blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
82908ae8ac24e79217bf0b66161e59606ee3b4f4
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/dataexchange_read_2/revision_get.py
aa8e9858a1a6eee389251c26211af7da94e53e10
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
983
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import execute_two_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dataexchange/get-revision.html if __name__ == '__main__': """ create-revision : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dataexchange/create-revision.html delete-revision : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dataexchange/delete-revision.html update-revision : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dataexchange/update-revision.html """ parameter_display_string = """ # data-set-id : The unique identifier for a data set. # revision-id : The unique identifier for a revision. """ execute_two_parameter("dataexchange", "get-revision", "data-set-id", "revision-id", parameter_display_string)
ed2dee8a9a297a14b1e6a0827a7ecca5e8a197c7
f3553f36a248d5e2a30713af68dd714df90953d7
/kuaishou/1.py
51178e065731b5fe3e9606a854b3219244ac41fe
[]
no_license
Mrzhouqifei/offfer
8a699653850cf6cc91ed5a622ad166fd61b8e294
4c73e7a591e79348471e00272dcb8e1b5cc6d7cb
refs/heads/master
2023-04-09T05:58:49.858037
2020-12-30T06:13:52
2020-12-30T06:13:52
298,285,069
0
0
null
null
null
null
UTF-8
Python
false
false
394
py
s = str(input().split()) match, left, right = 0, 0 , 0 stack = [] for x in s: if x == '(' or x == ')': stack.append(x) while len(stack) > 0: t = stack.pop() if t == '(': if right > 0: match += 1 right -= 1 else: left += 1 elif t == ')': right += 1 print(match, end=' ') print(left, end=' ') print(right)
c2b218be5ab2b6c61f063656e3d0cc3fad868684
0fd49b4779351c68bbe51ee978939f39c8e57d7c
/400-1000/412-Fizz Buzz.py
d10f822657cd03fff2f4df88968aae90c1ba0e31
[]
no_license
jia0713/leetcode
8f632b96d0bc900cf4357ab1b8affd6068964dec
13565941f16c74d32124020285ce887a4cb31b27
refs/heads/master
2023-06-17T20:41:47.185832
2021-07-16T09:42:39
2021-07-16T09:42:39
247,866,418
1
0
null
null
null
null
UTF-8
Python
false
false
482
py
class Solution(object): def fizzBuzz(self, n): """ :type n: int :rtype: List[str] """ res = [0] * (n + 1) for i in range(n + 1): res[i] = str(i) for i in range(n // 3 + 1): res[3 * i] = "Fizz" for i in range(n // 5 + 1): if res[5 * i] == "Fizz": res[5 * i] = "FizzBuzz" else: res[5 * i] = "Buzz" res.pop(0) return res
19a3e8991f3df85a01b43303066f119c19e1c908
87d93aa41de884cbaf8d3a4d7131a4ffd090c0bc
/mysite/mysite/settings.py
10ae920d99b6fdd8f27a43baeb49bf1f6bcc401d
[]
no_license
Ryoung27/Django-Pract
bb99606a91da65788fb779a4216302398c6d0c8a
a29942ba4ec20ba259f06dc6696db47bd7f3eb3c
refs/heads/master
2020-03-23T11:29:27.735366
2018-07-19T01:05:34
2018-07-19T01:05:34
141,506,664
0
0
null
null
null
null
UTF-8
Python
false
false
3,118
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.0.7. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '7d_nt#1q!)(3w!+1ufgrglz4g$*c6zb5ath3hq1ytyt^nh4of2' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'polls.apps.PollsConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/'
af2e4c746c1d9621db5b7db5b430222178b55234
2a1b8a671aceda6bc446f8ce26400aa84fa444a6
/Packs/ExpanseV2/Scripts/ExpansePrintSuggestions/ExpansePrintSuggestions.py
b20540e9e643c26375a3bd4f86a41fbb04bfdb83
[ "MIT" ]
permissive
demisto/content
6d4722d46f0ff0beea2748e9f7de585bf91a78b4
890def5a0e0ae8d6eaa538148249ddbc851dbb6b
refs/heads/master
2023-09-04T00:02:25.618032
2023-09-03T21:56:22
2023-09-03T21:56:22
60,525,392
1,023
1,921
MIT
2023-09-14T20:55:24
2016-06-06T12:17:02
Python
UTF-8
Python
false
false
20,407
py
import demistomock as demisto from CommonServerPython import * # noqa # pylint: disable=unused-wildcard-import from CommonServerUserPython import * # noqa """ExpansePrintSuggestions """ from typing import Dict, Any EXPANSE_LOGO = ( "" "nr7vn6+vv8/P39/fDx8fH38/7+/v7+/v////r6+/n7+v7+/v/+/v7+/v39/v3+/vf4+f39/fz9/P39/f7///z8/Pv499jd4f39/ff4+f39/klXbNbb3////6" "y1vv///+rs7v7+/srP1fv8/OHl5+Hk5vv7+/P09u7x88fO1Pv+/c/U2fz8/Pz8/Ons7ba9xfDy9IGOnPj5+vv7/J+ps73Eyt7i5fj5+ebo6s7V24+bpvPw8O" "zu8L7Gzs7U2ra/yKm0vtDV18XL0HiGlG9+jba8xG5+jj5TZvDy842YpMLJ0LrBx+Xp7bG5wK+4wp+qtd7j5zNIXr3EypWhrtLX24SRoP3u7lBidqartWx7i+" "Dj53+LlImWoezv8X6MmZGeq9XY3JagrFxsfoiVo4aToKOrs+/w8fvT0frS0jZKYUxgcamyuv3w7ytAV4+bphAnQjtPZS1CWkdZb5ikrSA1UPdwbB40Tx0zTi" "E2URsxTRowTCI4UhgvSh41UBYtSRMqRhAoRD9TaSU7VDdLYv///y5DWw4lQio/WNTa4FRmeQohPzJHXkpdcUZZbniGlXKBkWZ2h1prfU9hdTxQZkJVazlNZf" "doZPdsaLe/yMrR2PL092Fxg/z+/+fr78/W3K+5w/b5/H2KmW18jOHm652ptIiVooyZpcDI0KOuuPhuauzv8pGdqZeirwMcOdvg5aeyvISRnvZ5df/w7/eAfv" "/MyviLh//W1P/j4vZzb/menPiVkvZkX/67uPyzsf7DwQAQMPZva/atqv+qp/uqqRXzhNQAAAB1dFJOUwA0DRbMAwEGSx6LCY+mnnt1SJcQZVVfQFPt6oIF+G" "n99PovT/f6YNb36/0n+7C5i/h2/jnF9vvu4Vbh96ih6u7g5ZJf+fRQ3BXbXfei8oTx4uKVbeGs2u6ZDZV2FfrWo+hq9u3nlJq39S/U1NTe1PD599Tk7yu+2j" "kAAB1BSURBVHja7d3ndxTHtijwPhLdIyQjIRSJAoRkEMZkTLDBmOCHsQ1+OPs5huPj9+59595331aFjjM9SZOjcs6yEtngdA73nD/sfpDAYPX09My0wl2r6p" "PXMt1T+OddXdVdtTfHrWZzrLPvXgInCIJwzNMzPT3aMjUe6w1EXG6v3+8PhVzhQDw2cXOgf3q6Z0gQBEEQbPxLlKznWFt+YoEXjtV919/SNRYNuJ1zPk2WRY" "wwQoAQQhhjUVS1uTkxlRie6hro79sj8DzPiP+7EAu8IBzwjDZEExGv6lQpIgQMGyEIU9WHQ+HEka7pvs02KTPi5SXmeX6Dp/LNcbcuIYzAWkNY0XXXbI89yo" "x4OYl5vtzT0x0lQfUZQgUhACCPo3nhHxBSnv1D6px3Yr5nS8HKjHj5iHl+U8+JI+6gE/8enwrCGCNZlrztkUg4GQgEAoFkOJJ2exVVRBiB8nuoE+wLRmYme7" "YUhsyIl4eYdzj40oGoi2r0CS9CSFE1f3Lk05uHTrRsb2ratWvv3r17p3c1Nc2/0HLi0PFb8TA4KULod2bRScK35k86HDwjXlPEvKPUMzQYRvT3+AVJp3L64t" "Vde/b07c5w2c49e3p2NVwM/ZskPTVgU0oCA56TDgcjXjvEfKmnfzYUlB9HLxA95E0P76qzOge/eink9urSk2hW5yJdQ8/nicyIbSfmHQdHx0M+cWEyhRFG7s" "TFhj2Vud2k6fhIwIsWZ+GEqD7XWH9+yIzYXmLewVeMRr3aYgRjJOuJ4y/sLMnnx/e2fBWh8HippWqp8f51Dka8ysR86aYbs7qGAAAURZEU95k9NQV0oGjvJV" "1/PMumamjqs7IyByNePWK+bGPfmDeIF5a5yB9KHtpZU2AXqnZ+lQ5JsDBvE4OuSc+6Mka8WsT8Rk9XWFMJACCM9cjFl2o5rvAPCsU7D424JLSArMm9A8eKyh" "jxqhDzh+fjSEMEABQRBab2VtvVjeKd28+k6MJDmWr6cP+xMka88sR80Zc3vSpeWCUpkYadO2ztyfqdX4UWF1FUdQ2+mEMgM2JbiPmi6v64UwMAQKC7zmzeYX" "tf1u+95NYxAiDgpMPTL5Yx4pUk5nd4pkJBRQJAVEp/umUjJyxDb/a/FXMTEQAkMZie/K6qjBGvGLGjuj8uaxIAYNF78a2Ny9Wd/ZvPfi1RDEBAk470WAxkRl" "w4saO5O+1DBEDBSmB7xXJ2SNh/1YUxApBELdF2oIgRrwQxX3XhJg4SAgpWUkf2VSxzl3a/FQthDCDhoLfru6oiRrzsxHztUFSWJQBM/b0tFcvfp92bjyclqg" "Ahmj7RZyGQGXFhxHxzW0CTCQAW289s2boivdq975JXRgCgiSOj2Y0ZcUHEjlOTIR8GUDAKXy1doV4J3J+utWOkABGd4YENRYx4+YgdxfVdXo0AYOof2V66gh" "07ei6gUwUI1tIt2YwZcQHElZ4xvwYLg/TJ0hXt2dF9w14RAcGaa/LlIka8TMR84yzWCAAVI4eeW5aXHSatbvNf20UMBDm9g+bGjDhvYkfjmFMkABQFWp5bhc" "4dPZumGIA49QZTY0acJ7Fj/eUxmSoAVI9vXw1hTqg7F0BUAdD8g68UMWK7iYWjngmqAiDZP7xr0+r0Tqh7KY5ERJDTa2bMiPMj5htnZI0Akv23Tm5atf5V7o" "shWSHIZxbHjDgvYr7xpiZLgET/V5tWs4OVm6NERERy+rsyGjPifIj5+kEkAyDZO/vd6vawcktUEhGA5p7cVMSIbSPm6ye9mgKK7P30Svkqd7FkX1SSQaJapH" "tTFSO2iZivb/E6JVBU/5lXVr+PJfuiICuEOsNtxsaMOGdivmTerRFQRH3mxTXQR6FkSwyJQKiW6Dc0ZsS5EjtKhhJOBUDUh/eWc2vC+KU4wiCpNNq3lREXTi" "zs90RVDEBRvKl8bfSSLzmXEDEQTZ86WMWICybm66eQDIDFwPbyNdPPU2cjKgbkdHc/V8WICyTmS9oklQAWI1fL11BHT51PyYggX3h06eOYEedE7CjpCfuAKN" "TdUL6menrhC6+IJFUb6atgxIUQC+s9MR8QoP7ZY2usqzfGJQySRsaWPI4ZcS7EjspBggCwEt+1YY11tfZcgmIgmqvtuWJGnD/x+p6UBoDFyAvla66vNddcKp" "JEZ3xoIyPOm1i4HA0qBInuaysbw7t3796f/U/Vf+GVkeRU/jhUM2LrxI7KLhUDUH1m3Ur6fl/p8Xg++P7777M48zfGCVWIzz3w7FDNiK0TF0+7NQCEEyv3IN" "79fd2de7/+9NNPP/326707H5gjV58OUCRRZ+/QDkacF7GjcVhUQMGpQxmEi3f/ybjtLsrr14XddZ4f/3H30S8dHR0dv/zy8P4/H/yrGbJw4d2QiIjmv/nMUM" "2ILRMXz/tFBFS5dSXDnz7saek2ai1DFXkZ13l+/On2Lx2PWhfaD7/8cvufd/7VLJDfjmIK4Ez2Pz1UM2KrxHxjXEWAxGRThiAWSk7Hve529x9buzcxmo9xne" "c/b//S0fpUe9jRcf9vZsbVZyMyIqoy7tnBiHMnLu6mIoDsP5TxQSw0Xg/N+Zy+PzRn0Nk7nbtx3Z2fHz0D3Nra2vpDx8PfzIybv/DLhATTA6XFjDhn4ssRFQ" "Ar0edN/nzjdbdMpCVNpNG+iqqcfpmvu3O/o7N1aets/dXM+O0YwoT6RjzVjDhHYkfloBMRRF0vmM6mvxzTZYN08U59xpNbAj3e8/OTh/CzrcPUuPZ8O0V60D" "u5tZgR50ZcNRTCCmD91vPmr5iuRBXRIE2809vwSS5DtVD3T8MYbm1tbe28fe/5TMaC8PawhAE5433VjDgnYkf9BMUAOLU9y5K45J24TJeGMXKGJg/nYCw8eN" "iRQbj1Uef9O5k/guw43y4C0UJdT8KYEVsiLh5yYQSYTJzMdknN6V4ZLzUGX7ptY5n1IL6fKYZbWx91Pvx13e6Ml749DBiQOuKpZcS5EH80hTEossvCe62Ssw" "EDY8BaoseqsVD54OEPGYlbf+j82SyMX03JSPKlnjyNGbEVYkdjUkWA0XErH5jqX42oS2u5EFmLDVk0dnh+fvgoM/Gjjtv3TPZ+vjaBREl0Dj8OY0Zshfijbh" "kDouHPLF1V/25INZhWq+pw30ZrS6c7d02EW1s7O347ttskjNMikoKRtsUwZsQWiPn6pIyASmNbrF32yZhfXhrHkoZmPEctjdM/mo3Tra2dHWYjNffaOKEgar" "cWw5gRWyAuG5UxAHZtt/iFqfbKEclg6SQ5vV2HLQzVvOdvnZ1mxI867/5oMlLvOJ+iSJ8Lj9YwYovE/KleigDp0ZNWr6t5JwbU6BWIa97C45jv+63TNIpbzR" "/G296OSYjI4tjBYkZsjbhq2o8AcOiE9d08Nad7DZbHgIKB6ezGfN9//mBO3Nn6N7OzNl9+E6IgBXv7ahixNeJtMzoCwMl91i/ka04HVIPlMQ3GhzY6CifuNC" "Xmvg1QhWjuE1uLGbEVYr4+gRBgcjynLXk1r4YNlseS7Iz1bSzK9izOSvzQnPjG67oIonjLU8OIrRAXjfopAA1dyenSbfXXXaLBtFql457dWYhf/NWc+FGH6X" "SL47iPXTKAL9FfwoitEG+bpRSweGtLbtcKF973Gk2rVb2hOttQfc98Rv1Dx/0H5sRvxjCWfO7JrcWMODsxfypAEVCU+ym118Yloy+LPvfAYXNj/sHtLOvinz" "4wz5m7412/TER13FPDiLMTFw1RCogG9uV8de07MWQQxxBMz5tPuRyen80fxY9+PZDlt78NUKzPJXoYsQXij2ZlCpjObsn5aqH2nREDY0Kdgf6NZsVq+QO/tZ" "q9wey4+yDLkSrhtWGFSr5QdyUjzk68LU0BkHdycx7X155NYIOlE9biWabVd8zeYHZ2ZhunOa58yk8RCs6WFjPibMT8BUUEgGRTXvm1ms+HDd5WA9WGPevNw9" "hkvtWZbT7NcUL1qxGE9L/HPTWMOBvxR4MKBoXETuZ3h+braaPlsUrHPjGtK/7y/Y7MT+J/fpC9QMGf4xKSfKmBSkacdaAOIADFP7U5z1s0v9tu9PVY0ycPmx" "gL3IPbHRk/M31goUzQexN+DEgbKy2uZMSmxMKFFAZA3u1550E0Xh6DFmrbaJLC2nHg3qPODGviv1gpBFX9bogCCUY9JXWM2JSYb/NiAJTal/9N3rslGXyRAF" "+y38yY2/C32x0/GEy1rAlzwscRDMSZ6K9kxFkG6hkdgUKie/O/SfU7cWpgrAQTPabT6g337nZ0/DGEH/30F4vF3N4ckRCoqe6jjNicuHYEECDxRCFJxatPJ4" "y+LGJn3FNsdt2GB/94+Evno6eAO+7++oFFYaH5dT8FWW8orWbEZsTPewKAAMv7CrpN9dkkRUbL44lPzBe3L//48+2Ojs6F1tF59x9/Kbdc7Ev4MCQSiic85c" "UM0oy4zaUA4FRhxFzt+bTBVyeQaddhLhvyP366f/f27dt37//8aw7AHMd9nqYKUmPTmxixKfGkHwOisS2F3Uf48gu30dLJ6W3JNu6Wb3r5wY/37t378c7e8t" "zK9b0ZR1gKJkYZsTlxA6aA1ME9hd7py29CRq+5NPdANmOBKy8v31ReXp5rPcaXxxGV5iJLkjSx9izxBGBAPhtKuFx43W+4PHaNLle549r3JVHyuSdLGbEp8Y" "iCAOsvFX6rbe/FJINzMODszb6ZK8+nw4dukah6AyM2Jb6SxAho5C0b7rXjXMJgWg1Yi3qWh5j7PEwBa4tbbVnLQPyZVwRF7N1nx82qz4ZVo2m1PHN4eaL4zw" "mEpLlxRmxOjEVA8vAWW+6241raYOMtUHlweR7Hb8YR1v8+/BojNmn8aYUCUmftIeaqj6cMl8d697IYvxfFVP97jBGbRvG/SBSQdnOzTfdr/saNFYMzi+n+im" "V4Hr8yjKk01/vnIgZpEsXv6xgQHrSLmLtxyWswVCtawLMMvX9lXKJSMPDt/2KQJiud13UMyH/CNmLuja91o6WTL7YMU66XZ/yYOMMfM2JTYoIBhVpsI9627Y" "3/IAbGJDhmv/GGsRACLcKITUX+D0GAUgObbbzlqwlsMOVC8mCF7cQ33YhoqQ8ZsSmxhABcbTttvOeOQxGjVyDUP2C38YbBdgSy+8P/wSBNiP83QYDS2239j1" "/9VQopBm+rU/0VdhOnFBBD/5MRmxMrgMMv2XvXU4ZTLikYmN5q6+8cmEwpQL2M2JT4/ylgP/Eb/6EbjNQgBXvtNa75lwhSsJ8RmxL/X7CdeNvlr/1G6yYAIo" "8MbRVs/KnPkwgx4mzExHbiCxe9xsIAQMdtfQXCiC1GMbKVuPmvblHJRCxLUzYO1QIjXo1ncfP/b5czCi9koLX1WcyIrcyoFRuJm4+7jBbFTxm7J20zPjDpYj" "NqS+tisG9dXHstiRQwa0RMzdtlzNbFVojtfbtVfa4XYcjS1MB0qV3E7QhU9nYrO7F976jfiyk0mzAoau+QPcYbGtg76uzEr0vIti9Nwhtf6yJkb1ge6bPl98" "rHQph9acpKrCPbvhdfuOSlYKUh+dODdvwg+15sodm566P5m3YjYaP5NZYa7Biq2a4PC83GvVvN1w1ProHPaOyWQ102GLO9W1ai+DTYtAOz9nxENJpMB2dC1G" "AZpbbbYMx2YFqJ4s+wCEgsfB917dmksXD0k6mQ0b8Q0wMFG7N91JaIvSIotODTENXneqnhgaaAp6x23OjDkyIm+gs8K8dOQ1givpLECHDBZ5reiyrYsI7AaE" "URd2FEMjrrJI5MF/irn4cpYJWdaTInfn4EIcBSgS+p33jdT412yOvdFRzHcW8EiNFmLnSpsKF68WTiIDuZaE48gQo/X3z5dcPMW6I4eHjxnci/G23KpHi8IO" "Nqdr7YEnEDpYC1grIEXPim3eALMZHFmcOPt3h0pYyMsT5ViDHLEmCNuPBcH83XIwYLYkK16O8pmWoHDXeCYHdXAcMHy/VhjbjgjD21ryZlw+VS79BTxeebJ4" "w2ZSI5PZC/8edpqiCNZezJRuxJFJZ3q/Z0QDV6b+lMj1Y8neb0smGaCKSGR/M2/jAkEkpZ3q0sxOtqYwVlz6s1LskFTvfAM3nlBeENo3MwBGu9eRovZs+TBl" "n2vCzECzkwlTxzYNa+EwNsWDxxcknlgKawUYY9JI5M52f85gjBRGtnOTCzES9kssXteY3UwmsTulHpRBl3LanxItQMuA2nXNKRvOZ6wscRyjLZWiEWmgvIR1" "3/vlc2mkw7Jz5ZmhRAqGkw+p6MRP1MPmFc/W6IgsTyUVsYqAvIKn/q3ZRqKBz37DeKu/pZ3eirk+ydysP4vQk/BsyyylsgXqwNMZJ7bYhT1yMqJkvD0peYrj" "AuRt44gwyXTqlDuRuz2hCWiRcqvCi5V3ipybAg9oVHM+RuEYTLMaNpNZLD3bkaswovOQzU29JiPnWaaozzjIMW6jbJzvNG2uhtNlYDTTkal0/5KbA6TdaI86" "u2VnM6LhrWmpfMa80PGJ6HoXI8N+PFamtuVm3NCnFeNRMzlEuUNDz7iWkV8pIWr2x0ZBHHcnsF8m2AImmul9VMtEKcT+XTbZ/M6EZfl0Qt6jlqfmXloGE9GK" "qP9+RgzCqf5kLMbRvLuX5x4/sh1UAYO3t7Mkymn1o6TSiG02rv1PM5vNqKYcrqF1smzr0Kef11l/GCODxaUZb16su9RjNxrLqvWf96/LFLBMKqkFsl5usTCA" "Emx62O1I3GC2ISTLVZEOa4nqRRUmOspg9ZNb7xuk6B0lueGkZshVjYNiMhAJS0OOGqN14QE1+o67CVXetCSX/KYJgHLCatfvD6NkAVorpPbC1mxFaIuappPw" "JAoUOWwrjktOGGWknVZzx11n62ZMBwWo1xr7VNZF9+E6Ig+Xr7ajhGbImYP9UrI0CSpQK3JRmWS6o43JdtqvWkVQ4anmEUIfaWBWPh7ZiEiEwXt9cy4uzEXN" "m8RkHBaQvrppLPokg2EnbGn97Ik/VxPmb0agzJ0vCu7MY7zqco0ufC/TUcI7ZIzNcnZQRUGsu6bqq5ckQyECY4mOipyOX42OURwxfcsj6xJ6vxa+MSBVG75a" "llxFaJuY+6ZQxIDH+W9Sk45Td6AYl84dGtOR0Q5IcCqmHC29DUsWxB/GpaRFIw0ra1mBFbJnY0JlUEFGdbNzVebzeqqUac7u6K3I6A8pX9ac0whYAr2/L4tX" "EsSqJzeDGIGbElYu6jmxiDIrt2bTD743Xnw6rhVi3/zcM5H/KtHPBqxMg4bL483vFqSkaSM9WyGMSM2Bpx8ZALI8Bk3GxSXXc2aSisiUc8Jbn/eOVNMPwiIQ" "fOlZpNp4cJBqSOPA5iRmyN2FE/QTEATW3PHMZ1pxOGL7VkLTa0tSqPH/fcUoy+ZVAxPp/ZuPp8u7iQha+YEedCzFUNhbACWL+V8VtA3TsxTMmSJolab8/WfH" "Ix8JWemIyW3pFQKboro/HbwxIG5Iz3VXOMOCdiR+WgExPArpYNmV55jGhBp0EL5jqZfmqoHuoN+oxuKUczvQKpPd9OkR4MTT4JYkZskZjjLkdUAKxEM4RxfV" "e63WXQ3MnurXnnU6mcTqYMbxruOpAhiGMIE+qMeao5RpwrcdUAFQFk/yHDMC7ZPDrQZtQGeg4WkDGncqjN+K6jfYbbBZu/8MuEBNMDTx0qZsQWiQW+Ma4iQG" "KyycBYKD76pwztaFUhPch8W6Ot2NVnIzIiKhr37OAYcc5RzBXP+0UEFB25smb7+3YUUwBnoP/pY+OM2DKxo/GIqACi7Yc2rNHuXng3RBWi+m8efHrkYMSWib" "niabcGgFBi19o0rj6dpEiiWnxoB8eI8yEWHJVdKgUQ9Zl1a7Gzwo1xEBXiax94NrsHI7YexZxwedinECS6r63FML7whVdEklMZO/jsBI8R50DMre9JaQBYjL" "xQvub6WnPNpSJJ1uJ9fyhpzohzIXZUDgICwEp8zT2Oa88lKAaiuZYkYWLEuRAL6z0xJxCg/tlja6yrN8YlCpImTR384zqcEedCzDlKesI+IIrovrm2hurGL7" "wiSKo20rekGg0jzomY40vadJUAFtNX15LxqfMpGQHyhUc3VTHiwog5vv4mkgGwGNi+doxPnY3ICJDT3f3c0teljDhHYm6/J6phAKrEm9aIsVByLkAxEM2/9E" "HMiPMgdpQMJZwKgChF964N45KX4goFScXDfUaF2hhxrsQcXzKa0gAUUZ95cU3E8JaYQkEStUT/pipGbAcxx1d2e50SKKp+5pU1EMP7oiArEnWG2wyFGXEexB" "xfP+nVFFBk76cnN62+MJFBwlpkwFiYEedDzPH1XUgEANE7s2d1n8eVW6KSiADU9slNGXaXMOJ8iDm+8aYmEkCyf/bAqgpvjhIREeL0d72Saf8QI86LmOMbZ1" "VNIkj2H1nFsbpyXwzJCkE+/2BGYUacJzF31DOBNQCQ/cO7Vsu47qU4khFBzpCJMCPOl9ix/vLCGWCqx7c/tzrC5wIKVQA0sxhmxHkTc5yjccwpEgCKAi2rYX" "z0bBpjAKLpDS+b7eNlxHkTc47GWawRAEojh0pXPIQ3/9UtIiDI6R00FWbEBRBzlZ4xvwYAWGz/9OTKIh/dN+wVAQjWXJPmwoy4EGJHcX2XXyMAmPpHtq+k8d" "FzAZ0qQLCWbtmQ5bQFIy6AmBMcpybdPgSgYBS+unLGf7rmxkgBIjqTA9mEGXFBxBznaJ4POGUCgEX3mS1bV6RXu/dd8ssIADQ8Mnog64kpRlwYMcfXDkVlWQ" "LAor/30OblR969+XhSoggIUfWJvuzCjLhQYo6vutCAgoSAgpX28emK5RZ+aySEMYCEg6Gu76osnHpkxIUSc7yjeSDtQwRAQSiwfXmN9191KQgBSKIz0XbA0r" "FWRlwwMcc5qvvjsiYBABK9F9/auGy+m89+LVEEQEDTbw29WMYx4hUi5vgdnqlQUJEAEJVct7YsD/L+t2JuIgIAEX2Rye+qrAkzYluIOb6ouj/uVAEAEOiuM5" "t32N6X9XsvuXWEAAg46XCPxRBmxHYRc4Kj6MuG0EJOQ4SUSMNOe5HX7zwTkhACAKCqq+vFIsvCjNgmYo7jHIfn44qGAQAUEQWO7622qxvFO7efSYkYLVQv9x" "/pP1aWw9WM2DZijt/o6UpqKgEAhKkeufhSrT3Ah0ZS0mKpPU2ODxwrykWYEdtIzPFlG/umQkFMAAAh5A8lr+2sKbALVTu/coUeA4tB16RnXVlud2DENhJzAl" "+66casfyETpqKApLjP7CkAuWhn0yVdB2UhTSJVQ1OflZU5OEa8esQcxzv4itGoV1tMUIoUUUocf2FnST4/vvfqmTBSHhfKVFXXeP86R+73YcT2EnOcwDsO9o" "+HfI+REUbuwMWGPZW5/a/SdHwk6ceLwISozvRY//OOPIQZse3EHMfxpZ7pqXafvJDWVkFA9JDXdXG0zur/JSdGQm6vtLhIAgB1LtI1lB8wI14WYo53OPjSyT" "Cm+Pdkw5KO1X+/eGJXz56+3Rku27lnz56mhkv+f5Okp2oFUCwFBjwn8wRmxMtDzHEcx/OlbVEX1p5UakEIIUV26uGRT6cOnWh5Yb6paddCa2qaf6HlxKHjt+" "IRUaMIod+LD4iaFB6fP+lw8Hl3hBEvFzG3jd/k6T9xxB10oieJyBEgrCAkq5K3PRIJJ5OBQDKZDEfSbj9WRQz4aV5CfcHwzGTPFp4v5C/BiJeNmON4ni/39H" "QP68FnC+QpCAEAIQoAAAEgCwvpZzPIK+pcaGa+ZwtfGDAjXlbiBeUNnso3J9p1CWGD8j6GDVFFl1yzPX2bC/ZlxMtOzHGcwAvCAU9/QzQRCalOlSJCjGUJQZ" "hqPuQOJ4502eTLiFeCeIGZP1Z3YLq7ayyaaNfmgk5VFDHGCCGEEMZYlGXVOTeHXb23proG+vv2CDb5MuKVIuY4TuAEQRCOeXqmp/u7b05E44Gwyx3yer0hdz" "qcGInONLT1T/f0DAmCIAiCjX+JtU78X7lDYMJuyFZZAAAAAElFTkSuQmCC" ) """ STANDALONE FUNCTION """ """ COMMAND FUNCTION """ def expanse_print_suggestions(args: Dict[str, Any]) -> CommandResults: ip = args.get("ip") port = args.get("port") fqdn = args.get("fqdn") expanse_users = argToList(args.get("expanse_users", [])) expanse_devices = argToList(args.get("expanse_devices", [])) expanse_ips = argToList(args.get("expanse_ips", [])) expanse_issue_tags = argToList(args.get("expanse_issue_tags", [])) expanse_asset_tags = argToList(args.get("expanse_asset_tags", [])) expanse_business_units = argToList(args.get("expanse_business_units", [])) shadow_it = argToList(args.get("shadow_it", [])) provider = args.get("provider") region = args.get("region") service = args.get("service") prisma_cloud_assets = argToList(args.get("prisma_cloud_assets", [])) md = f"![expanse_logo]({EXPANSE_LOGO})\n\n" md += f"# Expanse Attribution for service {ip}:{port}\n\n" md += "## Executive Summary\n\n" md += ( "The Expanse Attribution Playbook has performed **enrichment** across several systems to help you determine the owner of" " this asset. Data has been searched in **Cortex Data Lake**, **Panorama**, **Prisma Cloud** and **Splunk**.\n\n The" " findings are reported in the following sections.\n" ) md += "## Service Details\n\n" md += "Logs and asset information were searched for the following service:\n" md += tableToMarkdown( name="Service Information", t=[{"IP": ip, "port": port, "FQDN": fqdn}] ) if provider: md += f"The asset has been attributed to the following provider: **{provider}**\n" if region: md += f"The IP address belongs to the following Public Cloud region: **{region}**\n" if service: md += f"The IP address belongs to the following Public Cloud service: **{service}**\n" md += "\n\n" if shadow_it and isinstance(shadow_it, list): md += "## Shadow IT\n\n" md += ( "Based on the information above, the Playbook tries to determine whether this service is sanctioned or can be Shadow" " IT. The following conditions are checked:\n" ) shadow = False for n, c in enumerate(shadow_it): if isinstance(c, dict) and c.get('value') is True: shadow_it[n]["result"] = "✅" shadow = True else: shadow_it[n]["result"] = "❌" md += tableToMarkdown("Shadow IT Conditions", shadow_it, headers=["condition", "result"], headerTransform=pascalToSpace) md += "\n\n" if shadow: md += "### Enrichment determined that this service **IS NOT** Shadow IT.\n" else: md += "### Enrichment determined that this service **MIGHT BE** Shadow IT.\n" md += "\n\n" md += "## Attribution\n\n" md += ( "This section reports attribution information based on Expanse detected business units and tags for this issue and its" " related assets.\n\n" ) if expanse_business_units: md += f'Business Units: **{", ".join(expanse_business_units)}**.' else: md += "No Business Units reported by Expanse for this Issue." md += "\n\n" if expanse_issue_tags: md += f'Issue Tags: **{", ".join(expanse_issue_tags)}**.' else: md += "No relevant tags reported by Expanse for this Issue." md += "\n\n" if expanse_asset_tags: md += f'Related Asset Tags: **{", ".join(expanse_asset_tags)}**.' else: md += "No relevant tags reported by Expanse for assets related to this Issue." md += "\n\n" md += "## Detected users connecting to this service\n\n" md += ( "The enrichment correlates log information from Firewalls with UserID enabled. If users from within your corporate" " network or **Prisma Access** are connecting to this service, they will appear in the following table.\n\n" ) if expanse_users and isinstance(expanse_users, list): for n, u in enumerate(expanse_users): if not isinstance(u, dict): continue if (groups := u.get("groups", [])) and isinstance(groups, list): for m, g in enumerate(groups): f = re.search("CN=([^,]*),*", g) if f: expanse_users[n]["groups"][m] = str(f.groups(0)[0]) if (manager := u.get("manager", [])) and isinstance(manager, str): f = re.search("CN=([^,]*),*", manager) if f: expanse_users[n]["manager"] = str(f.groups(0)[0]) md += tableToMarkdown( name="Detected users connecting to this service", t=expanse_users, headers=["username", "domain", "mail", "groups", "manager", "sightings"], headerTransform=pascalToSpace, ) else: md += "*No user evidence found in logs.*\n" md += "\n\n" md += "## Top IPs communicating to this service\n\n" md += ( "The enrichment correlates log information from Firewalls that terminate connections on this service. If any firewall" " that is sending logs to Panorama, Cortex Data lake or Splunk is seeing traffic to this service from any network," " the information will be reported. The top talkers that are connecting to this service are displayed in the following" " table.\n\n" ) if expanse_ips and isinstance(expanse_ips, list) and all(isinstance(x, dict) for x in expanse_ips): md += tableToMarkdown( name="Top IPs communicating to this service", t=expanse_ips, headers=["ip", "internal", "sightings"], headerTransform=pascalToSpace ) else: md += "*No IP evidence found in logs.*\n" md += "\n\n" md += "## PAN-OS Firewalls with sightings\n\n" md += ( "The enrichment correlates log information from Firewalls that terminate connections on this service. If any firewall" " that is sending logs to Panorama, Cortex Data lake or Splunk is seeing traffic to this service, they will be reported" " in the following table.\n\n" ) if expanse_devices and isinstance(expanse_devices, list) and all(isinstance(x, dict) for x in expanse_devices): md += tableToMarkdown( name="PAN-OS Firewalls", t=expanse_devices, headers=["serial", "vsys", "device-group", "exposing_service", "expanse-tag", "sightings"], headerTransform=pascalToSpace ) md += ( "(*) ***exposing_service*** *means that Firewall logs were found where the destination IP:port corresponds to this" " service, and the source is a non-private IP. Such Firewalls are likely to be protecting the service.*" ) else: md += "*No PAN-OS devices found in logs.*\n" md += "\n\n" md += "## Prisma Cloud Inventory\n\n" md += ( "The enrichment correlates asset information from Prisma Cloud inventory, searching for assets that own the IP address or" " the FQDN. If found, the cloud asset details are reported in the following table.\n\n" ) if prisma_cloud_assets and isinstance(prisma_cloud_assets, list) and all(isinstance(x, dict) for x in prisma_cloud_assets): md += tableToMarkdown( name="Asset information from Prisma Cloud inventory", t=prisma_cloud_assets, headers=[ "cloudType", "service", "regionId", "accountName", "accountId", "resourceType", "resourceName", "ip", "fqdn", "rrn", "id", ], headerTransform=pascalToSpace, ) else: md += "*The asset was not found in Prisma Cloud inventory.*\n" md += "\n\n" return CommandResults( readable_output=md, outputs=None, ) """ MAIN FUNCTION """ def main(): try: return_results(expanse_print_suggestions(demisto.args())) except Exception as ex: return_error(f"Failed to execute ExpansePrintSuggestions. Error: {str(ex)}") """ ENTRY POINT """ if __name__ in ("__main__", "__builtin__", "builtins"): main()
e719ea9ed023608f7635c6fd8bf85b0b352cde9c
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03797/s857928689.py
5a492d61ed9095cbcb8fca6a600a3c13717f356e
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
149
py
N, M = map(int, input().split()) cnt = 0 if N<=M//2: cnt = N N,M =0,M-2*N cnt += M//4 print(cnt) else: cnt = M//2 print(cnt)
3f800f7039c5fc6489b128bf37624959ce17273a
8fcc27160f8700be46296568260fa0017a0b3004
/client/eve/client/script/ui/shared/planet/pinContainers/LaunchpadContainer.py
614755276a054e01a0a618a178a4f59d06d3a490
[]
no_license
connoryang/dec-eve-serenity
5d867f4eedfa896a4ef60f92556356cafd632c96
b670aec7c8b4514fc47cd52e186d7ccf3aabb69e
refs/heads/master
2021-01-22T06:33:16.303760
2016-03-16T15:15:32
2016-03-16T15:15:32
56,389,750
1
0
null
2016-04-16T15:05:24
2016-04-16T15:05:24
null
UTF-8
Python
false
false
2,664
py
#Embedded file name: e:\jenkins\workspace\client_SERENITY\branches\release\SERENITY\eve\client\script\ui\shared\planet\pinContainers\LaunchpadContainer.py import carbonui.const as uiconst from eve.client.script.ui.control.eveLabel import Label import uiprimitives import util import localization from .BasePinContainer import BasePinContainer from .StorageFacilityContainer import StorageFacilityContainer from .. import planetCommon class LaunchpadContainer(StorageFacilityContainer): __guid__ = 'planet.ui.LaunchpadContainer' default_name = 'LaunchpadContainer' def ApplyAttributes(self, attributes): BasePinContainer.ApplyAttributes(self, attributes) def _GetActionButtons(self): btns = [util.KeyVal(id=planetCommon.PANEL_LAUNCH, panelCallback=self.PanelLaunch), util.KeyVal(id=planetCommon.PANEL_STORAGE, panelCallback=self.PanelShowStorage)] btns.extend(BasePinContainer._GetActionButtons(self)) return btns def PanelLaunch(self): bp = sm.GetService('michelle').GetBallpark() text = None if bp is not None and not self.pin.IsInEditMode(): customsOfficeIDs = sm.GetService('planetInfo').GetOrbitalsForPlanet(sm.GetService('planetUI').planetID, const.groupPlanetaryCustomsOffices) if len(customsOfficeIDs) > 0: try: customsOfficeID = None for ID in customsOfficeIDs: customsOfficeID = ID break sm.GetService('planetUI').OpenPlanetCustomsOfficeImportWindow(customsOfficeID, self.pin.id) self.CloseByUser() return except UserError as e: if e.msg == 'ShipCloaked': text = localization.GetByLabel('UI/PI/Common/CannotAccessLaunchpadWhileCloaked') else: message = cfg.GetMessage(e.msg) text = message.text if text is None: if self.pin.IsInEditMode(): text = localization.GetByLabel('UI/PI/Common/CustomsOfficeNotBuilt') else: solarSystemID = sm.GetService('planetUI').GetCurrentPlanet().solarSystemID if solarSystemID == session.locationid: text = localization.GetByLabel('UI/PI/Common/CannotAccessLaunchpadNotThere') else: text = localization.GetByLabel('UI/PI/Common/CannotAccessLaunchpadLocation') return Label(parent=self.actionCont, text=text, align=uiconst.TOTOP)
4e16ccc77fd56253143c198ecaa008a328bcd0b8
f0fa96d39a66c3ddaae4266442a13ec3feb7a462
/dynaminc_programing/perfectSquare.py
7b3a7b89619c22b047ff08c46b1d7e59fa335c19
[]
no_license
ashishgupta2014/problem_solving_practices
14d587e98d9996a95efe822335ca4baccb39b1a1
bc4f4b07e1e33273010e34428e0c31d2d6656c14
refs/heads/master
2023-04-26T03:47:40.766508
2021-06-07T04:55:52
2021-06-07T04:55:52
298,063,915
1
0
null
null
null
null
UTF-8
Python
false
false
415
py
import math def perfectSquare(n): if (n < 3): return n square_nums = [i ** 2 for i in range(0, int(math.sqrt(n)) + 1)] dp = [float('inf')] * (n + 1) dp[0] = 0 for i in range(1, n + 1): for square in square_nums: if (i < square): break dp[i] = min(dp[i], dp[i - square] + 1) # +1 is for that square we are substracting. return dp[-1] print(perfectSquare(12))
5c9e8206af3d623bc4bcb23dcb9e1c079e59e878
bf7959048edc0005e04431a0864c719adc5ea9ea
/python版本/6038-MinimizeResult.py
e33698a2a56562956fcdb3f35ab04e87657c7df2
[]
no_license
Yohager/Leetcode
7c24f490cfa5fd8e3cdb09e5a2305a134a064a93
585af82ff2c2d534053f6886714406019ed0c7d1
refs/heads/master
2022-12-07T23:51:16.347174
2022-11-28T02:30:53
2022-11-28T02:30:53
178,201,848
1
0
null
null
null
null
UTF-8
Python
false
false
987
py
class Solution: def minimizeResult(self, e: str) -> str: n = len(e) arr = e.split('+') l1,l2 = len(arr[0]), len(arr[1]) init = eval(e) res = float('inf') p1,p2 = -1,-1 for i in range(l1): for j in range(n,n-l2,-1): if i == 0 and j == n: cur = e[:i] + '(' + e[i:j] + ')' + e[j:] elif i == 0 and j != n: cur = e[:i] + '(' + e[i:j] + ')*' + e[j:] elif j == n and i != 0: cur = e[:i] + '*(' + e[i:j] + ')' + e[j:] else: cur = e[:i] + '*(' + e[i:j] + ')*' + e[j:] # val = eval(cur) if eval(cur) < res: p1 = i p2 = j res = eval(cur) # print(res,p1,p2) if init < res: return '(' + e + ')' else: return e[:p1] + '(' + e[p1:p2] + ')'+e[p2:]
de40442e18ca727417a8eb58201487d77ae1f7eb
23107f38f7c28da5e2e5e51f6eda3ba6b5b9a2ff
/kitchen_project/settings.py
b1c6eb6dddc924b8e595337e856f15b714f1cb08
[]
no_license
sarigu/kitchen_app
fe818aca3fb0605c185fe9ab0b496ea4e0bca0c7
f2eacf907eb75afd4cecd1cdce19900230b8fb33
refs/heads/master
2023-02-22T19:34:41.094263
2021-01-25T09:24:01
2021-01-25T09:24:01
315,796,319
0
0
null
null
null
null
UTF-8
Python
false
false
4,204
py
""" Django settings for kitchen_project project. Generated by 'django-admin startproject' using Django 3.1.3. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'g^w2u@*@88^s-*v%u&2z^th@ug*!_md54943ppa7swu09+fz!3' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_rq', 'login_app', 'kitchen_app', 'channels', 'chat', 'api', 'rest_framework', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'loginrequired_middleware.middleware.LoginRequiredMiddleware' ] ROOT_URLCONF = 'kitchen_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'kitchen_project.wsgi.application' ASGI_APPLICATION = "kitchen_project.asgi.application" CHANNEL_LAYERS = { 'default': { 'BACKEND': 'channels_redis.core.RedisChannelLayer', 'CONFIG': { "hosts": [('127.0.0.1', 6379)], }, }, } # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' EXCLUDED_URLS = ( 'api/images/', 'api/id/<int:id>/', 'admin/', 'admin/login/', 'accounts/login/', 'accounts/logout/', 'accounts/sign_up/', 'accounts/request_password_reset/', 'accounts/set_new_password/', ) MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' RQ_QUEUES = { 'default': { 'HOST': 'localhost', 'PORT': '6379', 'DB': 0, 'DEFAULT_TIMEOUT': 360, } } # EMAIL SETTINGS EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_USE_TLS = True EMAIL_HOST = 'smtp-relay.sendinblue.com' EMAIL_PORT = 587 EMAIL_HOST_USER = '[email protected]' EMAIL_HOST_PASSWORD = 'MqFtvLHkhNJXw2c6'
8e1eaca2c534ab590ef058f10c521bcab1b4c678
6443a587e16658a58b884a2e5c6dbbab1be50674
/Leetcode/Unique Binary Search Trees.py
c83974a73a1bea84808319b93ca6f42ec0b06328
[]
no_license
xiaochenchen-PITT/CC150_Python
a6cbe213946851639a827068961934920b6c3e57
e96394265d8a41a1b4558d5d2b34aa34af99662f
refs/heads/master
2020-12-24T17:18:14.606804
2014-11-08T21:48:20
2014-11-08T21:48:20
25,654,100
0
1
null
null
null
null
UTF-8
Python
false
false
866
py
# Unique Binary Search Trees class Solution: # @return an integer def numTrees(n): # DP mp = {0: 1, 1: 1} # key: n, value: number of different structures if n in mp: return mp[n] for i in range(2, n+1): # i nodes res = 0 sm = 0 for j in range(0, i):# j nodes can be put either on the left or on the right. j in [0,i-1] sm += mp[j] * mp[i-1-j] res += sm mp[i] = res return mp[n] # recursive method # if n == 0 or n == 1: # return 1 # res = 0 # for i in xrange(0, n): # # assign i nodes on the left and (n-1-i) on the right # # because left side is independent of right side, so multiply them # res += self.numTrees(i) * self.numTrees(n - 1 -i) # return res
50ab018c1be8d2a4d8012cffc93a214ded31a1c8
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03339/s461187106.py
117afdfcdef0aa4d725b5db1581f92a01b0ab81a
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
270
py
n = int(input()) s = input() ec = 0 wc = 0 el = [] wl = [] for f,r in zip(s,reversed(s)): el.append(ec) wl.append(wc) if f == 'W': wc += 1 if r == 'E': ec += 1 ans = n for e,w in zip(wl, reversed(el)): ans = min(ans, e+w) print(ans)
f50078ae17f73108cf7c97cdbdfeb1d015d3e593
1625edfe28b4b0979fd32b4a3c5e55249a993fd5
/baekjoon15894.py
d280ba45833b4d034ce0c931b621ca9446a9dc27
[]
no_license
beOk91/baekjoon2
b8bf504c506c6278899d4107ecfe51974ef13f5e
39569f8effb8e32405a7d74d98bdabcab783ec56
refs/heads/master
2023-05-11T20:11:19.015113
2020-09-14T23:58:49
2020-09-14T23:58:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
25
py
n=int(input()) print(n*4)
0ec54ad0cd05fe5719729c86e746014af74b1ece
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/3/g60.py
c80e4b4a8a6fdd45b52d8b567f0eeb839fab0048
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'g60': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
60d9374afa434145e400c9430c0c5b40ef4a1df4
0b529ba1efe44c47b540dd22a7fd9cc6a73f907f
/src/1300-1400/_1344_angle-between-hands-of-a-clock.py
f352f9345e2663c99a674b740103ff27b7269469
[]
no_license
alexparunov/leetcode_solutions
b9445a02182bc61f490257328a1960c2a627d7bc
bc19dbcc903782f91846d5b9d73a7ffb9b2f002d
refs/heads/master
2022-11-28T21:10:24.875260
2020-08-15T12:42:40
2020-08-15T12:42:40
261,517,109
1
0
null
null
null
null
UTF-8
Python
false
false
494
py
""" https://leetcode.com/problems/angle-between-hands-of-a-clock/ """ class Solution: def angleClock(self, hour: int, minutes: int) -> float: angle_in_hour_minute = 360 / (12 * 60) angle_in_minute = 360 // 60 angle_of_hour = (hour * angle_in_hour_minute * 60 + minutes * angle_in_hour_minute) % 360 angle_of_minutes = minutes * angle_in_minute diff_angle = abs(angle_of_hour - angle_of_minutes) return min(diff_angle, 360 - diff_angle)
bd8669f2afe46f47983bf9b249cef07baa413cf6
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03000/s283498849.py
4b5184d2bd4bb37f346be633557e0c253010dab9
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
306
py
def main(): N, X = (int(i) for i in input().split()) L = [int(i) for i in input().split()] from itertools import accumulate S = list(accumulate([0] + L)) ans = 0 for s in S: if X < s: break ans += 1 print(ans) if __name__ == '__main__': main()
8850f51e67fcb72971dd6eebd251f1d46269618b
9be786872889eb8fac6a64e499554c1b364dbc05
/1_pythonStudy/06_while/day3_while1.py
d0fa54be09451d8eb53be74cf65a8237c6498e29
[]
no_license
jh5537/TIL
85b55385873a82eebe57d549782f83ce0e3e6462
09b26e673801cdd902878e5f76a8bb30eab6cda6
refs/heads/master
2023-06-06T05:23:04.651392
2021-06-29T12:27:43
2021-06-29T12:27:43
373,744,028
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
# while 구문 이해 :조건이 만족하는(True) 동안만 반복문을 수행 # 1~10까지의 정수를 출력 n = 1 while n<=10: print(n) n = n + 1
7e75de29e7392a2689f4241b3e42ee1e2d5a54a7
0c8214d0d7827a42225b629b7ebcb5d2b57904b0
/examples/matplotlib/E001_Basics/main.py
85b515aeab4272d66c0f3674054cc913aa4f050a
[]
no_license
mertturkmenoglu/python-examples
831b54314410762c73fe2b9e77aee76fe32e24da
394072e1ca3e62b882d0d793394c135e9eb7a56e
refs/heads/master
2020-05-04T15:42:03.816771
2020-01-06T19:37:05
2020-01-06T19:37:05
179,252,826
1
0
null
null
null
null
UTF-8
Python
false
false
417
py
import matplotlib.pyplot as mpl def fib(n: int) -> list: a = 1 b = 1 result = [a, b] for i in range(3, n): c = a + b result.append(c) a = b b = c return result if __name__ == '__main__': y_values = fib(10) x_values = [i + 1 for i in range(len(y_values))] mpl.plot(x_values, y_values) mpl.xlabel('No') mpl.ylabel('Values') mpl.show()
a4f3ed80aaf08dd5a18b2c21b6803d9b7bd49b9b
ddd4edc45481e6a7c7141b93e47b974634506d2d
/tradgram/chatrooms/serializers.py
b371a510b3309043cb8b9ef1ab0734ad2bea6c3c
[ "MIT" ]
permissive
didils/tradgram
407de9d05d01bc840c5c165155d370f092d82f0d
4868ca082ab78a1b5b96f25ee9f958567bd1bb1e
refs/heads/master
2021-11-19T02:47:02.224088
2019-04-05T08:19:14
2019-04-05T08:19:14
148,162,588
0
0
MIT
2021-09-08T00:57:43
2018-09-10T13:49:57
Python
UTF-8
Python
false
false
350
py
from rest_framework import serializers from . import models from tradgram.users import models as user_models class ChatRoomSerializer(serializers.ModelSerializer): class Meta: model = models.ChatRoom fields = ( 'user1', 'user2', 'last_message', 'new_message' )
3fc82e87b1bddde9014a48c4e580873adf678bc4
a367a015dbc36287ca933955ded1ee58b5a2a61a
/swagger_client/models/disease_group.py
776059fb3fa87b5485cc3d698aca7fb81e4dba90
[]
no_license
kerniee/inno_intership_1_test_task
70211e153450011c427df595a02e3574dfe7ed9f
fc0619ef54b00806a3b59f3c07c1c1684682d65b
refs/heads/master
2023-05-23T02:24:40.083723
2021-06-21T16:15:04
2021-06-21T16:15:04
365,855,831
0
0
null
null
null
null
UTF-8
Python
false
false
3,717
py
# coding: utf-8 """ Teleagronom No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 1.1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class DiseaseGroup(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'int', 'name': 'str' } attribute_map = { 'id': 'id', 'name': 'name' } def __init__(self, id=None, name=None): # noqa: E501 """DiseaseGroup - a model defined in Swagger""" # noqa: E501 self._id = None self._name = None self.discriminator = None self.id = id self.name = name @property def id(self): """Gets the id of this DiseaseGroup. # noqa: E501 :return: The id of this DiseaseGroup. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this DiseaseGroup. :param id: The id of this DiseaseGroup. # noqa: E501 :type: int """ if id is None: raise ValueError("Invalid value for `id`, must not be `None`") # noqa: E501 self._id = id @property def name(self): """Gets the name of this DiseaseGroup. # noqa: E501 :return: The name of this DiseaseGroup. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this DiseaseGroup. :param name: The name of this DiseaseGroup. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(DiseaseGroup, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DiseaseGroup): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
c565643c4f2c79d599b5eb9b424e914fcb11f621
88906fbe13de27413a51da917ebe46b473bec1b9
/Part-II/Project-2-Data-Visualisation/Chapter 15 - Generating Data/random_walk_2.py
a41d63019aa7797ec13e4ca91ffd50709a3776ab
[]
no_license
lonewolfcub/Python-Crash-Course
0b127e40f5029d84ad036263fd9153f6c88c2420
322388dfb81f3335eeffabcdfb8f9c5a1db737a4
refs/heads/master
2021-01-01T16:45:50.617189
2017-10-27T14:23:58
2017-10-27T14:23:58
97,911,584
0
0
null
null
null
null
UTF-8
Python
false
false
1,115
py
from random import choice class RandomWalk(): """A class to generate random walks.""" def __init__(self, num_points=5000): """Initialize attributes of a walk.""" self.num_points = num_points # All walks start at (0, 0) self.x_values = [0] self.y_values = [0] def fill_walk(self): """Calculate all the points in the walk.""" while len(self.x_values) < self.num_points: # Decide how far to go in each direction x_direction = choice([1, -1]) x_distance = choice([0, 1, 2, 3, 4]) x_step = x_direction * x_distance y_direction = choice([1, -1]) y_distance = choice([0, 1, 2, 3, 4]) y_step = y_direction * y_distance # Reject the moves that go nowhere if x_step == 0 and y_step == 0: continue # Calculate the next x and y values. next_x = self.x_values[-1] + x_step next_y = self.y_values[-1] + y_step self.x_values.append(next_x) self.y_values.append(next_y)
f9200b25f79758ec7d91ceee76d4b01687175579
b08d42933ac06045905d7c005ca9c114ed3aecc0
/src/coefSubset/evaluate/ranks/twentyPercent/rank_3uzv_J.py
675fb8afa38dcf61c4544fa34ba93dc97dac281a
[]
no_license
TanemuraKiyoto/PPI-native-detection-via-LR
d148d53f5eb60a4dda5318b371a3048e3f662725
897e7188b0da94e87126a4acc0c9a6ff44a64574
refs/heads/master
2022-12-05T11:59:01.014309
2020-08-10T00:41:17
2020-08-10T00:41:17
225,272,083
1
0
null
null
null
null
UTF-8
Python
false
false
3,392
py
# 9 July 2019 # Kiyoto Aramis Tanemura # Several metrics are used to assess the performance of the trained RF model, notably native ranking. This script returns a ranking of the native protein-protein complex among a decoy set. For convenience, I will define as a function and will call in a general performance assessment script. # Modified 11 July 2019 by Kiyoto Aramis Tanemura. To parallelize the process, I will replace the for loop for the testFileList to a multiprocessing pool. # Modified 9 September 2019 by Kiyoto Aramis Tanemura. I will use the function to perform the calculation on one CSV file only. Thus instead of a function to import in other scripts, they will be individual jobs parallelized as individual jobs in the queue. import os import pandas as pd import numpy as np import pickle os.chdir('/mnt/scratch/tanemur1/') # Read the model and trainFile testFile = '3uzv.csv' identifier = 'J' coefFrac = 0.2 testFilePath = '/mnt/scratch/tanemur1/CASF-PPI/nonb_descriptors/complete/' modelPath = '/mnt/home/tanemur1/6May2019/2019-11-11/results/coefSubset/twentyPercent/' outputPath = '/mnt/home/tanemur1/6May2019/2019-11-11/results/coefSubset/evaluate/twentyPercent/ranks/' pdbID = testFile[:4] with open(modelPath + 'model' + identifier + '.pkl', 'rb') as f: clf = pickle.load(f) result = pd.DataFrame() scoreList = [] df1 = pd.read_csv(testFilePath + testFile) dropList = ['Unnamed: 0', 'Unnamed: 0.1', 'ref'] df1 = df1.drop(dropList, axis = 1) df1 = df1.set_index('Pair_name') df1 = pd.DataFrame(df1.values.T, columns = df1.index, index = df1.columns) df1.fillna(0.0, inplace = True) #df1 = df1.reindex(sorted(df1.columns), axis = 1) # Keep coefficients within the given fraction when ordered by decreasing order of coefficient magnitude coefs = pd.read_csv('/mnt/home/tanemur1/6May2019/2019-11-11/results/medianCoefs.csv', index_col = 0, header = None, names = ['coefficients']) coefs['absVal'] = np.abs(coefs['coefficients']) coefs.sort_values(by = 'absVal', ascending = False, inplace = True) coefs = coefs[:int(14028 * coefFrac + 0.5)] keepList = list(coefs.index) del coefs df1 = df1[keepList] df1 = df1.reindex(sorted(df1.columns), axis = 1) with open(modelPath + 'standardScaler' + identifier + '.pkl', 'rb') as g: scaler = pickle.load(g) for i in range(len(df1)): # subtract from one row each row of the dataframe, then remove the trivial row[[i]] - row[[i]]. Also some input files have 'class' column. This is erroneous and is removed. df2 = pd.DataFrame(df1.iloc[[i]].values - df1.values, index = df1.index, columns = df1.columns) df2 = df2.drop(df1.iloc[[i]].index[0], axis = 0) # Standardize inut DF using the standard scaler used for training data. df2 = scaler.transform(df2) # Predict class of each comparison descriptor and sum the classes to obtain score. Higher score corresponds to more native-like complex predictions = clf.predict(df2) score = sum(predictions) scoreList.append(score) # Make a new DataFrame to store the score and corresponding descriptorID. Add rank as column. Note: lower rank corresponds to more native-like complex result = pd.DataFrame(data = {'score': scoreList}, index = df1.index.tolist()).sort_values(by = 'score', ascending = False) result['rank'] = range(1, len(result) + 1) with open(outputPath + pdbID + identifier + '.csv', 'w') as h: result.to_csv(h)
e78096450e3762e13172fbb51ef0a06a34d1680c
957e5aef8b48cf21804d51447ed93a026aab35ff
/script/chk_dup.py
1fdcc86fc2f8ac8af76c1ce69c5e116ae660a27d
[ "Apache-2.0" ]
permissive
dannysauer/oidctest
045a438ee934b5c9e27aae9876765e08dac16a37
e7593e02af7caa71f92220ad0f5b67bb40e30f97
refs/heads/master
2021-07-08T07:36:30.362597
2020-05-14T07:21:25
2020-05-14T07:21:25
152,679,266
0
0
NOASSERTION
2018-10-12T01:54:49
2018-10-12T01:54:49
null
UTF-8
Python
false
false
292
py
#!/usr/bin/env python3 import json ap = json.loads(open('assigned_ports.json').read()) inv = {} for iss, port in ap.items(): try: inv[port].append(iss) except KeyError: inv[port] = [iss] for port, iss in inv.items(): if len(iss) != 1: print(port, iss)
c8e318873904d5e634587d89ee920d2feffa58ee
6cc37dfc44880f57823bb9523ea5f8206d5e3f22
/python_OOP/labs_and_homeworks/07_solid_exercise/05_emails.py
adeddfd64439568ad2e5a90b04ba83bc9cc780b0
[]
no_license
dimitar-daskalov/SoftUni-Courses
70d265936fd86712a7bfe0586ec6ebd1c7384f77
2054bc58ffb5f41ed86f5d7c98729b101c3b1368
refs/heads/main
2023-05-31T06:44:35.498399
2021-07-11T10:16:08
2021-07-11T10:16:08
322,896,365
0
0
null
null
null
null
UTF-8
Python
false
false
1,714
py
# SRP (Single Responsibility Principle) from abc import ABC, abstractmethod class IEmail(ABC): @abstractmethod def set_sender(self, sender): pass @abstractmethod def set_receiver(self, receiver): pass @abstractmethod def set_content(self, content): pass class Email(IEmail): def __init__(self, protocol): self.protocol = protocol self.__sender = None self.__receiver = None self.__content = None def set_sender(self, sender): if self.protocol == 'IM': self.__sender = ''.join(["I'm ", sender]) else: self.__sender = sender def set_receiver(self, receiver): if self.protocol == 'IM': self.__receiver = ''.join(["I'm ", receiver]) else: self.__receiver = receiver def set_content(self, content): self.__content = content.format_text() def __repr__(self): template = "Sender: {sender}\nReceiver: {receiver}\nContent:\n{content}" return template.format(sender=self.__sender, receiver=self.__receiver, content=self.__content) class IContent(ABC): @abstractmethod def format_text(self): pass class MyContent(IContent): def __init__(self, text): self.text = text def format_text(self): return '\n'.join(['<myML>', self.text, '</myML>']) class HTMLContent(IContent): def __init__(self, text): self.text = text def format_text(self): return '\n'.join(['<div>', self.text, '</div>']) email = Email('IM') email.set_sender('qmal') email.set_receiver('james') content = MyContent('Hello, there!') email.set_content(content) print(email)
03fc2be0614708dcfbee8c1d6b82759f19bcf7fc
59f4e4f57c4590b9fe969274960c49e7218ed275
/.venv/bin/ptw
6cb2d4a3f8ba91373047a8d4474bb0d5b0042e9d
[]
no_license
MohamadSheikhAlshabab/math-series
be82710d0cb0e8784543ee097c569964dfb8a376
6fe5772e2b67beadebbf6d27676bbe5aa91bd367
refs/heads/master
2022-12-06T12:56:18.678827
2020-08-17T16:49:47
2020-08-17T16:49:47
288,155,962
0
0
null
2020-08-20T22:58:04
2020-08-17T10:56:20
Python
UTF-8
Python
false
false
420
#!/home/mohamad/401/math-series/.venv/bin/python3 # EASY-INSTALL-ENTRY-SCRIPT: 'pytest-watch==4.2.0','console_scripts','ptw' __requires__ = 'pytest-watch==4.2.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pytest-watch==4.2.0', 'console_scripts', 'ptw')() )
815a53ab6d3b0f60494ac49b3988449512470445
38da8edb2102ad29eda8784cbb845cac0b96bbca
/151_lambda_expression.py
f4ae995bf65597a88920a1d5cd79443c18b826fd
[]
no_license
Prateek2201/Python_codes
1a655a3e6820e7ecb1fb8a8abd266a8ae0508cb5
436a36544edac80cbe420c7b9ddb718df46b68da
refs/heads/main
2023-08-01T03:10:51.864186
2021-09-17T18:08:40
2021-09-17T18:08:40
407,635,606
0
0
null
null
null
null
UTF-8
Python
false
false
466
py
##def is_even(a): ## return a%2==0 ##print(is_even(5)) ## ##is_even2=lambda a:a%2==0 ##print(is_even2(6)) ##def last_char(s): ## return s[-1] ##print(last_char('Prateek')) ## ##last_char2=lambda s: s[-1] ##print(last_char2('Prateek')) def f(s): if len(s)>5: return True return False print(f('Prateek')) func=lambda s:True if len(s)>5 else False print(func('Prateek')) func2=lambda s: len(s)>5 print(func2('harsh'))
aae99ee3d026cd50f0a7c13cedd8cb9ba1957bd9
5bad0a225a8b077f5600695e9943dfae43d3f2ed
/mrna/cox/SKCM/cox_regression.py
10e9a42e54f6beae3beabff1483de7711a676ef5
[ "MIT" ]
permissive
carrie138/onco_lnc
d13ddb31b7a3aabd0274fb9b771370500678a5c5
e8d20e43026ffe4651bd25783db36cabc2c1519f
refs/heads/master
2021-01-12T19:19:36.064852
2016-07-15T11:58:28
2016-07-15T11:58:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,310
py
## A script for finding every cox coefficient and pvalue for every mRNA in SKCM Tier 3 data downloaded Jan. 5th, 2016 ## Load necessary modules from rpy2 import robjects as ro import numpy as np import os ro.r('library(survival)') import re ##This call will only work if you are running python from the command line. ##If you are not running from the command line manually type in your paths. BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) f=open(os.path.join(BASE_DIR,'tcga_data','SKCM','clinical','nationwidechildrens.org_clinical_follow_up_v2.0_skcm.txt')) ##get the column indexes needed columns=f.readline().strip().split('\t') patient_column=columns.index('bcr_patient_barcode') alive_column=columns.index('last_contact_days_to') death_column=columns.index('death_days_to') f.readline() f.readline() data=[i.split('\t') for i in f] ## A patient can be listed multiple times in the file. The most recent listing (furthest down in the file), contains the most recent ## follow up data. This code checks if the patient has already been loaded into the list, and if so, takes the more recent data. ## This required an empty value in the list initialization. ## Data is: [[Patient ID, time(days), Vital status],[Patient ID, time(days), Vital status],...] clinical1=[['','','']] for i in data: if clinical1[-1][0]==i[patient_column]: if re.search('^[0-9]+$',i[death_column]): clinical1[-1]=[i[patient_column],int(i[death_column]),'Dead'] elif re.search('^[0-9]+$',i[alive_column]): clinical1[-1]=[i[patient_column],int(i[alive_column]),'Alive'] else: pass else: if re.search('^[0-9]+$',i[death_column]): clinical1.append([i[patient_column],int(i[death_column]),'Dead']) elif re.search('^[0-9]+$',i[alive_column]): clinical1.append([i[patient_column],int(i[alive_column]),'Alive']) else: pass ## Removing the empty value. clinical=clinical1[1:] ## Sex and age information were taken from the "clinical_patient" file. A dictionary was created for sex. more_clinical={} sex_dict={} sex_dict['MALE']=0 sex_dict['FEMALE']=1 ## The "clinical_patient" file can also contain patients not listed in the follow_up files. ## In these cases the clinical data for these patients gets appended to a new clinical list. f=open(os.path.join(BASE_DIR,'tcga_data','SKCM','clinical','nationwidechildrens.org_clinical_patient_skcm.txt')) ##get the column indexes needed columns=f.readline().split('\t') sex_column=columns.index('gender') age_column=columns.index('age_at_diagnosis') patient_column=columns.index('bcr_patient_barcode') alive_column=columns.index('last_contact_days_to') death_column=columns.index('death_days_to') f.readline() f.readline() clinical4=[] data=[i.split('\t') for i in f] for i in data: try: more_clinical[i[patient_column]]=[0,sex_dict[i[sex_column]],int(i[age_column])] if re.search('^[0-9]+$',i[death_column]): clinical4.append([i[patient_column],int(i[death_column]),'Dead']) elif re.search('^[0-9]+$',i[alive_column]): clinical4.append([i[patient_column],int(i[alive_column]),'Alive']) else: pass except: pass new_clinical=[] ##It is possible that the clinical data in the clinical_patient file is more up to date than the follow_up files ##All the clinical data is merged checking which data is the most up to date for i in clinical4: if i[0] not in [j[0] for j in clinical]: new_clinical.append(i) else: if i[1]<=clinical[[j[0] for j in clinical].index(i[0])][1]: new_clinical.append(clinical[[j[0] for j in clinical].index(i[0])]) else: new_clinical.append(i) ##also do the reverse since clinical can contain patients not included in clinical4 for i in clinical: if i[0] not in [j[0] for j in new_clinical]: new_clinical.append(i) ## only patients who had a follow up time greater than 0 days are included in the analysis clinical=[i for i in new_clinical if i[1]>0] final_clinical=[] ## A new list containing both follow up times and sex and age is constructed. ## Only patients with sex and age information are included. ## Data is [[Patient ID, time (days), vital status, 0, sex, age at diagnosis],...] for i in clinical: if i[0] in more_clinical: final_clinical.append(i+more_clinical[i[0]]) ## Need to map the mRNA files to the correct patients ## The necessary information is included in the FILE_SAMPLE_MAP.txt file f=open(os.path.join(BASE_DIR,'tcga_data','SKCM','FILE_SAMPLE_MAP_mrna.txt')) f.readline() data=[i.strip().split() for i in f if i!='\n'] ## 01 indicates a primary tumor,06 a metastatic, both were allowed for SKCM TCGA_to_mrna={} for i in data: ## The normalized data files are used if 'genes.normalized_results' in i[0]: if i[1].split('-')[3][:-1]=='01' or i[1].split('-')[3][:-1]=='06': x=''.join([k+j for k,j in zip(['','-','-'],i[1].split('-')[:3])]) TCGA_to_mrna[x]=TCGA_to_mrna.get(x,[])+[i[0]] clinical_and_files=[] ## I only care about patients that contained complete clinical information for i in final_clinical: if TCGA_to_mrna.has_key(i[0]): ## The mRNA files are added to the clinical list ## Data structure: [[Patient ID, time (days), vital status, 0, sex, age at diagnosis,[mRNA files]],...] clinical_and_files.append(i+[TCGA_to_mrna[i[0]]]) else: pass ## A list of lists of genes is constructed, the order of gene lists is same as the clinical_and_files data ## Data structure: [[genes for patient 1], [genes for patient 2], ....] genes=[] for i in clinical_and_files: temp=[] for j in i[-1]: f=open(os.path.join(BASE_DIR,'tcga_data','SKCM','mrna',j)) f.readline() temp.append([[i.split('|')[1].split()[0],float(i.strip().split()[-1])] for i in f]) ## In the case that the patient only contained 1 primary tumor mRNA file. if len(temp)==1: genes.append(temp[0]) ## If the patient contained more than 1 primary tumor mRNA file, or metastatic, or both, ## this list comprehension will average the files for any number of files. else: values=[] for k in temp: values.append([kk[1] for kk in k]) genes.append(zip([z[0] for z in temp[0]],list(sum([np.array(kkk) for kkk in values])/float(len(temp))))) ## Only want genes that meet an expression cutoff ## A cutoff of 1 RSEM and no more than a fourth of the patients containing no expression was chosen final_genes=[[]]*len(genes) for i in range(len(genes[0])): temp=[] for j in genes: temp.append(j[i]) count=0 for k in temp: if k[1]==0: count+=1 median=np.median([ii[1] for ii in temp]) if count<len(genes)/4.0 and median>1: for index, kk in enumerate(temp): final_genes[index]=final_genes[index]+[kk] ## This will write the final genes to a large (100-300 MB file) which could be useful for further analyses, this step can be skipped. f=open(os.path.join(BASE_DIR,'mrna','cox','SKCM','final_genes.txt'),'w') for i in final_genes: f.write(str(i)) f.write('\n') f.close() ##Performing Cox regression on all of the genes in final_genes death_dic={} death_dic['Alive']=0 death_dic['Dead']=1 coeffs=[] pvalues=[] genes=[] ##This list tracks the gene names for i in range(len(final_genes[0])): kaplan=[] genes.append(final_genes[0][i][0]) for k,j in zip(clinical_and_files,final_genes): ## These lists contain the clinical information and mRNA data in the same order. kaplan.append([k[1],k[2],k[3],k[4],k[5],j[i][1]]) data=[ii[-1] for ii in kaplan] ## Grabbing all the gene values for the current gene being analyzed ro.globalenv['expression']=ro.FloatVector(data) res=ro.r('round(qnorm((rank(expression, na.last="keep")-0.5)/sum(!is.na(expression))), digit=5)') ## Perform inverse normal transformation inverse_norm=list(res) ## Convert robject to python list ## Prepare the variables for rpy2 ro.globalenv['gene']=ro.FloatVector(inverse_norm) ro.globalenv['times']=ro.IntVector([ii[0] for ii in kaplan]) ro.globalenv['died']=ro.IntVector([death_dic[ii[1]] for ii in kaplan]) ro.globalenv['sex']=ro.IntVector([ii[3] for ii in kaplan]) ro.globalenv['age']=ro.IntVector([ii[4] for ii in kaplan]) res=ro.r('coxph(Surv(times,died) ~ gene + sex + age)') ## Perform Cox regression ## Parse the string of the result with python for the gene coefficient and pvalue for entry in str(res).split('\n'): try: if entry.split()[0]=='gene': coeff=entry.split()[1] pvalue=entry.split()[-1] break except: pass coeffs.append(coeff) pvalues.append(pvalue) ## This will write the results to a tab delimited file with gene name, cox coefficient, and pvalue. f=open(os.path.join(BASE_DIR,'mrna','cox','SKCM','coeffs_pvalues.txt'),'w') for i,j,k in zip(genes,coeffs,pvalues): f.write(i) f.write('\t') f.write(j) f.write('\t') f.write(k) f.write('\n') f.close()
57b36a522a4a39bda75590c6ed08055b2fd1ba63
f3d8e1351e52526959e2d44d72fd716924f1751d
/problems/56_merge_intervals.py
5b845275a27f0c956cd1a1031bf770ef73b34f38
[]
no_license
xueyuanl/leetcode-py
c27a4faff5b9040d57cf864d3a11f1683d8182e3
03d3e34522c8c819388634ab4b63077da864a4e1
refs/heads/master
2021-07-14T23:40:32.913822
2021-07-14T13:43:19
2021-07-14T13:43:19
206,973,737
4
0
null
null
null
null
UTF-8
Python
false
false
577
py
class Solution(object): def merge(self, intervals): """ :type intervals: List[List[int]] :rtype: List[List[int]] """ if len(intervals) < 1: return [] res = [] sorted_intervals = sorted(intervals) new_pair = sorted_intervals[0] res.append(new_pair) for pair in sorted_intervals: if pair[0] <= new_pair[1]: new_pair[1] = max(pair[1], new_pair[1]) else: new_pair = pair res.append(new_pair) return res
d2c204a4d44b2ff1d4ff5c3b10a7ccc2a91de537
1c904e7b4ab661c9f90536c9bfcde970540271d8
/setup.py
918cc1176dfec9a809df9ea34f452fb6de684980
[]
no_license
koslab/pydatamall.webui
a7803a652441acb74adc75d2d09d9dced7cc9520
b483e8ca1aeef73a2c2c430cabf74e8fd0d0daf2
refs/heads/master
2021-01-10T07:56:48.159898
2015-11-20T15:55:09
2015-11-20T15:55:09
45,684,674
0
0
null
null
null
null
UTF-8
Python
false
false
1,269
py
from setuptools import setup, find_packages import os version = '1.0' long_description = ( open('README.txt').read() + '\n' + 'Contributors\n' '============\n' + '\n' + open('CONTRIBUTORS.txt').read() + '\n' + open('CHANGES.txt').read() + '\n') setup(name='pydatamall.webui', version=version, description="", long_description=long_description, # Get more strings from # http://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ "Programming Language :: Python", ], keywords='', author='', author_email='', url='http://github.com/koslab/pydatamall.webui/', license='agplv3', packages=find_packages('src'), package_dir = {'': 'src'}, namespace_packages=['pydatamall'], include_package_data=True, zip_safe=False, install_requires=[ 'setuptools', 'pyramid', 'pyramid_layout', 'pyramid_bowerstatic', 'pyramid_chameleon', 'python-social-auth', 'requests' # -*- Extra requirements: -*- ], entry_points={ 'console_scripts': [ 'webui=pydatamall.webui.runner:main' ] } )
a3a7c37768dbc87654254b4054e569995dd12bf2
facbdbdadacd23f6c83d266116dc14744741070f
/Core_Python/Day-7/9.py
3b6d63c59296372612328ade2b105e64d20f3ed5
[]
no_license
Yogesh-Singh-Gadwal/YSG_Python
51b6b53fe34567bf066b6e487c00da766b47ac6b
f0d6841e1f92d1d2b27d8ecdd332d40b49a5ca69
refs/heads/master
2023-06-06T04:40:12.004713
2021-07-06T19:59:26
2021-07-06T19:59:26
292,482,586
1
0
null
null
null
null
UTF-8
Python
false
false
127
py
# Python if False: print('Both value are same .') else: print('Condition is false') print('Rest Data')
6e87c83ff642eaea9ea8bc5eccfac1ca58e50696
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_142/863.py
a5243b5969ac2f11082e3e3b90863e0c03738b35
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,195
py
class GameInstance: def __init__(self, init_str): self.strs = init_str self.total_action = 0 self.tab_strs = [] self.tabularize() def tabularize(self): #set_trace() N = len(self.strs) for i in range(0, N): self.tab_strs.append([[self.strs[i][0],1]]) for j in range(1, len(self.strs[i])): if self.tab_strs[i][-1][0] == self.strs[i][j]: self.tab_strs[i][-1][1] +=1 else: self.tab_strs[i].append([self.strs[i][j],1]) def del_rep(self, si): clean_ptr = 0 clean_str = self.strs[si][0] #set_trace() del_start = False for i in xrange(1, len(self.strs[si])): if clean_str[-1] == self.strs[si][i]: #i+= 1 if not del_start: self.total_action += 1 del_start = True else: del_start = False clean_str += self.strs[si][i] #i += 1 return clean_str def solve(self): #the point is that as long as there is no repetition we can't do anything. #if there is a character in one of the string that is not in the other one #then we are done impossible. #also the order of repetition doesn't matter #so we move the pointer for all of them if we can repair we repair if not game #over N = len(self.strs) ref_len = len(self.tab_strs[0]) # mod_str = self.del_rep(0) # poss = True # for i in range(1,N): # if (mod_str != self.del_rep(i)): # return "Fegla Won" for i in range(1,N): if ref_len != len(self.tab_strs[i]): return "Fegla Won" for j in range(0, ref_len): if (self.tab_strs[0][j][0] != self.tab_strs[i][j][0]): return "Fegla Won" #set_trace() # all_mins = [self.tab_strs[0][i][1] for i in range(0, ref_len)] # for i in range(1, N): # for j in range(0, ref_len): # if all_mins[j] > self.tab_strs[i][j][1]: # all_mins[j] = self.tab_strs[i][j][1] for j in range(0, ref_len): sum_cl = 0 for i in range(0, N): sum_cl += self.tab_strs[i][j][1] average = float(sum_cl)/float(N) av = [0,0] no_action = [0,0] av[0] = int(average) av[1] = int(average)+1 for side in range(0,2): for i in range(0, N): no_action[side] += abs(av[side] - self.tab_strs[i][j][1]) if no_action[0] < no_action[1]: self.total_action += no_action[0] else: self.total_action += no_action[1] return str(self.total_action) N = input() for i in range(1,N+1): T = input() cur_case = [] from pdb import set_trace for j in range(0,T): cur_case.append(raw_input()) #set_trace() cur_game = GameInstance(cur_case) print "Case #%i: %s"%(i,cur_game.solve())
e5f2b67f813053e0c4f7d0204c27f0484fd58db9
89e3f694021f261b95e494d2b479367bacde8251
/followthemoney/cli/ocds.py
536ec92f0f70666a97530d0dcc850e5d8f6e74e3
[ "MIT" ]
permissive
dchaplinsky/followthemoney
6f9c05f430f8bfb04f7841378fd2ee5cf9b33235
a2a150f558acb5a1c985b9dc891c98c0fdf2f17e
refs/heads/master
2020-09-10T08:16:14.617602
2019-11-14T09:15:52
2019-11-14T09:15:52
221,699,199
1
0
MIT
2019-11-14T13:03:41
2019-11-14T13:03:41
null
UTF-8
Python
false
false
5,146
py
import json import click import logging from pprint import pprint # noqa from followthemoney import model from followthemoney.cli.cli import cli from followthemoney.cli.util import write_object log = logging.getLogger(__name__) IDENTIFIERS = { 'TRADE_REGISTER': 'registrationNumber', 'TAX_ID': 'vatCode', 'ORGANIZATION_ID': 'classification', 'STATISTICAL': 'classification', } @cli.command('import-ocds', help="Import open contracting data") @click.option('-i', '--infile', type=click.File('r'), default='-') # noqa @click.option('-o', '--outfile', type=click.File('w'), default='-') # noqa def import_ocds(infile, outfile): try: while True: line = infile.readline() if not line: return record = json.loads(line) for entity in convert_record(record): if entity.id is not None: write_object(outfile, entity) except BrokenPipeError: raise click.Abort() def clean_date(date): if date is not None and 'T' in date: date, _ = date.split('T', 1) return date def make_address(*parts): return ' '.join((p for p in parts if p is not None)) def convert_party(party): entity = model.make_entity('LegalEntity') entity.make_id(party.pop('id', None)) entity.add('name', party.pop('name', None)) address = party.pop('address', {}) entity.add('country', address.pop('countryName', None)) address_text = make_address(address.pop('streetAddress', None), address.pop('postalCode', None), address.pop('region', None)) entity.add('address', address_text) if len(address): log.info("Unknown address part: %r", address.keys()) contact = party.pop('contactPoint', {}) entity.add('website', contact.pop('url', None)) entity.add('phone', contact.pop('telephone', None)) entity.add('email', contact.pop('email', None)) for identifier in party.pop('additionalIdentifiers', []): scheme = identifier.pop('scheme', None) prop = IDENTIFIERS.get(scheme, None) if prop is None: log.info("Unknown identifier scheme: %s", scheme) continue entity.add(prop, identifier.pop('id', None)) # pprint(party) return entity def convert_release(release): for party in release.pop('parties', []): yield convert_party(party) buyer = release.pop('buyer', {}) authority = model.make_entity('LegalEntity') authority.make_id(buyer.pop('id', None)) authority.add('name', buyer.pop('name', None)) yield authority tender = release.pop('tender', {}) contract = model.make_entity('Contract') contract.make_id(release.pop('id', None)) contract.add('authority', authority) contract.add('name', tender.pop('title', None)) if not contract.has('name'): contract.add('name', tender.get('id', None)) contract.add('description', tender.pop('description', None)) contract.add('procedureNumber', tender.pop('id', None)) contract.add('type', tender.pop('mainProcurementCategory', None)) value = tender.pop('value', {}) contract.add('amount', value.pop('amount', None)) contract.add('currency', value.pop('currency', None)) # pprint(tender) yield contract # contract.add('modifiedAt', published_date) lots = tender.pop('lots', []) for award in release.pop('awards', []): ca = model.make_entity('ContractAward') ca.make_id(contract.id, award.pop('id', None)) ca.add('contract', contract) ca.add('date', clean_date(award.pop('date', None))) value = award.pop('value', {}) ca.add('amount', value.pop('amount', None)) ca.add('currency', value.pop('currency', None)) reason = tender.get('procurementMethodDetails', None) ca.add('decisionReason', reason) for document in award.pop('documents', []): ca.add('sourceUrl', document.get('url')) for item in award.pop('items', []): classification = item.pop('classification', {}) ca.add('cpvCode', classification.get('url')) related_lots = award.pop('relatedLots', []) for lot in lots: if lot.get('id') in related_lots: ca.add('role', lot.get('title')) ca.add('summary', lot.get('description')) for supplier in award.pop('suppliers', []): entity = model.make_entity('LegalEntity') entity.make_id(supplier.pop('id', None)) entity.add('name', supplier.pop('name', None)) ca.add('supplier', entity) yield entity # pprint(award) yield ca def convert_record(record): published_date = clean_date(record.pop('publishedDate', None)) publisher = record.pop('publisher', {}).get('name') for release in record.get('releases', []): for entity in convert_release(release): entity.add('publisher', publisher, quiet=True) entity.add('modifiedAt', published_date, quiet=True) yield entity
43d460ce6a3a415277321f9a4f8658f6d7c4dbec
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_parody.py
947ea401561ad67bf848e6ab6ddc4814d3613dd2
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
340
py
#calss header class _PARODY(): def __init__(self,): self.name = "PARODY" self.definitions = [u'to copy the style of someone or something in a humorous way: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'verbs' def run(self, obj1 = [], obj2 = []): return self.jsondata
c515faf8793eb07a829146f36ac33429993b55ef
8ff6c3e513e17be6c51b484bed81d03150bdd175
/2013-04-analytic/part2/ex52b.py
be5ca1d980f5e1a94ea1ffb0ae488dd765182979
[]
no_license
ricbit/Oldies
f1a2ac520b64e43d11c250cc372d526e9febeedd
2d884c61ac777605f7260cd4d36a13ed5a2c6a58
refs/heads/master
2023-04-27T20:35:19.485763
2023-04-26T04:45:44
2023-04-26T04:45:44
2,050,140
40
8
null
null
null
null
UTF-8
Python
false
false
652
py
import itertools, sys def surjection(seq): hist = {} for i in seq: hist[i] = 1 + hist.get(i, 0) m = max(hist.iterkeys()) for i in xrange(1, 1 + m): if hist.get(i, 0) < 3: return False return True def triple_surjections(n): for seq in itertools.product(xrange(1, 1 + n / 3), repeat=n): if surjection(seq): yield seq def tabular(seq): size = 7 print "\\begin{tabular}{ %s }" % " ".join(["r"]*size) for i in xrange((len(seq)+size-1)/size): print "%s \\\\" % "&".join("".join(map(str,i)) for i in seq[i*size:i*size+size]) print "\\end{tabular}" tabular(list(triple_surjections(int(sys.argv[1]))))
cf53263187c3025a04b1d121a9c4f9bfaa1f2106
3d69b7fe8fa95fcd6dbab25885f2e3e42bc891d6
/src/nlp/classification/tf1/xlnet/prepro_utils.py
fc945d6d64a46f483a18389895831414c5f33e17
[ "Apache-2.0" ]
permissive
wu-uw/OpenCompetition
ac652d066f667dc2b3061947af5ea0425643a1b5
9aa9d7a50ada1deb653d295dd8a7fe46321b9094
refs/heads/master
2021-01-03T04:59:28.987099
2020-03-02T07:49:11
2020-03-02T07:49:11
239,932,371
0
0
Apache-2.0
2020-03-02T07:49:12
2020-02-12T05:12:02
Python
UTF-8
Python
false
false
5,013
py
# coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import unicodedata import six from functools import partial SPIECE_UNDERLINE = '▁' def printable_text(text): """Returns text encoded in a way suitable for print or `tf.logging`.""" # These functions want `str` for both Python2 and Python3, but in one case # it's a Unicode string and in the other it's a byte string. if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text elif isinstance(text, unicode): return text.encode("utf-8") else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def print_(*args): new_args = [] for arg in args: if isinstance(arg, list): s = [printable_text(i) for i in arg] s = ' '.join(s) new_args.append(s) else: new_args.append(printable_text(arg)) print(*new_args) def preprocess_text( inputs, lower=False, remove_space=True, keep_accents=False): if remove_space: outputs = ' '.join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if six.PY2 and isinstance(outputs, str): outputs = outputs.decode('utf-8') if not keep_accents: outputs = unicodedata.normalize('NFKD', outputs) outputs = ''.join([c for c in outputs if not unicodedata.combining(c)]) if lower: outputs = outputs.lower() return outputs def encode_pieces(sp_model, text, return_unicode=True, sample=False): # return_unicode is used only for py2 # note(zhiliny): in some systems, sentencepiece only accepts str for py2 if six.PY2 and isinstance(text, unicode): text = text.encode('utf-8') if not sample: pieces = sp_model.EncodeAsPieces(text) else: pieces = sp_model.SampleEncodeAsPieces(text, 64, 0.1) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == ',' and piece[-2].isdigit(): cur_pieces = sp_model.EncodeAsPieces( piece[:-1].replace(SPIECE_UNDERLINE, '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) # note(zhiliny): convert back to unicode for py2 if six.PY2 and return_unicode: ret_pieces = [] for piece in new_pieces: if isinstance(piece, str): piece = piece.decode('utf-8') ret_pieces.append(piece) new_pieces = ret_pieces return new_pieces def encode_ids(sp_model, text, sample=False): pieces = encode_pieces(sp_model, text, return_unicode=False, sample=sample) ids = [sp_model.PieceToId(piece) for piece in pieces] return ids if __name__ == '__main__': import sentencepiece as spm sp = spm.SentencePieceProcessor() sp.load('sp10m.uncased.v3.model') print_(u'I was born in 2000, and this is falsé.') print_(u'ORIGINAL', sp.EncodeAsPieces( u'I was born in 2000, and this is falsé.')) print_( u'OURS', encode_pieces( sp, u'I was born in 2000, and this is falsé.')) print(encode_ids(sp, u'I was born in 2000, and this is falsé.')) print_('') prepro_func = partial(preprocess_text, lower=True) print_(prepro_func('I was born in 2000, and this is falsé.')) print_('ORIGINAL', sp.EncodeAsPieces( prepro_func('I was born in 2000, and this is falsé.'))) print_('OURS', encode_pieces(sp, prepro_func( 'I was born in 2000, and this is falsé.'))) print(encode_ids(sp, prepro_func('I was born in 2000, and this is falsé.'))) print_('') print_('I was born in 2000, and this is falsé.') print_('ORIGINAL', sp.EncodeAsPieces( 'I was born in 2000, and this is falsé.')) print_('OURS', encode_pieces(sp, 'I was born in 2000, and this is falsé.')) print(encode_ids(sp, 'I was born in 2000, and this is falsé.')) print_('') print_('I was born in 92000, and this is falsé.') print_('ORIGINAL', sp.EncodeAsPieces( 'I was born in 92000, and this is falsé.')) print_('OURS', encode_pieces(sp, 'I was born in 92000, and this is falsé.')) print(encode_ids(sp, 'I was born in 92000, and this is falsé.'))
44cdec8d130987c667d3ddd3a464bad33f309eeb
5dd47abf7061201d9378e73e51f08fbb314ba2fd
/envdsys/envcontacts/migrations/0050_auto_20210219_2128.py
b9ec01c328ffb1adf3231e767f6654bbfec32bcf
[ "Unlicense" ]
permissive
NOAA-PMEL/envDataSystem
4d264ae5209015e4faee648f37608d68a4461d0a
4db4a3569d2329658799a3eef06ce36dd5c0597d
refs/heads/master
2023-02-23T22:33:14.334737
2021-07-22T01:09:16
2021-07-22T01:09:16
191,809,007
1
0
Unlicense
2023-02-08T00:45:54
2019-06-13T17:50:03
Python
UTF-8
Python
false
false
1,175
py
# Generated by Django 3.1.7 on 2021-02-19 21:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('envcontacts', '0049_auto_20210219_2127'), ] operations = [ migrations.AlterField( model_name='person', name='email1_type', field=models.CharField(choices=[('H', 'Home'), ('W', 'Work'), ('O', 'Other')], default='W', max_length=1), ), migrations.AlterField( model_name='person', name='email2_type', field=models.CharField(choices=[('H', 'Home'), ('W', 'Work'), ('O', 'Other')], default='W', max_length=1), ), migrations.AlterField( model_name='person', name='phone1_type', field=models.CharField(choices=[('H', 'Home'), ('W', 'Work'), ('M', 'Mobile'), ('O', 'Other')], default='M', max_length=1), ), migrations.AlterField( model_name='person', name='phone2_type', field=models.CharField(choices=[('H', 'Home'), ('W', 'Work'), ('M', 'Mobile'), ('O', 'Other')], default='M', max_length=1), ), ]
398cdcff7d1ab5344ac51ed8db7f7047b69180be
20ace38b89c0ebaa0738753fcd11b0fdd4ed21cd
/CMSSW_8_0_24/src/HeavyIonsAnalysis/JetAnalysis/python/jets/akSoftDrop2PFJetSequence_PbPb_mb_cff.py
b80e6b111102b987d3b344d8044b1d74a6fdc23b
[]
no_license
ssanders50/pPb_2016_v0
3c32c2920067a2f8a0a7a7fadba6225babf9a905
9fc4ae61cf4343c88ce6666f55c0738f963754a3
refs/heads/master
2020-12-12T16:30:41.253014
2020-02-14T21:51:17
2020-02-14T21:51:17
234,162,163
1
0
null
null
null
null
UTF-8
Python
false
false
15,103
py
import FWCore.ParameterSet.Config as cms from HeavyIonsAnalysis.JetAnalysis.patHeavyIonSequences_cff import patJetGenJetMatch, patJetPartonMatch, patJetCorrFactors, patJets from HeavyIonsAnalysis.JetAnalysis.inclusiveJetAnalyzer_cff import * from HeavyIonsAnalysis.JetAnalysis.bTaggers_cff import * from RecoJets.JetProducers.JetIDParams_cfi import * from RecoJets.JetProducers.nJettinessAdder_cfi import Njettiness akSoftDrop2PFmatch = patJetGenJetMatch.clone( src = cms.InputTag("akSoftDrop2PFJets"), matched = cms.InputTag("ak2HiCleanedGenJets"), resolveByMatchQuality = cms.bool(False), maxDeltaR = 0.2 ) akSoftDrop2PFmatchGroomed = patJetGenJetMatch.clone( src = cms.InputTag("akSoftDrop2HiGenJets"), matched = cms.InputTag("ak2HiCleanedGenJets"), resolveByMatchQuality = cms.bool(False), maxDeltaR = 0.2 ) akSoftDrop2PFparton = patJetPartonMatch.clone(src = cms.InputTag("akSoftDrop2PFJets") ) akSoftDrop2PFcorr = patJetCorrFactors.clone( useNPV = cms.bool(False), useRho = cms.bool(False), # primaryVertices = cms.InputTag("hiSelectedVertex"), levels = cms.vstring('L2Relative','L3Absolute'), src = cms.InputTag("akSoftDrop2PFJets"), payload = "AK2PF_offline" ) akSoftDrop2PFJetID= cms.EDProducer('JetIDProducer', JetIDParams, src = cms.InputTag('akSoftDrop2CaloJets')) #akSoftDrop2PFclean = heavyIonCleanedGenJets.clone(src = cms.InputTag('ak2HiCleanedGenJets')) akSoftDrop2PFbTagger = bTaggers("akSoftDrop2PF",0.2) #create objects locally since they dont load properly otherwise #akSoftDrop2PFmatch = akSoftDrop2PFbTagger.match akSoftDrop2PFparton = patJetPartonMatch.clone(src = cms.InputTag("akSoftDrop2PFJets"), matched = cms.InputTag("selectedPartons")) akSoftDrop2PFPatJetFlavourAssociationLegacy = akSoftDrop2PFbTagger.PatJetFlavourAssociationLegacy akSoftDrop2PFPatJetPartons = akSoftDrop2PFbTagger.PatJetPartons akSoftDrop2PFJetTracksAssociatorAtVertex = akSoftDrop2PFbTagger.JetTracksAssociatorAtVertex akSoftDrop2PFJetTracksAssociatorAtVertex.tracks = cms.InputTag("highPurityTracks") akSoftDrop2PFSimpleSecondaryVertexHighEffBJetTags = akSoftDrop2PFbTagger.SimpleSecondaryVertexHighEffBJetTags akSoftDrop2PFSimpleSecondaryVertexHighPurBJetTags = akSoftDrop2PFbTagger.SimpleSecondaryVertexHighPurBJetTags akSoftDrop2PFCombinedSecondaryVertexBJetTags = akSoftDrop2PFbTagger.CombinedSecondaryVertexBJetTags akSoftDrop2PFCombinedSecondaryVertexV2BJetTags = akSoftDrop2PFbTagger.CombinedSecondaryVertexV2BJetTags akSoftDrop2PFJetBProbabilityBJetTags = akSoftDrop2PFbTagger.JetBProbabilityBJetTags akSoftDrop2PFSoftPFMuonByPtBJetTags = akSoftDrop2PFbTagger.SoftPFMuonByPtBJetTags akSoftDrop2PFSoftPFMuonByIP3dBJetTags = akSoftDrop2PFbTagger.SoftPFMuonByIP3dBJetTags akSoftDrop2PFTrackCountingHighEffBJetTags = akSoftDrop2PFbTagger.TrackCountingHighEffBJetTags akSoftDrop2PFTrackCountingHighPurBJetTags = akSoftDrop2PFbTagger.TrackCountingHighPurBJetTags akSoftDrop2PFPatJetPartonAssociationLegacy = akSoftDrop2PFbTagger.PatJetPartonAssociationLegacy akSoftDrop2PFImpactParameterTagInfos = akSoftDrop2PFbTagger.ImpactParameterTagInfos akSoftDrop2PFImpactParameterTagInfos.primaryVertex = cms.InputTag("offlinePrimaryVertices") akSoftDrop2PFJetProbabilityBJetTags = akSoftDrop2PFbTagger.JetProbabilityBJetTags akSoftDrop2PFSecondaryVertexTagInfos = akSoftDrop2PFbTagger.SecondaryVertexTagInfos akSoftDrop2PFSimpleSecondaryVertexHighEffBJetTags = akSoftDrop2PFbTagger.SimpleSecondaryVertexHighEffBJetTags akSoftDrop2PFSimpleSecondaryVertexHighPurBJetTags = akSoftDrop2PFbTagger.SimpleSecondaryVertexHighPurBJetTags akSoftDrop2PFCombinedSecondaryVertexBJetTags = akSoftDrop2PFbTagger.CombinedSecondaryVertexBJetTags akSoftDrop2PFCombinedSecondaryVertexV2BJetTags = akSoftDrop2PFbTagger.CombinedSecondaryVertexV2BJetTags akSoftDrop2PFSecondaryVertexNegativeTagInfos = akSoftDrop2PFbTagger.SecondaryVertexNegativeTagInfos akSoftDrop2PFNegativeSimpleSecondaryVertexHighEffBJetTags = akSoftDrop2PFbTagger.NegativeSimpleSecondaryVertexHighEffBJetTags akSoftDrop2PFNegativeSimpleSecondaryVertexHighPurBJetTags = akSoftDrop2PFbTagger.NegativeSimpleSecondaryVertexHighPurBJetTags akSoftDrop2PFNegativeCombinedSecondaryVertexBJetTags = akSoftDrop2PFbTagger.NegativeCombinedSecondaryVertexBJetTags akSoftDrop2PFPositiveCombinedSecondaryVertexBJetTags = akSoftDrop2PFbTagger.PositiveCombinedSecondaryVertexBJetTags akSoftDrop2PFNegativeCombinedSecondaryVertexV2BJetTags = akSoftDrop2PFbTagger.NegativeCombinedSecondaryVertexV2BJetTags akSoftDrop2PFPositiveCombinedSecondaryVertexV2BJetTags = akSoftDrop2PFbTagger.PositiveCombinedSecondaryVertexV2BJetTags akSoftDrop2PFSoftPFMuonsTagInfos = akSoftDrop2PFbTagger.SoftPFMuonsTagInfos akSoftDrop2PFSoftPFMuonsTagInfos.primaryVertex = cms.InputTag("offlinePrimaryVertices") akSoftDrop2PFSoftPFMuonBJetTags = akSoftDrop2PFbTagger.SoftPFMuonBJetTags akSoftDrop2PFSoftPFMuonByIP3dBJetTags = akSoftDrop2PFbTagger.SoftPFMuonByIP3dBJetTags akSoftDrop2PFSoftPFMuonByPtBJetTags = akSoftDrop2PFbTagger.SoftPFMuonByPtBJetTags akSoftDrop2PFNegativeSoftPFMuonByPtBJetTags = akSoftDrop2PFbTagger.NegativeSoftPFMuonByPtBJetTags akSoftDrop2PFPositiveSoftPFMuonByPtBJetTags = akSoftDrop2PFbTagger.PositiveSoftPFMuonByPtBJetTags akSoftDrop2PFPatJetFlavourIdLegacy = cms.Sequence(akSoftDrop2PFPatJetPartonAssociationLegacy*akSoftDrop2PFPatJetFlavourAssociationLegacy) #Not working with our PU sub, but keep it here for reference #akSoftDrop2PFPatJetFlavourAssociation = akSoftDrop2PFbTagger.PatJetFlavourAssociation #akSoftDrop2PFPatJetFlavourId = cms.Sequence(akSoftDrop2PFPatJetPartons*akSoftDrop2PFPatJetFlavourAssociation) akSoftDrop2PFJetBtaggingIP = cms.Sequence(akSoftDrop2PFImpactParameterTagInfos * (akSoftDrop2PFTrackCountingHighEffBJetTags + akSoftDrop2PFTrackCountingHighPurBJetTags + akSoftDrop2PFJetProbabilityBJetTags + akSoftDrop2PFJetBProbabilityBJetTags ) ) akSoftDrop2PFJetBtaggingSV = cms.Sequence(akSoftDrop2PFImpactParameterTagInfos * akSoftDrop2PFSecondaryVertexTagInfos * (akSoftDrop2PFSimpleSecondaryVertexHighEffBJetTags+ akSoftDrop2PFSimpleSecondaryVertexHighPurBJetTags+ akSoftDrop2PFCombinedSecondaryVertexBJetTags+ akSoftDrop2PFCombinedSecondaryVertexV2BJetTags ) ) akSoftDrop2PFJetBtaggingNegSV = cms.Sequence(akSoftDrop2PFImpactParameterTagInfos * akSoftDrop2PFSecondaryVertexNegativeTagInfos * (akSoftDrop2PFNegativeSimpleSecondaryVertexHighEffBJetTags+ akSoftDrop2PFNegativeSimpleSecondaryVertexHighPurBJetTags+ akSoftDrop2PFNegativeCombinedSecondaryVertexBJetTags+ akSoftDrop2PFPositiveCombinedSecondaryVertexBJetTags+ akSoftDrop2PFNegativeCombinedSecondaryVertexV2BJetTags+ akSoftDrop2PFPositiveCombinedSecondaryVertexV2BJetTags ) ) akSoftDrop2PFJetBtaggingMu = cms.Sequence(akSoftDrop2PFSoftPFMuonsTagInfos * (akSoftDrop2PFSoftPFMuonBJetTags + akSoftDrop2PFSoftPFMuonByIP3dBJetTags + akSoftDrop2PFSoftPFMuonByPtBJetTags + akSoftDrop2PFNegativeSoftPFMuonByPtBJetTags + akSoftDrop2PFPositiveSoftPFMuonByPtBJetTags ) ) akSoftDrop2PFJetBtagging = cms.Sequence(akSoftDrop2PFJetBtaggingIP *akSoftDrop2PFJetBtaggingSV *akSoftDrop2PFJetBtaggingNegSV # *akSoftDrop2PFJetBtaggingMu ) akSoftDrop2PFpatJetsWithBtagging = patJets.clone(jetSource = cms.InputTag("akSoftDrop2PFJets"), genJetMatch = cms.InputTag("akSoftDrop2PFmatch"), genPartonMatch = cms.InputTag("akSoftDrop2PFparton"), jetCorrFactorsSource = cms.VInputTag(cms.InputTag("akSoftDrop2PFcorr")), JetPartonMapSource = cms.InputTag("akSoftDrop2PFPatJetFlavourAssociationLegacy"), JetFlavourInfoSource = cms.InputTag("akSoftDrop2PFPatJetFlavourAssociation"), trackAssociationSource = cms.InputTag("akSoftDrop2PFJetTracksAssociatorAtVertex"), useLegacyJetMCFlavour = True, discriminatorSources = cms.VInputTag(cms.InputTag("akSoftDrop2PFSimpleSecondaryVertexHighEffBJetTags"), cms.InputTag("akSoftDrop2PFSimpleSecondaryVertexHighPurBJetTags"), cms.InputTag("akSoftDrop2PFCombinedSecondaryVertexBJetTags"), cms.InputTag("akSoftDrop2PFCombinedSecondaryVertexV2BJetTags"), cms.InputTag("akSoftDrop2PFJetBProbabilityBJetTags"), cms.InputTag("akSoftDrop2PFJetProbabilityBJetTags"), #cms.InputTag("akSoftDrop2PFSoftPFMuonByPtBJetTags"), #cms.InputTag("akSoftDrop2PFSoftPFMuonByIP3dBJetTags"), cms.InputTag("akSoftDrop2PFTrackCountingHighEffBJetTags"), cms.InputTag("akSoftDrop2PFTrackCountingHighPurBJetTags"), ), jetIDMap = cms.InputTag("akSoftDrop2PFJetID"), addBTagInfo = True, addTagInfos = True, addDiscriminators = True, addAssociatedTracks = True, addJetCharge = False, addJetID = False, getJetMCFlavour = True, addGenPartonMatch = True, addGenJetMatch = True, embedGenJetMatch = True, embedGenPartonMatch = True, # embedCaloTowers = False, # embedPFCandidates = True ) akSoftDrop2PFNjettiness = Njettiness.clone( src = cms.InputTag("akSoftDrop2PFJets"), R0 = cms.double( 0.2) ) akSoftDrop2PFpatJetsWithBtagging.userData.userFloats.src += ['akSoftDrop2PFNjettiness:tau1','akSoftDrop2PFNjettiness:tau2','akSoftDrop2PFNjettiness:tau3'] akSoftDrop2PFJetAnalyzer = inclusiveJetAnalyzer.clone(jetTag = cms.InputTag("akSoftDrop2PFpatJetsWithBtagging"), genjetTag = 'ak2HiGenJets', rParam = 0.2, matchJets = cms.untracked.bool(False), matchTag = 'patJetsWithBtagging', pfCandidateLabel = cms.untracked.InputTag('particleFlowTmp'), trackTag = cms.InputTag("hiGeneralTracks"), fillGenJets = True, isMC = True, doSubEvent = True, useHepMC = cms.untracked.bool(False), genParticles = cms.untracked.InputTag("genParticles"), eventInfoTag = cms.InputTag("generator"), doLifeTimeTagging = cms.untracked.bool(True), doLifeTimeTaggingExtras = cms.untracked.bool(False), bTagJetName = cms.untracked.string("akSoftDrop2PF"), jetName = cms.untracked.string("akSoftDrop2PF"), genPtMin = cms.untracked.double(5), hltTrgResults = cms.untracked.string('TriggerResults::'+'HISIGNAL'), doTower = cms.untracked.bool(True), doSubJets = cms.untracked.bool(True), doGenSubJets = cms.untracked.bool(False), subjetGenTag = cms.untracked.InputTag("akSoftDrop2GenJets"), doGenTaus = True ) akSoftDrop2PFJetSequence_mc = cms.Sequence( #akSoftDrop2PFclean #* akSoftDrop2PFmatch #* #akSoftDrop2PFmatchGroomed * akSoftDrop2PFparton * akSoftDrop2PFcorr * #akSoftDrop2PFJetID #* akSoftDrop2PFPatJetFlavourIdLegacy #* #akSoftDrop2PFPatJetFlavourId # Use legacy algo till PU implemented * akSoftDrop2PFJetTracksAssociatorAtVertex * akSoftDrop2PFJetBtagging * akSoftDrop2PFNjettiness #No constituents for calo jets in pp. Must be removed for pp calo jets but I'm not sure how to do this transparently (Marta) * akSoftDrop2PFpatJetsWithBtagging * akSoftDrop2PFJetAnalyzer ) akSoftDrop2PFJetSequence_data = cms.Sequence(akSoftDrop2PFcorr * #akSoftDrop2PFJetID #* akSoftDrop2PFJetTracksAssociatorAtVertex * akSoftDrop2PFJetBtagging * akSoftDrop2PFNjettiness * akSoftDrop2PFpatJetsWithBtagging * akSoftDrop2PFJetAnalyzer ) akSoftDrop2PFJetSequence_jec = cms.Sequence(akSoftDrop2PFJetSequence_mc) akSoftDrop2PFJetSequence_mb = cms.Sequence(akSoftDrop2PFJetSequence_mc) akSoftDrop2PFJetSequence = cms.Sequence(akSoftDrop2PFJetSequence_mb)
02ba996948b22fbb2fda69fed6c6a4eb1ca4e2c6
b528b880b1ae104cc03118b2ca1421b8bfb9bd00
/Django/djangoEnv/bin/easy_install-2.7
70ede9d56547f116a1620382639c99b94f875a82
[]
no_license
hkneal/DojoAssignments
c83288555913aa6a1071845353ab91cc159e0bdd
4f9c6999853a16cab6ab7e9d7b99463e6b418016
refs/heads/master
2021-01-18T16:48:28.139859
2018-05-17T04:43:50
2018-05-17T04:43:50
86,770,752
0
0
null
null
null
null
UTF-8
Python
false
false
275
7
#!/Users/HKN/DojoAssignments/Django/djangoEnv/bin/python2.7 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
4b50d3a9c44f387818b24514e492f94d5951050f
e0527bce5c53a196752d3a16adf50cb60754de5f
/03-Workshop/Workshop-Questions/C_fun_with_flags.py
8627af965e3f1c5c0e3e439a2dc9c83893f634a1
[]
no_license
ARWA-ALraddadi/python-tutorial-for-beginners
ddeb657f419fbc176bea273bc9fb6b88d1894191
21cedfc47871ca4d25c2382464c60ab0a2121205
refs/heads/master
2023-06-30T20:24:30.688800
2021-08-08T08:22:29
2021-08-08T08:22:29
193,094,651
0
0
null
null
null
null
UTF-8
Python
false
false
1,068
py
#-------------------------------------------------------------------- # # Fun With Flags # # In the lecture demonstration program "stars and stripes" we saw # how function definitions allowed us to reuse code that drew a # star and a rectangle (stripe) multiple times to create a copy of # the United States flag. # # As a further example of the way functions allow us to reuse code, # in this exercise we will import the flag_elements module into # this program and create a different flag. In the PDF document # accompanying this file you will find several flags which can be # constructed easily using the "star" and "stripe" functions already # defined. Choose one of these and try to draw it. # # First we import the two functions we need (make sure a copy of file # flag_elements.py is in the same folder as this one) from flag_elements import star, stripe # Import the turtle graphics functions from turtle import * # Set up the drawing environment setup(600, 400) ##### PUT YOUR CODE FOR DRAWING THE FLAG HERE pass # Exit gracefully hideturtle() done()
fe416a0e81300a32016388151c240e79727ff3ad
e7ec251afc62616525c573c1b1b9e6416454aaaa
/bcbio/pipeline/__init__.py
298c4775b143c01b611e1483575f90280a9da72a
[ "MIT" ]
permissive
YTLogos/bcbio-nextgen
157e023341b9085b6c3f36d68c2b68ae31e063f2
f964a25ab74a31551273b7e50518f3451c90f473
refs/heads/master
2022-12-28T15:11:28.127131
2017-09-20T18:58:45
2017-09-20T18:59:57
104,303,076
1
1
MIT
2022-12-12T12:18:27
2017-09-21T04:52:21
Python
UTF-8
Python
false
false
598
py
"""High level code for driving a next-gen analysis pipeline. This structures processing steps into the following modules: - lane.py: Analyze a single fastq file. - fastq.py: Utilities to retrieve fastq files. - alignment.py: Align to a reference genome. - sample.py: Analyze a sample, which may consist of multiple lanes or barcoded samples on a lane. - merge.py: Merge multiple sample files in one processing run. - variation.py: Calculate SNP/indel variations for a sample. - qcsummary.py: Quality control, alignment metrics and summary information. """
f7db4248308429362c6ea3a4382920078bbd0636
465097858def678018ff76865bb09d34735d8eb9
/mysite/blog/forms.py
0d517f8db2dec175dc7af7cd362d511e1f0ffa33
[]
no_license
bunnycast/django_girls
f9c3f3eb30955db64d2e643109bd2aa483b0f4b7
fc24a8301dd55d98b790c8fb19bd9e68129a7c63
refs/heads/master
2022-11-13T09:12:30.860813
2020-07-02T02:28:51
2020-07-02T02:28:51
275,992,110
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
from django import forms from blog.models import Post, Comment class PostForm(forms.ModelForm): class Meta: model = Post fields = ('title', 'text',) class CommentForm(forms.ModelForm): class Meta: model = Comment fields = ('author', 'text',)
5e9db43277324b837743fd0c041324c531ce89b3
6dc4d2b5abe4317f154dd0e81f45fda3501e7e52
/Syntax/comments_in_python.py
a837f69ee613728945e70ed6adf880d271a7d648
[]
no_license
Sanket1228/pythonBasics
89376a7bbd3292d0f19fbbc8b3baae576abf9d75
94f68fa888cb1d8f61c2466ad8b395c769fe6f37
refs/heads/master
2023-06-26T22:54:03.774872
2021-07-22T12:31:10
2021-07-22T12:31:10
280,104,082
0
0
null
null
null
null
UTF-8
Python
false
false
45
py
#This is comment print("Hello, World ! ")
77d9d1e0b97cfe7890c04957f93b007a82d99098
d318975fdf4daeccecbf90c24aba5009d51637eb
/server/env/bin/symilar
2bc1d53bf60868c4ab248a62a2e1b4c6610295af
[]
no_license
Jrius4/data-shuffle
759702914b052c737b75f8cf5f84170f4e0cae40
4a0e7ac500d91903fcf4806d878ad01083068119
refs/heads/master
2023-01-24T10:38:59.467067
2019-10-13T20:01:33
2019-10-13T20:01:33
214,883,377
0
0
null
2023-01-04T12:23:25
2019-10-13T19:47:20
Python
UTF-8
Python
false
false
274
#!/home/jrius/Kaxiuz/investment/datastore/v1-UI/server/env/bin/python # -*- coding: utf-8 -*- import re import sys from pylint import run_symilar if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run_symilar())
b305b26622db5f2f5eb4e89f70911e77ea7254d5
f6f632bee57875e76e1a2aa713fdbe9f25e18d66
/python/CodingInterviews_2/30_bao-han-minhan-shu-de-zhan-lcof.py
e9a86f1b3ff003b07e9bfbf7235100b290513e37
[]
no_license
Wang-Yann/LeetCodeMe
b50ee60beeeb3661869bb948bef4fbe21fc6d904
44765a7d89423b7ec2c159f70b1a6f6e446523c2
refs/heads/master
2023-08-07T05:31:23.428240
2021-09-30T15:33:53
2021-09-30T15:33:53
253,497,185
0
0
null
null
null
null
UTF-8
Python
false
false
1,551
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : Rock Wayne # @Created : 2020-05-06 23:17:56 # @Last Modified : 2020-05-06 23:17:56 # @Mail : [email protected] # @Version : alpha-1.0 # 定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中,调用 min、push 及 pop 的时间复杂度都是 O(1)。 # # # # 示例: # # MinStack minStack = new MinStack(); # minStack.push(-2); # minStack.push(0); # minStack.push(-3); # minStack.min(); --> 返回 -3. # minStack.pop(); # minStack.top(); --> 返回 0. # minStack.min(); --> 返回 -2. # # # # # 提示: # # # 各函数的调用总次数不超过 20000 次 # # # # # 注意:本题与主站 155 题相同:https://leetcode-cn.com/problems/min-stack/ # Related Topics 栈 设计 # 👍 28 👎 0 import traceback import pytest import math, fractions, operator from typing import List import collections, bisect, heapq import functools, itertools class MinStack: def __init__(self): """ initialize your data structure here. """ self.stack=[] def push(self, x: int) -> None: if self.stack: current_min=min(x,self.stack[-1][0]) self.stack.append((current_min,x)) else: self.stack.append((x,x)) def pop(self) -> None: return self.stack.pop()[1] def top(self) -> int: return self.stack[-1][1] def min(self) -> int: return self.stack[-1][0]
36173a6b0f8010fa465e6f58b4576b374a85c962
24b1fa231f4e89f1a588c09ebee6fe4da6915c53
/Tutorials/Canvas/Fundamental-Theorem-Algebra.py
39eb49279e27df600cc9cb59f442cec0a5a30844
[]
no_license
cyrt63/demos
a429214154cf0e51b58710f67670e1d902bfcac6
a4b54b862dba4ad33a707511896324829f4cc7b1
refs/heads/master
2020-04-08T13:51:40.823058
2015-04-21T14:01:41
2015-04-21T14:01:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,331
py
from browser import * from workbench import * from math import * from units import * from easel import * from eight import * popup = window.open("","","width=800,height=600") popup.document.body.style.backgroundColor = "202020" popup.document.body.style.overflow = "hidden" popup.document.title = "Visualizing Geometric Algebra with WebGL" canvas2D = popup.document.createElement("canvas") canvas2D.style.position = "absolute" canvas2D.style.top = "0px" canvas2D.style.left = "0px" workbench2D = Workbench2D(canvas2D, popup) space2D = Stage(canvas2D) space2D.autoClear = True font = "20px Helvetica" output = Text(popup.document.title + ". Hit Esc key to exit.", font, "white") output.x = 100 output.y = 60 space2D.addChild(output) stats = window.Stats() stats.setMode(0) stats.domElement.style.position = 'absolute' stats.domElement.style.left = '0px' stats.domElement.style.top = '0px' popup.document.body.appendChild(stats.domElement) def setUp(): workbench2D.setUp() def tick(t): stats.begin() space2D.render() stats.end() def terminate(t): return False def tearDown(e): popup.close() if e: print "Error during animation: %s" % (e) else: print "Goodbye!" workbench2D.tearDown() runner = windowAnimationRunner(tick, terminate, setUp, tearDown, popup) runner.start()
9a9b603dacd11b6877b6f71b4b1dbcf95b157098
cd0f3fa5c3b202599812ac8b49e374fe2b2f2e8b
/ExerciciosFixacao/Cap08/C08EXFIX01.py
2da857eb09708d1fde3beae9840f79314ba2abba
[]
no_license
J-AugustoManzano/livro_Python
46c14dc4bc5fb361d850fcd361477a952de172c2
e42b79ef78c6b1ab936fe9a13d32ddc94deeb2a8
refs/heads/main
2023-06-25T03:10:30.297226
2023-06-08T23:34:54
2023-06-08T23:34:54
354,116,051
3
0
null
null
null
null
UTF-8
Python
false
false
234
py
a = [] for i in range(10): a.append(input("Entre o {0:2}o. nome: ".format(i + 1))) print() for i in range(10): print("{0:2}o. nome {1}.".format(i + 1, a[i])) enter = input("\nPressione <Enter> para encerrar... ")
e32226900cf40f40d2d4e42c722d43e09866fa5f
b65f31d9d273c3d4bb826ff83a805368570bcd4d
/Lesson 13 - Email Search/mailgui.py
c5fb8aa0db53048004cfdfd786ea43e8f8f717fb
[]
no_license
kobaltkween/python2
3fde6cc9ca1413b900c87656d8ceb99cb3f34f42
f7e529abd303b65f0b794c8a9ed87dbf085541a8
refs/heads/master
2020-12-31T05:09:39.297693
2016-04-13T23:27:10
2016-04-13T23:27:10
56,192,556
0
0
null
null
null
null
UTF-8
Python
false
false
4,280
py
from tkinter import * from maildb import msgs import datetime import mysql.connector as mysqlc from database import loginInfo def getDate(s): """ Assumes a date form of yyyy-mm-dd, returns a corresponding datetime.date. """ syear = s[:4] smonth = s[5:7] sday = s[8:] return datetime.date(int(syear), int(smonth), int(sday)) class Application(Frame): def __init__(self, master = None): """ Establish the window structure, leaving some widgets accessible as app instance variables. Connect button clicks to searchMail method and subject double-clicks to displayMail method. """ Frame.__init__(self, master) self.master.rowconfigure(0, weight = 1) self.master.columnconfigure(0, weight = 1) self.grid(sticky = W + E + N + S) l0 = Label(self, text = "Email Database Search", font = ("Helvetica", 16)) l0.grid(row = 0, column = 1, columnspan = 2) l1 = Label(self, text = "Not Before (yyyy-mm-dd):") l1.grid(row = 1, column = 1, sticky = E + N + S) self.mindate = Entry(self) self.mindate.grid(row = 1, column = 2, sticky = W + N + S) l2 = Label(self, text="Not After (yyyy-mm-dd):") l2.grid(row = 2, column = 1, sticky = E + N + S) self.maxdate = Entry(self) self.maxdate.grid(row = 2, column = 2, sticky = W + N + S) l3 = Label(self, text= "Sender's E-mail Contains:") l3.grid(row = 3, column = 1, sticky = E + N + S) self.addsearch = Entry(self) self.addsearch.grid(row = 3, column = 2, sticky = W + N + S) l4 = Label (self, text = "Sender's Name Contains:") l4.grid(row = 4, column = 1, sticky = E + N + S) self.namesearch = Entry(self) self.namesearch.grid(row = 4, column = 2, sticky = W + N + S) button = Button(self, text = "Search", command = self.searchMail) button.grid(row = 5, column = 2) self.msgsubs = Listbox(self, height = 10, width = 100) self.msgsubs.grid(row = 8, column = 1, columnspan = 2) self.msgsubs.bind("<Double-Button-1>", self.displayMail) self.message = Text(self, width = 100) self.message.grid(row = 9, column = 1, columnspan = 2) def searchMail(self): """ Take the database search parameters provided by the user (trying to make sense of the dates) and select the appropriate messages from the database, displaying the subject lines of the messages in a scrolling selection list. """ mindate = self.mindate.get() if not mindate: mindate = None else: mindate = getDate(mindate) maxdate = self.maxdate.get() if not maxdate: maxdate = None else: maxdate = getDate(maxdate) addsearch = self.addsearch.get() if not addsearch: addsearch = None namesearch = self.namesearch.get() if not namesearch: namesearch = None conn = mysqlc.Connect(**loginInfo) curs = conn.cursor() table = "testMessage" self.msglist = msgs(conn, curs, table, mindate = mindate, maxdate = maxdate, addsearch = addsearch, namesearch = namesearch) self.msgsubs.delete(0, END) for pk, msg in self.msglist: self.msgsubs.insert(END, msg['subject']) def displayMail(self, event): """ Display the message corresoponding to the subject line the user just clicked on. """ indexes = self.msgsubs.curselection() if len(indexes) != 1: return self.message.delete(1.0, END) pk, msg = self.msglist[int(indexes[0])] for headerName in "Subject", "Date", "From": hdr = msg[headerName] if hdr: self.message.insert(INSERT, "{0}: {1}\n".format(headerName, hdr)) self.message.insert(END, "\n") if msg.is_multipart(): self.message.insert(END, "MULTIPART MESSAGE - SORRY!") self.message.insert(END, msg.get_payload()) if __name__ == "__main__": root = Tk() app = Application(master = root) app.searchMail() app.mainloop()
86fd6f568e1499f023fb669731c15d2a3fb6510b
9cd10b1bb27bd31259b278a6339d1101144f5e7b
/data/__init__.py
414c8749c575ec64d1c53890ce8dcb8a0c6853d9
[]
no_license
wangfin/Earthquake-Electromagnetic-Anomaly-Detection
ed2d8a12da1ebec456dfc460592cead5abd23352
de0ad9b44979fbc6b4cecccc592f663b17a7ee04
refs/heads/master
2023-01-28T06:39:16.252684
2020-11-24T07:40:41
2020-11-24T07:40:53
290,426,971
3
1
null
null
null
null
UTF-8
Python
false
false
94
py
#!/usr/bin/env python # @Time : 2020/8/26 15:53 # @Author : wb # @File : __init__.py.py
1c137c520a51b109eb7c9e5c70390f86272bb782
39759112ee3a84aa78b15be8cc4888ff6a6b1bc0
/webcast/admin.py
e804dbbc9ed63d84a585a3bea44e642bd77059d5
[]
no_license
ecolemo/showbox
bd8b5c8eb30fc3704a7aaf559c0fa0820014a8f7
6cb0f3d6394897ebb34f0602787793c8a49f0953
refs/heads/master
2021-01-22T14:45:38.704992
2011-12-03T05:46:57
2011-12-03T05:46:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
126
py
from django.contrib import admin from showbox.webcast.models import * admin.site.register(Feed) admin.site.register(Channel)
c980620389a0801db5b4c61284ea6fb1efc63e96
e11a1d6d38227bdfaef88eb06386d719b5c7ade9
/tests/test_mail_parser.py
0305664222fbc9f8940e85e22500786222a35147
[ "Apache-2.0", "LicenseRef-scancode-free-unknown" ]
permissive
spankders/mail-parser
3d955d3bec118806cc7a7a5d492ed9152ec2fcc7
29196a76851dfa426b59f8141510cb8808ed5ec1
refs/heads/master
2020-04-28T06:33:08.552262
2019-02-05T22:15:18
2019-02-05T22:15:18
175,062,966
1
0
Apache-2.0
2019-03-11T18:43:09
2019-03-11T18:43:09
null
UTF-8
Python
false
false
21,647
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Copyright 2016 Fedele Mantuano (https://twitter.com/fedelemantuano) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime import logging import os import six import sys import unittest base_path = os.path.realpath(os.path.dirname(__file__)) root = os.path.join(base_path, '..') sys.path.append(root) logging.getLogger().addHandler(logging.NullHandler()) import mailparser from mailparser.utils import ( convert_mail_date, fingerprints, get_header, get_mail_keys, get_to_domains, msgconvert, ported_open, ported_string, receiveds_parsing, parse_received, ) from mailparser.exceptions import MailParserEnvironmentError mail_test_1 = os.path.join(base_path, 'mails', 'mail_test_1') mail_test_2 = os.path.join(base_path, 'mails', 'mail_test_2') mail_test_3 = os.path.join(base_path, 'mails', 'mail_test_3') mail_test_4 = os.path.join(base_path, 'mails', 'mail_test_4') mail_test_5 = os.path.join(base_path, 'mails', 'mail_test_5') mail_test_6 = os.path.join(base_path, 'mails', 'mail_test_6') mail_test_7 = os.path.join(base_path, 'mails', 'mail_test_7') mail_test_8 = os.path.join(base_path, 'mails', 'mail_test_8') mail_test_9 = os.path.join(base_path, 'mails', 'mail_test_9') mail_test_10 = os.path.join(base_path, 'mails', 'mail_test_10') mail_test_11 = os.path.join(base_path, 'mails', 'mail_test_11') mail_test_12 = os.path.join(base_path, 'mails', 'mail_test_12') mail_test_13 = os.path.join(base_path, 'mails', 'mail_test_13') mail_malformed_1 = os.path.join(base_path, 'mails', 'mail_malformed_1') mail_malformed_2 = os.path.join(base_path, 'mails', 'mail_malformed_2') mail_malformed_3 = os.path.join(base_path, 'mails', 'mail_malformed_3') mail_outlook_1 = os.path.join(base_path, 'mails', 'mail_outlook_1') class TestMailParser(unittest.TestCase): def setUp(self): self.all_mails = ( mail_test_1, mail_test_2, mail_test_3, mail_test_4, mail_test_5, mail_test_6, mail_test_7, mail_test_8, mail_test_9, mail_test_10, mail_test_11, mail_test_12, mail_test_13, mail_malformed_1, mail_malformed_2, mail_malformed_3) def test_html_field(self): mail = mailparser.parse_from_file(mail_malformed_1) self.assertIsInstance(mail.text_html, list) self.assertIsInstance(mail.text_html_json, six.text_type) self.assertEqual(len(mail.text_html), 1) def test_get_mail_keys(self): mail = mailparser.parse_from_file(mail_test_11) all_parts = get_mail_keys(mail.message) mains_parts = get_mail_keys(mail.message, False) self.assertNotEqual(all_parts, mains_parts) self.assertIn("message-id", mains_parts) self.assertIn("x-filterd-recvd-size", all_parts) self.assertNotIn("x-filterd-recvd-size", mains_parts) def test_mail_partial(self): mail = mailparser.parse_from_file(mail_test_10) self.assertNotEqual(mail.mail, mail.mail_partial) self.assertIn("message-id", mail.mail_partial) self.assertIn("x-ibm-av-version", mail.mail) self.assertNotIn("x-ibm-av-version", mail.mail_partial) result = mail.mail_partial_json self.assertIsInstance(result, six.text_type) def test_not_parsed_received(self): mail = mailparser.parse_from_file(mail_test_9) for i in mail.received: self.assertNotIn("raw", i) self.assertIn("hop", i) def test_issue_received(self): mail = mailparser.parse_from_file(mail_test_8) for i in mail.received: self.assertIn("date_utc", i) self.assertIsNotNone(i["date_utc"]) def test_get_header(self): mail = mailparser.parse_from_file(mail_test_1) h1 = get_header(mail.message, "from") self.assertIsInstance(h1, six.text_type) def test_receiveds_parsing(self): for i in self.all_mails: mail = mailparser.parse_from_file(i) receiveds = mail.received_raw result = receiveds_parsing(receiveds) self.assertIsInstance(result, list) for j in result: self.assertIsInstance(j, dict) self.assertIn("hop", j) self.assertIn("delay", j) def test_ipaddress(self): mail = mailparser.parse_from_file(mail_test_2) trust = "smtp.customers.net" ip = "217.76.210.112" result = mail.get_server_ipaddress(trust) self.assertEqual(result, ip) trust = "" result = mail.get_server_ipaddress(trust) self.assertEqual(result, None) trust = " " result = mail.get_server_ipaddress(trust) self.assertEqual(result, None) def test_ipaddress_unicodeerror(self): mail = mailparser.parse_from_file(mail_test_12) trust = "localhost" result = mail.get_server_ipaddress(trust) self.assertEqual(result, "96.202.181.20") def test_fingerprints_body(self): mail = mailparser.parse_from_file(mail_test_1) md5, sha1, sha256, sha512 = fingerprints( mail.body.encode("utf-8")) self.assertEqual(md5, "1bbdb7dcf511113bbc0c1b214aeac392") self.assertEqual(sha1, "ce9e62b50fa4e2168278880b14460b905b24eb4b") self.assertEqual(sha256, ("1e9b96e3f1bc74702f9703391e8ba0715b849" "7127a7ff857013ab33385898574")) self.assertEqual(sha512, ("ad858f7b5ec5549e55650fd13df7683e403489" "77522995851fb6b625ac54744cf3a4bf652784" "dba971ef99afeec4e6caf2fdd10be72eabb730" "c312ffbe1c4de3")) def test_fingerprints_unicodeencodeerror(self): mail = mailparser.parse_from_file(mail_test_7) for i in mail.attachments: fingerprints(i["payload"]) def test_malformed_mail(self): mail = mailparser.parse_from_file(mail_malformed_3) defects_categories = mail.defects_categories self.assertIn("StartBoundaryNotFoundDefect", defects_categories) self.assertIn("MultipartInvariantViolationDefect", defects_categories) self.assertIn("reply-to", mail.mail) self.assertNotIn("reply_to", mail.mail) reply_to = [(u'VICTORIA Souvenirs', u'[email protected]')] self.assertEqual(mail.reply_to, reply_to) self.assertEqual(mail.fake_header, six.text_type()) # This email has header X-MSMail-Priority msmail_priority = mail.X_MSMail_Priority self.assertEqual(msmail_priority, "High") def test_type_error(self): mail = mailparser.parse_from_file(mail_test_5) self.assertEqual(len(mail.attachments), 5) for i in mail.attachments: self.assertIsInstance(i["filename"], six.text_type) def test_filename_decode(self): mail = mailparser.parse_from_file(mail_test_11) for i in mail.attachments: self.assertIsInstance(i["filename"], six.text_type) def test_valid_mail(self): m = mailparser.parse_from_string("fake mail") self.assertFalse(m.message) def test_receiveds(self): mail = mailparser.parse_from_file(mail_test_1) self.assertEqual(len(mail.received), 6) self.assertIsInstance(mail.received, list) for i in mail.received: self.assertIsInstance(i, dict) self.assertIsInstance(mail.received_raw, list) for i in mail.received_raw: self.assertIsInstance(i, six.text_type) self.assertIsInstance(mail.received_json, six.text_type) def test_parsing_know_values(self): mail = mailparser.parse_from_file(mail_test_2) trust = "smtp.customers.net" self.assertEqual(False, mail.has_defects) raw = "217.76.210.112" result = mail.get_server_ipaddress(trust) self.assertEqual(raw, result) raw = "<[email protected]>" result = mail.message_id self.assertEqual(raw, result) raw = "[email protected]" result = mail.to self.assertEqual(len(result), 2) self.assertIsInstance(result, list) self.assertIsInstance(result[0], tuple) self.assertIsInstance(mail.to_json, six.text_type) self.assertIsInstance(mail.to_raw, six.text_type) self.assertEqual(raw, result[0][1]) raw = "[email protected]" result = mail.from_ self.assertEqual(raw, result[0][1]) raw = "Bollettino Meteorologico del 29/11/2015" result = mail.subject self.assertEqual(raw, result) result = mail.has_defects self.assertEqual(False, result) result = len(mail.attachments) self.assertEqual(3, result) # raw = "Sun, 29 Nov 2015 09:45:18 +0100" self.assertIsInstance(mail.date_raw, six.text_type) self.assertIsInstance(mail.date_json, six.text_type) raw_utc = datetime.datetime(2015, 11, 29, 8, 45, 18, 0).isoformat() result = mail.date.isoformat() self.assertEqual(raw_utc, result) def test_types(self): mail = mailparser.parse_from_file(mail_test_2) trust = "smtp.customers.net" self.assertEqual(False, mail.has_defects) result = mail.mail self.assertIsInstance(result, dict) self.assertNotIn("defects", result) self.assertIn("has_defects", result) result = mail.get_server_ipaddress(trust) self.assertIsInstance(result, six.text_type) result = mail.mail_json self.assertIsInstance(result, six.text_type) result = mail.headers_json self.assertIsInstance(result, six.text_type) result = mail.headers self.assertIsInstance(result, dict) result = mail.body self.assertIsInstance(result, six.text_type) result = mail.date self.assertIsInstance(result, datetime.datetime) result = mail.from_ self.assertIsInstance(result, list) result = mail.to self.assertIsInstance(result, list) self.assertEqual(len(result), 2) self.assertIsInstance(result[0], tuple) self.assertEqual(len(result[0]), 2) result = mail.subject self.assertIsInstance(result, six.text_type) result = mail.message_id self.assertIsInstance(result, six.text_type) result = mail.attachments self.assertIsInstance(result, list) result = mail.date self.assertIsInstance(result, datetime.datetime) result = mail.defects self.assertIsInstance(result, list) def test_defects(self): mail = mailparser.parse_from_file(mail_malformed_1) self.assertEqual(True, mail.has_defects) self.assertEqual(1, len(mail.defects)) self.assertEqual(1, len(mail.defects_categories)) self.assertIn("defects", mail.mail) self.assertIn("StartBoundaryNotFoundDefect", mail.defects_categories) self.assertIsInstance(mail.mail_json, six.text_type) result = len(mail.attachments) self.assertEqual(1, result) mail = mailparser.parse_from_file(mail_test_1) if six.PY2: self.assertEqual(False, mail.has_defects) self.assertNotIn("defects", mail.mail) elif six.PY3: self.assertEqual(True, mail.has_defects) self.assertEqual(1, len(mail.defects)) self.assertEqual(1, len(mail.defects_categories)) self.assertIn("defects", mail.mail) self.assertIn( "CloseBoundaryNotFoundDefect", mail.defects_categories) def test_defects_bug(self): mail = mailparser.parse_from_file(mail_malformed_2) self.assertEqual(True, mail.has_defects) self.assertEqual(1, len(mail.defects)) self.assertEqual(1, len(mail.defects_categories)) self.assertIn("defects", mail.mail) self.assertIn("StartBoundaryNotFoundDefect", mail.defects_categories) self.assertIsInstance(mail.parsed_mail_json, six.text_type) result = len(mail.attachments) self.assertEqual(0, result) def test_add_content_type(self): mail = mailparser.parse_from_file(mail_test_3) self.assertEqual(False, mail.has_defects) result = mail.mail self.assertEqual(len(result["attachments"]), 1) self.assertIsInstance( result["attachments"][0]["mail_content_type"], six.text_type) self.assertFalse(result["attachments"][0]["binary"]) self.assertIsInstance( result["attachments"][0]["payload"], six.text_type) self.assertEqual( result["attachments"][0]["content_transfer_encoding"], "quoted-printable") self.assertEqual( result["attachments"][0]["charset"], "iso-8859-1") def test_from_bytes(self): if six.PY2: with self.assertRaises(MailParserEnvironmentError): mailparser.MailParser.from_bytes(b"") def test_classmethods(self): # MailParser.from_file m = mailparser.MailParser.from_file(mail_test_3) m.parse() result = m.mail self.assertEqual(len(result["attachments"]), 1) # MailParser.from_string m = mailparser.MailParser.from_string(m.message_as_string) m.parse() result = m.mail self.assertEqual(len(result["attachments"]), 1) def test_bug_UnicodeDecodeError(self): m = mailparser.parse_from_file(mail_test_6) self.assertIsInstance(m.mail, dict) self.assertIsInstance(m.mail_json, six.text_type) def test_parse_from_file_msg(self): """ Tested mail from VirusTotal: md5 b89bf096c9e3717f2d218b3307c69bd0 The email used for unittest were found randomly on VirusTotal and then already publicly available so can not be considered as privacy violation """ m = mailparser.parse_from_file_msg(mail_outlook_1) email = m.mail self.assertIn("attachments", email) self.assertEqual(len(email["attachments"]), 5) self.assertIn("from", email) self.assertEqual(email["from"][0][1], "[email protected]") self.assertIn("subject", email) def test_msgconvert(self): """ Tested mail from VirusTotal: md5 b89bf096c9e3717f2d218b3307c69bd0 The email used for unittest were found randomly on VirusTotal and then already publicly available so can not be considered as privacy violation """ f, _ = msgconvert(mail_outlook_1) self.assertTrue(os.path.exists(f)) m = mailparser.parse_from_file(f) self.assertEqual(m.from_[0][1], "[email protected]") def test_from_file_obj(self): with ported_open(mail_test_2) as fp: mail = mailparser.parse_from_file_obj(fp) trust = "smtp.customers.net" self.assertEqual(False, mail.has_defects) result = mail.mail self.assertIsInstance(result, dict) self.assertNotIn("defects", result) self.assertNotIn("anomalies", result) self.assertIn("has_defects", result) result = mail.get_server_ipaddress(trust) self.assertIsInstance(result, six.text_type) result = mail.mail_json self.assertIsInstance(result, six.text_type) result = mail.headers self.assertIsInstance(result, dict) result = mail.headers_json self.assertIsInstance(result, six.text_type) result = mail.body self.assertIsInstance(result, six.text_type) result = mail.date self.assertIsInstance(result, datetime.datetime) result = mail.from_ self.assertIsInstance(result, list) result = mail.to self.assertIsInstance(result, list) self.assertEqual(len(result), 2) self.assertIsInstance(result[0], tuple) self.assertEqual(len(result[0]), 2) result = mail.subject self.assertIsInstance(result, six.text_type) result = mail.message_id self.assertIsInstance(result, six.text_type) result = mail.attachments self.assertIsInstance(result, list) result = mail.date self.assertIsInstance(result, datetime.datetime) result = mail.defects self.assertIsInstance(result, list) result = mail.timezone self.assertEqual(result, "+1") def test_get_to_domains(self): m = mailparser.parse_from_file(mail_test_6) domains_1 = get_to_domains(m.to, m.reply_to) self.assertIsInstance(domains_1, list) self.assertIn("test.it", domains_1) domains_2 = m.to_domains self.assertIsInstance(domains_2, list) self.assertIn("test.it", domains_2) self.assertEqual(domains_1, domains_2) self.assertIsInstance(m.to_domains_json, six.text_type) def test_convert_mail_date(self): s = "Mon, 20 Mar 2017 05:12:54 +0600" d, t = convert_mail_date(s) self.assertEqual(t, "+6") self.assertEqual(str(d), "2017-03-19 23:12:54") s = "Mon, 20 Mar 2017 05:12:54 -0600" d, t = convert_mail_date(s) self.assertEqual(t, "-6") def test_ported_string(self): raw_data = "" s = ported_string(raw_data) self.assertEqual(s, six.text_type()) raw_data = "test " s = ported_string(raw_data) self.assertEqual(s, "test") raw_data = u"test " s = ported_string(raw_data) self.assertEqual(s, "test") def test_standard_outlook(self): """ Verify a basic outlook received header works. """ received = """ from DM3NAM03FT035 by CY4PR0601CA0051.outlook.office365.com with Microsoft SMTP Server version=TLS1_2, cipher=TLS id 15.20.1185.23 via Frontend Transport; Mon, 1 Oct 2018 09:49:21 +0000 """.strip() expected = { 'from': 'DM3NAM03FT035', 'by': 'CY4PR0601CA0051.outlook.office365.com', 'with': 'Microsoft SMTP Server version=TLS1_2, cipher=TLS', 'id': '15.20.1185.23', 'via': 'Frontend Transport', 'date': 'Mon, 1 Oct 2018 09:49:21 +0000' } values_by_clause = parse_received(received) self.assertEqual(expected, values_by_clause) def test_standard_google__with_cipher(self): """ Verify that we don't match 'with cipher' a la google. """ received = """ from mail_yw1_f65.google.com by subdomain.domain.com Postfix with ESMTPS id abc123 for <[email protected]>; Tue, 25 Sep 2018 13:09:36 +0000 (UTC)""" expected = { 'from': 'mail_yw1_f65.google.com', 'by': 'subdomain.domain.com Postfix', 'with': 'ESMTPS', 'id': 'abc123', 'for': '<[email protected]>', 'date': 'Tue, 25 Sep 2018 13:09:36 +0000 (UTC)' } values_by_clause = parse_received(received) self.assertEqual(expected, values_by_clause) @unittest.skipIf(sys.version_info[0] < 3, "Must be using Python 3") def test_parse_from_bytes(self): with open(mail_test_2, "rb") as f: mail_bytes = f.read() mail = mailparser.parse_from_bytes(mail_bytes) trust = "smtp.customers.net" self.assertEqual(False, mail.has_defects) raw = "217.76.210.112" result = mail.get_server_ipaddress(trust) self.assertEqual(raw, result) raw = "<[email protected]>" result = mail.message_id self.assertEqual(raw, result) raw = "[email protected]" result = mail.to self.assertEqual(len(result), 2) self.assertIsInstance(result, list) self.assertIsInstance(result[0], tuple) self.assertIsInstance(mail.to_json, six.text_type) self.assertIsInstance(mail.to_raw, six.text_type) self.assertEqual(raw, result[0][1]) raw = "[email protected]" result = mail.from_ self.assertEqual(raw, result[0][1]) raw = "Bollettino Meteorologico del 29/11/2015" result = mail.subject self.assertEqual(raw, result) result = mail.has_defects self.assertEqual(False, result) result = len(mail.attachments) self.assertEqual(3, result) # raw = "Sun, 29 Nov 2015 09:45:18 +0100" self.assertIsInstance(mail.date_raw, six.text_type) self.assertIsInstance(mail.date_json, six.text_type) raw_utc = datetime.datetime(2015, 11, 29, 8, 45, 18, 0).isoformat() result = mail.date.isoformat() self.assertEqual(raw_utc, result) if __name__ == '__main__': unittest.main(verbosity=2)
46afdbc213039bded37448eb93dc6e30299d328f
ac7c02f29a837fdd67d2bdc77bba182080e98ed8
/codekata/simpleinterest.py
b38138ffa7828f55aa6627b446c6d995a7baf9e8
[]
no_license
YaminiNarayanan-359/guvi
7630c309a86365e4367fda1ddab4e966e7d1ac5b
a52b6353100b4e9b83a003e6a327fbfb174daac4
refs/heads/master
2020-06-03T00:08:00.389609
2019-07-16T06:59:53
2019-07-16T06:59:53
191,355,064
0
0
null
null
null
null
UTF-8
Python
false
false
61
py
j,k,l=list(map(int,input().split())) print(int((j*k*l)/100))
f3ae9c1a7bf1d55613b290744e12c443dcac932d
693568f813603806fbde976a1c69a97b06195708
/mods/tests/test_install.py
05669735deeb25b553bc8a1df5f2d8a56faf3514
[ "MIT" ]
permissive
danlkv/pywebviz
c664a584c5a16d66c49aa233b69ef3b29ccaa081
5892ef90f28dbd43c33fefbfa5a199d15322a120
refs/heads/master
2023-02-11T06:06:13.451408
2021-01-13T07:22:08
2021-01-13T07:23:17
172,800,287
0
0
null
null
null
null
UTF-8
Python
false
false
835
py
from importlib import reload import libvis.modules.installed as modules import libvis_mods from pathlib import Path mocks = Path(__file__).parent / 'mocks' def test_install_files(): global modules pyfile, webfle = mocks/'module.py', mocks/'blah.coffee' try: libvis_mods.install('Test', pyfile, webfle) modules = reload(modules) _ = modules.Test() finally: libvis_mods.uninstall('Test') def test_install_dirs(): global modules try: pyfile, webfle = mocks/'BirModule'/'back', mocks/'BirModule'/'front' libvis_mods.install('BirModule', pyfile, webfle) modules = reload(modules) m = modules.BirModule(count=5) finally: libvis_mods.uninstall('BirModule') if __name__ == '__main__': test_install_dirs() test_install_files()
fb0b3cea6186400de9e2106c276c471deea1a9c1
e67fd8a02af7c913d5469b86b1fcc02a3497d863
/organizing_hub/migrations/0004_auto_20181003_2101.py
412f0ae3cf448c84b4866ed408a26659932c1147
[ "MIT" ]
permissive
Our-Revolution/site
37268727ab4761ca5d3e222b9b11c809327e01c2
c8024b805ff5ff0e16f54dce7bf05097fd2f08e0
refs/heads/master
2023-01-20T18:10:57.479047
2019-08-02T17:26:52
2019-08-02T17:26:52
71,601,229
4
3
MIT
2023-01-12T08:22:58
2016-10-21T22:19:53
Python
UTF-8
Python
false
false
744
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.14 on 2018-10-03 21:01 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('organizing_hub', '0003_organizinghubloginalert_alert_level'), ] operations = [ migrations.AlterField( model_name='organizinghubloginalert', name='alert_level', field=models.IntegerField(choices=[(1, 'Success'), (2, 'Info'), (3, 'Warning'), (4, 'Danger')], default=3, help_text='\n Set the alert style corresponding to Bootstrap 3 alert levels.\n\n See: https://getbootstrap.com/docs/3.3/components/#alerts-dismissible\n '), ), ]
f283b2717969e97a9084442cb738ded2f130471c
5896669c7ccf3efe979a4780516fc810844bfbba
/conf.py
790504a29ba2e1d53b75d3f3ec6fffc60661f7ed
[ "MIT" ]
permissive
Hiestaa/miniboard-factorio-manager
ea1ff7e6084ef88869db635cb866517601f5b055
9ff5f1f063f17c0eaa47f43ac05bce0e74d90d45
refs/heads/master
2021-01-01T03:47:25.674434
2016-04-30T14:45:03
2016-04-30T14:45:03
57,064,708
0
0
null
null
null
null
UTF-8
Python
false
false
2,373
py
# -*- coding: utf8 -*- from __future__ import unicode_literals import logging import netifaces def getIpWindows(adapteridx): try: import wmi except: logging.error("You must need Win32com (win32 extensions for python)") raise adapters = wmi.WMI().Win32_NetworkAdapter() wlan_int_id = adapters[adapteridx].Index adaptername = adapters[adapteridx].NetConnectionID ip = '' for nic in wmi.WMI().Win32_NetworkAdapterConfiguration(IPEnabled=1): if nic.Index == wlan_int_id: ip = nic.IPAddress[0] logging.info("[Windows] Showing IP for adapter %d (%s): %s", adapteridx, adaptername, ip) return ip def filtre(addrInfo): for typ, addrList in addrInfo.iteritems(): if len(addrList) == 0: continue for addrDetails in addrList: if len(addrDetails.get('addr', '').split('.')) != 4: continue if not addrDetails.get('addr').startswith('192.168') and\ addrDetails.get('addr') != '127.0.0.1' and not \ addrDetails.get('addr').startswith('0'): return addrDetails.get('addr') def getIp(adapteridx): adapters = netifaces.interfaces() addrInfo = [netifaces.ifaddresses(a) for a in adapters] addrInfo = [filtre(info) for info in addrInfo] addrInfo = [info for info in addrInfo if info is not None] return addrInfo[adapteridx % len(addrInfo)] Conf = { 'state': 'DEBUG', 'log': { 'fileLevel': logging.WARNING }, 'database': { 'name': 'db/miniboard-factorio.db' }, 'server': { 'port': 15000, 'ip': '', 'assets': { 'minifiedCleanups': [ 'http/assets/custom/css/', 'http/assets/custom/js/' ], 'minifyOnDebug': False }, }, 'factorio': { 'allowedPorts': sorted( [34197, 34190, 34191, 34192, 34193]), 'savesFolder': ( '/Users/romain/Library/Application Support/factorio/saves'), 'binary': '/Applications/factorio.app', 'configFolder': ( '/Users/romain/Library/Application Support/factorio/config'), 'autosaveInterval': 15 # in minutes } }
54fd9901b39b49d2d42047b88b691cb6d03284de
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_125/ch40_2020_04_06_19_40_46_900950.py
3b9243a2901e11cca6dba9dde4a7da4dd0698904
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
122
py
def soma_valores(n): num=len(n) i=0 soma=0 while i=<num: soma= [i]+n i+=1 return soma
08ad9df9dd16c3d904a326e08dbe5b1848f362ff
c157097e9883757f588c6da74d419b964a1c75cc
/python_fundamentals/08-user-input/command-line-parameters-01.py
25984b506bf0dc30f4e2eb2bba2086dcb995dfb2
[]
no_license
sudhansom/python_sda
8d888216740c559ab66b700d3bea54c05caa0333
25d563854ef9d31ab910f84c973e48e3259de585
refs/heads/master
2022-04-26T15:26:15.263236
2020-04-25T07:32:10
2020-04-25T07:32:10
257,564,556
0
0
null
2020-04-29T16:41:37
2020-04-21T10:49:59
Python
UTF-8
Python
false
false
191
py
import sys my_dict = {} country_list = sys.argv[1:] for i in range(0, len(country_list), 2): my_dict[country_list[i]] = country_list[i+1] print(f"\nDictionary details : \n\n {my_dict}")
79669a5b1eccf60216afd0fadf1e13d7389fd0d1
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_168/109.py
50abe5d4745d2991cd4d5af4fe4809c0886ebe1c
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,885
py
#!/usr/bin/python import sys import numpy as np # http://www.numpy.org/ import scipy # http://scipy.org/ import networkx as nx # https://networkx.github.io/ import sympy # http://www.sympy.org import itertools import operator import string import fractions #import visual # vpython.org #import Levenshtein # https://pypi.python.org/pypi/python-Levenshtein/0.12.0 import cmath sys.setrecursionlimit(5000) T = int(sys.stdin.readline()) charmap = {'.':0, '^': 1, 'v':-1,'>':2,'<':2} dirR = {'.':0, '^': 1, 'v':-1,'>':0,'<':0} dirC = {'.':0, '^': 0, 'v':0,'>':1,'<':-1} def test(field): bools = field!='.' d1 = np.sum(bools,axis=1) d2 = np.sum(bools,axis=0) for i in range(R): for j in range(C): if field[i,j]=='.': continue if d1[i]==1 and d2[j]==1: return "IMPOSSIBLE" count = 0 for i in range(R): for j in range(C): if field[i,j]=='.': continue if field[i,j]=='<': count+=1 break for j in range(C): if field[i,C-j-1]=='.': continue if field[i,C-j-1]=='>': count+=1 break for j in range(C): for i in range(R): if field[i,j]=='.': continue if field[i,j]=='^': count+=1 break for i in range(R): if field[R-i-1,j]=='.': continue if field[R-i-1,j]=='v': count+=1 break return str(count) for case in range(0, T): R,C = map(int,sys.stdin.readline().strip().split()) field = np.chararray( (R,C)) for i in range(R): line=sys.stdin.readline().strip() for c in range(len(line)): field[i,c] = line[c] solution = test(field) print "Case #%i: %s" % (case + 1, solution)
77f456482ecebbe990adfabf0b25a4c0dd0fd7e7
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02724/s623079670.py
d862e55f1b0e4e1a22bc93ff1477b6ed38532fd8
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
60
py
x=int(input()) y=x//500 z=x-500*y a=z//5 print(1000*y+a*5)
7b993e2d2391a2c6f2fdf7c9b7dcc0ae0b47bb85
509823ea14f04d5791486b56a592d7e7499d7d51
/parte05/ex5.05_remover_duplicados_lista.py
e2c0ee58c5eaf7c39ca0c9d8479cad0f6d096521
[]
no_license
Fhernd/Python-CursoV2
7613144cbed0410501b68bedd289a4d7fbefe291
1ce30162d4335945227f7cbb875f99bc5f682b98
refs/heads/master
2023-08-08T05:09:44.167755
2023-08-05T19:59:38
2023-08-05T19:59:38
239,033,656
64
38
null
null
null
null
UTF-8
Python
false
false
793
py
# Ejercicio 5.5: Remover los valores duplicados en una lista. numeros = [1, 2, 3, 1, 1, 1, 4, 5, 6, 3, 3, 2, 5] print('Contenido actual de la lista `numeros`:', numeros) print('Cantidad actual de la lista `numeros`:', len(numeros)) print() # Solución #1: print('Solución #1:') numeros_sin_repetir = [] for n in numeros: if n not in numeros_sin_repetir: numeros_sin_repetir.append(n) print('Contenido actual de la lista `numeros_sin_repetir`:', numeros_sin_repetir) print('Cantidad actual de la lista `numeros_sin_repetir`:', len(numeros_sin_repetir)) print() # Solución #2: print('Solución #2') conjunto_numeros = list(set(numeros)) print('Contenido actual de `conjunto_numeros`:', conjunto_numeros) print('Cantidad actual de conjunto_numeros`:', len(conjunto_numeros))
ff21461f29ea8d9161ba90e7c5ee44d3fba4e68d
f5ee595836adfb75047d2798928ca020533bd597
/nanobrok/ext/ssl.py
43a2b503b138db55be7ab8dc961127139043fb33
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
santaklouse/Nanobrok
efcc836484a799f614c21d50a75e0f5d1088f8bb
680b112f76e248f64c021337769bef163527bce0
refs/heads/master
2023-08-13T03:52:25.137896
2021-09-18T18:11:13
2021-09-18T18:11:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
158
py
# TODO disabled features # from flask_talisman import Talisman # def init_app(app): # # need to run with disable debug # talisman = Talisman(app)
964bb062f8e25a61f0000a0172d3c72f53622e37
5a6555a37ea574a6a02eb4a612171fec86724edf
/Django/mongodb/mongodb/settings.py
2a7966a6a2d2cdbcf4d6cfcd94989fd091cc3df8
[]
no_license
heiyouyou/Python
9b014b3d3619824eb739c7d87fa5304fa2cf1546
74b0b0d1e4d678b74ada61b03a026b64f2a084d9
refs/heads/master
2021-05-06T13:48:22.616248
2018-10-24T10:33:19
2018-10-24T10:33:19
113,288,102
0
0
null
null
null
null
UTF-8
Python
false
false
3,097
py
""" Django settings for mongodb project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'w#ql--a^7913cugh5njqjd3txa#_qhrok%xxq%)jugj6@^%%47' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mongodb.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mongodb.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
dd43ada4c7651ae8a3fc87fb17b8fa37eba4718b
241c51904c2501a85e71da62d4a9a79f8656dbb4
/transformers/models/prophetnet/modeling_prophetnet.py
11197182f85b4b58f126b486ffbda39e24f29f4b
[ "Apache-2.0" ]
permissive
zhouhaoyi/TripletAttention
c3d7a37b00d80286e802324859156841f33841d0
84bb8d7a7a45dfd37c82849c9ae6ed8a41bb0718
refs/heads/main
2023-08-25T22:35:59.828152
2021-10-27T04:27:13
2021-10-27T04:27:13
374,306,104
15
3
Apache-2.0
2021-09-19T08:33:38
2021-06-06T08:22:35
null
UTF-8
Python
false
false
103,663
py
# coding=utf-8 # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ProphetNet model, ported from ProphetNet repo(fairsequery_states version). """ import copy import math import warnings from dataclasses import dataclass from typing import Dict, Optional, Tuple import torch import torch.nn.functional as F from torch import Tensor, nn from torch.nn import LayerNorm from ...activations import ACT2FN from ...file_utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_prophetnet import ProphetNetConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ProphenetConfig" _TOKENIZER_FOR_DOC = "ProphetNetTokenizer" PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/prophetnet-large-uncased", # See all ProphetNet models at https://huggingface.co/models?filter=prophetnet ] PROPHETNET_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) Original ProphetNet code can be found at <https://github.com/microsoft/ProphetNet> . Checkpoints were converted from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the file ``convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py``. This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and behavior. Parameters: config (:class:`~transformers.ProphetNetConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ PROPHETNET_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.ProphetNetTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ ProphetNet uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see :obj:`past_key_values`). decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should read :func:`modeling_bart._prepare_decoder_inputs` and modify to your needs. See diagram 1 in `the paper <https://arxiv.org/abs/1910.13461>`__ for more information on the default strategy. encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`): Tuple consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`: :obj:`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last ``decoder_input_ids`` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all ``decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ PROPHETNET_STANDALONE_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.ProphetNetTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ def softmax(hidden_state, dim, onnx_trace=False): if onnx_trace: return F.softmax(hidden_state.float(), dim=dim) else: return F.softmax(hidden_state, dim=dim, dtype=torch.float32) def ngram_attention_bias(sequence_length, ngram, device, dtype): """ This function computes the bias for the predict stream """ bias = torch.ones((ngram, sequence_length, 2 * sequence_length), device=device, dtype=dtype) * float("-inf") # create bias for stream_idx in range(ngram): for i in range(sequence_length): bias[stream_idx, i, sequence_length + i] = 0 bias[stream_idx, i, : max(i - stream_idx, 0) + 1] = 0 return bias def compute_relative_buckets(num_buckets, max_distance, relative_positions, is_bidirectional=False): """ This function computes individual parts of the relative position buckets. For more detail, see paper. """ inv_relative_positions = -relative_positions rel_positions_bucket = 0 if is_bidirectional: num_buckets = num_buckets // 2 rel_positions_bucket = ( rel_positions_bucket + torch.lt(inv_relative_positions, torch.zeros_like(inv_relative_positions)).int() * num_buckets ) inv_relative_positions = torch.abs(inv_relative_positions) else: inv_relative_positions = torch.max(inv_relative_positions, torch.zeros_like(inv_relative_positions)) max_exact = num_buckets // 2 is_small = torch.lt(inv_relative_positions, max_exact) val_if_large = max_exact + torch.log(inv_relative_positions.float() / max_exact) / math.log( max_distance / max_exact ) * (num_buckets - max_exact) val_if_large = torch.min(val_if_large, torch.ones_like(val_if_large) * (num_buckets - 1)).int() rel_positions_bucket = rel_positions_bucket + torch.where(is_small, inv_relative_positions.int(), val_if_large) return rel_positions_bucket def compute_all_stream_relative_buckets(num_buckets, max_distance, position_ids): """ This function computes both main and predict relative position buckets. For more detail, see paper. """ # main stream main_stream_relative_positions = position_ids.unsqueeze(1).repeat(1, position_ids.size(-1), 1) main_stream_relative_positions = main_stream_relative_positions - position_ids.unsqueeze(-1) # predicting stream predicting_stream_relative_positions = torch.cat((position_ids - 1, position_ids), dim=-1).unsqueeze(1) predicting_stream_relative_positions = predicting_stream_relative_positions.repeat(1, position_ids.size(-1), 1) predicting_stream_relative_positions = predicting_stream_relative_positions - position_ids.unsqueeze(-1) # get both position buckets main_relative_position_buckets = compute_relative_buckets( num_buckets, max_distance, main_stream_relative_positions, is_bidirectional=False ) predict_relative_position_buckets = compute_relative_buckets( num_buckets, max_distance, predicting_stream_relative_positions, is_bidirectional=False ) return main_relative_position_buckets, predict_relative_position_buckets @dataclass class ProphetNetSeq2SeqLMOutput(ModelOutput): """ Base class for sequence-to-sequence language models outputs. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Language modeling loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, decoder_sequence_length, config.vocab_size)`): Prediction scores of the main stream language modeling head (scores for each vocabulary token before SoftMax). logits_ngram (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Prediction scores of the predict stream language modeling head (scores for each vocabulary token before SoftMax). past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see :obj:`past_key_values` input) to speed up sequential decoding. decoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_ngram_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_ngram_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None logits_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @property def decoder_cross_attentions(self): warnings.warn( "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions` instead.", FutureWarning, ) return self.cross_attentions @dataclass class ProphetNetSeq2SeqModelOutput(ModelOutput): """ Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential decoding. Args: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, decoder_sequence_length, hidden_size)`): Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape :obj:`(batch_size, 1, hidden_size)` is output. last_hidden_state_ngram (:obj:`torch.FloatTensor` of shape :obj:`(batch_size,ngram * decoder_sequence_length, config.vocab_size)`): Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see :obj:`past_key_values` input) to speed up sequential decoding. decoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_ngram_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_ngram_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor last_hidden_state_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @property def decoder_cross_attentions(self): warnings.warn( "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions` instead.", FutureWarning, ) return self.cross_attentions @dataclass class ProphetNetDecoderModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, decoder_sequence_length, hidden_size)`): Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape :obj:`(batch_size, 1, hidden_size)` is output. last_hidden_state_ngram (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see :obj:`past_key_values` input) to speed up sequential decoding. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. ngram_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. ngram_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the """ last_hidden_state: torch.FloatTensor last_hidden_state_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class ProphetNetDecoderLMOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Language modeling loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, decoder_sequence_length, config.vocab_size)`): Prediction scores of the main stream language modeling head (scores for each vocabulary token before SoftMax). logits_ngram (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Prediction scores of the predict stream language modeling head (scores for each vocabulary token before SoftMax). past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see :obj:`past_key_values` input) to speed up sequential decoding. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. ngram_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. ngram_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None logits_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None class ProphetNetPreTrainedModel(PreTrainedModel): config_class = ProphetNetConfig base_model_prefix = "prophetnet" def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id assert ( decoder_start_token_id is not None ), "self.model.config.decoder_start_token_id has to be defined. In ProphetNet it is usually set to the pad_token_id. See ProphetNet docs for more information" # shift inputs to the right shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values" return shifted_input_ids class ProhpetNetPositionalEmbeddings(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, config: ProphetNetConfig): super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id) def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None): assert (position_ids is None) or ( self.padding_idx is None ), "If position_ids is pre-computed then padding_idx should not be set." if position_ids is None: if past_key_values is not None: # position_ids is the same for every token when decoding a single step # Without the int() cast, it doesn't work in some cases when exporting to ONNX prev_num_input_ids = past_key_values[0]["self"]["prev_key_states"].shape[2] num_input_ids = inputs_shape[1] + prev_num_input_ids position_ids = torch.ones((1, 1), dtype=torch.long, device=device) * ( int(self.padding_idx + num_input_ids) ) else: if attention_mask is None: attention_mask = torch.ones(inputs_shape, dtype=torch.long, device=device) # retrieve position_ids from input_ids / attention_mask position_ids = ( torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask ).long() + self.padding_idx return super().forward(position_ids), position_ids def _forward(self, position_ids): return super().forward(position_ids) class ProphetNetSelfAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, config: ProphetNetConfig, num_attn_heads: int, ): super().__init__() hidden_size = config.hidden_size self.attention_dropout = config.attention_dropout self.dropout = config.dropout self.num_attn_heads = num_attn_heads self.head_dim = hidden_size // num_attn_heads assert ( self.head_dim * num_attn_heads == hidden_size ), "`config.hidden_size` must be divisible by `config.num_encoder_attention_heads` and `config.num_decoder_attention_heads`" self.key_proj = nn.Linear(hidden_size, hidden_size) self.value_proj = nn.Linear(hidden_size, hidden_size) self.query_proj = nn.Linear(hidden_size, hidden_size) self.out_proj = nn.Linear(hidden_size, hidden_size) def _reshape(self, tensor, first_dim, batch_size): return tensor.reshape(first_dim, batch_size * self.num_attn_heads, self.head_dim).transpose(0, 1) def forward( self, hidden_states, key_value_states: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, layer_state: Optional[Dict[str, Optional[Tensor]]] = None, ) -> Tuple[Tensor, Optional[Tensor]]: sequence_length, batch_size, hidden_size = hidden_states.size() # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None cache_key = "cross_attention" if is_cross_attention else "self" assert list(hidden_states.size()) == [ sequence_length, batch_size, hidden_size, ], f"Size of hidden states should be {sequence_length, batch_size, hidden_size}, but is {hidden_states.size()}" # previous time steps are cached - no need to recompute key and value if they are static if layer_state is not None: saved_state = layer_state.get(cache_key, None) query_states = self.query_proj(hidden_states) / (self.head_dim ** 0.5) query_states = self._reshape(query_states, sequence_length, batch_size) if not is_cross_attention: # self-attention key_states = self.key_proj(hidden_states) key_states = self._reshape(key_states, -1, batch_size) value_states = self.value_proj(hidden_states) value_states = self._reshape(value_states, -1, batch_size) elif saved_state is None: # cross-attention without layer state key_states = self.key_proj(key_value_states) key_states = self._reshape(key_states, -1, batch_size) value_states = self.value_proj(key_value_states) value_states = self._reshape(value_states, -1, batch_size) else: key_states = saved_state["prev_key_states"].view(batch_size * self.num_attn_heads, -1, self.head_dim) value_states = saved_state["prev_value_states"].view(batch_size * self.num_attn_heads, -1, self.head_dim) # Update cache if is_cross_attention: layer_state[cache_key] = { "prev_key_states": key_states.view(batch_size, self.num_attn_heads, -1, self.head_dim), "prev_value_states": value_states.view(batch_size, self.num_attn_heads, -1, self.head_dim), } key_sequence_length = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) assert attn_weights.size() == ( batch_size * self.num_attn_heads, sequence_length, key_sequence_length, ), f"`attn_weights` should be of size {batch_size * self.num_attn_heads, sequence_length, key_sequence_length}, but is of size {attn_weights.shape}" # This is part of a workaround to get around fork/join parallelism not supporting Optional types. if attention_mask is not None and attention_mask.dim() == 0: attention_mask = None assert attention_mask is None or attention_mask.size() == ( self.num_attn_heads * batch_size, 1, key_sequence_length, ), f"`attention_mask` should be `None` or of shape attention_mask.size() == {batch_size * self.num_attn_heads, 1, key_sequence_length}, but is {attention_mask.shape}" if attention_mask is not None: # don't attend to padding symbols attn_weights = attn_weights + attention_mask # need two reshapes to keep gradient at attention weights attn_weights_reshaped = attn_weights.view( batch_size, self.num_attn_heads, sequence_length, key_sequence_length ) attn_weights = attn_weights_reshaped.view( batch_size * self.num_attn_heads, sequence_length, key_sequence_length ) attn_weights = F.softmax(attn_weights, dim=-1) attn_probs = F.dropout( attn_weights, p=self.attention_dropout, training=self.training, ) attn_output = torch.bmm(attn_probs, value_states) assert attn_output.size() == ( batch_size * self.num_attn_heads, sequence_length, self.head_dim, ), "`attn_output` should be of shape {batch_size * self.num_attn_heads, sequence_length, self.head_dim}, but is of shape {attn_output.size()}" attn_output = attn_output.transpose(0, 1).contiguous().view(sequence_length, batch_size, hidden_size) attn_output = self.out_proj(attn_output) attn_output = F.dropout(attn_output, p=self.dropout, training=self.training) return attn_output, attn_weights_reshaped class ProhpetNetFeedForward(nn.Module): """ This is the residual two feed-forward layer block based on the original Transformer implementation. """ def __init__(self, config: ProphetNetConfig, ffn_dim: int): super().__init__() self.activation_fn = ACT2FN[config.activation_function] self.intermediate = nn.Linear(config.hidden_size, ffn_dim) self.output = nn.Linear(ffn_dim, config.hidden_size) self.activation_dropout = config.activation_dropout self.dropout = config.dropout def forward(self, hidden_states): hidden_states = self.intermediate(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = F.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.output(hidden_states) hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states class ProphetNetNgramProphetNetSelfAttention(nn.Module): def __init__(self, config: ProphetNetConfig): super().__init__() self.hidden_size = config.hidden_size self.num_buckets = config.num_buckets self.relative_max_distance = config.relative_max_distance self.num_attn_heads = config.num_attention_heads self.dropout = config.dropout self.attention_dropout = config.attention_dropout self.head_dim = config.hidden_size // self.num_attn_heads self.ngram = config.ngram assert ( self.head_dim * self.num_attn_heads == config.hidden_size ), "config.hidden_size must be divisible by num_attn_heads" # key, value, query projection self.key_proj = nn.Linear(config.hidden_size, config.hidden_size) self.value_proj = nn.Linear(config.hidden_size, config.hidden_size) self.query_proj = nn.Linear(config.hidden_size, config.hidden_size) # out projection self.out_proj = nn.Linear(config.hidden_size, config.hidden_size) # rel position embeddings self.relative_pos_embeddings = nn.Linear(config.hidden_size, self.num_buckets * self.num_attn_heads) # for onnx runtime self.onnx_trace = False def _reshape(self, tensor, first_dim, batch_size): return tensor.reshape(first_dim, batch_size * self.num_attn_heads, self.head_dim).transpose(0, 1) def prepare_for_onnx_export_(self): self.onnx_trace = True def forward( self, hidden_states, layer_state=None, attention_mask=None, extended_predict_attention_mask=None, main_relative_position_buckets=None, predict_relative_position_buckets=None, position_ids=None, ): sequence_length, batch_size, hidden_size = hidden_states.size() assert list(hidden_states.size()) == [ sequence_length, batch_size, hidden_size, ], f"`hidden_states` should be of shape {sequence_length, batch_size, hidden_size}, but is of shape {hidden_states.shape}" # key and value of previous time steps are cached saved_state = layer_state.get("self", None) # project query_states = self.query_proj(hidden_states) key_states = self.key_proj(hidden_states) value_states = self.value_proj(hidden_states) # normalize query_states = query_states / (self.head_dim ** 0.5) # reshape query_states = self._reshape(query_states, sequence_length, batch_size) key_states = self._reshape(key_states, -1, batch_size) value_states = self._reshape(value_states, -1, batch_size) # chunk into main stream and predict stream hidden_states_list = hidden_states.chunk(1 + self.ngram, dim=0) query_states_list = query_states.chunk(1 + self.ngram, dim=1) key_states_list = key_states.chunk(1 + self.ngram, dim=1) value_states_list = value_states.chunk(1 + self.ngram, dim=1) main_hidden_states, hidden_states_predict_list = hidden_states_list[0], hidden_states_list[1:] main_query_states, predict_query_states_list = query_states_list[0], query_states_list[1:] main_key_states, predict_key_states_list = key_states_list[0], key_states_list[1:] main_value_states, predict_value_states_list = value_states_list[0], value_states_list[1:] # saved states are stored with shape (batch_size, num_attn_heads, seq_len, head_dim) if saved_state is not None: prev_main_key_states = saved_state["prev_key_states"].view( batch_size * self.num_attn_heads, -1, self.head_dim ) main_key_states = torch.cat((prev_main_key_states, main_key_states), dim=1) prev_main_value_states = saved_state["prev_value_states"].view( batch_size * self.num_attn_heads, -1, self.head_dim ) main_value_states = torch.cat((prev_main_value_states, main_value_states), dim=1) # Update cache layer_state["self"] = { "prev_key_states": main_key_states.view(batch_size, self.num_attn_heads, -1, self.head_dim), "prev_value_states": main_value_states.view(batch_size, self.num_attn_heads, -1, self.head_dim), } # get seq_length of main stream only main_sequence_length = sequence_length // (1 + self.ngram) # MAIN-STREAM # main attn weights main_attn_weights = torch.bmm(main_query_states, main_key_states.transpose(1, 2)) # retrieve relative position embeddings for each layer -> see paper for more details main_relative_pos_embeddings = self.get_main_relative_pos_embeddings( main_hidden_states, main_attn_weights, position_ids, main_relative_position_buckets ) main_attn_weights = main_attn_weights + main_relative_pos_embeddings if attention_mask is not None: main_attn_weights = main_attn_weights + attention_mask main_attn_probs = softmax( main_attn_weights, dim=-1, onnx_trace=self.onnx_trace, ).type_as(main_attn_weights) main_attn_probs = F.dropout(main_attn_probs, p=self.attention_dropout, training=self.training) # project to attn_output main_attn_output = torch.bmm(main_attn_probs, main_value_states) main_attn_output = ( main_attn_output.transpose(0, 1).contiguous().view(1, main_sequence_length, batch_size, hidden_size) ) main_attn_output = self.out_proj(main_attn_output) # PREDICT-STREAM # [ngram, B*head, T, c] predict_query_states = torch.cat(predict_query_states_list, 0).view( self.ngram, -1, main_sequence_length, self.head_dim ) # [ngram, B*head, 2*T, c] predict_key_states = torch.cat( [torch.cat([main_key_states, key], 1).unsqueeze(0) for key in predict_key_states_list], 0 ) # [ngram, T, B, C] predict_hidden_states = torch.cat(hidden_states_predict_list, 0).view( self.ngram, main_sequence_length, batch_size, hidden_size ) # [ngram, B*head, 2*T, c] predict_value_states = torch.cat( [torch.cat([main_value_states, v_p], 1).unsqueeze(0) for v_p in predict_value_states_list], 0 ) # [ngram, B*head, T, 2*T] predict_attn_weights = torch.einsum("nbtc,nbsc->nbts", (predict_query_states, predict_key_states)) # [ngram, B*head, T, S] # retrieve relative position embeddings for each layer -> see paper for more details predict_relative_pos_embeddings = self.get_predict_relative_pos_embeddings( predict_hidden_states, predict_attn_weights, position_ids, predict_relative_position_buckets ) # [ngram, B*head, T, 2*T] predict_attn_weights = predict_attn_weights + predict_relative_pos_embeddings if extended_predict_attention_mask is not None: predict_attn_weights = predict_attn_weights + extended_predict_attention_mask predict_attn_probs = softmax( predict_attn_weights, dim=-1, onnx_trace=self.onnx_trace, ).type_as(predict_attn_weights) predict_attn_probs = F.dropout(predict_attn_probs, p=self.attention_dropout, training=self.training) # project to attention output # [ngram, B*head, T, c] predict_attn_output = torch.einsum("nbts,nbsc->nbtc", (predict_attn_probs, predict_value_states)) # [ngram, T, B, C] predict_attn_output = ( predict_attn_output.transpose(1, 2) .contiguous() .view(self.ngram, main_sequence_length, batch_size, hidden_size) ) predict_attn_output = self.out_proj(predict_attn_output) # concat to single attn output # [1+ngram*T, B, C] attn_output = torch.cat([main_attn_output, predict_attn_output], 0).view(-1, batch_size, hidden_size) # reshape into better form for `config.output_attentions` main_attn_probs = main_attn_probs.view(batch_size, self.num_attn_heads, main_sequence_length, -1) predict_attn_probs = predict_attn_probs.view( self.ngram, batch_size, self.num_attn_heads, main_sequence_length, -1 ).transpose(0, 1) attn_output = F.dropout(attn_output, p=self.dropout, training=self.training) return attn_output, main_attn_probs, predict_attn_probs def get_main_relative_pos_embeddings( self, hidden_states, attn_weights, position_ids, main_relative_position_buckets ): # input hidden_states [T,B,C], input attn_weights [T*head,T,S], input position_ids [B,T] or [1,1] if main_relative_position_buckets is None: batch_size, sequence_length = hidden_states.shape[:2] relative_positions = ( torch.arange(1, attn_weights.shape[-1] + 1) .unsqueeze(0) .unsqueeze(0) .repeat(batch_size, sequence_length, 1) .to(position_ids.device) ) relative_positions = relative_positions - position_ids.unsqueeze(0).repeat( batch_size, sequence_length, 1 ) # [B, T, s] main_relative_position_buckets = compute_relative_buckets( self.num_buckets, self.relative_max_distance, relative_positions, False ) hidden_states = hidden_states.transpose(0, 1) # [B,T,C] rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) # [B,T,Buckets*head] rel_pos_embeddings = rel_pos_embeddings.view( rel_pos_embeddings.shape[:2] + (self.num_buckets, self.num_attn_heads) ).permute( 0, 3, 1, 2 ) # [B,T,Buckets,head] rel_pos_embeddings = rel_pos_embeddings.reshape(attn_weights.shape[:2] + (-1,)) # [B*head,T,Buckets] main_relative_position_buckets = ( main_relative_position_buckets.repeat(1, self.num_attn_heads, 1) .view(-1, main_relative_position_buckets.shape[-1]) .long() ) # [B*head*T, T] rel_pos_embeddings = rel_pos_embeddings.reshape(-1, rel_pos_embeddings.size(-1)) # [B*head*T,Buckets] main_relative_pos_embeddings = torch.gather( rel_pos_embeddings, dim=1, index=main_relative_position_buckets ).view(attn_weights.shape[:2] + (-1,)) return main_relative_pos_embeddings def get_predict_relative_pos_embeddings( self, hidden_states, attn_weights, position_ids, predict_relative_position_buckets ): # input hidden_states [ngram, T,B,C], input attn_weights [ngram, B*head,T,S], input position_ids [B,T] or [1,1], input predict_relative_position_buckets [B,T, 2*T] or None sequence_length, batch_size = hidden_states.shape[1:3] if predict_relative_position_buckets is None: key_sequence_length = attn_weights.shape[-1] assert ( position_ids[0][0] == key_sequence_length - 1 ), "`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)" relative_positions = ( torch.arange(0, key_sequence_length) .unsqueeze(0) .unsqueeze(0) .repeat(batch_size, sequence_length, 1) .to(position_ids.device) ) relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) predict_relative_position_buckets = compute_relative_buckets( self.num_buckets, self.relative_max_distance, relative_positions, False ) hidden_states = hidden_states.transpose(1, 2) # [ngram, B, T, C] rel_pos_embeddings = self.relative_pos_embeddings(hidden_states).view( hidden_states.shape[:-1] + (self.num_buckets, self.num_attn_heads) ) # [ngram, B, T, bucket, head] rel_pos_embeddings = rel_pos_embeddings.permute(0, 1, 4, 2, 3).reshape( self.ngram * batch_size * self.num_attn_heads, sequence_length, -1 ) # [ngram*B*head, T, bucket] predict_relative_position_buckets = predict_relative_position_buckets.unsqueeze(0).repeat( self.ngram, 1, self.num_attn_heads, 1 ) # [ngram, B, head*T, S] rel_pos_embeddings = rel_pos_embeddings.reshape(-1, rel_pos_embeddings.size(-1)) predict_relative_position_buckets = predict_relative_position_buckets.view( -1, predict_relative_position_buckets.size(-1) ).long() # [ngram*B*head*T, S] predict_relative_pos_embeddings = torch.gather( rel_pos_embeddings, dim=1, index=predict_relative_position_buckets ).view( self.ngram, batch_size * self.num_attn_heads, sequence_length, -1 ) # [ngram, B*head, T, S] return predict_relative_pos_embeddings class ProphetNetEncoderLayer(nn.Module): """ Encoder block for Prophetnet """ def __init__(self, config: ProphetNetConfig): super().__init__() # 1st residual block self.self_attn = ProphetNetSelfAttention(config, config.num_encoder_attention_heads) self.self_attn_layer_norm = LayerNorm(config.hidden_size) # 2nd residual block self.feed_forward = ProhpetNetFeedForward(config, config.encoder_ffn_dim) self.feed_forward_layer_norm = LayerNorm(config.hidden_size) def forward(self, hidden_states, attention_mask): # 1st residual block attention_output, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, ) hidden_states = self.self_attn_layer_norm(attention_output + hidden_states) # 2nd residual block feed_forward_output = self.feed_forward(hidden_states) hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) return hidden_states, attn_weights class ProphetNetDecoderLayer(nn.Module): """ Decoder block for Prophetnet """ def __init__(self, config: ProphetNetConfig): super().__init__() # 1st residual block self.self_attn = ProphetNetNgramProphetNetSelfAttention(config) self.self_attn_layer_norm = LayerNorm(config.hidden_size) # 2nd residual block if config.add_cross_attention: self.cross_attn = ProphetNetSelfAttention(config, config.num_decoder_attention_heads) self.cross_attn_layer_norm = LayerNorm(config.hidden_size) # 3rd residual block self.feed_forward = ProhpetNetFeedForward(config, config.decoder_ffn_dim) self.feed_forward_layer_norm = LayerNorm(config.hidden_size) def forward( self, hidden_states, encoder_hidden_states=None, encoder_attn_mask=None, layer_state=None, attention_mask=None, extended_predict_attention_mask=None, main_relative_position_buckets=None, predict_relative_position_buckets=None, position_ids=None, ): layer_state = layer_state if layer_state is not None else {} # 1st residual block ngram_attention_output, self_attn_weights, self_attn_weights_ngram = self.self_attn( hidden_states=hidden_states, layer_state=layer_state, attention_mask=attention_mask, extended_predict_attention_mask=extended_predict_attention_mask, main_relative_position_buckets=main_relative_position_buckets, predict_relative_position_buckets=predict_relative_position_buckets, position_ids=position_ids, ) hidden_states = self.self_attn_layer_norm(hidden_states + ngram_attention_output) cross_attn_weights = None if encoder_hidden_states is not None: # 2nd residual block attention_output, cross_attn_weights = self.cross_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attn_mask, layer_state=layer_state, # mutates layer state ) hidden_states = self.cross_attn_layer_norm(attention_output + hidden_states) # 3rd residual block feed_forward_output = self.feed_forward(hidden_states) hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) return ( hidden_states, self_attn_weights, self_attn_weights_ngram, cross_attn_weights, layer_state, ) # just self_attn weights for now, following t5, layer_state = cache for decoding @add_start_docstrings( "The standalone encoder part of the ProphetNetModel.", PROPHETNET_START_DOCSTRING, ) class ProphetNetEncoder(ProphetNetPreTrainedModel): r""" word_embeddings (:obj:`torch.nn.Embeddings` of shape :obj:`(config.vocab_size, config.hidden_size)`, `optional`): The word embedding parameters. This can be used to initialize :class:`~transformers.ProphetNetEncoder` with pre-defined word embeddings instead of randomely initialized word embeddings. """ def __init__(self, config: ProphetNetConfig, word_embeddings: nn.Embedding = None): super().__init__(config) self.word_embeddings = ( word_embeddings if word_embeddings is not None else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) ) self.position_embeddings = ProhpetNetPositionalEmbeddings(config) self.embeddings_layer_norm = LayerNorm(config.hidden_size) self.layers = nn.ModuleList([ProphetNetEncoderLayer(config) for _ in range(config.num_encoder_layers)]) self.init_weights() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Example:: >>> from transformers import ProphetNetTokenizer, ProphetNetEncoder >>> import torch >>> tokenizer = ProphetNetTokenizer.from_pretrained('microsoft/prophetnet-large-uncased') >>> model = ProphetNetEncoder.from_pretrained('patrickvonplaten/prophetnet-large-uncased-standalone') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("Either input_ids or inputs_embeds has to be passed.") elif input_ids is not None and inputs_embeds is not None: raise ValueError("Make sure to only pass input_ids or inputs_embeds.") elif input_ids is not None and inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # prepare attention mask if attention_mask is not None: extended_attention_mask = ( 1.0 - attention_mask[:, None, :].repeat(self.config.num_attention_heads, 1, 1) ) * -10000.0 extended_attention_mask = extended_attention_mask.to(inputs_embeds.dtype) else: extended_attention_mask = None position_embeddings, position_ids = self.position_embeddings(inputs_embeds.shape[:2], inputs_embeds.device) hidden_states = inputs_embeds + position_embeddings hidden_states = self.embeddings_layer_norm(hidden_states) hidden_states = F.dropout(hidden_states, p=self.config.dropout, training=self.training) hidden_states = hidden_states.transpose(0, 1) # B x T x C -> T x B x C encoder_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for encoder_layer in self.layers: if output_hidden_states: hidden_states = hidden_states.transpose(0, 1) encoder_hidden_states = encoder_hidden_states + (hidden_states,) hidden_states = hidden_states.transpose(0, 1) hidden_states, attn_probs = encoder_layer(hidden_states, attention_mask=extended_attention_mask) if output_attentions: all_attentions = all_attentions + (attn_probs,) hidden_states = hidden_states.transpose(0, 1) if output_hidden_states: encoder_hidden_states = encoder_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_hidden_states, attentions=all_attentions ) @add_start_docstrings( "The standalone decoder part of the ProphetNetModel.", PROPHETNET_START_DOCSTRING, ) class ProphetNetDecoder(ProphetNetPreTrainedModel): r""" word_embeddings (:obj:`torch.nn.Embeddings` of shape :obj:`(config.vocab_size, config.hidden_size)`, `optional`): The word embedding parameters. This can be used to initialize :class:`~transformers.ProphetNetEncoder` with pre-defined word embeddings instead of randomely initialized word embeddings. """ def __init__(self, config: ProphetNetConfig, word_embeddings: nn.Embedding = None): super().__init__(config) self.ngram = config.ngram self.num_buckets = config.num_buckets self.relative_max_distance = config.relative_max_distance self.dropout = config.dropout self.max_target_positions = config.max_position_embeddings self.word_embeddings = ( word_embeddings if word_embeddings is not None else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) ) self.position_embeddings = ProhpetNetPositionalEmbeddings(config) self.ngram_embeddings = nn.Embedding(self.ngram, config.hidden_size, None) self.layers = nn.ModuleList([ProphetNetDecoderLayer(config) for _ in range(config.num_decoder_layers)]) self.embeddings_layer_norm = LayerNorm(config.hidden_size) self.init_weights() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetDecoderModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last ``decoder_input_ids`` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all ``decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Returns: Example:: >>> from transformers import ProphetNetTokenizer, ProphetNetDecoder >>> import torch >>> tokenizer = ProphetNetTokenizer.from_pretrained('microsoft/prophetnet-large-uncased') >>> model = ProphetNetDecoder.from_pretrained('patrickvonplaten/prophetnet-large-uncased-standalone', add_cross_attention=False) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state """ use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("Either `decoder_input_ids` or `decoder_inputs_embeds` has to be passed.") elif input_ids is not None and inputs_embeds is not None: raise ValueError("Make sure to only pass `decoder_input_ids` or `decoder_inputs_embeds`.") elif input_ids is not None and inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) batch_size, sequence_length = inputs_embeds.shape[:2] main_stream_pos_embed, position_ids = self.position_embeddings( (batch_size, sequence_length), device=inputs_embeds.device, past_key_values=past_key_values, ) if past_key_values is not None: main_relative_position_buckets, predict_relative_position_buckets = None, None else: ( main_relative_position_buckets, predict_relative_position_buckets, ) = self.compute_buffered_relative_buckets(position_ids) predicting_stream_pos_embed = self.position_embeddings._forward(position_ids + 1) # add position embeddings hidden_states = inputs_embeds + main_stream_pos_embed hidden_states = hidden_states.transpose(0, 1) ngram_embeddings = self.ngram_embeddings.weight # prepare attention mask if past_key_values is not None: assert ( hidden_states.size(0) == 1 ), "At the moment `use_cache` is only supported for `decoder_input_ids` of length 1" ngram_hidden_states = [ (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).transpose(0, 1).repeat(1, batch_size, 1) for ngram in range(self.ngram) ] extended_attention_mask = None extended_predict_attention_mask = None else: ngram_hidden_states = [ (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).transpose(0, 1) for ngram in range(self.ngram) ] extended_attention_mask = self.prepare_attention_mask(hidden_states, attention_mask) extended_predict_attention_mask = self.prepare_predict_attention_mask(hidden_states, attention_mask) # prepare encoder attention mask if encoder_attention_mask is not None: extended_encoder_attention_mask = ( 1.0 - encoder_attention_mask[:, None, :].repeat(self.config.num_attention_heads, 1, 1) ) * -10000.0 extended_encoder_attention_mask = extended_encoder_attention_mask.to(inputs_embeds.dtype) else: extended_encoder_attention_mask = None hidden_states = torch.cat([hidden_states] + ngram_hidden_states, 0) if self.embeddings_layer_norm: hidden_states = self.embeddings_layer_norm(hidden_states) hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training) if encoder_hidden_states is not None: encoder_hidden_states = encoder_hidden_states.transpose(0, 1) # init attentions, hidden_states and cache with empty tuples all_main_stream_hidden_states = () if output_hidden_states else None all_ngram_stream_hidden_states = () if output_hidden_states and self.config.ngram > 0 else None all_main_stream_attns = () if output_attentions else None all_ngram_stream_attns = () if output_attentions else None all_cross_attns = () if output_attentions and self.config.add_cross_attention else None present_key_values = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: # grad cannot be kept because tensor is sliced all_main_stream_hidden_states += (hidden_states[:sequence_length].transpose(0, 1),) if self.config.ngram > 0: all_ngram_stream_hidden_states += (hidden_states[sequence_length:].transpose(0, 1),) layer_state = past_key_values[idx] if past_key_values is not None else None ( hidden_states, layer_self_attn, layer_self_predict_attn_output, layer_cross_attn, layer_past, ) = decoder_layer( hidden_states, encoder_hidden_states=encoder_hidden_states, encoder_attn_mask=extended_encoder_attention_mask, layer_state=layer_state, attention_mask=extended_attention_mask, extended_predict_attention_mask=extended_predict_attention_mask, main_relative_position_buckets=main_relative_position_buckets, predict_relative_position_buckets=predict_relative_position_buckets, position_ids=position_ids, ) if use_cache: present_key_values += (layer_past,) if output_attentions: all_main_stream_attns += (layer_self_attn,) all_ngram_stream_attns += (layer_self_predict_attn_output,) if self.config.add_cross_attention: all_cross_attns += (layer_cross_attn,) if output_hidden_states: all_main_stream_hidden_states += (hidden_states[:sequence_length].transpose(0, 1),) if self.config.ngram > 0: all_ngram_stream_hidden_states += (hidden_states[sequence_length:].transpose(0, 1),) # split last_hidden_state for return last_hidden_state = hidden_states[:sequence_length].transpose(0, 1) last_hidden_state_ngram = hidden_states[sequence_length:].transpose(0, 1) if self.config.ngram > 0 else None encoder_hidden_states = encoder_hidden_states.transpose(0, 1) if encoder_hidden_states is not None else None if not return_dict: return tuple( v for v in [ last_hidden_state, last_hidden_state_ngram, present_key_values, all_main_stream_hidden_states, all_ngram_stream_hidden_states, all_main_stream_attns, all_ngram_stream_attns, all_cross_attns, ] if v is not None ) return ProphetNetDecoderModelOutput( last_hidden_state=last_hidden_state, last_hidden_state_ngram=last_hidden_state_ngram, past_key_values=present_key_values, hidden_states=all_main_stream_hidden_states, hidden_states_ngram=all_ngram_stream_hidden_states, attentions=all_main_stream_attns, ngram_attentions=all_ngram_stream_attns, cross_attentions=all_cross_attns, ) def compute_buffered_relative_buckets(self, position_ids): batch_size, sequence_length = position_ids.shape position_ids = torch.arange(1, self.max_target_positions).to(position_ids.device).repeat(1, 1) main_relative_buckets, predict_relative_buckets = compute_all_stream_relative_buckets( self.num_buckets, self.relative_max_distance, position_ids ) # buffer relative buckets main_relative_buckets = main_relative_buckets[:, :sequence_length, :sequence_length].repeat(batch_size, 1, 1) predict_relative_buckets = torch.cat( [ predict_relative_buckets[:, :sequence_length, :sequence_length], predict_relative_buckets[ :, :sequence_length, self.max_target_positions : self.max_target_positions + sequence_length ], ], 2, ).repeat(batch_size, 1, 1) return main_relative_buckets, predict_relative_buckets def prepare_attention_mask(self, hidden_states, attention_mask): seq_length, batch_size = hidden_states.shape[:2] # get causal mask causal_mask = hidden_states.new(seq_length, seq_length).float().fill_(-float("inf")) causal_mask = torch.triu(causal_mask, 1) extended_causal_mask = causal_mask[:seq_length, :seq_length][None, :, :].expand( (batch_size,) + causal_mask.shape ) # add usual attention mask if attention_mask is not None: extended_attention_mask = (1.0 - attention_mask[:, None, :]) * -10000.0 extended_attention_mask = extended_causal_mask + extended_attention_mask else: extended_attention_mask = extended_causal_mask return extended_attention_mask.repeat(self.config.num_decoder_attention_heads, 1, 1).to(hidden_states.dtype) def prepare_predict_attention_mask(self, hidden_states, attention_mask): seq_length, batch_size = hidden_states.shape[:2] # get causal mask predict_causal_mask = ngram_attention_bias( self.max_target_positions, self.ngram, hidden_states.device, hidden_states.dtype ) predict_causal_mask = torch.cat( [ predict_causal_mask[:, :seq_length, :seq_length], predict_causal_mask[ :, :seq_length, self.max_target_positions : self.max_target_positions + seq_length ], ], dim=-1, ) extended_predict_causal_mask = predict_causal_mask[:, None, :, :].expand( predict_causal_mask.shape[:1] + (batch_size,) + predict_causal_mask.shape[1:] ) # add usual attention mask if attention_mask is not None: extended_attention_mask = (1.0 - attention_mask[None, :, None, :]) * -10000.0 extended_attention_mask = extended_attention_mask.expand((self.ngram, batch_size, seq_length, seq_length)) # predicted stream attention_mask should always be 0 extended_attention_mask = torch.cat( [extended_attention_mask, torch.zeros_like(extended_attention_mask)], dim=-1 ) extended_predict_attention_mask = extended_predict_causal_mask + extended_attention_mask else: extended_predict_attention_mask = extended_predict_causal_mask return extended_predict_attention_mask.repeat(1, self.config.num_decoder_attention_heads, 1, 1).to( hidden_states.dtype ) @add_start_docstrings( "The bare ProphetNet Model outputting raw hidden-states without any specific head on top.", PROPHETNET_START_DOCSTRING, ) class ProphetNetModel(ProphetNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) encoder_config = copy.deepcopy(config) encoder_config.is_encoder_decoder = False encoder_config.use_cache = False self.encoder = ProphetNetEncoder(encoder_config, self.word_embeddings) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False self.decoder = ProphetNetDecoder(decoder_config, self.word_embeddings) self.init_weights() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value self.encoder.word_embeddings = self.word_embeddings self.decoder.word_embeddings = self.word_embeddings def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs: Optional[Tuple] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Example:: >>> from transformers import ProphetNetTokenizer, ProphetNetModel >>> tokenizer = ProphetNetTokenizer.from_pretrained('microsoft/prophetnet-large-uncased') >>> model = ProphetNetModel.from_pretrained('microsoft/prophetnet-large-uncased') >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state # main stream hidden states >>> last_hidden_states_ngram = outputs.last_hidden_state_ngram # predict hidden states """ use_cache == use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return ProphetNetSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, last_hidden_state_ngram=decoder_outputs.last_hidden_state_ngram, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_ngram_hidden_states=decoder_outputs.hidden_states_ngram, decoder_attentions=decoder_outputs.attentions, decoder_ngram_attentions=decoder_outputs.ngram_attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The ProphetNet Model with a language modeling head. Can be used for sequence generation tasks.", PROPHETNET_START_DOCSTRING, ) class ProphetNetForConditionalGeneration(ProphetNetPreTrainedModel): def __init__(self, config: ProphetNetConfig): super().__init__(config) self.prophetnet = ProphetNetModel(config) self.padding_idx = config.pad_token_id self.disable_ngram_loss = config.disable_ngram_loss self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.init_weights() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.prophetnet.word_embeddings @add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[-100, 0, ..., config.vocab_size - 1]`. All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` Returns: Example:: >>> from transformers import ProphetNetTokenizer, ProphetNetForConditionalGeneration >>> tokenizer = ProphetNetTokenizer.from_pretrained('microsoft/prophetnet-large-uncased') >>> model = ProphetNetForConditionalGeneration.from_pretrained('microsoft/prophetnet-large-uncased') >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> logits_next_token = outputs.logits # logits to predict next token as usual >>> logits_ngram_next_tokens = outputs.logits_ngram # logits to predict 2nd, 3rd, ... next tokens """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) outputs = self.prophetnet( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) batch_size, sequence_length = ( decoder_input_ids.shape if decoder_input_ids is not None else decoder_inputs_embeds.shape[:2] ) predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) predict_logits = self.lm_head(predicting_streams) logits = predict_logits[:, 0] logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None # To use .view in loss computation, make sure that logits is contiguous. if not logits.is_contiguous(): logits = logits.contiguous() loss = None if labels is not None: loss = self._compute_loss(predict_logits, labels) if not return_dict: all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] else: return ProphetNetSeq2SeqLMOutput( loss=loss, logits=logits, logits_ngram=logits_ngram, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_ngram_hidden_states=outputs.decoder_ngram_hidden_states, decoder_attentions=outputs.decoder_attentions, decoder_ngram_attentions=outputs.decoder_ngram_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def _compute_loss(self, logits, labels, ignore_index=-100): expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) for i in range(self.config.ngram): if i > 0 and self.disable_ngram_loss: break expend_targets[i, :, :] = labels lprobs = F.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ) loss = F.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") if self.config.eps > 0.0: smooth_loss = -lprobs.sum(dim=-1, keepdim=True) non_masked_tokens = expend_targets.ne(ignore_index).view(-1) smooth_loss = smooth_loss[non_masked_tokens] smooth_loss = smooth_loss.mean() eps_i = self.config.eps / lprobs.size(-1) loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss return loss def prepare_inputs_for_generation( self, decoder_input_ids, past=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): assert encoder_outputs is not None, "`encoder_outputs` have to be passed for generation." if past: decoder_input_ids = decoder_input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "use_cache": use_cache, } @staticmethod def _reorder_cache(past, beam_idx): # this function reorders the cache for beam search def _reorder_cache(cache_dict, beam_idx): for k, key_value_states in cache_dict.items(): if key_value_states is not None: cache_dict[k] = key_value_states.index_select(0, beam_idx) return cache_dict reordered_past = [] for layer_past in past: # get the correct batch idx from decoder layer's batch dim for cross and self-attn layer_past_new = { attn_key: _reorder_cache(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items() } reordered_past.append(layer_past_new) return reordered_past def get_encoder(self): return self.prophetnet.encoder def get_decoder(self): return self.prophetnet.decoder @add_start_docstrings( "The standalone decoder part of the ProphetNetModel with a lm head on top. The model can be used for causal language modeling.", PROPHETNET_START_DOCSTRING, ) class ProphetNetForCausalLM(ProphetNetPreTrainedModel): def __init__(self, config): super().__init__(config) # set config for CLM config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False self.prophetnet = ProphetNetDecoderWrapper(config) self.padding_idx = config.pad_token_id self.disable_ngram_loss = config.disable_ngram_loss self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.init_weights() def get_input_embeddings(self): return self.prophetnet.decoder.word_embeddings def set_input_embeddings(self, value): self.prophetnet.decoder.word_embeddings = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.prophetnet.decoder = decoder def get_decoder(self): return self.prophetnet.decoder @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetDecoderLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last ``decoder_input_ids`` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all ``decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]`` Returns: Example:: >>> from transformers import ProphetNetTokenizer, ProphetNetForCausalLM >>> import torch >>> tokenizer = ProphetNetTokenizer.from_pretrained('microsoft/prophetnet-large-uncased') >>> model = ProphetNetForCausalLM.from_pretrained('microsoft/prophetnet-large-uncased') >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # Model can also be used with EncoderDecoder framework >>> from transformers import BertTokenizer, EncoderDecoderModel, ProphetNetTokenizer >>> import torch >>> tokenizer_enc = BertTokenizer.from_pretrained('bert-large-uncased') >>> tokenizer_dec = ProphetNetTokenizer.from_pretrained('microsoft/prophetnet-large-uncased') >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-large-uncased", "microsoft/prophetnet-large-uncased") >>> ARTICLE = ( ... "the us state department said wednesday it had received no " ... "formal word from bolivia that it was expelling the us ambassador there " ... "but said the charges made against him are `` baseless ." ... ) >>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids >>> labels = tokenizer_dec("us rejects charges against its ambassador in bolivia", return_tensors="pt").input_ids >>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:]) >>> loss = outputs.loss """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.prophetnet.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) batch_size, sequence_length = input_ids.shape if input_ids is not None else inputs_embeds.shape[:2] predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) predict_logits = self.lm_head(predicting_streams) logits = predict_logits[:, 0] logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None loss = None if labels is not None: loss = self._compute_loss(predict_logits, labels) if not return_dict: all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] else: return ProphetNetDecoderLMOutput( loss=loss, logits=logits, logits_ngram=logits_ngram, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, hidden_states_ngram=outputs.hidden_states_ngram, attentions=outputs.attentions, ngram_attentions=outputs.ngram_attentions, cross_attentions=outputs.cross_attentions, ) def _compute_loss(self, logits, labels, ignore_index=-100): expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) for i in range(self.config.ngram): if i > 0 and self.disable_ngram_loss: break expend_targets[i, :, :] = labels lprobs = F.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ) loss = F.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") if self.config.eps > 0.0: smooth_loss = -lprobs.sum(dim=-1, keepdim=True) non_masked_tokens = expend_targets.ne(ignore_index).view(-1) smooth_loss = smooth_loss[non_masked_tokens] smooth_loss = smooth_loss.mean() eps_i = self.config.eps / lprobs.size(-1) loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss return loss def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, use_cache=None, **kwargs): # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) if past: input_ids = input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed "attention_mask": attention_mask, "past_key_values": past, "use_cache": use_cache, } @staticmethod def _reorder_cache(past, beam_idx): # this function reorders the cache for beam search def _reorder_cache(cache_dict, beam_idx): for k, key_value_states in cache_dict.items(): if key_value_states is not None: cache_dict[k] = key_value_states.index_select(0, beam_idx) return cache_dict reordered_past = [] for layer_past in past: # get the correct batch idx from decoder layer's batch dim for cross and self-attn layer_past_new = { attn_key: _reorder_cache(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items() } reordered_past.append(layer_past_new) return reordered_past class ProphetNetDecoderWrapper(ProphetNetPreTrainedModel): """ This is a wrapper class, so that :class:`~transformers.ProphetNetForCausalLM` can correctly be loaded from pretrained prophetnet classes. """ def __init__(self, config): super().__init__(config) self.decoder = ProphetNetDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs)
d421bd86eebc600f231707b7649f32908802167c
8b2b61d1c6a9d58f79f65e4e91c281a5fb53ade2
/magic/magic.py
a781e8d46efd90383017430f97931c80d8ccaae7
[]
no_license
PiotrDabkowski/NeuralMagic
ffcdcc7f24fbc825eabe48ddfacddf84127a41be
cad50c9ba77b17b67d8b15c1fbed02487373ea21
refs/heads/master
2021-01-22T18:38:39.446605
2017-03-15T17:28:02
2017-03-15T17:28:02
85,101,058
3
0
null
null
null
null
UTF-8
Python
false
false
15,775
py
import tensorflow as tf import numpy as np from tensorflow.contrib import layers as tf_layers from dense_net import DenseBlock, TrainsitionLayer, bottleneck_block import random_hole import tiny_imagenet # Based on DenseNets but with an extra trick with dilated convolutions to increase receptive fields # Basically, intelligently converts one texture to another and you can train it anything, image segmentation, super resolution, # neural style, image inpainting, neural doodle, etc. The only drawback is that for every one you will need to train the model from scratch... # I will try to make things more generic by adding additional input to the Magic network - so that the transformation is a # function of an image and a goal. class DownsampleBlockSpecs: def __init__(self, layers, growth_factors, dilate_after=None, bottleneck=0.25, keep_dim_fraction=0.5): ''' layers specifies how many layers given dense block should have growth_factors specifies growth_factor for each layer (if int constant for all) dilate_after is a list of layers after which dilation should be increased by 2, if None then no dilation''' self.layers = layers self.growth_factors = growth_factors if type(growth_factors)!=int else self.layers*[growth_factors] self.dilations = [1]*layers if dilate_after is not None: for k in dilate_after: while k<len(self.dilations): self.dilations[k] *= 2 k += 1 self.bottleneck = bottleneck self.keep_dim_fraction = keep_dim_fraction class UpsableBlockSpecs: def __init__(self, kernel_size, channels, passthrough, passthrough_relative_size, follow_up_residual_block, activation=tf.nn.elu): self.kernel_size = kernel_size self.channels = channels self.passthrough = passthrough if passthrough: assert follow_up_residual_block, 'You must follow up with residual blocks if you use passthrough so that you get specified number of channels' self.passthrough_relative_size = passthrough_relative_size self.follow_up_residual_block = follow_up_residual_block self.activation = activation class Specs: def __init__(self, downsample_blocks, upsample_blocks): self.downsample_blocks = downsample_blocks self.upsample_blocks = upsample_blocks print 'According to specs the resolution of the output will be x%f' % 2**(len(upsample_blocks)-len(downsample_blocks)+1) class Magic: def __init__(self, specs, trainable=True, weights_collections=None): assert isinstance(specs, Specs) self.specs = specs self.trainable = trainable self.batch_norm_params = {'updates_collections': None, 'is_training': trainable, 'trainable': trainable, 'scale': False} assert not isinstance(weights_collections, basestring), 'Must be a list of collections!' self.variable_collections = None if weights_collections is None else {'weights': weights_collections} self.weight_collections = weights_collections self.d_res_maps = None self.u_res_maps = None self.own_scope_name = None def __call__(self, images): ''' transforms images ''' resolution = 1. out = images self.d_res_maps = {} self.u_res_maps = {} with tf.variable_scope(None, default_name='MagicNet'): with tf.variable_scope('downsampler'): for dblock in self.specs.downsample_blocks: out = DenseBlock(growth_rate=dblock.growth_factors, layers=dblock.layers, bottleneck=dblock.bottleneck, trainable=self.trainable, weights_collections=self.weight_collections, dilation_factors=dblock.dilations)(out) out, res_map = TrainsitionLayer(keep_dim_fraction=dblock.keep_dim_fraction, trainable=self.trainable, weights_collections=self.weight_collections)(out) self.d_res_maps[resolution] = res_map resolution /= 2. resolution *= 2. out = self.d_res_maps[resolution] with tf.variable_scope('upsampler'): for ublock in self.specs.upsample_blocks: # first standard deconv out = tf_layers.conv2d_transpose(out, ublock.channels, ublock.kernel_size, stride=2, activation_fn=ublock.activation, normalizer_fn=tf_layers.batch_norm, normalizer_params=self.batch_norm_params, variables_collections=self.variable_collections, trainable=self.trainable) resolution *= 2. if ublock.passthrough: assert ublock.follow_up_residual_block take_from = self.d_res_maps[resolution] # the question is: should we add the passthrough or concat as extra channels? # if concat then use batch_norm + activation, otherwise not but has to have the same num of channels # will use concat for now if ublock.passthrough_relative_size != 1: ext = tf_layers.conv2d(take_from, int(take_from.get_shape().as_list()[-1] * ublock.passthrough_relative_size), 1, stride=1, activation_fn=ublock.activation, normalizer_fn=tf_layers.batch_norm, normalizer_params=self.batch_norm_params, variables_collections=self.variable_collections, trainable=self.trainable) else: ext = take_from out = tf.concat((out, ext), 3) if ublock.follow_up_residual_block: if not isinstance(ublock.follow_up_residual_block, int): blocks = 1 else: blocks = ublock.follow_up_residual_block for _ in xrange(blocks): out = bottleneck_block(out, ublock.channels, stride=1, training=self.trainable, weights_collections=self.weight_collections, scale=False, activation=ublock.activation) self.u_res_maps[resolution] = out scope = tf.get_variable_scope() self.own_scope_name = scope.name return out def get_own_variables(self): return tf.get_collection(tf.GraphKeys().GLOBAL_VARIABLES, scope=self.own_scope_name) def get_own_weights(self): assert self.weight_collections return tf.get_collection(self.weight_collections[-1]) def get_num_params(self): s = 0 for e in self.get_own_weights(): s += np.prod(e.get_shape().as_list()) return s def get_own_l2_loss(self): print 'Number of params in weights', self.get_num_params() return sum(map(tf.nn.l2_loss, self.get_own_weights()), tf.constant(0.)) def output_channel_ranges_from_mean_std(mean, std): new_mean = (255./2 - mean)/std new_range = 255. / std return np.concatenate((np.expand_dims(new_mean - new_range/2., 1), np.expand_dims(new_mean + new_range/2. , 1)), 1) def to_image_channels(inp, num_channels, output_channel_ranges, trainable=True, nonlinearity=tf.nn.tanh, nonlinearity_range=(-1, 1)): # for each channel you must supply a range (min_val, max_val) as array CHANS X 2 assert len(output_channel_ranges) == num_channels print output_channel_ranges with tf.variable_scope(None, default_name='ToImageChannels'): out = tf_layers.conv2d(inp, num_channels, 1, stride=1, activation_fn=nonlinearity, trainable=trainable) nonlinearity_mean = sum(nonlinearity_range) / 2. nonlinearity_spread = float(nonlinearity_range[1]) - nonlinearity_range[0] output_channel_ranges = np.array(output_channel_ranges) output_channel_means = np.mean(output_channel_ranges, 1) output_channel_spreads = output_channel_ranges[:, 1] - output_channel_ranges[:, 0] return (out - nonlinearity_mean) / nonlinearity_spread * output_channel_spreads + output_channel_means def to_classification_layer(inp, num_classes, trainable=True, weights_collections=None): variables_collections = None if weights_collections is None else {'weights': weights_collections} with tf.variable_scope(None, default_name='ClassificationLayer'): out = tf.reduce_mean(inp, (1,2)) out = tf_layers.fully_connected(out, num_classes, activation_fn=None, variables_collections=variables_collections, trainable=trainable) return out StandardDownsample = [DownsampleBlockSpecs(7, 16, [3, 5]), DownsampleBlockSpecs(11, 22, [5, 7]), DownsampleBlockSpecs(14, 22, [7]), DownsampleBlockSpecs(16, 22, None)] DiscDownsample = [DownsampleBlockSpecs(6, 16, [3, 5]), DownsampleBlockSpecs(8, 22, [4, 6]), DownsampleBlockSpecs(10, 22, [6]),] StandardUpsample = [UpsableBlockSpecs(2, 256, True, 1, 3), UpsableBlockSpecs(2, 128, True, 1, 3), UpsableBlockSpecs(2, 64, True, 1, 3) ] def get_spatial_feature_weights(mask, masked_weight): temp = masked_weight*(1.-mask) + mask return temp / tf.reduce_mean(temp) BS = 4 MASKED_FEATURES_WEIGHT = 11. IMG_SIZE = 80 import imagenet StandardMagic = Specs(StandardDownsample, StandardUpsample) def get_vars(scope): return tf.get_collection(tf.GraphKeys().GLOBAL_VARIABLES, scope=scope) masks = tf.ones((BS, IMG_SIZE, IMG_SIZE, 1))* tf.expand_dims(random_hole.matrix_select(tf.ones((IMG_SIZE, IMG_SIZE, 1)), 8, 72, 8, 72), 0) #masks = 1. - tf.expand_dims(random_hole.random_matrices_gen(BS, 20, 30, (IMG_SIZE, IMG_SIZE)), 3) # tf.ones((BS, 64, 64, 1), tf.float32) # 0s or 1s, randomly generated every run! masks1 = masks masks2 = tf.image.resize_bilinear(masks, (IMG_SIZE/2, IMG_SIZE/2)) masks4 = tf.image.resize_bilinear(masks, (IMG_SIZE/4, IMG_SIZE/4)) masks8 = tf.image.resize_bilinear(masks, (IMG_SIZE/8, IMG_SIZE/8)) images = tf.placeholder(tf.float32, (BS, IMG_SIZE, IMG_SIZE, 3)) labels = tf.placeholder(tf.int32, (BS,)) masked_images = masks1*images with tf.variable_scope('EncDec'): a = Magic(StandardMagic, weights_collections=['abc'], trainable=False) fake_imgs = to_image_channels(a(masked_images), 3, output_channel_ranges=output_channel_ranges_from_mean_std(tiny_imagenet.IMAGE_NET_PIXEL_MEAN, tiny_imagenet.IMAGE_NET_PIXEL_STD)) raw_scores = to_classification_layer(a.d_res_maps[1/8.], 200, weights_collections=['abc']) loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=raw_scores, labels=labels)) with tf.variable_scope('Disc'): disc = Magic(Specs(DiscDownsample, []), weights_collections=['yub'], trainable=False) disc(tf.concat((images, fake_imgs), 0)) disc_probs = tf_layers.conv2d(disc.d_res_maps[1 / 4.], 1, 1, activation_fn=tf.nn.sigmoid) real_features1, fake_features1 = tf.split(disc.d_res_maps[1.], 2) real_features2, fake_features2 = tf.split(disc.d_res_maps[1./2], 2) real_features4, fake_features4 = tf.split(disc.d_res_maps[1./4], 2) distance_loss = (tf.reduce_mean(get_spatial_feature_weights(masks1, MASKED_FEATURES_WEIGHT)*((images - fake_imgs) ** 2)) #+ # tf.reduce_mean(get_spatial_feature_weights(masks2, MASKED_FEATURES_WEIGHT)*((real_features2 - fake_features2) ** 2)) + # tf.reduce_mean(get_spatial_feature_weights(masks4, MASKED_FEATURES_WEIGHT)*((real_features4 - fake_features4) ** 2)) ) / 2. real_probs_map, fake_probs_map = tf.split(disc_probs, 2) # we have to use masks4, it may seem high res but actually they cover about 32x32 image patches thanks to dilated convolutions i_masks4 = 1. - masks4 i_masks4_areas = tf.reduce_sum(i_masks4, (1,2,3)) real_probs, fake_probs = tf.reduce_sum(real_probs_map*i_masks4, (1,2,3)) / i_masks4_areas, \ tf.reduce_sum(fake_probs_map*i_masks4, (1,2,3)) / i_masks4_areas trick_loss = -tf.reduce_mean(tf.log(1.-fake_probs)) disc_loss = (-tf.reduce_mean(tf.log(fake_probs)) - tf.reduce_mean(tf.log(1-real_probs))) / 2. full_disc_loss = disc_loss + 0.0005*disc.get_own_l2_loss() print len(a.get_own_variables()) full_loss = 0.0005*a.get_own_l2_loss() + 0.5*distance_loss + 0.1*trick_loss import time, cv2 LAST = time.time() def tick(extra_vars, batch): global LAST if time.time() - LAST < 10: return LAST = time.time() cv2.imwrite('xyz.jpg', tiny_imagenet.to_bgr_img(np.concatenate((extra_vars['fake_imgs'][0], extra_vars['masked_images'][0]), 0))) print len(tf.global_variables()) print len(tf.trainable_variables()) print len(a.get_own_weights()) print a.get_num_params() train_main = tf.train.MomentumOptimizer(0.01, 0.9, use_nesterov=True).minimize(full_loss, var_list=get_vars('EncDec')) disc_train_every = 15 maybe_train_disc = tf.cond(tf.random_uniform((), 0., 1.) < 1./disc_train_every, lambda : tf.train.MomentumOptimizer(0.05, 0.9, use_nesterov=True).minimize(full_disc_loss, var_list=get_vars('Disc')), lambda : tf.no_op()) train_op = tf.group(train_main, maybe_train_disc) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) import tfutils train_bm = tiny_imagenet.get_train_bm(BS) val_bm = tiny_imagenet.get_train_bm(BS) saver = tf.train.Saver(tf.global_variables()) nt = tfutils.NiceTrainer(sess, train_bm, [images, labels], train_op, bm_val=val_bm, extra_variables={#'loss': loss, #'probs': tf.nn.softmax(raw_scores), 'trick_loss': trick_loss, 'disc_loss': disc_loss, 'distance_loss': distance_loss, 'fake_imgs': fake_imgs, 'masked_images': masked_images, }, printable_vars=['distance_loss', 'disc_loss', 'trick_loss'], computed_variables={#'acc': tfutils.accuracy_calc_op(), 'tick': tick}, saver=saver, save_every=5000000, save_dir='chuj', smooth_coef=0.9) nt.restore(relaxed=True) # reinit = tf.get_collection(tf.GraphKeys().GLOBAL_VARIABLES, scope='Disc') # assert reinit # sess.run(tf.variables_initializer(reinit)) while True: nt.train() nt.validate() nt.save()
c54fa934590f5cb47a549f57d815aa35745143c9
02338bb8111fc1aa88e830ac09a11664720eb2d4
/tmp/azure_rm_dpscertificate_info.py
186ac98ef17029cf91c7ff582d8755547b35601b
[]
no_license
Fred-sun/fred_yaml
a49977b0e8505c7447df23dd80c7fef1be70e6bc
295ca4cd2b59b8d2758f06eb7fd79920327ea524
refs/heads/master
2023-04-28T05:51:56.599488
2023-04-25T13:52:10
2023-04-25T13:52:10
131,376,340
0
1
null
2020-07-06T14:22:46
2018-04-28T05:34:49
TSQL
UTF-8
Python
false
false
9,585
py
#!/usr/bin/python # # Copyright (c) 2020 GuopengLin, (@t-glin) # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure_rm_dpscertificate_info version_added: '2.9' short_description: Get DpsCertificate info. description: - Get info of DpsCertificate. options: certificate_name: description: - Name of the certificate to retrieve. type: str resource_group_name: description: - Resource group identifier. - Name of resource group. required: true type: str provisioning_service_name: description: - Name of the provisioning service the certificate is associated with. - Name of provisioning service to retrieve certificates for. required: true type: str if_match: description: - ETag of the certificate. type: str extends_documentation_fragment: - azure author: - GuopengLin (@t-glin) ''' EXAMPLES = ''' - name: DPSGetCertificate azure_rm_dpscertificate_info: certificate_name: cert provisioning_service_name: myFirstProvisioningService resource_group_name: myResourceGroup - name: DPSGetCertificates azure_rm_dpscertificate_info: provisioning_service_name: myFirstProvisioningService resource_group_name: myResourceGroup ''' RETURN = ''' dps_certificate: description: >- A list of dict results where the key is the name of the DpsCertificate and the values are the facts for that DpsCertificate. returned: always type: complex contains: properties: description: - properties of a certificate returned: always type: dict sample: null contains: subject: description: - The certificate's subject name. returned: always type: str sample: null expiry: description: - The certificate's expiration date and time. returned: always type: str sample: null thumbprint: description: - The certificate's thumbprint. returned: always type: str sample: null is_verified: description: - Determines whether certificate has been verified. returned: always type: bool sample: null created: description: - The certificate's creation date and time. returned: always type: str sample: null updated: description: - The certificate's last update date and time. returned: always type: str sample: null id: description: - The resource identifier. returned: always type: str sample: null name: description: - The name of the certificate. returned: always type: str sample: null etag: description: - The entity tag. returned: always type: str sample: null type: description: - The resource type. returned: always type: str sample: null value: description: - The array of Certificate objects. returned: always type: list sample: null contains: properties: description: - properties of a certificate returned: always type: dict sample: null contains: subject: description: - The certificate's subject name. returned: always type: str sample: null expiry: description: - The certificate's expiration date and time. returned: always type: str sample: null thumbprint: description: - The certificate's thumbprint. returned: always type: str sample: null is_verified: description: - Determines whether certificate has been verified. returned: always type: bool sample: null created: description: - The certificate's creation date and time. returned: always type: str sample: null updated: description: - The certificate's last update date and time. returned: always type: str sample: null id: description: - The resource identifier. returned: always type: str sample: null name: description: - The name of the certificate. returned: always type: str sample: null etag: description: - The entity tag. returned: always type: str sample: null type: description: - The resource type. returned: always type: str sample: null ''' import time import json from ansible.module_utils.azure_rm_common import AzureRMModuleBase from copy import deepcopy try: from msrestazure.azure_exceptions import CloudError from azure.mgmt.iot import iotDpsClient from msrestazure.azure_operation import AzureOperationPoller from msrest.polling import LROPoller except ImportError: # This is handled in azure_rm_common pass class AzureRMDpsCertificateInfo(AzureRMModuleBase): def __init__(self): self.module_arg_spec = dict( certificate_name=dict( type='str' ), resource_group_name=dict( type='str', required=True ), provisioning_service_name=dict( type='str', required=True ), if_match=dict( type='str' ) ) self.certificate_name = None self.resource_group_name = None self.provisioning_service_name = None self.if_match = None self.results = dict(changed=False) self.mgmt_client = None self.state = None self.url = None self.status_code = [200] self.query_parameters = {} self.query_parameters['api-version'] = '2020-09-01-preview' self.header_parameters = {} self.header_parameters['Content-Type'] = 'application/json; charset=utf-8' self.mgmt_client = None super(AzureRMDpsCertificateInfo, self).__init__(self.module_arg_spec, supports_tags=True) def exec_module(self, **kwargs): for key in self.module_arg_spec: setattr(self, key, kwargs[key]) self.mgmt_client = self.get_mgmt_svc_client(iotDpsClient, base_url=self._cloud_environment.endpoints.resource_manager, api_version='2020-09-01-preview') if (self.certificate_name is not None and self.resource_group_name is not None and self.provisioning_service_name is not None): self.results['dps_certificate'] = self.format_item(self.get()) elif (self.resource_group_name is not None and self.provisioning_service_name is not None): self.results['dps_certificate'] = self.format_item(self.list()) return self.results def get(self): response = None try: response = self.mgmt_client.dps_certificate.get(certificate_name=self.certificate_name, resource_group_name=self.resource_group_name, provisioning_service_name=self.provisioning_service_name, if_match=self.if_match) except CloudError as e: self.log('Could not get info for @(Model.ModuleOperationNameUpper).') return response def list(self): response = None try: response = self.mgmt_client.dps_certificate.list(resource_group_name=self.resource_group_name, provisioning_service_name=self.provisioning_service_name) except CloudError as e: self.log('Could not get info for @(Model.ModuleOperationNameUpper).') return response def format_item(self, item): if hasattr(item, 'as_dict'): return [item.as_dict()] else: result = [] items = list(item) for tmp in items: result.append(tmp.as_dict()) return result def main(): AzureRMDpsCertificateInfo() if __name__ == '__main__': main()
a5f3a1d7bc6d6ea8f54a13b11fa07fa758a81d39
00c6ded41b84008489a126a36657a8dc773626a5
/.history/Sizing_Method/ConstrainsAnalysis/DesignPointSelectStrategy_20210714191514.py
60ba3be53c8d65f3e3bf954ef6f39baf671d731c
[]
no_license
12libao/DEA
85f5f4274edf72c7f030a356bae9c499e3afc2ed
1c6f8109bbc18c4451a50eacad9b4dedd29682bd
refs/heads/master
2023-06-17T02:10:40.184423
2021-07-16T19:05:18
2021-07-16T19:05:18
346,111,158
0
0
null
null
null
null
UTF-8
Python
false
false
3,787
py
# author: Bao Li # # Georgia Institute of Technology # import sys import os sys.path.insert(0, os.getcwd()) import numpy as np import matplotlib.pylab as plt import Sizing_Method.Other.US_Standard_Atmosphere_1976 as atm import Sizing_Method.Aerodynamics.ThrustLapse as thrust_lapse import Sizing_Method.Aerodynamics.Aerodynamics as ad import Sizing_Method.ConstrainsAnalysis.ConstrainsAnalysis as ca import Sizing_Method.ConstrainsAnalysis.ConstrainsAnalysisPD as ca_pd import Sizing_Method.ConstrainsAnalysis.ConstrainsAnalysisPDP1P2 as ca_pd_12 from scipy.optimize import curve_fit """ The unit use is IS standard """ class Design_Point_Select_Strategy: """This is a design point select strategy from constrains analysis""" def __init__(self, altitude, velocity, beta, method, p_turbofan_max, p_motorfun_max, n=12): """ :param altitude: m x 1 matrix :param velocity: m x 1 matrix :param beta: P_motor/P_total m x 1 matrix :param p_turbofan_max: maximum propulsion power for turbofan (threshold value) :param p_motorfun_max: maximum propulsion power for motorfun (threshold value) :param n: number of motor the first group of condition is for stall speed the stall speed condition have to use motor, therefore with PD :return: power load: design point p/w and w/s """ self.h = altitude self.v = velocity self.beta = beta self.n_motor = n self.p_turbofan_max = p_turbofan_max self.p_motorfun_max = p_motorfun_max # initialize the p_w, w_s, hp, n, m self.n = 100 self.m = len(self.h) self.hp = np.linspace(0, 1, self.n) self.hp_threshold = self.p_motorfun_max / (self.p_motorfun_max + self.p_turbofan_max) # method1 = Mattingly_Method, method2 = Gudmundsson_Method if method == 1: self.method1 = ca_pd_12.ConstrainsAnalysis_Mattingly_Method_with_DP_turbofun self.method2 = ca_pd_12.ConstrainsAnalysis_Mattingly_Method_with_DP_electric else: self.method1 = ca_pd_12.ConstrainsAnalysis_Gudmundsson_Method_with_DP_turbofun self.method2 = ca_pd_12.ConstrainsAnalysis_Gudmundsson_Method_with_DP_electric problem = self.method(self.h[0], self.v[0], self.beta[0], 6000, self.hp_threshold) self.w_s = problem.allFuncs[0](problem) def p_w_compute(self): p_w = np.zeros([self.m, self.n]) # m x n matrix for i in range(1, 8): for j in range(self.n): problem1 = self.method1(self.h[i], self.v[i], self.beta[i], self.w_s, self.hp[j]) problem2 = self.method2(self.h[i], self.v[i], self.beta[i], self.w_s, self.hp[j]) if i >= 5: p_w_1 = problem1.allFuncs[-1](problem1, roc=15 - 5 * (i - 5)) p_w_2 = problem2.allFuncs[-1](problem2, roc=15 - 5 * (i - 5)) else: p_w_1 = problem1.allFuncs[i](problem1) p_w_2 = problem2.allFuncs[i](problem2) if p_w_1 > self.p_turbofan_max: p_w_1 = 100000 elif p_w_2 > self.p_motorfun_max: p_w_2 = 100000 self.p_w[i, j] = p_w_1 + p_w_2 return p_w def strategy(self): p_w = Design_Point_Select_Strategy.p_w_compute(self) #find the min p_w for difference hp for each flight condition: p_w_min = np.amin(p_w, axis=1) hp_p_w_min = np.array(np.where(p_w == p_w_min)) design_point = np.amax(p_w_min) return p_w_min, hp_p_w_min
5cdb06fe2b728a7c56950f0ef7ab873a08acf5b7
df7b40e95718ac0f6071a0ba571b42efc81cf6de
/mmseg/models/backbones/fightingcv/conv/DepthwiseSeparableConvolution.py
8dde19054b1cbfee8452cf320b61bf165bbdeceb
[ "Apache-2.0" ]
permissive
shinianzhihou/ChangeDetection
87fa2c498248e6124aeefb8f0ee8154bda36deee
354e71234bef38b6e142b6ba02f23db958582844
refs/heads/master
2023-01-23T20:42:31.017006
2023-01-09T11:37:24
2023-01-09T11:37:24
218,001,748
162
29
Apache-2.0
2022-11-03T04:11:00
2019-10-28T08:41:54
Python
UTF-8
Python
false
false
899
py
import torch from torch import nn class DepthwiseSeparableConvolution(nn.Module): def __init__(self,in_ch,out_ch,kernel_size=3,stride=1,padding=1): super().__init__() self.depthwise_conv=nn.Conv2d( in_channels=in_ch, out_channels=in_ch, kernel_size=kernel_size, stride=stride, padding=padding, groups=in_ch ) self.pointwise_conv=nn.Conv2d( in_channels=in_ch, out_channels=out_ch, kernel_size=1, stride=1, padding=0, groups=1 ) def forward(self, x): out=self.depthwise_conv(x) out=self.pointwise_conv(out) return out if __name__ == '__main__': input=torch.randn(1,3,224,224) dsconv=DepthwiseSeparableConvolution(3,64) out=dsconv(input) print(out.shape)
14e16f4f11ae53470f7f9898327d4ed7af13658a
ee6fc02e8392ff780a4f0d1a5789776e4d0b6a29
/code/practice/abc/abc017/b.py
00e2723566008b22396a8f37944c3663d2794fdc
[]
no_license
mollinaca/ac
e99bb5d5c07159b3ef98cd7067424fa2751c0256
2f40dd4333c2b39573b75b45b06ad52cf36d75c3
refs/heads/master
2020-12-22T11:02:13.269855
2020-09-18T01:02:29
2020-09-18T01:02:29
236,757,685
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- s = input() s = s.replace('ch','').replace('o','').replace('k','').replace('u','') print ("YES") if len(s) == 0 else print ("NO")
f78fe98818ec4e3c7f3f8938e6c2b1cc0aacfeb5
f030c1b724ad3a04dade2463374bd3c03e17b93c
/napari/layers/_tests/test_source.py
de9e0954979762eb743aedccddb1bc784505ff21
[ "BSD-3-Clause" ]
permissive
sandutsar/napari
3c8568979c320d57cdb80e2ea2a5db7ea035413b
37d476bc0b00252177f17f25e7d1fd52ddc4bb69
refs/heads/master
2023-07-25T08:31:32.189843
2021-09-05T11:01:02
2021-09-05T11:01:02
390,003,115
0
0
BSD-3-Clause
2021-09-05T12:18:14
2021-07-27T13:56:23
Python
UTF-8
Python
false
false
1,457
py
from napari.layers import Points from napari.layers._source import Source, current_source, layer_source def test_layer_source(): """Test basic layer source assignment mechanism""" with layer_source(path='some_path', reader_plugin='builtins'): points = Points() assert points.source == Source(path='some_path', reader_plugin='builtins') def test_source_context(): """Test nested contexts, overrides, and resets.""" assert current_source() == Source() # everything created within this context will have this sample source with layer_source(sample=('samp', 'name')): assert current_source() == Source(sample=('samp', 'name')) # nested contexts override previous ones with layer_source(path='a', reader_plugin='plug'): assert current_source() == Source( path='a', reader_plugin='plug', sample=('samp', 'name') ) # note the new path now... with layer_source(path='b'): assert current_source() == Source( path='b', reader_plugin='plug', sample=('samp', 'name') ) # as we exit the contexts, they should undo their assignments assert current_source() == Source( path='a', reader_plugin='plug', sample=('samp', 'name') ) assert current_source() == Source(sample=('samp', 'name')) assert current_source() == Source()
2c2b4b54559435087b2f62c0c283829e9b7231ac
f865fdd970f8e37ea2aa5157374af8c4d6ced987
/test/test_vehicle.py
bee0fd446e3e911c97a237c630c531bd3edceb95
[]
no_license
gkeep-openapi/python-sdk
7e809448355bff535b3d64e013f001e9196c5e19
7c4f3785b47a110386ef10109619654522c95de5
refs/heads/master
2022-05-28T16:13:06.643958
2022-05-13T14:58:39
2022-05-13T14:58:39
235,536,010
0
0
null
null
null
null
UTF-8
Python
false
false
765
py
# coding: utf-8 """ Gkeep API Gkeep API # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from models.vehicle import Vehicle # noqa: E501 from swagger_client.rest import ApiException class TestVehicle(unittest.TestCase): """Vehicle unit test stubs""" def setUp(self): pass def tearDown(self): pass def testVehicle(self): """Test Vehicle""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.vehicle.Vehicle() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "gkeep-ci-jenkins" ]
gkeep-ci-jenkins
dd438d3b7d5636c160f3cf6c666427e41f69c4b1
73f04095a7905fa84e0ff255a07f730b4c4963d5
/dmi/sst/mw_oe/preprocessor.py
f2971521644c9b4ab285d2fc7c8025b499385a03
[]
no_license
bcdev/dmi-oe-sst
ff6d6d0795848ae6dbddb5a31ca5f32d7326c64a
03c8f4558e4a3452c009fe7292777faa12188449
refs/heads/master
2018-09-03T21:52:25.946135
2018-06-04T08:18:40
2018-06-04T08:18:40
107,671,810
0
0
null
null
null
null
UTF-8
Python
false
false
12,691
py
import numpy as np import xarray as xr from numba import jit, prange from xarray import Variable from dmi.sst.mw_oe.pressure_processor import PressureProcessor from dmi.sst.util.default_data import DefaultData DEG_TO_RAD = np.pi / np.float64(180.0) RAD_TO_DEG = np.float64(180.0) / np.pi class Preprocessor: TO_SQUEEZE_NAMES = ["insitu.time", "insitu.lat", "insitu.lon", "insitu.sea_surface_temperature", "insitu.sst_depth", "insitu.sst_qc_flag", "insitu.sst_track_flag]"] TO_AVERAGE_NAMES = [] TO_CENTER_EXTRACT_NAMES = ["amsre.nwp.sea_surface_temperature", "amsre.nwp.skin_temperature", "amsre.nwp.log_surface_pressure", "amsre.nwp.cloud_liquid_water", "amsre.nwp.total_column_water_vapour", "amsre.nwp.total_precip", "amsre.pixel_data_quality6V", "amsre.pixel_data_quality6H", "amsre.pixel_data_quality10V", "amsre.pixel_data_quality10H", "amsre.pixel_data_quality18V", "amsre.pixel_data_quality18H", "amsre.pixel_data_quality23V", "amsre.pixel_data_quality23H", "amsre.pixel_data_quality36V", "amsre.pixel_data_quality36H", "amsre.solar_zenith_angle", "amsre.scan_data_quality", "amsre.satellite_zenith_angle", "amsre.satellite_azimuth_angle", "amsre.Geostationary_Reflection_Latitude", "amsre.Geostationary_Reflection_Longitude", "amsre.latitude", "amsre.longitude", "amsre.brightness_temperature6V", "amsre.brightness_temperature6H", "amsre.brightness_temperature10V", "amsre.brightness_temperature10H", "amsre.brightness_temperature18V", "amsre.brightness_temperature18H", "amsre.brightness_temperature23V", "amsre.brightness_temperature23H", "amsre.brightness_temperature36V", "amsre.brightness_temperature36H"] TO_STDDEV_NAMES = ["amsre.brightness_temperature23V", "amsre.brightness_temperature23H", "amsre.brightness_temperature36V", "amsre.brightness_temperature36H"] WIND_SPEED_VARIABLES = ["amsre.nwp.10m_east_wind_component", "amsre.nwp.10m_north_wind_component"] NWP_SST_VARIABLES = ["amsre.nwp.sea_surface_temperature"] FILENAME_VARIABLES = ["amsre.l2a_filename"] AVERAGING_LENGTH = 5 # @todo 3 tb/tb this can be a parameter to the processor 2017-11-17 STDDEV_LENGTH = 21 # @todo 3 tb/tb this can be a parameter to the processor 2017-12-13 INV_GRAVITY_CONST = 1.0 / 9.80665 # s^2/m SST_NWP_BIAS = -0.05 def run(self, dataset, flag_coding=None): preprocessed_data = xr.Dataset() for variable_name in dataset.variables: print(" ... " + variable_name) if variable_name in self.TO_SQUEEZE_NAMES: self.squeeze_data(dataset, preprocessed_data, variable_name) continue if variable_name in self.TO_AVERAGE_NAMES: if variable_name in self.TO_STDDEV_NAMES: self.calc_std_dev(dataset, preprocessed_data, variable_name, flag_coding) self.average_subset(dataset, preprocessed_data, variable_name, flag_coding) continue if variable_name in self.TO_CENTER_EXTRACT_NAMES: self.extract_center_px(dataset, preprocessed_data, variable_name) self.convert_temperature(preprocessed_data, variable_name) self.apply_sst_nwp_bias(preprocessed_data, variable_name) if variable_name in self.TO_STDDEV_NAMES: self.calc_std_dev(dataset, preprocessed_data, variable_name, flag_coding) continue if variable_name in self.WIND_SPEED_VARIABLES: self.process_wind_speed_and_relative_angle(dataset, preprocessed_data) continue if variable_name in self.FILENAME_VARIABLES: self.extract_ascending_descending(dataset, preprocessed_data, flag_coding) continue self.calculate_TCLW(preprocessed_data) return preprocessed_data def convert_temperature(self, preprocessed_data, variable_name): if variable_name in self.NWP_SST_VARIABLES: sst_data = preprocessed_data[variable_name].data sst_data = sst_data - 273.15 preprocessed_data[variable_name] = Variable(["matchup"], sst_data) def apply_sst_nwp_bias(self, preprocessed_data, variable_name): if variable_name in self.NWP_SST_VARIABLES: sst_data = preprocessed_data[variable_name].data sst_data = sst_data + self.SST_NWP_BIAS preprocessed_data[variable_name] = Variable(["matchup"], sst_data) def process_wind_speed_and_relative_angle(self, dataset, preprocessed_data): self.extract_center_px(dataset, preprocessed_data, self.WIND_SPEED_VARIABLES[0]) self.extract_center_px(dataset, preprocessed_data, self.WIND_SPEED_VARIABLES[1]) east_wind_data = preprocessed_data.variables[self.WIND_SPEED_VARIABLES[0]].data north_wind_data = preprocessed_data.variables[self.WIND_SPEED_VARIABLES[1]].data abs_wind_speed_data = np.sqrt(np.square(east_wind_data) + np.square(north_wind_data)) preprocessed_data["amsre.nwp.abs_wind_speed"] = Variable(["matchup"], abs_wind_speed_data) num_matchups = len(dataset.coords["matchup_count"]) self.extract_center_px(dataset, preprocessed_data, "amsre.satellite_azimuth_angle") target_data = DefaultData.create_default_vector(num_matchups, np.float32, fill_value=np.NaN) phi_sat = preprocessed_data.variables["amsre.satellite_azimuth_angle"].data for i in range(0, num_matchups): target_data[i] = self.calculate_relative_angle(phi_sat[i], north_wind_data[i], east_wind_data[i]) preprocessed_data["relative_angle"] = Variable(["matchup"], target_data) def average_subset(self, dataset, preprocessed_data, variable_name, flag_coding=None): # @todo 1 tb/tb this method needs performance boost 2018-02-20 num_matchups = len(dataset.coords["matchup_count"]) invalid_data_array = np.zeros(num_matchups, dtype=np.bool) variable = dataset.variables[variable_name] fill_value = variable.attrs["_FillValue"] input_data = variable.values target_data = DefaultData.create_default_vector(num_matchups, np.float32, fill_value) width = variable.shape[2] height = variable.shape[1] center_x = int(np.floor(width / 2)) center_y = int(np.floor(height / 2)) offset = int(np.floor(self.AVERAGING_LENGTH / 2)) y_min = center_y - offset y_max = center_y + offset + 1 x_min = center_x - offset x_max = center_x + offset + 1 max_num_invalid = int(np.ceil(self.AVERAGING_LENGTH * self.AVERAGING_LENGTH * 0.1)) for i in range(0, num_matchups): layer = input_data[i, y_min:y_max, x_min: x_max] masked_layer = calculate_masked(layer, fill_value) num_fills = count_masked(masked_layer) if num_fills <= max_num_invalid: target_data[i] = np.nanmean(masked_layer) else: target_data[i] = fill_value invalid_data_array[i] = True if flag_coding is not None: flag_coding.add_avg_inv_thresh(invalid_data_array) preprocessed_data[variable_name] = Variable(["matchup"], target_data) # @todo 2 tb/tb refactor, this method duplicates most of the normal averaging method 2017-12-13 def calc_std_dev(self, dataset, preprocessed_data, variable_name, flag_coding=None): num_matchups = len(dataset.coords["matchup_count"]) invalid_data_array = np.zeros(num_matchups, dtype=np.bool) variable = dataset.variables[variable_name] fill_value = variable.attrs["_FillValue"] input_data = variable.values target_data = DefaultData.create_default_vector(num_matchups, np.float32, fill_value) width = variable.shape[2] height = variable.shape[1] center_x = int(np.floor(width / 2)) center_y = int(np.floor(height / 2)) offset = int(np.floor(self.STDDEV_LENGTH / 2)) y_min = center_y - offset y_max = center_y + offset + 1 x_min = center_x - offset x_max = center_x + offset + 1 max_num_invalid = int(np.ceil(self.STDDEV_LENGTH * self.STDDEV_LENGTH * 0.1)) for i in range(0, num_matchups): layer = input_data[i, y_min:y_max, x_min: x_max] masked_layer = calculate_masked(layer, fill_value) num_fills = count_masked(masked_layer) if num_fills <= max_num_invalid: target_data[i] = np.nanstd(masked_layer) else: target_data[i] = fill_value invalid_data_array[i] = True if flag_coding is not None: flag_coding.add_avg_inv_thresh(invalid_data_array) preprocessed_data[variable_name + "_stddev"] = Variable(["matchup"], target_data) def extract_center_px(self, dataset, preprocessed_data, variable_name): variable = dataset.variables[variable_name] if len(variable.shape) == 3: width = variable.shape[2] height = variable.shape[1] center_x = int(np.floor(width / 2)) center_y = int(np.floor(height / 2)) preprocessed_data[variable_name] = variable[:, center_y, center_x].squeeze() elif len(variable.shape) == 4: width = variable.shape[3] height = variable.shape[2] center_x = int(np.floor(width / 2)) center_y = int(np.floor(height / 2)) preprocessed_data[variable_name] = variable[:, :, center_y, center_x].squeeze() def squeeze_data(self, dataset, preprocessed_data, variable_name): preprocessed_data[variable_name] = dataset.variables[variable_name].squeeze() def calculate_TCLW(self, preprocessed_data): surface_pressure = np.exp(preprocessed_data["amsre.nwp.log_surface_pressure"]) pressure_processor = PressureProcessor() pressure_levels = pressure_processor.calculate_pressure_levels(surface_pressure) clw = preprocessed_data["amsre.nwp.cloud_liquid_water"] tclw_tmp = clw.data * pressure_levels.data tclw_tmp = tclw_tmp * self.INV_GRAVITY_CONST tclw = np.sum(tclw_tmp, axis=1) preprocessed_data["amsre.nwp.total_column_liquid_water"] = Variable(["num_matchups"], tclw) def extract_ascending_descending(self, dataset, preprocessed_data, flag_coding=None): num_matchups = len(dataset.coords["matchup_count"]) ascending_data_array = np.zeros(num_matchups, dtype=np.bool) invalid_data_array = np.zeros(num_matchups, dtype=np.bool) filename_data = dataset.variables["amsre.l2a_filename"].data for i in range(0, num_matchups): file_name = str(filename_data[i]) if "_A." in file_name: ascending_data_array[i] = True elif "_D." in file_name: ascending_data_array[i] = False else: invalid_data_array[i] = True if flag_coding is not None: flag_coding.add_inv_filename(invalid_data_array) preprocessed_data["amsre.ascending"] = Variable(["matchup"], ascending_data_array) def calculate_relative_angle(self, phi_sat, north_wind, east_wind): if phi_sat < 0.0: phi_sat = phi_sat + 360.0 north_wind_rad = north_wind * DEG_TO_RAD east_wind_rad = east_wind * DEG_TO_RAD phi_w = 90.0 - np.arctan2(north_wind_rad, east_wind_rad) * RAD_TO_DEG if phi_w < 0.0: phi_w = phi_w + 360.0 phi_rel = phi_sat - phi_w if phi_rel < 0.0: phi_rel = phi_rel + 360.0 return phi_rel @jit('float32[:, :](float32[:, :], float32)', nopython=True, parallel=True) def calculate_masked(layer, fill_value): height = layer.shape[0] width = layer.shape[1] result = np.zeros(layer.shape, dtype=np.float32) for y in prange(0, height): for x in prange(0, width): value = layer[y, x] if abs(value - fill_value) < 1e-9: result[y, x] = np.NaN else: result[y, x] = value return result @jit('int32(float32[:, :])', nopython=True, parallel=True) def count_masked(layer): height = layer.shape[0] width = layer.shape[1] result = 0 for y in prange(0, height): for x in prange(0, width): value = layer[y, x] if np.isnan(value): result += 1 return result
480ee4addf549a8560df46c79e497d97793f9f92
6dc9f1753f0e2ccaef6fb385324ba0602a04042a
/CUHK_CPM/GPS_Project/RR_Robot/build/pi_six_axis/pi_description/catkin_generated/pkg.develspace.context.pc.py
3d97e1ad3fa96f593b07648b7de288c2fbc559fa
[]
no_license
SunnyLyz/Deep_Learning
c413abe3ef6510b3492f0a73c9a287b4bf56ec2c
9fa58688a7daffdded8037b9fa20c571a00f87e0
refs/heads/master
2021-06-21T12:12:39.450564
2017-07-18T12:20:45
2017-07-18T12:20:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "pi_description" PROJECT_SPACE_DIR = "/home/turinglife/GPS_Project/RR_Robot/devel" PROJECT_VERSION = "0.0.0"
f617d8bc124c5f917b3c4b77f2bbec4e77496e8d
55ae369a3ef1593ff31a76847deb2a0d33898895
/mango/orderbookside.py
68ec8576483ae87a4daf73e9dff659332c7bc063
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
Investin-pro/mango-explorer
63afb2ad4fb272f5640d18d3df367a6877b3a99a
4760bd5f9d7067e24c12941d3d7d113b1a7173ef
refs/heads/master
2023-07-31T23:23:00.590654
2021-10-01T17:13:18
2021-10-01T17:13:18
402,579,362
1
3
MIT
2021-10-02T16:31:43
2021-09-02T22:31:31
Python
UTF-8
Python
false
false
6,432
py
# # ⚠ Warning # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT # LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # [🥭 Mango Markets](https://mango.markets/) support is available at: # [Docs](https://docs.mango.markets/) # [Discord](https://discord.gg/67jySBhxrg) # [Twitter](https://twitter.com/mangomarkets) # [Github](https://github.com/blockworks-foundation) # [Email](mailto:[email protected]) import enum import typing from decimal import Decimal from solana.publickey import PublicKey from .accountinfo import AccountInfo from .addressableaccount import AddressableAccount from .context import Context from .layouts import layouts from .metadata import Metadata from .orders import Order, OrderType, Side from .perpmarketdetails import PerpMarketDetails from .version import Version # # 🥭 OrderBookSideType enum # # Does the orderbook side represent bids or asks? # class OrderBookSideType(enum.Enum): # We use strings here so that argparse can work with these as parameters. BIDS = "BIDS" ASKS = "ASKS" def __str__(self) -> str: return self.value def __repr__(self) -> str: return f"{self}" # # 🥭 PerpOrderBookSide class # # `PerpOrderBookSide` holds orders for one side of a market. # class PerpOrderBookSide(AddressableAccount): def __init__(self, account_info: AccountInfo, version: Version, meta_data: Metadata, perp_market_details: PerpMarketDetails, bump_index: Decimal, free_list_len: Decimal, free_list_head: Decimal, root_node: Decimal, leaf_count: Decimal, nodes: typing.Any): super().__init__(account_info) self.version: Version = version self.meta_data: Metadata = meta_data self.perp_market_details: PerpMarketDetails = perp_market_details self.bump_index: Decimal = bump_index self.free_list_len: Decimal = free_list_len self.free_list_head: Decimal = free_list_head self.root_node: Decimal = root_node self.leaf_count: Decimal = leaf_count self.nodes: typing.Any = nodes @staticmethod def from_layout(layout: typing.Any, account_info: AccountInfo, version: Version, perp_market_details: PerpMarketDetails) -> "PerpOrderBookSide": meta_data = Metadata.from_layout(layout.meta_data) bump_index: Decimal = layout.bump_index free_list_len: Decimal = layout.free_list_len free_list_head: Decimal = layout.free_list_head root_node: Decimal = layout.root_node leaf_count: Decimal = layout.leaf_count nodes: typing.Any = layout.nodes return PerpOrderBookSide(account_info, version, meta_data, perp_market_details, bump_index, free_list_len, free_list_head, root_node, leaf_count, nodes) @staticmethod def parse(context: Context, account_info: AccountInfo, perp_market_details: PerpMarketDetails) -> "PerpOrderBookSide": data = account_info.data if len(data) != layouts.ORDERBOOK_SIDE.sizeof(): raise Exception( f"PerpOrderBookSide data length ({len(data)}) does not match expected size ({layouts.ORDERBOOK_SIDE.sizeof()})") layout = layouts.ORDERBOOK_SIDE.parse(data) return PerpOrderBookSide.from_layout(layout, account_info, Version.V1, perp_market_details) @staticmethod def load(context: Context, address: PublicKey, perp_market_details: PerpMarketDetails) -> "PerpOrderBookSide": account_info = AccountInfo.load(context, address) if account_info is None: raise Exception(f"PerpOrderBookSide account not found at address '{address}'") return PerpOrderBookSide.parse(context, account_info, perp_market_details) def orders(self) -> typing.Sequence[Order]: if self.leaf_count == 0: return [] if self.meta_data.data_type == layouts.DATA_TYPE.Bids: order_side = Side.BUY else: order_side = Side.SELL stack = [self.root_node] orders: typing.List[Order] = [] while len(stack) > 0: index = int(stack.pop()) node = self.nodes[index] if node.type_name == "leaf": price = node.key["price"] quantity = node.quantity decimals_differential = self.perp_market_details.base_token.decimals - self.perp_market_details.quote_token.decimals native_to_ui = Decimal(10) ** decimals_differential quote_lot_size = self.perp_market_details.quote_lot_size base_lot_size = self.perp_market_details.base_lot_size actual_price = price * (quote_lot_size / base_lot_size) * native_to_ui base_factor = Decimal(10) ** self.perp_market_details.base_token.decimals actual_quantity = (quantity * self.perp_market_details.base_lot_size) / base_factor orders += [Order(int(node.key["order_id"]), node.client_order_id, node.owner, order_side, actual_price, actual_quantity, OrderType.UNKNOWN)] elif node.type_name == "inner": if order_side == Side.BUY: stack = [*stack, node.children[0], node.children[1]] else: stack = [*stack, node.children[1], node.children[0]] return orders def __str__(self) -> str: nodes = "\n ".join([str(node).replace("\n", "\n ") for node in self.orders()]) return f"""« 𝙿𝚎𝚛𝚙𝙾𝚛𝚍𝚎𝚛𝙱𝚘𝚘𝚔𝚂𝚒𝚍𝚎 {self.version} [{self.address}] {self.meta_data} Perp Market: {self.perp_market_details} Bump Index: {self.bump_index} Free List: {self.free_list_head} (head) {self.free_list_len} (length) Root Node: {self.root_node} Leaf Count: {self.leaf_count} {nodes} »"""
298d061ade3f8aae2939f4898a724e5ec2c4bd4d
432481b47d95ea2ce63f4e1ceb2e27e8a6f155a1
/Project/Portfolio_construction/data.py
4534e88433e71c81ef7b704e42acdf7eb5e05458
[]
no_license
dxcv/Project-2
81fe3777fb7ee3db3df84d24b7321c8d40fcbb91
8105f996f97b657b5f1644a04f6f678005119b06
refs/heads/master
2020-09-08T09:58:56.829060
2019-11-08T17:51:36
2019-11-08T17:51:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,748
py
""" Importation of the data. """ # Author: John Sibony <[email protected]> from util import * from password import * import pandas as pd from sqlalchemy import create_engine def extraction_data(link_engine, query): """Extraction of the data using Vadim's database. :param link_engine: Link to extact the data (see password.py file). :param query: SQL query.""" engine = create_engine(link_engine) data = pd.read_sql_query(query, engine) return data def import_data(index, contract, start_date='2006-01-01', freq=['EW1', 'EW2', 'EW3', 'EW4', 'EW']): """Extraction of specific data. :param index: Name of the data index ('SP' or 'VIX'or 'VVIX' or '10Ybond' for respectively SP500 or Vix or Volatility of Vix or 10Year TBond index). :param contract: Type of Contract ('call' or 'put' or 'future' or 'spot'). :param start_date: Begining date of the extracted data. String in the format %YYYY-%mm-%dd. :param freq: Only valid for SPX index. List of the frequency of the option maturity. (items should be 'EW1' or 'EW2' or 'EW3' or 'EW4' or 'EW' or 'ES' for respectively every 1st Friday or 2nd Friday or 3rd Friday or 4th Friday or end of the month)""" link_engine = get_link_engine() if(index=='SP'): if(len(freq)>1): freq = str(tuple(freq)) else: freq = freq[0] freq = """('"""+str(freq)+"""')""" if(contract=='call'): query = '''select option_expiration, date, underlying, strike, delta, value, std_skew, dte, iv from data_option.cme_es_ivol_rp where date >= '''+"""'"""+start_date+"""'"""+''' and "root.symbol" in '''+freq+''' and sense = 'c' ''' data = extraction_data(link_engine, query) data.sort_values(['date', 'option_expiration'], inplace=True) data = data.set_index("date") elif(contract=='put'): query = '''select option_expiration, date, underlying, strike, delta, value, std_skew, dte, iv from data_option.cme_es_ivol_rp where date >= '''+"""'"""+start_date+"""'"""+''' and "root.symbol" in '''+str(freq)+''' and sense = 'p' ''' data = extraction_data(link_engine, query) data.sort_values(['date', 'option_expiration'], inplace=True) data = data.set_index("date") elif(contract=='future'): query = '''select date,expiry_date,close from data_future.cme_es where date >= '''+"""'"""+start_date+"""'""" data = extraction_data(link_engine, query) data.sort_values(['date', 'expiry_date'], inplace=True) data = data.set_index("date") elif(contract=='spot'): query = '''select date,close from data_ohlc.cboe_spx where date >= '''+"""'"""+start_date+"""'""" data = extraction_data(link_engine, query) data.sort_values(['date'], inplace=True) data = data.set_index("date") elif(index=='VIX'): if(contract=='call'): query = '''select date,option_expiration,strike,underlying,value,iv,delta,std_skew,dte from data_option.cbot_vx_ivol_rp where date >= '''+"""'"""+start_date+"""'"""+''' and "root.symbol" = 'VIX' and sense = 'c' ''' data = extraction_data(link_engine, query) data.sort_values(['date', 'option_expiration'], inplace=True) data = data.set_index("date") elif(contract=='put'): query = '''select date,option_expiration,strike,underlying,value,iv,delta,std_skew,dte from data_option.cbot_vx_ivol_rp where date >= '''+"""'"""+start_date+"""'"""+''' and "root.symbol" = 'VIX' and sense = 'p' ''' data = extraction_data(link_engine, query) data.sort_values(['date', 'option_expiration'], inplace=True) data = data.set_index("date") elif(contract=='future'): query = '''select date,expiry_date,close from data_future.cbot_vx where date >= '''+"""'"""+start_date+"""'""" data = extraction_data(link_engine, query) data.sort_values(['date', 'expiry_date'], inplace=True) data = data.set_index("date") elif(contract=='spot'): query = '''select date,close from data_ohlc.cbot_vix where date >= '''+"""'"""+start_date+"""'""" data = extraction_data(link_engine, query) data.sort_values(['date'], inplace=True) data = data.set_index("date") elif(index=='VVIX'): if(contract=='spot'): query = '''select date,close from data_ohlc.cboe_vvix where date >= '''+"""'"""+start_date+"""'""" data = extraction_data(link_engine, query) data.sort_values(['date'], inplace=True) data = data.set_index("date") elif(index=='10Ybond'): if(contract=='future'): query = '''select date,expiry_date,close from data_future.cme_ty where date >= '''+"""'"""+start_date+"""'""" data = extraction_data(link_engine, query) data.sort_values(['date', 'expiry_date'], inplace=True) data = data.set_index("date") data['underlying'] = 0 elif(contract=='spot'): query = '''select * from data_future_cont.ty1 where date >= '''+"""'"""+start_date+"""'""" data = extraction_data(link_engine, query) data.sort_values(['date'], inplace=True) data = data.set_index("date") try: return data except: raise KeyError('Data not find. Look at the argument allowed in the function import_data in the file data.py') if __name__ == '__main__': import_data('SP', 'spot', '2006-01-01')
3f510935494dd7cead655b91bd5e53778d5689d1
2d9a706cb899dfc355fe49dc6a37a0dc257b22fd
/test/crab_HIMB2_pixel_eff_sysEta_v1.py
9d910a1c9daa66e6f3f82a2a1547f4b45f121d17
[]
no_license
BetterWang/QWCumuGap
b1f4d3169d2019d3d465ea985fed2094279b62b6
61beb88799fd3c18398061b64b849ad5a849871d
refs/heads/master
2020-04-04T22:25:33.686266
2018-03-16T19:27:01
2018-03-16T19:27:01
82,000,312
0
0
null
null
null
null
UTF-8
Python
false
false
1,737
py
from CRABAPI.RawCommand import crabCommand from CRABClient.UserUtilities import config, getUsernameFromSiteDB from CRABClient.ClientExceptions import ClientException from httplib import HTTPException config = config() config.General.requestName = 'HIMB2_CumuGap_Pixel_eff_cent_sysPos_v1' config.General.workArea = 'CrabArea' config.General.transferOutputs = True config.General.transferLogs = True config.JobType.pluginName = 'Analysis' config.JobType.psetName = 'qwcumu_PbPb15_Pix_eff_pos_v1.py' config.JobType.inputFiles = ['EffCorrectionsPixel_TT_pt_0_10_v2.root'] config.JobType.maxJobRuntimeMin = 2500 config.Data.inputDataset = '/HIMinimumBias2/HIRun2015-25Aug2016-v1/AOD' #config.Data.inputDBS = 'phys03' config.Data.splitting = 'LumiBased' config.Data.unitsPerJob = 20 config.Data.outLFNDirBase = '/store/group/phys_heavyions/qwang/PbPb2015_cumu/' config.Data.lumiMask = '/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions15/HI/Cert_262548-263757_PromptReco_HICollisions15_JSON_v2.txt' config.Data.publication = False config.Data.useParent = False config.Site.storageSite = 'T2_CH_CERN' #config.Data.allowNonValidInputDataset = True #try: # crabCommand('submit', config = config) #except HTTPException as hte: # print "Failed submitting task: %s" % (hte.headers) #except ClientException as cle: # print "Failed submitting task: %s" % (cle) config.General.requestName = 'HIMB2_CumuGap_Pixel_eff_cent_sysNeg_v2' config.JobType.psetName = 'qwcumu_PbPb15_Pix_eff_neg_v1.py' try: crabCommand('submit', config = config) except HTTPException as hte: print "Failed submitting task: %s" % (hte.headers) except ClientException as cle: print "Failed submitting task: %s" % (cle)
01720e33170d4697953e0ec099bcda60e4576d6c
923f707341f7e6a4c86673c52ca796f40638619c
/809. Expressive Words.py
3080ddd64ba075863b8c0ce379c733da3c6944d6
[]
no_license
Huijuan2015/leetcode_Python_2019
bb1e54801faa15ee3ef2a7bd7628b6a16033f7c7
36c584e8f92a0725bab7a567dfd10b918408627b
refs/heads/master
2020-04-22T13:31:55.203162
2020-03-10T00:00:58
2020-03-10T00:00:58
170,412,291
0
0
null
null
null
null
UTF-8
Python
false
false
1,205
py
class Solution(object): def expressiveWords(self, S, words): """ :type S: str :type words: List[str] :rtype: int """ 自己定义map,不能直接用map,还需要考虑key的顺序 def RLE(s): # return string, list prev = -1 key = "" cnts = [] for i in range(len(s)): if i== len(s)-1 or s[i] != s[i+1]: key += s[i] cnts.append(i-prev) prev = i return (key,cnts) def isExtended(skey, scnt, wkey, wcnt): if skey != wkey or len(skey) != len(wkey): return False for i in range(len(scnt)): c1, c2 = scnt[i], wcnt[i] if c2 > c1: return False if c1 < 3 and c1 != c2: return False return True skey, scnt = RLE(S) cnt = 0 for word in words: wkey, wcnt = RLE(word) if isExtended(skey, scnt, wkey, wcnt): cnt += 1 # print word return cnt
fa07ea6fbca874d31aa899db0aad1b1f300167e5
545f817485cbf75e5b791ef39c7ff25f66a8de29
/src/brasil/gov/portal/tests/test_externalcontent_content_type.py
2c1a81689ccd3e718b59d796319d9a806340079c
[]
no_license
Assistevc/brasil.gov.portal
b5e85e749b19b3bc5080f1ed0b7ee727ad58bad0
54eb24e7e0ee81d74012a2af27bc8c9a8d56ef71
refs/heads/master
2021-01-15T19:05:01.335974
2014-12-17T13:46:55
2014-12-17T13:46:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,602
py
# -*- coding: utf-8 -*- from brasil.gov.portal.browser.content.external import ExternalContentView from brasil.gov.portal.content.external import IExternalContent from brasil.gov.portal.testing import INTEGRATION_TESTING from plone import api from plone.dexterity.interfaces import IDexterityFTI from plone.dexterity.schema import SCHEMA_CACHE from plone.namedfile.file import NamedBlobImage from zope.component import createObject from zope.component import queryUtility import os import unittest2 as unittest class ExternalContentTestCase(unittest.TestCase): layer = INTEGRATION_TESTING def setUp(self): self.portal = self.layer['portal'] with api.env.adopt_roles(['Manager', ]): self.folder = api.content.create( type='Folder', container=self.portal, id='test-folder' ) # Invalidate schema cache SCHEMA_CACHE.invalidate('ExternalContent') self.content = api.content.create( type='ExternalContent', container=self.folder, id='external' ) self.setup_content_data() def setup_content_data(self): path = os.path.dirname(__file__) image = open(os.path.join(path, 'files', 'image.jpg')).read() self.image = NamedBlobImage(image, 'image/jpeg', u'image.jpg') def test_adding(self): self.assertTrue(IExternalContent.providedBy(self.content)) def test_fti(self): fti = queryUtility(IDexterityFTI, name='ExternalContent') self.assertNotEqual(None, fti) def test_factory(self): fti = queryUtility(IDexterityFTI, name='ExternalContent') factory = fti.factory new_object = createObject(factory) self.assertTrue(IExternalContent.providedBy(new_object)) def test_image_tag(self): content = self.content # Sem imagem, sem tag self.assertEqual(content.tag(), '') # Adicionamos a imagem content.image = self.image self.assertIn('tileImage', content.tag()) def test_image_thumb(self): content = self.content # Sem imagem, sem thumbnail self.assertEqual(content.image_thumb(), None) # Adicionamos a imagem content.image = self.image self.assertTrue(content.image_thumb()) class ExternalContentViewTestCase(unittest.TestCase): layer = INTEGRATION_TESTING def setUp(self): self.portal = self.layer['portal'] # Invalidate schema cache SCHEMA_CACHE.invalidate('ExternalContent') with api.env.adopt_roles(['Manager', ]): self.folder = api.content.create( type='Folder', container=self.portal, id='test-folder' ) self.content = api.content.create( type='ExternalContent', container=self.folder, id='external' ) def test_view(self): view = self.content.restrictedTraverse('@@view') self.assertTrue(isinstance(view, ExternalContentView)) def test_view_manager(self): with api.env.adopt_roles(['Manager', ]): view = self.content.restrictedTraverse('@@view') self.assertIn('The link address is', view()) def test_view_anonymous(self): with api.env.adopt_roles(['Anonymous', ]): view = self.content.restrictedTraverse('@@view') # Um redirecionamento ocorrera, que nao sera realizado neste teste self.assertIsNone(view())
3a60668b274b8710c9d34d5244a5c0d11c03ec42
22712d4a3633c93c6173b826882b01174a4c6928
/sign/migrations/0001_initial.py
04cd63636e29f7b459fdb68d99865fb8594ccfe3
[]
no_license
New2object/guest2
e5dcbdcfb6fbbe386a5da51e7b7a18f97de8815d
30edbe54261a074fdea10150b52cb59e3bc6d781
refs/heads/master
2022-12-23T22:27:44.275577
2018-03-23T14:03:45
2018-03-23T14:03:45
124,031,317
1
1
null
2022-12-10T19:20:25
2018-03-06T06:24:45
Python
UTF-8
Python
false
false
1,662
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-04-30 09:33 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200)), ('limit', models.IntegerField()), ('status', models.BooleanField()), ('address', models.CharField(max_length=200)), ('start_time', models.DateTimeField(verbose_name='event_time')), ('create_time', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='Guest', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('realname', models.CharField(max_length=62)), ('phone', models.CharField(max_length=16)), ('email', models.EmailField(max_length=254)), ('sign', models.BooleanField()), ('create_time', models.DateTimeField(auto_now=True)), ('event', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sign.Event')), ], ), migrations.AlterUniqueTogether( name='guest', unique_together=set([('event', 'phone')]), ), ]
a008914d98ae2a6baab427010b3bfc9a8e14ee65
1beac95667f9236084dfecdf2550fb6e8a28b0b8
/backend/api/decapod_api/exceptions.py
c172c2796f82a2f416855d9af5c3ba696ff06535
[ "Apache-2.0" ]
permissive
lihaijing/ceph-lcm
52b9d2fae24ad8b54a386cda4c528d93288d603d
d7c07fbb87dc170d5b8a0a5c8a2cf857f71ae466
refs/heads/master
2021-01-12T08:17:03.919876
2016-12-12T07:58:58
2016-12-12T07:58:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,709
py
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """This module contains exceptions specific for API.""" import flask.json from werkzeug import exceptions from decapod_common import exceptions as app_exceptions class DecapodJSONMixin(app_exceptions.DecapodError, exceptions.HTTPException): """Basic JSON mixin for the werkzeug exceptions. Basic werkzeug exceptions return an HTML. This mixin forces them to return correct JSON. { "code": <numberical HTTP status code>, "error": <error ID>, "message": <description suitable to show to humans> } """ error_name = None def get_description(self, environ=None): return self.description def get_body(self, environ=None): error = self.error_name or self.__class__.__name__ error = str(error) error_message = { "code": self.code, "error": error, "message": self.get_description(environ) } json_error = flask.json.dumps(error_message) return json_error def get_headers(self, environ=None): return [("Content-Type", "application/json")] class BadRequest(DecapodJSONMixin, exceptions.BadRequest): pass class Unauthorized(DecapodJSONMixin, exceptions.Unauthorized): def get_headers(self, environ=None): headers = super().get_headers(environ=environ) headers.append(("WWW-Authenticate", "Token realm=\"Application\"")) return headers class Forbidden(DecapodJSONMixin, exceptions.Forbidden): pass class NotFound(DecapodJSONMixin, exceptions.NotFound): pass class MethodNotAllowed(DecapodJSONMixin, exceptions.MethodNotAllowed): def get_headers(self, environ=None): headers = DecapodJSONMixin.get_headers(self, environ) headers.extend(exceptions.MethodNotAllowed.get_headers(self, environ)) return headers class NotAcceptable(DecapodJSONMixin, exceptions.NotAcceptable): pass class InternalServerError(DecapodJSONMixin, exceptions.InternalServerError): pass class CannotConvertResultToJSONError(InternalServerError): pass class UnknownReturnValueError(InternalServerError): pass class InvalidJSONError(BadRequest): def __init__(self, errors): super().__init__("\n".join(errors)) class ImpossibleToCreateSuchModel(BadRequest): description = ( "It is impossible to create such model because it violates " "data model contracts." ) class CannotUpdateManagedFieldsError(BadRequest): description = "It is forbidden to update automanaged fields." class UnknownUserError(BadRequest): description = "Unknown user with ID {0}" def __init__(self, user_id): super().__init__(self.description.format(user_id)) class CannotUpdateDeletedModel(BadRequest): """Exception which is raised if you are trying to update deleted model.""" class CannotDeleteRoleWithActiveUsers(BadRequest): """Exception raised on attempt to delete role with active users.""" class CannotUpdateModelWithSuchParameters(ImpossibleToCreateSuchModel): """Exception raised on attempt to save data which violaties uniquiness.""" class CannotDeleteClusterWithServers(BadRequest): description = "Cluster still has servers" class UnknownPlaybookError(BadRequest): description = "Unknown playbook {0}" def __init__(self, playbook_name): super().__init__(self.description.format(playbook_name)) class ServerListIsRequiredForPlaybookError(BadRequest): description = "Explicit server list is required for playbook {0}" def __init__(self, playbook_name): super().__init__(self.description.format(playbook_name)) class UnknownClusterError(BadRequest): description = "There is not cluster with ID {0}" def __init__(self, cluster_id): super().__init__(self.description.format(cluster_id)) class UnknownPlaybookConfiguration(BadRequest): description = ( "There is no playbook configuration with ID {0} and " "version {1}" ) def __init__(self, item_id, version): super().__init__(self.description.format(item_id, version))
bc3d6165b432e622690fb5a07f75a8f96308ebd3
4c8a32fee60c54777396f80e6698c95fb18ae5b5
/env/Lib/site-packages/pip/_vendor/urllib3/util/retry.py
e508841d3fb192c2523eb7b6127fc5c7faaa0f8c
[]
no_license
LUINFO89/PlataformaGestiondeVuelos
f91cd351df6d5e40e341cbcae793d819faecaf75
adc6d6dc888d551ab83726c2dbdd7e6db4398c3b
refs/heads/main
2023-08-30T08:30:43.089497
2021-10-30T01:25:12
2021-10-30T01:25:12
422,015,313
1
0
null
null
null
null
UTF-8
Python
false
false
21,998
py
from __future__ import absolute_import import email import logging import re import time import warnings from collections import namedtuple from itertools import takewhile from ..exceptions import ( ConnectTimeoutError, InvalidHeader, MaxRetryError, ProtocolError, ProxyError, ReadTimeoutError, ResponseError, ) from ..packages import six log = logging.getLogger(__name__) # Data structure for representing the metadata of requests that result in a retry. RequestHistory = namedtuple( "RequestHistory", ["method", "url", "error", "status", "redirect_location"] ) # TODO: In v2 we can remove this sentinel and metaclass with deprecated options. _Default = object() class _RetryMeta(type): @property def DEFAULT_METHOD_WHITELIST(cls): warnings.warn( "Using 'Retry.DEFAULT_METHOD_WHITELIST' is deprecated and " "will be removed in v2.0. Use 'Retry.DEFAULT_METHODS_ALLOWED' instead", DeprecationWarning, ) return cls.DEFAULT_ALLOWED_METHODS @DEFAULT_METHOD_WHITELIST.setter def DEFAULT_METHOD_WHITELIST(cls, value): warnings.warn( "Using 'Retry.DEFAULT_METHOD_WHITELIST' is deprecated and " "will be removed in v2.0. Use 'Retry.DEFAULT_ALLOWED_METHODS' instead", DeprecationWarning, ) cls.DEFAULT_ALLOWED_METHODS = value @property def DEFAULT_REDIRECT_HEADERS_BLACKLIST(cls): warnings.warn( "Using 'Retry.DEFAULT_REDIRECT_HEADERS_BLACKLIST' is deprecated and " "will be removed in v2.0. Use 'Retry.DEFAULT_REMOVE_HEADERS_ON_REDIRECT' instead", DeprecationWarning, ) return cls.DEFAULT_REMOVE_HEADERS_ON_REDIRECT @DEFAULT_REDIRECT_HEADERS_BLACKLIST.setter def DEFAULT_REDIRECT_HEADERS_BLACKLIST(cls, value): warnings.warn( "Using 'Retry.DEFAULT_REDIRECT_HEADERS_BLACKLIST' is deprecated and " "will be removed in v2.0. Use 'Retry.DEFAULT_REMOVE_HEADERS_ON_REDIRECT' instead", DeprecationWarning, ) cls.DEFAULT_REMOVE_HEADERS_ON_REDIRECT = value @six.add_metaclass(_RetryMeta) class Retry(object): """Retry configuration. Each retry attempt will create a new Retry object with updated values, so they can be safely reused. Retries can be defined as a default for a pool:: retries = Retry(connect=5, read=2, redirect=5) http = PoolManager(retries=retries) response = http.request('GET', 'http://example.com/') Or per-request (which overrides the default for the pool):: response = http.request('GET', 'http://example.com/', retries=Retry(10)) Retries can be disabled by passing ``False``:: response = http.request('GET', 'http://example.com/', retries=False) Errors will be wrapped in :class:`~urllib3.exceptions.MaxRetryError` unless retries are disabled, in which case the causing exception will be raised. :param int total: Total number of retries to allow. Takes precedence over other counts. Set to ``None`` to remove this constraint and fall back on other counts. Set to ``0`` to fail on the first retry. Set to ``False`` to disable and imply ``raise_on_redirect=False``. :param int connect: How many connection-related errors to retry on. These are errors raised before the request is sent to the remote server, which we assume has not triggered the server to process the request. Set to ``0`` to fail on the first retry of this type. :param int read: How many times to retry on read errors. These errors are raised after the request was sent to the server, so the request may have side-effects. Set to ``0`` to fail on the first retry of this type. :param int redirect: How many redirects to perform. Limit this to avoid infinite redirect loops. A redirect is a HTTP response with a status code 301, 302, 303, 307 or 308. Set to ``0`` to fail on the first retry of this type. Set to ``False`` to disable and imply ``raise_on_redirect=False``. :param int status: How many times to retry on bad status codes. These are retries made on responses, where status code matches ``status_forcelist``. Set to ``0`` to fail on the first retry of this type. :param int other: How many times to retry on other errors. Other errors are errors that are not connect, read, redirect or status errors. These errors might be raised after the request was sent to the server, so the request might have side-effects. Set to ``0`` to fail on the first retry of this type. If ``total`` is not set, it's a good idea to set this to 0 to account for unexpected edge cases and avoid infinite retry loops. :param iterable allowed_methods: Set of uppercased HTTP method verbs that we should retry on. By default, we only retry on methods which are considered to be idempotent (multiple requests with the same parameters end with the same state). See :attr:`Retry.DEFAULT_ALLOWED_METHODS`. Set to a ``False`` value to retry on any verb. .. warning:: Previously this parameter was named ``method_whitelist``, that usage is deprecated in v1.26.0 and will be removed in v2.0. :param iterable status_forcelist: A set of integer HTTP status codes that we should force a retry on. A retry is initiated if the request method is in ``allowed_methods`` and the response status code is in ``status_forcelist``. By default, this is disabled with ``None``. :param float backoff_factor: A backoff factor to apply between attempts after the second try (most errors are resolved immediately by a second try without a delay). urllib3 will sleep for:: {backoff factor} * (2 ** ({number of total retries} - 1)) seconds. If the backoff_factor is 0.1, then :func:`.sleep` will sleep for [0.0s, 0.2s, 0.4s, ...] between retries. It will never be longer than :attr:`Retry.BACKOFF_MAX`. By default, backoff is disabled (set to 0). :param bool raise_on_redirect: Whether, if the number of redirects is exhausted, to raise a MaxRetryError, or to return a response with a response code in the 3xx range. :param bool raise_on_status: Similar meaning to ``raise_on_redirect``: whether we should raise an exception, or return a response, if status falls in ``status_forcelist`` range and retries have been exhausted. :param tuple history: The history of the request encountered during each call to :meth:`~Retry.increment`. The list is in the order the requests occurred. Each list item is of class :class:`RequestHistory`. :param bool respect_retry_after_header: Whether to respect Retry-After header on status codes defined as :attr:`Retry.RETRY_AFTER_STATUS_CODES` or not. :param iterable remove_headers_on_redirect: Sequence of headers to remove from the request when a response indicating a redirect is returned before firing off the redirected request. """ #: Default methods to be used for ``allowed_methods`` DEFAULT_ALLOWED_METHODS = frozenset( ["HEAD", "GET", "PUT", "DELETE", "OPTIONS", "TRACE"] ) #: Default status codes to be used for ``status_forcelist`` RETRY_AFTER_STATUS_CODES = frozenset([413, 429, 503]) #: Default headers to be used for ``remove_headers_on_redirect`` DEFAULT_REMOVE_HEADERS_ON_REDIRECT = frozenset(["Authorization"]) #: Maximum backoff time. BACKOFF_MAX = 120 def __init__( self, total=10, connect=None, read=None, redirect=None, status=None, other=None, allowed_methods=_Default, status_forcelist=None, backoff_factor=0, raise_on_redirect=True, raise_on_status=True, history=None, respect_retry_after_header=True, remove_headers_on_redirect=_Default, # TODO: Deprecated, remove in v2.0 method_whitelist=_Default, ): if method_whitelist is not _Default: if allowed_methods is not _Default: raise ValueError( "Using both 'allowed_methods' and " "'method_whitelist' together is not allowed. " "Instead only use 'allowed_methods'" ) warnings.warn( "Using 'method_whitelist' with Retry is deprecated and " "will be removed in v2.0. Use 'allowed_methods' instead", DeprecationWarning, stacklevel=2, ) allowed_methods = method_whitelist if allowed_methods is _Default: allowed_methods = self.DEFAULT_ALLOWED_METHODS if remove_headers_on_redirect is _Default: remove_headers_on_redirect = self.DEFAULT_REMOVE_HEADERS_ON_REDIRECT self.total = total self.connect = connect self.read = read self.status = status self.other = other if redirect is False or total is False: redirect = 0 raise_on_redirect = False self.redirect = redirect self.status_forcelist = status_forcelist or set() self.allowed_methods = allowed_methods self.backoff_factor = backoff_factor self.raise_on_redirect = raise_on_redirect self.raise_on_status = raise_on_status self.history = history or tuple() self.respect_retry_after_header = respect_retry_after_header self.remove_headers_on_redirect = frozenset( [h.lower() for h in remove_headers_on_redirect] ) def new(self, **kw): params = dict( total=self.total, connect=self.connect, read=self.read, redirect=self.redirect, status=self.status, other=self.other, status_forcelist=self.status_forcelist, backoff_factor=self.backoff_factor, raise_on_redirect=self.raise_on_redirect, raise_on_status=self.raise_on_status, history=self.history, remove_headers_on_redirect=self.remove_headers_on_redirect, respect_retry_after_header=self.respect_retry_after_header, ) # TODO: If already given in **kw we use what's given to us # If not given we need to figure out what to pass. We decide # based on whether our class has the 'method_whitelist' property # and if so we pass the deprecated 'method_whitelist' otherwise # we use 'allowed_methods'. Remove in v2.0 if "method_whitelist" not in kw and "allowed_methods" not in kw: if "method_whitelist" in self.__dict__: warnings.warn( "Using 'method_whitelist' with Retry is deprecated and " "will be removed in v2.0. Use 'allowed_methods' instead", DeprecationWarning, ) params["method_whitelist"] = self.allowed_methods else: params["allowed_methods"] = self.allowed_methods params.update(kw) return type(self)(**params) @classmethod def from_int(cls, retries, redirect=True, default=None): """ Backwards-compatibility for the old retries format.""" if retries is None: retries = default if default is not None else cls.DEFAULT if isinstance(retries, Retry): return retries redirect = bool(redirect) and None new_retries = cls(retries, redirect=redirect) log.debug("Converted retries value: %r -> %r", retries, new_retries) return new_retries def get_backoff_time(self): """Formula for computing the current backoff :rtype: float """ # We want to consider only the last consecutive errors sequence (Ignore redirects). consecutive_errors_len = len( list( takewhile(lambda x: x.redirect_location is None, reversed(self.history)) ) ) if consecutive_errors_len <= 1: return 0 backoff_value = self.backoff_factor * (2 ** (consecutive_errors_len - 1)) return min(self.BACKOFF_MAX, backoff_value) def parse_retry_after(self, retry_after): # Whitespace: https://tools.ietf.org/html/rfc7230#section-3.2.4 if re.match(r"^\s*[0-9]+\s*$", retry_after): seconds = int(retry_after) else: retry_date_tuple = email.utils.parsedate_tz(retry_after) if retry_date_tuple is None: raise InvalidHeader("Invalid Retry-After header: %s" % retry_after) if retry_date_tuple[9] is None: # Python 2 # Assume UTC if no timezone was specified # On Python2.7, parsedate_tz returns None for a timezone offset # instead of 0 if no timezone is given, where mktime_tz treats # a None timezone offset as local time. retry_date_tuple = retry_date_tuple[:9] + (0,) + retry_date_tuple[10:] retry_date = email.utils.mktime_tz(retry_date_tuple) seconds = retry_date - time.time() if seconds < 0: seconds = 0 return seconds def get_retry_after(self, response): """ Get the value of Retry-After in seconds. """ retry_after = response.getheader("Retry-After") if retry_after is None: return None return self.parse_retry_after(retry_after) def sleep_for_retry(self, response=None): retry_after = self.get_retry_after(response) if retry_after: time.sleep(retry_after) return True return False def _sleep_backoff(self): backoff = self.get_backoff_time() if backoff <= 0: return time.sleep(backoff) def sleep(self, response=None): """Sleep between retry attempts. This method will respect a server's ``Retry-After`` response header and sleep the duration of the time requested. If that is not present, it will use an exponential backoff. By default, the backoff factor is 0 and this method will return immediately. """ if self.respect_retry_after_header and response: slept = self.sleep_for_retry(response) if slept: return self._sleep_backoff() def _is_connection_error(self, err): """Errors when we're fairly sure that the server did not receive the request, so it should be safe to retry. """ if isinstance(err, ProxyError): err = err.original_error return isinstance(err, ConnectTimeoutError) def _is_read_error(self, err): """Errors that occur after the request has been started, so we should assume that the server began processing it. """ return isinstance(err, (ReadTimeoutError, ProtocolError)) def _is_method_retryable(self, method): """Checks if a given HTTP method should be retried upon, depending if it is included in the allowed_methods """ # TODO: For now favor if the Retry implementation sets its own method_whitelist # property outside of our constructor to avoid breaking custom implementations. if "method_whitelist" in self.__dict__: warnings.warn( "Using 'method_whitelist' with Retry is deprecated and " "will be removed in v2.0. Use 'allowed_methods' instead", DeprecationWarning, ) allowed_methods = self.method_whitelist else: allowed_methods = self.allowed_methods if allowed_methods and method.upper() not in allowed_methods: return False return True def is_retry(self, method, status_code, has_retry_after=False): """Is this method/status code retryable? (Based on allowlists and control variables such as the number of total retries to allow, whether to respect the Retry-After header, whether this header is present, and whether the returned status code is on the list of status codes to be retried upon on the presence of the aforementioned header) """ if not self._is_method_retryable(method): return False if self.status_forcelist and status_code in self.status_forcelist: return True return ( self.total and self.respect_retry_after_header and has_retry_after and (status_code in self.RETRY_AFTER_STATUS_CODES) ) def is_exhausted(self): """ Are we out of retries? """ retry_counts = ( self.total, self.connect, self.read, self.redirect, self.status, self.other, ) retry_counts = list(filter(None, retry_counts)) if not retry_counts: return False return min(retry_counts) < 0 def increment( self, method=None, url=None, response=None, error=None, _pool=None, _stacktrace=None, ): """Return a new Retry object with incremented retry counters. :param response: A response object, or None, if the server did not return a response. :type response: :class:`~urllib3.response.HTTPResponse` :param Exception error: An error encountered during the request, or None if the response was received successfully. :return: A new ``Retry`` object. """ if self.total is False and error: # Disabled, indicate to re-raise the error. raise six.reraise(type(error), error, _stacktrace) total = self.total if total is not None: total -= 1 connect = self.connect read = self.read redirect = self.redirect status_count = self.status other = self.other cause = "unknown" status = None redirect_location = None if error and self._is_connection_error(error): # Connect retry? if connect is False: raise six.reraise(type(error), error, _stacktrace) elif connect is not None: connect -= 1 elif error and self._is_read_error(error): # Read retry? if read is False or not self._is_method_retryable(method): raise six.reraise(type(error), error, _stacktrace) elif read is not None: read -= 1 elif error: # Other retry? if other is not None: other -= 1 elif response and response.get_redirect_location(): # Redirect retry? if redirect is not None: redirect -= 1 cause = "too many redirects" redirect_location = response.get_redirect_location() status = response.status else: # Incrementing because of a server error like a 500 in # status_forcelist and the given method is in the allowed_methods cause = ResponseError.GENERIC_ERROR if response and response.status: if status_count is not None: status_count -= 1 cause = ResponseError.SPECIFIC_ERROR.format(status_code=response.status) status = response.status history = self.history + ( RequestHistory(method, url, error, status, redirect_location), ) new_retry = self.new( total=total, connect=connect, read=read, redirect=redirect, status=status_count, other=other, history=history, ) if new_retry.is_exhausted(): raise MaxRetryError(_pool, url, error or ResponseError(cause)) log.debug("Incremented Retry for (url='%s'): %r", url, new_retry) return new_retry def __repr__(self): return ( "{cls.__name__}(total={self.total}, connect={self.connect}, " "read={self.read}, redirect={self.redirect}, status={self.status})" ).format(cls=type(self), self=self) def __getattr__(self, item): if item == "method_whitelist": # TODO: Remove this deprecated alias in v2.0 warnings.warn( "Using 'method_whitelist' with Retry is deprecated and " "will be removed in v2.0. Use 'allowed_methods' instead", DeprecationWarning, ) return self.allowed_methods try: return getattr(super(Retry, self), item) except AttributeError: return getattr(Retry, item) # For backwards compatibility (equivalent to pre-v1.9): Retry.DEFAULT = Retry(3)
2c4b39edafd28a4c21b76214cd3c205f4ee1d683
d5c578256dc7d8f0bbd5c4b340e804c9d6676b90
/combine_A_and_B.py
e966b73df86d87a284b567626d54ac819d9b0d81
[]
no_license
Bala93/Life_science
470728376a5ce37017bf9647d49b8fb2b93fcac6
fbd0f16ddde13e356269fe14c679af8e4005eb74
refs/heads/master
2021-09-17T16:15:21.356685
2018-07-03T19:14:49
2018-07-03T19:14:49
129,958,449
0
0
null
null
null
null
UTF-8
Python
false
false
2,205
py
import os import numpy as np import cv2 import argparse parser = argparse.ArgumentParser('create image pairs') parser.add_argument('--fold_A', dest='fold_A', help='input directory for image A', type=str, default='../dataset/50kshoes_edges') parser.add_argument('--fold_B', dest='fold_B', help='input directory for image B', type=str, default='../dataset/50kshoes_jpg') parser.add_argument('--fold_AB', dest='fold_AB', help='output directory', type=str, default='../dataset/test_AB') parser.add_argument('--num_imgs', dest='num_imgs', help='number of images',type=int, default=1000000) parser.add_argument('--use_AB', dest='use_AB', help='if true: (0001_A, 0001_B) to (0001_AB)',action='store_true') args = parser.parse_args() for arg in vars(args): print('[%s] = ' % arg, getattr(args, arg)) splits = os.listdir(args.fold_A) for sp in splits: img_fold_A = os.path.join(args.fold_A, sp) img_fold_B = os.path.join(args.fold_B, sp) img_list = os.listdir(img_fold_A) if args.use_AB: img_list = [img_path for img_path in img_list if '_A.' in img_path] num_imgs = min(args.num_imgs, len(img_list)) print('split = %s, use %d/%d images' % (sp, num_imgs, len(img_list))) img_fold_AB = os.path.join(args.fold_AB, sp) if not os.path.isdir(img_fold_AB): os.makedirs(img_fold_AB) print('split = %s, number of images = %d' % (sp, num_imgs)) for n in range(num_imgs): name_A = img_list[n] path_A = os.path.join(img_fold_A, name_A) if args.use_AB: name_B = name_A.replace('_A.', '_B.') else: name_B = name_A path_B = os.path.join(img_fold_B, name_B) if os.path.isfile(path_A) and os.path.isfile(path_B): name_AB = name_A if args.use_AB: name_AB = name_AB.replace('_A.', '.') # remove _A path_AB = os.path.join(img_fold_AB, name_AB) im_A = cv2.imread(path_A) im_B = cv2.imread(path_B) # im_A = cv2.imread(path_A, cv2.CV_LOAD_IMAGE_COLOR) # im_B = cv2.imread(path_B, cv2.CV_LOAD_IMAGE_COLOR) im_AB = np.concatenate([im_A, im_B], 1) cv2.imwrite(path_AB, im_AB)
f81184a6ca86a7b8f8791b4043f069df9155c3b3
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/contrib/cv/detection/SSD/tests/test_models/test_forward.py
d3805e803d59dbea7a21a0dd83d3bae9bd213a7d
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
12,689
py
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """pytest tests/test_forward.py.""" import copy from os.path import dirname, exists, join import numpy as np import pytest import torch def _get_config_directory(): """Find the predefined detector config directory.""" try: # Assume we are running in the source mmdetection repo repo_dpath = dirname(dirname(dirname(__file__))) except NameError: # For IPython development when this __file__ is not defined import mmdet repo_dpath = dirname(dirname(mmdet.__file__)) config_dpath = join(repo_dpath, 'configs') if not exists(config_dpath): raise Exception('Cannot find config path') return config_dpath def _get_config_module(fname): """Load a configuration as a python module.""" from mmcv import Config config_dpath = _get_config_directory() config_fpath = join(config_dpath, fname) config_mod = Config.fromfile(config_fpath) return config_mod def _get_detector_cfg(fname): """Grab configs necessary to create a detector. These are deep copied to allow for safe modification of parameters without influencing other tests. """ import mmcv config = _get_config_module(fname) model = copy.deepcopy(config.model) train_cfg = mmcv.Config(copy.deepcopy(config.train_cfg)) test_cfg = mmcv.Config(copy.deepcopy(config.test_cfg)) return model, train_cfg, test_cfg def test_rpn_forward(): model, train_cfg, test_cfg = _get_detector_cfg( 'rpn/rpn_r50_fpn_1x_coco.py') model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg) input_shape = (1, 3, 224, 224) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train gt_bboxes = mm_inputs['gt_bboxes'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], return_loss=False) batch_results.append(result) @pytest.mark.parametrize( 'cfg_file', [ 'retinanet/retinanet_r50_fpn_1x_coco.py', 'guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py', 'ghm/retinanet_ghm_r50_fpn_1x_coco.py', 'fcos/fcos_center_r50_caffe_fpn_gn-head_4x4_1x_coco.py', 'foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py', # 'free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py', # 'atss/atss_r50_fpn_1x_coco.py', # not ready for topk 'reppoints/reppoints_moment_r50_fpn_1x_coco.py', 'yolo/yolov3_d53_mstrain-608_273e_coco.py' ]) def test_single_stage_forward_gpu(cfg_file): if not torch.cuda.is_available(): import pytest pytest.skip('test requires GPU and torch+cuda') model, train_cfg, test_cfg = _get_detector_cfg(cfg_file) model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg) input_shape = (2, 3, 224, 224) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') detector = detector.cuda() imgs = imgs.cuda() # Test forward train gt_bboxes = [b.cuda() for b in mm_inputs['gt_bboxes']] gt_labels = [g.cuda() for g in mm_inputs['gt_labels']] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], return_loss=False) batch_results.append(result) def test_faster_rcnn_ohem_forward(): model, train_cfg, test_cfg = _get_detector_cfg( 'faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py') model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg) input_shape = (1, 3, 256, 256) # Test forward train with a non-empty truth batch mm_inputs = _demo_mm_inputs(input_shape, num_items=[10]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 # Test forward train with an empty truth batch mm_inputs = _demo_mm_inputs(input_shape, num_items=[0]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 # HTC is not ready yet @pytest.mark.parametrize('cfg_file', [ 'cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py', 'mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py', 'grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py', 'ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py' ]) def test_two_stage_forward(cfg_file): model, train_cfg, test_cfg = _get_detector_cfg(cfg_file) model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg) input_shape = (1, 3, 256, 256) # Test forward train with a non-empty truth batch mm_inputs = _demo_mm_inputs(input_shape, num_items=[10]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] gt_masks = mm_inputs['gt_masks'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, gt_masks=gt_masks, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) loss.requires_grad_(True) assert float(loss.item()) > 0 loss.backward() # Test forward train with an empty truth batch mm_inputs = _demo_mm_inputs(input_shape, num_items=[0]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] gt_masks = mm_inputs['gt_masks'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, gt_masks=gt_masks, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) loss.requires_grad_(True) assert float(loss.item()) > 0 loss.backward() # Test forward test with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], return_loss=False) batch_results.append(result) @pytest.mark.parametrize( 'cfg_file', ['ghm/retinanet_ghm_r50_fpn_1x_coco.py', 'ssd/ssd300_coco.py']) def test_single_stage_forward_cpu(cfg_file): model, train_cfg, test_cfg = _get_detector_cfg(cfg_file) model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg) input_shape = (1, 3, 300, 300) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], return_loss=False) batch_results.append(result) def _demo_mm_inputs(input_shape=(1, 3, 300, 300), num_items=None, num_classes=10): # yapf: disable """Create a superset of inputs needed to run test or train batches. Args: input_shape (tuple): input batch dimensions num_items (None | List[int]): specifies the number of boxes in each batch item num_classes (int): number of different labels a box might have """ from mmdet.core import BitmapMasks (N, C, H, W) = input_shape rng = np.random.RandomState(0) imgs = rng.rand(*input_shape) img_metas = [{ 'img_shape': (H, W, C), 'ori_shape': (H, W, C), 'pad_shape': (H, W, C), 'filename': '<demo>.png', 'scale_factor': 1.0, 'flip': False, } for _ in range(N)] gt_bboxes = [] gt_labels = [] gt_masks = [] for batch_idx in range(N): if num_items is None: num_boxes = rng.randint(1, 10) else: num_boxes = num_items[batch_idx] cx, cy, bw, bh = rng.rand(num_boxes, 4).T tl_x = ((cx * W) - (W * bw / 2)).clip(0, W) tl_y = ((cy * H) - (H * bh / 2)).clip(0, H) br_x = ((cx * W) + (W * bw / 2)).clip(0, W) br_y = ((cy * H) + (H * bh / 2)).clip(0, H) boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T class_idxs = rng.randint(1, num_classes, size=num_boxes) gt_bboxes.append(torch.FloatTensor(boxes)) gt_labels.append(torch.LongTensor(class_idxs)) mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8) gt_masks.append(BitmapMasks(mask, H, W)) mm_inputs = { 'imgs': torch.FloatTensor(imgs).requires_grad_(True), 'img_metas': img_metas, 'gt_bboxes': gt_bboxes, 'gt_labels': gt_labels, 'gt_bboxes_ignore': None, 'gt_masks': gt_masks, } return mm_inputs def test_yolact_forward(): model, train_cfg, test_cfg = _get_detector_cfg( 'yolact/yolact_r50_1x8_coco.py') model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg) input_shape = (1, 3, 550, 550) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train detector.train() gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] gt_masks = mm_inputs['gt_masks'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, gt_masks=gt_masks, return_loss=True) assert isinstance(losses, dict) # Test forward test detector.eval() with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], rescale=True, return_loss=False) batch_results.append(result)
b73e66f56dd25716dad74184c383b3a7b077bf13
aa9fc66c8b94f05d4651f243f6f21799f4c1fd80
/jump-game-vi/jump-game-vi.py
4eadd56dcea8503cbfdedc446f3ea6d98917e497
[]
no_license
baranee-18/Data-Structures-and-Algorithms
3cd739ba3c0710835d5995a6ccf2b44f612f8352
5074bac42b9323b8e7353d533355ece18dd5f5f1
refs/heads/main
2023-08-23T23:06:59.028649
2021-10-19T19:21:43
2021-10-19T19:21:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
class Solution: def maxResult(self, nums: List[int], k: int) -> int: n = len(nums) queue = [] val = 0 for i in range(n): maxV = 0 if queue: maxV, indx = queue[0] while indx+k < i: maxV, indx = heapq.heappop(queue) heapq.heappush(queue, [maxV,indx]) val = nums[i] + (-1) * maxV heapq.heappush(queue, [-1 * val, i]) return val
f7f9d2048aac2ff8422cdb78315139cfe63f6cc3
87a9706379670da62739b3c1fbbdd75edb5107b8
/alien_invasion/scoreboard.py
11f4eb35474043303f80b3f5ed7dcbf980ac7b77
[]
no_license
zxbzxb180/python_work
ba21ab74f842e0d560a8bb192bb8a874d356b9e1
6406024e011aa06d1bda78d97cfecc47f7f2058c
refs/heads/master
2022-12-12T23:53:36.887963
2020-03-04T07:20:29
2020-03-04T07:20:29
194,494,744
0
0
null
2022-11-22T03:54:47
2019-06-30T08:48:44
Python
GB18030
Python
false
false
985
py
#coding=gbk import pygame.font class Scoreboard(): """显示得分信息的类""" def __init__(self,ai_settings,screen,stats): """初始化显示得分涉及的属性""" self.screen = screen self.screen_rect = screen.get_rect() self.ai_settings = ai_settings self.stats = stats #显示得分信息时使用的字体设置 self.text_color = (30,30,30) self.font = pygame.font.SysFont(None,48) #准备初始得分图像 self.prep_score() def prep_score(self): """将得分转换为一幅渲染的图像""" score_str = str(self.stats.score) self.score_image = self.font.render(score_str,True,self.text_color,self.ai_settings.bg_color) #将得分放在屏幕右上角 self.score_rect = self.score_image.get_rect() self.score_rect.right = self.screen_rect.right - 20 self.score_rect.top = 20 def show_score(self): """在屏幕上显示得分""" self.screen.blit(self.score_image,self.score_rect)
c518c6954e9b0640ead738942f5c31574b6e8035
3c2d4ed20da3aa3e045b617c787df68c7d0ddd1d
/src/drugex/__main__.py
50f052ac1a040383a0178b2488fc5a6b739f347c
[ "MIT" ]
permissive
cthoyt/DrugEx
699ea37a86bfd0ed06e5c5112a68d5bd46ed05af
9e4d31adb2c65d0afc852948f502c79dcf8308a3
refs/heads/master
2020-06-07T22:08:26.799943
2019-06-21T16:38:20
2019-06-21T16:38:20
193,103,470
0
0
MIT
2019-06-21T13:34:04
2019-06-21T13:34:03
null
UTF-8
Python
false
false
328
py
# -*- coding: utf-8 -*- """Entrypoint module, in case you use `python -m drugex`. Why does this file exist, and why ``__main__``? For more info, read: - https://www.python.org/dev/peps/pep-0338/ - https://docs.python.org/3/using/cmdline.html#cmdoption-m """ from drugex.cli import main if __name__ == '__main__': main()
232c6641ae1d5833e25fbf1e833963f1e1d7e53d
956cc6ff2b58a69292f7d1223461bc9c2b9ea6f1
/monk/system_unit_tests/gluon/test_block_mobilenet_v2_inverted_linear_bottleneck.py
805df2c924d747b85329f2e810c0f1bdc52a05e7
[ "Apache-2.0" ]
permissive
Aanisha/monk_v1
c24279b2b461df9b3de2984bae0e2583aba48143
c9e89b2bc0c1dbb320aa6da5cba0aa1c1526ad72
refs/heads/master
2022-12-29T00:37:15.320129
2020-10-18T09:12:13
2020-10-18T09:12:13
286,278,278
0
0
Apache-2.0
2020-08-09T16:51:02
2020-08-09T16:51:02
null
UTF-8
Python
false
false
1,512
py
import os import sys sys.path.append("../../../../monk_v1"); sys.path.append("../../../monk/"); import psutil from gluon_prototype import prototype from compare_prototype import compare from common import print_start from common import print_status import mxnet as mx import numpy as np from gluon.losses.return_loss import load_loss def test_block_mobilenet_v2_inverted_linear_bottleneck(system_dict): forward = True; test = "test_block_mobilenet_v2_inverted_linear_bottleneck"; system_dict["total_tests"] += 1; print_start(test, system_dict["total_tests"]) if(forward): try: gtf = prototype(verbose=0); gtf.Prototype("sample-project-1", "sample-experiment-1"); network = []; network.append(gtf.mobilenet_v2_inverted_linear_bottleneck_block(output_channels=64, bottleneck_width=4, stride=1)); gtf.Compile_Network(network, use_gpu=False); x = np.random.rand(1, 64, 64, 64); x = mx.nd.array(x); y = gtf.system_dict["local"]["model"].forward(x); system_dict["successful_tests"] += 1; print_status("Pass"); except Exception as e: system_dict["failed_tests_exceptions"].append(e); system_dict["failed_tests_lists"].append(test); forward = False; print_status("Fail"); else: system_dict["skipped_tests_lists"].append(test); print_status("Skipped"); return system_dict
004aa18f2e1b9effc7eca12b7058f92597767819
9acbf0279c38d11e89f16831e9c43b49badabb00
/IPTVPlayer/tsiplayer/addons/resources/hosters/uptostream.py
314392de9337b64f4093974ba2f8058e0b501c6c
[]
no_license
dgbkn/e2iPlayer
4f101b87bc5f67bf14690d012a62cbe8755ab82c
e5f413ea032eb9012569d9d149a368a3e73d9579
refs/heads/master
2023-05-15T05:01:18.204256
2021-06-06T18:03:42
2021-06-06T18:03:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,329
py
# -*- coding: utf-8 -*- # vStream https://github.com/Kodi-vStream/venom-xbmc-addons # import re import json from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.config import GestionCookie from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.hosters.hoster import iHoster from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.comaddon import dialog, VSlog, isMatrix from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.handler.premiumHandler import cPremiumHandler from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.handler.requestHandler import cRequestHandler from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.parser import cParser from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.util import Unquote class cHoster(iHoster): def __init__(self): self.__sDisplayName = 'UpToStream' self.__sFileName = self.__sDisplayName self.oPremiumHandler = None def getDisplayName(self): return self.__sDisplayName def setDisplayName(self, sDisplayName): self.__sDisplayName = sDisplayName + ' [COLOR skyblue]' + self.__sDisplayName + '[/COLOR]' def setFileName(self, sFileName): self.__sFileName = sFileName def getFileName(self): return self.__sFileName def getPluginIdentifier(self): return 'uptostream' def isDownloadable(self): return True def isJDownloaderable(self): return True def getPattern(self): return '' def __getIdFromUrl(self): if self.__sUrl[-4:] in '.mp4.avi.mkv': return self.__sUrl.split('/')[3] return self.__sUrl.split('/')[-1] def setUrl(self, sUrl): self.__sUrl = str(sUrl) self.__sUrl = self.__sUrl.replace('iframe/', '') self.__sUrl = self.__sUrl.replace('http:', 'https:') def checkSubtitle(self, sHtmlContent): if sHtmlContent: Files = [] lab = [] for aEntry in sHtmlContent: if aEntry["label"] == "French": url = aEntry["src"] if not url.startswith('http'): url = 'http:' + url Files.append(url) else: continue return Files return False def checkUrl(self, sUrl): return True def getUrl(self): return self.__sUrl def getMediaLink(self): self.oPremiumHandler = cPremiumHandler('uptobox') premium = self.oPremiumHandler.isPremiumModeAvailable() api_call = False SubTitle = "" if premium: self.oPremiumHandler.Authentificate() else: dialog().VSok('Ce hoster demande un login, meme gratuit.') return False, False cookies = GestionCookie().Readcookie("uptobox") import requests, re s = requests.Session() s.headers.update({"Cookie": cookies}) r = s.get('https://uptobox.com/api/streaming?file_code=' + self.__sUrl.split('/')[3]).json() r1 = s.get(r["data"]["user_url"]).text tok = re.search('token.+?;.+?;(.+?)&', r1).group(1) r1 = s.post("https://uptobox.com/api/user/pin/validate?token=" + tok,json={"pin":r["data"]["pin"]}).json() s.headers.update({"Referer": "https://uptobox.com/pin?pin=" + r["data"]["pin"]}) r = s.get(r["data"]["check_url"]).json()["data"] sPattern = "'(.+?)': {(.+?)}" oParser = cParser() aResult = oParser.parse(r["streamLinks"], sPattern) from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.comaddon import dialog url = [] qua = [] api_call = False for aEntry in aResult[1]: QUAL = aEntry[0] d = re.findall("'u*(.+?)': u*'(.+?)'",aEntry[1]) for aEntry1 in d: url.append(aEntry1[1]) qua.append(QUAL + ' (' + aEntry1[0] + ')') # Affichage du tableau api_call = dialog().VSselectqual(qua, url) SubTitle = self.checkSubtitle(r["subs"]) if (api_call): if SubTitle: return True, api_call, SubTitle else: return True, api_call return False, False
b4b1cae9c7e54d74e89f8afd4bcbdbde27236d80
562d4bf000dbb66cd7109844c972bfc00ea7224c
/addons/advertising/controllers/controllers.py
1868e3ae1ee47ecfdd4a0d92df979f22c6b5bda9
[]
no_license
Mohamed33/odoo-efact-11-pos
e9da1d17b38ddfe5b2d0901b3dbadf7a76bd2059
de38355aea74cdc643a347f7d52e1d287c208ff8
refs/heads/master
2023-03-10T15:24:44.052883
2021-03-06T13:25:58
2021-03-06T13:25:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
759
py
# -*- coding: utf-8 -*- from odoo import http # class Advertising(http.Controller): # @http.route('/advertising/advertising/', auth='public') # def index(self, **kw): # return "Hello, world" # @http.route('/advertising/advertising/objects/', auth='public') # def list(self, **kw): # return http.request.render('advertising.listing', { # 'root': '/advertising/advertising', # 'objects': http.request.env['advertising.advertising'].search([]), # }) # @http.route('/advertising/advertising/objects/<model("advertising.advertising"):obj>/', auth='public') # def object(self, obj, **kw): # return http.request.render('advertising.object', { # 'object': obj # })
ed83154aac965d7020394db30fc7d33772351c78
94f4bb0f6e43b2eb2f1bdb284a580b76121fa9af
/055.py
3426c8ddb88f7c434c1f5ca842561dae076bd58f
[]
no_license
huosan0123/leetcode-py
f1ec8226bae732369d4e1989b99ab0ba4b4061c4
22794e5e80f534c41ff81eb40072acaa1346a75c
refs/heads/master
2021-01-25T11:48:17.365118
2019-09-12T15:45:34
2019-09-12T15:45:34
93,934,297
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
class Solution(object): def canJump(self, nums): """ :type nums: List[int] :rtype: bool """ if not nums or len(nums)==1: return True pre = nums[0] for i in range(1, len(nums)): if pre == 0: return False else: pre = max(pre-1, nums[i]) return True
97e996c0fe83b4c2b8a1bafa79f0a29358a094de
904a87f73eb0e3902a738e823f959cbad2f68a82
/plotClass/plotting/plotGroups_mer.py
dc83b9a7dba4eeb9344b2b365d782974bbc46fe8
[]
no_license
ashrafkasem/hepML1Lep
2ccf167432e7d2a1550991137b7a247e044af1b1
9ed3b73887b36f26b9d4ca0243eedd3cac0c420e
refs/heads/master
2021-07-11T22:31:18.498721
2020-08-31T21:30:10
2020-08-31T21:30:10
193,732,937
1
4
null
2020-05-18T06:55:53
2019-06-25T15:17:21
Jupyter Notebook
UTF-8
Python
false
false
2,881
py
import ROOT All_files = { 'DiLepTT' : { 'files': ['TTJets_DiLepton','TTJets_LO_HT'] , 'select' : '&& DiLep_Flag == 1', 'scale' : '1000.0/sumOfWeights*genWeight*Xsec*1*btagSF*puRatio*lepSF*nISRttweight', "fill": ROOT.TAttFill(ROOT.kRed, 1001), "line": ROOT.TAttLine(ROOT.kRed, ROOT.kSolid, 1), "marker": None, "Label" : "t#bar{t} ll + jets", "Stackable" : True }, 'SemiLepTT' : { 'files': ['TTJets_SingleLeptonFrom','TTJets_LO_HT'] , 'select' : '&& semiLep_Flag == 1', 'scale' : '1000.0/sumOfWeights*genWeight*Xsec*1*btagSF*puRatio*lepSF*nISRttweight', "fill": ROOT.TAttFill(ROOT.kBlue-7, 1001), "line": ROOT.TAttLine(ROOT.kBlue-7, ROOT.kSolid, 1), "marker": None, "Label" : "t#bar{t} l + jets", "Stackable" : True }, 'Others' : { 'files': ["TBar_tWch","TBar_tch_powheg","T_tWch","T_tWch_ext","T_tch_powheg","VVTo","WWTo","WZTo","ZZTo",'TTW','TTZ',"QCD_","WJetsToLNu_HT","DYJetsToLL"], 'select' : '', 'scale' : '1000.0/sumOfWeights*genWeight*Xsec*1*btagSF*puRatio*lepSF', "fill": ROOT.TAttFill(ROOT.kOrange-3, 1001), "line": ROOT.TAttLine(ROOT.kOrange-3, ROOT.kSolid, 1), "marker": None, "Label" : "Others", "Stackable" : True }, 'Data' : { 'files': ['SingleElectron','SingleMuon','MET_Run'] , 'select' : '', 'scale' : '1', "fill": None, "line": None, "marker": ROOT.TAttMarker(ROOT.kBlack, ROOT.kFullCircle, 0.7), "Label" : "Data", "Stackable" : False } } dPhiCut = '&& ((LT < 350 && fabs(dPhi) > 1.0) || (350 < LT && LT < 600 && fabs(dPhi) > 0.75) || (600 < LT && fabs(dPhi) > 0.5))' AntidPhiCut = '&& ((LT < 350 && fabs(dPhi) < 1.0) || (350 < LT && LT < 600 && fabs(dPhi) < 0.75) || (600 < LT && fabs(dPhi) < 0.5))' ntopCut = '&& nTop_Total_Combined >= 2 ' AntintopCut = '&& nTop_Total_Combined < 1' oldbins = {"LT12HT01": "(LT < 450) && (HT < 1000) " , "LT12HT23": "(LT < 450) && (HT > 1000) && (HT < 1500)" , "LT12HT4i": "(LT < 450) && (HT > 1500) " , "LT3HT01" : "(LT > 450) && (LT < 600) && (HT < 1000)" , "LT3HT23" : "(LT > 450) && (LT < 600) && (HT > 1000) && (HT < 1500)" , "LT3HT4i" : "(LT > 450) && (LT < 600) && (HT > 1500)" , "LT4HT01" : "(LT > 600) && (LT < 750) && (HT < 1000)" , "LT4HT23" : "(LT > 600) && (LT < 750) && (HT > 1000) && (HT < 1500)" , "LT4HT4i" : "(LT > 600) && (LT < 750) && (HT > 1500)" , "LT5iHT0i": "(LT > 750)" }
d51a4bd7dc7436067f703bec0084d907b03f9157
a5ba631dddaf2912c309601f8fbdd3c5b494fe20
/src/azure-cli-core/tests/test_logging.py
14cddef8a729a9767cf3f2dedc6a9e237df9fe80
[ "MIT" ]
permissive
saurabsa/azure-cli-old
37471020cd2af9a53e949e739643299f71037565
f77477a98c9aa9cb55daf5b0d2f410d1455a9225
refs/heads/master
2023-01-09T04:00:15.642883
2018-04-23T21:40:04
2018-04-23T21:40:04
130,759,501
0
0
NOASSERTION
2022-12-27T14:59:06
2018-04-23T21:33:34
Python
UTF-8
Python
false
false
2,897
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import unittest import azure.cli.core.azlogging as azlogging class TestLogging(unittest.TestCase): # When running verbose level tests, we check that argv is empty # as we expect _determine_verbose_level to remove consumed arguments. def test_determine_verbose_level_default(self): argv = [] actual_level = azlogging._determine_verbose_level(argv) # pylint: disable=protected-access expected_level = 0 self.assertEqual(actual_level, expected_level) self.assertFalse(argv) def test_determine_verbose_level_verbose(self): argv = ['--verbose'] actual_level = azlogging._determine_verbose_level(argv) # pylint: disable=protected-access expected_level = 1 self.assertEqual(actual_level, expected_level) self.assertFalse(argv) def test_determine_verbose_level_debug(self): argv = ['--debug'] actual_level = azlogging._determine_verbose_level(argv) # pylint: disable=protected-access expected_level = 2 self.assertEqual(actual_level, expected_level) self.assertFalse(argv) def test_determine_verbose_level_v_v_v_default(self): argv = ['--verbose', '--debug'] actual_level = azlogging._determine_verbose_level(argv) # pylint: disable=protected-access expected_level = 2 self.assertEqual(actual_level, expected_level) # We still consumed the arguments self.assertFalse(argv) def test_determine_verbose_level_other_args_verbose(self): argv = ['account', '--verbose'] actual_level = azlogging._determine_verbose_level(argv) # pylint: disable=protected-access expected_level = 1 self.assertEqual(actual_level, expected_level) # We consumed 1 argument self.assertEqual(argv, ['account']) def test_determine_verbose_level_other_args_debug(self): argv = ['account', '--debug'] actual_level = azlogging._determine_verbose_level(argv) # pylint: disable=protected-access expected_level = 2 self.assertEqual(actual_level, expected_level) # We consumed 1 argument self.assertEqual(argv, ['account']) def test_get_az_logger(self): az_logger = azlogging.get_az_logger() self.assertEqual(az_logger.name, 'az') def test_get_az_logger_module(self): az_module_logger = azlogging.get_az_logger('azure.cli.module') self.assertEqual(az_module_logger.name, 'az.azure.cli.module') if __name__ == '__main__': unittest.main()
a2b971c67d0456fbbf6fd22640af49583f80fce2
e62d13d578ebbe3acc3713e3eb783c81c785f2a8
/myems-api/core/version.py
f1ef5dfaf78eabc8ce8847750632ade6fd4f7c29
[ "MIT" ]
permissive
tianlinzhong/myems
c25d7ece4f1853bb4415e2cedfdc8cb9cf8ff991
07dd1eb8060f4145be66c8d1a20b5e064a68281b
refs/heads/master
2023-03-25T05:24:05.057248
2021-03-28T09:06:45
2021-03-28T09:06:45
340,333,276
2
0
MIT
2021-02-28T14:00:06
2021-02-19T10:22:32
Python
UTF-8
Python
false
false
452
py
import falcon import simplejson as json class VersionItem: @staticmethod def __init__(): pass @staticmethod def on_options(req, resp, id_): resp.status = falcon.HTTP_200 @staticmethod def on_get(req, resp): result = {"version": 'MyEMS 1.1.0 (Community Edition)', "release-date": '202103018', "website": "https://myems.io"} resp.body = json.dumps(result)
67a45c24fd1b92104a81304a32b145bd2a77baa6
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_118/2715.py
53c87fa3b23e56f4d4d2ff037c02e48d28108491
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
592
py
import math f = open('/home/dexter/input1.in', 'r') cases = int(f.readline()) for k in range (0, cases): a = f.readline() itms=a.split() out=0 for i in range(int(itms[0]),int(itms[1])+1): x=str(i) y =x[::-1] if(y==x): x=int(x) if((math.sqrt(x)-int(math.sqrt(x))) == 0): x=str(int(math.sqrt(x))) y =x[::-1] if(y==x): out+=1 print "Case #"+str(k+1)+": "+str(out)
80c70e681d1be2636cc0167b75f54d09254d1b14
301c85e8f2391896b11c9f4cf9f440283865593e
/armstrong/spiders/spider.py
1e2f822c32a2f498a48612c4df8490fd7bf8d844
[]
no_license
hristo-grudev/armstrong
513e5639c347c8a3ffc8df3cafd5860d2ab3fb81
8bbcad8a72f58456638c84369f72c985c93e3cc9
refs/heads/main
2023-03-29T11:33:06.484366
2021-04-07T07:51:26
2021-04-07T07:51:26
355,458,241
0
0
null
null
null
null
UTF-8
Python
false
false
1,208
py
import scrapy from scrapy.loader import ItemLoader from ..items import ArmstrongItem from itemloaders.processors import TakeFirst class ArmstrongSpider(scrapy.Spider): name = 'armstrong' start_urls = ['https://www.armstrong.bank/connect/news-and-updates'] def parse(self, response): post_links = response.xpath('//div[@class="news-item-text"]') for post in post_links: url = post.xpath('.//a[@data-link-type-id="page"]/@href').get() date = post.xpath('.//div[@class="news-item-text-date"]//text()[normalize-space()]').get() if url: yield response.follow(url, self.parse_post, cb_kwargs={'date': date}) def parse_post(self, response, date): title = response.xpath('//h1/text()').get() description = response.xpath('//*[contains(concat( " ", @class, " " ), concat( " ", "mb-6", " " ))]//text()[normalize-space()]').getall() description = [p.strip() for p in description if '{' not in p] description = ' '.join(description).strip() item = ItemLoader(item=ArmstrongItem(), response=response) item.default_output_processor = TakeFirst() item.add_value('title', title) item.add_value('description', description) item.add_value('date', date) return item.load_item()
bee9c55e7640a1f88b9e62f0512abcf2174573a4
0eb599c3bbfa6e5b31516913b88cc9db3a1311ce
/GCJ/GCJ2021_2_a_sub.py
7f055f0b05f5c29efe942e6944b2235a3c45cf43
[]
no_license
Linus-MK/AtCoder
5b84dc88c2d2773d0f97ed18265d303290da7879
a587e89a9e0c2ab4d36b09176bcc95e901e14326
refs/heads/master
2022-11-25T05:37:12.148722
2022-11-17T16:04:10
2022-11-17T16:04:10
169,840,698
0
0
null
null
null
null
UTF-8
Python
false
false
122
py
import math ans = 0 for i in range(2, 100+1): ans += math.ceil(10**8 / i) print(ans / (10**8)) # 4.18737795 < 6 OK!
3d7b94751b9c6a8ebf732eec60f889bc243c3977
08ddce92744c78432b69409d197ad1393ca685aa
/weixin/Bot/test2.py
3537329a673c998099f7e0f15bc0b992e3d3d01a
[]
no_license
baliguan163/PythonDemo
71255eb21850134b4b6afb2eeed948cc34326e7a
c4fe1b6ea36bec2c531244ef95c809e17b64b727
refs/heads/master
2021-01-02T08:13:18.809740
2019-05-19T16:28:16
2019-05-19T16:28:16
98,963,901
0
0
null
null
null
null
UTF-8
Python
false
false
1,524
py
#-*-coding:utf-8-*- __author__ = 'Administrator' from wxpy import * # wxpy的好友统计功能非常好用,可以很方便地统计好友的地理位置分布和性别分布。 # 下面的代码中,强哥统计了下自己的好友的分布情况,并打印出人数最多的10个地 bot = Bot(cache_path=True) friends_stat = bot.friends().stats() # print(friends_stat) friend_loc = [] # 每一个元素是一个二元列表,分别存储地区和人数信息 for province, count in friends_stat["province"].items(): if province != "": friend_loc.append([province, count]) # 对人数倒序排序 friend_loc.sort(key=lambda x: x[1], reverse=True) print('--------------统计人数最多的10个地区-------------') # 打印人数最多的10个地区 for item in friend_loc[:10]: print(item[0], item[1]) print('------------------统计性别分布-------------------') # 统计性别分布的代码如下 for sex, count in friends_stat["sex"].items(): # 1代表MALE, 2代表FEMALE if sex == 1: print(" MALE %d" % count) elif sex == 2: print("FEMALE %d" % count) # 定位群 company_group = bot.groups().search('优惠券')[0] print(company_group) boss = company_group.search('阿杜')[0] #定位老板 print(boss) # 将老板的消息转发到文件传输助手 @bot.register(company_group) def forward_boss_message(msg): print(msg.member) print(msg) if msg.member == boss: print('消息转发:' + msg['Text']) # 堵塞线程 embed()
386a8bf05a7ce8388ed78b86e6713dc8bb4e3535
aba442afba026d2130c4aeca863308ca26e7e472
/tabular/src/autogluon/tabular/__init__.py
132b85f2fd121822af13adfd0428350ff276ff5c
[ "Apache-2.0" ]
permissive
stjordanis/autogluon
c8fd03a9bf7624911b13e90239e9260dd8885ddf
6af92e149491f6e5062495d87306b3625d12d992
refs/heads/master
2023-08-21T15:16:53.202431
2023-08-11T20:15:31
2023-08-11T20:15:31
228,360,888
0
0
Apache-2.0
2019-12-16T10:25:32
2019-12-16T10:25:30
null
UTF-8
Python
false
false
322
py
from autogluon.common.features.feature_metadata import FeatureMetadata from autogluon.common.utils.log_utils import _add_stream_handler from autogluon.core.dataset import TabularDataset try: from .version import __version__ except ImportError: pass from .predictor import TabularPredictor _add_stream_handler()
c68cdb6fed4d1c16def268726b0762202f070da8
f44b4e41d3b64fc64dc8f28cce1a42aac5715530
/metrics/plastic_analysis.py
66002d70c98efae0fbcf9a1785ee1d8a245228ca
[ "Apache-2.0" ]
permissive
jmribeiro/PLASTIC-Algorithms
d4ba4dbae9fea15a446e6557b9fe58f06b687464
c59ad567a906f320220a09caff64c4a6273151f8
refs/heads/main
2022-12-31T00:16:10.108189
2020-10-20T22:06:11
2020-10-20T22:06:11
305,774,055
7
0
null
null
null
null
UTF-8
Python
false
false
2,308
py
from agents.plastic.PLASTICAgent import PLASTICAgent from agents.plastic.model.LearningPLASTICModel import LearningPLASTICModel from agents.plastic.model.LearntPLASTICModel import LearntPLASTICModel from agents.teammates.GreedyAgent import GreedyAgent from agents.teammates.TeammateAwareAgent import TeammateAwareAgent import numpy as np from yaaf.evaluation import Metric import scipy.stats class PLASTICTeammate(PLASTICAgent): def __init__(self, type, num_teammates, world_size): super(PLASTICTeammate, self).__init__("Plastic teammate", num_teammates, world_size) if type == "greedy": self._underlying_agent = GreedyAgent(0, world_size) elif type == "teammate aware" or type == "mixed": self._underlying_agent = TeammateAwareAgent(0, world_size) else: raise ValueError() def select_action_according_to_model(self, pursuit_state, most_likely_model): return self._underlying_agent.action(pursuit_state.features()) def setup_learning_prior(self): return LearningPLASTICModel(self.num_teammates) def _load_prior_team(self, directory, name): return LearntPLASTICModel(directory, name, self.num_teammates) class PLASTICAnalyzer(Metric): def __init__(self): super(PLASTICAnalyzer, self).__init__("PLASTIC Analyzer") self._entropy = [] self._beliefs = [] self._team_names = None def reset(self): self._entropy = [] def __call__(self, timestep): info = timestep.info for key in info: if "Plastic" in key or key == "Adhoc": agent_info = info[key] belief_distribution = agent_info["belief distribution"] if self._team_names is None: self._team_names = list(belief_distribution.keys()) beliefs = np.array([belief_distribution[team] for team in self._team_names]) entropy = scipy.stats.entropy(beliefs) self._beliefs.append(beliefs) self._entropy.append(entropy) return self._entropy[-1] def result(self): return np.array(self._entropy) def team_names(self): return self._team_names def beliefs(self): return np.array(self._beliefs)
0ae73847354ad0243e92bc20077f9c2eef00d8b6
6227637b2b3e13e2d17d7dd2c954e879bc6947a8
/configs/bash/keyring.py
5509f45c1543c39f7696c29c13788dfe38180959
[]
no_license
Owensa/confs
28c01e57984a9f8187740a19d95d9c51844c7a1d
f247448fbba3d873460a4f99228f372230f1b1bc
refs/heads/master
2021-04-15T04:36:03.755459
2018-03-31T22:31:50
2018-03-31T22:31:50
126,733,834
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
#!/usr/bin/env/ python3 import os #Get archive key and get rid of strange apt behavior def fetch(): os.system("wget -q -O - https://archive.kali.org/archive-key.asc | apt-key add && apt-get update >> bootstrap_log.md")
392c843a677b5ebc71e265798518ab247c504ee7
164b499e14412e7e5d0b1f917922873a7b5d072c
/studyNote/python-2/cmd_serve.py
87aace6bc1f982e3ab23341bf7b8f5656e6c00df
[]
no_license
liangliang115715/pythonStudyNote
f55293b0ad2ded21dbb6938ac82f7bee77e724ef
c36ef8c032ee8d85570d0f2234a26370a3709402
refs/heads/master
2023-01-09T19:14:16.076798
2019-10-16T10:59:48
2019-10-16T10:59:48
215,523,473
0
0
null
2023-01-04T12:31:28
2019-10-16T10:42:51
Python
UTF-8
Python
false
false
778
py
#_author: #date: import socket import subprocess # 创建socket对象 sk=socket.socket() # 为socket对象提供ip地址和端口,然后绑定 adress=("127.0.0.1",8000) sk.bind(adress) # 监听设置端口 等待客户端的请求 sk.listen(2) while True: print("waiting.....") conn, addr = sk.accept() print(addr) while True: try: data=conn.recv(1024) except Exception: break if not data: break # 将子进程转到主进程,并将执行结果存入obj对象内 obj=subprocess.Popen(str(data,"utf8"),shell=True,stdout=subprocess.PIPE) # obj对象内存储的执行结果读出 cmd_result=obj.stdout.read() result_len=bytes(str(len(cmd_result)),"utf8") conn.sendall(result_len) conn.sendall(cmd_result)
fb5cb78ce44163af8a0147d51eb7e62cb50fa7e6
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/bonner.py
f884714292e78e4bd9ae20597022ed5d04d0f710
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
82
py
ii = [('WadeJEB.py', 1), ('GodwWLN.py', 1), ('MereHHB3.py', 1), ('DibdTRL.py', 1)]