blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
c12bc6fa7adfc6eae327069b0170b1dad10e7206
9ff1058a0500be499fd3de9ec0beccd697d5273c
/DWIProcessing/Preprocessing/PNC/preprocPNC_v1.py
1ad2d145b43118a7419a6f7f7407225200cd6450
[]
no_license
jrussell9000/NeuroScripts
93f53c7d38c1d51fdc0cf39096e0996daee887cf
e41558754bd36385f94934333cb39a6500abfd9f
refs/heads/master
2021-06-09T20:30:59.956137
2021-04-08T18:45:39
2021-04-08T18:45:39
151,635,108
0
0
null
null
null
null
UTF-8
Python
false
false
8,908
py
#!/usr/bin/env python3 # coding: utf-8 import os import shutil import subprocess from joblib import parallel_backend, delayed, Parallel from pathlib import Path ##################################### # ----PREPREOCESSING PARAMETERS---- # ##################################### # --Change as needed - last set for BRC YouthPTSD bidsmaster_dir = Path('/fast_scratch/jdr/PNC/BIDS_Master/') bidspreproc_dir = Path('/fast_scratch/jdr/BIDS_Preprocessing/') bidsproc_dir = Path('/fast_scratch/jdr/BIDS_Processed') # slspec = Path('/Users/jdrussell3/slspec.txt') # dwelltime = "0.000568" # totalreadouttime = "0.14484" error_file = bidspreproc_dir / 'errors.txt' os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' class dwipreproc(): def __init__(self, ses_dir): self.ses_dir = ses_dir self.subj_dir = ses_dir.parent self.subjroot = "_".join([self.subj_dir.name, self.ses_dir.name]) self.main(self.ses_dir) def preproc_prep(self, ses_dir): #################################################################################### # ----Creating Directory Structures, Copying Files, and Initializing Variables---- # #################################################################################### # 1. Setting variables dwi_dir = ses_dir / 'dwi' anat_dir = ses_dir / 'anat' sourcedwi = dwi_dir/(self.subjroot + '_acq-AxDTIASSET_dwi.nii') sourcebvec = dwi_dir/(self.subjroot + '_acq-AxDTIASSET_dwi.bvec') sourcebval = dwi_dir/(self.subjroot + '_acq-AxDTIASSET_dwi.bval') sourceanat = anat_dir/(self.subjroot + '_acq-AXFSPGRBRAVONEW_T1w.nii') if not sourcedwi.exists(): next # 2. Create directory structure preproc_dir = bidspreproc_dir / self.subj_dir.name / ses_dir.name self.preprocdwi_dir = preproc_dir / 'dwi' # if self.preprocdwi_dir.exists(): # shutil.rmtree(self.preprocdwi_dir) self.preprocdwi_dir.mkdir(parents=True, exist_ok=True) self.preprocanat_dir = preproc_dir / 'anat' # if self.preprocanat_dir.exists(): # shutil.rmtree(self.preprocanat_dir) self.preprocanat_dir.mkdir(parents=True, exist_ok=True) # 3. Make directories to hold 'original' unprocessed files origdwi_dir = self.preprocdwi_dir / 'original' origdwi_dir.mkdir(parents=True, exist_ok=True) origanat_dir = self.preprocanat_dir / 'original' origanat_dir.mkdir(parents=True, exist_ok=True) # 4. Copy source files to 'original' directory self.inputdwi = origdwi_dir / (self.subjroot + '_dwi.nii') self.inputbvec = origdwi_dir / (self.subjroot + '_dwi.bvec') self.inputbval = origdwi_dir / (self.subjroot + '_dwi.bval') self.inputanat = origanat_dir / (self.subjroot + '_T1w.nii') try: shutil.copyfile(sourcedwi, self.inputdwi) shutil.copyfile(sourcebvec, self.inputbvec) shutil.copyfile(sourcebval, self.inputbval) shutil.copyfile(sourceanat, self.inputanat) except FileNotFoundError as e: with open(error_file, 'w+') as errorfile: errorfile.write(self.subjroot + ': Preprocessing failed due to missing file - ' + str(e)) next # 6. Create subject specific log file for preprocessing pipeline in 'preprocessed' directory logfile = preproc_dir / (self.subjroot + "_ppd.txt") with open(logfile, 'a') as log: ########################################################### # ----Preparing Log File and Creating Pre-Eddy Folder---- # ########################################################### # 1. Print the log file header startstr1 = "\n\t BRAVE RESEARCH CENTER\n\t DTI PREPROCESSING PIPELINE\n" startstr2 = "\tSUBJECT: " + self.subj_dir.name[-3:] + " " + \ "SESSION: " + ses_dir.name[-2:] + "\n" log.write(44*"%") log.write(startstr1) log.write(" " + "_"*43 + " \n\n") log.write(startstr2) log.write(44*"%" + "\n\n") # 2. Convert to MIF format log.write("#----Converting to .MIF format----#\n\n") log.flush() log.flush() def denoise(self): self.dwi_denoised = self.preprocdwi_dir / (self.subjroot + '_denoised.nii') subprocess.run(['dwidenoise', '-force', self.inputdwi, self.dwi_denoised]) def degibbs(self): self.dwi_degibbs = self.preprocdwi_dir / (self.subjroot + '_degibbs.nii') subprocess.run(['mrdegibbs', '-force', self.dwi_denoised, self.dwi_degibbs]) def regrid(self): self.dwi_regrid = self.preprocdwi_dir / (self.subjroot + '_regrid.nii') subprocess.run(['mrgrid', '-info', '-force', self.dwi_degibbs, 'regrid', self.dwi_regrid, '-voxel', '1']) def synb0(self): synb0_dir = self.preprocdwi_dir / 'synb0' if synb0_dir.exists(): shutil.rmtree(synb0_dir) synb0_dir.mkdir(exist_ok=True) self.synb0_INPUT_dir = synb0_dir / 'INPUTS' if self.synb0_INPUT_dir.exists(): shutil.rmtree(self.synb0_INPUT_dir) self.synb0_INPUT_dir.mkdir(exist_ok=True) self.synb0_OUTPUT_dir = synb0_dir / 'OUTPUTS' if self.synb0_OUTPUT_dir.exists(): shutil.rmtree(self.synb0_OUTPUT_dir) self.synb0_OUTPUT_dir.mkdir(exist_ok=True) all_b0 = self.synb0_INPUT_dir / 'all_b0.nii' subprocess.run(['dwiextract', '-force', '-fslgrad', self.inputbvec, self.inputbval, self.dwi_regrid, all_b0]) syn_b0 = self.synb0_INPUT_dir / 'b0.nii.gz' subprocess.run(['mrmath', '-force', all_b0, 'mean', syn_b0, '-axis', '3']) synb0_T1 = self.synb0_INPUT_dir / 'T1.nii.gz' shutil.copy(self.inputanat, synb0_T1) self.synb0_topup_acqc = self.synb0_INPUT_dir / 'acqparams.txt' with open(self.synb0_topup_acqc, 'w') as acqfile: acqfile.write("0 1 0 0.14484" + '\n' + "0 1 0 0") subprocess.run(['docker', 'run', '--rm', '-v', str(self.synb0_INPUT_dir)+str(':/INPUTS/'), '-v', str(self.synb0_OUTPUT_dir)+str(':/OUTPUTS/'), '-v', '/fast_scratch/jdr/dwiproc_test/ses-01/license.txt:/extra/freesurfer/license.txt', '--user', '57059:20', 'hansencb/synb0']) def eddy(self): # REMOVE AFTER TESTING # synb0_dir = self.preprocdwi_dir / 'synb0' self.synb0_INPUT_dir = synb0_dir / 'INPUTS' self.synb0_OUTPUT_dir = synb0_dir / 'OUTPUTS' self.synb0_topup_acqc = self.synb0_INPUT_dir / 'acqparams.txt' ########################### eddy_dir = self.preprocdwi_dir / 'eddy' eddy_dir.mkdir(exist_ok=True) # Create dwi mask dwi_mask = eddy_dir / (self.subjroot + '_mask.nii') subprocess.run(['dwi2mask', '-force', '-fslgrad', self.inputbvec, self.inputbval, self.inputdwi, dwi_mask]) # Generating volume index file eddy_index = eddy_dir / 'eddy_index.txt' with open(eddy_index, 'w') as indexfile: getnvols = subprocess.Popen( ['fslval', self.inputdwi, 'dim4'], stdout=subprocess.PIPE) nvols = getnvols.stdout.read() for i in range(int(nvols)): indexfile.write("1 ") # Run eddy eddy_basename = str(eddy_dir / (self.subjroot + '_dwi_eddy')) subprocess.run(['eddy_cuda9.1', '--imain='+str(self.inputdwi), '--mask='+str(dwi_mask), '--acqp='+str(self.synb0_topup_acqc), '--index='+str(eddy_index), '--bvecs='+str(self.inputbvec), '--bvals='+str(self.inputbval), '--topup='+str(self.synb0_OUTPUT_dir)+('/topup'), '--out='+eddy_basename, '--repol', '--residuals', '--slm=linear', '--very_verbose']) self.dwi_eddycorr = eddy_dir / (self.subjroot + '_dwi_eddy.nii.gz') def biascorrection(self): self.biascorr = self.preprocdwi_dir / (self.subjroot + '_biascorr.nii') subprocess.run(['dwibiascorrect', '-info', '-force', 'ants', self.dwi_eddycorr, self.biascorr, '-scratch', '/tmp']) def main(self, ses_dir): self.preproc_prep(ses_dir) self.denoise() self.degibbs() self.regrid() self.synb0() self.eddy() ses_dirs = lambda: (ses_dir for ses_dir in bidsmaster_dir.glob('*/ses-01') # noqa: E731 if ses_dir.parent.name == 'sub-001') def container(ses_dir): c = dwipreproc(ses_dir) # noqa: F841 with parallel_backend("loky", inner_max_num_threads=1): results = Parallel(n_jobs=1, verbose=1)( delayed(container)(ses_dir) for ses_dir in sorted(ses_dirs()))
4beef22bf29700d3794b948c98dbaa4b55e1f8e0
7db6c1865cf9102808824ff06cda747b6e572a21
/Python/Test/Time/time_count.py
9d6d2bf361c05494395587a1c48789d455799998
[]
no_license
hyteer/testing
1f6cabc1d2b67faa4533e6ad7eb5be8c13d542c9
1d8b47b3bbb2daf00e4f15b5d18e86111ea4e113
refs/heads/master
2020-05-21T16:19:08.243676
2017-01-03T01:25:17
2017-01-03T01:25:17
60,914,071
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
import time from datetime import datetime def compute(i): for i in range(1,i): i = i+1 return i start_time = datetime.now() print "start:%s" % str(start_time) n = compute(100000) end_time = datetime.now() print "end:%s" % str(end_time) #elapsed_time = end_time - start_time #print "elapsed_time:%s" % str(elapsed_time) #print "start:%r, End:%r" % (start_time, end_time) #rint datetime.now()
88f98b361bb900da84472e106fdc314378c2e695
facbdbdadacd23f6c83d266116dc14744741070f
/Core_Python/Day-22/Dict/13.py
b12af90d65221bfd295325d609af46cfb2c20761
[]
no_license
Yogesh-Singh-Gadwal/YSG_Python
51b6b53fe34567bf066b6e487c00da766b47ac6b
f0d6841e1f92d1d2b27d8ecdd332d40b49a5ca69
refs/heads/master
2023-06-06T04:40:12.004713
2021-07-06T19:59:26
2021-07-06T19:59:26
292,482,586
1
0
null
null
null
null
UTF-8
Python
false
false
187
py
# dict import time d1 = { "a":"micky", "b":"akira", "c":"rahul" } print(d1) print(type(d1)) print() time.sleep(3) d1['d'] = 'amit' print(d1)
a72087a44335f22fff3c3d621b637d544e2e3392
07cabeb47bd7c9a4e06e824ece28631c7d7441a1
/virtual/bin/isort
2e2a74cd71c3ca27a9b212875725fc510dc66f43
[ "MIT" ]
permissive
Jeffmusa/PITCH-POOL
bd2b27ea5bc5b47499c0b822c46ff518eae5f2f4
96654a3ba7fc3f4ba00d7fb617644cc9cd5ba041
refs/heads/master
2020-03-28T04:17:07.471479
2018-09-13T13:21:17
2018-09-13T13:21:17
147,705,197
0
2
null
null
null
null
UTF-8
Python
false
false
236
#!/home/vicklyne/Pitch/virtual/bin/python # -*- coding: utf-8 -*- import re import sys from isort.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
fc99177cb2c2d349aa7b8d333935662131b2b0d2
ba86ef56fb2ff1a8bf9be3058b58b9e48e7b50ce
/apps/rrhh/urls/activoUrls.py
f9ebbd3822e6e27218afabebd53c16babc23aa94
[]
no_license
robertowest/lubre_homepage
277f8fc81512b482fbea539234f30ef3eb801480
9de02443ba2ee3cd48afd2b7d580a09081fe84f2
refs/heads/master
2023-07-14T04:39:38.640155
2021-08-30T17:43:56
2021-08-30T17:43:56
223,473,409
0
0
null
2020-05-07T13:50:46
2019-11-22T19:34:22
Python
UTF-8
Python
false
false
563
py
from django.urls import path from apps.rrhh.views import activoViews as views app_name = "activo" urlpatterns = [ path('', views.ActivoTemplateView.as_view(), name='index'), path('listado/', views.ActivosListView.as_view(), name='list'), path('<int:fk>/crear/', views.ActivoCreateView.as_view(), name='create'), path('<int:pk>/', views.ActivoDetailView.as_view(), name='detail'), path('<int:pk>/modificar/', views.ActivoUpdateView.as_view(), name='update'), path('<int:pk>/eliminar/', views.ActivoDeleteView.as_view(), name='delete'), ]
d1ca7482114376f98e1dcdf854e9233fdc546a85
71f7d58c9a33fc8fdfdd85d5f432565010856c5a
/ciscripts/check/project/__init__.py
69052c33b396fab013dd28c9d6aedeb5ed0e50c7
[ "MIT" ]
permissive
polysquare/polysquare-ci-scripts
32a3bbcab62d77c1dfcbbf0ad78a23306e67d8c6
9978f0600ea964a9f2dffd9f4eb01a10d08d6788
refs/heads/master
2022-10-27T23:37:25.192253
2018-02-22T02:03:11
2018-02-22T02:03:20
28,320,857
2
2
MIT
2022-10-23T07:10:40
2014-12-22T01:58:27
Python
UTF-8
Python
false
false
193
py
# /ciscripts/check/project/__init__.py # # Module loader file for /ciscripts/check/project. # # See /LICENCE.md for Copyright information """Module loader file for /ciscripts/check/project."""
a40241e3028bcbd61a3f99c32bbbcd513a9624c9
e0f133b49f9f0f416f14da70a2cadb7011c0cb7b
/new_spider/extractor/souhu_learning/souhu_extractor.py
dfe47174d0ba973418907950c1f51c2e8a8f0f9a
[]
no_license
cash2one/python_frame
ac52d052fd3698303f1f4fa022f3b35a56e07533
2dbda155780a19cf42d5376104879d0667fbbf75
refs/heads/master
2021-06-18T13:28:40.356527
2017-06-28T02:51:35
2017-06-28T02:51:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,564
py
# -*- coding: utf8 -*- import traceback import datetime import re import json from lxml.html import fromstring import sys import random reload(sys) sys.setdefaultencoding('utf8') from store.sx_basestore import BaseStore from bs4 import BeautifulSoup ''' 使用bs 解析 ''' class SourceExtractor (object): ''' -1 解析异常 1 无数据 ''' def extractor_list_lxml(self, body): try: tree = fromstring(body) # 这种方式 可使用cssselect 不然linux 不能使用 list_box = tree.cssselect('div.main-content') # .main - content if list_box: result_list = list() list_content = tree.cssselect("li") if list_content: for list_one in list_content: content_title = list_one.cssselect('span.content-title > a') if content_title: print content_title.get("href") else: return 1 except: print traceback.format_exc() return -1 # -1 解析异常 1 无内容 解析目录 def extractor_list_bs_catalog(self, body): try: bsObj = BeautifulSoup(body, 'html.parser') dl_list = bsObj.find_all("dl") result_list = list() if dl_list: for dl_one in dl_list: a_list = dl_one.find_all("a") if a_list: for i, a_one in enumerate(a_list): item = dict() if i == 0: url = a_one.attrs["href"] catalog_one = a_one.get_text() catalog_two = "" else: url = a_one.attrs["href"] catalog_two = a_one.get_text() item["url"] = url item["catalog_one"] = catalog_one try: item["catalog_two"] = catalog_two except: item["catalog_two"] = "" result_list.append(item) return result_list return 1 except: print traceback.format_exc() return -1 # -1 解析异常 1 无内容 一级目录 列表页解析 def extractor_list_bs(self, body, extractor_page=0): try: if body.find("</html>") > -1: pass else: return 1 ext_result = dict() if extractor_page == 1: maxPage, showPages = self.extractor_body(body) ext_result["maxPage"] = maxPage ext_result["showPages"] = showPages bsObj = BeautifulSoup(body, 'html.parser') list_box = bsObj.find_all("div", {"class": "main-content"}) result_list = list() if list_box: list_content = list_box[0].find_all("li") if list_content: for list_one in list_content: spans = list_one.find_all("span", {"class": "content-title"}) if spans: a_one = spans[0].find("a").attrs["href"] result_list.append(a_one) ext_result["result_list"] = result_list return ext_result except: print traceback.format_exc() return -1 # -1 解析异常 1 无内容 二级 列表页解析 def extractor_list_categoryteo_bs(self, body, extractor_page=0): try: if body.find("</html>") > -1: pass else: return 1 ext_result = dict() if extractor_page == 1: maxPage, showPages = self.extractor_body(body) ext_result["maxPage"] = maxPage ext_result["showPages"] = showPages bsObj = BeautifulSoup(body, 'html.parser') span_list_box = bsObj.find_all("span", {"class": "content-title"}) result_list = list() if span_list_box: for span_one in span_list_box: a_list = span_one.find_all("a") if a_list: href_url = a_list[0].attrs["href"] result_list.append(href_url) ext_result["result_list"] = result_list return ext_result except: print traceback.format_exc() return -1 # 详情页 解析 def extractor_detail_bs(self, body): try: html_item = dict() content = "" title = "" crumbs = "" img_srcs = list() file_names = list() content, img_srcs, file_names = self.get_content_body(body) # print content bsObj = BeautifulSoup(body, 'html.parser') # bsObj = BeautifulSoup(body, 'lxml') location = bsObj.find_all("div", {"class": "location"}) head = "" if location: head = location[0].get_text() start_index = head.find(">") crumbs = head[start_index + 1:].replace(" ", "") h1 = bsObj.find_all("h1") if h1: title = h1[0].get_text() # print crumbs, title # print img_srcs, file_names html_item["crumbs"] = crumbs html_item["title"] = title html_item["content"] = content # print type(content) html_item["img_srcs"] = img_srcs html_item["file_names"] = file_names return html_item # return 1 except: print traceback.format_exc() return -1 def get_content_body(self, body): start_index = body.find("contentText") temp_body = body[start_index:] start_index = temp_body.find("<") temp_body = temp_body[start_index:] end_index = temp_body.find("</div>") content = temp_body[0: end_index] return self.analyze_content(content) def analyze_content(self, content): # 解析 图片名 img_srcs = re.findall(r"""src=\"(.*?)\"""", content) file_names = list() if img_srcs: for content_one in img_srcs: start_index = content_one.rfind("/") end_index = content_one.rfind(".") # 分100个文件夹 filename = "images/img%s/" % str(random.randint(1, 100)) + content_one[ start_index + 1: end_index] + ".jpg" file_names.append(filename) content = content.replace(content_one, filename) return content, img_srcs, file_names def extractor_body(self, body): body_start_index = body.find("var maxPage =") temp_body = body[body_start_index:] temp_end_index = temp_body.find(";") maxPage = int(temp_body[14: temp_end_index]) body_start_index = body.find("var showPages =") temp_body = body[body_start_index:] temp_end_index = temp_body.find(";") showPages = int(temp_body[15: temp_end_index]) return maxPage, showPages if __name__ == '__main__': # sx = HandleCsvDeal() extractor = SourceExtractor() sxfile = open("detail.txt", "rb") content = sxfile.read() # print content returntext = extractor.extractor_detail_bs(content) # returntext = extractor.extractor_list_categoryteo_bs(content) # returntext = extractor.extractor_list_bs_catalog(content) returntext["url"] = "http://learning.sohu.com/20170502/n491504271.shtml" # print returntext["content"] # self, results, table="", type=1, field=None, db_connnection="" con = {'host': '115.159.0.225', 'user': 'remote', 'password': 'Iknowthat', 'db': 'souhu_learning'} sx_store = BaseStore() store_list = list() store_list.append(returntext) sx_store.store_table_db(store_list, table="souhu_details", db_connnection=con) # returntext = extractor.extractor_photojs(content, 12) # print len(returntext) # filename = "csv01010.csv" # sx.sx_write_File(filename, returntext)
7d17d96e13057b1f94d9771992243f7e923410b6
51f887286aa3bd2c3dbe4c616ad306ce08976441
/pybind/nos/v7_2_0/interface/hundredgigabitethernet/switchport/__init__.py
5aee5f6f90f1fafbc5ecf6e1dd1f68151d3786c2
[ "Apache-2.0" ]
permissive
b2220333/pybind
a8c06460fd66a97a78c243bf144488eb88d7732a
44c467e71b2b425be63867aba6e6fa28b2cfe7fb
refs/heads/master
2020-03-18T09:09:29.574226
2018-04-03T20:09:50
2018-04-03T20:09:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
37,646
py
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ import mode import port_security import access import access_mac_group_vlan_classification import access_mac_vlan_classification import trunk_private_vlan_classification import trunk import private_vlan import access_mac_group_rspan_vlan_classification import access_mac_rspan_vlan_classification class switchport(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-interface - based on the path /interface/hundredgigabitethernet/switchport. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: The L2 switching characteristics of an interface. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__mode','__port_security','__access','__access_mac_group_vlan_classification','__access_mac_vlan_classification','__trunk_private_vlan_classification','__trunk','__private_vlan','__access_mac_group_rspan_vlan_classification','__access_mac_rspan_vlan_classification',) _yang_name = 'switchport' _rest_name = 'switchport' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__trunk_private_vlan_classification = YANGDynClass(base=trunk_private_vlan_classification.trunk_private_vlan_classification, is_container='container', presence=False, yang_name="trunk-private-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'ctag-pvlan-classification-phy-config'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) self.__private_vlan = YANGDynClass(base=private_vlan.private_vlan, is_container='container', presence=False, yang_name="private-vlan", rest_name="private-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set Private-Vlan Configuration'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) self.__access_mac_vlan_classification = YANGDynClass(base=access_mac_vlan_classification.access_mac_vlan_classification, is_container='container', presence=False, yang_name="access-mac-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'gvlan-access-port-config-phy'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) self.__access = YANGDynClass(base=access.access, is_container='container', presence=False, yang_name="access", rest_name="access", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set the Layer2 interface as Access', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) self.__access_mac_group_vlan_classification = YANGDynClass(base=access_mac_group_vlan_classification.access_mac_group_vlan_classification, is_container='container', presence=False, yang_name="access-mac-group-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'mac-group-vlan-classification-config-phy'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) self.__port_security = YANGDynClass(base=port_security.port_security, is_container='container', presence=True, yang_name="port-security", rest_name="port-security", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable port-security feature', u'callpoint': u'interface_portsecurity'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) self.__access_mac_group_rspan_vlan_classification = YANGDynClass(base=access_mac_group_rspan_vlan_classification.access_mac_group_rspan_vlan_classification, is_container='container', presence=False, yang_name="access-mac-group-rspan-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) self.__mode = YANGDynClass(base=mode.mode, is_container='container', presence=False, yang_name="mode", rest_name="mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set mode of the Layer2 interface', u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) self.__trunk = YANGDynClass(base=trunk.trunk, is_container='container', presence=False, yang_name="trunk", rest_name="trunk", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set the Layer2 interface as trunk', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) self.__access_mac_rspan_vlan_classification = YANGDynClass(base=access_mac_rspan_vlan_classification.access_mac_rspan_vlan_classification, is_container='container', presence=False, yang_name="access-mac-rspan-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'interface', u'hundredgigabitethernet', u'switchport'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'interface', u'HundredGigabitEthernet', u'switchport'] def _get_mode(self): """ Getter method for mode, mapped from YANG variable /interface/hundredgigabitethernet/switchport/mode (container) YANG Description: The mode of the Layer2 interface. """ return self.__mode def _set_mode(self, v, load=False): """ Setter method for mode, mapped from YANG variable /interface/hundredgigabitethernet/switchport/mode (container) If this variable is read-only (config: false) in the source YANG file, then _set_mode is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_mode() directly. YANG Description: The mode of the Layer2 interface. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=mode.mode, is_container='container', presence=False, yang_name="mode", rest_name="mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set mode of the Layer2 interface', u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """mode must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=mode.mode, is_container='container', presence=False, yang_name="mode", rest_name="mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set mode of the Layer2 interface', u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True)""", }) self.__mode = t if hasattr(self, '_set'): self._set() def _unset_mode(self): self.__mode = YANGDynClass(base=mode.mode, is_container='container', presence=False, yang_name="mode", rest_name="mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set mode of the Layer2 interface', u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) def _get_port_security(self): """ Getter method for port_security, mapped from YANG variable /interface/hundredgigabitethernet/switchport/port_security (container) YANG Description: Enable port-security feature """ return self.__port_security def _set_port_security(self, v, load=False): """ Setter method for port_security, mapped from YANG variable /interface/hundredgigabitethernet/switchport/port_security (container) If this variable is read-only (config: false) in the source YANG file, then _set_port_security is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_port_security() directly. YANG Description: Enable port-security feature """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=port_security.port_security, is_container='container', presence=True, yang_name="port-security", rest_name="port-security", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable port-security feature', u'callpoint': u'interface_portsecurity'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """port_security must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=port_security.port_security, is_container='container', presence=True, yang_name="port-security", rest_name="port-security", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable port-security feature', u'callpoint': u'interface_portsecurity'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True)""", }) self.__port_security = t if hasattr(self, '_set'): self._set() def _unset_port_security(self): self.__port_security = YANGDynClass(base=port_security.port_security, is_container='container', presence=True, yang_name="port-security", rest_name="port-security", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable port-security feature', u'callpoint': u'interface_portsecurity'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) def _get_access(self): """ Getter method for access, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access (container) YANG Description: The access layer characteristics of this interface. """ return self.__access def _set_access(self, v, load=False): """ Setter method for access, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access (container) If this variable is read-only (config: false) in the source YANG file, then _set_access is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_access() directly. YANG Description: The access layer characteristics of this interface. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=access.access, is_container='container', presence=False, yang_name="access", rest_name="access", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set the Layer2 interface as Access', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """access must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=access.access, is_container='container', presence=False, yang_name="access", rest_name="access", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set the Layer2 interface as Access', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True)""", }) self.__access = t if hasattr(self, '_set'): self._set() def _unset_access(self): self.__access = YANGDynClass(base=access.access, is_container='container', presence=False, yang_name="access", rest_name="access", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set the Layer2 interface as Access', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) def _get_access_mac_group_vlan_classification(self): """ Getter method for access_mac_group_vlan_classification, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_group_vlan_classification (container) """ return self.__access_mac_group_vlan_classification def _set_access_mac_group_vlan_classification(self, v, load=False): """ Setter method for access_mac_group_vlan_classification, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_group_vlan_classification (container) If this variable is read-only (config: false) in the source YANG file, then _set_access_mac_group_vlan_classification is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_access_mac_group_vlan_classification() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=access_mac_group_vlan_classification.access_mac_group_vlan_classification, is_container='container', presence=False, yang_name="access-mac-group-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'mac-group-vlan-classification-config-phy'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """access_mac_group_vlan_classification must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=access_mac_group_vlan_classification.access_mac_group_vlan_classification, is_container='container', presence=False, yang_name="access-mac-group-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'mac-group-vlan-classification-config-phy'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True)""", }) self.__access_mac_group_vlan_classification = t if hasattr(self, '_set'): self._set() def _unset_access_mac_group_vlan_classification(self): self.__access_mac_group_vlan_classification = YANGDynClass(base=access_mac_group_vlan_classification.access_mac_group_vlan_classification, is_container='container', presence=False, yang_name="access-mac-group-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'mac-group-vlan-classification-config-phy'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) def _get_access_mac_vlan_classification(self): """ Getter method for access_mac_vlan_classification, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_vlan_classification (container) """ return self.__access_mac_vlan_classification def _set_access_mac_vlan_classification(self, v, load=False): """ Setter method for access_mac_vlan_classification, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_vlan_classification (container) If this variable is read-only (config: false) in the source YANG file, then _set_access_mac_vlan_classification is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_access_mac_vlan_classification() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=access_mac_vlan_classification.access_mac_vlan_classification, is_container='container', presence=False, yang_name="access-mac-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'gvlan-access-port-config-phy'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """access_mac_vlan_classification must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=access_mac_vlan_classification.access_mac_vlan_classification, is_container='container', presence=False, yang_name="access-mac-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'gvlan-access-port-config-phy'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True)""", }) self.__access_mac_vlan_classification = t if hasattr(self, '_set'): self._set() def _unset_access_mac_vlan_classification(self): self.__access_mac_vlan_classification = YANGDynClass(base=access_mac_vlan_classification.access_mac_vlan_classification, is_container='container', presence=False, yang_name="access-mac-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'gvlan-access-port-config-phy'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) def _get_trunk_private_vlan_classification(self): """ Getter method for trunk_private_vlan_classification, mapped from YANG variable /interface/hundredgigabitethernet/switchport/trunk_private_vlan_classification (container) """ return self.__trunk_private_vlan_classification def _set_trunk_private_vlan_classification(self, v, load=False): """ Setter method for trunk_private_vlan_classification, mapped from YANG variable /interface/hundredgigabitethernet/switchport/trunk_private_vlan_classification (container) If this variable is read-only (config: false) in the source YANG file, then _set_trunk_private_vlan_classification is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_trunk_private_vlan_classification() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=trunk_private_vlan_classification.trunk_private_vlan_classification, is_container='container', presence=False, yang_name="trunk-private-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'ctag-pvlan-classification-phy-config'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """trunk_private_vlan_classification must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=trunk_private_vlan_classification.trunk_private_vlan_classification, is_container='container', presence=False, yang_name="trunk-private-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'ctag-pvlan-classification-phy-config'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True)""", }) self.__trunk_private_vlan_classification = t if hasattr(self, '_set'): self._set() def _unset_trunk_private_vlan_classification(self): self.__trunk_private_vlan_classification = YANGDynClass(base=trunk_private_vlan_classification.trunk_private_vlan_classification, is_container='container', presence=False, yang_name="trunk-private-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'ctag-pvlan-classification-phy-config'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) def _get_trunk(self): """ Getter method for trunk, mapped from YANG variable /interface/hundredgigabitethernet/switchport/trunk (container) YANG Description: The trunking characteristics of this interface. """ return self.__trunk def _set_trunk(self, v, load=False): """ Setter method for trunk, mapped from YANG variable /interface/hundredgigabitethernet/switchport/trunk (container) If this variable is read-only (config: false) in the source YANG file, then _set_trunk is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_trunk() directly. YANG Description: The trunking characteristics of this interface. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=trunk.trunk, is_container='container', presence=False, yang_name="trunk", rest_name="trunk", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set the Layer2 interface as trunk', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """trunk must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=trunk.trunk, is_container='container', presence=False, yang_name="trunk", rest_name="trunk", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set the Layer2 interface as trunk', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True)""", }) self.__trunk = t if hasattr(self, '_set'): self._set() def _unset_trunk(self): self.__trunk = YANGDynClass(base=trunk.trunk, is_container='container', presence=False, yang_name="trunk", rest_name="trunk", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set the Layer2 interface as trunk', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) def _get_private_vlan(self): """ Getter method for private_vlan, mapped from YANG variable /interface/hundredgigabitethernet/switchport/private_vlan (container) YANG Description: Set Private-Vlan Configuration """ return self.__private_vlan def _set_private_vlan(self, v, load=False): """ Setter method for private_vlan, mapped from YANG variable /interface/hundredgigabitethernet/switchport/private_vlan (container) If this variable is read-only (config: false) in the source YANG file, then _set_private_vlan is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_private_vlan() directly. YANG Description: Set Private-Vlan Configuration """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=private_vlan.private_vlan, is_container='container', presence=False, yang_name="private-vlan", rest_name="private-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set Private-Vlan Configuration'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """private_vlan must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=private_vlan.private_vlan, is_container='container', presence=False, yang_name="private-vlan", rest_name="private-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set Private-Vlan Configuration'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True)""", }) self.__private_vlan = t if hasattr(self, '_set'): self._set() def _unset_private_vlan(self): self.__private_vlan = YANGDynClass(base=private_vlan.private_vlan, is_container='container', presence=False, yang_name="private-vlan", rest_name="private-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set Private-Vlan Configuration'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) def _get_access_mac_group_rspan_vlan_classification(self): """ Getter method for access_mac_group_rspan_vlan_classification, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_group_rspan_vlan_classification (container) """ return self.__access_mac_group_rspan_vlan_classification def _set_access_mac_group_rspan_vlan_classification(self, v, load=False): """ Setter method for access_mac_group_rspan_vlan_classification, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_group_rspan_vlan_classification (container) If this variable is read-only (config: false) in the source YANG file, then _set_access_mac_group_rspan_vlan_classification is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_access_mac_group_rspan_vlan_classification() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=access_mac_group_rspan_vlan_classification.access_mac_group_rspan_vlan_classification, is_container='container', presence=False, yang_name="access-mac-group-rspan-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """access_mac_group_rspan_vlan_classification must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=access_mac_group_rspan_vlan_classification.access_mac_group_rspan_vlan_classification, is_container='container', presence=False, yang_name="access-mac-group-rspan-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True)""", }) self.__access_mac_group_rspan_vlan_classification = t if hasattr(self, '_set'): self._set() def _unset_access_mac_group_rspan_vlan_classification(self): self.__access_mac_group_rspan_vlan_classification = YANGDynClass(base=access_mac_group_rspan_vlan_classification.access_mac_group_rspan_vlan_classification, is_container='container', presence=False, yang_name="access-mac-group-rspan-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) def _get_access_mac_rspan_vlan_classification(self): """ Getter method for access_mac_rspan_vlan_classification, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_rspan_vlan_classification (container) """ return self.__access_mac_rspan_vlan_classification def _set_access_mac_rspan_vlan_classification(self, v, load=False): """ Setter method for access_mac_rspan_vlan_classification, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_rspan_vlan_classification (container) If this variable is read-only (config: false) in the source YANG file, then _set_access_mac_rspan_vlan_classification is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_access_mac_rspan_vlan_classification() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=access_mac_rspan_vlan_classification.access_mac_rspan_vlan_classification, is_container='container', presence=False, yang_name="access-mac-rspan-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """access_mac_rspan_vlan_classification must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=access_mac_rspan_vlan_classification.access_mac_rspan_vlan_classification, is_container='container', presence=False, yang_name="access-mac-rspan-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True)""", }) self.__access_mac_rspan_vlan_classification = t if hasattr(self, '_set'): self._set() def _unset_access_mac_rspan_vlan_classification(self): self.__access_mac_rspan_vlan_classification = YANGDynClass(base=access_mac_rspan_vlan_classification.access_mac_rspan_vlan_classification, is_container='container', presence=False, yang_name="access-mac-rspan-vlan-classification", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='container', is_config=True) mode = __builtin__.property(_get_mode, _set_mode) port_security = __builtin__.property(_get_port_security, _set_port_security) access = __builtin__.property(_get_access, _set_access) access_mac_group_vlan_classification = __builtin__.property(_get_access_mac_group_vlan_classification, _set_access_mac_group_vlan_classification) access_mac_vlan_classification = __builtin__.property(_get_access_mac_vlan_classification, _set_access_mac_vlan_classification) trunk_private_vlan_classification = __builtin__.property(_get_trunk_private_vlan_classification, _set_trunk_private_vlan_classification) trunk = __builtin__.property(_get_trunk, _set_trunk) private_vlan = __builtin__.property(_get_private_vlan, _set_private_vlan) access_mac_group_rspan_vlan_classification = __builtin__.property(_get_access_mac_group_rspan_vlan_classification, _set_access_mac_group_rspan_vlan_classification) access_mac_rspan_vlan_classification = __builtin__.property(_get_access_mac_rspan_vlan_classification, _set_access_mac_rspan_vlan_classification) _pyangbind_elements = {'mode': mode, 'port_security': port_security, 'access': access, 'access_mac_group_vlan_classification': access_mac_group_vlan_classification, 'access_mac_vlan_classification': access_mac_vlan_classification, 'trunk_private_vlan_classification': trunk_private_vlan_classification, 'trunk': trunk, 'private_vlan': private_vlan, 'access_mac_group_rspan_vlan_classification': access_mac_group_rspan_vlan_classification, 'access_mac_rspan_vlan_classification': access_mac_rspan_vlan_classification, }
49cf7d40a41f08cf4b9942fb0992993977cdd6cb
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/built-in/cv/classification/Gluon_ResNet50_v1b_for_PyTorch/timm/models/layers/halo_attn.py
5cb9d54dd40bdc666fb9eb7c60ee2eaa1c43e199
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later", "CC-BY-NC-4.0", "LicenseRef-scancode-proprietary-license", "LGPL-2.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
7,400
py
# Copyright 2019 Ross Wightman # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Halo Self Attention Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones` - https://arxiv.org/abs/2103.12731 @misc{2103.12731, Author = {Ashish Vaswani and Prajit Ramachandran and Aravind Srinivas and Niki Parmar and Blake Hechtman and Jonathon Shlens}, Title = {Scaling Local Self-Attention for Parameter Efficient Visual Backbones}, Year = {2021}, } Status: This impl is a WIP, there is no official ref impl and some details in paper weren't clear to me. Trying to match the 'H1' variant in the paper, my parameter counts are 2M less and the model is extremely slow. Something isn't right. However, the models do appear to train and experimental variants with attn in C4 and/or C5 stages are tolerable speed. Hacked together by / Copyright 2021 Ross Wightman """ from typing import Tuple, List import torch from torch import nn import torch.nn.functional as F from .weight_init import trunc_normal_ def rel_logits_1d(q, rel_k, permute_mask: List[int]): """ Compute relative logits along one dimension As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 Args: q: (batch, height, width, dim) rel_k: (2 * window - 1, dim) permute_mask: permute output dim according to this """ B, H, W, dim = q.shape rel_size = rel_k.shape[0] win_size = (rel_size + 1) // 2 x = (q @ rel_k.transpose(-1, -2)) x = x.reshape(-1, W, rel_size) # pad to shift from relative to absolute indexing x_pad = F.pad(x, [0, 1]).flatten(1) x_pad = F.pad(x_pad, [0, rel_size - W]) # reshape and slice out the padded elements x_pad = x_pad.reshape(-1, W + 1, rel_size) x = x_pad[:, :W, win_size - 1:] # reshape and tile x = x.reshape(B, H, 1, W, win_size).expand(-1, -1, win_size, -1, -1) return x.permute(permute_mask) class PosEmbedRel(nn.Module): """ Relative Position Embedding As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 """ def __init__(self, block_size, win_size, dim_head, scale): """ Args: block_size (int): block size win_size (int): neighbourhood window size dim_head (int): attention head dim scale (float): scale factor (for init) """ super().__init__() self.block_size = block_size self.dim_head = dim_head self.scale = scale self.height_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * self.scale) self.width_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * self.scale) def forward(self, q): B, BB, HW, _ = q.shape # relative logits in width dimension. q = q.reshape(-1, self.block_size, self.block_size, self.dim_head) rel_logits_w = rel_logits_1d(q, self.width_rel, permute_mask=(0, 1, 3, 2, 4)) # relative logits in height dimension. q = q.transpose(1, 2) rel_logits_h = rel_logits_1d(q, self.height_rel, permute_mask=(0, 3, 1, 4, 2)) rel_logits = rel_logits_h + rel_logits_w rel_logits = rel_logits.reshape(B, BB, HW, -1) return rel_logits class HaloAttn(nn.Module): """ Halo Attention Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones` - https://arxiv.org/abs/2103.12731 """ def __init__( self, dim, dim_out=None, stride=1, num_heads=8, dim_head=16, block_size=8, halo_size=3, qkv_bias=False): super().__init__() dim_out = dim_out or dim assert dim_out % num_heads == 0 self.stride = stride self.num_heads = num_heads self.dim_head = dim_head self.dim_qk = num_heads * dim_head self.dim_v = dim_out self.block_size = block_size self.halo_size = halo_size self.win_size = block_size + halo_size * 2 # neighbourhood window size self.scale = self.dim_head ** -0.5 # FIXME not clear if this stride behaviour is what the paper intended # Also, the paper mentions using a 3D conv for dealing with the blocking/gather, and leaving # data in unfolded block form. I haven't wrapped my head around how that'd look. self.q = nn.Conv2d(dim, self.dim_qk, 1, stride=self.stride, bias=qkv_bias) self.kv = nn.Conv2d(dim, self.dim_qk + self.dim_v, 1, bias=qkv_bias) self.pos_embed = PosEmbedRel( block_size=block_size // self.stride, win_size=self.win_size, dim_head=self.dim_head, scale=self.scale) def reset_parameters(self): std = self.q.weight.shape[1] ** -0.5 # fan-in trunc_normal_(self.q.weight, std=std) trunc_normal_(self.kv.weight, std=std) trunc_normal_(self.pos_embed.height_rel, std=self.scale) trunc_normal_(self.pos_embed.width_rel, std=self.scale) def forward(self, x): B, C, H, W = x.shape assert H % self.block_size == 0 and W % self.block_size == 0 num_h_blocks = H // self.block_size num_w_blocks = W // self.block_size num_blocks = num_h_blocks * num_w_blocks q = self.q(x) q = F.unfold(q, kernel_size=self.block_size // self.stride, stride=self.block_size // self.stride) # B, num_heads * dim_head * block_size ** 2, num_blocks q = q.reshape(B * self.num_heads, self.dim_head, -1, num_blocks).transpose(1, 3) # B * num_heads, num_blocks, block_size ** 2, dim_head kv = self.kv(x) # FIXME I 'think' this unfold does what I want it to, but I should investigate kv = F.unfold(kv, kernel_size=self.win_size, stride=self.block_size, padding=self.halo_size) kv = kv.reshape( B * self.num_heads, self.dim_head + (self.dim_v // self.num_heads), -1, num_blocks).transpose(1, 3) k, v = torch.split(kv, [self.dim_head, self.dim_v // self.num_heads], dim=-1) attn_logits = (q @ k.transpose(-1, -2)) * self.scale # FIXME should usual attn scale be applied? attn_logits = attn_logits + self.pos_embed(q) # B * num_heads, block_size ** 2, win_size ** 2 attn_out = attn_logits.softmax(dim=-1) attn_out = (attn_out @ v).transpose(1, 3) # B * num_heads, dim_v // num_heads, block_size ** 2, num_blocks attn_out = F.fold( attn_out.reshape(B, -1, num_blocks), (H // self.stride, W // self.stride), kernel_size=self.block_size // self.stride, stride=self.block_size // self.stride) # B, dim_out, H // stride, W // stride return attn_out
9090de0981c2a4334712d26275bc1f06aeb6a383
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_lees.py
0c52ef364ea8500533dfc82c6c80a47232551d67
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
from xai.brain.wordbase.nouns._lee import _LEE #calss header class _LEES(_LEE, ): def __init__(self,): _LEE.__init__(self) self.name = "LEES" self.specie = 'nouns' self.basic = "lee" self.jsondata = {}
e86906546d5709bb143c540a3d02b9fb77e10673
27b86f422246a78704e0e84983b2630533a47db6
/tests/test_05_tools/test_534_dwg_info.py
3b9e92c3d0eced9c637c8286aceef1c82a2dbdfa
[ "MIT" ]
permissive
mozman/ezdxf
7512decd600896960660f0f580cab815bf0d7a51
ba6ab0264dcb6833173042a37b1b5ae878d75113
refs/heads/master
2023-09-01T11:55:13.462105
2023-08-15T11:50:05
2023-08-15T12:00:04
79,697,117
750
194
MIT
2023-09-14T09:40:41
2017-01-22T05:55:55
Python
UTF-8
Python
false
false
988
py
# Copyright (c) 2022, Manfred Moitzi # License: MIT License import pytest from ezdxf.dwginfo import dwg_info R12 = "41 43 31 30 30 39" R2000 = "41 43 31 30 31 35" R2018 = "41 43 31 30 33 32" R20XX = "41 43 31 30 33 33" unknown1 = "32 32 31 30 33 32" unknown2 = "" def data(s) -> bytes: return bytes(int(x, 16) for x in s.split()) @pytest.mark.parametrize( "s,ver,rel", [ (R12, "AC1009", "R12"), (R2000, "AC1015", "R2000"), (R2018, "AC1032", "R2018"), (R20XX, "AC1033", "unknown"), ], ids=["R12", "R2000", "R2018", "unknown"], ) def test_detect(s, ver, rel): info = dwg_info(data(s)) assert info.version == ver assert info.release == rel @pytest.mark.parametrize( "s", [unknown1, unknown2], ids=["invalid", "empty"], ) def test_detect_invalid(s): info = dwg_info(data(s)) assert info.version == "invalid" assert info.release == "invalid" if __name__ == "__main__": pytest.main([__file__])
f60fa889f48e5d98c9ed095639ff9bbcdbced23b
364085d006bb0e31f915091a07125501ab455277
/amplify/agent/util/http.py
2a6ec08a67743e03fcc23d237fde672d3aa78fd6
[ "BSD-2-Clause" ]
permissive
digideskio/digidesk-amplified
6f64768c28b7ecc32088259f07498df6956341ae
547f899d6fd47dc726df28ee90bf3511f02bd6cf
refs/heads/master
2020-12-30T23:21:08.300692
2016-04-14T12:20:01
2016-04-14T12:20:01
56,352,865
0
0
null
null
null
null
UTF-8
Python
false
false
4,597
py
# -*- coding: utf-8 -*- import ujson import time import requests import logging import zlib from amplify.agent import Singleton from amplify.agent.context import context requests.packages.urllib3.disable_warnings() """ WHY DO YOU DISABLE THIS WARNING? We don't want to show you redundant messages. IS IT A REAL PROBLEM? No. It is not a real problem. It's just a notification that urllib3 uses standard Python SSL library. GIVE ME MORE DETAILS! By default, urllib3 uses the standard library’s ssl module. Unfortunately, there are several limitations which are addressed by PyOpenSSL. In order to work with Python OpenSSL bindings urllib3 needs requests[security] to be installed, which contains cryptography, pyopenssl and other modules. The problem is we CAN'T ship Amplify with built-in OpenSSL & cryptography. You can install those libs manually and enable warnings back. More details: https://urllib3.readthedocs.org/en/latest/security.html#pyopenssl """ __author__ = "Mike Belov" __copyright__ = "Copyright (C) Nginx, Inc. All rights reserved." __credits__ = ["Mike Belov", "Andrei Belov", "Ivan Poluyanov", "Oleg Mamontov", "Andrew Alexeev", "Grant Hulegaard"] __license__ = "" __maintainer__ = "Mike Belov" __email__ = "[email protected]" class HTTPClient(Singleton): def __init__(self): config = context.app_config self.timeout = float(config['cloud']['api_timeout']) self.verify_ssl_cert = config['cloud']['verify_ssl_cert'] self.gzip = config['cloud']['gzip'] self.session = None self.url = None self.proxies = config.get('proxies') # Support old configs which don't have 'proxies' section if self.proxies and self.proxies.get('https', '') == '': self.proxies = None # Pass None to trigger requests default scraping of environment variables self.update_cloud_url() logging.getLogger("requests").setLevel(logging.WARNING) def update_cloud_url(self): config = context.app_config content_type = 'binary/octet-stream' if self.gzip else 'application/json' self.url = '%s/%s' % (config['cloud']['api_url'], config['credentials']['api_key']) self.session = requests.Session() self.session.headers.update({ 'Content-Type': content_type, 'User-Agent': 'nginx-amplify-agent/%s' % context.version }) def make_request(self, location, method, data=None, timeout=None, json=True, log=True): url = location if location.startswith('http') else '%s/%s' % (self.url, location) timeout = timeout if timeout is not None else self.timeout payload = ujson.encode(data) if data else '{}' payload = zlib.compress(payload, self.gzip) if self.gzip else payload start_time = time.time() result, http_code = '', 500 try: if method == 'get': r = self.session.get( url, timeout=timeout, verify=self.verify_ssl_cert, proxies=self.proxies ) else: r = self.session.post( url, data=payload, timeout=timeout, verify=self.verify_ssl_cert, proxies=self.proxies ) http_code = r.status_code r.raise_for_status() result = r.json() if json else r.text return result except Exception as e: if log: context.log.error('failed %s "%s", exception: "%s"' % (method.upper(), url, e.message)) context.log.debug('', exc_info=True) raise e finally: end_time = time.time() log_method = context.log.info if log else context.log.debug context.log.debug(result) log_method( "%s %s %s %s %s %.3f" % (method, url, http_code, len(payload), len(result), end_time - start_time) ) def post(self, url, data=None, timeout=None, json=True): return self.make_request(url, 'post', data=data, timeout=timeout, json=json) def get(self, url, timeout=None, json=True, log=True): return self.make_request(url, 'get', timeout=timeout, json=json, log=log) def resolve_uri(uri): """ Resolves uri if it's not absolute :param uri: str uri :return: str url """ if not(uri.startswith('http://') or uri.startswith('https://')): return '127.0.0.1%s' % uri else: return uri
e0bfd11f7270a4b660b186cb8e2368ef570c68ff
aa0bf4e774ff82065927dbddf34be19c09b64c9c
/examples/ex1.py
64ac038d0826dd17f9a516ada94d2873b01d30ab
[ "BSD-3-Clause" ]
permissive
grst/ipymd
510ea6feb2726fadfe24ebbcbf3981c104fad8d8
4a57c4212b8e71848d51826859c2a3e478037e28
refs/heads/grst
2023-04-02T14:38:34.154687
2020-12-02T11:37:38
2020-12-02T11:37:38
87,005,381
38
6
BSD-3-Clause
2018-08-28T11:33:46
2017-04-02T18:08:34
HTML
UTF-8
Python
false
false
511
py
# List of ipymd cells expected for this example. output = [ {'cell_type': 'markdown', 'source': '# Header'}, {'cell_type': 'markdown', 'source': 'A paragraph.'}, {'cell_type': 'markdown', 'source': 'Python code:'}, {'cell_type': 'code', 'input': 'print("Hello world!")', 'output': 'Hello world!'}, {'cell_type': 'markdown', 'source': 'JavaScript code:'}, {'cell_type': 'markdown', 'source': '```javascript\nconsole.log("Hello world!");\n```'} ]
48218e1f9f444bb01ae4752bef0b91bea2ed4dcb
c6a101547c2b7f36fe83a725974a8a7f02cf176d
/data_structures/bst/bt_to_bst.py
a3943ce19459c0432a31bde8205bf3bcf1beb69f
[ "MIT" ]
permissive
prabhupant/python-ds
737cc35574de5c2ece0f0813cf00775324a8dbe7
f7d6d78fedaf84b7527965bb1798b7a8da989474
refs/heads/master
2023-08-22T05:04:22.937675
2022-10-04T01:29:39
2022-10-04T01:29:39
199,366,418
2,325
704
MIT
2022-10-10T13:01:10
2019-07-29T02:48:57
Python
UTF-8
Python
false
false
767
py
class Node: def __init__(self, val): self.val = val self.left = None self.right = None def store_inorder(root, inorder): if root is None: return store_inorder(root.left, inorder) inorder.append(root.data) store_inorder(root.right, inorder) def count_nodes(root): if root is None: return 0 return count_nodes(root.left) + count_nodes(root.right) + 1 def array_to_bst(arr, root): if root is None: return array_to_bst(arr, root.left) root.data = arr[0] arr.pop(0) array_to_bst(arr, root.right) def bt_to_bst(root): if root is None: return n = count_nodes(root) arr = [] store_inorder(root, arr) arr.sort() array_to_bst(arr, root)
0fa67e76425e468c985c3025e54b6202be4272fd
f9e265f39cdfa568e67acb50840f9655fc4d65f7
/builtinfunctionstypes.py
b39cd0b6875e905da2d2d93d4b3b82210ca30fcf
[]
no_license
raymondmar61/pythonwilliamfiset
5a4fc7faba6880f3df6b3ded98cc6d17925e7895
aae7c533f48efbe91a4e7c2d640f2032cd97e1f3
refs/heads/master
2021-01-25T04:42:19.546278
2017-09-28T22:15:30
2017-09-28T22:15:30
93,469,377
1
0
null
null
null
null
UTF-8
Python
false
false
1,482
py
#williamfiset 30 Builtins 5 of 6 Types # tuple, list, str, bool, int, float from math import pi as PIE print(tuple("My_Python")) #print ('M', 'y', '_', 'P', 'y', 't', 'h', 'o', 'n') print(tuple((1,2,3))) #print (1, 2, 3) print(tuple( ['G','N','U'] )) #print ('G', 'N', 'U'). List becomes a tuple print(list(range(10))) #print [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] print(list("23456")) #print ['2', '3', '4', '5', '6']. Separates each string character into a list with elements print(list((1,2,3,4))) #print [1, 2, 3, 4]. Tuple becomes a list. print(str(True)) #print True print(str("1234567")) #print 1234567 print(str(PIE)) #print 3.141592653589793 print(bool(1>3)) #print False boolean returns True or False print(bool('a' < 'v')) #print True boolean returns True or False print(bool(1==1)) #print True boolean returns True or False print(int(456)) #print 456 print(int("453")) #print 453 converts string to integer #print(int( [567] )) #error message because can't convert a list to an integer print(float(PIE)) #print 3.141592653589793 print(float("1.474")) #print 1.474 print(float(508)) #print 508.0 #set an unordered list of unique elements, final result is a list with no duplicates list_ = [1,1,1,2,3,4,4,4] print(set(list_)) #print {1, 2, 3, 4} print("\n") my_set = set() my_set.add(5) my_set.add(1) my_set.add(2) print(my_set) #print {1, 2, 5} my_set.update([11,1,6,8]) print(my_set) #print {1, 2, 5, 6, 8, 11} print(list(my_set)) #print [1, 2, 5, 6, 8, 11] as a list
57145efae0a73a250ab079b71515694b7e3fa35e
2bb90b620f86d0d49f19f01593e1a4cc3c2e7ba8
/pardus/tags/2007.2/desktop/freedesktop/hal/actions.py
8548d7eb4c9dc4cbaff444aa99ef55843bd1fd65
[]
no_license
aligulle1/kuller
bda0d59ce8400aa3c7ba9c7e19589f27313492f7
7f98de19be27d7a517fe19a37c814748f7e18ba6
refs/heads/master
2021-01-20T02:22:09.451356
2013-07-23T17:57:58
2013-07-23T17:57:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,796
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2005-2007 TUBITAK/UEKAE # Licensed under the GNU General Public License, version 2. # See the file http://www.gnu.org/copyleft/gpl.txt. from pisi.actionsapi import autotools from pisi.actionsapi import pisitools from pisi.actionsapi import libtools from pisi.actionsapi import shelltools from pisi.actionsapi import get WorkDir = "hal-0.5.9.1" def setup(): autotools.configure("--enable-policy-kit \ --enable-acpi-ibm \ --enable-acpi-toshiba \ --with-dell-backlight \ --enable-umount-helper \ --enable-sonypic \ --enable-doxygen-docs \ --with-usb-csr \ --with-macbook \ --with-macbookpro \ --with-cpufreq \ --with-hal-user=hal \ --with-hal-group=hal \ --with-dbus-sys=/etc/dbus-1/system.d \ --disable-docbook-docs \ --disable-gtk-doc \ --disable-static \ --with-pid-file=/var/run/hald.pid") def build(): autotools.make() def install(): autotools.rawInstall("DESTDIR=%s" % get.installDIR()) # We install this in a seperate package to avoid gnome-python dep pisitools.remove("/usr/bin/hal-device-manager") pisitools.removeDir("/usr/share/hal/device-manager/") # See ya... pisitools.removeDir("/etc/hotplug.d/") pisitools.dodoc("AUTHORS", "COPYING", "ChangeLog", "NEWS", "README") # Needed for hal's new cache infrastructure pisitools.dodir("/var/lib/cache/hald/")
54c170d0ddb924fd6e0c42ffd2a7d2a6f7895aea
8ef8e6818c977c26d937d09b46be0d748022ea09
/cv/detection/autoassign/pytorch/mmdet/apis/inference.py
b3e6f862f8b76afdf8b73439796ac89352b2d48b
[ "Apache-2.0" ]
permissive
Deep-Spark/DeepSparkHub
eb5996607e63ccd2c706789f64b3cc0070e7f8ef
9d643e88946fc4a24f2d4d073c08b05ea693f4c5
refs/heads/master
2023-09-01T11:26:49.648759
2023-08-25T01:50:18
2023-08-25T01:50:18
534,133,249
7
6
Apache-2.0
2023-03-28T02:54:59
2022-09-08T09:07:01
Python
UTF-8
Python
false
false
8,736
py
# Copyright (c) OpenMMLab. All rights reserved. import warnings from pathlib import Path import mmcv import numpy as np import torch from mmcv.ops import RoIPool from mmcv.parallel import collate, scatter from mmcv.runner import load_checkpoint from mmdet.core import get_classes from mmdet.datasets import replace_ImageToTensor from mmdet.datasets.pipelines import Compose from mmdet.models import build_detector def init_detector(config, checkpoint=None, device='cuda:0', cfg_options=None): """Initialize a detector from config file. Args: config (str, :obj:`Path`, or :obj:`mmcv.Config`): Config file path, :obj:`Path`, or the config object. checkpoint (str, optional): Checkpoint path. If left as None, the model will not load any weights. cfg_options (dict): Options to override some settings in the used config. Returns: nn.Module: The constructed detector. """ if isinstance(config, (str, Path)): config = mmcv.Config.fromfile(config) elif not isinstance(config, mmcv.Config): raise TypeError('config must be a filename or Config object, ' f'but got {type(config)}') if cfg_options is not None: config.merge_from_dict(cfg_options) if 'pretrained' in config.model: config.model.pretrained = None elif 'init_cfg' in config.model.backbone: config.model.backbone.init_cfg = None config.model.train_cfg = None model = build_detector(config.model, test_cfg=config.get('test_cfg')) if checkpoint is not None: checkpoint = load_checkpoint(model, checkpoint, map_location='cpu') if 'CLASSES' in checkpoint.get('meta', {}): model.CLASSES = checkpoint['meta']['CLASSES'] else: warnings.simplefilter('once') warnings.warn('Class names are not saved in the checkpoint\'s ' 'meta data, use COCO classes by default.') model.CLASSES = get_classes('coco') model.cfg = config # save the config in the model for convenience model.to(device) model.eval() return model class LoadImage: """Deprecated. A simple pipeline to load image. """ def __call__(self, results): """Call function to load images into results. Args: results (dict): A result dict contains the file name of the image to be read. Returns: dict: ``results`` will be returned containing loaded image. """ warnings.simplefilter('once') warnings.warn('`LoadImage` is deprecated and will be removed in ' 'future releases. You may use `LoadImageFromWebcam` ' 'from `mmdet.datasets.pipelines.` instead.') if isinstance(results['img'], str): results['filename'] = results['img'] results['ori_filename'] = results['img'] else: results['filename'] = None results['ori_filename'] = None img = mmcv.imread(results['img']) results['img'] = img results['img_fields'] = ['img'] results['img_shape'] = img.shape results['ori_shape'] = img.shape return results def inference_detector(model, imgs): """Inference image(s) with the detector. Args: model (nn.Module): The loaded detector. imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]): Either image files or loaded images. Returns: If imgs is a list or tuple, the same length list type results will be returned, otherwise return the detection results directly. """ if isinstance(imgs, (list, tuple)): is_batch = True else: imgs = [imgs] is_batch = False cfg = model.cfg device = next(model.parameters()).device # model device if isinstance(imgs[0], np.ndarray): cfg = cfg.copy() # set loading pipeline type cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) test_pipeline = Compose(cfg.data.test.pipeline) datas = [] for img in imgs: # prepare data if isinstance(img, np.ndarray): # directly add img data = dict(img=img) else: # add information into dict data = dict(img_info=dict(filename=img), img_prefix=None) # build the data pipeline data = test_pipeline(data) datas.append(data) data = collate(datas, samples_per_gpu=len(imgs)) # just get the actual data from DataContainer data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']] data['img'] = [img.data[0] for img in data['img']] if next(model.parameters()).is_cuda: # scatter to specified GPU data = scatter(data, [device])[0] else: for m in model.modules(): assert not isinstance( m, RoIPool ), 'CPU inference with RoIPool is not supported currently.' # forward the model with torch.no_grad(): results = model(return_loss=False, rescale=True, **data) if not is_batch: return results[0] else: return results async def async_inference_detector(model, imgs): """Async inference image(s) with the detector. Args: model (nn.Module): The loaded detector. img (str | ndarray): Either image files or loaded images. Returns: Awaitable detection results. """ if not isinstance(imgs, (list, tuple)): imgs = [imgs] cfg = model.cfg device = next(model.parameters()).device # model device if isinstance(imgs[0], np.ndarray): cfg = cfg.copy() # set loading pipeline type cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) test_pipeline = Compose(cfg.data.test.pipeline) datas = [] for img in imgs: # prepare data if isinstance(img, np.ndarray): # directly add img data = dict(img=img) else: # add information into dict data = dict(img_info=dict(filename=img), img_prefix=None) # build the data pipeline data = test_pipeline(data) datas.append(data) data = collate(datas, samples_per_gpu=len(imgs)) # just get the actual data from DataContainer data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']] data['img'] = [img.data[0] for img in data['img']] if next(model.parameters()).is_cuda: # scatter to specified GPU data = scatter(data, [device])[0] else: for m in model.modules(): assert not isinstance( m, RoIPool ), 'CPU inference with RoIPool is not supported currently.' # We don't restore `torch.is_grad_enabled()` value during concurrent # inference since execution can overlap torch.set_grad_enabled(False) results = await model.aforward_test(rescale=True, **data) return results def show_result_pyplot(model, img, result, score_thr=0.3, title='result', wait_time=0, palette=None, out_file=None): """Visualize the detection results on the image. Args: model (nn.Module): The loaded detector. img (str or np.ndarray): Image filename or loaded image. result (tuple[list] or list): The detection result, can be either (bbox, segm) or just bbox. score_thr (float): The threshold to visualize the bboxes and masks. title (str): Title of the pyplot figure. wait_time (float): Value of waitKey param. Default: 0. palette (str or tuple(int) or :obj:`Color`): Color. The tuple of color should be in BGR order. out_file (str or None): The path to write the image. Default: None. """ if hasattr(model, 'module'): model = model.module model.show_result( img, result, score_thr=score_thr, show=True, wait_time=wait_time, win_name=title, bbox_color=palette, text_color=(200, 200, 200), mask_color=palette, out_file=out_file)
971cbd5365ebabe295b53bc89246a7dab9884348
18239524612cf572bfeaa3e001a3f5d1b872690c
/clients/oathkeeper/python/ory_oathkeeper_client/models/swagger_create_rule_parameters.py
fa695454e4e5de58f8d17064a76a47b6c668c873
[ "Apache-2.0" ]
permissive
simoneromano96/sdk
2d7af9425dabc30df830a09b26841fb2e8781bf8
a6113d0daefbbb803790297e4b242d4c7cbbcb22
refs/heads/master
2023-05-09T13:50:45.485951
2021-05-28T12:18:27
2021-05-28T12:18:27
371,689,133
0
0
Apache-2.0
2021-05-28T12:11:41
2021-05-28T12:11:40
null
UTF-8
Python
false
false
3,509
py
# coding: utf-8 """ ORY Oathkeeper ORY Oathkeeper is a reverse proxy that checks the HTTP Authorization for validity against a set of rules. This service uses Hydra to validate access tokens and policies. # noqa: E501 The version of the OpenAPI document: v0.0.0-alpha.37 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from ory_oathkeeper_client.configuration import Configuration class SwaggerCreateRuleParameters(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'body': 'SwaggerRule' } attribute_map = { 'body': 'Body' } def __init__(self, body=None, local_vars_configuration=None): # noqa: E501 """SwaggerCreateRuleParameters - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._body = None self.discriminator = None if body is not None: self.body = body @property def body(self): """Gets the body of this SwaggerCreateRuleParameters. # noqa: E501 :return: The body of this SwaggerCreateRuleParameters. # noqa: E501 :rtype: SwaggerRule """ return self._body @body.setter def body(self, body): """Sets the body of this SwaggerCreateRuleParameters. :param body: The body of this SwaggerCreateRuleParameters. # noqa: E501 :type: SwaggerRule """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SwaggerCreateRuleParameters): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, SwaggerCreateRuleParameters): return True return self.to_dict() != other.to_dict()
4415b7bf0416b19028465628c5d14a17d2e84962
932a6797f1e97c7f8c96af83647fc27d2324765e
/python/1138. Alphabet Board Path.py
6b59f12b589ba7b471f1b8f5ad023ddb023c67ed
[]
no_license
rhzx3519/leetcode
1245e0a19dbcb4b853eb0ac369601f31171b55c5
2fe336e0de336f6d5f67b058ddb5cf50c9f00d4e
refs/heads/master
2023-08-17T01:27:49.674440
2023-08-16T23:08:59
2023-08-16T23:08:59
85,682,362
3
1
null
2021-05-08T12:10:56
2017-03-21T09:23:02
Python
UTF-8
Python
false
false
1,864
py
class Solution(object): def alphabetBoardPath(self, target): """ :type target: str :rtype: str """ board = ["abcde", "fghij", "klmno", "pqrst", "uvwxy", "z"] m, n = len(board), len(board[0]) vis = [[-1]*len(board[0]) for _ in range(len(board))] dirt = 'RLUD' d = {(-1, 0): 'U', (1, 0): 'D', (0, -1): 'L', (0, 1): 'R'} def bfs(r, c, t): que = [(r, c)] while que: x, y = que.pop(0) # print x, y if board[x][y]==t: return (x, y) for i, (dx, dy) in enumerate(((1, 0), (-1, 0), (0, 1), (0, -1))): nx = x + dx ny = y + dy if nx<0 or nx>=m or ny<0 or ny>=len(board[nx]) or vis[nx][ny] != -1: continue vis[nx][ny] = (x, y) que.append((nx, ny)) return (-1, -1) def find(start, end): prev = [end] while end != start: end = vis[end[0]][end[1]] prev.append(end) # print prev cmd = ['!'] for i in range(1, len(prev)): k = (prev[i-1][0] - prev[i][0], prev[i-1][1] - prev[i][1]) cmd.append(d[k]) # print cmd return ''.join(cmd[::-1]) ans = [] r = c = 0 for t in target: vis = [[-1]*n for _ in range(m)] end = bfs(r, c, t) # print vis path = find((r, c), end) r, c = end # print (r, c), t ans.append(path) # print ans return ''.join(ans) if __name__ == '__main__': target = 'leet' su = Solution() su.alphabetBoardPath(target)
a344d7024b0846d0428ce64b15b6e3afecb52464
1ee910d6602123eb1328f56419b04e31b3761b6b
/bin/pilfile.py
9958e72c9cff0d5f0c078db012a9bcb82355fa89
[ "MIT" ]
permissive
mraza007/Pizza-or-Not-a-Pizza
7fc89e0905c86fbd3c77a9cc834a4b6098912aeb
6ad59d046adbd6be812c7403d9cb8ffbdbd6b0b8
refs/heads/master
2022-12-15T15:47:34.779838
2018-07-04T02:28:56
2018-07-04T02:28:56
127,992,302
30
4
MIT
2022-11-22T00:43:51
2018-04-04T01:56:26
Python
UTF-8
Python
false
false
2,604
py
#!/home/muhammad/image-recognition/bin/python3 # # The Python Imaging Library. # $Id$ # # a utility to identify image files # # this script identifies image files, extracting size and # pixel mode information for known file formats. Note that # you don't need the PIL C extension to use this module. # # History: # 0.0 1995-09-01 fl Created # 0.1 1996-05-18 fl Modified options, added debugging mode # 0.2 1996-12-29 fl Added verify mode # 0.3 1999-06-05 fl Don't mess up on class exceptions (1.5.2 and later) # 0.4 2003-09-30 fl Expand wildcards on Windows; robustness tweaks # from __future__ import print_function import getopt import glob import sys from PIL import Image if len(sys.argv) == 1: print("PIL File 0.4/2003-09-30 -- identify image files") print("Usage: pilfile [option] files...") print("Options:") print(" -f list supported file formats") print(" -i show associated info and tile data") print(" -v verify file headers") print(" -q quiet, don't warn for unidentified/missing/broken files") sys.exit(1) try: opt, args = getopt.getopt(sys.argv[1:], "fqivD") except getopt.error as v: print(v) sys.exit(1) verbose = quiet = verify = 0 for o, a in opt: if o == "-f": Image.init() id = sorted(Image.ID) print("Supported formats:") for i in id: print(i, end=' ') sys.exit(1) elif o == "-i": verbose = 1 elif o == "-q": quiet = 1 elif o == "-v": verify = 1 elif o == "-D": Image.DEBUG += 1 def globfix(files): # expand wildcards where necessary if sys.platform == "win32": out = [] for file in files: if glob.has_magic(file): out.extend(glob.glob(file)) else: out.append(file) return out return files for file in globfix(args): try: im = Image.open(file) print("%s:" % file, im.format, "%dx%d" % im.size, im.mode, end=' ') if verbose: print(im.info, im.tile, end=' ') print() if verify: try: im.verify() except: if not quiet: print("failed to verify image", end=' ') print("(%s:%s)" % (sys.exc_info()[0], sys.exc_info()[1])) except IOError as v: if not quiet: print(file, "failed:", v) except: import traceback if not quiet: print(file, "failed:", "unexpected error") traceback.print_exc(file=sys.stdout)
bee9bac253802fcac7d2c1eb66160555ca7defa8
3345eebefad6f4348f29cdec2f2d59a89c843861
/mac/shop/migrations/0003_contact.py
ef5562ab9bfba669d4149c8dd469d07e2bea2681
[]
no_license
AyushiiJain/My-Ecommerce-Website
fc8e9ccc2a106f2341e1fcb5b718679e2fd7b3bd
9bdfc9bbd1c7d4573db2d9138b9996abe2f5c1ad
refs/heads/master
2023-05-17T09:24:23.932158
2021-06-09T08:54:36
2021-06-09T08:54:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
693
py
# Generated by Django 3.2.2 on 2021-05-11 07:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('shop', '0002_auto_20210508_0633'), ] operations = [ migrations.CreateModel( name='Contact', fields=[ ('msg_id', models.AutoField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=50)), ('email', models.CharField(default='', max_length=70)), ('phone', models.CharField(default='', max_length=70)), ('desc', models.CharField(default='', max_length=500)), ], ), ]
b8c8c14f81dd191c2eef1374e99d8ae9fd4ca9c4
00af09f4ac6f98203910d86c3791c152184ace9a
/Lib/plistlib.py
0a7bee5507f5fd3113ea27573283e2142f88e3e7
[]
no_license
orf53975/CarnosOS
621d641df02d742a2452fde2f28a28c74b32695a
d06849064e4e9f30ef901ad8cf90960e1bec0805
refs/heads/master
2023-03-24T08:06:48.274566
2017-01-05T16:41:01
2017-01-05T16:41:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
94,571
py
<<<<<<< HEAD <<<<<<< HEAD r"""plistlib.py -- a tool to generate and parse MacOSX .plist files. The property list (.plist) file format is a simple XML pickle supporting basic object types, like dictionaries, lists, numbers and strings. Usually the top level object is a dictionary. To write out a plist file, use the dump(value, file) function. 'value' is the top level object, 'file' is a (writable) file object. To parse a plist from a file, use the load(file) function, with a (readable) file object as the only argument. It returns the top level object (again, usually a dictionary). To work with plist data in bytes objects, you can use loads() and dumps(). Values can be strings, integers, floats, booleans, tuples, lists, dictionaries (but only with string keys), Data, bytes, bytearray, or datetime.datetime objects. Generate Plist example: pl = dict( aString = "Doodah", aList = ["A", "B", 12, 32.1, [1, 2, 3]], aFloat = 0.1, anInt = 728, aDict = dict( anotherString = "<hello & hi there!>", aUnicodeValue = "M\xe4ssig, Ma\xdf", aTrueValue = True, aFalseValue = False, ), someData = b"<binary gunk>", someMoreData = b"<lots of binary gunk>" * 10, aDate = datetime.datetime.fromtimestamp(time.mktime(time.gmtime())), ) with open(fileName, 'wb') as fp: dump(pl, fp) Parse Plist example: with open(fileName, 'rb') as fp: pl = load(fp) print(pl["aKey"]) """ __all__ = [ "readPlist", "writePlist", "readPlistFromBytes", "writePlistToBytes", "Plist", "Data", "Dict", "FMT_XML", "FMT_BINARY", "load", "dump", "loads", "dumps" ] import binascii import codecs import contextlib import datetime import enum from io import BytesIO import itertools import os import re import struct from warnings import warn from xml.parsers.expat import ParserCreate PlistFormat = enum.Enum('PlistFormat', 'FMT_XML FMT_BINARY', module=__name__) globals().update(PlistFormat.__members__) # # # Deprecated functionality # # class _InternalDict(dict): # This class is needed while Dict is scheduled for deprecation: # we only need to warn when a *user* instantiates Dict or when # the "attribute notation for dict keys" is used. __slots__ = () def __getattr__(self, attr): try: value = self[attr] except KeyError: raise AttributeError(attr) warn("Attribute access from plist dicts is deprecated, use d[key] " "notation instead", DeprecationWarning, 2) return value def __setattr__(self, attr, value): warn("Attribute access from plist dicts is deprecated, use d[key] " "notation instead", DeprecationWarning, 2) self[attr] = value def __delattr__(self, attr): try: del self[attr] except KeyError: raise AttributeError(attr) warn("Attribute access from plist dicts is deprecated, use d[key] " "notation instead", DeprecationWarning, 2) class Dict(_InternalDict): def __init__(self, **kwargs): warn("The plistlib.Dict class is deprecated, use builtin dict instead", DeprecationWarning, 2) super().__init__(**kwargs) @contextlib.contextmanager def _maybe_open(pathOrFile, mode): if isinstance(pathOrFile, str): with open(pathOrFile, mode) as fp: yield fp else: yield pathOrFile class Plist(_InternalDict): """This class has been deprecated. Use dump() and load() functions instead, together with regular dict objects. """ def __init__(self, **kwargs): warn("The Plist class is deprecated, use the load() and " "dump() functions instead", DeprecationWarning, 2) super().__init__(**kwargs) @classmethod def fromFile(cls, pathOrFile): """Deprecated. Use the load() function instead.""" with _maybe_open(pathOrFile, 'rb') as fp: value = load(fp) plist = cls() plist.update(value) return plist def write(self, pathOrFile): """Deprecated. Use the dump() function instead.""" with _maybe_open(pathOrFile, 'wb') as fp: dump(self, fp) def readPlist(pathOrFile): """ Read a .plist from a path or file. pathOrFile should either be a file name, or a readable binary file object. This function is deprecated, use load instead. """ warn("The readPlist function is deprecated, use load() instead", DeprecationWarning, 2) with _maybe_open(pathOrFile, 'rb') as fp: return load(fp, fmt=None, use_builtin_types=False, dict_type=_InternalDict) def writePlist(value, pathOrFile): """ Write 'value' to a .plist file. 'pathOrFile' may either be a file name or a (writable) file object. This function is deprecated, use dump instead. """ warn("The writePlist function is deprecated, use dump() instead", DeprecationWarning, 2) with _maybe_open(pathOrFile, 'wb') as fp: dump(value, fp, fmt=FMT_XML, sort_keys=True, skipkeys=False) def readPlistFromBytes(data): """ Read a plist data from a bytes object. Return the root object. This function is deprecated, use loads instead. """ warn("The readPlistFromBytes function is deprecated, use loads() instead", DeprecationWarning, 2) return load(BytesIO(data), fmt=None, use_builtin_types=False, dict_type=_InternalDict) def writePlistToBytes(value): """ Return 'value' as a plist-formatted bytes object. This function is deprecated, use dumps instead. """ warn("The writePlistToBytes function is deprecated, use dumps() instead", DeprecationWarning, 2) f = BytesIO() dump(value, f, fmt=FMT_XML, sort_keys=True, skipkeys=False) return f.getvalue() class Data: """ Wrapper for binary data. This class is deprecated, use a bytes object instead. """ def __init__(self, data): if not isinstance(data, bytes): raise TypeError("data must be as bytes") self.data = data @classmethod def fromBase64(cls, data): # base64.decodebytes just calls binascii.a2b_base64; # it seems overkill to use both base64 and binascii. return cls(_decode_base64(data)) def asBase64(self, maxlinelength=76): return _encode_base64(self.data, maxlinelength) def __eq__(self, other): if isinstance(other, self.__class__): return self.data == other.data elif isinstance(other, str): return self.data == other else: return id(self) == id(other) def __repr__(self): return "%s(%s)" % (self.__class__.__name__, repr(self.data)) # # # End of deprecated functionality # # # # XML support # # XML 'header' PLISTHEADER = b"""\ <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> """ # Regex to find any control chars, except for \t \n and \r _controlCharPat = re.compile( r"[\x00\x01\x02\x03\x04\x05\x06\x07\x08\x0b\x0c\x0e\x0f" r"\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f]") def _encode_base64(s, maxlinelength=76): # copied from base64.encodebytes(), with added maxlinelength argument maxbinsize = (maxlinelength//4)*3 pieces = [] for i in range(0, len(s), maxbinsize): chunk = s[i : i + maxbinsize] pieces.append(binascii.b2a_base64(chunk)) return b''.join(pieces) def _decode_base64(s): if isinstance(s, str): return binascii.a2b_base64(s.encode("utf-8")) else: return binascii.a2b_base64(s) # Contents should conform to a subset of ISO 8601 # (in particular, YYYY '-' MM '-' DD 'T' HH ':' MM ':' SS 'Z'. Smaller units # may be omitted with # a loss of precision) _dateParser = re.compile(r"(?P<year>\d\d\d\d)(?:-(?P<month>\d\d)(?:-(?P<day>\d\d)(?:T(?P<hour>\d\d)(?::(?P<minute>\d\d)(?::(?P<second>\d\d))?)?)?)?)?Z", re.ASCII) def _date_from_string(s): order = ('year', 'month', 'day', 'hour', 'minute', 'second') gd = _dateParser.match(s).groupdict() lst = [] for key in order: val = gd[key] if val is None: break lst.append(int(val)) return datetime.datetime(*lst) def _date_to_string(d): return '%04d-%02d-%02dT%02d:%02d:%02dZ' % ( d.year, d.month, d.day, d.hour, d.minute, d.second ) def _escape(text): m = _controlCharPat.search(text) if m is not None: raise ValueError("strings can't contains control characters; " "use bytes instead") text = text.replace("\r\n", "\n") # convert DOS line endings text = text.replace("\r", "\n") # convert Mac line endings text = text.replace("&", "&amp;") # escape '&' text = text.replace("<", "&lt;") # escape '<' text = text.replace(">", "&gt;") # escape '>' return text class _PlistParser: def __init__(self, use_builtin_types, dict_type): self.stack = [] self.current_key = None self.root = None self._use_builtin_types = use_builtin_types self._dict_type = dict_type def parse(self, fileobj): self.parser = ParserCreate() self.parser.StartElementHandler = self.handle_begin_element self.parser.EndElementHandler = self.handle_end_element self.parser.CharacterDataHandler = self.handle_data self.parser.ParseFile(fileobj) return self.root def handle_begin_element(self, element, attrs): self.data = [] handler = getattr(self, "begin_" + element, None) if handler is not None: handler(attrs) def handle_end_element(self, element): handler = getattr(self, "end_" + element, None) if handler is not None: handler() def handle_data(self, data): self.data.append(data) def add_object(self, value): if self.current_key is not None: if not isinstance(self.stack[-1], type({})): raise ValueError("unexpected element at line %d" % self.parser.CurrentLineNumber) self.stack[-1][self.current_key] = value self.current_key = None elif not self.stack: # this is the root object self.root = value else: if not isinstance(self.stack[-1], type([])): raise ValueError("unexpected element at line %d" % self.parser.CurrentLineNumber) self.stack[-1].append(value) def get_data(self): data = ''.join(self.data) self.data = [] return data # element handlers def begin_dict(self, attrs): d = self._dict_type() self.add_object(d) self.stack.append(d) def end_dict(self): if self.current_key: raise ValueError("missing value for key '%s' at line %d" % (self.current_key,self.parser.CurrentLineNumber)) self.stack.pop() def end_key(self): if self.current_key or not isinstance(self.stack[-1], type({})): raise ValueError("unexpected key at line %d" % self.parser.CurrentLineNumber) self.current_key = self.get_data() def begin_array(self, attrs): a = [] self.add_object(a) self.stack.append(a) def end_array(self): self.stack.pop() def end_true(self): self.add_object(True) def end_false(self): self.add_object(False) def end_integer(self): self.add_object(int(self.get_data())) def end_real(self): self.add_object(float(self.get_data())) def end_string(self): self.add_object(self.get_data()) def end_data(self): if self._use_builtin_types: self.add_object(_decode_base64(self.get_data())) else: self.add_object(Data.fromBase64(self.get_data())) def end_date(self): self.add_object(_date_from_string(self.get_data())) class _DumbXMLWriter: def __init__(self, file, indent_level=0, indent="\t"): self.file = file self.stack = [] self._indent_level = indent_level self.indent = indent def begin_element(self, element): self.stack.append(element) self.writeln("<%s>" % element) self._indent_level += 1 def end_element(self, element): assert self._indent_level > 0 assert self.stack.pop() == element self._indent_level -= 1 self.writeln("</%s>" % element) def simple_element(self, element, value=None): if value is not None: value = _escape(value) self.writeln("<%s>%s</%s>" % (element, value, element)) else: self.writeln("<%s/>" % element) def writeln(self, line): if line: # plist has fixed encoding of utf-8 # XXX: is this test needed? if isinstance(line, str): line = line.encode('utf-8') self.file.write(self._indent_level * self.indent) self.file.write(line) self.file.write(b'\n') class _PlistWriter(_DumbXMLWriter): def __init__( self, file, indent_level=0, indent=b"\t", writeHeader=1, sort_keys=True, skipkeys=False): if writeHeader: file.write(PLISTHEADER) _DumbXMLWriter.__init__(self, file, indent_level, indent) self._sort_keys = sort_keys self._skipkeys = skipkeys def write(self, value): self.writeln("<plist version=\"1.0\">") self.write_value(value) self.writeln("</plist>") def write_value(self, value): if isinstance(value, str): self.simple_element("string", value) elif value is True: self.simple_element("true") elif value is False: self.simple_element("false") elif isinstance(value, int): if -1 << 63 <= value < 1 << 64: self.simple_element("integer", "%d" % value) else: raise OverflowError(value) elif isinstance(value, float): self.simple_element("real", repr(value)) elif isinstance(value, dict): self.write_dict(value) elif isinstance(value, Data): self.write_data(value) elif isinstance(value, (bytes, bytearray)): self.write_bytes(value) elif isinstance(value, datetime.datetime): self.simple_element("date", _date_to_string(value)) elif isinstance(value, (tuple, list)): self.write_array(value) else: raise TypeError("unsupported type: %s" % type(value)) def write_data(self, data): self.write_bytes(data.data) def write_bytes(self, data): self.begin_element("data") self._indent_level -= 1 maxlinelength = max( 16, 76 - len(self.indent.replace(b"\t", b" " * 8) * self._indent_level)) for line in _encode_base64(data, maxlinelength).split(b"\n"): if line: self.writeln(line) self._indent_level += 1 self.end_element("data") def write_dict(self, d): if d: self.begin_element("dict") if self._sort_keys: items = sorted(d.items()) else: items = d.items() for key, value in items: if not isinstance(key, str): if self._skipkeys: continue raise TypeError("keys must be strings") self.simple_element("key", key) self.write_value(value) self.end_element("dict") else: self.simple_element("dict") def write_array(self, array): if array: self.begin_element("array") for value in array: self.write_value(value) self.end_element("array") else: self.simple_element("array") def _is_fmt_xml(header): prefixes = (b'<?xml', b'<plist') for pfx in prefixes: if header.startswith(pfx): return True # Also check for alternative XML encodings, this is slightly # overkill because the Apple tools (and plistlib) will not # generate files with these encodings. for bom, encoding in ( (codecs.BOM_UTF8, "utf-8"), (codecs.BOM_UTF16_BE, "utf-16-be"), (codecs.BOM_UTF16_LE, "utf-16-le"), # expat does not support utf-32 #(codecs.BOM_UTF32_BE, "utf-32-be"), #(codecs.BOM_UTF32_LE, "utf-32-le"), ): if not header.startswith(bom): continue for start in prefixes: prefix = bom + start.decode('ascii').encode(encoding) if header[:len(prefix)] == prefix: return True return False # # Binary Plist # class InvalidFileException (ValueError): def __init__(self, message="Invalid file"): ValueError.__init__(self, message) _BINARY_FORMAT = {1: 'B', 2: 'H', 4: 'L', 8: 'Q'} class _BinaryPlistParser: """ Read or write a binary plist file, following the description of the binary format. Raise InvalidFileException in case of error, otherwise return the root object. see also: http://opensource.apple.com/source/CF/CF-744.18/CFBinaryPList.c """ def __init__(self, use_builtin_types, dict_type): self._use_builtin_types = use_builtin_types self._dict_type = dict_type def parse(self, fp): try: # The basic file format: # HEADER # object... # refid->offset... # TRAILER self._fp = fp self._fp.seek(-32, os.SEEK_END) trailer = self._fp.read(32) if len(trailer) != 32: raise InvalidFileException() ( offset_size, self._ref_size, num_objects, top_object, offset_table_offset ) = struct.unpack('>6xBBQQQ', trailer) self._fp.seek(offset_table_offset) self._object_offsets = self._read_ints(num_objects, offset_size) return self._read_object(self._object_offsets[top_object]) except (OSError, IndexError, struct.error): raise InvalidFileException() def _get_size(self, tokenL): """ return the size of the next object.""" if tokenL == 0xF: m = self._fp.read(1)[0] & 0x3 s = 1 << m f = '>' + _BINARY_FORMAT[s] return struct.unpack(f, self._fp.read(s))[0] return tokenL def _read_ints(self, n, size): data = self._fp.read(size * n) if size in _BINARY_FORMAT: return struct.unpack('>' + _BINARY_FORMAT[size] * n, data) else: return tuple(int.from_bytes(data[i: i + size], 'big') for i in range(0, size * n, size)) def _read_refs(self, n): return self._read_ints(n, self._ref_size) def _read_object(self, offset): """ read the object at offset. May recursively read sub-objects (content of an array/dict/set) """ self._fp.seek(offset) token = self._fp.read(1)[0] tokenH, tokenL = token & 0xF0, token & 0x0F if token == 0x00: return None elif token == 0x08: return False elif token == 0x09: return True # The referenced source code also mentions URL (0x0c, 0x0d) and # UUID (0x0e), but neither can be generated using the Cocoa libraries. elif token == 0x0f: return b'' elif tokenH == 0x10: # int return int.from_bytes(self._fp.read(1 << tokenL), 'big', signed=tokenL >= 3) elif token == 0x22: # real return struct.unpack('>f', self._fp.read(4))[0] elif token == 0x23: # real return struct.unpack('>d', self._fp.read(8))[0] elif token == 0x33: # date f = struct.unpack('>d', self._fp.read(8))[0] # timestamp 0 of binary plists corresponds to 1/1/2001 # (year of Mac OS X 10.0), instead of 1/1/1970. return datetime.datetime.utcfromtimestamp(f + (31 * 365 + 8) * 86400) elif tokenH == 0x40: # data s = self._get_size(tokenL) if self._use_builtin_types: return self._fp.read(s) else: return Data(self._fp.read(s)) elif tokenH == 0x50: # ascii string s = self._get_size(tokenL) result = self._fp.read(s).decode('ascii') return result elif tokenH == 0x60: # unicode string s = self._get_size(tokenL) return self._fp.read(s * 2).decode('utf-16be') # tokenH == 0x80 is documented as 'UID' and appears to be used for # keyed-archiving, not in plists. elif tokenH == 0xA0: # array s = self._get_size(tokenL) obj_refs = self._read_refs(s) return [self._read_object(self._object_offsets[x]) for x in obj_refs] # tokenH == 0xB0 is documented as 'ordset', but is not actually # implemented in the Apple reference code. # tokenH == 0xC0 is documented as 'set', but sets cannot be used in # plists. elif tokenH == 0xD0: # dict s = self._get_size(tokenL) key_refs = self._read_refs(s) obj_refs = self._read_refs(s) result = self._dict_type() for k, o in zip(key_refs, obj_refs): result[self._read_object(self._object_offsets[k]) ] = self._read_object(self._object_offsets[o]) return result raise InvalidFileException() def _count_to_size(count): if count < 1 << 8: return 1 elif count < 1 << 16: return 2 elif count << 1 << 32: return 4 else: return 8 class _BinaryPlistWriter (object): def __init__(self, fp, sort_keys, skipkeys): self._fp = fp self._sort_keys = sort_keys self._skipkeys = skipkeys def write(self, value): # Flattened object list: self._objlist = [] # Mappings from object->objectid # First dict has (type(object), object) as the key, # second dict is used when object is not hashable and # has id(object) as the key. self._objtable = {} self._objidtable = {} # Create list of all objects in the plist self._flatten(value) # Size of object references in serialized containers # depends on the number of objects in the plist. num_objects = len(self._objlist) self._object_offsets = [0]*num_objects self._ref_size = _count_to_size(num_objects) self._ref_format = _BINARY_FORMAT[self._ref_size] # Write file header self._fp.write(b'bplist00') # Write object list for obj in self._objlist: self._write_object(obj) # Write refnum->object offset table top_object = self._getrefnum(value) offset_table_offset = self._fp.tell() offset_size = _count_to_size(offset_table_offset) offset_format = '>' + _BINARY_FORMAT[offset_size] * num_objects self._fp.write(struct.pack(offset_format, *self._object_offsets)) # Write trailer sort_version = 0 trailer = ( sort_version, offset_size, self._ref_size, num_objects, top_object, offset_table_offset ) self._fp.write(struct.pack('>5xBBBQQQ', *trailer)) def _flatten(self, value): # First check if the object is in the object table, not used for # containers to ensure that two subcontainers with the same contents # will be serialized as distinct values. if isinstance(value, ( str, int, float, datetime.datetime, bytes, bytearray)): if (type(value), value) in self._objtable: return elif isinstance(value, Data): if (type(value.data), value.data) in self._objtable: return # Add to objectreference map refnum = len(self._objlist) self._objlist.append(value) try: if isinstance(value, Data): self._objtable[(type(value.data), value.data)] = refnum else: self._objtable[(type(value), value)] = refnum except TypeError: self._objidtable[id(value)] = refnum # And finally recurse into containers if isinstance(value, dict): keys = [] values = [] items = value.items() if self._sort_keys: items = sorted(items) for k, v in items: if not isinstance(k, str): if self._skipkeys: continue raise TypeError("keys must be strings") keys.append(k) values.append(v) for o in itertools.chain(keys, values): self._flatten(o) elif isinstance(value, (list, tuple)): for o in value: self._flatten(o) def _getrefnum(self, value): try: if isinstance(value, Data): return self._objtable[(type(value.data), value.data)] else: return self._objtable[(type(value), value)] except TypeError: return self._objidtable[id(value)] def _write_size(self, token, size): if size < 15: self._fp.write(struct.pack('>B', token | size)) elif size < 1 << 8: self._fp.write(struct.pack('>BBB', token | 0xF, 0x10, size)) elif size < 1 << 16: self._fp.write(struct.pack('>BBH', token | 0xF, 0x11, size)) elif size < 1 << 32: self._fp.write(struct.pack('>BBL', token | 0xF, 0x12, size)) else: self._fp.write(struct.pack('>BBQ', token | 0xF, 0x13, size)) def _write_object(self, value): ref = self._getrefnum(value) self._object_offsets[ref] = self._fp.tell() if value is None: self._fp.write(b'\x00') elif value is False: self._fp.write(b'\x08') elif value is True: self._fp.write(b'\x09') elif isinstance(value, int): if value < 0: try: self._fp.write(struct.pack('>Bq', 0x13, value)) except struct.error: raise OverflowError(value) from None elif value < 1 << 8: self._fp.write(struct.pack('>BB', 0x10, value)) elif value < 1 << 16: self._fp.write(struct.pack('>BH', 0x11, value)) elif value < 1 << 32: self._fp.write(struct.pack('>BL', 0x12, value)) elif value < 1 << 63: self._fp.write(struct.pack('>BQ', 0x13, value)) elif value < 1 << 64: self._fp.write(b'\x14' + value.to_bytes(16, 'big', signed=True)) else: raise OverflowError(value) elif isinstance(value, float): self._fp.write(struct.pack('>Bd', 0x23, value)) elif isinstance(value, datetime.datetime): f = (value - datetime.datetime(2001, 1, 1)).total_seconds() self._fp.write(struct.pack('>Bd', 0x33, f)) elif isinstance(value, Data): self._write_size(0x40, len(value.data)) self._fp.write(value.data) elif isinstance(value, (bytes, bytearray)): self._write_size(0x40, len(value)) self._fp.write(value) elif isinstance(value, str): try: t = value.encode('ascii') self._write_size(0x50, len(value)) except UnicodeEncodeError: t = value.encode('utf-16be') self._write_size(0x60, len(value)) self._fp.write(t) elif isinstance(value, (list, tuple)): refs = [self._getrefnum(o) for o in value] s = len(refs) self._write_size(0xA0, s) self._fp.write(struct.pack('>' + self._ref_format * s, *refs)) elif isinstance(value, dict): keyRefs, valRefs = [], [] if self._sort_keys: rootItems = sorted(value.items()) else: rootItems = value.items() for k, v in rootItems: if not isinstance(k, str): if self._skipkeys: continue raise TypeError("keys must be strings") keyRefs.append(self._getrefnum(k)) valRefs.append(self._getrefnum(v)) s = len(keyRefs) self._write_size(0xD0, s) self._fp.write(struct.pack('>' + self._ref_format * s, *keyRefs)) self._fp.write(struct.pack('>' + self._ref_format * s, *valRefs)) else: raise TypeError(value) def _is_fmt_binary(header): return header[:8] == b'bplist00' # # Generic bits # _FORMATS={ FMT_XML: dict( detect=_is_fmt_xml, parser=_PlistParser, writer=_PlistWriter, ), FMT_BINARY: dict( detect=_is_fmt_binary, parser=_BinaryPlistParser, writer=_BinaryPlistWriter, ) } def load(fp, *, fmt=None, use_builtin_types=True, dict_type=dict): """Read a .plist file. 'fp' should be (readable) file object. Return the unpacked root object (which usually is a dictionary). """ if fmt is None: header = fp.read(32) fp.seek(0) for info in _FORMATS.values(): if info['detect'](header): P = info['parser'] break else: raise InvalidFileException() else: P = _FORMATS[fmt]['parser'] p = P(use_builtin_types=use_builtin_types, dict_type=dict_type) return p.parse(fp) def loads(value, *, fmt=None, use_builtin_types=True, dict_type=dict): """Read a .plist file from a bytes object. Return the unpacked root object (which usually is a dictionary). """ fp = BytesIO(value) return load( fp, fmt=fmt, use_builtin_types=use_builtin_types, dict_type=dict_type) def dump(value, fp, *, fmt=FMT_XML, sort_keys=True, skipkeys=False): """Write 'value' to a .plist file. 'fp' should be a (writable) file object. """ if fmt not in _FORMATS: raise ValueError("Unsupported format: %r"%(fmt,)) writer = _FORMATS[fmt]["writer"](fp, sort_keys=sort_keys, skipkeys=skipkeys) writer.write(value) def dumps(value, *, fmt=FMT_XML, skipkeys=False, sort_keys=True): """Return a bytes object with the contents for a .plist file. """ fp = BytesIO() dump(value, fp, fmt=fmt, skipkeys=skipkeys, sort_keys=sort_keys) return fp.getvalue() ======= r"""plistlib.py -- a tool to generate and parse MacOSX .plist files. The property list (.plist) file format is a simple XML pickle supporting basic object types, like dictionaries, lists, numbers and strings. Usually the top level object is a dictionary. To write out a plist file, use the dump(value, file) function. 'value' is the top level object, 'file' is a (writable) file object. To parse a plist from a file, use the load(file) function, with a (readable) file object as the only argument. It returns the top level object (again, usually a dictionary). To work with plist data in bytes objects, you can use loads() and dumps(). Values can be strings, integers, floats, booleans, tuples, lists, dictionaries (but only with string keys), Data, bytes, bytearray, or datetime.datetime objects. Generate Plist example: pl = dict( aString = "Doodah", aList = ["A", "B", 12, 32.1, [1, 2, 3]], aFloat = 0.1, anInt = 728, aDict = dict( anotherString = "<hello & hi there!>", aUnicodeValue = "M\xe4ssig, Ma\xdf", aTrueValue = True, aFalseValue = False, ), someData = b"<binary gunk>", someMoreData = b"<lots of binary gunk>" * 10, aDate = datetime.datetime.fromtimestamp(time.mktime(time.gmtime())), ) with open(fileName, 'wb') as fp: dump(pl, fp) Parse Plist example: with open(fileName, 'rb') as fp: pl = load(fp) print(pl["aKey"]) """ __all__ = [ "readPlist", "writePlist", "readPlistFromBytes", "writePlistToBytes", "Plist", "Data", "Dict", "FMT_XML", "FMT_BINARY", "load", "dump", "loads", "dumps" ] import binascii import codecs import contextlib import datetime import enum from io import BytesIO import itertools import os import re import struct from warnings import warn from xml.parsers.expat import ParserCreate PlistFormat = enum.Enum('PlistFormat', 'FMT_XML FMT_BINARY', module=__name__) globals().update(PlistFormat.__members__) # # # Deprecated functionality # # class _InternalDict(dict): # This class is needed while Dict is scheduled for deprecation: # we only need to warn when a *user* instantiates Dict or when # the "attribute notation for dict keys" is used. __slots__ = () def __getattr__(self, attr): try: value = self[attr] except KeyError: raise AttributeError(attr) warn("Attribute access from plist dicts is deprecated, use d[key] " "notation instead", DeprecationWarning, 2) return value def __setattr__(self, attr, value): warn("Attribute access from plist dicts is deprecated, use d[key] " "notation instead", DeprecationWarning, 2) self[attr] = value def __delattr__(self, attr): try: del self[attr] except KeyError: raise AttributeError(attr) warn("Attribute access from plist dicts is deprecated, use d[key] " "notation instead", DeprecationWarning, 2) class Dict(_InternalDict): def __init__(self, **kwargs): warn("The plistlib.Dict class is deprecated, use builtin dict instead", DeprecationWarning, 2) super().__init__(**kwargs) @contextlib.contextmanager def _maybe_open(pathOrFile, mode): if isinstance(pathOrFile, str): with open(pathOrFile, mode) as fp: yield fp else: yield pathOrFile class Plist(_InternalDict): """This class has been deprecated. Use dump() and load() functions instead, together with regular dict objects. """ def __init__(self, **kwargs): warn("The Plist class is deprecated, use the load() and " "dump() functions instead", DeprecationWarning, 2) super().__init__(**kwargs) @classmethod def fromFile(cls, pathOrFile): """Deprecated. Use the load() function instead.""" with _maybe_open(pathOrFile, 'rb') as fp: value = load(fp) plist = cls() plist.update(value) return plist def write(self, pathOrFile): """Deprecated. Use the dump() function instead.""" with _maybe_open(pathOrFile, 'wb') as fp: dump(self, fp) def readPlist(pathOrFile): """ Read a .plist from a path or file. pathOrFile should either be a file name, or a readable binary file object. This function is deprecated, use load instead. """ warn("The readPlist function is deprecated, use load() instead", DeprecationWarning, 2) with _maybe_open(pathOrFile, 'rb') as fp: return load(fp, fmt=None, use_builtin_types=False, dict_type=_InternalDict) def writePlist(value, pathOrFile): """ Write 'value' to a .plist file. 'pathOrFile' may either be a file name or a (writable) file object. This function is deprecated, use dump instead. """ warn("The writePlist function is deprecated, use dump() instead", DeprecationWarning, 2) with _maybe_open(pathOrFile, 'wb') as fp: dump(value, fp, fmt=FMT_XML, sort_keys=True, skipkeys=False) def readPlistFromBytes(data): """ Read a plist data from a bytes object. Return the root object. This function is deprecated, use loads instead. """ warn("The readPlistFromBytes function is deprecated, use loads() instead", DeprecationWarning, 2) return load(BytesIO(data), fmt=None, use_builtin_types=False, dict_type=_InternalDict) def writePlistToBytes(value): """ Return 'value' as a plist-formatted bytes object. This function is deprecated, use dumps instead. """ warn("The writePlistToBytes function is deprecated, use dumps() instead", DeprecationWarning, 2) f = BytesIO() dump(value, f, fmt=FMT_XML, sort_keys=True, skipkeys=False) return f.getvalue() class Data: """ Wrapper for binary data. This class is deprecated, use a bytes object instead. """ def __init__(self, data): if not isinstance(data, bytes): raise TypeError("data must be as bytes") self.data = data @classmethod def fromBase64(cls, data): # base64.decodebytes just calls binascii.a2b_base64; # it seems overkill to use both base64 and binascii. return cls(_decode_base64(data)) def asBase64(self, maxlinelength=76): return _encode_base64(self.data, maxlinelength) def __eq__(self, other): if isinstance(other, self.__class__): return self.data == other.data elif isinstance(other, str): return self.data == other else: return id(self) == id(other) def __repr__(self): return "%s(%s)" % (self.__class__.__name__, repr(self.data)) # # # End of deprecated functionality # # # # XML support # # XML 'header' PLISTHEADER = b"""\ <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> """ # Regex to find any control chars, except for \t \n and \r _controlCharPat = re.compile( r"[\x00\x01\x02\x03\x04\x05\x06\x07\x08\x0b\x0c\x0e\x0f" r"\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f]") def _encode_base64(s, maxlinelength=76): # copied from base64.encodebytes(), with added maxlinelength argument maxbinsize = (maxlinelength//4)*3 pieces = [] for i in range(0, len(s), maxbinsize): chunk = s[i : i + maxbinsize] pieces.append(binascii.b2a_base64(chunk)) return b''.join(pieces) def _decode_base64(s): if isinstance(s, str): return binascii.a2b_base64(s.encode("utf-8")) else: return binascii.a2b_base64(s) # Contents should conform to a subset of ISO 8601 # (in particular, YYYY '-' MM '-' DD 'T' HH ':' MM ':' SS 'Z'. Smaller units # may be omitted with # a loss of precision) _dateParser = re.compile(r"(?P<year>\d\d\d\d)(?:-(?P<month>\d\d)(?:-(?P<day>\d\d)(?:T(?P<hour>\d\d)(?::(?P<minute>\d\d)(?::(?P<second>\d\d))?)?)?)?)?Z", re.ASCII) def _date_from_string(s): order = ('year', 'month', 'day', 'hour', 'minute', 'second') gd = _dateParser.match(s).groupdict() lst = [] for key in order: val = gd[key] if val is None: break lst.append(int(val)) return datetime.datetime(*lst) def _date_to_string(d): return '%04d-%02d-%02dT%02d:%02d:%02dZ' % ( d.year, d.month, d.day, d.hour, d.minute, d.second ) def _escape(text): m = _controlCharPat.search(text) if m is not None: raise ValueError("strings can't contains control characters; " "use bytes instead") text = text.replace("\r\n", "\n") # convert DOS line endings text = text.replace("\r", "\n") # convert Mac line endings text = text.replace("&", "&amp;") # escape '&' text = text.replace("<", "&lt;") # escape '<' text = text.replace(">", "&gt;") # escape '>' return text class _PlistParser: def __init__(self, use_builtin_types, dict_type): self.stack = [] self.current_key = None self.root = None self._use_builtin_types = use_builtin_types self._dict_type = dict_type def parse(self, fileobj): self.parser = ParserCreate() self.parser.StartElementHandler = self.handle_begin_element self.parser.EndElementHandler = self.handle_end_element self.parser.CharacterDataHandler = self.handle_data self.parser.ParseFile(fileobj) return self.root def handle_begin_element(self, element, attrs): self.data = [] handler = getattr(self, "begin_" + element, None) if handler is not None: handler(attrs) def handle_end_element(self, element): handler = getattr(self, "end_" + element, None) if handler is not None: handler() def handle_data(self, data): self.data.append(data) def add_object(self, value): if self.current_key is not None: if not isinstance(self.stack[-1], type({})): raise ValueError("unexpected element at line %d" % self.parser.CurrentLineNumber) self.stack[-1][self.current_key] = value self.current_key = None elif not self.stack: # this is the root object self.root = value else: if not isinstance(self.stack[-1], type([])): raise ValueError("unexpected element at line %d" % self.parser.CurrentLineNumber) self.stack[-1].append(value) def get_data(self): data = ''.join(self.data) self.data = [] return data # element handlers def begin_dict(self, attrs): d = self._dict_type() self.add_object(d) self.stack.append(d) def end_dict(self): if self.current_key: raise ValueError("missing value for key '%s' at line %d" % (self.current_key,self.parser.CurrentLineNumber)) self.stack.pop() def end_key(self): if self.current_key or not isinstance(self.stack[-1], type({})): raise ValueError("unexpected key at line %d" % self.parser.CurrentLineNumber) self.current_key = self.get_data() def begin_array(self, attrs): a = [] self.add_object(a) self.stack.append(a) def end_array(self): self.stack.pop() def end_true(self): self.add_object(True) def end_false(self): self.add_object(False) def end_integer(self): self.add_object(int(self.get_data())) def end_real(self): self.add_object(float(self.get_data())) def end_string(self): self.add_object(self.get_data()) def end_data(self): if self._use_builtin_types: self.add_object(_decode_base64(self.get_data())) else: self.add_object(Data.fromBase64(self.get_data())) def end_date(self): self.add_object(_date_from_string(self.get_data())) class _DumbXMLWriter: def __init__(self, file, indent_level=0, indent="\t"): self.file = file self.stack = [] self._indent_level = indent_level self.indent = indent def begin_element(self, element): self.stack.append(element) self.writeln("<%s>" % element) self._indent_level += 1 def end_element(self, element): assert self._indent_level > 0 assert self.stack.pop() == element self._indent_level -= 1 self.writeln("</%s>" % element) def simple_element(self, element, value=None): if value is not None: value = _escape(value) self.writeln("<%s>%s</%s>" % (element, value, element)) else: self.writeln("<%s/>" % element) def writeln(self, line): if line: # plist has fixed encoding of utf-8 # XXX: is this test needed? if isinstance(line, str): line = line.encode('utf-8') self.file.write(self._indent_level * self.indent) self.file.write(line) self.file.write(b'\n') class _PlistWriter(_DumbXMLWriter): def __init__( self, file, indent_level=0, indent=b"\t", writeHeader=1, sort_keys=True, skipkeys=False): if writeHeader: file.write(PLISTHEADER) _DumbXMLWriter.__init__(self, file, indent_level, indent) self._sort_keys = sort_keys self._skipkeys = skipkeys def write(self, value): self.writeln("<plist version=\"1.0\">") self.write_value(value) self.writeln("</plist>") def write_value(self, value): if isinstance(value, str): self.simple_element("string", value) elif value is True: self.simple_element("true") elif value is False: self.simple_element("false") elif isinstance(value, int): if -1 << 63 <= value < 1 << 64: self.simple_element("integer", "%d" % value) else: raise OverflowError(value) elif isinstance(value, float): self.simple_element("real", repr(value)) elif isinstance(value, dict): self.write_dict(value) elif isinstance(value, Data): self.write_data(value) elif isinstance(value, (bytes, bytearray)): self.write_bytes(value) elif isinstance(value, datetime.datetime): self.simple_element("date", _date_to_string(value)) elif isinstance(value, (tuple, list)): self.write_array(value) else: raise TypeError("unsupported type: %s" % type(value)) def write_data(self, data): self.write_bytes(data.data) def write_bytes(self, data): self.begin_element("data") self._indent_level -= 1 maxlinelength = max( 16, 76 - len(self.indent.replace(b"\t", b" " * 8) * self._indent_level)) for line in _encode_base64(data, maxlinelength).split(b"\n"): if line: self.writeln(line) self._indent_level += 1 self.end_element("data") def write_dict(self, d): if d: self.begin_element("dict") if self._sort_keys: items = sorted(d.items()) else: items = d.items() for key, value in items: if not isinstance(key, str): if self._skipkeys: continue raise TypeError("keys must be strings") self.simple_element("key", key) self.write_value(value) self.end_element("dict") else: self.simple_element("dict") def write_array(self, array): if array: self.begin_element("array") for value in array: self.write_value(value) self.end_element("array") else: self.simple_element("array") def _is_fmt_xml(header): prefixes = (b'<?xml', b'<plist') for pfx in prefixes: if header.startswith(pfx): return True # Also check for alternative XML encodings, this is slightly # overkill because the Apple tools (and plistlib) will not # generate files with these encodings. for bom, encoding in ( (codecs.BOM_UTF8, "utf-8"), (codecs.BOM_UTF16_BE, "utf-16-be"), (codecs.BOM_UTF16_LE, "utf-16-le"), # expat does not support utf-32 #(codecs.BOM_UTF32_BE, "utf-32-be"), #(codecs.BOM_UTF32_LE, "utf-32-le"), ): if not header.startswith(bom): continue for start in prefixes: prefix = bom + start.decode('ascii').encode(encoding) if header[:len(prefix)] == prefix: return True return False # # Binary Plist # class InvalidFileException (ValueError): def __init__(self, message="Invalid file"): ValueError.__init__(self, message) _BINARY_FORMAT = {1: 'B', 2: 'H', 4: 'L', 8: 'Q'} class _BinaryPlistParser: """ Read or write a binary plist file, following the description of the binary format. Raise InvalidFileException in case of error, otherwise return the root object. see also: http://opensource.apple.com/source/CF/CF-744.18/CFBinaryPList.c """ def __init__(self, use_builtin_types, dict_type): self._use_builtin_types = use_builtin_types self._dict_type = dict_type def parse(self, fp): try: # The basic file format: # HEADER # object... # refid->offset... # TRAILER self._fp = fp self._fp.seek(-32, os.SEEK_END) trailer = self._fp.read(32) if len(trailer) != 32: raise InvalidFileException() ( offset_size, self._ref_size, num_objects, top_object, offset_table_offset ) = struct.unpack('>6xBBQQQ', trailer) self._fp.seek(offset_table_offset) self._object_offsets = self._read_ints(num_objects, offset_size) return self._read_object(self._object_offsets[top_object]) except (OSError, IndexError, struct.error): raise InvalidFileException() def _get_size(self, tokenL): """ return the size of the next object.""" if tokenL == 0xF: m = self._fp.read(1)[0] & 0x3 s = 1 << m f = '>' + _BINARY_FORMAT[s] return struct.unpack(f, self._fp.read(s))[0] return tokenL def _read_ints(self, n, size): data = self._fp.read(size * n) if size in _BINARY_FORMAT: return struct.unpack('>' + _BINARY_FORMAT[size] * n, data) else: return tuple(int.from_bytes(data[i: i + size], 'big') for i in range(0, size * n, size)) def _read_refs(self, n): return self._read_ints(n, self._ref_size) def _read_object(self, offset): """ read the object at offset. May recursively read sub-objects (content of an array/dict/set) """ self._fp.seek(offset) token = self._fp.read(1)[0] tokenH, tokenL = token & 0xF0, token & 0x0F if token == 0x00: return None elif token == 0x08: return False elif token == 0x09: return True # The referenced source code also mentions URL (0x0c, 0x0d) and # UUID (0x0e), but neither can be generated using the Cocoa libraries. elif token == 0x0f: return b'' elif tokenH == 0x10: # int return int.from_bytes(self._fp.read(1 << tokenL), 'big', signed=tokenL >= 3) elif token == 0x22: # real return struct.unpack('>f', self._fp.read(4))[0] elif token == 0x23: # real return struct.unpack('>d', self._fp.read(8))[0] elif token == 0x33: # date f = struct.unpack('>d', self._fp.read(8))[0] # timestamp 0 of binary plists corresponds to 1/1/2001 # (year of Mac OS X 10.0), instead of 1/1/1970. return datetime.datetime.utcfromtimestamp(f + (31 * 365 + 8) * 86400) elif tokenH == 0x40: # data s = self._get_size(tokenL) if self._use_builtin_types: return self._fp.read(s) else: return Data(self._fp.read(s)) elif tokenH == 0x50: # ascii string s = self._get_size(tokenL) result = self._fp.read(s).decode('ascii') return result elif tokenH == 0x60: # unicode string s = self._get_size(tokenL) return self._fp.read(s * 2).decode('utf-16be') # tokenH == 0x80 is documented as 'UID' and appears to be used for # keyed-archiving, not in plists. elif tokenH == 0xA0: # array s = self._get_size(tokenL) obj_refs = self._read_refs(s) return [self._read_object(self._object_offsets[x]) for x in obj_refs] # tokenH == 0xB0 is documented as 'ordset', but is not actually # implemented in the Apple reference code. # tokenH == 0xC0 is documented as 'set', but sets cannot be used in # plists. elif tokenH == 0xD0: # dict s = self._get_size(tokenL) key_refs = self._read_refs(s) obj_refs = self._read_refs(s) result = self._dict_type() for k, o in zip(key_refs, obj_refs): result[self._read_object(self._object_offsets[k]) ] = self._read_object(self._object_offsets[o]) return result raise InvalidFileException() def _count_to_size(count): if count < 1 << 8: return 1 elif count < 1 << 16: return 2 elif count << 1 << 32: return 4 else: return 8 class _BinaryPlistWriter (object): def __init__(self, fp, sort_keys, skipkeys): self._fp = fp self._sort_keys = sort_keys self._skipkeys = skipkeys def write(self, value): # Flattened object list: self._objlist = [] # Mappings from object->objectid # First dict has (type(object), object) as the key, # second dict is used when object is not hashable and # has id(object) as the key. self._objtable = {} self._objidtable = {} # Create list of all objects in the plist self._flatten(value) # Size of object references in serialized containers # depends on the number of objects in the plist. num_objects = len(self._objlist) self._object_offsets = [0]*num_objects self._ref_size = _count_to_size(num_objects) self._ref_format = _BINARY_FORMAT[self._ref_size] # Write file header self._fp.write(b'bplist00') # Write object list for obj in self._objlist: self._write_object(obj) # Write refnum->object offset table top_object = self._getrefnum(value) offset_table_offset = self._fp.tell() offset_size = _count_to_size(offset_table_offset) offset_format = '>' + _BINARY_FORMAT[offset_size] * num_objects self._fp.write(struct.pack(offset_format, *self._object_offsets)) # Write trailer sort_version = 0 trailer = ( sort_version, offset_size, self._ref_size, num_objects, top_object, offset_table_offset ) self._fp.write(struct.pack('>5xBBBQQQ', *trailer)) def _flatten(self, value): # First check if the object is in the object table, not used for # containers to ensure that two subcontainers with the same contents # will be serialized as distinct values. if isinstance(value, ( str, int, float, datetime.datetime, bytes, bytearray)): if (type(value), value) in self._objtable: return elif isinstance(value, Data): if (type(value.data), value.data) in self._objtable: return # Add to objectreference map refnum = len(self._objlist) self._objlist.append(value) try: if isinstance(value, Data): self._objtable[(type(value.data), value.data)] = refnum else: self._objtable[(type(value), value)] = refnum except TypeError: self._objidtable[id(value)] = refnum # And finally recurse into containers if isinstance(value, dict): keys = [] values = [] items = value.items() if self._sort_keys: items = sorted(items) for k, v in items: if not isinstance(k, str): if self._skipkeys: continue raise TypeError("keys must be strings") keys.append(k) values.append(v) for o in itertools.chain(keys, values): self._flatten(o) elif isinstance(value, (list, tuple)): for o in value: self._flatten(o) def _getrefnum(self, value): try: if isinstance(value, Data): return self._objtable[(type(value.data), value.data)] else: return self._objtable[(type(value), value)] except TypeError: return self._objidtable[id(value)] def _write_size(self, token, size): if size < 15: self._fp.write(struct.pack('>B', token | size)) elif size < 1 << 8: self._fp.write(struct.pack('>BBB', token | 0xF, 0x10, size)) elif size < 1 << 16: self._fp.write(struct.pack('>BBH', token | 0xF, 0x11, size)) elif size < 1 << 32: self._fp.write(struct.pack('>BBL', token | 0xF, 0x12, size)) else: self._fp.write(struct.pack('>BBQ', token | 0xF, 0x13, size)) def _write_object(self, value): ref = self._getrefnum(value) self._object_offsets[ref] = self._fp.tell() if value is None: self._fp.write(b'\x00') elif value is False: self._fp.write(b'\x08') elif value is True: self._fp.write(b'\x09') elif isinstance(value, int): if value < 0: try: self._fp.write(struct.pack('>Bq', 0x13, value)) except struct.error: raise OverflowError(value) from None elif value < 1 << 8: self._fp.write(struct.pack('>BB', 0x10, value)) elif value < 1 << 16: self._fp.write(struct.pack('>BH', 0x11, value)) elif value < 1 << 32: self._fp.write(struct.pack('>BL', 0x12, value)) elif value < 1 << 63: self._fp.write(struct.pack('>BQ', 0x13, value)) elif value < 1 << 64: self._fp.write(b'\x14' + value.to_bytes(16, 'big', signed=True)) else: raise OverflowError(value) elif isinstance(value, float): self._fp.write(struct.pack('>Bd', 0x23, value)) elif isinstance(value, datetime.datetime): f = (value - datetime.datetime(2001, 1, 1)).total_seconds() self._fp.write(struct.pack('>Bd', 0x33, f)) elif isinstance(value, Data): self._write_size(0x40, len(value.data)) self._fp.write(value.data) elif isinstance(value, (bytes, bytearray)): self._write_size(0x40, len(value)) self._fp.write(value) elif isinstance(value, str): try: t = value.encode('ascii') self._write_size(0x50, len(value)) except UnicodeEncodeError: t = value.encode('utf-16be') self._write_size(0x60, len(value)) self._fp.write(t) elif isinstance(value, (list, tuple)): refs = [self._getrefnum(o) for o in value] s = len(refs) self._write_size(0xA0, s) self._fp.write(struct.pack('>' + self._ref_format * s, *refs)) elif isinstance(value, dict): keyRefs, valRefs = [], [] if self._sort_keys: rootItems = sorted(value.items()) else: rootItems = value.items() for k, v in rootItems: if not isinstance(k, str): if self._skipkeys: continue raise TypeError("keys must be strings") keyRefs.append(self._getrefnum(k)) valRefs.append(self._getrefnum(v)) s = len(keyRefs) self._write_size(0xD0, s) self._fp.write(struct.pack('>' + self._ref_format * s, *keyRefs)) self._fp.write(struct.pack('>' + self._ref_format * s, *valRefs)) else: raise TypeError(value) def _is_fmt_binary(header): return header[:8] == b'bplist00' # # Generic bits # _FORMATS={ FMT_XML: dict( detect=_is_fmt_xml, parser=_PlistParser, writer=_PlistWriter, ), FMT_BINARY: dict( detect=_is_fmt_binary, parser=_BinaryPlistParser, writer=_BinaryPlistWriter, ) } def load(fp, *, fmt=None, use_builtin_types=True, dict_type=dict): """Read a .plist file. 'fp' should be (readable) file object. Return the unpacked root object (which usually is a dictionary). """ if fmt is None: header = fp.read(32) fp.seek(0) for info in _FORMATS.values(): if info['detect'](header): P = info['parser'] break else: raise InvalidFileException() else: P = _FORMATS[fmt]['parser'] p = P(use_builtin_types=use_builtin_types, dict_type=dict_type) return p.parse(fp) def loads(value, *, fmt=None, use_builtin_types=True, dict_type=dict): """Read a .plist file from a bytes object. Return the unpacked root object (which usually is a dictionary). """ fp = BytesIO(value) return load( fp, fmt=fmt, use_builtin_types=use_builtin_types, dict_type=dict_type) def dump(value, fp, *, fmt=FMT_XML, sort_keys=True, skipkeys=False): """Write 'value' to a .plist file. 'fp' should be a (writable) file object. """ if fmt not in _FORMATS: raise ValueError("Unsupported format: %r"%(fmt,)) writer = _FORMATS[fmt]["writer"](fp, sort_keys=sort_keys, skipkeys=skipkeys) writer.write(value) def dumps(value, *, fmt=FMT_XML, skipkeys=False, sort_keys=True): """Return a bytes object with the contents for a .plist file. """ fp = BytesIO() dump(value, fp, fmt=fmt, skipkeys=skipkeys, sort_keys=sort_keys) return fp.getvalue() >>>>>>> b875702c9c06ab5012e52ff4337439b03918f453 ======= r"""plistlib.py -- a tool to generate and parse MacOSX .plist files. The property list (.plist) file format is a simple XML pickle supporting basic object types, like dictionaries, lists, numbers and strings. Usually the top level object is a dictionary. To write out a plist file, use the dump(value, file) function. 'value' is the top level object, 'file' is a (writable) file object. To parse a plist from a file, use the load(file) function, with a (readable) file object as the only argument. It returns the top level object (again, usually a dictionary). To work with plist data in bytes objects, you can use loads() and dumps(). Values can be strings, integers, floats, booleans, tuples, lists, dictionaries (but only with string keys), Data, bytes, bytearray, or datetime.datetime objects. Generate Plist example: pl = dict( aString = "Doodah", aList = ["A", "B", 12, 32.1, [1, 2, 3]], aFloat = 0.1, anInt = 728, aDict = dict( anotherString = "<hello & hi there!>", aUnicodeValue = "M\xe4ssig, Ma\xdf", aTrueValue = True, aFalseValue = False, ), someData = b"<binary gunk>", someMoreData = b"<lots of binary gunk>" * 10, aDate = datetime.datetime.fromtimestamp(time.mktime(time.gmtime())), ) with open(fileName, 'wb') as fp: dump(pl, fp) Parse Plist example: with open(fileName, 'rb') as fp: pl = load(fp) print(pl["aKey"]) """ __all__ = [ "readPlist", "writePlist", "readPlistFromBytes", "writePlistToBytes", "Plist", "Data", "Dict", "FMT_XML", "FMT_BINARY", "load", "dump", "loads", "dumps" ] import binascii import codecs import contextlib import datetime import enum from io import BytesIO import itertools import os import re import struct from warnings import warn from xml.parsers.expat import ParserCreate PlistFormat = enum.Enum('PlistFormat', 'FMT_XML FMT_BINARY', module=__name__) globals().update(PlistFormat.__members__) # # # Deprecated functionality # # class _InternalDict(dict): # This class is needed while Dict is scheduled for deprecation: # we only need to warn when a *user* instantiates Dict or when # the "attribute notation for dict keys" is used. __slots__ = () def __getattr__(self, attr): try: value = self[attr] except KeyError: raise AttributeError(attr) warn("Attribute access from plist dicts is deprecated, use d[key] " "notation instead", DeprecationWarning, 2) return value def __setattr__(self, attr, value): warn("Attribute access from plist dicts is deprecated, use d[key] " "notation instead", DeprecationWarning, 2) self[attr] = value def __delattr__(self, attr): try: del self[attr] except KeyError: raise AttributeError(attr) warn("Attribute access from plist dicts is deprecated, use d[key] " "notation instead", DeprecationWarning, 2) class Dict(_InternalDict): def __init__(self, **kwargs): warn("The plistlib.Dict class is deprecated, use builtin dict instead", DeprecationWarning, 2) super().__init__(**kwargs) @contextlib.contextmanager def _maybe_open(pathOrFile, mode): if isinstance(pathOrFile, str): with open(pathOrFile, mode) as fp: yield fp else: yield pathOrFile class Plist(_InternalDict): """This class has been deprecated. Use dump() and load() functions instead, together with regular dict objects. """ def __init__(self, **kwargs): warn("The Plist class is deprecated, use the load() and " "dump() functions instead", DeprecationWarning, 2) super().__init__(**kwargs) @classmethod def fromFile(cls, pathOrFile): """Deprecated. Use the load() function instead.""" with _maybe_open(pathOrFile, 'rb') as fp: value = load(fp) plist = cls() plist.update(value) return plist def write(self, pathOrFile): """Deprecated. Use the dump() function instead.""" with _maybe_open(pathOrFile, 'wb') as fp: dump(self, fp) def readPlist(pathOrFile): """ Read a .plist from a path or file. pathOrFile should either be a file name, or a readable binary file object. This function is deprecated, use load instead. """ warn("The readPlist function is deprecated, use load() instead", DeprecationWarning, 2) with _maybe_open(pathOrFile, 'rb') as fp: return load(fp, fmt=None, use_builtin_types=False, dict_type=_InternalDict) def writePlist(value, pathOrFile): """ Write 'value' to a .plist file. 'pathOrFile' may either be a file name or a (writable) file object. This function is deprecated, use dump instead. """ warn("The writePlist function is deprecated, use dump() instead", DeprecationWarning, 2) with _maybe_open(pathOrFile, 'wb') as fp: dump(value, fp, fmt=FMT_XML, sort_keys=True, skipkeys=False) def readPlistFromBytes(data): """ Read a plist data from a bytes object. Return the root object. This function is deprecated, use loads instead. """ warn("The readPlistFromBytes function is deprecated, use loads() instead", DeprecationWarning, 2) return load(BytesIO(data), fmt=None, use_builtin_types=False, dict_type=_InternalDict) def writePlistToBytes(value): """ Return 'value' as a plist-formatted bytes object. This function is deprecated, use dumps instead. """ warn("The writePlistToBytes function is deprecated, use dumps() instead", DeprecationWarning, 2) f = BytesIO() dump(value, f, fmt=FMT_XML, sort_keys=True, skipkeys=False) return f.getvalue() class Data: """ Wrapper for binary data. This class is deprecated, use a bytes object instead. """ def __init__(self, data): if not isinstance(data, bytes): raise TypeError("data must be as bytes") self.data = data @classmethod def fromBase64(cls, data): # base64.decodebytes just calls binascii.a2b_base64; # it seems overkill to use both base64 and binascii. return cls(_decode_base64(data)) def asBase64(self, maxlinelength=76): return _encode_base64(self.data, maxlinelength) def __eq__(self, other): if isinstance(other, self.__class__): return self.data == other.data elif isinstance(other, str): return self.data == other else: return id(self) == id(other) def __repr__(self): return "%s(%s)" % (self.__class__.__name__, repr(self.data)) # # # End of deprecated functionality # # # # XML support # # XML 'header' PLISTHEADER = b"""\ <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> """ # Regex to find any control chars, except for \t \n and \r _controlCharPat = re.compile( r"[\x00\x01\x02\x03\x04\x05\x06\x07\x08\x0b\x0c\x0e\x0f" r"\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f]") def _encode_base64(s, maxlinelength=76): # copied from base64.encodebytes(), with added maxlinelength argument maxbinsize = (maxlinelength//4)*3 pieces = [] for i in range(0, len(s), maxbinsize): chunk = s[i : i + maxbinsize] pieces.append(binascii.b2a_base64(chunk)) return b''.join(pieces) def _decode_base64(s): if isinstance(s, str): return binascii.a2b_base64(s.encode("utf-8")) else: return binascii.a2b_base64(s) # Contents should conform to a subset of ISO 8601 # (in particular, YYYY '-' MM '-' DD 'T' HH ':' MM ':' SS 'Z'. Smaller units # may be omitted with # a loss of precision) _dateParser = re.compile(r"(?P<year>\d\d\d\d)(?:-(?P<month>\d\d)(?:-(?P<day>\d\d)(?:T(?P<hour>\d\d)(?::(?P<minute>\d\d)(?::(?P<second>\d\d))?)?)?)?)?Z", re.ASCII) def _date_from_string(s): order = ('year', 'month', 'day', 'hour', 'minute', 'second') gd = _dateParser.match(s).groupdict() lst = [] for key in order: val = gd[key] if val is None: break lst.append(int(val)) return datetime.datetime(*lst) def _date_to_string(d): return '%04d-%02d-%02dT%02d:%02d:%02dZ' % ( d.year, d.month, d.day, d.hour, d.minute, d.second ) def _escape(text): m = _controlCharPat.search(text) if m is not None: raise ValueError("strings can't contains control characters; " "use bytes instead") text = text.replace("\r\n", "\n") # convert DOS line endings text = text.replace("\r", "\n") # convert Mac line endings text = text.replace("&", "&amp;") # escape '&' text = text.replace("<", "&lt;") # escape '<' text = text.replace(">", "&gt;") # escape '>' return text class _PlistParser: def __init__(self, use_builtin_types, dict_type): self.stack = [] self.current_key = None self.root = None self._use_builtin_types = use_builtin_types self._dict_type = dict_type def parse(self, fileobj): self.parser = ParserCreate() self.parser.StartElementHandler = self.handle_begin_element self.parser.EndElementHandler = self.handle_end_element self.parser.CharacterDataHandler = self.handle_data self.parser.ParseFile(fileobj) return self.root def handle_begin_element(self, element, attrs): self.data = [] handler = getattr(self, "begin_" + element, None) if handler is not None: handler(attrs) def handle_end_element(self, element): handler = getattr(self, "end_" + element, None) if handler is not None: handler() def handle_data(self, data): self.data.append(data) def add_object(self, value): if self.current_key is not None: if not isinstance(self.stack[-1], type({})): raise ValueError("unexpected element at line %d" % self.parser.CurrentLineNumber) self.stack[-1][self.current_key] = value self.current_key = None elif not self.stack: # this is the root object self.root = value else: if not isinstance(self.stack[-1], type([])): raise ValueError("unexpected element at line %d" % self.parser.CurrentLineNumber) self.stack[-1].append(value) def get_data(self): data = ''.join(self.data) self.data = [] return data # element handlers def begin_dict(self, attrs): d = self._dict_type() self.add_object(d) self.stack.append(d) def end_dict(self): if self.current_key: raise ValueError("missing value for key '%s' at line %d" % (self.current_key,self.parser.CurrentLineNumber)) self.stack.pop() def end_key(self): if self.current_key or not isinstance(self.stack[-1], type({})): raise ValueError("unexpected key at line %d" % self.parser.CurrentLineNumber) self.current_key = self.get_data() def begin_array(self, attrs): a = [] self.add_object(a) self.stack.append(a) def end_array(self): self.stack.pop() def end_true(self): self.add_object(True) def end_false(self): self.add_object(False) def end_integer(self): self.add_object(int(self.get_data())) def end_real(self): self.add_object(float(self.get_data())) def end_string(self): self.add_object(self.get_data()) def end_data(self): if self._use_builtin_types: self.add_object(_decode_base64(self.get_data())) else: self.add_object(Data.fromBase64(self.get_data())) def end_date(self): self.add_object(_date_from_string(self.get_data())) class _DumbXMLWriter: def __init__(self, file, indent_level=0, indent="\t"): self.file = file self.stack = [] self._indent_level = indent_level self.indent = indent def begin_element(self, element): self.stack.append(element) self.writeln("<%s>" % element) self._indent_level += 1 def end_element(self, element): assert self._indent_level > 0 assert self.stack.pop() == element self._indent_level -= 1 self.writeln("</%s>" % element) def simple_element(self, element, value=None): if value is not None: value = _escape(value) self.writeln("<%s>%s</%s>" % (element, value, element)) else: self.writeln("<%s/>" % element) def writeln(self, line): if line: # plist has fixed encoding of utf-8 # XXX: is this test needed? if isinstance(line, str): line = line.encode('utf-8') self.file.write(self._indent_level * self.indent) self.file.write(line) self.file.write(b'\n') class _PlistWriter(_DumbXMLWriter): def __init__( self, file, indent_level=0, indent=b"\t", writeHeader=1, sort_keys=True, skipkeys=False): if writeHeader: file.write(PLISTHEADER) _DumbXMLWriter.__init__(self, file, indent_level, indent) self._sort_keys = sort_keys self._skipkeys = skipkeys def write(self, value): self.writeln("<plist version=\"1.0\">") self.write_value(value) self.writeln("</plist>") def write_value(self, value): if isinstance(value, str): self.simple_element("string", value) elif value is True: self.simple_element("true") elif value is False: self.simple_element("false") elif isinstance(value, int): if -1 << 63 <= value < 1 << 64: self.simple_element("integer", "%d" % value) else: raise OverflowError(value) elif isinstance(value, float): self.simple_element("real", repr(value)) elif isinstance(value, dict): self.write_dict(value) elif isinstance(value, Data): self.write_data(value) elif isinstance(value, (bytes, bytearray)): self.write_bytes(value) elif isinstance(value, datetime.datetime): self.simple_element("date", _date_to_string(value)) elif isinstance(value, (tuple, list)): self.write_array(value) else: raise TypeError("unsupported type: %s" % type(value)) def write_data(self, data): self.write_bytes(data.data) def write_bytes(self, data): self.begin_element("data") self._indent_level -= 1 maxlinelength = max( 16, 76 - len(self.indent.replace(b"\t", b" " * 8) * self._indent_level)) for line in _encode_base64(data, maxlinelength).split(b"\n"): if line: self.writeln(line) self._indent_level += 1 self.end_element("data") def write_dict(self, d): if d: self.begin_element("dict") if self._sort_keys: items = sorted(d.items()) else: items = d.items() for key, value in items: if not isinstance(key, str): if self._skipkeys: continue raise TypeError("keys must be strings") self.simple_element("key", key) self.write_value(value) self.end_element("dict") else: self.simple_element("dict") def write_array(self, array): if array: self.begin_element("array") for value in array: self.write_value(value) self.end_element("array") else: self.simple_element("array") def _is_fmt_xml(header): prefixes = (b'<?xml', b'<plist') for pfx in prefixes: if header.startswith(pfx): return True # Also check for alternative XML encodings, this is slightly # overkill because the Apple tools (and plistlib) will not # generate files with these encodings. for bom, encoding in ( (codecs.BOM_UTF8, "utf-8"), (codecs.BOM_UTF16_BE, "utf-16-be"), (codecs.BOM_UTF16_LE, "utf-16-le"), # expat does not support utf-32 #(codecs.BOM_UTF32_BE, "utf-32-be"), #(codecs.BOM_UTF32_LE, "utf-32-le"), ): if not header.startswith(bom): continue for start in prefixes: prefix = bom + start.decode('ascii').encode(encoding) if header[:len(prefix)] == prefix: return True return False # # Binary Plist # class InvalidFileException (ValueError): def __init__(self, message="Invalid file"): ValueError.__init__(self, message) _BINARY_FORMAT = {1: 'B', 2: 'H', 4: 'L', 8: 'Q'} class _BinaryPlistParser: """ Read or write a binary plist file, following the description of the binary format. Raise InvalidFileException in case of error, otherwise return the root object. see also: http://opensource.apple.com/source/CF/CF-744.18/CFBinaryPList.c """ def __init__(self, use_builtin_types, dict_type): self._use_builtin_types = use_builtin_types self._dict_type = dict_type def parse(self, fp): try: # The basic file format: # HEADER # object... # refid->offset... # TRAILER self._fp = fp self._fp.seek(-32, os.SEEK_END) trailer = self._fp.read(32) if len(trailer) != 32: raise InvalidFileException() ( offset_size, self._ref_size, num_objects, top_object, offset_table_offset ) = struct.unpack('>6xBBQQQ', trailer) self._fp.seek(offset_table_offset) self._object_offsets = self._read_ints(num_objects, offset_size) return self._read_object(self._object_offsets[top_object]) except (OSError, IndexError, struct.error): raise InvalidFileException() def _get_size(self, tokenL): """ return the size of the next object.""" if tokenL == 0xF: m = self._fp.read(1)[0] & 0x3 s = 1 << m f = '>' + _BINARY_FORMAT[s] return struct.unpack(f, self._fp.read(s))[0] return tokenL def _read_ints(self, n, size): data = self._fp.read(size * n) if size in _BINARY_FORMAT: return struct.unpack('>' + _BINARY_FORMAT[size] * n, data) else: return tuple(int.from_bytes(data[i: i + size], 'big') for i in range(0, size * n, size)) def _read_refs(self, n): return self._read_ints(n, self._ref_size) def _read_object(self, offset): """ read the object at offset. May recursively read sub-objects (content of an array/dict/set) """ self._fp.seek(offset) token = self._fp.read(1)[0] tokenH, tokenL = token & 0xF0, token & 0x0F if token == 0x00: return None elif token == 0x08: return False elif token == 0x09: return True # The referenced source code also mentions URL (0x0c, 0x0d) and # UUID (0x0e), but neither can be generated using the Cocoa libraries. elif token == 0x0f: return b'' elif tokenH == 0x10: # int return int.from_bytes(self._fp.read(1 << tokenL), 'big', signed=tokenL >= 3) elif token == 0x22: # real return struct.unpack('>f', self._fp.read(4))[0] elif token == 0x23: # real return struct.unpack('>d', self._fp.read(8))[0] elif token == 0x33: # date f = struct.unpack('>d', self._fp.read(8))[0] # timestamp 0 of binary plists corresponds to 1/1/2001 # (year of Mac OS X 10.0), instead of 1/1/1970. return datetime.datetime.utcfromtimestamp(f + (31 * 365 + 8) * 86400) elif tokenH == 0x40: # data s = self._get_size(tokenL) if self._use_builtin_types: return self._fp.read(s) else: return Data(self._fp.read(s)) elif tokenH == 0x50: # ascii string s = self._get_size(tokenL) result = self._fp.read(s).decode('ascii') return result elif tokenH == 0x60: # unicode string s = self._get_size(tokenL) return self._fp.read(s * 2).decode('utf-16be') # tokenH == 0x80 is documented as 'UID' and appears to be used for # keyed-archiving, not in plists. elif tokenH == 0xA0: # array s = self._get_size(tokenL) obj_refs = self._read_refs(s) return [self._read_object(self._object_offsets[x]) for x in obj_refs] # tokenH == 0xB0 is documented as 'ordset', but is not actually # implemented in the Apple reference code. # tokenH == 0xC0 is documented as 'set', but sets cannot be used in # plists. elif tokenH == 0xD0: # dict s = self._get_size(tokenL) key_refs = self._read_refs(s) obj_refs = self._read_refs(s) result = self._dict_type() for k, o in zip(key_refs, obj_refs): result[self._read_object(self._object_offsets[k]) ] = self._read_object(self._object_offsets[o]) return result raise InvalidFileException() def _count_to_size(count): if count < 1 << 8: return 1 elif count < 1 << 16: return 2 elif count << 1 << 32: return 4 else: return 8 class _BinaryPlistWriter (object): def __init__(self, fp, sort_keys, skipkeys): self._fp = fp self._sort_keys = sort_keys self._skipkeys = skipkeys def write(self, value): # Flattened object list: self._objlist = [] # Mappings from object->objectid # First dict has (type(object), object) as the key, # second dict is used when object is not hashable and # has id(object) as the key. self._objtable = {} self._objidtable = {} # Create list of all objects in the plist self._flatten(value) # Size of object references in serialized containers # depends on the number of objects in the plist. num_objects = len(self._objlist) self._object_offsets = [0]*num_objects self._ref_size = _count_to_size(num_objects) self._ref_format = _BINARY_FORMAT[self._ref_size] # Write file header self._fp.write(b'bplist00') # Write object list for obj in self._objlist: self._write_object(obj) # Write refnum->object offset table top_object = self._getrefnum(value) offset_table_offset = self._fp.tell() offset_size = _count_to_size(offset_table_offset) offset_format = '>' + _BINARY_FORMAT[offset_size] * num_objects self._fp.write(struct.pack(offset_format, *self._object_offsets)) # Write trailer sort_version = 0 trailer = ( sort_version, offset_size, self._ref_size, num_objects, top_object, offset_table_offset ) self._fp.write(struct.pack('>5xBBBQQQ', *trailer)) def _flatten(self, value): # First check if the object is in the object table, not used for # containers to ensure that two subcontainers with the same contents # will be serialized as distinct values. if isinstance(value, ( str, int, float, datetime.datetime, bytes, bytearray)): if (type(value), value) in self._objtable: return elif isinstance(value, Data): if (type(value.data), value.data) in self._objtable: return # Add to objectreference map refnum = len(self._objlist) self._objlist.append(value) try: if isinstance(value, Data): self._objtable[(type(value.data), value.data)] = refnum else: self._objtable[(type(value), value)] = refnum except TypeError: self._objidtable[id(value)] = refnum # And finally recurse into containers if isinstance(value, dict): keys = [] values = [] items = value.items() if self._sort_keys: items = sorted(items) for k, v in items: if not isinstance(k, str): if self._skipkeys: continue raise TypeError("keys must be strings") keys.append(k) values.append(v) for o in itertools.chain(keys, values): self._flatten(o) elif isinstance(value, (list, tuple)): for o in value: self._flatten(o) def _getrefnum(self, value): try: if isinstance(value, Data): return self._objtable[(type(value.data), value.data)] else: return self._objtable[(type(value), value)] except TypeError: return self._objidtable[id(value)] def _write_size(self, token, size): if size < 15: self._fp.write(struct.pack('>B', token | size)) elif size < 1 << 8: self._fp.write(struct.pack('>BBB', token | 0xF, 0x10, size)) elif size < 1 << 16: self._fp.write(struct.pack('>BBH', token | 0xF, 0x11, size)) elif size < 1 << 32: self._fp.write(struct.pack('>BBL', token | 0xF, 0x12, size)) else: self._fp.write(struct.pack('>BBQ', token | 0xF, 0x13, size)) def _write_object(self, value): ref = self._getrefnum(value) self._object_offsets[ref] = self._fp.tell() if value is None: self._fp.write(b'\x00') elif value is False: self._fp.write(b'\x08') elif value is True: self._fp.write(b'\x09') elif isinstance(value, int): if value < 0: try: self._fp.write(struct.pack('>Bq', 0x13, value)) except struct.error: raise OverflowError(value) from None elif value < 1 << 8: self._fp.write(struct.pack('>BB', 0x10, value)) elif value < 1 << 16: self._fp.write(struct.pack('>BH', 0x11, value)) elif value < 1 << 32: self._fp.write(struct.pack('>BL', 0x12, value)) elif value < 1 << 63: self._fp.write(struct.pack('>BQ', 0x13, value)) elif value < 1 << 64: self._fp.write(b'\x14' + value.to_bytes(16, 'big', signed=True)) else: raise OverflowError(value) elif isinstance(value, float): self._fp.write(struct.pack('>Bd', 0x23, value)) elif isinstance(value, datetime.datetime): f = (value - datetime.datetime(2001, 1, 1)).total_seconds() self._fp.write(struct.pack('>Bd', 0x33, f)) elif isinstance(value, Data): self._write_size(0x40, len(value.data)) self._fp.write(value.data) elif isinstance(value, (bytes, bytearray)): self._write_size(0x40, len(value)) self._fp.write(value) elif isinstance(value, str): try: t = value.encode('ascii') self._write_size(0x50, len(value)) except UnicodeEncodeError: t = value.encode('utf-16be') self._write_size(0x60, len(value)) self._fp.write(t) elif isinstance(value, (list, tuple)): refs = [self._getrefnum(o) for o in value] s = len(refs) self._write_size(0xA0, s) self._fp.write(struct.pack('>' + self._ref_format * s, *refs)) elif isinstance(value, dict): keyRefs, valRefs = [], [] if self._sort_keys: rootItems = sorted(value.items()) else: rootItems = value.items() for k, v in rootItems: if not isinstance(k, str): if self._skipkeys: continue raise TypeError("keys must be strings") keyRefs.append(self._getrefnum(k)) valRefs.append(self._getrefnum(v)) s = len(keyRefs) self._write_size(0xD0, s) self._fp.write(struct.pack('>' + self._ref_format * s, *keyRefs)) self._fp.write(struct.pack('>' + self._ref_format * s, *valRefs)) else: raise TypeError(value) def _is_fmt_binary(header): return header[:8] == b'bplist00' # # Generic bits # _FORMATS={ FMT_XML: dict( detect=_is_fmt_xml, parser=_PlistParser, writer=_PlistWriter, ), FMT_BINARY: dict( detect=_is_fmt_binary, parser=_BinaryPlistParser, writer=_BinaryPlistWriter, ) } def load(fp, *, fmt=None, use_builtin_types=True, dict_type=dict): """Read a .plist file. 'fp' should be (readable) file object. Return the unpacked root object (which usually is a dictionary). """ if fmt is None: header = fp.read(32) fp.seek(0) for info in _FORMATS.values(): if info['detect'](header): P = info['parser'] break else: raise InvalidFileException() else: P = _FORMATS[fmt]['parser'] p = P(use_builtin_types=use_builtin_types, dict_type=dict_type) return p.parse(fp) def loads(value, *, fmt=None, use_builtin_types=True, dict_type=dict): """Read a .plist file from a bytes object. Return the unpacked root object (which usually is a dictionary). """ fp = BytesIO(value) return load( fp, fmt=fmt, use_builtin_types=use_builtin_types, dict_type=dict_type) def dump(value, fp, *, fmt=FMT_XML, sort_keys=True, skipkeys=False): """Write 'value' to a .plist file. 'fp' should be a (writable) file object. """ if fmt not in _FORMATS: raise ValueError("Unsupported format: %r"%(fmt,)) writer = _FORMATS[fmt]["writer"](fp, sort_keys=sort_keys, skipkeys=skipkeys) writer.write(value) def dumps(value, *, fmt=FMT_XML, skipkeys=False, sort_keys=True): """Return a bytes object with the contents for a .plist file. """ fp = BytesIO() dump(value, fp, fmt=fmt, skipkeys=skipkeys, sort_keys=sort_keys) return fp.getvalue() >>>>>>> b875702c9c06ab5012e52ff4337439b03918f453
2e67cfa924d6e66b5a606f3dd3c8371825938f80
d12c4bb550c71bb3eaad5dbea099fa79d8001316
/CodingNinjasOOPS/MethodOverrriding2.py
ba5f63e34530b739d0a728f0ae2216e44eaac359
[]
no_license
nilesh7808/Coding-Ninjas-DSA-Programs
8fdd980424e8b21026825ff5d444df7d70545629
bfdc2bd9b317721d30b8109e6fb37c61bfc577e8
refs/heads/master
2023-04-29T02:54:01.247715
2021-05-22T03:34:34
2021-05-22T03:34:34
369,706,653
0
0
null
null
null
null
UTF-8
Python
false
false
324
py
class vehicle: def __init__(self,color): self.color = color def print(self): print("The color of Car is:",self.color) class Car(vehicle): def print(self): super().print() # Now it will look to the parent class print("This is Pretty Good ") c = Car("Black") c.print()
bebb93feff90d5c700d2dac9c625f44c6b54a245
6732dce33ccc8d3912c7dd9bb5a029988586a649
/samples/apps/search_organize_users.py
0e3db637d8cf7cb4f2b9ef4ce7081cabd4862e0d
[ "Apache-2.0" ]
permissive
hamada2029/gdata-python3
8a0d3cb53b707b7ad2f826a486df254c813e7463
c1028f6567b480908b90848523bebaf78e6b49f7
refs/heads/master
2021-01-22T12:53:28.196826
2014-11-30T07:05:30
2014-11-30T07:05:30
46,613,040
1
0
null
2015-11-21T11:44:20
2015-11-21T11:44:19
null
UTF-8
Python
false
false
5,004
py
#!/usr/bin/python # # Copyright 2011 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Search users with a given pattern and move to a new organization. Sample to move users to a new organization based on a pattern using the User Provisioning and Organization Provisioning APIs. Usage: $ python search_organize_users.py """ __author__ = 'Shraddha Gupta <[email protected]>' from optparse import OptionParser import re from gdata.apps.client import AppsClient from gdata.apps.organization.client import OrganizationUnitProvisioningClient import gdata.gauth BATCH_SIZE = 25 SCOPES = ('https://apps-apis.google.com/a/feeds/user/ ' 'https://apps-apis.google.com/a/feeds/policies/') USER_AGENT = 'SearchAndOrganizeUsers' class SearchAndOrganizeUsers(object): """Search users with a pattern and move them to organization.""" def __init__(self, client_id, client_secret, domain): """Create a new SearchAndOrganizeUsers object configured for a domain. Args: client_id: [string] The clientId of the developer. client_secret: [string] The clientSecret of the developer. domain: [string] The domain on which the functions are to be performed. """ self.client_id = client_id self.client_secret = client_secret self.domain = domain def AuthorizeClient(self): """Authorize the clients for making API requests.""" self.token = gdata.gauth.OAuth2Token( client_id=self.client_id, client_secret=self.client_secret, scope=SCOPES, user_agent=USER_AGENT) uri = self.token.generate_authorize_url() print('Please visit this URL to authorize the application:') print(uri) # Get the verification code from the standard input. code = input('What is the verification code? ').strip() self.token.get_access_token(code) self.user_client = AppsClient(domain=self.domain, auth_token=self.token) self.org_client = OrganizationUnitProvisioningClient( domain=self.domain, auth_token=self.token) def OrganizeUsers(self, customer_id, org_unit_path, pattern): """Find users with given pattern and move to an organization in batches. Args: customer_id: [string] customer_id to make calls to Organization API. org_unit_path: [string] path of organization unit where users are moved pattern: [regex object] regex to match with users """ users = self.user_client.RetrieveAllUsers() matched_users = [] # Search the users that match given pattern for user in users.entry: if (pattern.search(user.login.user_name) or pattern.search(user.name.given_name) or pattern.search(user.name.family_name)): user_email = '%s@%s' % (user.login.user_name, self.domain) matched_users.append(user_email) # Maximum BATCH_SIZE users can be moved at one time # Split users into batches of BATCH_SIZE and move in batches for i in range(0, len(matched_users), BATCH_SIZE): batch_to_move = matched_users[i: i + BATCH_SIZE] self.org_client.MoveUserToOrgUnit(customer_id, org_unit_path, batch_to_move) print(('Number of users moved = %d' % len(matched_users))) def Run(self, org_unit_path, regex): self.AuthorizeClient() customer_id_entry = self.org_client.RetrieveCustomerId() customer_id = customer_id_entry.customer_id pattern = re.compile(regex) print(('Moving Users with the pattern %s' % regex)) self.OrganizeUsers(customer_id, org_unit_path, pattern) def main(): usage = 'Usage: %prog [options]' parser = OptionParser(usage=usage) parser.add_option('--DOMAIN', help='Google Apps Domain, e.g. "domain.com".') parser.add_option('--CLIENT_ID', help='Registered CLIENT_ID of Domain.') parser.add_option('--CLIENT_SECRET', help='Registered CLIENT_SECRET of Domain.') parser.add_option('--ORG_UNIT_PATH', help='Orgunit path of organization where to move users.') parser.add_option('--PATTERN', help='Pattern to search in users') (options, args) = parser.parse_args() if not (options.DOMAIN and options.CLIENT_ID and options.CLIENT_SECRET and options.ORG_UNIT_PATH and options.PATTERN): parser.print_help() return sample = SearchAndOrganizeUsers(options.CLIENT_ID, options.CLIENT_SECRET, options.DOMAIN) sample.Run(options.ORG_UNIT_PATH, options.PATTERN) if __name__ == '__main__': main()
e815ef00e7e2a01d38ebb75253c4bf54a9f245ad
b22588340d7925b614a735bbbde1b351ad657ffc
/athena/TileCalorimeter/TileExample/TileSimEx/scripts/makePlot.py
769edfceb2d903852931704bb7f471b328dc6ce2
[]
no_license
rushioda/PIXELVALID_athena
90befe12042c1249cbb3655dde1428bb9b9a42ce
22df23187ef85e9c3120122c8375ea0e7d8ea440
refs/heads/master
2020-12-14T22:01:15.365949
2020-01-19T03:59:35
2020-01-19T03:59:35
234,836,993
1
0
null
null
null
null
UTF-8
Python
false
false
60,939
py
# Copyright (C) 2002-2017 CERN for the benefit of the ATLAS collaboration #----------------------------------------------------- # Author: Dengfeng Zhang # [email protected] #----------------------------------------------------- # This script has for functions: # GetPlotSingleProperty(): Get energy response, energy resolution, # lateral spread and longitudinal profile of MC. # GetDataPlotSingleProperty(): Get energy response, energy resolution, # lateral spread and longitudinal profile of data. # ComDataMC(): Compare MC results with data results, get the ratio of MC to data. # Draw all MC, data and their ratios on one plot. # (energy response and resolution, lateral spread and longitudinal spread) ; # ComparePhysicsList(): Draw Draw all MC results, data results on one plot, not ratios. # (energy response and resolution, lateral spread) #----------------------------------------------------- import ROOT,math,os,array from ROOT import * gROOT.ProcessLine("#include \"GraphToolKit.h\"") gROOT.ProcessLine("#include \"HistToolKit.h\"") Energies = [20000, 50000, 100000, 180000] # beam energy lists Particles = ['pi', 'pr'] # particle types PhysicsLists = ['FTFP_BERT', 'FTFP_BERT_ATL', 'QGSP_BERT', "QGSP_BIC"] # physics lists # Get the current working dir Dir = os.getcwd() # Check main output dir holding output root files does exist in current working dir, # otherwise create it. ResultDir = Dir+"/results/" if ROOT.gSystem.AccessPathName(ResultDir): print ResultDir, "doesn't exist! Making" gSystem.Exec("mkdir {}".format(ResultDir)) # Check main output dir holding plots does exist in current working dir, # otherwise create it. PlotDir = Dir+"/plots/" if ROOT.gSystem.AccessPathName(PlotDir): print PlotDir, "doesn't exist! Making" gSystem.Exec("mkdir {}".format(PlotDir)) # Get the energy response and resolution, lateral spread # and longitudinal of each type of particles, each beam energy and each physics list. def GetPlotSingleProperty(): for Particle in Particles: # loop over particle types # input path containing root files generated in GetEnergy.cxx InPath = ResultDir+"/{}/".format(Particle) # create output root file # grapherrors of renponse, resolution and lateral spread # and histograms of longitudinal profile will be wrote in it. outputFile = ROOT.TFile.Open('{}/Properities_{}.root'.format(InPath,Particle),'RECREATE') for PhysicsList in PhysicsLists: # loop over physics lists # define array or list of responses, resolutions, # lateral spreads and longitudinal profiles of all beam energies Response = array.array('f') # array of energy responses of all beam energies for each type of particles and for each physics lists ResponseError = array.array('f') #array of energy response errors (only statistical) Resolution = array.array('f') #array of energy resolutions of all beam energies ResolutionError = array.array('f') #array of energy resolution errors LateralSpread = array.array('f') #array of lateral spreads of all beam energies LateralSpreadError = array.array('f') #array of lateral spread errors of all beam energies Es = array.array('f') # array of beam energies EsError = array.array('f') # # array of beam energy errors, always 0 LongitudinalProfileList = [] # list of longitudinal profiles of all beam energies NormalizedLongitudinalProfileList = [] # list of normalized longitudinal profiles of all beam energies for Energy in Energies: # loop over all beam energies Es.append(Energy/1000.) EsError.append(0.) # get input file generated in GetEnergy.cxx # attaced to each beam energy, particle and physics list inputFile = ROOT.TFile('{}/tiletb90-E{}-{}_{}.root'.format(InPath,Energy,Particle,PhysicsList),"read") if not inputFile: continue print "InFile: ",inputFile.GetName() # get histograms in input file h_E = inputFile.Get("RecoE") # total energy distribution h_EM0 = inputFile.Get("RecoEModule0") # distribution of energy in barrel module 0 h_EB = inputFile.Get("RecoECentralModule") # distribution of energy in central barrel module h_LP = inputFile.Get("LongitudinalProfile") # get the longitudinal profile h_LP.SetDirectory(0) # define a gaus fun to fit total energy distribution func = ROOT.TF1("func","gaus",h_E.GetMean()-2*h_E.GetRMS(),h_E.GetMean()+2*h_E.GetRMS()) print h_E.GetMean()-2*h_E.GetRMS()," ", h_E.GetMean()+2*h_E.GetRMS() h_E.Fit("func","R") # fit the total energy distribution by a Gaussian gStyle.SetOptFit(1) canvas = ROOT.TCanvas("canvas","",800,600) h_E.Draw() canvas.Print(ResultDir+'/{}/totalE_{}_{}_{}.pdf'.format(Particle,Particle,Energy,PhysicsList)) # energy response is the mean of the gaussian fitting/beam energy, # energy resolution is sigma/mean of the gaussian fitting Response.append(func.GetParameter(1)*1000/Energy) ResponseError.append(func.GetParError(1)*1000/Energy) Resolution.append(func.GetParameter(2)/func.GetParameter(1)*100) ResolutionError.append(func.GetParError(2)/func.GetParameter(1)*100) # Get lateral spread(mean energy in module 0/ mean energy in central barrel) LS = h_EM0.GetMean()/h_EB.GetMean() LSError = LS*math.sqrt(pow(h_EM0.GetMeanError()/h_EM0.GetMean(), 2)+pow(h_EB.GetMeanError()/h_EB.GetMean(), 2)) LateralSpread.append(LS) LateralSpreadError.append(LSError) # get the longitudinal profiles scaling by the energy response h_LP.Scale(1./(func.GetParameter(1)*1000/Energy)) #FIXME #h_LP.Scale(Energy/1000/h_LP.Integral("width")) #FIXME # get the normalized longitudinal profiles normalize it to 1 h_NormalizedLP=h_LP.Clone() h_NormalizedLP.SetDirectory(0) h_NormalizedLP.Scale(1./h_LP.Integral("width")) h_LP.SetName("{}_{}GeV_{}_LongitudinalProfile".format(Particle,Energy/1000, PhysicsList)) h_LP.SetTitle("{} GeV".format(Energy/1000)) h_NormalizedLP.SetName("{}_{}GeV_{}_NormalizedLongitudinalProfile".format(Particle, Energy/1000, PhysicsList)) h_NormalizedLP.SetTitle("{} GeV".format(Energy/1000)) h_NormalizedLP.GetYaxis().SetTitle("1/E_{tot}#timesdE/dx[1/#lambda]") LongitudinalProfileList.append(h_LP) NormalizedLongitudinalProfileList.append(h_NormalizedLP) print LongitudinalProfileList, NormalizedLongitudinalProfileList outputFile.cd() # create the grapherrors of energy responses gr_response = ROOT.TGraphErrors(len(Es),Es,Response,EsError,ResponseError) gr_response.SetName("{}_{}_Response".format(Particle,PhysicsList)) gr_response.SetTitle("{} {} Response".format(Particle,PhysicsList)) gr_response.GetXaxis().SetTitle("E_{beam}[GeV]") gr_response.GetYaxis().SetTitle("E_{total}/E_{beam}") # create the grapherrors of energy resolutions gr_resolution = ROOT.TGraphErrors(len(Es),Es,Resolution,EsError,ResolutionError) gr_resolution.SetName("{}_{}_Resolution".format(Particle,PhysicsList)) gr_resolution.SetTitle("{} {} Resolution".format(Particle,PhysicsList)) gr_resolution.GetYaxis().SetTitle("resolution[%]") gr_resolution.GetXaxis().SetTitle("E_{beam}[GeV]") # create the grapherrors of lateral spread gr_lateralspread = ROOT.TGraphErrors(len(Es),Es,LateralSpread,EsError,LateralSpreadError) gr_lateralspread.SetName("{}_{}_LateralSpread".format(Particle,PhysicsList)) gr_lateralspread.SetTitle("{} {} LateralSpread".format(Particle,PhysicsList)) gr_lateralspread.GetYaxis().SetTitle("E_{Module0}/E_{Barrel}") gr_lateralspread.GetXaxis().SetTitle("E_{beam}[GeV]") # set the x range of grapherrors of response and resolution gr_response.GetXaxis().SetRangeUser(10, 210) gr_response.GetYaxis().SetNdivisions(510) gr_resolution.GetXaxis().SetRangeUser(10, 210) gr_resolution.GetYaxis().SetNdivisions(510) gr_lateralspread.GetXaxis().SetRangeUser(10, 210) gr_lateralspread.GetYaxis().SetNdivisions(510) # set the x range of grapherrors of lateral spread if(Particle=="pi"): gr_lateralspread.GetYaxis().SetRangeUser(0.025, 0.055) gr_lateralspread.GetYaxis().SetNdivisions(503) ; elif(Particle=="pr"): gr_lateralspread.GetYaxis().SetRangeUser(0.025, 0.065) gr_lateralspread.GetYaxis().SetNdivisions(504) ; # define output for each particle type, # if this dir doesn't exist, create it. OutPath = PlotDir+"/{}/".format(Particle) if ROOT.gSystem.AccessPathName(OutPath): print OutPath, "doesn't exist! Making" ROOT.gSystem.Exec("mkdir {}".format(OutPath)) FullParticleName="" if Particle=='pi': FullParticleName = "Pion" elif Particle=='pr': FullParticleName = "Proton" # loop over beam energies to draw single longitudinal profile for i, Energy in enumerate(Energies): LongitudinalProfileList[i].Write() NormalizedLongitudinalProfileList[i].Write() # draw the single plot of normalized longitudinal profile and longitudinal profile # of each type of particle and each physics list and each beam energy DrawSingleHistOnCanvas(OutPath+LongitudinalProfileList[i].GetName(), LongitudinalProfileList[i], "PE", False, True, False, "#splitline{"+"{}GeV {}".format(Energy/1000, FullParticleName)+"}{"+"{}".format(PhysicsList)+"}") DrawSingleHistOnCanvas(OutPath+NormalizedLongitudinalProfileList[i].GetName(), NormalizedLongitudinalProfileList[i], "PE",False, True, False, "#splitline{"+"{}GeV {}".format(Energy/1000, FullParticleName)+"}{"+"{}".format(PhysicsList)+"}") LongitudinalProfileList[0].GetYaxis().SetRangeUser(1E-3, 100.) NormalizedLongitudinalProfileList[0].GetYaxis().SetRangeUser(1E-5, 1.) # Draw four longitudinal profiles of 4 beam energies of each type of particle and # each physics list on same canvas DrawFourHistsOnCanvas("{}/{}_{}_LongitudinalProfile_LogY".format(OutPath,Particle,PhysicsList), LongitudinalProfileList[0], LongitudinalProfileList[1], LongitudinalProfileList[2], LongitudinalProfileList[3],"pe", "pesame", "pesame", "pesame", False, True, False, FullParticleName, PhysicsList) DrawFourHistsOnCanvas("{}/{}_{}_NormalizedLongitudinalProfile_LogY".format(OutPath,Particle,PhysicsList), NormalizedLongitudinalProfileList[0], NormalizedLongitudinalProfileList[1], NormalizedLongitudinalProfileList[2], NormalizedLongitudinalProfileList[3],"pe", "pesame", "pesame", "pesame", False, True, False, FullParticleName, PhysicsList) # don't use logy on y axis LongitudinalProfileList[0].GetYaxis().SetRangeUser(0., 40.) NormalizedLongitudinalProfileList[0].GetYaxis().SetRangeUser(0., 0.25) DrawFourHistsOnCanvas("{}/{}_{}_LongitudinalProfile".format(OutPath,Particle,PhysicsList), LongitudinalProfileList[0], LongitudinalProfileList[1], LongitudinalProfileList[2], LongitudinalProfileList[3],"pe", "pesame", "pesame", "pesame", False, False, False, FullParticleName, PhysicsList) DrawFourHistsOnCanvas("{}/{}_{}_NormalizedLongitudinalProfile".format(OutPath,Particle,PhysicsList), NormalizedLongitudinalProfileList[0], NormalizedLongitudinalProfileList[1], NormalizedLongitudinalProfileList[2], NormalizedLongitudinalProfileList[3],"pe", "pesame", "pesame", "pesame", False, False, False, FullParticleName, PhysicsList) # draw single grapherrors of responses , resolutions and lateral spread DrawSingleGraphErrorsOnCanvas("{}/{}_{}_Response".format(OutPath,Particle,PhysicsList),gr_response,"AP", False, False, False, FullParticleName+" "+PhysicsList) DrawSingleGraphErrorsOnCanvas("{}/{}_{}_Resolution".format(OutPath,Particle,PhysicsList),gr_resolution,"AP", False, False, False, FullParticleName+" "+PhysicsList) DrawSingleGraphErrorsOnCanvas("{}/{}_{}_LateralSpread".format(OutPath,Particle,PhysicsList), gr_lateralspread,"AP", False, False, False, FullParticleName+" "+PhysicsList) gr_response.Write() gr_resolution.Write() gr_lateralspread.Write() print Response print Resolution print LateralSpread outputFile.Write() # get the energy responses and resolutions, lateral spreads and longitudianl of data # data results are extracted from http://indico.cern.ch/event/135703/contributions/134036/attachments/108421/154300/main.pdf def GetDataPlotSingleProperty(): # pion responses of data PiResponse = array.array('f', [0.808, 0.844, 0.856, 0.867]) PiResponseError = array.array('f', [0., 0., 0., 0.]) # proton responses of data, proton only has 3 beam energies PrResponse = array.array('f', [0.811, 0.83, 0.845]) PrResponseError = array.array('f', [0., 0., 0.]) # pion resolutions of data PiResolution = array.array('f', [11.94, 8.92, 6.78, 6.02]) PiResolutionError = array.array('f', [0., 0., 0., 0.]) # proton resolutions of data, proton only has 3 beam energies PrResolution = array.array('f', [8.63, 5.97, 5.16]) PrResolutionError = array.array('f', [0., 0., 0.]) # pion latreal spreads of data PiLateralSpread = array.array('f', [0.044, 0.0379, 0.0342, 0.034]) PiLateralSpreadError = array.array('f', [0., 0., 0., 0.]) PrLateralSpread = array.array('f', [0.045, 0.0403, 0.0396]) PrLateralSpreadError = array.array('f', [0., 0., 0.]) # pion has four beam energies PiEs = array.array('f', [20., 50., 100., 180.]) PiEsError = array.array('f', [0., 0., 0., 0.]) # Be careful that proton only has three beam energies PrEs = array.array('f', [50., 100., 180.]) PrEsError = array.array('f', [0., 0., 0.]) # pion longitudinal profiles of data PiLongitudinalProfile20GeV = array.array('f',[4.88076, 4.29345, 1.90255, 0.760799, 0.336904, 0.116429, 0.0472258, 0.0212191, 0.010869]) PiLongitudinalProfileError20GeV = array.array('f',[0, 0, 0, 0, 0, 0, 0, 0, 0]) PiLongitudinalProfile50GeV = array.array('f',[10.1243, 10.3069, 5.44077, 2.55502, 1.18216, 0.486682, 0.197446, 0.0913368, 0.0474821, 0.0181673, 0.00878025]) PiLongitudinalProfileError50GeV = array.array('f',[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) PiLongitudinalProfile100GeV = array.array('f',[16.6323,21.0755,12.1435,6.13442,3.14342,1.37201,0.625483,0.31123,0.143954,0.0619092,0.022023,0.0199365]) PiLongitudinalProfileError100GeV = array.array('f',[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) PiLongitudinalProfile180GeV = array.array('f',[28.1277,37.7873,21.7727,11.4903,6.33449,2.88857,1.31695,0.655294,0.303115,0.140209,0.0739654,0.0318035,0.0145007]) PiLongitudinalProfileError180GeV = array.array('f',[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0]) # proton longitudinal profiles of data PrLongitudinalProfile50GeV = array.array('f',[10.2289,10.3627,5.51951,2.54066,1.16948,0.472035,0.174547,0.0747019,0.0310458,0.0099195,0.0043075]) PrLongitudinalProfileError50GeV = array.array('f',[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) PrLongitudinalProfile100GeV = array.array('f',[18.3511,21.2032,11.4597,5.51097,2.61195,1.039,0.431832,0.193063,0.0814251,0.0364116,0.00962173,0.00783076]) PrLongitudinalProfileError100GeV = array.array('f',[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) PrLongitudinalProfile180GeV = array.array('f',[30.1568,39.1626,21.7967,10.7928,5.42299,2.2868,0.978724,0.437566,0.198557,0.0813227,0.0256083,0.0114493,0.00382185]) PrLongitudinalProfileError180GeV = array.array('f',[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) # define output dir of root files and plots, # if they doesn't exist, create them. OutPathResult = ResultDir+"/data/" OutPathPlot = PlotDir+"/data/" if ROOT.gSystem.AccessPathName(OutPathResult): print OutPathResult, "doesn't exist! Making" ROOT.gSystem.Exec("mkdir {}".format(OutPathResult)) if ROOT.gSystem.AccessPathName(OutPathPlot): print OutPathPlot, "doesn't exist! Making" ROOT.gSystem.Exec("mkdir {}".format(OutPathPlot)) # create out file outputFile = ROOT.TFile.Open('{}/data.root'.format(OutPathResult),'RECREATE') # create out grapherrors of response, resolution and lateral spreads gr_piresponse = ROOT.TGraphErrors(len(PiEs),PiEs,PiResponse,PiEsError,PiResponseError) gr_piresponse.SetName("pi_Response") gr_piresponse.SetTitle("Pion") gr_piresponse.GetXaxis().SetTitle("E_{beam}[GeV]") gr_piresponse.GetYaxis().SetTitle("E_{total}/E_{beam}") gr_prresponse = ROOT.TGraphErrors(len(PrEs),PrEs,PrResponse,PrEsError,PrResponseError) gr_prresponse.SetName("pr_Response") gr_prresponse.SetTitle("Proton") gr_prresponse.GetXaxis().SetTitle("E_{beam}[GeV]") gr_prresponse.GetYaxis().SetTitle("E_{total}/E_{beam}") gr_piresolution = ROOT.TGraphErrors(len(PiEs),PiEs,PiResolution,PiEsError,PiResolutionError) gr_piresolution.SetName("pi_Resolution") gr_piresolution.SetTitle("Pion") gr_piresolution.GetXaxis().SetTitle("E_{beam}[GeV]") gr_piresolution.GetYaxis().SetTitle("resolution[%]") gr_prresolution = ROOT.TGraphErrors(len(PrEs),PrEs,PrResolution,PrEsError,PrResolutionError) gr_prresolution.SetName("pr_Resolution") gr_prresolution.SetTitle("Proton") gr_prresolution.GetXaxis().SetTitle("E_{beam}[GeV]") gr_prresolution.GetYaxis().SetTitle("resolution[%]") gr_pilateralspread = ROOT.TGraphErrors(len(PiEs),PiEs,PiLateralSpread,PiEsError,PiLateralSpreadError) gr_pilateralspread.SetName("pi_LateralSpread") gr_pilateralspread.SetTitle("Pion") gr_pilateralspread.GetXaxis().SetTitle("E_{beam}[GeV]") gr_pilateralspread.GetYaxis().SetTitle("E_{Module0}/E_{Barrel}") gr_prlateralspread = ROOT.TGraphErrors(len(PrEs),PrEs,PrLateralSpread,PrEsError,PrLateralSpreadError) gr_prlateralspread.SetName("pr_LateralSpread") gr_prlateralspread.SetTitle("Proton") gr_prlateralspread.GetXaxis().SetTitle("E_{beam}[GeV]") gr_prlateralspread.GetYaxis().SetTitle("E_{Module0}/E_{Barrel}") NBCells=13 # only use 13 of 18 B cells # bin edges of longitudinal profiles histograms xBLow = array.array('f',[0.119333,1.67226,3.44703,5.0887,6.686,8.15019,9.61438,10.9898,12.3582,13.7407,15.1233,16.4916,17.8671,19.3313]) # create longitudinal profiles histograms for all particles and beam energies pi_LongitudinalProfile20GeV = bookTH1F("pi_LongitudinalProfile_20GeV", "20 GeV", "x[#lambda]", "dE/dx[GeV/#lambda]", NBCells, xBLow) pi_LongitudinalProfile50GeV = bookTH1F("pi_LongitudinalProfile_50GeV", "50 GeV", "x[#lambda]", "dE/dx[GeV/#lambda]", NBCells, xBLow) pi_LongitudinalProfile100GeV = bookTH1F("pi_LongitudinalProfile_100GeV", "100 GeV", "x[#lambda]", "dE/dx[GeV/#lambda]", NBCells, xBLow) pi_LongitudinalProfile180GeV = bookTH1F("pi_LongitudinalProfile_180GeV", "180 GeV", "x[#lambda]", "dE/dx[GeV/#lambda]", NBCells, xBLow) pr_LongitudinalProfile50GeV = bookTH1F("pr_LongitudinalProfile_50GeV", "50 GeV", "x[#lambda]", "dE/dx[GeV/#lambda]", NBCells, xBLow) pr_LongitudinalProfile100GeV = bookTH1F("pr_LongitudinalProfile_100GeV", "100 GeV", "x[#lambda]", "dE/dx[GeV/#lambda]", NBCells, xBLow) pr_LongitudinalProfile180GeV = bookTH1F("pr_LongitudinalProfile_180GeV", "180 GeV", "x[#lambda]", "dE/dx[GeV/#lambda]", NBCells, xBLow) # fill longitudinal profile histograms for i in range(len(PiLongitudinalProfile20GeV)): pi_LongitudinalProfile20GeV.SetBinContent(i+1,PiLongitudinalProfile20GeV[i]) pi_LongitudinalProfile20GeV.SetBinError(i+1,PiLongitudinalProfileError20GeV[i]) for i in range(len(PiLongitudinalProfile50GeV)): pi_LongitudinalProfile50GeV.SetBinContent(i+1,PiLongitudinalProfile50GeV[i]) pi_LongitudinalProfile50GeV.SetBinError(i+1,PiLongitudinalProfileError50GeV[i]) for i in range(len(PiLongitudinalProfile100GeV)): pi_LongitudinalProfile100GeV.SetBinContent(i+1,PiLongitudinalProfile100GeV[i]) pi_LongitudinalProfile100GeV.SetBinError(i+1,PiLongitudinalProfileError100GeV[i]) for i in range(len(PrLongitudinalProfile180GeV)): pi_LongitudinalProfile180GeV.SetBinContent(i+1,PiLongitudinalProfile180GeV[i]) pi_LongitudinalProfile180GeV.SetBinError(i+1,PiLongitudinalProfileError180GeV[i]) for i in range(len(PrLongitudinalProfile50GeV)): pr_LongitudinalProfile50GeV.SetBinContent(i+1,PrLongitudinalProfile50GeV[i]) pr_LongitudinalProfile50GeV.SetBinError(i+1,PrLongitudinalProfileError50GeV[i]) for i in range(len(PrLongitudinalProfile100GeV)): pr_LongitudinalProfile100GeV.SetBinContent(i+1,PrLongitudinalProfile100GeV[i]) pr_LongitudinalProfile100GeV.SetBinError(i+1,PrLongitudinalProfileError100GeV[i]) for i in range(len(PrLongitudinalProfile180GeV)): pr_LongitudinalProfile180GeV.SetBinContent(i+1,PrLongitudinalProfile180GeV[i]) pr_LongitudinalProfile180GeV.SetBinError(i+1,PrLongitudinalProfileError180GeV[i]) # get the normalized longitudinal profiles pi_NormalizedLongitudinalProfile20GeV=pi_LongitudinalProfile20GeV.Clone() pi_NormalizedLongitudinalProfile20GeV.Scale(1./pi_LongitudinalProfile20GeV.Integral("width")) pi_NormalizedLongitudinalProfile20GeV.SetName("pi_NormalizedLongitudinalProfile20GeV") pi_NormalizedLongitudinalProfile20GeV.GetYaxis().SetTitle("1/E_{tot}#timesdE/dx[1/#lambda]") pi_NormalizedLongitudinalProfile50GeV=pi_LongitudinalProfile50GeV.Clone() pi_NormalizedLongitudinalProfile50GeV.Scale(1./pi_LongitudinalProfile50GeV.Integral("width")) pi_NormalizedLongitudinalProfile50GeV.SetName("pi_NormalizedLongitudinalProfile50GeV") pi_NormalizedLongitudinalProfile50GeV.GetYaxis().SetTitle("1/E_{tot}#timesdE/dx[1/#lambda]") pi_NormalizedLongitudinalProfile100GeV=pi_LongitudinalProfile100GeV.Clone() pi_NormalizedLongitudinalProfile100GeV.Scale(1./pi_LongitudinalProfile100GeV.Integral("width")) pi_NormalizedLongitudinalProfile100GeV.SetName("pi_NormalizedLongitudinalProfile100GeV") pi_NormalizedLongitudinalProfile100GeV.GetYaxis().SetTitle("1/E_{tot}#timesdE/dx[1/#lambda]") pi_NormalizedLongitudinalProfile180GeV=pi_LongitudinalProfile180GeV.Clone() pi_NormalizedLongitudinalProfile180GeV.Scale(1./pi_LongitudinalProfile180GeV.Integral("width")) pi_NormalizedLongitudinalProfile180GeV.SetName("pi_NormalizedLongitudinalProfile180GeV") pi_NormalizedLongitudinalProfile180GeV.GetYaxis().SetTitle("1/E_{tot}#timesdE/dx[1/#lambda]") pr_NormalizedLongitudinalProfile50GeV=pr_LongitudinalProfile50GeV.Clone() pr_NormalizedLongitudinalProfile50GeV.Scale(1./pr_LongitudinalProfile50GeV.Integral("width")) pr_NormalizedLongitudinalProfile50GeV.SetName("pr_NormalizedLongitudinalProfile50GeV") pr_NormalizedLongitudinalProfile50GeV.GetYaxis().SetTitle("1/E_{tot}#timesdE/dx[1/#lambda]") pr_NormalizedLongitudinalProfile100GeV=pr_LongitudinalProfile100GeV.Clone() pr_NormalizedLongitudinalProfile100GeV.Scale(1./pr_LongitudinalProfile100GeV.Integral("width")) pr_NormalizedLongitudinalProfile100GeV.SetName("pr_NormalizedLongitudinalProfile100GeV") pr_NormalizedLongitudinalProfile100GeV.GetYaxis().SetTitle("1/E_{tot}#timesdE/dx[1/#lambda]") pr_NormalizedLongitudinalProfile180GeV=pr_LongitudinalProfile180GeV.Clone() pr_NormalizedLongitudinalProfile180GeV.Scale(1./pr_LongitudinalProfile180GeV.Integral("width")) pr_NormalizedLongitudinalProfile180GeV.SetName("pr_NormalizedLongitudinalProfile180GeV") pr_NormalizedLongitudinalProfile180GeV.GetYaxis().SetTitle("1/E_{tot}#timesdE/dx[1/#lambda]") # draw plots of response resolution and longitudinal profile DrawSingleGraphErrorsOnCanvas("{}/pi_LateralSpread".format(OutPathPlot), gr_pilateralspread,"AP", False, False, False) DrawSingleGraphErrorsOnCanvas("{}/pi_Response".format(OutPathPlot), gr_piresponse,"AP",False, False, False) DrawSingleGraphErrorsOnCanvas("{}/pi_Resolution".format(OutPathPlot), gr_piresolution,"AP", False, False, False) DrawSingleGraphErrorsOnCanvas("{}/pr_LateralSpread".format(OutPathPlot), gr_pilateralspread,"AP", False, False, False) DrawSingleGraphErrorsOnCanvas("{}/pr_Resolution".format(OutPathPlot), gr_prresolution,"AP") # draw of response resolution and longitudinal profile of pion and proton on same canvas DrawTwoGraphErrorsOnCanvas("{}/pipr_Resolution".format(OutPathPlot), gr_piresolution, gr_prresolution,"AP", "AP", False, False, False) DrawTwoGraphErrorsOnCanvas("{}/pipr_Response".format(OutPathPlot), gr_piresponse, gr_prresponse,"AP", "AP", False, False, False) DrawTwoGraphErrorsOnCanvas("{}/pipr_LateralSpread".format(OutPathPlot), gr_pilateralspread, gr_prlateralspread,"AP", "AP", False, False, False) # draw single longitudinal profile of each beam energy DrawSingleHistOnCanvas("{}/pi_LongitudinalProfile20GeV".format(OutPathPlot),pi_LongitudinalProfile20GeV, "PE", False, True, False) DrawSingleHistOnCanvas("{}/pi_LongitudinalProfile50GeV".format(OutPathPlot),pi_LongitudinalProfile50GeV, "PE", False, True, False) DrawSingleHistOnCanvas("{}/pi_LongitudinalProfile100GeV".format(OutPathPlot),pi_LongitudinalProfile100GeV, "PE", False, True, False) DrawSingleHistOnCanvas("{}/pi_LongitudinalProfile180GeV".format(OutPathPlot),pi_LongitudinalProfile180GeV, "PE", False, True, False) DrawSingleHistOnCanvas("{}/pi_NormalizedLongitudinalProfile20GeV".format(OutPathPlot),pi_LongitudinalProfile20GeV, "PE", False, True, False) DrawSingleHistOnCanvas("{}/pi_NormalizedLongitudinalProfile50GeV".format(OutPathPlot),pi_LongitudinalProfile50GeV, "PE", False, True, False) DrawSingleHistOnCanvas("{}/pi_NormalizedLongitudinalProfile100GeV".format(OutPathPlot),pi_LongitudinalProfile100GeV, "PE", False, True, False) DrawSingleHistOnCanvas("{}/pi_NormalizedLongitudinalProfile180GeV".format(OutPathPlot),pi_LongitudinalProfile180GeV, "PE", False, True, False) # draw 4 longitudinal profiles of pions of 4 beam energies on same canvas pi_LongitudinalProfile20GeV.GetYaxis().SetRangeUser(1E-3, 100.) pi_NormalizedLongitudinalProfile20GeV.GetYaxis().SetRangeUser(1E-5, 1.) DrawFourHistsOnCanvas("{}/pi_LongitudinalProfile_LogY".format(OutPathPlot),pi_LongitudinalProfile20GeV,pi_LongitudinalProfile50GeV,pi_LongitudinalProfile100GeV,pi_LongitudinalProfile180GeV,"pe", "pesame", "pesame", "pesame", False, True, False, "Pion") DrawFourHistsOnCanvas("{}/pi_NormalizedLongitudinalProfile_LogY".format(OutPathPlot),pi_NormalizedLongitudinalProfile20GeV,pi_NormalizedLongitudinalProfile50GeV,pi_NormalizedLongitudinalProfile100GeV,pi_NormalizedLongitudinalProfile180GeV,"pe", "pesame", "pesame", "pesame", False, True, False, "Pion") pi_LongitudinalProfile20GeV.GetYaxis().SetRangeUser(0., 40.) pi_NormalizedLongitudinalProfile20GeV.GetYaxis().SetRangeUser(0., 0.25) DrawFourHistsOnCanvas("{}/pi_LongitudinalProfile".format(OutPathPlot),pi_LongitudinalProfile20GeV,pi_LongitudinalProfile50GeV,pi_LongitudinalProfile100GeV,pi_LongitudinalProfile180GeV,"pe", "pesame", "pesame", "pesame", False, False, False, "Pion") DrawFourHistsOnCanvas("{}/pi_NormalizedLongitudinalProfile".format(OutPathPlot),pi_NormalizedLongitudinalProfile20GeV,pi_NormalizedLongitudinalProfile50GeV,pi_NormalizedLongitudinalProfile100GeV,pi_NormalizedLongitudinalProfile180GeV,"pe", "pesame", "pesame", "pesame", False, False, False, "Pion") # draw 3 longitudinal profiles of pions of 3 beam energies of pion on same canvas DrawSingleHistOnCanvas("{}/pr_LongitudinalProfile50GeV".format(OutPathPlot),pr_LongitudinalProfile50GeV,"PE", False, True, False) DrawSingleHistOnCanvas("{}/pr_LongitudinalProfile100GeV".format(OutPathPlot),pr_LongitudinalProfile100GeV, "PE", False, True, False) DrawSingleHistOnCanvas("{}/pr_LongitudinalProfile180GeV".format(OutPathPlot),pr_LongitudinalProfile180GeV, "PE", False, True, False) # draw 3 longitudinal profiles of proton of 3 beam energies on same canvas pr_LongitudinalProfile50GeV.GetYaxis().SetRangeUser(1E-3, 100.) pr_NormalizedLongitudinalProfile50GeV.GetYaxis().SetRangeUser(1E-5, 1.) DrawThreeHistsOnCanvas("{}/pr_LongitudinalProfile_LogY".format(OutPathPlot),pr_LongitudinalProfile50GeV, pr_LongitudinalProfile100GeV, pr_LongitudinalProfile180GeV, "pe", "pesame", "pesame", False, True, False, "Proton") DrawThreeHistsOnCanvas("{}/pr_NormalizedLongitudinalProfile_LogY".format(OutPathPlot),pr_NormalizedLongitudinalProfile50GeV, pr_NormalizedLongitudinalProfile100GeV, pr_NormalizedLongitudinalProfile180GeV, "pe", "pesame", "pesame", False, True, False, "Proton") pr_LongitudinalProfile50GeV.GetYaxis().SetRangeUser(0., 40.) pr_NormalizedLongitudinalProfile50GeV.GetYaxis().SetRangeUser(0., 0.25) DrawThreeHistsOnCanvas("{}/pr_LongitudinalProfile".format(OutPathPlot),pr_LongitudinalProfile50GeV, pr_LongitudinalProfile100GeV, pr_LongitudinalProfile180GeV, "pe", "pesame", "pesame", False, False, False, "Proton") DrawThreeHistsOnCanvas("{}/pr_NormalizedLongitudinalProfile".format(OutPathPlot),pr_NormalizedLongitudinalProfile50GeV, pr_NormalizedLongitudinalProfile100GeV, pr_NormalizedLongitudinalProfile180GeV, "pe", "pesame", "pesame", False, False, False, "Proton") # save gr_piresponse.Write() gr_piresolution.Write() gr_pilateralspread.Write() gr_prresponse.Write() gr_prresolution.Write() gr_prlateralspread.Write() pi_LongitudinalProfile20GeV.Write() pi_LongitudinalProfile50GeV.Write() pi_LongitudinalProfile100GeV.Write() pi_LongitudinalProfile180GeV.Write() pi_NormalizedLongitudinalProfile20GeV.Write() pi_NormalizedLongitudinalProfile50GeV.Write() pi_NormalizedLongitudinalProfile100GeV.Write() pi_NormalizedLongitudinalProfile180GeV.Write() pr_LongitudinalProfile50GeV.Write() pr_LongitudinalProfile100GeV.Write() pr_LongitudinalProfile180GeV.Write() pr_NormalizedLongitudinalProfile50GeV.Write() pr_NormalizedLongitudinalProfile100GeV.Write() pr_NormalizedLongitudinalProfile180GeV.Write() outputFile.Write() # compare the mc results with data def ComDataMC(): for Particle in Particles: # loop over particles inputFile = ROOT.TFile.Open('{}/{}/Properities_{}.root'.format(ResultDir,Particle,Particle)) # input file generated in GetPlotSingleProperty(), contain all MC results inputFile2 = ROOT.TFile.Open('{}/data/data.root'.format(ResultDir)) # input file generated in GetDataPlotSingleProperty(), contain all Data results if not inputFile: continue outputFile = ROOT.TFile.Open('{}/{}/{}_Ratio.root'.format(ResultDir, Particle, Particle),'RECREATE') # out file to store rations of MC to data ResponseList = [] # list of responses of all physics lists ResolutionList = [] # list of reslotionss of all physics lists LateralSpreadList = [] # list of latreal spreadd of all physics lists ResponseRatioList = [] #list of ratios of responses MCs with all physics lists to data ResolutionRatioList = [] # list of ratios of resolutions MCs to data LateralSpreadRatioList = [] # list of ratios of lateral spreads MCs to data # get grapherrors from data file ger_dataresponse = inputFile2.Get("{}_Response".format(Particle)) ger_dataresolution = inputFile2.Get("{}_Resolution".format(Particle)) ger_datalateralspread = inputFile2.Get("{}_LateralSpread".format(Particle)) # list of profiles of all beam energies datalongitudinalprofilelist = [] datanormalizedlongitudinalprofilelist = [] # list of profiles of MC mclongitudinalprofilelists = [] mcnormalizedlongitudinalprofilelists = [] # list of ratios of profiles of MCs to data longitudinalprofileratiolists = [] normalizedlongitudinalprofileratiolists = [] # loop over the beam energies to get all profiles of this particle of data for Energy in Energies: # proton doesn't has beam energy 20 GeV if Particle=='pr' and Energy==20000: continue datalongitudinalprofilelist.append(inputFile2.Get("{}_LongitudinalProfile_{}GeV".format(Particle, Energy/1000))) datanormalizedlongitudinalprofilelist.append(inputFile2.Get("{}_NormalizedLongitudinalProfile{}GeV".format(Particle, Energy/1000))) # loop over physics lists, # to get all responses, resolutions and lateral spreads of each physics lists. for PhysicsList in PhysicsLists: ger_mcresponse = inputFile.Get("{}_{}_Response".format(Particle, PhysicsList)) ger_mcresponse.SetTitle(PhysicsList) ger_mcresolution = inputFile.Get("{}_{}_Resolution".format(Particle, PhysicsList)) ger_mcresolution.SetTitle(PhysicsList) ger_mclateralspread = inputFile.Get("{}_{}_LateralSpread".format(Particle, PhysicsList)) ger_mclateralspread.SetTitle(PhysicsList) ResponseList.append(ger_mcresponse) ResolutionList.append(ger_mcresolution) LateralSpreadList.append(ger_mclateralspread) N = ger_dataresponse.GetN() # create histograms of responses, resolutions and lateral spreands of data, # divide by the corresponding histogram of MC. # number of bins = number of points in corresponding grapherrors. h_data_response = ROOT.TH1F("h_data_response","data",N, 0, N) ; h_data_resolution = ROOT.TH1F("h_data_resolution","data",N, 0, N) ; h_data_lateralspread = ROOT.TH1F("h_data_lateralspread","data",N, 0, N) ; Xs = ger_dataresponse.GetX() Xerrors = ger_dataresponse.GetEX() dataresponses = ger_dataresponse.GetY() dataresolutions = ger_dataresolution.GetY() datalateralspreads = ger_datalateralspread.GetY() # fill the point values to histograms for i in range(N): h_data_response.SetBinContent(i+1, dataresponses[i]) h_data_response.SetBinError(i+1, ger_dataresponse.GetErrorY(i)) h_data_resolution.SetBinContent(i+1, dataresolutions[i]) h_data_resolution.SetBinError(i+1, ger_dataresolution.GetErrorY(i)) h_data_lateralspread.SetBinContent(i+1, datalateralspreads[i]) h_data_lateralspread.SetBinError(i+1, ger_datalateralspread.GetErrorY(i)) # create histograms of responses, resolutions and lateral spreands of MC. h_mc_response = ROOT.TH1F("h_mc_response","",N, 0, N) ; h_mc_resolution = ROOT.TH1F("h_mc_resolution","",N, 0, N) ; h_mc_lateralspread = ROOT.TH1F("h_mc_lateralspread","",N, 0, N) ; mcresponses = ger_mcresponse.GetY() mcresolutions = ger_mcresolution.GetY() mclateralspreads = ger_mclateralspread.GetY() for i in range(N): if Particle=="pr": # ptoton doesn't have 20 GeV, so skip the first point in grapherrors h_mc_response.SetBinContent(i+1, mcresponses[i+1]) h_mc_response.SetBinError(i+1, ger_mcresponse.GetErrorY(i+1)) h_mc_resolution.SetBinContent(i+1, mcresolutions[i+1]) h_mc_resolution.SetBinError(i+1, ger_mcresolution.GetErrorY(i+1)) h_mc_lateralspread.SetBinContent(i+1, mclateralspreads[i]) h_mc_lateralspread.SetBinError(i+1, ger_mclateralspread.GetErrorY(i+1)) elif Particle=="pi": h_mc_response.SetBinContent(i+1, mcresponses[i]) h_mc_response.SetBinError(i+1, ger_mcresponse.GetErrorY(i)) h_mc_resolution.SetBinContent(i+1, mcresolutions[i]) h_mc_resolution.SetBinError(i+1, ger_mcresolution.GetErrorY(i)) h_mc_lateralspread.SetBinContent(i+1, mclateralspreads[i]) h_mc_lateralspread.SetBinError(i+1, ger_mclateralspread.GetErrorY(i)) # divide two hists to get the ratios h_response_ratio = h_mc_response.Clone() h_response_ratio.Divide(h_data_response) h_resolution_ratio = h_mc_resolution.Clone() h_resolution_ratio.Divide(h_data_resolution) h_lateralspread_ratio = h_mc_lateralspread.Clone() h_lateralspread_ratio.Divide(h_data_lateralspread) # create grapherrors of ratios ger_response_ratio = ROOT.TGraphErrors() ger_response_ratio.SetName("{}_{}_Response_Ratio".format(Particle, PhysicsList)) ger_response_ratio.SetTitle(PhysicsList) ger_resolution_ratio = ROOT.TGraphErrors() ger_resolution_ratio.SetName("{}_{}_Resolution_Ratio".format(Particle, PhysicsList)) ger_resolution_ratio.SetTitle(PhysicsList) ger_lateralspread_ratio = ROOT.TGraphErrors() ger_lateralspread_ratio.SetName(PhysicsList) ger_lateralspread_ratio.SetTitle(PhysicsList) # set point values of grapherrors of ratios for i in range(N): ger_response_ratio.SetPoint(i, Xs[i], h_response_ratio.GetBinContent(i+1)) ger_response_ratio.SetPointError(i, Xerrors[i], h_response_ratio.GetBinError(i+1)) ger_resolution_ratio.SetPoint(i, Xs[i], h_resolution_ratio.GetBinContent(i+1)) ger_resolution_ratio.SetPointError(i, Xerrors[i], h_resolution_ratio.GetBinError(i+1)) ger_lateralspread_ratio.SetPoint(i, Xs[i], h_lateralspread_ratio.GetBinContent(i+1)) ger_lateralspread_ratio.SetPointError(i, Xerrors[i], h_lateralspread_ratio.GetBinError(i+1)) ger_response_ratio.GetXaxis().SetTitle("E_{beam}[GeV]") ger_response_ratio.GetYaxis().SetTitle("MC/Data") ger_resolution_ratio.GetXaxis().SetTitle("E_{beam}[GeV]") ger_resolution_ratio.GetYaxis().SetTitle("MC/Data") ger_lateralspread_ratio.GetXaxis().SetTitle("E_{beam}[GeV]") ger_lateralspread_ratio.GetYaxis().SetTitle("MC/Data") outputFile.cd() # save ger_response_ratio.Write() ger_resolution_ratio.Write() ger_lateralspread_ratio.Write() # append to list ResponseRatioList.append(ger_response_ratio) ResolutionRatioList.append(ger_resolution_ratio) LateralSpreadRatioList.append(ger_lateralspread_ratio) # draw the single ratio DrawSingleGraphErrorsOnCanvas("{}/{}/{}_{}_Response_Ratio".format(PlotDir, Particle, Particle, PhysicsList), ger_response_ratio,"AP", False, False, False, PhysicsList) DrawSingleGraphErrorsOnCanvas("{}/{}/{}_{}_LateralSpread_Ratio".format(PlotDir, Particle, Particle, PhysicsList), ger_lateralspread_ratio,"AP", False, False, False, PhysicsList) DrawSingleGraphErrorsOnCanvas("{}/{}/{}_{}_Resolution_Ratio".format(PlotDir, Particle, Particle, PhysicsList), ger_resolution_ratio,"AP", False, False, False, PhysicsList) #------------------Longitudinal Profile---------------------------- # list of longitudinal profile of all types of particles and all beam energies and all physics lists # N = N of types of particles * N of beam energies * N of physics lists mclongitudinalprofilelist=[] mcnormalizedlongitudinalprofilelist=[] mclongitudinalprofileratiolist=[] mcnormalizedlongitudinalprofileratiolist=[] for Energy in Energies: # skip 20 GeV for proton if Particle=='pr' and Energy==20000: continue mclongitudinalprofilelist.append(inputFile.Get("{}_{}GeV_{}_LongitudinalProfile".format(Particle, Energy/1000,PhysicsList))) mcnormalizedlongitudinalprofilelist.append(inputFile.Get("{}_{}GeV_{}_NormalizedLongitudinalProfile".format(Particle, Energy/1000, PhysicsList))) print mclongitudinalprofilelist, mcnormalizedlongitudinalprofilelist # get the ratios of longitudinal profiles for i in range(len(mclongitudinalprofilelist)): longitudinalprofilelistratio = mclongitudinalprofilelist[i].Clone() longitudinalprofilelistratio.Divide(datalongitudinalprofilelist[i]) longitudinalprofilelistratio.SetName(longitudinalprofilelistratio.GetName()+"_Ratio") longitudinalprofilelistratio.GetYaxis().SetTitle("MC/Data") longitudinalprofilelistratio.GetYaxis().SetRangeUser(0.65, 1.45) longitudinalprofilelistratio.Write() mclongitudinalprofileratiolist.append(longitudinalprofilelistratio) normalizedlongitudinalprofilelistratio = mcnormalizedlongitudinalprofilelist[i].Clone() normalizedlongitudinalprofilelistratio.Divide(datanormalizedlongitudinalprofilelist[i]) normalizedlongitudinalprofilelistratio.SetName(normalizedlongitudinalprofilelistratio.GetName()+"_Ratio") normalizedlongitudinalprofilelistratio.GetYaxis().SetTitle("MC/Data") normalizedlongitudinalprofilelistratio.GetYaxis().SetRangeUser(0.65, 1.45) normalizedlongitudinalprofilelistratio.Write() mcnormalizedlongitudinalprofileratiolist.append(normalizedlongitudinalprofilelistratio) # draw single ratio of longitudinal profiles if Particle=="pr": DrawSingleHistOnCanvas("{}/{}/{}_{}_{}_LongitudinalProfile_Ratio".format(PlotDir, Particle, Particle, Energies[i+1]/1000, PhysicsList),longitudinalprofilelistratio, "PE", False, False) DrawSingleHistOnCanvas("{}/{}/{}_{}_{}_NormalizedLongitudinalProfile_Ratio".format(PlotDir, Particle, Particle, Energies[i+1]/1000, PhysicsList),normalizedlongitudinalprofilelistratio, "PE", False, False) elif Particle=="pi": DrawSingleHistOnCanvas("{}/{}/{}_{}_{}_LongitudinalProfile_Ratio".format(PlotDir, Particle, Particle, Energies[i]/1000, PhysicsList),longitudinalprofilelistratio, "PE", False, False) DrawSingleHistOnCanvas("{}/{}/{}_{}_{}_NormalizedLongitudinalProfile_Ratio".format(PlotDir, Particle, Particle, Energies[i]/1000, PhysicsList),normalizedlongitudinalprofilelistratio, "PE", False, False) # append the ratio to list mclongitudinalprofilelists.append(mclongitudinalprofilelist) mcnormalizedlongitudinalprofilelists.append(mcnormalizedlongitudinalprofilelist) longitudinalprofileratiolists.append(mclongitudinalprofileratiolist) normalizedlongitudinalprofileratiolists.append(mcnormalizedlongitudinalprofileratiolist) FullParticleName="" # draw rations of longitudinal profiles of all beam energies on same canvas if Particle=='pi': FullParticleName = "Pion" DrawFourHistsOnCanvas("{}/{}/{}_{}_LongitudinalProfile_Ratio".format(PlotDir, Particle, Particle, PhysicsList),mclongitudinalprofileratiolist[0],mclongitudinalprofileratiolist[1],mclongitudinalprofileratiolist[2],mclongitudinalprofileratiolist[3], "PE","pesame","pesame","pesame", False, False, False, FullParticleName, PhysicsList) DrawFourHistsOnCanvas("{}/{}/{}_{}_NormalizedLongitudinalProfile_Ratio".format(PlotDir, Particle, Particle, PhysicsList),mcnormalizedlongitudinalprofileratiolist[0],mcnormalizedlongitudinalprofileratiolist[1],mcnormalizedlongitudinalprofileratiolist[2],mcnormalizedlongitudinalprofileratiolist[3], "PE","pesame","pesame","pesame", False, False, False, FullParticleName,PhysicsList) else: FullParticleName = "Proton" DrawThreeHistsOnCanvas("{}/{}/{}_{}_LongitudinalProfile_Ratio".format(PlotDir, Particle, Particle, PhysicsList),mclongitudinalprofileratiolist[0],mclongitudinalprofileratiolist[1],mclongitudinalprofileratiolist[2], "PE","pesame","pesame", False, False, False, FullParticleName, PhysicsList) DrawThreeHistsOnCanvas("{}/{}/{}_{}_NormalizedLongitudinalProfile_Ratio".format(PlotDir, Particle, Particle, PhysicsList),mcnormalizedlongitudinalprofileratiolist[0],mcnormalizedlongitudinalprofileratiolist[1],mcnormalizedlongitudinalprofileratiolist[2], "PE","pesame","pesame", False, False, False, FullParticleName, PhysicsList) FullParticleName="" if Particle=='pi': FullParticleName = "Pion" ger_dataresponse.SetTitle("Data") ger_dataresolution.SetTitle("Data") ger_datalateralspread.SetTitle("Data") elif Particle=='pr': FullParticleName = "Proton" ger_dataresponse.GetXaxis().SetRangeUser(40, 190) ger_dataresolution.GetXaxis().SetRangeUser(40, 190) ger_datalateralspread.GetXaxis().SetRangeUser(40, 190) ger_dataresponse.SetTitle("Data") ger_dataresolution.SetTitle("Data") ger_datalateralspread.SetTitle("Data") for npr in range(len(ResponseList)): ResponseList[npr].GetXaxis().SetRangeUser(40, 190) ResolutionList[npr].GetXaxis().SetRangeUser(40, 190) LateralSpreadList[npr].GetXaxis().SetRangeUser(40, 190) ResponseRatioList[npr].GetXaxis().SetRangeUser(40, 190) ResolutionRatioList[npr].GetXaxis().SetRangeUser(40, 190) LateralSpreadRatioList[npr].GetXaxis().SetRangeUser(40, 190) ResponseList[npr].RemovePoint(0) ResolutionList[npr].RemovePoint(0) LateralSpreadList[npr].RemovePoint(0) # draw responses, resolutions and lateral spread of all physcis lists on same canvas. # draw responses, resolutions and lateral spread of all physcis lists and data on top, # and ratios of MC to data on bottom DrawFourGraphErrorsOnCanvas("{}/{}/{}_Response_Ratio".format(PlotDir, Particle, Particle),ResponseRatioList[0], ResponseRatioList[1], ResponseRatioList[2],ResponseRatioList[3], "AP","AP","AP","AP", False, False, False, FullParticleName) DrawTopFiveGraphErrorsAndBottomFourGraphErrorsOnCanvas("{}/{}/{}_TopResponseBottomRatio".format(PlotDir, Particle, Particle),ger_dataresponse, ResponseList[0], ResponseList[1], ResponseList[2],ResponseList[3], ResponseRatioList[0], ResponseRatioList[1], ResponseRatioList[2],ResponseRatioList[3], "AP","AP","AP","AP", "AP","AP","AP","AP", "AP", False, False, False, False, FullParticleName) DrawFourGraphErrorsOnCanvas("{}/{}/{}_Resolution_Ratio".format(PlotDir, Particle, Particle),ResolutionRatioList[0], ResolutionRatioList[1], ResolutionRatioList[2],ResolutionRatioList[3],"AP","AP","AP","AP", False, False, False,FullParticleName) DrawTopFiveGraphErrorsAndBottomFourGraphErrorsOnCanvas("{}/{}/{}_TopResolutionBottomRatio".format(PlotDir, Particle, Particle),ger_dataresolution, ResolutionList[0], ResolutionList[1], ResolutionList[2],ResolutionList[3], ResolutionRatioList[0], ResolutionRatioList[1], ResolutionRatioList[2],ResolutionRatioList[3], "AP","AP","AP","AP", "AP","AP","AP","AP", "AP", False, False, False, False, FullParticleName) DrawFourGraphErrorsOnCanvas("{}/{}/{}_LateralSpread_Ratio".format(PlotDir, Particle, Particle),LateralSpreadRatioList[0], LateralSpreadRatioList[1], LateralSpreadRatioList[2],LateralSpreadRatioList[3],"AP","AP","AP","AP", False, False, False,FullParticleName) DrawTopFiveGraphErrorsAndBottomFourGraphErrorsOnCanvas("{}/{}/{}_TopLateralSpreadBottomRatio".format(PlotDir, Particle, Particle),ger_datalateralspread, LateralSpreadList[0], LateralSpreadList[1], LateralSpreadList[2],LateralSpreadList[3], LateralSpreadRatioList[0], LateralSpreadRatioList[1], LateralSpreadRatioList[2],LateralSpreadRatioList[3], "AP","AP","AP","AP", "AP","AP","AP","AP", "AP", False, False, False, False, FullParticleName) for i in range(len(Energies)): if Particle=="pi": datalongitudinalprofilelist[i].GetYaxis().SetRangeUser(5E-3, 100.) if(Energies[i]==20000): datalongitudinalprofilelist[i].GetYaxis().SetRangeUser(5E-3, 10.) datalongitudinalprofilelist[i].SetTitle("Data") mclongitudinalprofilelists[0][i].SetTitle(PhysicsLists[0]) mclongitudinalprofilelists[1][i].SetTitle(PhysicsLists[1]) mclongitudinalprofilelists[2][i].SetTitle(PhysicsLists[2]) mclongitudinalprofilelists[3][i].SetTitle(PhysicsLists[3]) longitudinalprofileratiolists[0][i].SetTitle(PhysicsLists[0]) longitudinalprofileratiolists[1][i].SetTitle(PhysicsLists[1]) longitudinalprofileratiolists[2][i].SetTitle(PhysicsLists[2]) longitudinalprofileratiolists[3][i].SetTitle(PhysicsLists[3]) datanormalizedlongitudinalprofilelist[i].GetYaxis().SetRangeUser(5E-5, 1.) datanormalizedlongitudinalprofilelist[i].SetTitle("Data") mcnormalizedlongitudinalprofilelists[0][i].SetTitle(PhysicsLists[0]) mcnormalizedlongitudinalprofilelists[1][i].SetTitle(PhysicsLists[1]) mcnormalizedlongitudinalprofilelists[2][i].SetTitle(PhysicsLists[2]) mcnormalizedlongitudinalprofilelists[3][i].SetTitle(PhysicsLists[3]) normalizedlongitudinalprofileratiolists[0][i].SetTitle(PhysicsLists[0]) normalizedlongitudinalprofileratiolists[1][i].SetTitle(PhysicsLists[1]) normalizedlongitudinalprofileratiolists[2][i].SetTitle(PhysicsLists[2]) normalizedlongitudinalprofileratiolists[3][i].SetTitle(PhysicsLists[3]) # draw profiles of all physcis lists of each beam energy on same canvas # draw profiles of all physcis lists of each beam energy and data on top, ratios of MC to data on bottom DrawFiveHistsOnCanvas("{}/{}/{}_LongitudinalProfileWithData_{}GeV".format(PlotDir, Particle, Particle, Energies[i]/1000),datalongitudinalprofilelist[i],mclongitudinalprofilelists[0][i], mclongitudinalprofilelists[1][i],mclongitudinalprofilelists[2][i],mclongitudinalprofilelists[3][i], "PE", "PESame", "PESame", "PESame", "PESame", False, True, False, "Pion", "E_{beam}="+"{}GeV".format(Energies[i]/1000)) DrawFiveHistsOnCanvas("{}/{}/{}_NormalizedLongitudinalProfileWithData_{}GeV".format(PlotDir, Particle, Particle, Energies[i]/1000),datanormalizedlongitudinalprofilelist[i],mcnormalizedlongitudinalprofilelists[0][i], mcnormalizedlongitudinalprofilelists[1][i],mcnormalizedlongitudinalprofilelists[2][i],mcnormalizedlongitudinalprofilelists[3][i], "PE", "PESame", "PESame", "PESame", "PESame", False, True, False, "Pion", "E_{beam}="+"{}GeV".format(Energies[i]/1000)) DrawFourHistsOnCanvas("{}/{}/{}_LongitudinalProfile_Ratio_{}GeV".format(PlotDir, Particle, Particle, Energies[i]/1000),longitudinalprofileratiolists[0][i], longitudinalprofileratiolists[1][i],longitudinalprofileratiolists[2][i],longitudinalprofileratiolists[3][i], "PE", "PESame", "PESame", "PESame", False, False, False, "Pion", "E_{beam}="+"{}GeV".format(Energies[i]/1000)) DrawFourHistsOnCanvas("{}/{}/{}_NormalizedLongitudinalProfile_Ratio_{}GeV".format(PlotDir, Particle, Particle, Energies[i]/1000),normalizedlongitudinalprofileratiolists[0][i], normalizedlongitudinalprofileratiolists[1][i],normalizedlongitudinalprofileratiolists[2][i],normalizedlongitudinalprofileratiolists[3][i], "PE", "PESame", "PESame", "PESame", False, False, False, "Pion", "E_{beam}="+"{}GeV".format(Energies[i]/1000)) DrawTopFiveHistsAndBottomFourHistsOnCanvas("{}/{}/{}_TopLongitudinalProfileBottomRatio_{}GeV".format(PlotDir, Particle, Particle, Energies[i]/1000),datalongitudinalprofilelist[i], mclongitudinalprofilelists[0][i], mclongitudinalprofilelists[1][i],mclongitudinalprofilelists[2][i],mclongitudinalprofilelists[3][i], longitudinalprofileratiolists[0][i], longitudinalprofileratiolists[1][i],longitudinalprofileratiolists[2][i],longitudinalprofileratiolists[3][i], "PE", "PESame", "PESame", "PESame", "PESame", "PE", "PESame", "PESame", "PESame", False, True, False, False, "Pion", "E_{beam}="+"{}GeV".format(Energies[i]/1000)) DrawTopFiveHistsAndBottomFourHistsOnCanvas("{}/{}/{}_TopNormalizedLongitudinalProfileBottomRatio_{}GeV".format(PlotDir, Particle, Particle, Energies[i]/1000),datanormalizedlongitudinalprofilelist[i], mcnormalizedlongitudinalprofilelists[0][i], mcnormalizedlongitudinalprofilelists[1][i],mcnormalizedlongitudinalprofilelists[2][i],mcnormalizedlongitudinalprofilelists[3][i], normalizedlongitudinalprofileratiolists[0][i], normalizedlongitudinalprofileratiolists[1][i],normalizedlongitudinalprofileratiolists[2][i],normalizedlongitudinalprofileratiolists[3][i], "PE", "PESame", "PESame", "PESame", "PESame", "PE", "PESame", "PESame", "PESame", False, True, False, False, "Pion", "E_{beam}="+"{}GeV".format(Energies[i]/1000)) elif Particle=="pr": # proton doesn't have beam energy og 20 GeV in data. if Energies[i]==20000: continue datalongitudinalprofilelist[i-1].GetYaxis().SetRangeUser(5E-3, 100.) datalongitudinalprofilelist[i-1].SetTitle("Data") mclongitudinalprofilelists[0][i-1].SetTitle(PhysicsLists[0]) mclongitudinalprofilelists[1][i-1].SetTitle(PhysicsLists[1]) mclongitudinalprofilelists[2][i-1].SetTitle(PhysicsLists[2]) mclongitudinalprofilelists[3][i-1].SetTitle(PhysicsLists[3]) longitudinalprofileratiolists[0][i-1].SetTitle(PhysicsLists[0]) longitudinalprofileratiolists[1][i-1].SetTitle(PhysicsLists[1]) longitudinalprofileratiolists[2][i-1].SetTitle(PhysicsLists[2]) longitudinalprofileratiolists[3][i-1].SetTitle(PhysicsLists[3]) datanormalizedlongitudinalprofilelist[i-1].GetYaxis().SetRangeUser(5E-5, 1.) datanormalizedlongitudinalprofilelist[i-1].SetTitle("Data") mcnormalizedlongitudinalprofilelists[0][i-1].SetTitle(PhysicsLists[0]) mcnormalizedlongitudinalprofilelists[1][i-1].SetTitle(PhysicsLists[1]) mcnormalizedlongitudinalprofilelists[2][i-1].SetTitle(PhysicsLists[2]) mcnormalizedlongitudinalprofilelists[3][i-1].SetTitle(PhysicsLists[3]) normalizedlongitudinalprofileratiolists[0][i-1].SetTitle(PhysicsLists[0]) normalizedlongitudinalprofileratiolists[1][i-1].SetTitle(PhysicsLists[1]) normalizedlongitudinalprofileratiolists[2][i-1].SetTitle(PhysicsLists[2]) normalizedlongitudinalprofileratiolists[3][i-1].SetTitle(PhysicsLists[3]) DrawFiveHistsOnCanvas("{}/{}/{}_LongitudinalProfileWithData_{}GeV".format(PlotDir, Particle, Particle, Energies[i]/1000),datalongitudinalprofilelist[i-1],mclongitudinalprofilelists[0][i-1], mclongitudinalprofilelists[1][i-1],mclongitudinalprofilelists[2][i-1], mclongitudinalprofilelists[3][i-1], "PE", "PESame", "PESame", "PESame", "PESame", False, True, False, "Proton", "E_{beam}="+"{}GeV".format(Energies[i]/1000)) DrawFiveHistsOnCanvas("{}/{}/{}_NormalizedLongitudinalProfileWithData_{}GeV".format(PlotDir, Particle, Particle, Energies[i]/1000),datanormalizedlongitudinalprofilelist[i-1],mcnormalizedlongitudinalprofilelists[0][i-1], mcnormalizedlongitudinalprofilelists[1][i-1],mcnormalizedlongitudinalprofilelists[2][i-1], mcnormalizedlongitudinalprofilelists[3][i-1], "PE", "PESame", "PESame", "PESame", "PESame", False, True, False, "Proton", "E_{beam}="+"{}GeV".format(Energies[i]/1000)) DrawFourHistsOnCanvas("{}/{}/{}_LongitudinalProfile_Ratio_{}GeV".format(PlotDir, Particle, Particle, Energies[i]/1000),longitudinalprofileratiolists[0][i-1], longitudinalprofileratiolists[1][i-1],longitudinalprofileratiolists[2][i-1], longitudinalprofileratiolists[3][i-1], "PE", "PESame", "PESame", "PESame", False, False, False, "Proton","E_{beam}="+"{}GeV".format(Energies[i]/1000)) DrawFourHistsOnCanvas("{}/{}/{}_NormalizedLongitudinalProfile_Ratio_{}GeV".format(PlotDir, Particle, Particle, Energies[i]/1000),normalizedlongitudinalprofileratiolists[0][i-1], normalizedlongitudinalprofileratiolists[1][i-1],normalizedlongitudinalprofileratiolists[2][i-1], normalizedlongitudinalprofileratiolists[3][i-1],"PE", "PESame", "PESame", "PESame", False, False, False, "Proton", "E_{beam}="+"{}GeV".format(Energies[i]/1000)) DrawTopFiveHistsAndBottomFourHistsOnCanvas("{}/{}/{}_TopLongitudinalProfileBottomRatio_{}GeV".format(PlotDir, Particle, Particle, Energies[i]/1000),datalongitudinalprofilelist[i-1], mclongitudinalprofilelists[0][i-1], mclongitudinalprofilelists[1][i-1],mclongitudinalprofilelists[2][i-1],mclongitudinalprofilelists[3][i-1], longitudinalprofileratiolists[0][i-1], longitudinalprofileratiolists[1][i-1],longitudinalprofileratiolists[2][i-1],longitudinalprofileratiolists[3][i-1], "PE", "PESame", "PESame", "PESame", "PESame", "PE", "PESame", "PESame", "PESame", False, True, False, False, "Proton", "E_{beam}="+"{}GeV".format(Energies[i]/1000)) DrawTopFiveHistsAndBottomFourHistsOnCanvas("{}/{}/{}_TopNormalizedLongitudinalProfileBottomRatio_{}GeV".format(PlotDir, Particle, Particle, Energies[i]/1000),datanormalizedlongitudinalprofilelist[i-1], mcnormalizedlongitudinalprofilelists[0][i-1], mcnormalizedlongitudinalprofilelists[1][i-1],mcnormalizedlongitudinalprofilelists[2][i-1],mcnormalizedlongitudinalprofilelists[3][i-1], normalizedlongitudinalprofileratiolists[0][i-1], normalizedlongitudinalprofileratiolists[1][i-1],normalizedlongitudinalprofileratiolists[2][i-1],normalizedlongitudinalprofileratiolists[3][i-1], "PE", "PESame", "PESame", "PESame", "PESame", "PE", "PESame", "PESame", "PESame", False, True, False, False, "Proton", "E_{beam}="+"{}GeV".format(Energies[i]/1000)) # draw data and MC on same camvas, no ratios def ComparePhysicsList(): for Particle in Particles: # loop over particles # mc input files containing grapherrorses of responses, resolutions and lateral spreads and histograms of longitudinal profiles inputFile = ROOT.TFile.Open('{}/{}/Properities_{}.root'.format(ResultDir, Particle, Particle)) # data input files containing grapherrorses of responses, resolutions and lateral spreads and histograms of longitudinal profiles inputFile2 = ROOT.TFile.Open('{}/data/data.root'.format(ResultDir)) if not inputFile: print "File: ",inputFile.GetName()," doesn't exist!!" continue # list of grapherrors and responses, resolutions and lateral spreads of MC ResponseList = [] ResolutionList = [] LateralSpreadList = [] # list of grapherrors and responses, resolutions and lateral spreads of data and MC ResponseListWithData = [] ResolutionListWithData = [] LateralSpreadListWithData = [] # get data results ger_dataresponse = inputFile2.Get("{}_Response".format(Particle)) ger_dataresponse.SetTitle("Data") ger_dataresolution = inputFile2.Get("{}_Resolution".format(Particle)) ger_dataresolution.SetTitle("Data") ger_datalateralspread = inputFile2.Get("{}_LateralSpread".format(Particle)) ger_datalateralspread.SetTitle("Data") ResponseListWithData.append(ger_dataresponse) ResolutionListWithData.append(ger_dataresolution) LateralSpreadListWithData.append(ger_datalateralspread) # loop over physics to get grapherrors and responses, # resolutions and lateral spreads of MC for PhysicsList in PhysicsLists: ger_response = inputFile.Get("{}_{}_Response".format(Particle, PhysicsList)) ger_response.SetTitle(PhysicsList) ger_resolution = inputFile.Get("{}_{}_Resolution".format(Particle, PhysicsList)) ger_resolution.SetTitle(PhysicsList) ger_lateralspread = inputFile.Get("{}_{}_LateralSpread".format(Particle, PhysicsList)) ger_lateralspread.SetTitle(PhysicsList) ResponseList.append(ger_response) ResolutionList.append(ger_resolution) LateralSpreadList.append(ger_lateralspread) ResponseListWithData.append(ger_response) ResolutionListWithData.append(ger_resolution) LateralSpreadListWithData.append(ger_lateralspread) print ResponseList,ResolutionList,LateralSpreadList FullParticleName="" if Particle=='pi': FullParticleName = "Pion" else: FullParticleName = "Proton" # draw results of proton of MC and data on same canvas if len(ResponseList)==3: DrawThreeGraphErrorsOnCanvas("{}/{}/{}_Response".format(PlotDir,Particle,Particle),ResponseList[0], ResponseList[1], ResponseList[2],"AP","AP","AP") DrawThreeGraphErrorsOnCanvas("{}/{}/{}_Resolution".format(PlotDir,Particle,Particle),ResolutionList[0], ResolutionList[1], ResolutionList[2],"AP","AP","AP") # draw results of pion of MC and data on same canvas elif len(ResponseList)==4: DrawFourGraphErrorsOnCanvas("{}/{}/{}_Response".format(PlotDir,Particle,Particle),ResponseList[0], ResponseList[1], ResponseList[2],ResponseList[3], "AP","AP","AP","AP", False, False, False,FullParticleName) DrawFourGraphErrorsOnCanvas("{}/{}/{}_Resolution".format(PlotDir,Particle,Particle),ResolutionList[0], ResolutionList[1], ResolutionList[2],ResolutionList[3],"AP","AP","AP","AP", False, False, False, FullParticleName) DrawFourGraphErrorsOnCanvas("{}/{}/{}_LateralSpread".format(PlotDir,Particle,Particle),LateralSpreadList[0], LateralSpreadList[1], LateralSpreadList[2],LateralSpreadList[3],"AP","AP","AP","AP", False, False, False, FullParticleName) DrawFiveGraphErrorsOnCanvas("{}/{}/{}_ResponseWithData".format(PlotDir,Particle,Particle),ResponseListWithData[0], ResponseListWithData[1], ResponseListWithData[2],ResponseListWithData[3], ResponseListWithData[4], "AP","AP","AP","AP", "AP", False, False, False,FullParticleName) DrawFiveGraphErrorsOnCanvas("{}/{}/{}_ResolutionWithData".format(PlotDir,Particle,Particle),ResolutionListWithData[0], ResolutionListWithData[1], ResolutionListWithData[2],ResolutionListWithData[3],ResolutionListWithData[4], "AP","AP","AP","AP", "Ap", False, False, False,FullParticleName) DrawFiveGraphErrorsOnCanvas("{}/{}/{}_LateralSpreadWithData".format(PlotDir,Particle,Particle),LateralSpreadListWithData[0], LateralSpreadListWithData[1], LateralSpreadListWithData[2],LateralSpreadListWithData[3],LateralSpreadListWithData[4],"AP","AP","AP","AP","AP", False, False, False,FullParticleName) if __name__ == '__main__': GetPlotSingleProperty() GetDataPlotSingleProperty() ComDataMC() ComparePhysicsList()
4343b66f7f4aa4b421a9916100526490275a5e63
e4de060c295fba0d0386d0a7678e744ced18b920
/build/move_base_flex/mbf_costmap_core/catkin_generated/pkg.installspace.context.pc.py
d99db631ffe34a45fa7eeeca31b56d21fdb231f6
[]
no_license
jbenzhhn/carla_hhn
af9497d01ce1f34ee0016ca660a0cc5af5f71be8
abd803bcdd506641c8152ec994468518ea809f1b
refs/heads/master
2023-04-05T10:50:28.934452
2021-04-07T14:31:41
2021-04-07T14:31:41
355,151,500
0
0
null
null
null
null
UTF-8
Python
false
false
493
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "${prefix}/include".split(';') if "${prefix}/include" != "" else [] PROJECT_CATKIN_DEPENDS = "std_msgs;geometry_msgs;mbf_abstract_core;mbf_utility;tf;costmap_2d;nav_core".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "mbf_costmap_core" PROJECT_SPACE_DIR = "/home/automotive/catkin_ws/install" PROJECT_VERSION = "0.3.4"
011004d9088a8eae9ee9471922e947f0df13e0e9
1d7ae7f6e7a0df98d92f9ec5f277752d14924a94
/fake-very-small-test/tmp/Environment_jq.py
5e6d4b61381271a2d593cd1c8cc162dbd1a0feb7
[]
no_license
lindsaymorgan/Mobike-Bike-Sharing-System-Dispatch-Optimization-Using-Reinforcement-Learning
1e6b1aa3c64d2ff2e31b5d9dcc4abdc11e10679c
6c8a329fae5c2ac8db45a3d8c55b308aae8ad804
refs/heads/master
2023-05-02T07:39:49.089459
2021-05-23T02:26:14
2021-05-23T02:26:14
279,467,461
2
0
null
null
null
null
UTF-8
Python
false
false
6,717
py
import numpy as np from copy import deepcopy import scipy.stats as stats class State: def __init__(self, state, region_count, car_num, out_nums, in_nums, capacity_each_step, reward=0, t=0, reward_sum=0, R=None): self.region_count = region_count self.car_num = car_num self.state = state self.out_nums = out_nums self.in_nums = in_nums self.capacity_each_step = capacity_each_step self.reward = reward self.reward_sum = reward_sum self._R = R self.t = t self.__hash = None self.feasible_actions = np.zeros((self.region_count, 2 * self.capacity_each_step + 1)) def get_hash(self): if not self.__hash: self.__hash = tuple(self.state).__hash__() return self.__hash def __repr__(self): return str(tuple(self.state)) @property def region_state(self): return self.state[:self.region_count] @region_state.setter def region_state(self, value): self._R = None self.__hash = None self.state[:self.region_count] = value @property def car_pos(self): return self.state[self.region_count:self.region_count + self.car_num] @car_pos.setter def car_pos(self, value): self.state[self.region_count:self.region_count + self.car_num] = value @property def bike_on_car(self): return self.state[self.region_count + self.car_num:] @bike_on_car.setter def bike_on_car(self, value): self.state[self.region_count + self.car_num:] = value @property def R(self) -> int: """ :return: Reward """ # if self._R: # return self._R # self.region_state += self.in_nums[self.t,] # self.region_state -= self.out_nums[self.t+1 ,] # raw_R = np.sum(self.region_state[self.region_state < 0]) # self.region_state += self.out_nums[self.t+1 ,] # self.region_state -= self.in_nums[self.t] self.region_state += self.in_nums[self.t,] raw_R = np.mean( [stats.poisson.cdf(i, j) for i, j in zip(self.region_state, self.out_nums[self.t + 1,])]) self.region_state -= self.in_nums[self.t] self._R = raw_R return raw_R def out_stage(self): """ before move happens -- external bikes depart """ self.region_state -= self.out_nums[self.t,] self.region_state[self.region_state < 0] = 0 return self.region_state def in_stage(self): """ after move happens -- external bikes arrive """ self.region_state += self.in_nums[self.t,] self.t += 1 def check_feasible(self, current_region, current_car, move) -> bool: """ Return True for feasible action, False for not feasible :param state: State object, state to check :param current_region: index of region :param move: number of bikes to load/unload (must be within -capacity_each_step ~ capacity_each_step) :param current_car: index of car :return: """ # \ and (tmp_obs[-self.obs_dim + region] - self.out_nums[int(current_eps+1), region]) * move <= 0 #move 正数移入区块 负数移出区块 if move + self.region_state[current_region] >= 0 and move <= self.bike_on_car[current_car]: return True # 合法动作 else: return False # 非法动作 def update_feasible_action(self, current_car): for region in range(self.region_count): for move in range(-self.capacity_each_step, self.capacity_each_step + 1): self.feasible_actions[region, move] = self.check_feasible(region, current_car, move) def step(self, current_region, current_car, move, prev_state_R=None): """ Perform move action :param current_region: :param current_car: :param move: :param prev_state_R: :return: """ new_state = State(deepcopy(self.state), self.region_count, self.car_num, self.out_nums, self.in_nums, self.reward, self.t, self.reward_sum, self.R) # if (move > 0 or move + new_state.region_state[current_region] >= 0) and move <= new_state.bike_on_car[current_car]: if move + new_state.region_state[current_region] >= 0 and move <= new_state.bike_on_car[current_car]: new_state.region_state[current_region] += move # 更新货车状态 new_state.bike_on_car[current_car] -= move # 更新货车上的单车数 new_state.car_pos[current_car] = current_region # 更新货车位置 new_state.reward = new_state.R if prev_state_R: new_state.reward -= prev_state_R new_state.reward_sum += new_state.reward return new_state class Env(object): def __init__(self, initial_region_state, capacity_each_step, max_episode, car_count, need): """ :param initial_region_state: List, number of bikes in each region, e.g. [15, 15, 15, 15] :param capacity_each_step: maximum number of load/unload bikes each step (only one of load/unload per step) :param max_episode: max time :param car_count: number of cars :param need: external change driven by customers """ self.initial_region_state = initial_region_state self.region_count = len(initial_region_state) self.capacity_each_step = capacity_each_step self.car_num = car_count # length of one-hot action vector: for each region, each car can load/unload maximum transport_capacity of bike self.action_dim = self.region_count * (2 * self.capacity_each_step + 1) # length of state: number of bike at each region + location of each car + number of bike on each car self.obs_dim = self.region_count + 2 * self.car_num self.start_region = need.groupby('start_region') self.end_region = need.groupby('end_region') self.t_index = {i: str(i) for i in range(max_episode + 1)} self.out_nums = np.array([need.groupby('start_region')[str(i)].agg(np.sum) for i in range(max_episode + 1)]) self.in_nums = np.array([need.groupby('end_region')[str(i)].agg(np.sum) for i in range(max_episode + 1)]) # current episode self.t = 0 def new_state(self): """ Initialize state :return: """ state = State(np.asarray(self.initial_region_state + [0] * self.car_num * 2), self.region_count, self.car_num, self.out_nums, self.in_nums, self.capacity_each_step) return state
3f9e557501df5b989853196d4359ca663f35ee37
266b3911034ffe37f6c1c88ae4061f5792676c8b
/scripts/irods/logging_infrastructure.py
d368b224ecfbbe73002eb15b15cd538eb3162081
[ "BSD-3-Clause" ]
permissive
trel/irods
cca485264f4189cb9fc9ce63f204faf5ff9f1ff5
dc462b0e90f3d715546329570f5950dd425dc489
refs/heads/master
2022-05-20T16:51:46.864969
2021-10-04T17:55:26
2021-10-04T17:59:34
73,592,300
1
0
NOASSERTION
2021-10-04T17:59:35
2016-11-13T03:03:35
C++
UTF-8
Python
false
false
1,536
py
#! /usr/bin/python from __future__ import print_function import os import sys import platform import subprocess import shutil import logging from .log import register_tty_handler def rsyslog_config_path(): return '/etc/rsyslog.d/00-irods.conf' def logrotate_config_path(): return '/etc/logrotate.d/irods' def setup_rsyslog_and_logrotate(register_tty=True): l = logging.getLogger(__name__) l.setLevel(logging.INFO) if register_tty: register_tty_handler(sys.stdout, logging.INFO, logging.WARNING) # Copy rsyslog configuration file into place if it does not exist # and restart the rsyslog daemon so that the configuration is loaded. dst = rsyslog_config_path() if not os.path.isfile(dst): l.info('Configuring rsyslog ...') shutil.copyfile('/var/lib/irods/packaging/irods.rsyslog', dst) l.info('done.') l.info('Restarting rsyslog ...') if 'Ubuntu' == platform.linux_distribution()[0]: subprocess.call(['service', 'rsyslog', 'restart']) else: subprocess.call(['systemctl', 'restart', 'rsyslog']) l.info('done.') else: l.info('rsyslog already configured.') # Copy logrotate configuration file into place if it does not exist. dst = logrotate_config_path() if not os.path.isfile(dst): l.info('Configuring logrotate ...') shutil.copyfile('/var/lib/irods/packaging/irods.logrotate', dst) l.info('done.') else: l.info('logrotate already configured.')
356f23dcc0f34092b262caed148b54b7583618e5
ace7e98719c756cff4e4baf7c92e546cbc0b92ca
/LeetCode/firstMissingPositive.py
37817e06877b8d07f503696fc1fe9d2f340a9bb4
[]
no_license
armsky/OnlineJudge
f4159326c92a794695cca8a162280fef32f95a2a
c658b78c920aa94c25b3d932cd7e46c0df82b19a
refs/heads/master
2020-04-15T01:21:18.158217
2015-12-11T03:05:28
2015-12-11T03:05:28
21,989,843
0
0
null
null
null
null
UTF-8
Python
false
false
867
py
""" Given an unsorted integer array, find the first missing positive integer. For example, Given [1,2,0] return 3, and [3,4,-1,1] return 2. Your algorithm should run in O(n) time and uses constant space. """ class Solution: # @param A, a list of integers # @return an integer def firstMissingPositive(self, A): for i in range(len(A)): while A[i] != i+1: if A[i] <= 0 or A[i] > len(A) or A[i] == A[A[i]-1]: break else: temp = A[A[i]-1] A[A[i]-1] = A[i] A[i] = temp print A for i in range(len(A)): if A[i] != i+1: return i+1 return len(A)+1 solution = Solution() print solution.firstMissingPositive([1,2,0]) print solution.firstMissingPositive([3,4,0,2])
f073c567c4891983543a7c56592a594bf7f068cc
0e02b452a10c5adff4e988da912b385a3335aba8
/Noun Phrase Frequencies Visualization/NPFreqSolrDash/nounphrase_visualization_yearly.py
4e50843dc68e870f2f6700d4c61af016551c0c36
[]
no_license
tf-dbis-uni-freiburg/arxiv-cs-analysis
2006bd4c862ba84e137de801d37598f907a8c426
40180718c357ec9304e6047fdfe17fed2b22a530
refs/heads/master
2021-03-27T08:50:23.081860
2019-01-15T23:49:43
2019-01-15T23:49:43
106,251,614
1
0
null
null
null
null
UTF-8
Python
false
false
27,623
py
""" This module is used to visualize the yearly doc frequencies (no. of docs in which a phrase is present per year) and phrase frequencies (no. of times a phrase is present per year) of noun phrase(s) chosen by the user in a Dash user interface. A Solr query is made for the query/queries, results are aggregated yearly, and converted into percentage of phrases/docs in the year by dividing by the total docs/phrases in each year (these are obtained from a json file built for that purpose in another module. """ import requests import sys import pandas as pd import json import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State import plotly.graph_objs as go def search_solr_parse_json(query, collection, search_field): """ Searches the nounphrases collection on 'phrase' (query), parses the json result and returns it as a list of dictionaries where each dictionary corresponds to a record. ARGUMENTS: query, string: the user's query entered in a search box (if it is comma-separated, only one part of the query is sent to this function). collection: the Solr collection name (=nounphrases) search_field: the Solr field which is queried (=phrase) RETURNS: docs, list of dicts: the documents (records) returned by Solr AFTER getting the JSON response and parsing it.""" solr_url = 'http://localhost:8983/solr/' + collection + '/select' # Exact search only query = '"' + query + '"' # for rows, pass an arbitrarily large number. url_params = {'q': query, 'rows': 100000, 'df': search_field} solr_response = requests.get(solr_url, params=url_params) if solr_response.ok: data = solr_response.json() docs = data['response']['docs'] return docs else: print("Invalid response returned from Solr") sys.exit(11) def dataframe_from_solr_results(documents_list): """ Takes a list of dictionaries (each dictionary is a record) obtained by parsing the JSON results from Solr, converts it into a dataframe, and keeps only the 4 important columns (discards _version_ and id, and also phrase, keeps published_date, num_occurrences and arxiv_identifier). Finally, it makes sure that the published_date is the new index. ARGUMENTS: documents_list, list of dicts: list of documents (records) returned by Solr for one search query RETURNS: docs_df, Pandas dataframe, the Solr results converted into a Pandas dataframe with index=published_date, columns=arxiv_identifier, num_occurrences""" docs_df = pd.DataFrame(documents_list) # Remove phrase too, as all the rows will have the same value # (the solr query field was phrase). docs_df.drop(['_version_', 'id', 'phrase'], axis=1, inplace=True) # Change the published_date column from Solr's string timestamp format to a pandas # datetime object with just dates. docs_df.published_date = pd.to_datetime(docs_df.published_date) # Make sure the published_date is the index. Once it is the index, we don't # really need the column any more. docs_df.set_index('published_date', inplace=True, drop=True) return docs_df def calculate_aggregates_day_wise(docs_df): """ Takes a Pandas data frame with index=published_date, cols: num_occurrences and arxiv_identifier as input, calculates the no. of unique and total occurrences by grouping by published_date and cacluating the count and sum on the column num_occurrences. The aggregate results are suitably renamed and the published_date index is reset so that it becomes a column in the output dataframe. NOT USED CURRENTLY""" agg_df = docs_df.groupby('published_date').num_occurrences.agg(['sum','count']).rename( columns={'sum':'total_occurrences','count':'unique_occurrences'}).reset_index() #agg_df.sort_values(by='total_occurrences', ascending=False) return agg_df def calculate_aggregates(docs_df): """ Takes a Pandas data frame with index=published_date, cols: num_occurrences and arxiv_identifier as input, calculates the no. of unique and total occurrences by grouping by the year part of published_date, and then calculating the count and sum based on the column num_occurrences. The aggregate results are suitably renamed and 2 dataframes (unique counts and total counts) are returned. ARGUMENTS: docs_df, Pandas dataframe with index=published_date, columns=num_occurrences and arxiv_identifier RETURNS: docs_df_total, a Pandas df grouped on published_date year, on which 'sum' is applied on num_occurrences. docs_df_unique, a Pandas df grouped on published_date year, on which 'count' is applied on num_occurrences. IMPORTANT: the returned dfs have sum and count in the same column called num_occurrences, a new sum/count column is not created. """ # Drop arxiv_identifier, we want to group by the published_date index, and # aggregate on num_occurrrences. docs_df.drop('arxiv_identifier', axis=1, inplace=True) # Dataframe 1 takes the sum of num_occurrences after grouping by year docs_df_total = docs_df.groupby(pd.Grouper(freq='1Y')).sum() # docs_df_total.index has day as well, we keep only year # Change num_occurrences to int after replacing nan by 0 docs_df_total.num_occurrences = docs_df_total.num_occurrences.fillna(0).astype('int64') # Dataframe 2 takes the count of num_occurrences after grouping by year # This is a yearly documnet frequency docs_df_unique = docs_df.groupby(pd.Grouper(freq='1Y')).count() # Change num_occurrences to int after replacing nan by 0 docs_df_unique.num_occurrences = docs_df_unique.num_occurrences.fillna(0).astype('int64') return docs_df_total, docs_df_unique def get_percentage_aggregates(docs_df_total, docs_df_unique): """ This function takes 2 dataframes -- one has yearly phrase frequencies, the other has yearly document frequencies -- and normalizes the values by dividing by total no. of phrases in the corresponding years and total no. of documents in the corresponding year respectively, and multiplies by 100 to get percentages . ARGUMENTS: docs_df_total, a Pandas df grouped on published_date year, on which 'sum' is applied on num_occurrences. docs_df_unique, a Pandas df grouped on published_date year, on which 'count' is applied on num_occurrences. RETURNS: docs_df_total, the data frame in the arguments with an additional field 'percentage_occurrences' calculated by dividing the current value for each year by the no. of phrases in that year docs_df_unique, the data frame in the arguments with an additional field 'percentage_occurrences' calculated by dividing the current value for each year by the no. of docs in that year NOTE: The total no. of docs/phrases in each year is present in a json file phrases_and_docs_yearly.json """ # Read the Json file which has the yearly total phrases and documents -- 2 Json objects in a # json array. Assign each object to a dictionary. with open('phrases_and_docs_yearly.json', 'r') as file: json_array= json.load(file) # json_array is a list of 2 dicts. yearly_phrases_total = json_array[0] yearly_docs_total = json_array[1] # For each of the dataframes, create a year column.This is a string and matches the value from the json file. # Create year column as a period object with frequency = every year docs_df_total['year'] = docs_df_total.index.to_period('Y') # Convert the period object to a string docs_df_total.year = docs_df_total.year.astype('str') # Create a new column which uses the value in the year string column as a key in the yearly_phrases_total # dict, and gets the corresponding value. The no. of occurrencesis divided by this number. The na_action is not # strictly necessary, it is just a precaution which inserts NaN if a key (year) is not found. Finally, NaNs are # produced if the dict value has a 0 (divide by 0). These NaNs are replaced by 0. * 100 because the final result is in %. docs_df_total['percentage_occurrences'] = (100 * docs_df_total.num_occurrences / docs_df_total['year'] .map(yearly_phrases_total, na_action=None)).fillna(0) # Repeat the process for docs_df_unique docs_df_unique['year'] = docs_df_unique.index.to_period('Y') # Convert the period object to a string docs_df_unique.year = docs_df_unique.year.astype('str') docs_df_unique['percentage_occurrences'] = (100 * docs_df_unique.num_occurrences / docs_df_unique['year'] .map(yearly_docs_total, na_action=None)).fillna(0) return docs_df_total, docs_df_unique def get_aggregated_data(query): """ Function which returns an aggregated function for a valid query and None for an invalid one. ARGUMENTS: query, string, one of the parts of the user's comma-separated query RETURNS: docs_df_total, a Pandas df grouped on published_date year, on which 'sum' is applied on num_occurrences and then normalized to get a percentage. docs_df_unique, a Pandas df grouped on published_date year, on which 'count' is applied on num_occurrences and then normalized to get a percentage. """ # Get a list of dictinoaries by parsing the JSON results for the search query docs = search_solr_parse_json(query, "nounphrases", "phrase") if docs == []: # No data found return None, None # Create a pandas dataframe out of the result docs_df = dataframe_from_solr_results(docs) # Group by published_date, and calculate sum and count of num_occurrences. #These correspond to total_occurrences of a phrase for a date, and unique # occurrences of a phrase for a date. docs_df_total, docs_df_unique = calculate_aggregates(docs_df) docs_df_total, docs_df_unique = get_percentage_aggregates(docs_df_total, docs_df_unique) return docs_df_total, docs_df_unique app = dash.Dash() # Add the default Dash CSS, and some custom (very simple) CSS to remove the undo button # app.css.append_css({'external_url': 'https://www.jsdelivr.com/package/npm/normalize.css'}) #app.css.append_css({'external_url': 'https://unpkg.com/sakura.css/css/sakura.css'}) app.css.append_css({'external_url': 'https://codepen.io/chriddyp/pen/bWLwgP.css'}) app.css.append_css({'external_url': 'https://rawgit.com/lwileczek/Dash/master/undo_redo5.css'}) # Black background, blue text #colours = { # 'background': '#111111', # 'text': '#0080A5' #} # White background, blue text colours = { 'background': '#ffffff', 'text': '#0080A5' } app.layout = html.Div(style={'backgroundColor': colours['background'], 'height':'100vh', 'width': '100%'}, children=[ html.H2(children='Distribution of Noun phrases over time', style={ 'textAlign': 'center', 'color': colours['text'] } ), html.Label('Graph these comma-separated noun phrases: ', style={ 'textAlign': 'left', 'color': colours['text'], 'fontSize': '1.4em' }), dcc.Input(id='npinput1-state', value='', type='text'), html.Button(id='submit-button', n_clicks=0, children='Submit'), html.Div(id='output_total'), html.Div(id='output_unique') ]) def not_found_message(notfound_list): """ Takes a list of elements not found in the Solr index and produces an error message for the whole lot of them together, along with suitable styling (in an <h3> tag). ARGUMENTS: notfound_list: list of user's search terms which are not found in the Solr index RETURNS: a html h5 message with a message listing the terms not found""" notfound_list = ['"' + term.strip().capitalize() + '"' for term in notfound_list] notfound = ','.join(notfound_list) return html.H5('Noun phrases not found: {}.'.format(notfound), style={'color': colours['text']} ) """ Trigger callback to show graph for total occurrences for all the comma-separated # search terms when n_clicks of the button is incremented """ @app.callback(Output('output_total', 'children'), [Input('submit-button', 'n_clicks')], [State('npinput1-state', 'value')]) def show_graph_total(n_clicks, input_box): """ Wrapped function which takes user input in a text box, returns a graph if the query produces a hit in Solr, returns an error message otherwise. ARGUMENTS: n_clicks: a parameter of the HTML button which indicates it has been clicked input_box: the content of the text box in which the user has entered a comma-separated search query. RETURNS: 1 graph (total occurrences) of all terms which have results from Solr, error messages of all terms which don't have results from Solr.""" # Store the layout with the appropriate title and y axis labels for the graph layout_total = go.Layout( title = 'Percentage of occurrences of chosen noun phrase(s) per Year', xaxis = {'title': 'Publication year', 'tickformat': '%Y', 'tick0': '2007-12-31', 'dtick': 'M12', 'range': ['2007-07-01', '2018-07-01']}, yaxis = {'title': 'Percentage of phrase occurrences', 'ticksuffix': '%'}, plot_bgcolor = colours['background'], paper_bgcolor = colours['background'], barmode = 'stack', hovermode = 'closest', font= { 'color': colours['text'] }, showlegend=True ) if input_box != '': # Get the input data: both freq_df dfs will have index= published_date, # columns = percentage_occurrences total. input_list = input_box.lower().split(',') data_list_total = [] notfound_list = [] for input_val in input_list: # Make sure to strip input_val, otherwise if the user enters a # space after the comma in the query, this space will get sent # to Solr. freq_df_total, freq_df_unique = get_aggregated_data(input_val.strip()) if freq_df_total is not None: # Plot the graphs, published_date (index) goes on the x-axis, # and percentage_occurrences total goes on the y-axis. data_list_total.append(go.Bar( x = freq_df_total.index, y = freq_df_total.percentage_occurrences, text = input_val.strip().capitalize(), opacity = 0.7, name = input_val.strip().capitalize() )) else: # Term not found, append it to the not found list and go to the # next term. notfound_list.append(input_val) if data_list_total == []: if notfound_list != []: # Append the error message for the terms not found in the # Solr index return not_found_message(notfound_list) # One or more of the Solr queries returned a result else: #graph_total_terms = {'data': data_list_total, 'layout': layout_total} graph_total_terms = dict(data=data_list_total, layout=layout_total) if notfound_list != []: terms_not_found = not_found_message(notfound_list) #return terms_not_found, html.Br(), return terms_not_found, dcc.Graph(id='totalfreq', figure= graph_total_terms) return html.Br(), dcc.Graph(id='totalfreq', figure= graph_total_terms) """ Trigger callback to show graph for unique occurrences for all the comma-separated # search terms when n_clicks of the button is incremented """ @app.callback(Output('output_unique', 'children'), [Input('submit-button', 'n_clicks')], [State('npinput1-state', 'value')]) def show_graph_unique(n_clicks, input_box): """ Wrapped function which takes user input in a text box, returns a graph if the query produces a hit in Solr. ARGUMENTS: n_clicks: a parameter of the HTML button which indicates it has been clicked input_box: the content of the text box in which the user has entered a comma-separated search query. RETURNS: 1 graph (unique occurrences) of all terms which have results from Solr """ # Store the layout with the appropriate title and y axis labels for the graph layout_unique = go.Layout( title = 'Percentage of papers containing chosen noun phrase(s) per Year', xaxis = {'title': 'Publication year', 'tickformat': '%Y', 'tick0': '2007-12-31', 'dtick': 'M12', 'range': ['2007-07-01', '2018-07-01']}, yaxis = {'title': 'Percentage of papers with noun phrase', 'ticksuffix': '%'}, plot_bgcolor = colours['background'], paper_bgcolor = colours['background'], barmode = 'stack', hovermode = 'closest', font= { 'color': colours['text'] }, showlegend=True ) if input_box != '': # Get the input data: both freq_df dfs will have index= published_date, # columns = percentage_occurrences unique. input_list = input_box.lower().split(',') data_list_unique = [] notfound_list = [] for input_val in input_list: # Make sure to strip input_val, otherwise if the user enters a # space after the comma in the query, this space will get sent # to Solr. freq_df_total, freq_df_unique = get_aggregated_data(input_val.strip()) if freq_df_unique is not None: # Plot the graphs, published_date (index) goes on the x-axis, # and percentage_occurrences (unique) goes on the y-axis. data_list_unique.append(go.Bar( x = freq_df_unique.index, y = freq_df_unique.percentage_occurrences, text = input_val.strip().capitalize(), opacity = 0.7, name = input_val.strip().capitalize() )) else: # Term not found, append it to the not found list and go to the # next term. notfound_list.append(input_val) if data_list_unique == []: if notfound_list != []: # Append the error message for the terms not found in the # Solr index return html.Br() # One or more of the Solr queries returned a result else: graph_unique_terms = {'data': data_list_unique, 'layout': layout_unique} if notfound_list != []: return dcc.Graph(id='uniquefreq', figure= graph_unique_terms) return html.Br(), dcc.Graph(id='uniquefreq', figure= graph_unique_terms) def show_graph_total_not_callback(n_clicks, input_box): """ Function which is called by a wrapped function in another module. It takes user input in a text box, returns a graph if the query produces a hit in Solr. Returns an error message otherwise. ARGUMENTS: n_clicks: a parameter of the HTML button which indicates it has been clicked input_box: the content of the text box in which the user has entered a comma-separated search query. RETURNS: 1 graph (total occurrences) of all terms which have results from Solr, error messages of all terms which don't have results from Solr.""" # Store the layout with the appropriate title and y axis labels for the graph layout_total = go.Layout( title = 'Percentage of occurrences of chosen noun phrase(s) per Year', xaxis = {'title': 'Publication year', 'tickformat': '%Y', 'tick0': '2007-12-31', 'dtick': 'M12', 'range': ['2007-07-01', '2018-07-01']}, yaxis = {'title': 'Percentage of phrase occurrences', 'ticksuffix': '%'}, plot_bgcolor = colours['background'], paper_bgcolor = colours['background'], barmode = 'stack', hovermode = 'closest', font= { 'color': colours['text'] }, showlegend=True ) if input_box != '': # Get the input data: both freq_df dfs will have index= published_date, # columns = percentage_occurrences total. input_list = input_box.lower().split(',') data_list_total = [] notfound_list = [] for input_val in input_list: # Make sure to strip input_val, otherwise if the user enters a # space after the comma in the query, this space will get sent # to Solr. freq_df_total, freq_df_unique = get_aggregated_data(input_val.strip()) if freq_df_total is not None: # Plot the graphs, published_date (index) goes on the x-axis, # and percentage_occurrences total goes on the y-axis. data_list_total.append(go.Bar( x = freq_df_total.index, y = freq_df_total.percentage_occurrences, text = input_val.strip().capitalize(), opacity = 0.7, name = input_val.strip().capitalize() )) else: # Term not found, append it to the not found list and go to the # next term. notfound_list.append(input_val) if data_list_total == []: if notfound_list != []: # Append the error message for the terms not found in the # Solr index return not_found_message(notfound_list) # One or more of the Solr queries returned a result else: #graph_total_terms = {'data': data_list_total, 'layout': layout_total} graph_total_terms = dict(data=data_list_total, layout=layout_total) if notfound_list != []: terms_not_found = not_found_message(notfound_list) #return terms_not_found, html.Br(), return terms_not_found, dcc.Graph(id='totalfreq', figure= graph_total_terms) return html.Br(), dcc.Graph(id='totalfreq', figure= graph_total_terms) def show_graph_unique_not_callback(n_clicks, input_box): """ Function which is called by a wrapped function in another module. It takes user input in a text box, returns a graph if the query produces a hit in Solr. Returns an error message otherwise. ARGUMENTS: n_clicks: a parameter of the HTML button which indicates it has been clicked input_box: the content of the text box in which the user has entered a comma-separated search query. RETURNS: 1 graph (unique occurrences) of all terms which have results from Solr """ # Store the layout with the appropriate title and y axis labels for the graph layout_unique = go.Layout( title = 'Percentage of papers containing chosen noun phrase(s) per Year', xaxis = {'title': 'Publication year', 'tickformat': '%Y', 'tick0': '2007-12-31', 'dtick': 'M12', 'range': ['2007-07-01', '2018-07-01'], 'titlefont': {'size': 20}, 'tickfont': {'size': 18}}, yaxis = {'title': 'Percentage of papers with noun phrase', 'ticksuffix': '%', 'titlefont': {'size': 20}, 'tickfont': {'size': 18}}, plot_bgcolor = colours['background'], paper_bgcolor = colours['background'], barmode = 'stack', hovermode = 'closest', font= { 'color': colours['text'], 'size': 15 }, showlegend=True, legend = {'font': {'size': 20}} ) if input_box != '': # Get the input data: both freq_df dfs will have index= published_date, # columns = percentage_occurrences unique. input_list = input_box.lower().split(',') data_list_unique = [] notfound_list = [] for input_val in input_list: # Make sure to strip input_val, otherwise if the user enters a # space after the comma in the query, this space will get sent # to Solr. freq_df_total, freq_df_unique = get_aggregated_data(input_val.strip()) if freq_df_unique is not None: # Plot the graphs, published_date (index) goes on the x-axis, # and percentage_occurrences (unique) goes on the y-axis. data_list_unique.append(go.Bar( x = freq_df_unique.index, y = freq_df_unique.percentage_occurrences, text = input_val.strip().capitalize(), opacity = 0.7, name = input_val.strip().capitalize() )) else: # Term not found, append it to the not found list and go to the # next term. notfound_list.append(input_val) if data_list_unique == []: if notfound_list != []: # Append the error message for the terms not found in the # Solr index return not_found_message(notfound_list) # One or more of the Solr queries returned a result else: graph_unique_terms = {'data': data_list_unique, 'layout': layout_unique} if notfound_list != []: terms_not_found = not_found_message(notfound_list) return terms_not_found, dcc.Graph(id='uniquefreq', figure= graph_unique_terms) return html.Br(), dcc.Graph(id='uniquefreq', figure= graph_unique_terms) if __name__ == '__main__': app.run_server(host='0.0.0.0')
ca9dd99a19a954466f615b47a1b8dbff97ea320d
bc7ae358f8932d2bc5358c70f6c1edd92905aeb9
/transparent test.py
2cb32e0157490b5231ac64cbc8bc1f60fe954ddd
[]
no_license
Aaron-Hsiao1/Python_Sylvan
415b383bebff619062ee6ef70339ec6a1fe43965
b293e36caf215be7721cf869b494d0fd4860e5b2
refs/heads/master
2023-07-19T19:04:55.211094
2021-08-21T19:34:03
2021-08-21T19:34:03
323,982,539
0
0
null
null
null
null
UTF-8
Python
false
false
1,297
py
import pygame pygame.init() X = 570 Y = 900 screen_width = 1000 screen_height = 1000 Width = 30 Height = 30 Speed = 8 looping = True screen = pygame.display.set_mode((screen_width, screen_height)) pygame.display.set_caption("blank") while looping: pygame.time.delay(5) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() # def blit_alpha(target, source, opacity): # x = 100 # y = 100 # temp = pygame.Surface((source.get_width(), source.get_height())).convert() # temp.blit(target, (-x, -y)) # temp.blit(source, (100, 100)) # temp.set_alpha(50) # target.blit(temp, (l00,100)) keys = pygame.key.get_pressed() if keys[pygame.K_UP]: Y -= Speed if keys[pygame.K_DOWN]: Y += Speed if keys[pygame.K_LEFT]: X -= Speed if keys[pygame.K_RIGHT]: X += Speed screen.fill((0, 0, 0)) pygame.draw.rect(screen, (0,255,0), (X, Y, Width, Height)) s = pygame.Surface((500,500)) # the size of your rect s.set_alpha(150) # alpha level s.fill((255,255,255)) # this fills the entire surface screen.blit(s, (250,250)) # (0,0) are the top-left coordinates pygame.display.update()
8ffaa6d47074616ebc145529b8fae389dbe8f338
fb55adfc901176c1bae6914b51c0eedc7eab44a3
/tasks.py
79acd1db41870a008b6336a3f9a68773cdc68847
[ "MIT" ]
permissive
yijiangh/coop_assembly
b82ab7b17b956ff33beafe329a48c083cfb7f940
71108b0639323cf3d996d63b0f702d45f4d60d67
refs/heads/master
2023-04-03T07:36:36.444159
2020-02-05T16:40:08
2020-02-05T16:40:08
228,839,363
8
0
MIT
2019-12-18T12:51:08
2019-12-18T12:51:06
null
UTF-8
Python
false
false
6,917
py
# -*- coding: utf-8 -*- from __future__ import print_function import codecs import contextlib import glob import os import sys from shutil import rmtree from xml.dom.minidom import parse from invoke import Collection, Exit, task # For automatic doc deployment # from paramiko import SSHClient # from paramiko.client import AutoAddPolicy # from scp import SCPClient try: input = raw_input except NameError: pass BASE_FOLDER = os.path.dirname(__file__) PACKAGE_NAME = 'coop_assembly' class Log(object): def __init__(self, out=sys.stdout, err=sys.stderr): self.out = out self.err = err def flush(self): self.out.flush() self.err.flush() def write(self, message): self.flush() self.out.write(message + '\n') self.out.flush() def info(self, message): self.write('[INFO] %s' % message) def warn(self, message): self.write('[WARN] %s' % message) log = Log() def confirm(question): while True: response = input(question).lower().strip() if not response or response in ('n', 'no'): return False if response in ('y', 'yes'): return True print('Focus! It is either (y)es or (n)o', file=sys.stderr) @task(default=True) def help(ctx): """Lists available tasks and usage.""" ctx.run('invoke --list') log.write('Use "invoke -h <taskname>" to get detailed help for a task.') @task(help={ 'docs': 'True to generate documentation, otherwise False', 'bytecode': 'True to clean up compiled python files, otherwise False.', 'builds': 'True to clean up build/packaging artifacts, otherwise False.'}) def clean(ctx, docs=True, bytecode=True, builds=True): """Cleans the local copy from compiled artifacts.""" with chdir(BASE_FOLDER): if builds: ctx.run('python setup.py clean') if bytecode: for root, dirs, files in os.walk(BASE_FOLDER): for f in files: if f.endswith('.pyc'): os.remove(os.path.join(root, f)) if '.git' in dirs: dirs.remove('.git') folders = [] if docs: folders.append('docs/_build/') folders.append('dist/') if bytecode: folders.append('src/{}/__pycache__'.format(PACKAGE_NAME)) if builds: folders.append('build/') folders.append('src/{}.egg-info/'.format(PACKAGE_NAME)) for folder in folders: rmtree(os.path.join(BASE_FOLDER, folder), ignore_errors=True) @task(help={ 'rebuild': 'True to clean all previously built docs before starting, otherwise False.', 'doctest': 'True to run doctest snippets, otherwise False.', # 'check_links': 'True to check all web links in docs for validity, otherwise False.' }) def docs(ctx, rebuild=False, doctest=False): #, check_links=False): """Builds package's HTML documentation.""" with chdir(BASE_FOLDER): if rebuild: clean(ctx) if doctest: ctx.run('sphinx-build -b doctest docs dist/docs/{}'.format(PACKAGE_NAME)) ctx.run('sphinx-build -b html docs dist/docs/{}'.format(PACKAGE_NAME)) # if check_links: # ctx.run('sphinx-build -b linkcheck -c docs . dist/docs/{}'.format(PACKAGE_NAME)) # @task() # def deploy_docs(ctx, scp_server='darch.ethz.ch'): # """Deploy docs to the documentation server. # # Published to: xxx address""" # # DOCS_PATH = os.path.join(BASE_FOLDER, 'dist', 'docs', PACKAGE_NAME) # with chdir(DOCS_PATH): # scp_username = os.environ.get('SCP_USERNAME') # scp_password = os.environ.get('SCP_PASSWORD') # # print('Connecting to {} as {}...'.format(scp_server, scp_username)) # # with SSHClient() as ssh: # ssh.set_missing_host_key_policy(AutoAddPolicy) # ssh.connect(scp_server, username=scp_username, password=scp_password) # # scp = SCPClient(ssh.get_transport()) # scp.put(DOCS_PATH, recursive=True, remote_path='htdocs') # # print('Done') @task() def check(ctx): """Check the consistency of documentation, coding style and a few other things.""" with chdir(BASE_FOLDER): log.write('Checking ReStructuredText formatting...') ctx.run('python setup.py check --strict --metadata --restructuredtext') # log.write('Running flake8 python linter...') # ctx.run('flake8 src setup.py') # log.write('Checking python imports...') # ctx.run('isort --check-only --diff --recursive src tests setup.py') # log.write('Checking MANIFEST.in...') # ctx.run('check-manifest') @task(help={ 'checks': 'True to run all checks before testing, otherwise False.', 'build': 'test build, default to false', }) def test(ctx, checks=True, build=False): """Run all tests.""" with chdir(BASE_FOLDER): if checks: check(ctx) if build: log.write('Checking build') ctx.run('python setup.py clean --all sdist bdist_wheel') #bdist_wheel if sys.platform == 'win32': ctx.run('powershell -Command "& pip install --verbose $(ls dist/*.tar.gz | % {$_.FullName})"') else: ctx.run('pip install --verbose dist/*.tar.gz') log.write('Running pytest') ctx.run('pytest --doctest-modules --cov={} tests --cov-report term-missing'.format(PACKAGE_NAME)) @task(help={ 'release_type': 'Type of release follows semver rules. Must be one of: major, minor, patch.', 'bump_version': 'Bumpversion, true or false, default to false'}) def release(ctx, release_type, bump_version=False): """Releases the project in one swift command!""" if release_type not in ('patch', 'minor', 'major'): raise Exit('The release type parameter is invalid.\nMust be one of: major, minor, patch') with chdir(BASE_FOLDER): if bump_version: ctx.run('bumpversion %s --verbose' % release_type) ctx.run('invoke docs test') ctx.run('python setup.py clean --all sdist bdist_wheel') if confirm('You are about to upload the release to pypi.org. Are you sure? [y/N]'): files = ['dist/*.whl', 'dist/*.gz', 'dist/*.zip'] dist_files = ' '.join([pattern for f in files for pattern in glob.glob(f)]) if len(dist_files): ctx.run('twine upload --skip-existing %s' % dist_files) else: raise Exit('No files found to release') else: raise Exit('Aborted release') @contextlib.contextmanager def chdir(dirname=None): current_dir = os.getcwd() try: if dirname is not None: os.chdir(dirname) yield finally: os.chdir(current_dir)
fb3e5fb2d325fe624ac277cba857887429060102
325fde42058b2b82f8a4020048ff910cfdf737d7
/src/storage-blob-preview/azext_storage_blob_preview/vendored_sdks/azure_storage_blob/v2019_12_12/_shared/authentication.py
b11dc57578087edc183689b24d68b515df7a6a00
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
ebencarek/azure-cli-extensions
46b0d18fe536fe5884b00d7ffa30f54c7d6887d1
42491b284e38f8853712a5af01836f83b04a1aa8
refs/heads/master
2023-04-12T00:28:44.828652
2021-03-30T22:34:13
2021-03-30T22:34:13
261,621,934
2
5
MIT
2020-10-09T18:21:52
2020-05-06T01:25:58
Python
UTF-8
Python
false
false
5,199
py
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import logging import sys try: from urllib.parse import urlparse, unquote except ImportError: from urlparse import urlparse # type: ignore from urllib2 import unquote # type: ignore try: from yarl import URL except ImportError: pass try: from azure.core.pipeline.transport import AioHttpTransport except ImportError: AioHttpTransport = None from azure.core.exceptions import ClientAuthenticationError from azure.core.pipeline.policies import SansIOHTTPPolicy from . import sign_string logger = logging.getLogger(__name__) # wraps a given exception with the desired exception type def _wrap_exception(ex, desired_type): msg = "" if ex.args: msg = ex.args[0] if sys.version_info >= (3,): # Automatic chaining in Python 3 means we keep the trace return desired_type(msg) # There isn't a good solution in 2 for keeping the stack trace # in general, or that will not result in an error in 3 # However, we can keep the previous error type and message # TODO: In the future we will log the trace return desired_type('{}: {}'.format(ex.__class__.__name__, msg)) class AzureSigningError(ClientAuthenticationError): """ Represents a fatal error when attempting to sign a request. In general, the cause of this exception is user error. For example, the given account key is not valid. Please visit https://docs.microsoft.com/en-us/azure/storage/common/storage-create-storage-account for more info. """ # pylint: disable=no-self-use class SharedKeyCredentialPolicy(SansIOHTTPPolicy): def __init__(self, account_name, account_key): self.account_name = account_name self.account_key = account_key super(SharedKeyCredentialPolicy, self).__init__() @staticmethod def _get_headers(request, headers_to_sign): headers = dict((name.lower(), value) for name, value in request.http_request.headers.items() if value) if 'content-length' in headers and headers['content-length'] == '0': del headers['content-length'] return '\n'.join(headers.get(x, '') for x in headers_to_sign) + '\n' @staticmethod def _get_verb(request): return request.http_request.method + '\n' def _get_canonicalized_resource(self, request): uri_path = urlparse(request.http_request.url).path try: if isinstance(request.context.transport, AioHttpTransport) or \ isinstance(getattr(request.context.transport, "_transport", None), AioHttpTransport): uri_path = URL(uri_path) return '/' + self.account_name + str(uri_path) except TypeError: pass return '/' + self.account_name + uri_path @staticmethod def _get_canonicalized_headers(request): string_to_sign = '' x_ms_headers = [] for name, value in request.http_request.headers.items(): if name.startswith('x-ms-'): x_ms_headers.append((name.lower(), value)) x_ms_headers.sort() for name, value in x_ms_headers: if value is not None: string_to_sign += ''.join([name, ':', value, '\n']) return string_to_sign @staticmethod def _get_canonicalized_resource_query(request): sorted_queries = list(request.http_request.query.items()) sorted_queries.sort() string_to_sign = '' for name, value in sorted_queries: if value is not None: string_to_sign += '\n' + name.lower() + ':' + unquote(value) return string_to_sign def _add_authorization_header(self, request, string_to_sign): try: signature = sign_string(self.account_key, string_to_sign) auth_string = 'SharedKey ' + self.account_name + ':' + signature request.http_request.headers['Authorization'] = auth_string except Exception as ex: # Wrap any error that occurred as signing error # Doing so will clarify/locate the source of problem raise _wrap_exception(ex, AzureSigningError) def on_request(self, request): string_to_sign = \ self._get_verb(request) + \ self._get_headers( request, [ 'content-encoding', 'content-language', 'content-length', 'content-md5', 'content-type', 'date', 'if-modified-since', 'if-match', 'if-none-match', 'if-unmodified-since', 'byte_range' ] ) + \ self._get_canonicalized_headers(request) + \ self._get_canonicalized_resource(request) + \ self._get_canonicalized_resource_query(request) self._add_authorization_header(request, string_to_sign) #logger.debug("String_to_sign=%s", string_to_sign)
02356b4c95f1fe3d5b2b19948af77d16597c26f6
dffb9a8855adecc4bd4d21b9168a4e9bdc75e508
/arrandmatrix/q9.py
e71297c66dbcfdb2e98b4e05b14779bcc6c7eb44
[ "MIT" ]
permissive
ResolveWang/algorithm_qa
95278c4459e38c55225304210770efb61d934fcc
a0cb649acaf8cf9d808272bc15f1951f2c05c828
refs/heads/master
2021-07-17T09:32:01.845815
2018-08-13T13:54:42
2018-08-13T13:54:42
100,107,109
90
29
null
null
null
null
UTF-8
Python
false
false
1,873
py
""" 问题描述:给定一个排序数组arr和整数k,不重复打印arr中所有相加和为k的不降序二元组。 例如,arr=[-8, -4, -3, 0, 1, 2, 4, 5, 8, 9], k=10,打印结果为: 1,9 2,8 补充题目: 给定排序数组arr和整数k,不重复打印arr中所有相加和为k的不降序三元组。 例如,arr=[-8, -4, -3, 0, 1, 2, 4, 5, 8, 9], k=10,打印结果为: -4, 5, 9 -3, 4, 9 -3, 5, 8 0, 1, 9 0, 2, 8 1, 4, 5 """ class KnumOfSum: @classmethod def get_two_tuple_of_sum(cls, arr, k, print_value=False): if not arr or len(arr) == 1: return left = 0 right = len(arr) - 1 res = [] while left < right: left_value = arr[left] right_value = arr[right] if left_value + right_value == k: if left > 0 and arr[left-1] == arr[left]: pass else: left += 1 right -= 1 if print_value: print(left_value, right_value) res.append((left_value, right_value)) elif left_value + right_value < k: left += 1 else: right -= 1 return res @classmethod def get_three_tuple_of_sum(cls, arr, k): if not arr or len(arr) < 3: return for i in range(len(arr)): new_k = k - arr[i] if i > 0 and arr[i] == arr[i-1]: continue else: res = cls.get_two_tuple_of_sum(arr[i+1:], new_k) if res: for x, y in res: print(arr[i], x, y) if __name__ == '__main__': my_arr = [-8, -4, -3, 0, 1, 2, 2, 4, 5, 8, 9] KnumOfSum.get_two_tuple_of_sum(my_arr, 10, True) KnumOfSum.get_three_tuple_of_sum(my_arr, 10)
055160178fb7c1930792888ea5adaa86078353fc
6ecf40c771874f31fa19f9534677c95c731352e9
/SnapLimitReconstructor_Old.py
a392ca94928b1415a51d86e123387a049c797a00
[]
no_license
fstakem/OptNetFilt
1c86e82629352ee8ee9eb270aa3be01c6202696d
c862f3d1dd09ad9cdd146871761cb1f814e82de9
refs/heads/master
2016-09-11T03:06:06.466206
2014-06-07T02:03:04
2014-06-07T02:03:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,503
py
# .---------------------------------------------------------------------------. # | | # | S N A P L I M I T R E C O N S T R U C T O R | # | | # '---------------------------------------------------------------------------' import pdb import inspect from copy import * from enum import Enum from Globals import * from Vector import Vector from Sample import Sample from PredictionSample import PredictionSample class SnapLimitReconstructor(object): #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # P U B L I C F U N C T I O N S #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def __init__(self): # Data self.rawSignal = [] self.reconstructedSignal = [] # Algorithm parameters self.samplingInterval = 10 self.interpolationType = InterpolationType.Time self.threshold = 60 self.heartbeatRate = 500 self.snapLimit = 0.5 def getReconstructedSignal(self, rawSignal=[], samplingInterval=10, interpolationType=InterpolationType.Time, threshold=60, heartbeatRate=500, snapLimit=0.5): if isinstance( rawSignal, list ): self.rawSignal = rawSignal if isinstance( samplingInterval, int ) and samplingInterval > 0: self.samplingInterval = samplingInterval if isinstance( interpolationType, Enum ): self.interpolationType = interpolationType if (isinstance( threshold, float ) and threshold > 0) or \ (isinstance(threshold, int ) and threshold > 0): self.threshold = threshold if isinstance( heartbeatRate, int ) and heartbeatRate > 0: self.heartbeatRate = heartbeatRate if isinstance( snapLimit, float ) and snapLimit > 0: self.snapLimit = snapLimit self.pullDataFromPackets() self.executeAlgorithm() return self.reconstructedSignal #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # P R I V A T E F U N C T I O N S #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def pullDataFromPackets(self): temp = [] for packet in self.rawSignal: temp.append(packet.predictionSample) self.rawSignal = temp def executeAlgorithm(self): self.reconstructedSignal = [] self.reconstructedSignal.append( self.findFirstSample() ) reconstructionTime = self.reconstructedSignal[0].time + self.samplingInterval interpolationSample = PredictionSample(self.reconstructedSignal[0], self.rawSignal[0].velocity) targetSample = None for index, predictionSample in enumerate(self.rawSignal[1:]): currentTime = predictionSample.sample.time if currentTime < reconstructionTime: targetSample = None interpolationSample = predictionSample elif currentTime == reconstructionTime: estimatedSample = self.estimateSample(interpolationSample, reconstructionTime) targetSample = self.findTarget(predictionSample) interpolationSample = self.findSnapSample(predictionSample, estimatedSample, targetSample) self.reconstructedSignal.append(deepcopy(interpolationSample.sample)) reconstructionTime += self.samplingInterval elif currentTime > reconstructionTime: while currentTime > reconstructionTime: if targetSample != None and reconstructionTime >= targetSample.sample.time: interpolationSample = targetSample targetSample = None estimatedSample = self.estimateSample(interpolationSample, reconstructionTime) self.reconstructedSignal.append(deepcopy(estimatedSample.sample)) reconstructionTime += self.samplingInterval if currentTime < reconstructionTime: targetSample = None interpolationSample = predictionSample elif currentTime == reconstructionTime: estimatedSample = self.estimateSample(interpolationSample, reconstructionTime) targetSample = self.findTarget(predictionSample) interpolationSample = self.findSnapSample(predictionSample, estimatedSample, targetSample) self.reconstructedSignal.append(deepcopy(interpolationSample.sample)) reconstructionTime += self.samplingInterval def findFirstSample(self): timeDiff = self.rawSignal[0].sample.time % self.samplingInterval if timeDiff == 0: return deepcopy(self.rawSignal[0].sample) else: change = self.samplingInterval - timeDiff newSample = Sample() newSample.time = self.rawSignal[0].sample.time + change newSample.position = deepcopy(self.rawSignal[0].sample.position) return newSample def findTarget(self, predictionSample): if self.interpolationType == InterpolationType.Time: return self.findTargetForTimeThreshold(predictionSample) elif self.interpolationType == Interpolation.Distance: return self.findTargetForDistanceThreshold(predictionSample) def findTargetForTimeThreshold(self, predictionSample): time = min(self.threshold, self.heartbeatRate) targetSample = self.estimateSample(predictionSample, predictionSample.sample.time + time) return targetSample def findTargetForDistanceThreshold(self, predictionSample): distance = 0 targetSample = None time = predictionSample.sample.time timeDiff = 0 while distance < self.threshold and timeDiff < self.heartbeatRate: time += self.samplingInterval timeDiff = time - predictionSample.sample.time targetSample = self.estimateSample(predictionSample, time) distance = predictionSample.sample.position.distance(target.sample.position) return targetSample def findInterpolationSample(self, currentSample, targetSample): deltaPosition = targetSample.sample.position - \ currentSample.sample.position deltaTime = targetSample.sample.time - \ currentSample.sample.time invDeltaTimeVector = Vector( 1 / float(deltaTime), \ 1 / float(deltaTime), \ 1 / float(deltaTime)) velocity = deltaPosition * invDeltaTimeVector interpolationSample = PredictionSample() interpolationSample.sample = deepcopy(currentSample.sample) interpolationSample.velocity = velocity return interpolationSample def findSnapSample(self, currentSample, estimatedSample, targetSample): deltaPosition = targetSample.sample.position - \ currentSample.sample.position deltaPosition.x *= self.snapLimit deltaPosition.y *= self.snapLimit deltaPosition.z *= self.snapLimit snapPosition = currentSample.sample.position + deltaPosition deltaPosition = targetSample.sample.position - snapPosition deltaTime = targetSample.sample.time - \ currentSample.sample.time invDeltaTimeVector = Vector( 1 / float(deltaTime), \ 1 / float(deltaTime), \ 1 / float(deltaTime)) velocity = deltaPosition * invDeltaTimeVector snapSample = PredictionSample() snapSample.sample = Sample(currentSample.sample.time, snapPosition) snapSample.velocity = velocity return snapSample def estimateSample(self, interpolationSample, time): estimatedSample = PredictionSample() estimatedSample.sample.time = time estimatedSample.sample.position = self.calculatePosition(interpolationSample, time) estimatedSample.velocity = deepcopy(interpolationSample.velocity) return estimatedSample def calculatePosition(self, interpolationSample, time): deltaTime = time - interpolationSample.sample.time if deltaTime < 0: print "Error at: " + str(interpolationSample.sample.time) + " " + str(time) return deepcopy(interpolationSample.sample.position) elif deltaTime == 0: return deepcopy(interpolationSample.sample.position) else: deltaTimeVector = Vector(deltaTime, deltaTime, deltaTime) deltaPosition = interpolationSample.velocity * deltaTimeVector estimatedPosition = interpolationSample.sample.position + deltaPosition return estimatedPosition
c533a3df7e8cc711386467ffd3b763470cc473f5
41e3065d6f29449251f1cc79cb340fa273ac5c61
/0x07-python-test_driven_development/2-matrix_divided.py
863f0dc62cc8b16f472da3460c0908a01aaa3834
[]
no_license
BD20171998/holbertonschool-higher_level_programming
856fa3a7fcfafd3e17ebd7dd4cf9d3e5a609fd1f
bfa78d25bd4527e06cf1bf54cbc00722449d9a30
refs/heads/master
2021-07-16T01:58:42.911959
2020-11-15T07:18:19
2020-11-15T07:18:19
226,976,859
0
1
null
null
null
null
UTF-8
Python
false
false
1,359
py
#!/usr/bin/python3 """ This is an example of the matrix_divided function. >>> matrix = [[1, 2, 3], [4, 5, 6]] >>> print(matrix_divided(matrix, 3)) [[0.33, 0.67, 1.0], [1.33, 1.67, 2.0]] """ def matrix_divided(matrix, div): """ This function divides a matrix by an integer or float and returns a new matrix divided by that number """ if (matrix == [] or matrix[0] == []): raise TypeError('matrix must be a matrix (list of lists) of ' 'integers/floats') for i in range(len(matrix)): for j in range(len(matrix[i])): if ( type(matrix[i][j]) is not int and type(matrix[i][j]) is not float ): raise TypeError('matrix must be a matrix (list of lists) of ' 'integers/floats') x = len(matrix[0]) for i in range(1, len(matrix)): if len(matrix[i]) != x: raise TypeError('Each row of the matrix must have the same size') if div == 0: raise ZeroDivisionError('division by zero') if type(div) is not int and type(div) is not float: raise TypeError('div must be a number') newmat = matrix[:] newmat = [ [float(round(newmat[i][j]/div, 2)) for j in range(len(newmat[i]))] for i in range(len(newmat))] return newmat
a42ee1435bedd3c4a0940ee63ffcaa7c0387407f
612325535126eaddebc230d8c27af095c8e5cc2f
/depot_tools/git_upstream_diff.py
cc0a2006e585c1a00a443d4763335359281640b6
[ "BSD-3-Clause" ]
permissive
TrellixVulnTeam/proto-quic_1V94
1a3a03ac7a08a494b3d4e9857b24bb8f2c2cd673
feee14d96ee95313f236e0f0e3ff7719246c84f7
refs/heads/master
2023-04-01T14:36:53.888576
2019-10-17T02:23:04
2019-10-17T02:23:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,410
py
#!/usr/bin/env python # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse import sys import subprocess2 import git_common as git def main(args): default_args = git.config_list('depot-tools.upstream-diff.default-args') args = default_args + args parser = argparse.ArgumentParser() parser.add_argument('--wordwise', action='store_true', default=False, help=( 'Print a colorized wordwise diff ' 'instead of line-wise diff')) opts, extra_args = parser.parse_known_args(args) cur = git.current_branch() if not cur or cur == 'HEAD': print 'fatal: Cannot perform git-upstream-diff while not on a branch' return 1 par = git.upstream(cur) if not par: print 'fatal: No upstream configured for branch \'%s\'' % cur return 1 cmd = [git.GIT_EXE, 'diff', '--patience', '-C', '-C'] if opts.wordwise: cmd += ['--word-diff=color', r'--word-diff-regex=(\w+|[^[:space:]])'] cmd += [git.get_or_create_merge_base(cur, par)] cmd += extra_args return subprocess2.check_call(cmd) if __name__ == '__main__': try: sys.exit(main(sys.argv[1:])) except KeyboardInterrupt: sys.stderr.write('interrupted\n') sys.exit(1)
2b55e707ba9ff684d0159528ae983b83dceb3b6d
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_22433.py
a406e0709451fe6478ee3ca985fe25f91ec65b95
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
145
py
# How to disable button until check box is checked in pyqt? connect(checkbox, SIGNAL(stateChanged(int)), button, SLOT(buttonStateChanged(int)));
c5d99d7ef7f2e3f44b277992637c51bbbcdc00d1
0fccee4c738449f5e0a8f52ea5acabf51db0e910
/genfragments/EightTeV/TprimeTprime/TprimeTprimeToTHTHinc_M_625_TuneZ2star_8TeV-madgraph_cff.py
4d932f949768263c528bf82c33419cee1ca13447
[]
no_license
cms-sw/genproductions
f308ffaf3586c19b29853db40e6d662e937940ff
dd3d3a3826343d4f75ec36b4662b6e9ff1f270f4
refs/heads/master
2023-08-30T17:26:02.581596
2023-08-29T14:53:43
2023-08-29T14:53:43
11,424,867
69
987
null
2023-09-14T12:41:28
2013-07-15T14:18:33
Python
UTF-8
Python
false
false
5,115
py
import FWCore.ParameterSet.Config as cms #from Configuration.Generator.PythiaUEZ2Settings_cfi import * from Configuration.Generator.PythiaUEZ2starSettings_cfi import * generator = cms.EDFilter("Pythia6HadronizerFilter", pythiaHepMCVerbosity = cms.untracked.bool(False), maxEventsToPrint = cms.untracked.int32(0), pythiaPylistVerbosity = cms.untracked.int32(0), comEnergy = cms.double(8000.0), PythiaParameters = cms.PSet( pythiaUESettingsBlock, processParameters = cms.vstring( 'PMAS(25,1)=125.00D0 !mass of Higgs', 'MSTP(1) = 4', 'MSEL=8 ! fourth generation (t4) fermions', 'MWID(8)=2', 'MSTJ(1)=1 ! Fragmentation/hadronization on or off', 'MSTP(61)=1 ! Parton showering on or off', 'PMAS(5,1)=4.8 ! b quark mass', #from Spring11 4000040 'PMAS(6,1)=172.5 ! t quark mass', #from Spring11 4000040 'PMAS(8,1) = 625.0D0 ! tprime quarks mass', 'PMAS(8,2) = 6.25D0', 'PMAS(8,3) = 62.5D0', 'VCKM(1,1) = 0.97414000D0', 'VCKM(1,2) = 0.22450000D0', 'VCKM(1,3) = 0.00420000D0', 'VCKM(1,4) = 0.02500000D0', 'VCKM(2,1) = 0.22560000D0', 'VCKM(2,2) = 0.97170000D0', 'VCKM(2,3) = 0.04109000D0', 'VCKM(2,4) = 0.05700000D0', 'VCKM(3,1) = 0.00100000D0', 'VCKM(3,2) = 0.06200000D0', 'VCKM(3,3) = 0.91000000D0', 'VCKM(3,4) = 0.41000000D0', 'VCKM(4,1) = 0.01300000D0', 'VCKM(4,2) = 0.04000000D0', 'VCKM(4,3) = 0.41000000D0', 'VCKM(4,4) = 0.91000000D0', 'MDME(66,1)=0 ! g t4', 'MDME(67,1)=0 ! gamma t4', 'MDME(68,1)=0 ! Z0 t (2 : on for particle, off for anti-particle) ', 'MDME(69,1)=0 ! W d', 'MDME(70,1)=0 ! W s', 'MDME(71,1)=0 ! W b (3 : off for particle, on for particle) ', 'MDME(72,1)=0 ! W b4', 'KFDP(73,2)=6 ! defines H0 t', 'MDME(73,1)=1 ! h0 t4', 'MDME(74,1)=-1 ! H+ b', 'MDME(75,1)=-1 ! H+ b4', 'BRAT(66) = 0.0D0', 'BRAT(67) = 0.0D0', 'BRAT(68) = 0.0D0', 'BRAT(69) = 0.0D0', 'BRAT(70) = 0.0D0', 'BRAT(71) = 0.0D0', 'BRAT(72) = 0.0D0', 'BRAT(73) = 1.0D0', 'BRAT(74) = 0.0D0', 'BRAT(75) = 0.0D0', 'MDME(174,1)=1 !Z decay into d dbar', 'MDME(175,1)=1 !Z decay into u ubar', 'MDME(176,1)=1 !Z decay into s sbar', 'MDME(177,1)=1 !Z decay into c cbar', 'MDME(178,1)=1 !Z decay into b bbar', 'MDME(179,1)=1 !Z decay into t tbar', 'MDME(180,1)=-1 !Z decay into b4 b4bar', 'MDME(181,1)=-1 !Z decay into t4 t4bar', 'MDME(182,1)=1 !Z decay into e- e+', 'MDME(183,1)=1 !Z decay into nu_e nu_ebar', 'MDME(184,1)=1 !Z decay into mu- mu+', 'MDME(185,1)=1 !Z decay into nu_mu nu_mubar', 'MDME(186,1)=1 !Z decay into tau- tau+', 'MDME(187,1)=1 !Z decay into nu_tau nu_taubar', 'MDME(188,1)=-1 !Z decay into tau4 tau4bar', 'MDME(189,1)=-1 !Z decay into nu_tau4 nu_tau4bar', 'MDME(190,1)=1 !W decay into u dbar', 'MDME(191,1)=1 !W decay into c dbar', 'MDME(192,1)=1 !W decay into t dbar', 'MDME(193,1)=-1 !W decay into t4 dbar', 'MDME(194,1)=1 !W decay into u sbar', 'MDME(195,1)=1 !W decay into c sbar', 'MDME(196,1)=1 !W decay into t sbar', 'MDME(197,1)=-1 !W decay into t4 sbar', 'MDME(198,1)=1 !W decay into u bbar', 'MDME(199,1)=1 !W decay into c bbar', 'MDME(200,1)=1 !W decay into t bbar', 'MDME(201,1)=-1 !W decay into t4 bbar', 'MDME(202,1)=-1 !W decay into u b4bar', 'MDME(203,1)=-1 !W decay into c b4bar', 'MDME(204,1)=-1 !W decay into t b4bar', 'MDME(205,1)=-1 !W decay into t4 b4bar', 'MDME(206,1)=1 !W decay into e- nu_e', 'MDME(207,1)=1 !W decay into mu nu_mu', 'MDME(208,1)=1 !W decay into tau nu_tau', 'MDME(209,1)=-1 !W decay into tau4 nu_tau4'), # This is a vector of ParameterSet names to be read, in this order parameterSets = cms.vstring('pythiaUESettings', 'processParameters') ), jetMatching = cms.untracked.PSet( scheme = cms.string("Madgraph"), mode = cms.string("auto"), # soup, or "inclusive" / "exclusive" MEMAIN_etaclmax = cms.double(5.0), MEMAIN_qcut = cms.double(-1), MEMAIN_nqmatch = cms.int32(-1), MEMAIN_minjets = cms.int32(-1), MEMAIN_maxjets = cms.int32(-1), MEMAIN_showerkt = cms.double(0), MEMAIN_excres = cms.string(''), outTree_flag = cms.int32(0) ) ) ProductionFilterSequence = cms.Sequence(generator)
476f7082b9b260260f80644006a9ada67ee8fcb7
25b914aecd6b0cb49294fdc4f2efcfdf5803cc36
/homeassistant/components/color_extractor/__init__.py
73e8e09101c38ea10b25ef93ae14eb5b08dbdd04
[ "Apache-2.0" ]
permissive
jason0x43/home-assistant
9114decaa8f7c2f1582f84e79dc06736b402b008
8bf6aba1cf44ee841de063755c935ea78040f399
refs/heads/dev
2023-03-04T01:14:10.257593
2022-01-01T12:11:56
2022-01-01T12:11:56
230,622,861
1
1
Apache-2.0
2023-02-22T06:15:07
2019-12-28T14:45:43
Python
UTF-8
Python
false
false
4,528
py
"""Module for color_extractor (RGB extraction from images) component.""" import asyncio import io import logging from PIL import UnidentifiedImageError import aiohttp import async_timeout from colorthief import ColorThief import voluptuous as vol from homeassistant.components.light import ( ATTR_RGB_COLOR, DOMAIN as LIGHT_DOMAIN, LIGHT_TURN_ON_SCHEMA, SERVICE_TURN_ON as LIGHT_SERVICE_TURN_ON, ) from homeassistant.core import ServiceCall from homeassistant.helpers import aiohttp_client import homeassistant.helpers.config_validation as cv from .const import ATTR_PATH, ATTR_URL, DOMAIN, SERVICE_TURN_ON _LOGGER = logging.getLogger(__name__) # Extend the existing light.turn_on service schema SERVICE_SCHEMA = vol.All( cv.has_at_least_one_key(ATTR_URL, ATTR_PATH), cv.make_entity_service_schema( { **LIGHT_TURN_ON_SCHEMA, vol.Exclusive(ATTR_PATH, "color_extractor"): cv.isfile, vol.Exclusive(ATTR_URL, "color_extractor"): cv.url, } ), ) def _get_file(file_path): """Get a PIL acceptable input file reference. Allows us to mock patch during testing to make BytesIO stream. """ return file_path def _get_color(file_handler) -> tuple: """Given an image file, extract the predominant color from it.""" color_thief = ColorThief(file_handler) # get_color returns a SINGLE RGB value for the given image color = color_thief.get_color(quality=1) _LOGGER.debug("Extracted RGB color %s from image", color) return color async def async_setup(hass, hass_config): """Set up services for color_extractor integration.""" async def async_handle_service(service_call: ServiceCall) -> None: """Decide which color_extractor method to call based on service.""" service_data = dict(service_call.data) try: if ATTR_URL in service_data: image_type = "URL" image_reference = service_data.pop(ATTR_URL) color = await async_extract_color_from_url(image_reference) elif ATTR_PATH in service_data: image_type = "file path" image_reference = service_data.pop(ATTR_PATH) color = await hass.async_add_executor_job( extract_color_from_path, image_reference ) except UnidentifiedImageError as ex: _LOGGER.error( "Bad image from %s '%s' provided, are you sure it's an image? %s", image_type, image_reference, ex, ) return if color: service_data[ATTR_RGB_COLOR] = color await hass.services.async_call( LIGHT_DOMAIN, LIGHT_SERVICE_TURN_ON, service_data, blocking=True ) hass.services.async_register( DOMAIN, SERVICE_TURN_ON, async_handle_service, schema=SERVICE_SCHEMA, ) async def async_extract_color_from_url(url): """Handle call for URL based image.""" if not hass.config.is_allowed_external_url(url): _LOGGER.error( "External URL '%s' is not allowed, please add to 'allowlist_external_urls'", url, ) return None _LOGGER.debug("Getting predominant RGB from image URL '%s'", url) # Download the image into a buffer for ColorThief to check against try: session = aiohttp_client.async_get_clientsession(hass) async with async_timeout.timeout(10): response = await session.get(url) except (asyncio.TimeoutError, aiohttp.ClientError) as err: _LOGGER.error("Failed to get ColorThief image due to HTTPError: %s", err) return None content = await response.content.read() with io.BytesIO(content) as _file: _file.name = "color_extractor.jpg" _file.seek(0) return _get_color(_file) def extract_color_from_path(file_path): """Handle call for local file based image.""" if not hass.config.is_allowed_path(file_path): _LOGGER.error( "File path '%s' is not allowed, please add to 'allowlist_external_dirs'", file_path, ) return None _LOGGER.debug("Getting predominant RGB from file path '%s'", file_path) _file = _get_file(file_path) return _get_color(_file) return True
1b7ce49e1222b0fe960952fc254de4119bfb963e
80b7f2a10506f70477d8720e229d7530da2eff5d
/uhd_restpy/testplatform/sessions/ixnetwork/topology/spbsimedgetopologylist_5e9b551439bb252c1fa3e2c6948a1432.py
82f7b45a6002ca0d6bd4fe30fda2e1c885a047d8
[ "MIT" ]
permissive
OpenIxia/ixnetwork_restpy
00fdc305901aa7e4b26e4000b133655e2d0e346a
c8ecc779421bffbc27c906c1ea51af3756d83398
refs/heads/master
2023-08-10T02:21:38.207252
2023-07-19T14:14:57
2023-07-19T14:14:57
174,170,555
26
16
MIT
2023-02-02T07:02:43
2019-03-06T15:27:20
Python
UTF-8
Python
false
false
10,573
py
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import sys from uhd_restpy.base import Base from uhd_restpy.files import Files if sys.version_info >= (3, 5): from typing import List, Any, Union class SpbSimEdgeTopologyList(Base): """SPB Simulated Edge Topology Configuration The SpbSimEdgeTopologyList class encapsulates a required spbSimEdgeTopologyList resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'spbSimEdgeTopologyList' _SDM_ATT_MAP = { 'Active': 'active', 'BaseVIDCount': 'baseVIDCount', 'CistExternalRootCost': 'cistExternalRootCost', 'CistRootId': 'cistRootId', 'Count': 'count', 'DescriptiveName': 'descriptiveName', 'Name': 'name', 'NumberOfPorts': 'numberOfPorts', 'PortIdentifier': 'portIdentifier', 'TopologyId': 'topologyId', 'Vbit': 'vbit', } _SDM_ENUM_MAP = { } def __init__(self, parent, list_op=False): super(SpbSimEdgeTopologyList, self).__init__(parent, list_op) @property def SpbSimEdgeBaseVidList(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.spbsimedgebasevidlist_166a7ab8274498ee804810aa449de276.SpbSimEdgeBaseVidList): An instance of the SpbSimEdgeBaseVidList class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.topology.spbsimedgebasevidlist_166a7ab8274498ee804810aa449de276 import SpbSimEdgeBaseVidList if len(self._object_properties) > 0: if self._properties.get('SpbSimEdgeBaseVidList', None) is not None: return self._properties.get('SpbSimEdgeBaseVidList') return SpbSimEdgeBaseVidList(self)._select() @property def Active(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Activate/Deactivate Configuration """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Active'])) @property def BaseVIDCount(self): # type: () -> int """ Returns ------- - number: Base VID Count(multiplier) """ return self._get_attribute(self._SDM_ATT_MAP['BaseVIDCount']) @property def CistExternalRootCost(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): CIST External Root Cost """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CistExternalRootCost'])) @property def CistRootId(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): CIST Root Identifier """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CistRootId'])) @property def Count(self): # type: () -> int """ Returns ------- - number: Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group. """ return self._get_attribute(self._SDM_ATT_MAP['Count']) @property def DescriptiveName(self): # type: () -> str """ Returns ------- - str: Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offer more context. """ return self._get_attribute(self._SDM_ATT_MAP['DescriptiveName']) @property def Name(self): # type: () -> str """ Returns ------- - str: Name of NGPF element, guaranteed to be unique in Scenario """ return self._get_attribute(self._SDM_ATT_MAP['Name']) @Name.setter def Name(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['Name'], value) @property def NumberOfPorts(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Number of Ports """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['NumberOfPorts'])) @property def PortIdentifier(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Port Identifier """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['PortIdentifier'])) @property def TopologyId(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Topology Id """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['TopologyId'])) @property def Vbit(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable V Bit """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Vbit'])) def update(self, Name=None): # type: (str) -> SpbSimEdgeTopologyList """Updates spbSimEdgeTopologyList resource on the server. This method has some named parameters with a type: obj (Multivalue). The Multivalue class has documentation that details the possible values for those named parameters. Args ---- - Name (str): Name of NGPF element, guaranteed to be unique in Scenario Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def find(self, BaseVIDCount=None, Count=None, DescriptiveName=None, Name=None): # type: (int, int, str, str) -> SpbSimEdgeTopologyList """Finds and retrieves spbSimEdgeTopologyList resources from the server. All named parameters are evaluated on the server using regex. The named parameters can be used to selectively retrieve spbSimEdgeTopologyList resources from the server. To retrieve an exact match ensure the parameter value starts with ^ and ends with $ By default the find method takes no parameters and will retrieve all spbSimEdgeTopologyList resources from the server. Args ---- - BaseVIDCount (number): Base VID Count(multiplier) - Count (number): Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group. - DescriptiveName (str): Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offer more context. - Name (str): Name of NGPF element, guaranteed to be unique in Scenario Returns ------- - self: This instance with matching spbSimEdgeTopologyList resources retrieved from the server available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._select(self._map_locals(self._SDM_ATT_MAP, locals())) def read(self, href): """Retrieves a single instance of spbSimEdgeTopologyList data from the server. Args ---- - href (str): An href to the instance to be retrieved Returns ------- - self: This instance with the spbSimEdgeTopologyList resources from the server available through an iterator or index Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ return self._read(href) def get_device_ids(self, PortNames=None, Active=None, CistExternalRootCost=None, CistRootId=None, NumberOfPorts=None, PortIdentifier=None, TopologyId=None, Vbit=None): """Base class infrastructure that gets a list of spbSimEdgeTopologyList device ids encapsulated by this object. Use the optional regex parameters in the method to refine the list of device ids encapsulated by this object. Args ---- - PortNames (str): optional regex of port names - Active (str): optional regex of active - CistExternalRootCost (str): optional regex of cistExternalRootCost - CistRootId (str): optional regex of cistRootId - NumberOfPorts (str): optional regex of numberOfPorts - PortIdentifier (str): optional regex of portIdentifier - TopologyId (str): optional regex of topologyId - Vbit (str): optional regex of vbit Returns ------- - list(int): A list of device ids that meets the regex criteria provided in the method parameters Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._get_ngpf_device_ids(locals())
dba9130365a99707f7878bd20cab0e0664a2c04d
b55bfe14e10ff28569eebab73c3b1e509eec4e1a
/Starfish/model.py
66f94063e69d1c6205e57d013bbd465d0ef8dc74
[ "BSD-3-Clause" ]
permissive
ellipticalboy/Starfish
da7e440e9f433b32da0cc37030a636954e3942fb
9d3c99021b7b7c4c90020162258801c590f2f11e
refs/heads/master
2021-01-18T02:46:16.934126
2015-09-23T09:21:05
2015-09-23T09:21:05
34,518,507
0
0
null
2015-04-24T12:52:56
2015-04-24T12:52:55
null
UTF-8
Python
false
false
34,513
py
import numpy as np from emcee import GibbsSampler, ParallelSampler from . import constants as C from .grid_tools import Interpolator from .spectrum import ModelSpectrum, ModelSpectrumHA import json import h5py import logging import matplotlib.pyplot as plt from itertools import zip_longest def grouper(iterable, n, fillvalue=None): "Collect data into fixed-length chunks or blocks" # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx" args = [iter(iterable)] * n return zip_longest(*args, fillvalue=fillvalue) def plot_walkers(filename, samples, labels=None): ndim = len(samples[0, :]) figsize = (12, ndim * 1.8) fig, ax = plt.subplots(nrows=ndim, sharex=True, figsize=figsize) for i in range(ndim): ax[i].plot(samples[:,i]) if labels is not None: ax[i].set_ylabel(labels[i]) ax[-1].set_xlabel("Sample number") fig.savefig(filename) plt.close(fig) class ModelEncoder(json.JSONEncoder): ''' Designed to serialize an instance of o=Model() to JSON ''' def default(self, o): try: #We turn Model into a hierarchical dictionary, which will serialize to JSON mydict = {"stellar_tuple":o.stellar_tuple, "cheb_tuple": o.cheb_tuple, "cov_tuple": o.cov_tuple, "region_tuple": o.region_tuple, "stellar_params": o.stellar_params, "orders": {}} #Determine the list of orders orders = o.DataSpectrum.orders #for each order, then instantiate an order dictionary for i,order in enumerate(orders): #Will eventually be mydict['orders'] = {"22":order_dict, "23:order_dict, ...} order_dict = {} order_model = o.OrderModels[i] order_dict["cheb"] = order_model.cheb_params order_dict["global_cov"] = order_model.global_cov_params #Now determine if we need to add any regions order_dict["regions"] = order_model.get_regions_dict() mydict['orders'].update({str(order): order_dict}) except TypeError: pass else: return mydict # Let the base class default method raise the TypeError, if there is one return json.JSONEncoder.default(self, o) class Model: ''' Container class to create and bring together all of the relevant data and models to aid in evaulation. :param DataSpectrum: the data to fit :type DataSpectrum: :obj:`spectrum.DataSpectrum` object :param Instrument: the instrument with which the data was acquired :type Instrument: :obj:`grid_tools.Instrument` object :param HDF5Interface: the interface to the synthetic stellar library :type HDF5Interface: :obj:`grid_tools.HDF5Interface` object :param stellar_tuple: describes the order of parameters. If ``alpha`` is missing, :obj:``grid_tools.Interpolator`` is trilinear. :type stellar_tuple: tuple ''' @classmethod def from_json(cls, filename, DataSpectrum, Instrument, HDF5Interface, ErrorHDF5Interface): ''' Instantiate from a JSON file. ''' #Determine tuples from the JSON output f = open(filename, "r") read = json.load(f) f.close() #Read DataSpectrum, Instrument, HDF5Interface, stellar_tuple, cov_tuple, and region_tuple stellar_tuple = tuple(read['stellar_tuple']) cheb_tuple = tuple(read['cheb_tuple']) cov_tuple = tuple(read['cov_tuple']) region_tuple = tuple(read['region_tuple']) #Initialize the Model object model = cls(DataSpectrum, Instrument, HDF5Interface, ErrorHDF5Interface, stellar_tuple=stellar_tuple, cheb_tuple=cheb_tuple, cov_tuple=cov_tuple, region_tuple=region_tuple) #Update all of the parameters so covariance matrix uploads #1) update stellar parameters model.update_Model(read['stellar_params']) #2) Figure out how many orders, and for each order orders_dict = read["orders"] #print("orders_dict is", orders_dict) orders = [int(i) for i in orders_dict.keys()] orders.sort() fake_priors = {"sigma0": 5., "mu_width": 2., "sigma_knee" : 150, "frac_global":0.5} for i, order in enumerate(orders): order_model = model.OrderModels[i] order_dict = orders_dict[str(order)] #print("order_dict is", order_dict) #2.1) update cheb and global cov parametersorder_dict = orders_dict[order] order_model.update_Cheb(order_dict['cheb']) order_model.update_Cov(order_dict['global_cov']) #2.2) instantiate and create all regions, if any exist regions_dict = order_dict['regions'] regions = [int(i) for i in regions_dict.keys()] regions.sort() if len(regions_dict) > 0: #Create regions, otherwise skip CovMatrix = order_model.CovarianceMatrix for i, region in enumerate(regions): print("creating region ", i, region, regions_dict[str(region)]) CovMatrix.create_region(regions_dict[str(region)], fake_priors) #Now update the stellar model again so it accounts for the Chebyshevs when downsampling model.update_Model(read['stellar_params']) return model def __init__(self, DataSpectrum, Instrument, Emulator, stellar_tuple, cheb_tuple, cov_tuple, region_tuple, outdir="", max_v=20, ismaster=False, debug=False): self.DataSpectrum = DataSpectrum self.ismaster = ismaster #Is this the first model instantiated? self.stellar_tuple = stellar_tuple self.cheb_tuple = cheb_tuple self.cov_tuple = cov_tuple self.region_tuple = region_tuple self.outdir = outdir self.debug = debug self.orders = self.DataSpectrum.orders self.norders = self.DataSpectrum.shape[0] #Determine whether `alpha` is in the `stellar_tuple`, then choose trilinear. if 'alpha' not in self.stellar_tuple: trilinear = True else: trilinear = False Emulator.determine_chunk_log(self.DataSpectrum.wls.flatten()) #Possibly truncate the grid self.ModelSpectrum = ModelSpectrum(Emulator, self.DataSpectrum, Instrument) self.stellar_params = None self.stellar_params_last = None self.logPrior = 0.0 self.logPrior_last = 0.0 self.logger = logging.getLogger(self.__class__.__name__) if self.debug: self.logger.setLevel(logging.DEBUG) else: self.logger.setLevel(logging.INFO) #Now create a a list which contains an OrderModel for each order self.OrderModels = [OrderModel(self.ModelSpectrum, self.DataSpectrum, index, max_v=max_v, npoly=len(self.cheb_tuple), debug=self.debug) for index in range(self.norders)] def zip_stellar_p(self, p): return dict(zip(self.stellar_tuple, p)) def zip_Cheb_p(self, p): return dict(zip(self.cheb_tuple, p)) def zip_Cov_p(self, p): return dict(zip(self.cov_tuple, p)) def zip_Region_p(self, p): return dict(zip(self.region_tuple, p)) def update_Model(self, params): ''' Update the model to reflect the stellar parameters ''' self.stellar_params_last = self.stellar_params self.stellar_params = params self.ModelSpectrum.update_all(params) #print("ModelSpectrum.update_all") if self.ismaster: self.logPrior = self.evaluate_logPrior(params) #Since the ModelSpectrum fluxes have been updated, also update the interpolation errors #print("Sum of errors is {}".format(np.sum(model_errs))) # for orderModel in self.OrderModels: # errs = self.ModelSpectrum.downsampled_errors[:, orderModel.index, :].copy() # assert errs.flags["C_CONTIGUOUS"], "Not C contiguous" # orderModel.CovarianceMatrix.update_interp_errs(errs) def revert_Model(self): ''' Undo the most recent change to the stellar parameters ''' #Reset stellar_params self.stellar_params = self.stellar_params_last if self.ismaster: self.logPrior = self.logPrior_last #Reset downsampled flux self.ModelSpectrum.revert_flux() #Since the interp_errors have been updated, revert them now # for orderModel in self.OrderModels: # orderModel.CovarianceMatrix.revert_interp() def get_data(self): ''' Returns a DataSpectrum object. ''' return self.DataSpectrum def evaluate(self): ''' Compare the different data and models. ''' self.logger.debug("evaluating model {}".format(self)) lnps = np.empty((self.norders,)) for i in range(self.norders): #Evaluate using the current CovarianceMatrix lnps[i] = self.OrderModels[i].evaluate() return np.sum(lnps) + self.logPrior def evaluate_logPrior(self, params): ''' Define the prior here ''' logg = params["logg"] logg_prior = -0.5 * (logg - 5.0)**2/(0.05)**2 return logg_prior def to_json(self, fname="model.json"): ''' Write all of the available parameters to a JSON file so that we may go back and re-create the model. ''' f = open(self.outdir + fname, 'w') json.dump(self, f, cls=ModelEncoder, indent=2, sort_keys=True) f.close() class ModelHA: ''' This is for testing purposes. Container class to create and bring together all of the relevant data and models to aid in evaulation. :param DataSpectrum: the data to fit :type DataSpectrum: :obj:`spectrum.DataSpectrum` object :param Instrument: the instrument with which the data was acquired :type Instrument: :obj:`grid_tools.Instrument` object :param HDF5Interface: the interface to the synthetic stellar library :type HDF5Interface: :obj:`grid_tools.HDF5Interface` object :param stellar_tuple: describes the order of parameters. If ``alpha`` is missing, :obj:``grid_tools.Interpolator`` is trilinear. :type stellar_tuple: tuple ''' @classmethod def from_json(cls, filename, DataSpectrum, Instrument, HDF5Interface): ''' Instantiate from a JSON file. ''' #Determine tuples from the JSON output f = open(filename, "r") read = json.load(f) f.close() #Read DataSpectrum, Instrument, HDF5Interface, stellar_tuple, cov_tuple, and region_tuple stellar_tuple = tuple(read['stellar_tuple']) cheb_tuple = tuple(read['cheb_tuple']) cov_tuple = tuple(read['cov_tuple']) region_tuple = tuple(read['region_tuple']) #Initialize the Model object model = cls(DataSpectrum, Instrument, HDF5Interface, stellar_tuple=stellar_tuple, cheb_tuple=cheb_tuple, cov_tuple=cov_tuple, region_tuple=region_tuple) #Update all of the parameters so covariance matrix uploads #1) update stellar parameters model.update_Model(read['stellar_params']) #2) Figure out how many orders, and for each order orders_dict = read["orders"] #print("orders_dict is", orders_dict) orders = [int(i) for i in orders_dict.keys()] orders.sort() for i, order in enumerate(orders): order_model = model.OrderModels[i] order_dict = orders_dict[str(order)] #print("order_dict is", order_dict) #2.1) update cheb and global cov parametersorder_dict = orders_dict[order] order_model.update_Cheb(order_dict['cheb']) order_model.update_Cov(order_dict['global_cov']) #2.2) instantiate and create all regions, if any exist regions_dict = order_dict['regions'] regions = [int(i) for i in regions_dict.keys()] regions.sort() if len(regions_dict) > 0: #Create regions, otherwise skip CovMatrix = order_model.CovarianceMatrix for i, region in enumerate(regions): print("creating region ", i, region, regions_dict[str(region)]) CovMatrix.create_region(regions_dict[str(region)]) #Now update the stellar model again so it accounts for the Chebyshevs when downsampling model.update_Model(read['stellar_params']) return model def __init__(self, DataSpectrum, Instrument, HDF5Interface, stellar_tuple, cheb_tuple, cov_tuple, region_tuple, outdir=""): self.DataSpectrum = DataSpectrum self.stellar_tuple = stellar_tuple self.cheb_tuple = cheb_tuple self.cov_tuple = cov_tuple self.region_tuple = region_tuple self.outdir = outdir self.orders = self.DataSpectrum.orders self.norders = self.DataSpectrum.shape[0] #Determine whether `alpha` is in the `stellar_tuple`, then choose trilinear. if 'alpha' not in self.stellar_tuple: trilinear = True else: trilinear = False myInterpolator = Interpolator(HDF5Interface, self.DataSpectrum, trilinear=trilinear, log=False) self.ModelSpectrum = ModelSpectrumHA(myInterpolator, Instrument) self.stellar_params = None #Now create a a list which contains an OrderModel for each order self.OrderModels = [OrderModel(self.ModelSpectrum, self.DataSpectrum, index) for index in range(self.norders)] def zip_stellar_p(self, p): return dict(zip(self.stellar_tuple, p)) def zip_Cheb_p(self, p): return dict(zip(self.cheb_tuple, p)) def zip_Cov_p(self, p): return dict(zip(self.cov_tuple, p)) def zip_Region_p(self, p): return dict(zip(self.region_tuple, p)) def update_Model(self, params): self.ModelSpectrum.update_all(params) self.stellar_params = params #Since the ModelSpectrum fluxes have been updated, also update the interpolation errors model_errs = self.ModelSpectrum.downsampled_errors for orderModel in self.OrderModels: errspecs = np.ascontiguousarray(model_errs[:, orderModel.index, :]) orderModel.CovarianceMatrix.update_interp_errs(errspecs) def get_data(self): ''' Returns a DataSpectrum object. ''' return self.DataSpectrum def evaluate(self): ''' Compare the different data and models. ''' #Incorporate priors using self.ModelSpectrum.params, self.ChebyshevSpectrum.c0s, cns, self.CovarianceMatrix.params, etc... lnps = np.empty((self.norders,)) for i in range(self.norders): #Correct the warp of the model using the ChebyshevSpectrum # model_fl = self.OrderModels[i].ChebyshevSpectrum.k * self.ModelSpectrum.downsampled_fls[i] #Evaluate using the current CovarianceMatrix # lnps[i] = self.OrderModels[i].evaluate(model_fl) lnps[i] = self.OrderModels[i].evaluate() return np.sum(lnps) def to_json(self, fname="model.json"): ''' Write all of the available parameters to a JSON file so that we may go back and re-create the model. ''' f = open(self.outdir + fname, 'w') json.dump(self, f, cls=ModelEncoder, indent=2, sort_keys=True) f.close() class Sampler(GibbsSampler): ''' Subclasses the GibbsSampler in emcee :param cov: :param starting_param_dict: the dictionary of starting parameters :param cov: the MH proposal :param revertfn: :param acceptfn: :param debug: ''' def __init__(self, **kwargs): self.dim = len(self.param_tuple) #p0 = np.empty((self.dim,)) #starting_param_dict = kwargs.get("starting_param_dict") #for i,param in enumerate(self.param_tuple): # p0[i] = starting_param_dict[param] kwargs.update({"dim":self.dim}) #self.spectra_list = kwargs.get("spectra_list", [0]) super(Sampler, self).__init__(**kwargs) #Each subclass will have to overwrite how it parses the param_dict into the correct order #and sets the param_tuple #SUBCLASS here and define self.param_tuple #SUBCLASS here and define self.lnprob #SUBCLASS here and do self.revertfn #then do super().__init__() to call the following code self.outdir = kwargs.get("outdir", "") def startdict_to_tuple(self, startdict): raise NotImplementedError("To be implemented by a subclass!") def zip_p(self, p): return dict(zip(self.param_tuple, p)) def lnprob(self): raise NotImplementedError("To be implemented by a subclass!") def revertfn(self): raise NotImplementedError("To be implemented by a subclass!") def acceptfn(self): raise NotImplementedError("To be implemented by a subclass!") def write(self): ''' Write all of the relevant sample output to an HDF file. Write the lnprobability to an HDF file. flatchain acceptance fraction tuple parameters as an attribute in the header from self.param_tuple The actual HDF5 file is structured as follows / stellar parameters.flatchain 00/ ... 22/ 23/ global_cov.flatchain regions/ region1.flatchain Everything can be saved in the dataset self.fname ''' filename = self.outdir + "flatchains.hdf5" self.logger.debug("Opening {} for writing HDF5 flatchains".format(filename)) hdf5 = h5py.File(filename, "w") samples = self.flatchain self.logger.debug("Creating dataset with fname:{}".format(self.fname)) dset = hdf5.create_dataset(self.fname, samples.shape, compression='gzip', compression_opts=9) self.logger.debug("Storing samples and header attributes.") dset[:] = samples dset.attrs["parameters"] = "{}".format(self.param_tuple) dset.attrs["acceptance"] = "{}".format(self.acceptance_fraction) dset.attrs["acor"] = "{}".format(self.acor) dset.attrs["commit"] = "{}".format(C.get_git_commit()) hdf5.close() #lnprobability is the lnprob at each sample filename = self.outdir + "lnprobs.hdf5" self.logger.debug("Opening {} for writing HDF5 lnprobs".format(filename)) hdf5 = h5py.File(filename, "w") lnprobs = self.lnprobability dset = hdf5.create_dataset(self.fname, samples.shape[:1], compression='gzip', compression_opts=9) dset[:] = lnprobs dset.attrs["commit"] = "{}".format(C.get_git_commit()) hdf5.close() def plot(self, triangle_plot=False): ''' Generate the relevant plots once the sampling is done. ''' samples = self.flatchain plot_walkers(self.outdir + self.fname + "_chain_pos.png", samples, labels=self.param_tuple) if triangle_plot: import triangle figure = triangle.corner(samples, labels=self.param_tuple, quantiles=[0.16, 0.5, 0.84], show_titles=True, title_args={"fontsize": 12}) figure.savefig(self.outdir + self.fname + "_triangle.png") plt.close(figure) class PSampler(ParallelSampler): ''' Subclasses the GibbsSampler in emcee :param cov: :param starting_param_dict: the dictionary of starting parameters :param cov: the MH proposal :param revertfn: :param acceptfn: :param debug: ''' def __init__(self, **kwargs): self.dim = len(self.param_tuple) #p0 = np.empty((self.dim,)) #starting_param_dict = kwargs.get("starting_param_dict") #for i,param in enumerate(self.param_tuple): # p0[i] = starting_param_dict[param] kwargs.update({"dim":self.dim}) #self.spectra_list = kwargs.get("spectra_list", [0]) super(PSampler, self).__init__(**kwargs) #Each subclass will have to overwrite how it parses the param_dict into the correct order #and sets the param_tuple #SUBCLASS here and define self.param_tuple #SUBCLASS here and define self.lnprob #SUBCLASS here and do self.revertfn #then do super().__init__() to call the following code self.outdir = kwargs.get("outdir", "") def startdict_to_tuple(self, startdict): raise NotImplementedError("To be implemented by a subclass!") def zip_p(self, p): return dict(zip(self.param_tuple, p)) def lnprob(self): raise NotImplementedError("To be implemented by a subclass!") def revertfn(self): raise NotImplementedError("To be implemented by a subclass!") def acceptfn(self): raise NotImplementedError("To be implemented by a subclass!") def write(self): ''' Write all of the relevant sample output to an HDF file. Write the lnprobability to an HDF file. flatchain acceptance fraction tuple parameters as an attribute in the header from self.param_tuple The actual HDF5 file is structured as follows / stellar parameters.flatchain 00/ ... 22/ 23/ global_cov.flatchain regions/ region1.flatchain Everything can be saved in the dataset self.fname ''' filename = self.outdir + "flatchains.hdf5" self.logger.debug("Opening {} for writing HDF5 flatchains".format(filename)) hdf5 = h5py.File(filename, "w") samples = self.flatchain self.logger.debug("Creating dataset with fname:{}".format(self.fname)) dset = hdf5.create_dataset(self.fname, samples.shape, compression='gzip', compression_opts=9) self.logger.debug("Storing samples and header attributes.") dset[:] = samples dset.attrs["parameters"] = "{}".format(self.param_tuple) dset.attrs["acceptance"] = "{}".format(self.acceptance_fraction) dset.attrs["acor"] = "{}".format(self.acor) dset.attrs["commit"] = "{}".format(C.get_git_commit()) hdf5.close() #lnprobability is the lnprob at each sample filename = self.outdir + "lnprobs.hdf5" self.logger.debug("Opening {} for writing HDF5 lnprobs".format(filename)) hdf5 = h5py.File(filename, "w") #creates if doesn't exist, otherwise read/write lnprobs = self.lnprobability dset = hdf5.create_dataset(self.fname, samples.shape[:1], compression='gzip', compression_opts=9) dset[:] = lnprobs dset.attrs["commit"] = "{}".format(C.get_git_commit()) hdf5.close() def plot(self, triangle_plot=False): ''' Generate the relevant plots once the sampling is done. ''' samples = self.flatchain plot_walkers(self.outdir + self.fname + "_chain_pos.png", samples, labels=self.param_tuple) if triangle_plot: import triangle figure = triangle.corner(samples, labels=self.param_tuple, quantiles=[0.16, 0.5, 0.84], show_titles=True, title_args={"fontsize": 12}) figure.savefig(self.outdir + self.fname + "_triangle.png") plt.close(figure) class StellarSampler(PSampler): """ Subclasses the Sampler specifically for stellar parameters """ def __init__(self, **kwargs): ''' :param pconns: Collection of parent ends of the PIPEs :type pconns: dict :param starting_param_dict: the dictionary of starting parameters :param cov: the MH proposal :param fix_logg: fix logg? If so, to what value? :param debug: :param args: [] ''' self.fix_logg = kwargs.get("fix_logg", False) starting_pram_dict = kwargs.get("starting_param_dict") self.param_tuple = self.startdict_to_tuple(starting_pram_dict) print("param_tuple is {}".format(self.param_tuple)) self.p0 = np.array([starting_pram_dict[key] for key in self.param_tuple]) kwargs.update({"p0":self.p0, "revertfn":self.revertfn, "acceptfn": self.acceptfn, "lnprobfn":self.lnprob}) super(StellarSampler, self).__init__(**kwargs) #self.pconns is a dictionary of parent connections to each PIPE connecting to the child processes. self.spectrum_ids = sorted(self.pconns.keys()) self.fname = "stellar" def startdict_to_tuple(self, startdict): tup = () for param in C.stellar_parameters: #check if param is in keys, if so, add to the tuple if param in startdict: tup += (param,) return tup def reset(self): super(StellarSampler, self).reset() def revertfn(self): ''' Revert the model to the previous state of parameters, in the case of a rejected MH proposal. ''' self.logger.debug("reverting stellar parameters") self.prior = self.prior_last #Decide we don't want these stellar params. Tell the children to reject the proposal. for pconn in self.pconns.values(): pconn.send(("DECIDE", False)) def acceptfn(self): ''' Execute this if the MH proposal is accepted. ''' self.logger.debug("accepting stellar parameters") #Decide we do want to keep these stellar params. Tell the children to accept the proposal. for pconn in self.pconns.values(): pconn.send(("DECIDE", True)) def lnprob(self, p): # We want to send the same stellar parameters to each model, # but also send the different vz and logOmega parameters # to the separate spectra, based upon spectrum_id. #self.logger.debug("StellarSampler lnprob p is {}".format(p)) #Extract only the temp, logg, Z, vsini parameters if not self.fix_logg: params = self.zip_p(p[:4]) others = p[4:] else: #Coming in as temp, Z, vsini, vz, logOmega... params = self.zip_p(p[:3]) others = p[3:] params.update({"logg": self.fix_logg}) # Prior self.prior_last = self.prior logg = params["logg"] self.prior = -0.5 * (logg - 5.0)**2/(0.05)**2 #others should now be either [vz, logOmega] or [vz0, logOmega0, vz1, logOmega1, ...] etc. Always div by 2. #split p up into [vz, logOmega], [vz, logOmega] pairs that update the other parameters. #mparams is now a list of parameter dictionaries #Now, pack up mparams into a dictionary to send the right stellar parameters to the right subprocesses mparams = {} for (spectrum_id, order_id), (vz, logOmega) in zip(self.spectrum_ids, grouper(others, 2)): p = params.copy() p.update({"vz":vz, "logOmega":logOmega}) mparams[spectrum_id] = p self.logger.debug("updated lnprob params: {}".format(mparams)) lnps = np.empty((self.nprocs,)) #Distribute the calculation to each process self.logger.debug("Distributing params to children") for ((spectrum_id, order_id), pconn) in self.pconns.items(): #Parse the parameters into what needs to be sent to each Model here. pconn.send(("LNPROB", mparams[spectrum_id])) #Collect the answer from each process self.logger.debug("Collecting params from children") for i, pconn in enumerate(self.pconns.values()): lnps[i] = pconn.recv() self.logger.debug("lnps : {}".format(lnps)) s = np.sum(lnps) self.logger.debug("sum lnps {}".format(s)) return s + self.prior class NuisanceSampler(Sampler): def __init__(self, **kwargs): ''' :param OrderModel: the parallel.OrderModel instance :param starting_param_dict: the dictionary of starting parameters :param cov: the MH proposal :param debug: :param args: [] ''' starting_param_dict = kwargs.get("starting_param_dict") self.param_tuple = self.startdict_to_tuple(starting_param_dict) print("param_tuple is {}".format(self.param_tuple)) #print("param_tuple length {}".format(len(self.param_tuple))) chebs = [starting_param_dict["cheb"][key] for key in self.cheb_tup] covs = [starting_param_dict["cov"][key] for key in self.cov_tup] regions = starting_param_dict["regions"] #print("initializing {}".format(regions)) regs = [regions[id][kk] for id in sorted(regions) for kk in C.cov_region_parameters] #print("regs {}".format(regs)) self.p0 = np.array(chebs + covs + regs) kwargs.update({"p0":self.p0, "revertfn":self.revertfn, "lnprobfn":self.lnprob}) super(NuisanceSampler, self).__init__(**kwargs) self.model = kwargs.get("OrderModel") spectrum_id, order_id = self.model.id order = kwargs.get("order", order_id) #self.fname = "{}/{}/{}".format(spectrum_id, order, "nuisance") self.fname = "nuisance" self.params = None self.prior_params = kwargs.get("prior_params", None) if self.prior_params: self.sigma0 = self.prior_params["regions"]["sigma0"] self.mus = self.prior_params["regions"]["mus"] self.mu_width = self.prior_params["regions"]["mu_width"] self.sigma_knee = self.prior_params["regions"]["sigma_knee"] self.frac_global = self.prior_params["regions"]["frac_global"] def startdict_to_tuple(self, startdict): #This is a little more tricky than the stellar parameters. #How are the keys stored and passed in the dictionary? #{"cheb": [c0, c1, c2, ..., cn], "cov": [sigAmp, logAmp, l], # "regions":{0: [logAmp, ], 1: [], N:[] }} #Serialize the cheb parameters self.ncheb = len(startdict["cheb"]) self.cheb_tup = ("logc0",) + tuple(["c{}".format(i) for i in range(1, self.ncheb)]) #Serialize the covariance parameters self.ncov = 3 cov_tup = () for param in C.cov_global_parameters: #check if param is in keys, if so, add to the tuple if param in startdict["cov"]: cov_tup += (param,) self.cov_tup = cov_tup regions_tup = () self.regions = startdict.get("regions", None) if self.regions: self.nregions = len(self.regions) for key in sorted(self.regions.keys()): for kk in C.cov_region_parameters: regions_tup += ("r{:0>2}-{}".format(key,kk),) self.regions_tup = regions_tup else: self.nregions = 0 self.regions_tup = () tup = self.cheb_tup + self.cov_tup + self.regions_tup #This should look like #tup = ("c0", "c1", ..., "cn", "sigAmp", "logAmp", "l", "r00_logAmp", "r00_mu", "r00_sigma", # "r01_logAmp", ..., "rNN_sigma") return tup def zip_p(self, p): ''' Convert the vector to a dictionary ''' cheb = dict(zip(self.cheb_tup, p[:self.ncheb])) cov = dict(zip(self.cov_tup, p[self.ncheb:self.ncheb+self.ncov])) regions = p[-self.nregions*3:] rdict = {} for i in range(self.nregions): rdict[i] = dict(zip(("logAmp", "mu", "sigma"), regions[i*3:3*(i+1)])) params = {"cheb":cheb, "cov":cov, "regions":rdict} return params def revertfn(self): self.logger.debug("reverting model") self.model.prior = self.prior_last self.params = self.params_last self.model.revert_nuisance() def lnprob(self, p): self.params_last = self.params params = self.zip_p(p) self.params = params self.logger.debug("Updating nuisance params {}".format(params)) # Nuisance parameter priors implemented here self.prior_last = self.model.prior # Region parameter priors implemented here if self.nregions > 0: regions = params["regions"] keys = sorted(regions) #Unpack the region parameters into a vector of mus, amps, and sigmas amps = 10**np.array([regions[key]["logAmp"] for key in keys]) cov_amp = 10**params["cov"]["logAmp"] #First check to make sure that amplitude can't be some factor less than the global covariance if np.any(amps < (cov_amp * self.frac_global)): return -np.inf mus = np.array([regions[key]["mu"] for key in keys]) sigmas = np.array([regions[key]["sigma"] for key in keys]) #Make sure the region hasn't strayed too far from the original specification if np.any(np.abs(mus - self.mus) > self.sigma0): # The region has strayed too far from the original specification return -np.inf #Use a Gaussian prior on mu, that it keeps the region within the original setting. # 1/(sqrt(2pi) * sigma) exp(-0.5 (mu-x)^2/sigma^2) #-ln(sigma * sqrt(2 pi)) - 0.5 (mu - x)^2 / sigma^2 #width = 0.04 lnGauss = -0.5 * np.sum(np.abs(mus - self.mus)**2/self.mu_width**2 - np.log(self.mu_width * np.sqrt(2. * np.pi))) # Use a ln(logistic) function on sigma, that is flat before the knee and dies off for anything # greater, to prevent dilution into global cov kernel lnLogistic = np.sum(np.log(-1./(1. + np.exp(self.sigma_knee - sigmas)) + 1.)) self.model.prior = lnLogistic + lnGauss try: self.model.update_nuisance(params) lnp = self.model.evaluate() # also sets OrderModel.lnprob to proposed value. Includes self.model.prior return lnp except C.ModelError: return -np.inf def main(): print("Starting main of model") pass if __name__ == "__main__": main()
db10855a9829a6b7fc7b3239048bf8d6e30c8849
83e18f5d4fcd7084defb32981337a8f9b646c4c7
/python/91.decode-ways.py
926f10a41f2cdbf2fa346422937918a04b9d8437
[ "MIT" ]
permissive
Zhenye-Na/leetcode
709037a318e1be7e6ab92751f8695d888900591a
18d91a6ba813f91531b04632563212dfde2cceb9
refs/heads/master
2023-04-10T07:06:06.502224
2023-04-01T00:18:44
2023-04-01T00:18:44
145,656,854
19
9
MIT
2022-05-16T03:14:02
2018-08-22T04:39:25
Python
UTF-8
Python
false
false
2,549
py
# # @lc app=leetcode id=91 lang=python3 # # [91] Decode Ways # # https://leetcode.com/problems/decode-ways/description/ # # algorithms # Medium (27.50%) # Likes: 4791 # Dislikes: 3513 # Total Accepted: 593.9K # Total Submissions: 2.1M # Testcase Example: '"12"' # # A message containing letters from A-Z can be encoded into numbers using the # following mapping: # # # 'A' -> "1" # 'B' -> "2" # ... # 'Z' -> "26" # # # To decode an encoded message, all the digits must be grouped then mapped back # into letters using the reverse of the mapping above (there may be multiple # ways). For example, "11106" can be mapped into: # # # "AAJF" with the grouping (1 1 10 6) # "KJF" with the grouping (11 10 6) # # # Note that the grouping (1 11 06) is invalid because "06" cannot be mapped # into 'F' since "6" is different from "06". # # Given a string s containing only digits, return the number of ways to decode # it. # # The answer is guaranteed to fit in a 32-bit integer. # # # Example 1: # # # Input: s = "12" # Output: 2 # Explanation: "12" could be decoded as "AB" (1 2) or "L" (12). # # # Example 2: # # # Input: s = "226" # Output: 3 # Explanation: "226" could be decoded as "BZ" (2 26), "VF" (22 6), or "BBF" (2 # 2 6). # # # Example 3: # # # Input: s = "0" # Output: 0 # Explanation: There is no character that is mapped to a number starting with # 0. # The only valid mappings with 0 are 'J' -> "10" and 'T' -> "20", neither of # which start with 0. # Hence, there are no valid ways to decode this since all digits need to be # mapped. # # # Example 4: # # # Input: s = "06" # Output: 0 # Explanation: "06" cannot be mapped to "F" because of the leading zero ("6" is # different from "06"). # # # # Constraints: # # # 1 <= s.length <= 100 # s contains only digits and may contain leading zero(s). # # # # @lc code=start class Solution: def numDecodings(self, s: str) -> int: s = "#" + s n = len(s) dp = [0 for _ in range(n)] dp[0] = 1 if s[1] == "0": return 0 else: dp[1] = 1 for i in range(2, n): if s[i] == "0": if s[i - 1] == "1" or s[i - 1] == "2": dp[i] += dp[i - 2] else: return 0 else: # s[i] = 1 ... 9 dp[i] += dp[i - 1] if s[i - 1] == "1" or s[i - 1] == "2" and int(s[i]) <= 6: dp[i] += dp[i - 2] return dp[n - 1] # @lc code=end
b042229ecf57d55791109c255c5332fd28a2c071
c1a1d21ff56175c00f89cfb721f3eec1575e1b2e
/code/python/leetcode/pascals-triangle-ii.py
36f76aa085ab7d4d90bb6611a02743c65d565a16
[]
no_license
zhuzeyu22/cowry
ee8501049447b694d35cce88392405610334382e
e135038caff7fc0743e33525413d415ac69ac898
refs/heads/master
2020-05-29T11:53:10.981688
2016-06-02T14:18:31
2016-06-02T14:18:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
520
py
class Solution: # @return a list of lists of integers def generate(self, numRows): if numRows == 0: return [] l = [[1],] while len(l) < numRows: nrow = [1] + [0] * (len(l)-1) + [1] for i in range(1, len(nrow) - 1): # print i, nrow, l nrow[i] += l[-1][i-1] + l[-1][i] l.append(nrow) return l def getRow(self, rowIndex): return self.generate(rowIndex+1)[-1] print Solution().getRow(3)
8904c1ec13f8e7ca960fa0862d9094244fd30a15
5ebfbdf37806f8c571b85e70c755e274b7ec3b92
/tf/compose/modify.py
0da2bb1bc637c92884445d19c69dee7ae38960c6
[ "MIT" ]
permissive
moranegg/text-fabric
4992d81a8038a20e4381d17e0b5e9e08cf73ff72
d9214b7d60991189682ad91d3fc5588410462f24
refs/heads/master
2020-09-24T23:59:29.873507
2019-10-31T16:37:59
2019-10-31T16:37:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,760
py
import collections from ..fabric import Fabric from ..core.data import WARP from ..core.timestamp import Timestamp from ..core.helpers import itemize, isInt, collectFormats, dirEmpty OTYPE = WARP[0] OSLOTS = WARP[1] OTEXT = WARP[2] VALTP = "valueType" GENERATED = set( """ writtenBy dateWritten version """.strip().split() ) NODE = "node" NODES = "nodes" EDGE = "edge" EDGES = "edges" NFS = "nodeFeatures" EFS = "edgeFeatures" ADD_F_KEYS = {NFS, EFS} NF = "nodeFrom" NT = "nodeTo" NS = "nodeSlots" ADD_T_KEYS = {NF, NT, NS, NFS, EFS} SE_TP = "sectionTypes" SE_FT = "sectionFeatures" ST_TP = "structureTypes" ST_FT = "structureFeatures" TM = Timestamp() indent = TM.indent info = TM.info error = TM.error isSilent = TM.isSilent setSilent = TM.setSilent def _itemize(arg): return [] if not arg else itemize(arg) if type(arg) is str else list(arg) def _rep(iterable): return ", ".join(sorted(iterable)) def modify( location, targetLocation, mergeFeatures=None, deleteFeatures=None, addFeatures=None, mergeTypes=None, deleteTypes=None, addTypes=None, featureMeta=None, silent=False, ): addFeatures = addFeatures or {} deleteFeatures = set(_itemize(deleteFeatures)) mergeFeatures = mergeFeatures or {} addTypes = addTypes or {} deleteTypes = set(_itemize(deleteTypes)) mergeTypes = mergeTypes or {} featureMeta = featureMeta or {} origMaxNode = None origNodeTypes = None origNodeFeatures = None origEdgeFeatures = None origFeatures = None shift = {} shiftNeeded = False slotType = None maxNode = None nodeFeatures = {} edgeFeatures = {} deletedTypes = set() deletedFeatures = set() nodeTypes = {} nodeFeaturesOut = {} edgeFeaturesOut = {} metaDataOut = {} api = None good = True ePrefix = "" eItem = "" def err(msg): nonlocal good error(f"{ePrefix}{eItem}{msg}", tm=False) good = False def inf(msg): info(f"{ePrefix}{eItem}{msg}", tm=False) def meta(feat): return api.TF.features[feat].metaData def valTp(feat): return meta(feat).get(VALTP, None) def otextInfo(): orig = meta(OTEXT) custom = featureMeta.get(OTEXT, {}) combi = {} for key in set(custom) | set(orig): origVal = orig.get(key, "") customVal = custom.get(key, "") combi[key] = customVal or origVal ensureTypes = set() ensureFeatures = set() for kind in (SE_TP, ST_TP): ensureTypes |= set(itemize(combi.get(kind, ""), sep=",")) for kind in (SE_FT, ST_FT): ensureFeatures |= set(itemize(combi.get(kind, ""), sep=",")) ensureFeatures |= set(collectFormats(combi)[1]) return (ensureTypes, ensureFeatures) def allInt(values): return all(isInt(v) for v in values) def prepare(): nonlocal api nonlocal origNodeTypes nonlocal origFeatures nonlocal origNodeFeatures nonlocal origEdgeFeatures nonlocal origMaxNode nonlocal maxNode nonlocal shift nonlocal ePrefix nonlocal eItem indent(level=0, reset=True) info("preparing and checking ...") indent(level=1, reset=True) TF = Fabric(locations=location, silent=silent) origAllFeatures = TF.explore(silent=silent or True, show=True) origNodeFeatures = set(origAllFeatures[NODES]) origEdgeFeatures = set(origAllFeatures[EDGES]) origFeatures = origNodeFeatures | origEdgeFeatures api = TF.load("", silent=silent) if not api: return False F = api.F C = api.C origNodeTypes = {x[0]: (x[2], x[3]) for x in C.levels.data} origMaxSlot = F.otype.maxSlot origMaxNode = F.otype.maxNode maxNode = origMaxNode addedTp = set() addedFt = set() deletedTp = set() deletedFt = set() # check mergeFeatures ePrefix = "Merge features: " for (outFeat, inFeats) in mergeFeatures.items(): eItem = f"{outFeat}: " inFeats = _itemize(inFeats) if outFeat in WARP: err(f"Can not merge into standard features") continue if not inFeats: err("Nothing to merge from") continue addedFt.add(outFeat) for inFeat in inFeats: if inFeat in WARP: err(f"Can not merge from standard features: {inFeat}") continue deletedFt.add(inFeat) missingIn = set(f for f in inFeats if f not in origFeatures) if missingIn: err(f"Missing features {_rep(missingIn)}") allInIsNode = all(f in origNodeFeatures for f in inFeats) allInIsEdge = all(f in origEdgeFeatures for f in inFeats) outExists = outFeat in origFeatures outIsNode = outExists and outFeat in origNodeFeatures outIsEdge = outExists and outFeat in origEdgeFeatures if outIsNode and not allInIsNode: err(f"Node Feature can not be merged from an edge feature") if outIsEdge and not allInIsEdge: err(f"Edge Feature can not be merged from a node feature") if not allInIsNode and not allInIsEdge: err(f"Feature can not be merged from both node and edge features") allInIsInt = all(valTp(f) == "int" for f in inFeats) correctTp = "int" if allInIsInt else "str" checkValType(outFeat, correctTp=correctTp) # check deleteFeatures ePrefix = "Delete features: " for feat in deleteFeatures: eItem = f"{feat}: " if feat in WARP: err(f"Can not delete standard features") continue if feat not in origFeatures: err(f"Not in data set") deletedFt.add(feat) # check addFeatures ePrefix = "Add features: " eItem = "" illegalKeys = set(addFeatures) - ADD_F_KEYS if illegalKeys: err(f"{_rep(illegalKeys)} unrecognized, expected {_rep(ADD_F_KEYS)}") bothFeatures = set(addFeatures.get(NFS, {})) & set(addFeatures.get(EFS, {})) if bothFeatures: err(f"{_rep(bothFeatures)}: Both node and edge features") for (kind, otherKind, origSet, origSetOther) in ( (NODE, EDGE, origNodeFeatures, origEdgeFeatures), (EDGE, NODE, origEdgeFeatures, origNodeFeatures), ): for (feat, data) in addFeatures.get(f"{kind}Features", {}).items(): eItem = f"{feat}: " if feat in WARP: err(f"Cannot add standard features") continue if feat in origSetOther: err(f"{kind} feature already exists as {otherKind} feature") checkValType(feat, vals=data.values()) addedFt.add(feat) # check mergeTypes ePrefix = "Merge types: " mData = {} for (outType, inTypes) in mergeTypes.items(): eItem = f"{outType}: " if outType == slotType: err(f"Result cannot be the slot type") withFeatures = type(inTypes) is dict addedTp.add(outType) for inType in inTypes: if inType == slotType: err(f"Slot type {inType} is not mergeable") continue if inType not in origNodeTypes: err(f"Cannot merge non-existing node type {inType}") continue deletedTp.add(inType) mFeatures = inTypes[inType] if withFeatures else {} for (feat, val) in mFeatures.items(): mData.setdefault(feat, set()).add(val) addedFt.add(feat) for (feat, vals) in mData.items(): eItem = f"{feat}: " checkValType(feat, vals=vals) # check deleteTypes ePrefix = "Delete types: " for nodeType in deleteTypes: eItem = f"{nodeType}: " if nodeType not in origNodeTypes: err(f"Not in data set") continue deletedTp.add(nodeType) # check addTypes ePrefix = "Add types: " for (nodeType, typeInfo) in sorted(addTypes.items()): eItem = f"{nodeType}: " illegalKeys = set(typeInfo) - ADD_T_KEYS if illegalKeys: err(f"{_rep(illegalKeys)} unrecognized, expected {_rep(ADD_T_KEYS)}") continue if nodeType in origNodeTypes: err(f"Already occurs") continue addedTp.add(nodeType) nodeSlots = typeInfo.get(NS, {}) if not nodeSlots: err(f"No slot information given") nF = typeInfo.get(NF, None) if not nF: err(f"No lower bound given") nT = typeInfo.get(NT, None) if not nT: err(f"No upper bound given") if nF is not None and nT is not None: unlinked = 0 badlinked = 0 for n in range(nF, nT + 1): slots = nodeSlots.get(n, ()) if not slots: unlinked += 1 else: slotGood = True for slot in slots: if slot < 1 or slot > origMaxSlot: slotGood = False if not slotGood: badlinked += 1 if unlinked: err(f"{unlinked} nodes not linked to slots") if badlinked: err(f"{badlinked} nodes linked to non-slot nodes") for kind in (NODE, EDGE): for (feat, data) in typeInfo.get(f"{kind}Features", {}).items(): eItem = f"{feat}: " checkValType(feat, vals=data.values()) addedFt.add(feat) (otextTypes, otextFeatures) = otextInfo() problemTypes = addedTp & deletedTp if problemTypes: ePrefix = "Add and then delete: " eItem = "types: " err(f"{_rep(problemTypes)}") problemTypes = otextTypes - ((set(origNodeTypes) | addedTp) - deletedTp) if problemTypes: ePrefix = "Missing for text API: " eItem = "types: " err(f"{_rep(problemTypes)}") problemFeats = addedFt & deletedFt if problemFeats: ePrefix = "Add and then delete: " eItem = "features: " err(f"{_rep(problemFeats)}") problemFeats = otextFeatures - ((origFeatures | addedFt) - deletedFt) if problemFeats: ePrefix = "Missing for text API: " eItem = "features: " err(f"{_rep(problemFeats)}") if not dirEmpty(targetLocation): ePrefix = "Output directory: " eItem = "not empty: " err(f"Clean it or remove it or choose another location") if not good: return False api = TF.loadAll() info("done") return True def checkValType(feat, vals=None, correctTp=None): origTp = valTp(feat) if feat in origFeatures else None customTp = featureMeta.get(feat, {}).get(VALTP, None) assignedTp = origTp or customTp if correctTp is None: correctTp = "int" if allInt(vals) else "str" newTp = customTp or correctTp if newTp != assignedTp: featureMeta.setdefault(feat, {})[VALTP] = newTp if customTp and customTp != correctTp and customTp == "int": err(f"feature values are declared to be int but some values are not int") if assignedTp != newTp: rep1 = f"feature of type {newTp}" rep2 = f" (was {assignedTp})" if assignedTp else "" inf(f"{rep1}{rep2}") def shiftx(vs, offset=None, nF=None, nT=None): if offset is None: return ( {shift[m]: v for (m, v) in vs.items()} if type(vs) is dict else {shift[m] for m in vs} ) else: return ( {m + offset: v for (m, v) in vs.items() if nF <= m <= nT} if type(vs) is dict else {m + offset for m in vs if nF <= m <= nT} ) def shiftFeature(kind, feat, data): return ( {shift[n]: v for (n, v) in data.items() if n in shift} if kind == NODE else {shift[n]: shiftx(v) for (n, v) in data.items() if n in shift} ) def mergeF(): nonlocal deletedFeatures Fs = api.Fs Es = api.Es indent(level=0) if mergeFeatures: info("merge features ...") indent(level=1, reset=True) inF = set() for (outFeat, inFeats) in mergeFeatures.items(): data = {} inFeats = _itemize(inFeats) if all(f in origNodeFeatures for f in inFeats): featSrc = Fs featDst = nodeFeatures else: featSrc = Es featDst = edgeFeatures for inFeat in inFeats: for (n, val) in featSrc(inFeat).data.items(): data[n] = val featDst.setdefault(outFeat, {}).update(data) for inFeat in inFeats: inF.add(inFeat) if inFeat in featDst: del featDst[inFeat] deletedFeatures |= inF if mergeFeatures: info(f"done (deleted {len(inF)} and added {len(mergeFeatures)} features)") indent(level=2) info(f"deleted {_rep(inF)}", tm=False) info(f"added {_rep(mergeFeatures)}", tm=False) return True def deleteF(): indent(level=0) if deleteFeatures: info("delete features ...") indent(level=1, reset=True) for feat in deleteFeatures: dest = ( nodeFeatures if feat in origNodeFeatures else edgeFeatures if feat in origEdgeFeatures else None ) if dest and feat in dest: del dest[feat] deletedFeatures.add(feat) if deleteFeatures: info(f"done ({len(deleteFeatures)} features)") indent(level=2) info(_rep(deleteFeatures), tm=False) return True def addF(): indent(level=0) if addFeatures: info("add features ...") indent(level=1, reset=True) added = collections.defaultdict(set) for (kind, dest) in ( (NODE, nodeFeatures), (EDGE, edgeFeatures), ): for (feat, data) in addFeatures.get(f"{kind}Features", {}).items(): dest.setdefault(feat, {}).update(data) added[kind].add(feat) if addFeatures: info( f'done (added {len(added["node"])} node + {len(added["edge"])} edge features)' ) indent(level=2) for (kind, feats) in sorted(added.items()): info(f"{kind} features: {_rep(feats)}") return True def mergeT(): nonlocal deletedTypes indent(level=0) if mergeTypes: info("merge types ...") indent(level=1, reset=True) inT = set() for (outType, inTypes) in mergeTypes.items(): info(f"Merging {outType}") withFeatures = type(inTypes) is dict for inType in inTypes: addFeatures = inTypes[inType] if withFeatures else {} addFeatures[OTYPE] = outType (nF, nT) = origNodeTypes[inType] for (feat, val) in addFeatures.items(): for n in range(nF, nT + 1): nodeFeatures.setdefault(feat, {})[n] = val inT.add(inType) deletedTypes |= inT if mergeTypes: info(f"done (merged {len(mergeTypes)} node types)") indent(level=2) info(f"deleted {_rep(inT)}", tm=False) info(f"added {_rep(mergeTypes)}", tm=False) return True def deleteT(): nonlocal maxNode nonlocal shiftNeeded indent(level=0) if deleteTypes: info("delete types ...") indent(level=1, reset=True) curShift = 0 for (nType, (nF, nT)) in sorted(origNodeTypes.items(), key=lambda x: x[1][0],): if nType in deleteTypes: curShift -= nT - nF + 1 deletedTypes.add(nType) else: nodeTypes[nType] = (nF + curShift, nT + curShift) for n in range(nF, nT + 1): shift[n] = n - curShift for (kind, upd) in ( (NODE, nodeFeatures,), (EDGE, edgeFeatures,), ): for (feat, uData) in upd.items(): upd[feat] = shiftFeature(kind, feat, uData) maxNode = origMaxNode - curShift shiftNeeded = curShift != 0 if deleteTypes: info(f"done ({len(deleteTypes)} types)") indent(level=2) info(_rep(deleteTypes), tm=False) return True def addT(): nonlocal maxNode indent(level=0) if addTypes: info("add types ...") indent(level=1, reset=True) for (nodeType, typeInfo) in sorted(addTypes.items()): nF = typeInfo[NF] nT = typeInfo[NT] offset = maxNode - nF + 1 nodeSlots = typeInfo[NS] data = {} for n in range(nF, nT + 1): data[offset + n] = nodeType nodeFeatures.setdefault(OTYPE, {}).update(data) data = {} for n in range(nF, nT + 1): data[offset + n] = set(nodeSlots[n]) edgeFeatures.setdefault(OSLOTS, {}).update(data) for (feat, addData) in typeInfo.get(NFS, {}).items(): data = {} for n in range(nF, nT + 1): value = addData.get(n, None) if value is not None: data[offset + n] = value nodeFeatures.setdefault(feat, {}).update(data) for (feat, addData) in typeInfo.get(EFS, {}).items(): data = {} for n in range(nF, nT + 1): value = addData.get(n, None) if value: newValue = shiftx(value, offset=offset, nF=nF, nT=nT) if newValue: data[offset + n] = newValue edgeFeatures.setdefault(feat, {}).update(data) maxNode += nT - nF + 1 if addTypes: info(f"done ({len(addTypes)} types)") indent(level=2) info(_rep(addTypes), tm=False) return True def applyUpdates(): Fs = api.Fs Es = api.Es indent(level=0) info("applying updates ...") indent(level=1, reset=True) mFeat = 0 for (kind, featSet, featSrc, featUpd, featOut) in ( (NODE, origNodeFeatures, Fs, nodeFeatures, nodeFeaturesOut), (EDGE, origEdgeFeatures, Es, edgeFeatures, edgeFeaturesOut), ): for feat in (set(featSet) | set(featUpd)) - deletedFeatures: outData = {} outMeta = {} if feat in featSet: featObj = featSrc(feat) outMeta.update(featObj.meta) if shiftNeeded: outData.update(shiftFeature(kind, feat, featObj)) mFeat += 1 else: outData.update(featObj.items()) if feat in featUpd: outData.update(featUpd[feat]) if kind == EDGE: aVal = next(iter(featUpd[feat].values())) hasValues = type(aVal) is dict if outMeta.get("edgeValues", False) != hasValues: outMeta["edgeValues"] = hasValues if feat in featureMeta: for (k, v) in featureMeta[feat].items(): if v is None: if k in outMeta: del outMeta[k] else: outMeta[k] = v featOut[feat] = outData metaDataOut[feat] = outMeta otextMeta = {} otextMeta.update(meta(OTEXT)) mK = 0 if OTEXT in featureMeta: for (k, v) in featureMeta[OTEXT].items(): if v is None: if k in otextMeta: del otextMeta[k] mK += 1 else: if k not in otextMeta or otextMeta[k] != v: otextMeta[k] = v mK += 1 metaDataOut[OTEXT] = otextMeta if mFeat or mK: fRep = f" (shifted {mFeat} features)" if mFeat else "" kRep = f" (adapted {mK} keys in otext)" if mK else "" info(f"done{fRep}{kRep}") return True def writeTf(): indent(level=0) info("write TF data ...") indent(level=1, reset=True) TF = Fabric(locations=targetLocation, silent=silent or True) TF.save( metaData=metaDataOut, nodeFeatures=nodeFeaturesOut, edgeFeatures=edgeFeaturesOut, ) return True def finalize(): indent(level=0) info("all done") return True def process(): for step in ( prepare, mergeF, deleteF, addF, mergeT, deleteT, addT, applyUpdates, writeTf, finalize, ): if not step(): return False return True wasSilent = isSilent() setSilent(silent) result = process() setSilent(wasSilent) return result
6076b1d83d498c7d5098c42a7e74abd9531c111f
47082917dde1e8af42197dbc299e69e62297b34f
/config/urls.py
6352f0ca3dac2706a3823b1f981270aedd27e0c3
[]
no_license
navill/Dstagram-repository
66520ed6fd5e8cf3fe633c04c7a1eaaae9bc57c0
fb44acea8906fcac5724d4f9bdfdfe4e218f947a
refs/heads/master
2020-06-10T20:59:28.581733
2019-06-25T16:31:58
2019-06-25T16:31:58
193,745,086
0
0
null
null
null
null
UTF-8
Python
false
false
1,572
py
"""config URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf.urls.static import static # 특정 리소스를 static형태로 응답 from django.conf import settings # 장고의 셋팅값을 불러다 주는 역할 urlpatterns = [ path('site_config/', admin.site.urls), path('accounts/', include('allauth.urls')), path('accounts/', include('accounts.urls')), path('', include('photo.urls')) ] # image 출력을 위해 다음 urlpattern을 추가 # -> deploy, live일 때는 사용하지 않음 # -> 장고에서 처리해야할 일이 아니기 때문에 # -> web server(heroku는 지원하지 않음)가 해주거나 # -> 파일 서버를 별도로 셋팅 urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) # # if settings.DEBUG: # import debug_toolbar # urlpatterns = [ # path('__debug__/', include(debug_toolbar.urls)), # ] + urlpatterns
1f4f62246a43fa178cc25b4a6b8a2617bdb8d082
ef54d37f8a3303013ca7469871a320d303957ed7
/robo4.2/fusion/tests/wpst_crm/feature_tests/TBIRD/Non-Redundant-Nitro-Grow/data_ha.py
3ef502d474e92c96999d5c63a96777977159f176
[]
no_license
richa92/Jenkin_Regression_Testing
d18badfcf16bda682dfe7bcbbd66f54a9a27a58d
24a74926170cbdfafa47e972644e2fe5b627d8ff
refs/heads/master
2020-07-12T10:01:59.099137
2019-08-27T12:14:53
2019-08-27T12:14:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,434
py
from data_common import * CONFIG = 'HA' update_downlink_speed = \ [ { "op": "replace", "path": "/downlinkSpeedMode", "value": "SPEED_25GB" } ] uplink_set_1 = { 'name': 'US1', 'ethernetNetworkType': 'Tagged', 'networkType': 'Ethernet', 'lacpTimer': 'Short', 'mode': 'Auto', 'nativeNetworkUri': None, 'logicalPortConfigInfos': [ {'enclosure': '1', 'bay': '2', 'port': 'Q1', 'speed': 'Auto'}, ] } uplink_set_2 = { 'name': 'US2', 'ethernetNetworkType': 'Tagged', 'networkType': 'Ethernet', 'lacpTimer': 'Short', 'mode': 'Auto', 'networkUris': ['net_420', 'net_421', 'net_422'], 'nativeNetworkUri': None, 'logicalPortConfigInfos': [ {'enclosure': '2', 'bay': '5', 'port': 'Q1', 'speed': 'Auto'} ] } add_uplinkset = { 'name': 'add_uplinkset', 'type': 'uplink-setV5', 'ethernetNetworkType': 'Tagged', 'networkType': 'Ethernet', 'networkUris': ['net_425', 'net_426'], 'manualLoginRedistributionState': 'NotSupported', 'connectionMode': 'Auto', 'portConfigInfos': [ { 'desiredSpeed': 'Auto', 'location': { 'locationEntries': [ { 'value': 'Q6', 'type': 'Port' }, { 'value': '2', 'type': 'Bay' }, { 'value': ENC_1, 'type': 'Enclosure' } ] } } ], } edit_uplinkset = { 'name': 'US1', 'type': 'uplink-setV5', 'ethernetNetworkType': 'Tagged', 'networkType': 'Ethernet', 'manualLoginRedistributionState': 'NotSupported', 'lacpTimer': 'Long', 'connectionMode': 'Auto', 'portConfigInfos': [ { 'desiredSpeed': 'Auto', 'location': { 'locationEntries': [ { 'value': 'Q1', 'type': 'Port' }, { 'value': '2', 'type': 'Bay' }, { 'value': ENC_1, 'type': 'Enclosure' } ] } } ], } ### # Interconnect bays configurations # 2 Enclosures, Fabric 2 ### Enc2AMap = \ [ {'bay': 2, 'enclosure': 1, 'type': 'Virtual Connect SE 100Gb F32 Module for Synergy', 'enclosureIndex': 1}, {'bay': 2, 'enclosure': 2, 'type': 'Synergy 50Gb Interconnect Link Module', 'enclosureIndex': 2} ] Enc2BMap = \ [ {'bay': 5, 'enclosure': 1, 'type': 'Synergy 50Gb Interconnect Link Module', 'enclosureIndex': 1}, {'bay': 5, 'enclosure': 2, 'type': 'Virtual Connect SE 100Gb F32 Module for Synergy', 'enclosureIndex': 2} ] ### ### # Interconnect bays configurations # 3 Enclosures, Fabric 2 ### Enc3AMap = Enc2AMap + \ [ {'bay': 2, 'enclosure': 3, 'type': 'Synergy 50Gb Interconnect Link Module', 'enclosureIndex': 3} ] Enc3BMap = Enc2BMap + \ [ {'bay': 5, 'enclosure': 3, 'type': 'Synergy 50Gb Interconnect Link Module', 'enclosureIndex': 3} ] ### # Interconnect bays configurations # 4 Enclosures, Fabric 3 ### Enc4AMap = Enc3AMap + \ [ {'bay': 2, 'enclosure': 4, 'type': 'Synergy 50Gb Interconnect Link Module', 'enclosureIndex': 4} ] Enc4BMap = Enc3BMap + \ [ {'bay': 5, 'enclosure': 4, 'type': 'Synergy 50Gb Interconnect Link Module', 'enclosureIndex': 4} ] ### # Interconnect bays configurations # 5 Enclosures, Fabric 3 ### Enc5AMap = Enc4AMap + \ [ {'bay': 2, 'enclosure': 5, 'type': 'Synergy 50Gb Interconnect Link Module', 'enclosureIndex': 5} ] Enc5BMap = Enc4BMap + \ [ {'bay': 5, 'enclosure': 5, 'type': 'Synergy 50Gb Interconnect Link Module', 'enclosureIndex': 5} ] ### # Logical Interconnect Groups ### ligs = { 'Enc2A-LIG': { 'name': 'Enc2A-LIG', 'interconnectMapTemplate': Enc2AMap, 'enclosureIndexes': [1, 2], 'interconnectBaySet': 2, 'redundancyType': 'NonRedundantASide', 'uplinkSets': [uplink_set_1], }, 'Enc2B-LIG': { 'name': 'Enc2B-LIG', 'interconnectMapTemplate': Enc2BMap, 'enclosureIndexes': [1, 2], 'interconnectBaySet': 2, 'redundancyType': 'NonRedundantBSide', 'uplinkSets': [uplink_set_2], }, 'Enc3A-LIG': { 'name': 'Enc3A-LIG', 'interconnectMapTemplate': Enc3AMap, 'enclosureIndexes': [1, 2, 3], 'interconnectBaySet': 2, 'redundancyType': 'NonRedundantASide', 'uplinkSets': [uplink_set_1], }, 'Enc3B-LIG': { 'name': 'Enc3B-LIG', 'interconnectMapTemplate': Enc3BMap, 'enclosureIndexes': [1, 2, 3], 'interconnectBaySet': 2, 'redundancyType': 'NonRedundantBSide', 'uplinkSets': [uplink_set_2], }, 'Enc4A-LIG': { 'name': 'Enc4A-LIG', 'interconnectMapTemplate': Enc4AMap, 'enclosureIndexes': [1, 2, 3, 4], 'interconnectBaySet': 2, 'redundancyType': 'NonRedundantASide', 'uplinkSets': [uplink_set_1], }, 'Enc4B-LIG': { 'name': 'Enc4B-LIG', 'interconnectMapTemplate': Enc4BMap, 'enclosureIndexes': [1, 2, 3, 4], 'interconnectBaySet': 2, 'redundancyType': 'NonRedundantBSide', 'uplinkSets': [uplink_set_2], }, 'Enc5A-LIG': { 'name': 'Enc5A-LIG', 'interconnectMapTemplate': Enc5AMap, 'enclosureIndexes': [1, 2, 3, 4, 5], 'interconnectBaySet': 2, 'redundancyType': 'NonRedundantASide', 'uplinkSets': [uplink_set_1], }, 'Enc5B-LIG': { 'name': 'Enc5B-LIG', 'interconnectMapTemplate': Enc5BMap, 'enclosureIndexes': [1, 2, 3, 4, 5], 'interconnectBaySet': 2, 'redundancyType': 'NonRedundantBSide', 'uplinkSets': [uplink_set_2], }, } ### # Enclosure Groups ### enc_group = { 'Enc2-EG': {'name': 'Enc2-EG', 'enclosureCount': 2, 'interconnectBayMappings': [{'interconnectBay': 1, 'logicalInterconnectGroupUri': None}, {'interconnectBay': 2, 'logicalInterconnectGroupUri': 'LIG:Enc2A-LIG'}, {'interconnectBay': 3, 'logicalInterconnectGroupUri': None}, {'interconnectBay': 4, 'logicalInterconnectGroupUri': None}, {'interconnectBay': 5, 'logicalInterconnectGroupUri': 'LIG:Enc2B-LIG'}, {'interconnectBay': 6, 'logicalInterconnectGroupUri': None}], }, 'Enc3-EG': {'name': 'Enc3-EG', 'enclosureCount': 3, 'interconnectBayMappings': [{'interconnectBay': 1, 'logicalInterconnectGroupUri': None}, {'interconnectBay': 2, 'logicalInterconnectGroupUri': 'LIG:Enc3A-LIG'}, {'interconnectBay': 3, 'logicalInterconnectGroupUri': None}, {'interconnectBay': 4, 'logicalInterconnectGroupUri': None}, {'interconnectBay': 5, 'logicalInterconnectGroupUri': 'LIG:Enc3B-LIG'}, {'interconnectBay': 6, 'logicalInterconnectGroupUri': None}], }, 'Enc4-EG': {'name': 'Enc4-EG', 'enclosureCount': 4, 'interconnectBayMappings': [{'interconnectBay': 1, 'logicalInterconnectGroupUri': None}, {'interconnectBay': 2, 'logicalInterconnectGroupUri': 'LIG:Enc4A-LIG'}, {'interconnectBay': 3, 'logicalInterconnectGroupUri': None}, {'interconnectBay': 4, 'logicalInterconnectGroupUri': None}, {'interconnectBay': 5, 'logicalInterconnectGroupUri': 'LIG:Enc4B-LIG'}, {'interconnectBay': 6, 'logicalInterconnectGroupUri': None}], }, 'Enc5-EG': {'name': 'Enc5-EG', 'enclosureCount': 5, 'interconnectBayMappings': [{'interconnectBay': 1, 'logicalInterconnectGroupUri': None}, {'interconnectBay': 2, 'logicalInterconnectGroupUri': 'LIG:Enc5A-LIG'}, {'interconnectBay': 3, 'logicalInterconnectGroupUri': None}, {'interconnectBay': 4, 'logicalInterconnectGroupUri': None}, {'interconnectBay': 5, 'logicalInterconnectGroupUri': 'LIG:Enc5B-LIG'}, {'interconnectBay': 6, 'logicalInterconnectGroupUri': None}], } } ### # Server profiles ### profiles = { 'Profile1': { 'payload': { 'name': 'Profile1', 'serverHardwareUri': ENC_1 + ', bay 2', 'enclosureUri': ENC_1, 'connectionSettings': { 'connections': [ { 'name': 'conn', 'functionType': 'Ethernet', 'portId': 'Auto', 'networkUri': 'RNS', }, ] } }, 'IP': '10.11.0.255', }, 'Profile2': { 'payload': { 'name': 'Profile2', 'serverHardwareUri': ENC_2 + ', bay 2', 'enclosureUri': ENC_2, 'connectionSettings': { 'connections': [ { 'name': 'conn', 'functionType': 'Ethernet', 'portId': 'Auto', 'networkUri': 'RNS', } ] } }, 'IP': '10.12.0.255', }, 'Profile3': { 'payload': { 'name': 'Profile3', 'serverHardwareUri': ENC_3 + ', bay 2', 'enclosureUri': ENC_3, 'connectionSettings': { 'connections': [ { 'name': 'conn', 'functionType': 'Ethernet', 'portId': 'Auto', 'networkUri': 'RNS', } ] } }, 'IP': '10.13.0.255', }, 'Profile4': { 'payload': { 'name': 'Profile4', 'serverHardwareUri': ENC_4 + ', bay 2', 'enclosureUri': ENC_4, 'connectionSettings': { 'connections': [ { 'name': 'conn', 'functionType': 'Ethernet', 'portId': 'Auto', 'networkUri': 'net_404', } ] } }, 'IP': '10.14.0.255', }, 'Profile5': { 'payload': { 'name': 'Profile5', 'serverHardwareUri': ENC_5 + ', bay 2', 'enclosureUri': ENC_5, 'connectionSettings': { 'connections': [ { 'name': 'conn', 'functionType': 'Ethernet', 'portId': 'Auto', 'networkUri': 'net_405', } ] } }, 'IP': '10.15.0.255', } }
a4e1afe224daa8082b4cdfd04c6122d18cf4637c
8cc862aa51d3fec95d094dc4bd3151e1155d240a
/pythonProject/imports/using_sys.py
4c609d014e0a48228c4d6084ff8263843af572e3
[]
no_license
activehuahua/python
bcbf3a2190025e2315399bfd0c725f598211632b
cc36a93c01c53f856426ccf2724848142524d9c0
refs/heads/master
2023-04-14T10:23:21.590765
2019-08-12T06:52:15
2019-08-12T06:52:15
160,277,647
0
0
null
null
null
null
UTF-8
Python
false
false
232
py
# -*- coding: utf-8 -*- ''' @Author : zhaojianghua @File : using_sys.py @Time : 2018/12/5 9:54 ''' import sys print('命令行参数如下:') for i in sys.argv: print(i) print('\n\nPython 路径为:', sys.path, '\n')
dba0a06a82fbbfd3e411a7aa0a4f2a0711b37607
423ca5205aaf0b2d3bfff9affe2172fec21bfad0
/web/pgadmin/browser/server_groups/servers/databases/schemas/domains/domain_constraints/tests/test_domain_constraints_add.py
b7f603fdfd4c1adca8a359d0d07247caee18a598
[ "PostgreSQL" ]
permissive
adityatoshniwal/pgadmin4
25cc665d1438f82bdb17f13270933c43e3a98f4b
2aea5b41ad8b6bd4a408a87a6743fcbfc88ed329
refs/heads/master
2023-09-03T20:04:15.941551
2023-07-31T09:32:30
2023-07-31T09:32:30
419,212,569
0
0
NOASSERTION
2023-01-02T05:37:03
2021-10-20T06:34:38
Python
UTF-8
Python
false
false
4,748
py
########################################################################## # # pgAdmin 4 - PostgreSQL Tools # # Copyright (C) 2013 - 2023, The pgAdmin Development Team # This software is released under the PostgreSQL Licence # ########################################################################## import json import uuid from pgadmin.browser.server_groups.servers.databases.schemas.tests import \ utils as schema_utils from pgadmin.browser.server_groups.servers.databases.tests import utils as \ database_utils from pgadmin.utils.route import BaseTestGenerator from regression import parent_node_dict from regression.python_test_utils import test_utils as utils from . import utils as domain_cons_utils from unittest.mock import patch class DomainConstraintAddTestCase(BaseTestGenerator): """ This class will add new domain constraint under schema node. """ scenarios = utils.generate_scenarios('domain_constraint_create', domain_cons_utils.test_cases) def setUp(self): super().setUp() self.db_name = parent_node_dict["database"][-1]["db_name"] schema_info = parent_node_dict["schema"][-1] self.schema_id = schema_info["schema_id"] self.schema_name = schema_info["schema_name"] self.server_id = schema_info["server_id"] self.db_id = schema_info["db_id"] self.domain_name = "domain_%s" % (str(uuid.uuid4())[1:8]) self.domain_info = domain_cons_utils.create_domain(self.server, self.db_name, self.schema_name, self.schema_id, self.domain_name) def create_domain_constraint(self): """ This function create a domain constraint and returns it :return: created domain constraint response """ return self.tester.post(self.url + str(utils.SERVER_GROUP) + '/' + str(self.server_id) + '/' + str(self.db_id) + '/' + str(self.schema_id) + '/' + str(self.domain_id) + '/', data=json.dumps(self.test_data), content_type='html/json', follow_redirects=True) def runTest(self): """ This function will add domain constraint under test database. """ db_con = database_utils.connect_database(self, utils.SERVER_GROUP, self.server_id, self.db_id) if not db_con['data']["connected"]: raise Exception("Could not connect to database.") schema_response = schema_utils.verify_schemas(self.server, self.db_name, self.schema_name) if not schema_response: raise Exception("Could not find the schema.") self.test_data['name'] =\ "test_domain_con_add_%s" % (str(uuid.uuid4())[1:8]) self.domain_id = self.domain_info[0] if self.is_positive_test: response = self.create_domain_constraint() else: if hasattr(self, "internal_server_error"): return_value_object = eval(self.mock_data["return_value"]) with patch(self.mock_data["function_name"], side_effect=[return_value_object]): response = self.create_domain_constraint() if hasattr(self, "error_in_db"): return_value_object = eval(self.mock_data["return_value"]) with patch(self.mock_data["function_name"], side_effect=[return_value_object]): response = self.create_domain_constraint() if hasattr(self, "error_getting_coid"): with patch(self.mock_data["function_name"], side_effect=eval(self.mock_data["return_value"])): response = self.create_domain_constraint() if hasattr(self, "error_domain_id"): self.domain_id = 99999 response = self.create_domain_constraint() actual_response_code = response.status_code expected_response_code = self.expected_data['status_code'] self.assertEqual(actual_response_code, expected_response_code) def tearDown(self): # Disconnect the database database_utils.disconnect_database(self, self.server_id, self.db_id)
047ddbf79cd824eea356100f84caef3d7a7612d3
e4a9a67f1d79b3430aa43ebdb905a08717ee118a
/COT/helpers/tests/test_vmdktool.py
58e36f57ba914bde6ee0b591ad71cdbf5d7e9a20
[ "MIT" ]
permissive
digideskio/cot
30c724c5b76abd5187a9c1e3c6f15a462b324da8
8fc84c8c72a9acb4adffca859154055f2857b53f
refs/heads/master
2021-01-12T20:50:05.208963
2016-05-11T15:31:29
2016-05-11T15:31:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,826
py
#!/usr/bin/env python # # test_vmdktool.py - Unit test cases for COT.helpers.vmdktoolsubmodule. # # March 2015, Glenn F. Matthews # Copyright (c) 2014-2015 the COT project developers. # See the COPYRIGHT.txt file at the top-level directory of this distribution # and at https://github.com/glennmatthews/cot/blob/master/COPYRIGHT.txt. # # This file is part of the Common OVF Tool (COT) project. # It is subject to the license terms in the LICENSE.txt file found in the # top-level directory of this distribution and at # https://github.com/glennmatthews/cot/blob/master/LICENSE.txt. No part # of COT, including this file, may be copied, modified, propagated, or # distributed except according to the terms contained in the LICENSE.txt file. """Unit test cases for the COT.helpers.vmdktool submodule.""" import mock import os from distutils.version import StrictVersion from .test_helper import HelperUT from COT.helpers.helper import Helper from COT.helpers.vmdktool import VmdkTool class TestVmdkTool(HelperUT): """Test cases for VmdkTool helper class.""" def setUp(self): """Test case setup function called automatically prior to each test.""" self.helper = VmdkTool() super(TestVmdkTool, self).setUp() def test_get_version(self): """Test .version getter logic.""" self.fake_output = "vmdktool version 1.4" self.assertEqual(StrictVersion("1.4"), self.helper.version) def test_install_helper_already_present(self): """Do nothing instead of re-installing.""" self.helper.install_helper() self.assertEqual([], self.last_argv) self.assertLogged(**self.ALREADY_INSTALLED) @mock.patch('os.path.isdir') @mock.patch('os.path.exists') @mock.patch('os.makedirs') def test_install_helper_apt_get(self, mock_makedirs, mock_exists, mock_isdir): """Test installation via 'apt-get'.""" mock_isdir.return_value = False mock_exists.return_value = False mock_makedirs.side_effect = OSError Helper.find_executable = self.stub_find_executable Helper.PACKAGE_MANAGERS['apt-get'] = True Helper.PACKAGE_MANAGERS['port'] = False Helper.PACKAGE_MANAGERS['yum'] = False Helper._apt_updated = False self.fake_output = 'is not installed and no information is available' self.system = 'Linux' os.environ['PREFIX'] = '/usr/local' if 'DESTDIR' in os.environ: del os.environ['DESTDIR'] self.helper.install_helper() self.assertEqual([ ['dpkg', '-s', 'make'], ['sudo', 'apt-get', '-q', 'update'], ['sudo', 'apt-get', '-q', 'install', 'make'], ['dpkg', '-s', 'zlib1g-dev'], ['sudo', 'apt-get', '-q', 'install', 'zlib1g-dev'], ['make', 'CFLAGS="-D_GNU_SOURCE -g -O -pipe"'], ['sudo', 'mkdir', '-p', '--mode=755', '/usr/local/man/man8'], ['sudo', 'mkdir', '-p', '--mode=755', '/usr/local/bin'], ['make', 'install', 'PREFIX=/usr/local'], ], self.last_argv) self.assertTrue(Helper._apt_updated) # Make sure we don't 'apt-get update/install' again unnecessarily self.fake_output = 'install ok installed' os.environ['PREFIX'] = '/opt/local' os.environ['DESTDIR'] = '/home/cot' self.last_argv = [] self.helper.install_helper() self.assertEqual([ ['dpkg', '-s', 'make'], ['dpkg', '-s', 'zlib1g-dev'], ['make', 'CFLAGS="-D_GNU_SOURCE -g -O -pipe"'], ['sudo', 'mkdir', '-p', '--mode=755', '/home/cot/opt/local/man/man8'], ['sudo', 'mkdir', '-p', '--mode=755', '/home/cot/opt/local/bin'], ['make', 'install', 'PREFIX=/opt/local', 'DESTDIR=/home/cot'], ], self.last_argv) def test_install_helper_port(self): """Test installation via 'port'.""" Helper.find_executable = self.stub_find_executable Helper.PACKAGE_MANAGERS['port'] = True Helper._port_updated = False self.helper.install_helper() self.assertEqual([ ['sudo', 'port', 'selfupdate'], ['sudo', 'port', 'install', 'vmdktool'] ], self.last_argv) self.assertTrue(Helper._port_updated) # Make sure we don't 'port selfupdate' again unnecessarily self.last_argv = [] self.helper.install_helper() self.assertEqual([ ['sudo', 'port', 'install', 'vmdktool'] ], self.last_argv) @mock.patch('os.path.isdir') @mock.patch('os.path.exists') @mock.patch('os.makedirs') def test_install_helper_yum(self, mock_makedirs, mock_exists, mock_isdir): """Test installation via 'yum'.""" mock_isdir.return_value = False mock_exists.return_value = False mock_makedirs.side_effect = OSError Helper.find_executable = self.stub_find_executable Helper.PACKAGE_MANAGERS['apt-get'] = False Helper.PACKAGE_MANAGERS['port'] = False Helper.PACKAGE_MANAGERS['yum'] = True self.system = 'Linux' os.environ['PREFIX'] = '/usr/local' if 'DESTDIR' in os.environ: del os.environ['DESTDIR'] self.helper.install_helper() self.assertEqual([ ['sudo', 'yum', '--quiet', 'install', 'make'], ['sudo', 'yum', '--quiet', 'install', 'zlib-devel'], ['make', 'CFLAGS="-D_GNU_SOURCE -g -O -pipe"'], ['sudo', 'mkdir', '-p', '--mode=755', '/usr/local/man/man8'], ['sudo', 'mkdir', '-p', '--mode=755', '/usr/local/bin'], ['make', 'install', 'PREFIX=/usr/local'], ], self.last_argv) def test_install_helper_unsupported(self): """Unable to install without a package manager.""" Helper.find_executable = self.stub_find_executable Helper.PACKAGE_MANAGERS['apt-get'] = False Helper.PACKAGE_MANAGERS['port'] = False Helper.PACKAGE_MANAGERS['yum'] = False with self.assertRaises(NotImplementedError): self.helper.install_helper() def test_convert_unsupported(self): """Negative test - conversion to unsupported format/subformat.""" with self.assertRaises(NotImplementedError): self.helper.convert_disk_image(self.blank_vmdk, self.temp_dir, 'qcow2') with self.assertRaises(NotImplementedError): self.helper.convert_disk_image(self.blank_vmdk, self.temp_dir, 'vmdk', 'monolithicSparse')
6a3224e913eb781e8bbc458e3aa6542e3d77fee1
32c56293475f49c6dd1b0f1334756b5ad8763da9
/google-cloud-sdk/lib/googlecloudsdk/third_party/apis/recommender/v1/recommender_v1_messages.py
eda70fa864fcf63f971b6e745b71d29eb49dc075
[ "MIT", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
bopopescu/socialliteapp
b9041f17f8724ee86f2ecc6e2e45b8ff6a44b494
85bb264e273568b5a0408f733b403c56373e2508
refs/heads/master
2022-11-20T03:01:47.654498
2020-02-01T20:29:43
2020-02-01T20:29:43
282,403,750
0
0
MIT
2020-07-25T08:31:59
2020-07-25T08:31:59
null
UTF-8
Python
false
false
28,004
py
"""Generated message classes for recommender version v1. """ # NOTE: This file is autogenerated and should not be edited by hand. from apitools.base.protorpclite import messages as _messages from apitools.base.py import encoding from apitools.base.py import extra_types package = 'recommender' class GoogleCloudRecommenderV1CostProjection(_messages.Message): r"""Contains metadata about how much money a recommendation can save or incur. Fields: cost: An approximate projection on amount saved or amount incurred. Negative cost units indicate cost savings and positive cost units indicate increase. See google.type.Money documentation for positive/negative units. duration: Duration for which this cost applies. """ cost = _messages.MessageField('GoogleTypeMoney', 1) duration = _messages.StringField(2) class GoogleCloudRecommenderV1Impact(_messages.Message): r"""Contains the impact a recommendation can have for a given category. Enums: CategoryValueValuesEnum: Category that is being targeted. Fields: category: Category that is being targeted. costProjection: Use with CategoryType.COST """ class CategoryValueValuesEnum(_messages.Enum): r"""Category that is being targeted. Values: CATEGORY_UNSPECIFIED: Default unspecified category. Don't use directly. COST: Indicates a potential increase or decrease in cost. SECURITY: Indicates a potential increase or decrease in security. PERFORMANCE: Indicates a potential increase or decrease in performance. MANAGEABILITY: Indicates a potential increase or decrease in manageability. """ CATEGORY_UNSPECIFIED = 0 COST = 1 SECURITY = 2 PERFORMANCE = 3 MANAGEABILITY = 4 category = _messages.EnumField('CategoryValueValuesEnum', 1) costProjection = _messages.MessageField('GoogleCloudRecommenderV1CostProjection', 2) class GoogleCloudRecommenderV1ListRecommendationsResponse(_messages.Message): r"""Response to the `ListRecommendations` method. Fields: nextPageToken: A token that can be used to request the next page of results. This field is empty if there are no additional results. recommendations: The set of recommendations for the `parent` resource. """ nextPageToken = _messages.StringField(1) recommendations = _messages.MessageField('GoogleCloudRecommenderV1Recommendation', 2, repeated=True) class GoogleCloudRecommenderV1MarkRecommendationClaimedRequest(_messages.Message): r"""Request for the `MarkRecommendationClaimed` Method. Messages: StateMetadataValue: State properties to include with this state. Overwrites any existing `state_metadata`. Keys must match the regex /^a-z0-9{0,62}$/. Values must match the regex /^[a-zA-Z0-9_./-]{0,255}$/. Fields: etag: Required. Fingerprint of the Recommendation. Provides optimistic locking. stateMetadata: State properties to include with this state. Overwrites any existing `state_metadata`. Keys must match the regex /^a-z0-9{0,62}$/. Values must match the regex /^[a-zA-Z0-9_./-]{0,255}$/. """ @encoding.MapUnrecognizedFields('additionalProperties') class StateMetadataValue(_messages.Message): r"""State properties to include with this state. Overwrites any existing `state_metadata`. Keys must match the regex /^a-z0-9{0,62}$/. Values must match the regex /^[a-zA-Z0-9_./-]{0,255}$/. Messages: AdditionalProperty: An additional property for a StateMetadataValue object. Fields: additionalProperties: Additional properties of type StateMetadataValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a StateMetadataValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) etag = _messages.StringField(1) stateMetadata = _messages.MessageField('StateMetadataValue', 2) class GoogleCloudRecommenderV1MarkRecommendationFailedRequest(_messages.Message): r"""Request for the `MarkRecommendationFailed` Method. Messages: StateMetadataValue: State properties to include with this state. Overwrites any existing `state_metadata`. Keys must match the regex /^a-z0-9{0,62}$/. Values must match the regex /^[a-zA-Z0-9_./-]{0,255}$/. Fields: etag: Required. Fingerprint of the Recommendation. Provides optimistic locking. stateMetadata: State properties to include with this state. Overwrites any existing `state_metadata`. Keys must match the regex /^a-z0-9{0,62}$/. Values must match the regex /^[a-zA-Z0-9_./-]{0,255}$/. """ @encoding.MapUnrecognizedFields('additionalProperties') class StateMetadataValue(_messages.Message): r"""State properties to include with this state. Overwrites any existing `state_metadata`. Keys must match the regex /^a-z0-9{0,62}$/. Values must match the regex /^[a-zA-Z0-9_./-]{0,255}$/. Messages: AdditionalProperty: An additional property for a StateMetadataValue object. Fields: additionalProperties: Additional properties of type StateMetadataValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a StateMetadataValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) etag = _messages.StringField(1) stateMetadata = _messages.MessageField('StateMetadataValue', 2) class GoogleCloudRecommenderV1MarkRecommendationSucceededRequest(_messages.Message): r"""Request for the `MarkRecommendationSucceeded` Method. Messages: StateMetadataValue: State properties to include with this state. Overwrites any existing `state_metadata`. Keys must match the regex /^a-z0-9{0,62}$/. Values must match the regex /^[a-zA-Z0-9_./-]{0,255}$/. Fields: etag: Required. Fingerprint of the Recommendation. Provides optimistic locking. stateMetadata: State properties to include with this state. Overwrites any existing `state_metadata`. Keys must match the regex /^a-z0-9{0,62}$/. Values must match the regex /^[a-zA-Z0-9_./-]{0,255}$/. """ @encoding.MapUnrecognizedFields('additionalProperties') class StateMetadataValue(_messages.Message): r"""State properties to include with this state. Overwrites any existing `state_metadata`. Keys must match the regex /^a-z0-9{0,62}$/. Values must match the regex /^[a-zA-Z0-9_./-]{0,255}$/. Messages: AdditionalProperty: An additional property for a StateMetadataValue object. Fields: additionalProperties: Additional properties of type StateMetadataValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a StateMetadataValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) etag = _messages.StringField(1) stateMetadata = _messages.MessageField('StateMetadataValue', 2) class GoogleCloudRecommenderV1Operation(_messages.Message): r"""Contains an operation for a resource loosely based on the JSON-PATCH format with support for: * Custom filters for describing partial array patch. * Extended path values for describing nested arrays. * Custom fields for describing the resource for which the operation is being described. * Allows extension to custom operations not natively supported by RFC6902. See https://tools.ietf.org/html/rfc6902 for details on the original RFC. Messages: PathFiltersValue: Set of filters to apply if `path` refers to array elements or nested array elements in order to narrow down to a single unique element that is being tested/modified. This is intended to be an exact match per filter. To perform advanced matching, use path_value_matchers. * Example: { "/versions/*/name" : "it-123" "/versions/*/targetSize/percent": 20 } * Example: { "/bindings/*/role": "roles/admin" "/bindings/*/condition" : null } * Example: { "/bindings/*/role": "roles/admin" "/bindings/*/members/*" : ["[email protected]", "[email protected]"] } When both path_filters and path_value_matchers are set, an implicit AND must be performed. PathValueMatchersValue: Similar to path_filters, this contains set of filters to apply if `path` field referes to array elements. This is meant to support value matching beyond exact match. To perform exact match, use path_filters. When both path_filters and path_value_matchers are set, an implicit AND must be performed. Fields: action: Type of this operation. Contains one of 'and', 'remove', 'replace', 'move', 'copy', 'test' and custom operations. This field is case-insensitive and always populated. path: Path to the target field being operated on. If the operation is at the resource level, then path should be "/". This field is always populated. pathFilters: Set of filters to apply if `path` refers to array elements or nested array elements in order to narrow down to a single unique element that is being tested/modified. This is intended to be an exact match per filter. To perform advanced matching, use path_value_matchers. * Example: { "/versions/*/name" : "it-123" "/versions/*/targetSize/percent": 20 } * Example: { "/bindings/*/role": "roles/admin" "/bindings/*/condition" : null } * Example: { "/bindings/*/role": "roles/admin" "/bindings/*/members/*" : ["[email protected]", "[email protected]"] } When both path_filters and path_value_matchers are set, an implicit AND must be performed. pathValueMatchers: Similar to path_filters, this contains set of filters to apply if `path` field referes to array elements. This is meant to support value matching beyond exact match. To perform exact match, use path_filters. When both path_filters and path_value_matchers are set, an implicit AND must be performed. resource: Contains the fully qualified resource name. This field is always populated. ex: //cloudresourcemanager.googleapis.com/projects/foo. resourceType: Type of GCP resource being modified/tested. This field is always populated. Example: cloudresourcemanager.googleapis.com/Project, compute.googleapis.com/Instance sourcePath: Can be set with action 'copy' or 'move' to indicate the source field within resource or source_resource, ignored if provided for other operation types. sourceResource: Can be set with action 'copy' to copy resource configuration across different resources of the same type. Example: A resource clone can be done via action = 'copy', path = "/", from = "/", source_resource = <source> and resource_name = <target>. This field is empty for all other values of `action`. value: Value for the `path` field. Will be set for actions:'add'/'replace'. Maybe set for action: 'test'. Either this or `value_matcher` will be set for 'test' operation. An exact match must be performed. valueMatcher: Can be set for action 'test' for advanced matching for the value of 'path' field. Either this or `value` will be set for 'test' operation. """ @encoding.MapUnrecognizedFields('additionalProperties') class PathFiltersValue(_messages.Message): r"""Set of filters to apply if `path` refers to array elements or nested array elements in order to narrow down to a single unique element that is being tested/modified. This is intended to be an exact match per filter. To perform advanced matching, use path_value_matchers. * Example: { "/versions/*/name" : "it-123" "/versions/*/targetSize/percent": 20 } * Example: { "/bindings/*/role": "roles/admin" "/bindings/*/condition" : null } * Example: { "/bindings/*/role": "roles/admin" "/bindings/*/members/*" : ["[email protected]", "[email protected]"] } When both path_filters and path_value_matchers are set, an implicit AND must be performed. Messages: AdditionalProperty: An additional property for a PathFiltersValue object. Fields: additionalProperties: Additional properties of type PathFiltersValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a PathFiltersValue object. Fields: key: Name of the additional property. value: A extra_types.JsonValue attribute. """ key = _messages.StringField(1) value = _messages.MessageField('extra_types.JsonValue', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) @encoding.MapUnrecognizedFields('additionalProperties') class PathValueMatchersValue(_messages.Message): r"""Similar to path_filters, this contains set of filters to apply if `path` field referes to array elements. This is meant to support value matching beyond exact match. To perform exact match, use path_filters. When both path_filters and path_value_matchers are set, an implicit AND must be performed. Messages: AdditionalProperty: An additional property for a PathValueMatchersValue object. Fields: additionalProperties: Additional properties of type PathValueMatchersValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a PathValueMatchersValue object. Fields: key: Name of the additional property. value: A GoogleCloudRecommenderV1ValueMatcher attribute. """ key = _messages.StringField(1) value = _messages.MessageField('GoogleCloudRecommenderV1ValueMatcher', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) action = _messages.StringField(1) path = _messages.StringField(2) pathFilters = _messages.MessageField('PathFiltersValue', 3) pathValueMatchers = _messages.MessageField('PathValueMatchersValue', 4) resource = _messages.StringField(5) resourceType = _messages.StringField(6) sourcePath = _messages.StringField(7) sourceResource = _messages.StringField(8) value = _messages.MessageField('extra_types.JsonValue', 9) valueMatcher = _messages.MessageField('GoogleCloudRecommenderV1ValueMatcher', 10) class GoogleCloudRecommenderV1OperationGroup(_messages.Message): r"""Group of operations that need to be performed atomically. Fields: operations: List of operations across one or more resources that belong to this group. Loosely based on RFC6902 and should be performed in the order they appear. """ operations = _messages.MessageField('GoogleCloudRecommenderV1Operation', 1, repeated=True) class GoogleCloudRecommenderV1Recommendation(_messages.Message): r"""A recommendation along with a suggested action. E.g., a rightsizing recommendation for an underutilized VM, IAM role recommendations, etc Fields: additionalImpact: Optional set of additional impact that this recommendation may have when trying to optimize for the primary category. These may be positive or negative. content: Content of the recommendation describing recommended changes to resources. description: Free-form human readable summary in English. The maximum length is 500 characters. etag: Fingerprint of the Recommendation. Provides optimistic locking when updating states. lastRefreshTime: Last time this recommendation was refreshed by the system that created it in the first place. name: Name of recommendation. primaryImpact: The primary impact that this recommendation can have while trying to optimize for one category. recommenderSubtype: Contains an identifier for a subtype of recommendations produced for the same recommender. Subtype is a function of content and impact, meaning a new subtype might be added when significant changes to `content` or `primary_impact.category` are introduced. See the Recommenders section to see a list of subtypes for a given Recommender. Examples: For recommender = "google.iam.policy.Recommender", recommender_subtype can be one of "REMOVE_ROLE"/"REPLACE_ROLE" stateInfo: Information for state. Contains state and metadata. """ additionalImpact = _messages.MessageField('GoogleCloudRecommenderV1Impact', 1, repeated=True) content = _messages.MessageField('GoogleCloudRecommenderV1RecommendationContent', 2) description = _messages.StringField(3) etag = _messages.StringField(4) lastRefreshTime = _messages.StringField(5) name = _messages.StringField(6) primaryImpact = _messages.MessageField('GoogleCloudRecommenderV1Impact', 7) recommenderSubtype = _messages.StringField(8) stateInfo = _messages.MessageField('GoogleCloudRecommenderV1RecommendationStateInfo', 9) class GoogleCloudRecommenderV1RecommendationContent(_messages.Message): r"""Contains what resources are changing and how they are changing. Fields: operationGroups: Operations to one or more Google Cloud resources grouped in such a way that, all operations within one group are expected to be performed atomically and in an order. """ operationGroups = _messages.MessageField('GoogleCloudRecommenderV1OperationGroup', 1, repeated=True) class GoogleCloudRecommenderV1RecommendationStateInfo(_messages.Message): r"""Information for state. Contains state and metadata. Enums: StateValueValuesEnum: The state of the recommendation, Eg ACTIVE, SUCCEEDED, FAILED. Messages: StateMetadataValue: A map of metadata for the state, provided by user or automations systems. Fields: state: The state of the recommendation, Eg ACTIVE, SUCCEEDED, FAILED. stateMetadata: A map of metadata for the state, provided by user or automations systems. """ class StateValueValuesEnum(_messages.Enum): r"""The state of the recommendation, Eg ACTIVE, SUCCEEDED, FAILED. Values: STATE_UNSPECIFIED: Default state. Don't use directly. ACTIVE: Recommendation is active and can be applied. Recommendations content can be updated by Google. ACTIVE recommendations can be marked as CLAIMED, SUCCEEDED, or FAILED. CLAIMED: Recommendation is in claimed state. Recommendations content is immutable and cannot be updated by Google. CLAIMED recommendations can be marked as CLAIMED, SUCCEEDED, or FAILED. SUCCEEDED: Recommendation is in succeeded state. Recommendations content is immutable and cannot be updated by Google. SUCCEEDED recommendations can be marked as SUCCEEDED, or FAILED. FAILED: Recommendation is in failed state. Recommendations content is immutable and cannot be updated by Google. FAILED recommendations can be marked as SUCCEEDED, or FAILED. DISMISSED: Recommendation is in dismissed state. Recommendation content can be updated by Google. DISMISSED recommendations can be marked as ACTIVE. """ STATE_UNSPECIFIED = 0 ACTIVE = 1 CLAIMED = 2 SUCCEEDED = 3 FAILED = 4 DISMISSED = 5 @encoding.MapUnrecognizedFields('additionalProperties') class StateMetadataValue(_messages.Message): r"""A map of metadata for the state, provided by user or automations systems. Messages: AdditionalProperty: An additional property for a StateMetadataValue object. Fields: additionalProperties: Additional properties of type StateMetadataValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a StateMetadataValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) state = _messages.EnumField('StateValueValuesEnum', 1) stateMetadata = _messages.MessageField('StateMetadataValue', 2) class GoogleCloudRecommenderV1ValueMatcher(_messages.Message): r"""Contains various matching options for values for a GCP resource field. Fields: matchesPattern: To be used for full regex matching. The regular expression is using the Google RE2 syntax (https://github.com/google/re2/wiki/Syntax), so to be used with RE2::FullMatch """ matchesPattern = _messages.StringField(1) class GoogleTypeMoney(_messages.Message): r"""Represents an amount of money with its currency type. Fields: currencyCode: The 3-letter currency code defined in ISO 4217. nanos: Number of nano (10^-9) units of the amount. The value must be between -999,999,999 and +999,999,999 inclusive. If `units` is positive, `nanos` must be positive or zero. If `units` is zero, `nanos` can be positive, zero, or negative. If `units` is negative, `nanos` must be negative or zero. For example $-1.75 is represented as `units`=-1 and `nanos`=-750,000,000. units: The whole units of the amount. For example if `currencyCode` is `"USD"`, then 1 unit is one US dollar. """ currencyCode = _messages.StringField(1) nanos = _messages.IntegerField(2, variant=_messages.Variant.INT32) units = _messages.IntegerField(3) class RecommenderProjectsLocationsRecommendersRecommendationsGetRequest(_messages.Message): r"""A RecommenderProjectsLocationsRecommendersRecommendationsGetRequest object. Fields: name: Required. Name of the recommendation. """ name = _messages.StringField(1, required=True) class RecommenderProjectsLocationsRecommendersRecommendationsListRequest(_messages.Message): r"""A RecommenderProjectsLocationsRecommendersRecommendationsListRequest object. Fields: filter: Filter expression to restrict the recommendations returned. Supported filter fields: state_info.state Eg: `state_info.state:"DISMISSED" or state_info.state:"FAILED" pageSize: Optional. The maximum number of results to return from this request. Non-positive values are ignored. If not specified, the server will determine the number of results to return. pageToken: Optional. If present, retrieves the next batch of results from the preceding call to this method. `page_token` must be the value of `next_page_token` from the previous response. The values of other method parameters must be identical to those in the previous call. parent: Required. The container resource on which to execute the request. Acceptable formats: 1. "projects/[PROJECT_NUMBER]/locations/[LOCATION]/ recommenders/[RECOMMENDER_ID]", LOCATION here refers to GCP Locations: https://cloud.google.com/about/locations/ """ filter = _messages.StringField(1) pageSize = _messages.IntegerField(2, variant=_messages.Variant.INT32) pageToken = _messages.StringField(3) parent = _messages.StringField(4, required=True) class RecommenderProjectsLocationsRecommendersRecommendationsMarkClaimedRequest(_messages.Message): r"""A RecommenderProjectsLocationsRecommendersRecommendationsMarkClaimedRequest object. Fields: googleCloudRecommenderV1MarkRecommendationClaimedRequest: A GoogleCloudRecommenderV1MarkRecommendationClaimedRequest resource to be passed as the request body. name: Required. Name of the recommendation. """ googleCloudRecommenderV1MarkRecommendationClaimedRequest = _messages.MessageField('GoogleCloudRecommenderV1MarkRecommendationClaimedRequest', 1) name = _messages.StringField(2, required=True) class RecommenderProjectsLocationsRecommendersRecommendationsMarkFailedRequest(_messages.Message): r"""A RecommenderProjectsLocationsRecommendersRecommendationsMarkFailedRequest object. Fields: googleCloudRecommenderV1MarkRecommendationFailedRequest: A GoogleCloudRecommenderV1MarkRecommendationFailedRequest resource to be passed as the request body. name: Required. Name of the recommendation. """ googleCloudRecommenderV1MarkRecommendationFailedRequest = _messages.MessageField('GoogleCloudRecommenderV1MarkRecommendationFailedRequest', 1) name = _messages.StringField(2, required=True) class RecommenderProjectsLocationsRecommendersRecommendationsMarkSucceededRequest(_messages.Message): r"""A RecommenderProjectsLocationsRecommendersRecommendationsMarkSucceededRequest object. Fields: googleCloudRecommenderV1MarkRecommendationSucceededRequest: A GoogleCloudRecommenderV1MarkRecommendationSucceededRequest resource to be passed as the request body. name: Required. Name of the recommendation. """ googleCloudRecommenderV1MarkRecommendationSucceededRequest = _messages.MessageField('GoogleCloudRecommenderV1MarkRecommendationSucceededRequest', 1) name = _messages.StringField(2, required=True) class StandardQueryParameters(_messages.Message): r"""Query parameters accepted by all methods. Enums: FXgafvValueValuesEnum: V1 error format. AltValueValuesEnum: Data format for response. Fields: f__xgafv: V1 error format. access_token: OAuth access token. alt: Data format for response. callback: JSONP fields: Selector specifying which fields to include in a partial response. key: API key. Your API key identifies your project and provides you with API access, quota, and reports. Required unless you provide an OAuth 2.0 token. oauth_token: OAuth 2.0 token for the current user. prettyPrint: Returns response with indentations and line breaks. quotaUser: Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exceed 40 characters. trace: A tracing token of the form "token:<tokenid>" to include in api requests. uploadType: Legacy upload protocol for media (e.g. "media", "multipart"). upload_protocol: Upload protocol for media (e.g. "raw", "multipart"). """ class AltValueValuesEnum(_messages.Enum): r"""Data format for response. Values: json: Responses with Content-Type of application/json media: Media download with context-dependent Content-Type proto: Responses with Content-Type of application/x-protobuf """ json = 0 media = 1 proto = 2 class FXgafvValueValuesEnum(_messages.Enum): r"""V1 error format. Values: _1: v1 error format _2: v2 error format """ _1 = 0 _2 = 1 f__xgafv = _messages.EnumField('FXgafvValueValuesEnum', 1) access_token = _messages.StringField(2) alt = _messages.EnumField('AltValueValuesEnum', 3, default=u'json') callback = _messages.StringField(4) fields = _messages.StringField(5) key = _messages.StringField(6) oauth_token = _messages.StringField(7) prettyPrint = _messages.BooleanField(8, default=True) quotaUser = _messages.StringField(9) trace = _messages.StringField(10) uploadType = _messages.StringField(11) upload_protocol = _messages.StringField(12) encoding.AddCustomJsonFieldMapping( StandardQueryParameters, 'f__xgafv', '$.xgafv') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_1', '1') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_2', '2')
21a55c48c32b7f9d97cc1dbe4eb947d069f083cd
e11dff811ca981f428644fd70d10a7369c671bcb
/src/tools/ecos/cvxpy/doc/source/conf.py
8aff00ceb390bff1a69901c078f9f08166fdb1a6
[ "GPL-3.0-only", "GPL-3.0-or-later", "MIT" ]
permissive
riadnassiffe/Simulator
3c4a036b5635534929fdb04b0e9c96d64c0da71f
7d9ff09f26367d3714e3d10be3dd4a9817b8ed6b
refs/heads/master
2021-06-20T09:31:36.033427
2021-04-17T00:03:17
2021-04-17T00:03:17
16,033,879
0
0
MIT
2021-03-22T23:20:34
2014-01-18T20:58:10
Jupyter Notebook
UTF-8
Python
false
false
8,937
py
# -*- coding: utf-8 -*- # # CVXPY documentation build configuration file, created by # sphinx-quickstart on Mon Jan 27 20:47:07 2014. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # To import CVXPY: sys.path.insert(0, os.path.abspath('../..')) # To import sphinx extensions we've put in the repository: sys.path.insert(0, os.path.abspath('../sphinxext')) __version__ = "0.2.17" # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.mathbase', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'numpydoc'] # To suppress autodoc/numpydoc warning. # http://stackoverflow.com/questions/12206334/sphinx-autosummary-toctree-contains-reference-to-nonexisting-document-warnings numpydoc_show_class_members = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'CVXPY' copyright = u'2014, Steven Diamond, Eric Chu, Stephen Boyd' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '.'.join(__version__.split('.')[:2]) # The full version, including alpha/beta/rc tags. release = __version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. import alabaster table_styling_embed_css = False html_theme_path = [alabaster.get_path(), "../themes"] extensions += ['alabaster'] html_theme = 'cvxpy_alabaster' html_sidebars = { '**': [ 'about.html', 'navigation.html', 'searchbox.html', ] } # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'github_user': 'cvxgrp', 'github_repo': 'cvxpy', 'github_banner': True, 'travis_button': True, 'analytics_id': 'UA-50248335-1', } # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = ['../themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'cvxpydoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'cvxpy.tex', u'CVXPY Documentation', u'Steven Diamond, Eric Chu, Stephen Boyd', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'cvxpy', u'CVXPY Documentation', [u'Steven Diamond, Eric Chu, Stephen Boyd'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'cvxpy', u'CVXPY Documentation', u'Steven Diamond, Eric Chu, Stephen Boyd', 'CVXPY', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None}
e99a04d4cf4a320eea6c46709c2ddc8dda6c5981
b648a0ff402d23a6432643879b0b81ebe0bc9685
/scripts/json-equals.py
7704bba587a813f68c8ef03a1c5c9db9af33cc46
[ "Apache-2.0" ]
permissive
jviotti/binary-json-size-benchmark
4712faca2724d47d23efef241983ce875dc71cee
165b577884ef366348bf48042fddf54aacfe647a
refs/heads/main
2023-04-18T01:40:26.141995
2022-12-19T13:25:35
2022-12-19T13:25:35
337,583,132
21
1
Apache-2.0
2022-12-17T21:53:56
2021-02-10T01:18:05
C++
UTF-8
Python
false
false
323
py
import sys import json with open(sys.argv[1], mode='r') as json_data: data1 = json.loads(json_data.read()) with open(sys.argv[2], mode='r') as json_data: data2 = json.loads(json_data.read()) if data1 == data2: print("Files are equal!") sys.exit(0) else: print("Files are NOT equal!") sys.exit(1)
8018f217c6e18cdb2bb6f2517df37cde252a8c36
2bb90b620f86d0d49f19f01593e1a4cc3c2e7ba8
/pardus/tags/2007/programming/libs/exiv2/actions.py
368c4462143cec10373c6bedb7c05cc40a320ad6
[]
no_license
aligulle1/kuller
bda0d59ce8400aa3c7ba9c7e19589f27313492f7
7f98de19be27d7a517fe19a37c814748f7e18ba6
refs/heads/master
2021-01-20T02:22:09.451356
2013-07-23T17:57:58
2013-07-23T17:57:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
462
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2006 TUBITAK/UEKAE # Licensed under the GNU General Public License, version 2. # See the file http://www.gnu.org/copyleft/gpl.txt. from pisi.actionsapi import autotools from pisi.actionsapi import pisitools def setup(): autotools.configure() def build(): autotools.make() def install(): autotools.install() pisitools.dodoc("README","doc/ChangeLog") pisitools.dohtml("doc/html/*")
3d41370064cc5c6bec3ad723efc74e67f721926e
80301f1cffc5afce13256e2ecab6323c5df00194
/cn.fc/py/R3401.蔡斯.py
9fa95698861d8f5919977d10088b392520536ce9
[]
no_license
ZhenjianYang/SoraVoiceScripts
c1ddf7c1bbcb933243754f9669bd6b75777c87b9
94a948090aba0f63b10b2c69dc845dc99c822fc4
refs/heads/master
2023-04-18T04:54:44.306652
2023-04-06T11:15:17
2023-04-06T11:15:17
103,167,541
43
11
null
2021-03-06T08:52:54
2017-09-11T17:36:55
Python
UTF-8
Python
false
false
37,356
py
from ED6ScenarioHelper import * def main(): # 蔡斯 CreateScenaFile( FileName = 'R3401 ._SN', MapName = 'Zeiss', Location = 'R3401.x', MapIndex = 1, MapDefaultBGM = "ed60030", Flags = 0, EntryFunctionIndex = 0xFFFF, Reserved = 0, IncludedScenario = [ '', '', '', '', '', '', '', '' ], ) BuildStringList( '@FileName', # 8 '魔兽', # 9 '魔兽', # 10 '魔兽', # 11 '魔兽', # 12 '艾尔·雷登关所方向', # 13 '蔡斯方向', # 14 ' ', # 15 ) DeclEntryPoint( Unknown_00 = 0, Unknown_04 = 0, Unknown_08 = 6000, Unknown_0C = 4, Unknown_0E = 0, Unknown_10 = 0, Unknown_14 = 9500, Unknown_18 = -10000, Unknown_1C = 0, Unknown_20 = 0, Unknown_24 = 0, Unknown_28 = 2800, Unknown_2C = 262, Unknown_30 = 45, Unknown_32 = 0, Unknown_34 = 360, Unknown_36 = 0, Unknown_38 = 0, Unknown_3A = 0, InitScenaIndex = 0, InitFunctionIndex = 0, EntryScenaIndex = 0, EntryFunctionIndex = 1, ) AddCharChip( 'ED6_DT09/CH10750 ._CH', # 00 'ED6_DT07/CH00160 ._CH', # 01 'ED6_DT07/CH00162 ._CH', # 02 'ED6_DT07/CH00100 ._CH', # 03 'ED6_DT07/CH00101 ._CH', # 04 'ED6_DT07/CH00110 ._CH', # 05 'ED6_DT07/CH00111 ._CH', # 06 'ED6_DT07/CH00102 ._CH', # 07 'ED6_DT07/CH00161 ._CH', # 08 'ED6_DT09/CH10130 ._CH', # 09 'ED6_DT09/CH10131 ._CH', # 0A 'ED6_DT09/CH10750 ._CH', # 0B 'ED6_DT09/CH10751 ._CH', # 0C 'ED6_DT09/CH10760 ._CH', # 0D 'ED6_DT09/CH10761 ._CH', # 0E 'ED6_DT09/CH10770 ._CH', # 0F 'ED6_DT09/CH10771 ._CH', # 10 ) AddCharChipPat( 'ED6_DT09/CH10750P._CP', # 00 'ED6_DT07/CH00160P._CP', # 01 'ED6_DT07/CH00162P._CP', # 02 'ED6_DT07/CH00100P._CP', # 03 'ED6_DT07/CH00101P._CP', # 04 'ED6_DT07/CH00110P._CP', # 05 'ED6_DT07/CH00111P._CP', # 06 'ED6_DT07/CH00102P._CP', # 07 'ED6_DT07/CH00161P._CP', # 08 'ED6_DT09/CH10130P._CP', # 09 'ED6_DT09/CH10131P._CP', # 0A 'ED6_DT09/CH10750P._CP', # 0B 'ED6_DT09/CH10751P._CP', # 0C 'ED6_DT09/CH10760P._CP', # 0D 'ED6_DT09/CH10761P._CP', # 0E 'ED6_DT09/CH10770P._CP', # 0F 'ED6_DT09/CH10771P._CP', # 10 ) DeclNpc( X = 0, Z = 0, Y = 0, Direction = 180, Unknown2 = 0, Unknown3 = 1, ChipIndex = 0x0, NpcIndex = 0x181, InitFunctionIndex = 0, InitScenaIndex = 2, TalkFunctionIndex = -1, TalkScenaIndex = -1, ) DeclNpc( X = 0, Z = 0, Y = 0, Direction = 180, Unknown2 = 0, Unknown3 = 1, ChipIndex = 0x0, NpcIndex = 0x181, InitFunctionIndex = 0, InitScenaIndex = 2, TalkFunctionIndex = -1, TalkScenaIndex = -1, ) DeclNpc( X = 0, Z = 0, Y = 0, Direction = 180, Unknown2 = 0, Unknown3 = 1, ChipIndex = 0x0, NpcIndex = 0x181, InitFunctionIndex = 0, InitScenaIndex = 2, TalkFunctionIndex = -1, TalkScenaIndex = -1, ) DeclNpc( X = 0, Z = 0, Y = 0, Direction = 180, Unknown2 = 0, Unknown3 = 1, ChipIndex = 0x0, NpcIndex = 0x181, InitFunctionIndex = 0, InitScenaIndex = 2, TalkFunctionIndex = -1, TalkScenaIndex = -1, ) DeclNpc( X = 169300, Z = 0, Y = -27030, Direction = 0, Unknown2 = 0, Unknown3 = 0, ChipIndex = 0x0, NpcIndex = 0xFF, InitFunctionIndex = -1, InitScenaIndex = -1, TalkFunctionIndex = -1, TalkScenaIndex = -1, ) DeclNpc( X = 330710, Z = 0, Y = -37560, Direction = 0, Unknown2 = 0, Unknown3 = 0, ChipIndex = 0x0, NpcIndex = 0xFF, InitFunctionIndex = -1, InitScenaIndex = -1, TalkFunctionIndex = -1, TalkScenaIndex = -1, ) DeclNpc( X = 0, Z = 0, Y = 0, Direction = 180, Unknown2 = 0, Unknown3 = 1, ChipIndex = 0x0, NpcIndex = 0x181, InitFunctionIndex = -1, InitScenaIndex = -1, TalkFunctionIndex = -1, TalkScenaIndex = -1, ) DeclMonster( X = 257600, Z = 70, Y = -24310, Unknown_0C = 180, Unknown_0E = 15, Unknown_10 = 1, Unknown_11 = 1, Unknown_12 = 0xFFFFFFFF, BattleIndex = 0x1D3, Unknown_18 = 0, Unknown_1A = 0, ) DeclMonster( X = 286240, Z = 20, Y = -35830, Unknown_0C = 180, Unknown_0E = 9, Unknown_10 = 1, Unknown_11 = 1, Unknown_12 = 0xFFFFFFFF, BattleIndex = 0x1D1, Unknown_18 = 0, Unknown_1A = 0, ) DeclEvent( X = 222300, Y = -1000, Z = -28000, Range = 217700, Unknown_10 = 0x7D0, Unknown_14 = 0xFFFF6CBC, Unknown_18 = 0x0, Unknown_1C = 4, ) DeclActor( TriggerX = 199000, TriggerZ = 500, TriggerY = -22200, TriggerRange = 800, ActorX = 199000, ActorZ = 1500, ActorY = -22200, Flags = 0x7C, TalkScenaIndex = 0, TalkFunctionIndex = 3, Unknown_22 = 0, ) DeclActor( TriggerX = 285640, TriggerZ = 0, TriggerY = -26290, TriggerRange = 1000, ActorX = 285640, ActorZ = 1000, ActorY = -26290, Flags = 0x7C, TalkScenaIndex = 0, TalkFunctionIndex = 5, Unknown_22 = 0, ) ScpFunction( "Function_0_2B2", # 00, 0 "Function_1_2B3", # 01, 1 "Function_2_324", # 02, 2 "Function_3_4AC", # 03, 3 "Function_4_637", # 04, 4 "Function_5_1E52", # 05, 5 ) def Function_0_2B2(): pass label("Function_0_2B2") Return() # Function_0_2B2 end def Function_1_2B3(): pass label("Function_1_2B3") OP_16(0x2, 0xFA0, 0x1F018, 0xFFFD9AB8, 0x30038) Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xA0, 6)), scpexpr(EXPR_END)), "loc_2DA") OP_71(0x0, 0x4) OP_72(0x1, 0x4) OP_64(0x0, 0x1) label("loc_2DA") LoadEffect(0x0, "map\\\\mp027_00.eff") PlayEffect(0x0, 0x0, 0xFF, 285640, 1000, -26290, 0, 0, 0, 1300, 1300, 1300, 0xFF, 0, 0, 0, 0) Return() # Function_1_2B3 end def Function_2_324(): pass label("Function_2_324") OP_51(0xFE, 0x28, (scpexpr(EXPR_PUSH_LONG, 0x8), scpexpr(EXPR_STUB), scpexpr(EXPR_END))) RunExpression(0x0, (scpexpr(EXPR_RAND), scpexpr(EXPR_PUSH_LONG, 0xE), scpexpr(EXPR_IMOD), scpexpr(EXPR_STUB), scpexpr(EXPR_END))) Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x0), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_354") OP_99(0xFE, 0x0, 0x7, 0x672) Jump("loc_496") label("loc_354") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x1), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_36D") OP_99(0xFE, 0x1, 0x7, 0x640) Jump("loc_496") label("loc_36D") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x2), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_386") OP_99(0xFE, 0x2, 0x7, 0x60E) Jump("loc_496") label("loc_386") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x3), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_39F") OP_99(0xFE, 0x3, 0x7, 0x5DC) Jump("loc_496") label("loc_39F") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x4), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_3B8") OP_99(0xFE, 0x4, 0x7, 0x5AA) Jump("loc_496") label("loc_3B8") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x5), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_3D1") OP_99(0xFE, 0x5, 0x7, 0x578) Jump("loc_496") label("loc_3D1") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x6), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_3EA") OP_99(0xFE, 0x6, 0x7, 0x546) Jump("loc_496") label("loc_3EA") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x7), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_403") OP_99(0xFE, 0x0, 0x7, 0x677) Jump("loc_496") label("loc_403") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x8), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_41C") OP_99(0xFE, 0x1, 0x7, 0x645) Jump("loc_496") label("loc_41C") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x9), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_435") OP_99(0xFE, 0x2, 0x7, 0x613) Jump("loc_496") label("loc_435") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0xA), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_44E") OP_99(0xFE, 0x3, 0x7, 0x5E1) Jump("loc_496") label("loc_44E") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0xB), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_467") OP_99(0xFE, 0x4, 0x7, 0x5AF) Jump("loc_496") label("loc_467") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0xC), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_480") OP_99(0xFE, 0x5, 0x7, 0x57D) Jump("loc_496") label("loc_480") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0xD), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_496") OP_99(0xFE, 0x6, 0x7, 0x54B) label("loc_496") Jc((scpexpr(EXPR_PUSH_LONG, 0x1), scpexpr(EXPR_END)), "loc_4AB") OP_99(0xFE, 0x0, 0x7, 0x5DC) Jump("loc_496") label("loc_4AB") Return() # Function_2_324 end def Function_3_4AC(): pass label("Function_3_4AC") EventBegin(0x0) Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xA0, 4)), scpexpr(EXPR_EQUZ), scpexpr(EXPR_END)), "loc_5C9") OP_A2(0x504) Jc((scpexpr(EXPR_PUSH_VALUE_INDEX, 0xA), scpexpr(EXPR_PUSH_LONG, 0x0), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_4FE") ChrTalk( #0 0x101, ( "#004F咦……\x01", "这个照明灯,是不是有点怪呢?\x02", ) ) CloseMessageWindow() Jump("loc_534") label("loc_4FE") ChrTalk( #1 0x101, ( "#004F咦……\x01", "那个照明灯,是不是有点怪呢?\x02", ) ) CloseMessageWindow() label("loc_534") ChrTalk( #2 0x102, ( "#012F确实是。\x01", "应该是有点故障了。\x02\x03", "导力器的导力\x01", "是可以自动积蓄的,\x01", "所以,我想应该不用担心……\x02", ) ) CloseMessageWindow() Jump("loc_634") label("loc_5C9") Jc((scpexpr(EXPR_PUSH_VALUE_INDEX, 0xA), scpexpr(EXPR_PUSH_LONG, 0x0), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_600") ChrTalk( #3 0x101, "#000F照明灯好像有点怪怪的。\x02", ) CloseMessageWindow() Jump("loc_634") label("loc_600") ChrTalk( #4 0x102, ( "#015F照明灯有点闪烁。\x01", "看来有点故障了。\x02", ) ) CloseMessageWindow() label("loc_634") EventEnd(0x1) Return() # Function_3_4AC end def Function_4_637(): pass label("Function_4_637") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xA0, 6)), scpexpr(EXPR_EQUZ), scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xA0, 5)), scpexpr(EXPR_NEQUZ_I64), scpexpr(EXPR_END)), "loc_1E51") OP_71(0x0, 0x4) OP_71(0x1, 0x4) OP_A2(0x506) EventBegin(0x0) ClearChrFlags(0x8, 0x80) ClearChrFlags(0x9, 0x80) ClearChrFlags(0xA, 0x80) ClearChrFlags(0xB, 0x80) SetChrPos(0x8, 197700, 0, -23200, 45) SetChrPos(0x9, 199000, 0, -24200, 0) SetChrPos(0xA, 200900, 0, -24200, 315) SetChrPos(0xB, 200600, 0, -23100, 315) SetChrFlags(0x8, 0x40) SetChrFlags(0x9, 0x40) SetChrFlags(0xA, 0x40) SetChrFlags(0xB, 0x40) NpcTalk( #5 0x8, "女孩子的声音", "啊——!\x02", ) CloseMessageWindow() OP_20(0x5DC) OP_62(0x101, 0x0, 2000, 0x2, 0x7, 0x50, 0x1) OP_22(0x27, 0x0, 0x64) OP_62(0x102, 0x0, 2000, 0x2, 0x7, 0x50, 0x1) OP_22(0x27, 0x0, 0x64) Sleep(1000) Fade(1000) OP_6C(45000, 0) OP_6D(200700, 2000, -24400, 0) OP_31(0x6, 0x0, 0x12) OP_B5(0x6, 0x0) OP_B5(0x6, 0x1) OP_B5(0x6, 0x5) OP_B5(0x6, 0x4) OP_41(0x6, 0xB5) OP_41(0x6, 0xF4) OP_41(0x6, 0x112) OP_41(0x6, 0x2C9, 0x0) OP_41(0x6, 0x271, 0x1) OP_41(0x6, 0x262, 0x5) OP_41(0x6, 0x26B, 0x4) OP_35(0x6, 0xD2) OP_36(0x6, 0x104) AddParty(0x6, 0xFF) SetChrPos(0x107, 204300, 0, -26400, 270) OP_0D() OP_21() OP_1D(0x56) SetChrFlags(0x101, 0x1000) SetChrFlags(0x102, 0x1000) Sleep(500) OP_62(0x107, 0x0, 2000, 0x28, 0x2B, 0x64, 0x3) NpcTalk( #6 0x107, "小女孩", ( "#065F#2P已、已经聚集了\x01", "这么多只魔兽啊~……\x02\x03", "这样下去会坏掉的……\x02\x03", "既、既然这样的话……\x02", ) ) CloseMessageWindow() def lambda_81F(): OP_6B(2600, 2500) ExitThread() QueueWorkItem(0x107, 1, lambda_81F) Sleep(1000) OP_22(0xD8, 0x0, 0x64) SetChrChipByIndex(0x107, 2) OP_51(0x107, 0x8, (scpexpr(EXPR_PUSH_LONG, 0x0), scpexpr(EXPR_STUB), scpexpr(EXPR_END))) Sleep(1000) Sleep(500) TurnDirection(0x107, 0xA, 0) NpcTalk( #7 0x107, "小女孩", "#062F#2P方向OK,仰角20度……\x02", ) CloseMessageWindow() Sleep(400) NpcTalk( #8 0x107, "小女孩", ( "#062F导力填充率30%……\x02\x03", "#068F……发射!!\x02", ) ) CloseMessageWindow() LoadEffect(0x2, "map\\\\mp019_00.eff") def lambda_901(): OP_94(0x1, 0xFE, 0xB4, 0x1F4, 0x1388, 0x0) ExitThread() QueueWorkItem(0x107, 1, lambda_901) SetChrChipByIndex(0x107, 2) SetChrPos(0xE, 196500, 1500, -22500, 0) OP_22(0x1FA, 0x0, 0x64) PlayEffect(0x2, 0xFF, 0x107, 250, 1000, 250, 0, 0, 0, 1000, 1000, 1000, 0xE, 0, 0, 0, 0) OP_99(0x107, 0x0, 0x3, 0x7D0) OP_99(0x107, 0x3, 0x7, 0x7D0) def lambda_979(): OP_94(0x1, 0xFE, 0x78, 0x384, 0xBB8, 0x0) ExitThread() QueueWorkItem(0x8, 1, lambda_979) def lambda_98F(): OP_94(0x1, 0xFE, 0xB4, 0x3E8, 0x1388, 0x0) ExitThread() QueueWorkItem(0x9, 1, lambda_98F) def lambda_9A5(): OP_94(0x1, 0xFE, 0xE6, 0x2BC, 0xBB8, 0x0) ExitThread() QueueWorkItem(0xA, 1, lambda_9A5) def lambda_9BB(): OP_94(0x1, 0xFE, 0x5A, 0x1F4, 0xFA0, 0x0) ExitThread() QueueWorkItem(0xB, 1, lambda_9BB) Sleep(1000) WaitChrThread(0x8, 0x1) def lambda_9DB(): TurnDirection(0xFE, 0x107, 400) ExitThread() QueueWorkItem(0x8, 1, lambda_9DB) WaitChrThread(0x9, 0x1) def lambda_9EE(): TurnDirection(0xFE, 0x107, 400) ExitThread() QueueWorkItem(0x9, 1, lambda_9EE) WaitChrThread(0xA, 0x1) def lambda_A01(): TurnDirection(0xFE, 0x107, 400) ExitThread() QueueWorkItem(0xA, 1, lambda_A01) WaitChrThread(0xB, 0x1) def lambda_A14(): TurnDirection(0xFE, 0x107, 400) ExitThread() QueueWorkItem(0xB, 1, lambda_A14) OP_8C(0x107, 270, 0) Sleep(400) NpcTalk( #9 0x107, "小女孩", ( "#062F#2P再、再靠近的话,\x01", "这次真的会打中你们哦!\x02\x03", "真、真的哦,我是认真的!\x02", ) ) CloseMessageWindow() OP_62(0xA, 0x0, 1700, 0x18, 0x1B, 0xFA, 0x0) Sleep(300) OP_62(0x9, 0x0, 1700, 0x18, 0x1B, 0xFA, 0x0) Sleep(100) OP_62(0xB, 0x0, 1700, 0x18, 0x1B, 0xFA, 0x0) Sleep(100) OP_62(0x8, 0x0, 1700, 0x18, 0x1B, 0xFA, 0x0) Sleep(200) Sleep(1000) def lambda_AE6(): OP_6D(201700, 2000, -25100, 2500) ExitThread() QueueWorkItem(0x101, 1, lambda_AE6) SetChrFlags(0x8, 0x20) SetChrFlags(0x9, 0x20) SetChrFlags(0xA, 0x20) SetChrFlags(0xB, 0x20) def lambda_B12(): OP_94(0x0, 0xFE, 0x0, 0x12C, 0x3E8, 0x0) ExitThread() QueueWorkItem(0xA, 1, lambda_B12) OP_63(0xA) Sleep(300) def lambda_B30(): OP_94(0x0, 0xFE, 0x0, 0x258, 0x3E8, 0x0) ExitThread() QueueWorkItem(0xB, 1, lambda_B30) OP_63(0xB) def lambda_B49(): OP_94(0x0, 0xFE, 0x0, 0x3E8, 0x3E8, 0x0) ExitThread() QueueWorkItem(0x9, 1, lambda_B49) OP_63(0x9) Sleep(600) def lambda_B67(): OP_94(0x0, 0xFE, 0x0, 0x320, 0x3E8, 0x0) ExitThread() QueueWorkItem(0x8, 1, lambda_B67) OP_63(0x8) SetChrChipByIndex(0x107, 1) OP_62(0x107, 0x0, 2000, 0x10, 0x13, 0xFA, 0x1) OP_22(0x31, 0x0, 0x64) Sleep(1700) NpcTalk( #10 0x107, "小女孩", ( "#065F#2P啊……\x01", "起、起到反效果了……\x02", ) ) CloseMessageWindow() SetChrPos(0x101, 210200, 0, -30000, 0) SetChrPos(0x102, 209330, 0, -30000, 0) SetChrFlags(0x102, 0x4) def lambda_C0F(): OP_94(0x0, 0xFE, 0x0, 0x3E8, 0x7D0, 0x0) ExitThread() QueueWorkItem(0xA, 1, lambda_C0F) Sleep(150) def lambda_C2A(): OP_94(0x0, 0xFE, 0x0, 0x3E8, 0xBB8, 0x0) ExitThread() QueueWorkItem(0xB, 1, lambda_C2A) def lambda_C40(): OP_94(0x0, 0xFE, 0x0, 0x1F4, 0x7D0, 0x0) ExitThread() QueueWorkItem(0x9, 1, lambda_C40) Sleep(300) def lambda_C5B(): OP_94(0x0, 0xFE, 0x0, 0x258, 0x3E8, 0x0) ExitThread() QueueWorkItem(0x8, 1, lambda_C5B) Sleep(400) NpcTalk( #11 0x107, "小女孩", "#069F#2P呀……!\x02", ) OP_9E(0x107, 0x14, 0x0, 0x190, 0xFA0) CloseMessageWindow() def lambda_CA6(): OP_94(0x0, 0xA, 0x0, 0x7D0, 0x3E8, 0x0) ExitThread() QueueWorkItem(0xA, 1, lambda_CA6) SetChrFlags(0x101, 0x1000) SetChrFlags(0x102, 0x1000) SetChrChipByIndex(0x101, 4) SetChrChipByIndex(0x102, 6) def lambda_CD0(): OP_6B(3160, 1500) ExitThread() QueueWorkItem(0x101, 0, lambda_CD0) def lambda_CE0(): OP_6D(203200, 0, -24900, 1500) ExitThread() QueueWorkItem(0x101, 2, lambda_CE0) def lambda_CF8(): OP_6C(78000, 1200) ExitThread() QueueWorkItem(0x102, 2, lambda_CF8) ChrTalk( #12 op#A op#5 0x101, "#10A#1P喔喔喔喔喔!\x05\x02", ) OP_8E(0x101, 0x326F4, 0x0, 0xFFFF9886, 0x2710, 0x0) def lambda_D32(): OP_8E(0xFE, 0x317B8, 0x0, 0xFFFF952A, 0x2328, 0x0) ExitThread() QueueWorkItem(0x102, 1, lambda_D32) def lambda_D4D(): OP_8C(0xFE, 135, 400) ExitThread() QueueWorkItem(0x107, 2, lambda_D4D) SetChrFlags(0x107, 0x1000) SetChrChipByIndex(0x107, 8) def lambda_D65(): OP_8F(0xFE, 0x3214A, 0x0, 0xFFFF9566, 0xBB8, 0x0) ExitThread() QueueWorkItem(0x107, 1, lambda_D65) OP_51(0x101, 0x8, (scpexpr(EXPR_PUSH_LONG, 0x0), scpexpr(EXPR_STUB), scpexpr(EXPR_END))) SetChrChipByIndex(0x101, 7) def lambda_D90(): OP_99(0xFE, 0x0, 0xC, 0x9C4) ExitThread() QueueWorkItem(0x101, 3, lambda_D90) OP_22(0xA4, 0x0, 0x64) OP_22(0x1F4, 0x0, 0x64) OP_96(0x101, 0x31830, 0x0, 0xFFFF9C00, 0x5DC, 0x1770) OP_7C(0x0, 0x64, 0xBB8, 0x64) PlayEffect(0x8, 0xFF, 0xFF, 202800, 0, -25600, 0, 0, 0, 1000, 1000, 1000, 0xFF, 0, 0, 0, 0) def lambda_E07(): OP_94(0x1, 0xA, 0xB4, 0x7D0, 0x3A98, 0x0) ExitThread() QueueWorkItem(0xA, 1, lambda_E07) OP_96(0x101, 0x31A92, 0x0, 0xFFFF9A52, 0x1F4, 0x1388) def lambda_E34(): OP_94(0x1, 0xFE, 0xB4, 0x384, 0x3E8, 0x0) ExitThread() QueueWorkItem(0x8, 1, lambda_E34) def lambda_E4A(): OP_94(0x1, 0xFE, 0xB4, 0x3E8, 0xBB8, 0x0) ExitThread() QueueWorkItem(0x9, 1, lambda_E4A) def lambda_E60(): OP_94(0x1, 0xFE, 0xB4, 0x1F4, 0x3E8, 0x0) ExitThread() QueueWorkItem(0xB, 1, lambda_E60) WaitChrThread(0x102, 0x1) SetChrChipByIndex(0x102, 5) ClearChrFlags(0x102, 0x4) Sleep(1000) NpcTalk( #13 0x107, "小女孩", "#065F咦……\x02", ) CloseMessageWindow() SetChrChipByIndex(0x107, 1) ClearChrFlags(0x107, 0x1000) TurnDirection(0x107, 0x101, 400) NpcTalk( #14 0x107, "小女孩", "#560F啊,刚才的……!\x02", ) CloseMessageWindow() ChrTalk( #15 0x101, ( "#006F待会再慢慢聊吧!\x01", "你先退到我们后面去!\x02", ) ) CloseMessageWindow() ChrTalk( #16 0x102, ( "#012F总之\x01", "先把这些家伙赶走吧!\x02", ) ) CloseMessageWindow() Battle(0x3A7, 0x0, 0x0, 0x0, 0xFF) Switch( (scpexpr(EXPR_PUSH_VALUE_INDEX, 0x3), scpexpr(EXPR_END)), (1, "loc_F49"), (SWITCH_DEFAULT, "loc_F4C"), ) label("loc_F49") OP_B4(0x0) Return() label("loc_F4C") EventBegin(0x0) OP_4F(0x23, (scpexpr(EXPR_PUSH_LONG, 0xFF), scpexpr(EXPR_STUB), scpexpr(EXPR_END))) SetChrFlags(0x8, 0x80) SetChrFlags(0x9, 0x80) SetChrFlags(0xA, 0x80) SetChrFlags(0xB, 0x80) SetChrPos(0x101, 202800, 0, -25600, 315) SetChrPos(0x102, 202500, 0, -27300, 315) SetChrPos(0x107, 204200, 0, -26900, 315) OP_6D(203400, 0, -26050, 0) SetChrChipByIndex(0x107, 65535) OP_71(0x0, 0x4) OP_71(0x1, 0x4) FadeToBright(1000, 0) OP_0D() NpcTalk( #17 0x107, "小女孩", ( "#065F真、真是吓死人了~……\x02\x03", "#067F那个那个……\x01", "真是非常感谢呢。\x02\x03", "救了我一命呢。\x02", ) ) CloseMessageWindow() OP_44(0x102, 0xFF) OP_44(0x101, 0xFF) def lambda_1040(): OP_6B(2790, 2000) ExitThread() QueueWorkItem(0x101, 0, lambda_1040) SetChrChipByIndex(0x102, 65535) TurnDirection(0x102, 0x107, 400) SetChrChipByIndex(0x101, 65535) TurnDirection(0x101, 0x107, 400) WaitChrThread(0x101, 0x0) ChrTalk( #18 0x101, ( "#001F啊哈哈。\x01", "你没事就好了。\x02\x03", "#006F不过……\x01", "以后可要吸取教训哦。\x02\x03", "一个人和魔兽战斗\x01", "这种危险的事可不能做哦。\x02", ) ) CloseMessageWindow() NpcTalk( #19 0x107, "小女孩", ( "#065F啊,但是但是……\x02\x03", "如果放着不管的话,\x01", "隧道的照明灯会坏掉呢……\x02", ) ) CloseMessageWindow() ChrTalk( #20 0x101, ( "#505F这么说来……\x02\x03", "为什么魔兽会聚集在\x01", "熄灭了的照明灯周围呢?\x02", ) ) CloseMessageWindow() Jc((scpexpr(EXPR_EXEC_OP, "OP_29(0x6, 0x1, 0x8)"), scpexpr(EXPR_END)), "loc_12D6") ChrTalk( #21 0x102, ( "#010F以前在更换路灯的时候\x01", "不是也发生过同样的事吗?\x02\x03", "因为导力器里的七耀石\x01", "是魔兽喜欢的东西。\x02\x03", "因此路灯里\x01", "都带有驱赶魔兽的机能……\x02\x03", "如果这种机能坏了的话,\x01", "自然就会容易吸引魔兽过来。\x02", ) ) CloseMessageWindow() Jump("loc_1392") label("loc_12D6") ChrTalk( #22 0x102, ( "#010F因为导力器里的七耀石\x01", "是魔兽喜欢的东西。\x02\x03", "因此路灯里\x01", "都带有驱赶魔兽的机能……\x02\x03", "如果这种机能坏了的话,\x01", "自然就会容易吸引魔兽过来。\x02", ) ) CloseMessageWindow() label("loc_1392") ChrTalk( #23 0x101, ( "#501F啊,原来是这样啊。\x02\x03", "#007F不过就算这样,\x01", "也不能这么胡来啊。\x02\x03", "万一受伤的话可就不好了。\x02", ) ) CloseMessageWindow() NpcTalk( #24 0x107, "小女孩", ( "#063F啊……\x01", "对、对不起……\x02", ) ) CloseMessageWindow() ChrTalk( #25 0x102, ( "#019F好了好了,到此为止吧。\x02\x03", "更何况,『不能胡来』从你嘴里说出来,\x01", "可是完全没有说服力啊。\x02", ) ) CloseMessageWindow() ChrTalk( #26 0x101, ( "#509F讨厌,少泼冷水啦。\x02\x03", "#006F算了……\x01", "我叫艾丝蒂尔。\x02", ) ) CloseMessageWindow() ChrTalk( #27 0x102, ( "#010F我是约修亚。\x02\x03", "我们俩都是\x01", "游击士协会的见习游击士。\x02", ) ) CloseMessageWindow() NpcTalk( #28 0x107, "小女孩", ( "#061F哇~~\x01", "难怪那么厉害呢……\x02\x03", "#060F我叫提妲。\x02\x03", "现在正在\x01", "蔡斯的中央工房实习。\x02", ) ) CloseMessageWindow() ChrTalk( #29 0x101, ( "#501F嘿嘿~\x01", "所以才会打扮成这样吧。\x02\x03", "那么,提妲。\x02\x03", "你要回蔡斯的话,\x01", "就和我们一起走吧?\x02", ) ) CloseMessageWindow() ChrTalk( #30 0x102, ( "#010F是啊。\x01", "如果再遇到魔兽就糟糕了。\x02", ) ) CloseMessageWindow() ChrTalk( #31 0x107, ( "#061F真、真的吗?\x01", "真是非常感谢呢。\x02\x03", "#560F啊,不过请稍等一下。\x01", " \x02\x03", "我得先修理好那个照明灯。\x02", ) ) CloseMessageWindow() ChrTalk( #32 0x101, ( "#004F啊,那也是。\x01", "这样放着不管的确非常危险。\x02\x03", "不过……\x01", "你是怎么知道这里的照明灯坏了呢?\x02", ) ) CloseMessageWindow() ChrTalk( #33 0x107, ( "#060F啊,我在调查电脑的\x01", "数据库的时候偶然发现的。\x02\x03", "好像当初安装时候用的是次品,\x01", "而且设置元件也不齐全。\x02", ) ) CloseMessageWindow() ChrTalk( #34 0x102, ( "#010F原来如此,\x01", "那你还是快看看吧。\x02", ) ) CloseMessageWindow() ChrTalk( #35 0x101, "#505F(电脑?数据库?)\x02", ) CloseMessageWindow() FadeToDark(1000, 0, -1) OP_0D() OP_6D(198940, 30, -23590, 0) OP_6B(2800, 0) OP_6C(45000, 0) SetChrPos(0x101, 199360, 10, -24480, 0) SetChrPos(0x102, 198190, 20, -24530, 0) SetChrPos(0x107, 199160, 20, -22710, 0) SetChrFlags(0x107, 0x4) Sleep(500) FadeToBright(1000, 0) OP_0D() ChrTalk( #36 0x107, "#062F#4P……嘿咻。\x02", ) CloseMessageWindow() OP_72(0x1, 0x4) Sleep(100) OP_71(0x1, 0x4) Sleep(100) OP_72(0x1, 0x4) Sleep(100) OP_71(0x1, 0x4) Sleep(90) OP_72(0x1, 0x4) Sleep(80) OP_71(0x1, 0x4) Sleep(70) OP_72(0x1, 0x4) Sleep(60) OP_71(0x1, 0x4) Sleep(50) OP_72(0x1, 0x4) Sleep(1000) ChrTalk( #37 0x107, "#560F#4P好~这样就可以了。\x02", ) CloseMessageWindow() OP_8F(0x107, 0x309BC, 0x1E, 0xFFFFA4DE, 0x7D0, 0x0) OP_8C(0x107, 180, 400) ClearChrFlags(0x107, 0x4) ChrTalk( #38 0x107, "#061F#1P让你们久等了。\x02", ) CloseMessageWindow() ChrTalk( #39 0x101, ( "#501F哎~好厉害。\x01", "原来你这么熟练的啊。\x02", ) ) CloseMessageWindow() ChrTalk( #40 0x102, ( "#019F真不愧是\x01", "在中央工房的见习生啊。\x02", ) ) CloseMessageWindow() ChrTalk( #41 0x107, ( "#067F#1P嘿嘿……\x01", "这不算什么啦。\x02\x03", "只不过是修正接触不良的结晶回路\x01", "和调整错乱的导力压而已。\x02", ) ) CloseMessageWindow() ChrTalk( #42 0x101, ( "#505F???\x02\x03", "唔……\x01", "听起来好像相当复杂的样子呢。\x02", ) ) CloseMessageWindow() ChrTalk( #43 0x107, ( "#560F其实一点也不复杂。\x02\x03", "这个呢,\x01", "简单解释起来的话……\x02", ) ) CloseMessageWindow() ChrTalk( #44 0x107, ( "#1K#1P在导力器的内部镶嵌着\x01", "可以发挥各种功能的结晶回路。\x01", "结晶回路与元件必须准确地\x01", "进行连接才能使导力器正常运作,\x01", "而当两者出现连接错误时,\x01", "导力器生成的导力就会无处可去,\x01", "其结果自然就导致\x01", "设计时预想的机能无法正常发挥。\x01", "以照明灯的情况来说就是发光和驱除魔兽的……\x02", ) ) Sleep(2000) OP_62(0x101, 0x0, 2000, 0x28, 0x2B, 0x64, 0x3) ChrTalk( #45 0x101, "#1K#004F停、停一下!\x02", ) OP_56(0x1) OP_59() ChrTalk( #46 0x101, ( "#506F还、还是以后再慢慢解释吧。\x01", "我们差不多该出发了呢~\x02\x03", "嗯嗯~\x01", "站在这里说话也不方便嘛。\x02", ) ) CloseMessageWindow() ChrTalk( #47 0x107, ( "#067F#1P啊,说得也是。\x01", "虽然没解释完有点可惜……\x02", ) ) CloseMessageWindow() ChrTalk( #48 0x101, "#007F(呼……)\x02", ) CloseMessageWindow() ChrTalk( #49 0x102, ( "#019F哈哈,\x01", "那我们继续前往蔡斯吧。\x02", ) ) CloseMessageWindow() ChrTalk( #50 0x101, "#006FOK!\x02", ) CloseMessageWindow() ChrTalk( #51 0x107, "#061F#1P好的。\x02", ) CloseMessageWindow() ClearChrFlags(0x101, 0x1000) ClearChrFlags(0x102, 0x1000) OP_64(0x0, 0x1) EventEnd(0x0) label("loc_1E51") Return() # Function_4_637 end def Function_5_1E52(): pass label("Function_5_1E52") FadeToDark(300, 0, 100) AnonymousTalk( #52 "\x07\x05这是一台可供旅行者回复体力的导力器装置。\x07\x00\x02", ) OP_4F(0x28, (scpexpr(EXPR_PUSH_LONG, 0x18), scpexpr(EXPR_STUB), scpexpr(EXPR_END))) Menu( 0, 10, 32, 1, ( "在此休息\x01", # 0 "离开\x01", # 1 ) ) MenuEnd(0x1) OP_4F(0x28, (scpexpr(EXPR_PUSH_LONG, 0xFFFF), scpexpr(EXPR_STUB), scpexpr(EXPR_END))) OP_5F(0x0) OP_56(0x0) Jc((scpexpr(EXPR_GET_RESULT, 0x1), scpexpr(EXPR_PUSH_LONG, 0x0), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_2071") FadeToBright(100, 0) Sleep(500) SoundLoad(13) OP_82(0x0, 0x2) PlayEffect(0x0, 0x2, 0xFF, 285640, 1000, -26290, 0, 0, 0, 700, 700, 700, 0xFF, 0, 0, 0, 0) OP_6F(0x11, 0) OP_70(0x11, 0x32) OP_73(0x11) OP_20(0xBB8) OP_22(0xC, 0x0, 0x64) OP_82(0x2, 0x2) LoadEffect(0x1, "map\\\\mp027_01.eff") PlayEffect(0x1, 0x1, 0xFF, 285640, 1000, -26290, 0, 0, 0, 1500, 1500, 1500, 0xFF, 0, 0, 0, 0) FadeToDark(1000, 0, -1) Sleep(700) OP_22(0xD, 0x0, 0x64) OP_0D() OP_31(0x0, 0xFE, 0x0) OP_31(0x1, 0xFE, 0x0) OP_31(0x2, 0xFE, 0x0) OP_31(0x3, 0xFE, 0x0) OP_31(0x4, 0xFE, 0x0) OP_31(0x5, 0xFE, 0x0) OP_31(0x6, 0xFE, 0x0) OP_31(0x7, 0xFE, 0x0) SetChrPos(0x0, 285600, 30, -28390, 13) SetChrPos(0x1, 285600, 30, -28390, 13) SetChrPos(0x2, 285600, 30, -28390, 13) SetChrPos(0x3, 285600, 30, -28390, 13) OP_69(0x0, 0x0) OP_30(0x0) Sleep(3500) OP_82(0x1, 0x2) LoadEffect(0x0, "map\\\\mp027_00.eff") PlayEffect(0x0, 0x0, 0xFF, 285640, 1000, -26290, 0, 0, 0, 1300, 1300, 1300, 0xFF, 0, 0, 0, 0) OP_6F(0x11, 0) OP_1E() FadeToBright(1000, 0) OP_56(0x0) TalkEnd(0xFF) Return() label("loc_2071") Jc((scpexpr(EXPR_GET_RESULT, 0x1), scpexpr(EXPR_PUSH_LONG, 0x0), scpexpr(EXPR_NEQ), scpexpr(EXPR_END)), "loc_208B") FadeToBright(300, 0) TalkEnd(0xFF) Return() label("loc_208B") Return() # Function_5_1E52 end SaveToFile() Try(main)
b54da796c8f41bc31e9c535663ef12d38bbd0a51
6a0157b40e54d9c6fcca1f96c4dd0ebd8101813b
/motsfinder/axisym/curve/expcalc.py
5e0ca4e59c313db74164088098d022811d80c854
[ "MIT" ]
permissive
cevans216/distorted-motsfinder-public
15ba97d632928e36c6a8ac159a6a2c79b7ae6156
a7f28b13f3b80b5980ef9eccf705146b77691498
refs/heads/master
2020-07-28T05:38:16.662849
2019-07-26T17:44:55
2019-07-26T17:44:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
46,938
py
r"""@package motsfinder.axisym.curve.expcalc Computation class storing interim results of expansion calculations. The implementation here uses the formulas derived in \ref thornburg2003_1 "[1]". Specifically, we make heavy use of the quantities `A, B, C, D` defined in \ref thornburg2003_1 "[1]" in equation (12) to compute the expansion \f$ \Theta \f$ using equation (11). See also \ref pookkolb2018_1 "[2]" and the docstrings of the individual procedures. In the base class ExpansionCalc defined in this module, we do not consider how the used quantities \f$ s_i \f$ and \f$ \partial_i s_j \f$ are obtained. This depends on how the surfaces are represented and hence is the responsibility of subclasses to implement. Additionally, subclasses also need to supply surface parameter derivatives defined in \ref thornburg2003_1 "[1]" as \f$ X^u_i = \partial_i y^u \f$ and \f$ X^u_{ij} = \partial_i\partial_j y^u \f$. In the axisymmetric case considered here, we have only one parameter, \f$ y^u = \lambda \f$ along the curve, and hence drop the `u` superscript. Note that in this code, we call the covector field \f$ X_i \f$ simply `X` and the 2nd rank tensor field \f$ X_{ij} \f$ simply `Y` (Python cannot differentiate between objects based on how many indices you use). @b Examples See implementations starshapedcurve._StarShapedExpansionCalc and refparamcurve._RefParamExpansionCalc. @b References \anchor thornburg2003_1 [1] Thornburg, Jonathan. "A fast apparent horizon finder for three-dimensional Cartesian grids in numerical relativity." Classical and quantum gravity 21.2 (2003): 743. \anchor pookkolb2018_1 [2] D. Pook-Kolb, O. Birnholtz, B. Krishnan and E. Schnetter, "The existence and stability of marginally trapped surfaces." arXiv:1811.10405 [gr-qc]. """ from abc import ABCMeta, abstractmethod from math import fsum from six import add_metaclass import numpy as np from scipy import linalg from scipy.misc import derivative from ...utils import cache_method_results from ...numutils import inverse_2x2_matrix_derivative from ...metric import christoffel_symbols, christoffel_deriv from ...metric import riemann_components __all__ = [] # It is customary to denote indices of tensors without spaces, e.g.: # T_{ijk} => T[i,j,k] # We disable the respective pylint warning for this file. # pylint: disable=bad-whitespace @add_metaclass(ABCMeta) class ExpansionCalc(object): r"""Abstract base class for computing the expansion at one point. This class serves as coordinator for computing the expansion and functional derivatives w.r.t. the horizon function. Sub classes need only implement a small number of computational methods. The purpose of having a separate class hierarchy for computing the expansion (as opposed to doing all the computations inside the curve classes) is to be able to store a number of interim results valid only for the results at one point of the surface. Including these as `cache` in the curve classes would in principle be possible. To ease management of cache invalidation (when computing at a different point), the complete cache should live on one object. The ExpansionCalc class and its sub classes can be interpreted as such a cache, with added functionality to do the necessary computations using the cached values. """ def __init__(self, curve, h_fun, param, metric): r"""Create a "calc" object for certain point of a curve. The curve represents an axisymmetric surface. @param curve (expcurve.ExpansionCurve) The curve representing the (trial) surface on which to compute the expansion and other quantities. @param h_fun (exprs.numexpr.NumericExpression) The (1D) "horizon" function. The subclasses implementing this ExpansionCalc class are free to interpret as they wish. @param param (float) The parameter value along the `curve` at which the quantities should be computed. @param metric The Riemannian 3-metric defining the geometry of the surrounding space. """ ## Step sizes for FD numerical differentiation of the expansion ## \wrt `h`, `h'`, ``h''``, respectively. self.dx_hdiffs = (1e-6, 1e-6, 1e-3) ## Finite difference differentiation order. self.fd_order = 3 ## The curve representing the (trial) surface. self.curve = curve ## Horizon function (in case we need higher derivatives than ``h''``). self.h_fun = h_fun ## Value of horizon function `h` at the given parameter. self.h = h_fun(param) ## Value of `h'` at the given parameter. self.dh = h_fun.diff(param, n=1) ## Value of ``h''`` at the given parameter. self.ddh = h_fun.diff(param, n=2) ## Parameter on the curve at which to do the computations. self.param = param point = curve(param, xyz=True) ## 3D point in `x`,`y`,`z` coordinates. self.point = point ## Metric (tensor field). self.metric = metric ## Metric tensor at the point to do computations at. self.g = metric.at(point) if curve.extr_curvature is None: ## Extrinsic curvature at the point to do computations at. self.K = None else: self.K = curve.extr_curvature(point) # Cached metric derivatives (computed on-demand). self._dg = None self._dg_inv = None self._ddg = None self._ddg_inv = None ## Derivatives \f$ \partial_i \ln\sqrt{g} \f$ self.dlnsqrtg = np.asarray(metric.diff_lnsqrtg(point)) s, ds, X, Y = self._compute_s_ds_X_Y() ## Normal covector (not normalized). self.s = np.asarray(s) ## Derivative matrix \f$ \partial_i s_j \f$ of normal vector. self.ds = np.asarray(ds) ## Derivative covector \f$ X_i := \partial_i \lambda(\vec x) \f$. self.X = np.asarray(X) ## Second derivatives \f$ Y := X_{ij} := \partial_i\partial_j\lambda\f$. self.Y = np.asarray(Y) ## Contravariant normal vector (not normalized). self.s_up = self.g.raise_idx(s) ## Contravariant parameter derivative \f$ X^i := g^{ij}X_j \f$. self.X_up = self.g.raise_idx(X) ABCD, trK = self._compute_ABCDtrK() ## A, B, C, D terms of the Thornburg expansion formula. self.ABCD = ABCD ## Trace of the extrinsic curvature. self.trK = trK ## Cached expansion result. self._Th = None @property def dg(self): r"""Derivative of 3-metric components \wrt x,y,z.""" if self._dg is None: self._dg = np.asarray(self.metric.diff(self.point, diff=1)) return self._dg @property def dg_inv(self): r"""Derivative of inverse 3-metric components. This is computed using \f$0 = \partial_i \delta^a_b = \partial_i(g^{ac}g_{cb})\f$ from which we get \f[ \partial_i g^{-1} = -g^{-1} (\partial_i g) g^{-1}. \f] """ if self._dg_inv is None: g_inv = self.g.inv dg = self.dg # explanation: # X = g_inv.dot(dg) == g^ad partial_i g_db # Y = X.dot(g_inv) == X^a_ib g^be # => Y has indices Y[a,i,e] == (g^-1 partial_i g g^-1)^ae # we want "i" to be the first axis => swapaxes(0, 1) # equivalent to: -np.einsum('ic,acd,dj', _g_inv, _dg, _g_inv) self._dg_inv = -( g_inv.dot(dg).dot(g_inv).swapaxes(0, 1) ) return self._dg_inv @property def ddg(self): r"""Second derivatives of 3-metric components.""" if self._ddg is None: self._ddg = np.asarray(self.metric.diff(self.point, diff=2)) return self._ddg @property def ddg_inv(self): r"""Second derivatives of inverse 3-metric components. As for `dg_inv`, using \f$0 = \partial_i \partial_j \delta^a_b = \partial_i \partial_j (g^{ac}g_{cb})\f$ we get \f[ \partial_i \partial_j g^{-1} = -g^{-1}\big[ (\partial_i \partial_j g) g^{-1} + (\partial_j g) (\partial_i g^{-1}) + (\partial_i g) (\partial_j g^{-1}) \big]. \f] """ if self._ddg_inv is None: g_inv = self.g.inv dg = self.dg dg_inv = self.dg_inv ddg = self.ddg # equivalent to: # -( # + np.einsum('ij,abjk,kl', g_inv, ddg, g_inv) # + np.einsum('ij,bjk,akl', g_inv, dg, dg_inv) # + np.einsum('ij,ajk,bkl', g_inv, dg, dg_inv) # ) tmp = g_inv.dot(dg).dot(dg_inv) self._ddg_inv = -( + np.moveaxis(g_inv.dot(ddg).dot(g_inv), [1,2,0], [0,1,2]) + np.moveaxis(tmp, [2,1,0], [0,1,2]) + np.moveaxis(tmp, [1,2,0], [0,1,2]) ) return self._ddg_inv def _compute_ABCDtrK(self): r"""Compute the A, B, C, D and trace(K) terms. The computation only uses the cached covariant normal `s` and its derivatives `ds` (in addition to the metric and extrinsic curvature, of course). This means that any subclass only needs to implement computing `s` and `ds` in order to use this function. This computes the terms as defined in equation (12) in \ref thornburg2003_1 "[1]". """ s, s_up, ds = self.s, self.s_up, self.ds g, dg_inv, dlnsqrtg = self.g, self.dg_inv, self.dlnsqrtg A = ( - ds.dot(s_up).dot(s_up) - 0.5 * dg_inv.dot(s).dot(s).dot(s_up) ) B = ( dg_inv.dot(s).diagonal().sum() + g.inv.dot(ds).diagonal().sum() + dlnsqrtg.dot(s_up) ) if self.K is None: trK = 0.0 C = 0.0 else: trK = g.inv.dot(self.K).diagonal().sum() C = self.K.dot(s_up).dot(s_up) D = s.dot(s_up) return (A, B, C, D), trK def expansion(self, ingoing=False): r"""Compute the expansion at the configured point. This implements equation (11) in \ref thornburg2003_1 "[1]". """ if ingoing: A, B, C, D = self.ABCD return -A/D**1.5 - B/D**0.5 + C/D - self.trK if self._Th is None: A, B, C, D = self.ABCD self._Th = A/D**1.5 + B/D**0.5 + C/D - self.trK return self._Th def diff(self, hdiff=0): r"""Compute derivative of expansion \wrt `h`, `h'`, or ``h''``. The argument `hdiff` controls the derivative order of `h` with respect to which to differentiate the expansion, i.e. `hdiff=0` will compute \f$ \partial_{h}\Theta \f$, while for `hdiff=2` we compute \f$ \partial_{h''}\Theta \f$. Numerical FD differentiation is performed if a `NotImplementedError` is raised in one of the subroutines. """ try: return self._diff(hdiff=hdiff) except NotImplementedError: return self._diff_FD(hdiff=hdiff) def _diff_FD(self, hdiff): r"""Compute derivatives of the expansion using finite differencing. Since the expansion depends on `h` and its derivatives only ultra-locally, a reasonable approximation to the variational derivative of the expansion w.r.t. `h` can be obtained by varying `h` (or derivatives) point-wise, i.e. compute the usual partial derivative of the expansion w.r.t. `h`. This can be approximated using a finite difference differentiation, which is done in this function. Note that irrespective of the accuracy of this approximation, the test whether the expansion has the desired value (e.g. 0.0 for a MOTS) is independent of the results computed here. """ h_orig = self.curve.h Th0 = self.expansion() param = self.param h_plus_eps = _FuncVariation(h_orig.evaluator(), diff=hdiff) with self.curve.override_evaluator(h_plus_eps): def f(eps): if eps == 0: return Th0 h_plus_eps.eps = eps with self.curve.suspend_calc_obj(): return self.curve.expansion(param) dx = self.dx_hdiffs[hdiff] return derivative(f, x0=0.0, n=1, dx=dx, order=self.fd_order) def _diff(self, hdiff): r"""Compute analytical functional derivatives of the expansion. This may raise a `NotImplementedError`, indicating that FD differentiation needs to be performed. @param hdiff Derivative order of `h` to differentiate the expansion by (see below). E.g., a value of `0` will compute \f$\partial_h \Theta\f$. @b Notes In general, due to the ultra-local dependency of the expansion on `h` and its first two derivatives, we can treat the variational differentiation like a simple partial differentiation. This can also be seen by taking the definition \f[ (\delta\Theta)(h)\Delta := \frac{d}{d\varepsilon}\Big|_{\varepsilon=0} \Theta(h+\varepsilon\Delta) \f] and separating the terms based on the derivative order of \f$\Delta\f$. The result will be of the form \f[ (\delta\Theta)(h)\Delta = \partial_h\Theta \Delta + \partial_{h'}\Theta \Delta' + \partial_{h''}\Theta \Delta''. \f] These three terms are computed here using \f[ \partial_f \Theta = \frac{A_f}{D^{3/2}} - \frac{3}{2} \frac{A D_f}{D^{5/2}} + \frac{B_f}{D^{1/2}} - \frac{1}{2} \frac{B D_f}{D^{3/2}} + \frac{C_f}{D} - \frac{C D_f}{D^2} - \partial_f \,\mathrm{tr} K, \f] where `f` is one of ``h, h', h''``. The terms `A`, `B`, `C`, and `D` are defined in [1], but here we repeat them for convenience: \f{eqnarray*}{ A &:=& -s^i s^j \partial_i s_j - \frac{1}{2} s^i (\partial_i g^{kl}) s_k s_l \\ B &:=& (\partial_i g^{ij}) s_j + g^{ij} \partial_i s_j + (\partial_i \ln\sqrt{g}) s^i \\ C &:=& K^{ij} s_i s_j \\ D &:=& s_i s^i. \f} @b References [1] Thornburg, Jonathan. "A fast apparent horizon finder for three-dimensional Cartesian grids in numerical relativity." Classical and quantum gravity 21.2 (2003): 743. """ if hdiff == 0: # del_h H A, B, C, D = self.ABCD dhA, dhB, dhC, dhD, dhtrK = self.get_dh_ABCDtrK() return ( - 3 * A * dhD / (2*D**2.5) - B * dhD / (2*D**1.5) - C/D**2 * dhD + dhC / D + dhB / np.sqrt(D) + dhA / D**1.5 - dhtrK ) if hdiff == 1: # del_h' H A, B, C, D = self.ABCD dhpA, dhpB, dhpC, dhpD = self.get_dhp_ABCD() return ( - 3 * A * dhpD / (2*D**2.5) - B * dhpD / (2*D**1.5) - C/D**2 * dhpD + dhpC / D + dhpB / np.sqrt(D) + dhpA / D**1.5 ) if hdiff == 2: # del_h'' H D = self.ABCD[-1] dhppA, dhppB = self.get_dhpp_AB() return (D * dhppB + dhppA) / D**1.5 raise NotImplementedError def get_dh_ABCDtrK(self): r"""Compute the derivative of A, B, C, D, tr(K) \wrt `h`. May raise `NotImplementedError` to indicate numerical differentiation should be done. Refer to the definition of `A,B,C,D` in the documentation of _diff(). The terms computed here are: \f[ \partial_h A = -2(\partial_h s^i) s^j \partial_i s_j - s^i s^j \partial_h \partial_i s_j - \frac{1}{2} (\partial_h s^i) (\partial_i g^{kl}) s_k s_l - \frac{1}{2} s^i (\partial_h \partial_i g^{kl}) s_k s_l - s^i (\partial_i g^{kl}) s_k \partial_h s_l \f] \f[ \partial_h B = (\partial_h \partial_i g^{ij}) s_j + (\partial_i g^{ij}) \partial_h s_j + (\partial_h g^{ij}) \partial_i s_j + g^{ij} \partial_h \partial_i s_j + (\partial_h \partial_i \ln\sqrt{g}) s^i + (\partial_i \ln\sqrt{g}) \partial_h s^i \f] \f[ \partial_h C = \big[(\partial_h g^{ik}) g^{jl} + g^{ik}(\partial_h g^{jl})\big] K_{kl} s_i s_j + g^{ik} g^{jl} (\partial_h K_{kl}) s_i s_j + 2 g^{ik} g^{jl} K_{kl} s_i \partial_h s_j \f] \f[ \partial_h D = (\partial_h g^{ij}) s_i s_j + 2 g^{ij} s_i \partial_h s_j \f] \f[ \partial_h \mathrm{tr}K = (\partial_h g^{ij}) K_{ij} + g^{ij} \partial_h K_{ij} \f] The individual terms are computed by simply applying the chain rule. We obtain for any quantity `f` which depends on the coordinates `x,y,z`: \f[ \partial_h f = (\partial_i f) (\partial_h\gamma)^i, \f] where \f$\gamma\f$ is the curve along which the computation takes place. """ dh_gamma = self.curve.h_diff(self.param) g_inv, dg_inv, dlnsqrtg = self.g.inv, self.dg_inv, self.dlnsqrtg dg = self.dg ddg = self.ddg ddg_inv = self.ddg_inv s, s_up, ds = self.s, self.s_up, self.ds dds = self.compute_dds() dhs = ds.dot(dh_gamma) dhg_inv = np.einsum('aij,a', dg_inv, dh_gamma) dhs_up = dhg_inv.dot(s) + g_inv.dot(dhs) dhdg_inv = np.einsum('aikl,a', ddg_inv, dh_gamma) dhds = dds.dot(dh_gamma) dhdlnsqrtg = ( 0.5 * np.einsum('icd,acd,a', dg_inv, dg, dh_gamma) + 0.5 * np.einsum('cd,iacd,a', g_inv, ddg, dh_gamma) ) dhA = ( - 2 * np.einsum('i,j,ij', dhs_up, s_up, ds) - np.einsum('i,j,ij', s_up, s_up, dhds) - 0.5 * np.einsum('i,ikl,k,l', dhs_up, dg_inv, s, s) - 0.5 * np.einsum('i,ikl,k,l', s_up, dhdg_inv, s, s) - np.einsum('i,ikl,k,l', s_up, dg_inv, s, dhs) ) dhB = ( np.einsum('iij,j', dhdg_inv, s) + np.einsum('iij,j', dg_inv, dhs) + dhg_inv.dot(ds).diagonal().sum() + g_inv.dot(dhds).diagonal().sum() + dhdlnsqrtg.dot(s_up) + dlnsqrtg.dot(dhs_up) ) dhD = ( np.einsum('ij,i,j', dhg_inv, s, s) + 2 * np.einsum('ij,i,j', g_inv, s, dhs) ) if self.K is None: dhC = 0.0 dhtrK = 0.0 else: K = self.K dK = self.curve.extr_curvature(self.point, diff=1) dhK = np.einsum('aij,a', dK, dh_gamma) dhC = ( np.einsum('ik,jl,kl,i,j', dhg_inv, g_inv, K, s, s) + np.einsum('ik,jl,kl,i,j', g_inv, dhg_inv, K, s, s) + np.einsum('ik,jl,kl,i,j', g_inv, g_inv, dhK, s, s) + 2 * np.einsum('ik,jl,kl,i,j', g_inv, g_inv, K, s, dhs) ) dhtrK = ( np.einsum('ij,ij', dhg_inv, K) + np.einsum('ij,ij', g_inv, dhK) ) return dhA, dhB, dhC, dhD, dhtrK def get_dhp_ABCD(self): r"""Compute the derivative of A, B, C, D \wrt `h'`. May raise `NotImplementedError` to indicate numerical differentiation should be done. This implementation is correct iff \f{eqnarray*}{ \partial_{h'} s_i &=& - X_i\\ \partial_{h'} \partial_i s_j &=& - X_{ij}, \f} where \f$X_i := \partial_i \lambda\f$ and \f$X_{ij} := \partial_i \partial_j \lambda\f$. The terms computed here then become (refer to _diff()): \f{eqnarray*}{ \partial_{h'} A &=& 2 X^i s^j \partial_i s_j + s^i s^j X_{ij} + \frac{1}{2} (\partial_i g^{kl}) (X^i s_k s_l + 2 s^i X_k s_l) \\ \partial_{h'} B &=& -(\partial_i g^{ij}) X_j - g^{ij} X_{ij} - (\partial_i\ln\sqrt{g}) X^i \\ \partial_{h'} C &=& -2 K_{ij} X^i s^j \\ \partial_{h'} D &=& -2 X_i s^i \f} This method is agnostic as to how the surfaces are represented as long as the quantities \f$s_i\f$, \f$\partial_i s_j\f$, \f$X_i\f$, and \f$X_{ij}\f$ are available. """ g_inv, dg_inv, dlnsqrtg = self.g.inv, self.dg_inv, self.dlnsqrtg s, s_up, ds = self.s, self.s_up, self.ds X, X_up, Y = self.X, self.X_up, self.Y dhpA = ( 2 * ds.dot(X_up).dot(s_up) + Y.dot(s_up).dot(s_up) + 0.5 * dg_inv.dot(s).dot(s).dot(X_up) + dg_inv.dot(X).dot(s).dot(s_up) ) dhpB = ( - dg_inv.dot(X).diagonal().sum() - g_inv.dot(Y).diagonal().sum() - dlnsqrtg.dot(X_up) ) if self.K is None: dhpC = 0.0 else: dhpC = - 2 * self.K.dot(X_up).dot(s_up) dhpD = - 2 * X.dot(s_up) return dhpA, dhpB, dhpC, dhpD def get_dhpp_AB(self): r"""Compute the derivative of A and B \wrt ``h''``. May raise `NotImplementedError` to indicate numerical differentiation should be done. This implementation is correct iff \f{eqnarray*}{ \partial_{h''} s_i &=& 0\\ \partial_{h''} \partial_i s_j &=& - X_i X_j. \f} We compute here (see also _diff()): \f{eqnarray*}{ \partial_{h''} A &=& s^i s^j X_i X_j \\ \partial_{h''} B &=& -X^i X_i \\ \partial_{h''} C &=& \partial_{h''} D = 0 \f} This method is agnostic as to how the surfaces are represented as long as the quantities \f$s_i\f$, \f$\partial_i s_j\f$, \f$X_i\f$, and \f$X_{ij}\f$ are available. """ X, X_up = self.X, self.X_up s_up = self.s_up dhppA = np.outer(X, X).dot(s_up).dot(s_up) dhppB = - X_up.dot(X) return dhppA, dhppB @abstractmethod def _compute_s_ds_X_Y(self): r"""Compute the terms we need to compute the expansion. Subclasses need to interpret the horizon function and compute the covariant normal (not normalized), its derivatives, and the parameter first (`X = del_i lambda`) and second (`Y = del_i del_j lambda`) derivatives. """ pass def _compute_dds_Z(self): r"""Compute second derivatives of the normal and third ones of lambda. This computes \f$\partial_i\partial_j s_k\f$ and \f$Z := X_{ijk} = \partial_i\partial_j\partial_k \lambda\f$. @return Two elements, the first containing the derivatives of the non-normalized covariant normal `s` and the second those of the parameter \f$\lambda\f$. """ raise NotImplementedError def _compute_d2_Y(self): r"""Compute second derivatives of xi and lambda \wrt x,y,z.""" raise NotImplementedError def _compute_d3_Z(self): r"""Compute third derivatives of xi and lambda \wrt x,y,z.""" raise NotImplementedError def ricci_scalar(self): r"""Compute the Ricci scalar of the surface represented by the curve. The Ricci scalar of a 2-surface is defined as (see e.g. [1]) \f$R = q^{AB}R_{AB}\f$, where `q` is the induced metric \f$q_{ab} = g_{ab} - \nu_a \nu_b\f$, \f$R_{AB}\f$ is the Ricci tensor \f$R_{AB} = R^C_{\ A\,CB}\f$ and \f$\nu\f$ the covariant outward unit normal of the surface. Here, \f$R^A_{\ B\,CD}\f$ is the Riemann tensor. Note that `A,B` run over the coordinates \f$(\lambda,\varphi)\f$ on the surface and `a,b` over `x,y,z`. See induced_metric() for a bit more details on the induced metric `q` and the coordinate transformation to get the components \f$q_{AB}\f$ we need here. It is convenient to compute the Ricci scalar from the purely covariant Riemann tensor \f$R_{AB\,CD} = q_{AE}R^E_{\ B\,CD}\f$ as this is antisymmetric in the first and last two index pairs, i.e. it has only one independent component \f$R_{\lambda\varphi\,\lambda\varphi}\f$ in two dimensions. A short calculation reveals \f[ R = q^{AB}R_{AB} = 2 R_{\lambda\varphi\,\lambda\varphi} (q^{\lambda\lambda}q^{\varphi\varphi} - (q^{\lambda\varphi})^2). \f] @b References [1] Straumann, Norbert. General relativity. Springer Science & Business Media, 2004. """ R_0101 = self.covariant_riemann() q_inv = self.induced_metric(inverse=True) return 2 * R_0101 * (q_inv[0,0]*q_inv[1,1] - q_inv[0,1]**2) def induced_metric(self, diff=0, inverse=False): r"""Compute the induced metric on the surface. This method computes the components of the induced metric in \f$(\lambda,\varphi)\f$ coordinates as well as the components of the inverse (i.e. indices upstairs) and derivatives of these components. Since this class assumes axisymmetry throughout, this method requires (without loss of generality) that the point at which the metric is to be returned is located at `phi=0`, i.e. `y=0` and `x>0`. @param diff Derivative order to compute. Default is `0`. @param inverse Whether to return the (derivatives of the) inverse of the induced metric. Default is `False`. @return NumPy array with ``2+diff`` axes, such that the indices ``[A1,A2,...,B,C]`` correspond to \f$\partial_{A_1}\partial_{A_2}\ldots q_{BC}\f$ for `inverse==False` and with upstairs indices for `invers==True`. @b Notes The induced 2-metric `q` on the surface \f$\sigma\f$ is formally given by \f[ q = \Pi_\sigma g = g\big|_\sigma - \underline{\nu} \otimes \underline{\nu}, \qquad q_{ab} = g_{ab} - \nu_a \nu_b, \f] where \f$\nu\f$ is the outward pointing normal of \f$\sigma\f$ and \f$\underline{\nu} = g(\nu,\,\cdot\,)\f$. The induced metric can easily be expressed in terms of the components of the 3-metric `g` by expanding these into the cobasis fields of the coordinates \f$\lambda, \varphi\f$ on the 2-surface (and thereby dropping any transversal components). As a result, we get the simple formula \f[ q_{AB} = g_{ij}\ (\partial_A x^i)\ (\partial_B x^j), \f] where `A,B = 1,2` and \f$(\partial_A) = (\partial_\lambda, \partial_\varphi)\f$. The derivatives of the Cartesian coordinates `x,y,z` are computed in diff_xyz_wrt_laph(). From this, we easily get the first and second derivatives by applying the chain and product rule: \f{eqnarray*}{ \partial_A q_{CD} &=& (\partial_A g_{ij}) x_C^i x_D^j + g_{ij} (x_{CA}^i x_D^j + x_C^i x_{DA}^j) \\ \partial_A\partial_B q_{CD} &=& (\partial_A\partial_B g_{ij}) x_C^i x_D^j + (\partial_A g_{ij}) (x_{CB}^i x_D^j + x_C^i x_{DB}^j) + (\partial_B g_{ij}) (x_{CA}^i x_D^j + x_C^i x_{DA}^j) \\&& + g_{ij} (x_{CAB}^i x_D^j + x_{CA}^i x_{DB}^j + x_{CB}^i x_{DA}^j + x_C^i x_{DAB}^j). \f} Here, \f$x_{A}^i := \partial_A x^i\f$, etc. """ return self._induced_metric(diff, bool(inverse)) @cache_method_results() def _induced_metric(self, diff, inverse): if inverse: q = self.induced_metric(diff=0) if diff == 0: return linalg.inv(q) dq = self.induced_metric(diff=1) if diff == 1: dq_inv = inverse_2x2_matrix_derivative(q, dq, diff=1) return dq_inv ddq = self.induced_metric(diff=2) if diff == 2: ddq_inv = inverse_2x2_matrix_derivative(q, dq, ddq, diff=2) return ddq_inv raise NotImplementedError dx = self.diff_xyz_wrt_laph(diff=1) g = self.g.mat if diff == 0: q = np.einsum('ij,ai,bj', g, dx, dx) return q ddx = self.diff_xyz_wrt_laph(diff=2) dg = self.dg dg_laph = np.einsum('ak,kij', dx, dg) if diff == 1: dq = ( np.einsum('aij,bi,cj', dg_laph, dx, dx) + np.einsum('ij,bai,cj', g, ddx, dx) + np.einsum('ij,bi,caj', g, dx, ddx) ) return dq d3x = self.diff_xyz_wrt_laph(diff=3) ddg = self.ddg ddg_laph = ( np.einsum('abk,kij', ddx, dg) + np.einsum('ak,bl,klij', dx, dx, ddg) ) ddq = ( np.einsum('abij,ci,dj', ddg_laph, dx, dx) + np.einsum('aij,cbi,dj', dg_laph, ddx, dx) + np.einsum('aij,ci,dbj', dg_laph, dx, ddx) + np.einsum('bij,cai,dj', dg_laph, ddx, dx) + np.einsum('bij,ci,daj', dg_laph, dx, ddx) + np.einsum('ij,cabi,dj', g, d3x, dx) + np.einsum('ij,cai,dbj', g, ddx, ddx) + np.einsum('ij,cbi,daj', g, ddx, ddx) + np.einsum('ij,ci,dabj', g, dx, d3x) ) if diff == 2: return ddq raise NotImplementedError def diff_xyz_wrt_laph(self, diff=1): r"""Compute derivatives of x,y,z \wrt lambda and phi. This computes the derivatives of the Cartesian coordinates `x,y,z` w.r.t. the surface intrinsic coordinates `lambda` and `phi` based on the usual transform rules \f{eqnarray*}{ x = \rho(\lambda)\cos\varphi,\quad y = \rho(\lambda)\sin\varphi,\quad z = z(\lambda), \f} where \f$\rho\f$ is the `x`-component of the curve and `z` its `z`-component. The results are evaluated at \f$\varphi = 0\f$. @return For ``diff==1``, return the first derivatives with indices ``dx[A,i]`` meaning \f$\partial_A x^i\f$, where we have \f$(x^i) := (x,y,z)\f$ and \f$(\partial_A) := (\partial_\lambda, \partial_\varphi)\f$. For ``diff==2``, second derivatives are returned with indices ``ddx[A,B,i]`` meaning \f$\partial_A\partial_B x^i\f$. The same pattern holds for ``diff==3``. If ``diff==None``, a list ``[dx, ddx, dddx]`` is returned. @param diff Derivative order. One of `1`, `2`, `3`. Default is `1`. If explicitely set to None, all three implemented orders are returned. """ # Here we'll call r==rho and dr==\partial_lambda rho, # l==lambda, p==phi, etc. results = [] r, _ = self.curve(self.param, xyz=False) dr, dz = self.curve.diff(self.param, diff=1) if diff is None or diff == 1: dx = np.array([ [dr, 0., dz], # partial_lambda (x,y,z) [0., r, 0.], # partial_phi (x,y,z) ]) if diff == 1: return dx results.append(dx) ddr, ddz = self.curve.diff(self.param, diff=2) if diff is None or diff == 2: dll = [ddr, 0., ddz] dlp = [0., dr, 0.] dpp = [-r, 0., 0.] ddx = np.array([ [dll, dlp], [dlp, dpp], ]) if diff == 2: return ddx results.append(ddx) d3r, d3z = self.curve.diff(self.param, diff=3) if diff is None or diff == 3: dlll = [d3r, 0., d3z] dllp = [0., ddr, 0.] dlpp = [-dr, 0., 0.] dppp = [0., -r, 0.] dddx = np.array([ [[dlll, dllp], [dllp, dlpp]], [[dllp, dlpp], [dlpp, dppp]], ]) if diff == 3: return dddx results.append(dddx) if diff is None: return results raise ValueError("Unknown derivative order: %s" % diff) def covariant_normal(self, diff=0): r"""Compute (derivatives of) the normalized covariant normal. @param diff Derivative order to compute. Default is `0`. @return NumPy `ndarray` with ``diff+1`` axes and indices ``i1,i2,...,k`` corresponding to \f$\partial_{i_1}\partial_{i_2}\ldots\nu_k\f$. For example, for ``diff==0``, returns the three components of `nu`. @b Notes Given the non-normalized components \f$s_i\f$ of the covariant outward pointing normal on the surface, we compute \f[ \nu_i = \frac{s_i}{\sqrt{D}}, \qquad D := g^{kl} s_k s_l. \f] From this formula, we get the x,y,z derivatives \f[ \partial_i\nu_j = \frac{\partial_i s_j}{\sqrt{D}} - \frac{s_j}{2 D^{3/2}} D_i \f] and \f[ \partial_i\partial_j\nu_k = \frac{\partial_i \partial_j s_k}{\sqrt{D}} - \frac{1}{2 D^{3/2}} \Big( (\partial_j s_k) D_i + (\partial_i s_k) D_j + s_k D_{ij} \Big) + \frac{3}{4} \frac{s_k}{D^{5/2}} D_i D_j, \f] where \f{eqnarray*}{ D_i &:=& \partial_i D = (\partial_i g^{kl}) s_k s_l + 2 g^{kl} s_k\,\partial_i s_l \\ D_{ij} &:=& \partial_i\partial_j D \\ &=& (\partial_i \partial_j g^{kl}) s_k s_l + 2 (\partial_i g^{kl}) s_k\,\partial_j s_l + 2 (\partial_j g^{kl}) s_k\,\partial_i s_l \\&& + 2 g^{kl} \big( (\partial_j s_k)(\partial_i s_l) + s_k \partial_i \partial_j s_l \big). \f} """ return self._covariant_normal(diff) @cache_method_results() def _covariant_normal(self, diff): r"""Cached implementation of covariant_normal().""" s = self.s D = self.ABCD[3] if diff == 0: return s / np.sqrt(D) ds = self.ds dg_inv = self.dg_inv g_inv = self.g.inv if diff == 1: # note: X.dot(y) for a n-d X and 1-d y contracts/sums the *last* # index of X with y, i.e. X.dot(y) = sum_l X_ijkl y^l. # This means X.dot(y) has n-1 free indices left. # We now compute partial_i nu_j (note the indices i and j). dnx, dny, dnz = [ ds[:,j] / np.sqrt(D) - 0.5 * ( s[j]/D**1.5 * np.array( [dg_inv[i].dot(s).dot(s) + 2*g_inv.dot(s).dot(ds[i,:]) for i in range(3)] ) ) for j in range(3) ] return np.array([dnx, dny, dnz]).T dds = self.compute_dds() Di = self.compute_Di() Dij = self.compute_Dij() if diff == 2: # We now compute partial_i partial_j nu_k. ddnx, ddny, ddnz = [ dds[:,:,k] / np.sqrt(D) - 1/(2*D**1.5) * ( np.outer(ds[:,k], Di) + np.outer(Di, ds[:,k]) + s[k] * Dij ) + 3./4. * s[k] / D**2.5 * np.outer(Di, Di) for k in range(3) ] return np.array([ddnx, ddny, ddnz]).T # partial derivs. commute raise NotImplementedError def compute_Di(self): r"""Compute the D_i terms for covariant_normal(). See covariant_normal() for the derivation of the used formulas. """ g_inv = self.g.inv dg_inv = self.dg_inv s = self.s ds = self.ds return dg_inv.dot(s).dot(s) + 2 * ds.dot(g_inv.dot(s)) def compute_Dij(self): r"""Compute the D_ij terms for covariant_normal(). See covariant_normal() for the derivation of the used formulas. """ g_inv = self.g.inv dg_inv = self.dg_inv ddg_inv = np.asarray(self.metric.diff(self.point, diff=2, inverse=True)) s = self.s ds = self.ds dds = self.compute_dds() return ( ddg_inv.dot(s).dot(s) + 2 * dg_inv.dot(s).dot(ds) + 2 * dg_inv.dot(s).dot(ds).T + 2 * g_inv.dot(ds).T.dot(ds) + 2 * dds.dot(g_inv.dot(s)) ) @cache_method_results() def compute_dds(self): r"""Compute the second derivatives of the non-normalized normal.""" return self._compute_dds_Z()[0] @cache_method_results() def compute_d2_Y(self): r"""Compute second derivatives of xi and lambda \wrt x,y,z.""" return self._compute_d2_Y() @cache_method_results() def compute_d3_Z(self): r"""Compute third derivatives of xi and lambda \wrt x,y,z.""" return self._compute_d3_Z() def covariant_riemann(self): r"""Compute the purely covariant Riemann tensor. This computes the only independent component \f[ R_{\lambda\varphi\,\lambda\varphi} = q_{\lambda A} R^A_{\ \varphi\,\lambda\varphi} \f] of the covariant Riemann tensor. """ q = self.induced_metric() R0_101, R1_101 = self.riemann() R_0101 = q[0,0] * R0_101 + q[0,1] * R1_101 return R_0101 def riemann(self): r"""Compute the components of the Riemann tensor on the surface. The Riemann tensor computed here is defined as \f[ R^A_{\ B\,CD} = \partial_C \Gamma^A_{DB} - \partial_D \Gamma^A_{CB} + \Gamma^A_{CE} \Gamma^E_{DB} - \Gamma^A_{DE} \Gamma^E_{CB}, \f] where \f$\Gamma^{A}_{BC}\f$ are the Christoffel symbols of the induced 2-metric `q`. Due to the antisymmetry in the last two indices, only two components may potentially be nonzero, namely \f$R^\lambda_{\ \varphi\,\lambda_\varphi}\f$ and \f$R^\varphi{\ \varphi\,\lambda_\varphi}\f$. These two components are returned here. """ G = self.christoffel() dG = self.christoffel_deriv() R0_101 = riemann_components(G, dG, 0, 1, 0, 1) R1_101 = riemann_components(G, dG, 1, 1, 0, 1) return R0_101, R1_101 def christoffel(self): r"""Compute the Christoffel symbols of the induced metric on the surface. @return NumPy array with indices `[A,B,C]` corresponding to \f$\Gamma^A_{BC}\f$. """ q_inv = self.induced_metric(inverse=True) dq = self.induced_metric(diff=1) return christoffel_symbols(q_inv, dq) def christoffel_deriv(self): r"""Compute the derivatives of the Christoffel symbols on the surface. @return NumPy array with indices `[A,B,C,D]` corresponding to \f$\partial_A\Gamma^B_{CD}\f$. """ q_inv = self.induced_metric(inverse=True) dq_inv = self.induced_metric(inverse=True, diff=1) dq = self.induced_metric(diff=1) ddq = self.induced_metric(diff=2) return christoffel_deriv(q_inv, dq_inv, dq, ddq) def extrinsic_curvature(self, trace=False, square=False): r"""Compute the extrinsic curvature. @param trace If `True`, returns the trace of the extrinsic curvature. Default is `False`. May not be used together with `square`. @param square If `True`, returns the square \f$k_{AB} k^{AB}\f$. Default is `False`. May not be used together with `trace`. @return If ``trace=square=False``, a NumPy 2x2 array containing the components of `k_AB`. Otherwise, returns a float. @b Notes To get the components \f$k_{AB} = -\nabla_A \nu_B\f$, first note that `k` annihilates any components transverse to the surface \f$\sigma\f$ (see e.g. [1]), i.e. for any point \f$p \in \sigma\f$ \f[ k(v_p, X_p) = 0 \qquad \forall\,X_p\in T_p M, \f] where \f$v\f$ is any vector field normal to \f$\sigma\f$, for example the normal \f$\nu\f$ in the current slice \f$\Sigma\f$ or the future pointing normal `n` of the slice in spacetime. Hence, we will in the following restrict all objects to \f$\sigma\f$. For example, \f[ dx^\mu\big|_\sigma = \frac{\partial x^\mu}{\partial u^A}\ du^A =: x^\mu_{,A}\ du^A, \f] where \f$u^A = \lambda,\varphi\f$. The \f$x^\mu_{,A}\f$ are computed in diff_xyz_wrt_laph(). Note that \f$x^0_{,A} = 0\f$ since \f$x^0 = t\f$ does not depend on \f$\lambda\f$ or \f$\varphi\f$. Observing further that \f$\partial_A = x^a_{,A}\partial_a\f$, we get \f{eqnarray*}{ \nabla_{\!\partial_A} \nu_B &=& \big[x^a_{,A} \nabla_a \underline\nu\big]_B \\ &=& x^a_{,A} \big[ (\partial_a\nu_\beta - \Gamma^\alpha_{a\beta}\nu_\alpha)\ dx^\beta \big]_B \\ &=& x^a_{,A} \big[ (\partial_a\nu_b - \Gamma^c_{ab}\nu_c)\ dx^b \big]_B \\ &=& x^a_{,A} (\partial_a\nu_b - \Gamma^c_{ab}\nu_c) x^b_{,B} \\ &=& x^a_{,A} x^b_{,B} (\partial_a\nu_b - {}^{(3)}\Gamma^c_{ab}\nu_c). \f} The third equality is due to \f$dx^0\big|_\sigma = 0\f$ and \f$\nu_0 = 0\f$. The reason we can take the Christoffel symbols of the 3-metric in the slice is that, by their definition and using \f$g_{ab} = {}^{(4)}g_{ab} + n_a n_b\f$, \f{eqnarray*}{ (\Gamma^k_{ab} - {}^{(3)}\Gamma^k_{ab}) \nu_k &=& \frac{1}{2} (g^{kc} - n^k n^c) \big[ - \partial_c (g_{ab} - n_a n_b) + \partial_a (g_{bc} - n_b n_c) + \partial_b (g_{ca} - n_c n_a) \big] \nu_k \\&& - \frac{1}{2} g^{kc} \big[ - \partial_c g_{ab} + \partial_a g_{bc} + \partial_b g_{ca} \big] \nu_k \\ &=& \frac{1}{2} \nu^c \big[ \partial_c (n_a n_b) - \partial_a (n_b n_c) - \partial_b (n_c n_a) \big] \\ &=& 0. \f} The first equality is due to \f$n^k \nu_k = 0\f$ (`n` is orthogonal to any horizontal vectors, i.e. in \f$T_p\Sigma\f$) and the last equation due to \f$n_\mu = 0\f$ for \f$\mu \neq 0\f$. @b References [1] D. Giulini. "Dynamical and Hamiltonian Formulation of General Relativity". In: Springer handbook of spacetime. Ed. by A. Ashtekar and V. Petkov. Springer, 2014. Chap. 17. """ if trace and square: raise ValueError("Arguments `trace` and `square` are mutually exclusive.") ra2 = range(2) ra3 = range(3) G3 = self.metric.christoffel(self.point) nu = self.covariant_normal(diff=0) dn = self.covariant_normal(diff=1) # i,j -> del_i nu_j dx = self.diff_xyz_wrt_laph(diff=1) # shape=(2,3), A,i -> del_A x^i def _K(A, B): return - ( fsum(dx[A,i]*dx[B,j] * dn[i,j] for j in ra3 for i in ra3) - fsum(dx[A,i]*dx[B,j] * G3[k,i,j]*nu[k] for k in ra3 for j in ra3 for i in ra3) ) K_AB = np.array([[_K(A,B) for B in ra2] for A in ra2]) if trace or square: q_inv = self.induced_metric(inverse=True) if trace: return q_inv.dot(K_AB).diagonal().sum() return np.einsum('ac,bd,ab,cd', q_inv, q_inv, K_AB, K_AB) return K_AB class _FuncVariation(object): r"""Helper class to apply an offset to a specific derivative of a function. Given a function `f`, an offset `eps` is applied to the n'th derivative of the function. Here `n` is given by the `diff` parameter. This is used to compute the finite difference approximation of the derivative of the expansion w.r.t. \f$ h \f$, \f$ h' \f$, and \f$ h'' \f$. """ def __init__(self, f, diff, eps=0): r"""Create a callable and modify one derivative order. Args: f: Callable that should also implement `f.diff()`, e.g. an evaluator of the motsfinder.exprs system. diff: Derivative order of `f` to modify. `0` means that `eps` will be added to any function value computed by `f` but not to derivatives. A value of ``n>0`` means that `f` and all its derivatives are returned "as is", except for the n'th derivative to which the value of `eps` will be added. eps: Value to add to the results of computing the `diff`'th derivative of `f`. """ ## The function to wrap. self._f = f ## The derivative order of the function to add `eps` to. self._diff = diff ## The value to add to the specified derivative order. self.eps = eps def __call__(self, x): r"""Evaluate the function at a point. In case `diff==0`, the `eps` will be added. """ val = self._f(x) if self._diff == 0: val += self.eps return val def diff(self, x, n=1): r"""Evaluate the n'the derivaative of the function at a point. In case `diff==n`, the `eps` will be added. """ val = self._f.diff(x, n=n) if self._diff == n: val += self.eps return val
90d887816136ef7ea406db5120f7ddfd8554e2c9
f58a1dcae97115b566409704dcf1a46a5f86df47
/Bellevue University/Courses/DSC640/Matplotlib for python Developers/7900_Code/Chapter 03/7900_03_15.py
20b070bc387075f7ddde931334627adb0d70a5ca
[]
no_license
safarie1103/Safarie1103
318519ace23c33fcf6d36337392156e5381abd49
a86172bfc47eff0af65285b641af0ad26e13fd12
refs/heads/master
2023-06-13T01:43:35.761325
2023-06-07T16:01:16
2023-06-07T16:01:16
205,732,823
0
1
null
2022-11-28T15:55:13
2019-09-01T21:11:38
null
UTF-8
Python
false
false
169
py
#!/usr/bin/python import matplotlib.pyplot as plt plt.figure(figsize=(3,3)) x = [45, 35, 20] labels = ['Cats', 'Dogs', 'Fishes'] plt.pie(x, labels = labels) plt.show()
f5e1b29ce42118842f5d23bc27518c4a367946ef
8585e7b3bbb71218fcb4dcb8fb99b46f6973ed72
/healthack/construct_dirs.py
9d57d47edf4a4cc7a436084333b5f4f8b8baa03f
[]
no_license
koike-ya/health
eeed56a8940d1c30333069a2ab339bb6d5937118
87bd1842d49e34abef8c66f666b6526d3fb18522
refs/heads/master
2021-10-11T13:59:19.625847
2019-01-27T08:55:09
2019-01-27T08:55:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
806
py
from pathlib import Path Path(Path.cwd() / "setup.py").touch(exist_ok=True) Path(Path.cwd() / "config").mkdir(exist_ok=True) Path(Path.cwd() / "config" / "const.py").touch(exist_ok=True) Path(Path.cwd() / "notebooks").mkdir(exist_ok=True) Path(Path.cwd() / "data" / "processed").mkdir(exist_ok=True, parents=True) Path(Path.cwd() / "models").mkdir(exist_ok=True) Path(Path.cwd() / "src" / "data" / "raw").mkdir(exist_ok=True, parents=True) Path(Path.cwd() / "src" / "features").mkdir(exist_ok=True) Path(Path.cwd() / "src" / "models").mkdir(exist_ok=True) Path(Path.cwd() / "src" / "visualization").mkdir(exist_ok=True) Path(Path.cwd() / "reports" / "figures").mkdir(exist_ok=True, parents=True) Path(Path.cwd() / "reports" / "results").mkdir(exist_ok=True) Path(Path.cwd() / "logs").mkdir(exist_ok=True)
f26b1b6ad59d2ffe788cde505e0b664cb9acd360
06f036994ccb76d93cfc2a7ae9fc3d5c221724ee
/qmla/analysis/outputs.py
4b778feb0d5864237e030dc64637e88c4d4e65fd
[ "MIT" ]
permissive
flynnbr11/QMLA
13b43b7789632ca18306b8818fd90b702cc139eb
ac8cfe1603658ee9b916452f29b99460ee5e3d44
refs/heads/master
2023-05-04T04:58:28.461900
2021-10-27T22:10:35
2021-10-27T22:10:35
95,233,038
15
11
MIT
2023-03-31T14:59:08
2017-06-23T15:33:06
Python
UTF-8
Python
false
false
15,532
py
import os import sys import numpy as np import pandas as pd import pickle import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.gridspec import GridSpec from scipy import stats import lfig __all__ = ["plot_dynamics_multiple_models"] def format_exponent(n): a = "%E" % n val = a.split("E")[0].rstrip("0").rstrip(".") val = np.round(float(val), 2) exponent = a.split("E")[1] return str(val) + "E" + exponent def plot_dynamics_multiple_models( directory_name, results_path, results_file_name_start="results", use_experimental_data=False, dataset=None, true_expectation_value_path=None, probes_plot_file=None, exploration_rule=None, unique_exploration_classes=None, top_number_models=2, save_true_expec_vals_alone_plot=True, collective_analysis_pickle_file=None, return_results=False, save_to_file=None, figure_format="png", ): r""" Plots reproduced dynamics against time for the top models, i.e. those which win the most. TODO: refactor this code - it should not need to unpickle all the files which have already been unpickled and stored in the summary results CSV. TODO: this is a very old method and can surely be improved using Pandas dataframes now stored. :param directory_name: path to directory where results .p files are stored. :param results_path: path to CSV with all results for this run. :param results_file_name_start: :param use_experimental_data: bool, whether experimental (fixed) data was used. :param true_expectation_value_path: path to file containing pre-computed expectation values. :param probes_plot_file: path to file with specific probes (states) to use for plotting purposes for consistency. :param exploration_rule: the name of the exploration strategy used. :param unique_exploration_classes: dict with single instance of each exploration strategy class used in this run. :param top_number_models: Number of models to compute averages for (top by number of instance wins). :param true_params_dict: dict with true parameter for each parameter in the true model. :param save_true_expec_vals_alone_plot: bool, whether to save a separate plot only of true expectation values, in addition to reproduced dynamics. :param collective_analysis_pickle_file: if not None, store analysed data to this path. :param return_results: bool, to return the analysed data upon function call. :param save_to_file: if not None, path to save PNG. :returns None: """ plt.switch_backend("agg") # results = pd.DataFrame.from_csv( results = pd.read_csv(results_path, index_col="QID") all_winning_models = list(results.loc[:, "NameAlphabetical"]) def rank_models(n): return sorted(set(n), key=n.count)[::-1] # from # https://codegolf.stackexchange.com/questions/17287/sort-the-distinct-elements-of-a-list-in-descending-order-by-frequency if len(all_winning_models) > top_number_models: winning_models = rank_models(all_winning_models)[0:top_number_models] else: winning_models = list(set(all_winning_models)) cm_subsection = np.linspace(0, 0.8, len(winning_models)) colours = [cm.viridis(x) for x in cm_subsection] experimental_measurements = pickle.load( open(str(true_expectation_value_path), "rb") ) expectation_values_by_name = {} os.chdir(directory_name) pickled_files = [] for file in os.listdir(directory_name): # if file.endswith(".p") and file.startswith("results"): if file.endswith(".p") and file.startswith(results_file_name_start): pickled_files.append(file) num_results_files = len(pickled_files) exploration_strategies = {} for f in pickled_files: fname = directory_name + "/" + str(f) result = pickle.load(open(fname, "rb")) alph = result["NameAlphabetical"] expec_values = result["ExpectationValues"] if alph in expectation_values_by_name.keys(): expectation_values_by_name[alph].append(expec_values) else: expectation_values_by_name[alph] = [expec_values] if alph not in list(exploration_strategies.keys()): exploration_strategies[alph] = result["ExplorationRule"] exploration_classes = {} for g in list(exploration_strategies.keys()): try: exploration_classes[g] = unique_exploration_classes[ exploration_strategies[g] ] except BaseException: exploration_classes[g] = None try: true_model = unique_exploration_classes[exploration_rule].true_model except BaseException: print( "Couldn't find exploration strategy of {} in \n {}".format( exploration_rule, unique_exploration_classes ) ) raise collect_expectation_values = { "means": {}, "medians": {}, "true": {}, "mean_std_dev": {}, "success_rate": {}, "r_squared": {}, } success_rate_by_term = {} nmod = len(winning_models) if nmod == 1: lf = lfig.LatexFigure( auto_label=False, ) else: ncols = int(np.ceil(np.sqrt(nmod))) nrows = int(np.ceil(nmod / ncols)) + 1 # 1 extra row for "master" lf = lfig.LatexFigure(auto_label=False, gridspec_layout=(nrows, ncols)) axes_so_far = 1 full_plot_axis = lf.new_axis(force_position=(0, 0), span=(1, "all")) model_statistics = {} for term in winning_models: expectation_values = {} num_sets_of_this_name = len(expectation_values_by_name[term]) for i in range(num_sets_of_this_name): learned_expectation_values = expectation_values_by_name[term][i] for t in list(experimental_measurements.keys()): try: expectation_values[t].append(learned_expectation_values[t]) except BaseException: try: expectation_values[t] = [learned_expectation_values[t]] except BaseException: # if t can't be found, move on pass means = {} std_dev = {} true = {} t_values = {} lower_iqr_expectation_values = {} higher_iqr_expectation_values = {} # times = sorted(list(experimental_measurements.keys())) true_times = sorted(list(expectation_values.keys())) times = sorted(list(expectation_values.keys())) times = [np.round(t, 2) if t > 0.1 else t for t in times] flag = True one_sample = True for t in times: means[t] = np.mean(expectation_values[t]) std_dev[t] = np.std(expectation_values[t]) lower_iqr_expectation_values[t] = np.percentile(expectation_values[t], 25) higher_iqr_expectation_values[t] = np.percentile(expectation_values[t], 75) true[t] = experimental_measurements[t] if num_sets_of_this_name > 1: expec_values_array = np.array([[i] for i in expectation_values[t]]) # print("shape going into ttest:", np.shape(true_expec_values_array)) if use_experimental_data == True: t_val = stats.ttest_1samp( expec_values_array, # list of expec vals for this t true[t], # true expec val of t axis=0, nan_policy="omit", ) else: true_dist = stats.norm.rvs( loc=true[t], scale=0.001, size=np.shape(expec_values_array) ) t_val = stats.ttest_ind( expec_values_array, # list of expec vals for this t true_dist, # true expec val of t axis=0, nan_policy="omit", ) if np.isnan(float(t_val[1])) == False: # t_values[t] = 1-t_val[1] t_values[t] = t_val[1] else: print("t_val is nan for t=", t) true_exp = [true[t] for t in times] # TODO should this be the number of times this model won??? num_runs = num_sets_of_this_name success_rate = 0 for t in times: true_likelihood = true[t] mean = means[t] std = std_dev[t] credible_region = (2 / np.sqrt(num_runs)) * std if (true_likelihood < (mean + credible_region)) and ( true_likelihood > (mean - credible_region) ): success_rate += 1 / len(times) mean_exp = np.array([means[t] for t in times]) std_dev_exp = np.array([std_dev[t] for t in times]) lower_iqr_exp = np.array([lower_iqr_expectation_values[t] for t in times]) higher_iqr_exp = np.array([higher_iqr_expectation_values[t] for t in times]) residuals = (mean_exp - true_exp) ** 2 sum_residuals = np.sum(residuals) mean_true_val = np.mean(true_exp) true_mean_minus_val = (true_exp - mean_true_val) ** 2 sum_of_squares = np.sum(true_mean_minus_val) if sum_of_squares != 0: final_r_squared = 1 - sum_residuals / sum_of_squares else: print("[multiQMD plots] sum of squares 0") final_r_squared = -100 # R^2 for interquartile range lower_iqr_sum_residuals = np.sum((lower_iqr_exp - true_exp) ** 2) lower_iqr_sum_of_squares = np.sum((lower_iqr_exp - np.mean(lower_iqr_exp)) ** 2) lower_iqr_r_sq = 1 - (lower_iqr_sum_residuals / lower_iqr_sum_of_squares) higher_iqr_sum_residuals = np.sum((higher_iqr_exp - true_exp) ** 2) higher_iqr_sum_of_squares = np.sum( (higher_iqr_exp - np.mean(higher_iqr_exp)) ** 2 ) higher_iqr_r_sq = 1 - (higher_iqr_sum_residuals / higher_iqr_sum_of_squares) name = exploration_classes[term].latex_name(term) description = r"{}".format(name) if term == true_model: description += " (= $\hat{{H}}_0$)" description_w_bayes_t_value = str( name + " : " + str(round(success_rate, 2)) + " (" + str(num_sets_of_this_name) + ")." ) collect_expectation_values["means"][name] = mean_exp collect_expectation_values["mean_std_dev"][name] = std_dev_exp collect_expectation_values["success_rate"][name] = success_rate model_statistics[name] = { "r_squared_median_exp_val": final_r_squared, "mean_expectation_values": mean_exp, "mean_std_dev": std_dev_exp, "success_rate_t_test": success_rate, "num_wins": num_sets_of_this_name, "win_percentage": int(100 * num_sets_of_this_name / num_results_files), "num_instances": num_results_files, "lower_iqr_exp_val": lower_iqr_exp, "higher_iqr_exp_val": higher_iqr_exp, "lower_iqr_r_sq": lower_iqr_r_sq, "higher_iqr_r_sq": higher_iqr_r_sq, "times": times, } if nmod > 1: ax = lf.new_axis() ax.plot( times, mean_exp, c=colours[winning_models.index(term)], label=description, ) ax.fill_between( times, mean_exp - std_dev_exp, mean_exp + std_dev_exp, alpha=0.2, facecolor=colours[winning_models.index(term)], ) ax.set_ylim(0, 1) ax.set_xlim(0, max(times)) success_rate_by_term[term] = success_rate ax.set_title("Mean Expectation Values") ax.scatter(times, true_exp, color="r", s=5, label="System") ax.plot(times, true_exp, color="r", alpha=0.3) ax.set_yticks([0, 0.5, 1.0]) ax.set_title(description) # Add this model to "master" plot high_level_label = str(name) if term == true_model: high_level_label += " (= $\hat{{H}}_0$)" full_plot_axis.plot( times, mean_exp, c=colours[winning_models.index(term)], label=high_level_label, ) full_plot_axis.scatter(times, true_exp, color="r", s=5, label="System") full_plot_axis.plot(times, true_exp, color="r", alpha=0.3) full_plot_axis.legend( ncol=5, ) full_plot_axis.set_ylim(0, 1.25) full_plot_axis.set_yticks([0, 0.5, 1.0]) full_plot_axis.set_xlim(0, max(times)) if nmod > 1: lf.fig.text(0.45, -0.04, "Time", ha="center") lf.fig.text(-0.04, 0.5, "Expectation Value", va="center", rotation="vertical") else: full_plot_axis.set_ylabel("Expectation value") full_plot_axis.set_xlabel("Time (a.u)") if save_to_file is not None: lf.fig.suptitle("Dynamics of trained models") lf.save(save_to_file, file_format=figure_format) # Also save an image of the only the system dynamics if save_true_expec_vals_alone_plot == True and save_to_file is not None: lf = lfig.LatexFigure(fraction=0.75, auto_label=False) ax = lf.new_axis() ax.plot( times, true_exp, marker="o", color="r", label="System" # alpha = 0.3 ) ax.set_xlabel("Time") ax.set_ylabel("Expectation Value") ax.legend() true_only_fig_file = str(save_to_file + "_system") ax.set_title("True model dynamics") lf.save(true_only_fig_file, file_format=figure_format) # add the combined analysis dict collect_expectation_values["times"] = true_times collect_expectation_values["true"] = true_exp if collective_analysis_pickle_file is not None: if os.path.isfile(collective_analysis_pickle_file) is False: pickle.dump(model_statistics, open(collective_analysis_pickle_file, "wb")) else: # load current analysis dict, add to it and rewrite it. combined_analysis = pickle.load(open(collective_analysis_pickle_file, "rb")) for model in model_statistics.keys(): new_keys = list(model_statistics[model].keys()) for key in new_keys: combined_analysis[model][key] = model_statistics[model][key] pickle.dump(combined_analysis, open(collective_analysis_pickle_file, "wb")) else: print("[analyse] collective analysis path:", collective_analysis_pickle_file) if return_results == True: expectation_values_by_latex_name = {} for term in winning_models: latex_name = unique_exploration_classes[exploration_rule].latex_name(term) expectation_values_by_latex_name[latex_name] = expectation_values_by_name[ term ] return ( times, mean_exp, std_dev_exp, winning_models, term, true, description, expectation_values_by_latex_name, expectation_values_by_name, )
e0c7b019890ee9b53c7d4fa7a809375a21ccfc2b
4864e58bb9ac93c34f2988f50bec143fbe7b5278
/blog/migrations/0019_auto_20210114_1845.py
db6d08a76a1bd9374d50ba620e0ae0600f5031ca
[]
no_license
Subhrans/Blog_App
7e536b868645c5ffc0a35a4a63b206ddd5ab0965
a81b4adeb8c0cb3bea5ffa85c6f1e2954c23e54a
refs/heads/main
2023-04-21T05:25:09.113818
2021-05-08T18:23:38
2021-05-08T18:23:38
327,252,859
0
0
null
null
null
null
UTF-8
Python
false
false
808
py
# Generated by Django 3.0.1 on 2021-01-14 13:15 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('blog', '0018_auto_20210114_0331'), ] operations = [ migrations.RemoveField( model_name='post', name='like', ), migrations.CreateModel( name='Like', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('like_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.UserProfile')), ('like_post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.Post')), ], ), ]
590d8055aec2d9c89103005c1b857abc0f8fab1d
7d4a3504bb9daa2589e2580de21e0e15c334787c
/tst/select/select_suite.py
1226f95721a4f90fecbad8c9e3c507bf770c10a1
[ "MIT" ]
permissive
ericwu/pumbaa
4cfac76c29dc35223a3df1a89dbde2f6bbf44719
e355c0a9ec28cfcfa3daabea9ba4c7cb55907efb
refs/heads/master
2021-01-13T16:53:42.408105
2017-01-23T18:31:04
2017-01-23T18:31:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,832
py
# # @section License # # The MIT License (MIT) # # Copyright (c) 2016, Erik Moqvist # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, copy, # modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # This file is part of the Pumbaa project. # import select import board from sync import Event, Queue from drivers import Can, Uart import harness from harness import assert_raises def test_help(): poll = select.poll() help(select) help(poll) def test_register_unregister(): poll = select.poll() queue = Queue() event = Event() can = Can(board.CAN_0) uart = Uart(1) poll.register(queue) poll.register(event) poll.register(can) poll.register(uart) poll.unregister(queue) poll.unregister(event) poll.unregister(can) poll.unregister(uart) with assert_raises(OSError): poll.unregister(queue) def test_poll(): poll = select.poll() queue = Queue() event = Event() can = Can(board.CAN_0) uart = Uart(1) # Register both event channels. poll.register(queue) poll.register(event) poll.register(can) poll.register(uart) # Timeout waiting for event. assert poll.poll(0.01) == [] # Event write, poll and read. event.write(0x1) assert poll.poll() == [(event, select.POLLIN)] assert event.read(0x1) == 0x1 # Queue write, poll and read. queue.write(b'foo') assert poll.poll() == [(queue, select.POLLIN)] assert queue.read(3) == b'foo' def test_bad_arguments(): poll = select.poll() with assert_raises(TypeError, "channel object required"): poll.register(None) with assert_raises(OSError): poll.unregister(None) TESTCASES = [ (test_help, "test_help"), (test_register_unregister, "test_register_unregister"), (test_poll, "test_poll"), (test_bad_arguments, "test_bad_arguments") ]
194f0811f4c2ee6cea15e7c6797edd4496899d26
d282fe910d95b3f23254e5e0d5309c082de81419
/Ent/E4/demo_skylineviewer.py
2bf167edf196ad83e52e2d6df59c9ed989dffc8f
[ "Apache-2.0" ]
permissive
Mi7ai/Algoritmia2
54fff6d3925ddc8067303d2e507ccde8ba9a025a
2f1c7b3990e4971f4f977fd0ea4d308004ab3db5
refs/heads/master
2021-06-21T18:45:57.875364
2021-03-22T12:54:47
2021-03-22T12:54:47
207,576,996
0
0
null
2021-03-22T12:54:47
2019-09-10T14:08:46
Assembly
UTF-8
Python
false
false
346
py
from Utils.skylineviewer import SkylineViewer buildings = [(1, 10, 3), (2, 5, 5), (3, 6, 3), (4, 7, 5), (10, 10, 3), (9, 4, 6), (20, 8, 4), (22, 6, 6), (25, 10, 2)] skyline = [1, 10, 4, 7, 9, 4, 10, 10, 13, 4, 15, 0, 20, 8, 24, 6, 25, 10, 27, 6, 28] viewer = SkylineViewer(skyline) for b in buildings: viewer.add_building(b) viewer.run()
323b5f80a3a048ee37471233c5e6663d18ed90b6
c7e765a9bed33d3bfb21774e3995bf4a09e04add
/adminmgr/media/code/A3/task3/BD_198_225_960_HjAczew.py
153f36b21dacb14ce5be9b6efaf652ff426bd9c2
[ "Apache-2.0" ]
permissive
IamMayankThakur/test-bigdata
13dd2ac7fb76c9baed6c3a0aa943057a22e2d237
7f507918c7bec31c92eedcd94491a83486623049
refs/heads/master
2022-05-03T00:59:44.127494
2022-02-10T19:50:16
2022-02-10T19:50:16
201,585,028
10
4
Apache-2.0
2022-04-22T23:39:45
2019-08-10T05:34:09
Python
UTF-8
Python
false
false
1,380
py
import findspark findspark.init() from pyspark import SparkConf,SparkContext from pyspark.streaming import StreamingContext #from pyspark.sql import Row,SQLContext import sys import requests import re from operator import add def process_rdd(time, rdd): # print("----------=========- %s -=========----------" % str(time)) row_rdd = rdd.map(lambda w:(w[0],w[1])) maximum = row_rdd.take(6) hashh="" i=0 while i<len(maximum): if(maximum[i][0]!=''): if i==(len(maximum)-1): hashh=hashh+str(maximum[i][0]) else: hashh=hashh+str(maximum[i][0])+"," i=i+1 print("%s"%(hashh)) if len(sys.argv) != 3: print("Should enter file, Window Size, Batch Duration", file=sys.stderr) sys.exit(-1) wind_size=int(sys.argv[1]) batch_duration=int(sys.argv[2]) conf=SparkConf() conf.setAppName("BigData") sc=SparkContext(conf=conf) ssc=StreamingContext(sc,batch_duration) ssc.checkpoint("home/hduser/checkpoint_BIGDATA") dataStream=ssc.socketTextStream("localhost",9009) tweet=dataStream.map(lambda w:(w.split(';')[7])) hashtag=tweet.flatMap(lambda w:(w.split(','))) hasht=hashtag.map(lambda w:(w,1)) counts=hasht.filter(lambda x:x!=None) totalcount=counts.reduceByKeyAndWindow(lambda a,b: a+b, wind_size, batch_duration).transform(lambda rdd: rdd.sortBy(lambda y: (-y[1],y[0]))) totalcount.foreachRDD(process_rdd) ssc.start() ssc.awaitTermination(25) ssc.stop()
31dd5aa0b605e5b6df526693e182a266f34af494
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02719/s761928282.py
a68bf0b133d3fcf6004cc605a97270348340d011
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
115
py
N, K = list(map(lambda n: int(n), input().split(" "))) while N > int(K/2): N = min([abs(N-K), N % K]) print(N)
97bcf5441c08a2e89ecd3c1db61840c55422e13d
0b0d3246d39974cb8faff7d269da2d539415afab
/problem_python/p283.py
3a6704dc2d9bb763a3c83885a6be6906ca384262
[]
no_license
xionghhcs/leetcode
972e7ae4ca56b7100223630b294b5a97ba5dd7e8
8bd43dcd995a9de0270b8cea2d9a48df17ffc08b
refs/heads/master
2020-03-07T17:18:08.465559
2019-09-29T11:11:26
2019-09-29T11:11:26
127,607,564
1
0
null
null
null
null
UTF-8
Python
false
false
534
py
class Solution: def moveZeroes(self, nums): """ :type nums: List[int] :rtype: void Do not return anything, modify nums in-place instead. """ def swap(a, i, j): tmp = a[i] a[i] = a[j] a[j] = tmp for i in range(len(nums)): if nums[i] == 0: j = i + 1 while j < len(nums) and nums[j] == 0: j += 1 if j != len(nums): swap(nums, i, j)
4c81f1a6460a9bb7ccdc7063e49e475861567b6c
164ffe077dde59373ad9fadcfd727f279a1cfe93
/jni_build/jni/include/tensorflow/python/ops/numerics.py
bd96d9a72cc653be506d2fa812d7b341a44bdafe
[]
no_license
Basofe/Community_Based_Repository_Traffic_Signs
524a4cfc77dc6ed3b279556e4201ba63ee8cf6bd
a20da440a21ed5160baae4d283c5880b8ba8e83c
refs/heads/master
2021-01-22T21:17:37.392145
2017-09-28T21:35:58
2017-09-28T21:35:58
85,407,197
0
2
null
null
null
null
UTF-8
Python
false
false
2,826
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Connects all half, float and double tensors to CheckNumericsOp.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops def verify_tensor_all_finite(t, msg, name=None): """Assert that the tensor does not contain any NaN's or Inf's. Args: t: Tensor to check. msg: Message to log on failure. name: A name for this operation (optional). Returns: Same tensor as `t`. """ with ops.op_scope([t], name, "VerifyFinite") as name: t = ops.convert_to_tensor(t, name="t") with ops.colocate_with(t): verify_input = array_ops.check_numerics(t, message=msg) out = control_flow_ops.with_dependencies([verify_input], t) return out def add_check_numerics_ops(): """Connect a `check_numerics` to every floating point tensor. `check_numerics` operations themselves are added for each `half`, `float`, or `double` tensor in the graph. For all ops in the graph, the `check_numerics` op for all of its (`half`, `float`, or `double`) inputs is guaranteed to run before the `check_numerics` op on any of its outputs. Returns: A `group` op depending on all `check_numerics` ops added. """ check_op = [] # This code relies on the ordering of ops in get_operations(). # The producer of a tensor always comes before that tensor's consumer in # this list. This is true because get_operations() returns ops in the order # added, and an op can only be added after its inputs are added. for op in ops.get_default_graph().get_operations(): for output in op.outputs: if output.dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: message = op.name + ":" + str(output.value_index) with ops.control_dependencies(check_op): check_op = [array_ops.check_numerics(output, message=message)] return control_flow_ops.group(*check_op)
37490c2e36c27fde373437a4c3e932557b84fc75
4d360320e06339a4f7d2a2723cddf02ff02a306e
/0x06-python-classes/3-square.py
f4c53a022a14d9265165fae9db6fb90f9362d80f
[]
no_license
AmineNeifer/holbertonschool-higher_level_programming
fd6ccdb1b5f0dc85e10750e9f2c7824290697e85
f5c42bff003b85a7c19702e0233997645fce2fb1
refs/heads/master
2020-09-29T02:56:52.286548
2020-05-15T00:12:50
2020-05-15T00:12:50
226,933,206
0
1
null
null
null
null
UTF-8
Python
false
false
485
py
#!/usr/bin/python3 class Square: def __init__(self, size=0): """Args: size: size of the Square. """ if type(size) is not int: raise TypeError("size must be an integer") elif size < 0: raise ValueError("size must be >= 0") else: self.__size = size def area(self): """Returns: the area of the square (size) """ return self.__size * self.__size
a95c0d6cbc8db379f298e52cebd758fbec611534
a46d135ba8fd7bd40f0b7d7a96c72be446025719
/packages/python/plotly/plotly/validators/layout/uniformtext/_mode.py
a3fdc332612749ea2308c67e4091aac3c79eb00a
[ "MIT" ]
permissive
hugovk/plotly.py
5e763fe96f225d964c4fcd1dea79dbefa50b4692
cfad7862594b35965c0e000813bd7805e8494a5b
refs/heads/master
2022-05-10T12:17:38.797994
2021-12-21T03:49:19
2021-12-21T03:49:19
234,146,634
0
0
MIT
2020-01-15T18:33:43
2020-01-15T18:33:41
null
UTF-8
Python
false
false
468
py
import _plotly_utils.basevalidators class ModeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="mode", parent_name="layout.uniformtext", **kwargs): super(ModeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "plot"), values=kwargs.pop("values", [False, "hide", "show"]), **kwargs )
8c4471b5f0528f4af6e01a68521acbbfc97f6172
600df3590cce1fe49b9a96e9ca5b5242884a2a70
/mojo/public/tools/bindings/generators/mojom_cpp_generator.py
07eb45bfc3ec2681a844efcd9b5295fe3abc7456
[ "BSD-3-Clause" ]
permissive
metux/chromium-suckless
efd087ba4f4070a6caac5bfbfb0f7a4e2f3c438a
72a05af97787001756bae2511b7985e61498c965
refs/heads/orig
2022-12-04T23:53:58.681218
2017-04-30T10:59:06
2017-04-30T23:35:58
89,884,931
5
3
BSD-3-Clause
2022-11-23T20:52:53
2017-05-01T00:09:08
null
UTF-8
Python
false
false
25,270
py
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Generates C++ source files from a mojom.Module.""" import mojom.generate.generator as generator import mojom.generate.module as mojom import mojom.generate.pack as pack from mojom.generate.template_expander import UseJinja _kind_to_cpp_type = { mojom.BOOL: "bool", mojom.INT8: "int8_t", mojom.UINT8: "uint8_t", mojom.INT16: "int16_t", mojom.UINT16: "uint16_t", mojom.INT32: "int32_t", mojom.UINT32: "uint32_t", mojom.FLOAT: "float", mojom.INT64: "int64_t", mojom.UINT64: "uint64_t", mojom.DOUBLE: "double", } _kind_to_cpp_literal_suffix = { mojom.UINT8: "U", mojom.UINT16: "U", mojom.UINT32: "U", mojom.FLOAT: "f", mojom.UINT64: "ULL", } # TODO(rockot): Get rid of these globals. This requires some refactoring of the # generator library code so that filters can use the generator as context. _current_typemap = {} _for_blink = False _use_new_wrapper_types = False # TODO(rockot, yzshen): The variant handling is kind of a hack currently. Make # it right. _variant = None class _NameFormatter(object): """A formatter for the names of kinds or values.""" def __init__(self, token, variant): self._token = token self._variant = variant def Format(self, separator, prefixed=False, internal=False, include_variant=False, add_same_module_namespaces=False, flatten_nested_kind=False): """Formats the name according to the given configuration. Args: separator: Separator between different parts of the name. prefixed: Whether a leading separator should be added. internal: Returns the name in the "internal" namespace. include_variant: Whether to include variant as namespace. If |internal| is True, then this flag is ignored and variant is not included. add_same_module_namespaces: Includes all namespaces even if the token is from the same module as the current mojom file. flatten_nested_kind: It is allowed to define enums inside structs and interfaces. If this flag is set to True, this method concatenates the parent kind and the nested kind with '_', instead of treating the parent kind as a scope.""" parts = [] if self._ShouldIncludeNamespace(add_same_module_namespaces): if prefixed: parts.append("") parts.extend(self._GetNamespace()) if include_variant and self._variant and not internal: parts.append(self._variant) parts.extend(self._GetName(internal, flatten_nested_kind)) return separator.join(parts) def FormatForCpp(self, add_same_module_namespaces=False, internal=False, flatten_nested_kind=False): return self.Format( "::", prefixed=True, add_same_module_namespaces=add_same_module_namespaces, internal=internal, include_variant=True, flatten_nested_kind=flatten_nested_kind) def FormatForMojom(self): return self.Format(".", add_same_module_namespaces=True) def _MapKindName(self, token, internal): if not internal: return token.name if (mojom.IsStructKind(token) or mojom.IsUnionKind(token) or mojom.IsEnumKind(token)): return token.name + "_Data" return token.name def _GetName(self, internal, flatten_nested_kind): if isinstance(self._token, mojom.EnumValue): name_parts = _NameFormatter(self._token.enum, self._variant)._GetName( internal, flatten_nested_kind) name_parts.append(self._token.name) return name_parts name_parts = [] if internal: name_parts.append("internal") if (flatten_nested_kind and mojom.IsEnumKind(self._token) and self._token.parent_kind): name = "%s_%s" % (self._token.parent_kind.name, self._MapKindName(self._token, internal)) name_parts.append(name) return name_parts if self._token.parent_kind: name_parts.append(self._MapKindName(self._token.parent_kind, internal)) name_parts.append(self._MapKindName(self._token, internal)) return name_parts def _ShouldIncludeNamespace(self, add_same_module_namespaces): return add_same_module_namespaces or self._token.imported_from def _GetNamespace(self): if self._token.imported_from: return NamespaceToArray(self._token.imported_from["namespace"]) elif hasattr(self._token, "module"): return NamespaceToArray(self._token.module.namespace) return [] def ConstantValue(constant): return ExpressionToText(constant.value, kind=constant.kind) # TODO(yzshen): Revisit the default value feature. It was designed prior to # custom type mapping. def DefaultValue(field): if field.default: if mojom.IsStructKind(field.kind): assert field.default == "default" if not IsTypemappedKind(field.kind): return "%s::New()" % GetNameForKind(field.kind) return ExpressionToText(field.default, kind=field.kind) if not _use_new_wrapper_types: if mojom.IsArrayKind(field.kind) or mojom.IsMapKind(field.kind): return "nullptr"; if mojom.IsStringKind(field.kind): return "" if _for_blink else "nullptr" return "" def NamespaceToArray(namespace): return namespace.split(".") if namespace else [] def GetNameForKind(kind, internal=False, flatten_nested_kind=False, add_same_module_namespaces=False): return _NameFormatter(kind, _variant).FormatForCpp( internal=internal, flatten_nested_kind=flatten_nested_kind, add_same_module_namespaces=add_same_module_namespaces) def GetQualifiedNameForKind(kind, internal=False, flatten_nested_kind=False): return _NameFormatter(kind, _variant).FormatForCpp( internal=internal, add_same_module_namespaces=True, flatten_nested_kind=flatten_nested_kind) def GetFullMojomNameForKind(kind): return _NameFormatter(kind, _variant).FormatForMojom() def IsTypemappedKind(kind): return hasattr(kind, "name") and \ GetFullMojomNameForKind(kind) in _current_typemap def IsNativeOnlyKind(kind): return (mojom.IsStructKind(kind) or mojom.IsEnumKind(kind)) and \ kind.native_only def IsHashableKind(kind): """Check if the kind can be hashed. Args: kind: {Kind} The kind to check. Returns: {bool} True if a value of this kind can be hashed. """ checked = set() def Check(kind): if kind.spec in checked: return True checked.add(kind.spec) if mojom.IsNullableKind(kind): return False elif mojom.IsStructKind(kind): if (IsTypemappedKind(kind) and not _current_typemap[GetFullMojomNameForKind(kind)]["hashable"]): return False return all(Check(field.kind) for field in kind.fields) elif mojom.IsUnionKind(kind): return all(Check(field.kind) for field in kind.fields) elif mojom.IsAnyHandleKind(kind): return False elif mojom.IsAnyInterfaceKind(kind): return False # TODO(tibell): Arrays and maps could be made hashable. We just don't have a # use case yet. elif mojom.IsArrayKind(kind): return False elif mojom.IsMapKind(kind): return False else: return True return Check(kind) def GetNativeTypeName(typemapped_kind): return _current_typemap[GetFullMojomNameForKind(typemapped_kind)]["typename"] def GetCppPodType(kind): if mojom.IsStringKind(kind): return "char*" return _kind_to_cpp_type[kind] def GetCppWrapperType(kind, add_same_module_namespaces=False): def _AddOptional(type_name): pattern = "WTF::Optional<%s>" if _for_blink else "base::Optional<%s>" return pattern % type_name if IsTypemappedKind(kind): type_name = GetNativeTypeName(kind) if (mojom.IsNullableKind(kind) and not _current_typemap[GetFullMojomNameForKind(kind)][ "nullable_is_same_type"]): type_name = _AddOptional(type_name) return type_name if mojom.IsEnumKind(kind): return GetNameForKind( kind, add_same_module_namespaces=add_same_module_namespaces) if mojom.IsStructKind(kind) or mojom.IsUnionKind(kind): return "%sPtr" % GetNameForKind( kind, add_same_module_namespaces=add_same_module_namespaces) if mojom.IsArrayKind(kind): pattern = None if _use_new_wrapper_types: pattern = "WTF::Vector<%s>" if _for_blink else "std::vector<%s>" if mojom.IsNullableKind(kind): pattern = _AddOptional(pattern) else: pattern = "mojo::WTFArray<%s>" if _for_blink else "mojo::Array<%s>" return pattern % GetCppWrapperType( kind.kind, add_same_module_namespaces=add_same_module_namespaces) if mojom.IsMapKind(kind): pattern = None if _use_new_wrapper_types: pattern = ("WTF::HashMap<%s, %s>" if _for_blink else "std::unordered_map<%s, %s>") if mojom.IsNullableKind(kind): pattern = _AddOptional(pattern) else: pattern = "mojo::WTFMap<%s, %s>" if _for_blink else "mojo::Map<%s, %s>" return pattern % ( GetCppWrapperType( kind.key_kind, add_same_module_namespaces=add_same_module_namespaces), GetCppWrapperType( kind.value_kind, add_same_module_namespaces=add_same_module_namespaces)) if mojom.IsInterfaceKind(kind): return "%sPtr" % GetNameForKind( kind, add_same_module_namespaces=add_same_module_namespaces) if mojom.IsInterfaceRequestKind(kind): return "%sRequest" % GetNameForKind( kind.kind, add_same_module_namespaces=add_same_module_namespaces) if mojom.IsAssociatedInterfaceKind(kind): return "%sAssociatedPtrInfo" % GetNameForKind( kind.kind, add_same_module_namespaces=add_same_module_namespaces) if mojom.IsAssociatedInterfaceRequestKind(kind): return "%sAssociatedRequest" % GetNameForKind( kind.kind, add_same_module_namespaces=add_same_module_namespaces) if mojom.IsStringKind(kind): if _for_blink: return "WTF::String" if not _use_new_wrapper_types: return "mojo::String" type_name = "std::string" return _AddOptional(type_name) if mojom.IsNullableKind(kind) else type_name if mojom.IsGenericHandleKind(kind): return "mojo::ScopedHandle" if mojom.IsDataPipeConsumerKind(kind): return "mojo::ScopedDataPipeConsumerHandle" if mojom.IsDataPipeProducerKind(kind): return "mojo::ScopedDataPipeProducerHandle" if mojom.IsMessagePipeKind(kind): return "mojo::ScopedMessagePipeHandle" if mojom.IsSharedBufferKind(kind): return "mojo::ScopedSharedBufferHandle" if not kind in _kind_to_cpp_type: raise Exception("Unrecognized kind %s" % kind.spec) return _kind_to_cpp_type[kind] def IsMoveOnlyKind(kind): if IsTypemappedKind(kind): if mojom.IsEnumKind(kind): return False return _current_typemap[GetFullMojomNameForKind(kind)]["move_only"] if mojom.IsStructKind(kind) or mojom.IsUnionKind(kind): return True if mojom.IsArrayKind(kind): return IsMoveOnlyKind(kind.kind) if _use_new_wrapper_types else True if mojom.IsMapKind(kind): return IsMoveOnlyKind(kind.value_kind) if _use_new_wrapper_types else True if mojom.IsAnyHandleOrInterfaceKind(kind): return True return False def IsCopyablePassByValue(kind): if not IsTypemappedKind(kind): return False return _current_typemap[GetFullMojomNameForKind(kind)][ "copyable_pass_by_value"] def ShouldPassParamByValue(kind): return ((not mojom.IsReferenceKind(kind)) or IsMoveOnlyKind(kind) or IsCopyablePassByValue(kind)) def GetCppWrapperParamType(kind): cpp_wrapper_type = GetCppWrapperType(kind) return (cpp_wrapper_type if ShouldPassParamByValue(kind) else "const %s&" % cpp_wrapper_type) def GetCppFieldType(kind): if mojom.IsStructKind(kind): return ("mojo::internal::Pointer<%s>" % GetNameForKind(kind, internal=True)) if mojom.IsUnionKind(kind): return "%s" % GetNameForKind(kind, internal=True) if mojom.IsArrayKind(kind): return ("mojo::internal::Pointer<mojo::internal::Array_Data<%s>>" % GetCppFieldType(kind.kind)) if mojom.IsMapKind(kind): return ("mojo::internal::Pointer<mojo::internal::Map_Data<%s, %s>>" % (GetCppFieldType(kind.key_kind), GetCppFieldType(kind.value_kind))) if mojom.IsInterfaceKind(kind): return "mojo::internal::Interface_Data" if mojom.IsInterfaceRequestKind(kind): return "mojo::internal::Handle_Data" if mojom.IsAssociatedInterfaceKind(kind): return "mojo::internal::AssociatedInterface_Data" if mojom.IsAssociatedInterfaceRequestKind(kind): return "mojo::internal::AssociatedInterfaceRequest_Data" if mojom.IsEnumKind(kind): return "int32_t" if mojom.IsStringKind(kind): return "mojo::internal::Pointer<mojo::internal::String_Data>" if mojom.IsAnyHandleKind(kind): return "mojo::internal::Handle_Data" return _kind_to_cpp_type[kind] def GetCppUnionFieldType(kind): if mojom.IsUnionKind(kind): return ("mojo::internal::Pointer<%s>" % GetNameForKind(kind, internal=True)) return GetCppFieldType(kind) def GetUnionGetterReturnType(kind): if mojom.IsReferenceKind(kind): return "%s&" % GetCppWrapperType(kind) return GetCppWrapperType(kind) def GetUnionTraitGetterReturnType(kind): """Get field type used in UnionTraits template specialization. The type may be qualified as UnionTraits specializations live outside the namespace where e.g. structs are defined. Args: kind: {Kind} The type of the field. Returns: {str} The C++ type to use for the field. """ if mojom.IsReferenceKind(kind): return "%s&" % GetCppWrapperType(kind, add_same_module_namespaces=True) return GetCppWrapperType(kind, add_same_module_namespaces=True) def GetCppDataViewType(kind, qualified=False): def _GetName(input_kind): return _NameFormatter(input_kind, None).FormatForCpp( add_same_module_namespaces=qualified, flatten_nested_kind=True) if mojom.IsEnumKind(kind): return _GetName(kind) if mojom.IsStructKind(kind) or mojom.IsUnionKind(kind): return "%sDataView" % _GetName(kind) if mojom.IsArrayKind(kind): return "mojo::ArrayDataView<%s>" % GetCppDataViewType(kind.kind, qualified) if mojom.IsMapKind(kind): return ("mojo::MapDataView<%s, %s>" % ( GetCppDataViewType(kind.key_kind, qualified), GetCppDataViewType(kind.value_kind, qualified))) if mojom.IsStringKind(kind): return "mojo::StringDataView" if mojom.IsInterfaceKind(kind): return "%sPtrDataView" % _GetName(kind) if mojom.IsInterfaceRequestKind(kind): return "%sRequestDataView" % _GetName(kind.kind) if mojom.IsAssociatedInterfaceKind(kind): return "%sAssociatedPtrInfoDataView" % _GetName(kind.kind) if mojom.IsAssociatedInterfaceRequestKind(kind): return "%sAssociatedRequestDataView" % _GetName(kind.kind) if mojom.IsGenericHandleKind(kind): return "mojo::ScopedHandle" if mojom.IsDataPipeConsumerKind(kind): return "mojo::ScopedDataPipeConsumerHandle" if mojom.IsDataPipeProducerKind(kind): return "mojo::ScopedDataPipeProducerHandle" if mojom.IsMessagePipeKind(kind): return "mojo::ScopedMessagePipeHandle" if mojom.IsSharedBufferKind(kind): return "mojo::ScopedSharedBufferHandle" return _kind_to_cpp_type[kind] def GetUnmappedTypeForSerializer(kind): return GetCppDataViewType(kind, qualified=True) def TranslateConstants(token, kind): if isinstance(token, mojom.NamedValue): return _NameFormatter(token, _variant).FormatForCpp( flatten_nested_kind=True) if isinstance(token, mojom.BuiltinValue): if token.value == "double.INFINITY" or token.value == "float.INFINITY": return "INFINITY"; if token.value == "double.NEGATIVE_INFINITY" or \ token.value == "float.NEGATIVE_INFINITY": return "-INFINITY"; if token.value == "double.NAN" or token.value == "float.NAN": return "NAN"; if (kind is not None and mojom.IsFloatKind(kind)): return token if token.isdigit() else token + "f"; # Per C++11, 2.14.2, the type of an integer literal is the first of the # corresponding list in Table 6 in which its value can be represented. In this # case, the list for decimal constants with no suffix is: # int, long int, long long int # The standard considers a program ill-formed if it contains an integer # literal that cannot be represented by any of the allowed types. # # As it turns out, MSVC doesn't bother trying to fall back to long long int, # so the integral constant -2147483648 causes it grief: it decides to # represent 2147483648 as an unsigned integer, and then warns that the unary # minus operator doesn't make sense on unsigned types. Doh! if kind == mojom.INT32 and token == "-2147483648": return "(-%d - 1) /* %s */" % ( 2**31 - 1, "Workaround for MSVC bug; see https://crbug.com/445618") return "%s%s" % (token, _kind_to_cpp_literal_suffix.get(kind, "")) def ExpressionToText(value, kind=None): return TranslateConstants(value, kind) def RequiresContextForDataView(kind): for field in kind.fields: if mojom.IsReferenceKind(field.kind): return True return False def ShouldInlineStruct(struct): # TODO(darin): Base this on the size of the wrapper class. if len(struct.fields) > 4: return False for field in struct.fields: if mojom.IsReferenceKind(field.kind) and not mojom.IsStringKind(field.kind): return False return True def ContainsMoveOnlyMembers(struct): for field in struct.fields: if IsMoveOnlyKind(field.kind): return True return False def ShouldInlineUnion(union): return not any( mojom.IsReferenceKind(field.kind) and not mojom.IsStringKind(field.kind) for field in union.fields) def GetContainerValidateParamsCtorArgs(kind): if mojom.IsStringKind(kind): expected_num_elements = 0 element_is_nullable = False key_validate_params = "nullptr" element_validate_params = "nullptr" enum_validate_func = "nullptr" elif mojom.IsMapKind(kind): expected_num_elements = 0 element_is_nullable = False key_validate_params = GetNewContainerValidateParams(mojom.Array( kind=kind.key_kind)) element_validate_params = GetNewContainerValidateParams(mojom.Array( kind=kind.value_kind)) enum_validate_func = "nullptr" else: # mojom.IsArrayKind(kind) expected_num_elements = generator.ExpectedArraySize(kind) or 0 element_is_nullable = mojom.IsNullableKind(kind.kind) key_validate_params = "nullptr" element_validate_params = GetNewContainerValidateParams(kind.kind) if mojom.IsEnumKind(kind.kind): enum_validate_func = ("%s::Validate" % GetQualifiedNameForKind(kind.kind, internal=True, flatten_nested_kind=True)) else: enum_validate_func = "nullptr" if enum_validate_func == "nullptr": if key_validate_params == "nullptr": return "%d, %s, %s" % (expected_num_elements, "true" if element_is_nullable else "false", element_validate_params) else: return "%s, %s" % (key_validate_params, element_validate_params) else: return "%d, %s" % (expected_num_elements, enum_validate_func) def GetNewContainerValidateParams(kind): if (not mojom.IsArrayKind(kind) and not mojom.IsMapKind(kind) and not mojom.IsStringKind(kind)): return "nullptr" return "new mojo::internal::ContainerValidateParams(%s)" % ( GetContainerValidateParamsCtorArgs(kind)) class Generator(generator.Generator): cpp_filters = { "constant_value": ConstantValue, "contains_handles_or_interfaces": mojom.ContainsHandlesOrInterfaces, "contains_move_only_members": ContainsMoveOnlyMembers, "cpp_wrapper_param_type": GetCppWrapperParamType, "cpp_data_view_type": GetCppDataViewType, "cpp_field_type": GetCppFieldType, "cpp_union_field_type": GetCppUnionFieldType, "cpp_pod_type": GetCppPodType, "cpp_union_getter_return_type": GetUnionGetterReturnType, "cpp_union_trait_getter_return_type": GetUnionTraitGetterReturnType, "cpp_wrapper_type": GetCppWrapperType, "default_value": DefaultValue, "expression_to_text": ExpressionToText, "get_container_validate_params_ctor_args": GetContainerValidateParamsCtorArgs, "get_name_for_kind": GetNameForKind, "get_pad": pack.GetPad, "get_qualified_name_for_kind": GetQualifiedNameForKind, "has_callbacks": mojom.HasCallbacks, "has_sync_methods": mojom.HasSyncMethods, "requires_context_for_data_view": RequiresContextForDataView, "should_inline": ShouldInlineStruct, "should_inline_union": ShouldInlineUnion, "is_array_kind": mojom.IsArrayKind, "is_enum_kind": mojom.IsEnumKind, "is_integral_kind": mojom.IsIntegralKind, "is_native_only_kind": IsNativeOnlyKind, "is_any_handle_kind": mojom.IsAnyHandleKind, "is_any_interface_kind": mojom.IsAnyInterfaceKind, "is_any_handle_or_interface_kind": mojom.IsAnyHandleOrInterfaceKind, "is_associated_kind": mojom.IsAssociatedKind, "is_hashable": IsHashableKind, "is_map_kind": mojom.IsMapKind, "is_nullable_kind": mojom.IsNullableKind, "is_object_kind": mojom.IsObjectKind, "is_reference_kind": mojom.IsReferenceKind, "is_string_kind": mojom.IsStringKind, "is_struct_kind": mojom.IsStructKind, "is_typemapped_kind": IsTypemappedKind, "is_union_kind": mojom.IsUnionKind, "passes_associated_kinds": mojom.PassesAssociatedKinds, "struct_size": lambda ps: ps.GetTotalSize() + _HEADER_SIZE, "stylize_method": generator.StudlyCapsToCamel, "under_to_camel": generator.UnderToCamel, "unmapped_type_for_serializer": GetUnmappedTypeForSerializer, } def GetExtraTraitsHeaders(self): extra_headers = set() for entry in self.typemap.itervalues(): extra_headers.update(entry.get("traits_headers", [])) return list(extra_headers) def GetExtraPublicHeaders(self): extra_headers = set() for entry in self.typemap.itervalues(): extra_headers.update(entry.get("public_headers", [])) return list(extra_headers) def GetJinjaExports(self): structs = self.GetStructs() interfaces = self.GetInterfaces() all_enums = list(self.module.enums) for struct in structs: all_enums.extend(struct.enums) for interface in interfaces: all_enums.extend(interface.enums) return { "module": self.module, "namespace": self.module.namespace, "namespaces_as_array": NamespaceToArray(self.module.namespace), "imports": self.module.imports, "kinds": self.module.kinds, "enums": self.module.enums, "all_enums": all_enums, "structs": structs, "unions": self.GetUnions(), "interfaces": interfaces, "variant": self.variant, "extra_traits_headers": self.GetExtraTraitsHeaders(), "extra_public_headers": self.GetExtraPublicHeaders(), "for_blink": self.for_blink, "use_new_wrapper_types": self.use_new_wrapper_types, "export_attribute": self.export_attribute, "export_header": self.export_header, } @staticmethod def GetTemplatePrefix(): return "cpp_templates" @classmethod def GetFilters(cls): return cls.cpp_filters @UseJinja("module.h.tmpl") def GenerateModuleHeader(self): return self.GetJinjaExports() @UseJinja("module.cc.tmpl") def GenerateModuleSource(self): return self.GetJinjaExports() @UseJinja("module-shared.h.tmpl") def GenerateModuleSharedHeader(self): return self.GetJinjaExports() @UseJinja("module-shared-internal.h.tmpl") def GenerateModuleSharedInternalHeader(self): return self.GetJinjaExports() @UseJinja("module-shared.cc.tmpl") def GenerateModuleSharedSource(self): return self.GetJinjaExports() def GenerateFiles(self, args): if self.generate_non_variant_code: self.Write(self.GenerateModuleSharedHeader(), self.MatchMojomFilePath("%s-shared.h" % self.module.name)) self.Write( self.GenerateModuleSharedInternalHeader(), self.MatchMojomFilePath("%s-shared-internal.h" % self.module.name)) self.Write(self.GenerateModuleSharedSource(), self.MatchMojomFilePath("%s-shared.cc" % self.module.name)) else: global _current_typemap _current_typemap = self.typemap global _for_blink _for_blink = self.for_blink global _use_new_wrapper_types _use_new_wrapper_types = self.use_new_wrapper_types global _variant _variant = self.variant suffix = "-%s" % self.variant if self.variant else "" self.Write(self.GenerateModuleHeader(), self.MatchMojomFilePath("%s%s.h" % (self.module.name, suffix))) self.Write( self.GenerateModuleSource(), self.MatchMojomFilePath("%s%s.cc" % (self.module.name, suffix)))
33f989d69d8aef0c49fbf0a3dbee6ff0647c9d01
253f3a81b582ee53b86451dc5a06d6dc8923b0dd
/src/commands/commandslist.py
946bf2c4b052a3394de39102411e47b230dc7f67
[]
no_license
bdubyapee/akriosmud
c02ff2c9e3916efedc4837b19e02caf6255045f9
d6c234e22fc56422315553217639bcb3e4c49984
refs/heads/master
2020-04-16T04:53:02.163852
2020-02-17T01:09:10
2020-02-17T01:09:10
165,284,647
3
1
null
null
null
null
UTF-8
Python
false
false
1,270
py
# Project: Akrios # Filename: commands/commandlist.py # # Capability: player # # Command Description: Listing of currently available commands filtered by capabilities. # # By: Jubelo from commands import * name = "commandslist" version = 1 requirements = {'capability': ['player'], 'generic_fail': "See {WHelp commandlist{x for help with this command.", 'truth_checks': [], 'false_checks': []} @Command(**requirements) def commandslist(caller, args, **kwargs): header = f"{{rCommands Available{{x" caller.write(f"{header:^80}") caller.write("") sub_header = f"{{BPlease see {{Whelp <command>{{B for additional information{{x" caller.write(f"{sub_header:^80}") caller.write("") cmd_list = [cmd for cmd in Command.commandhash if set(Command.commandcapability[cmd]) & set(caller.capability)] cmd_list.sort() numcols = 4 while (len(cmd_list) % numcols) > 0: cmd_list.append(' ') for i in range(0, len(cmd_list), numcols): output = '' for l in range(0, numcols): output = f"{output}{cmd_list[i+l]:20}" caller.write(output) caller.write("") caller.write("\n\r{WUsage{x: <command> <optional arguments>")
ebe543088903155d46d06e03f07284f75a632e35
09996c147d498e61352683c5e7df0f3cd517ea27
/test/oldcrab/whelicity_DataDoubleEl_SE_GH_cfg.py
485f08167cd51bc90018ac079a2e540233e35f86
[]
no_license
shchenarani/whelicityAnalyzer
3e3320a6d03eab21de6d51dad60f057b6a2f3d47
8b4586f7210c6a166b949470c22310b25683da4f
refs/heads/master
2021-09-10T12:22:52.088849
2018-03-26T07:52:54
2018-03-26T07:52:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,739
py
import FWCore.ParameterSet.Config as cms process = cms.Process("TEST") process.load("FWCore.MessageService.MessageLogger_cfi") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) readFiles = cms.untracked.vstring() secFiles = cms.untracked.vstring() process.source = cms.Source ("PoolSource",fileNames = readFiles) process.load("FWCore.MessageService.MessageLogger_cfi") process.MessageLogger.cerr.FwkReport.reportEvery = 1000 ## configure process options process.options = cms.untracked.PSet( allowUnscheduled = cms.untracked.bool(True), wantSummary = cms.untracked.bool(True) ) ## configure geometry & conditions process.load("Configuration.Geometry.GeometryRecoDB_cff") process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") from Configuration.AlCa.GlobalTag import GlobalTag process.load("Configuration.StandardSequences.MagneticField_cff") process.GlobalTag.globaltag = '80X_mcRun2_asymptotic_2016_TrancheIV_v6' readFiles = cms.untracked.vstring() secFiles = cms.untracked.vstring() process.source = cms.Source ("PoolSource",fileNames = readFiles) readFiles = cms.untracked.vstring() secFiles = cms.untracked.vstring() process.source = cms.Source ("PoolSource",fileNames = readFiles) readFiles.extend( [ 'root://xrootd-cms.infn.it//store/data/Run2016E/DoubleEG/MINIAOD/03Feb2017-v1/110000/EA7C2D56-A1EA-E611-86B2-0CC47A13CC7A.root']); # # Set up electron ID (VID framework) # from PhysicsTools.SelectorUtils.tools.vid_id_tools import * # turn on VID producer, indicate data format to be # DataFormat.AOD or DataFormat.MiniAOD, as appropriate useAOD = False if useAOD == True : dataFormat = DataFormat.AOD else : dataFormat = DataFormat.MiniAOD switchOnVIDElectronIdProducer(process, dataFormat) # define which IDs we want to produce my_id_modules = ['RecoEgamma.ElectronIdentification.Identification.cutBasedElectronID_Summer16_80X_V1_cff'] #add them to the VID producer for idmod in my_id_modules: setupAllVIDIdsInModule(process,idmod,setupVIDElectronSelection) process.load("whelicity1.MiniAnalyzer.whelicity_cff") process.Whelicity.isData = cms.bool(True) process.Whelicity.isPythia = cms.bool(False) process.Whelicity.isSingleElectron = cms.bool(True) process.Whelicity.DiEl = cms.bool(True) process.Whelicity.muonISOSF = cms.string("ISOEfficienciesAndSF_GH.root") process.Whelicity.muonIDSF = cms.string("IDEfficienciesAndSF_GH.root") process.Whelicity.outFileName = cms.string("tree.root") process.TFileService = cms.Service("TFileService", fileName = cms.string("histos.root") ) # Make sure to add the ID sequence upstream from the user analysis module process.p = cms.Path(process.egmGsfElectronIDSequence * process.Whelicity)
29a1f916d57515291923131169a4a24024185702
e10a6d844a286db26ef56469e31dc8488a8c6f0e
/aav/util/model_utils.py
70f397164e6eed14c9701edf79d67e33b353a1f5
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
Jimmy-INL/google-research
54ad5551f97977f01297abddbfc8a99a7900b791
5573d9c5822f4e866b6692769963ae819cb3f10d
refs/heads/master
2023-04-07T19:43:54.483068
2023-03-24T16:27:28
2023-03-24T16:32:17
282,682,170
1
0
Apache-2.0
2020-07-26T15:50:32
2020-07-26T15:50:31
null
UTF-8
Python
false
false
3,577
py
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Model utilities for extracting information from training checkpoints.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import pandas import tensorflow as tf def get_best_checkpoint_path( model_dir, metric='loss', eval_subdir='eval_one_pass'): """Gets the path of the best checkpoint by given metric. Args: model_dir: (str) Path to tf.Estimator model. metric: (str) Model evaluation metric over which to optimize. eval_subdir: (str) Subdir path within model_dir to search for evaluation events. Returns: (str) The path to the model best checkpoint. Raises: ValueError: If the given metric is not supported. """ events = tf.event_accumulator.EventAccumulator( os.path.join(model_dir, eval_subdir)) events.Reload() # Actually read the event files into memory. step = None if metric == 'precision': step = _get_best_checkpoint_step(events, metric, higher_is_better=True) elif metric == 'loss': step = _get_best_checkpoint_step(events, metric, higher_is_better=False) elif metric == 'accuracy': step = _get_best_checkpoint_step(events, metric, higher_is_better=True) elif metric == 'recall': step = _get_best_checkpoint_step(events, metric, higher_is_better=True) else: raise ValueError('Unknown metric "%s" is not supported' % metric) return os.path.join(model_dir, 'model.ckpt-%d' % step) def _get_best_checkpoint_step( events, metric_key='precision', higher_is_better=True): """Gets the global step number of the best checkpoint by given metric. Args: events: (tf.Events) The summary events for a model evaluation. metric_key: (str) The model evaluation metric key to optimize over. higher_is_better: (bool) Is a higher value of the metric better? Returns: (int) The global step number of the best checkpoint. """ summary_df = pandas.DataFrame([ {'step': entry.step, metric_key: entry.value} for entry in events.Scalars(metric_key) ]) metric = summary_df[metric_key] best_index = None if higher_is_better: best_index = metric.idxmax() else: best_index = metric.idxmin() best_checkpoint = summary_df.iloc[best_index] return best_checkpoint.step
e7d70888cafcdf8d8f016d284cb11462549acf2c
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_189/ch30_2019_08_26_19_06_32_624802.py
0bf8b64bd817ff2689f3209d5285dc5d58edda50
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
239
py
def distancia(ang,vel): import math dist=((vel**2)*math.sin(2*ang))/9.8 return dist if 98<=distancia(ang,vel)<=102: print("Acertou!") elif distancia(ang,vel)>102: print("Muito longe") else: print("Muito perto")
0294350b106cf605e7bc42c9069605f5e39f7c89
22bf2740e893b5020088b0d47f7b57eb2f9a2b5f
/version3/source/insert.py
435e9f58028892f9d0b4a196e61675f5c9c0353e
[]
no_license
letianccc/latin_database
f2c1f9c58f398d322f722a3b1dade2296a2da19a
1aa6c7eed57f6ea72d6e82e0a19b7a9614fb34c8
refs/heads/master
2021-04-15T09:26:48.132616
2018-04-12T23:40:17
2018-04-12T23:40:17
126,196,425
0
0
null
null
null
null
UTF-8
Python
false
false
354
py
from version3.source.catalog import Catalog class Insert: def __init__(self, table_name, tuple_, tran_id=None): self.table_name = table_name self.tuple = tuple_ self.tran_id = tran_id def execute(self): hf = Catalog.name_to_file(self.table_name) hf.insert_tuple(self.tuple, self.tran_id, 'X')
07e22436ef683aac6402b919ca8971015eb64d89
938a496fe78d5538af94017c78a11615a8498682
/algorithms/401-500/434.number-of-segments-in-a-string.py
30057d9c241f8500cb524ddb181e94c26947fdca
[]
no_license
huilizhou/Leetcode-pyhton
261280044d15d0baeb227248ade675177efdb297
6ae85bf79c5a21735e3c245c0c256f29c1c60926
refs/heads/master
2020-03-28T15:57:52.762162
2019-11-26T06:14:13
2019-11-26T06:14:13
148,644,059
8
1
null
null
null
null
UTF-8
Python
false
false
501
py
# 字符串中的单词数 class Solution(object): def countSegments(self, s): """ :type s: str :rtype: int """ # 人家的解法 s = s.strip() if len(s) == 0: return 0 else: sum = 0 s = s.split(' ') for v in s: if v != '': sum += 1 return sum # return len(s.split()) print(Solution().countSegments("Hello, my name is John"))
8a76e10c251ffe4ca5c2f5adaf0fea29dc57a5b3
29ec9a3ba90f12da111d3e25cf75bc7c3db5d8ac
/tests/test_core.py
27223608f8d79526ceb4cdbed94134a7a6f2049f
[]
no_license
frnsys/drip
cf16d1d917dc7433bb2b279e6dcea18d0394a2ae
9b9733900c6ca799650e665f228c525dfa143476
refs/heads/master
2021-01-10T11:06:57.133358
2016-02-28T04:00:31
2016-02-28T04:00:31
52,692,220
1
0
null
null
null
null
UTF-8
Python
false
false
4,581
py
import json from datetime import datetime from drip.datastore import db from drip.cluster import cluster from drip.nlp import title, multisummarize from drip.models import Event, Story, Article, Feed, Source, Keyword from tests import TestCase class CoreTest(TestCase): def setUp(self): self.events = json.load(open('tests/data/events.json', 'r')) self.source = Source('test source') self.feed = Feed('http://nytimes.com', self.source) db.session.add(self.source) db.session.add(self.feed) db.session.commit() def article_factory(self, **kwargs): defaults = { 'url': 'http://nytimes.com/sup', 'text': 'sup', 'html': '<h1>sup</h1>', 'title': 'Sup', 'image': 'http:://nytimes.com/sup.jpg', 'published': datetime(day=1, month=1, year=2015), 'authors': ['Yo Go'], 'keywords': ['sup', 'yo'], 'feed': self.feed } defaults.update(kwargs) return Article(**defaults) def test_title(self): expected = [ 'Jeremy Thorpe, former Liberal party leader, dies aged 85', 'Woman Arrested in U.S. Teacher\'s Stabbing Death in Abu Dhabi', 'Faces keyboardist Ian McLagan dies', 'China to stop using executed prisoners as source of organs for transplant', 'James Bond movie to be called Spectre' ] for e, expected in zip(self.events, expected): articles = [self.article_factory(title=a['title'], text=a['text']) for a in e] t = title(articles) self.assertEqual(t, expected) def test_cluster(self): articles = [] true_events = [] for e in self.events: arts = [self.article_factory(title=a['title'], text=a['text']) for a in e] true_events.append(arts) articles += arts clusters = cluster(articles, []) # Clusters might not be in the same order as the true events for clus in clusters: for evs in true_events: if set(clus.articles) == set(evs): break else: self.fail('Cluster:\n\t{}\ndid not match any expected cluster'.format( [a.title for a in clus.articles] )) def test_summarize(self): articles = [] for e in self.events: articles = [self.article_factory(title=a['title'], text=a['text']) for a in e] summary = multisummarize(articles) # This is more of a placeholder test atm self.assertTrue(isinstance(summary, list)) def test_keywords(self): data = [ ('This is a title: Spectre', 'The story is about Spectre'), ('A really cool title', 'Spectre is the new film'), ('Yet another title', 'The new title is Spectre') ] events = [] articles = [] for _ in range(2): arts = [self.article_factory(title=title, text=text, keywords=['spectre']) for title, text in data] event = Event(arts[0]) for a in arts[1:]: event.add(a) event.update() articles += arts events.append(event) db.session.add(event) story = Story(events[0]) story.add(events[1]) story.update() db.session.add(story) db.session.commit() keyword = Keyword.query.filter_by(name='spectre').first() self.assertEqual(set(keyword.subjects.all()), set(articles + events + [story])) def test_story_candidates(self): data = [ ('This is a title: Spectre', 'The story is about Spectre'), ('A really cool title', 'Spectre is the new film'), ('Yet another title', 'The new title is Spectre') ] events = [] articles = [] for _ in range(3): arts = [self.article_factory(title=title, text=text, keywords=['spectre']) for title, text in data] event = Event(arts[0]) for a in arts[1:]: event.add(a) event.update() articles += arts events.append(event) db.session.add(event) story = Story(events[0]) story.add(events[1]) story.update() db.session.add(story) db.session.commit() event = events[-1] candidates = Story.candidates(event) self.assertEqual(candidates[0][0], story)
cb9110d27d0004f8563f7d1a8891ee2eb95d49ef
4bfc3c184e736bb68dccbb6d5657f11c950df002
/tests/common/test_run/atan2_run.py
93b020c539675af05a758ffe81d5f4fcf035e136
[ "Apache-2.0", "Zlib", "BSD-3-Clause", "MIT", "LicenseRef-scancode-unknown-license-reference", "Unlicense", "BSD-2-Clause" ]
permissive
laekov/akg
159aa64ef6135222b5af784c408731275dfa9bdb
5316b8cb2340bbf71bdc724dc9d81513a67b3104
refs/heads/master
2022-12-01T04:09:03.548063
2020-08-19T08:38:57
2020-08-19T08:41:28
288,678,192
0
0
Apache-2.0
2020-08-19T08:41:30
2020-08-19T08:36:53
Python
UTF-8
Python
false
false
1,719
py
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """run function for arctangent2""" import numpy as np from tensorio import compare_tensor from akg.utils import kernel_exec as utils from test_op import atan2 from gen_random import random_gaussian from base import get_rtol_atol def atan2_run(shape1, dtype1, shape2, dtype2, attrs): """run function for arctangent2""" mod = utils.op_build_test(atan2.atan2, [shape1, shape2], [dtype1, dtype2], kernel_name="atan2", attrs=attrs) expect, inputs, out_buf = gen_data(shape1, dtype1, shape2, dtype2) output = utils.mod_launch(mod, (*inputs, out_buf), expect=expect) rtol, atol = get_rtol_atol("atan2", dtype1) cmp_res = compare_tensor(output, expect, rtol=rtol, atol=atol) return inputs, output, expect, cmp_res def gen_data(shape1, dtype1, shape2, dtype2): """generate valid data for arctangent2""" input1 = random_gaussian(shape1, miu=0, sigma=0.5).astype(dtype1) input2 = random_gaussian(shape2, miu=0, sigma=0.5).astype(dtype2) expect = np.arctan2(input1, input2) out_buf = np.full(shape1, np.nan, dtype1) return expect, (input1, input2), out_buf
b45b2b0b78cb932e1697bb6f7b744db3618136d2
855e455b7113d32ad7bebca8e64cece441308b70
/adafruit_matrixportal/wifi.py
e9411a9fe01ef6b5288209b6bb65a68689dbccaa
[ "MIT" ]
permissive
dsstewa/Adafruit_CircuitPython_MatrixPortal
f7687077d9d8ac83980f5ec75a52e1ca3942a1e3
885fb7edfbda0b763dbddbf9865d3fa62528e4c9
refs/heads/master
2023-02-09T23:03:50.751414
2021-01-05T18:22:43
2021-01-05T18:22:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,845
py
# SPDX-FileCopyrightText: 2020 Melissa LeBlanc-Williams, written for Adafruit Industries # # SPDX-License-Identifier: Unlicense """ `adafruit_matrixportal.wifi` ================================================================================ Helper library for the MatrixPortal M4 or Adafruit RGB Matrix Shield + Metro M4 Airlift Lite. * Author(s): Melissa LeBlanc-Williams Implementation Notes -------------------- **Hardware:** * `Adafruit MatrixPortal M4 <https://www.adafruit.com/product/4745>`_ * `Adafruit Metro M4 Express AirLift <https://www.adafruit.com/product/4000>`_ * `Adafruit RGB Matrix Shield <https://www.adafruit.com/product/2601>`_ * `64x32 RGB LED Matrix <https://www.adafruit.com/product/2278>`_ **Software and Dependencies:** * Adafruit CircuitPython firmware for the supported boards: https://github.com/adafruit/circuitpython/releases """ import gc import board import busio from digitalio import DigitalInOut import neopixel from adafruit_esp32spi import adafruit_esp32spi, adafruit_esp32spi_wifimanager import adafruit_esp32spi.adafruit_esp32spi_socket as socket import adafruit_requests as requests __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_MatrixPortal.git" class WiFi: """Class representing the ESP. :param status_neopixel: The pin for the status NeoPixel. Use ``board.NEOPIXEL`` for the on-board NeoPixel. Defaults to ``None``, not the status LED :param esp: A passed ESP32 object, Can be used in cases where the ESP32 chip needs to be used before calling the pyportal class. Defaults to ``None``. :param busio.SPI external_spi: A previously declared spi object. Defaults to ``None``. """ def __init__(self, *, status_neopixel=None, esp=None, external_spi=None): if status_neopixel: self.neopix = neopixel.NeoPixel(status_neopixel, 1, brightness=0.2) else: self.neopix = None self.neo_status(0) self.requests = None if esp: # If there was a passed ESP Object self.esp = esp if external_spi: # If SPI Object Passed spi = external_spi else: # Else: Make ESP32 connection spi = busio.SPI(board.SCK, board.MOSI, board.MISO) else: esp32_ready = DigitalInOut(board.ESP_BUSY) esp32_gpio0 = DigitalInOut(board.ESP_GPIO0) esp32_reset = DigitalInOut(board.ESP_RESET) esp32_cs = DigitalInOut(board.ESP_CS) spi = busio.SPI(board.SCK, board.MOSI, board.MISO) self.esp = adafruit_esp32spi.ESP_SPIcontrol( spi, esp32_cs, esp32_ready, esp32_reset, esp32_gpio0 ) requests.set_socket(socket, self.esp) self._manager = None gc.collect() def connect(self, ssid, password): """ Connect to WiFi using the settings found in secrets.py """ self.esp.connect({"ssid": ssid, "password": password}) self.requests = requests def neo_status(self, value): """The status NeoPixel. :param value: The color to change the NeoPixel. """ if self.neopix: self.neopix.fill(value) def manager(self, secrets): """Initialize the WiFi Manager if it hasn't been cached and return it""" if self._manager is None: self._manager = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager( self.esp, secrets, None ) return self._manager @property def is_connected(self): """Return whether we are connected.""" return self.esp.is_connected @property def enabled(self): """Not currently disablable on the ESP32 Coprocessor""" return True
72461308ceaf06759f6556c4bf62da939683c9d0
1575d5acc07eb67cb4e3cd523a24bb1d39efcb84
/nn-pima/cv2MLP.py
3518ebea717713ebf5dd3b51f3e480d47cf3ed97
[]
no_license
ChenLiangbo/DeepLearning
4bd80ddb2a41b883ef70947a8b1fdb3b19656df0
3464c27116dc00bd597d2b9c25313964e1d89797
refs/heads/master
2020-12-24T12:39:27.666215
2017-05-09T13:49:44
2017-05-09T13:49:44
72,974,542
0
0
null
null
null
null
UTF-8
Python
false
false
1,353
py
#!usr/bin/env/python # -*- coding: utf-8 -*- import numpy as np from bayesClassifier import BayesClassifier import cv2 dataset = np.load('pima-indians.npy') columns = np.hsplit(dataset,9) xsample = np.hstack(columns[0:8]) ysample = columns[8] shape = xsample.shape xsample = np.float32(xsample) ysample = np.float32(ysample) print "xsample = ",xsample.shape print "ysample = ",ysample.shape # indexList = np.random.permutation(shape[0]) indexList = range(shape[0]) x_train = xsample[indexList[0:538]] y_train = ysample[indexList[0:538]] print "x_train.shape = ",x_train.shape print "y_train.shape = ",y_train.shape x_test = xsample[indexList[538:]] y_test = ysample[indexList[538:]] print "x_test.shape = ",x_test.shape print "y_test.shape = ",y_test.shape myBayes = BayesClassifier() layers = np.array([8,15,1]) model = cv2.ANN_MLP() model.create(layers) params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 3000, 0.01), train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP, bp_dw_scale = 0.001, bp_moment_scale = 0.0 ) model.train(x_train,y_train,None,params = params) ret,resp = model.predict(x_test) y_predict = resp.argmax(-1) print "y_predict = ",(y_predict.shape,np.mean(y_predict == y_test)) print y_predict[0:10] result = myBayes.f_measure(y_predict,y_test) print "result = ",result
f31463bbe7a8decc63c1e4e4655c094c558d31fe
c148fbeff2f5188baed64dfdd3d781b8b15bc7d5
/tools/build_variables.py
db521a047960e0ee62638abc416ebbb65084f2cb
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "Apache-2.0", "BSD-2-Clause" ]
permissive
abhattce/pytorch
46b37747456f9997634f3a11c94e5af61c60442e
01d7d3de46a3766f60465d266ca204fa5c0df5c6
refs/heads/master
2020-05-15T01:45:12.371014
2019-04-18T06:52:44
2019-04-18T06:55:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,288
py
# In the open-source build, these are generated into # torch/csrc/{autgrad,jit}/generated. In fbcode, this distinction is # not currently relevant so they are combined into one list. from __future__ import absolute_import, division, print_function, unicode_literals load("@bazel_skylib//lib:new_sets.bzl", "sets") GENERATED_CPP = [ "Functions.cpp", "THCUNN.cpp", "THNN.cpp", "VariableType_0.cpp", "VariableType_1.cpp", "VariableType_2.cpp", "VariableType_3.cpp", "VariableType_4.cpp", "register_aten_ops_0.cpp", "register_aten_ops_1.cpp", "register_aten_ops_2.cpp", "python_functions.cpp", "python_nn_functions.cpp", "python_torch_functions.cpp", "python_variable_methods.cpp", ] # copied from https://github.com/pytorch/pytorch/blob/master/tools/cpp_build/torch/CMakeLists.txt libtorch_sources = [ ":generate-code=Functions.cpp", ":generate-code=register_aten_ops_0.cpp", ":generate-code=register_aten_ops_1.cpp", ":generate-code=register_aten_ops_2.cpp", ":generate-code=VariableType_0.cpp", ":generate-code=VariableType_1.cpp", ":generate-code=VariableType_2.cpp", ":generate-code=VariableType_3.cpp", ":generate-code=VariableType_4.cpp", "torch/csrc/autograd/VariableTypeManual.cpp", "torch/csrc/autograd/anomaly_mode.cpp", "torch/csrc/autograd/engine.cpp", "torch/csrc/autograd/function.cpp", "torch/csrc/autograd/functions/accumulate_grad.cpp", "torch/csrc/autograd/functions/basic_ops.cpp", "torch/csrc/autograd/functions/tensor.cpp", "torch/csrc/autograd/functions/utils.cpp", "torch/csrc/autograd/grad_mode.cpp", "torch/csrc/autograd/input_buffer.cpp", "torch/csrc/autograd/profiler.cpp", "torch/csrc/autograd/record_function.cpp", "torch/csrc/autograd/saved_variable.cpp", "torch/csrc/autograd/variable.cpp", "torch/csrc/Exceptions.cpp", "torch/csrc/jit/autodiff.cpp", "torch/csrc/jit/attributes.cpp", "torch/csrc/jit/argument_spec.cpp", "torch/csrc/jit/constants.cpp", "torch/csrc/jit/node_hashing.cpp", "torch/csrc/jit/export.cpp", "torch/csrc/jit/pass_manager.cpp", "torch/csrc/jit/pickler.cpp", "torch/csrc/jit/graph_executor.cpp", "torch/csrc/jit/import.cpp", "torch/csrc/jit/interpreter.cpp", "torch/csrc/jit/ir.cpp", "torch/csrc/jit/irparser.cpp", "torch/csrc/jit/netdef_converter.cpp", "torch/csrc/jit/register_c10_ops.cpp", "torch/csrc/jit/symbolic_script.cpp", "torch/csrc/jit/profiling_record.cpp", "torch/csrc/jit/operator.cpp", "torch/csrc/jit/passes/alias_analysis.cpp", "torch/csrc/jit/passes/batch_mm.cpp", "torch/csrc/jit/passes/canonicalize_ops.cpp", "torch/csrc/jit/passes/canonicalize.cpp", "torch/csrc/jit/passes/common_subexpression_elimination.cpp", "torch/csrc/jit/passes/constant_propagation.cpp", "torch/csrc/jit/passes/constant_pooling.cpp", "torch/csrc/jit/passes/create_autodiff_subgraphs.cpp", "torch/csrc/jit/passes/dead_code_elimination.cpp", "torch/csrc/jit/passes/erase_number_types.cpp", "torch/csrc/jit/passes/graph_fuser.cpp", "torch/csrc/jit/passes/inline_autodiff_subgraphs.cpp", "torch/csrc/jit/passes/inplace_check.cpp", "torch/csrc/jit/passes/loop_unrolling.cpp", "torch/csrc/jit/passes/lower_grad_of.cpp", "torch/csrc/jit/passes/lower_tuples.cpp", "torch/csrc/jit/passes/peephole.cpp", "torch/csrc/jit/passes/python_print.cpp", "torch/csrc/jit/passes/quantization.cpp", "torch/csrc/jit/passes/remove_expands.cpp", "torch/csrc/jit/passes/requires_grad_analysis.cpp", "torch/csrc/jit/passes/shape_analysis.cpp", "torch/csrc/jit/passes/specialize_autogradzero.cpp", "torch/csrc/jit/passes/utils/subgraph_utils.cpp", "torch/csrc/jit/passes/utils/memory_dag.cpp", "torch/csrc/jit/register_prim_ops.cpp", "torch/csrc/jit/register_special_ops.cpp", "torch/csrc/jit/register_quantized_ops.cpp", "torch/csrc/jit/scope.cpp", "torch/csrc/jit/script/compiler.cpp", "torch/csrc/api/src/jit.cpp", "torch/csrc/jit/script/edit_distance.cpp", "torch/csrc/jit/script/logging.cpp", "torch/csrc/jit/script/final_returns.cpp", "torch/csrc/jit/script/function_schema_parser.cpp", "torch/csrc/jit/script/schema_type_parser.cpp", "torch/csrc/jit/script/script_type_parser.cpp", "torch/csrc/jit/script/sugared_value.cpp", "torch/csrc/jit/script/schema_matching.cpp", "torch/csrc/jit/script/class_type.cpp", "torch/csrc/jit/script/parser.cpp", "torch/csrc/jit/testing/file_check.cpp", "torch/csrc/jit/import_source.cpp", "torch/csrc/jit/hooks_for_testing.cpp", "torch/csrc/jit/script/builtin_functions.cpp", "torch/csrc/jit/script/lexer.cpp", "torch/csrc/jit/script/strtod.cpp", "torch/csrc/jit/script/module.cpp", "torch/csrc/jit/tracer.cpp", "torch/csrc/utils/tensor_flatten.cpp", "torch/csrc/utils/variadic.cpp", "torch/csrc/jit/fuser/kernel_cache.cpp", "torch/csrc/jit/fuser/compiler.cpp", "torch/csrc/jit/fuser/executor.cpp", "torch/csrc/jit/fuser/codegen.cpp", "torch/csrc/jit/fuser/fallback.cpp", "torch/csrc/jit/fuser/cpu/fused_kernel.cpp", "torch/csrc/jit/fuser/cpu/dynamic_library_unix.cpp", "torch/csrc/jit/fuser/interface.cpp", "test/cpp/jit/test.cpp", ] libtorch_cuda_sources = [ "torch/csrc/cuda/comm.cpp", "torch/csrc/cuda/nccl.cpp", "torch/csrc/jit/fuser/cuda/fused_kernel.cpp", "torch/csrc/jit/fuser/cuda/thnvrtc.cpp", "torch/csrc/autograd/profiler_cuda.cpp", "torch/csrc/autograd/functions/comm.cpp" ] def add_torch_libs(): r = {} # We start torch_python_sources with all cpp files, and exclude some # including the files already contained in the torch and cuda bindings globbed_sources = (native.glob( ["torch/csrc/**/*.cpp"], exclude=[ # remove anything that has "generic" in it"s path "torch/csrc/**/generic/**/*.cpp", # distributed only uses Module.cpp # so remove all other files and just include that "torch/csrc/distributed/**/*.cpp", # top-level hook of extension registration lives in a separate file "torch/csrc/stub.cpp", # to avoid redefinitions of symbols defined in # dynamic_library_unix.cpp "torch/csrc/jit/fuser/cpu/dynamic_library_win.cpp", ], ) + [ "torch/csrc/distributed/Module.cpp", "torch/csrc/distributed/c10d/init.cpp", "torch/csrc/distributed/c10d/ddp.cpp", "torch/csrc/distributed/c10d/reducer.cpp", ] + [":generate-code=" + x for x in GENERATED_CPP]) libtorch_python_sources = sets.to_list(sets.difference( sets.make(globbed_sources), sets.make(libtorch_sources + libtorch_cuda_sources), )) common_flags = { "compiler_flags": [ "-D_THP_CORE", "-DUSE_C10D", "-DUSE_CUDNN", "-DUSE_DISTRIBUTED", "-DUSE_NCCL", "-DUSE_NUMPY", "-DUSE_SCALARS", "-DNO_CUDNN_DESTROY_HANDLE", "-DPYTORCH_ONNX_CAFFE2_BUNDLE", "-Wno-write-strings", "-Wno-format", "-Wno-strict-aliasing", "-Wno-non-virtual-dtor", "-Wno-shadow-compatible-local", "-Wno-empty-body", ], "compiler_specific_flags": { "clang": [ "-Wno-absolute-value", "-Wno-expansion-to-defined", "-Wno-pessimizing-move", "-Wno-return-type-c-linkage", "-Wno-unknown-pragmas", ] }, "headers": native.glob(["torch/csrc/**/*.h", "torch/csrc/generic/*.cpp", "test/cpp/jit/*.h"]), "preprocessor_flags": [ "-Icaffe2", "-Icaffe2/torch/csrc/api/include", "-Icaffe2/torch/csrc", "-Icaffe2/torch/csrc/nn", "-Icaffe2/torch/lib", ], } cpp_library( name="libtorch", srcs=libtorch_sources, link_whole=True, deps=[ ":generated-autograd-headers", ":generated-autograd-headers-bare", ":generated-jit-headers", "//caffe2/aten:ATen-cpu", "//caffe2/caffe2:caffe2_cpu", "//caffe2/torch/lib/libshm:libshm", "//caffe2/caffe2/quantization/server:dnnlowp_ops", ], external_deps=[ ("nanopb", None, "protobuf-nanopb"), ("protobuf", None), ], **common_flags ) cpp_library( name="libtorch_cuda", srcs=libtorch_cuda_sources, link_whole=True, propagated_pp_flags=[ "-DUSE_CUDA", "-DUSE_DIRECT_NVRTC", ], deps=[ ":generated-autograd-headers", ":generated-autograd-headers-bare", ":generated-jit-headers", ":libtorch", "//caffe2/aten:ATen", "//caffe2/aten:generated-aten-headers-cuda", "//caffe2/caffe2:caffe2_cpu", "//caffe2/caffe2:caffe2_gpu", "//caffe2/torch/lib/libshm:libshm", ], external_deps=[ ("cudnn", "7.1.2", "cudnn-lazy"), ("nccl", "2.1.15", "nccl-lazy"), ("cuda", None, "nvToolsExt-lazy"), ("cuda", None, "nvrtc-lazy"), ("cuda", None, "nvrtc-builtins-lazy"), ], **common_flags ) # TODO: split it into cpp and cuda parts similarly to libtorch cpp_library( name="_C_impl", srcs=libtorch_python_sources, link_whole=True, deps=[ ":libtorch_cuda", ":thnn", "//caffe2/torch/lib/THD:THD", "//caffe2/torch/lib/c10d:c10d", "//caffe2/torch/lib/libshm:libshm", ], external_deps=[ ("numpy", None, "cpp"), ("pybind11", None), ("python", None), ], **common_flags ) cpp_python_extension( name="_C", srcs=[ "torch/csrc/stub.cpp", ], base_module="torch", deps=[":_C_impl"], ) return r
e02c5e9a1c49d874e1b079d301802f321137b37f
06f379b97fd704c27f6fed584e1087f32a47fbfe
/mrjob/boto_2_1_1_83aae37b.py
6962cd2d80afc125716dbecaeb0b95ad469080c2
[ "Apache-2.0" ]
permissive
bchess/mrjob
45c7a0a6693463d3a7462a9fec543b149092b747
7415f57884f2ba4313ef9164e023174d5f36abae
refs/heads/master
2021-01-15T19:49:16.511468
2011-12-27T21:03:16
2011-12-27T21:03:16
2,647,531
0
2
null
null
null
null
UTF-8
Python
false
false
12,326
py
# Copyright (c) 2010 Spotify AB # Copyright (c) 2010-2011 Yelp # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. """Code from a bleeding-edge version of boto on github, copied here so that mrjob can formally depend on a stable release of boto (in this case, 2.0). This module will hopefully go away in mrjob v0.4. Please don't make multiple boto_* modules; just bump the module name to whatever version you need to work from, and re-copy the relevant code. This is intentionally somewhat ugly and tedious; our goal is to check the patches we need into boto as fast as we can, so that we don't need to copy code from future versions of boto into mrjob. """ import types import boto.emr.connection import boto.emr.emrobject from boto.emr.emrobject import RunJobFlowResponse from boto.emr.step import JarStep # add the AmiVersion field to JobFlow class JobFlow(boto.emr.emrobject.JobFlow): Fields = boto.emr.emrobject.JobFlow.Fields | set(['AmiVersion']) # this is used into describe_jobflows(), below. We don't actually patch # the code for describe_jobflows(); just by virtue of being in this module, # it refers to the JobFlow class above rather than the one in boto. # copied in run_jobflow() and supporting functions. This supports the # additional_info, ami_version, and instance_groups keywords, which don't # exist in boto 2.0, as well as disabling the HadoopVersion API parameter. class EmrConnection(boto.emr.connection.EmrConnection): def describe_jobflows(self, states=None, jobflow_ids=None, created_after=None, created_before=None): """ Retrieve all the Elastic MapReduce job flows on your account :type states: list :param states: A list of strings with job flow states wanted :type jobflow_ids: list :param jobflow_ids: A list of job flow IDs :type created_after: datetime :param created_after: Bound on job flow creation time :type created_before: datetime :param created_before: Bound on job flow creation time """ params = {} if states: self.build_list_params(params, states, 'JobFlowStates.member') if jobflow_ids: self.build_list_params(params, jobflow_ids, 'JobFlowIds.member') if created_after: params['CreatedAfter'] = created_after.strftime( boto.utils.ISO8601) if created_before: params['CreatedBefore'] = created_before.strftime( boto.utils.ISO8601) return self.get_list('DescribeJobFlows', params, [('member', JobFlow)]) def run_jobflow(self, name, log_uri, ec2_keyname=None, availability_zone=None, master_instance_type='m1.small', slave_instance_type='m1.small', num_instances=1, action_on_failure='TERMINATE_JOB_FLOW', keep_alive=False, enable_debugging=False, hadoop_version=None, steps=[], bootstrap_actions=[], instance_groups=None, additional_info=None, ami_version=None): """ Runs a job flow :type name: str :param name: Name of the job flow :type log_uri: str :param log_uri: URI of the S3 bucket to place logs :type ec2_keyname: str :param ec2_keyname: EC2 key used for the instances :type availability_zone: str :param availability_zone: EC2 availability zone of the cluster :type master_instance_type: str :param master_instance_type: EC2 instance type of the master :type slave_instance_type: str :param slave_instance_type: EC2 instance type of the slave nodes :type num_instances: int :param num_instances: Number of instances in the Hadoop cluster :type action_on_failure: str :param action_on_failure: Action to take if a step terminates :type keep_alive: bool :param keep_alive: Denotes whether the cluster should stay alive upon completion :type enable_debugging: bool :param enable_debugging: Denotes whether AWS console debugging should be enabled. :type hadoop_version: str :param hadoop_version: Version of Hadoop to use. If ami_version is not set, defaults to '0.20' for backwards compatibility with older versions of boto. :type steps: list(boto.emr.Step) :param steps: List of steps to add with the job :type bootstrap_actions: list(boto.emr.BootstrapAction) :param bootstrap_actions: List of bootstrap actions that run before Hadoop starts. :type instance_groups: list(boto.emr.InstanceGroup) :param instance_groups: Optional list of instance groups to use when creating this job. NB: When provided, this argument supersedes num_instances and master/slave_instance_type. :type ami_version: str :param ami_version: Amazon Machine Image (AMI) version to use for instances. Values accepted by EMR are '1.0', '2.0', and 'latest'; EMR currently defaults to '1.0' if you don't set 'ami_version'. :type additional_info: JSON str :param additional_info: A JSON string for selecting additional features :rtype: str :return: The jobflow id """ # hadoop_version used to default to '0.20', but this won't work # on later AMI versions, so only default if it ami_version isn't set. if not (hadoop_version or ami_version): hadoop_version = '0.20' params = {} if action_on_failure: params['ActionOnFailure'] = action_on_failure params['Name'] = name params['LogUri'] = log_uri # Common instance args common_params = self._build_instance_common_args(ec2_keyname, availability_zone, keep_alive, hadoop_version) params.update(common_params) # NB: according to the AWS API's error message, we must # "configure instances either using instance count, master and # slave instance type or instance groups but not both." # # Thus we switch here on the truthiness of instance_groups. if not instance_groups: # Instance args (the common case) instance_params = self._build_instance_count_and_type_args( master_instance_type, slave_instance_type, num_instances) params.update(instance_params) else: # Instance group args (for spot instances or a heterogenous cluster) list_args = self._build_instance_group_list_args(instance_groups) instance_params = dict( ('Instances.%s' % k, v) for k, v in list_args.iteritems() ) params.update(instance_params) # Debugging step from EMR API docs if enable_debugging: debugging_step = JarStep(name='Setup Hadoop Debugging', action_on_failure='TERMINATE_JOB_FLOW', main_class=None, jar=self.DebuggingJar, step_args=self.DebuggingArgs) steps.insert(0, debugging_step) # Step args if steps: step_args = [self._build_step_args(step) for step in steps] params.update(self._build_step_list(step_args)) if bootstrap_actions: bootstrap_action_args = [self._build_bootstrap_action_args(bootstrap_action) for bootstrap_action in bootstrap_actions] params.update(self._build_bootstrap_action_list(bootstrap_action_args)) if ami_version: params['AmiVersion'] = ami_version if additional_info is not None: params['AdditionalInfo'] = additional_info response = self.get_object( 'RunJobFlow', params, RunJobFlowResponse, verb='POST') return response.jobflowid def _build_instance_common_args(self, ec2_keyname, availability_zone, keep_alive, hadoop_version): """ Takes a number of parameters used when starting a jobflow (as specified in run_jobflow() above). Returns a comparable dict for use in making a RunJobFlow request. """ params = { 'Instances.KeepJobFlowAliveWhenNoSteps' : str(keep_alive).lower(), } if hadoop_version: params['Instances.HadoopVersion'] = hadoop_version if ec2_keyname: params['Instances.Ec2KeyName'] = ec2_keyname if availability_zone: params['Instances.Placement.AvailabilityZone'] = availability_zone return params def _build_instance_count_and_type_args(self, master_instance_type, slave_instance_type, num_instances): """ Takes a master instance type (string), a slave instance type (string), and a number of instances. Returns a comparable dict for use in making a RunJobFlow request. """ params = { 'Instances.MasterInstanceType' : master_instance_type, 'Instances.SlaveInstanceType' : slave_instance_type, 'Instances.InstanceCount' : num_instances, } return params def _build_instance_group_args(self, instance_group): """ Takes an InstanceGroup; returns a dict that, when its keys are properly prefixed, can be used for describing InstanceGroups in RunJobFlow or AddInstanceGroups requests. """ params = { 'InstanceCount' : instance_group.num_instances, 'InstanceRole' : instance_group.role, 'InstanceType' : instance_group.type, 'Name' : instance_group.name, 'Market' : instance_group.market } if instance_group.market == 'SPOT': params['BidPrice'] = instance_group.bidprice return params def _build_instance_group_list_args(self, instance_groups): """ Takes a list of InstanceGroups, or a single InstanceGroup. Returns a comparable dict for use in making a RunJobFlow or AddInstanceGroups request. """ if type(instance_groups) != types.ListType: instance_groups = [instance_groups] params = {} for i, instance_group in enumerate(instance_groups): ig_dict = self._build_instance_group_args(instance_group) for key, value in ig_dict.iteritems(): params['InstanceGroups.member.%d.%s' % (i+1, key)] = value return params
ac95c0ed8b59e75ac4515c61349a08280c450c4c
112aa4e67487571452477b0246a0061318065acf
/SDN_Python/SDN_Python/urls.py
1fbaadc8ef9c51b1ec54bfc00aa480bc41453ff4
[]
no_license
jayluxferro/OBP-SDN
a62779ab2670a6419cfe8632b46d6d27a0caf666
9cc5386573b270423bcf63aef93e58b6f49bc450
refs/heads/master
2023-03-23T14:08:44.303565
2021-03-22T10:11:38
2021-03-22T10:11:38
177,524,706
1
0
null
null
null
null
UTF-8
Python
false
false
855
py
"""SDN_Python URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.conf.urls import url, include from django.urls import path import dashboard.urls urlpatterns = [ #path('admin/', admin.site.urls), url(r'^', include(dashboard.urls)), ]
3aad3f01945c664308ccc3b561e0e56cfa002712
d27af9d58b91b8cd998ac0eb87d980d304ff0670
/Beginner-Contest/ABC102/ABC102_C.py
8253d9718ee6884db84fd77f2eb490882b54cfce
[]
no_license
mongesan/Atcoder-m0_ngesan-py
29dd79daab149003ffc8b6b6bad5fa2e7daa9646
6654af034d4ff4cece1be04c2c8b756976d99a4b
refs/heads/master
2023-08-20T19:50:04.547025
2021-10-27T12:24:51
2021-10-27T12:24:51
258,486,105
1
0
null
null
null
null
UTF-8
Python
false
false
9
py
#ABC102_C
0c6469587fb87fb9776a74d943a5d7a7ee89bd7e
51e6234f683ed70207f53d6ee3f537c715082517
/test/setup.py
d98509b0fedc1c07bf389086c75fd98e825bbd80
[ "BSD-2-Clause" ]
permissive
ninjaaron/fast-entry_points
d13d36ee7c4d73a425fba1d0f167aba1e8970127
a3a26f320c7ae2191fde71b79d4f4bf325d162f3
refs/heads/master
2021-10-09T16:16:14.618890
2021-10-07T11:55:03
2021-10-07T11:55:03
64,887,433
131
23
BSD-2-Clause
2021-06-21T19:49:44
2016-08-03T23:57:37
Python
UTF-8
Python
false
false
236
py
from setuptools import setup import fastentrypoints setup( name='dummypkg', version='0.0.0', py_modules=['dummy'], description='dummy package for the test', entry_points={'console_scripts': ['hello=dummy:main']}, )
371e51252c8dd93d6a036b76d919eb54d33bbba8
237162607427106ae9564670d47427a62356861f
/core/migrations/0153_divisionlocation.py
87a4cdf31d325f60c95cbffe34744975f8ef282d
[]
no_license
pitipund/basecore
8648c1f4fa37b6e6075fd710ca422fe159ba930e
a0c20cec1e17dd0eb6abcaaa7d2623e38b60318b
refs/heads/master
2020-09-13T20:16:02.622903
2019-11-20T09:07:15
2019-11-20T09:07:15
221,885,342
0
0
null
null
null
null
UTF-8
Python
false
false
1,118
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2019-01-14 11:43 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('users', '0029_auto_20190114_1040'), ('core', '0152_language'), ] operations = [ migrations.CreateModel( name='DivisionLocation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('active', models.BooleanField(default=True)), ('division', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Division')), ('location', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='users.Location')), ], options={ 'verbose_name': 'สถานที่ตั้งหน่วยงาน', 'verbose_name_plural': 'สถานที่ตั้งหน่วยงาน', }, ), ]
15551af86e94ba02d1ac2f0711c56efd691bcc5b
3ee04e8eef626c3d65f7b4ff218fbb01ba7dcff4
/main/migrations/0010_auto_20180331_1204.py
a80cf707c589b92029eb2d2c4ac58bd6c57d808f
[]
no_license
David-OConnor/books
44499fba804394187103567b021252ecff9b906c
1c03b8c026de08eb1989e99171af01e7e8a7bbc9
refs/heads/master
2021-01-10T18:07:40.559040
2019-10-18T18:57:06
2019-10-18T18:57:06
43,619,480
0
0
null
null
null
null
UTF-8
Python
false
false
962
py
# Generated by Django 2.0.3 on 2018-03-31 12:04 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0009_auto_20180331_1117'), ] operations = [ migrations.CreateModel( name='AdelaideWork', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('author_first', models.CharField(max_length=50)), ('author_last', models.CharField(max_length=50)), ('translator', models.CharField(blank=True, max_length=100, null=True)), ('url', models.CharField(blank=True, max_length=100, null=True)), ], ), migrations.AlterUniqueTogether( name='adelaidework', unique_together={('author_last', 'title')}, ), ]
3b0dbff77c453d04d05c68a3fe87fc404a795510
dc76018904675c64b6eb728d253a162802a584be
/urls.py
d4c2bf2fa81994fffdc6df56a2b8599172bf517e
[]
no_license
edb-gjengen/mbftns
ee36b0e28b5d8f0200b1407bb3940f220a75e553
0434c7ec16743467602481615ef1b87bf53df565
refs/heads/master
2021-01-20T20:53:17.284180
2012-09-05T12:18:29
2012-09-05T12:18:29
65,237,449
0
0
null
null
null
null
UTF-8
Python
false
false
530
py
from django.conf.urls.defaults import patterns, include, url from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^$', 'main.views.index', name='index'), url(r'^admin/', include(admin.site.urls)), url(r'^', include('main.urls')), url(r'^accounts/login', 'django.contrib.auth.views.login'), url(r'^accounts/logout', 'django.contrib.auth.views.logout'), ) # for dev #from django.contrib.staticfiles.urls import staticfiles_urlpatterns #urlpatterns += staticfiles_urlpatterns()
838eda0275474ae5c472ea23d89a3ed57c710874
1a29735113eeb8061527c9e785fb3e16abe10449
/lib/pymod/pymod/test/command/refresh.py
1ba750637b0f0e168538bde48a54c2f2fd2ceed5
[]
no_license
tjfulle/Modulecmd.py
db3fb96db63e42666056e8086f433a779f5bfc86
42e3d34b76a53f4ff557e96ba2af3cb83b963ad2
refs/heads/master
2023-02-21T10:16:49.408099
2021-11-18T06:29:59
2021-11-18T06:29:59
141,306,544
0
0
null
2019-05-09T04:51:09
2018-07-17T15:09:16
Python
UTF-8
Python
false
false
739
py
import pytest import pymod.mc from pymod.main import PymodCommand @pytest.fixture() def modules_path(tmpdir, namespace, modulecmds): m = modulecmds one = tmpdir.mkdir("1") one.join("a.py").write(m.setenv("a")) one.join("b.py").write(m.setenv("b")) one.join("c.py").write(m.setenv("c")) one.join("d.py").write(m.setenv("d")) ns = namespace() ns.one = one.strpath return ns @pytest.mark.unit def test_command_refresh(modules_path, mock_modulepath): load = PymodCommand("load") refresh = PymodCommand("refresh") mock_modulepath(modules_path.one) load("a", "b", "c", "d") refresh() loaded = "".join(_.fullname for _ in pymod.mc.get_loaded_modules()) assert loaded == "abcd"
cf7bf48f6a2df6d3cec9391c5bb31ea49634341b
c2fcc0709ed113037201c707fcebe298966e5694
/tests/test_base.py
5eec23115c64d8b527e308c49cb795e72b51b47e
[]
no_license
HyperSuprime-Cam/astshim
da1364f301847d8a2cdb6fad63e96aeb4780f694
a72da6bbfa9d1fec5e5d87d1aa560234f2b95958
refs/heads/master
2022-04-03T16:35:25.002206
2020-01-23T20:12:51
2020-01-23T20:12:51
109,919,007
0
0
null
2017-11-08T02:46:38
2017-11-08T02:46:38
null
UTF-8
Python
false
false
1,069
py
import unittest import numpy as np from numpy.testing import assert_equal import astshim as ast from astshim.test import ObjectTestCase class TestBase(ObjectTestCase): def test_arrayFromVector(self): nAxes = 3 nValues = 5 np.random.seed(1) dataVec = np.random.rand(nAxes * nValues) desiredDataArr = dataVec.copy() desiredDataArr.shape = (nAxes, nValues) dataArr = ast.arrayFromVector(vec=dataVec, nAxes=nAxes) assert_equal(dataArr, desiredDataArr) dataArr2 = ast.arrayFromVector(vec=list(dataVec), nAxes=nAxes) assert_equal(dataArr2, desiredDataArr) # make sure dataArr is a deep copy; changing dataVec should # not change dataArr dataVec[0] += 10 assert_equal(dataArr, desiredDataArr) for delta in (-1, 1): badDataVec = np.random.rand(nAxes * nValues + delta) with self.assertRaises(RuntimeError): ast.arrayFromVector(vec=badDataVec, nAxes=nAxes) if __name__ == "__main__": unittest.main()
bf41b56921afb1efed93ac1950ab83f8c7977aa1
ec677ccd7d536b889260469f062f2c5db2f23a99
/runoschool/runoschool/urls.py
e1a382bc28bf06185aebd89c7189c0676278de40
[]
no_license
samuelatuma1/runo
fa93f523eaed6dc04068cddaf3d67fd908dfc7bf
33b6c636e27b3157a7e0bee4a5e7dc76a58dd0e2
refs/heads/master
2023-07-14T12:43:38.284693
2021-08-22T16:56:48
2021-08-22T16:56:48
386,833,990
1
0
null
null
null
null
UTF-8
Python
false
false
1,009
py
"""runoschool URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('', include('runo.urls', namespace='runo')), # path('', include('django.contrib.auth.urls')) ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
9d2ef5da9fc5d97e998e8ead3784d778354cd46f
b06978b6020ce3240912ba5c131c4f38a86d7996
/Pycharm_files/Dictionaries/Chapter_5_reading.py
5200f5c68a50cfdff5f9eff732463af79a87c2c7
[]
no_license
mn4774jm/PycharmProjects
95dc8ee6b89a85ba02d4134aa5b5bce11004647b
886bcf2400abc9a1f797fe98d09241f99fa16322
refs/heads/master
2021-08-09T10:20:27.907847
2020-09-04T15:21:21
2020-09-04T15:21:21
219,878,503
0
0
null
null
null
null
UTF-8
Python
false
false
3,906
py
# # Birthdays.py # # birthdays = {'Alice':'Apr 1', 'Bob':'Dec 12', 'Carol':'Mar 4'} # # while True: # print('Enter a name: (blank to quit)') # name = input() # if name =='': # break # # if name in birthdays: # print(birthdays[name] + ' is the birthday of '+ name) # else: # print('I do not have birthday information for '+name) # print('What is their birthday?') # bday = input() # birthdays[name] = bday # print('Birthday database updated.') ############################################ #using Data types in loops; .values(), .keys(), .items() # spam = {'color': 'red', 'age': 42} # #dict_keys # # for k in spam.keys(): # # print(k) # # #dict_values # # for v in spam.values(): # # print(v) # # #dict_items # for i in spam.items(): # print(i) ############################################# # #multiple assignment trick # spam = {'color': 'red', 'age': 42} # for k, v in spam.items(): # print('Key: ' + k + 'Value: ' + str(v)) ############################################# # #The get method; .get() # #Because the value of cups in the dictionary is 2 it will be cups will print 2 # picnicItems = {'apples': 5, 'cups': 2} # cups = 'I am bringing ' + str(picnicItems.get('cups', 0)) + ' cups.' # print(cups) # # #because there is no key called eggs in the dictionary 0 will be printed # eggs = 'I am bringing ' + str(picnicItems.get('eggs', 0)) + ' eggs.' # print(eggs) ############################################# #The setdefault() method #used for setting value for a dictionary key whos value does not already exist # spam = {'name': 'Pooka', 'age': 5} # if 'color' not in spam: # spam['color'] = 'black' # print(spam) # print(spam.keys()) ############################################# # #characterCount.py / prettyPrinting.py # import pprint # message = 'It was a bright cold day in April, and the clocks were striking thirteen' # count = {} # # for character in message: # count.setdefault(character,0) # count[character] = count[character] +1 # # print(pprint.pformat(count)) ############################################# #ticTacToe.py # theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ', # 'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ', # 'low-L': ' ', 'low-M': ' ', 'low-R': ' '} # # def printBoard(board): # print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R']) # print('-+-+-') # print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R']) # print('-+-+-') # print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R']) # # turn = 'X' # for i in range(9): # printBoard(theBoard) # print('Turn for '+turn+'. Move on which space?') # move = input() # theBoard[move] = turn # if turn == 'X': # turn = 'O' # else: # turn = 'X' # # printBoard(theBoard) ############################################## #totalBought example; nested dictionary # allGuests = {'Alice': {'apples': 5, 'pretzels': 12}, # 'Bob': {'ham sandwiches': 3, 'apples': 2}, # 'Carol': {'cups': 3, 'apple pies': 1}} # # #Inside the loop, the string of the guest's names is assigned to k, # #and the dictionary of picnic items is assigned to v. # def totalBrought(guests, item): # numBrought = 0 # for k, v in guests.items(): # # if item is not present its value will default to 0 # numBrought = numBrought + v.get(item, 0) # return numBrought # # print('Number of things being brought:') # print(' - Apples ' + str(totalBrought(allGuests, 'apples'))) # print(' - Cups ' + str(totalBrought(allGuests, 'cups'))) # print(' - Cakes ' + str(totalBrought(allGuests, 'cakes'))) # print(' - Ham Sandwiches ' + str(totalBrought(allGuests, 'ham sandwiches'))) # print(' - Apple Pies ' + str(totalBrought(allGuests, 'apple pies')))
7642e99717c9f80209dd05eb0cc3bd3525ee7d19
92a1d7c2bb2119c67d9e33f1e48a1a02335772ce
/book/p8/8_10.py
3519916dc5e72c9ccce016fab3c0190fe9f2d6f8
[]
no_license
zephyr123/blibli
b615fb2ee2f1f98deaf5709640e18d3be1a656ac
d45ba1bcce66dc1df185a475abe01f744c128c1b
refs/heads/master
2021-07-07T09:23:18.347107
2020-03-08T13:40:29
2020-03-08T13:40:29
244,829,368
0
0
null
2021-06-10T22:38:02
2020-03-04T06:55:15
Python
UTF-8
Python
false
false
307
py
def show_magicians(names): for name in names: print(name) def make_great(names): while names: curr_names = "the Great " + names.pop() mod_names.append(curr_names) magic_names = ['liuqian','zhuxun','dongqing'] mod_names = [] make_great(magic_names) show_magicians(mod_names)
e8cb02f30831c8e4ad17d9e2d6f87fb1386d7d12
daee54824cb107f9b5749e3c12e7f09f544bac0e
/modules/vtk_basic/vtkJPEGWriter.py
cd7a99ec769de84b521d124207929c1fb3f9fdcc
[]
no_license
JoonVan/devide
8fa556d2b42c5ad70c3595303253f2a171de0312
586225d68b079e2a96007bd33784113b3a19a538
refs/heads/master
2020-12-26T06:25:01.744966
2017-01-22T19:47:50
2017-01-22T19:47:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
468
py
# class generated by DeVIDE::createDeVIDEModuleFromVTKObject from module_kits.vtk_kit.mixins import SimpleVTKClassModuleBase import vtk class vtkJPEGWriter(SimpleVTKClassModuleBase): def __init__(self, module_manager): SimpleVTKClassModuleBase.__init__( self, module_manager, vtk.vtkJPEGWriter(), 'Writing vtkJPEG.', ('vtkJPEG',), (), replaceDoc=True, inputFunctions=None, outputFunctions=None)
b17ffa7de9e79f3f88860099d16d5ecd324368a4
70f1c694bea6178c98b134b9c44952ef6693be9f
/Manuscript/figure/Figure_MITE_auto_promoter/Auto_target/scripts/make_activeTE-pep-msa-one.py
5f10b1bc98f0a04409b2db8ab671d463341e6a2d
[]
no_license
JinfengChen/Rice_pop
5c19c5837805e51ddb3b2ffba4baffdc59c9bfd3
ef272bf4825b29610c94de55eb53f231fb5febc6
refs/heads/master
2020-04-07T04:55:36.606594
2018-03-02T16:52:53
2018-03-02T16:52:53
33,501,941
1
0
null
null
null
null
UTF-8
Python
false
false
1,332
py
#!/usr/bin/env python import sys import os import fnmatch import os.path import subprocess as subp import fastaIO args = sys.argv[1:] def usage(): print """ Usage: make_activeTE-pep-msa.py <pep-cluster_MSA_folder> <match_pattern> <run_name> <found_superfamily_list> """ sys.exit(-1) if (len(args) != 3 and len(args) != 4) or sys.argv[1] == '-h' or sys.argv[1] == '-help' or sys.argv[1] == '-H' or sys.argv[1] == '-Help' or sys.argv[1] == '--h' or sys.argv[1] == '--help': usage() top = '''#!/bin/bash #!/bin/bash #PBS -l nodes=1:ppn=1,mem=8gb,walltime=08:00:00 -j oe module load stajichlab module load perl/5.16.3 module load fasta module load trimal cd $PBS_O_WORKDIR ''' middle = '''perl /rhome/cjinfeng/software/tools/mTEA/scripts/activeTE_msa.pl -p -a -f 26 ''' files = os.listdir(sys.argv[1]) out_handle = open("aTE-pep_" + sys.argv[3] + ".sh", "w") print >>out_handle, top for i in files: if fnmatch.fnmatch(i, sys.argv[2]): fpath = os.path.join(sys.argv[1], i) if len(args) == 4: full = middle + fpath + " " + sys.argv[4] else: full = middle + fpath #out_handle = open("aTE-pep_" + sys.argv[3] + "_" + i + ".sh", "w") print>>out_handle, full print >>out_handle, '\n\necho "Done"' out_handle.close()
b02f08e27f8000cd103dda67c861f67cd6103769
77e303d8353170f4181ab9ff66ac77cb57d46caf
/src/508A.py
4df01f6a789a6ea263d31dfc23439685b3bc3af6
[ "MIT" ]
permissive
viing937/codeforces
14f689f2e3360939912e927fb830c69f7116b35c
5bd8c2bec0e48cb2b4830c26849ea7fda447267c
refs/heads/master
2022-09-25T19:51:03.891702
2022-08-15T15:32:54
2022-08-15T15:32:54
32,905,529
2
1
null
null
null
null
UTF-8
Python
false
false
531
py
# coding: utf-8 n, m, k = [int(i) for i in input().split()] mark = [[0 for i in range(m+2)] for j in range(n+2)] for c in range(k): i, j = [int(i) for i in input().split()] mark[i][j] = 1 if ( mark[i-1][j-1]==1 and mark[i][j-1]==1 and mark[i-1][j]==1 ) \ or ( mark[i][j-1]==1 and mark[i+1][j]==1 and mark[i+1][j-1]==1 ) \ or ( mark[i][j+1]==1 and mark[i-1][j]==1 and mark[i-1][j+1]==1 ) \ or ( mark[i][j+1]==1 and mark[i+1][j]==1 and mark[i+1][j+1]==1 ): print(c+1) break else: print(0)
09529835a8153d35821c70fe6e90354fc9ab7438
edcd74f8f65119bdbe737360c2ca33b4a6da160a
/python/problem-math/sum_of_square_numbers.py
0b0dfde875e4a0b998dba553d721bfd19bf60025
[]
no_license
hyunjun/practice
72e83de6a1d5e04ddcd16526f16110ea2dd00373
5376dd48b1cefb4faba9d2ef6a8a497b6b1d6c67
refs/heads/master
2023-08-31T07:00:37.320351
2023-08-17T07:29:24
2023-08-17T07:29:24
2,704,126
3
2
null
2022-12-14T20:25:07
2011-11-03T18:28:44
Python
UTF-8
Python
false
false
807
py
# https://leetcode.com/problems/sum-of-square-numbers # https://leetcode.com/problems/sum-of-square-numbers/solution import math class Solution: # 90.88% def judgeSquareSum(self, c): if c < 0: return False if 0 == c: return True smaller, larger = 1, int(math.sqrt(c)) while smaller <= larger: smaller = math.sqrt(c - larger ** 2) if int(smaller) == smaller: return True larger -= 1 return False s = Solution() data = [(5, True), (4, True), (3, False), (125, True), (129, False), ] for c, expected in data: real = s.judgeSquareSum(c) print('{}, expected {}, real {}, result {}'.format(c, expected, real, expected == real))
adbb25263a000d69f883646bd0fbdb9d76a046b6
cb10a56ab0515703bf65c5d9ab6e9c75b2e53031
/src/images/training_images/try.py
d447233f1299786ae5526dc3aeb5b1f9382ae69a
[ "MIT" ]
permissive
JuanMorenoS/Captcha-With-Neuronal-Network
2d09bc6e5ac308559aa7d8a0aa590b3c847e6022
3c4a119cb4df999011760caaa8f8271027de4897
refs/heads/master
2020-03-11T00:47:36.133301
2018-05-05T23:51:25
2018-05-05T23:51:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
from PIL import Image import pytesseract import argparse import cv2 import os for i in range(4746,10001): print(i,pytesseract.image_to_string(Image.open(str(i)+".jpg") ,config='-c tessedit_char_whitelist=abcdef0123456789') )
[ "=" ]
=
f23f7227996acd01fd328809befc31c62faa0a5b
ea178f0977127189c7559dfa9ca2faadceef5ff8
/python/jittor/test/test_new_fused_op.py
32b9c488039e6b263c6ec0c9b443abf92f54ef20
[ "Apache-2.0" ]
permissive
AbbasMZ/jittor
a0bb5b2cbceeffb40c61405b863e7e4b91567756
fcec57f70422b52d6b8d0235e29f91fd2212f559
refs/heads/master
2023-06-20T07:07:22.952846
2021-07-15T14:40:54
2021-07-15T14:40:54
386,115,280
0
0
Apache-2.0
2021-07-15T00:42:22
2021-07-15T00:39:53
null
UTF-8
Python
false
false
1,451
py
# *************************************************************** # Copyright (c) 2021 Jittor. All Rights Reserved. # Maintainers: # Guowei Yang <[email protected]> # Dun Liang <[email protected]>. # # This file is subject to the terms and conditions defined in # file 'LICENSE.txt', which is part of this source code package. # *************************************************************** import sys import os import jittor as jt import unittest import time import numpy as np from .test_log import find_log_with_re class TestNewFuse(unittest.TestCase): @classmethod def setUpClass(self): return def check(self, h, w, cs, rs, pa, rtp, dim): a = jt.random([h,w]) a.sync() with jt.log_capture_scope( log_v=0, log_vprefix="tuner_manager=100", # this value is used for force compile compile_options={"test_new_fused_op":1} ) as logs: amean=jt.mean(a, dims=[dim], keepdims=1) a2mean=jt.mean(a*a, dims=[dim], keepdims=1) norm_aa=(a-amean.broadcast_var(a))/(jt.sqrt(a2mean-amean*amean).broadcast_var(a)) norm_aa.sync() logs = find_log_with_re(logs, "Run tuner reduce: confidence\\((.*)\\) candidates\\((.*)\\)$") assert len(logs) == 3, logs def test_new_fuse(self): self.check(8192,8192, 0, 0, 0, 5, 0) if __name__ == "__main__": unittest.main()
cb05cede811123fa5e3a317f94586695225fe6ed
b22588340d7925b614a735bbbde1b351ad657ffc
/athena/Generators/MadGraphModels/python/models/scalar_singlet_750_UFO/coupling_orders.py
fe4f223b9c8dbcde3bda5f37220247ddec40d888
[]
no_license
rushioda/PIXELVALID_athena
90befe12042c1249cbb3655dde1428bb9b9a42ce
22df23187ef85e9c3120122c8375ea0e7d8ea440
refs/heads/master
2020-12-14T22:01:15.365949
2020-01-19T03:59:35
2020-01-19T03:59:35
234,836,993
1
0
null
null
null
null
UTF-8
Python
false
false
548
py
# This file was automatically created by FeynRules 2.3.7 # Mathematica version: 10.2.0 for Linux x86 (64-bit) (July 28, 2015) # Date: Thu 26 Nov 2015 09:52:28 from object_library import all_orders, CouplingOrder QCD = CouplingOrder(name = 'QCD', expansion_order = 99, hierarchy = 1) QED = CouplingOrder(name = 'QED', expansion_order = 99, hierarchy = 2) NP = CouplingOrder(name = 'NP', expansion_order = 99, hierarchy = 1)
8dbc5c3a580ccb580ec81f61fc49b76815891337
e7b312b4cc3355f4ca98313ef2ac9f3b0d81f245
/kickstart/2018/round_c/a/make_large_input.py
04519b5c74a2e0bdcab79f66b28555502a3fd222
[]
no_license
minus9d/programming_contest_archive
75466ab820e45ee0fcd829e6fac8ebc2accbbcff
0cb9e709f40460305635ae4d46c8ddec1e86455e
refs/heads/master
2023-02-16T18:08:42.579335
2023-02-11T14:10:49
2023-02-11T14:10:49
21,788,942
0
0
null
null
null
null
UTF-8
Python
false
false
682
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import array from bisect import * from collections import * import fractions import heapq from itertools import * import math import random import re import string import sys T = 100 print(T) for t in range(T): N = 1000 print(N) used = set() for n in range(2, N+1): m = random.randint(1, n-1) print("{} {}".format(n, m)) used.add((n, m)) used.add((m, n)) while True: i = random.randint(1, N) j = random.randint(1, N) if i == j or (i, j) in used: continue else: print("{} {}".format(i, j)) break