regression tests where we have known values that we expect to generate: types = (np.int16, np.int32, np.float32, np.float64) typestrings = ("S", "I", "F", "D") testseed = 1000 gain = 3. read_noise = 5. sky = 50 # Tabulated results for the above settings and testseed value. cResultS = np.array([[44, 47], [50, 49]], dtype=np.int16) cResultI = np.array([[44, 47], [50, 49]], dtype=np.int32) cResultF = np.array([[44.45332718, 47.79725266], [50.67744064, 49.58272934]], dtype=np.float32) cResultD = np.array([[44.453328440057618, 47.797254142519577], [50.677442088335162, 49.582730949808081]],dtype=np.float64) for i in range(4): prec = eval("precision"+typestrings[i]) cResult = eval("cResult"+typestrings[i]) rng = galsim.BaseDeviate(testseed) ccdnoise = galsim.CCDNoise(rng, gain=gain, read_noise=read_noise) testImage = galsim.Image((np.zeros((2, 2))+sky).astype(types[i])) ccdnoise.applyTo(testImage) np.testing.assert_array_almost_equal( testImage.array, cResult, prec, err_msg="Wrong CCD noise random sequence generated for Image"+typestrings[i]+".") # Check that reseeding the rng reseeds the internal deviate in CCDNoise rng.seed(testseed) testImage.fill(sky) ccdnoise.applyTo(testImage) np.testing.assert_array_almost_equal( testImage.array, cResult, prec, err_msg="Wrong CCD noise random sequence generated for Image"+typestrings[i]+ " after seed") # Check using addNoise rng.seed(testseed) testImage.fill(sky) testImage.addNoise(ccdnoise) np.testing.assert_array_almost_equal( testImage.array, cResult, prec, err_msg="Wrong CCD noise random sequence generated for Image"+typestrings[i]+ " using addNoise") # Test filling an image with Fortran ordering rng.seed(testseed) testImageF = galsim.Image(np.zeros((2, 2)).T, dtype=types[i]) testImageF.fill(sky) testImageF.addNoise(ccdnoise) np.testing.assert_array_almost_equal( testImageF.array, cResult, prec, err_msg="Wrong CCD noise generated for Fortran-ordered Image"+typestrings[i]) # Now include sky_level in ccdnoise rng.seed(testseed) ccdnoise = galsim.CCDNoise(rng, sky_level=sky, gain=gain, read_noise=read_noise) testImage.fill(0) ccdnoise.applyTo(testImage) np.testing.assert_array_almost_equal( testImage.array, cResult-sky, prec, err_msg="Wrong CCD noise random sequence generated for Image"+typestrings[i]+ " with sky_level included in noise") rng.seed(testseed) testImage.fill(0) testImage.addNoise(ccdnoise) np.testing.assert_array_almost_equal( testImage.array, cResult-sky, prec, err_msg="Wrong CCD noise random sequence generated for Image"+typestrings[i]+ " using addNoise with sky_level included in noise") # Check CCDNoise variance: var1 = sky/gain + (read_noise/gain)**2 np.testing.assert_almost_equal( ccdnoise.getVariance(), var1, precision, err_msg="CCDNoise getVariance returns wrong variance") np.testing.assert_almost_equal( ccdnoise.sky_level, sky, precision, err_msg="CCDNoise sky_level returns wrong value") np.testing.assert_almost_equal( ccdnoise.gain, gain, precision, err_msg="CCDNoise gain returns wrong value") np.testing.assert_almost_equal( ccdnoise.read_noise, read_noise, precision, err_msg="CCDNoise read_noise returns wrong value") # Check that the noise model really does produce this variance. # NB. If default float32 is used here, older versions of numpy will compute the variance # in single precision, and with 2048^2 values, the final answer comes out significantly # wrong (19.33 instead of 19.42, which gets compared to the nominal value of 19.44). big_im = galsim.Image(2048,2048,dtype=float) big_im.addNoise(ccdnoise) var = np.var(big_im.array) print('variance = ',var) print('getVar = ',ccdnoise.getVariance()) np.testing.assert_almost_equal( var, ccdnoise.getVariance(), 1, err_msg='Realized variance for CCDNoise did not match getVariance()') # Check that CCDNoise adds to the image, not overwrites the image. gal = galsim.Exponential(half_light_radius=2.3, flux=0.3) # Note: again, flux/size^2 needs to be << sky_level or it will mess up the statistics. gal.drawImage(image=big_im) big_im.addNoise(ccdnoise) gal.withFlux(-0.3).drawImage(image=big_im, add_to_image=True) var = np.var(big_im.array) np.testing.assert_almost_equal( var, ccdnoise.getVariance(), 1, err_msg='CCDNoise wrong when already an object drawn on the image') # Check using a non-integer sky level which does some slightly different calculations. rng.seed(testseed) big_im_int = galsim.Image(2048,2048,dtype=int) ccdnoise = galsim.CCDNoise(rng, sky_level=34.42, gain=1.6, read_noise=11.2) big_im_int.fill(0) big_im_int.addNoise(ccdnoise) var = np.var(big_im_int.array) np.testing.assert_almost_equal(var/ccdnoise.getVariance(), 1., decimal=2, err_msg='CCDNoise wrong when sky_level is not an integer') # Using gain=0 means the read_noise is in ADU, not e- rng.seed(testseed) ccdnoise = galsim.CCDNoise(rng, gain=0., read_noise=read_noise) var2 = read_noise**2 np.testing.assert_almost_equal( ccdnoise.getVariance(), var2, precision, err_msg="CCDNoise getVariance returns wrong variance with gain=0") np.testing.assert_almost_equal( ccdnoise.sky_level, 0., precision, err_msg="CCDNoise sky_level returns wrong value with gain=0") np.testing.assert_almost_equal( ccdnoise.gain, 0., precision, err_msg="CCDNoise gain returns wrong value with gain=0") np.testing.assert_almost_equal( ccdnoise.read_noise, read_noise, precision, err_msg="CCDNoise read_noise returns wrong value with gain=0") big_im.fill(0) big_im.addNoise(ccdnoise) var = np.var(big_im.array) np.testing.assert_almost_equal(var, ccdnoise.getVariance(), 1, err_msg='CCDNoise wrong when gain=0') # Check withVariance ccdnoise = galsim.CCDNoise(rng, sky_level=sky, gain=gain, read_noise=read_noise) ccdnoise = ccdnoise.withVariance(9.) np.testing.assert_almost_equal( ccdnoise.getVariance(), 9., precision, err_msg="CCDNoise withVariance results in wrong variance") np.testing.assert_almost_equal( ccdnoise.sky_level, (9./var1)*sky, precision, err_msg="CCDNoise withVariance results in wrong sky_level") np.testing.assert_almost_equal( ccdnoise.gain, gain, precision, err_msg="CCDNoise withVariance results in wrong gain") np.testing.assert_almost_equal( ccdnoise.read_noise, np.sqrt(9./var1) * read_noise, precision, err_msg="CCDNoise withVariance results in wrong ReadNoise") # Check withScaledVariance ccdnoise = ccdnoise.withScaledVariance(4.) np.testing.assert_almost_equal( ccdnoise.getVariance(), 36., precision, err_msg="CCDNoise withVariance results in wrong variance") np.testing.assert_almost_equal( ccdnoise.sky_level, (36./var1)*sky, precision, err_msg="CCDNoise withVariance results in wrong sky_level") np.testing.assert_almost_equal( ccdnoise.gain, gain, precision, err_msg="CCDNoise withVariance results in wrong gain") np.testing.assert_almost_equal( ccdnoise.read_noise, np.sqrt(36./var1) * read_noise, precision, err_msg="CCDNoise withVariance results in wrong ReadNoise") # Check arithmetic ccdnoise = ccdnoise.withVariance(0.5) ccdnoise2 = ccdnoise * 3 np.testing.assert_almost_equal( ccdnoise2.getVariance(), 1.5, precision, err_msg="CCDNoise ccdnoise*3 results in wrong variance") np.testing.assert_almost_equal( ccdnoise.getVariance(), 0.5, precision, err_msg="CCDNoise ccdnoise*3 results in wrong variance for original ccdnoise") ccdnoise2 = 5 * ccdnoise np.testing.assert_almost_equal( ccdnoise2.getVariance(), 2.5, precision, err_msg="CCDNoise 5*ccdnoise results in wrong variance") np.testing.assert_almost_equal( ccdnoise.getVariance(), 0.5, precision, err_msg="CCDNoise 5*ccdnoise results in wrong variance for original ccdnoise") ccdnoise2 = ccdnoise/2 np.testing.assert_almost_equal( ccdnoise2.getVariance(), 0.25, precision, err_msg="CCDNoise ccdnoise/2 results in wrong variance") np.testing.assert_almost_equal( ccdnoise.getVariance(), 0.5, precision, err_msg="CCDNoise 5*ccdnoise results in wrong variance for original ccdnoise") ccdnoise *= 3 np.testing.assert_almost_equal( ccdnoise.getVariance(), 1.5, precision, err_msg="CCDNoise ccdnoise*=3 results in wrong variance") ccdnoise /= 2 np.testing.assert_almost_equal( ccdnoise.getVariance(), 0.75, precision, err_msg="CCDNoise ccdnoise/=2 results in wrong variance") # Check starting with CCDNoise() ccdnoise = galsim.CCDNoise() ccdnoise = ccdnoise.withVariance(9.) np.testing.assert_almost_equal( ccdnoise.getVariance(), 9., precision, err_msg="CCDNoise().withVariance results in wrong variance") np.testing.assert_almost_equal( ccdnoise.sky_level, 9., precision, err_msg="CCDNoise().withVariance results in wrong sky_level") np.testing.assert_almost_equal( ccdnoise.gain, 1., precision, err_msg="CCDNoise().withVariance results in wrong gain") np.testing.assert_almost_equal( ccdnoise.read_noise, 0., precision, err_msg="CCDNoise().withVariance results in wrong ReadNoise") ccdnoise = ccdnoise.withScaledVariance(4.) np.testing.assert_almost_equal( ccdnoise.getVariance(), 36., precision, err_msg="CCDNoise().withScaledVariance results in wrong variance") np.testing.assert_almost_equal( ccdnoise.sky_level, 36., precision, err_msg="CCDNoise().withScaledVariance results in wrong sky_level") np.testing.assert_almost_equal( ccdnoise.gain, 1., precision, err_msg="CCDNoise().withScaledVariance results in wrong gain") np.testing.assert_almost_equal( ccdnoise.read_noise, 0., precision, err_msg="CCDNoise().withScaledVariance results in wrong ReadNoise") # Check picklability do_pickle(ccdnoise, lambda x: (x.rng.serialize(), x.sky_level, x.gain, x.read_noise)) do_pickle(ccdnoise, drawNoise) do_pickle(ccdnoise) # Check copy, eq and ne ccdnoise = galsim.CCDNoise(rng, sky, gain, read_noise) ccdnoise2 = galsim.CCDNoise(ccdnoise.rng.duplicate(), gain=gain, read_noise=read_noise, sky_level=sky) ccdnoise3 = ccdnoise.copy() ccdnoise4 = ccdnoise.copy(rng=galsim.BaseDeviate(11)) ccdnoise5 = galsim.CCDNoise(ccdnoise.rng, gain=2*gain, read_noise=read_noise, sky_level=sky) ccdnoise6 = galsim.CCDNoise(ccdnoise.rng, gain=gain, read_noise=2*read_noise, sky_level=sky) ccdnoise7 = galsim.CCDNoise(ccdnoise.rng, gain=gain, read_noise=read_noise, sky_level=2*sky) assert ccdnoise == ccdnoise2 assert ccdnoise == ccdnoise3 assert ccdnoise != ccdnoise4 assert ccdnoise != ccdnoise5 assert ccdnoise != ccdnoise6 assert ccdnoise != ccdnoise7 assert ccdnoise.rng.raw() == ccdnoise2.rng.raw() assert ccdnoise == ccdnoise2 assert ccdnoise == ccdnoise3 ccdnoise.rng.raw() assert ccdnoise != ccdnoise2 assert ccdnoise == ccdnoise3 @timer def test_addnoisesnr(): """Test that addNoiseSNR is behaving sensibly. """ # Rather than reproducing the S/N calculation in addNoiseSNR(), we'll just check for # self-consistency of the behavior with / without flux preservation. # Begin by making some object that we draw into an Image. gal_sigma = 3.7 pix_scale = 0.6 test_snr = 73. gauss = galsim.Gaussian(sigma=gal_sigma) im = gauss.drawImage(scale=pix_scale, dtype=np.float64) # Now make the noise object to use. # Use a default-constructed rng (i.e. rng=None) since we had initially had trouble # with that. And use the duplicate feature to get a second copy of this rng. gn = galsim.GaussianNoise() rng2 = gn.rng.duplicate() # Try addNoiseSNR with preserve_flux=True, so the RNG needs a different variance. # Check what variance was added for this SNR, and that the RNG still has its original variance # after this call. var_out = im.addNoiseSNR(gn, test_snr, preserve_flux=True) assert gn.getVariance()==1.0 max_val = im.array.max() # Now apply addNoiseSNR to another (clean) image with preserve_flux=False, so we use the noise # variance in the original RNG, i.e., 1. Check that the returned variance is 1, and that the # value of the maximum pixel (presumably the peak of the galaxy light profile) is scaled as we # expect for this SNR. im2 = gauss.drawImage(scale=pix_scale, dtype=np.float64) gn2 = galsim.GaussianNoise(rng=rng2) var_out2 = im2.addNoiseSNR(gn2, test_snr, preserve_flux=False) assert var_out2==1.0 expect_max_val2 = max_val*np.sqrt(var_out2/var_out) np.testing.assert_almost_equal( im2.array.max(), expect_max_val2, decimal=8, err_msg='addNoiseSNR with preserve_flux = True and False give inconsistent results') if __name__ == "__main__": test_deviate_noise() test_gaussian_noise() test_variable_gaussian_noise() test_poisson_noise() test_ccdnoise() test_addnoisesnr()
17568aee9cbf26702497d31f6ef8bf6bdd3b0a1c
cf197880ad947b1706ae2ca19fa7010cc2dd12b8
/Algorithms/Chapter2_Fundamentals2/04_Character_Art.py
b26daab9076f8155875eeae2d5c2f620deedb91e
[]
no_license
KevinMichaelCamp/Python-HardWay
9b8adb5be31729da8f52c956b4d0638a79715013
25f21f4fb8934edb13649fea3d5d15033332a7eb
refs/heads/master
2020-03-26T12:59:15.938322
2020-01-02T01:27:37
2020-01-02T01:27:37
144,917,453
0
0
null
null
null
null
UTF-8
Python
false
false
575
py
# From star art - do the same but allow for character to be passed in as argument def drawLeftStars(num, char): text = "" text += char * num text += " " * (75 - num) return text def drawRightStars(num, char): text = "" text += " " * (75 - num) text += char * num return text def drawCenteredStars(num, char): text = "" text += " " * ((75 - num)//2) text += char * num text += " " * ((75 - num)//2) return text # Test Cases print(drawLeftStars(35, "%")) print(drawRightStars(35, "@")) print(drawCenteredStars(35, "!"))
61a8c8e94ab7bb78ec496570096aab6ab53d2709
78ef0d7736075ee33ac4230f47c078bbf2b0e014
/joboffers/tests/test_models.py
dd0be5b07a29f6f9da0a8f9e15f4c7823f5fd09b
[ "Apache-2.0" ]
permissive
PyAr/pyarweb
e22e9350bf107329e5a79c2368fb182958a134d2
5f88d1ea0cea9bd67547b70dc2c8bbaa3b8b9d03
refs/heads/master
2023-08-31T10:24:53.220031
2023-08-29T16:21:57
2023-08-29T16:21:57
17,032,696
64
108
Apache-2.0
2023-09-07T04:02:53
2014-02-20T19:28:31
Python
UTF-8
Python
false
false
17,539
py
import factory import pytest from datetime import date from unittest.mock import patch from django.contrib.contenttypes.models import ContentType from django.contrib.sessions.backends.db import SessionStore from django.db.utils import IntegrityError from django.shortcuts import reverse from django.utils.text import slugify from easyaudit.models import CRUDEvent from factory import Faker from pycompanies.tests.factories import UserCompanyProfileFactory from pycompanies.tests.fixtures import create_user_company_profile # noqa from ..constants import STATE_LABEL_CLASSES from ..models import (EventType, JobOffer, JobOfferHistory, JobOfferAccessLog, OfferState, Remoteness) from .factories import JobOfferAccessLogFactory, JobOfferCommentFactory, JobOfferFactory from .joboffers_descriptions import (LONG_JOBOFFER_DESCRIPTION, SHORT_JOBOFFER_DESCRIPTION, STRIPPED_LONG_JOBOFFER_DESCRIPTION, STRIPPED_SHORT_JOBOFFER_DESCRIPTION) @pytest.mark.django_db def test_assert_joboffer_when_remoteness_is_remote_location_can_be_null(): """ Assert that a joboffer can be created with a null location when remoteness is Remote. """ JobOfferFactory.create( remoteness=Remoteness.REMOTE, location=None, contact_mail=Faker('email') ) assert JobOffer.objects.all().count() == 1 @pytest.mark.django_db def test_assert_joboffer_when_remoteness_is_office_location_cannot_be_null(): """ Assert that a joboffer cannot be created with a null location when remoteness is in office. """ with pytest.raises(IntegrityError): JobOfferFactory.create( remoteness=Remoteness.OFFICE, location=None, contact_mail=Faker('email') ) @pytest.mark.django_db def test_assert_joboffer_when_remoteness_is_hybrid_location_cannot_be_null(): """ Assert the activation of a constraint when no location provided and the location is in office. """ with pytest.raises(IntegrityError): JobOfferFactory.create( remoteness=Remoteness.HYBRID, location=None, contact_mail=Faker('email') ) @pytest.mark.django_db def test_assert_constraint_contact_info_not_null(): """ Check constraint that assures that at least mail phone or url contact info is present. """ with pytest.raises(IntegrityError): JobOfferFactory.create( remoteness=Remoteness.REMOTE, location=None, contact_mail=None, contact_phone=None, contact_url=None, ) @pytest.mark.django_db def test_assert_joboffer_ok_when_just_one_contact_info_is_present(): """ Assert that a joboffer can be created with just one contact info. """ joboffer_1 = JobOfferFactory.create( remoteness=Remoteness.REMOTE, location=None, contact_mail=Faker('email'), contact_phone=None, contact_url=None ) company = joboffer_1.company JobOfferFactory.create( remoteness=Remoteness.REMOTE, company=company, location=None, contact_mail=None, contact_phone=Faker('pyint', min_value=11111111111, max_value=99999999999), contact_url=None ) JobOfferFactory.create( remoteness=Remoteness.REMOTE, company=company, location=None, contact_mail=None, contact_phone=None, contact_url=Faker('url') ) assert JobOffer.objects.all().count() == 3 @pytest.mark.django_db def test_get_joboffer_history_for_given_joboffer(user_company_profile, settings): """ Test that the manager retrieves only the changes of the specified jobofffer """ settings.TEST = True # ^ This is needed so django-easyaudit creates the CRUDEvent objects in the # same trasnaction and then we can test for it. data = factory.build( dict, company=user_company_profile.company, created_by=user_company_profile.user, modified_by=user_company_profile.user, FACTORY_CLASS=JobOfferFactory ) joboffer = JobOffer(**data) joboffer.save() joboffer.state = OfferState.MODERATION joboffer.save() comment = JobOfferCommentFactory.create( joboffer=joboffer, created_by=user_company_profile.user ) JobOfferCommentFactory(created_by=user_company_profile.user) changes = JobOfferHistory.objects.for_offer(joboffer) actual_history = list(changes.values('event_type', 'content_type', 'object_id')) offer_ctype = ContentType.objects.get(app_label='joboffers', model='joboffer') offer_comment_ctype = ContentType.objects.get( app_label='joboffers', model='joboffercomment' ) expected_history = [ { 'event_type': CRUDEvent.CREATE, 'content_type': offer_comment_ctype.id, 'object_id': str(comment.id) }, { 'event_type': CRUDEvent.UPDATE, 'content_type': offer_ctype.id, 'object_id': str(joboffer.id) }, { 'event_type': CRUDEvent.CREATE, 'content_type': offer_ctype.id, 'object_id': str(joboffer.id) } ] assert actual_history == expected_history @pytest.mark.django_db def test_JobOfferHistory_joboffer_comment_with_wrong_model_object(settings): """ Test that calling comment_fields on JobOfferHistory object raises exceptions when it is called with an object different that JobOfferComment """ settings.TEST = True # ^ This is needed so django-easyaudit creates the CRUDEvent objects in the # same trasnaction and then we can test for it. JobOfferFactory.create() history = JobOfferHistory.objects.first() assert history.content_type.model == 'joboffer' with pytest.raises(ValueError): history.joboffer_comment @pytest.mark.django_db def test_JobOfferHistory_works_with_a_JobOfferComment_model(settings): """ Test that a JobOfferHistory returns the related JobOfferComment correctly """ settings.TEST = True # ^ This is needed so django-easyaudit creates the CRUDEvent objects in the # same trasnaction and then we can test for it. comment = JobOfferCommentFactory.create() history = JobOfferHistory.objects.first() assert history.content_type.model == 'joboffercomment' obtained_comment = history.joboffer_comment assert comment == obtained_comment @pytest.mark.django_db def test_JobOfferHistory_changes(settings): """ Test that JobOfferHistory.fields returns the serialized fields for a joboffer """ settings.TEST = True # ^ This is needed so django-easyaudit creates the CRUDEvent objects in the # same trasnaction and then we can test for it. joboffer = JobOfferFactory.create(state=OfferState.DEACTIVATED) joboffer.state = OfferState.ACTIVE joboffer.save() history = JobOfferHistory.objects.filter(event_type=JobOfferHistory.UPDATE).first() assert history.content_type.model == 'joboffer' changes = history.changes assert changes['state'] == [OfferState.DEACTIVATED, OfferState.ACTIVE] @pytest.mark.django_db def test_JobOfferHistory_fields(settings): """ Test that JobOfferHistory.fields returns the serialized fields for a joboffer """ settings.TEST = True # ^ This is needed so django-easyaudit creates the CRUDEvent objects in the # same trasnaction and then we can test for it. joboffer = JobOfferFactory.create() history = JobOfferHistory.objects.first() assert history.content_type.model == 'joboffer' fields = history.fields assert joboffer.title == fields['title'] @pytest.mark.django_db def test_JobOfferHistory_state_label(settings): """ Test that JobOfferHistory.state return a state correctly. """ settings.TEST = True # ^ This is needed so django-easyaudit creates the CRUDEvent objects in the # same trasnaction and then we can test for it. joboffer = JobOfferFactory.create() history = JobOfferHistory.objects.first() assert history.content_type.model == 'joboffer' state_label = history.state_label assert joboffer.state.label == state_label @pytest.mark.django_db def test_JobOfferHistory_state_label_class(settings): """ Test that state_class return a class for a joboffer JobOfferHistory """ settings.TEST = True # ^ This is needed so django-easyaudit creates the CRUDEvent objects in the # same trasnaction and then we can test for it. JobOfferFactory.create(state=OfferState.MODERATION) history = JobOfferHistory.objects.first() assert history.content_type.model == 'joboffer' state_label_class = history.state_label_class assert state_label_class == STATE_LABEL_CLASSES[OfferState.MODERATION] @pytest.mark.django_db def test_assert_slug_is_updated_on_title_change(): """ Assert that a joboffer updates the slug after title update. """ UPDATED_TITLE = 'Job Offer Updated' joboffer = JobOfferFactory.create( remoteness=Remoteness.REMOTE, title='Job Offer', location=None, contact_mail=Faker('email'), contact_phone=None, contact_url=None ) joboffer.title = UPDATED_TITLE joboffer.save() assert slugify(UPDATED_TITLE) == joboffer.slug @pytest.mark.django_db def test_assert_short_description_is_set_with_stripped_description(): """ Assert that a joboffer short description is created with the stripped description if there is no short description given. """ joboffer = JobOfferFactory.create( remoteness=Remoteness.REMOTE, title='Job Offer', location=None, contact_mail=Faker('email'), contact_phone=None, contact_url=None, description=SHORT_JOBOFFER_DESCRIPTION, short_description='', ) assert STRIPPED_SHORT_JOBOFFER_DESCRIPTION == joboffer.short_description @pytest.mark.django_db def test_assert_short_description_is_set_with_the_given_short_description(): """ Assert that the joboffer doesn't update the short_description if it is provided in the model. """ short_description = 'short description' joboffer = JobOfferFactory.create( remoteness=Remoteness.REMOTE, title='Job Offer', location=None, contact_mail=Faker('email'), contact_phone=None, contact_url=None, description=SHORT_JOBOFFER_DESCRIPTION, short_description=short_description, ) assert short_description == joboffer.short_description @pytest.mark.django_db def test_assert_get_short_description_strip_the_description(): """ Assert that get_short_description method strip the description correctly. """ short_description = JobOffer.get_short_description(SHORT_JOBOFFER_DESCRIPTION) assert STRIPPED_SHORT_JOBOFFER_DESCRIPTION == short_description @pytest.mark.django_db def test_assert_get_short_description_strip_the_long_description(): """ Assert that get_short_description method strip the description and limit to 512 chars. """ short_description = JobOffer.get_short_description(LONG_JOBOFFER_DESCRIPTION) assert 512 == len(short_description) assert STRIPPED_LONG_JOBOFFER_DESCRIPTION == short_description @pytest.mark.django_db def test_joboffer_last_comment(): """ Test the joboffer.last_comment property """ joboffer = JobOfferFactory.create(state=OfferState.MODERATION) JobOfferCommentFactory.create(joboffer=joboffer) expected_comment = JobOfferCommentFactory.create(joboffer=joboffer) assert joboffer.last_comment.text == expected_comment.text @pytest.mark.django_db def test_joboffer_track_visualization_with_empty_session(): """ Test calling joboffer.track_visualization with an empty session """ joboffer = JobOfferFactory.create() session = SessionStore() track_record, created = joboffer.track_visualization(session, event_type=EventType.DETAIL_VIEW) assert created is True assert track_record.event_type == EventType.DETAIL_VIEW assert track_record.joboffer == joboffer assert JobOfferAccessLog.objects.count() == 1 @pytest.mark.django_db def test_joboffer_track_visualization_with_initiated_session(): """ Test calling joboffer.track_visualization with initiated sesion """ joboffer = JobOfferFactory.create() session = SessionStore() session.create() track_record, created = joboffer.track_visualization(session, event_type=EventType.DETAIL_VIEW) assert created is True assert track_record.event_type == EventType.DETAIL_VIEW assert track_record.joboffer == joboffer assert JobOfferAccessLog.objects.count() == 1 @pytest.mark.django_db def test_joboffer_track_visualization_should_not_repeat_multiple_hits(): """ Test calling joboffer.track_visualization multiple times with the same session doesn't count additional views """ joboffer = JobOfferFactory.create() session = SessionStore() session.create() track_record, created = joboffer.track_visualization(session, event_type=EventType.DETAIL_VIEW) assert created is True for i in range(10): joboffer.track_visualization(session, event_type=EventType.DETAIL_VIEW) assert JobOfferAccessLog.objects.count() == 1 @pytest.mark.django_db def test_joboffer_track_visualization_should_count_different_sessiones_on_the_same_day(): """ Test calling joboffer.track_visualization multiple times with different sessions counts ok """ joboffer = JobOfferFactory.create() EXPECTED_VISUALIZATIONS = 10 for i in range(EXPECTED_VISUALIZATIONS): session = SessionStore() session.create() joboffer.track_visualization(session, event_type=EventType.DETAIL_VIEW) assert JobOfferAccessLog.objects.count() == EXPECTED_VISUALIZATIONS @pytest.mark.django_db def test_joboffer_track_visualization_should_count_different_sessiones_on_different_months(): """ Test that calling joboffer.track_visualization counts two hits from today and from a previous month (same session). """ joboffer = JobOfferFactory.create() EXPECTED_VISUALIZATIONS = 2 session = SessionStore() session.create() previous_date = date(2022, 2, 1) with patch('joboffers.models.date') as mocked_date: mocked_date.today.return_value = previous_date # Previous month's hit joboffer.track_visualization(session, event_type=EventType.DETAIL_VIEW) # Today's hit joboffer.track_visualization(session, event_type=EventType.DETAIL_VIEW) assert JobOfferAccessLog.objects.count() == EXPECTED_VISUALIZATIONS @pytest.mark.django_db def test_joboffer_get_publisher_mail_addresses_with_multiple_users(): profile1 = UserCompanyProfileFactory.create() company = profile1.company profile2 = UserCompanyProfileFactory.create(company=company) joboffer = JobOfferFactory.create(company=company) EXPECTED_MAILS = {profile1.user.email, profile2.user.email} mails = joboffer.get_publisher_mail_addresses() assert mails == EXPECTED_MAILS @pytest.mark.django_db def test_joboffer_get_publisher_mail_addresses_without_users(): joboffer = JobOfferFactory.create() EXPECTED_MAILS = set() mails = joboffer.get_publisher_mail_addresses() assert mails == EXPECTED_MAILS def test_joboffer_get_full_url(settings): """Test that the url being crafted has the correct BASE_URL and the right format.""" dummy_url = 'example.com' dummy_job_slug = 'python-job' settings.BASE_URL = dummy_url joboffer_url = reverse('joboffers:view', kwargs={'slug': dummy_job_slug}) expected_url = "".join(('https://example.com', joboffer_url)) joboffer = JobOffer(slug=dummy_job_slug) result = joboffer.get_full_url() assert expected_url == result @pytest.mark.django_db def test_joboffer_get_visualizations_full(): """ Test get_visualizations with all the event types """ joboffer = JobOfferFactory.create() JobOfferAccessLogFactory.create_batch( size=1, event_type=EventType.LISTING_VIEW, joboffer=joboffer ) JobOfferAccessLogFactory.create_batch( size=2, event_type=EventType.DETAIL_VIEW, joboffer=joboffer ) JobOfferAccessLogFactory.create_batch( size=3, event_type=EventType.CONTACT_INFO_VIEW, joboffer=joboffer ) visualizations = joboffer.get_visualizations_count() assert visualizations[EventType.LISTING_VIEW] == 1 assert visualizations[EventType.DETAIL_VIEW] == 2 assert visualizations[EventType.CONTACT_INFO_VIEW] == 3 @pytest.mark.django_db def test_joboffer_get_visualizations_some(): """ Test get_visualizations with only listing view type """ joboffer = JobOfferFactory.create() JobOfferAccessLogFactory.create_batch( size=1, event_type=EventType.LISTING_VIEW, joboffer=joboffer ) visualizations = joboffer.get_visualizations_count() assert visualizations == {EventType.LISTING_VIEW: 1} @pytest.mark.django_db def test_joboffer_get_visualizations_empty(): """ Test get_visualizations without access log """ joboffer = JobOfferFactory.create() visualizations = joboffer.get_visualizations_count() assert visualizations == {}
291b9974fed522b446ecddbc35e473c3b12704c1
498474967e1480acf5cc0f25756e1d748c677195
/mmdetection3d/mmdet3d/datasets/pipelines/data_augment_utils.py
23b6aada74f4a7d27894228be2a3813e21b073ab
[ "MIT", "Apache-2.0" ]
permissive
hustvl/MapTR
adc37f78cbae9d8c909dd8648088a4930bf55377
feb0664e64684d3207859279f047fa54a1a806f6
refs/heads/main
2023-08-25T17:44:47.672149
2023-08-14T13:31:17
2023-08-14T13:31:17
518,672,305
643
95
MIT
2023-09-14T03:30:23
2022-07-28T02:20:43
Python
UTF-8
Python
false
false
17,021
py
# Copyright (c) OpenMMLab. All rights reserved. import numba import numpy as np import warnings from numba.errors import NumbaPerformanceWarning from mmdet3d.core.bbox import box_np_ops warnings.filterwarnings('ignore', category=NumbaPerformanceWarning) @numba.njit def _rotation_box2d_jit_(corners, angle, rot_mat_T): """Rotate 2D boxes. Args: corners (np.ndarray): Corners of boxes. angle (float): Rotation angle. rot_mat_T (np.ndarray): Transposed rotation matrix. """ rot_sin = np.sin(angle) rot_cos = np.cos(angle) rot_mat_T[0, 0] = rot_cos rot_mat_T[0, 1] = -rot_sin rot_mat_T[1, 0] = rot_sin rot_mat_T[1, 1] = rot_cos corners[:] = corners @ rot_mat_T @numba.jit(nopython=True) def box_collision_test(boxes, qboxes, clockwise=True): """Box collision test. Args: boxes (np.ndarray): Corners of current boxes. qboxes (np.ndarray): Boxes to be avoid colliding. clockwise (bool): Whether the corners are in clockwise order. Default: True. """ N = boxes.shape[0] K = qboxes.shape[0] ret = np.zeros((N, K), dtype=np.bool_) slices = np.array([1, 2, 3, 0]) lines_boxes = np.stack((boxes, boxes[:, slices, :]), axis=2) # [N, 4, 2(line), 2(xy)] lines_qboxes = np.stack((qboxes, qboxes[:, slices, :]), axis=2) # vec = np.zeros((2,), dtype=boxes.dtype) boxes_standup = box_np_ops.corner_to_standup_nd_jit(boxes) qboxes_standup = box_np_ops.corner_to_standup_nd_jit(qboxes) for i in range(N): for j in range(K): # calculate standup first iw = ( min(boxes_standup[i, 2], qboxes_standup[j, 2]) - max(boxes_standup[i, 0], qboxes_standup[j, 0])) if iw > 0: ih = ( min(boxes_standup[i, 3], qboxes_standup[j, 3]) - max(boxes_standup[i, 1], qboxes_standup[j, 1])) if ih > 0: for k in range(4): for box_l in range(4): A = lines_boxes[i, k, 0] B = lines_boxes[i, k, 1] C = lines_qboxes[j, box_l, 0] D = lines_qboxes[j, box_l, 1] acd = (D[1] - A[1]) * (C[0] - A[0]) > (C[1] - A[1]) * ( D[0] - A[0]) bcd = (D[1] - B[1]) * (C[0] - B[0]) > (C[1] - B[1]) * ( D[0] - B[0]) if acd != bcd: abc = (C[1] - A[1]) * (B[0] - A[0]) > ( B[1] - A[1]) * ( C[0] - A[0]) abd = (D[1] - A[1]) * (B[0] - A[0]) > ( B[1] - A[1]) * ( D[0] - A[0]) if abc != abd: ret[i, j] = True # collision. break if ret[i, j] is True: break if ret[i, j] is False: # now check complete overlap. # box overlap qbox: box_overlap_qbox = True for box_l in range(4): # point l in qboxes for k in range(4): # corner k in boxes vec = boxes[i, k] - boxes[i, (k + 1) % 4] if clockwise: vec = -vec cross = vec[1] * ( boxes[i, k, 0] - qboxes[j, box_l, 0]) cross -= vec[0] * ( boxes[i, k, 1] - qboxes[j, box_l, 1]) if cross >= 0: box_overlap_qbox = False break if box_overlap_qbox is False: break if box_overlap_qbox is False: qbox_overlap_box = True for box_l in range(4): # point box_l in boxes for k in range(4): # corner k in qboxes vec = qboxes[j, k] - qboxes[j, (k + 1) % 4] if clockwise: vec = -vec cross = vec[1] * ( qboxes[j, k, 0] - boxes[i, box_l, 0]) cross -= vec[0] * ( qboxes[j, k, 1] - boxes[i, box_l, 1]) if cross >= 0: # qbox_overlap_box = False break if qbox_overlap_box is False: break if qbox_overlap_box: ret[i, j] = True # collision. else: ret[i, j] = True # collision. return ret @numba.njit def noise_per_box(boxes, valid_mask, loc_noises, rot_noises): """Add noise to every box (only on the horizontal plane). Args: boxes (np.ndarray): Input boxes with shape (N, 5). valid_mask (np.ndarray): Mask to indicate which boxes are valid with shape (N). loc_noises (np.ndarray): Location noises with shape (N, M, 3). rot_noises (np.ndarray): Rotation noises with shape (N, M). Returns: np.ndarray: Mask to indicate whether the noise is added successfully (pass the collision test). """ num_boxes = boxes.shape[0] num_tests = loc_noises.shape[1] box_corners = box_np_ops.box2d_to_corner_jit(boxes) current_corners = np.zeros((4, 2), dtype=boxes.dtype) rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype) success_mask = -np.ones((num_boxes, ), dtype=np.int64) # print(valid_mask) for i in range(num_boxes): if valid_mask[i]: for j in range(num_tests): current_corners[:] = box_corners[i] current_corners -= boxes[i, :2] _rotation_box2d_jit_(current_corners, rot_noises[i, j], rot_mat_T) current_corners += boxes[i, :2] + loc_noises[i, j, :2] coll_mat = box_collision_test( current_corners.reshape(1, 4, 2), box_corners) coll_mat[0, i] = False # print(coll_mat) if not coll_mat.any(): success_mask[i] = j box_corners[i] = current_corners break return success_mask @numba.njit def noise_per_box_v2_(boxes, valid_mask, loc_noises, rot_noises, global_rot_noises): """Add noise to every box (only on the horizontal plane). Version 2 used when enable global rotations. Args: boxes (np.ndarray): Input boxes with shape (N, 5). valid_mask (np.ndarray): Mask to indicate which boxes are valid with shape (N). loc_noises (np.ndarray): Location noises with shape (N, M, 3). rot_noises (np.ndarray): Rotation noises with shape (N, M). Returns: np.ndarray: Mask to indicate whether the noise is added successfully (pass the collision test). """ num_boxes = boxes.shape[0] num_tests = loc_noises.shape[1] box_corners = box_np_ops.box2d_to_corner_jit(boxes) current_corners = np.zeros((4, 2), dtype=boxes.dtype) current_box = np.zeros((1, 5), dtype=boxes.dtype) rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype) dst_pos = np.zeros((2, ), dtype=boxes.dtype) success_mask = -np.ones((num_boxes, ), dtype=np.int64) corners_norm = np.zeros((4, 2), dtype=boxes.dtype) corners_norm[1, 1] = 1.0 corners_norm[2] = 1.0 corners_norm[3, 0] = 1.0 corners_norm -= np.array([0.5, 0.5], dtype=boxes.dtype) corners_norm = corners_norm.reshape(4, 2) for i in range(num_boxes): if valid_mask[i]: for j in range(num_tests): current_box[0, :] = boxes[i] current_radius = np.sqrt(boxes[i, 0]**2 + boxes[i, 1]**2) current_grot = np.arctan2(boxes[i, 0], boxes[i, 1]) dst_grot = current_grot + global_rot_noises[i, j] dst_pos[0] = current_radius * np.sin(dst_grot) dst_pos[1] = current_radius * np.cos(dst_grot) current_box[0, :2] = dst_pos current_box[0, -1] += (dst_grot - current_grot) rot_sin = np.sin(current_box[0, -1]) rot_cos = np.cos(current_box[0, -1]) rot_mat_T[0, 0] = rot_cos rot_mat_T[0, 1] = -rot_sin rot_mat_T[1, 0] = rot_sin rot_mat_T[1, 1] = rot_cos current_corners[:] = current_box[ 0, 2:4] * corners_norm @ rot_mat_T + current_box[0, :2] current_corners -= current_box[0, :2] _rotation_box2d_jit_(current_corners, rot_noises[i, j], rot_mat_T) current_corners += current_box[0, :2] + loc_noises[i, j, :2] coll_mat = box_collision_test( current_corners.reshape(1, 4, 2), box_corners) coll_mat[0, i] = False if not coll_mat.any(): success_mask[i] = j box_corners[i] = current_corners loc_noises[i, j, :2] += (dst_pos - boxes[i, :2]) rot_noises[i, j] += (dst_grot - current_grot) break return success_mask def _select_transform(transform, indices): """Select transform. Args: transform (np.ndarray): Transforms to select from. indices (np.ndarray): Mask to indicate which transform to select. Returns: np.ndarray: Selected transforms. """ result = np.zeros((transform.shape[0], *transform.shape[2:]), dtype=transform.dtype) for i in range(transform.shape[0]): if indices[i] != -1: result[i] = transform[i, indices[i]] return result @numba.njit def _rotation_matrix_3d_(rot_mat_T, angle, axis): """Get the 3D rotation matrix. Args: rot_mat_T (np.ndarray): Transposed rotation matrix. angle (float): Rotation angle. axis (int): Rotation axis. """ rot_sin = np.sin(angle) rot_cos = np.cos(angle) rot_mat_T[:] = np.eye(3) if axis == 1: rot_mat_T[0, 0] = rot_cos rot_mat_T[0, 2] = -rot_sin rot_mat_T[2, 0] = rot_sin rot_mat_T[2, 2] = rot_cos elif axis == 2 or axis == -1: rot_mat_T[0, 0] = rot_cos rot_mat_T[0, 1] = -rot_sin rot_mat_T[1, 0] = rot_sin rot_mat_T[1, 1] = rot_cos elif axis == 0: rot_mat_T[1, 1] = rot_cos rot_mat_T[1, 2] = -rot_sin rot_mat_T[2, 1] = rot_sin rot_mat_T[2, 2] = rot_cos @numba.njit def points_transform_(points, centers, point_masks, loc_transform, rot_transform, valid_mask): """Apply transforms to points and box centers. Args: points (np.ndarray): Input points. centers (np.ndarray): Input box centers. point_masks (np.ndarray): Mask to indicate which points need to be transformed. loc_transform (np.ndarray): Location transform to be applied. rot_transform (np.ndarray): Rotation transform to be applied. valid_mask (np.ndarray): Mask to indicate which boxes are valid. """ num_box = centers.shape[0] num_points = points.shape[0] rot_mat_T = np.zeros((num_box, 3, 3), dtype=points.dtype) for i in range(num_box): _rotation_matrix_3d_(rot_mat_T[i], rot_transform[i], 2) for i in range(num_points): for j in range(num_box): if valid_mask[j]: if point_masks[i, j] == 1: points[i, :3] -= centers[j, :3] points[i:i + 1, :3] = points[i:i + 1, :3] @ rot_mat_T[j] points[i, :3] += centers[j, :3] points[i, :3] += loc_transform[j] break # only apply first box's transform @numba.njit def box3d_transform_(boxes, loc_transform, rot_transform, valid_mask): """Transform 3D boxes. Args: boxes (np.ndarray): 3D boxes to be transformed. loc_transform (np.ndarray): Location transform to be applied. rot_transform (np.ndarray): Rotation transform to be applied. valid_mask (np.ndarray | None): Mask to indicate which boxes are valid. """ num_box = boxes.shape[0] for i in range(num_box): if valid_mask[i]: boxes[i, :3] += loc_transform[i] boxes[i, 6] += rot_transform[i] def noise_per_object_v3_(gt_boxes, points=None, valid_mask=None, rotation_perturb=np.pi / 4, center_noise_std=1.0, global_random_rot_range=np.pi / 4, num_try=100): """Random rotate or remove each groundtruth independently. use kitti viewer to test this function points_transform_ Args: gt_boxes (np.ndarray): Ground truth boxes with shape (N, 7). points (np.ndarray | None): Input point cloud with shape (M, 4). Default: None. valid_mask (np.ndarray | None): Mask to indicate which boxes are valid. Default: None. rotation_perturb (float): Rotation perturbation. Default: pi / 4. center_noise_std (float): Center noise standard deviation. Default: 1.0. global_random_rot_range (float): Global random rotation range. Default: pi/4. num_try (int): Number of try. Default: 100. """ num_boxes = gt_boxes.shape[0] if not isinstance(rotation_perturb, (list, tuple, np.ndarray)): rotation_perturb = [-rotation_perturb, rotation_perturb] if not isinstance(global_random_rot_range, (list, tuple, np.ndarray)): global_random_rot_range = [ -global_random_rot_range, global_random_rot_range ] enable_grot = np.abs(global_random_rot_range[0] - global_random_rot_range[1]) >= 1e-3 if not isinstance(center_noise_std, (list, tuple, np.ndarray)): center_noise_std = [ center_noise_std, center_noise_std, center_noise_std ] if valid_mask is None: valid_mask = np.ones((num_boxes, ), dtype=np.bool_) center_noise_std = np.array(center_noise_std, dtype=gt_boxes.dtype) loc_noises = np.random.normal( scale=center_noise_std, size=[num_boxes, num_try, 3]) rot_noises = np.random.uniform( rotation_perturb[0], rotation_perturb[1], size=[num_boxes, num_try]) gt_grots = np.arctan2(gt_boxes[:, 0], gt_boxes[:, 1]) grot_lowers = global_random_rot_range[0] - gt_grots grot_uppers = global_random_rot_range[1] - gt_grots global_rot_noises = np.random.uniform( grot_lowers[..., np.newaxis], grot_uppers[..., np.newaxis], size=[num_boxes, num_try]) origin = (0.5, 0.5, 0) gt_box_corners = box_np_ops.center_to_corner_box3d( gt_boxes[:, :3], gt_boxes[:, 3:6], gt_boxes[:, 6], origin=origin, axis=2) # TODO: rewrite this noise box function? if not enable_grot: selected_noise = noise_per_box(gt_boxes[:, [0, 1, 3, 4, 6]], valid_mask, loc_noises, rot_noises) else: selected_noise = noise_per_box_v2_(gt_boxes[:, [0, 1, 3, 4, 6]], valid_mask, loc_noises, rot_noises, global_rot_noises) loc_transforms = _select_transform(loc_noises, selected_noise) rot_transforms = _select_transform(rot_noises, selected_noise) surfaces = box_np_ops.corner_to_surfaces_3d_jit(gt_box_corners) if points is not None: # TODO: replace this points_in_convex function by my tools? point_masks = box_np_ops.points_in_convex_polygon_3d_jit( points[:, :3], surfaces) points_transform_(points, gt_boxes[:, :3], point_masks, loc_transforms, rot_transforms, valid_mask) box3d_transform_(gt_boxes, loc_transforms, rot_transforms, valid_mask)
59f7e0dc619c13fdb4d809743f30f6d88e72df7c
78d35bb7876a3460d4398e1cb3554b06e36c720a
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_08_01/aio/operations/_express_route_ports_locations_operations.py
4f8fd8e9b5f9c43e377a4b1f5bd034b2cdb2c574
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
catchsrinivas/azure-sdk-for-python
e35f59b60318a31b3c940a7a3a07b61b28118aa5
596227a7738a5342274486e30489239d539b11d1
refs/heads/main
2023-08-27T09:08:07.986249
2021-11-11T11:13:35
2021-11-11T11:13:35
427,045,896
0
0
MIT
2021-11-11T15:14:31
2021-11-11T15:14:31
null
UTF-8
Python
false
false
7,901
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ExpressRoutePortsLocationsOperations: """ExpressRoutePortsLocationsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_08_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, **kwargs: Any ) -> AsyncIterable["_models.ExpressRoutePortsLocationListResult"]: """Retrieves all ExpressRoutePort peering locations. Does not return available bandwidths for each location. Available bandwidths can only be obtained when retrieving a specific peering location. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ExpressRoutePortsLocationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_08_01.models.ExpressRoutePortsLocationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRoutePortsLocationListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ExpressRoutePortsLocationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/ExpressRoutePortsLocations'} # type: ignore async def get( self, location_name: str, **kwargs: Any ) -> "_models.ExpressRoutePortsLocation": """Retrieves a single ExpressRoutePort peering location, including the list of available bandwidths available at said peering location. :param location_name: Name of the requested ExpressRoutePort peering location. :type location_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ExpressRoutePortsLocation, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_08_01.models.ExpressRoutePortsLocation :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExpressRoutePortsLocation"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'locationName': self._serialize.url("location_name", location_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ExpressRoutePortsLocation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/ExpressRoutePortsLocations/{locationName}'} # type: ignore
dca9a6c7ed4c4e8ab5c5da27e4c28c00529a590e
0111fa900ae348d9f06a4976567c7f3ab8b82be3
/python/arbolBin.py
fbb13627c7728861f95e3ab72b6201555ab997d2
[]
no_license
apdaza/universidad-ejercicios
4e790f84637f8753a166a5318d21217161cbe0bc
64a02fd7b63e2cd899a91297f652e2351ccbce2f
refs/heads/master
2021-09-11T04:59:17.252072
2021-09-04T13:56:04
2021-09-04T13:56:04
86,726,523
6
4
null
null
null
null
UTF-8
Python
false
false
2,849
py
class Nodo(): def __init__(self,val,izq=None,der=None): self.valor = val self.izquierda = izq self.derecha = der def inorden(arbol): if arbol == None: return [] else: return inorden(arbol.izquierda)+[arbol.valor]+inorden(arbol.derecha) def preorden(arbol): if arbol == None: return [] else: return [arbol.valor]+preorden(arbol.izquierda)+preorden(arbol.derecha) def postorden(arbol): if arbol == None: return [] else: return postorden(arbol.izquierda)+postorden(arbol.derecha)+[arbol.valor] def evaluar(arbol): if arbol.valor == '+': return evaluar(arbol.izquierda) + evaluar(arbol.derecha) elif arbol.valor == '-': return evaluar(arbol.izquierda) - evaluar(arbol.derecha) elif arbol.valor == '*': return evaluar(arbol.izquierda) * evaluar(arbol.derecha) elif arbol.valor == '/': return evaluar(arbol.izquierda) / evaluar(arbol.derecha) else: return int(arbol.valor) def suma(arbol): if arbol == None: return 0 else: return suma(arbol.izquierda)+suma(arbol.derecha)+arbol.valor def insertar(arbol, valor): if arbol == None: return Nodo(valor) else: if valor >= arbol.valor: return Nodo(arbol.valor, arbol.izquierda, insertar(arbol.derecha, valor)) else: return Nodo(arbol.valor, insertar(arbol.izquierda, valor), arbol.derecha) def insertarLista(arbol, lista): if lista==[]: return arbol else: if arbol == None: return insertarLista(Nodo(lista[0]), lista[1:]) else: return insertarLista(insertar(arbol, lista[0]), lista[1:]) def imprimeArbolSangrado(arbol, nivel=0): if arbol == None: return else: imprimeArbolSangrado(arbol.izquierda, nivel+1) print ' '*nivel + str(arbol.valor) imprimeArbolSangrado(arbol.derecha, nivel+1) def buscarEnArbol(valor, arbol): if arbol == None: return False elif arbol.valor == valor: return True elif valor < arbol.valor: return buscarEnArbol(valor, arbol.izquierda) else: return buscarEnArbol(valor, arbol.derecha) def contarElementos(arbol): if arbol == None: return 0 else: return 1 + contarElementos(arbol.derecha) + contarElementos(arbol.izquierda) a = Nodo(15, Nodo(10, Nodo(4)), Nodo(25)) b = Nodo('+', Nodo('-', Nodo('14'),Nodo('4')), Nodo('25')) print inorden(a) print preorden(a) print postorden(a) print suma(a) print inorden(insertar(a,67)) print inorden(insertarLista(a,[23,2,17,20])) imprimeArbolSangrado(a,0) print inorden(b) print preorden(b) print postorden(b) print evaluar(b) print buscarEnArbol(10, a) print buscarEnArbol(110, a) print contarElementos(a)
e329ad301e71e357fe4efbf573cac5c78ea6436d
83c92bdbab514a9630d74d24f91cbd77ec7e33f6
/{{cookiecutter.repo_name}}/{{cookiecutter.repo_name}}/settings/production.py
f8de424d0459cfbb0f1e441344801a9075bcb14b
[]
no_license
dnmellen/cookiecutter-simple-django-sqlite
2874f890858aac2bac923d22b03c702c93a5ee0f
51b5128b6335acc464b572fec34f5c75427d97d0
refs/heads/master
2021-01-23T23:51:56.699451
2013-09-26T10:34:46
2013-09-26T10:34:46
13,118,893
4
0
null
null
null
null
UTF-8
Python
false
false
155
py
from .base import * DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( ('{{cookiecutter.author_name}}', '{{cookiecutter.email}}'), ) MANAGERS = ADMINS
900763796b0f0666b1b4561b359127ee4227b144
799f7938856a320423625c6a6a3881eacdd0e039
/lldb/test/API/lang/cpp/class-template-type-parameter-pack/TestClassTemplateTypeParameterPack.py
88beac18e891abbb7f08e342f38989c7c35f5851
[ "NCSA", "Apache-2.0", "LLVM-exception" ]
permissive
shabalind/llvm-project
3b90d1d8f140efe1b4f32390f68218c02c95d474
d06e94031bcdfa43512bf7b0cdfd4b4bad3ca4e1
refs/heads/main
2022-10-18T04:13:17.818838
2021-02-04T13:06:43
2021-02-04T14:23:33
237,532,515
0
0
Apache-2.0
2020-01-31T23:17:24
2020-01-31T23:17:23
null
UTF-8
Python
false
false
4,146
py
import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class TestCaseClassTemplateTypeParameterPack(TestBase): mydir = TestBase.compute_mydir(__file__) @expectedFailureAll(oslist=["windows"]) # Fails to read memory from target. @no_debug_info_test def test(self): self.build() self.dbg.CreateTarget(self.getBuildArtifact("a.out")) self.expect_expr("emptyTypePack", result_type="TypePack<>", result_children=[ValueCheck(name="a", type="int")]) self.expect_expr("oneElemTypePack", result_type="TypePack<int>", result_children=[ValueCheck(name="a", type="int")]) self.expect_expr("twoElemTypePack", result_type="TypePack<int, float>", result_children=[ValueCheck(name="a", type="int")]) self.expect_expr("emptyAnonTypePack", result_type="AnonTypePack<>", result_children=[ValueCheck(name="b", type="int")]) self.expect_expr("oneElemAnonTypePack", result_type="AnonTypePack<int>", result_children=[ValueCheck(name="b", type="int")]) self.expect_expr("twoElemAnonTypePack", result_type="AnonTypePack<int, float>", result_children=[ValueCheck(name="b", type="int")]) self.expect_expr("emptyAnonTypePackAfterTypeParam", result_type="AnonTypePackAfterTypeParam<int>", result_children=[ValueCheck(name="c", type="int")]) self.expect_expr("oneElemAnonTypePackAfterTypeParam", result_type="AnonTypePackAfterTypeParam<int, float>", result_children=[ValueCheck(name="c", type="int")]) self.expect_expr("emptyAnonTypePackAfterAnonTypeParam", result_type="AnonTypePackAfterAnonTypeParam<int>", result_children=[ValueCheck(name="d", type="float")]) self.expect_expr("oneElemAnonTypePackAfterAnonTypeParam", result_type="AnonTypePackAfterAnonTypeParam<int, float>", result_children=[ValueCheck(name="d", type="float")]) self.expect_expr("emptyTypePackAfterAnonTypeParam", result_type="TypePackAfterAnonTypeParam<int>", result_children=[ValueCheck(name="e", type="int")]) self.expect_expr("oneElemTypePackAfterAnonTypeParam", result_type="TypePackAfterAnonTypeParam<int, float>", result_children=[ValueCheck(name="e", type="int")]) self.expect_expr("emptyTypePackAfterTypeParam", result_type="TypePackAfterTypeParam<int>", result_children=[ValueCheck(name="f", type="int")]) self.expect_expr("oneElemTypePackAfterTypeParam", result_type="TypePackAfterTypeParam<int, float>", result_children=[ValueCheck(name="f", type="int")]) self.expect_expr("emptyAnonTypePackAfterNonTypeParam", result_type="AnonTypePackAfterNonTypeParam<1>", result_children=[ValueCheck(name="g", type="int")]) self.expect_expr("oneElemAnonTypePackAfterNonTypeParam", result_type="AnonTypePackAfterNonTypeParam<1, int>", result_children=[ValueCheck(name="g", type="int")]) self.expect_expr("emptyAnonTypePackAfterAnonNonTypeParam", result_type="AnonTypePackAfterAnonNonTypeParam<1>", result_children=[ValueCheck(name="h", type="float")]) self.expect_expr("oneElemAnonTypePackAfterAnonNonTypeParam", result_type="AnonTypePackAfterAnonNonTypeParam<1, int>", result_children=[ValueCheck(name="h", type="float")]) self.expect_expr("emptyTypePackAfterAnonNonTypeParam", result_type="TypePackAfterAnonNonTypeParam<1>", result_children=[ValueCheck(name="i", type="int")]) self.expect_expr("oneElemTypePackAfterAnonNonTypeParam", result_type="TypePackAfterAnonNonTypeParam<1, int>", result_children=[ValueCheck(name="i", type="int")]) self.expect_expr("emptyTypePackAfterNonTypeParam", result_type="TypePackAfterNonTypeParam<1>", result_children=[ValueCheck(name="j", type="int")]) self.expect_expr("oneElemTypePackAfterNonTypeParam", result_type="TypePackAfterNonTypeParam<1, int>", result_children=[ValueCheck(name="j", type="int")])
dc244dc98111c4d6ce264ef5fb440adca03a7d4b
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_199/3413.py
2e81c2d19b8f1f7dccafdf9a831f4d28676309e6
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,232
py
import sys def switcher(string , num): final_string = '' if len(string) < num: return False for element in string: if element == '-' and num > 0: final_string = final_string + '+' elif element == '+' and num > 0: final_string = final_string + '-' else: final_string = final_string + element num = num -1 print(final_string) return final_string def plus_detonation(string): return_string = string print (string) for element in string: if element == '+': string = string [1:] print (string) return_string = string elif element == '-': return return_string break return return_string print (plus_detonation('+---')) def solver(string, num): temp_string = string print (string) temp_string = plus_detonation(temp_string) counter = 0 print (temp_string) if temp_string == '': return counter while temp_string != '': temp_string = switcher(temp_string, num) counter += 1 if temp_string == False: return 'IMPOSSIBLE' break else: temp_string = plus_detonation(temp_string) return counter input_file = sys.argv[1] + '.in' output_file = sys.argv[1] + '.out' def inputer(input_file): output_list = [] with open (input_file) as fin: finx = fin.read().split('\n') biglist = [line.strip().split(' ') for line in finx] biglist = biglist[1:-1] return biglist biglist = inputer(input_file) return_list = [] for element in biglist: test_string = element[0] test_num = int(element[1]) return_list.append(solver(test_string, test_num)) def outputer(output_file, return_list): with open (output_file, 'w') as out: x = 1 for element in return_list: if element == 'IMPOSSIBLE': out.write('Case #%d: %s \n' %(x, element)) else: out.write('Case #%d: %d \n' %(x, element)) x += 1 outputer(output_file, return_list)
4175299a25cd5fffb0727a205562d11d2d0d6c10
624456f907a9cb5f8dbc8577a7400994272bc8c4
/reports/dashboard.py
2354b8a60ea2e3d45b3ecff0506f988ea4eae46f
[ "MIT" ]
permissive
YangZhang-GitHub/myems-api
27a70fb76cfd3004cd84de0e94be26317211b5f7
fc3f8087061310d6ae0aa19e1ef077a2fe2ccddf
refs/heads/master
2023-03-11T04:38:58.177163
2021-01-21T02:43:46
2021-01-21T02:43:46
329,171,534
0
0
MIT
2021-01-19T07:31:28
2021-01-13T02:32:43
null
UTF-8
Python
false
false
58,330
py
import falcon import simplejson as json import mysql.connector import config from datetime import datetime, timedelta, timezone from core import utilities from decimal import Decimal class Reporting: @staticmethod def __init__(): pass @staticmethod def on_options(req, resp): resp.status = falcon.HTTP_200 #################################################################################################################### # PROCEDURES # Step 1: valid parameters # Step 2: query the space # Step 3: query energy categories # Step 4: query associated sensors # Step 5: query associated points # Step 6: query child spaces # Step 7: query base period energy input # Step 8: query base period energy cost # Step 9: query reporting period energy input # Step 10: query reporting period energy cost # Step 11: query tariff data # Step 12: query associated sensors and points data # Step 13: query child spaces energy input # Step 14: query child spaces energy cost # Step 15: construct the report #################################################################################################################### @staticmethod def on_get(req, resp): print(req.params) user_uuid = req.params.get('useruuid') period_type = req.params.get('periodtype') base_start_datetime_local = req.params.get('baseperiodstartdatetime') base_end_datetime_local = req.params.get('baseperiodenddatetime') reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') ################################################################################################################ # Step 1: valid parameters ################################################################################################################ if user_uuid is None: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_USER_UUID') else: user_uuid = str.strip(user_uuid) if len(user_uuid) != 36: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_USER_UUID') if period_type is None: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') else: period_type = str.strip(period_type) if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) if config.utc_offset[0] == '-': timezone_offset = -timezone_offset base_start_datetime_utc = None if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: base_start_datetime_local = str.strip(base_start_datetime_local) try: base_start_datetime_utc = datetime.strptime(base_start_datetime_local, '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ timedelta(minutes=timezone_offset) except ValueError: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description="API.INVALID_BASE_PERIOD_BEGINS_DATETIME") base_end_datetime_utc = None if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: base_end_datetime_local = str.strip(base_end_datetime_local) try: base_end_datetime_utc = datetime.strptime(base_end_datetime_local, '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ timedelta(minutes=timezone_offset) except ValueError: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description="API.INVALID_BASE_PERIOD_ENDS_DATETIME") if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ base_start_datetime_utc >= base_end_datetime_utc: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_BASE_PERIOD_ENDS_DATETIME') if reporting_start_datetime_local is None: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") else: reporting_start_datetime_local = str.strip(reporting_start_datetime_local) try: reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ timedelta(minutes=timezone_offset) except ValueError: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") if reporting_end_datetime_local is None: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") else: reporting_end_datetime_local = str.strip(reporting_end_datetime_local) try: reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ timedelta(minutes=timezone_offset) except ValueError: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") if reporting_start_datetime_utc >= reporting_end_datetime_utc: raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_REPORTING_PERIOD_ENDS_DATETIME') ################################################################################################################ # Step 2: query the space ################################################################################################################ cnx_user = mysql.connector.connect(**config.myems_user_db) cursor_user = cnx_user.cursor() cursor_user.execute(" SELECT id, is_admin, privilege_id " " FROM tbl_users " " WHERE uuid = %s ", (user_uuid,)) row_user = cursor_user.fetchone() if row_user is None: if cursor_user: cursor_user.close() if cnx_user: cnx_user.disconnect() raise falcon.HTTPError(falcon.HTTP_404, 'API.NOT_FOUND', 'API.USER_NOT_FOUND') user = {'id': row_user[0], 'is_admin': row_user[1], 'privilege_id': row_user[2]} if user['is_admin']: # todo: make sure the space id is always 1 for admin space_id = 1 else: cursor_user.execute(" SELECT data " " FROM tbl_privileges " " WHERE id = %s ", (user['privilege_id'],)) row_privilege = cursor_user.fetchone() if row_privilege is None: if cursor_user: cursor_user.close() if cnx_user: cnx_user.disconnect() raise falcon.HTTPError(falcon.HTTP_404, 'API.NOT_FOUND', 'API.USER_PRIVILEGE_NOT_FOUND') privilege_data = json.loads(row_privilege[0]) if 'spaces' not in privilege_data.keys() \ or privilege_data['spaces'] is None \ or len(privilege_data['spaces']) == 0: if cursor_user: cursor_user.close() if cnx_user: cnx_user.disconnect() raise falcon.HTTPError(falcon.HTTP_404, 'API.NOT_FOUND', 'API.USER_PRIVILEGE_NOT_FOUND') # todo: how to deal with multiple spaces in privilege data space_id = privilege_data['spaces'][0] if cursor_user: cursor_user.close() if cnx_user: cnx_user.disconnect() cnx_system = mysql.connector.connect(**config.myems_system_db) cursor_system = cnx_system.cursor() cursor_system.execute(" SELECT id, name, area, cost_center_id " " FROM tbl_spaces " " WHERE id = %s ", (space_id,)) row_space = cursor_system.fetchone() if row_space is None: if cursor_system: cursor_system.close() if cnx_system: cnx_system.disconnect() raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.SPACE_NOT_FOUND') space = dict() space['id'] = row_space[0] space['name'] = row_space[1] space['area'] = row_space[2] space['cost_center_id'] = row_space[3] ################################################################################################################ # Step 3: query energy categories ################################################################################################################ cnx_energy = mysql.connector.connect(**config.myems_energy_db) cursor_energy = cnx_energy.cursor() cnx_billing = mysql.connector.connect(**config.myems_billing_db) cursor_billing = cnx_billing.cursor() energy_category_set = set() # query energy categories in base period cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " " FROM tbl_space_input_category_hourly " " WHERE space_id = %s " " AND start_datetime_utc >= %s " " AND start_datetime_utc < %s ", (space['id'], base_start_datetime_utc, base_end_datetime_utc)) rows_energy_categories = cursor_energy.fetchall() if rows_energy_categories is not None or len(rows_energy_categories) > 0: for row_energy_category in rows_energy_categories: energy_category_set.add(row_energy_category[0]) # query energy categories in reporting period cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " " FROM tbl_space_input_category_hourly " " WHERE space_id = %s " " AND start_datetime_utc >= %s " " AND start_datetime_utc < %s ", (space['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) rows_energy_categories = cursor_energy.fetchall() if rows_energy_categories is not None or len(rows_energy_categories) > 0: for row_energy_category in rows_energy_categories: energy_category_set.add(row_energy_category[0]) # query all energy categories in base period and reporting period cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " " FROM tbl_energy_categories " " ORDER BY id ", ) rows_energy_categories = cursor_system.fetchall() if rows_energy_categories is None or len(rows_energy_categories) == 0: if cursor_system: cursor_system.close() if cnx_system: cnx_system.disconnect() if cursor_energy: cursor_energy.close() if cnx_energy: cnx_energy.disconnect() if cursor_billing: cursor_billing.close() if cnx_billing: cnx_billing.disconnect() raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.ENERGY_CATEGORY_NOT_FOUND') energy_category_dict = dict() for row_energy_category in rows_energy_categories: if row_energy_category[0] in energy_category_set: energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], "unit_of_measure": row_energy_category[2], "kgce": row_energy_category[3], "kgco2e": row_energy_category[4]} ################################################################################################################ # Step 4: query associated sensors ################################################################################################################ point_list = list() cursor_system.execute(" SELECT po.id, po.name, po.units, po.object_type " " FROM tbl_spaces sp, tbl_sensors se, tbl_spaces_sensors spse, " " tbl_points po, tbl_sensors_points sepo " " WHERE sp.id = %s AND sp.id = spse.space_id AND spse.sensor_id = se.id " " AND se.id = sepo.sensor_id AND sepo.point_id = po.id " " ORDER BY po.id ", (space['id'], )) rows_points = cursor_system.fetchall() if rows_points is not None and len(rows_points) > 0: for row in rows_points: point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) ################################################################################################################ # Step 5: query associated points ################################################################################################################ cursor_system.execute(" SELECT po.id, po.name, po.units, po.object_type " " FROM tbl_spaces sp, tbl_spaces_points sppo, tbl_points po " " WHERE sp.id = %s AND sp.id = sppo.space_id AND sppo.point_id = po.id " " ORDER BY po.id ", (space['id'], )) rows_points = cursor_system.fetchall() if rows_points is not None and len(rows_points) > 0: for row in rows_points: point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) ################################################################################################################ # Step 6: query child spaces ################################################################################################################ child_space_list = list() cursor_system.execute(" SELECT id, name " " FROM tbl_spaces " " WHERE parent_space_id = %s " " ORDER BY id ", (space['id'], )) rows_child_spaces = cursor_system.fetchall() if rows_child_spaces is not None and len(rows_child_spaces) > 0: for row in rows_child_spaces: child_space_list.append({"id": row[0], "name": row[1]}) ################################################################################################################ # Step 7: query base period energy input ################################################################################################################ base_input = dict() if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: kgce = energy_category_dict[energy_category_id]['kgce'] kgco2e = energy_category_dict[energy_category_id]['kgco2e'] base_input[energy_category_id] = dict() base_input[energy_category_id]['timestamps'] = list() base_input[energy_category_id]['values'] = list() base_input[energy_category_id]['subtotal'] = Decimal(0.0) base_input[energy_category_id]['subtotal_in_kgce'] = Decimal(0.0) base_input[energy_category_id]['subtotal_in_kgco2e'] = Decimal(0.0) cursor_energy.execute(" SELECT start_datetime_utc, actual_value " " FROM tbl_space_input_category_hourly " " WHERE space_id = %s " " AND energy_category_id = %s " " AND start_datetime_utc >= %s " " AND start_datetime_utc < %s " " ORDER BY start_datetime_utc ", (space['id'], energy_category_id, base_start_datetime_utc, base_end_datetime_utc)) rows_space_hourly = cursor_energy.fetchall() rows_space_periodically = utilities.aggregate_hourly_data_by_period(rows_space_hourly, base_start_datetime_utc, base_end_datetime_utc, period_type) for row_space_periodically in rows_space_periodically: current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \ timedelta(minutes=timezone_offset) if period_type == 'hourly': current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') elif period_type == 'daily': current_datetime = current_datetime_local.strftime('%Y-%m-%d') elif period_type == 'monthly': current_datetime = current_datetime_local.strftime('%Y-%m') elif period_type == 'yearly': current_datetime = current_datetime_local.strftime('%Y') actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1] base_input[energy_category_id]['timestamps'].append(current_datetime) base_input[energy_category_id]['values'].append(actual_value) base_input[energy_category_id]['subtotal'] += actual_value base_input[energy_category_id]['subtotal_in_kgce'] += actual_value * kgce base_input[energy_category_id]['subtotal_in_kgco2e'] += actual_value * kgco2e ################################################################################################################ # Step 8: query base period energy cost ################################################################################################################ base_cost = dict() if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: base_cost[energy_category_id] = dict() base_cost[energy_category_id]['timestamps'] = list() base_cost[energy_category_id]['values'] = list() base_cost[energy_category_id]['subtotal'] = Decimal(0.0) cursor_billing.execute(" SELECT start_datetime_utc, actual_value " " FROM tbl_space_input_category_hourly " " WHERE space_id = %s " " AND energy_category_id = %s " " AND start_datetime_utc >= %s " " AND start_datetime_utc < %s " " ORDER BY start_datetime_utc ", (space['id'], energy_category_id, base_start_datetime_utc, base_end_datetime_utc)) rows_space_hourly = cursor_billing.fetchall() rows_space_periodically = utilities.aggregate_hourly_data_by_period(rows_space_hourly, base_start_datetime_utc, base_end_datetime_utc, period_type) for row_space_periodically in rows_space_periodically: current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \ timedelta(minutes=timezone_offset) if period_type == 'hourly': current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') elif period_type == 'daily': current_datetime = current_datetime_local.strftime('%Y-%m-%d') elif period_type == 'monthly': current_datetime = current_datetime_local.strftime('%Y-%m') elif period_type == 'yearly': current_datetime = current_datetime_local.strftime('%Y') actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1] base_cost[energy_category_id]['timestamps'].append(current_datetime) base_cost[energy_category_id]['values'].append(actual_value) base_cost[energy_category_id]['subtotal'] += actual_value ################################################################################################################ # Step 9: query reporting period energy input ################################################################################################################ reporting_input = dict() if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: kgce = energy_category_dict[energy_category_id]['kgce'] kgco2e = energy_category_dict[energy_category_id]['kgco2e'] reporting_input[energy_category_id] = dict() reporting_input[energy_category_id]['timestamps'] = list() reporting_input[energy_category_id]['values'] = list() reporting_input[energy_category_id]['subtotal'] = Decimal(0.0) reporting_input[energy_category_id]['subtotal_in_kgce'] = Decimal(0.0) reporting_input[energy_category_id]['subtotal_in_kgco2e'] = Decimal(0.0) reporting_input[energy_category_id]['toppeak'] = Decimal(0.0) reporting_input[energy_category_id]['onpeak'] = Decimal(0.0) reporting_input[energy_category_id]['midpeak'] = Decimal(0.0) reporting_input[energy_category_id]['offpeak'] = Decimal(0.0) cursor_energy.execute(" SELECT start_datetime_utc, actual_value " " FROM tbl_space_input_category_hourly " " WHERE space_id = %s " " AND energy_category_id = %s " " AND start_datetime_utc >= %s " " AND start_datetime_utc < %s " " ORDER BY start_datetime_utc ", (space['id'], energy_category_id, reporting_start_datetime_utc, reporting_end_datetime_utc)) rows_space_hourly = cursor_energy.fetchall() rows_space_periodically = utilities.aggregate_hourly_data_by_period(rows_space_hourly, reporting_start_datetime_utc, reporting_end_datetime_utc, period_type) for row_space_periodically in rows_space_periodically: current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \ timedelta(minutes=timezone_offset) if period_type == 'hourly': current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') elif period_type == 'daily': current_datetime = current_datetime_local.strftime('%Y-%m-%d') elif period_type == 'monthly': current_datetime = current_datetime_local.strftime('%Y-%m') elif period_type == 'yearly': current_datetime = current_datetime_local.strftime('%Y') actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1] reporting_input[energy_category_id]['timestamps'].append(current_datetime) reporting_input[energy_category_id]['values'].append(actual_value) reporting_input[energy_category_id]['subtotal'] += actual_value reporting_input[energy_category_id]['subtotal_in_kgce'] += actual_value * kgce reporting_input[energy_category_id]['subtotal_in_kgco2e'] += actual_value * kgco2e energy_category_tariff_dict = utilities.get_energy_category_peak_types(space['cost_center_id'], energy_category_id, reporting_start_datetime_utc, reporting_end_datetime_utc) for row in rows_space_hourly: peak_type = energy_category_tariff_dict.get(row[0], None) if peak_type == 'toppeak': reporting_input[energy_category_id]['toppeak'] += row[1] elif peak_type == 'onpeak': reporting_input[energy_category_id]['onpeak'] += row[1] elif peak_type == 'midpeak': reporting_input[energy_category_id]['midpeak'] += row[1] elif peak_type == 'offpeak': reporting_input[energy_category_id]['offpeak'] += row[1] ################################################################################################################ # Step 10: query reporting period energy cost ################################################################################################################ reporting_cost = dict() if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: reporting_cost[energy_category_id] = dict() reporting_cost[energy_category_id]['timestamps'] = list() reporting_cost[energy_category_id]['values'] = list() reporting_cost[energy_category_id]['subtotal'] = Decimal(0.0) reporting_cost[energy_category_id]['toppeak'] = Decimal(0.0) reporting_cost[energy_category_id]['onpeak'] = Decimal(0.0) reporting_cost[energy_category_id]['midpeak'] = Decimal(0.0) reporting_cost[energy_category_id]['offpeak'] = Decimal(0.0) cursor_billing.execute(" SELECT start_datetime_utc, actual_value " " FROM tbl_space_input_category_hourly " " WHERE space_id = %s " " AND energy_category_id = %s " " AND start_datetime_utc >= %s " " AND start_datetime_utc < %s " " ORDER BY start_datetime_utc ", (space['id'], energy_category_id, reporting_start_datetime_utc, reporting_end_datetime_utc)) rows_space_hourly = cursor_billing.fetchall() rows_space_periodically = utilities.aggregate_hourly_data_by_period(rows_space_hourly, reporting_start_datetime_utc, reporting_end_datetime_utc, period_type) for row_space_periodically in rows_space_periodically: current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \ timedelta(minutes=timezone_offset) if period_type == 'hourly': current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') elif period_type == 'daily': current_datetime = current_datetime_local.strftime('%Y-%m-%d') elif period_type == 'monthly': current_datetime = current_datetime_local.strftime('%Y-%m') elif period_type == 'yearly': current_datetime = current_datetime_local.strftime('%Y') actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1] reporting_cost[energy_category_id]['timestamps'].append(current_datetime) reporting_cost[energy_category_id]['values'].append(actual_value) reporting_cost[energy_category_id]['subtotal'] += actual_value energy_category_tariff_dict = utilities.get_energy_category_peak_types(space['cost_center_id'], energy_category_id, reporting_start_datetime_utc, reporting_end_datetime_utc) for row in rows_space_hourly: peak_type = energy_category_tariff_dict.get(row[0], None) if peak_type == 'toppeak': reporting_cost[energy_category_id]['toppeak'] += row[1] elif peak_type == 'onpeak': reporting_cost[energy_category_id]['onpeak'] += row[1] elif peak_type == 'midpeak': reporting_cost[energy_category_id]['midpeak'] += row[1] elif peak_type == 'offpeak': reporting_cost[energy_category_id]['offpeak'] += row[1] ################################################################################################################ # Step 11: query tariff data ################################################################################################################ parameters_data = dict() parameters_data['names'] = list() parameters_data['timestamps'] = list() parameters_data['values'] = list() if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: energy_category_tariff_dict = utilities.get_energy_category_tariffs(space['cost_center_id'], energy_category_id, reporting_start_datetime_utc, reporting_end_datetime_utc) tariff_timestamp_list = list() tariff_value_list = list() for k, v in energy_category_tariff_dict.items(): # convert k from utc to local k = k + timedelta(minutes=timezone_offset) tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) tariff_value_list.append(v) parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) parameters_data['timestamps'].append(tariff_timestamp_list) parameters_data['values'].append(tariff_value_list) ################################################################################################################ # Step 12: query associated sensors and points data ################################################################################################################ cnx_historical = mysql.connector.connect(**config.myems_historical_db) cursor_historical = cnx_historical.cursor() for point in point_list: point_values = [] point_timestamps = [] if point['object_type'] == 'ANALOG_VALUE': query = (" SELECT utc_date_time, actual_value " " FROM tbl_analog_value " " WHERE point_id = %s " " AND utc_date_time BETWEEN %s AND %s " " ORDER BY utc_date_time ") cursor_historical.execute(query, (point['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) rows = cursor_historical.fetchall() if rows is not None and len(rows) > 0: for row in rows: current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ timedelta(minutes=timezone_offset) current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') point_timestamps.append(current_datetime) point_values.append(row[1]) elif point['object_type'] == 'ENERGY_VALUE': query = (" SELECT utc_date_time, actual_value " " FROM tbl_energy_value " " WHERE point_id = %s " " AND utc_date_time BETWEEN %s AND %s " " ORDER BY utc_date_time ") cursor_historical.execute(query, (point['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) rows = cursor_historical.fetchall() if rows is not None and len(rows) > 0: for row in rows: current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ timedelta(minutes=timezone_offset) current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') point_timestamps.append(current_datetime) point_values.append(row[1]) elif point['object_type'] == 'DIGITAL_VALUE': query = (" SELECT utc_date_time, actual_value " " FROM tbl_digital_value " " WHERE point_id = %s " " AND utc_date_time BETWEEN %s AND %s ") cursor_historical.execute(query, (point['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) rows = cursor_historical.fetchall() if rows is not None and len(rows) > 0: for row in rows: current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ timedelta(minutes=timezone_offset) current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') point_timestamps.append(current_datetime) point_values.append(row[1]) parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') parameters_data['timestamps'].append(point_timestamps) parameters_data['values'].append(point_values) ################################################################################################################ # Step 13: query child spaces energy input ################################################################################################################ child_space_input = dict() if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: child_space_input[energy_category_id] = dict() child_space_input[energy_category_id]['child_space_names'] = list() child_space_input[energy_category_id]['subtotals'] = list() child_space_input[energy_category_id]['subtotals_in_kgce'] = list() child_space_input[energy_category_id]['subtotals_in_kgco2e'] = list() kgce = energy_category_dict[energy_category_id]['kgce'] kgco2e = energy_category_dict[energy_category_id]['kgco2e'] for child_space in child_space_list: child_space_input[energy_category_id]['child_space_names'].append(child_space['name']) cursor_energy.execute(" SELECT SUM(actual_value) " " FROM tbl_space_input_category_hourly " " WHERE space_id = %s " " AND energy_category_id = %s " " AND start_datetime_utc >= %s " " AND start_datetime_utc < %s " " ORDER BY start_datetime_utc ", (child_space['id'], energy_category_id, reporting_start_datetime_utc, reporting_end_datetime_utc)) row_subtotal = cursor_energy.fetchone() subtotal = Decimal(0.0) if (row_subtotal is None or row_subtotal[0] is None) else row_subtotal[0] child_space_input[energy_category_id]['subtotals'].append(subtotal) child_space_input[energy_category_id]['subtotals_in_kgce'].append(subtotal * kgce) child_space_input[energy_category_id]['subtotals_in_kgco2e'].append(subtotal * kgco2e) ################################################################################################################ # Step 14: query child spaces energy cost ################################################################################################################ child_space_cost = dict() if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: child_space_cost[energy_category_id] = dict() child_space_cost[energy_category_id]['child_space_names'] = list() child_space_cost[energy_category_id]['subtotals'] = list() for child_space in child_space_list: child_space_cost[energy_category_id]['child_space_names'].append(child_space['name']) cursor_billing.execute(" SELECT SUM(actual_value) " " FROM tbl_space_input_category_hourly " " WHERE space_id = %s " " AND energy_category_id = %s " " AND start_datetime_utc >= %s " " AND start_datetime_utc < %s " " ORDER BY start_datetime_utc ", (child_space['id'], energy_category_id, reporting_start_datetime_utc, reporting_end_datetime_utc)) row_subtotal = cursor_billing.fetchone() subtotal = Decimal(0.0) if (row_subtotal is None or row_subtotal[0] is None) else row_subtotal[0] child_space_cost[energy_category_id]['subtotals'].append(subtotal) ################################################################################################################ # Step 15: construct the report ################################################################################################################ if cursor_system: cursor_system.close() if cnx_system: cnx_system.disconnect() if cursor_energy: cursor_energy.close() if cnx_energy: cnx_energy.disconnect() if cursor_billing: cursor_billing.close() if cnx_billing: cnx_billing.disconnect() if cursor_historical: cursor_historical.close() if cnx_historical: cnx_historical.disconnect() result = dict() result['space'] = dict() result['space']['name'] = space['name'] result['space']['area'] = space['area'] result['base_period_input'] = dict() result['base_period_input']['names'] = list() result['base_period_input']['units'] = list() result['base_period_input']['timestamps'] = list() result['base_period_input']['values'] = list() result['base_period_input']['subtotals'] = list() result['base_period_input']['subtotals_in_kgce'] = list() result['base_period_input']['subtotals_in_kgco2e'] = list() result['base_period_input']['total_in_kgce'] = Decimal(0.0) result['base_period_input']['total_in_kgco2e'] = Decimal(0.0) if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: result['base_period_input']['names'].append( energy_category_dict[energy_category_id]['name']) result['base_period_input']['units'].append( energy_category_dict[energy_category_id]['unit_of_measure']) result['base_period_input']['timestamps'].append( base_input[energy_category_id]['timestamps']) result['base_period_input']['values'].append( base_input[energy_category_id]['values']) result['base_period_input']['subtotals'].append( base_input[energy_category_id]['subtotal']) result['base_period_input']['subtotals_in_kgce'].append( base_input[energy_category_id]['subtotal_in_kgce']) result['base_period_input']['subtotals_in_kgco2e'].append( base_input[energy_category_id]['subtotal_in_kgco2e']) result['base_period_input']['total_in_kgce'] += \ base_input[energy_category_id]['subtotal_in_kgce'] result['base_period_input']['total_in_kgco2e'] += \ base_input[energy_category_id]['subtotal_in_kgco2e'] result['base_period_cost'] = dict() result['base_period_cost']['names'] = list() result['base_period_cost']['units'] = list() result['base_period_cost']['timestamps'] = list() result['base_period_cost']['values'] = list() result['base_period_cost']['subtotals'] = list() result['base_period_cost']['total'] = Decimal(0.0) if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: result['base_period_cost']['names'].append( energy_category_dict[energy_category_id]['name']) result['base_period_cost']['units'].append( energy_category_dict[energy_category_id]['unit_of_measure']) result['base_period_cost']['timestamps'].append( base_cost[energy_category_id]['timestamps']) result['base_period_cost']['values'].append( base_cost[energy_category_id]['values']) result['base_period_cost']['subtotals'].append( base_cost[energy_category_id]['subtotal']) result['base_period_cost']['total'] += base_cost[energy_category_id]['subtotal'] result['reporting_period_input'] = dict() result['reporting_period_input']['names'] = list() result['reporting_period_input']['energy_category_ids'] = list() result['reporting_period_input']['units'] = list() result['reporting_period_input']['timestamps'] = list() result['reporting_period_input']['values'] = list() result['reporting_period_input']['subtotals'] = list() result['reporting_period_input']['subtotals_in_kgce'] = list() result['reporting_period_input']['subtotals_in_kgco2e'] = list() result['reporting_period_input']['subtotals_per_unit_area'] = list() result['reporting_period_input']['toppeaks'] = list() result['reporting_period_input']['onpeaks'] = list() result['reporting_period_input']['midpeaks'] = list() result['reporting_period_input']['offpeaks'] = list() result['reporting_period_input']['increment_rates'] = list() result['reporting_period_input']['total_in_kgce'] = Decimal(0.0) result['reporting_period_input']['total_in_kgco2e'] = Decimal(0.0) result['reporting_period_input']['increment_rate_in_kgce'] = Decimal(0.0) result['reporting_period_input']['increment_rate_in_kgco2e'] = Decimal(0.0) if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: result['reporting_period_input']['names'].append(energy_category_dict[energy_category_id]['name']) result['reporting_period_input']['energy_category_ids'].append(energy_category_id) result['reporting_period_input']['units'].append( energy_category_dict[energy_category_id]['unit_of_measure']) result['reporting_period_input']['timestamps'].append( reporting_input[energy_category_id]['timestamps']) result['reporting_period_input']['values'].append( reporting_input[energy_category_id]['values']) result['reporting_period_input']['subtotals'].append( reporting_input[energy_category_id]['subtotal']) result['reporting_period_input']['subtotals_in_kgce'].append( reporting_input[energy_category_id]['subtotal_in_kgce']) result['reporting_period_input']['subtotals_in_kgco2e'].append( reporting_input[energy_category_id]['subtotal_in_kgco2e']) result['reporting_period_input']['subtotals_per_unit_area'].append( reporting_input[energy_category_id]['subtotal'] / space['area'] if space['area'] > 0.0 else None) result['reporting_period_input']['toppeaks'].append( reporting_input[energy_category_id]['toppeak']) result['reporting_period_input']['onpeaks'].append( reporting_input[energy_category_id]['onpeak']) result['reporting_period_input']['midpeaks'].append( reporting_input[energy_category_id]['midpeak']) result['reporting_period_input']['offpeaks'].append( reporting_input[energy_category_id]['offpeak']) result['reporting_period_input']['increment_rates'].append( (reporting_input[energy_category_id]['subtotal'] - base_input[energy_category_id]['subtotal']) / base_input[energy_category_id]['subtotal'] if base_input[energy_category_id]['subtotal'] > 0.0 else None) result['reporting_period_input']['total_in_kgce'] += \ reporting_input[energy_category_id]['subtotal_in_kgce'] result['reporting_period_input']['total_in_kgco2e'] += \ reporting_input[energy_category_id]['subtotal_in_kgco2e'] result['reporting_period_input']['total_in_kgco2e_per_unit_area'] = \ result['reporting_period_input']['total_in_kgce'] / space['area'] if space['area'] > 0.0 else None result['reporting_period_input']['increment_rate_in_kgce'] = \ (result['reporting_period_input']['total_in_kgce'] - result['base_period_input']['total_in_kgce']) / \ result['base_period_input']['total_in_kgce'] \ if result['base_period_input']['total_in_kgce'] > Decimal(0.0) else None result['reporting_period_input']['total_in_kgce_per_unit_area'] = \ result['reporting_period_input']['total_in_kgco2e'] / space['area'] if space['area'] > 0.0 else None result['reporting_period_input']['increment_rate_in_kgco2e'] = \ (result['reporting_period_input']['total_in_kgco2e'] - result['base_period_input']['total_in_kgco2e']) / \ result['base_period_input']['total_in_kgco2e'] \ if result['base_period_input']['total_in_kgco2e'] > Decimal(0.0) else None result['reporting_period_cost'] = dict() result['reporting_period_cost']['names'] = list() result['reporting_period_cost']['energy_category_ids'] = list() result['reporting_period_cost']['units'] = list() result['reporting_period_cost']['timestamps'] = list() result['reporting_period_cost']['values'] = list() result['reporting_period_cost']['subtotals'] = list() result['reporting_period_cost']['subtotals_per_unit_area'] = list() result['reporting_period_cost']['toppeaks'] = list() result['reporting_period_cost']['onpeaks'] = list() result['reporting_period_cost']['midpeaks'] = list() result['reporting_period_cost']['offpeaks'] = list() result['reporting_period_cost']['increment_rates'] = list() result['reporting_period_cost']['total'] = Decimal(0.0) result['reporting_period_cost']['total_per_unit_area'] = Decimal(0.0) result['reporting_period_cost']['total_increment_rate'] = Decimal(0.0) result['reporting_period_cost']['total_unit'] = config.currency_unit if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: result['reporting_period_cost']['names'].append(energy_category_dict[energy_category_id]['name']) result['reporting_period_cost']['energy_category_ids'].append(energy_category_id) result['reporting_period_cost']['units'].append(config.currency_unit) result['reporting_period_cost']['timestamps'].append( reporting_cost[energy_category_id]['timestamps']) result['reporting_period_cost']['values'].append( reporting_cost[energy_category_id]['values']) result['reporting_period_cost']['subtotals'].append( reporting_cost[energy_category_id]['subtotal']) result['reporting_period_cost']['subtotals_per_unit_area'].append( reporting_cost[energy_category_id]['subtotal'] / space['area'] if space['area'] > 0.0 else None) result['reporting_period_cost']['toppeaks'].append( reporting_cost[energy_category_id]['toppeak']) result['reporting_period_cost']['onpeaks'].append( reporting_cost[energy_category_id]['onpeak']) result['reporting_period_cost']['midpeaks'].append( reporting_cost[energy_category_id]['midpeak']) result['reporting_period_cost']['offpeaks'].append( reporting_cost[energy_category_id]['offpeak']) result['reporting_period_cost']['increment_rates'].append( (reporting_cost[energy_category_id]['subtotal'] - base_cost[energy_category_id]['subtotal']) / base_cost[energy_category_id]['subtotal'] if base_cost[energy_category_id]['subtotal'] > 0.0 else None) result['reporting_period_cost']['total'] += reporting_cost[energy_category_id]['subtotal'] result['reporting_period_cost']['total_per_unit_area'] = \ result['reporting_period_cost']['total'] / space['area'] if space['area'] > 0.0 else None result['reporting_period_cost']['total_increment_rate'] = \ (result['reporting_period_cost']['total'] - result['base_period_cost']['total']) / \ result['reporting_period_cost']['total'] \ if result['reporting_period_cost']['total'] > Decimal(0.0) else None result['parameters'] = { "names": parameters_data['names'], "timestamps": parameters_data['timestamps'], "values": parameters_data['values'] } result['child_space_input'] = dict() result['child_space_input']['energy_category_names'] = list() # 1D array [energy category] result['child_space_input']['units'] = list() # 1D array [energy category] result['child_space_input']['child_space_names_array'] = list() # 2D array [energy category][child space] result['child_space_input']['subtotals_array'] = list() # 2D array [energy category][child space] result['child_space_input']['subtotals_in_kgce_array'] = list() # 2D array [energy category][child space] result['child_space_input']['subtotals_in_kgco2e_array'] = list() # 2D array [energy category][child space] if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: result['child_space_input']['energy_category_names'].append( energy_category_dict[energy_category_id]['name']) result['child_space_input']['units'].append( energy_category_dict[energy_category_id]['unit_of_measure']) result['child_space_input']['child_space_names_array'].append( child_space_input[energy_category_id]['child_space_names']) result['child_space_input']['subtotals_array'].append( child_space_input[energy_category_id]['subtotals']) result['child_space_input']['subtotals_in_kgce_array'].append( child_space_input[energy_category_id]['subtotals_in_kgce']) result['child_space_input']['subtotals_in_kgco2e_array'].append( child_space_input[energy_category_id]['subtotals_in_kgco2e']) result['child_space_cost'] = dict() result['child_space_cost']['energy_category_names'] = list() # 1D array [energy category] result['child_space_cost']['units'] = list() # 1D array [energy category] result['child_space_cost']['child_space_names_array'] = list() # 2D array [energy category][child space] result['child_space_cost']['subtotals_array'] = list() # 2D array [energy category][child space] if energy_category_set is not None and len(energy_category_set) > 0: for energy_category_id in energy_category_set: result['child_space_cost']['energy_category_names'].append( energy_category_dict[energy_category_id]['name']) result['child_space_cost']['units'].append(config.currency_unit) result['child_space_cost']['child_space_names_array'].append( child_space_cost[energy_category_id]['child_space_names']) result['child_space_cost']['subtotals_array'].append( child_space_cost[energy_category_id]['subtotals']) resp.body = json.dumps(result)
bbb9ab49c765200446265a8b66843165bf662912
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/c8697a4864f95672c58598eff207548b0bcc63e5-<__init__>-bug.py
f1f08670f92375243709b5a78775622ba949683e
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
776
py
def __init__(self, argument_spec): self.spec = argument_spec self.module = None self.init_module() self.interface = self.module.params['interface'] self.mode = self.module.params['mode'] self.state = self.module.params['state'] self.access_vlan = self.module.params['access_vlan'] self.native_vlan = self.module.params['native_vlan'] self.trunk_vlans = self.module.params['trunk_vlans'] self.host = self.module.params['host'] self.username = self.module.params['username'] self.port = self.module.params['port'] self.changed = False self.updates_cmd = list() self.results = dict() self.proposed = dict() self.existing = dict() self.end_state = dict() self.intf_info = dict() self.intf_type = None
fa8f1549524f0eccd088d762cb8dca59fd07e621
3e99db7d6c910bf9776561802fe60256e74a375b
/virtual/bin/pip3.6
0f29a919e0407b2f0d9ee5eff4eaeacae0191e8f
[ "MIT" ]
permissive
margaret254/Awwards
979f7a196b1f52ab0d9c9d6145df1f70703f497b
9af3de00c4200b86c92b16b141a4642fe8f02c87
refs/heads/master
2022-05-17T03:51:46.146152
2020-01-17T12:49:14
2020-01-17T12:49:14
233,032,878
0
1
null
2022-04-22T22:59:00
2020-01-10T11:26:53
Python
UTF-8
Python
false
false
250
6
#!/home/moringa/Documents/django/Awwards/virtual/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
5f24fc903847f0ff1332cc359731d9f2f9efbdcc
fdf1e1f4efc51bc024311d44a2fa4524f9b88bce
/girleffect/countries/migrations/0051_p1_changes.py
2cce8514dd59a78260aa4e6259c718870d2d8fee
[]
no_license
girleffect/girleffect.org
8327ffd6bbd1103033c92fbd4cbe5461aa1c7f03
55731b1c024f207211a161fd6d3ca796beea7a61
refs/heads/master
2023-04-07T21:40:43.910892
2022-06-14T11:50:21
2022-06-14T11:50:21
112,452,828
1
2
null
2023-04-01T12:05:55
2017-11-29T09:13:18
Python
UTF-8
Python
false
false
16,084
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2018-01-18 12:13 from __future__ import unicode_literals from django.db import migrations, models import girleffect.utils.models import wagtail.wagtailcore.blocks import wagtail.wagtailcore.fields import wagtail.wagtaildocs.blocks import wagtail.wagtailembeds.blocks import wagtail.wagtailimages.blocks import wagtail.wagtailsnippets.blocks class Migration(migrations.Migration): dependencies = [ ('countries', '0050_auto_20180105_1522'), ] operations = [ migrations.AlterField( model_name='countrypage', name='body', field=wagtail.wagtailcore.fields.StreamField((('heading', wagtail.wagtailcore.blocks.CharBlock(classname='full title')), ('body_text', wagtail.wagtailcore.blocks.StructBlock((('body', wagtail.wagtailcore.blocks.RichTextBlock(features=['h2', 'h3', 'h4', 'bold', 'italic', 'link', 'ol', 'ul', 'hr'], label='Body Text')), ('customisation', wagtail.wagtailcore.blocks.StructBlock((('background_image', wagtail.wagtailimages.blocks.ImageChooserBlock(required=False)), ('background_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False)), ('body_heading_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False))), required=False))))), ('large_text', wagtail.wagtailcore.blocks.StructBlock((('body', wagtail.wagtailcore.blocks.RichTextBlock(features=['bold', 'italic', 'link', 'document-link'], label='Large Text', required=False)), ('customisation', wagtail.wagtailcore.blocks.StructBlock((('background_image', wagtail.wagtailimages.blocks.ImageChooserBlock(required=False)), ('background_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False)), ('body_heading_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False))), required=False))))), ('extendable_body', wagtail.wagtailcore.blocks.StructBlock((('body_upper', wagtail.wagtailcore.blocks.RichTextBlock(features=['h2', 'h3', 'h4', 'bold', 'italic', 'link', 'ol', 'ul', 'hr'], label='Body Text')), ('extend_button_text', wagtail.wagtailcore.blocks.CharBlock(help_text='Customise text for the extend button', max_length=255, required=False)), ('collapse_button_text', wagtail.wagtailcore.blocks.CharBlock(help_text='Customise text for the collapse button', max_length=255, required=False)), ('body_lower', wagtail.wagtailcore.blocks.RichTextBlock(features=['h2', 'h3', 'h4', 'bold', 'italic', 'link', 'ol', 'ul', 'hr'], help_text='This body field is invisible until the user clicks the expand button', label='Extended body text')), ('customisation', wagtail.wagtailcore.blocks.StructBlock((('background_image', wagtail.wagtailimages.blocks.ImageChooserBlock(required=False)), ('background_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False)), ('body_heading_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False))), required=False))))), ('image', wagtail.wagtailcore.blocks.StructBlock((('image', wagtail.wagtailimages.blocks.ImageChooserBlock()), ('caption', wagtail.wagtailcore.blocks.CharBlock(required=False))))), ('quote', wagtail.wagtailcore.blocks.StructBlock((('quotes', wagtail.wagtailcore.blocks.ListBlock(wagtail.wagtailcore.blocks.StructBlock((('title', wagtail.wagtailcore.blocks.CharBlock(max_length=80, required=False)), ('image', wagtail.wagtailimages.blocks.ImageChooserBlock(required=False)), ('text', wagtail.wagtailcore.blocks.RichTextBlock(features=['bold', 'italic', 'ol', 'ul', 'link', 'document-link'], max_length=255, required=True)), ('citation', wagtail.wagtailcore.blocks.CharBlock(max_length=255, required=False)), ('link_block', wagtail.wagtailcore.blocks.StructBlock((('external_link', wagtail.wagtailcore.blocks.URLBlock(label='External Link', required=False)), ('internal_link', wagtail.wagtailcore.blocks.PageChooserBlock(label='Internal Link', required=False)), ('internal_link_anchor', wagtail.wagtailcore.blocks.CharBlock(label='Internal Link anchor', required=False)), ('document_link', wagtail.wagtaildocs.blocks.DocumentChooserBlock(label='Document Link', required=False)), ('link_text', wagtail.wagtailcore.blocks.CharBlock(label='Link Text', max_length=255, required=False))), required=False)), ('drop_shadow_options', wagtail.wagtailcore.blocks.StructBlock((('drop_shadow_is_on', wagtail.wagtailcore.blocks.BooleanBlock(help_text='Show or hide drop shadow', label='Drop Shadow Toggle', required=False)), ('text_hex', wagtail.wagtailcore.blocks.CharBlock(label='Text Hex Code', max_length=7, required=False))))), ('quote_mark_hex', wagtail.wagtailcore.blocks.CharBlock(label='Quote Mark Hex Code', max_length=7, required=False)))), icon='openquote', template='blocks/quote_block.html')), ('customisation', wagtail.wagtailcore.blocks.StructBlock((('background_image', wagtail.wagtailimages.blocks.ImageChooserBlock(required=False)), ('background_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False)), ('heading_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False))), required=False))))), ('video', wagtail.wagtailcore.blocks.StructBlock((('heading', wagtail.wagtailcore.blocks.CharBlock(max_length=30, required=False)), ('text', wagtail.wagtailcore.blocks.RichTextBlock(features=['bold', 'italic', 'ol', 'ul', 'link', 'document-link'], max_length=255, required=False)), ('youtube_embed', wagtail.wagtailembeds.blocks.EmbedBlock(help_text="Your YouTube URL goes here. Only YouTube video URLs will be accepted. The custom 'play' button will be created for valid YouTube URLs.", label='YouTube Video URL')), ('link', wagtail.wagtailcore.blocks.StructBlock((('external_link', wagtail.wagtailcore.blocks.URLBlock(label='External Link', required=False)), ('internal_link', wagtail.wagtailcore.blocks.PageChooserBlock(label='Internal Link', required=False)), ('internal_link_anchor', wagtail.wagtailcore.blocks.CharBlock(label='Internal Link anchor', required=False)), ('document_link', wagtail.wagtaildocs.blocks.DocumentChooserBlock(label='Document Link', required=False)), ('link_text', wagtail.wagtailcore.blocks.CharBlock(label='Link Text', max_length=255, required=False))), required=False)), ('customisation', wagtail.wagtailcore.blocks.StructBlock((('background_image', wagtail.wagtailimages.blocks.ImageChooserBlock(required=False)), ('background_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False))), required=False))), label='Girl Effect YouTube Video')), ('slider', wagtail.wagtailcore.blocks.StructBlock((('slider_delay', wagtail.wagtailcore.blocks.IntegerBlock(help_text='Enter the milliseconds of the delay between each slide', required=False)), ('slider_items', wagtail.wagtailcore.blocks.ListBlock(wagtail.wagtailcore.blocks.StructBlock((('image', wagtail.wagtailimages.blocks.ImageChooserBlock()), ('overview_title', wagtail.wagtailcore.blocks.CharBlock(help_text='Slider item overview title', max_length=255, required=False)), ('overview_title_shadow', wagtail.wagtailcore.blocks.StructBlock((('drop_shadow_is_on', wagtail.wagtailcore.blocks.BooleanBlock(help_text='Show or hide drop shadow', label='Drop Shadow Toggle', required=False)), ('text_hex', wagtail.wagtailcore.blocks.CharBlock(label='Text Hex Code', max_length=7, required=False))), required=False)), ('overview_text', wagtail.wagtailcore.blocks.TextBlock(help_text='Slider item overview text', required=False)), ('overview_text_shadow', wagtail.wagtailcore.blocks.StructBlock((('drop_shadow_is_on', wagtail.wagtailcore.blocks.BooleanBlock(help_text='Show or hide drop shadow', label='Drop Shadow Toggle', required=False)), ('text_hex', wagtail.wagtailcore.blocks.CharBlock(label='Text Hex Code', max_length=7, required=False))), required=False)), ('textbox_title', wagtail.wagtailcore.blocks.CharBlock(help_text='Slider item textbox title', max_length=255, required=False)), ('textbox_text', wagtail.wagtailcore.blocks.TextBlock(help_text='Slider item textbox text', required=False)), ('textbox_link', wagtail.wagtailcore.blocks.StructBlock((('external_link', wagtail.wagtailcore.blocks.URLBlock(label='External Link', required=False)), ('internal_link', wagtail.wagtailcore.blocks.PageChooserBlock(label='Internal Link', required=False)), ('internal_link_anchor', wagtail.wagtailcore.blocks.CharBlock(label='Internal Link anchor', required=False)), ('document_link', wagtail.wagtaildocs.blocks.DocumentChooserBlock(label='Document Link', required=False)), ('link_text', wagtail.wagtailcore.blocks.CharBlock(label='Link Text', max_length=255, required=False))), required=False))))))))), ('carousel_block', wagtail.wagtailcore.blocks.StreamBlock((('carousel_item', wagtail.wagtailcore.blocks.StructBlock((('image', wagtail.wagtailimages.blocks.ImageChooserBlock()), ('overview_title', wagtail.wagtailcore.blocks.CharBlock(help_text='Slider item overview title', max_length=255, required=False)), ('overview_title_shadow', wagtail.wagtailcore.blocks.StructBlock((('drop_shadow_is_on', wagtail.wagtailcore.blocks.BooleanBlock(help_text='Show or hide drop shadow', label='Drop Shadow Toggle', required=False)), ('text_hex', wagtail.wagtailcore.blocks.CharBlock(label='Text Hex Code', max_length=7, required=False))), required=False)), ('overview_text', wagtail.wagtailcore.blocks.TextBlock(help_text='Slider item overview text', required=False)), ('overview_text_shadow', wagtail.wagtailcore.blocks.StructBlock((('drop_shadow_is_on', wagtail.wagtailcore.blocks.BooleanBlock(help_text='Show or hide drop shadow', label='Drop Shadow Toggle', required=False)), ('text_hex', wagtail.wagtailcore.blocks.CharBlock(label='Text Hex Code', max_length=7, required=False))), required=False)), ('textbox_title', wagtail.wagtailcore.blocks.CharBlock(help_text='Slider item textbox title', max_length=255, required=False)), ('textbox_text', wagtail.wagtailcore.blocks.TextBlock(help_text='Slider item textbox text', required=False)), ('textbox_link', wagtail.wagtailcore.blocks.StructBlock((('external_link', wagtail.wagtailcore.blocks.URLBlock(label='External Link', required=False)), ('internal_link', wagtail.wagtailcore.blocks.PageChooserBlock(label='Internal Link', required=False)), ('internal_link_anchor', wagtail.wagtailcore.blocks.CharBlock(label='Internal Link anchor', required=False)), ('document_link', wagtail.wagtaildocs.blocks.DocumentChooserBlock(label='Document Link', required=False)), ('link_text', wagtail.wagtailcore.blocks.CharBlock(label='Link Text', max_length=255, required=False))), required=False)), ('slide_title', wagtail.wagtailcore.blocks.CharBlock(help_text='Title to appear at bottom of carousel, for example "Youth Brands"', max_length=255, required=False)), ('slide_logo', wagtail.wagtailimages.blocks.ImageChooserBlock(required=False)), ('slide_title_hex', wagtail.wagtailcore.blocks.CharBlock(help_text='Add valid hex for slide title and chevron colours.', max_length=7, required=False))))),), label='Carousel', max_num=3, min_num=2)), ('media_text_overlay', wagtail.wagtailcore.blocks.StructBlock((('title', wagtail.wagtailcore.blocks.CharBlock(help_text='Appears above the module.', label='Title Text', max_length=255, required=False)), ('image', wagtail.wagtailimages.blocks.ImageChooserBlock()), ('logo', wagtail.wagtailimages.blocks.ImageChooserBlock(label='Title Logo', required=False)), ('text', wagtail.wagtailcore.blocks.RichTextBlock(features=['bold', 'italic', 'ol', 'ul', 'link', 'document-link'], max_length=75, required=False)), ('link', wagtail.wagtailcore.blocks.StructBlock((('external_link', wagtail.wagtailcore.blocks.URLBlock(label='External Link', required=False)), ('internal_link', wagtail.wagtailcore.blocks.PageChooserBlock(label='Internal Link', required=False)), ('internal_link_anchor', wagtail.wagtailcore.blocks.CharBlock(label='Internal Link anchor', required=False)), ('document_link', wagtail.wagtaildocs.blocks.DocumentChooserBlock(label='Document Link', required=False)), ('link_text', wagtail.wagtailcore.blocks.CharBlock(label='Link Text', max_length=255, required=False))), required=False)), ('customisation', wagtail.wagtailcore.blocks.StructBlock((('background_image', wagtail.wagtailimages.blocks.ImageChooserBlock(required=False)), ('background_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False))), required=False))), label='Full Width Media with Text Overlay')), ('list_block', wagtail.wagtailcore.blocks.StructBlock((('list_block', wagtail.wagtailcore.blocks.ListBlock(wagtail.wagtailcore.blocks.StructBlock((('image', wagtail.wagtailimages.blocks.ImageChooserBlock(required=False)), ('title', wagtail.wagtailcore.blocks.CharBlock(max_length=255, required=False)), ('description', wagtail.wagtailcore.blocks.RichTextBlock(features=['bold', 'italic', 'link', 'document-link'], icon='pilcrow', max_length=250, required=False)), ('link', wagtail.wagtailcore.blocks.StructBlock((('external_link', wagtail.wagtailcore.blocks.URLBlock(label='External Link', required=False)), ('internal_link', wagtail.wagtailcore.blocks.PageChooserBlock(label='Internal Link', required=False)), ('internal_link_anchor', wagtail.wagtailcore.blocks.CharBlock(label='Internal Link anchor', required=False)), ('document_link', wagtail.wagtaildocs.blocks.DocumentChooserBlock(label='Document Link', required=False)), ('link_text', wagtail.wagtailcore.blocks.CharBlock(label='Link Text', max_length=255, required=False))), required=False)))))), ('customisation', wagtail.wagtailcore.blocks.StructBlock((('background_image', wagtail.wagtailimages.blocks.ImageChooserBlock(required=False)), ('background_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False)), ('heading_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False))), required=False))))), ('link_row', wagtail.wagtailcore.blocks.ListBlock(wagtail.wagtailcore.blocks.StructBlock((('external_link', wagtail.wagtailcore.blocks.URLBlock(label='External Link', required=False)), ('internal_link', wagtail.wagtailcore.blocks.PageChooserBlock(label='Internal Link', required=False)), ('internal_link_anchor', wagtail.wagtailcore.blocks.CharBlock(label='Internal Link anchor', required=False)), ('document_link', wagtail.wagtaildocs.blocks.DocumentChooserBlock(label='Document Link', required=False)), ('link_text', wagtail.wagtailcore.blocks.CharBlock(label='Link Text', max_length=255, required=False)))), icon='link', template='blocks/inline_link_block.html')), ('anchor', wagtail.wagtailcore.blocks.StructBlock((('anchor', wagtail.wagtailcore.blocks.CharBlock()),))), ('statistic', wagtail.wagtailcore.blocks.StructBlock((('title', wagtail.wagtailcore.blocks.CharBlock(max_length=255, required=False)), ('statistics', wagtail.wagtailcore.blocks.ListBlock(wagtail.wagtailsnippets.blocks.SnippetChooserBlock(girleffect.utils.models.Statistic))), ('link', wagtail.wagtailcore.blocks.StructBlock((('external_link', wagtail.wagtailcore.blocks.URLBlock(label='External Link', required=False)), ('internal_link', wagtail.wagtailcore.blocks.PageChooserBlock(label='Internal Link', required=False)), ('internal_link_anchor', wagtail.wagtailcore.blocks.CharBlock(label='Internal Link anchor', required=False)), ('document_link', wagtail.wagtaildocs.blocks.DocumentChooserBlock(label='Document Link', required=False)), ('link_text', wagtail.wagtailcore.blocks.CharBlock(label='Link Text', max_length=255, required=False))), required=False)), ('customisation', wagtail.wagtailcore.blocks.StructBlock((('background_image', wagtail.wagtailimages.blocks.ImageChooserBlock(required=False)), ('background_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False)), ('heading_hex', wagtail.wagtailcore.blocks.CharBlock(max_length=7, required=False))), required=False))), label='Statistic Block')), ('call_to_action', wagtail.wagtailsnippets.blocks.SnippetChooserBlock(girleffect.utils.models.CallToActionSnippet, template='blocks/call_to_action.html')))), ), migrations.AlterField( model_name='countrypage', name='hero_strapline', field=models.CharField(blank=True, max_length=255), ), ]
74d87371bae04314db7cc6408b89dcbd74ccc9ab
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-config/huaweicloudsdkconfig/v1/model/__init__.py
6c754c93f34dbc7c3033769264f1ce7cc41e9af4
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
23,171
py
# coding: utf-8 from __future__ import absolute_import # import models into model package from huaweicloudsdkconfig.v1.model.account_aggregation_source import AccountAggregationSource from huaweicloudsdkconfig.v1.model.aggregate_compliance_detail_request import AggregateComplianceDetailRequest from huaweicloudsdkconfig.v1.model.aggregate_discovered_resource_counts_request import AggregateDiscoveredResourceCountsRequest from huaweicloudsdkconfig.v1.model.aggregate_discovered_resources_request import AggregateDiscoveredResourcesRequest from huaweicloudsdkconfig.v1.model.aggregate_policy_assignment_detail_request import AggregatePolicyAssignmentDetailRequest from huaweicloudsdkconfig.v1.model.aggregate_policy_assignments import AggregatePolicyAssignments from huaweicloudsdkconfig.v1.model.aggregate_policy_assignments_filters import AggregatePolicyAssignmentsFilters from huaweicloudsdkconfig.v1.model.aggregate_policy_assignments_request import AggregatePolicyAssignmentsRequest from huaweicloudsdkconfig.v1.model.aggregate_policy_compliance_summary_result import AggregatePolicyComplianceSummaryResult from huaweicloudsdkconfig.v1.model.aggregate_policy_states_request import AggregatePolicyStatesRequest from huaweicloudsdkconfig.v1.model.aggregate_resource_config_request import AggregateResourceConfigRequest from huaweicloudsdkconfig.v1.model.aggregated_source_status import AggregatedSourceStatus from huaweicloudsdkconfig.v1.model.aggregation_authorization_request import AggregationAuthorizationRequest from huaweicloudsdkconfig.v1.model.aggregation_authorization_resp import AggregationAuthorizationResp from huaweicloudsdkconfig.v1.model.channel_config_body import ChannelConfigBody from huaweicloudsdkconfig.v1.model.collect_all_resources_summary_request import CollectAllResourcesSummaryRequest from huaweicloudsdkconfig.v1.model.collect_all_resources_summary_response import CollectAllResourcesSummaryResponse from huaweicloudsdkconfig.v1.model.collect_conformance_pack_compliance_summary_request import CollectConformancePackComplianceSummaryRequest from huaweicloudsdkconfig.v1.model.collect_conformance_pack_compliance_summary_response import CollectConformancePackComplianceSummaryResponse from huaweicloudsdkconfig.v1.model.compliance import Compliance from huaweicloudsdkconfig.v1.model.configuration_aggregator_request import ConfigurationAggregatorRequest from huaweicloudsdkconfig.v1.model.configuration_aggregator_resp import ConfigurationAggregatorResp from huaweicloudsdkconfig.v1.model.conformance_pack import ConformancePack from huaweicloudsdkconfig.v1.model.conformance_pack_compliance import ConformancePackCompliance from huaweicloudsdkconfig.v1.model.conformance_pack_compliance_detail import ConformancePackComplianceDetail from huaweicloudsdkconfig.v1.model.conformance_pack_compliance_summary import ConformancePackComplianceSummary from huaweicloudsdkconfig.v1.model.conformance_pack_request_body import ConformancePackRequestBody from huaweicloudsdkconfig.v1.model.conformance_pack_score import ConformancePackScore from huaweicloudsdkconfig.v1.model.conformance_pack_template import ConformancePackTemplate from huaweicloudsdkconfig.v1.model.count_all_resources_request import CountAllResourcesRequest from huaweicloudsdkconfig.v1.model.count_all_resources_response import CountAllResourcesResponse from huaweicloudsdkconfig.v1.model.create_aggregation_authorization_request import CreateAggregationAuthorizationRequest from huaweicloudsdkconfig.v1.model.create_aggregation_authorization_response import CreateAggregationAuthorizationResponse from huaweicloudsdkconfig.v1.model.create_configuration_aggregator_request import CreateConfigurationAggregatorRequest from huaweicloudsdkconfig.v1.model.create_configuration_aggregator_response import CreateConfigurationAggregatorResponse from huaweicloudsdkconfig.v1.model.create_conformance_pack_request import CreateConformancePackRequest from huaweicloudsdkconfig.v1.model.create_conformance_pack_response import CreateConformancePackResponse from huaweicloudsdkconfig.v1.model.create_organization_policy_assignment_request import CreateOrganizationPolicyAssignmentRequest from huaweicloudsdkconfig.v1.model.create_organization_policy_assignment_response import CreateOrganizationPolicyAssignmentResponse from huaweicloudsdkconfig.v1.model.create_policy_assignments_request import CreatePolicyAssignmentsRequest from huaweicloudsdkconfig.v1.model.create_policy_assignments_response import CreatePolicyAssignmentsResponse from huaweicloudsdkconfig.v1.model.create_stored_query_request import CreateStoredQueryRequest from huaweicloudsdkconfig.v1.model.create_stored_query_response import CreateStoredQueryResponse from huaweicloudsdkconfig.v1.model.create_tracker_config_request import CreateTrackerConfigRequest from huaweicloudsdkconfig.v1.model.create_tracker_config_response import CreateTrackerConfigResponse from huaweicloudsdkconfig.v1.model.custom_policy import CustomPolicy from huaweicloudsdkconfig.v1.model.delete_aggregation_authorization_request import DeleteAggregationAuthorizationRequest from huaweicloudsdkconfig.v1.model.delete_aggregation_authorization_response import DeleteAggregationAuthorizationResponse from huaweicloudsdkconfig.v1.model.delete_configuration_aggregator_request import DeleteConfigurationAggregatorRequest from huaweicloudsdkconfig.v1.model.delete_configuration_aggregator_response import DeleteConfigurationAggregatorResponse from huaweicloudsdkconfig.v1.model.delete_conformance_pack_request import DeleteConformancePackRequest from huaweicloudsdkconfig.v1.model.delete_conformance_pack_response import DeleteConformancePackResponse from huaweicloudsdkconfig.v1.model.delete_organization_policy_assignment_request import DeleteOrganizationPolicyAssignmentRequest from huaweicloudsdkconfig.v1.model.delete_organization_policy_assignment_response import DeleteOrganizationPolicyAssignmentResponse from huaweicloudsdkconfig.v1.model.delete_pending_aggregation_request_request import DeletePendingAggregationRequestRequest from huaweicloudsdkconfig.v1.model.delete_pending_aggregation_request_response import DeletePendingAggregationRequestResponse from huaweicloudsdkconfig.v1.model.delete_policy_assignment_request import DeletePolicyAssignmentRequest from huaweicloudsdkconfig.v1.model.delete_policy_assignment_response import DeletePolicyAssignmentResponse from huaweicloudsdkconfig.v1.model.delete_stored_query_request import DeleteStoredQueryRequest from huaweicloudsdkconfig.v1.model.delete_stored_query_response import DeleteStoredQueryResponse from huaweicloudsdkconfig.v1.model.delete_tracker_config_request import DeleteTrackerConfigRequest from huaweicloudsdkconfig.v1.model.delete_tracker_config_response import DeleteTrackerConfigResponse from huaweicloudsdkconfig.v1.model.disable_policy_assignment_request import DisablePolicyAssignmentRequest from huaweicloudsdkconfig.v1.model.disable_policy_assignment_response import DisablePolicyAssignmentResponse from huaweicloudsdkconfig.v1.model.enable_policy_assignment_request import EnablePolicyAssignmentRequest from huaweicloudsdkconfig.v1.model.enable_policy_assignment_response import EnablePolicyAssignmentResponse from huaweicloudsdkconfig.v1.model.grouped_resource_count import GroupedResourceCount from huaweicloudsdkconfig.v1.model.history_item import HistoryItem from huaweicloudsdkconfig.v1.model.list_aggregate_compliance_by_policy_assignment_request import ListAggregateComplianceByPolicyAssignmentRequest from huaweicloudsdkconfig.v1.model.list_aggregate_compliance_by_policy_assignment_response import ListAggregateComplianceByPolicyAssignmentResponse from huaweicloudsdkconfig.v1.model.list_aggregate_discovered_resources_request import ListAggregateDiscoveredResourcesRequest from huaweicloudsdkconfig.v1.model.list_aggregate_discovered_resources_response import ListAggregateDiscoveredResourcesResponse from huaweicloudsdkconfig.v1.model.list_aggregation_authorizations_request import ListAggregationAuthorizationsRequest from huaweicloudsdkconfig.v1.model.list_aggregation_authorizations_response import ListAggregationAuthorizationsResponse from huaweicloudsdkconfig.v1.model.list_all_resources_request import ListAllResourcesRequest from huaweicloudsdkconfig.v1.model.list_all_resources_response import ListAllResourcesResponse from huaweicloudsdkconfig.v1.model.list_all_tags_request import ListAllTagsRequest from huaweicloudsdkconfig.v1.model.list_all_tags_response import ListAllTagsResponse from huaweicloudsdkconfig.v1.model.list_built_in_conformance_pack_templates_request import ListBuiltInConformancePackTemplatesRequest from huaweicloudsdkconfig.v1.model.list_built_in_conformance_pack_templates_response import ListBuiltInConformancePackTemplatesResponse from huaweicloudsdkconfig.v1.model.list_built_in_policy_definitions_request import ListBuiltInPolicyDefinitionsRequest from huaweicloudsdkconfig.v1.model.list_built_in_policy_definitions_response import ListBuiltInPolicyDefinitionsResponse from huaweicloudsdkconfig.v1.model.list_configuration_aggregators_request import ListConfigurationAggregatorsRequest from huaweicloudsdkconfig.v1.model.list_configuration_aggregators_response import ListConfigurationAggregatorsResponse from huaweicloudsdkconfig.v1.model.list_conformance_pack_compliance_by_pack_id_request import ListConformancePackComplianceByPackIdRequest from huaweicloudsdkconfig.v1.model.list_conformance_pack_compliance_by_pack_id_response import ListConformancePackComplianceByPackIdResponse from huaweicloudsdkconfig.v1.model.list_conformance_pack_compliance_details_by_pack_id_request import ListConformancePackComplianceDetailsByPackIdRequest from huaweicloudsdkconfig.v1.model.list_conformance_pack_compliance_details_by_pack_id_response import ListConformancePackComplianceDetailsByPackIdResponse from huaweicloudsdkconfig.v1.model.list_conformance_pack_compliance_scores_request import ListConformancePackComplianceScoresRequest from huaweicloudsdkconfig.v1.model.list_conformance_pack_compliance_scores_response import ListConformancePackComplianceScoresResponse from huaweicloudsdkconfig.v1.model.list_conformance_packs_request import ListConformancePacksRequest from huaweicloudsdkconfig.v1.model.list_conformance_packs_response import ListConformancePacksResponse from huaweicloudsdkconfig.v1.model.list_organization_policy_assignments_request import ListOrganizationPolicyAssignmentsRequest from huaweicloudsdkconfig.v1.model.list_organization_policy_assignments_response import ListOrganizationPolicyAssignmentsResponse from huaweicloudsdkconfig.v1.model.list_pending_aggregation_requests_request import ListPendingAggregationRequestsRequest from huaweicloudsdkconfig.v1.model.list_pending_aggregation_requests_response import ListPendingAggregationRequestsResponse from huaweicloudsdkconfig.v1.model.list_policy_assignments_request import ListPolicyAssignmentsRequest from huaweicloudsdkconfig.v1.model.list_policy_assignments_response import ListPolicyAssignmentsResponse from huaweicloudsdkconfig.v1.model.list_policy_states_by_assignment_id_request import ListPolicyStatesByAssignmentIdRequest from huaweicloudsdkconfig.v1.model.list_policy_states_by_assignment_id_response import ListPolicyStatesByAssignmentIdResponse from huaweicloudsdkconfig.v1.model.list_policy_states_by_domain_id_request import ListPolicyStatesByDomainIdRequest from huaweicloudsdkconfig.v1.model.list_policy_states_by_domain_id_response import ListPolicyStatesByDomainIdResponse from huaweicloudsdkconfig.v1.model.list_policy_states_by_resource_id_request import ListPolicyStatesByResourceIdRequest from huaweicloudsdkconfig.v1.model.list_policy_states_by_resource_id_response import ListPolicyStatesByResourceIdResponse from huaweicloudsdkconfig.v1.model.list_providers_request import ListProvidersRequest from huaweicloudsdkconfig.v1.model.list_providers_response import ListProvidersResponse from huaweicloudsdkconfig.v1.model.list_regions_request import ListRegionsRequest from huaweicloudsdkconfig.v1.model.list_regions_response import ListRegionsResponse from huaweicloudsdkconfig.v1.model.list_resources_request import ListResourcesRequest from huaweicloudsdkconfig.v1.model.list_resources_response import ListResourcesResponse from huaweicloudsdkconfig.v1.model.list_schemas_request import ListSchemasRequest from huaweicloudsdkconfig.v1.model.list_schemas_response import ListSchemasResponse from huaweicloudsdkconfig.v1.model.list_stored_queries_request import ListStoredQueriesRequest from huaweicloudsdkconfig.v1.model.list_stored_queries_response import ListStoredQueriesResponse from huaweicloudsdkconfig.v1.model.managed_policy_assignment_metadata import ManagedPolicyAssignmentMetadata from huaweicloudsdkconfig.v1.model.organization_policy_assignment_detailed_status_response import OrganizationPolicyAssignmentDetailedStatusResponse from huaweicloudsdkconfig.v1.model.organization_policy_assignment_request import OrganizationPolicyAssignmentRequest from huaweicloudsdkconfig.v1.model.organization_policy_assignment_response import OrganizationPolicyAssignmentResponse from huaweicloudsdkconfig.v1.model.organization_policy_assignment_status_response import OrganizationPolicyAssignmentStatusResponse from huaweicloudsdkconfig.v1.model.page_info import PageInfo from huaweicloudsdkconfig.v1.model.pending_aggregation_request import PendingAggregationRequest from huaweicloudsdkconfig.v1.model.policy_assignment import PolicyAssignment from huaweicloudsdkconfig.v1.model.policy_assignment_request_body import PolicyAssignmentRequestBody from huaweicloudsdkconfig.v1.model.policy_compliance_summary_unit import PolicyComplianceSummaryUnit from huaweicloudsdkconfig.v1.model.policy_definition import PolicyDefinition from huaweicloudsdkconfig.v1.model.policy_definition_default_resource_types import PolicyDefinitionDefaultResourceTypes from huaweicloudsdkconfig.v1.model.policy_filter_definition import PolicyFilterDefinition from huaweicloudsdkconfig.v1.model.policy_parameter_definition import PolicyParameterDefinition from huaweicloudsdkconfig.v1.model.policy_parameter_value import PolicyParameterValue from huaweicloudsdkconfig.v1.model.policy_resource import PolicyResource from huaweicloudsdkconfig.v1.model.policy_state import PolicyState from huaweicloudsdkconfig.v1.model.policy_state_request_body import PolicyStateRequestBody from huaweicloudsdkconfig.v1.model.query_info import QueryInfo from huaweicloudsdkconfig.v1.model.query_run_request_body import QueryRunRequestBody from huaweicloudsdkconfig.v1.model.region import Region from huaweicloudsdkconfig.v1.model.resource_counts_filters import ResourceCountsFilters from huaweicloudsdkconfig.v1.model.resource_entity import ResourceEntity from huaweicloudsdkconfig.v1.model.resource_identifier import ResourceIdentifier from huaweicloudsdkconfig.v1.model.resource_provider_response import ResourceProviderResponse from huaweicloudsdkconfig.v1.model.resource_relation import ResourceRelation from huaweicloudsdkconfig.v1.model.resource_schema_response import ResourceSchemaResponse from huaweicloudsdkconfig.v1.model.resource_summary_response_item import ResourceSummaryResponseItem from huaweicloudsdkconfig.v1.model.resource_summary_response_item_regions import ResourceSummaryResponseItemRegions from huaweicloudsdkconfig.v1.model.resource_summary_response_item_types import ResourceSummaryResponseItemTypes from huaweicloudsdkconfig.v1.model.resource_type_response import ResourceTypeResponse from huaweicloudsdkconfig.v1.model.resources_filters import ResourcesFilters from huaweicloudsdkconfig.v1.model.run_aggregate_resource_query_request import RunAggregateResourceQueryRequest from huaweicloudsdkconfig.v1.model.run_aggregate_resource_query_response import RunAggregateResourceQueryResponse from huaweicloudsdkconfig.v1.model.run_evaluation_by_policy_assignment_id_request import RunEvaluationByPolicyAssignmentIdRequest from huaweicloudsdkconfig.v1.model.run_evaluation_by_policy_assignment_id_response import RunEvaluationByPolicyAssignmentIdResponse from huaweicloudsdkconfig.v1.model.run_query_request import RunQueryRequest from huaweicloudsdkconfig.v1.model.run_query_response import RunQueryResponse from huaweicloudsdkconfig.v1.model.selector_config_body import SelectorConfigBody from huaweicloudsdkconfig.v1.model.show_aggregate_compliance_details_by_policy_assignment_request import ShowAggregateComplianceDetailsByPolicyAssignmentRequest from huaweicloudsdkconfig.v1.model.show_aggregate_compliance_details_by_policy_assignment_response import ShowAggregateComplianceDetailsByPolicyAssignmentResponse from huaweicloudsdkconfig.v1.model.show_aggregate_discovered_resource_counts_request import ShowAggregateDiscoveredResourceCountsRequest from huaweicloudsdkconfig.v1.model.show_aggregate_discovered_resource_counts_response import ShowAggregateDiscoveredResourceCountsResponse from huaweicloudsdkconfig.v1.model.show_aggregate_policy_assignment_detail_request import ShowAggregatePolicyAssignmentDetailRequest from huaweicloudsdkconfig.v1.model.show_aggregate_policy_assignment_detail_response import ShowAggregatePolicyAssignmentDetailResponse from huaweicloudsdkconfig.v1.model.show_aggregate_policy_state_compliance_summary_request import ShowAggregatePolicyStateComplianceSummaryRequest from huaweicloudsdkconfig.v1.model.show_aggregate_policy_state_compliance_summary_response import ShowAggregatePolicyStateComplianceSummaryResponse from huaweicloudsdkconfig.v1.model.show_aggregate_resource_config_request import ShowAggregateResourceConfigRequest from huaweicloudsdkconfig.v1.model.show_aggregate_resource_config_response import ShowAggregateResourceConfigResponse from huaweicloudsdkconfig.v1.model.show_built_in_conformance_pack_template_request import ShowBuiltInConformancePackTemplateRequest from huaweicloudsdkconfig.v1.model.show_built_in_conformance_pack_template_response import ShowBuiltInConformancePackTemplateResponse from huaweicloudsdkconfig.v1.model.show_built_in_policy_definition_request import ShowBuiltInPolicyDefinitionRequest from huaweicloudsdkconfig.v1.model.show_built_in_policy_definition_response import ShowBuiltInPolicyDefinitionResponse from huaweicloudsdkconfig.v1.model.show_configuration_aggregator_request import ShowConfigurationAggregatorRequest from huaweicloudsdkconfig.v1.model.show_configuration_aggregator_response import ShowConfigurationAggregatorResponse from huaweicloudsdkconfig.v1.model.show_configuration_aggregator_sources_status_request import ShowConfigurationAggregatorSourcesStatusRequest from huaweicloudsdkconfig.v1.model.show_configuration_aggregator_sources_status_response import ShowConfigurationAggregatorSourcesStatusResponse from huaweicloudsdkconfig.v1.model.show_conformance_pack_request import ShowConformancePackRequest from huaweicloudsdkconfig.v1.model.show_conformance_pack_response import ShowConformancePackResponse from huaweicloudsdkconfig.v1.model.show_evaluation_state_by_assignment_id_request import ShowEvaluationStateByAssignmentIdRequest from huaweicloudsdkconfig.v1.model.show_evaluation_state_by_assignment_id_response import ShowEvaluationStateByAssignmentIdResponse from huaweicloudsdkconfig.v1.model.show_organization_policy_assignment_detailed_status_request import ShowOrganizationPolicyAssignmentDetailedStatusRequest from huaweicloudsdkconfig.v1.model.show_organization_policy_assignment_detailed_status_response import ShowOrganizationPolicyAssignmentDetailedStatusResponse from huaweicloudsdkconfig.v1.model.show_organization_policy_assignment_request import ShowOrganizationPolicyAssignmentRequest from huaweicloudsdkconfig.v1.model.show_organization_policy_assignment_response import ShowOrganizationPolicyAssignmentResponse from huaweicloudsdkconfig.v1.model.show_organization_policy_assignment_statuses_request import ShowOrganizationPolicyAssignmentStatusesRequest from huaweicloudsdkconfig.v1.model.show_organization_policy_assignment_statuses_response import ShowOrganizationPolicyAssignmentStatusesResponse from huaweicloudsdkconfig.v1.model.show_policy_assignment_request import ShowPolicyAssignmentRequest from huaweicloudsdkconfig.v1.model.show_policy_assignment_response import ShowPolicyAssignmentResponse from huaweicloudsdkconfig.v1.model.show_resource_by_id_request import ShowResourceByIdRequest from huaweicloudsdkconfig.v1.model.show_resource_by_id_response import ShowResourceByIdResponse from huaweicloudsdkconfig.v1.model.show_resource_detail_request import ShowResourceDetailRequest from huaweicloudsdkconfig.v1.model.show_resource_detail_response import ShowResourceDetailResponse from huaweicloudsdkconfig.v1.model.show_resource_history_request import ShowResourceHistoryRequest from huaweicloudsdkconfig.v1.model.show_resource_history_response import ShowResourceHistoryResponse from huaweicloudsdkconfig.v1.model.show_resource_relations_detail_request import ShowResourceRelationsDetailRequest from huaweicloudsdkconfig.v1.model.show_resource_relations_detail_response import ShowResourceRelationsDetailResponse from huaweicloudsdkconfig.v1.model.show_resource_relations_request import ShowResourceRelationsRequest from huaweicloudsdkconfig.v1.model.show_resource_relations_response import ShowResourceRelationsResponse from huaweicloudsdkconfig.v1.model.show_stored_query_request import ShowStoredQueryRequest from huaweicloudsdkconfig.v1.model.show_stored_query_response import ShowStoredQueryResponse from huaweicloudsdkconfig.v1.model.show_tracker_config_request import ShowTrackerConfigRequest from huaweicloudsdkconfig.v1.model.show_tracker_config_response import ShowTrackerConfigResponse from huaweicloudsdkconfig.v1.model.stored_query import StoredQuery from huaweicloudsdkconfig.v1.model.stored_query_request_body import StoredQueryRequestBody from huaweicloudsdkconfig.v1.model.tag_detail import TagDetail from huaweicloudsdkconfig.v1.model.template_parameter_definition import TemplateParameterDefinition from huaweicloudsdkconfig.v1.model.tracker_config_body import TrackerConfigBody from huaweicloudsdkconfig.v1.model.tracker_obs_channel_config_body import TrackerOBSChannelConfigBody from huaweicloudsdkconfig.v1.model.tracker_smn_channel_config_body import TrackerSMNChannelConfigBody from huaweicloudsdkconfig.v1.model.update_configuration_aggregator_request import UpdateConfigurationAggregatorRequest from huaweicloudsdkconfig.v1.model.update_configuration_aggregator_response import UpdateConfigurationAggregatorResponse from huaweicloudsdkconfig.v1.model.update_policy_assignment_request import UpdatePolicyAssignmentRequest from huaweicloudsdkconfig.v1.model.update_policy_assignment_response import UpdatePolicyAssignmentResponse from huaweicloudsdkconfig.v1.model.update_policy_state_request import UpdatePolicyStateRequest from huaweicloudsdkconfig.v1.model.update_policy_state_response import UpdatePolicyStateResponse from huaweicloudsdkconfig.v1.model.update_stored_query_request import UpdateStoredQueryRequest from huaweicloudsdkconfig.v1.model.update_stored_query_response import UpdateStoredQueryResponse from huaweicloudsdkconfig.v1.model.vars_structure import VarsStructure
3eae3203390b548511b0f67aaa046b3793f0e674
caace044baf7a6f2b0bda65ae361eed06bddfc3c
/dailyQuestion/2020/2020-05/05-30/python/solution_mono_stack.py
c291e66a6dccdffb17a62db905e6b0ac18ddf515
[ "Apache-2.0" ]
permissive
russellgao/algorithm
fd6126e89c40d7d351c53bbd5fde690c9be899ef
ad5e724d20a8492b8eba03fc0f24e4ff5964b3ea
refs/heads/master
2023-03-28T03:00:02.370660
2021-03-28T10:56:38
2021-03-28T10:56:38
259,038,372
3
0
null
null
null
null
UTF-8
Python
false
false
808
py
# 单调栈 def largestRectangleArea(heights: [int]) -> int: n = len(heights) left, right = [0] * n, [0] * n mono_stack = [] for i in range(n): while mono_stack and heights[mono_stack[-1]] >= heights[i]: mono_stack.pop() left[i] = mono_stack[-1] if mono_stack else -1 mono_stack.append(i) mono_stack = [] for i in range(n - 1, -1, -1): while mono_stack and heights[mono_stack[-1]] >= heights[i]: mono_stack.pop() right[i] = mono_stack[-1] if mono_stack else n mono_stack.append(i) result = max((right[i] - left[i] - 1) * heights[i] for i in range(n)) if n > 0 else 0 return result if __name__ == "__main__": heights = [2, 1, 5, 6, 2, 3] result = largestRectangleArea(heights) print(result)
d65b720c7fe482af48ba1cb8dacd00f00571ed21
dfffc423a768475e680f954e3eea6c944df965d5
/main.py
72aba8f9dea35dccd8ba3daf532a91ab0b87e329
[]
no_license
ssfdust/wechatheadless
13948ea86cfd7cb71d6cdea74fc4931b4d111843
544a8a74c5adcabb35b0828b52de49df43f222e1
refs/heads/master
2023-05-10T05:29:29.290177
2021-06-01T02:57:34
2021-06-01T02:57:34
372,156,803
0
0
null
null
null
null
UTF-8
Python
false
false
1,436
py
from selenium import webdriver from pathlib import Path from selenium.webdriver.firefox.options import Options from time import sleep from selenium.common.exceptions import NoSuchElementException import os url_prefix = os.environ.get("INJECTOR_URL_PREFIX", "https://127.0.0.1") injectjs = f""" var script = document.createElement('script') script.src = '{url_prefix}/injector.js' document.getElementsByTagName('head')[0].appendChild(script) """ options = Options() options.headless = True # profile_path = Path(__file__).parent / "ffprofile" geckodriver_path = str(Path(__file__).parent / "bin/geckodriver") driver = webdriver.Firefox(options=options, executable_path=geckodriver_path) driver.get("https://wx.qq.com") sleep(8) element = driver.find_element_by_xpath("/html/body/div[1]/div[2]/div[1]/img") element.screenshot("./qrcode.png") print("生成qrcode.png") while True: try: driver.find_element_by_xpath("/html/body/div[1]/div/div[1]/div[1]/div[1]/img") os.remove("./qrcode.png") print("删除qrcode.png") break except NoSuchElementException: print("not login") sleep(2) def load(webdriver): webdriver.execute_script(injectjs) sleep(2) webdriver.execute_script("injector.run()") def reload_(webdriver): webdriver.refresh() sleep(6) load(webdriver) load(driver) while True: sleep(7200) print("刷新页面") reload_(driver)
1c81599ad7026475eacd7d54f0fd2ea3bc926b78
6d8a42478faa8eedb7efcc60aeeeb3d34beb0fab
/lottery/models.py
adaf021fcbdd7f4206fbfd81fd8b4c07efa1f61a
[]
no_license
zjleifeng/lottery
7509c45d39e71f3e47c4ffed18723335888a3c96
bb6e7ba9acff0659a82d431bee17a2c6f7c65731
refs/heads/master
2020-04-11T11:00:44.328193
2018-07-05T15:47:14
2018-07-05T15:47:14
77,206,353
0
0
null
null
null
null
UTF-8
Python
false
false
1,407
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2016/12/8 12:35 # @Author : eric # @Site : # @File : models.py # @Software: PyCharm from django.db import models # Create your models here. class Person(models.Model): name=models.CharField(max_length=50,verbose_name=u'姓名') tel=models.BigIntegerField(verbose_name=u'手机号码') num=models.CharField(max_length=50,default=100,verbose_name=u'奖券号码') isWin=models.IntegerField(default=0,verbose_name=u'是否中奖') mWin=models.IntegerField(default=0) cWin=models.IntegerField(default=1) class Meta: verbose_name_plural=u'抽奖人员信息' def __unicode__(self): return self.name __str__=__unicode__ class Result(models.Model): uid=models.IntegerField() name=models.CharField(max_length=50,verbose_name=u'中奖人姓名') tel=models.CharField(max_length=50,verbose_name=u'中奖人电话') num=models.CharField(max_length=50,default=100,verbose_name=u'奖券号码') createtime=models.DateTimeField(auto_now_add=True,verbose_name=u'中奖时间') awardname=models.CharField(max_length=50,verbose_name=u'奖项名称') isdel=models.IntegerField(default=0,verbose_name=u'是否被删除1是0否') class Meta: verbose_name_plural=u'中奖人员信息' def __unicode__(self): return self.name __str__=__unicode__
8b9d544b0d8141bf0019d1b34f8dda0b58913596
83686519904694228204a481aa949ded7b4f65f8
/Python/python_stack/Django/JDsTruckTracker/apps/truck_tracker/urls.py
3580bb4c4738300c450ae5a810b1e56a2aebd98a
[]
no_license
andres121985/DojoAssignments
5621a9253ab5113a5038f62474582a59fec11a27
62f525e8574628c72e01df5725a2495bdeb5d3a9
refs/heads/master
2021-01-23T12:44:48.501795
2017-06-02T18:40:33
2017-06-02T18:40:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.index), url(r'^trucks$', views.trucks), url(r'^addtruck$', views.add_truck), url(r'^add$', views.add), url(r'^delete$', views.delete), url(r'^logout$', views.logout), url(r'^login$', views.login), url(r'^register$', views.register), url(r'^search$', views.search), url(r'^category/(?P<id>\d+)$', views.category), url(r'^category/(?P<id>\d+)/(?P<truck_id>\d+)$', views.specific_truck), ]
bea3b00a62b7195cd1722b1ab7beea5807b6cd01
ea94fc6a5c16f3266a7a48b005b3f10fef92c845
/src/maths/nodes/ListNode.py
90819c6904b829984f52466b69ed61fda4235ed3
[ "MIT" ]
permissive
Grahack/Turing
ea340ee3f3db33a27bdf4a053f34f4c9bec525c3
fad060121d45b91f82af8952dd9f64e5d7bd9ed2
refs/heads/master
2020-03-17T00:49:45.176435
2018-05-11T20:07:11
2018-05-11T20:07:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
774
py
# -*- coding: utf-8 -*- import util.html from util.math import proper_str from .AstNode import * class ListNode(AstNode): """Identifier node value -- value (list of AstNode)""" value = None def __init__(self, value: List[AstNode]): super().__init__(True) self.value = value def __str__(self): return "[List %s]" % self.value def __repr__(self): return "ListNode(%r)" % self.value def code(self, bb=False) -> str: return (util.html.sanitize("[%s]") if bb else "[%s]") % proper_str([node.code(bb) for node in self.value])[1:-1] def python(self) -> str: return "list([%s])" % ", ".join(x.python() for x in self.value) def children(self) -> List["AstNode"]: return self.value
2269e3f344eb0175a3534a568e2586a9132d6e67
2db5bf5832ddb99e93bb949ace1fad1fde847319
/beginLearn/AndrewNg/exercise/c2/L_layer_network.py
64efd67d5e58e163209f4e2f658bd28b8d10c20c
[]
no_license
RoderickAdriance/PythonDemo
2d92b9aa66fcd77b6f797e865df77fbc8c2bcd14
98b124fecd3a972d7bc46661c6a7de8787b8e761
refs/heads/master
2020-04-06T17:36:46.000133
2018-11-15T07:07:03
2018-11-15T07:07:03
157,666,809
0
0
null
null
null
null
UTF-8
Python
false
false
1,408
py
import time import numpy as np import h5py import matplotlib.pyplot as plt import scipy from PIL import Image from scipy import ndimage from exercise.c6.dnn_app_utils_v2 import * def L_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False): """ Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID. Arguments: X -- data, numpy array of shape (number of examples, num_px * num_px * 3) Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) layers_dims -- list containing the input size and each layer size, of length (number of layers + 1). learning_rate -- learning rate of the gradient descent update rule num_iterations -- number of iterations of the optimization loop print_cost -- if True, it prints the cost every 100 steps Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ costs = [] parameters = initialize_parameters_deep(layers_dims) for i in range(0, num_iterations): # AL最后的预测值,caches每层计算的Z和参数w x b # AL [0.5,0.8,0.3.......] AL, caches = L_model_forward(X, parameters) # 计算损失 cost = compute_cost(AL, Y) # 反向传播 grads = L_model_backward(AL, Y, caches)
fe8925b066e6f71c81f76db9c4cfec33be3c51fa
f22778fb83b4723dd3dbc26834a8475c4b8c442c
/nana_utils.py
d10f46774c1b1861c6af2babc1c15319ef167d3d
[]
no_license
innovationgarage/deprecated-PortPollution-AISreduction-dask
070b3011b505de74b2126b83fa93a7bb0eace84c
d66cfa96529f54a6f12faa39560beab10d7ef5a8
refs/heads/master
2020-04-01T15:10:53.598911
2018-10-25T07:38:47
2018-10-25T07:38:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
456
py
import dask.distributed, distributed.client, dask.bag, daskutils.io.msgpack, daskutils.base, os.path, uuid, msgpack, daskutils.sort #client = dask.distributed.Client('ymslanda.innovationgarage.tech:8786') data = [uuid.uuid4().hex for a in range(0, 100000)] s = daskutils.sort.MergeSort("/tmp/") res = s.sort(dask.bag.from_sequence(data, npartitions=4)) res = res.compute() assert len(res) == len(data) assert res == sorted(res) assert res == sorted(data)
339a75ee64661331f4a5fd9250006afbdd1e8c4c
1c390cd4fd3605046914767485b49a929198b470
/leetcode/partition-equal-subset-sum.py
6cceb12902e683d1ba9985b592a5f627bf4f9821
[]
no_license
wwwwodddd/Zukunft
f87fe736b53506f69ab18db674311dd60de04a43
03ffffee9a76e99f6e00bba6dbae91abc6994a34
refs/heads/master
2023-01-24T06:14:35.691292
2023-01-21T15:42:32
2023-01-21T15:42:32
163,685,977
7
8
null
null
null
null
UTF-8
Python
false
false
309
py
class Solution: def canPartition(self, a: List[int]) -> bool: s = sum(a) if s % 2: return False f = [0 for i in range(s + 1)] f[0] = 1 for i in a: for j in range(i, s + 1)[::-1]: f[j] |= f[j - i] return f[s // 2] == 1
1f76ebb4e0a1abe77d320a39f677e53be6742b30
5b4b1866571453f78db5b06a08ff0eda17b91b04
/test/vanilla/Expected/AcceptanceTests/ModelFlattening/modelflattening/operations/__init__.py
97acfd337b399a280c13c5ee50b4e2c3f81f01c1
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
koek67/autorest.azure-functions-python
ba345f1d194ca7431daab1210a0cd801d4946991
b0896d8aec6b0fd6f0bcb12ea8e0489652dc2783
refs/heads/main
2022-12-20T13:27:56.405901
2020-09-30T08:23:11
2020-09-30T08:23:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
664
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from ._auto_rest_resource_flattening_test_service_operations import AutoRestResourceFlatteningTestServiceOperationsMixin __all__ = [ 'AutoRestResourceFlatteningTestServiceOperationsMixin', ]
ef7a98380f2dc3cb9f4e993171957dd70c6761f7
d41d18d3ea6edd2ec478b500386375a8693f1392
/plotly/validators/scatter3d/error_x/_value.py
db1f336f929396b215dbe5a268a8760d26d12b9a
[ "MIT" ]
permissive
miladrux/plotly.py
38921dd6618650d03be9891d6078e771ffccc99a
dbb79e43e2cc6c5762251537d24bad1dab930fff
refs/heads/master
2020-03-27T01:46:57.497871
2018-08-20T22:37:38
2018-08-20T22:37:38
145,742,203
1
0
MIT
2018-08-22T17:37:07
2018-08-22T17:37:07
null
UTF-8
Python
false
false
434
py
import _plotly_utils.basevalidators class ValueValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name='value', parent_name='scatter3d.error_x', **kwargs ): super(ValueValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='calc', min=0, role='info', **kwargs )
e000f3f97c731836cb809f51e139ba47ba132579
ddf002d1084d5c63842a6f42471f890a449966ee
/basics/Python/Recursion/recursion_factorial.py
09684087ef55e781859db5daf3d5512e54a8269a
[]
no_license
RaghavJindal2000/Python
0ab3f198cbc5559bdf46ac259c7136356f7f09aa
8e5c646585cff28ba3ad9bd6c384bcb5537d671a
refs/heads/master
2023-01-01T23:56:02.073029
2020-10-18T19:30:01
2020-10-18T19:30:01
263,262,452
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
def fact(n): if(n<=0): return 1 else: return n*fact(n-1) n=int(input("Enter the Number : ")) print("Factorial of ",n," is = ",fact(n)) input()
f928f4e34606749623dbabda74342d7c8d15021e
56fd2d92b8327cfb7d8f95b89c52e1700343b726
/examples/notebooks/rebalance_etfs/strategy.py
d5636616438b0a536a14bc605986acb7f768e20f
[ "MIT" ]
permissive
stjordanis/Odin
fecb640ccf4f2e6eb139389d25cbe37da334cdb6
e2e9d638c68947d24f1260d35a3527dd84c2523f
refs/heads/master
2020-04-15T09:13:17.850126
2017-02-09T00:25:55
2017-02-09T00:25:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,193
py
import pandas as pd from odin.strategy import AbstractStrategy from odin.strategy.templates import BuyAndHoldStrategy from odin.utilities.mixins.strategy_mixins import ( LongStrategyMixin, TotalSellProportionMixin, AlwaysBuyIndicatorMixin, NeverSellIndicatorMixin, DefaultPriorityMixin, DefaultFeaturesMixin, ) class BuyAndHoldSpyderStrategy(BuyAndHoldStrategy): def buy_indicator(self, feats): return feats.name in ("SPY", ) class RebalanceETFStrategy( LongStrategyMixin, TotalSellProportionMixin, AlwaysBuyIndicatorMixin, NeverSellIndicatorMixin, DefaultPriorityMixin, DefaultFeaturesMixin, ): def compute_buy_proportion(self, feats): """Implementation of abstract base class method.""" if feats.name == "SPY": return 0.6 elif feats.name == "AGG": return 0.4 def exit_indicator(self, feats): """Implementation of abstract base class method.""" symbol = feats.name pos = self.portfolio.portfolio_handler.filled_positions[symbol] date = self.portfolio.data_handler.current_date return pos.compute_holding_period(date).days > 63
8ad8780e0d55bc33de20a87a14f2635eba86d737
dfcd2ab21b4b87b15a908cae58650eb8f4e34539
/accounts/views.py
542b21c365142be1d526953ce0c17e0b83451680
[]
no_license
janak29292/esnayproductions
29a73eb064165e80a4729cf4b26095cb6dfb09f1
762dfa02630668ed97f86760c3b20824cf89d6b2
refs/heads/master
2023-02-27T23:10:44.697353
2021-02-06T09:44:04
2021-02-06T09:44:04
325,578,763
0
0
null
null
null
null
UTF-8
Python
false
false
1,932
py
from django.http import Http404 from django.shortcuts import render # Create your views here. from accounts.models import Team, Portfolio, PortfolioCategory, Blog def index(request, *args, **kwargs): team_players = Team.objects.all() portfolios = Portfolio.objects.filter(active=True)[:11] categories = PortfolioCategory.objects.all() blogs = Blog.objects.all().order_by('-id')[:10] context = { "team": team_players, "portfolios": portfolios, "categories": categories, "blogs": blogs } return render(request, 'index.html', context=context) def about(request, *args, **kwargs): return render(request, 'about.html') def team(request, *args, **kwargs): team_players = Team.objects.all() context = {"team": team_players} return render(request, 'team.html', context=context) def portfolio(request, *args, **kwargs): portfolios = Portfolio.objects.filter(active=True)[:50] categories = PortfolioCategory.objects.all() context = { "portfolios": portfolios, "categories": categories } return render(request, 'portfolio-four-columns.html', context=context) def portfolio_detail(request, *args, **kwargs): pk = kwargs.get('pk') try: instance = Portfolio.objects.get(id=pk) except Portfolio.DoesNotExist: raise Http404 context = { "portfolio": instance } return render(request, 'portfolio-single-item.html', context=context) def blog(request, *args, **kwargs): blogs = Blog.objects.all().order_by('-id') context = { "blogs": blogs } return render(request, 'blog-fullwidth.html', context=context) def blog_detail(request, *args, **kwargs): return render(request, 'blog-single-post.html') def contact(request, *args, **kwargs): return render(request, 'contact.html')
bef0ca1abde4a21dfb30146a13f94cc01fc77e1e
1c40a5b1e7ffb7ffed2cfe831c1686aa4af82284
/omm/analysis/aes/aes_excel_bio.py
f4ccead5ecbb61b5ce170fb185f60b30a91a0d48
[]
no_license
rhodges/oregon-marinemap
3c4bb3c13f15ec5f2efd405b0006c8a85d3b42b0
4a3797f507a48fd158be5f751fa0ca8c24a47cb7
refs/heads/master
2016-09-05T17:49:44.702600
2011-11-04T15:56:18
2011-11-04T15:56:18
32,354,262
0
0
null
null
null
null
UTF-8
Python
false
false
646
py
import xlwt from analysis.excel.utils import major_heading_style from analysis.excel.biology import bio_terrestrial_headers, bio_terrestrial_data, bio_intertidal_headers, bio_intertidal_data, bio_subtidal_headers, bio_subtidal_data def populate_bio_sheet(ws, context): bio_header(ws, context) bio_terrestrial_headers(ws) bio_terrestrial_data(ws, context) bio_intertidal_headers(ws) bio_intertidal_data(ws, context) bio_subtidal_headers(ws, context) bio_subtidal_data(ws, context) def bio_header(ws, context): ws.write(0, 0, "Energy Site Biology Report for %s" % context['aes'].name, major_heading_style)
1001396875ee79948e767bf2febdfa60c88bc214
f8b36ef6debb317e7213346b11df932eb3b6af35
/winner's code/2nd_code.py
10725b67993d69c10ebc395d4d75d088bba13d60
[]
no_license
YoungriKIM/lotte
ec767eb5eaa8f13f38115f1c30d25ed5bac7ef2b
e3ceda9918210ee418269d1586ec200ce9d9ca33
refs/heads/main
2023-03-30T15:44:00.387934
2021-03-29T13:16:44
2021-03-29T13:16:44
348,300,060
0
0
null
null
null
null
UTF-8
Python
false
false
303
py
# 롯데정보통신 Vision AI 경진대회 - Public LB 2nd place Solution # https://dev-hunmin.tistory.com/entry/%EB%A1%AF%EB%8D%B0%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0-Vision-AI-%EA%B2%BD%EC%A7%84%EB%8C%80%ED%9A%8C-Public-LB-2nd-place-Solution # 깃허브 # https://github.com/hunmin-hub/LotteVisionAI
e5c47acc73444f8227a478fe41b8fe625e1f7218
8a03b8459902d1bf0806f8d3387fb962bb57cf58
/Testscripts/click_on_crcreports.py
79a662d8d429268a4b00cb60ea7b5510f66d6cd5
[]
no_license
chetandg123/cQube
f95a0e86b1e98cb418de209ad26ae2ba463cfcbc
a862a1cdf46faaaff5cad49d78c4e5f0454a6407
refs/heads/master
2022-07-18T12:43:06.839896
2020-05-22T13:23:52
2020-05-22T13:23:52
258,089,042
0
0
null
2020-05-08T16:28:26
2020-04-23T03:55:52
HTML
UTF-8
Python
false
false
1,033
py
import time import unittest from selenium import webdriver from selenium.webdriver import ActionChains from selenium.webdriver.support.select import Select # script to click on crc reports from Data.Paramters import Data class CRC(unittest.TestCase): def setUp(self): self.driver = webdriver.Chrome(Data.Path) self.driver.maximize_window() self.driver.implicitly_wait(10) self.driver.get(Data.URL) self.driver.find_element_by_xpath(Data.email).send_keys(Data.username) self.driver.find_element_by_xpath(Data.pwd).send_keys(Data.password) self.driver.find_element_by_xpath(Data.loginbtn).click() time.sleep(10) def test_crcreports(self): self.driver.find_element_by_xpath(Data.Dashboard).click() time.sleep(5) self.driver.find_element_by_xpath(Data.crc).click() print(self.driver.title) def tearDown(self): time.sleep(5) self.driver.close() if __name__ == "__main__": unittest.main()
463fb4daf35270c14d78f343872184d855614ad0
6f562994c50361ceebe1e806653ff329ce2ea06c
/Code/mar_14/page2.py
e0e722b06740c8badb19c5b166e00c69b04025a5
[]
no_license
ManishaHingne/PythonML
aaef74ca0cab84e7dca0e1e829768e737b4cc7af
17623a0699d3f7719c73fbe8e9f0bef7b69e8aec
refs/heads/master
2020-05-21T15:35:09.785203
2019-05-11T06:21:09
2019-05-11T06:21:09
186,094,739
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [20, 29, 21, 22, 21] plt.plot(x, y) plt.savefig('./images/chart1.png') # plt.show()
c5962280fb2ab8ba6cb8738531e6d1ec77fdffce
06b2eed882d8d7034fb7c57b648d5aa37d7f617b
/pycharmproject/django-rest/auth_ob/ob1/ob1/wsgi.py
c71ef1ec2bd6bbd96df7e830582e77a0b3fb725d
[]
no_license
1974410167/python_projects
558e2e7a4ea66b083ebd6d2f808b725e1bd153d6
81a97cbf41de12bdc3dbc46edf2931075ac4f758
refs/heads/main
2023-06-22T09:41:22.038620
2023-06-09T15:09:44
2023-06-09T15:09:44
355,036,534
0
0
null
null
null
null
UTF-8
Python
false
false
383
py
""" WSGI config for ob1 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ob1.settings') application = get_wsgi_application()
65848bc4fcbe36380c69d094d6413ad41f733a82
c99c272181eb43df688cc6af10bfb17659014ab9
/01_Python-Basics/Exercise2/venv/Scripts/easy_install-script.py
f0035179eada71584342a2c53231180b3c97981e
[]
no_license
LachezarKostov/SoftUni
ce89d11a4796c10c8975dc5c090edecac993cb03
47559e9f01f7aabd73d84aa175be37140e2d5621
refs/heads/master
2023-01-29T20:49:57.196136
2020-12-10T12:34:09
2020-12-10T12:34:09
283,491,508
1
0
null
null
null
null
UTF-8
Python
false
false
451
py
#!C:\Users\dream\Desktop\Python\Exercise2\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )
429e24ce3134c6a853d16b512de97706843ab40a
9d8acc20d2ee1d1957849dfb71c22e0dae2d8c5c
/baomoicrawl/venv/Lib/site-packages/scrapy/utils/http.py
6e20649f5181a54d6d1787f641e3ac42ad182e66
[]
no_license
thuy4tbn99/TranTruongThuy_17021178_Nhom4_Crawler
b0fdedee2942a12d9f64dfed93f43802dc5ab340
87c8c07433466bbc43a24ea089f75baeb467c356
refs/heads/master
2022-11-27T21:36:33.917491
2020-08-10T23:24:42
2020-08-10T23:24:42
286,583,216
0
0
null
null
null
null
UTF-8
Python
false
false
956
py
""" Transitional module for moving to the w3lib library. For new code, always import from w3lib.http instead of this module """ import warnings from scrapy.exceptions import ScrapyDeprecationWarning from scrapy.utils.decorators import deprecated from w3lib.http import * # noqa: F401 warnings.warn("Module `scrapy.utils.http` is deprecated, " "Please import from `w3lib.http` instead.", ScrapyDeprecationWarning, stacklevel=2) @deprecated def decode_chunked_transfer(chunked_body): """Parsed body received with chunked transfer encoding, and return the decoded body. For more info see: https://en.wikipedia.org/wiki/Chunked_transfer_encoding """ body, h, t = '', '', chunked_body while t: h, t = t.split('\r\n', 1) if h == '0': break size = int(h, 16) body += t[:size] t = t[size + 2:] return body
d24bb4ef7f0abf71c58f7e83c21133ec8c481125
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_4/lxxjin012/ndom.py
3ddda13fca45dc51450355becc52d34ba11c8df0
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
850
py
def ndom_to_decimal (a): x=str(a) if len(str(a))==1: digit1=int(str(a)[0])*1 number=digit elif len(str(a))==2: digit2=int(str(a)[0])*6 digit3=int(str(a)[1])*1 number=digit2+digit3 elif len(str(a))==3: digit4=int(str(a)[0])*36 digit5=int(str(a)[1])*6 digit6=int(str(a)[2])*1 number=digit4+digit5+digit6 return number def decimal_to_ndom (a): digit1=a//36 b=a-(digit1*36) digit2=b//6 c=b-(digit2*6) number=(digit1*100)+(digit2*10)+(c) return number def ndom_add (a, b): add=ndom_to_decimal(a)+ndom_to_decimal(b) ndom=decimal_to_ndom (add) return ndom def ndom_multiply(a,b): multiply=(ndom_to_decimal(a))*(ndom_to_decimal(b)) ndom=decimal_to_ndom (multiply) return ndom
1bbd9872d8797ac523e3882012ec1954661bbb15
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/synapse/v20210601preview/list_integration_runtime_auth_key.py
6ba5abeaa2f156a92731038bf8807a01933558a9
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
3,096
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = [ 'ListIntegrationRuntimeAuthKeyResult', 'AwaitableListIntegrationRuntimeAuthKeyResult', 'list_integration_runtime_auth_key', ] @pulumi.output_type class ListIntegrationRuntimeAuthKeyResult: """ The integration runtime authentication keys. """ def __init__(__self__, auth_key1=None, auth_key2=None): if auth_key1 and not isinstance(auth_key1, str): raise TypeError("Expected argument 'auth_key1' to be a str") pulumi.set(__self__, "auth_key1", auth_key1) if auth_key2 and not isinstance(auth_key2, str): raise TypeError("Expected argument 'auth_key2' to be a str") pulumi.set(__self__, "auth_key2", auth_key2) @property @pulumi.getter(name="authKey1") def auth_key1(self) -> Optional[str]: """ The primary integration runtime authentication key. """ return pulumi.get(self, "auth_key1") @property @pulumi.getter(name="authKey2") def auth_key2(self) -> Optional[str]: """ The secondary integration runtime authentication key. """ return pulumi.get(self, "auth_key2") class AwaitableListIntegrationRuntimeAuthKeyResult(ListIntegrationRuntimeAuthKeyResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ListIntegrationRuntimeAuthKeyResult( auth_key1=self.auth_key1, auth_key2=self.auth_key2) def list_integration_runtime_auth_key(integration_runtime_name: Optional[str] = None, resource_group_name: Optional[str] = None, workspace_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListIntegrationRuntimeAuthKeyResult: """ The integration runtime authentication keys. :param str integration_runtime_name: Integration runtime name :param str resource_group_name: The name of the resource group. The name is case insensitive. :param str workspace_name: The name of the workspace. """ __args__ = dict() __args__['integrationRuntimeName'] = integration_runtime_name __args__['resourceGroupName'] = resource_group_name __args__['workspaceName'] = workspace_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:synapse/v20210601preview:listIntegrationRuntimeAuthKey', __args__, opts=opts, typ=ListIntegrationRuntimeAuthKeyResult).value return AwaitableListIntegrationRuntimeAuthKeyResult( auth_key1=__ret__.auth_key1, auth_key2=__ret__.auth_key2)
dea54118e83a7cbf3499e2efc569d2e35c8355b5
680bd46e8eae20e78a425f766432711a47235374
/models/site_monitor_checkpoint.py
a48c4844c14f12ba8c06fcc5feafa3d14d250fd4
[ "Apache-2.0" ]
permissive
ILMostro/lm-sdk-python
9f45217d64c0fc49caf2f4b279a124c2efe3d24d
40da5812ab4d50dd1c6c3c68f7ea13c4d8f4fb49
refs/heads/master
2022-02-01T16:51:12.810483
2019-07-16T17:54:11
2019-07-16T17:54:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,061
py
# coding: utf-8 """ LogicMonitor REST API LogicMonitor is a SaaS-based performance monitoring platform that provides full visibility into complex, hybrid infrastructures, offering granular performance monitoring and actionable data and insights. logicmonitor_sdk enables you to manage your LogicMonitor account programmatically. # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class SiteMonitorCheckpoint(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'description': 'str', 'display_prio': 'int', 'geo_info': 'str', 'id': 'int', 'is_enabled_in_root': 'bool', 'name': 'str' } attribute_map = { 'description': 'description', 'display_prio': 'displayPrio', 'geo_info': 'geoInfo', 'id': 'id', 'is_enabled_in_root': 'isEnabledInRoot', 'name': 'name' } def __init__(self, description=None, display_prio=None, geo_info=None, id=None, is_enabled_in_root=None, name=None): # noqa: E501 """SiteMonitorCheckpoint - a model defined in Swagger""" # noqa: E501 self._description = None self._display_prio = None self._geo_info = None self._id = None self._is_enabled_in_root = None self._name = None self.discriminator = None self.description = description if display_prio is not None: self.display_prio = display_prio if geo_info is not None: self.geo_info = geo_info if id is not None: self.id = id if is_enabled_in_root is not None: self.is_enabled_in_root = is_enabled_in_root if name is not None: self.name = name @property def description(self): """Gets the description of this SiteMonitorCheckpoint. # noqa: E501 :return: The description of this SiteMonitorCheckpoint. # noqa: E501 :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this SiteMonitorCheckpoint. :param description: The description of this SiteMonitorCheckpoint. # noqa: E501 :type: str """ if description is None: raise ValueError("Invalid value for `description`, must not be `None`") # noqa: E501 self._description = description @property def display_prio(self): """Gets the display_prio of this SiteMonitorCheckpoint. # noqa: E501 :return: The display_prio of this SiteMonitorCheckpoint. # noqa: E501 :rtype: int """ return self._display_prio @display_prio.setter def display_prio(self, display_prio): """Sets the display_prio of this SiteMonitorCheckpoint. :param display_prio: The display_prio of this SiteMonitorCheckpoint. # noqa: E501 :type: int """ self._display_prio = display_prio @property def geo_info(self): """Gets the geo_info of this SiteMonitorCheckpoint. # noqa: E501 :return: The geo_info of this SiteMonitorCheckpoint. # noqa: E501 :rtype: str """ return self._geo_info @geo_info.setter def geo_info(self, geo_info): """Sets the geo_info of this SiteMonitorCheckpoint. :param geo_info: The geo_info of this SiteMonitorCheckpoint. # noqa: E501 :type: str """ self._geo_info = geo_info @property def id(self): """Gets the id of this SiteMonitorCheckpoint. # noqa: E501 :return: The id of this SiteMonitorCheckpoint. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this SiteMonitorCheckpoint. :param id: The id of this SiteMonitorCheckpoint. # noqa: E501 :type: int """ self._id = id @property def is_enabled_in_root(self): """Gets the is_enabled_in_root of this SiteMonitorCheckpoint. # noqa: E501 :return: The is_enabled_in_root of this SiteMonitorCheckpoint. # noqa: E501 :rtype: bool """ return self._is_enabled_in_root @is_enabled_in_root.setter def is_enabled_in_root(self, is_enabled_in_root): """Sets the is_enabled_in_root of this SiteMonitorCheckpoint. :param is_enabled_in_root: The is_enabled_in_root of this SiteMonitorCheckpoint. # noqa: E501 :type: bool """ self._is_enabled_in_root = is_enabled_in_root @property def name(self): """Gets the name of this SiteMonitorCheckpoint. # noqa: E501 :return: The name of this SiteMonitorCheckpoint. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this SiteMonitorCheckpoint. :param name: The name of this SiteMonitorCheckpoint. # noqa: E501 :type: str """ self._name = name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(SiteMonitorCheckpoint, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SiteMonitorCheckpoint): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
c751ad79e8fae529b101b6f67f960895117723a7
890c8b8e90e516a5a3880eca9b2d217662fe7d84
/armulator/armv6/opcodes/arm_instruction_set/arm_data_processing_and_miscellaneous_instructions/arm_extra_load_store_instructions/ldrsb_literal_a1.py
5b2ac9460c52668437168816a8f42ea9fd81d9d8
[ "MIT" ]
permissive
doronz88/armulator
b864135996f876c7857b79a314d4aa06cc19c549
0294feac2785c8947e5943ac0c34f941ee4b5fff
refs/heads/master
2022-11-05T08:14:42.405335
2020-06-18T23:53:17
2020-06-18T23:53:17
273,363,061
2
0
null
2020-06-18T23:51:03
2020-06-18T23:51:02
null
UTF-8
Python
false
false
825
py
from armulator.armv6.opcodes.abstract_opcodes.ldrsb_literal import LdrsbLiteral from armulator.armv6.opcodes.opcode import Opcode class LdrsbLiteralA1(LdrsbLiteral, Opcode): def __init__(self, instruction, add, imm32, t): Opcode.__init__(self, instruction) LdrsbLiteral.__init__(self, add, imm32, t) def is_pc_changing_opcode(self): return False @staticmethod def from_bitarray(instr, processor): w = instr[10] p = instr[7] imm4_l = instr[-4:] imm4_h = instr[20:24] rt = instr[16:20] add = instr[8] imm32 = "0b000000000000000000000000" + imm4_h + imm4_l if p == w or rt.uint == 15: print "unpredictable" else: return LdrsbLiteralA1(instr, **{"add": add, "imm32": imm32, "t": rt.uint})
eab2c83f1f6b77cae668f340fa4e8d50c06049c8
263fb97b6ab614f1e25533ba30b37ef94c0a2e81
/parser/team08/Tytus_SQLPARSER_G8/Instrucciones/FunctionBinaryString/GetByte.py
e8dcc14bd94144d729a4212ee31d0bef1bb7f35c
[ "MIT" ]
permissive
ElbaAlvarez/tytus
f77e57df2338270b331172e270e2e44a94b68d2e
795e660f3005d4fac5cb68af92b178ba1318e96e
refs/heads/main
2023-02-12T08:55:32.347236
2020-12-24T14:00:06
2020-12-24T14:00:06
320,481,467
0
0
MIT
2020-12-11T05:57:41
2020-12-11T05:57:41
null
UTF-8
Python
false
false
459
py
from Instrucciones.TablaSimbolos.Instruccion import Instruccion class GetByte(Instruccion): def __init__(self, valor, tipo, linea, columna): Instruccion.__init__(self,tipo,linea,columna) self.valor = valor def ejecutar(self, tabla, arbol): super().ejecutar(tabla,arbol) bytes(self.valor, 'utf-8') return bytes(self.valor,'utf-8') instruccion = GetByte("hola mundo",None, 1,2) instruccion.ejecutar(None,None)
7cd9427d739426a4e43e28b4b98aceceb117c961
051c3ee44478265c4510530888335335ec9f7fdf
/ML_Applications/CNNs/Mutants/Mutants_generated_by_MutPy_(code)/mutants_resnet/mutants_resnet_model_VERML_basedOn_nas_fix4_deterministic/187.py
3228e7750ebd955620d2f820d99d0a269bfc2ddf
[]
no_license
PinjiaHe/VerifyML
b581c016012c62d8439adfce0caef4f098b36d5e
3bd7c49e45720c1cdfe0af4ac7dd35b201056e65
refs/heads/master
2020-03-25T19:40:39.996370
2018-01-30T08:58:58
2018-01-30T08:58:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,660
py
"""Contains definitions for the preactivation form of Residual Networks. Residual networks (ResNets) were originally proposed in: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 The full preactivation 'v2' ResNet variant implemented in this module was introduced by: [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Identity Mappings in Deep Residual Networks. arXiv: 1603.05027 The key difference of the full preactivation 'v2' variant compared to the 'v1' variant in [1] is the use of batch normalization before every weight layer rather than after. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf _BATCH_NORM_DECAY = 0.997 _BATCH_NORM_EPSILON = 1e-05 _SEED = 7 tf.set_random_seed(_SEED) def batch_norm_relu(inputs, is_training, data_format): """Performs a batch normalization followed by a ReLU.""" inputs = tf.layers.batch_normalization(inputs= inputs, axis=1 if data_format == 'channels_first' else 3, momentum= _BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True, scale=True, training= is_training, fused=True) inputs = tf.nn.relu(inputs) return inputs def fixed_padding(inputs, kernel_size, data_format): """Pads the input along the spatial dimensions independently of input size. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. kernel_size: The kernel to be used in the conv2d or max_pool2d operation. Should be a positive integer. data_format: The input format ('channels_last' or 'channels_first'). Returns: A tensor with the same format as the input with the data either intact (if kernel_size == 1) or padded (if kernel_size > 1). """ pad_total = kernel_size - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg if data_format == 'channels_first': padded_inputs = tf.pad(inputs, [[0, 0], [0, 0], [ pad_beg, pad_end], [pad_beg, pad_end]]) else: padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end], [ pad_beg, pad_end], [0, 0]]) return padded_inputs def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format): """Strided 2-D convolution with explicit padding.""" if strides > 1: inputs = fixed_padding(inputs, kernel_size, data_format) return tf.layers.conv2d(inputs= inputs, filters=filters, kernel_size=kernel_size, strides=strides, padding='SAME' if strides == 1 else 'VALID', use_bias=False, kernel_initializer= tf.variance_scaling_initializer(), data_format= data_format) def building_block(inputs, filters, is_training, projection_shortcut, strides, data_format): """Standard building block for residual networks with BN before convolutions. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. filters: The number of filters for the convolutions. is_training: A Boolean for whether the model is in training or inference mode. Needed for batch normalization. projection_shortcut: The function to use for projection shortcuts (typically a 1x1 convolution when downsampling the input). strides: The block's stride. If greater than 1, this block will ultimately downsample the input. data_format: The input format ('channels_last' or 'channels_first'). Returns: The output tensor of the block. """ shortcut = inputs inputs = batch_norm_relu(inputs, is_training, data_format) if projection_shortcut is not None: shortcut = projection_shortcut(inputs) inputs = conv2d_fixed_padding(inputs= inputs, filters=filters, kernel_size=3, strides=strides, data_format= data_format) inputs = batch_norm_relu(inputs, is_training, data_format) inputs = conv2d_fixed_padding(inputs= inputs, filters=filters, kernel_size=3, strides=1, data_format= data_format) return inputs + shortcut def bottleneck_block(inputs, filters, is_training, projection_shortcut, strides, data_format): """Bottleneck block variant for residual networks with BN before convolutions. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. filters: The number of filters for the first two convolutions. Note that the third and final convolution will use 4 times as many filters. is_training: A Boolean for whether the model is in training or inference mode. Needed for batch normalization. projection_shortcut: The function to use for projection shortcuts (typically a 1x1 convolution when downsampling the input). strides: The block's stride. If greater than 1, this block will ultimately downsample the input. data_format: The input format ('channels_last' or 'channels_first'). Returns: The output tensor of the block. """ shortcut = inputs inputs = batch_norm_relu(inputs, is_training, data_format) if projection_shortcut is not None: shortcut = projection_shortcut(inputs) inputs = conv2d_fixed_padding(inputs= inputs, filters=filters, kernel_size=1, strides=1, data_format= data_format) inputs = batch_norm_relu(inputs, is_training, data_format) inputs = conv2d_fixed_padding(inputs= inputs, filters=filters, kernel_size=3, strides=strides, data_format= data_format) inputs = batch_norm_relu(inputs, is_training, data_format) inputs = conv2d_fixed_padding(inputs= inputs, filters=4 * filters, kernel_size=1, strides=1, data_format= data_format) return inputs + shortcut def block_layer(inputs, filters, block_fn, blocks, strides, is_training, name, data_format): """Creates one layer of blocks for the ResNet model. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. filters: The number of filters for the first convolution of the layer. block_fn: The block to use within the model, either `building_block` or `bottleneck_block`. blocks: The number of blocks contained in the layer. strides: The stride to use for the first convolution of the layer. If greater than 1, this layer will ultimately downsample the input. is_training: Either True or False, whether we are currently training the model. Needed for batch norm. name: A string name for the tensor output of the block layer. data_format: The input format ('channels_last' or 'channels_first'). Returns: The output tensor of the block layer. """ filters_out = 4 * filters if block_fn is bottleneck_block else filters def projection_shortcut(inputs): return conv2d_fixed_padding(inputs= inputs, filters=filters_out, kernel_size=1, strides=strides, data_format= data_format) inputs = block_fn(inputs, filters, is_training, projection_shortcut, strides, data_format) for _ in range(1, blocks): inputs = block_fn(inputs, filters, is_training, None, 1, data_format) return tf.identity(inputs, name) def cifar10_resnet_v2_generator(resnet_size, num_classes, data_format=None): """Generator for CIFAR-10 ResNet v2 models. Args: resnet_size: A single integer for the size of the ResNet model. num_classes: The number of possible classes for image classification. data_format: The input format ('channels_last', 'channels_first', or None). If set to None, the format is dependent on whether a GPU is available. Returns: The model function that takes in `inputs` and `is_training` and returns the output tensor of the ResNet model. Raises: ValueError: If `resnet_size` is invalid. """ if resnet_size % 6 != 2: raise ValueError('resnet_size must be 6n + 2:', resnet_size) num_blocks = resnet_size - 2 // 6 if data_format is None: data_format = 'channels_first' if tf.test.is_built_with_cuda() else 'channels_last' def model(inputs, is_training): """Constructs the ResNet model given the inputs.""" if data_format == 'channels_first': inputs = tf.transpose(inputs, [0, 3, 1, 2]) inputs = conv2d_fixed_padding(inputs= inputs, filters=16, kernel_size=3, strides=1, data_format= data_format) inputs = tf.identity(inputs, 'initial_conv') inputs = block_layer(inputs= inputs, filters=16, block_fn=building_block, blocks=num_blocks, strides=1, is_training= is_training, name='block_layer1', data_format= data_format) inputs = block_layer(inputs= inputs, filters=32, block_fn=building_block, blocks=num_blocks, strides=2, is_training= is_training, name='block_layer2', data_format= data_format) inputs = block_layer(inputs= inputs, filters=64, block_fn=building_block, blocks=num_blocks, strides=2, is_training= is_training, name='block_layer3', data_format= data_format) inputs = batch_norm_relu(inputs, is_training, data_format) inputs = tf.layers.average_pooling2d(inputs= inputs, pool_size=8, strides=1, padding='VALID', data_format= data_format) inputs = tf.identity(inputs, 'final_avg_pool') inputs = tf.reshape(inputs, [(-1), 64]) inputs = tf.layers.dense(inputs=inputs, units=num_classes) inputs = tf.identity(inputs, 'final_dense') return inputs return model def imagenet_resnet_v2_generator(block_fn, layers, num_classes, data_format=None): """Generator for ImageNet ResNet v2 models. Args: block_fn: The block to use within the model, either `building_block` or `bottleneck_block`. layers: A length-4 array denoting the number of blocks to include in each layer. Each layer consists of blocks that take inputs of the same size. num_classes: The number of possible classes for image classification. data_format: The input format ('channels_last', 'channels_first', or None). If set to None, the format is dependent on whether a GPU is available. Returns: The model function that takes in `inputs` and `is_training` and returns the output tensor of the ResNet model. """ if data_format is None: data_format = 'channels_first' if tf.test.is_built_with_cuda() else 'channels_last' def model(inputs, is_training): """Constructs the ResNet model given the inputs.""" if data_format == 'channels_first': inputs = tf.transpose(inputs, [0, 3, 1, 2]) inputs = conv2d_fixed_padding(inputs= inputs, filters=64, kernel_size=7, strides=2, data_format= data_format) inputs = tf.identity(inputs, 'initial_conv') inputs = tf.layers.max_pooling2d(inputs= inputs, pool_size=3, strides=2, padding='SAME', data_format= data_format) inputs = tf.identity(inputs, 'initial_max_pool') inputs = block_layer(inputs= inputs, filters=64, block_fn=block_fn, blocks=layers[0], strides=1, is_training= is_training, name='block_layer1', data_format= data_format) inputs = block_layer(inputs= inputs, filters=128, block_fn=block_fn, blocks=layers[1], strides=2, is_training= is_training, name='block_layer2', data_format= data_format) inputs = block_layer(inputs= inputs, filters=256, block_fn=block_fn, blocks=layers[2], strides=2, is_training= is_training, name='block_layer3', data_format= data_format) inputs = block_layer(inputs= inputs, filters=512, block_fn=block_fn, blocks=layers[3], strides=2, is_training= is_training, name='block_layer4', data_format= data_format) inputs = batch_norm_relu(inputs, is_training, data_format) inputs = tf.layers.average_pooling2d(inputs= inputs, pool_size=7, strides=1, padding='VALID', data_format= data_format) inputs = tf.identity(inputs, 'final_avg_pool') inputs = tf.reshape(inputs, [(-1), 512 if block_fn is building_block else 2048]) inputs = tf.layers.dense(inputs=inputs, units=num_classes) inputs = tf.identity(inputs, 'final_dense') return inputs return model def imagenet_resnet_v2(resnet_size, num_classes, data_format=None): """Returns the ResNet model for a given size and number of output classes.""" model_params = {18: {'block': building_block, 'layers': [2, 2, 2, 2]}, 34: {'block': building_block, 'layers': [3, 4, 6, 3]}, 50: {'': bottleneck_block, 'layers': [3, 4, 6, 3]}, 101: {'block': bottleneck_block, 'layers': [3, 4, 23, 3]}, 152: {'block': bottleneck_block, 'layers': [3, 8, 36, 3]}, 200: {'block': bottleneck_block, 'layers': [3, 24, 36, 3]}} if resnet_size not in model_params: raise ValueError('Not a valid resnet_size:', resnet_size) params = model_params[resnet_size] return imagenet_resnet_v2_generator( params['block'], params['layers'], num_classes, data_format)
58b4e869b8fbf743ba16b0be22137d18b172cdf6
7d43ba52d958537905cfdde46cc194a97c45dc56
/ProgrammingParadigms/OOP/SOLID/solid_workbook.py
361c598c444742f3305a9a384d65f599a2f7e871
[]
no_license
Koshmatova/workbook
3e4d1f698a01f2be65c1abc83ee251ebc8a6bbcd
902695e8e660689a1730c23790dbdc51737085c9
refs/heads/master
2023-05-01T02:30:46.868027
2021-05-10T03:49:08
2021-05-10T03:49:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,380
py
СТРУКТУРНАЯ ПАРАДИГМА Дейкстра -> ЛЮБОЙ алг можно выразить через 3 способа выбора команд: линейное exe ветвление по усл exe цикла при exe условия #рекомендовал использовать only их Никлаус Вирт -> Алгоритмы + Структуры данных = Программы возможность записать подпрограмму в v ПРИНАДЛЕЖ даже asm ИНКАПСУЛЯЦИЯ # защита инварианта # Любая программная сущность, обладающая нетривиальным состоянием, должна быть превращена в замкнутую систему, которую можно только перевести из одного корректного состояния в другое.(чтобы его нельзя было сломать) * все что касается obj - внутри одной архитектурной границы(упаковка данных и поведения в единый компонент) #все что касается класса пакуется в один модуль #между классами четкие границы * четкое разделение интерфейса и реализации * КАЖДЫЙ obj должен иметь свой pi - таким чтобы не было необходимости лезть в реализацию или использовать его неподходящим образом #ВСЕ КЛАССЫ имеют интерфейс * в этом помогает сокрытие данных код не может пересечь границу о которой не знает, и получить данные к которым нет доступа СОКРЫТИЕ РЕАЛИЗАЦИИ В РЕЛЯЦИОННЫХ БД #] СУЩ бд, используемая несколькими программами, к реализации которых нет доступа создаем набор хранимых процедур, компонуем в схему Interface для каждой программы создаем по пользователю и разрешаем доступ только к этой схеме #теперь сущность с нетривиальным поведением закрыта интерфейсом АЛЬТЕРНАТИВА СОКРЫТИЯ В PYTHON * _ * Документировать only интерфейс, ВСЕ что НЕ_ИМЕЕТ доков - реализация * Отделять интерфейс через code-conventions __all__ * Сделать code-convention строгими # автоматические проверки -> нарушение приравнивается к ошибке и ломает сборку #базовыи класс определяет fx которая должна быть общеи для ∀ производных объекты предоставляют интерфейсы. if объект предоставляет интерфейс -> интерфейс специфицирует поведение объекта. классы реализуют интерфейсы. if класс реализует интерфейс -> его экземпляры предоставляют данный интерфейс Экземпляры предоставляют интерфейсы которые их классы реализуют, & могут напрямую предоставлять дополнительные интерфейсы не реализованные в классе. классы обычно не предоставляют интерфейсы которые они реализуют #можно обобщить это до фабрик - можно создать callable производящий obj предоставляющие интерфейсы ~ фабрика реализует интерфейсы. ПОЛИМОРФИЗМ # Страуструп -> один интерфейс - мн-во реализаций # пользователь интерфейса не будет знать о реализации ничего поменялась ли она ПОЛИМОРФИЗМ ЗА ПРЕДЕЛАМИ ООП # Erlang СОДЕРЖ фичу behaviour # код делится на модули, имя модуля можно исп как v -> # вызов fx из модуля: foobar:function() или Module = foobar Module:function() # behavior нужен для уверенности что модуль ИМЕЕТ определенные fx # в модуле использующем другие модули с помощью behavior_info задаются требования к модулям-v, в свою очередь модули с помощью декларации behaviour обязуются реализовать это поведение #es: # модуль gen_server позволяет создать сервер в отдельном процессе, выполняющий запросы других процессов, gen_server СОДЕРЖ ВСЮ логику запросов других процессов # но обработка запросов делается реализацией поведения gen_server, и пока другие модули реализуют его правильно(пусть там пустые заглушки) - gen_server плевать как обрабатываются эти запросы и более того, обрабатывающий модуль можно сменить на лету НАСЛЕДОВАНИЕ #позволяет объединить переиспользование кода с полиморфизмом SINGLE RESPONSIBILITY # где и как должны пролегать границы между классами(интерфейс, реализация
ee0a8b4383627724adac95c5b9fe794045bbd923
2c9db62ddaffd77c097b3da4990021270912ea40
/백준/1966.py
757df2ca0f3b4c3cc1fd65161b5b06dc6f61a950
[]
no_license
nahyun119/algorithm
9ae120fbe047819a74e06fc6879f55405bc9ea71
40e291305a4108266073d489e712787df1dbae4b
refs/heads/master
2023-08-27T23:18:44.133748
2021-10-03T11:32:12
2021-10-03T11:32:12
326,661,962
0
0
null
null
null
null
UTF-8
Python
false
false
971
py
import sys import heapq # -> 기본적으로 min heap이므로 max heap을 구현하려면 우선순위에 -1을 곱한다. from collections import deque input = sys.stdin.readline result = [] def solve(): global result n, m = map(int, input().split()) documents = list(map(int, input().split())) q = deque() answer = [] for i in range(n): q.append((documents[i], i)) count = 1 while True: max_value = max(q) priority, index = q.popleft() #print(max_value, priority, index) if priority < max_value[0]: q.append((priority, index)) else: if index == m: break count += 1 # 프린트한 경우만 카운트 result.append(count) #print(count) def main(): global result T = int(input()) for _ in range(T): solve() for r in result: print(r) if __name__ == "__main__": main()
615be1b30f756944ef2e0597b47f152d45a6918d
11ca0c393c854fa7212e783a34269f9dae84e8c7
/Python/785. 判断二分图.py
0ac82063c14ffcf55dc1f21b8d60715c5a8a6092
[]
no_license
VictoriqueCQ/LeetCode
dc84d81163eed26fa9dbc2114bba0b5c2ea881f4
a77b3ead157f97f5d9599badb4d4c5da69de44ba
refs/heads/master
2021-06-05T06:40:24.659909
2021-03-31T08:31:51
2021-03-31T08:31:51
97,978,957
0
0
null
null
null
null
UTF-8
Python
false
false
1,622
py
from typing import List import collections class Solution: def isBipartite(self, graph: List[List[int]]) -> bool: n = len(graph) UNCOLORED, RED, GREEN = 0, 1, 2 color = [UNCOLORED] * n for i in range(n): if color[i] == UNCOLORED: q = collections.deque([i]) color[i] = RED while q: node = q.popleft() cNei = (GREEN if color[node] == RED else RED) for neighbor in graph[node]: if color[neighbor] == UNCOLORED: q.append(neighbor) color[neighbor] = cNei elif color[neighbor] != cNei: return False return True class Solution1: def isBipartite(self, graph: List[List[int]]) -> bool: # dfs time O(E+V), space O(V) n = len(graph) visited = [0] * n stack = [] for i in range(n): if visited[i] == 0: stack.append(i) visited[i] = 1 while stack: cur = stack.pop() for neighbor in graph[cur]: if visited[neighbor] == 0: stack.append(neighbor) visited[neighbor] = -visited[cur] else: if visited[neighbor] != -visited[cur]: return False return True s = Solution1() print(s.isBipartite([[1,2,3],[0,2],[0,1,3],[0,2]]))
[ "1997Victorique0317" ]
1997Victorique0317
b275f191e0be5fa4db2b3ccde251feb3d9006183
03e3138f99f275d15d41a5c5bfb212f85d64d02e
/source/res/scripts/client/gui/Scaleform/daapi/view/lobby/techtree/nodes.py
714f0eb3b7e577318cfd0270afe2a825647bcf3e
[]
no_license
TrenSeP/WorldOfTanks-Decompiled
e428728e7901146d0b599d02c930d70532232a97
1faa748acec1b7e435b657fd054ecba23dd72778
refs/heads/1.4.1
2020-04-27T08:07:49.813023
2019-03-05T17:37:06
2019-03-05T17:37:06
174,159,837
1
0
null
2019-03-06T14:33:33
2019-03-06T14:24:36
Python
UTF-8
Python
false
false
8,811
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/lobby/techtree/nodes.py from gui.Scaleform.daapi.view.lobby.techtree.settings import DEFAULT_UNLOCK_PROPS from gui.shared.formatters import getItemUnlockPricesVO, getItemPricesVO, text_styles, getItemRentOrRestorePricesVO from gui.shared.gui_items import GUI_ITEM_TYPE, GUI_ITEM_TYPE_NAMES from gui.shared.money import MONEY_UNDEFINED from helpers.time_utils import getCurrentTimestamp from helpers import i18n, dependency from skeletons.gui.server_events import IEventsCache class BaseNode(object): __slots__ = ('nodeName', 'nodeCD', 'nationID', 'itemTypeID', 'isFound', 'isAnnouncement', 'order') def __init__(self, nodeName, nationID, itemTypeID, nodeCD, isFound=True, isAnnouncement=False, order=0): super(BaseNode, self).__init__() self.nodeName = nodeName self.nationID = nationID self.itemTypeID = itemTypeID self.nodeCD = nodeCD self.isFound = isFound self.isAnnouncement = isAnnouncement self.order = order class ExposedNode(object): __slots__ = ('__nodeCD', '__earnedXP', '__state', '__unlockProps', '__bpfProps', '__guiPrice', '__displayInfo') def __init__(self, nodeCD, earnedXP, state, displayInfo, unlockProps=None, bpfProps=None, price=None): super(ExposedNode, self).__init__() self.__nodeCD = nodeCD self.__earnedXP = earnedXP self.__state = state self.__displayInfo = displayInfo self.__unlockProps = unlockProps or DEFAULT_UNLOCK_PROPS self.__bpfProps = bpfProps self.__guiPrice = price or MONEY_UNDEFINED def clear(self): self.__displayInfo = None self.__unlockProps = DEFAULT_UNLOCK_PROPS self.__bpfProps = None self.__guiPrice = MONEY_UNDEFINED return def getNodeCD(self): return self.__nodeCD def getEarnedXP(self): return self.__earnedXP def getState(self): return self.__state def setState(self, state): self.__state = state def addStateFlag(self, flag): self.__state |= flag def getDisplayInfo(self): return self.__displayInfo def getUnlockTuple(self): return self.__unlockProps.makeTuple() def getUnlockProps(self): return self.__unlockProps def setUnlockProps(self, unlockProps): self.__unlockProps = unlockProps def getBpfProps(self): return self.__bpfProps def setBpfProps(self, bpfProps): self.__bpfProps = bpfProps def setGuiPrice(self, price): self.__guiPrice = price def getTags(self): raise NotImplementedError def getLevel(self): raise NotImplementedError def getTypeName(self): raise NotImplementedError def getShortUserName(self): raise NotImplementedError def getIcon(self): raise NotImplementedError def getSmallIcon(self): raise NotImplementedError def isVehicle(self): raise NotImplementedError def isRented(self): raise NotImplementedError def getItemPrices(self): raise NotImplementedError def getBuyPrices(self): raise NotImplementedError def getCompareData(self): raise NotImplementedError def getExtraInfo(self, rootItem): raise NotImplementedError def isActionPrice(self): raise NotImplementedError def getActionDiscount(self): raise NotImplementedError def getBlueprintLabel(self): raise NotImplementedError def getBlueprintProgress(self): raise NotImplementedError def getActionFinishTime(self): raise NotImplementedError def getRestoreFinishTime(self): raise NotImplementedError def getRentInfo(self): raise NotImplementedError class RealNode(ExposedNode): __slots__ = ('__item',) __eventsCache = dependency.descriptor(IEventsCache) def __init__(self, nodeCD, item, earnedXP, state, displayInfo, unlockProps=None, bpfProps=None, price=None): super(RealNode, self).__init__(nodeCD, earnedXP, state, displayInfo, unlockProps=unlockProps, bpfProps=bpfProps, price=price) self.__item = item def clear(self): super(RealNode, self).clear() self.__item = None return def getTags(self): return self.__item.tags def getLevel(self): return self.__item.level def getTypeName(self): return self.__item.getGUIEmblemID() def getShortUserName(self): return self.__item.shortUserName def getIcon(self): return self.__item.icon def getSmallIcon(self): return self.__item.iconSmall def isVehicle(self): return self.__item.itemTypeID == GUI_ITEM_TYPE.VEHICLE def isRented(self): return self.__item.isRented def getItemPrices(self): item = self.__item unlockProps = self.getUnlockProps() if not item.isUnlocked and unlockProps is not None: return getItemUnlockPricesVO(unlockProps) else: return getItemRentOrRestorePricesVO(item.restorePrice) if item.isRestoreAvailable() else getItemPricesVO(item.getBuyPrice()) def getBuyPrices(self): return getItemPricesVO(self.__item.getBuyPrice()) def isActionPrice(self): itemPrice = self.__item.buyPrices.itemPrice return itemPrice.isActionPrice() def getActionDiscount(self): return self.__item.buyPrices.itemPrice.getActionPrc() def getCompareData(self): if self.__item is not None and self.__item.itemTypeID == GUI_ITEM_TYPE.VEHICLE: from gui.Scaleform.daapi.view.lobby.vehicle_compare import formatters return formatters.getTreeNodeCompareData(self.__item) else: return {} def getExtraInfo(self, rootItem): descriptor = rootItem.descriptor if rootItem else None return self.__item.getExtraIconInfo(descriptor) def getBlueprintLabel(self): bpfProps = self.getBpfProps() label = '' if bpfProps is not None: label = text_styles.counterLabelText(' '.join((str(bpfProps.filledCount), '/', str(bpfProps.totalCount)))) return label def getBlueprintProgress(self): bpfProps = self.getBpfProps() progress = 0.0 if bpfProps is not None and bpfProps.totalCount != 0: progress = float(bpfProps.filledCount) / bpfProps.totalCount return progress def getActionFinishTime(self): actions = self.__eventsCache.getItemAction(self.__item) actions = sorted(actions, key=lambda elem: elem[0]) if not actions: return 0 bestAction = self.__eventsCache.getActions().get(actions[0][1], '') return bestAction.getFinishTime() if bestAction else 0 def getRestoreFinishTime(self): return self.__item.restoreInfo.getRestoreTimeLeft() + getCurrentTimestamp() if self.__item.isRestorePossible() and self.__item.hasLimitedRestore() else 0 def getRentInfo(self): rentMoney = self.__item.minRentPrice return (rentMoney, rentMoney.getCurrency()) if rentMoney else (0, None) class AnnouncementNode(ExposedNode): __slots__ = ('__announcementInfo',) def __init__(self, nodeCD, info, state, displayInfo): super(AnnouncementNode, self).__init__(nodeCD, 0, state, displayInfo, unlockProps=None, bpfProps=None, price=None) self.__announcementInfo = info return def clear(self): super(AnnouncementNode, self).clear() self.__announcementInfo = None return def getTags(self): return self.__announcementInfo.tags def getLevel(self): return self.__announcementInfo.level def getTypeName(self): return GUI_ITEM_TYPE_NAMES[GUI_ITEM_TYPE.VEHICLE] def getShortUserName(self): return i18n.makeString(self.__announcementInfo.userString) def getIcon(self): return self.__announcementInfo.icon def getSmallIcon(self): return self.__announcementInfo.icon def isRented(self): return False def isVehicle(self): return True def getItemPrices(self): return None def getBuyPrices(self): return None def getCompareData(self): return {} def getExtraInfo(self, rootItem): return None def isActionPrice(self): return False def getActionDiscount(self): pass def getBlueprintLabel(self): pass def getBlueprintProgress(self): pass def getActionFinishTime(self): pass def getRestoreFinishTime(self): pass def getRentInfo(self): return (0, None)
54455505d3762eae077685337d9117b9749a5e0a
a7a115b000cd40be9378174777da4f1b56b99de0
/web_crawl_book/demo4.py
18d7d8d1d1b889b512a3291e57c3fc15f15cb7d1
[]
no_license
fireinrain/python_spider
316f7cc230989223e6177c5ba2443eba9b54a52a
364273278efa6629ec7d79f86c2ce54555ff7691
refs/heads/master
2022-06-26T20:38:56.462771
2017-06-27T00:53:42
2017-06-27T00:53:42
60,531,584
1
0
null
null
null
null
UTF-8
Python
false
false
2,024
py
#! /usr/bin/python3 # _encoding:utf-8_ # Written by liuzhaoyang # wcontact:[email protected] from urllib.request import urlopen from bs4 import BeautifulSoup import re import random import datetime import lxml # 获取页面中的所有内链的列表 def get_inter_links(bsobj,include_url): inter_links = [] # 找出所有以/为开头的链接 for link in bsobj.findAll("a",href=re.compile("^(/|.*"+include_url+")")): if link.attrs['href'] is not None: inner_link = link.attrs['href'] if inner_link not in include_url: include_url.append(inner_link) return inter_links # 获取页面的所有外链的列表 def get_external_links(bsobj,external_url): external_links = [] for link in bsobj.findAll("a",href=re.compile("^(http|www)((?!"+external_url+").)*$")): if link.attrs['href'] is not None: inner_link = link.attrs['href'] if inner_link not in external_links: external_links.append(inner_link) return external_links # 分割地址 def split_address(address): address_parts = address.replace("http://","").split("/") return address_parts # 获取随机外链 def get_random_external_link(start_page): html = urlopen(start_page) bsobj = BeautifulSoup(html.read(),"lxml") # print(html.read()) external_links = get_external_links(bsobj,split_address(start_page)[0]) if len(external_links) == 0: inter_links = get_inter_links(start_page) return get_external_links(random.choice(inter_links)) else: return random.choice(external_links) def follow_external_only(start_site): external_link = get_random_external_link("http://oreilly.com") print("随机外链:"+external_link) follow_external_only(external_link) if __name__ == "__main__": # strs = "http://www.baidu.com/music" # sss = split_address(strs) # print(sss) # get_random_external_link(strs) follow_external_only("http://oreilly.com")
70a043697ede733abf2b38349e5054591c900233
17c280ade4159d4d8d5a48d16ba3989470eb3f46
/16/data/ExoDiBosonResonances/EDBRTreeMaker/test/114.py
4c26aa3c6bf43f3f5d6ceb82aa1b8b60e31ea6b2
[]
no_license
chengchen1993/run2_ntuple
798ff18489ff5185dadf3d1456a4462e1dbff429
c16c2b203c05a3eb77c769f63a0bcdf8b583708d
refs/heads/master
2021-06-25T18:27:08.534795
2021-03-15T06:08:01
2021-03-15T06:08:01
212,079,804
0
2
null
null
null
null
UTF-8
Python
false
false
27,623
py
import FWCore.ParameterSet.Config as cms process = cms.Process( "TEST" ) #process.options = cms.untracked.PSet(wantSummary = cms.untracked.bool(True)) process.options = cms.untracked.PSet(wantSummary = cms.untracked.bool(True),allowUnscheduled=cms.untracked.bool(True)) #, # SkipEvent = cms.untracked.vstring('ProductNotFound')) filterMode = False # True ######## Sequence settings ########## corrJetsOnTheFly = True runOnMC = False runOnSig = False DOHLTFILTERS = True #useJSON = not (runOnMC) #JSONfile = 'Cert_246908-258750_13TeV_PromptReco_Collisions15_25ns_JSON.txt' #****************************************************************************************************# #process.load('Configuration/StandardSequences/FrontierConditions_GlobalTag_cff') process.load('Configuration.StandardSequences.GeometryRecoDB_cff') process.load('Configuration/StandardSequences/FrontierConditions_GlobalTag_condDBv2_cff') from Configuration.AlCa.GlobalTag import GlobalTag if runOnMC: process.GlobalTag.globaltag = '80X_mcRun2_asymptotic_2016_TrancheIV_v8'#'MCRUN2_74_V9::All' #process.GlobalTag.globaltag = '94X_mc2017_realistic_v14'#'MCRUN2_74_V9::All' elif not(runOnMC): process.GlobalTag.globaltag = '80X_dataRun2_2016SeptRepro_v7' # https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookMiniAOD2015#ETmiss_filters # For the RunIISummer15DR74 MC campaing, the process name in PAT. # For Run2015B PromptReco Data, the process name is RECO. # For Run2015B re-MiniAOD Data 17Jul2015, the process name is PAT. hltFiltersProcessName = 'RECO' if runOnMC: hltFiltersProcessName = 'PAT' #'RECO' #if DOHLTFILTERS and not(runOnMC): process.load('CommonTools.RecoAlgos.HBHENoiseFilterResultProducer_cfi') process.HBHENoiseFilterResultProducer.minZeros = cms.int32(99999) process.HBHENoiseFilterResultProducer.IgnoreTS4TS5ifJetInLowBVRegion=cms.bool(False) process.HBHENoiseFilterResultProducer.defaultDecision = cms.string("HBHENoiseFilterResultRun2Loose") process.ApplyBaselineHBHENoiseFilter = cms.EDFilter('BooleanFlagFilter', inputLabel = cms.InputTag('HBHENoiseFilterResultProducer','HBHENoiseFilterResult'), reverseDecision = cms.bool(False) ) process.ApplyBaselineHBHEIsoNoiseFilter = cms.EDFilter('BooleanFlagFilter', inputLabel = cms.InputTag('HBHENoiseFilterResultProducer','HBHEIsoNoiseFilterResult'), reverseDecision = cms.bool(False) ) ######### read JSON file for data ########## '''if not(runOnMC) and useJSON: import FWCore.PythonUtilities.LumiList as LumiList import FWCore.ParameterSet.Types as CfgTypes process.source.lumisToProcess = CfgTypes.untracked(CfgTypes.VLuminosityBlockRange()) myLumis = LumiList.LumiList(filename = JSONfile).getCMSSWString().split(',') process.source.lumisToProcess.extend(myLumis) ''' # --------------------------------------------------------- # DeepAK8: set up TransientTrackBuilder process.load('Configuration.StandardSequences.MagneticField_cff') process.TransientTrackBuilderESProducer = cms.ESProducer("TransientTrackBuilderESProducer", ComponentName=cms.string('TransientTrackBuilder') ) # --------------------------------------------------------- ####### Redo Jet clustering sequence ########## from RecoJets.Configuration.RecoPFJets_cff import ak4PFJetsCHS, ak8PFJetsCHS, ak8PFJetsCHSPruned, ak8PFJetsCHSSoftDrop, ak8PFJetsCHSPrunedMass, ak8PFJetsCHSSoftDropMass# , ak8PFJetsCSTrimmed, ak8PFJetsCSFiltered, ak8PFJetsCHSFilteredMass, ak8PFJetsCHSTrimmedMass from CommonTools.PileupAlgos.Puppi_cff import puppi process.puppi = puppi.clone() process.puppi.useExistingWeights = True process.puppi.candName = cms.InputTag('packedPFCandidates') process.puppi.vertexName = cms.InputTag('offlineSlimmedPrimaryVertices') process.ak8PFJetsCHS = ak8PFJetsCHS.clone( src = 'puppi', jetPtMin = 100.0 ) process.ak8PFJetsCHSPruned = ak8PFJetsCHSPruned.clone( src = 'puppi', jetPtMin = 100.0 ) process.ak8PFJetsCHSPrunedMass = ak8PFJetsCHSPrunedMass.clone() process.ak8PFJetsCHSSoftDrop = ak8PFJetsCHSSoftDrop.clone( src = 'puppi', jetPtMin = 100.0 ) process.ak8PFJetsCHSSoftDropMass = ak8PFJetsCHSSoftDropMass.clone() process.NjettinessAK8 = cms.EDProducer("NjettinessAdder", src = cms.InputTag("ak8PFJetsCHS"), Njets = cms.vuint32(1, 2, 3, 4), # variables for measure definition : measureDefinition = cms.uint32( 0 ), # CMS default is normalized measure beta = cms.double(1.0), # CMS default is 1 R0 = cms.double( 0.8 ), # CMS default is jet cone size Rcutoff = cms.double( 999.0), # not used by default # variables for axes definition : axesDefinition = cms.uint32( 6 ), # CMS default is 1-pass KT axes nPass = cms.int32(0), # not used by default akAxesR0 = cms.double(-999.0) # not used by default ) process.substructureSequence = cms.Sequence() process.substructureSequence+=process.puppi process.substructureSequence+=process.ak8PFJetsCHS process.substructureSequence+=process.NjettinessAK8 process.substructureSequence+=process.ak8PFJetsCHSPruned process.substructureSequence+=process.ak8PFJetsCHSPrunedMass process.substructureSequence+=process.ak8PFJetsCHSSoftDrop process.substructureSequence+=process.ak8PFJetsCHSSoftDropMass ####### Redo pat jets sequence ########## process.redoPatJets = cms.Sequence() process.redoPrunedPatJets = cms.Sequence() process.redoSoftDropPatJets = cms.Sequence() from ExoDiBosonResonances.EDBRJets.redoPatJets_cff import patJetCorrFactorsAK8, patJetsAK8, selectedPatJetsAK8 # Redo pat jets from ak8PFJetsCHS process.patJetCorrFactorsAK8 = patJetCorrFactorsAK8.clone( src = 'ak8PFJetsCHS' ) process.patJetsAK8 = patJetsAK8.clone( jetSource = 'ak8PFJetsCHS' ) process.patJetsAK8.userData.userFloats.src = [ cms.InputTag("ak8PFJetsCHSPrunedMass"), cms.InputTag("ak8PFJetsCHSSoftDropMass"), cms.InputTag("NjettinessAK8:tau1"), cms.InputTag("NjettinessAK8:tau2"), cms.InputTag("NjettinessAK8:tau3"), cms.InputTag("NjettinessAK8:tau4")] process.patJetsAK8.jetCorrFactorsSource = cms.VInputTag( cms.InputTag("patJetCorrFactorsAK8") ) process.selectedPatJetsAK8 = selectedPatJetsAK8.clone( cut = cms.string('pt > 100') ) process.redoPatJets+=process.patJetCorrFactorsAK8 process.redoPatJets+=process.patJetsAK8 process.redoPatJets+=process.selectedPatJetsAK8 # Redo pat jets ak8PFJetsCHSPruned process.patJetCorrFactorsAK8Pruned = patJetCorrFactorsAK8.clone( src = 'ak8PFJetsCHSPruned' ) process.patJetsAK8Pruned = patJetsAK8.clone( jetSource = 'ak8PFJetsCHSPruned' ) process.patJetsAK8Pruned.userData.userFloats.src = [ "" ] #process.patJetsAK8Pruned.userData.userFloats =cms.PSet(src = cms.VInputTag("")) process.patJetsAK8Pruned.jetCorrFactorsSource = cms.VInputTag( cms.InputTag("patJetCorrFactorsAK8Pruned") ) process.selectedPatJetsAK8Pruned = selectedPatJetsAK8.clone(cut = 'pt > 100', src = "patJetsAK8Pruned") process.redoPrunedPatJets+=process.patJetCorrFactorsAK8Pruned process.redoPrunedPatJets+=process.patJetsAK8Pruned process.redoPrunedPatJets+=process.selectedPatJetsAK8Pruned # Redo pat jets ak8PFJetsCHSSoftDrop process.patJetCorrFactorsAK8Softdrop = patJetCorrFactorsAK8.clone( src = 'ak8PFJetsCHSSoftDrop' ) process.patJetsAK8Softdrop = patJetsAK8.clone( jetSource = 'ak8PFJetsCHSSoftDrop' ) process.patJetsAK8Softdrop.userData.userFloats.src = [ "" ] #process.patJetsAK8Softdrop.userData.userFloats =cms.PSet(src = cms.VInputTag("")) process.patJetsAK8Softdrop.jetCorrFactorsSource = cms.VInputTag( cms.InputTag("patJetCorrFactorsAK8Softdrop") ) process.selectedPatJetsAK8Softdrop = selectedPatJetsAK8.clone(cut = 'pt > 100', src = "patJetsAK8Softdrop") from PhysicsTools.PatAlgos.tools.jetTools import addJetCollection ## PATify soft drop subjets addJetCollection( process, labelName = 'AK8SoftDropSubjets', jetSource = cms.InputTag('ak8PFJetsCHSSoftDrop','SubJets'), algo = 'ak', # needed for subjet flavor clustering rParam = 0.8, # needed for subjet flavor clustering getJetMCFlavour = False, pvSource = cms.InputTag( 'offlineSlimmedPrimaryVertices' ), genJetCollection = cms.InputTag('slimmedGenJets'), genParticles = cms.InputTag( 'prunedGenParticles' ), btagDiscriminators = ['None'], jetCorrections = ('AK4PFPuppi', ['L2Relative', 'L3Absolute'], 'None'), # explicitJTA = True, # needed for subjet b tagging # svClustering = True, # needed for subjet b tagging # fatJets=cms.InputTag('ak8PFJetsCHS'), # needed for subjet flavor clustering # groomedFatJets=cms.InputTag('ak8PFJetsCHSSoftDrop') # needed for subjet flavor clustering ) #''' #from RecoBTag.DeepFlavour.DeepFlavourJetTagsProducer_cfi import * # this loads all available b-taggers #process.load("RecoBTag.Configuration.RecoBTag_cff") #process.load("RecoBTag.DeepFlavour.DeepFlavourJetTagsProducer_cfi") #process.load("RecoBTag.DeepFlavour.deepFlavour_cff") #''' from RecoBTag.Configuration.RecoBTag_EventContent_cff import * from RecoBTag.Configuration.RecoBTag_cff import * from RecoBTag.DeepFlavour.DeepFlavourJetTagsProducer_cfi import deepFlavourJetTags from RecoBTag.DeepFlavour.deepFlavour_cff import * from PhysicsTools.PatAlgos.tools.jetTools import updateJetCollection updateJetCollection( process, labelName = 'DeepFlavour', jetSource = cms.InputTag('cleanPuppiAK4'), pvSource = cms.InputTag('offlineSlimmedPrimaryVertices'), svSource = cms.InputTag('slimmedSecondaryVertices'), jetCorrections = ('AK4PFchs', cms.vstring(['L1FastJet', 'L2Relative', 'L3Absolute']), 'None'), btagDiscriminators = ['deepFlavourJetTags:probb', 'deepFlavourJetTags:probbb','deepFlavourJetTags:probc','deepFlavourJetTags:probudsg','deepFlavourJetTags:probcc'], postfix='NewDFTraining' ) #process.selectedUpdatedPatJetsDeepFlavourNewDFTraining.userData.userFloats.src =[] #''' ''' process.patjets = cms.EDAnalyzer('EDBRTreeMaker', PatJets = cms.InputTag("selectedUpdatedPatJets"), PTMin = cms.double(-1), BTag = cms.string("deepFlavourJetTags:probb"), ) ''' process.selectedPatJetsAK8SoftDropPacked = cms.EDProducer("BoostedJetMerger", jetSrc = cms.InputTag("selectedPatJetsAK8Softdrop"), subjetSrc = cms.InputTag("selectedPatJetsAK8SoftDropSubjets") ) process.redoSoftDropPatJets+=process.patJetCorrFactorsAK8Softdrop process.redoSoftDropPatJets+=process.patJetsAK8Softdrop process.redoSoftDropPatJets+=process.selectedPatJetsAK8Softdrop option = 'RECO' process.load("ExoDiBosonResonances.EDBRCommon.goodMuons_cff") process.load("ExoDiBosonResonances.EDBRCommon.goodElectrons_cff") process.load("ExoDiBosonResonances.EDBRCommon.goodJets_cff") process.load("ExoDiBosonResonances.EDBRCommon.leptonicW_cff") process.load("ExoDiBosonResonances.EDBRCommon.hadronicW_cff") process.load("ExoDiBosonResonances.EDBRCommon.goodPuppi_cff") if option == 'RECO': process.goodMuons.src = "slimmedMuons" process.goodElectrons.src = "slimmedElectrons" process.goodJets.src = "slimmedJetsAK8" # process.goodJets.src = "selectedPatJetsAK8" process.Wtoenu.MET = "slimmedMETs" process.Wtomunu.MET = "slimmedMETs" process.goodPuppi.src = "selectedPatJetsAK8" process.goodOfflinePrimaryVertex = cms.EDFilter("VertexSelector", src = cms.InputTag("offlineSlimmedPrimaryVertices"), cut = cms.string("chi2!=0 && ndof >= 4.0 && abs(z) <= 24.0 && abs(position.Rho) <= 2.0"), filter = cms.bool(True) ) if option == 'RECO': process.hadronicV.cut = ' ' if option == 'GEN': process.hadronicV.cut = ' ' WBOSONCUT = "pt > 200.0" process.leptonicVSelector = cms.EDFilter("CandViewSelector", src = cms.InputTag("leptonicV"), cut = cms.string( WBOSONCUT ), filter = cms.bool(True) ) process.leptonicVFilter = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("leptonicV"), minNumber = cms.uint32(1), filter = cms.bool(True) ) process.hadronicVFilter = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("hadronicV"), minNumber = cms.uint32(1), filter = cms.bool(True) ) process.graviton = cms.EDProducer("CandViewCombiner", decay = cms.string("leptonicV hadronicV"), checkCharge = cms.bool(False), cut = cms.string("mass > 180"), roles = cms.vstring('leptonicV', 'hadronicV'), ) process.gravitonFilter = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("graviton"), minNumber = cms.uint32(1), filter = cms.bool(True) ) from PhysicsTools.SelectorUtils.tools.vid_id_tools import * switchOnVIDElectronIdProducer(process, DataFormat.MiniAOD) my_id_modules = ['RecoEgamma.ElectronIdentification.Identification.heepElectronID_HEEPV70_cff'] for idmod in my_id_modules: setupAllVIDIdsInModule(process,idmod,setupVIDElectronSelection) process.leptonSequence = cms.Sequence(process.muSequence + process.egmGsfElectronIDSequence*process.eleSequence + process.leptonicVSequence + process.leptonicVSelector + process.leptonicVFilter ) process.jetSequence = cms.Sequence(process.substructureSequence + process.redoPatJets + process.redoPrunedPatJets+ process.redoSoftDropPatJets+ process.fatJetsSequence + process.fatPuppiSequence+ process.hadronicV + process.hadronicVFilter) process.gravitonSequence = cms.Sequence(process.graviton + process.gravitonFilter) if filterMode == False: process.goodOfflinePrimaryVertex.filter = False process.Wtomunu.cut = '' process.Wtoenu.cut = '' process.leptonicVSelector.filter = False process.leptonicVSelector.cut = '' process.hadronicV.cut = '' process.graviton.cut = '' process.leptonicVFilter.minNumber = 0 process.hadronicVFilter.minNumber = 0 process.gravitonFilter.minNumber = 0 process.load('RecoMET.METFilters.BadPFMuonFilter_cfi') process.load("RecoMET.METFilters.BadChargedCandidateFilter_cfi") process.BadPFMuonFilter.muons = cms.InputTag("slimmedMuons") process.BadPFMuonFilter.PFCandidates = cms.InputTag("packedPFCandidates") process.BadChargedCandidateFilter.muons = cms.InputTag("slimmedMuons") process.BadChargedCandidateFilter.PFCandidates = cms.InputTag("packedPFCandidates") process.metfilterSequence = cms.Sequence(process.BadPFMuonFilter+process.BadChargedCandidateFilter) ######### JEC ######## METS = "slimmedMETs" jetsAK8 = "slimmedJetsAK8" jetsAK8pruned = "slimmedJetsAK8" jetsAK8softdrop = "slimmedJetsAK8" jetsAK8puppi = "cleanPuppi" if runOnMC: jecLevelsAK8chs = [ 'Summer16_23Sep2016V3_MC_L1FastJet_AK8PFchs.txt', 'Summer16_23Sep2016V3_MC_L2Relative_AK8PFchs.txt', 'Summer16_23Sep2016V3_MC_L3Absolute_AK8PFchs.txt' ] jecLevelsAK8chsGroomed = [ 'Summer16_23Sep2016V3_MC_L2Relative_AK8PFchs.txt', 'Summer16_23Sep2016V3_MC_L3Absolute_AK8PFchs.txt' ] jecLevelsAK8puppi = [ 'Summer16_23Sep2016V3_MC_L1FastJet_AK8PFPuppi.txt', 'Summer16_23Sep2016V3_MC_L2Relative_AK8PFPuppi.txt', 'Summer16_23Sep2016V3_MC_L3Absolute_AK8PFPuppi.txt' ] jecLevelsAK8puppiGroomed = [ 'Summer16_23Sep2016V3_MC_L2Relative_AK8PFPuppi.txt', 'Summer16_23Sep2016V3_MC_L3Absolute_AK8PFPuppi.txt' ] BjecLevelsAK4chs = [ 'Summer16_23Sep2016V3_MC_L1FastJet_AK4PFPuppi.txt', 'Summer16_23Sep2016V3_MC_L2Relative_AK4PFPuppi.txt', 'Summer16_23Sep2016V3_MC_L3Absolute_AK4PFPuppi.txt' ] jecLevelsAK4chs = [ 'Summer16_23Sep2016V3_MC_L1FastJet_AK4PFchs.txt', 'Summer16_23Sep2016V3_MC_L2Relative_AK4PFchs.txt', 'Summer16_23Sep2016V3_MC_L3Absolute_AK4PFchs.txt' ] else: jecLevelsAK8chs = [ 'Summer16_23Sep2016BCDV4_DATA_L1FastJet_AK8PFchs.txt', 'Summer16_23Sep2016BCDV4_DATA_L2Relative_AK8PFchs.txt', 'Summer16_23Sep2016BCDV4_DATA_L3Absolute_AK8PFchs.txt', 'Summer16_23Sep2016BCDV4_DATA_L2L3Residual_AK8PFchs.txt' ] jecLevelsAK8chsGroomed = [ 'Summer16_23Sep2016BCDV4_DATA_L2Relative_AK8PFchs.txt', 'Summer16_23Sep2016BCDV4_DATA_L3Absolute_AK8PFchs.txt', 'Summer16_23Sep2016BCDV4_DATA_L2L3Residual_AK8PFchs.txt' ] jecLevelsAK8puppi = [ 'Summer16_23Sep2016BCDV4_DATA_L1FastJet_AK8PFPuppi.txt', 'Summer16_23Sep2016BCDV4_DATA_L2Relative_AK8PFPuppi.txt', 'Summer16_23Sep2016BCDV4_DATA_L3Absolute_AK8PFPuppi.txt', 'Summer16_23Sep2016BCDV4_DATA_L2L3Residual_AK8PFPuppi.txt' ] jecLevelsAK8puppiGroomed = [ 'Summer16_23Sep2016BCDV4_DATA_L2Relative_AK8PFPuppi.txt', 'Summer16_23Sep2016BCDV4_DATA_L3Absolute_AK8PFPuppi.txt', 'Summer16_23Sep2016BCDV4_DATA_L2L3Residual_AK8PFPuppi.txt' ] BjecLevelsAK4chs = [ 'Summer16_23Sep2016BCDV4_DATA_L1FastJet_AK8PFPuppi.txt', 'Summer16_23Sep2016BCDV4_DATA_L2Relative_AK8PFPuppi.txt', 'Summer16_23Sep2016BCDV4_DATA_L3Absolute_AK8PFPuppi.txt', 'Summer16_23Sep2016BCDV4_DATA_L2L3Residual_AK8PFPuppi.txt' ] jecLevelsAK4chs = [ 'Summer16_23Sep2016BCDV4_DATA_L1FastJet_AK4PFPuppi.txt', 'Summer16_23Sep2016BCDV4_DATA_L2Relative_AK4PFPuppi.txt', 'Summer16_23Sep2016BCDV4_DATA_L3Absolute_AK4PFPuppi.txt', 'Summer16_23Sep2016BCDV4_DATA_L2L3Residual_AK4PFPuppi.txt' ] process.treeDumper = cms.EDAnalyzer("EDBRTreeMaker", originalNEvents = cms.int32(1), crossSectionPb = cms.double(1), targetLumiInvPb = cms.double(1.0), EDBRChannel = cms.string("VW_CHANNEL"), lhe = cms.InputTag("externalLHEProducer"), isGen = cms.bool(False), isJEC = cms.bool(corrJetsOnTheFly), RunOnMC = cms.bool(runOnMC), RunOnSig = cms.bool(runOnSig), generator = cms.InputTag("generator"), genSrc = cms.InputTag("prunedGenParticles"), pileup = cms.InputTag("slimmedAddPileupInfo"), leptonicVSrc = cms.InputTag("leptonicV"), gravitonSrc = cms.InputTag("graviton"), looseMuonSrc = cms.InputTag("looseMuons"), looseElectronSrc = cms.InputTag("looseElectrons"), vetoMuonSrc = cms.InputTag("vetoMuons"), vetoElectronSrc = cms.InputTag("vetoElectrons"), goodMuSrc = cms.InputTag("goodMuons"), MuSrc = cms.InputTag("slimmedMuons"), EleSrc = cms.InputTag("slimmedElectrons"), t1muSrc = cms.InputTag("slimmedMuons"), metSrc = cms.InputTag("slimmedMETs"), mets = cms.InputTag(METS), #ak4jetsSrc = cms.InputTag("cleanAK4Jets"), ak4jetsSrc = cms.InputTag("selectedUpdatedPatJetsDeepFlavourNewDFTraining"), #ak4jetsSrc = cms.InputTag("slimmedJetPuppi"), hadronicVSrc = cms.InputTag("hadronicV"), hadronicVSrc_raw = cms.InputTag("slimmedJetsAK8"), hadronicVSoftDropSrc = cms.InputTag("selectedPatJetsAK8SoftDropPacked"), jets = cms.InputTag("slimmedJets"), ak8JetSrc = cms.InputTag(jetsAK8), fatjets = cms.InputTag(jetsAK8), prunedjets = cms.InputTag(jetsAK8pruned), softdropjets = cms.InputTag(jetsAK8softdrop), puppijets = cms.InputTag(jetsAK8puppi), jecAK8chsPayloadNames = cms.vstring( jecLevelsAK8chs ), jecAK8chsPayloadNamesGroomed = cms.vstring( jecLevelsAK8chsGroomed ), jecAK4chsPayloadNames = cms.vstring( jecLevelsAK4chs ), BjecAK4chsPayloadNames = cms.vstring( BjecLevelsAK4chs ), jecAK8puppiPayloadNames = cms.vstring( jecLevelsAK8puppi ), jecAK8puppiPayloadNamesGroomed = cms.vstring( jecLevelsAK8puppiGroomed ), jecpath = cms.string(''), rho = cms.InputTag("fixedGridRhoFastjetAll"), electronIDs = cms.InputTag("heepElectronID-HEEPV50-CSA14-25ns"), muons = cms.InputTag("slimmedMuons"), vertices = cms.InputTag("offlineSlimmedPrimaryVertices"), hltToken = cms.InputTag("TriggerResults","","HLT"), muPaths1 = cms.vstring("HLT_PFHT650_WideJetMJJ900DEtaJJ1p5_v*"), muPaths2 = cms.vstring("HLT_PFHT800_v*"), muPaths3 = cms.vstring("HLT_PFHT900_v*"), muPaths4 = cms.vstring("HLT_PFJet450_v*"), muPaths5 = cms.vstring("HLT_PFJet500_v*"), muPaths6 = cms.vstring("HLT_AK8PFJet450_v*"), muPaths7 = cms.vstring("HLT_AK8PFJet500_v*"), muPaths8 = cms.vstring("HLT_AK8PFJet360_TrimMass30_v*"), muPaths9 = cms.vstring("HLT_AK8PFHT700_TrimR0p1PT0p03Mass50_v*"), muPaths10 = cms.vstring("HLT_PFHT650_WideJetMJJ950DEtaJJ1p5_v*"), el1 = cms.vstring("HLT_Ele45_WPLoose_Gsf_v*"), el2 = cms.vstring("HLT_Ele115_CaloIdVT_GsfTrkIdT_v*"),#("HLT_Ele35_WPLoose_Gsf_v*"), el3 = cms.vstring("HLT_Ele27_WPTight_Gsf_v*"), mu1 = cms.vstring("HLT_Mu50_v*"), #B2G-15-005 mu2 = cms.vstring("HLT_TkMu50_v*"), #B2G-15-005 mu3 = cms.vstring("HLT_PFMETNoMu120_PFMHTNoMu120_IDTight_v*"), mu4 = cms.vstring("HLT_PFMETNoMu110_PFMHTNoMu110_IDTight_v*"), noiseFilter = cms.InputTag('TriggerResults','', hltFiltersProcessName), noiseFilterSelection_HBHENoiseFilter = cms.string('Flag_HBHENoiseFilter'), noiseFilterSelection_HBHENoiseIsoFilter = cms.string("Flag_HBHENoiseIsoFilter"), noiseFilterSelection_GlobalTightHaloFilter = cms.string('Flag_globalTightHalo2016Filter'), noiseFilterSelection_EcalDeadCellTriggerPrimitiveFilter = cms.string('Flag_EcalDeadCellTriggerPrimitiveFilter'), noiseFilterSelection_goodVertices = cms.string('Flag_goodVertices'), noiseFilterSelection_eeBadScFilter = cms.string('Flag_eeBadScFilter'), noiseFilterSelection_badMuon = cms.InputTag('BadPFMuonFilter'), noiseFilterSelection_badChargedHadron = cms.InputTag('BadChargedCandidateFilter'), ) if option=='GEN': process.treeDumper.metSrc = 'genMetTrue' process.treeDumper.isGen = True process.analysis = cms.Path(process.leptonSequence + #process.substructureSequence+ #process.redoPatJets+ #process.redoPrunedPatJets+ #process.redoSoftDropPatJets+ process.HBHENoiseFilterResultProducer+ process.ApplyBaselineHBHENoiseFilter+ process.ApplyBaselineHBHEIsoNoiseFilter+ process.jetSequence + process.metfilterSequence + process.gravitonSequence + process.treeDumper) if option=='RECO': process.analysis.replace(process.leptonSequence, process.goodOfflinePrimaryVertex + process.leptonSequence) process.load("ExoDiBosonResonances.EDBRCommon.data.RSGravitonToWW_kMpl01_M_1000_Tune4C_13TeV_pythia8") process.source.fileNames = [ "/store/data/Run2016B/JetHT/MINIAOD/23Sep2016-v1/90000/1069E38E-5982-E611-8CCB-008CFA110C74.root" #"/store/data/Run2016B/JetHT/MINIAOD/23Sep2016-v1/90000/FE47EB9B-EB81-E611-B475-24BE05CEEB81.root" #"/store/data/Run2016E/JetHT/MINIAOD/23Sep2016-v1/50000/483CEE4F-FB86-E611-94C8-0CC47A7C3572.root" ] process.maxEvents.input = 2000 process.load("FWCore.MessageLogger.MessageLogger_cfi") process.MessageLogger.cerr.FwkReport.reportEvery = 5000 process.MessageLogger.cerr.FwkReport.limit = 99999999 process.TFileService = cms.Service("TFileService", fileName = cms.string("RStreeEDBR_pickup114.root") )
fb47ce858e2a7f7448b2da3fcc9ab0fc47525d9e
b72ef2946dafccebf621afbc904fdc55b4bfb5c0
/mlens/parallel/learner.py
00946d8f73095136450f79ddf4f7a84b57f70e8b
[ "MIT" ]
permissive
JoshuaC3/mlens
6b4da909e2f60d7736c36eddd90a871f31e227e5
f2ea2e8b403e3e46581de37cc94092529a4dc54d
refs/heads/master
2021-08-06T20:04:32.146766
2017-11-06T23:08:24
2017-11-06T23:08:24
108,462,155
0
0
null
2017-10-26T20:28:33
2017-10-26T20:28:33
null
UTF-8
Python
false
false
33,015
py
"""ML-Ensemble :author: Sebastian Flennerhag :copyright: 2017 :license: MIT Computational graph nodes. Job generator classes spawning jobs and executing estimation on cross-validation sub-graphs. """ # pylint: disable=too-few-public-methods # pylint: disable=too-many-arguments # pylint: disable=too-many-instance-attributes from __future__ import print_function, division import warnings from copy import deepcopy from abc import ABCMeta, abstractmethod from ._base_functions import ( slice_array, set_output_columns, assign_predictions, score_predictions, replace, save, load, prune_files, check_params) from .base import OutputMixin, ProbaMixin, IndexMixin, BaseEstimator from ..metrics import Data from ..utils import safe_print, print_time, format_name, assert_valid_pipeline from ..utils.exceptions import (NotFittedError, FitFailedWarning, ParallelProcessingError, NotInitializedError) from ..externals.sklearn.base import clone from ..externals.joblib.parallel import delayed try: from time import perf_counter as time except ImportError: from time import time # Types of indexers that require fits only on subsets or only on the full data ONLY_SUB = [] ONLY_ALL = ['fullindex', 'nonetype'] GLOBAL_LEARNER_NAMES = list() GLOBAL_TRANSFORMER_NAMES = list() ############################################################################### class IndexedEstimator(object): """Indexed Estimator Lightweight wrapper around estimator dumps during fitting. """ __slots__ = [ '_estimator', 'name', 'index', 'in_index', 'out_index', 'data'] def __init__(self, estimator, name, index, in_index, out_index, data): self._estimator = estimator self.name = name self.index = index self.in_index = in_index self.out_index = out_index self.data = data @property def estimator(self): """Deep copy of estimator""" return deepcopy(self._estimator) @estimator.setter def estimator(self, estimator): self._estimator = estimator def __getstate__(self): """Return pickable object""" return (self._estimator, self.name, self.index, self.in_index, self.out_index, self.data) def __setstate__(self, state): """Load tuple into instance""" (self._estimator, self.name, self.index, self.in_index, self.out_index, self.data) = state class SubLearner(object): """Estimation task Wrapper around a sub_learner job. """ def __init__(self, job, parent, estimator, in_index, out_index, in_array, targets, out_array, index): self.job = job self.estimator = estimator self.in_index = in_index self.out_index = out_index self.in_array = in_array self.targets = targets self.out_array = out_array self.score_ = None self.index = tuple(index) self.path = parent._path self.attr = parent.attr self.preprocess = parent.preprocess self.scorer = parent.scorer self.raise_on_exception = parent.raise_on_exception self.verbose = parent.verbose if not parent.__no_output__: self.output_columns = parent.output_columns[index[0]] self.score_ = None self.fit_time_ = None self.pred_time_ = None self.name = parent.cache_name self.name_index = '.'.join([self.name] + [str(i) for i in index]) if self.preprocess is not None: self.preprocess_index = '.'.join( [self.preprocess] + [str(i) for i in index]) else: self.processing_index = '' def __call__(self): """Launch job""" return getattr(self, self.job)() def fit(self, path=None): """Fit sub-learner""" if not path: path = self.path t0 = time() transformers = self._load_preprocess(path) self._fit(transformers) if self.out_array is not None: self._predict(transformers, self.scorer is not None) o = IndexedEstimator(estimator=self.estimator, name=self.name_index, index=self.index, in_index=self.in_index, out_index=self.out_index, data=self.data) save(path, self.name_index, o) if self.verbose: msg = "{:<30} {}".format(self.name_index, "done") f = "stdout" if self.verbose < 10 - 3 else "stderr" print_time(t0, msg, file=f) def predict(self, path=None): """Predict with sublearner""" if not path: path = self.path t0 = time() transformers = self._load_preprocess(path) self._predict(transformers, False) if self.verbose: msg = "{:<30} {}".format(self.name_index, "done") f = "stdout" if self.verbose < 10 - 3 else "stderr" print_time(t0, msg, file=f) def transform(self, path=None): """Predict with sublearner""" return self.predict(path) def _fit(self, transformers): """Sub-routine to fit sub-learner""" xtemp, ytemp = slice_array(self.in_array, self.targets, self.in_index) # Transform input (triggers copying) t0 = time() if transformers: xtemp, ytemp = transformers.transform(xtemp, ytemp) # Fit estimator self.estimator.fit(xtemp, ytemp) self.fit_time_ = time() - t0 def _load_preprocess(self, path): """Load preprocessing pipeline""" if self.preprocess is not None: obj = load(path, self.preprocess_index, self.raise_on_exception) return obj.estimator return def _predict(self, transformers, score_preds): """Sub-routine to with sublearner""" n = self.in_array.shape[0] # For training, use ytemp to score predictions # During test time, ytemp is None xtemp, ytemp = slice_array(self.in_array, self.targets, self.out_index) t0 = time() if transformers: xtemp, ytemp = transformers.transform(xtemp, ytemp) predictions = getattr(self.estimator, self.attr)(xtemp) self.pred_time_ = time() - t0 # Assign predictions to matrix assign_predictions(self.out_array, predictions, self.out_index, self.output_columns, n) # Score predictions if applicable if score_preds: self.score_ = score_predictions( ytemp, predictions, self.scorer, self.name_index, self.name) @property def data(self): """fit data""" out = {'score': self.score_, 'ft': self.fit_time_, 'pt': self.pred_time_} return out class SubTransformer(object): """Sub-routine for fitting a pipeline """ def __init__(self, job, parent, estimator, in_index, in_array, targets, index, out_index=None, out_array=None): self.job = job self.estimator = estimator self.in_index = in_index self.out_index = out_index self.in_array = in_array self.out_array = out_array self.targets = targets self.index = index self.transform_time_ = None self.path = parent._path self.verbose = parent.verbose self.name = parent.cache_name self.name_index = '.'.join( [self.name] + [str(i) for i in index]) if not parent.__no_output__: self.output_columns = parent.output_columns[index[0]] def __call__(self): """Launch job""" return getattr(self, self.job)() def predict(self): """Dump transformers for prediction""" self._transform() def transform(self): """Dump transformers for prediction""" self._transform() def _transform(self): """Run a transformation""" t0 = time() n = self.in_array.shape[0] xtemp, ytemp = slice_array( self.in_array, self.targets, self.out_index) xtemp, ytemp = self.estimator.transform(xtemp, ytemp) assign_predictions( self.out_array, xtemp, self.out_index, self.output_columns, n) if self.verbose: msg = "{:<30} {}".format(self.name_index, "done") f = "stdout" if self.verbose < 10 - 3 else "stderr" print_time(t0, msg, file=f) def fit(self, path=None): """Fit transformers""" path = path if path else self.path t0 = time() xtemp, ytemp = slice_array( self.in_array, self.targets, self.in_index) t0_f = time() self.estimator.fit(xtemp, ytemp) self.transform_time_ = time() - t0_f if self.out_array is not None: self._transform() o = IndexedEstimator(estimator=self.estimator, name=self.name_index, index=self.index, in_index=self.in_index, out_index=self.out_index, data=self.data) save(path, self.name_index, o) if self.verbose: f = "stdout" if self.verbose < 10 else "stderr" msg = "{:<30} {}".format(self.name_index, "done") print_time(t0, msg, file=f) @property def data(self): """fit data""" return {'ft': self.transform_time_} class EvalSubLearner(SubLearner): """EvalSubLearner sub-routine for cross-validated evaluation. """ def __init__(self, job, parent, estimator, in_index, out_index, in_array, targets, index): super(EvalSubLearner, self).__init__( job=job, parent=parent, estimator=estimator, in_index=in_index, out_index=out_index, in_array=in_array, out_array=None, targets=targets, index=index) self.error_score = parent.error_score self.train_score_ = None self.test_score_ = None self.train_pred_time_ = None self.test_pred_time_ = None def fit(self, path=None): """Evaluate sub-learner""" path = path if path else self.path if self.scorer is None: raise ValueError("Cannot generate CV-scores without a scorer") t0 = time() transformers = self._load_preprocess(path) self._fit(transformers) self._predict(transformers) o = IndexedEstimator(estimator=self.estimator, name=self.name_index, index=self.index, in_index=self.in_index, out_index=self.out_index, data=self.data) save(path, self.name_index, o) if self.verbose: f = "stdout" if self.verbose else "stderr" msg = "{:<30} {}".format(self.name_index, "done") print_time(t0, msg, file=f) def _predict(self, transformers, score_preds=None): """Sub-routine to with sublearner""" # Train set self.train_score_, self.train_pred_time_ = self._score_preds( transformers, self.in_index) # Validation set self.test_score_, self.test_pred_time_ = self._score_preds( transformers, self.out_index) def _score_preds(self, transformers, index): # Train scores xtemp, ytemp = slice_array(self.in_array, self.targets, index) if transformers: xtemp, ytemp = transformers.transform(xtemp, ytemp) t0 = time() if self.error_score is not None: try: scores = self.scorer(self.estimator, xtemp, ytemp) except Exception as exc: # pylint: disable=broad-except warnings.warn( "Scoring failed. Setting error score %r." "Details:\n%r" % (self.error_score, exc), FitFailedWarning) scores = self.error_score else: scores = self.scorer(self.estimator, xtemp, ytemp) pred_time = time() - t0 return scores, pred_time @property def data(self): """Score data""" out = {'test_score': self.test_score_, 'train_score': self.train_score_, 'fit_time': self.fit_time_, 'pred_time': self.train_pred_time_, # 'test_pred_time': self.train_pred_time_, } return out class Cache(object): """Cache wrapper for IndexedEstimator """ def __init__(self, obj, path, verbose): self.obj = obj self.path = path self.name = obj.name self.verbose = verbose def __call__(self, path=None): """Cache estimator to path""" path = path if path else self.path save(path, self.name, self.obj) if self.verbose: msg = "{:<30} {}".format(self.name, "cached") f = "stdout" if self.verbose < 10 - 3 else "stderr" safe_print(msg, file=f) ############################################################################### class BaseNode(OutputMixin, IndexMixin, BaseEstimator): """Base computational node inherited by job generators. Common API for job generators. A class that inherits the base need to set a ``__subtype__`` in the constructor. The sub-type should be the class that runs estimations and must implement a ``__call__``, ``fit``, ``transform`` and ``predict`` method. """ __meta_class__ = ABCMeta # Reset subtype class attribute in any class that inherits the base __subtype__ = None def __init__(self, name, estimator, indexer=None, verbose=False, **kwargs): super(BaseNode, self).__init__(name, **kwargs) # Variables self._path = None self._data_ = None self._times_ = None self._learner_ = None self._sublearners_ = None self.__collect__ = False self._partitions = None self.__only_all__ = None self.__only_sub__ = None # Parameters self.indexer = indexer if self.indexer: self.set_indexer(self.indexer) self.estimator = estimator self.verbose = verbose self.cache_name = None self.output_columns = None self.feature_span = None self.__static__.extend(['estimator', 'name', 'indexer']) def __iter__(self): yield self def __call__(self, args, arg_type='main', parallel=None): """Caller for producing jobs""" job = args['job'] self._path = args['dir'] _threading = self.backend == 'threading' if not self.__indexer__: raise NotInitializedError( "Instance has no indexer attached. Call set_indexer first.") if job != 'fit' and not self.__fitted__: raise NotFittedError( "Instance not fitted with current params. Call 'fit' first.") if job == 'fit': if self.__fitted__ and args.pop('refit', False): # Check refit if self.__no_output__: return args['job'] = 'transform' return self(args, arg_type, parallel) # Record static params self._store_static_params() generator = getattr(self, 'gen_%s' % job)(**args[arg_type]) if not parallel: return generator parallel(delayed(subtask, not _threading)() for subtask in generator) if self.__collect__: self.collect() def _gen_pred(self, job, X, P, generator): """Generator for predicting with fitted learner Parameters ---------- job: str type of job X : array-like of shape [n_samples, n_features] input array P : array-like of shape [n_samples, n_prediction_features] output array to populate. Must be writeable. generator : iterable iterator of learners of sub-learners to predict with. One of ``self.learner_`` and ``self.sublearners_``. """ for estimator in generator: yield self.__subtype__( job=job, parent=self, estimator=estimator.estimator, in_index=estimator.in_index, out_index=estimator.out_index, in_array=X, out_array=P, index=estimator.index, targets=None, ) def gen_fit(self, X, y, P=None): """Routine for generating fit jobs conditional on refit Parameters ---------- X: array-like of shape [n_samples, n_features] input array y: array-like of shape [n_samples,] targets P: array-like of shape [n_samples, n_prediction_features], optional output array to populate. Must be writeable. Only pass if predictions are desired. """ # We use a derived cache_name during estimation: if the name of the # instance or the name of the preprocessing dependency changes, this # allows us to pick up on that. if hasattr(self, 'preprocess'): self.cache_name = '%s.%s' % ( self.preprocess, self.name) if self.preprocess else self.name else: self.cache_name = self.name if self.__subtype__ is None: raise ParallelProcessingError( "Class incorrectly constructed. Need to set class attribute " "__subtype__") self.__collect__ = True # We use an index to keep track of partition and fold # For single-partition estimations, index[0] is constant i = 0 if not self.__only_sub__: out = P if self.__only_all__ else None for partition_index in self.indexer.partition(): yield self.__subtype__( job='fit', parent=self, estimator=self.cloned_estimator, in_index=partition_index, out_index=None, in_array=X, targets=y, out_array=out, index=(i, 0), ) i += 1 if not self.__only_all__: # Fit sub-learners on cv folds for i, (train_index, test_index) in enumerate( self.indexer.generate()): # Note that we bump index[1] by 1 to have index[1] start at 1 if self._partitions == 1: index = (0, i + 1) else: splits = self.indexer.folds index = (i // splits, i % splits + 1) yield self.__subtype__( job='fit', parent=self, estimator=self.cloned_estimator, in_index=train_index, out_index=test_index, in_array=X, targets=y, out_array=P, index=index, ) def gen_transform(self, X, P=None): """Generate cross-validated predict jobs Parameters ---------- X: array-like of shape [n_samples, n_features] input array y: array-like of shape [n_samples,] targets P: array-like of shape [n_samples, n_prediction_features], optional output array to populate. Must be writeable. Only pass if predictions are desired. """ return self._gen_pred('transform', X, P, self.sublearners) def gen_predict(self, X, P=None): """Generate predicting jobs Parameters ---------- X: array-like of shape [n_samples, n_features] input array y: array-like of shape [n_samples,] targets P: array-like of shape [n_samples, n_prediction_features], optional output array to populate. Must be writeable. Only pass if predictions are desired. """ return self._gen_pred('predict', X, P, self.learner) def collect(self, path=None): """Load fitted estimator from cache Parameters ---------- path: str, list, optional path to cache. """ if not path: path = self._path if self.__collect__: (learner_files, learner_data, sublearner_files, sublearner_data) = self._collect(path) self.clear() self._learner_ = learner_files self._sublearners_ = sublearner_files self._data_ = sublearner_data self._times_ = learner_data # Collection complete, turn off self.__collect__ = False def clear(self): """Clear load""" self._sublearners_ = None self._learner_ = None self._data_ = None self._times_ = None self._path = None def set_indexer(self, indexer): """Set indexer and auxiliary attributes Parameters ---------- indexer: obj indexer to build instance with. """ self.indexer = indexer self._partitions = indexer.partitions self.__only_all__ = indexer.__class__.__name__.lower() in ONLY_ALL self.__only_sub__ = indexer.__class__.__name__.lower() in ONLY_SUB def _collect(self, path): """Collect files from cache""" files = prune_files(path, self.cache_name) learner_files = list() learner_data = list() sublearner_files = list() sublearner_data = list() while files: f = files.pop(0) if f in files: raise ParallelProcessingError( "Corrupt cache: duplicate cache entry found.\n%r" % f) if f.index[1] == 0: learner_files.append(f) learner_data.append((f.name, f.data)) else: sublearner_files.append(f) sublearner_data.append((f.name, f.data)) if self.__only_sub__: # Full learners are the same as the sub-learners learner_files, learner_data = replace(sublearner_files) if self.__only_all__: # Sub learners are the same as the sub-learners sublearner_files, sublearner_data = replace(learner_files) return learner_files, learner_data, sublearner_files, sublearner_data def _return_attr(self, attr): if not self.__fitted__: raise NotFittedError("Instance not fitted.") return getattr(self, attr) def set_output_columns(self, X=None, y=None, job=None, n_left_concats=0): """Set the output_columns attribute""" # pylint: disable=unused-argument multiplier = self._get_multiplier(X, y) target = self._partitions * multiplier + n_left_concats set_output_columns( [self], self._partitions, multiplier, n_left_concats, target) mi = n_left_concats mx = max([i for i in self.output_columns.values()]) + multiplier self.feature_span = (mi, mx) @abstractmethod def _get_multiplier(self, X, y): """Get the prediction multiplier given input (X, y)""" return 1 @property def __fitted__(self): """Fit status""" if (not self._learner_ or not self._sublearners_ or not self.indexer.__fitted__): return False # Check estimator param overlap fitted = self._learner_ + self._sublearners_ fitted_params = fitted[0].estimator.get_params(deep=True) model_estimator_params = self.estimator.get_params(deep=True) if not check_params(fitted_params, model_estimator_params): self.clear() # Release obsolete estimators return False # Check that hyper-params hasn't changed if not self._check_static_params(): return False return True @property def cloned_estimator(self): """Copy of estimator""" return clone(self.estimator) @property def learner(self): """Generator for learner fitted on full data""" # pylint: disable=not-an-iterable out = self._return_attr('_learner_') for estimator in out: yield deepcopy(estimator) @property def sublearners(self): """Generator for learner fitted on folds""" # pylint: disable=not-an-iterable out = self._return_attr('_sublearners_') for estimator in out: yield deepcopy(estimator) @property def raw_data(self): """List of data collected from each sub-learner during fitting.""" return self._return_attr('_data_') @property def data(self): """Dictionary with aggregated data from fitting sub-learners.""" out = self._return_attr('_data_') return Data(out) @property def times(self): """Fit and predict times for the final learners""" out = self._return_attr('_times_') return Data(out) class Learner(ProbaMixin, BaseNode): """Learner Wrapper for base learners. Parameters __________ estimator : obj estimator to construct learner from preprocess : str, obj preprocess transformer. Pass either the string cache reference or the transformer instance. If the latter, the :attr:`preprocess` will refer to the transformer name. name : str name of learner. If ``preprocess`` is not ``None``, the name will be prepended to ``preprocess__name``. attr : str (default='predict') predict attribute, typically one of 'predict' and 'predict_proba' scorer : func function to use for scoring predictions during cross-validated fitting. output_columns : dict, optional mapping of prediction feature columns from learner to columns in output array. Normally, this map is ``{0: x}``, but if the ``indexer`` creates partitions, each partition needs to be mapped: ``{0: x, 1: x + 1}``. Note that if ``output_columns`` are not given at initialization, the ``set_output_columns`` method must be called before running estimations. verbose : bool, int (default = False) whether to report completed fits. **kwargs : bool (default=True) Optional ParallelProcessing arguments. See :class:`BaseParallel`. """ __subtype__ = SubLearner def __init__(self, estimator, indexer=None, name=None, preprocess=None, attr=None, scorer=None, proba=False, **kwargs): super(Learner, self).__init__( name=format_name(name, 'learner', GLOBAL_LEARNER_NAMES), estimator=estimator, indexer=indexer, **kwargs) self._classes = None self.proba = proba self._scorer = scorer self.preprocess = preprocess self.n_pred = self._partitions self.attr = attr if attr else self._predict_attr # Protect preprocess against later changes self.__static__.append('preprocess') @property def scorer(self): """Copy of scorer""" return deepcopy(self._scorer) @scorer.setter def scorer(self, scorer): """Copy of scorer""" self._scorer = scorer class Transformer(BaseNode): """Preprocessing handler. Wrapper for transformation pipeline. Parameters __________ indexer : obj, None indexer to use for generating fits. Set to ``None`` to fit only on all data. estimator : obj transformation pipeline to construct learner from name : str name of learner. If ``preprocess`` is not ``None``, the name will be prepended to ``preprocess__name``. output_columns : dict, optional If transformer is to be used to output data, need to set ``output_columns``. Normally, this map is ``{0: x}``, but if the ``indexer`` creates partitions, each partition needs to be mapped: ``{0: x, 1: x + 1}``. verbose : bool, int (default = False) whether to report completed fits. raise_on_exception : bool (default=True) whether to warn on non-fatal exceptions or raise an error. """ __subtype__ = SubTransformer def __init__(self, estimator, indexer=None, name=None, **kwargs): assert_valid_pipeline(estimator) name = format_name(name, 'transformer', GLOBAL_TRANSFORMER_NAMES) super(Transformer, self).__init__( name=name, estimator=estimator, indexer=indexer, **kwargs) self.__no_output__ = True def _get_multiplier(self, X, y=None, alt=None): """Number of cols produced in prediction""" return X.shape[1] def _gen_pred(self, job, X, P, generator): if self.__no_output__: def gen(): for o in generator: yield Cache(o, self._path, self.verbose) return gen() else: return super(Transformer, self)._gen_pred(job, X, P, generator) class EvalTransformer(Transformer): r"""Evaluator version of the Transformer. Derived class from Transformer adapted to cross\-validated grid-search. See :class:`Transformer` for more details. """ def __init__(self, estimator, indexer=None, name=None, **kwargs): super(EvalTransformer, self).__init__( estimator, indexer=indexer, name=name, **kwargs) self.output_columns = {0: 0} # For compatibility with SubTransformer self.__only_all__ = False self.__only_sub__ = True class EvalLearner(Learner): """EvalLearner EvalLearner is a derived class from Learner used for cross-validated scoring of an estimator. Parameters __________ estimator : obj estimator to construct learner from preprocess : str preprocess cache refernce indexer : obj, None indexer to use for generating fits. Set to ``None`` to fit only on all data. name : str name of learner. If ``preprocess`` is not ``None``, the name will be prepended to ``preprocess__name``. attr : str (default='predict') predict attribute, typically one of 'predict' and 'predict_proba' scorer : func function to use for scoring predictions during cross-validated fitting. error_score : int, float, None (default = None) score to set if cross-validation fails. Set to ``None`` to raise error. verbose : bool, int (default = False) whether to report completed fits. raise_on_exception : bool (default=True) whether to warn on non-fatal exceptions or raise an error. """ __subtype__ = EvalSubLearner def __init__(self, estimator, preprocess, name, attr, scorer, error_score=None, verbose=False, **kwargs): super(EvalLearner, self).__init__( estimator=estimator, preprocess=preprocess, name=name, attr=attr, scorer=scorer, verbose=verbose, **kwargs) self.__only_sub__ = True self.__only_all__ = False self.output_columns = {0: 0} # For compatibility with SubLearner self.error_score = error_score def gen_fit(self, X, y, P=None, refit=True): """Generator for fitting learner on given data""" self.cache_name = '%s.%s' % ( self.preprocess, self.name) if self.preprocess else self.name if not refit and self.__fitted__: self.gen_transform(X, P) # We use an index to keep track of partition and fold # For single-partition estimations, index[0] is constant if self.indexer is None: raise ValueError("Cannot run cross-validation without an indexer") self.__collect__ = True for i, (train_index, test_index) in enumerate( self.indexer.generate()): # Note that we bump index[1] by 1 to have index[1] start at 1 if self._partitions == 1: index = (0, i + 1) else: index = (0, i % self._partitions + 1) yield EvalSubLearner( job='fit', parent=self, estimator=self.cloned_estimator, in_index=train_index, out_index=test_index, in_array=X, targets=y, index=index, )
7f7037fa21290dcb8418f1c9c2eeb83c713b4296
40d404e424489bb48c3673dee6664de64dbab39c
/myWebsite/.venv/lib/python3.8/site-packages/zope/annotation/attribute.py
5c009ce2b71fbbf979a61e014fc06a8c534ed00c
[]
no_license
alyasamba/me
07c9f5f27aa16f768e0432780ac8f6f5ab6afbd1
978053c867181bad8eb316a0920ba290a7b1ceae
refs/heads/main
2023-01-28T09:57:46.616285
2020-12-02T02:31:25
2020-12-02T02:31:25
315,935,399
1
0
null
null
null
null
UTF-8
Python
false
false
3,466
py
############################################################################## # # Copyright (c) 2001, 2002 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Attribute Annotations implementation""" import logging try: from collections.abc import MutableMapping as DictMixin except ImportError: # Python 2 from collections import MutableMapping as DictMixin try: from BTrees.OOBTree import OOBTree as _STORAGE except ImportError: # pragma: no cover logging.getLogger(__name__).warning( 'BTrees not available: falling back to dict for attribute storage') _STORAGE = dict from zope import component, interface from zope.annotation import interfaces _EMPTY_STORAGE = _STORAGE() @interface.implementer(interfaces.IAnnotations) @component.adapter(interfaces.IAttributeAnnotatable) class AttributeAnnotations(DictMixin): """Store annotations on an object Store annotations in the `__annotations__` attribute on a `IAttributeAnnotatable` object. """ # Yes, there's a lot of repetition of the `getattr` call, # but that turns out to be the most efficient for the ways # instances are typically used without sacrificing any semantics. # See https://github.com/zopefoundation/zope.annotation/issues/8 # for a discussion of alternatives (which included functools.partial, # a closure, capturing the annotations in __init__, and versions # with getattr and exceptions). def __init__(self, obj, context=None): self.obj = obj @property def __parent__(self): return self.obj def __bool__(self): return bool(getattr(self.obj, '__annotations__', 0)) __nonzero__ = __bool__ def get(self, key, default=None): """See zope.annotation.interfaces.IAnnotations""" annotations = getattr(self.obj, '__annotations__', _EMPTY_STORAGE) return annotations.get(key, default) def __getitem__(self, key): annotations = getattr(self.obj, '__annotations__', _EMPTY_STORAGE) return annotations[key] def keys(self): annotations = getattr(self.obj, '__annotations__', _EMPTY_STORAGE) return annotations.keys() def __iter__(self): annotations = getattr(self.obj, '__annotations__', _EMPTY_STORAGE) return iter(annotations) def __len__(self): annotations = getattr(self.obj, '__annotations__', _EMPTY_STORAGE) return len(annotations) def __setitem__(self, key, value): """See zope.annotation.interfaces.IAnnotations""" try: annotations = self.obj.__annotations__ except AttributeError: annotations = self.obj.__annotations__ = _STORAGE() annotations[key] = value def __delitem__(self, key): """See zope.app.interfaces.annotation.IAnnotations""" try: annotation = self.obj.__annotations__ except AttributeError: raise KeyError(key) del annotation[key]
98a489879ec8c353e34f3c02e3732f79b32f4943
12a012ace19a14fc2c4ce2daec7a9df94cd5d925
/[1차] 비밀지도.py
00fedf556e4d6eaf4e149b313258d139fa9b2ee1
[]
no_license
newfull5/Programmers
a0a25fd72c0a8a7932122cb72e65b28ecd29ff71
b880a8043427f6aa7dc72caa3e46b1f6584a8962
refs/heads/master
2022-12-28T13:46:52.215347
2022-12-12T13:50:53
2022-12-12T13:50:53
211,209,943
1
0
null
null
null
null
UTF-8
Python
false
false
1,852
py
''' def solution(n, arr1, arr2): answer1 = [] answer2 = [] answer = [] for arr in arr1: if len(bin(arr)[2:]) != n: answer1.append((n - len(bin(arr)[2:]))*'0' + bin(arr)[2:]) else: answer1.append(bin(arr)[2:]) for arr in arr2: if len(bin(arr)[2:]) != n: answer2.append((n - len(bin(arr)[2:]))*'0' + bin(arr)[2:]) else: answer2.append(bin(arr)[2:]) for i in range(0, n): temp = '' for j in range(0,n): if answer1[i][j] == '1' or answer2[i][j] == '1': temp += '#' else: temp += ' ' answer.append(temp) return answer ''' """ # 2020.02.26 # 20일전 풀이에서 조금도 달라진게 없다. 풀이가 하나밖에 없는 문제인건가? 아니면 성장하지 못한 것인가? def solution(n, arr1, arr2): ar1 = [] ar2 = [] answer = [] for num in arr1: if len(bin(num)[2:]) != n: ar1.append('0'*(n - len(bin(num)[2:])) + bin(num)[2:]) else: ar1.append(bin(num)[2:]) for num in arr2: if len(bin(num)[2:]) != n: ar2.append('0'*(n - len(bin(num)[2:])) + bin(num)[2:]) else: ar2.append(bin(num)[2:]) for i in range(0, n): string = '' for j in range(0, n): if ar1[i][j] == '1' or ar2[i][j] == '1': string += '#' else: string += ' ' answer.append(string) return answer """ #2022.11.12 def _geunsub(string, n): string = string[2:] string = '00000' + string string = string[-n:] return string.replace('1', '#').replace('0', ' ') def solution(n, arr1, arr2): return [_geunsub(bin(a | b), n) for a,b, in zip(arr1, arr2)]
445f3536583b311826de4e39ab680a8d10b37ae2
800b5166148d4e3cd03825d7d20e2900fbc6c789
/report_form/migrations/0040_poorpeopledataform_offpoor_year.py
a92d794dfc6987387dfa5eac23d67a0145623cc5
[]
no_license
JiSuPiaoYi/dawufupin
4ffc979a93502eb576776673c98aaeb16021827e
57756a501436fabe9b27ebca2e80e60932da30dc
refs/heads/master
2020-04-07T11:37:35.728108
2018-11-20T09:09:50
2018-11-20T09:09:50
158,334,010
0
0
null
null
null
null
UTF-8
Python
false
false
509
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2018-09-24 11:38 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('report_form', '0039_auto_20180924_0918'), ] operations = [ migrations.AddField( model_name='poorpeopledataform', name='offpoor_year', field=models.CharField(blank=True, db_column='offpoor_year', max_length=20), ), ]
022f87a546a6119342777ea2100ad81a1be36b7d
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/Ablation4_ch016_ep003_7_10/Gather2_W_fixGood_C_change/train/pyr_6s/L4/step10_a.py
baa0b1da65dac66b042bc462388e0182438ca561
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
148,472
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_6side_L4 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] import Exps_7_v3.doc3d.Ablation4_ch016_ep003_7_10.W_w_M_to_C_pyr.pyr_6s.L4.step10_a as W_w_M_to_C_p20_pyr from Exps_7_v3.doc3d.Ablation4_ch016_ep003_7_10.I_w_M_to_W_pyr.pyr_3s.L5.step10_a import ch032_1side_6__2side_5__3side_2__ep010 as I_w_M_to_W_p20_3s_L5_Good ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_v2 use_loss_obj = [mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wz").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wy").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wx").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Cx").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Cy").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ############################################################# ################### ############# 1s1 ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_1__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s1__2s1__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_1__2side_1__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ################### ############# 1s2 ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_2__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s1__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_1__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_2__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s2__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_2__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_2__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s2__3s2__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_2__3side_2_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_2__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s2__3s2__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_2__3side_2_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s2__3s2__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_2__3side_2_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s2__3s2__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_2__3side_2_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ################### ############# 1s3 ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_3__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s1__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_1__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ######### 2s2 ##### 3s1 ### 4s1 ch032_1side_3__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s2__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_2__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_3__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s2__3s2__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_2__3side_2_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_3__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s2__3s2__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_2__3side_2_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s2__3s2__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_2__3side_2_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s2__3s2__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_2__3side_2_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ######### 2s3 ##### 3s1 ### 4s1 ch032_1side_3__2side_3__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_3__2side_3__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s2__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_2_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_3__2side_3__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s2__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_2_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s2__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_2_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s2__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_2_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_3__2side_3__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s3__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_3__2side_3__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s3__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s3__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s3__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s3 ch032_1side_3__2side_3__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s3__4s3__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_3_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s3__4s3__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_3_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s3__4s3__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_3_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s3__4s3__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_3_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s3__4s3__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_3_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s3__4s3__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_3_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ################### ############# 1s4 ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_4__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s1__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_1__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ######### 2s2 ##### 3s1 ### 4s1 ch032_1side_4__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s2__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_2__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_4__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s2__3s2__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_2__3side_2_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_4__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s2__3s2__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_2__3side_2_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s2__3s2__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_2__3side_2_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s2__3s2__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_2__3side_2_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ######### 2s3 ##### 3s1 ### 4s1 ch032_1side_4__2side_3__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_4__2side_3__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s2__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_2_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_4__2side_3__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s2__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_2_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s2__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_2_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s2__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_2_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_4__2side_3__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s3__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_4__2side_3__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s3__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s3__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s3__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s3 ch032_1side_4__2side_3__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s3__4s3__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_3_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s3__4s3__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_3_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s3__4s3__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_3_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s3__4s3__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_3_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s3__4s3__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_3_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s3__4s3__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_3_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ######### 2s4 ##### 3s1 ### 4s1 ch032_1side_4__2side_4__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_4__2side_4__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s2__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_2_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_4__2side_4__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s2__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_2_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s2__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_2_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s2__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_2_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_4__2side_4__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s3__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_4__2side_4__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s3__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s3__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s3__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s3 ch032_1side_4__2side_4__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s3__4s3__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_3_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s3__4s3__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_3_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s3__4s3__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_3_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s3__4s3__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_3_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s3__4s3__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_3_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s3__4s3__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_3_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_4__2side_4__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_4__2side_4__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s3 ch032_1side_4__2side_4__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s3__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_3_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s3__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_3_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s3__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_3_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s3__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_3_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s3__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_3_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s3__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_3_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s4 ch032_1side_4__2side_4__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s4__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s4__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s4__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s4__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s4__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s4__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s4__5s4__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s4__5s4__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s4__5s4__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s4__5s4__6s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ################### ############# 1s5 ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_5__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_1__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s1__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_1__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ######### 2s2 ##### 3s1 ### 4s1 ch032_1side_5__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s2__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_2__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_5__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s2__3s2__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_2__3side_2_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s2__3s2__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_2__3side_2_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s2__3s2__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_2__3side_2_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s2__3s2__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_2__3side_2_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ######### 2s3 ##### 3s1 ### 4s1 ch032_1side_5__2side_3__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_5__2side_3__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s2__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_2_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_3__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s2__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_2_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s2__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_2_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s2__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_2_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_5__2side_3__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s3__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_3__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s3__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s3__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s3__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s3 ch032_1side_5__2side_3__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s3__4s3__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_3_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s3__4s3__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_3_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s3__4s3__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_3_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s3__4s3__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_3_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s3__4s3__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_3_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s3__4s3__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_3_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ######### 2s4 ##### 3s1 ### 4s1 ch032_1side_5__2side_4__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_5__2side_4__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s2__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_2_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_4__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s2__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_2_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s2__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_2_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s2__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_2_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_5__2side_4__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s3__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_4__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s3__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s3__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s3__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s3 ch032_1side_5__2side_4__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s3__4s3__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_3_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s3__4s3__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_3_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s3__4s3__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_3_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s3__4s3__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_3_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s3__4s3__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_3_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s3__4s3__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_3_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_5__2side_4__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_4__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s3 ch032_1side_5__2side_4__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s3__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_3_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s3__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_3_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s3__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_3_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s3__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_3_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s3__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_3_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s3__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_3_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s4 ch032_1side_5__2side_4__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s4__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s4__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s4__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s4__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s4__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s4__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s4__5s4__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s4_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s4__5s4__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s4_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s4__5s4__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s4_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4_6s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s4__5s4__6s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s4_6s4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ######### 2s5 ##### 3s1 ### 4s1 ch032_1side_5__2side_5__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_1_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s1__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_1_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_5__2side_5__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s2__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_2_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_5__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s2__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_2_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s2__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_2_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s2__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_2_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_5__2side_5__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s3__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_5__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s3__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s3__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s3__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s3 ch032_1side_5__2side_5__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s3__4s3__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_3_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s3__4s3__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_3_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s3__4s3__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_3_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s3__4s3__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_3_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s3__4s3__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_3_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s3__4s3__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_3_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_5__2side_5__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_5__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s3 ch032_1side_5__2side_5__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s3__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_3_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s3__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_3_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s3__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_3_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s3__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_3_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s3__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_3_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s3__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_3_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s4 ch032_1side_5__2side_5__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s4__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s4__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s4__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s4__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s4__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s4__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s4__5s4__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s4_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s4__5s4__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s4_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s4__5s4__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s4_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4_6s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s4__5s4__6s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s4_6s4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ##### 3s5 ### 4s1 ch032_1side_5__2side_5__3side_5_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_1_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s1__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_1_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_5__3side_5_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s2__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_2_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s2__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_2_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s2__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_2_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s3 ch032_1side_5__2side_5__3side_5_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s3__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_3_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s3__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_3_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s3__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_3_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s3__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_3_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s3__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_3_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s3__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_3_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s4 ch032_1side_5__2side_5__3side_5_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s4__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s4__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s4__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s4__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s4__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s4__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s4__5s4__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s4_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s4__5s4__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s4_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s4__5s4__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s4_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4_6s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s4__5s4__6s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s4_6s4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ### 4s5 ch032_1side_5__2side_5__3side_5_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s1_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s1__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s1_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s2__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s2_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s2__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s2_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s3__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s3_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s3__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s3_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s3__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s3_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s4__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s4_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s4__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s4_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s4__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s4_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4_6s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s4__6s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s4_6s4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s5__6s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s5__6s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s5__6s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s5__6s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5__5s5__6s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_1side_1__2side_1__3side_1_4side_1_5s1_6s1.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
747fccee4d243a477338db4e3c8eb9374a0b38f5
53181572c4b22df4b569a9901bcd5347a3459499
/tuit_200202/py200306/review_input.py
15b13efd525e58aa765a21602912b88ef25afaaa
[]
no_license
edu-athensoft/ceit4101python_student
80ef067b77421fce76d04f778d5c6de8b12f676c
33cfa438c062d45e8d246b853e93d3c14b92ff2d
refs/heads/master
2020-07-30T01:04:21.084384
2020-07-27T02:21:57
2020-07-27T02:21:57
210,027,310
0
0
null
null
null
null
UTF-8
Python
false
false
185
py
""" input """ # input() # input("Prompt:") my_input = input("Prompt:") print(type(my_input)) num1 = float(input("Enter a floating number:")) num2 = int(input("Enter an integer"))
5f9451699991e4faaa4b152a2074561f28165aa0
9dfb3372a1e4516d970a6e9d0a9fd8360580eae7
/game/grafics/idea.py
c5d531d74ba20540c8a4411ceb550c78e140ef81
[]
no_license
clambering-goat/cameron_pyton
d1cd0e7b04da14e7ba4f89dcb4d973f297a4626c
df0b0365b86e75cfcfc2c1fc21608f1536a3b79f
refs/heads/master
2021-07-14T20:37:37.021401
2019-02-28T07:52:11
2019-02-28T07:52:11
137,251,669
0
0
null
null
null
null
UTF-8
Python
false
false
1,026
py
import pygame from math import sin,cos,radians,atan,degrees,atanh pygame.init() y_size,x_size=500,500 screen = pygame.display.set_mode((y_size,x_size)) done = False point_to_point_at=pygame.mouse.get_pos() def distamnce(x,y,x2,y2): x_main=x-x2 y_main=y-y2 c=x_main**2+y_main**2 c=c*0.5 print(c) distance_apart=50 count=0 distance=20 pointion1=250,250 pointion2=pointion1[0]+(distance_apart*(3**0.5)),pointion1[1]+(distance_apart/2) pointion3=pointion1[0]+(distance_apart*(3**0.5)),pointion1[1]-(distance_apart/2) orgin=pointion1[0],pointion1[1]+((distance_apart*(3**0.5))/2) while not done: for event in pygame.event.get(): if event.type == pygame.QUIT: done = True screen.fill((255, 255, 255)) #angle=angle+1 point_to_point_at=pygame.mouse.get_pos() pygame.draw.line(screen, (0, 0, 255), orgin,(point_to_point_at[0],point_to_point_at[1]),5) pygame.display.flip() pygame.time.wait(20)
3d34fee17bcd028dc25f7a73358b7e5542e3f493
556db265723b0cc30ad2917442ed6dad92fd9044
/tensorflow/python/kernel_tests/unicode_decode_op_test.py
bd38dae393cea070fc65ca2cc23d1490037e8758
[ "MIT", "Apache-2.0", "BSD-2-Clause" ]
permissive
graphcore/tensorflow
c1669b489be0e045b3ec856b311b3139858de196
085b20a4b6287eff8c0b792425d52422ab8cbab3
refs/heads/r2.6/sdk-release-3.2
2023-07-06T06:23:53.857743
2023-03-14T13:04:04
2023-03-14T13:48:43
162,717,602
84
17
Apache-2.0
2023-03-25T01:13:37
2018-12-21T13:30:38
C++
UTF-8
Python
false
false
32,207
py
# -*- coding: utf-8 -*- # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for unicode_decode and unicode_decode_with_splits.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_string_ops from tensorflow.python.ops.ragged import ragged_factory_ops from tensorflow.python.ops.ragged import ragged_string_ops from tensorflow.python.platform import test def _nested_encode(x, encoding): """Encode each string in a nested list with `encoding`.""" if isinstance(x, list): return [_nested_encode(v, encoding) for v in x] else: return x.encode(encoding) def _nested_codepoints(x): """Replace each string in a nested list with a list of its codepoints.""" # Works for Python 2 and 3, and for both UCS2 and UCS4 builds if isinstance(x, list): return [_nested_codepoints(v) for v in x] else: b = list(x.encode("utf-32-be")) if any(isinstance(c, str) for c in b): b = [ord(c) for c in b] return [(b0 << 24) + (b1 << 16) + (b2 << 8) + b3 for b0, b1, b2, b3 in zip(b[::4], b[1::4], b[2::4], b[3::4])] def _nested_offsets(x, encoding): """Replace each string in a nested list with a list of start offsets.""" if isinstance(x, list): return [_nested_offsets(v, encoding) for v in x] else: if not x: return [] encoded_x = x.encode("utf-32-be") encoded_chars = [encoded_x[i:i + 4] for i in range(0, len(encoded_x), 4)] char_lens = [ len(c.decode("utf-32-be").encode(encoding)) for c in encoded_chars ] return [0] + np.cumsum(char_lens).tolist()[:-1] def _nested_splitchars(x, encoding): """Replace each string in a nested list with a list of char substrings.""" if isinstance(x, list): return [_nested_splitchars(v, encoding) for v in x] else: b = x.encode("utf-32-be") chars = zip(b[::4], b[1::4], b[2::4], b[3::4]) if str is bytes: return [b"".join(c).decode("utf-32-be").encode(encoding) for c in chars] else: return [bytes(c).decode("utf-32-be").encode(encoding) for c in chars] def _make_sparse_tensor(indices, values, dense_shape, dtype=np.int32): return sparse_tensor.SparseTensorValue( np.array(indices, np.int64), np.array(values, dtype), np.array(dense_shape, np.int64)) @test_util.run_all_in_graph_and_eager_modes class UnicodeDecodeTest(test_util.TensorFlowTestCase, parameterized.TestCase): def testScalarDecode(self): text = constant_op.constant(u"仅今年前".encode("utf-8")) chars = ragged_string_ops.unicode_decode(text, "utf-8") self.assertAllEqual(chars, [ord(c) for c in u"仅今年前"]) def testScalarDecodeWithOffset(self): text = constant_op.constant(u"仅今年前".encode("utf-8")) chars, starts = ragged_string_ops.unicode_decode_with_offsets(text, "utf-8") self.assertAllEqual(chars, [ord(c) for c in u"仅今年前"]) self.assertAllEqual(starts, [0, 3, 6, 9]) def testVectorDecode(self): text = constant_op.constant([u"仅今年前".encode("utf-8"), b"hello"]) chars = ragged_string_ops.unicode_decode(text, "utf-8") expected_chars = [[ord(c) for c in u"仅今年前"], [ord(c) for c in u"hello"]] self.assertAllEqual(chars, expected_chars) def testVectorDecodeWithOffset(self): text = constant_op.constant([u"仅今年前".encode("utf-8"), b"hello"]) chars, starts = ragged_string_ops.unicode_decode_with_offsets(text, "utf-8") expected_chars = [[ord(c) for c in u"仅今年前"], [ord(c) for c in u"hello"]] self.assertAllEqual(chars, expected_chars) self.assertAllEqual(starts, [[0, 3, 6, 9], [0, 1, 2, 3, 4]]) @parameterized.parameters([ {"texts": u"仅今年前"}, {"texts": [u"G\xf6\xf6dnight", u"\U0001f60a"]}, {"texts": ["Hello", "world", "", u"👍"]}, {"texts": [["Hi", "there"], ["", u"\U0001f60a"]], "ragged_rank": 0}, {"texts": [["Hi", "there", ""], [u"😊"]], "ragged_rank": 1}, {"texts": [[[u"😊", u"🤠🧐"], []], [[u"🤓👻🤖"]]], "ragged_rank": 2}, {"texts": [[[u"😊"], [u"🤠🧐"]], [[u"🤓👻🤖"]]], "ragged_rank": 1}, {"texts": [[[u"😊"], [u"🤠🧐"]], [[u"🤓"], [u"👻"]]], "ragged_rank": 0}, {"texts": []} ]) # pyformat: disable def testBasicDecode(self, texts, ragged_rank=None): input_tensor = ragged_factory_ops.constant_value( _nested_encode(texts, "UTF-8"), ragged_rank=ragged_rank, dtype=bytes) result = ragged_string_ops.unicode_decode(input_tensor, "UTF-8") expected = _nested_codepoints(texts) self.assertAllEqual(expected, result) @parameterized.parameters([ {"texts": u"仅今年前"}, {"texts": [u"G\xf6\xf6dnight", u"\U0001f60a"]}, {"texts": ["Hello", "world", "", u"👍"]}, {"texts": [["Hi", "there"], ["", u"\U0001f60a"]], "ragged_rank": 0}, {"texts": [["Hi", "there", ""], [u"😊"]], "ragged_rank": 1}, {"texts": [[[u"😊", u"🤠🧐"], []], [[u"🤓👻🤖"]]], "ragged_rank": 2}, {"texts": []} ]) # pyformat: disable def testBasicDecodeWithOffsets(self, texts, ragged_rank=None): input_tensor = ragged_factory_ops.constant_value( _nested_encode(texts, "UTF-8"), ragged_rank=ragged_rank, dtype=bytes) result = ragged_string_ops.unicode_decode_with_offsets( input_tensor, "UTF-8") expected_codepoints = _nested_codepoints(texts) expected_offsets = _nested_offsets(texts, "UTF-8") self.assertAllEqual(expected_codepoints, result[0]) self.assertAllEqual(expected_offsets, result[1]) def testDocstringExamples(self): texts = [s.encode("utf8") for s in [u"G\xf6\xf6dnight", u"\U0001f60a"]] codepoints1 = ragged_string_ops.unicode_decode(texts, "UTF-8") codepoints2, offsets = ragged_string_ops.unicode_decode_with_offsets( texts, "UTF-8") self.assertAllEqual( codepoints1, [[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]]) self.assertAllEqual( codepoints2, [[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]]) self.assertAllEqual(offsets, [[0, 1, 3, 5, 6, 7, 8, 9, 10], [0]]) @parameterized.parameters([ dict( texts=["Hello", "world", "", u"👍"], expected=_make_sparse_tensor( indices=[[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [3, 0]], values=[72, 101, 108, 108, 111, 119, 111, 114, 108, 100, 128077], dense_shape=[4, 5])), dict( texts=[["Hi", "there"], ["", u"\U0001f60a"]], expected=_make_sparse_tensor( indices=[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [0, 1, 2], [0, 1, 3], [0, 1, 4], [1, 1, 0]], values=[72, 105, 116, 104, 101, 114, 101, 128522], dense_shape=[2, 2, 5])), dict( texts=[], expected=_make_sparse_tensor(np.zeros([0, 2], np.int64), [], [0, 0])), ]) def testDecodeWithSparseOutput(self, texts, expected): input_tensor = np.array(_nested_encode(texts, "UTF-8"), dtype=bytes) result = ragged_string_ops.unicode_decode(input_tensor, "UTF-8").to_sparse() self.assertIsInstance(result, sparse_tensor.SparseTensor) self.assertAllEqual(expected.indices, result.indices) self.assertAllEqual(expected.values, result.values) self.assertAllEqual(expected.dense_shape, result.dense_shape) @parameterized.parameters([ dict( texts=["Hello", "world", "", u"👍"], expected=[[72, 101, 108, 108, 111], [119, 111, 114, 108, 100], [-1, -1, -1, -1, -1], [0x1F44D, -1, -1, -1, -1]]), dict( texts=[["Hi", "there"], ["", u"\U0001f60a"]], expected=[[[72, 105, -1, -1, -1], [116, 104, 101, 114, 101]], [[-1, -1, -1, -1, -1], [128522, -1, -1, -1, -1]]], ragged_rank=0), dict( texts=[["Hi", "there", ""], [u"😊"]], expected=[[[72, 105, -1, -1, -1], [116, 104, 101, 114, 101], [-1, -1, -1, -1, -1]], [[128522, -1, -1, -1, -1], [-1, -1, -1, -1, -1], [-1, -1, -1, -1, -1]]]), dict( texts=[[[u"😊", u"🤠🧐"], []], [[u"🤓👻🤖"]]], expected=[ [[[128522, -1, -1], [129312, 129488, -1]], [[-1, -1, -1], [-1, -1, -1]]], [[[129299, 128123, 129302], [-1, -1, -1]], [[-1, -1, -1], [-1, -1, -1]]]]), dict(texts=[], expected=np.zeros([0, 0], np.int64)), ]) # pyformat: disable def testDecodeWithPaddedOutput(self, texts, expected, ragged_rank=None): input_tensor = ragged_factory_ops.constant_value( _nested_encode(texts, "UTF-8"), ragged_rank=ragged_rank, dtype=bytes) result = ragged_string_ops.unicode_decode( input_tensor, "UTF-8").to_tensor(default_value=-1) self.assertAllEqual(expected, result) @parameterized.parameters([ dict( input=[b"\xFE", b"hello", b"==\xFF==", b"world"], input_encoding="UTF-8", errors="replace", expected=[[0xFFFD], [ord('h'), ord('e'), ord('l'), ord('l'), ord('o')], [ord('='), ord('='), 0xFFFD, ord('='), ord('=')], [ord('w'), ord('o'), ord('r'), ord('l'), ord('d')]]), dict( input=[b"\xFE", b"hello", b"==\xFF==", b"world"], input_encoding="UTF-8", errors="replace", replacement_char=0, expected=[[0], [ord('h'), ord('e'), ord('l'), ord('l'), ord('o')], [ord('='), ord('='), 0, ord('='), ord('=')], [ord('w'), ord('o'), ord('r'), ord('l'), ord('d')]]), dict( input=[b"\xFE", b"hello", b"==\xFF==", b"world"], input_encoding="UTF-8", errors="ignore", expected=[[], [ord('h'), ord('e'), ord('l'), ord('l'), ord('o')], [ord('='), ord('='), ord('='), ord('=')], [ord('w'), ord('o'), ord('r'), ord('l'), ord('d')]]), dict( input=[b"\x00", b"hello", b"==\x01==", b"world"], input_encoding="UTF-8", replace_control_characters=True, expected=[[0xFFFD], [ord('h'), ord('e'), ord('l'), ord('l'), ord('o')], [61, 61, 65533, 61, 61], [ord('w'), ord('o'), ord('r'), ord('l'), ord('d')]]), dict( input=[b"\x00", b"hello", b"==\x01==", b"world"], input_encoding="UTF-8", replace_control_characters=True, replacement_char=0, expected=[[0], [ord('h'), ord('e'), ord('l'), ord('l'), ord('o')], [ord('='), ord('='), 0, ord('='), ord('=')], [ord('w'), ord('o'), ord('r'), ord('l'), ord('d')]]), ]) # pyformat: disable def testErrorModes(self, expected=None, **args): result = ragged_string_ops.unicode_decode(**args) self.assertAllEqual(expected, result) @parameterized.parameters([ dict( input=[b"\xFE", b"hello", b"==\xFF==", b"world"], input_encoding="UTF-8", errors="replace", expected=[[0xFFFD], [ord('h'), ord('e'), ord('l'), ord('l'), ord('o')], [ord('='), ord('='), 0xFFFD, ord('='), ord('=')], [ord('w'), ord('o'), ord('r'), ord('l'), ord('d')]], expected_offsets=[[0], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]), dict( input=[b"\xFE", b"hello", b"==\xFF==", b"world"], input_encoding="UTF-8", errors="replace", replacement_char=0, expected=[[0], [ord('h'), ord('e'), ord('l'), ord('l'), ord('o')], [ord('='), ord('='), 0, ord('='), ord('=')], [ord('w'), ord('o'), ord('r'), ord('l'), ord('d')]], expected_offsets=[[0], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]), dict( input=[b"\xFE", b"hello", b"==\xFF==", b"world"], input_encoding="UTF-8", errors="ignore", expected=[[], [ord('h'), ord('e'), ord('l'), ord('l'), ord('o')], [ord('='), ord('='), ord('='), ord('=')], [ord('w'), ord('o'), ord('r'), ord('l'), ord('d')]], expected_offsets=[[], [0, 1, 2, 3, 4], [0, 1, 3, 4], [0, 1, 2, 3, 4]]), dict( input=[b"\x00", b"hello", b"==\x01==", b"world"], input_encoding="UTF-8", replace_control_characters=True, expected=[[0xFFFD], [ord('h'), ord('e'), ord('l'), ord('l'), ord('o')], [ord('='), ord('='), 0xFFFD, ord('='), ord('=')], [ord('w'), ord('o'), ord('r'), ord('l'), ord('d')]], expected_offsets=[[0], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]), dict( input=[b"\x00", b"hello", b"==\x01==", b"world"], input_encoding="UTF-8", replace_control_characters=True, replacement_char=0, expected=[[0], [ord('h'), ord('e'), ord('l'), ord('l'), ord('o')], [0x3D, 0x3D, 0, 0x3D, 0x3D], [ord('w'), ord('o'), ord('r'), ord('l'), ord('d')]], expected_offsets=[[0], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]), dict( input=[b"\xD8\x01"], input_encoding="UTF-8", replacement_char=0x41, expected=[[0x41, 1]], expected_offsets=[[0, 1]]), ]) # pyformat: disable def testErrorModesWithOffsets(self, expected=None, expected_offsets=None, **args): result = ragged_string_ops.unicode_decode_with_offsets(**args) self.assertAllEqual(result[0], expected) self.assertAllEqual(result[1], expected_offsets) @parameterized.parameters( ("UTF-8", [u"こんにちは", u"你好", u"Hello"]), ("UTF-16-BE", [u"こんにちは", u"你好", u"Hello"]), ("UTF-32-BE", [u"こんにちは", u"你好", u"Hello"]), ("US-ASCII", [u"Hello", "world"]), ("ISO-8859-1", [u"ÀÈÓ", "AEO"]), ("SHIFT-JIS", [u"Hello", u"こんにちは"]), ) def testDecodeWithDifferentEncodings(self, encoding, texts): expected = _nested_codepoints(texts) input_tensor = constant_op.constant(_nested_encode(texts, encoding)) result = ragged_string_ops.unicode_decode(input_tensor, encoding) self.assertAllEqual(expected, result) @parameterized.parameters( ("UTF-8", [u"こんにちは", u"你好", u"Hello"]), ("UTF-16-BE", [u"こんにちは", u"你好", u"Hello"]), ("UTF-32-BE", [u"こんにちは", u"你好", u"Hello"]), ("US-ASCII", [u"Hello", "world"]), ("ISO-8859-1", [u"ÀÈÓ", "AEO"]), ("SHIFT-JIS", [u"Hello", u"こんにちは"]), ) def testDecodeWithOffsetsWithDifferentEncodings(self, encoding, texts): expected_codepoints = _nested_codepoints(texts) expected_offsets = _nested_offsets(texts, encoding) input_tensor = constant_op.constant(_nested_encode(texts, encoding)) result = ragged_string_ops.unicode_decode_with_offsets( input_tensor, encoding) self.assertAllEqual(expected_codepoints, result[0]) self.assertAllEqual(expected_offsets, result[1]) @parameterized.parameters([ dict(input=[b"\xFEED"], errors="strict", input_encoding="UTF-8", exception=errors.InvalidArgumentError, message="Invalid formatting on input string"), dict(input="x", input_encoding="UTF-8", replacement_char=11141111, exception=errors.InvalidArgumentError, message="replacement_char out of unicode codepoint range"), dict(input="x", input_encoding="UTF-8", errors="oranguatan", exception=(ValueError, errors.InvalidArgumentError)), ]) # pyformat: disable def testExceptions(self, exception=None, message=None, **args): with self.assertRaisesRegex(exception, message): self.evaluate(ragged_string_ops.unicode_decode(**args)) def testUnknownRankError(self): if context.executing_eagerly(): return s = array_ops.placeholder(dtypes.string) message = "Rank of `input` must be statically known." with self.assertRaisesRegex(ValueError, message): self.evaluate(ragged_string_ops.unicode_decode(s, input_encoding="UTF-8")) @parameterized.parameters([ dict( doc="Single string", input=_nested_encode([u"仅今年前"], "utf-8"), input_encoding="UTF-8", expected_char_values=_nested_codepoints(u"仅今年前"), expected_row_splits=[0, 4], expected_char_to_byte_starts=[0, 3, 6, 9]), dict( doc="Multiple strings", input=_nested_encode([u"仅今年前", u"你好"], "utf-8"), input_encoding="UTF-8", expected_char_values=_nested_codepoints(u"仅今年前你好"), expected_row_splits=[0, 4, 6], expected_char_to_byte_starts=[0, 3, 6, 9, 0, 3]), dict( doc="errors=replace", input=b"=\xFE=", input_encoding="UTF-8", errors="replace", expected_char_values=[0x3D, 0xFFFD, 0x3D], expected_row_splits=[0, 3], expected_char_to_byte_starts=[0, 1, 2]), dict( doc="errors=ignore", input=b"=\xFE=", input_encoding="UTF-8", errors="ignore", expected_char_values=[61, 61], expected_row_splits=[0, 2], expected_char_to_byte_starts=[0, 2]), ]) def testDecodeGenOp(self, doc, expected_row_splits=None, expected_char_values=None, expected_char_to_byte_starts=None, **args): """Test for the c++ interface (gen_string_ops.unicode_decode).""" result = gen_string_ops.unicode_decode_with_offsets(**args) self.assertAllEqual(expected_row_splits, result.row_splits) self.assertAllEqual(expected_char_values, result.char_values) self.assertAllEqual(expected_char_to_byte_starts, result.char_to_byte_starts) @test_util.run_all_in_graph_and_eager_modes class UnicodeSplitTest(test_util.TensorFlowTestCase, parameterized.TestCase): def testScalarSplit(self): text = constant_op.constant(u"仅今年前".encode("UTF-8")) chars = ragged_string_ops.unicode_split(text, "UTF-8") self.assertAllEqual(chars, [c.encode("UTF-8") for c in u"仅今年前"]) def testScalarSplitWithOffset(self): text = constant_op.constant(u"仅今年前".encode("UTF-8")) chars, starts = ragged_string_ops.unicode_split_with_offsets(text, "UTF-8") self.assertAllEqual(chars, [c.encode("UTF-8") for c in u"仅今年前"]) self.assertAllEqual(starts, [0, 3, 6, 9]) def testVectorSplit(self): text = constant_op.constant([u"仅今年前".encode("UTF-8"), b"hello"]) chars = ragged_string_ops.unicode_split(text, "UTF-8") expected_chars = [[c.encode("UTF-8") for c in u"仅今年前"], [c.encode("UTF-8") for c in u"hello"]] self.assertAllEqual(chars, expected_chars) def testVectorSplitWithOffset(self): text = constant_op.constant([u"仅今年前".encode("UTF-8"), b"hello"]) chars, starts = ragged_string_ops.unicode_split_with_offsets(text, "UTF-8") expected_chars = [[c.encode("UTF-8") for c in u"仅今年前"], [c.encode("UTF-8") for c in u"hello"]] self.assertAllEqual(chars, expected_chars) self.assertAllEqual(starts, [[0, 3, 6, 9], [0, 1, 2, 3, 4]]) @parameterized.parameters([ {"texts": u"仅今年前"}, {"texts": [u"G\xf6\xf6dnight", u"\U0001f60a"]}, {"texts": ["Hello", "world", "", u"👍"]}, {"texts": [["Hi", "there"], ["", u"\U0001f60a"]], "ragged_rank": 0}, {"texts": [["Hi", "there", ""], [u"😊"]], "ragged_rank": 1}, {"texts": [[[u"😊", u"🤠🧐"], []], [[u"🤓👻🤖"]]], "ragged_rank": 2}, {"texts": []} ]) # pyformat: disable def testBasicSplit(self, texts, ragged_rank=None): input_tensor = ragged_factory_ops.constant_value( _nested_encode(texts, "UTF-8"), ragged_rank=ragged_rank, dtype=bytes) result = ragged_string_ops.unicode_split(input_tensor, "UTF-8") expected = _nested_splitchars(texts, "UTF-8") self.assertAllEqual(expected, result) @parameterized.parameters([ {"texts": u"仅今年前"}, {"texts": [u"G\xf6\xf6dnight", u"\U0001f60a"]}, {"texts": ["Hello", "world", "", u"👍"]}, {"texts": [["Hi", "there"], ["", u"\U0001f60a"]], "ragged_rank": 0}, {"texts": [["Hi", "there", ""], [u"😊"]], "ragged_rank": 1}, {"texts": [[[u"😊", u"🤠🧐"], []], [[u"🤓👻🤖"]]], "ragged_rank": 2}, {"texts": []} ]) # pyformat: disable def testBasicSplitWithOffsets(self, texts, ragged_rank=None): input_tensor = ragged_factory_ops.constant_value( _nested_encode(texts, "UTF-8"), ragged_rank=ragged_rank, dtype=bytes) result = ragged_string_ops.unicode_split_with_offsets(input_tensor, "UTF-8") expected_codepoints = _nested_splitchars(texts, "UTF-8") expected_offsets = _nested_offsets(texts, "UTF-8") self.assertAllEqual(expected_codepoints, result[0]) self.assertAllEqual(expected_offsets, result[1]) def testDocstringExamples(self): texts = [s.encode("utf8") for s in [u"G\xf6\xf6dnight", u"\U0001f60a"]] codepoints1 = ragged_string_ops.unicode_split(texts, "UTF-8") codepoints2, offsets = ragged_string_ops.unicode_split_with_offsets( texts, "UTF-8") self.assertAllEqual( codepoints1, [[b"G", b"\xc3\xb6", b"\xc3\xb6", b"d", b"n", b"i", b"g", b"h", b"t"], [b"\xf0\x9f\x98\x8a"]]) self.assertAllEqual( codepoints2, [[b"G", b"\xc3\xb6", b"\xc3\xb6", b"d", b"n", b"i", b"g", b"h", b"t"], [b"\xf0\x9f\x98\x8a"]]) self.assertAllEqual(offsets, [[0, 1, 3, 5, 6, 7, 8, 9, 10], [0]]) @parameterized.parameters([ dict( texts=["Hello", "world", "", u"👍"], expected=_make_sparse_tensor( indices=[[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [3, 0]], values=[b"H", b"e", b"l", b"l", b"o", b"w", b"o", b"r", b"l", b"d", b"\xf0\x9f\x91\x8d"], dense_shape=[4, 5], dtype=bytes)), dict( texts=[["Hi", "there"], ["", u"\U0001f60a"]], expected=_make_sparse_tensor( indices=[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [0, 1, 2], [0, 1, 3], [0, 1, 4], [1, 1, 0]], values=[b"H", b"i", b"t", b"h", b"e", b"r", b"e", b"\xf0\x9f\x98\x8a"], dense_shape=[2, 2, 5], dtype=bytes)), dict( texts=[], expected=_make_sparse_tensor( np.zeros([0, 2], np.int64), [], [0, 0], dtype=bytes)), ]) # pyformat: disable def testSplitWithSparseOutput(self, texts, expected): input_tensor = np.array(_nested_encode(texts, "UTF-8"), dtype=bytes) result = ragged_string_ops.unicode_split(input_tensor, "UTF-8").to_sparse() self.assertIsInstance(result, sparse_tensor.SparseTensor) self.assertAllEqual(expected.indices, result.indices) self.assertAllEqual(expected.values, result.values) self.assertAllEqual(expected.dense_shape, result.dense_shape) @parameterized.parameters([ dict( texts=["Hello", "world", "", u"👍"], expected=[[b"H", b"e", b"l", b"l", b"o"], [b"w", b"o", b"r", b"l", b"d"], ["", "", "", "", ""], [b"\xf0\x9f\x91\x8d", "", "", "", ""]]), dict( texts=[["Hi", "there"], ["", u"\U0001f60a"]], expected=[[[b"H", b"i", "", "", ""], [b"t", b"h", b"e", b"r", b"e"]], [["", "", "", "", ""], [b"\xf0\x9f\x98\x8a", "", "", "", ""]]], ragged_rank=0), dict( texts=[["Hi", "there", ""], [u"😊"]], expected=[[[b"H", b"i", "", "", ""], [b"t", b"h", b"e", b"r", b"e"], ["", "", "", "", ""]], [[b"\xf0\x9f\x98\x8a", "", "", "", ""], ["", "", "", "", ""], ["", "", "", "", ""]]]), dict( texts=[[[u"😊", u"🤠🧐"], []], [[u"🤓👻🤖"]]], expected=[[[[b"\xf0\x9f\x98\x8a", "", ""], [b"\xf0\x9f\xa4\xa0", b"\xf0\x9f\xa7\x90", ""]], [["", "", ""], ["", "", ""]]], [[[b"\xf0\x9f\xa4\x93", b"\xf0\x9f\x91\xbb", b"\xf0\x9f\xa4\x96"], ["", "", ""]], [["", "", ""], ["", "", ""]]]]), dict(texts=[], expected=np.zeros([0, 0], np.int64)), ]) # pyformat: disable def testSplitWithPaddedOutput(self, texts, expected, ragged_rank=None): input_tensor = ragged_factory_ops.constant_value( _nested_encode(texts, "UTF-8"), ragged_rank=ragged_rank, dtype=bytes) result = ragged_string_ops.unicode_split( input_tensor, "UTF-8").to_tensor(default_value="") self.assertAllEqual(np.array(expected, dtype=bytes), result) @parameterized.parameters([ dict( input=[b"\xFE", b"hello", b"==\xFF==", b"world"], input_encoding="UTF-8", errors="replace", expected=[[b"\xef\xbf\xbd"], [b"h", b"e", b"l", b"l", b"o"], [b"=", b"=", b"\xef\xbf\xbd", b"=", b"="], [b"w", b"o", b"r", b"l", b"d"]]), dict( input=[b"\xFE", b"hello", b"==\xFF==", b"world"], input_encoding="UTF-8", errors="replace", replacement_char=0, expected=[[b"\x00"], [b"h", b"e", b"l", b"l", b"o"], [b"=", b"=", b"\x00", b"=", b"="], [b"w", b"o", b"r", b"l", b"d"]]), dict( input=[b"\xFE", b"hello", b"==\xFF==", b"world"], input_encoding="UTF-8", errors="ignore", expected=[[], [b"h", b"e", b"l", b"l", b"o"], [b"=", b"=", b"=", b"="], [b"w", b"o", b"r", b"l", b"d"]]), ]) # pyformat: disable def testErrorModes(self, expected=None, **args): result = ragged_string_ops.unicode_split(**args) self.assertAllEqual(expected, result) @parameterized.parameters([ dict( input=[b"\xFE", b"hello", b"==\xFF==", b"world"], input_encoding="UTF-8", errors="replace", expected=[[b"\xef\xbf\xbd"], [b"h", b"e", b"l", b"l", b"o"], [b"=", b"=", b"\xef\xbf\xbd", b"=", b"="], [b"w", b"o", b"r", b"l", b"d"]], expected_offsets=[[0], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]), dict( input=[b"\xFE", b"hello", b"==\xFF==", b"world"], input_encoding="UTF-8", errors="replace", replacement_char=0, expected=[[b"\x00"], [b"h", b"e", b"l", b"l", b"o"], [b"=", b"=", b"\x00", b"=", b"="], [b"w", b"o", b"r", b"l", b"d"]], expected_offsets=[[0], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]), dict( input=[b"\xFE", b"hello", b"==\xFF==", b"world"], input_encoding="UTF-8", errors="ignore", expected=[[], [b"h", b"e", b"l", b"l", b"o"], [b"=", b"=", b"=", b"="], [b"w", b"o", b"r", b"l", b"d"]], expected_offsets=[[], [0, 1, 2, 3, 4], [0, 1, 3, 4], [0, 1, 2, 3, 4]]), ]) # pyformat: disable def testErrorModesWithOffsets(self, expected=None, expected_offsets=None, **args): result = ragged_string_ops.unicode_split_with_offsets(**args) self.assertAllEqual(expected, result[0]) self.assertAllEqual(expected_offsets, result[1]) @parameterized.parameters( ("UTF-8", [u"こんにちは", u"你好", u"Hello"]), ("UTF-16-BE", [u"こんにちは", u"你好", u"Hello"]), ("UTF-32-BE", [u"こんにちは", u"你好", u"Hello"]), ) def testSplitWithDifferentEncodings(self, encoding, texts): expected = _nested_splitchars(texts, encoding) input_tensor = constant_op.constant(_nested_encode(texts, encoding)) result = ragged_string_ops.unicode_split(input_tensor, encoding) self.assertAllEqual(expected, result) @parameterized.parameters( ("UTF-8", [u"こんにちは", u"你好", u"Hello"]), ("UTF-16-BE", [u"こんにちは", u"你好", u"Hello"]), ("UTF-32-BE", [u"こんにちは", u"你好", u"Hello"]), ) def testSplitWithOffsetsWithDifferentEncodings(self, encoding, texts): expected_codepoints = _nested_splitchars(texts, encoding) expected_offsets = _nested_offsets(texts, encoding) input_tensor = constant_op.constant(_nested_encode(texts, encoding)) result = ragged_string_ops.unicode_split_with_offsets( input_tensor, encoding) self.assertAllEqual(expected_codepoints, result[0]) self.assertAllEqual(expected_offsets, result[1]) @parameterized.parameters([ dict(input=[b"\xFEED"], errors="strict", input_encoding="UTF-8", exception=errors.InvalidArgumentError, message="Invalid formatting on input string"), dict(input="x", input_encoding="UTF-8", replacement_char=11141111, exception=errors.InvalidArgumentError, message="replacement_char out of unicode codepoint range"), dict(input="x", input_encoding="UTF-8", errors="oranguatan", exception=(ValueError, errors.InvalidArgumentError)), ]) # pyformat: disable def testExceptions(self, exception=None, message=None, **args): with self.assertRaisesRegex(exception, message): self.evaluate(ragged_string_ops.unicode_split(**args)) def testUnknownRankError(self): if context.executing_eagerly(): return s = array_ops.placeholder(dtypes.string) message = "Rank of `input` must be statically known." with self.assertRaisesRegex(ValueError, message): self.evaluate(ragged_string_ops.unicode_decode(s, input_encoding="UTF-8")) if __name__ == "__main__": test.main()
d0dfa176c55af006ba3041061a0a878a1418a113
3eb877ab6d9aba74c63acfc7d9dfe83fe77195ba
/google-cloud-sdk/lib/surface/compute/target_https_proxies/update.py
f648093f60593faf8dd500347de7363742e32be1
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
Gilolume/HeuApplication
cd65267e6171277fc50f31a582b6ff6634758209
e48c68ba9bc4f952b7bd5a0ba47f4c810ed56812
refs/heads/master
2022-11-25T06:18:47.892562
2017-11-24T09:21:16
2017-11-24T09:21:16
104,208,662
0
1
null
2020-07-25T12:32:09
2017-09-20T11:47:10
Python
UTF-8
Python
false
false
7,762
py
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for updating target HTTPS proxies.""" from googlecloudsdk.api_lib.compute import base_classes from googlecloudsdk.api_lib.compute import target_proxies_utils from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions from googlecloudsdk.command_lib.compute.ssl_certificates import ( flags as ssl_certificates_flags) from googlecloudsdk.command_lib.compute.target_https_proxies import flags from googlecloudsdk.command_lib.compute.url_maps import flags as url_map_flags from googlecloudsdk.core import log @base.ReleaseTracks(base.ReleaseTrack.GA, base.ReleaseTrack.BETA) class UpdateGA(base.SilentCommand): """Update a target HTTPS proxy. *{command}* is used to change the SSL certificate and/or URL map of existing target HTTPS proxies. A target HTTPS proxy is referenced by one or more forwarding rules which define which packets the proxy is responsible for routing. The target HTTPS proxy in turn points to a URL map that defines the rules for routing the requests. The URL map's job is to map URLs to backend services which handle the actual requests. The target HTTPS proxy also points to at most 10 SSL certificates used for server-side authentication. """ SSL_CERTIFICATE_ARG = None SSL_CERTIFICATES_ARG = None TARGET_HTTPS_PROXY_ARG = None URL_MAP_ARG = None @classmethod def Args(cls, parser): certs = parser.add_mutually_exclusive_group() cls.SSL_CERTIFICATE_ARG = ( ssl_certificates_flags.SslCertificateArgumentForOtherResource( 'target HTTPS proxy', required=False)) cls.SSL_CERTIFICATE_ARG.AddArgument(parser, mutex_group=certs) cls.SSL_CERTIFICATES_ARG = ( ssl_certificates_flags.SslCertificatesArgumentForOtherResource( 'target HTTPS proxy', required=False)) cls.SSL_CERTIFICATES_ARG.AddArgument( parser, mutex_group=certs, cust_metavar='SSL_CERTIFICATE') cls.TARGET_HTTPS_PROXY_ARG = flags.TargetHttpsProxyArgument() cls.TARGET_HTTPS_PROXY_ARG.AddArgument(parser, operation_type='update') cls.URL_MAP_ARG = url_map_flags.UrlMapArgumentForTargetProxy( required=False, proxy_type='HTTPS') cls.URL_MAP_ARG.AddArgument(parser) @property def service(self): return self.compute.targetHttpsProxies @property def method(self): pass @property def resource_type(self): return 'targetHttpProxies' def _CreateRequestsWithCertRefs(self, args, ssl_cert_refs, quic_override=None): holder = base_classes.ComputeApiHolder(self.ReleaseTrack()) client = holder.client requests = [] target_https_proxy_ref = self.TARGET_HTTPS_PROXY_ARG.ResolveAsResource( args, holder.resources) if ssl_cert_refs: requests.append( (client.apitools_client.targetHttpsProxies, 'SetSslCertificates', client.messages.ComputeTargetHttpsProxiesSetSslCertificatesRequest( project=target_https_proxy_ref.project, targetHttpsProxy=target_https_proxy_ref.Name(), targetHttpsProxiesSetSslCertificatesRequest=( client.messages.TargetHttpsProxiesSetSslCertificatesRequest( sslCertificates=[ ref.SelfLink() for ref in ssl_cert_refs ]))))) if args.url_map: url_map_ref = self.URL_MAP_ARG.ResolveAsResource(args, holder.resources) requests.append( (client.apitools_client.targetHttpsProxies, 'SetUrlMap', client.messages.ComputeTargetHttpsProxiesSetUrlMapRequest( project=target_https_proxy_ref.project, targetHttpsProxy=target_https_proxy_ref.Name(), urlMapReference=client.messages.UrlMapReference( urlMap=url_map_ref.SelfLink())))) if quic_override: requests.append( (client.apitools_client.targetHttpsProxies, 'SetQuicOverride', client.messages.ComputeTargetHttpsProxiesSetQuicOverrideRequest( project=target_https_proxy_ref.project, targetHttpsProxy=target_https_proxy_ref.Name(), targetHttpsProxiesSetQuicOverrideRequest=( client.messages.TargetHttpsProxiesSetQuicOverrideRequest( quicOverride=quic_override))))) return client.MakeRequests(requests) def _GetSslCertificatesList(self, args): holder = base_classes.ComputeApiHolder(self.ReleaseTrack()) if args.ssl_certificate: log.warn( 'The --ssl-certificate flag is deprecated and will be removed soon. ' 'Use equivalent --ssl-certificates %s flag.', args.ssl_certificate) return [ self.SSL_CERTIFICATE_ARG.ResolveAsResource(args, holder.resources) ] if args.ssl_certificates: return self.SSL_CERTIFICATES_ARG.ResolveAsResource(args, holder.resources) return [] def _CheckMissingArgument(self, args): if not (args.IsSpecified('ssl_certificates') or args.IsSpecified('ssl_certificate') or args.IsSpecified('url_map')): raise exceptions.ToolException( 'You must specify at least one of [--ssl-certificates] or ' '[--url-map].') def Run(self, args): self._CheckMissingArgument(args) ssl_certificate_refs = self._GetSslCertificatesList(args) return self._CreateRequestsWithCertRefs(args, ssl_certificate_refs) @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class UpdateAlpha(UpdateGA): """Update a target HTTPS proxy. *{command}* is used to change the SSL certificate and/or URL map of existing target HTTPS proxies. A target HTTPS proxy is referenced by one or more forwarding rules which define which packets the proxy is responsible for routing. The target HTTPS proxy in turn points to a URL map that defines the rules for routing the requests. The URL map's job is to map URLs to backend services which handle the actual requests. The target HTTPS proxy also points to at most 10 SSL certificates used for server-side authentication. """ @classmethod def Args(cls, parser): super(UpdateAlpha, cls).Args(parser) target_proxies_utils.AddQuicOverrideUpdateArgs(parser) def _CheckMissingArgument(self, args): if not (args.IsSpecified('ssl_certificates') or args.IsSpecified('ssl_certificate') or args.IsSpecified('url_map') or args.IsSpecified('quic_override')): raise exceptions.ToolException( 'You must specify at least one of [--ssl-certificates], ' '[--url-map] or [--quic-override].') def Run(self, args): self._CheckMissingArgument(args) holder = base_classes.ComputeApiHolder(self.ReleaseTrack()) messages = holder.client.messages quic_override = (messages.TargetHttpsProxiesSetQuicOverrideRequest. QuicOverrideValueValuesEnum(args.quic_override) ) if args.IsSpecified('quic_override') else None ssl_certificate_refs = self._GetSslCertificatesList(args) return self._CreateRequestsWithCertRefs(args, ssl_certificate_refs, quic_override)
805db6ad18e36c63ce129addd2b726f9f329426d
3d7039903da398ae128e43c7d8c9662fda77fbdf
/database/Node.js/juejin_1053.py
331d195a313bfca90a59f4dac1a740d540c748d9
[]
no_license
ChenYongChang1/spider_study
a9aa22e6ed986193bf546bb567712876c7be5e15
fe5fbc1a5562ff19c70351303997d3df3af690db
refs/heads/master
2023-08-05T10:43:11.019178
2021-09-18T01:30:22
2021-09-18T01:30:22
406,727,214
0
0
null
null
null
null
UTF-8
Python
false
false
68,367
py
{"err_no": 0, "err_msg": "success", "data": [{"article_id": "6844903954002755592", "article_info": {"article_id": "6844903954002755592", "user_id": "1662117313518663", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "https://juejin.im/post/6844903954002755592", "cover_image": "", "is_gfw": 0, "title": "nodejs(十一)json-server使用教程", "brief_content": "一. json-server介绍 二. json-server的使用 三. 支持的方法 当你发送POST,PUT,PATCH 或者 DELETE请求时,变化会自动安全的保存到你的db.json文件中。 你的请求体body应该是封闭对象。比如{\"name\": \"Foobar\"} …", "is_english": 0, "is_original": 1, "user_index": 4.6433865942702, "original_type": 0, "original_author": "", "content": "", "ctime": "1569548571", "mtime": "1598525883", "rtime": "1569570254", "draft_id": "6845076477583573000", "view_count": 2697, "collect_count": 6, "digg_count": 4, "comment_count": 1, "hot_index": 139, "is_hot": 0, "rank_index": 0.00044594, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1662117313518663", "user_name": "mapengfei47", "company": "", "job_title": "前端开发工程师", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/d34ba888c4673d2746a79fbb39a92fe1~300x300.image", "level": 2, "description": "戒骄戒躁,潜心修炼", "followee_count": 42, "follower_count": 174, "post_article_count": 36, "digg_article_count": 32, "got_digg_count": 286, "got_view_count": 50075, "post_shortmsg_count": 3, "digg_shortmsg_count": 1, "isfollowed": false, "favorable_author": 0, "power": 786, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6844903954002755592, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6844903602054660103", "article_info": {"article_id": "6844903602054660103", "user_id": "4142615541853783", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470, 6809640398105870343, 6809640528267706382, 6809640583162757128], "visible_level": 0, "link_url": "https://juejin.im/post/6844903602054660103", "cover_image": "", "is_gfw": 0, "title": " webpack系列之-原理篇", "brief_content": "本系列将会从原理、开发、优化、对比四个方面给大家介绍webpack的工作流程。【默认是以webpack v3为例子】 我们可以把webpack看做一个黑盒,只要会用就可以。先来体验一次很简单的webpack打包过程 npx 会自动查找当前依赖包中的可执行文件,如果找不到,就会去…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1525484438", "mtime": "1598453100", "rtime": "1525745949", "draft_id": "6845075413824176135", "view_count": 4504, "collect_count": 59, "digg_count": 62, "comment_count": 0, "hot_index": 287, "is_hot": 0, "rank_index": 0.00044526, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "4142615541853783", "user_name": "行走的柯南", "company": "", "job_title": "前端工程师", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/6da4690f8fbed0addd6cb437bda7427f~300x300.image", "level": 2, "description": "前端程序媛一枚", "followee_count": 24, "follower_count": 37, "post_article_count": 18, "digg_article_count": 14, "got_digg_count": 280, "got_view_count": 35436, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 634, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}, {"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}, {"id": 2546614, "tag_id": "6809640528267706382", "tag_name": "Webpack", "color": "#6F94DB", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/73e856b07f83b4231c1e.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1440920866, "mtime": 1631692726, "id_type": 9, "tag_alias": "", "post_article_count": 6704, "concern_user_count": 204077}, {"id": 2546653, "tag_id": "6809640583162757128", "tag_name": "编译器", "color": "#000000", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/4e6b1fae46570c191c18.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1444716669, "mtime": 1631666736, "id_type": 9, "tag_alias": "", "post_article_count": 1931, "concern_user_count": 21838}], "user_interact": {"id": 6844903602054660103, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6844904190129471495", "article_info": {"article_id": "6844904190129471495", "user_id": "870468942044472", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "https://juejin.im/post/6844904190129471495", "cover_image": "", "is_gfw": 0, "title": "「预热桶」限流算法详解(附 Node.js 实现)", "brief_content": "在使用「限流器」的时候,我们需要给设置一个合适的 阈值 ,这个阈值通常是一个系统能够正常工作所能承受的最大 QPS 。当系统的请求量达到阈值时,不同的限流器主要有两种处理方式,一种是对超过阈值的请求直接返回失败,另一种是让超过阈值的请求排队等待。 要控制系统的 QPS 不超过阈…", "is_english": 0, "is_original": 1, "user_index": 2.9693622959161, "original_type": 0, "original_author": "", "content": "", "ctime": "1592014192", "mtime": "1599032358", "rtime": "1592050040", "draft_id": "6845076820614709261", "view_count": 1260, "collect_count": 13, "digg_count": 11, "comment_count": 3, "hot_index": 77, "is_hot": 0, "rank_index": 0.00044513, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "870468942044472", "user_name": "阿里巴巴业务中台前端", "company": "阿里巴巴", "job_title": "大前端", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/f69ab93c309ab1fa8959fd049d3268e7~300x300.image", "level": 2, "description": "本专栏由新零售技术事业群-业务平台-体验技术部创办", "followee_count": 17, "follower_count": 342, "post_article_count": 29, "digg_article_count": 3, "got_digg_count": 278, "got_view_count": 23943, "post_shortmsg_count": 27, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 521, "study_point": 290, "university": {"university_id": "6888594415809396750", "name": "浙江工贸职业技术学院", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 10, "annual_list_type": 1, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6844904190129471495, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": {"org_type": 1, "org_id": "6945655623149158408", "online_version_id": 6944933297554210854, "latest_version_id": 6944933297554210854, "power": 517, "ctime": 1617161469, "mtime": 1631692819, "audit_status": 2, "status": 0, "org_version": {"version_id": "6944933297554210854", "icon": "https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/64258f83c90b426e883b76107e506204~tplv-k3u1fbpfcp-watermark.image", "background": "https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/41d1c0cd091e42b1b52de07f7fff87e4~tplv-k3u1fbpfcp-zoom-1.image", "name": "阿里巴巴业务中台前端团队", "introduction": "阿里巴巴新零售业务中台大前端团队,致力于用技术创造新商业。\n距离电商业务最近的核心前端团队,同时团队有技术开源项目fusion、bizcharts、arms前端监控系统。\n\n", "weibo_link": "", "github_link": "", "homepage_link": "", "ctime": 1617162095, "mtime": 1617162095, "org_id": "6945655623149158408", "brief_introduction": "", "introduction_preview": "阿里巴巴新零售业务中台大前端团队,致力于用技术创造新商业。\n距离电商业务最近的核心前端团队,同时团队有技术开源项目fusion、bizcharts、arms前端监控系统。"}, "follower_count": 529, "article_view_count": 23942, "article_digg_count": 278}, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6844903619704143886", "article_info": {"article_id": "6844903619704143886", "user_id": "289926801002808", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470, 6809640398105870343, 6809640407484334093], "visible_level": 0, "link_url": "https://juejin.im/post/6844903619704143886", "cover_image": "", "is_gfw": 0, "title": "ES6与CommonJS中的模块处理", "brief_content": "ES6和CommonJS都有自己的一套处理模块化代码的措施,即JS文件之间的相互引用。 nodejs默认是不支持ES6的模块处理方案的。 但是在8.5.0之后,ES6代码的文件格式定为mjs后,可使用node --experimental-modules xxx.mjs运行。 …", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1528789364", "mtime": "1598456144", "rtime": "1528799145", "draft_id": "6845075537270931469", "view_count": 3606, "collect_count": 36, "digg_count": 91, "comment_count": 5, "hot_index": 276, "is_hot": 0, "rank_index": 0.00044474, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "289926801002808", "user_name": "zsfblank", "company": "", "job_title": "前端工程师", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/mosaic-legacy/3795/3047680722~300x300.image", "level": 2, "description": "", "followee_count": 5, "follower_count": 4, "post_article_count": 1, "digg_article_count": 10, "got_digg_count": 91, "got_view_count": 3606, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 127, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}, {"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6844903619704143886, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6894658363251965965", "article_info": {"article_id": "6894658363251965965", "user_id": "782508010536478", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "webpack, babel, eslint,typescript,koa服务器应用简单入门配置", "brief_content": "至于其他配置,暂且就默认吧。现在,我们已经能用 tsc 了,算是搭建了一个基础环境。 这一步结束,咱们的项目已经能够跑起来了。 上面的 json 文件内容,主要就是添加了两个预设配置,和两个插件。 运行成功。每次需要编译代码的时候就运行一遍上面的 npx babel xx 就好…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1605298855", "mtime": "1605315272", "rtime": "1605315272", "draft_id": "6894667013914886151", "view_count": 755, "collect_count": 5, "digg_count": 8, "comment_count": 2, "hot_index": 47, "is_hot": 0, "rank_index": 0.00044435, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "782508010536478", "user_name": "拾清风", "company": "。。。", "job_title": "前端工程师", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/feff3e68cc85efe80d19e870dc1d037e~300x300.image", "level": 1, "description": "", "followee_count": 0, "follower_count": 1, "post_article_count": 5, "digg_article_count": 18, "got_digg_count": 14, "got_view_count": 2226, "post_shortmsg_count": 0, "digg_shortmsg_count": 2, "isfollowed": false, "favorable_author": 0, "power": 39, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6894658363251965965, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6844903664239411208", "article_info": {"article_id": "6844903664239411208", "user_id": "3702810891525805", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640402103042061, 6809640361531539470, 6809640366896054286], "visible_level": 0, "link_url": "https://chaoxuelei.github.io/2018/08/24/nodejs-express发送验证码完全实践,排坑之旅!/", "cover_image": "", "is_gfw": 0, "title": "NODEJS+EXPRESS发送验证码完全实践,排坑之旅!", "brief_content": "最近在深入学习nodejs+express+mysql的全栈开发,我知道现在mysql、express是老旧的,但是个人感觉还是挺成熟的,而且比较熟悉,先学学看,后面再看看kao、MongoDB,下面就来说说我用nodejs和腾讯云的短信sdk开发的验证码服务,大神嘴下留情啊~…", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1535077677", "mtime": "1599571560", "rtime": "1535102947", "draft_id": "0", "view_count": 3281, "collect_count": 30, "digg_count": 83, "comment_count": 7, "hot_index": 254, "is_hot": 0, "rank_index": 0.00044433, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3702810891525805", "user_name": "游刃有余", "company": "太无科技", "job_title": "UFO", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/c3b59903c674d6a9b80213dc54ee127c~300x300.image", "level": 2, "description": "一句话说不清", "followee_count": 9, "follower_count": 2105, "post_article_count": 32, "digg_article_count": 34, "got_digg_count": 256, "got_view_count": 22890, "post_shortmsg_count": 6, "digg_shortmsg_count": 5, "isfollowed": false, "favorable_author": 0, "power": 175, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546522, "tag_id": "6809640402103042061", "tag_name": "前端框架", "color": "#F2AB5B", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f7a198f1e1aeb6d79878.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435964339, "mtime": 1631690383, "id_type": 9, "tag_alias": "", "post_article_count": 4037, "concern_user_count": 256973}, {"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}, {"id": 2546496, "tag_id": "6809640366896054286", "tag_name": "MySQL", "color": "#026088", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/b2fbb06dce13eeb3bb9b.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234510, "mtime": 1631692702, "id_type": 9, "tag_alias": "", "post_article_count": 10213, "concern_user_count": 189339}], "user_interact": {"id": 6844903664239411208, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6854573220033462285", "article_info": {"article_id": "6854573220033462285", "user_id": "1451011080474247", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "记一次简单的Node.js爬取某网站列表中a标签的属性", "brief_content": "需求:根据关键词搜索爬取某网站的列表跳转的链接及标题并导入excel感觉这次的思路并不是很正确是一种野路子个人理解正常的爬虫是爬取页面的内容而我这次是直接调用接口获取数据拿到数据后整理导入excel感", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1595816923", "mtime": "1598589774", "rtime": "1595821592", "draft_id": "6854812678104285198", "view_count": 1270, "collect_count": 4, "digg_count": 7, "comment_count": 0, "hot_index": 70, "is_hot": 0, "rank_index": 0.00044375, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1451011080474247", "user_name": "你亲爱的甜橙树", "company": "", "job_title": "WEB前端开发", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/a5bb21ff61506a253c6ac48eba2ec86c~300x300.image", "level": 1, "description": "", "followee_count": 5, "follower_count": 6, "post_article_count": 6, "digg_article_count": 7, "got_digg_count": 40, "got_view_count": 3371, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 73, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6854573220033462285, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6844904021484896270", "article_info": {"article_id": "6844904021484896270", "user_id": "641770489918542", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "https://juejin.im/post/6844904021484896270", "cover_image": "", "is_gfw": 0, "title": "2020年Node.js将会有哪些新功能", "brief_content": "2019 年是 Node.js 诞生的第 10 个年头,npm 上可用的包数量超过了 100 万。 Node.js 本身的下载量也在持续增长,同比增长了 40%。另一个重要的里程碑是 最近 Node.js加入了 OpenJS 基金会,该基金会承诺改善项目的状况和可持续性,并改善…", "is_english": 0, "is_original": 1, "user_index": 9.3326553452616, "original_type": 0, "original_author": "", "content": "", "ctime": "1576468901", "mtime": "1598539193", "rtime": "1576468901", "draft_id": "6845076577483505678", "view_count": 1932, "collect_count": 5, "digg_count": 10, "comment_count": 7, "hot_index": 113, "is_hot": 0, "rank_index": 0.00044286, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "641770489918542", "user_name": "前端先锋", "company": "公众号:前端先锋", "job_title": "佛系前端码农,公众号:前端先锋", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/c216b6d330e8833ba5491d606a8e5d3f~300x300.image", "level": 5, "description": "前端技术狂热(佛系)爱好者", "followee_count": 17, "follower_count": 8492, "post_article_count": 252, "digg_article_count": 29, "got_digg_count": 10086, "got_view_count": 831223, "post_shortmsg_count": 11, "digg_shortmsg_count": 3, "isfollowed": false, "favorable_author": 1, "power": 18646, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 15, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6844904021484896270, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6844903859089866760", "article_info": {"article_id": "6844903859089866760", "user_id": "4107431172122503", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "https://juejin.im/post/6844903859089866760", "cover_image": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2019/6/4/16b2136e726186b3~tplv-t2oaga2asx-image.image", "is_gfw": 0, "title": "超详细的node垃圾回收机制", "brief_content": "垃圾回收器是一把十足的双刃剑。其好处是可以大幅简化程序的内存管理代码,因为内存管理无需程序员来操作,由此也减少了(但没有根除)长时间运转的程序的内存泄漏。对于某些程序员来说,它甚至能够提升代码的性能。 另一方面,选择垃圾回收器也就意味着程序当中无法完全掌控内存,而这正是移动终端…", "is_english": 0, "is_original": 1, "user_index": 1.1523994497068, "original_type": 0, "original_author": "", "content": "", "ctime": "1559554533", "mtime": "1599925213", "rtime": "1559575911", "draft_id": "6845076328870313991", "view_count": 2971, "collect_count": 21, "digg_count": 24, "comment_count": 0, "hot_index": 172, "is_hot": 0, "rank_index": 0.00044274, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "4107431172122503", "user_name": "神经叨", "company": "骑🐯 360", "job_title": "前端开发", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/824938df7b971338b664c803f443c6bc~300x300.image", "level": 2, "description": "但愿长醉不复醒", "followee_count": 12, "follower_count": 6, "post_article_count": 7, "digg_article_count": 3, "got_digg_count": 54, "got_view_count": 8832, "post_shortmsg_count": 0, "digg_shortmsg_count": 1, "isfollowed": false, "favorable_author": 0, "power": 142, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6844903859089866760, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6844903585960951815", "article_info": {"article_id": "6844903585960951815", "user_id": "2207475077227406", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470, 6809640375880253447, 6809640407484334093], "visible_level": 0, "link_url": "https://juejin.im/post/6844903585960951815", "cover_image": "", "is_gfw": 0, "title": "ES6展开运算符(扩展运算符)", "brief_content": "在ES6中,我们有了一个新的运算符--展开运算符,它可以使我们的代码的数量有一定的减少,有时候甚至有很有用的作用,我们来举几个常用的例子,同时通过例子来了解展开运算符的使用。 总的来说,使多参数的函数调用有了新的方式, 而且避免的作用域的问题。 这里的对象是指类似{a:1}这样…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1522486643", "mtime": "1598450396", "rtime": "1522647179", "draft_id": "6845075403757846536", "view_count": 5086, "collect_count": 28, "digg_count": 40, "comment_count": 2, "hot_index": 296, "is_hot": 0, "rank_index": 0.00044219, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2207475077227406", "user_name": "跳跳的小记", "company": "", "job_title": "", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/bf345c18017a4c734cc540d254374143~300x300.image", "level": 2, "description": "", "followee_count": 8, "follower_count": 8, "post_article_count": 6, "digg_article_count": 43, "got_digg_count": 210, "got_view_count": 17052, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 380, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}, {"id": 2546502, "tag_id": "6809640375880253447", "tag_name": "GitHub", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/0d614af263aa63aa6a77.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234558, "mtime": 1631692670, "id_type": 9, "tag_alias": "", "post_article_count": 10402, "concern_user_count": 388765}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6844903585960951815, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6901838829217382407", "article_info": {"article_id": "6901838829217382407", "user_id": "1380642337084974", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "", "cover_image": "https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/de1e982d5b4f41e69659be1b4facf15d~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "Node系列之解决同源策略跨域问题的9种方案(最新最全)", "brief_content": "跨域是指一个域下的文档或脚本试图去请求另一个域下的资源,这里跨域是广义的。 其实我们通常所说的跨域是狭义的,是由浏览器同源策略限制的一类请求场景。 同源策略/SOP(Same origin policy)是一种约定,由Netscape公司1995年引入浏览器,它是浏览器最核心也…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1606959690", "mtime": "1606965274", "rtime": "1606965274", "draft_id": "6901832889286000648", "view_count": 683, "collect_count": 8, "digg_count": 6, "comment_count": 3, "hot_index": 43, "is_hot": 0, "rank_index": 0.00044216, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1380642337084974", "user_name": "前端开发小马哥", "company": "", "job_title": "全栈进修工程师", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/703b76328f743a9782d81d2d5e95a27d~300x300.image", "level": 3, "description": "IOS、swift开发、Vue、React、express、koa、egg.js、webpack、云开发小程序", "followee_count": 36, "follower_count": 799, "post_article_count": 66, "digg_article_count": 111, "got_digg_count": 628, "got_view_count": 55275, "post_shortmsg_count": 1, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 1186, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6901838829217382407, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6844903842568470536", "article_info": {"article_id": "6844903842568470536", "user_id": "3825956194095597", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "https://juejin.im/post/6844903842568470536", "cover_image": "", "is_gfw": 0, "title": "用Puppeteer爬自己想偷的猫,推翻闰土统治掘金的时代!", "brief_content": "Puppeteer是 Google Chrome 团队官方的无界面(Headless)Chrome 工具,它是一个 Node 库,提供了一个高级的 API 来控制 DevTools协议上的无头版 Chrome 。也可以配置为使用完整(非无头)的 Chrome。Chrome 素来…", "is_english": 0, "is_original": 1, "user_index": 5.4865967676086, "original_type": 0, "original_author": "", "content": "", "ctime": "1557684235", "mtime": "1599900913", "rtime": "1557729958", "draft_id": "6845076306464358407", "view_count": 2404, "collect_count": 21, "digg_count": 33, "comment_count": 20, "hot_index": 173, "is_hot": 0, "rank_index": 0.00044188, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3825956194095597", "user_name": "Thoughtful valiant.", "company": "Thoughtworks", "job_title": "前端相声演员", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/15c9a69f7b047a4bd9d577b3e516ecfc~300x300.image", "level": 2, "description": "九层之台,起于累土。欢迎各位关注公众号:Refactor~", "followee_count": 42, "follower_count": 113, "post_article_count": 41, "digg_article_count": 74, "got_digg_count": 227, "got_view_count": 29096, "post_shortmsg_count": 10, "digg_shortmsg_count": 3, "isfollowed": false, "favorable_author": 0, "power": 514, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6844903842568470536, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6844904035997188103", "article_info": {"article_id": "6844904035997188103", "user_id": "2049145402829832", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "https://juejin.im/post/6844904035997188103", "cover_image": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2020/1/1/16f6010d9e437c2d~tplv-t2oaga2asx-image.image", "is_gfw": 0, "title": "【重学Node.js 第5篇】部署项目到腾讯云服务器", "brief_content": "通过前面的讲解,可以完成一个基本的node api服务了,接下尝试把项目部署到刚买的腾讯云上。 购买腾讯云容器,购买后会把账号信息通过腾讯云站内信发给你,里面有公网ip和初始密码,后面ssh登陆会用到。 登陆云linux。本地Mac命令行输入:ssh [email protected]…", "is_english": 0, "is_original": 1, "user_index": 3.2044261223672, "original_type": 0, "original_author": "", "content": "", "ctime": "1576735894", "mtime": "1600348158", "rtime": "1576735932", "draft_id": "6845076581883314183", "view_count": 2100, "collect_count": 18, "digg_count": 9, "comment_count": 4, "hot_index": 118, "is_hot": 0, "rank_index": 0.00044155, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2049145402829832", "user_name": "张大然", "company": "美团", "job_title": "前端开发", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/2307369d7ab08b126daebc77917ffc08~300x300.image", "level": 1, "description": "", "followee_count": 17, "follower_count": 19, "post_article_count": 6, "digg_article_count": 57, "got_digg_count": 36, "got_view_count": 6146, "post_shortmsg_count": 2, "digg_shortmsg_count": 3, "isfollowed": false, "favorable_author": 0, "power": 97, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6844904035997188103, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6844903571197001742", "article_info": {"article_id": "6844903571197001742", "user_id": "3579665589774568", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640398105870343, 6809640361531539470, 6809640465407672333], "visible_level": 0, "link_url": "https://juejin.im/post/6844903571197001742", "cover_image": "", "is_gfw": 0, "title": "nuxtjs+express+vue2+vuex搭建的服务端渲染(SSR)个人网站项目", "brief_content": "nuxtjs+express+vue2.0+vuex搭建的服务端渲染个人网站项目. nodejs的出现,让前端能做的更多,让js不仅仅只是浏览器端的语言。 这里为什么要说这个呢,有些前端开发者会说node不是做后端的吗?我为什么要学nodejs呢?其实随着前端的发展,尤其是no…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1520486831", "mtime": "1599445114", "rtime": "1520487613", "draft_id": "6845075387882422286", "view_count": 3544, "collect_count": 52, "digg_count": 121, "comment_count": 5, "hot_index": 303, "is_hot": 0, "rank_index": 0.0004413, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3579665589774568", "user_name": "se7en-1992", "company": "龙湖", "job_title": "前端", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/782159ece2c90a1d4ab8c670227ef45c~300x300.image", "level": 2, "description": "", "followee_count": 0, "follower_count": 9, "post_article_count": 1, "digg_article_count": 0, "got_digg_count": 121, "got_view_count": 3544, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 156, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}, {"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}, {"id": 2546568, "tag_id": "6809640465407672333", "tag_name": "Express", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f932e447c5104bad088d.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1436556655, "mtime": 1631638567, "id_type": 9, "tag_alias": "", "post_article_count": 634, "concern_user_count": 26754}], "user_interact": {"id": 6844903571197001742, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6892302012294103053", "article_info": {"article_id": "6892302012294103053", "user_id": "360295544403838", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "Node.js系列二 - Node基础知识", "brief_content": "一. Node执行代码 1.1. JavaScript文件执行 1.2. Node的REPL 二. Node输入输出 2.1. 给node程序传递参数 argv:argument vector的缩写,传入的具体参数。 vector翻译过来是矢量的意思,在程序中表示的是一种数据结…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1604739388", "mtime": "1604745101", "rtime": "1604744987", "draft_id": "6892301692025438222", "view_count": 819, "collect_count": 4, "digg_count": 7, "comment_count": 1, "hot_index": 48, "is_hot": 0, "rank_index": 0.00044129, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "360295544403838", "user_name": "coderwhy", "company": "", "job_title": "", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2018/7/31/164efaccfd55f53a~tplv-t2oaga2asx-image.image", "level": 3, "description": "", "followee_count": 11, "follower_count": 2453, "post_article_count": 58, "digg_article_count": 8, "got_digg_count": 976, "got_view_count": 130934, "post_shortmsg_count": 6, "digg_shortmsg_count": 3, "isfollowed": false, "favorable_author": 0, "power": 2365, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6892302012294103053, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6953507752027750431", "article_info": {"article_id": "6953507752027750431", "user_id": "870468937590366", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "tcp如何实现http协议", "brief_content": "目标: 了解 http 协议的内容 理解node中tcp的基本使用 用net实现一个http协议 启动一个node http服务器; tcp实现http/demo1 通过wireshark 过滤条件 ", "is_english": 0, "is_original": 1, "user_index": 3.969362295916118, "original_type": 0, "original_author": "", "content": "", "ctime": "1618989706", "mtime": "1619000446", "rtime": "1619000446", "draft_id": "6953507181849378823", "view_count": 206, "collect_count": 1, "digg_count": 3, "comment_count": 1, "hot_index": 14, "is_hot": 0, "rank_index": 0.00044095, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "870468937590366", "user_name": "hpstream_", "company": "", "job_title": "前端开发工程师", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/97956f8c21ebe8b94c697ea86da6ecda~300x300.image", "level": 2, "description": "", "followee_count": 21, "follower_count": 24, "post_article_count": 29, "digg_article_count": 28, "got_digg_count": 88, "got_view_count": 11571, "post_shortmsg_count": 2, "digg_shortmsg_count": 4, "isfollowed": false, "favorable_author": 0, "power": 203, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6953507752027750431, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6978472077586071559", "article_info": {"article_id": "6978472077586071559", "user_id": "3720403078100071", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470, 6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "child_process.exec接口引起的服务异常排查记录", "brief_content": "最近在用Beidou同构框架搭建一个SSR同构服务,本地开发时毫无问题,但部署到测试环境和线上环境后,服务会不定期进程会收到exit事件而异常退出。本文记录了排查的过程及一些收获,与大家共勉。", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1624802146", "mtime": "1624853721", "rtime": "1624851689", "draft_id": "6978466127013756942", "view_count": 154, "collect_count": 0, "digg_count": 1, "comment_count": 0, "hot_index": 8, "is_hot": 0, "rank_index": 0.00043952, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3720403078100071", "user_name": "山下有风", "company": "", "job_title": "", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/9a742b0050909935474743a22bc10675~300x300.image", "level": 1, "description": "", "followee_count": 29, "follower_count": 1, "post_article_count": 3, "digg_article_count": 9, "got_digg_count": 7, "got_view_count": 2320, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 30, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6978472077586071559, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6844904128951369742", "article_info": {"article_id": "6844904128951369742", "user_id": "3051900006317549", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "https://juejin.im/post/6844904128951369742", "cover_image": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2020/4/16/1718172ed5f37ea4~tplv-t2oaga2asx-image.image", "is_gfw": 0, "title": "如何使用 yargs", "brief_content": "Yargs 是一个很好的命令行程序库,简单地说,它可以让创建一个在控制台中运行的应用程序的过程变得轻而易举。还有什么能让它变得更好呢?它是以海盗为主题的(它的名字叫 YARgs),让它正式成为有史以来最好的工具。 你可能知道其他的 CLI,比如 vue-cli,可以轻松设置一个…", "is_english": 0, "is_original": 1, "user_index": 0.07580413392071, "original_type": 0, "original_author": "", "content": "", "ctime": "1587014759", "mtime": "1606696235", "rtime": "1587014759", "draft_id": "6845076731351711751", "view_count": 1816, "collect_count": 8, "digg_count": 2, "comment_count": 0, "hot_index": 92, "is_hot": 0, "rank_index": 0.00043879, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3051900006317549", "user_name": "水墨寒", "company": "Compass", "job_title": "前端", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/1676cc6400cf1af25e2ed3a446a46ccc~300x300.image", "level": 3, "description": "前端🐶", "followee_count": 108, "follower_count": 33398, "post_article_count": 52, "digg_article_count": 130, "got_digg_count": 2640, "got_view_count": 101644, "post_shortmsg_count": 27, "digg_shortmsg_count": 60, "isfollowed": false, "favorable_author": 1, "power": 1335, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6844904128951369742, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6950848116228620296", "article_info": {"article_id": "6950848116228620296", "user_id": "3368559359558574", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "Node.js性能分析工具", "brief_content": "ab压测-c 并发数(同时有200个人,在请求我们的服务器)-n 总共执行1000次请求找到服务器瓶颈通过压测的qps可以大概判断性能瓶颈在不在网卡,如果不在网卡,就可能在cpu、内存、硬盘等等top", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1618370608", "mtime": "1618381461", "rtime": "1618381461", "draft_id": "6950835630230208548", "view_count": 345, "collect_count": 2, "digg_count": 1, "comment_count": 1, "hot_index": 19, "is_hot": 0, "rank_index": 0.0004382, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3368559359558574", "user_name": "路明非_", "company": "", "job_title": "自由开发者", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/1eb8b13f6b021b27200425e833f08109~300x300.image", "level": 1, "description": "something for nothing", "followee_count": 17, "follower_count": 2, "post_article_count": 5, "digg_article_count": 10, "got_digg_count": 15, "got_view_count": 1317, "post_shortmsg_count": 15, "digg_shortmsg_count": 3, "isfollowed": false, "favorable_author": 0, "power": 28, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6950848116228620296, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}, {"article_id": "6844903564729581575", "article_info": {"article_id": "6844903564729581575", "user_id": "2594503171254328", "category_id": "6809637767543259144", "tag_ids": [6809640361531539470], "visible_level": 0, "link_url": "https://juejin.im/post/6844903564729581575", "cover_image": "", "is_gfw": 0, "title": "掌握Node.js中的Async和Await", "brief_content": "在本文中,你将学习如何使用Node.js中的async函数(async/await)来简化callback或Promise. 异步语言结构在其他语言中已经存在了,像c#的async/await、Kotlin的coroutines、go的goroutines,随着Node.js …", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1518364822", "mtime": "1598446712", "rtime": "1519266955", "draft_id": "6845075379573686280", "view_count": 5679, "collect_count": 13, "digg_count": 22, "comment_count": 0, "hot_index": 305, "is_hot": 0, "rank_index": 0.00043789, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2594503171254328", "user_name": "Monster000", "company": "CodeGree", "job_title": "打杂的呢", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/eefad554d5c733599b7864ff51c54647~300x300.image", "level": 2, "description": "主要工作是做前端,懂一点后端,偶尔也做做产品,目前主要在做https://codegree.net😼", "followee_count": 30, "follower_count": 509, "post_article_count": 20, "digg_article_count": 385, "got_digg_count": 463, "got_view_count": 43450, "post_shortmsg_count": 10, "digg_shortmsg_count": 46, "isfollowed": false, "favorable_author": 0, "power": 622, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546492, "tag_id": "6809640361531539470", "tag_name": "Node.js", "color": "#e81864", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f16f548d25028a1fdd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234488, "mtime": 1631690352, "id_type": 9, "tag_alias": "", "post_article_count": 11514, "concern_user_count": 280711}], "user_interact": {"id": 6844903564729581575, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516031901020405010224005086"}], "cursor": "eyJ2IjoiNzAwODAwNjMyNjg1NzEzODE4NCIsImkiOjE2MjB9", "count": 3231, "has_more": true}
df3a234e51d43397b86be585b6914f5ef896cd45
832852c679816673f708860929a36a20ca8d3e32
/Configurations/ggH_SF/Full2016_nAODv4/maxDNN/comb_2j_dymvaOptim.py
ddfa9667d553dc87552a9171f6eafc15ee4d708f
[]
no_license
UniMiBAnalyses/PlotsConfigurations
c4ec7376e2757b838930dfb2615e1dc99a64e542
578fe518cfc608169d3418bcb63a8342d3a24390
refs/heads/master
2023-08-31T17:57:45.396325
2022-09-01T10:13:14
2022-09-01T10:13:14
172,092,793
0
13
null
2023-04-27T10:26:52
2019-02-22T15:52:44
Python
UTF-8
Python
false
false
2,545
py
# Combinations to use #comb = {} optim={} ##optim['dymva0p82'] = ' && dymva_dnn_2j > 0.82 ' ##optim['dymva0p83'] = ' && dymva_dnn_2j > 0.83 ' ##optim['dymva0p84'] = ' && dymva_dnn_2j > 0.84 ' #optim['dymva0p845'] = ' && dymva_dnn_2j > 0.845 ' #optim['dymva0p85'] = ' && dymva_dnn_2j > 0.85 ' optim['dymva0p855'] = ' && dymva_dnn_2j > 0.855 ' ##optim['dymva0p86'] = ' && dymva_dnn_2j > 0.86 ' optim['dymva0p865'] = ' && dymva_dnn_2j > 0.865 ' ##optim['dymva0p87'] = ' && dymva_dnn_2j > 0.87 ' optim['dymva0p875'] = ' && dymva_dnn_2j > 0.875 ' ##optim['dymva0p88'] = ' && dymva_dnn_2j > 0.88 ' optim['dymva0p885'] = ' && dymva_dnn_2j > 0.885 ' ##optim['dymva0p89'] = ' && dymva_dnn_2j > 0.89 ' ##optim['dymva0p90'] = ' && dymva_dnn_2j > 0.90 ' ##optim['dymva0p91'] = ' && dymva_dnn_2j > 0.91 ' #optim['dymva0p92'] = ' && dymva_dnn_2j > 0.92 ' ##optim['dymva0p925'] = ' && dymva_dnn_2j > 0.925 ' #optim['dymva0p93'] = ' && dymva_dnn_2j > 0.93 ' #optim['dymva0p94'] = ' && dymva_dnn_2j > 0.94 ' #optim['dymva0p945'] = ' && dymva_dnn_2j > 0.945 ' ##optim['dymva0p95'] = ' && dymva_dnn_2j > 0.95 ' #optim['dymva0p955'] = ' && dymva_dnn_2j > 0.955 ' #optim['dymva0p96'] = ' && dymva_dnn_2j > 0.96 ' #optim['dymva0p965'] = ' && dymva_dnn_2j > 0.965 ' #optim['dymva0p97'] = ' && dymva_dnn_2j > 0.97 ' ##optim['dymva0p975'] = ' && dymva_dnn_2j > 0.975 ' optim['dymva0p98'] = ' && dymva_dnn_2j > 0.98 ' optim['dymva0p985'] = ' && dymva_dnn_2j > 0.985 ' optim['dymva0p99'] = ' && dymva_dnn_2j > 0.99 ' ##optim['dymva0p995'] = ' && dymva_dnn_2j > 0.995 ' for iCut in optim: combs['hww2l2v_13TeV_2jee_'+iCut] = { 'hww2l2v_13TeV_2jee_'+iCut : 'events' , 'hww2l2v_13TeV_WW_2jee_'+iCut : 'events' , 'hww2l2v_13TeV_top_2jee_'+iCut : 'events' , } combs['hww2l2v_13TeV_2jmm_'+iCut] = { 'hww2l2v_13TeV_2jmm_'+iCut : 'events' , 'hww2l2v_13TeV_WW_2jmm_'+iCut : 'events' , 'hww2l2v_13TeV_top_2jmm_'+iCut : 'events' , } combs['hww2l2v_13TeV_2jsf_'+iCut] = { 'hww2l2v_13TeV_2jee_'+iCut : 'events' , 'hww2l2v_13TeV_WW_2jee_'+iCut : 'events' , 'hww2l2v_13TeV_top_2jee_'+iCut : 'events' , 'hww2l2v_13TeV_2jmm_'+iCut : 'events' , 'hww2l2v_13TeV_WW_2jmm_'+iCut : 'events' , 'hww2l2v_13TeV_top_2jmm_'+iCut : 'events' , }
c0fb52baf7c201286ee69e150f2b660a27dd829d
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/CISCO-BITS-CLOCK-CAPABILITY.py
8a27e62b2849984358771dd4ae5e8c6fbbd7289a
[ "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
3,206
py
# # PySNMP MIB module CISCO-BITS-CLOCK-CAPABILITY (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-BITS-CLOCK-CAPABILITY # Produced by pysmi-0.3.4 at Wed May 1 11:51:22 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ValueSizeConstraint, ConstraintsIntersection, ValueRangeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ValueSizeConstraint", "ConstraintsIntersection", "ValueRangeConstraint", "SingleValueConstraint") ciscoAgentCapability, = mibBuilder.importSymbols("CISCO-SMI", "ciscoAgentCapability") ModuleCompliance, NotificationGroup, AgentCapabilities = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup", "AgentCapabilities") ObjectIdentity, MibIdentifier, IpAddress, Counter32, TimeTicks, MibScalar, MibTable, MibTableRow, MibTableColumn, Gauge32, ModuleIdentity, Counter64, Integer32, NotificationType, Bits, iso, Unsigned32 = mibBuilder.importSymbols("SNMPv2-SMI", "ObjectIdentity", "MibIdentifier", "IpAddress", "Counter32", "TimeTicks", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Gauge32", "ModuleIdentity", "Counter64", "Integer32", "NotificationType", "Bits", "iso", "Unsigned32") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") ciscoBitsClockCapability = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 7, 433)) ciscoBitsClockCapability.setRevisions(('2005-03-08 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ciscoBitsClockCapability.setRevisionsDescriptions(('Initial version of this MIB module.',)) if mibBuilder.loadTexts: ciscoBitsClockCapability.setLastUpdated('200503080000Z') if mibBuilder.loadTexts: ciscoBitsClockCapability.setOrganization('Cisco Systems, Inc.') if mibBuilder.loadTexts: ciscoBitsClockCapability.setContactInfo(' Cisco Systems Customer Service Postal: 170 West Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: [email protected]') if mibBuilder.loadTexts: ciscoBitsClockCapability.setDescription('Agent capabilities for the CISCO-BITS-CLOCK-MIB.') ciscoBitsClockV12R025000SW1 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 433, 1)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoBitsClockV12R025000SW1 = ciscoBitsClockV12R025000SW1.setProductRelease('Cisco IOS 12.2(25)SW1') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoBitsClockV12R025000SW1 = ciscoBitsClockV12R025000SW1.setStatus('current') if mibBuilder.loadTexts: ciscoBitsClockV12R025000SW1.setDescription('IOS 12.2(25)SW1 Cisco CISCO-BITS-CLOCK-MIB.my User Agent MIB capabilities.') mibBuilder.exportSymbols("CISCO-BITS-CLOCK-CAPABILITY", PYSNMP_MODULE_ID=ciscoBitsClockCapability, ciscoBitsClockV12R025000SW1=ciscoBitsClockV12R025000SW1, ciscoBitsClockCapability=ciscoBitsClockCapability)
060fce54f0cf1197aa859bd4e882a86f97d1a248
34599596e145555fde0d4264a1d222f951f49051
/pcat2py/class/20fab7f2-5cc5-11e4-af55-00155d01fe08.py
65e06e5eb7d8192e2b4c7cd3f1cdffd123911b50
[ "MIT" ]
permissive
phnomcobra/PCAT2PY
dc2fcbee142ce442e53da08476bfe4e68619346d
937c3b365cdc5ac69b78f59070be0a21bdb53db0
refs/heads/master
2021-01-11T02:23:30.669168
2018-02-13T17:04:03
2018-02-13T17:04:03
70,970,520
0
0
null
null
null
null
UTF-8
Python
false
false
1,393
py
#!/usr/bin/python ################################################################################ # 20fab7f2-5cc5-11e4-af55-00155d01fe08 # # Justin Dierking # [email protected] # [email protected] # # 10/24/2014 Original Construction ################################################################################ class Finding: def __init__(self): self.output = [] self.is_compliant = False self.uuid = "20fab7f2-5cc5-11e4-af55-00155d01fe08" def check(self, cli): # Initialize Compliance self.is_compliant = False # Get Registry DWORD dword = cli.get_reg_dword(r'HKLM:\Software\Policies\Microsoft\Windows\GameUX', 'DownloadGameInfo') # Output Lines self.output = [r'HKLM:\Software\Policies\Microsoft\Windows\GameUX', ('DownloadGameInfo=' + str(dword))] if dword == 0: self.is_compliant = True return self.is_compliant def fix(self, cli): cli.powershell(r"New-Item -path 'HKLM:\Software\Policies\Microsoft'") cli.powershell(r"New-Item -path 'HKLM:\Software\Policies\Microsoft\Windows'") cli.powershell(r"New-Item -path 'HKLM:\Software\Policies\Microsoft\Windows\GameUX'") cli.powershell(r"Set-ItemProperty -path 'HKLM:\Software\Policies\Microsoft\Windows\GameUX' -name 'DownloadGameInfo' -value 0 -Type DWord")
90780ca6d62b27da11a6b61560c01714020dd63d
d1ed040025811cce2533a7e55737eadc00bd15a9
/shop/widgets.py
84e21750c6450f92f338c5ecc50bc5985e6503d3
[]
no_license
Code-Institute-Submissions/guillermo
0dfa6aecab3e325c5bd30356557b710da6851deb
c6def675ac78e88fd20c86f59498d9251cf302a7
refs/heads/master
2023-01-15T11:38:35.306745
2020-11-10T21:09:41
2020-11-10T21:09:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
from django.forms.widgets import ClearableFileInput from django.utils.translation import gettext_lazy as _ class CustomClearableFileInput(ClearableFileInput): """ Shows thumbnail of current image and checkbox to remove it. """ clear_checkbox_label = _("Remove") initial_text = _("Current Image") input_text = _("") template_name = ( "shop/custom_widget_templates/custom_clearable_file_input.html" )
a99e6f4b0b71c257b8c163c1c1cf93f0172adcd4
07570ec33eb49effd9ed6af73214bac1b607038f
/client/swagger_client/models/domain_list.py
4c04cf18e0a3344618f96b8efcd04ad9b132fceb
[ "MIT" ]
permissive
kakwa/certascale
d9998a66ba6a239ba5b5e537f12dabdd5876996c
0df8da0f518506500117152fd0e28ee3286949af
refs/heads/master
2020-03-29T09:24:32.794060
2019-01-30T14:06:10
2019-01-30T14:06:10
149,756,729
0
2
null
null
null
null
UTF-8
Python
false
false
3,538
py
# coding: utf-8 """ certascale API Certascale API documentation # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from swagger_client.models.domain import Domain # noqa: F401,E501 class DomainList(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'list': 'list[Domain]', 'next_id': 'int' } attribute_map = { 'list': 'list', 'next_id': 'next_id' } def __init__(self, list=None, next_id=None): # noqa: E501 """DomainList - a model defined in Swagger""" # noqa: E501 self._list = None self._next_id = None self.discriminator = None if list is not None: self.list = list if next_id is not None: self.next_id = next_id @property def list(self): """Gets the list of this DomainList. # noqa: E501 :return: The list of this DomainList. # noqa: E501 :rtype: list[Domain] """ return self._list @list.setter def list(self, list): """Sets the list of this DomainList. :param list: The list of this DomainList. # noqa: E501 :type: list[Domain] """ self._list = list @property def next_id(self): """Gets the next_id of this DomainList. # noqa: E501 :return: The next_id of this DomainList. # noqa: E501 :rtype: int """ return self._next_id @next_id.setter def next_id(self, next_id): """Sets the next_id of this DomainList. :param next_id: The next_id of this DomainList. # noqa: E501 :type: int """ self._next_id = next_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DomainList): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other