blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
bb76168acd060f61720726e831f2a0a94fe00c53
260499100ef43361cbf2815e2c0eb5288755862c
/Intro/07_almostIncreasingSequence.py
873528d2d7f438a47ea824f35b3e78211ab9d83a
[]
no_license
Cheng0639/CodeFights_Python
c4640a3cfb6be89049fd3d0d04702b06071b4e39
6b536b851016510ee79359e33da662de21cb3d3a
refs/heads/master
2021-05-09T09:54:57.762593
2018-07-24T14:53:15
2018-07-24T14:53:15
109,243,927
0
0
null
null
null
null
UTF-8
Python
false
false
671
py
def almostIncreasingSequence(sequence): count_decreasing_sq = 0 for i in range(len(sequence) - 1): if sequence[i + 1] <= sequence[i]: count_decreasing_sq += 1 if (i >= 1) and (sequence[i + 1] <= sequence[i - 1]): if (len(sequence) - 2 > i) and (sequence[i + 2] <= sequence[i]): count_decreasing_sq += 1 if count_decreasing_sq > 1: return False return True print(almostIncreasingSequence([1, 3, 2, 1]) == False) print(almostIncreasingSequence([1, 3, 2]) == True) print(almostIncreasingSequence([1, 2, 1, 2]) == False) print(almostIncreasingSequence([1, 4, 10, 4, 2]) == False)
8c754a532e50d2046cfeb41f5c5df7af538ee122
f854ef28002a3931a8d8b8d0b9cc691b8a449db3
/home-assistant/custom_components/browser_mod/binary_sensor.py
16333806a3baa1bbffe7e5797049573fb21ccf12
[ "MIT" ]
permissive
Burningstone91/smart-home-setup
030cdaa13d05fb19a82b28ea455614d3276522ab
c2f34cc8b8243bc6ce620b3f03e3e44ff28150ca
refs/heads/master
2023-02-23T06:25:04.476657
2022-02-26T16:05:02
2022-02-26T16:05:02
239,319,680
421
36
MIT
2023-02-08T01:16:54
2020-02-09T14:39:06
JavaScript
UTF-8
Python
false
false
1,646
py
from datetime import datetime from homeassistant.const import ( STATE_UNAVAILABLE, ATTR_BATTERY_CHARGING, ATTR_BATTERY_LEVEL, STATE_ON, STATE_OFF, ) from homeassistant.components.binary_sensor import DEVICE_CLASS_MOTION from .helpers import setup_platform, BrowserModEntity PLATFORM = "binary_sensor" async def async_setup_platform(hass, config, async_add_devices, discovery_info=None): return setup_platform(hass, config, async_add_devices, PLATFORM, BrowserModSensor) async def async_setup_entry(hass, config_entry, async_add_entities): await async_setup_platform(hass, {}, async_add_entities) class BrowserModSensor(BrowserModEntity): domain = PLATFORM def __init__(self, hass, connection, deviceID, alias=None): super().__init__(hass, connection, deviceID, alias) self.last_seen = None def updated(self): self.last_seen = datetime.now() self.schedule_update_ha_state() @property def state(self): if not self.connection.connection: return STATE_UNAVAILABLE if self.data.get("motion", False): return STATE_ON return STATE_OFF @property def is_on(self): return not self.data.get("motion", False) @property def device_class(self): return DEVICE_CLASS_MOTION @property def device_state_attributes(self): return { "type": "browser_mod", "last_seen": self.last_seen, ATTR_BATTERY_LEVEL: self.data.get("battery", None), ATTR_BATTERY_CHARGING: self.data.get("charging", None), **self.data, }
9d338275db0bb2d0043d091a349c50f9ffa5ffa9
e9c11f173507a06b40523714591cf1c443efcd89
/autoencode_project/vae.py
aea6bebb4650219215bdaca9cac090ed3b326ee3
[]
no_license
IanEisenberg/CBMM
55100773b157981122aa261d70186c42ca04b685
6a1e2eda7308b1334187036ef37983b940b5d186
refs/heads/master
2021-01-19T07:40:30.735971
2017-08-31T01:16:32
2017-08-31T01:16:32
100,642,436
0
2
null
null
null
null
UTF-8
Python
false
false
2,793
py
from keras.layers import Input, Dense, Lambda, Layer from keras.models import Model from keras import backend as K from keras import metrics import numpy as np from os import path import pandas as pd from scipy.stats import norm import seaborn as sns from sklearn.preprocessing import scale # load data data_loc = path.join('Data', 'behavioral_data.csv') data_df = pd.read_csv(data_loc, index_col=0) data = data_df.values n_held_out = data.shape[0]//6 data_train = scale(data[n_held_out:, :]); data_held_out = scale(data[:n_held_out,:]) # VAE batch_size = data_train.shape[0]//5 original_dim = data_train.shape[1] latent_dim = 4 intermediate_dim = 50 epochs = 1000 epsilon_std = 1.0 x = Input(batch_shape=(batch_size, original_dim)) h = Dense(intermediate_dim, activation='relu')(x) z_mean = Dense(latent_dim)(h) z_log_sigma = Dense(latent_dim)(h) def sampling(args): z_mean, z_log_sigma = args epsilon = K.random_normal(shape=(batch_size, latent_dim), mean=0., stddev=epsilon_std) return z_mean + K.exp(z_log_sigma) * epsilon # note that "output_shape" isn't necessary with the TensorFlow backend # so you could write `Lambda(sampling)([z_mean, z_log_sigma])` z = Lambda(sampling)([z_mean, z_log_sigma]) decoder_h = Dense(intermediate_dim, activation='relu') decoder_mean = Dense(original_dim, activation='sigmoid') h_decoded = decoder_h(z) x_decoded_mean = decoder_mean(h_decoded) # end-to-end autoencoder vae = Model(x, x_decoded_mean) # encoder, from inputs to latent space encoder = Model(x, z_mean) # generator, from latent space to reconstructed inputs decoder_input = Input(shape=(latent_dim,)) _h_decoded = decoder_h(decoder_input) _x_decoded_mean = decoder_mean(_h_decoded) generator = Model(decoder_input, _x_decoded_mean) def vae_loss(x, x_decoded_mean): xent_loss = metrics.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.mean(1 + z_log_sigma - K.square(z_mean) - K.exp(z_log_sigma), axis=-1) return xent_loss + kl_loss vae.compile(optimizer='rmsprop', loss=vae_loss) out = vae.fit(data_train, data_train, shuffle=True, epochs=epochs, batch_size=batch_size, validation_data=(data_held_out, data_held_out)) from matplotlib import pyplot as plt from itertools import product x_test_encoded = encoder.predict(data, batch_size=batch_size) plt.figure(figsize=(6, 6)) plt.scatter(x_test_encoded[:, 0], x_test_encoded[:, 1]) n=8 grid=product(*[norm.ppf(np.linspace(0.05, 0.95, n)) for _ in range(latent_dim)]) samples = [] for loc in grid: z_sample = np.array([loc]) x_decoded = generator.predict(z_sample) samples.append(x_decoded) samples = np.vstack(samples) sns.heatmap(np.corrcoef(samples.T))
3c1cb2eabb7a69bd4c6859d78945c5be3c53996c
15b71fe940708d3c04581bfb012c8d61705d6108
/compiler/src/thryft/compiler/parse_exception.py
18fec9277995932a528ee0f15e5e57fdd1b8d97c
[ "BSD-2-Clause" ]
permissive
adam-singer/thryft
2f426c1751c02f95c4785f499065b28b853df42d
26cfd2148fa408aa5da8ac93bbe7b8722a0dfd8e
refs/heads/master
2021-05-27T00:42:19.358530
2014-07-27T19:09:34
2014-07-27T19:09:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,925
py
#------------------------------------------------------------------------------- # Copyright (c) 2013, Minor Gordon # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT # OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY # OF SUCH DAMAGE. #------------------------------------------------------------------------------- from thryft.compiler.token import Token class ParseException(Exception): def __init__(self, message, token=None): if token is not None: assert isinstance(token, Token) message = "%s at %s" % (message, repr(token)) Exception.__init__(self, message) self.__token = token @property def token(self): return self.__token
78851915cd48b3fa3a3b346632c40c8be0e4232d
51f1a5f544fd00c7449edeb28538dd99d4b5a1c2
/spyderpro/test/insert_scenece_history_data.py
5e97225b102be51df53dd91c6f3390ee4c72f6f0
[]
no_license
LianZS/spyderpro
aab6f7f5c88c87f683f6cdacd19629d11da74009
5e34873cd13950dd3b5dc6341aad144522af0eae
refs/heads/master
2020-05-31T10:38:30.143573
2020-02-16T02:43:43
2020-02-16T02:43:43
190,239,345
8
0
null
null
null
null
UTF-8
Python
false
false
3,005
py
import csv import os import pymysql from threading import Thread, Semaphore user = 'root' password = 'lzs87724158' host = "localhost" port = 3306 scencefilepath = os.getcwd() city_file_path = os.getcwd() database = 'digitalsmart' db = pymysql.connect(host=host, user=user, password=password, database=database, port=port) cur = db.cursor() sql = "select pid,area ,table_id from digitalsmart.tablemanager " cur.execute(sql) area_map = dict() for pid, area, table_id in cur.fetchall(): area_map[area] = {"pid": pid, "table_id": table_id} rootpath = os.path.abspath(os.path.curdir) dirpath = "/Volumes/Tigo/易班项目数据/景区客流数据/" sql_file = open("./flowdata.sql", 'a+') for file in os.listdir(dirpath): area = file.split(".")[0] print(file) try: id_data = area_map[area] except KeyError: continue pid = id_data['pid'] table_id = id_data['table_id'] filepath = dirpath + file f = open(filepath, 'r') r = csv.reader(f) if table_id == 0: sql_format = "insert into digitalsmart.historyscenceflow0(pid, ddate, ttime, num) VALUES " elif table_id == 1: sql_format = "insert into digitalsmart.historyscenceflow1(pid, ddate, ttime, num) VALUES " elif table_id == 2: sql_format = "insert into digitalsmart.historyscenceflow2 (pid, ddate, ttime, num) VALUES " elif table_id == 3: sql_format = "insert into digitalsmart.historyscenceflow3 (pid, ddate, ttime, num) VALUES " elif table_id == 4: sql_format = "insert into digitalsmart.historyscenceflow4 (pid, ddate, ttime, num) VALUES " elif table_id == 5: sql_format = "insert into digitalsmart.historyscenceflow5 (pid, ddate, ttime, num) VALUES " elif table_id == 6: sql_format = "insert into digitalsmart.historyscenceflow6 (pid, ddate, ttime, num) VALUES " elif table_id == 7: sql_format = "insert into digitalsmart.historyscenceflow7 (pid, ddate, ttime, num) VALUES " elif table_id == 8: sql_format = "insert into digitalsmart.historyscenceflow8 (pid, ddate, ttime, num) VALUES " elif table_id == 9: sql_format = "insert into digitalsmart.historyscenceflow9 (pid, ddate, ttime, num) VALUES " sql_file.write(sql_format) item = r.__next__() date_time = item[0] # 2018-04-08 19:05:00 ddate = int(date_time.split(" ")[0].replace("-", '')) ttime = date_time.split(" ")[1] num = int(item[1]) value = "(%d,%d,'%s',%d)" % (pid, ddate, ttime, num) sql_file.write(value) for item in r: try: date_time = item[0] # 2018-04-08 19:05:00 ddate = int(date_time.split(" ")[0].replace("-", '')) ttime = date_time.split(" ")[1] num = int(item[1]) except Exception: print(item) continue value = "(%d,%d,'%s',%d)" % (pid, ddate, ttime, num) sql_file.write(",") sql_file.write(value) break sql_file.write(";")
ff9fc9c3b9bbd3652a26b7aa1af092f08760aecf
4a83925d00f26b57db9a77553fbacf30735d1171
/open/core/betterself/tests/views/test_measurement_views.py
9bc05ae6117eed20260d67dd63e7475525afa9ea
[ "MIT" ]
permissive
mmangione/open
581f622a6c2fe465fc7bd5cd0dc43a2a5f098248
5163e47ea6ba6160bf12a3ebe18bc76d078ea62c
refs/heads/master
2021-07-15T09:34:14.355559
2020-10-14T09:08:14
2020-10-14T09:08:14
217,483,795
0
0
MIT
2020-10-14T09:08:16
2019-10-25T08:05:58
Python
UTF-8
Python
false
false
945
py
from django.contrib.auth import get_user_model from test_plus import TestCase from open.core.betterself.constants import BetterSelfResourceConstants from open.core.betterself.factories import MeasurementFactory from open.core.betterself.models.measurement import Measurement from open.core.betterself.tests.mixins.resource_mixin import ( BetterSelfResourceViewTestCaseMixin, ) User = get_user_model() """ python manage.py test --pattern="*test_measurement_views.py" --keepdb """ class TestMeasurementView(BetterSelfResourceViewTestCaseMixin, TestCase): url_name = BetterSelfResourceConstants.MEASUREMENTS model_class_factory = MeasurementFactory model_class = Measurement def test_view(self): data = self.client_1.get(self.url).data self.assertEqual(len(data), 5) def test_no_access_view(self): """ Doesn't apply here, measurements are available for all. """ return
919842e59adaa424c81909c1e5e0a91ed3666ca8
a6bf211d2b31c2d7fdb927924d77ac00f1fb4d5f
/scripts/chart-total-checks-all.py
ad25b40f96661a760cd0c1901cb00d14c3cd0c9a
[ "MIT" ]
permissive
tzor1234/nics-firearm-background-checks
f96770c4d7e4ac6eed16ad2dff94717f51c8611c
9e752e891124de16c2fd911050f853498c577260
refs/heads/master
2023-09-05T21:42:49.096106
2021-11-01T19:25:43
2021-11-01T19:25:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
737
py
#!/usr/bin/env python import sys, os import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import StrMethodFormatter import seaborn as sb sb.set() checks = ( pd.read_csv(sys.stdin) .assign( month_dt = lambda df: pd.to_datetime(df["month"], format = "%Y-%m") ) ) totals = checks.groupby("month_dt")["totals"].sum() ax = totals.plot(kind="area", figsize=(12, 8), color="#000000", alpha=0.5) ax.figure.set_facecolor("#FFFFFF") ax.set_title( "Monthly NICS Background Check Totals Since Nov. 1998", fontsize=24 ) plt.setp(ax.get_yticklabels(), fontsize=12) ax.yaxis.set_major_formatter(StrMethodFormatter("{x:,.0f}")) ax.set_xlabel("") plt.savefig(sys.stdout.buffer)
29800f47bd874f8ef18582517b30b1a222c6d4f7
aa4aa51465d79e0447cbe22281f0402ca95bdaa2
/python/project/gibbs.py
6332c91e98afb6236718f6b588e65561703cc60e
[]
no_license
zuozuo12/usualProject
2ca06bb7a1ff6f99343f1997053ba8d5a48e00a7
335bcef5d76d6cf0c84dd3209176089b3b07fbba
refs/heads/master
2020-11-27T17:02:33.252884
2019-10-22T06:46:32
2019-10-22T06:46:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
858
py
from scipy.stats import norm import matplotlib.pyplot as plt import random import math def gibbs(N=500, thin=10): pi = []; x = 0 y = 0 for i in range(N): for j in range(thin): x = norm.rvs(loc=y, scale=2, size=1, random_state=None) y = norm.rvs(loc=x, scale=3, size=1, random_state=None) pi.append(x[0]); print(pi) return pi; pi=gibbs() plt.hist(pi, 100, normed=1, facecolor='red', alpha=0.7,label='Samples Distribution') plt.show(); # import random, math # # # def gibbs(N=50000, thin=1000): # x = 0 # y = 0 # print # "Iter x y" # for i in range(N): # for j in range(thin): # x = random.gammavariate(3, 1.0 / (y * y + 4)) # y = random.gauss(1.0 / (x + 1), 1.0 / math.sqrt(2 * x + 2)) # print # i, x, y # # # gibbs()
9430c9ef1326c8401d3de54c76f50e4741fbcd27
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_083/ch11_2020_03_18_03_05_56_266683.py
daa8a1dbf71d778dd8294f4e1e22a98e871fce67
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
176
py
import math def distancia_euclidiana(x1,x2,y1,y2): return (((x2-x1)**2) + ((y2-y1)**2))**1/2 a=2 b=3 c=4 d=5 e=((3-2)**2) + (5-4)**2 raiz= math.sqrt(e) print(raiz)
327458930aa320ef01199a11641fa16213635e1d
f1fcd165cd8444310ce5d201e481e3982dc28110
/medium/1901/190127/jang.py
c9913b842429b52e94d07f0ea82989fad994fc40
[]
no_license
JoosJuliet/algoStudy
310a71a0fcc8f3c23281544cf3458ed999040176
3fc1e850f9d8b9f290f41fddd59ff403fbfffa05
refs/heads/master
2020-04-20T19:26:25.485875
2019-03-27T22:37:27
2019-03-27T22:37:27
169,049,593
1
0
null
2019-02-04T08:43:07
2019-02-04T08:43:07
null
UTF-8
Python
false
false
592
py
n = int(input()) arr = list(map(int, input().split())) enum_arr = sorted(enumerate(arr, start=1), key=lambda t: t[1]) frm = [] to = [] for i in range(1, len(enum_arr)+1): if enum_arr[i-1][0] != i: frm.append(i) to.append(enum_arr[i-1][0]) cvted = list(range(frm[0], frm[-1]+1)) if len(cvted) % 2 == 1: cvted.pop(len(cvted)//2) if len(frm) == 0: print("yes") elif len(frm) == 2 and frm == to[::-1]: print("yes") print("swap", *frm) elif frm == to[::-1] and frm == cvted: print("yes") print("reverse", frm[0], frm[-1]) else: print("no")
1711a379bd8678b699bd7719b130703e9f437539
55540f3e86f1d5d86ef6b5d295a63518e274efe3
/toolchain/riscv/MSYS/python/Lib/test/test_venv.py
c8a36a77b3510ec2e05fc87a0bd98207927f2d4d
[ "bzip2-1.0.6", "LicenseRef-scancode-proprietary-license", "OpenSSL", "Python-2.0", "LicenseRef-scancode-newlib-historical", "TCL", "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
bouffalolab/bl_iot_sdk
bc5eaf036b70f8c65dd389439062b169f8d09daa
b90664de0bd4c1897a9f1f5d9e360a9631d38b34
refs/heads/master
2023-08-31T03:38:03.369853
2023-08-16T08:50:33
2023-08-18T09:13:27
307,347,250
244
101
Apache-2.0
2023-08-28T06:29:02
2020-10-26T11:16:30
C
UTF-8
Python
false
false
20,420
py
""" Test harness for the venv module. Copyright (C) 2011-2012 Vinay Sajip. Licensed to the PSF under a contributor agreement. """ import ensurepip import os import os.path import re import shutil import struct import subprocess import sys import tempfile from test.support import (captured_stdout, captured_stderr, requires_zlib, can_symlink, EnvironmentVarGuard, rmtree) import threading import unittest import venv try: import ctypes except ImportError: ctypes = None # Platforms that set sys._base_executable can create venvs from within # another venv, so no need to skip tests that require venv.create(). requireVenvCreate = unittest.skipUnless( hasattr(sys, '_base_executable') or sys.prefix == sys.base_prefix, 'cannot run venv.create from within a venv on this platform') def check_output(cmd, encoding=None): p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding=encoding) out, err = p.communicate() if p.returncode: raise subprocess.CalledProcessError( p.returncode, cmd, out, err) return out, err class BaseTest(unittest.TestCase): """Base class for venv tests.""" maxDiff = 80 * 50 def setUp(self): self.env_dir = os.path.realpath(tempfile.mkdtemp()) if os.name == 'nt': self.bindir = 'Scripts' self.lib = ('Lib',) self.include = 'Include' else: self.bindir = 'bin' self.lib = ('lib', 'python%d.%d' % sys.version_info[:2]) self.include = 'include' executable = getattr(sys, '_base_executable', sys.executable) self.exe = os.path.split(executable)[-1] if (sys.platform == 'win32' and os.path.lexists(executable) and not os.path.exists(executable)): self.cannot_link_exe = True else: self.cannot_link_exe = False def tearDown(self): rmtree(self.env_dir) def run_with_capture(self, func, *args, **kwargs): with captured_stdout() as output: with captured_stderr() as error: func(*args, **kwargs) return output.getvalue(), error.getvalue() def get_env_file(self, *args): return os.path.join(self.env_dir, *args) def get_text_file_contents(self, *args): with open(self.get_env_file(*args), 'r') as f: result = f.read() return result class BasicTest(BaseTest): """Test venv module functionality.""" def isdir(self, *args): fn = self.get_env_file(*args) self.assertTrue(os.path.isdir(fn)) def test_defaults(self): """ Test the create function with default arguments. """ rmtree(self.env_dir) self.run_with_capture(venv.create, self.env_dir) self.isdir(self.bindir) self.isdir(self.include) self.isdir(*self.lib) # Issue 21197 p = self.get_env_file('lib64') conditions = ((struct.calcsize('P') == 8) and (os.name == 'posix') and (sys.platform != 'darwin')) if conditions: self.assertTrue(os.path.islink(p)) else: self.assertFalse(os.path.exists(p)) data = self.get_text_file_contents('pyvenv.cfg') executable = getattr(sys, '_base_executable', sys.executable) path = os.path.dirname(executable) self.assertIn('home = %s' % path, data) fn = self.get_env_file(self.bindir, self.exe) if not os.path.exists(fn): # diagnostics for Windows buildbot failures bd = self.get_env_file(self.bindir) print('Contents of %r:' % bd) print(' %r' % os.listdir(bd)) self.assertTrue(os.path.exists(fn), 'File %r should exist.' % fn) def test_prompt(self): env_name = os.path.split(self.env_dir)[1] builder = venv.EnvBuilder() context = builder.ensure_directories(self.env_dir) self.assertEqual(context.prompt, '(%s) ' % env_name) builder = venv.EnvBuilder(prompt='My prompt') context = builder.ensure_directories(self.env_dir) self.assertEqual(context.prompt, '(My prompt) ') @requireVenvCreate def test_prefixes(self): """ Test that the prefix values are as expected. """ # check a venv's prefixes rmtree(self.env_dir) self.run_with_capture(venv.create, self.env_dir) envpy = os.path.join(self.env_dir, self.bindir, self.exe) cmd = [envpy, '-c', None] for prefix, expected in ( ('prefix', self.env_dir), ('prefix', self.env_dir), ('base_prefix', sys.base_prefix), ('base_exec_prefix', sys.base_exec_prefix)): cmd[2] = 'import sys; print(sys.%s)' % prefix out, err = check_output(cmd) self.assertEqual(out.strip(), expected.encode()) if sys.platform == 'win32': ENV_SUBDIRS = ( ('Scripts',), ('Include',), ('Lib',), ('Lib', 'site-packages'), ) else: ENV_SUBDIRS = ( ('bin',), ('include',), ('lib',), ('lib', 'python%d.%d' % sys.version_info[:2]), ('lib', 'python%d.%d' % sys.version_info[:2], 'site-packages'), ) def create_contents(self, paths, filename): """ Create some files in the environment which are unrelated to the virtual environment. """ for subdirs in paths: d = os.path.join(self.env_dir, *subdirs) os.mkdir(d) fn = os.path.join(d, filename) with open(fn, 'wb') as f: f.write(b'Still here?') def test_overwrite_existing(self): """ Test creating environment in an existing directory. """ self.create_contents(self.ENV_SUBDIRS, 'foo') venv.create(self.env_dir) for subdirs in self.ENV_SUBDIRS: fn = os.path.join(self.env_dir, *(subdirs + ('foo',))) self.assertTrue(os.path.exists(fn)) with open(fn, 'rb') as f: self.assertEqual(f.read(), b'Still here?') builder = venv.EnvBuilder(clear=True) builder.create(self.env_dir) for subdirs in self.ENV_SUBDIRS: fn = os.path.join(self.env_dir, *(subdirs + ('foo',))) self.assertFalse(os.path.exists(fn)) def clear_directory(self, path): for fn in os.listdir(path): fn = os.path.join(path, fn) if os.path.islink(fn) or os.path.isfile(fn): os.remove(fn) elif os.path.isdir(fn): rmtree(fn) def test_unoverwritable_fails(self): #create a file clashing with directories in the env dir for paths in self.ENV_SUBDIRS[:3]: fn = os.path.join(self.env_dir, *paths) with open(fn, 'wb') as f: f.write(b'') self.assertRaises((ValueError, OSError), venv.create, self.env_dir) self.clear_directory(self.env_dir) def test_upgrade(self): """ Test upgrading an existing environment directory. """ # See Issue #21643: the loop needs to run twice to ensure # that everything works on the upgrade (the first run just creates # the venv). for upgrade in (False, True): builder = venv.EnvBuilder(upgrade=upgrade) self.run_with_capture(builder.create, self.env_dir) self.isdir(self.bindir) self.isdir(self.include) self.isdir(*self.lib) fn = self.get_env_file(self.bindir, self.exe) if not os.path.exists(fn): # diagnostics for Windows buildbot failures bd = self.get_env_file(self.bindir) print('Contents of %r:' % bd) print(' %r' % os.listdir(bd)) self.assertTrue(os.path.exists(fn), 'File %r should exist.' % fn) def test_isolation(self): """ Test isolation from system site-packages """ for ssp, s in ((True, 'true'), (False, 'false')): builder = venv.EnvBuilder(clear=True, system_site_packages=ssp) builder.create(self.env_dir) data = self.get_text_file_contents('pyvenv.cfg') self.assertIn('include-system-site-packages = %s\n' % s, data) @unittest.skipUnless(can_symlink(), 'Needs symlinks') def test_symlinking(self): """ Test symlinking works as expected """ for usl in (False, True): builder = venv.EnvBuilder(clear=True, symlinks=usl) builder.create(self.env_dir) fn = self.get_env_file(self.bindir, self.exe) # Don't test when False, because e.g. 'python' is always # symlinked to 'python3.3' in the env, even when symlinking in # general isn't wanted. if usl: if self.cannot_link_exe: # Symlinking is skipped when our executable is already a # special app symlink self.assertFalse(os.path.islink(fn)) else: self.assertTrue(os.path.islink(fn)) # If a venv is created from a source build and that venv is used to # run the test, the pyvenv.cfg in the venv created in the test will # point to the venv being used to run the test, and we lose the link # to the source build - so Python can't initialise properly. @requireVenvCreate def test_executable(self): """ Test that the sys.executable value is as expected. """ rmtree(self.env_dir) self.run_with_capture(venv.create, self.env_dir) envpy = os.path.join(os.path.realpath(self.env_dir), self.bindir, self.exe) out, err = check_output([envpy, '-c', 'import sys; print(sys.executable)']) self.assertEqual(out.strip(), envpy.encode()) @unittest.skipUnless(can_symlink(), 'Needs symlinks') def test_executable_symlinks(self): """ Test that the sys.executable value is as expected. """ rmtree(self.env_dir) builder = venv.EnvBuilder(clear=True, symlinks=True) builder.create(self.env_dir) envpy = os.path.join(os.path.realpath(self.env_dir), self.bindir, self.exe) out, err = check_output([envpy, '-c', 'import sys; print(sys.executable)']) self.assertEqual(out.strip(), envpy.encode()) @unittest.skipUnless(os.name == 'nt', 'only relevant on Windows') def test_unicode_in_batch_file(self): """ Test handling of Unicode paths """ rmtree(self.env_dir) env_dir = os.path.join(os.path.realpath(self.env_dir), 'ϼўТλФЙ') builder = venv.EnvBuilder(clear=True) builder.create(env_dir) activate = os.path.join(env_dir, self.bindir, 'activate.bat') envpy = os.path.join(env_dir, self.bindir, self.exe) out, err = check_output( [activate, '&', self.exe, '-c', 'print(0)'], encoding='oem', ) self.assertEqual(out.strip(), '0') @requireVenvCreate def test_multiprocessing(self): """ Test that the multiprocessing is able to spawn. """ rmtree(self.env_dir) self.run_with_capture(venv.create, self.env_dir) envpy = os.path.join(os.path.realpath(self.env_dir), self.bindir, self.exe) out, err = check_output([envpy, '-c', 'from multiprocessing import Pool; ' 'pool = Pool(1); ' 'print(pool.apply_async("Python".lower).get(3)); ' 'pool.terminate()']) self.assertEqual(out.strip(), "python".encode()) @unittest.skipIf(os.name == 'nt', 'not relevant on Windows') def test_deactivate_with_strict_bash_opts(self): bash = shutil.which("bash") if bash is None: self.skipTest("bash required for this test") rmtree(self.env_dir) builder = venv.EnvBuilder(clear=True) builder.create(self.env_dir) activate = os.path.join(self.env_dir, self.bindir, "activate") test_script = os.path.join(self.env_dir, "test_strict.sh") with open(test_script, "w") as f: f.write("set -euo pipefail\n" f"source {activate}\n" "deactivate\n") out, err = check_output([bash, test_script]) self.assertEqual(out, "".encode()) self.assertEqual(err, "".encode()) @requireVenvCreate class EnsurePipTest(BaseTest): """Test venv module installation of pip.""" def assert_pip_not_installed(self): envpy = os.path.join(os.path.realpath(self.env_dir), self.bindir, self.exe) out, err = check_output([envpy, '-c', 'try:\n import pip\nexcept ImportError:\n print("OK")']) # We force everything to text, so unittest gives the detailed diff # if we get unexpected results err = err.decode("latin-1") # Force to text, prevent decoding errors self.assertEqual(err, "") out = out.decode("latin-1") # Force to text, prevent decoding errors self.assertEqual(out.strip(), "OK") def test_no_pip_by_default(self): rmtree(self.env_dir) self.run_with_capture(venv.create, self.env_dir) self.assert_pip_not_installed() def test_explicit_no_pip(self): rmtree(self.env_dir) self.run_with_capture(venv.create, self.env_dir, with_pip=False) self.assert_pip_not_installed() def test_devnull(self): # Fix for issue #20053 uses os.devnull to force a config file to # appear empty. However http://bugs.python.org/issue20541 means # that doesn't currently work properly on Windows. Once that is # fixed, the "win_location" part of test_with_pip should be restored with open(os.devnull, "rb") as f: self.assertEqual(f.read(), b"") # Issue #20541: os.path.exists('nul') is False on Windows if os.devnull.lower() == 'nul': self.assertFalse(os.path.exists(os.devnull)) else: self.assertTrue(os.path.exists(os.devnull)) def do_test_with_pip(self, system_site_packages): rmtree(self.env_dir) with EnvironmentVarGuard() as envvars: # pip's cross-version compatibility may trigger deprecation # warnings in current versions of Python. Ensure related # environment settings don't cause venv to fail. envvars["PYTHONWARNINGS"] = "e" # ensurepip is different enough from a normal pip invocation # that we want to ensure it ignores the normal pip environment # variable settings. We set PIP_NO_INSTALL here specifically # to check that ensurepip (and hence venv) ignores it. # See http://bugs.python.org/issue19734 envvars["PIP_NO_INSTALL"] = "1" # Also check that we ignore the pip configuration file # See http://bugs.python.org/issue20053 with tempfile.TemporaryDirectory() as home_dir: envvars["HOME"] = home_dir bad_config = "[global]\nno-install=1" # Write to both config file names on all platforms to reduce # cross-platform variation in test code behaviour win_location = ("pip", "pip.ini") posix_location = (".pip", "pip.conf") # Skips win_location due to http://bugs.python.org/issue20541 for dirname, fname in (posix_location,): dirpath = os.path.join(home_dir, dirname) os.mkdir(dirpath) fpath = os.path.join(dirpath, fname) with open(fpath, 'w') as f: f.write(bad_config) # Actually run the create command with all that unhelpful # config in place to ensure we ignore it try: self.run_with_capture(venv.create, self.env_dir, system_site_packages=system_site_packages, with_pip=True) except subprocess.CalledProcessError as exc: # The output this produces can be a little hard to read, # but at least it has all the details details = exc.output.decode(errors="replace") msg = "{}\n\n**Subprocess Output**\n{}" self.fail(msg.format(exc, details)) # Ensure pip is available in the virtual environment envpy = os.path.join(os.path.realpath(self.env_dir), self.bindir, self.exe) # Ignore DeprecationWarning since pip code is not part of Python out, err = check_output([envpy, '-W', 'ignore::DeprecationWarning', '-I', '-m', 'pip', '--version']) # We force everything to text, so unittest gives the detailed diff # if we get unexpected results err = err.decode("latin-1") # Force to text, prevent decoding errors self.assertEqual(err, "") out = out.decode("latin-1") # Force to text, prevent decoding errors expected_version = "pip {}".format(ensurepip.version()) self.assertEqual(out[:len(expected_version)], expected_version) env_dir = os.fsencode(self.env_dir).decode("latin-1") self.assertIn(env_dir, out) # http://bugs.python.org/issue19728 # Check the private uninstall command provided for the Windows # installers works (at least in a virtual environment) with EnvironmentVarGuard() as envvars: out, err = check_output([envpy, '-W', 'ignore::DeprecationWarning', '-I', '-m', 'ensurepip._uninstall']) # We force everything to text, so unittest gives the detailed diff # if we get unexpected results err = err.decode("latin-1") # Force to text, prevent decoding errors # Ignore the warning: # "The directory '$HOME/.cache/pip/http' or its parent directory # is not owned by the current user and the cache has been disabled. # Please check the permissions and owner of that directory. If # executing pip with sudo, you may want sudo's -H flag." # where $HOME is replaced by the HOME environment variable. err = re.sub("^(WARNING: )?The directory .* or its parent directory " "is not owned by the current user .*$", "", err, flags=re.MULTILINE) self.assertEqual(err.rstrip(), "") # Being fairly specific regarding the expected behaviour for the # initial bundling phase in Python 3.4. If the output changes in # future pip versions, this test can likely be relaxed further. out = out.decode("latin-1") # Force to text, prevent decoding errors self.assertIn("Successfully uninstalled pip", out) self.assertIn("Successfully uninstalled setuptools", out) # Check pip is now gone from the virtual environment. This only # applies in the system_site_packages=False case, because in the # other case, pip may still be available in the system site-packages if not system_site_packages: self.assert_pip_not_installed() # Issue #26610: pip/pep425tags.py requires ctypes @unittest.skipUnless(ctypes, 'pip requires ctypes') @requires_zlib def test_with_pip(self): self.do_test_with_pip(False) self.do_test_with_pip(True) if __name__ == "__main__": unittest.main()
4d51c21e128583698658ed9af9d417243d4275fe
ff6248be9573caec94bea0fa2b1e4b6bf0aa682b
/raw_scripts/132.230.102.123-10.21.11.29/1569578047.py
23acb9e0de056e6062a2453e8fecf4cce4d3df5d
[]
no_license
LennartElbe/codeEvo
0e41b1a7705204e934ef71a5a28c047366c10f71
e89b329bc9edd37d5d9986f07ca8a63d50686882
refs/heads/master
2020-12-21T17:28:25.150352
2020-03-26T10:22:35
2020-03-26T10:22:35
236,498,032
0
0
null
null
null
null
UTF-8
Python
false
false
2,831
py
import functools import typing import string import random import pytest # Lösung Teil 1. def list_filter(x, xs): """ x: Int xs: List Diese funktion returnt die werte der liste, welche kleiner als x sind.""" L = [] for i in xs: if i <= x: L.append(i) return L ###################################################################### ## hidden code def mk_coverage(): covered = set() target = set(range(6)) count = 0 def coverage(func): nonlocal covered, target, count def wrapper(x, xs): nonlocal covered, count if xs == []: covered.add(0) if len (xs) == 1: covered.add(1) if len (xs) > 1: covered.add(2) if x in xs: covered.add(3) if len ([y for y in xs if y < x]): covered.add(4) if len ([y for y in xs if y > x]): covered.add(5) r = func (x, xs) count += 1 return r if func == "achieved": return len(covered) if func == "required": return len(target) if func == "count" : return count if func.__doc__: wrapper.__doc__ = func.__doc__ wrapper.__hints__ = typing.get_type_hints (func) return wrapper return coverage coverage = mk_coverage() try: list_filter = coverage(list_filter) except: pass # Lösung Teil 2. (Test) def test_list_filter(): assert (list_filter(3, [1,2,3,4,5,6]) == [1,2,3]) assert (list_filter(-1, [-2, -1, 0, 1]) == [-2, -1]) assert (list_filter(1, [2,3,4,5] == []) ###################################################################### ## hidden tests pytest.main (["-v", "--assert=plain", "-p", "no:cacheprovider"]) from inspect import getfullargspec class TestNames: def test_list_filter (self): assert list_filter assert 'x' in getfullargspec(list_filter).args assert 'xs' in getfullargspec(list_filter).args class TestGrades: def test_docstring_present(self): assert list_filter.__doc__ is not None def test_typing_present(self): assert list_filter.__hints__ == typing.get_type_hints(self.list_filter_oracle) def test_coverage(self): assert coverage("achieved") == coverage("required") def list_filter_oracle(self, x:int, xs:list)->list: return [ y for y in xs if y <= x ] def check_filter (self, x, xs): assert list_filter (x, xs) == self.list_filter_oracle (x, xs) def test_correctness(self): for i in range (100): l = random.randrange (6) xs = [ random.randrange (10) for z in range(l) ] x = random.randrange (10) self.check_filter (x, xs)
10992b85ca307716f9540574e49c699529f6575f
59b18dec434fc54cdaf6fd6c224fea9c783f2043
/MyBlog/comments/migrations/0001_initial.py
a6c7e5dfd249072e98c81326c4d5ee7adbb88c97
[]
no_license
InformationX/MyBlog
00e95f27a78be39338fbaa462b1fa069cdfad3e6
2a5b15535c17b0eee0d1fa9bcebc5f7207dd46db
refs/heads/master
2021-04-10T00:54:09.002419
2019-10-09T11:56:24
2019-10-09T11:56:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,505
py
# Generated by Django 2.1.4 on 2019-06-13 09:19 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('blog', '0004_auto_20190613_1527'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('body', models.TextField(verbose_name='正文')), ('created_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('last_mod_time', models.DateTimeField(auto_now=True, verbose_name='修改时间')), ('article', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.Article', verbose_name='文章')), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='作者')), ('parent_comment', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='comments.Comment', verbose_name='上级评论')), ], options={ 'verbose_name': '评论', 'verbose_name_plural': '评论', 'ordering': ['created_time'], }, ), ]
ea7744864101673132321095636165fa4a0cbc9b
a63d907ad63ba6705420a6fb2788196d1bd3763c
/src/api/dataflow/modeling/model/model_serializer.py
8e578fb7093c3752167b0baac4b745d5530625d1
[ "MIT" ]
permissive
Tencent/bk-base
a38461072811667dc2880a13a5232004fe771a4b
6d483b4df67739b26cc8ecaa56c1d76ab46bd7a2
refs/heads/master
2022-07-30T04:24:53.370661
2022-04-02T10:30:55
2022-04-02T10:30:55
381,257,882
101
51
NOASSERTION
2022-04-02T10:30:56
2021-06-29T06:10:01
Python
UTF-8
Python
false
false
4,831
py
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making BK-BASE 蓝鲸基础平台 available. Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. BK-BASE 蓝鲸基础平台 is licensed under the MIT License. License for BK-BASE 蓝鲸基础平台: -------------------------------------------------------------------- Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from rest_framework import serializers class CreateModelSerializer(serializers.Serializer): """ { "last_sql": "create table xxx run model xxx", "project_id": 123, "model_name": "abc_model", "model_alias": "阿彼此", "is_public": True, "description": "........", "result_table_ids": ['xx', 'xxx'], } """ last_sql = serializers.CharField(required=True, label="the last sql in the cell") project_id = serializers.IntegerField(required=True, label="project id") model_name = serializers.CharField(required=True, label="basic model") model_alias = serializers.CharField(required=False, label="model alias", default=None) is_public = serializers.BooleanField(required=False, label="is it public", default=False) description = serializers.CharField( required=False, label="description", allow_null=True, allow_blank=True, default=None, ) result_table_ids = serializers.ListField(required=True, label="The result tables of the current note") experiment_name = serializers.CharField(required=False, label="experiment name") experiment_id = serializers.IntegerField(required=False, label="experiment id", default=None) evaluation_result = serializers.DictField(required=False, label="model evaluation information", default={}) notebook_id = serializers.IntegerField(required=False, label="model notebook id", default=0) class InspectionBeforeRelease(serializers.Serializer): """ { "last_sql": "create table xxx run model xxx", } """ sql = serializers.CharField(required=True, label="sql block in the cell") class UpdateModelSerializer(serializers.Serializer): """ { "last_sql": "create table xxx run model xxx", "project_id": 123, "description": "........", "result_table_ids": ['xx', 'xxx'], } """ last_sql = serializers.CharField(required=True, label="the last sql in the cell") project_id = serializers.IntegerField(required=True, label="project id") description = serializers.CharField(required=False, label="description", allow_null=True, allow_blank=True) result_table_ids = serializers.ListField(required=True, label="The result tables of the current note") experiment_name = serializers.CharField(required=False, label="experiment name", allow_null=True, allow_blank=True) experiment_id = serializers.IntegerField(required=False, label="experiment id", default=None, allow_null=True) evaluation_result = serializers.DictField(required=False, label="model evaluation information", default={}) class GetAlgorithmListSerializer(serializers.Serializer): """ { 'framework':'spark_mllib' } """ framework = serializers.CharField(required=False, label="algorithm frame") class GetReleaseResultSerializer(serializers.Serializer): """ { "task_id": 123 } """ task_id = serializers.IntegerField(required=True, label="release task id") class GetProjectReleaseSerializer(serializers.Serializer): """ { "project_id": 123 } """ project_id = serializers.IntegerField(required=True, label="project id") class GetUpdateReleaseSerializer(serializers.Serializer): """ { "project_id": 123 } """ project_id = serializers.IntegerField(required=True, label="project id")
f2febac8f4268f36933396a59726a5d1d8eaee71
31747dd8c61085421d7bd4166f7bd4f9429cf914
/tests/test_visitors/test_ast/test_naming/conftest.py
c365a79530f1db42a9abe5b5ddc0d39fee60ac86
[ "MIT" ]
permissive
edytagarbarz/wemake-python-styleguide
0e9ed4080a13a6727b8e80785e113b8407409352
74b86156d73c2a4fe9c755138f6953fec41fab3b
refs/heads/master
2021-03-03T19:21:54.807089
2020-03-07T23:35:15
2020-03-07T23:35:15
245,981,718
1
1
MIT
2020-03-09T08:31:55
2020-03-09T08:31:54
null
UTF-8
Python
false
false
4,646
py
import pytest from wemake_python_styleguide.compat.constants import PY38 # Imports: import_alias = """ import os as {0} """ from_import_alias = """ from os import path as {0} """ # Function names: function_name = 'def {0}(): ...' method_name = """ class Input(object): def {0}(self): ... """ # Function arguments: function_argument = 'def test(arg, {0}): ...' method_argument = """ class Input(object): def validate(self, {0}): ... """ function_keyword_argument = 'def test(arg, {0}=None): ...' method_keyword_argument = """ class Input(object): def validate(self, {0}=None): ... """ function_args_argument = 'def test(arg, *{0}): ...' function_kwargs_argument = 'def test(arg, **{0}): ...' method_args_argument = """ class Input(object): def validate(self, *{0}): ... """ method_kwargs_argument = """ class Input(object): def validate(self, **{0}): ... """ function_posonly_argument = """ def test({0}, /): ... """ function_kwonly_argument = """ def test(*, {0}): ... """ function_kwonly_default_argument = """ def test(*, {0}=True): ... """ method_kwonly_argument = """ class Input(object): def test(self, *, {0}=True): ... """ lambda_argument = 'lambda {0}: ...' # Class attributes: static_attribute = """ class Test: {0} = None """ static_typed_attribute = """ class Test: {0}: int = None """ static_typed_annotation = """ class Test: {0}: int """ instance_attribute = """ class Test(object): def __init__(self): self.{0} = 123 """ instance_typed_attribute = """ class Test(object): def __init__(self): self.{0}: int = 123 """ # Variables: variable_def = """ {0} = 'test' """ variable_typed_def = """ {0}: str = 'test' """ variable_typed = """ {0}: str """ # See: https://github.com/wemake-services/wemake-python-styleguide/issues/405 unpacking_variables = """ first.attr, {0} = range(2) """ unpacking_star_variables = """ first, *{0} = range(2) """ for_variable = """ def container(): for {0} in []: ... """ for_star_variable = """ def container(): for index, *{0} in []: ... """ with_variable = """ def container(): with open('test.py') as {0}: ... """ with_star_variable = """ def container(): with open('test.py') as (first, *{0}): ... """ exception = """ try: 1 / 0 except Exception as {0}: raise """ # Fixtures: _ALL_FIXTURES = frozenset(( # Imports: import_alias, from_import_alias, # Function names, we don't use async function because we generate them: function_name, method_name, # Function arguments: function_argument, method_argument, function_keyword_argument, method_keyword_argument, function_args_argument, function_kwargs_argument, method_args_argument, method_kwargs_argument, function_kwonly_argument, function_kwonly_default_argument, method_kwonly_argument, lambda_argument, # Class attributes: static_attribute, static_typed_attribute, static_typed_annotation, instance_attribute, instance_typed_attribute, # Variables: variable_def, variable_typed_def, variable_typed, unpacking_variables, unpacking_star_variables, for_variable, for_star_variable, with_variable, with_star_variable, exception, )) if PY38: _ALL_FIXTURES |= {function_posonly_argument} _SUITABLE_FOR_UNUSED_TUPLE = frozenset(( unpacking_variables, variable_def, with_variable, )) _SUITABLE_FOR_UNUSED = _SUITABLE_FOR_UNUSED_TUPLE | frozenset(( variable_typed_def, variable_typed, exception, )) @pytest.fixture(params=_ALL_FIXTURES) def naming_template(request): """Parametrized fixture that contains all possible naming templates.""" return request.param @pytest.fixture(params=_SUITABLE_FOR_UNUSED) def forbidden_unused_template(request): """Returns template that can be used to define wrong unused variables.""" return request.param @pytest.fixture(params=_SUITABLE_FOR_UNUSED_TUPLE) def forbidden_tuple_unused_template(request): """Returns template that can be used to define wrong unused tuples.""" return request.param @pytest.fixture(params=_SUITABLE_FOR_UNUSED | { static_attribute, static_typed_attribute, static_typed_annotation, }) def forbidden_raw_unused_template(request): """Returns template that can be used to define wrong unused tuples.""" return request.param @pytest.fixture(params=_ALL_FIXTURES - _SUITABLE_FOR_UNUSED) def allowed_unused_template(request): """Returns template that can define unused variables.""" return request.param
e80bab55c48ceccf23ecc4e67e62307d15f29969
929d12e11ed2fb69476b9d07932e38662f0ce6fc
/Queues/Reversing Elements Of Queue.py
468388212a76ab4d1e361cdeb721eb786c208301
[]
no_license
arnabs542/Data-Structures-And-Algorithms
b8f341a31ca18044bf179294fbcb0fac1f835216
ffcc2f8a25520ce37cd1f67e6225281c85141a65
refs/heads/master
2022-12-13T14:09:55.005341
2020-09-13T11:58:58
2020-09-13T11:58:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,398
py
""" Reversing Elements Of Queue Problem Description Given an array of integers A and an integer B. We need to reverse the order of the first B elements of the array, leaving the other elements in the same relative order. NOTE: You are required to first insert elements into an auxiliary queue then perform Reversal of first B elements. Problem Constraints 1 <= B <= length of the array <= 200000 1 <= A[i] <= 100000 Input Format The argument given is the integer array A and an integer B. Output Format Return an array of integer after reversing the first B elements of A using queue. Example Input Input 1: A = [1, 2, 3, 4, 5] B = 3 Input 2: A = [5, 17, 100, 11] B = 2 Example Output Output 1: [3, 2, 1, 4, 5] Output 2: [17, 5, 100, 11] Example Explanation Explanation 1: Reverse first 3 elements so the array becomes [3, 2, 1, 4, 5] Explanation 2: Reverse first 2 elements so the array becomes [17, 5, 100, 11] """ from collections import deque class Solution: # @param A : list of integers # @param B : integer # @return a list of integers def solve(self, A, B): helper = deque() for i in range(B): helper.append(A[i]) index = B - 1 while len(helper) != 0: temp = helper.popleft() A[index] = temp index -= 1 return A
c541305cafe96c7c8667b45be1618611178980d9
23ec357d5df7addf06cb70c10ba9173521c70a9b
/core/migrations/0018_auto_20210621_0048.py
9a7276bde29db5d951039b362455c331c431ca68
[]
no_license
blimp666/d_job
b8e8b93ef6b94e24a38bd94195a779bfff7f3c30
18904ac12af6593bf59b1ba379f722bd69d00863
refs/heads/main
2023-06-07T21:50:34.596128
2021-06-22T11:15:20
2021-06-23T19:36:48
376,893,878
0
0
null
2021-06-15T19:30:46
2021-06-14T16:48:17
Python
UTF-8
Python
false
false
911
py
# Generated by Django 3.2.4 on 2021-06-21 00:48 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0017_auto_20210619_1206'), ] operations = [ migrations.AlterField( model_name='application', name='file', field=models.FileField(default='', upload_to='app_files', verbose_name='Работа'), ), migrations.AlterField( model_name='conference', name='date_start', field=models.DateField(default=datetime.datetime(2021, 6, 21, 0, 48, 43, 294739), verbose_name='Дата проведения'), ), migrations.AlterField( model_name='conference', name='file', field=models.FileField(default='', upload_to='conf_files', verbose_name='Вложения'), ), ]
f301d8c1426299d986f583448ef5069d417a5f45
30a2f77f5427a3fe89e8d7980a4b67fe7526de2c
/analyze/BHistograms_trigjetht_eta1p7_CSVM_cfg.py
4ae59fa9d3b2fae9f267eb69dbd0e0b841e7c040
[]
no_license
DryRun/QCDAnalysis
7fb145ce05e1a7862ee2185220112a00cb8feb72
adf97713956d7a017189901e858e5c2b4b8339b6
refs/heads/master
2020-04-06T04:23:44.112686
2018-01-08T19:47:01
2018-01-08T19:47:01
55,909,998
0
0
null
null
null
null
UTF-8
Python
false
false
5,788
py
import FWCore.ParameterSet.Config as cms import FWCore.ParameterSet.VarParsing as VarParsing import sys options = VarParsing.VarParsing() options.register('inputFiles', '/uscms/home/dryu/eosdir/BJetPlusX/QCDBEventTree_BJetPlusX_Run2012B_v1_3/160429_121519/0000/QCDBEventTree_567.root', VarParsing.VarParsing.multiplicity.list, VarParsing.VarParsing.varType.string, "List of input files" ) options.register('outputFile', 'BHistograms_trigjetht_CSVL.root', VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Output file" ) options.register('dataSource', 'collision_data', VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, 'collision_data or simulation' ) options.register('dataType', 'data', VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, 'data, signal, or background' ) options.register('signalMass', 750., VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.float, 'Signal mass hypothesis (only necessary for running over signal)' ) options.parseArguments() if options.dataSource != "collision_data" and options.dataSource != "simulation": print "[BHistograms_BJetPlusX_loose] ERROR : dataSource must be collision_data or simulation" sys.exit(1) if not options.dataType in ["data", "signal", "background"]: print "[BHistograms_BJetPlusX_loose] ERROR : dataType must be data, signal, or background" sys.exit(1) process = cms.Process("myprocess") process.TFileService=cms.Service("TFileService",fileName=cms.string(options.outputFile)) ##-------------------- Define the source ---------------------------- process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.source = cms.Source("EmptySource") ##-------------------- Cuts ------------------------------------------ # Cuts on the leading two jets dijet_cuts = cms.VPSet( cms.PSet( name = cms.string("MinPt"), parameters = cms.vdouble(30.), descriptors = cms.vstring() ), cms.PSet( name = cms.string("MaxAbsEta"), parameters = cms.vdouble(1.7), descriptors = cms.vstring() ), cms.PSet( name = cms.string("IsTightID"), parameters = cms.vdouble(), descriptors = cms.vstring() ), cms.PSet( name = cms.string("MaxMuonEnergyFraction"), parameters = cms.vdouble(0.8), descriptors = cms.vstring() ), ) # Cuts on all PF jets (defines the generic jet collection for e.g. making fat jets) pfjet_cuts = cms.VPSet( cms.PSet( name = cms.string("MinPt"), parameters = cms.vdouble(30.), descriptors = cms.vstring() ), cms.PSet( name = cms.string("MaxAbsEta"), parameters = cms.vdouble(5), descriptors = cms.vstring() ), cms.PSet( name = cms.string("IsLooseID"), parameters = cms.vdouble(), descriptors = cms.vstring() ), ) # Cuts on calo jets calojet_cuts = cms.VPSet( cms.PSet( name = cms.string("MinPt"), parameters = cms.vdouble(30.), descriptors = cms.vstring() ) ) # Event cuts event_cuts = cms.VPSet( cms.PSet( name = cms.string("TriggerOR"), parameters = cms.vdouble(), descriptors = cms.vstring("HLT_PFHT650_v5", "HLT_PFHT650_v6", "HLT_PFHT650_v7", "HLT_PFHT650_v8", "HLT_PFHT650_v9", "HLT_PFNoPUHT650_v1", "HLT_PFNoPUHT650_v3", "HLT_PFNoPUHT650_v4", "HLT_HT750_v1", "HLT_HT750_v2", "HLT_HT750_v3", "HLT_HT750_v4", "HLT_HT750_v5", "HLT_HT750_v7") ), cms.PSet( name = cms.string("MaxMetOverSumEt"), parameters = cms.vdouble(0.5), descriptors = cms.vstring() ), cms.PSet( name = cms.string("GoodPFDijet"), parameters = cms.vdouble(), descriptors = cms.vstring() ), cms.PSet( name = cms.string("MinNCSVM"), parameters = cms.vdouble(2), descriptors = cms.vstring() ), cms.PSet( name = cms.string("MinLeadingPFJetPt"), parameters = cms.vdouble(80.), descriptors = cms.vstring() ), cms.PSet( name = cms.string("MinSubleadingPFJetPt"), parameters = cms.vdouble(70.), descriptors = cms.vstring() ), cms.PSet( name = cms.string("PFDijetMaxDeltaEta"), parameters = cms.vdouble(1.3), descriptors = cms.vstring() ) ) ##-------------------- User analyzer -------------------------------- process.BHistograms = cms.EDAnalyzer('BHistograms', file_names = cms.vstring(options.inputFiles), tree_name = cms.string('ak5/ProcessedTree'), trigger_histogram_name = cms.string('ak5/TriggerNames'), #triggers = cms.vstring('HLT_DiJet80Eta2p6_BTagIP3DFastPVLoose_v2:L1_DoubleJetC36', 'HLT_DiJet80Eta2p6_BTagIP3DFastPVLoose_v3:L1_DoubleJetC36', 'HLT_DiJet80Eta2p6_BTagIP3DFastPVLoose_v4:L1_DoubleJetC36', 'HLT_DiJet80Eta2p6_BTagIP3DFastPVLoose_v5:L1_DoubleJetC36', 'HLT_DiJet80Eta2p6_BTagIP3DFastPVLoose_v7:L1_DoubleJetC36'), #triggers = cms.vstring( 'HLT_Jet160Eta2p4_Jet120Eta2p4_DiBTagIP3DFastPVLoose_v2:L1_SingleJet128', 'HLT_Jet160Eta2p4_Jet120Eta2p4_DiBTagIP3DFastPVLoose_v3:L1_SingleJet128', 'HLT_Jet160Eta2p4_Jet120Eta2p4_DiBTagIP3DFastPVLoose_v4:L1_SingleJet128', 'HLT_Jet160Eta2p4_Jet120Eta2p4_DiBTagIP3DFastPVLoose_v5:L1_SingleJet128', 'HLT_Jet160Eta2p4_Jet120Eta2p4_DiBTagIP3DFastPVLoose_v7:L1_SingleJet128'), data_source = cms.string(options.dataSource), data_type = cms.string(options.dataType), signal_mass = cms.double(options.signalMass), max_events = cms.int32(-1), dijet_cuts = dijet_cuts, pfjet_cuts = pfjet_cuts, calojet_cuts = calojet_cuts, event_cuts = event_cuts, fatjet_delta_eta_cut = cms.double(1.1), btag_wp_1 = cms.string('CSVM'), btag_wp_2 = cms.string('CSVM'), ) process.p = cms.Path(process.BHistograms)
b3573574645dab4a14085dbbfc1ceed3c185f247
231f8a898b20e475a5cabff439600de211d825c0
/superlists/urls.py
1b817a2f4121136d79814f362f95857a779149c2
[ "MIT" ]
permissive
thewchan/superlists
f7370b341ce7c37b8cae506eb5bafdd2fb31b07a
af41636b2cdafb45c638e36076b9cdefc5586aad
refs/heads/master
2023-05-26T11:01:24.310480
2021-06-11T21:12:20
2021-06-11T21:12:20
361,209,827
0
0
null
null
null
null
UTF-8
Python
false
false
946
py
"""superlists URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import include, url from accounts import urls as accounts_urls from lists import views as list_views, urls as list_urls urlpatterns = [ url(r"^$", list_views.home_page, name="home"), url(r"^lists/", include(list_urls)), url(r"^accounts/", include(accounts_urls)), ]
3b6cce24b6bf09f2d048fa65cbaea2b432e16d92
4dda597dac544b237cf8f8b04b3c9e662b988a92
/11-1/mydata/applitions/views.py
8f8ffa4a104ff5767a5aa416a9ebb19e76647a2d
[]
no_license
beriuta/history
02ac9414c0475fde59f6a455c23c56235fe3c4bc
026c965f694e84120825069bedf7bfac235318b5
refs/heads/master
2020-04-11T17:24:39.558174
2018-12-16T02:08:18
2018-12-16T02:08:18
161,959,735
0
0
null
null
null
null
UTF-8
Python
false
false
2,618
py
from django.shortcuts import render from datetime import datetime,timedelta # Create your views here. def t(request): name = '测试' d1 = {'name': '小鬼', 'age': 18, 'hobby': 'eat', 'items': 'hello'} class People: def __init__(self, name, age): self.name = name self.age = age @staticmethod def dream(): return 'Write the code,Change the world' p5 = People('小懒虫', 1) p1 = People('小明', 23) p2 = People('小红', 13) p3 = People('小白', 15) list1 = [p1, p2, p3] list2 = ['深圳', '上海', '北京', '广州', '东莞', '威海', '青岛', '潍坊'] return render(request, 't.html', {'name': name, 'd1': d1, 'f5': p5, 'list': list1, 'list2': list2}) def s(request): l = [11, 32, 73] name = '小懒虫' class Food: def __init__(self, name, kg): self.name = name self.kg = kg # @staticmethod #当一个函数用不到self的时候,可以在上面添加一个装饰器 def dream(self): return '{}的梦想:世界唯有美食不可辜负!'.format(self.name) # 这里不能用print,不然会直接在后台打印,页面不显示 duck = Food('烤鸭', 2) pig = Food('烤猪', 50) sheep = Food('烤全羊', 30) chicken = Food('炸鸡', 23) lst = [pig, sheep, chicken] return render(request, 's.html', { 'l': l, 'name': name, 'food': duck, 'lst': lst } ) # filter语法相关 def m(request): name = 'Beriuta' file_size = 10000 a = '<a href="https://www.baidu.com">百度</a>' p = '在苍茫的大海上,狂风卷积着乌云,在乌云和大海之间,海燕像黑色的闪电,在高傲地飞翔!' p_1 = '在 苍 茫 的 大 海 上,狂风卷积着乌云,在乌云和大海之间,海燕像黑色的闪电,在高傲地飞翔!' p_2 = 'aaabsbshsasjahahaayaha' now = datetime.now() # 获取一个datetime类型的时间 list1 = ['huhu','hehe','didi','shil','sb'] # 获取五个小时之前的时间 hours = now - timedelta(hours=4) return render(request, 'm.html', {'name': name, 'file_size':file_size, 'now':now, 'a':a, 'p':p, 'p_1':p_1, 'p_2':p_2, 'list1':list1, 'hours':hours } )
597fbc69d4aed8fb08abfb60305685cb6ea0b27e
5db3009eb36afe7110ed5402be3a9e570c58c540
/my_plugins/YouCompleteMe/third_party/ycmd/third_party/jedi_deps/jedi/test/completion/import_tree/flow_import.py
a0a779ecab8b9a6a6806a92a54c8aa4a01ba5453
[ "GPL-3.0-only", "GPL-1.0-or-later", "MIT" ]
permissive
imfangli/vimrc
ced2c6caece1cf19421c6ea7deb017bec4ca3a27
d2d14e7d083d70cc8627ddccb5b99c53c3c38be3
refs/heads/master
2022-02-01T00:34:31.855421
2022-01-22T15:57:28
2022-01-22T15:57:28
211,766,038
2
0
MIT
2019-09-30T03:15:03
2019-09-30T03:15:02
null
UTF-8
Python
false
false
39
py
if name: env = 1 else: env = 2
676e52de08ecbf08fbb59988ca58614c255892d8
5b4312ddc24f29538dce0444b7be81e17191c005
/autoware.ai/1.12.0/devel/.private/vector_map_msgs/lib/python2.7/dist-packages/vector_map_msgs/msg/_RailCrossingArray.py
c5485493b9388cf7c0c77f72f2f28ac09a8f6105
[ "MIT" ]
permissive
muyangren907/autoware
b842f1aeb2bfe7913fb2be002ea4fc426b4e9be2
5ae70f0cdaf5fc70b91cd727cf5b5f90bc399d38
refs/heads/master
2020-09-22T13:08:14.237380
2019-12-03T07:12:49
2019-12-03T07:12:49
225,167,473
0
0
null
null
null
null
UTF-8
Python
false
false
7,277
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from vector_map_msgs/RailCrossingArray.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import vector_map_msgs.msg import std_msgs.msg class RailCrossingArray(genpy.Message): _md5sum = "62d7f260c71b469b058ab28f3bce2ded" _type = "vector_map_msgs/RailCrossingArray" _has_header = True #flag to mark the presence of a Header object _full_text = """Header header RailCrossing[] data ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with string frame_id ================================================================================ MSG: vector_map_msgs/RailCrossing # Ver 1.00 int32 id int32 aid int32 linkid """ __slots__ = ['header','data'] _slot_types = ['std_msgs/Header','vector_map_msgs/RailCrossing[]'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: header,data :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(RailCrossingArray, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.header is None: self.header = std_msgs.msg.Header() if self.data is None: self.data = [] else: self.header = std_msgs.msg.Header() self.data = [] def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.data) buff.write(_struct_I.pack(length)) for val1 in self.data: _x = val1 buff.write(_get_struct_3i().pack(_x.id, _x.aid, _x.linkid)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.header is None: self.header = std_msgs.msg.Header() if self.data is None: self.data = None end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.data = [] for i in range(0, length): val1 = vector_map_msgs.msg.RailCrossing() _x = val1 start = end end += 12 (_x.id, _x.aid, _x.linkid,) = _get_struct_3i().unpack(str[start:end]) self.data.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.data) buff.write(_struct_I.pack(length)) for val1 in self.data: _x = val1 buff.write(_get_struct_3i().pack(_x.id, _x.aid, _x.linkid)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.header is None: self.header = std_msgs.msg.Header() if self.data is None: self.data = None end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.data = [] for i in range(0, length): val1 = vector_map_msgs.msg.RailCrossing() _x = val1 start = end end += 12 (_x.id, _x.aid, _x.linkid,) = _get_struct_3i().unpack(str[start:end]) self.data.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_3I = None def _get_struct_3I(): global _struct_3I if _struct_3I is None: _struct_3I = struct.Struct("<3I") return _struct_3I _struct_3i = None def _get_struct_3i(): global _struct_3i if _struct_3i is None: _struct_3i = struct.Struct("<3i") return _struct_3i
00465e54f148270106631a6302c36d295425dfe7
4e678f6967745c3da2a3e8899204e34d99fc3be0
/python-quest-1.py
6e6922acc790a0eff4ffcedd901c28ea8e2f4366
[]
no_license
pratikshah1701/hackerrank
bf689a583b462c0fde697abd536ae0638d14ced9
73fde2a0d9dc063e1c06d42f0572ce01f5dd04b9
refs/heads/master
2021-01-19T18:47:15.278811
2017-04-13T09:16:27
2017-04-13T09:16:27
88,381,516
1
1
null
2017-04-16T00:20:00
2017-04-16T00:20:00
null
UTF-8
Python
false
false
226
py
#!/usr/bin/env python3 def main(): for i in range(1, int(input())): # More than 2 lines will result in 0 score. Do not leave a blank line also print((10 ** i - 1) // 9 * i) if __name__ == '__main__': main()
6b6f314619290d1abeedd0e25f056113994f73bd
4861398f925ae2cc01189577c71c4983fd7d097b
/kakao_().py
88bd003daf8d8bcebc4b1e7d1320be8a73a7a17d
[]
no_license
fightnyy/programmers_algorithm
1c682220aedc078f7a184109f06aa95f673d1d43
5efe26a12661f3d278bfcca66753ccfd10451002
refs/heads/master
2023-05-02T15:53:22.116662
2021-04-27T00:59:30
2021-04-27T00:59:30
328,570,715
0
0
null
null
null
null
UTF-8
Python
false
false
735
py
def solution(p): answer = '' def _is_empty(inputs_e): if inputs_e == "": return "" def _divide(inputs_d): u, v = inputs_d[:2], inputs_d[2:] return u,v def _is_corret(inputs_c): stack = [] for c in inputs_c: if c == '(': stack.append(c) else: if stack == []: return False else: stack.pop() if stack !=[]: return False return True def _check(input_ch): _is_empty(input_ch) def _lets_4() : '('+"" u, v = _divide(p): _check(v) if _is_correct(u) _lets_4() return answer
6ff0110e98ad5e642d3aed34dc2cf15987a7b382
ad553dd718a8df51dabc9ba636040da740db57cf
/.history/app_20181209011747.py
f315e62e16bac6e29a0065fac970aaec00ade91b
[]
no_license
NergisAktug/E-Commerce-PythonWithFlask-Sqlite3
8e67f12c28b11a7a30d13788f8dc991f80ac7696
69ff4433aa7ae52ef854d5e25472dbd67fd59106
refs/heads/main
2023-01-01T14:03:40.897592
2020-10-19T20:36:19
2020-10-19T20:36:19
300,379,376
0
0
null
null
null
null
UTF-8
Python
false
false
8,172
py
import datetime import sqlite3 as sql from flask import Flask,flash, request, render_template_string, render_template from flask import Flask, url_for, render_template, request, redirect, session, escape, render_template_string from flask_babelex import Babel from flask_sqlalchemy import SQLAlchemy from flask_user import current_user, login_required, roles_required from sqlalchemy.sql import table, column, select from sqlalchemy import MetaData, create_engine from flask_user import login_required, roles_required, UserManager, UserMixin class ConfigClass(object): SECRET_KEY = 'This is an INSECURE secret!! DO NOT use this in production!!' SQLALCHEMY_DATABASE_URI = 'sqlite:///eticaret.sqlite' SQLALCHEMY_TRACK_MODIFICATIONS = False MAIL_SERVER = 'smtp.gmail.com' MAIL_PORT = 465 MAIL_USE_SSL = True MAIL_USE_TLS = False MAIL_USERNAME = '[email protected]' MAIL_PASSWORD = '05383896877' MAIL_DEFAULT_SENDER = '"MyApp" <[email protected]>' USER_ENABLE_EMAIL = True USER_ENABLE_USERNAME = False USER_EMAIL_SENDER_EMAIL = "[email protected]" def create_app(): app = Flask(__name__) app.config.from_object(__name__ + '.ConfigClass') db = SQLAlchemy(app) class Kullanici(db.Model): __tablename__ = 'Kullanici' id = db.Column(db.Integer, primary_key=True) email = db.Column(db.String(80), unique=True) sifre = db.Column(db.String(80)) rolId = db.Column(db.Integer, db.ForeignKey('rol.rolId', ondelete='CASCADE')) active = db.Column('is_active', db.Boolean(), nullable=False, server_default='1') def __init__(self, email, sifre): self.email = email self.sifre = sifre self.rolId = 0 class Roller(db.Model): __tablename__ = 'rol' rolId = db.Column(db.Integer, primary_key=True) rolisim = db.Column(db.String(80)) class urunler(db.Model): __tablename__ = 'urunler' urun_id = db.Column(db.Integer, primary_key=True) urunismi = db.Column(db.String(80)) urunresmi = db.Column(db.String(80)) urunFiyati = db.Column(db.Integer) markaId = db.Column(db.Integer(), db.ForeignKey('markalar.markaId', ondelete='CASCADE')) def __init__(self, urunismi, urunresmi, urunFiyati,markaId): self.urunismi =urunismi self.urunresmi = urunresmi self.urunFiyati = urunFiyati self.markaId=markaId class markalar(db.Model): __tablename__ = 'markalar' markaId = db.Column(db.Integer, primary_key=True) markaadi = db.Column(db.String(80)) marka_modeli = db.Column(db.String(80)) def __init__(self, markaadi, marka_modeli): self.markaadi = markaadi self.marka_modeli = marka_modeli class musteri(db.Model): __tablename__ = 'musteri' musteriId = db.Column(db.Integer, primary_key=True) musteriadi = db.Column(db.String(80)) musterisoyadi = db.Column(db.String(80)) mail = db.Column(db.String(80), unique=True) telefon = db.Column(db.Integer) sifre = db.Column(db.String(80)) il = db.Column(db.String(80)) ilce = db.Column(db.String(80)) kullaniciId = db.Column(db.Integer(), db.ForeignKey('Kullanici.id', ondelete='CASCADE')) def __init__(self, musteriadi, musterisoyadi, mail, telefon, sifre, il, ilce, kullaniciId): self.musteriadi = musteriadi self.musterisoyadi = musterisoyadi self.mail = mail self.telefon = telefon self.sifre = sifre self.il = il self.ilce = ilce self.kullaniciId = kullaniciId class siparis(db.Model): __tablename__ = 'siparis' siparisId = db.Column(db.Integer, primary_key=True) musteriId = db.Column(db.Integer(), db.ForeignKey('musteri.musteriId', ondelete='CASCADE')) urunId = db.Column(db.Integer(), db.ForeignKey('urunler.urun_id', ondelete='CASCADE')) siparisno = db.Column(db.Integer) siparisTarihi = db.Column(db.Integer) odemeId = db.Column(db.Integer()) def __init__(self, musteriId, urunId, siparisno, siparisTarihi, odemeId): self.musteriId = musteriId self.urunId = urunId self.siparisno = siparisno self.siparisTarihi = siparisTarihi self.odemeId = odemeId db.create_all() @app.route('/') def anasayfa(): return render_template('index.html') @app.route('/kayit', methods=['GET', 'POST']) def kayit(): if request.method == 'POST': mail = request.form['email'] parola = request.form['sifre'] yeniKullanici = Kullanici(email=mail, sifre=parola) db.session.add(yeniKullanici) db.session.commit() if yeniKullanici is not None: mesaj = "Kayıt Başarıyla Sağlanmıştır." return render_template("index.html", mesaj=mesaj) else: return render_template('kayit.html') @app.route('/admin') def admin(): return render_template("admin.html") @app.route('/uye', methods=['GET', 'POST']) def uye(): return render_template("uyeGirisi.html") @app.route('/giris', methods=['GET', 'POST']) def giris(): hata=None if request.method=='POST': if request.form['email']!='[email protected]' or request.form['sifre']!='admin': if Kullanici.query.filter_by(email=request.form['email'],sifre=request.form['sifre']) is not None: session['uye_giris']=True return redirect(url_for('anasayfa')) else: hata='hatalı giris yaptınız' else: flash('giriş başarılı') session['admin_giris']=True return redirect(url_for('admin')) return render_template('uyeGiris.html',hata=hata) @app.route('/cikis') def cikis(): session.pop('admin_giris',None) session.pop('uye_giris',None) return render_template("index.html") @app.route('/urunEkle') def urunEkle(): tumVeri=urunler.query.all() return render_template("urunEkle.html",tumVeri=tumVeri) @app.route('/urunEklemeYap',methods=['POST']) def urunEklemeYap(): urunismi=request.form['urunismi'] urunResmi=request.form['urunresmi'] urunFiyati=request.form['fiyati'] markaId=request.form['markaId'] yeniUrun=urunler(urunismi=urunismi,urunresmi=urunResmi,urunFiyati=urunFiyati,markaId=markaId) db.session.add(yeniUrun) db.session.commit() return redirect(url_for("urunEkle")) @app.route("/sil/<string:id>") def sil(id): urun=urunler.query.filter_by(urun_id=id).first() db.session.delete(urun) db.session.commit() return redirect(url_for("urunEkle")) @app.route('/guncelle/<string:id>',methods=['POST','GET']) def guncelle(id): if request.method=='POST': try: urunismi=request.form['urunismi'] urunresmi=request.form['urunresmi'] fiyati=request.form['fiyati'] markaId=request.form['markaId'] with sql.connect("eticaret.sqlite") as con: cur=con.cursor() if urunler.query.filter_by(urun_id=id).first() is not None: cur.execute("UPDATE urunler SET urunismi=?,urunresmi=?,fiyati=?,markaId=? WHERE urun_id=?",(urunismi,urunresmi,fiyati,markaId,id)) except: con.rollback() msg="hata olustu" finally: con.close() return render_template("urunEkle.html",msg=msg) @app.route('/Markalar') def Markalar(): tumMarka=markalar.query.all() return render_template("marka.html",tumMarka=tumMarka) return app if __name__ == '__main__': app=create_app() app.run(host='127.0.0.1', port=5000, debug=True)
47ec1eb674eb47c0d01660f188daff40943df5e2
b5fb45288ed2a204692051ab78e72d8aa6e5accd
/argo_data_scripts/vis/vis_contrast.py
51dc949c3ad92268e7c9143fa92182c57a7c0d8f
[ "Apache-2.0" ]
permissive
nithinksath96/MMdetection_TensorRT_FP16
d4987f003798f5d6d4fe5bde2f30dd5ee2e8596d
c8379b209d4deeff9350baf5bbedfc95fb8941f4
refs/heads/master
2023-02-13T20:00:21.834541
2021-01-06T09:24:20
2021-01-06T09:24:20
327,260,988
0
0
null
null
null
null
UTF-8
Python
false
false
5,937
py
# Merge and convert real-time results # Optionally, visualize the output # This script does not need to run in real-time import argparse from os import scandir from os.path import join, isfile from tqdm import tqdm import numpy as np from PIL import Image, ImageFont, ImageDraw import sys; sys.path.insert(0, '..'); sys.path.insert(0, '.') from util import mkdir2 from vis.make_videos_numbered import worker_func as make_video def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--dir-A', type=str, default=None) parser.add_argument('--dir-B', type=str, default=None) parser.add_argument('--horizontal', action='store_true', default=False) parser.add_argument('--split-pos', type=float, default=0.5) parser.add_argument('--split-animation', type=str, default=None) parser.add_argument('--fps', type=float, default=30) parser.add_argument('--out-dir', type=str, required=True) parser.add_argument('--vis-scale', type=float, default=1) parser.add_argument('--seq', type=str, default=None) parser.add_argument('--make-video', action='store_true', default=False) parser.add_argument('--overwrite', action='store_true', default=False) opts = parser.parse_args() return opts # Smoothing functions # map time from 0-1 to progress from 0-1 def ease_in_out(t): return -np.cos(np.pi*t)/2 + 0.5 # animations def split_anime_swing(t, split_pos, l, line_width): # timing information in seconds durations = [4, 1, 3, 2, 3, 1] small_end = -line_width//2 - 1 big_end = l + line_width//2 k = 0 last_key = 0 if t < durations[k]: return split_pos last_key += durations[k] k += 1 if t < last_key + durations[k]: start_pos = split_pos end_pos = big_end p = ease_in_out((t - last_key)/durations[k]) return start_pos + p*(end_pos - start_pos) last_key += durations[k] k += 1 if t < last_key + durations[k]: return big_end last_key += durations[k] k += 1 if t < last_key + durations[k]: start_pos = big_end end_pos = small_end p = ease_in_out((t - last_key)/durations[k]) return start_pos + p*(end_pos - start_pos) last_key += durations[k] k += 1 if t < last_key + durations[k]: return small_end last_key += durations[k] k += 1 if t < last_key + durations[k]: start_pos = small_end end_pos = split_pos p = ease_in_out((t - last_key)/durations[k]) return start_pos + p*(end_pos - start_pos) return split_pos def main(): opts = parse_args() seqs = sorted([item.name for item in scandir(opts.dir_A) if item.is_dir()]) if opts.seq is not None: if opts.seq.isdigit(): idx = int(opts.seq) else: idx = seqs.index(opts.seq) seqs = [seqs[idx]] line_width = 15 line_color = [241, 159, 93] line_color = np.array(line_color, dtype=np.uint8).reshape((1, 1, 3)) # font_path = r'C:\Windows\Fonts\Rock.otf' # font_path = r'C:\Windows\Fonts\AdobeGurmukhi-Regular.otf' # font = ImageFont.truetype(font_path, size=40) for s, seq in enumerate(seqs): print(f'Processing {s + 1}/{len(seqs)}: {seq}') seq_dir_A = join(opts.dir_A, seq) seq_dir_B = join(opts.dir_B, seq) seq_dir_out = mkdir2(join(opts.out_dir, seq)) frame_list = [item.name for item in scandir(seq_dir_A) if item.is_file() and item.name.endswith('.jpg')] frame_list = sorted(frame_list) # frame_list = frame_list[:330] for ii, frame in enumerate(tqdm(frame_list)): out_path = join(seq_dir_out, frame) if not opts.overwrite and isfile(out_path): continue img_A = Image.open(join(seq_dir_A, frame)) img_B = Image.open(join(seq_dir_B, frame)) w, h = img_A.size l = h if opts.horizontal else w split_pos = opts.split_pos if opts.split_pos > 1 else l*opts.split_pos if opts.split_animation: split_pos = globals()['split_anime_' + opts.split_animation]( ii/opts.fps, split_pos, l, line_width, ) split_pos = int(round(split_pos)) line_start = split_pos - (line_width - 1)//2 line_end = split_pos + line_width//2 # inclusive # using TrueType supported in PIL # draw = ImageDraw.Draw(img) # draw.text( # (lt[0], lt[1] - font.size), # text, (*color, 1), # RGBA # font=font, # ) if split_pos <= 0: img = np.array(img_B) else: img = np.array(img_A) img_B = np.asarray(img_B) if opts.horizontal: img[split_pos:] = img_B[split_pos:] else: img[:, split_pos:] = img_B[:, split_pos:] if line_start < l and line_end >= 0: # line is visible line_start = max(0, line_start) line_end = min(l, line_end) if opts.horizontal: img[line_start:line_end, :] = line_color else: img[:, line_start:line_end] = line_color Image.fromarray(img).save(out_path) if opts.make_video: out_path = seq_dir_out + '.mp4' if opts.overwrite or not isfile(out_path): print('Making the video') make_video((seq_dir_out, opts)) else: print(f'python vis/make_videos_numbered.py "{opts.out_dir}" --fps {opts.fps}') if __name__ == '__main__': main()
65f48d5c7bdf634c88c47b5df4e34a43fb7061f4
dfaa71f8064d3d0773941cf14ab86ff57ff67284
/part35/blog/models.py
e096fa50faab3cc7fd3ab30abcc1c60a66a4db46
[ "Apache-2.0" ]
permissive
yllew36/WellyGI
e94c5000ff3a7f2fd7316d22ad166fbf7916ea23
7d53fac4c81bb994f61b22761e5ac7e48994ade4
refs/heads/master
2020-09-05T15:49:37.386078
2019-11-15T08:16:59
2019-11-15T08:16:59
220,148,061
1
0
null
null
null
null
UTF-8
Python
false
false
373
py
from django.db import models # Create your models here. class PostModel(models.Model): judul = models.CharField(max_length=20) body = models.TextField() category = models.CharField(max_length=20) published = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) def __str__(self): return "{}. {}" .format(self.id,self.judul)
059945b503bc8e858ff2111eb171506610714b02
8e07b5b7a8dd38e0ef2c7ffc97d0392d886f32e6
/venv/Lib/site-packages/mypy/typeshed/third_party/2and3/markdown/extensions/legacy_attrs.pyi
035b589a9f34a9529d88c4a202238e44166669ca
[]
no_license
RodrigoNeto/cursopythonyt
fc064a2e6106324e22a23c54bdb9c31040ac9eb6
279dad531e21a9c7121b73d84fcbdd714f435e7e
refs/heads/master
2023-07-03T00:54:09.795054
2021-08-13T12:42:24
2021-08-13T12:42:24
395,646,798
0
0
null
null
null
null
UTF-8
Python
false
false
313
pyi
from typing import Any, Pattern from markdown.extensions import Extension from markdown.treeprocessors import Treeprocessor ATTR_RE: Pattern class LegacyAttrs(Treeprocessor): def handleAttributes(self, el, txt): ... class LegacyAttrExtension(Extension): ... def makeExtension(**kwargs): ...
5fc3082edcd76e319526f196ca4f0ac1f08de570
d10d6d037ad741e2383eb1bb8bbc5dd3b3f09e41
/python3/practice/classic_puzzle/easy/pirates-treasure.py
b6637587260c3ffcd0f4ba3521b9a43ac09effcb
[]
no_license
jz4o/codingames
4614d34a3d9be07205747ee3617479e1e77fd6ed
1f2222d23aaf670c7ddb658e7aca1a8e12e9bcab
refs/heads/master
2023-08-18T03:30:04.640290
2023-08-17T14:24:04
2023-08-17T14:24:04
102,266,024
6
2
null
2021-05-01T13:33:34
2017-09-03T13:20:10
Java
UTF-8
Python
false
false
1,193
py
# import sys # import math # Auto-generated code below aims at helping you parse # the standard input according to the problem statement. w = int(input()) h = int(input()) grid = [] grid.append([1] * (w + 2)) for i in range(h): row = [] row.append(1) for j in input().split(): v = int(j) row.append(v) row.append(1) grid.append(row) grid.append([1] * (w + 2)) # Write an answer using print # To debug: print("Debug messages...", file=sys.stderr, flush=True) def find_pirates_treasure_indexes(grid): for row_index, row in enumerate(grid[1:-1], start=1): for column_index, column in enumerate(row[1:-1], start=1): if 0 in grid[row_index - 1][column_index - 1:column_index + 2]: continue if row[column_index - 1] == 0: continue if column != 0: continue if row[column_index + 1] == 0: continue if 0 in grid[row_index + 1][column_index - 1:column_index + 2]: continue return f'{column_index - 1} {row_index - 1}' result = find_pirates_treasure_indexes(grid) # print("x y") print(result)
98348901cc25f5b865ce5e0c8986c4f5c88a3439
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_297/ch13_2019_06_06_20_45_46_311950.py
0b921552630eff594c165545c6ad10f88e51165d
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
54
py
def calcula_posicao(t,so,v): s=so+v*t return s
4c04be0c1b62494ac0091aebed2588dc3cae107f
bcc916eb6c5ce649758c903fba6065f6d53dc6d2
/datalad_webapp/__init__.py
9ebfad5fa15a49e81b35bb43c19031ae832458dd
[ "MIT" ]
permissive
bpoldrack/datalad-webapp
ed4d432d3a6fc49eff40bfcc296e5426ae3ab3b6
c6107ba0460b7a967cabe5cecbf2b8e18b3fbf49
refs/heads/master
2021-05-25T11:44:53.770310
2018-03-29T13:38:53
2018-03-29T13:38:53
127,297,116
0
0
null
null
null
null
UTF-8
Python
false
false
6,220
py
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """DataLad webapp support""" __docformat__ = 'restructuredtext' import logging from os.path import dirname from os.path import basename from os.path import isdir from os.path import join as opj from glob import glob from datalad import cfg from pkg_resources import iter_entry_points from datalad.dochelpers import exc_str from datalad.utils import assure_list from datalad.interface.base import Interface from datalad.interface.base import build_doc from datalad.support.param import Parameter from datalad.distribution.dataset import datasetmethod from datalad.interface.utils import eval_results from datalad.support.constraints import EnsureNone from datalad.distribution.dataset import EnsureDataset # defines a datalad command suite # this symbold must be indentified as a setuptools entrypoint # to be found by datalad module_suite = ( # description of the command suite, displayed in cmdline help "Generic web app support", [('datalad_webapp', 'WebApp', 'webapp', 'webapp')] ) # we want to hook into datalad's logging infrastructure, so we use a common # prefix lgr = logging.getLogger('datalad.module.webapp') @build_doc class WebApp(Interface): """ """ _params_ = dict( app=Parameter( args=('--app',), doc="yeah!", nargs='+', action='append'), dataset=Parameter( args=("-d", "--dataset"), doc="""specify the dataset to serve as the anchor of the webapp. An attempt is made to identify the dataset based on the current working directory. If a dataset is given, the command will be executed in the root directory of this dataset.""", constraints=EnsureDataset() | EnsureNone()), daemonize=Parameter( args=("--daemonize",), action='store_true', doc="yeah!"), ) @staticmethod @datasetmethod(name='webapp') @eval_results def __call__(app, dataset=None, daemonize=False): apps = assure_list(app) if not apps: raise ValueError('no app specification given') if not isinstance(apps[0], (list, tuple)): apps = [apps] apps = {a[0] if isinstance(a, (list, tuple)) else a: a[1] if isinstance(a, (list, tuple)) and len(a) > 1 else None for a in apps} import cherrypy # global config cherrypy.config.update({ # prevent visible tracebacks, etc: # http://docs.cherrypy.org/en/latest/config.html#id14 #'environment': 'production', #'log.error_file': 'site.log', }) # set the priority according to your needs if you are hooking something # else on the 'before_finalize' hook point. @cherrypy.tools.register('before_finalize', priority=60) def secureheaders(): headers = cherrypy.response.headers headers['X-Frame-Options'] = 'DENY' headers['X-XSS-Protection'] = '1; mode=block' headers['Content-Security-Policy'] = "default-src='self'" # only add Strict-Transport headers if we're actually using SSL; see the ietf spec # "An HSTS Host MUST NOT include the STS header field in HTTP responses # conveyed over non-secure transport" # http://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec-14#section-7.2 if (cherrypy.server.ssl_certificate != None and cherrypy.server.ssl_private_key != None): headers['Strict-Transport-Security'] = 'max-age=31536000' # one year if daemonize: from cherrypy.process.plugins import Daemonizer Daemonizer(cherrypy.engine).subscribe() #PIDFile(cherrypy.engine, '/var/run/myapp.pid').subscribe() # when running on a priviledged port #DropPrivileges(cherrypy.engine, uid=1000, gid=1000).subscribe() enabled_apps = [] for ep in iter_entry_points('datalad.webapps'): if ep.name not in apps: continue mount = apps[ep.name] if apps[ep.name] else '/' # get the webapp class cls = ep.load() # fire up the webapp instance inst = cls(**dict(dataset=dataset)) # mount under global URL tree (default or given suburl) app = cherrypy.tree.mount( root=inst, script_name=mount, # app config file, it is ok for that file to not exist config=cls._webapp_config ) # forcefully impose more secure mode # TODO might need one (or more) switch(es) to turn things off for # particular scenarios enabled_apps.append(ep.name) app.merge({ '/': { # turns all security headers on 'tools.secureheaders.on': True, 'tools.sessions.secure': True, 'tools.sessions.httponly': True}}) static_dir = opj(cls._webapp_dir, cls._webapp_staticdir) if isdir(static_dir): app.merge({ # the key has to be / even when an app is mount somewhere # below '/': { 'tools.staticdir.on': True, 'tools.staticdir.root': cls._webapp_dir, 'tools.staticdir.dir': cls._webapp_staticdir}} ) failed_apps = set(apps).difference(enabled_apps) if failed_apps: lgr.warning('Failed to load webapps: %s', failed_apps) if not enabled_apps: return cherrypy.engine.start() cherrypy.engine.block() yield {}
670cd19658bb9118b6186e4645afd044289372ac
82042141439ae004fc38bb2ef6238f36ec6bb050
/attendance/settings.py
03f8fb508ead9f5f52ebcd48f3f82c239a48a82e
[]
no_license
psteichen/clusil-intranet
2e9a2cf3b00692a4ef441ebf669af4e63945e9a2
5c028d33f6a8559af57a4eeb02fc0f612cb1b261
refs/heads/master
2021-07-13T15:40:06.464105
2020-06-30T19:51:00
2020-06-30T19:51:00
27,195,950
2
1
null
2021-06-10T20:06:47
2014-11-26T20:59:46
Python
UTF-8
Python
false
false
1,458
py
# Application settings for attendance app # coding=utf-8 ACTIONS = { 'invite': ( { 'label' : u'Invite (a) collegue(s).', 'grade' : 'info', 'icon' : 'plus', 'url' : '/meetings/invite/', }, ), } ATTENDANCE_TMPL_CONTENT = { 'template' : 'done.html', 'too_late' : u'Sorry, it is <strong>too late</strong> to confirm/cancel your participation!', # 'actions' : ACTIONS['invite'], 'actions' : None, 'yes' : u'%(name)s, herewith your <strong>participation</strong> is <strong>confirmed</strong>!', 'no' : u'%(name)s, thank you for notifying us your cancellation, you will be <strong>excused</strong>!', 'details' : u'''<p class="lead"> <ul class="lead"> Title: <em>%(title)s</em><br/> Location: <strong>%(location)s</strong><br/> Date: <em>%(when)s</em><br/> Time: %(time)s<br/> </ul></p> ''', 'event': { 'title' : u'Your participation to the following event: "%(event)s"', 'email' : { 'yes' : u''' Herewith your participation to "%(event)s" is *confirmed*!''', 'no' : u''' Thank you for notifying us your cancellation for "%(event)s". You will be *excused*.''', }, }, 'meeting': { 'title' : u'%(meeting)s meeting', 'email' : { 'yes' : u''' Herewith your participation to "%(meeting)s" is *confirmed*!''', 'no' : u''' Thank you for notifying us your cancellation for "%(meeting)s". You will be *excused*.''', }, }, }
c5e49b4de1ac2ec9e848c99af5781b7e842799cf
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/dev/cv/image_classification/RANet_ID0994_for_PyTorch/dataloader.py
8d73f52aa9fc6f2e781b3bfbb395740fb1153839
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
6,745
py
# # BSD 3-Clause License # # Copyright (c) 2017 xxxx # All rights reserved. # Copyright 2021 Huawei Technologies Co., Ltd # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ============================================================================ # import os import torch import torchvision.transforms as transforms import torchvision.datasets as datasets import torch.npu import os NPU_CALCULATE_DEVICE = 0 if os.getenv('NPU_CALCULATE_DEVICE') and str.isdigit(os.getenv('NPU_CALCULATE_DEVICE')): NPU_CALCULATE_DEVICE = int(os.getenv('NPU_CALCULATE_DEVICE')) if torch.npu.current_device() != NPU_CALCULATE_DEVICE: torch.npu.set_device(f'npu:{NPU_CALCULATE_DEVICE}') def get_dataloaders(args): train_loader, val_loader, test_loader = None, None, None if args.data == 'cifar10': normalize = transforms.Normalize(mean=[0.4914, 0.4824, 0.4467], std=[0.2471, 0.2435, 0.2616]) train_set = datasets.CIFAR10(args.data_root, train=True, transform=transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ])) val_set = datasets.CIFAR10(args.data_root, train=False, transform=transforms.Compose([ transforms.ToTensor(), normalize ])) elif args.data == 'cifar100': normalize = transforms.Normalize(mean=[0.5071, 0.4867, 0.4408], std=[0.2675, 0.2565, 0.2761]) train_set = datasets.CIFAR100(args.data_root, train=True, transform=transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ])) val_set = datasets.CIFAR100(args.data_root, train=False, transform=transforms.Compose([ transforms.ToTensor(), normalize ])) else: # ImageNet traindir = os.path.join(args.data_root, 'train') valdir = os.path.join(args.data_root, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_set = datasets.ImageFolder(traindir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ])) val_set = datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize ])) if args.use_valid: train_set_index = torch.randperm(len(train_set)) if os.path.exists(os.path.join(args.save, 'index.pth')): print('!!!!!! Load train_set_index !!!!!!') train_set_index = torch.load(os.path.join(args.save, 'index.pth')) else: print('!!!!!! Save train_set_index !!!!!!') torch.save(train_set_index, os.path.join(args.save, 'index.pth')) if args.data.startswith('cifar'): num_sample_valid = 5000 else: num_sample_valid = 50000 if 'train' in args.splits: train_loader = torch.utils.data.DataLoader( train_set, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler( train_set_index[:-num_sample_valid]), num_workers=args.workers, pin_memory=False) if 'val' in args.splits: val_loader = torch.utils.data.DataLoader( train_set, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler( train_set_index[-num_sample_valid:]), num_workers=args.workers, pin_memory=False) if 'test' in args.splits: test_loader = torch.utils.data.DataLoader( val_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=False) else: if 'train' in args.splits: train_loader = torch.utils.data.DataLoader( train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=False) if 'val' or 'test' in args.splits: val_loader = torch.utils.data.DataLoader( val_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=False) test_loader = val_loader return train_loader, val_loader, test_loader
485f03dae69df4b6ada9fb3ae69c80c9a25a63be
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03018/s073874742.py
f981861b7dd86b3250675915160c0c2a28113c5c
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
516
py
S = input() rlt = 0 b = '' tA = 0 A = 0 BC = 0 for s in S: if s == 'A': if b == 'A': tA += 1 elif b == 'B': rlt += A*BC tA = 1 A = 0 BC = 0 else: rlt += A*BC tA = A + 1 A = 0 BC = 0 elif s == 'B': if b == 'B': rlt += A*BC tA = 0 A = 0 BC = 0 elif s == 'C': if b == 'B': A += tA tA = 0 BC += 1 else: rlt += A*BC tA = 0 A = 0 BC = 0 b = s rlt += A*BC print(rlt)
fd1b448e1f6e22bb748d5cd5bbcdcab1faedf382
ce7fe0c3c46b0cc3dbd8836f007464e320eefda6
/main.py
f4f8306490673dc070f7b3ed8ff33c15d92215e3
[]
no_license
happyday521/vunet
2da3013399ec5660544d2b69b61486e8e1033bb7
f0d6ef73b02e6099d3b5e4f37e4ddaaa5f8437e6
refs/heads/master
2021-09-24T15:12:07.310072
2018-04-13T14:48:40
2018-04-13T14:48:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,013
py
import tensorflow as tf config = tf.ConfigProto() config.gpu_options.allow_growth = False session = tf.Session(config = config) import os, logging, shutil, datetime import glob import argparse import yaml import numpy as np from tqdm import tqdm, trange import nn import models from batches import get_batches, plot_batch, postprocess, n_boxes import deeploss def init_logging(out_base_dir): # get unique output directory based on current time os.makedirs(out_base_dir, exist_ok = True) now = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S") out_dir = os.path.join(out_base_dir, now) os.makedirs(out_dir, exist_ok = False) # copy source code to logging dir to have an idea what the run was about this_file = os.path.realpath(__file__) assert(this_file.endswith(".py")) shutil.copy(this_file, out_dir) # copy all py files to logging dir src_dir = os.path.dirname(this_file) py_files = glob.glob(os.path.join(src_dir, "*.py")) for py_file in py_files: shutil.copy(py_file, out_dir) # init logging logging.basicConfig(filename = os.path.join(out_dir, 'log.txt')) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) return out_dir, logger class Model(object): def __init__(self, config, out_dir, logger): self.config = config self.batch_size = config["batch_size"] self.img_shape = 2*[config["spatial_size"]] + [3] self.bottleneck_factor = config["bottleneck_factor"] self.box_factor = config["box_factor"] self.imgn_shape = 2*[config["spatial_size"]//(2**self.box_factor)] + [n_boxes*3] self.init_batches = config["init_batches"] self.initial_lr = config["lr"] self.lr_decay_begin = config["lr_decay_begin"] self.lr_decay_end = config["lr_decay_end"] self.out_dir = out_dir self.logger = logger self.log_frequency = config["log_freq"] self.ckpt_frequency = config["ckpt_freq"] self.test_frequency = config["test_freq"] self.checkpoint_best = False self.dropout_p = config["drop_prob"] self.best_loss = float("inf") self.checkpoint_dir = os.path.join(self.out_dir, "checkpoints") os.makedirs(self.checkpoint_dir, exist_ok = True) self.define_models() self.define_graph() def define_models(self): n_latent_scales = 2 n_scales = 1 + int(np.round(np.log2(self.img_shape[0]))) - self.bottleneck_factor n_filters = 32 self.enc_up_pass = models.make_model( "enc_up", models.enc_up, n_scales = n_scales - self.box_factor, n_filters = n_filters*2**self.box_factor) self.enc_down_pass = models.make_model( "enc_down", models.enc_down, n_scales = n_scales - self.box_factor, n_latent_scales = n_latent_scales) self.dec_up_pass = models.make_model( "dec_up", models.dec_up, n_scales = n_scales, n_filters = n_filters) self.dec_down_pass = models.make_model( "dec_down", models.dec_down, n_scales = n_scales, n_latent_scales = n_latent_scales) self.dec_params = models.make_model( "dec_params", models.dec_parameters) def train_forward_pass(self, x, c, xn, cn, dropout_p, init = False): kwargs = {"init": init, "dropout_p": dropout_p} # encoder hs = self.enc_up_pass(xn, cn, **kwargs) es, qs, zs_posterior = self.enc_down_pass(hs, **kwargs) # decoder gs = self.dec_up_pass(c, **kwargs) ds, ps, zs_prior = self.dec_down_pass(gs, zs_posterior, training = True, **kwargs) params = self.dec_params(ds[-1], **kwargs) activations = hs + es + gs + ds return params, qs, ps, activations def test_forward_pass(self, c): kwargs = {"init": False, "dropout_p": 0.0} # decoder gs = self.dec_up_pass(c, **kwargs) ds, ps, zs_prior = self.dec_down_pass(gs, [], training = False, **kwargs) params = self.dec_params(ds[-1], **kwargs) return params def transfer_pass(self, infer_x, infer_c, generate_c): kwargs = {"init": False, "dropout_p": 0.0} # infer latent code hs = self.enc_up_pass(infer_x, infer_c, **kwargs) es, qs, zs_posterior = self.enc_down_pass(hs, **kwargs) zs_mean = list(qs) # generate from inferred latent code and conditioning gs = self.dec_up_pass(generate_c, **kwargs) use_mean = True if use_mean: ds, ps, zs_prior = self.dec_down_pass(gs, zs_mean, training = True, **kwargs) else: ds, ps, zs_prior = self.dec_down_pass(gs, zs_posterior, training = True, **kwargs) params = self.dec_params(ds[-1], **kwargs) return params def sample(self, params, **kwargs): return params def likelihood_loss(self, x, params): return 5.0*self.vgg19.make_loss_op(x, params) def define_graph(self): # pretrained net for perceptual loss self.vgg19 = deeploss.VGG19Features(session, feature_layers = self.config["feature_layers"], feature_weights = self.config["feature_weights"], gram_weights = self.config["gram_weights"]) global_step = tf.Variable(0, trainable = False, name = "global_step") lr = nn.make_linear_var( global_step, self.lr_decay_begin, self.lr_decay_end, self.initial_lr, 0.0, 0.0, self.initial_lr) kl_weight = nn.make_linear_var( global_step, self.lr_decay_end // 2, 3 * self.lr_decay_end // 4, 1e-6, 1.0, 1e-6, 1.0) # initialization self.x_init = tf.placeholder( tf.float32, shape = [self.init_batches * self.batch_size] + self.img_shape) self.c_init = tf.placeholder( tf.float32, shape = [self.init_batches * self.batch_size] + self.img_shape) self.xn_init = tf.placeholder( tf.float32, shape = [self.init_batches * self.batch_size] + self.imgn_shape) self.cn_init = tf.placeholder( tf.float32, shape = [self.init_batches * self.batch_size] + self.imgn_shape) _ = self.train_forward_pass( self.x_init, self.c_init, self.xn_init, self.cn_init, dropout_p = self.dropout_p, init = True) # training self.x = tf.placeholder( tf.float32, shape = [self.batch_size] + self.img_shape) self.c = tf.placeholder( tf.float32, shape = [self.batch_size] + self.img_shape) self.xn = tf.placeholder( tf.float32, shape = [self.batch_size] + self.imgn_shape) self.cn = tf.placeholder( tf.float32, shape = [self.batch_size] + self.imgn_shape) # compute parameters of model distribution params, qs, ps, activations = self.train_forward_pass( self.x, self.c, self.xn, self.cn, dropout_p = self.dropout_p) # sample from model distribution sample = self.sample(params) # maximize likelihood likelihood_loss = self.likelihood_loss(self.x, params) kl_loss = tf.to_float(0.0) for q, p in zip(qs, ps): self.logger.info("Latent shape: {}".format(q.shape.as_list())) kl_loss += models.latent_kl(q, p) loss = likelihood_loss + kl_weight * kl_loss # testing test_forward = self.test_forward_pass(self.c) test_sample = self.sample(test_forward) # reconstruction reconstruction_params, _, _, _ = self.train_forward_pass( self.x, self.c, self.xn, self.cn, dropout_p = 0.0) self.reconstruction = self.sample(reconstruction_params) # optimization self.trainable_variables = [v for v in tf.trainable_variables() if not v in self.vgg19.variables] optimizer = tf.train.AdamOptimizer(learning_rate = lr, beta1 = 0.5, beta2 = 0.9) opt_op = optimizer.minimize(loss, var_list = self.trainable_variables) with tf.control_dependencies([opt_op]): self.train_op = tf.assign(global_step, global_step + 1) # logging and visualization self.log_ops = dict() self.log_ops["global_step"] = global_step self.log_ops["likelihood_loss"] = likelihood_loss self.log_ops["kl_loss"] = kl_loss self.log_ops["kl_weight"] = kl_weight self.log_ops["loss"] = loss self.img_ops = dict() self.img_ops["sample"] = sample self.img_ops["test_sample"] = test_sample self.img_ops["x"] = self.x self.img_ops["c"] = self.c for i, l in enumerate(self.vgg19.losses): self.log_ops["vgg_loss_{}".format(i)] = l # keep seperate train and validation summaries # only training summary contains histograms train_summaries = list() for k, v in self.log_ops.items(): train_summaries.append(tf.summary.scalar(k, v)) self.train_summary_op = tf.summary.merge_all() valid_summaries = list() for k, v in self.log_ops.items(): valid_summaries.append(tf.summary.scalar(k+"_valid", v)) self.valid_summary_op = tf.summary.merge(valid_summaries) # all variables for initialization self.variables = [v for v in tf.global_variables() if not v in self.vgg19.variables] self.logger.info("Defined graph") def init_graph(self, init_batch): self.writer = tf.summary.FileWriter( self.out_dir, session.graph) self.saver = tf.train.Saver(self.variables) initializer_op = tf.variables_initializer(self.variables) session.run(initializer_op, { self.xn_init: init_batch[2], self.cn_init: init_batch[3], self.x_init: init_batch[0], self.c_init: init_batch[1]}) self.logger.info("Initialized model from scratch") def restore_graph(self, restore_path): self.writer = tf.summary.FileWriter( self.out_dir, session.graph) self.saver = tf.train.Saver(self.variables) self.saver.restore(session, restore_path) self.logger.info("Restored model from {}".format(restore_path)) def reset_global_step(self): session.run(tf.assign(self.log_ops["global_step"], 0)) self.logger.info("Reset global_step") def fit(self, batches, valid_batches = None): start_step = self.log_ops["global_step"].eval(session) self.valid_batches = valid_batches for batch in trange(start_step, self.lr_decay_end): X_batch, C_batch, XN_batch, CN_batch = next(batches) feed_dict = { self.xn: XN_batch, self.cn: CN_batch, self.x: X_batch, self.c: C_batch} fetch_dict = {"train": self.train_op} if self.log_ops["global_step"].eval(session) % self.log_frequency == 0: fetch_dict["log"] = self.log_ops fetch_dict["img"] = self.img_ops fetch_dict["summary"] = self.train_summary_op result = session.run(fetch_dict, feed_dict) self.log_result(result) def log_result(self, result, **kwargs): global_step = self.log_ops["global_step"].eval(session) if "summary" in result: self.writer.add_summary(result["summary"], global_step) self.writer.flush() if "log" in result: for k in sorted(result["log"]): v = result["log"][k] self.logger.info("{}: {}".format(k, v)) if "img" in result: for k, v in result["img"].items(): plot_batch(v, os.path.join( self.out_dir, k + "_{:07}.png".format(global_step))) if self.valid_batches is not None: # validation run X_batch, C_batch, XN_batch, CN_batch = next(self.valid_batches) feed_dict = { self.xn: XN_batch, self.cn: CN_batch, self.x: X_batch, self.c: C_batch} fetch_dict = dict() fetch_dict["imgs"] = self.img_ops fetch_dict["summary"] = self.valid_summary_op fetch_dict["validation_loss"] = self.log_ops["loss"] result = session.run(fetch_dict, feed_dict) self.writer.add_summary(result["summary"], global_step) self.writer.flush() # display samples imgs = result["imgs"] for k, v in imgs.items(): plot_batch(v, os.path.join( self.out_dir, "valid_" + k + "_{:07}.png".format(global_step))) # log validation loss validation_loss = result["validation_loss"] self.logger.info("{}: {}".format("validation_loss", validation_loss)) if self.checkpoint_best and validation_loss < self.best_loss: # checkpoint if validation loss improved self.logger.info("step {}: Validation loss improved from {:.4e} to {:.4e}".format(global_step, self.best_loss, validation_loss)) self.best_loss = validation_loss self.make_checkpoint(global_step, prefix = "best_") if global_step % self.test_frequency == 0: if self.valid_batches is not None: # testing X_batch, C_batch, XN_batch, CN_batch = next(self.valid_batches) x_gen = self.test(C_batch) for k in x_gen: plot_batch(x_gen[k], os.path.join( self.out_dir, "testing_{}_{:07}.png".format(k, global_step))) # transfer bs = X_batch.shape[0] imgs = list() imgs.append(np.zeros_like(X_batch[0,...])) for r in range(bs): imgs.append(C_batch[r,...]) for i in range(bs): x_infer = XN_batch[i,...] c_infer = CN_batch[i,...] imgs.append(X_batch[i,...]) x_infer_batch = x_infer[None,...].repeat(bs, axis = 0) c_infer_batch = c_infer[None,...].repeat(bs, axis = 0) c_generate_batch = C_batch results = model.transfer(x_infer_batch, c_infer_batch, c_generate_batch) for j in range(bs): imgs.append(results[j,...]) imgs = np.stack(imgs, axis = 0) plot_batch(imgs, os.path.join( out_dir, "transfer_{:07}.png".format(global_step))) if global_step % self.ckpt_frequency == 0: self.make_checkpoint(global_step) def make_checkpoint(self, global_step, prefix = ""): fname = os.path.join(self.checkpoint_dir, prefix + "model.ckpt") self.saver.save( session, fname, global_step = global_step) self.logger.info("Saved model to {}".format(fname)) def test(self, c_batch): results = dict() results["cond"] = c_batch sample = session.run(self.img_ops["test_sample"], {self.c: c_batch}) results["test_sample"] = sample return results def reconstruct(self, x_batch, c_batch): return session.run( self.reconstruction, {self.x: x_batch, self.c: c_batch}) def transfer(self, x_encode, c_encode, c_decode): initialized = getattr(self, "_init_transfer", False) if not initialized: # transfer self.c_generator = tf.placeholder( tf.float32, shape = [self.batch_size] + self.img_shape) infer_x = self.xn infer_c = self.cn generate_c = self.c_generator transfer_params = self.transfer_pass(infer_x, infer_c, generate_c) self.transfer_mean_sample = self.sample(transfer_params) self._init_transfer = True return session.run( self.transfer_mean_sample, { self.xn: x_encode, self.cn: c_encode, self.c_generator: c_decode}) if __name__ == "__main__": default_log_dir = os.path.join(os.getcwd(), "log") parser = argparse.ArgumentParser() parser.add_argument("--config", required = True, help = "path to config") parser.add_argument("--mode", default = "train", choices=["train", "test", "add_reconstructions", "transfer"]) parser.add_argument("--log_dir", default = default_log_dir, help = "path to log into") parser.add_argument("--checkpoint", help = "path to checkpoint to restore") parser.add_argument("--retrain", dest = "retrain", action = "store_true", help = "reset global_step to zero") parser.set_defaults(retrain = False) opt = parser.parse_args() with open(opt.config) as f: config = yaml.load(f) out_dir, logger = init_logging(opt.log_dir) logger.info(opt) logger.info(yaml.dump(config)) if opt.mode == "train": batch_size = config["batch_size"] img_shape = 2*[config["spatial_size"]] + [3] data_shape = [batch_size] + img_shape init_shape = [config["init_batches"] * batch_size] + img_shape box_factor = config["box_factor"] data_index = config["data_index"] batches = get_batches(data_shape, data_index, train = True, box_factor = box_factor) init_batches = get_batches(init_shape, data_index, train = True, box_factor = box_factor) valid_batches = get_batches(data_shape, data_index, train = False, box_factor = box_factor) logger.info("Number of training samples: {}".format(batches.n)) logger.info("Number of validation samples: {}".format(valid_batches.n)) model = Model(config, out_dir, logger) if opt.checkpoint is not None: model.restore_graph(opt.checkpoint) else: model.init_graph(next(init_batches)) if opt.retrain: model.reset_global_step() model.fit(batches, valid_batches) else: raise NotImplemented()
5771286c57f461941cc57f7ef650d4dca16a9e7e
cc14a65db9243584879726349af66297f7363298
/docs/conf.py
8ac01a18279ac15494881932a56749457a85e4b1
[ "MIT" ]
permissive
AyraHikari/telegram-upload
bed549b358a457870a112d69d775d2bb8d251099
b29ba50ba0df03e9991eccd64e6a42a6ca69c73f
refs/heads/master
2020-04-29T00:31:40.889784
2019-03-08T19:49:19
2019-03-08T19:49:19
175,696,591
1
1
MIT
2019-03-14T20:44:22
2019-03-14T20:44:22
null
UTF-8
Python
false
false
9,070
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # telegram_upload documentation build configuration file, created by # sphinx-quickstart on Tue Jul 9 22:26:36 2013. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os __dir__ = os.path.dirname(__file__) # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # Get the project root dir, which is the parent dir of this cwd = os.getcwd() project_root = os.path.dirname(cwd) # Insert the project root dir as the first element in the PYTHONPATH. # This lets us ensure that the source package is imported, and that its # version is used. sys.path.insert(0, project_root) import telegram_upload # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'telegram-upload' copyright = u"2018, Nekmo" # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = telegram_upload.__version__ # The full version, including alpha/beta/rc tags. release = telegram_upload.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to # some non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built # documents. #keep_warnings = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'logo': 'logo.png', 'description': 'Hack your Amazon Dash to run what you want', 'github_user': 'Nekmo', 'github_repo': 'telegram_upload', 'github_type': 'star', 'github_banner': True, 'travis_button': True, 'codecov_button': True, 'analytics_id': 'UA-62276079-1', 'canonical_url': 'http://docs.nekmo.org/telegram-upload/' } # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as # html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the # top of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon # of the docs. This file should be a Windows icon file (.ico) being # 16x16 or 32x32 pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) # here, relative to this directory. They are copied after the builtin # static files, so a file named "default.css" will overwrite the builtin # "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': [ 'about.html', 'navigation.html', 'relations.html', 'searchbox.html', 'donate.html', ] } # Additional templates that should be rendered to pages, maps page names # to template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. # Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. # Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages # will contain a <link> tag referring to it. The value of this option # must be the base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'telegram_uploaddoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', 'telegram_upload.tex', u'telegram-upload Documentation', u'Nekmo', 'manual'), ] # The name of an image file (relative to this directory) to place at # the top of the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings # are parts, not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'telegram_upload', u'telegram-upload Documentation', [u'Nekmo'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'telegram_upload', u'telegram-upload Documentation', u'Nekmo', 'telegram_upload', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False def setup(app): app.add_stylesheet('_static/custom.css')
5086248faf63027b66d09017218bbf3019c4625f
881a76acaf0b6a26fd34548f0b1abbcf176a37b2
/ezgal/__init__.py
70fdcaa0ab7a97b7b8f4f8afe7ec51d6a94d571a
[ "MIT" ]
permissive
gsnyder206/ezgal
930ed644b00332e3fc1f733a32afc72d511b7cb0
f10e57021ca88c7139a28b058b8716c5507ce48c
refs/heads/master
2021-01-11T11:17:09.551803
2017-01-11T16:44:50
2017-01-11T16:44:50
78,657,426
0
0
null
2017-01-11T16:28:50
2017-01-11T16:28:50
null
UTF-8
Python
false
false
1,767
py
import ezgal,utils,astro_filter,ezgal_light,wrapper,sfhs,weight,dusts __all__ = ["model", "utils", "wrapper", "sfhs", "weight"] __author__ = 'Conor Mancone, Anthony Gonzalez' __email__ = '[email protected]' __ver__ = '2.0' ezgal = ezgal.ezgal model = ezgal astro_filter = astro_filter.astro_filter ezgal_light = ezgal_light.ezgal_light wrapper = wrapper.wrapper weight = weight.weight def interpolate( values, xs, models=None, key=None, return_wrapper=False ): """ models = ezgal.interpolate( values, xs, models, return_wrapper=False ) or models = ezgal.interpolate( values, models, key=meta_key, return_wrapper=False ) Interpolate between EzGal models and return new models. `models` is a list of EzGal model objects or filenames of EzGal compatible files. `xs` is the values of the models to be interpolated between and `values` is a list of values for the new models to be interpolated at. Alternatively you can ignore xs and specify the name of a meta key to use to build the interpolation grid. Returns a list of EzGal model objects or a single EzGal model if a scalar is passed for `values`. Alternatively, set return_wrapper=True and it will return an ezgal wrapper object containing the fitted models objects. All model SEDs must have the same age/wavelength grid. """ # what calling sequence was used? if models is None and key is not None: return wrapper( xs ).interpolate( key, values, return_wrapper=return_wrapper ) # make sure we have everything we need... if len( models ) != len( xs ): raise ValueErrors( 'xs list has a different length than models list!' ) # return interpolated models return wrapper( models, extra_data=xs, extra_name='interp' ).interpolate( 'interp', values, return_wrapper=return_wrapper )
2929024e5b2b882ef9940eb706da9e2ad2f7e2c7
482297526ed7eedc7c3600a4b98c45e775065852
/emsapi/models/adi_ems_web_shared_tableau_rest_view_py3.py
9815d11e7c037465cd2c29f30ceddec172074ad0
[ "MIT" ]
permissive
ge-flight-analytics/emsapi-python
9c441095c0f9c9dc8a42ee918f830a5261f4f4d1
d3de16397c6f3a35c0965e4dfc76741d1379145e
refs/heads/master
2023-08-03T20:47:45.950550
2023-07-26T16:13:01
2023-07-26T16:13:01
233,153,982
0
1
MIT
2023-07-26T16:13:31
2020-01-11T00:38:20
Python
UTF-8
Python
false
false
1,008
py
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class AdiEmsWebSharedTableauRestView(Model): """AdiEmsWebSharedTableauRestView. :param id: :type id: str :param name: :type name: str :param content_url: :type content_url: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'content_url': {'key': 'contentUrl', 'type': 'str'}, } def __init__(self, *, id: str=None, name: str=None, content_url: str=None, **kwargs) -> None: super(AdiEmsWebSharedTableauRestView, self).__init__(**kwargs) self.id = id self.name = name self.content_url = content_url
972e173dd684f111e265003215339e68adb7e6fb
cac36b279aa1ea889a5e3803efd615449c55922b
/src/012_costMinimize.py
2d75190ae9e5e749cffd703687dcfa87d42aa3ce
[]
no_license
GunSik2/ml
6e16cbbe04406686e394f59c634ed105bf90f849
bdc7ad59c113e13eb13d01d05e30ec77cc96035f
refs/heads/master
2020-06-12T09:53:30.965606
2017-01-05T03:37:34
2017-01-05T03:37:34
75,591,930
0
0
null
null
null
null
UTF-8
Python
false
false
1,067
py
import tensorflow as tf # Single variable linear regression # Hypothesis: H(x) = Wx + b # Cost Fun.: cost(w,b) = 1/m * Sum(H(x) - y)^2 # Gradient descent: W := W - alpah * 1/m * Sum((W*x - y) * x) # training data x = [1., 2., 3., 4.] y = [2., 4., 6., 8.] # Initial value (w, b) W = tf.Variable(tf.random_uniform([1], -10000., 10000.)) b = 0 X = tf.placeholder(tf.float32) Y = tf.placeholder(tf.float32) # Hypothesis hypothesis = W * X + b # Cost function cost = tf.reduce_mean(tf.square(hypothesis - Y)) # Gradicent descent // manual implementation W1 = W - tf.mul(0.1, tf.reduce_mean(tf.mul( ( tf.mul(W, X) - Y ), X ), )) update = W.assign(W1) # launch # before starting, initialize the variables init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) # fit the line for step in range(1000): sess.run(update, feed_dict={X: x, Y: y}) print(step, sess.run(cost, feed_dict={X: x, Y: y}), sess.run(W)) # learns best fit is w: [2] b: [0] print(sess.run(hypothesis, feed_dict={X: 5})) print(sess.run(hypothesis, feed_dict={X: 2.5}))
272780c50836d3f265770a3986bd720199357fd3
5337ddfe3adf3a044bae5cdd530e8836b9000db1
/tests/structshape_test.py
0766479528b059d1cc38582a4d7d205a6395bf01
[]
no_license
404cafe/Swampy
ef1d3206e9fece098910fb41d542ac7195dde50a
82fdafb27e219d0544b74a745f516bfb2264fdaf
refs/heads/master
2020-12-01T06:27:08.869741
2020-03-04T08:41:59
2020-03-04T08:41:59
230,575,461
0
0
null
2019-12-28T07:30:18
2019-12-28T07:30:17
null
UTF-8
Python
false
false
1,260
py
"""This module is part of Swampy, a suite of programs available from allendowney.com/swampy. Copyright 2011 Allen B. Downey Distributed under the GNU General Public License at gnu.org/licenses/gpl.html. """ import unittest from swampy.structshape import structshape class Tests(unittest.TestCase): def test_lumpy(self): t = [1,2,3] self.assertEqual(structshape(t), 'list of 3 int') t2 = [[1,2], [3,4], [5,6]] self.assertEqual(structshape(t2), 'list of 3 list of 2 int') t3 = [1, 2, 3, 4.0, '5', '6', [7], [8], 9] self.assertEqual(structshape(t3), 'list of (3 int, float, 2 str, 2 list of int, int)') class Point: """trivial object type""" t4 = [Point(), Point()] self.assertEqual(structshape(t4), 'list of 2 Point') s = set('abc') self.assertEqual(structshape(s), 'set of 3 str') lt = list(zip(t, s)) self.assertEqual(structshape(lt), 'list of 3 tuple of (int, str)') d = dict(lt) self.assertEqual(structshape(d), 'dict of 3 int->str') it = iter('abc') self.assertEqual(structshape(it), 'str_iterator of 3 str') if __name__ == '__main__': unittest.main()
3c71832b90889a937d8108b84c77854b939df05d
5dd190725aaaeb7287d935b3c99c20480b208816
/official/vision/beta/modeling/backbones/resnet_3d.py
0911b3ea6fadbbc3015c511ed20b32defd858db6
[ "Apache-2.0", "MIT" ]
permissive
DemonDamon/mask-detection-based-on-tf2odapi
32d947164fb54395b9e45368c0d4bcf3a6ea1c28
192ae544169c1230c21141c033800aa1bd94e9b6
refs/heads/main
2023-05-13T05:05:44.534885
2021-06-08T05:56:09
2021-06-08T05:56:09
369,463,131
2
1
null
null
null
null
UTF-8
Python
false
false
18,335
py
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains definitions of 3D Residual Networks.""" from typing import Callable, List, Tuple, Optional # Import libraries import tensorflow as tf from official.modeling import hyperparams from official.modeling import tf_utils from official.vision.beta.modeling.backbones import factory from official.vision.beta.modeling.layers import nn_blocks_3d from official.vision.beta.modeling.layers import nn_layers layers = tf.keras.layers RESNET_SPECS = { 50: [ ('bottleneck3d', 64, 3), ('bottleneck3d', 128, 4), ('bottleneck3d', 256, 6), ('bottleneck3d', 512, 3), ], 101: [ ('bottleneck3d', 64, 3), ('bottleneck3d', 128, 4), ('bottleneck3d', 256, 23), ('bottleneck3d', 512, 3), ], 152: [ ('bottleneck3d', 64, 3), ('bottleneck3d', 128, 8), ('bottleneck3d', 256, 36), ('bottleneck3d', 512, 3), ], 200: [ ('bottleneck3d', 64, 3), ('bottleneck3d', 128, 24), ('bottleneck3d', 256, 36), ('bottleneck3d', 512, 3), ], 270: [ ('bottleneck3d', 64, 4), ('bottleneck3d', 128, 29), ('bottleneck3d', 256, 53), ('bottleneck3d', 512, 4), ], 300: [ ('bottleneck3d', 64, 4), ('bottleneck3d', 128, 36), ('bottleneck3d', 256, 54), ('bottleneck3d', 512, 4), ], 350: [ ('bottleneck3d', 64, 4), ('bottleneck3d', 128, 36), ('bottleneck3d', 256, 72), ('bottleneck3d', 512, 4), ], } @tf.keras.utils.register_keras_serializable(package='Vision') class ResNet3D(tf.keras.Model): """Creates a 3D ResNet family model.""" def __init__( self, model_id: int, temporal_strides: List[int], temporal_kernel_sizes: List[Tuple[int]], use_self_gating: List[int] = None, input_specs: tf.keras.layers.InputSpec = layers.InputSpec( shape=[None, None, None, None, 3]), stem_type: str = 'v0', stem_conv_temporal_kernel_size: int = 5, stem_conv_temporal_stride: int = 2, stem_pool_temporal_stride: int = 2, init_stochastic_depth_rate: float = 0.0, activation: str = 'relu', se_ratio: Optional[float] = None, use_sync_bn: bool = False, norm_momentum: float = 0.99, norm_epsilon: float = 0.001, kernel_initializer: str = 'VarianceScaling', kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None, bias_regularizer: Optional[tf.keras.regularizers.Regularizer] = None, **kwargs): """Initializes a 3D ResNet model. Args: model_id: An `int` of depth of ResNet backbone model. temporal_strides: A list of integers that specifies the temporal strides for all 3d blocks. temporal_kernel_sizes: A list of tuples that specifies the temporal kernel sizes for all 3d blocks in different block groups. use_self_gating: A list of booleans to specify applying self-gating module or not in each block group. If None, self-gating is not applied. input_specs: A `tf.keras.layers.InputSpec` of the input tensor. stem_type: A `str` of stem type of ResNet. Default to `v0`. If set to `v1`, use ResNet-D type stem (https://arxiv.org/abs/1812.01187). stem_conv_temporal_kernel_size: An `int` of temporal kernel size for the first conv layer. stem_conv_temporal_stride: An `int` of temporal stride for the first conv layer. stem_pool_temporal_stride: An `int` of temporal stride for the first pool layer. init_stochastic_depth_rate: A `float` of initial stochastic depth rate. activation: A `str` of name of the activation function. se_ratio: A `float` or None. Ratio of the Squeeze-and-Excitation layer. use_sync_bn: If True, use synchronized batch normalization. norm_momentum: A `float` of normalization momentum for the moving average. norm_epsilon: A `float` added to variance to avoid dividing by zero. kernel_initializer: A str for kernel initializer of convolutional layers. kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D. Default to None. bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D. Default to None. **kwargs: Additional keyword arguments to be passed. """ self._model_id = model_id self._temporal_strides = temporal_strides self._temporal_kernel_sizes = temporal_kernel_sizes self._input_specs = input_specs self._stem_type = stem_type self._stem_conv_temporal_kernel_size = stem_conv_temporal_kernel_size self._stem_conv_temporal_stride = stem_conv_temporal_stride self._stem_pool_temporal_stride = stem_pool_temporal_stride self._use_self_gating = use_self_gating self._se_ratio = se_ratio self._init_stochastic_depth_rate = init_stochastic_depth_rate self._use_sync_bn = use_sync_bn self._activation = activation self._norm_momentum = norm_momentum self._norm_epsilon = norm_epsilon if use_sync_bn: self._norm = layers.experimental.SyncBatchNormalization else: self._norm = layers.BatchNormalization self._kernel_initializer = kernel_initializer self._kernel_regularizer = kernel_regularizer self._bias_regularizer = bias_regularizer if tf.keras.backend.image_data_format() == 'channels_last': bn_axis = -1 else: bn_axis = 1 # Build ResNet3D backbone. inputs = tf.keras.Input(shape=input_specs.shape[1:]) # Build stem. if stem_type == 'v0': x = layers.Conv3D( filters=64, kernel_size=[stem_conv_temporal_kernel_size, 7, 7], strides=[stem_conv_temporal_stride, 2, 2], use_bias=False, padding='same', kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer)( inputs) x = self._norm( axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)( x) x = tf_utils.get_activation(activation)(x) elif stem_type == 'v1': x = layers.Conv3D( filters=32, kernel_size=[stem_conv_temporal_kernel_size, 3, 3], strides=[stem_conv_temporal_stride, 2, 2], use_bias=False, padding='same', kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer)( inputs) x = self._norm( axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)( x) x = tf_utils.get_activation(activation)(x) x = layers.Conv3D( filters=32, kernel_size=[1, 3, 3], strides=[1, 1, 1], use_bias=False, padding='same', kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer)( x) x = self._norm( axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)( x) x = tf_utils.get_activation(activation)(x) x = layers.Conv3D( filters=64, kernel_size=[1, 3, 3], strides=[1, 1, 1], use_bias=False, padding='same', kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer)( x) x = self._norm( axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)( x) x = tf_utils.get_activation(activation)(x) else: raise ValueError(f'Stem type {stem_type} not supported.') temporal_kernel_size = 1 if stem_pool_temporal_stride == 1 else 3 x = layers.MaxPool3D( pool_size=[temporal_kernel_size, 3, 3], strides=[stem_pool_temporal_stride, 2, 2], padding='same')( x) # Build intermediate blocks and endpoints. resnet_specs = RESNET_SPECS[model_id] if len(temporal_strides) != len(resnet_specs) or len( temporal_kernel_sizes) != len(resnet_specs): raise ValueError( 'Number of blocks in temporal specs should equal to resnet_specs.') endpoints = {} for i, resnet_spec in enumerate(resnet_specs): if resnet_spec[0] == 'bottleneck3d': block_fn = nn_blocks_3d.BottleneckBlock3D else: raise ValueError('Block fn `{}` is not supported.'.format( resnet_spec[0])) x = self._block_group( inputs=x, filters=resnet_spec[1], temporal_kernel_sizes=temporal_kernel_sizes[i], temporal_strides=temporal_strides[i], spatial_strides=(1 if i == 0 else 2), block_fn=block_fn, block_repeats=resnet_spec[2], stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate( self._init_stochastic_depth_rate, i + 2, 5), use_self_gating=use_self_gating[i] if use_self_gating else False, name='block_group_l{}'.format(i + 2)) endpoints[str(i + 2)] = x self._output_specs = {l: endpoints[l].get_shape() for l in endpoints} super(ResNet3D, self).__init__(inputs=inputs, outputs=endpoints, **kwargs) def _block_group(self, inputs: tf.Tensor, filters: int, temporal_kernel_sizes: Tuple[int], temporal_strides: int, spatial_strides: int, block_fn: Callable[ ..., tf.keras.layers.Layer] = nn_blocks_3d.BottleneckBlock3D, block_repeats: int = 1, stochastic_depth_drop_rate: float = 0.0, use_self_gating: bool = False, name: str = 'block_group'): """Creates one group of blocks for the ResNet3D model. Args: inputs: A `tf.Tensor` of size `[batch, channels, height, width]`. filters: An `int` of number of filters for the first convolution of the layer. temporal_kernel_sizes: A tuple that specifies the temporal kernel sizes for each block in the current group. temporal_strides: An `int` of temporal strides for the first convolution in this group. spatial_strides: An `int` stride to use for the first convolution of the layer. If greater than 1, this layer will downsample the input. block_fn: Either `nn_blocks.ResidualBlock` or `nn_blocks.BottleneckBlock`. block_repeats: An `int` of number of blocks contained in the layer. stochastic_depth_drop_rate: A `float` of drop rate of the current block group. use_self_gating: A `bool` that specifies whether to apply self-gating module or not. name: A `str` name for the block. Returns: The output `tf.Tensor` of the block layer. """ if len(temporal_kernel_sizes) != block_repeats: raise ValueError( 'Number of elements in `temporal_kernel_sizes` must equal to `block_repeats`.' ) # Only apply self-gating module in the last block. use_self_gating_list = [False] * (block_repeats - 1) + [use_self_gating] x = block_fn( filters=filters, temporal_kernel_size=temporal_kernel_sizes[0], temporal_strides=temporal_strides, spatial_strides=spatial_strides, stochastic_depth_drop_rate=stochastic_depth_drop_rate, use_self_gating=use_self_gating_list[0], se_ratio=self._se_ratio, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer, activation=self._activation, use_sync_bn=self._use_sync_bn, norm_momentum=self._norm_momentum, norm_epsilon=self._norm_epsilon)( inputs) for i in range(1, block_repeats): x = block_fn( filters=filters, temporal_kernel_size=temporal_kernel_sizes[i], temporal_strides=1, spatial_strides=1, stochastic_depth_drop_rate=stochastic_depth_drop_rate, use_self_gating=use_self_gating_list[i], se_ratio=self._se_ratio, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer, activation=self._activation, use_sync_bn=self._use_sync_bn, norm_momentum=self._norm_momentum, norm_epsilon=self._norm_epsilon)( x) return tf.identity(x, name=name) def get_config(self): config_dict = { 'model_id': self._model_id, 'temporal_strides': self._temporal_strides, 'temporal_kernel_sizes': self._temporal_kernel_sizes, 'stem_type': self._stem_type, 'stem_conv_temporal_kernel_size': self._stem_conv_temporal_kernel_size, 'stem_conv_temporal_stride': self._stem_conv_temporal_stride, 'stem_pool_temporal_stride': self._stem_pool_temporal_stride, 'use_self_gating': self._use_self_gating, 'se_ratio': self._se_ratio, 'init_stochastic_depth_rate': self._init_stochastic_depth_rate, 'activation': self._activation, 'use_sync_bn': self._use_sync_bn, 'norm_momentum': self._norm_momentum, 'norm_epsilon': self._norm_epsilon, 'kernel_initializer': self._kernel_initializer, 'kernel_regularizer': self._kernel_regularizer, 'bias_regularizer': self._bias_regularizer, } return config_dict @classmethod def from_config(cls, config, custom_objects=None): return cls(**config) @property def output_specs(self): """A dict of {level: TensorShape} pairs for the model output.""" return self._output_specs @factory.register_backbone_builder('resnet_3d') def build_resnet3d( input_specs: tf.keras.layers.InputSpec, backbone_config: hyperparams.Config, norm_activation_config: hyperparams.Config, l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model: """Builds ResNet 3d backbone from a config.""" backbone_cfg = backbone_config.get() # Flatten configs before passing to the backbone. temporal_strides = [] temporal_kernel_sizes = [] use_self_gating = [] for block_spec in backbone_cfg.block_specs: temporal_strides.append(block_spec.temporal_strides) temporal_kernel_sizes.append(block_spec.temporal_kernel_sizes) use_self_gating.append(block_spec.use_self_gating) return ResNet3D( model_id=backbone_cfg.model_id, temporal_strides=temporal_strides, temporal_kernel_sizes=temporal_kernel_sizes, use_self_gating=use_self_gating, input_specs=input_specs, stem_type=backbone_cfg.stem_type, stem_conv_temporal_kernel_size=backbone_cfg .stem_conv_temporal_kernel_size, stem_conv_temporal_stride=backbone_cfg.stem_conv_temporal_stride, stem_pool_temporal_stride=backbone_cfg.stem_pool_temporal_stride, init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate, se_ratio=backbone_cfg.se_ratio, activation=norm_activation_config.activation, use_sync_bn=norm_activation_config.use_sync_bn, norm_momentum=norm_activation_config.norm_momentum, norm_epsilon=norm_activation_config.norm_epsilon, kernel_regularizer=l2_regularizer) @factory.register_backbone_builder('resnet_3d_rs') def build_resnet3d_rs( input_specs: tf.keras.layers.InputSpec, backbone_config: hyperparams.Config, norm_activation_config: hyperparams.Config, l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model: """Builds ResNet-3D-RS backbone from a config.""" backbone_cfg = backbone_config.get() # Flatten configs before passing to the backbone. temporal_strides = [] temporal_kernel_sizes = [] use_self_gating = [] for i, block_spec in enumerate(backbone_cfg.block_specs): temporal_strides.append(block_spec.temporal_strides) use_self_gating.append(block_spec.use_self_gating) block_repeats_i = RESNET_SPECS[backbone_cfg.model_id][i][-1] temporal_kernel_sizes.append(list(block_spec.temporal_kernel_sizes) * block_repeats_i) return ResNet3D( model_id=backbone_cfg.model_id, temporal_strides=temporal_strides, temporal_kernel_sizes=temporal_kernel_sizes, use_self_gating=use_self_gating, input_specs=input_specs, stem_type=backbone_cfg.stem_type, stem_conv_temporal_kernel_size=backbone_cfg .stem_conv_temporal_kernel_size, stem_conv_temporal_stride=backbone_cfg.stem_conv_temporal_stride, stem_pool_temporal_stride=backbone_cfg.stem_pool_temporal_stride, init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate, se_ratio=backbone_cfg.se_ratio, activation=norm_activation_config.activation, use_sync_bn=norm_activation_config.use_sync_bn, norm_momentum=norm_activation_config.norm_momentum, norm_epsilon=norm_activation_config.norm_epsilon, kernel_regularizer=l2_regularizer)
1e0051a965e57364e9feb7ed0b8838ad82f4619a
95978243568bee7c33a2d6c100f42e0c5a15c933
/coremltools/converters/mil/mil/ops/defs/iOS16/tensor_transformation.py
473b7c683407b03e7a405cbd4224e62ba2dda7be
[ "BSD-3-Clause" ]
permissive
cclauss/coremltools
6cc68874c45ce1035b1b59417eacfdce738d725d
0c63b0aeb63acedce0d39446c19b80cc47d57a7a
refs/heads/master
2023-05-01T16:56:43.042564
2023-04-14T20:16:24
2023-04-14T20:16:24
106,254,817
0
1
null
2017-10-09T08:11:43
2017-10-09T08:11:43
null
UTF-8
Python
false
false
6,920
py
# Copyright (c) 2022, Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can be # found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clausefrom coremltools.converters.mil.mil import types import numpy as np from coremltools.converters.mil.mil import types from coremltools.converters.mil.mil.input_type import (InputSpec, TensorInputType, TupleInputType) from coremltools.converters.mil.mil.operation import Operation from coremltools.converters.mil.mil.ops.defs._op_reqs import register_op from coremltools.converters.mil.mil.ops.defs.iOS16 import _IOS16_TARGET from coremltools.converters.mil.mil.types.symbolic import any_symbolic @register_op(opset_version=_IOS16_TARGET) class reshape_like(Operation): """ Reshape a tensor to an output shape specified by some or all dimensions of a tuple of reference tensors ``ref_tensors``. Parameters ---------- x: tensor<\*?, T> (Required) * The input tensor to be reshaped. ref_tensors: Tuple[tensor<\*?, R>] (Required) * A tuple of tensors that define the output shape. begins: Tuple[const<int32>] (Required) * A tuple of integers specifying the begin index into the shape vector of the corresponding ``ref_tensor``. ends: Tuple[const<int32>] (Required) * A tuple of integers specifying the end index into the shape vector of the corresponding ``ref_tensor``. end_masks: Tuple[const<bool>] (Required) * If ``True``, select all axes from the begin index until the end of the corresponding ``ref_tensor``, as in ``ref_tensors[i].shape[begins[i]:]``. Notes ----- The output shape is computed as follows: .. sourcecode:: python output_shape = [] num_of_refs = len(begins) for i in range(num_of_refs): if end_masks[i]: output_shape.append(ref_tensor_i.shape[begins[i]:]) else: output_shape.append(ref_tensor_i.shape[begins[i]:ends[i]]) output_shape = np.concat(output_shape, axis=0) The following is an example: .. sourcecode:: python ref_tensors=[tensor[2, 3, 4], tensor[1, 5, 6]] begins=[0, 1] ends=[2, 0] end_masks=[False, True] The output shape would be ``(2, 3, 5, 6)``. Returns ------- tensor<\*?, T> * Same type as input tensor ``x``. * Output shape is computed by ``ref_tensors``, ``begins``, ``ends``, and ``end_masks``. Attributes ---------- T: fp16, fp32, i32, bool R: fp16, fp32, i32, bool """ input_spec = InputSpec( x=TensorInputType(type_domain="T"), ref_tensors=TupleInputType(), begins=TupleInputType(), ends=TupleInputType(), end_masks=TupleInputType(), ) type_domains = { "T": (types.fp16, types.fp32, types.int32, types.bool), } def _check_is_const_tuple_with_scalar(self, param, expected_type, param_name): """ This utility function checks the param is a Tuple of scalar with expected data type. """ for x in param: if x.dtype != expected_type or x.shape != (): msg = "In op reshape_like {}, {} must be a Tuple of scalar {}. Got a {} tensor with shape {}.".format( self.name, param_name, expected_type.__type_info__(), x.dtype.__type_info__(), x.shape, ) raise ValueError(msg) def type_inference(self): # Validation the inputs ref_number = len(self.ref_tensors) if len(self.begins) != ref_number or len(self.ends) != ref_number or len(self.end_masks) != ref_number: msg = ( "Op reshape_like {}'s ref_tensors, begins, ends and end_masks must have exactly the same length. " "Got {}, {}, {} and {}." ).format(self.name, ref_number, len(self.begins), len(self.ends), len(self.end_masks)) self._check_is_const_tuple_with_scalar(self.begins, types.int32, "begins") self._check_is_const_tuple_with_scalar(self.ends, types.int32, "ends") self._check_is_const_tuple_with_scalar(self.end_masks, types.bool, "end_masks") # Compute the output shape out_shape = () for ref_tensor, begin, end, end_mask in zip(self.ref_tensors, self.begins, self.ends, self.end_masks): shape = ref_tensor.shape begin, end, end_mask = begin.val, end.val, end_mask.val ref_shape = shape[begin:end] if not end_mask else shape[begin:] out_shape += tuple(ref_shape) # Output shape must be known at compile time if any_symbolic(out_shape): msg = "Output shape of a reshape_like op {} must not be symbolic. Got {}".format(self.name, out_shape) raise ValueError(msg) # Output shape must be consistent with the input shape if not any_symbolic(self.x.shape): if np.prod(self.x.shape) != np.prod(out_shape): msg = "At reshape_like op {}, input shape {} not consistent with the output shape {}.".format( self.name, self.x.shape, out_shape ) raise ValueError(msg) return types.tensor(self.x.dtype, out_shape) @register_op(opset_version=_IOS16_TARGET) class pixel_unshuffle(Operation): """ Rearrange elements in a tensor from spatial dimensions into depth (channel). It is basically the inverse operation of `pixel_shuffle <#coremltools.converters.mil.mil.ops.defs.iOS15.tensor_transformation.pixel_shuffle>`_. Equivalent to PyTorch's ``PixelUnshuffle``. Parameters ---------- x: tensor<[n, C, H / f , W / f], T> (Required) * Input tensor of rank ``4``. downscale_factor: const<i32> * Factor to decrease spatial resolution by. Returns ------- tensor<[n, C * f^2, H, W], T> * Where ``f`` is the downscale factor. Attributes ---------- T: fp16, fp32 References ---------- `torch.nn.PixelUnshuffle <https://pytorch.org/docs/stable/generated/torch.nn.PixelUnshuffle.html>`_ """ input_spec = InputSpec( x=TensorInputType(type_domain="T"), downscale_factor=TensorInputType(const=True, type_domain=types.uint32), ) type_domains = { "T": (types.fp16, types.fp32), } def type_inference(self): x_type = self.x.dtype n, c, h, w = self.x.shape f = self.downscale_factor.val ret_shape = (n, c * f * f, h / f, w / f) return types.tensor(x_type, ret_shape)
729cda05f7cf671ee84fa46f47321cf0aba2496a
b1c97831338b0c2f8099a56f23bddf394561e0e3
/Chapter 05/queueJoin.py
440160eac7fb2079148b0631868f55e20a0c9aca
[ "MIT" ]
permissive
PacktPublishing/Learning-Concurrency-in-Python
03b242f64a0b6515a41ceccab86936dc54b20e15
bafc928ce9edc601e3def4441b51555ede13c973
refs/heads/master
2023-02-06T00:51:37.297067
2023-01-30T08:05:25
2023-01-30T08:05:25
100,243,064
77
51
MIT
2018-10-26T12:14:45
2017-08-14T08:03:03
Python
UTF-8
Python
false
false
530
py
import threading import queue import time def mySubscriber(queue): time.sleep(1) while not queue.empty(): item = queue.get() if item is None: break print("{} removed {} from the queue".format(threading.current_thread(), item)) queue.task_done() myQueue = queue.Queue() for i in range(5): myQueue.put(i) print("Queue Populated") thread = threading.Thread(target=mySubscriber, args=(myQueue,)) thread.start() print("Not Progressing Till Queue is Empty") myQueue.join() print("Queue is now empty")
bb8ab784baecc945d7331bba2ea31191ffddd9fb
10d98fecb882d4c84595364f715f4e8b8309a66f
/f_net/configs/classification.py
2d1e0d6deb8ebaa8cff5ae3928c884995cda95e1
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
afcarl/google-research
51c7b70d176c0d70a5ee31ea1d87590f3d6c6f42
320a49f768cea27200044c0d12f394aa6c795feb
refs/heads/master
2021-12-02T18:36:03.760434
2021-09-30T20:59:01
2021-09-30T21:07:02
156,725,548
1
0
Apache-2.0
2018-11-08T15:13:53
2018-11-08T15:13:52
null
UTF-8
Python
false
false
2,352
py
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config for fine-tuning on the GLUE and SuperGLUE benchmarks.""" from f_net.configs import base as base_config from f_net.configs.base import ModelArchitecture from f_net.configs.base import TrainingMode def get_config(): """Config for fine-tuning (classification).""" config = base_config.get_config() # Determines which model to use. config.model_arch: ModelArchitecture = ModelArchitecture.F_NET config.mode: TrainingMode = TrainingMode.CLASSIFICATION # This is either "glue/DS_g", where DS_g is one of the following: # [cola, sst2, mrpc, qqp, stsb, mnli, qnli, rte, wnli]. config.dataset_name: str = "glue/rte" # How often to save the model checkpoint. config.save_checkpoints_steps: int = 200 # Training metrics will be computed (1 / eval_proportion) times during # training at regularly spaced intervals, regardless of dataset size. config.eval_proportion: float = 0.05 # Total batch size for training. config.train_batch_size: int = 64 # Total batch size for eval (and predictions). config.eval_batch_size: int = 32 # The base learning rate for Adam. config.learning_rate: float = 1e-5 # Total number of training epochs to perform. config.num_train_epochs: float = 3 # Proportion of training to perform linear learning rate warmup for. # E.g., 0.1 = 10% of training steps. config.warmup_proportion: float = 0.1 # Maximum number of eval steps on validation split. Actual number of step may # be less for small eval datasets. config.max_num_eval_steps: int = int(1e5) # Initial checkpoint directory or filepath (usually from a pre-trained model). config.init_checkpoint_dir: str = "" # Dummy attribute for repeated runs. config.trial: int = 0 return config
09d1805c4d1b7e98881a9a7b658b3a20a6a61e32
2c07ae4239d217f4a4b3d356ca4be31629dea4d5
/assets.py
2c3cc15e2b9d049fc77ed0707642012353ae75fc
[]
no_license
themylogin/thelogin.ru
771afe0e3afbdc1072695fb2d4920f6ec3b7c6d3
1f66ff940dfafe6d065c63e832d51b5e16522edc
refs/heads/master
2023-04-25T22:02:56.004822
2020-03-22T18:02:40
2020-03-22T18:02:40
7,691,963
0
0
null
2023-04-15T01:17:22
2013-01-18T18:31:57
Python
UTF-8
Python
false
false
1,157
py
#!/usr/bin/python # -*- coding: utf-8 -*- import cssmin import glob import jsmin import os from config import config assets = {} assets_dir = os.path.join(config.path, "asset") for asset, function, separator in [("css", cssmin.cssmin, ""), ("js", jsmin.jsmin, ";")]: asset_dir = os.path.join(assets_dir, asset) asset_list = filter(lambda filename: filename.endswith("." + asset) and not filename.startswith("packed-"), sorted(os.listdir(asset_dir))) if config.debug: assets[asset] = asset_list else: asset_time = int(max([os.stat(os.path.join(asset_dir, filename)).st_mtime for filename in asset_list])) asset_packed = "packed-%d.%s" % (asset_time, asset) asset_packed_path = os.path.join(asset_dir, asset_packed) if not os.path.exists(asset_packed_path): map(os.unlink, glob.glob(os.path.join(asset_dir, "packed-*"))) open(asset_packed_path, "w").write(separator.join([ (function if function else lambda x: x)(open(os.path.join(asset_dir, filename)).read()) for filename in asset_list ])) assets[asset] = [asset_packed]
a6c00c649c8adf9f2fd19814f9961b8051ffa0c4
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/dccf58efe393b6912faf2e89cf7e87942e28273e-<_connect>-fix.py
166d99bac0993991bbe9ef5d461007d89ccd7f3a
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
def _connect(self): if (not HAS_WINRM): raise AnsibleError(('winrm or requests is not installed: %s' % to_text(WINRM_IMPORT_ERR))) elif (not HAS_XMLTODICT): raise AnsibleError(('xmltodict is not installed: %s' % to_text(XMLTODICT_IMPORT_ERR))) super(Connection, self)._connect() if (not self.protocol): self.protocol = self._winrm_connect() self._connected = True return self
68f4a6ea2404ea0483d10235fd5a32b3766bdc86
bbe6f37f7347cb83f08846d505ac4aa6bc0031e6
/purity_fb/purity_fb_1dot9/apis/targets_api.py
2e7e2860b4552661aeceb860da0277f2a1e17e47
[ "Apache-2.0" ]
permissive
bsamz-ps/purity_fb_python_client
02ff7213075cf1948e2db7b0835cc5fcc56f328a
11f27ef0c72d8aac1fc4e1ed036cca038b85dfa4
refs/heads/master
2021-02-19T08:11:04.042758
2020-02-12T23:56:08
2020-02-12T23:56:08
245,294,511
0
0
NOASSERTION
2020-03-06T00:14:27
2020-03-06T00:14:26
null
UTF-8
Python
false
false
28,372
py
# coding: utf-8 """ Pure Storage FlashBlade REST 1.9 Python SDK Pure Storage FlashBlade REST 1.9 Python SDK. Compatible with REST API versions 1.0 - 1.9. Developed by [Pure Storage, Inc](http://www.purestorage.com/). Documentations can be found at [purity-fb.readthedocs.io](http://purity-fb.readthedocs.io/). OpenAPI spec version: 1.9 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class TargetsApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def create_targets(self, target, **kwargs): """ Create a new target. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.create_targets(target, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param TargetPost target: The attribute map used to create the target. (required) :param list[str] names: A comma-separated list of resource names. This cannot be provided together with the ids query parameters. :return: TargetResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.create_targets_with_http_info(target, **kwargs) else: (data) = self.create_targets_with_http_info(target, **kwargs) return data def create_targets_with_http_info(self, target, **kwargs): """ Create a new target. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.create_targets_with_http_info(target, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param TargetPost target: The attribute map used to create the target. (required) :param list[str] names: A comma-separated list of resource names. This cannot be provided together with the ids query parameters. :return: TargetResponse If the method is called asynchronously, returns the request thread. """ all_params = ['target', 'names'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method create_targets" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'target' is set if ('target' not in params) or (params['target'] is None): raise ValueError("Missing the required parameter `target` when calling `create_targets`") collection_formats = {} path_params = {} query_params = [] if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' header_params = {} form_params = [] local_var_files = {} body_params = None if 'target' in params: body_params = params['target'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/targets', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='TargetResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def delete_targets(self, **kwargs): """ Delete a target. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.delete_targets(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param list[str] ids: A comma-separated list of resource IDs. This cannot be provided together with the name or names query parameters. :param list[str] names: A comma-separated list of resource names. This cannot be provided together with the ids query parameters. :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.delete_targets_with_http_info(**kwargs) else: (data) = self.delete_targets_with_http_info(**kwargs) return data def delete_targets_with_http_info(self, **kwargs): """ Delete a target. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.delete_targets_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param list[str] ids: A comma-separated list of resource IDs. This cannot be provided together with the name or names query parameters. :param list[str] names: A comma-separated list of resource names. This cannot be provided together with the ids query parameters. :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['ids', 'names'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_targets" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'ids' in params: query_params.append(('ids', params['ids'])) collection_formats['ids'] = 'csv' if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/targets', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list_targets(self, **kwargs): """ List targets. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_targets(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str filter: The filter to be used for query. :param list[str] ids: A comma-separated list of resource IDs. This cannot be provided together with the name or names query parameters. :param int limit: limit, should be >= 0 :param list[str] names: A comma-separated list of resource names. This cannot be provided together with the ids query parameters. :param str sort: The way to order the results. :param int start: start :param str token: token :return: TargetResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.list_targets_with_http_info(**kwargs) else: (data) = self.list_targets_with_http_info(**kwargs) return data def list_targets_with_http_info(self, **kwargs): """ List targets. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_targets_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str filter: The filter to be used for query. :param list[str] ids: A comma-separated list of resource IDs. This cannot be provided together with the name or names query parameters. :param int limit: limit, should be >= 0 :param list[str] names: A comma-separated list of resource names. This cannot be provided together with the ids query parameters. :param str sort: The way to order the results. :param int start: start :param str token: token :return: TargetResponse If the method is called asynchronously, returns the request thread. """ all_params = ['filter', 'ids', 'limit', 'names', 'sort', 'start', 'token'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list_targets" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'filter' in params: query_params.append(('filter', params['filter'])) if 'ids' in params: query_params.append(('ids', params['ids'])) collection_formats['ids'] = 'csv' if 'limit' in params: query_params.append(('limit', params['limit'])) if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' if 'sort' in params: query_params.append(('sort', params['sort'])) if 'start' in params: query_params.append(('start', params['start'])) if 'token' in params: query_params.append(('token', params['token'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/targets', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='TargetResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list_targets_performance_replication(self, **kwargs): """ List instant or historical target replication performance. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_targets_performance_replication(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int end_time: Time to end sample in milliseconds since epoch. :param str filter: The filter to be used for query. :param list[str] ids: A comma-separated list of resource IDs. This cannot be provided together with the name or names query parameters. :param int limit: limit, should be >= 0 :param list[str] names: A comma-separated list of resource names. This cannot be provided together with the ids query parameters. :param int resolution: sample frequency in milliseconds :param str sort: The way to order the results. :param int start: start :param int start_time: Time to start sample in milliseconds since epoch. :param str token: token :param bool total_only: Return only the total object. :param str type: to sample space of either file systems, object store, or all :return: PerformanceReplicationResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.list_targets_performance_replication_with_http_info(**kwargs) else: (data) = self.list_targets_performance_replication_with_http_info(**kwargs) return data def list_targets_performance_replication_with_http_info(self, **kwargs): """ List instant or historical target replication performance. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_targets_performance_replication_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int end_time: Time to end sample in milliseconds since epoch. :param str filter: The filter to be used for query. :param list[str] ids: A comma-separated list of resource IDs. This cannot be provided together with the name or names query parameters. :param int limit: limit, should be >= 0 :param list[str] names: A comma-separated list of resource names. This cannot be provided together with the ids query parameters. :param int resolution: sample frequency in milliseconds :param str sort: The way to order the results. :param int start: start :param int start_time: Time to start sample in milliseconds since epoch. :param str token: token :param bool total_only: Return only the total object. :param str type: to sample space of either file systems, object store, or all :return: PerformanceReplicationResponse If the method is called asynchronously, returns the request thread. """ all_params = ['end_time', 'filter', 'ids', 'limit', 'names', 'resolution', 'sort', 'start', 'start_time', 'token', 'total_only', 'type'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list_targets_performance_replication" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'end_time' in params: query_params.append(('end_time', params['end_time'])) if 'filter' in params: query_params.append(('filter', params['filter'])) if 'ids' in params: query_params.append(('ids', params['ids'])) collection_formats['ids'] = 'csv' if 'limit' in params: query_params.append(('limit', params['limit'])) if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' if 'resolution' in params: query_params.append(('resolution', params['resolution'])) if 'sort' in params: query_params.append(('sort', params['sort'])) if 'start' in params: query_params.append(('start', params['start'])) if 'start_time' in params: query_params.append(('start_time', params['start_time'])) if 'token' in params: query_params.append(('token', params['token'])) if 'total_only' in params: query_params.append(('total_only', params['total_only'])) if 'type' in params: query_params.append(('type', params['type'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/targets/performance/replication', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PerformanceReplicationResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update_targets(self, target, **kwargs): """ Update an existing target. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_targets(target, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param Target target: The attribute map used to update the target. (required) :param list[str] ids: A comma-separated list of resource IDs. This cannot be provided together with the name or names query parameters. :param list[str] names: A comma-separated list of resource names. This cannot be provided together with the ids query parameters. :return: TargetResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.update_targets_with_http_info(target, **kwargs) else: (data) = self.update_targets_with_http_info(target, **kwargs) return data def update_targets_with_http_info(self, target, **kwargs): """ Update an existing target. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_targets_with_http_info(target, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param Target target: The attribute map used to update the target. (required) :param list[str] ids: A comma-separated list of resource IDs. This cannot be provided together with the name or names query parameters. :param list[str] names: A comma-separated list of resource names. This cannot be provided together with the ids query parameters. :return: TargetResponse If the method is called asynchronously, returns the request thread. """ all_params = ['target', 'ids', 'names'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_targets" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'target' is set if ('target' not in params) or (params['target'] is None): raise ValueError("Missing the required parameter `target` when calling `update_targets`") collection_formats = {} path_params = {} query_params = [] if 'ids' in params: query_params.append(('ids', params['ids'])) collection_formats['ids'] = 'csv' if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' header_params = {} form_params = [] local_var_files = {} body_params = None if 'target' in params: body_params = params['target'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.9/targets', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='TargetResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
42a408a3006e99347d1520d5d60ec745b032b23a
289e56599c3755e81d642a104b7861a4fab91142
/pub/entities.py
4d4df366c77dc0f6cb6db6143db7e20391423b43
[]
no_license
chaselgrove/cs-pub-portal
79ebae04b6dc1537cb10a15ddb369fd4636ebd8d
657e157585ac42b157cd05ed3e281f3f293b6144
refs/heads/master
2021-01-17T14:30:49.850801
2016-07-28T18:29:22
2016-07-28T18:29:22
52,994,758
0
0
null
null
null
null
UTF-8
Python
false
false
36,472
py
from collections import OrderedDict from . import errors from .utils import annot_url from .fields import * class Entity(object): """base class for entities""" @classmethod def _get_from_def(cls, pub, id, values): obj = cls(pub, id) for (annotation_id, name, value) in values: obj.annotation_ids.add(annotation_id) if name in obj.fields: obj.fields[name].set(value) else: err = errors.UnknownFieldError(name) obj.errors.append(err) return obj @classmethod def _clear_pmid(cls, pmid, cursor): query = "DELETE FROM %s WHERE publication = %%s" % cls.table cursor.execute(query, (pmid, )) return def __init__(self, pub, id): self.pub = pub self.id = id self.annotation_ids = set() self.errors = [] self.points = [] self.links = [] self.fields = OrderedDict() for (key, cls, display_name) in self.field_defs: self.fields[key] = cls(display_name) return def __getitem__(self, key): return self.fields[key].value def _insert_annotations(self, cursor): query = """INSERT INTO entity_annotation (publication, entity_type, entity_id, annotation_id) VALUES (%s, %s, %s, %s)""" for annotation_id in self.annotation_ids: params = (self.pub.pmid, self.table, self.id, annotation_id) cursor.execute(query, params) return def _insert_errors(self, cursor): query = """INSERT INTO entity_error (publication, entity_type, entity_id, error_type, data) VALUES (%s, %s, %s, %s, %s)""" for error in self.errors: params = (self.pub.pmid, self.table, self.id, error.__class__.__name__, error.data) cursor.execute(query, params) return @classmethod def _get_annotation_ids_from_db(cls, pub, d, cursor): query = """SELECT entity_id, annotation_id FROM entity_annotation WHERE publication = %s AND entity_type = %s""" cursor.execute(query, (pub.pmid, cls.table)) for (entity_id, annotation_id) in cursor: d[entity_id].annotation_ids.add(annotation_id) return @classmethod def _get_errors_from_db(cls, pub, d, cursor): query = """SELECT entity_id, error_type, data FROM entity_error WHERE publication = %s AND entity_type = %s""" cursor.execute(query, (pub.pmid, cls.table)) for (entity_id, error_type, data) in cursor: cls = getattr(errors, error_type) err = cls(data) d[entity_id].errors.append(err) return def set_related(self): """set related entities""" return def get_scores(self): """obj.get_scores() -> (score, maximum possible score)""" s = 0 max = 0 for (val, _) in self.points: if val > 0: max += val s += val return (s, max) def annotation_links(self): for annot_id in self.annotation_ids: url = annot_url(annot_id) yield '<a href="%s">%s</a>' % (url, annot_id) return class SubjectGroup(Entity): field_defs = (('diagnosis', Field, 'Diagnosis'), ('nsubjects', Field, 'Subjects'), ('agemean', Field, 'Age mean'), ('agesd', Field, 'Age SD')) table = 'subject_group' @classmethod def _get_from_db(cls, pub, cursor): d = {} query = """SELECT * FROM subject_group WHERE publication = %s""" cursor.execute(query, (pub.pmid, )) cols = [ el[0] for el in cursor.description ] for row in cursor: row_dict = dict(zip(cols, row)) obj = SubjectGroup(pub, row_dict['id']) obj.fields['diagnosis'].set(row_dict['diagnosis']) obj.fields['nsubjects'].set(row_dict['n_subjects']) obj.fields['agemean'].set(row_dict['age_mean']) obj.fields['agesd'].set(row_dict['age_sd']) d[row_dict['id']] = obj SubjectGroup._get_annotation_ids_from_db(pub, d, cursor) SubjectGroup._get_errors_from_db(pub, d, cursor) return d def _insert(self, cursor): query = """INSERT INTO subject_group (publication, id, diagnosis, n_subjects, age_mean, age_sd) VALUES (%s, %s, %s, %s, %s, %s)""" params = (self.pub.pmid, self.id, self['diagnosis'], self['nsubjects'], self['agemean'], self['agesd']) cursor.execute(query, params) self._insert_annotations(cursor) self._insert_errors(cursor) return def score(self): self.points.append((5, 'Existential credit')) # check for missing fields for (name, field) in self.fields.iteritems(): if not field.value: self.points.append((-1, 'Missing %s' % name)) return class AcquisitionInstrument(Entity): field_defs = (('type', Field, 'Type'), ('location', Field, 'Location'), ('field', Field, 'Field'), ('manufacturer', Field, 'Manufacturer'), ('model', Field, 'Model')) table = 'acquisition_instrument' @classmethod def _get_from_db(cls, pub, cursor): d = {} query = """SELECT * FROM acquisition_instrument WHERE publication = %s""" cursor.execute(query, (pub.pmid, )) cols = [ el[0] for el in cursor.description ] for row in cursor: row_dict = dict(zip(cols, row)) obj = AcquisitionInstrument(pub, row_dict['id']) obj.fields['type'].set(row_dict['type']) obj.fields['location'].set(row_dict['location']) obj.fields['field'].set(row_dict['field']) obj.fields['manufacturer'].set(row_dict['manufacturer']) obj.fields['model'].set(row_dict['model']) d[row_dict['id']] = obj AcquisitionInstrument._get_annotation_ids_from_db(pub, d, cursor) AcquisitionInstrument._get_errors_from_db(pub, d, cursor) return d def _insert(self, cursor): query = """INSERT INTO acquisition_instrument (publication, id, type, location, field, manufacturer, model) VALUES (%s, %s, %s, %s, %s, %s, %s)""" params = (self.pub.pmid, self.id, self['type'], self['location'], self['field'], self['manufacturer'], self['model']) cursor.execute(query, params) self._insert_annotations(cursor) self._insert_errors(cursor) return def score(self): self.points.append((7, 'Existential credit')) # check for missing fields for (name, field) in self.fields.iteritems(): if not field.value: if name == 'field': self.points.append((-2, 'Missing %s' % name)) else: self.points.append((-1, 'Missing %s' % name)) return class Acquisition(Entity): field_defs = (('type', Field, 'Type'), ('acquisitioninstrument', Field, 'Acquisition Instrument'), ('nslices', Field, 'N Slices'), ('prep', Field, 'Prep'), ('tr', Field, 'TE'), ('te', Field, 'TR'), ('ti', Field, 'TI'), ('flipangle', Field, 'Flip Angle'), ('fov', Field, 'FOV'), ('slicethickness', Field, 'Slice Thickness'), ('matrix', Field, 'Matrix'), ('nexcitations', Field, 'N Excitations')) table = 'acquisition' @classmethod def _get_from_db(cls, pub, cursor): d = {} query = """SELECT * FROM acquisition WHERE publication = %s""" cursor.execute(query, (pub.pmid, )) cols = [ el[0] for el in cursor.description ] for row in cursor: row_dict = dict(zip(cols, row)) obj = Acquisition(pub, row_dict['id']) val = row_dict['acquisition_instrument'] obj.fields['acquisitioninstrument'].set(val) obj.fields['type'].set(row_dict['type']) obj.fields['nslices'].set(row_dict['n_slice']) obj.fields['prep'].set(row_dict['prep']) obj.fields['tr'].set(row_dict['tr']) obj.fields['te'].set(row_dict['te']) obj.fields['ti'].set(row_dict['ti']) obj.fields['flipangle'].set(row_dict['flip_angle']) obj.fields['fov'].set(row_dict['fov']) obj.fields['slicethickness'].set(row_dict['slice_thickness']) obj.fields['matrix'].set(row_dict['matrix']) obj.fields['nexcitations'].set(row_dict['n_excitations']) d[row_dict['id']] = obj Acquisition._get_annotation_ids_from_db(pub, d, cursor) Acquisition._get_errors_from_db(pub, d, cursor) return d def _insert(self, cursor): query = """INSERT INTO acquisition (publication, id, acquisition_instrument, type, n_slice, prep, tr, te, ti, flip_angle, fov, slice_thickness, matrix, n_excitations) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)""" if self.acquisition_instrument: ai = self.acquisition_instrument.id else: ai = None params = (self.pub.pmid, self.id, ai, self['type'], self['nslices'], self['prep'], self['tr'], self['te'], self['ti'], self['flipangle'], self['fov'], self['slicethickness'], self['matrix'], self['nexcitations']) cursor.execute(query, params) self._insert_annotations(cursor) self._insert_errors(cursor) return def set_related(self): ai_id = self['acquisitioninstrument'] if ai_id is None: self.acquisition_instrument = None elif ai_id not in self.pub.entities['AcquisitionInstrument']: self.fields['acquisitioninstrument'].reset() self.acquisition_instrument = None msg = 'Undefined acquisition instrument "%s"' % ai_id self.errors.append(errors.LinkError(msg)) else: ai = self.pub.entities['AcquisitionInstrument'][ai_id] self.acquisition_instrument = ai return def score(self): self.points.append((3, 'Existential credit')) # check for missing fields if not self['type']: self.points.append((-1, 'Missing type')) if not self.acquisition_instrument: self.points.append((-1, 'Missing acquisition instrument')) return class Data(Entity): field_defs = (('url', URLField, 'URL'), ('doi', DOIField, 'DOI'), ('acquisition', Field, 'Acquisition'), ('subjectgroup', Field, 'Subject Group')) table = 'data' @classmethod def _get_from_db(cls, pub, cursor): d = {} query = """SELECT * FROM data WHERE publication = %s""" cursor.execute(query, (pub.pmid, )) cols = [ el[0] for el in cursor.description ] for row in cursor: row_dict = dict(zip(cols, row)) obj = Data(pub, row_dict['id']) obj.fields['url'].set(row_dict['url']) obj.fields['doi'].set(row_dict['doi']) obj.fields['acquisition'].set(row_dict['acquisition']) obj.fields['subjectgroup'].set(row_dict['subject_group']) d[row_dict['id']] = obj Data._get_annotation_ids_from_db(pub, d, cursor) Data._get_errors_from_db(pub, d, cursor) return d @classmethod def _clear_pmid(cls, pmid, cursor): query = "DELETE FROM dataXobservation WHERE publication = %s" cursor.execute(query, (pmid, )) super(Data, cls)._clear_pmid(pmid, cursor) return def __init__(self, pub, id): super(Data, self).__init__(pub, id) # set in Observation.set_related() self.observations = [] return def _insert(self, cursor): query = """INSERT INTO data (publication, id, acquisition, subject_group, url, doi) VALUES (%s, %s, %s, %s, %s, %s)""" if self.acquisition: aquisition = self.acquisition.id else: aquisition = None params = (self.pub.pmid, self.id, aquisition, self.subject_group.id, self['url'], self['doi']) cursor.execute(query, params) self._insert_annotations(cursor) self._insert_errors(cursor) return def set_related(self): a_id = self['acquisition'] if a_id is None: self.acquisition = None elif a_id not in self.pub.entities['Acquisition']: self.fields['acquisition'].reset() self.acquisition = None err = errors.LinkError('Undefined acquisition "%s"' % a_id) self.errors.append(err) else: self.acquisition = self.pub.entities['Acquisition'][a_id] sg_id = self['subjectgroup'] if sg_id is None: self.subject_group = None if sg_id not in self.pub.entities['SubjectGroup']: self.fields['subjectgroup'].reset() self.subject_group = None err = LinkError('Undefined subjectgroup "%s"' % sg_id) self.errors.append(err) else: self.subject_group = self.pub.entities['SubjectGroup'][sg_id] return def score(self): self.points.append((10, 'Existential credit')) if not self['url'] and not self['doi']: self.points.append((-5, 'No link to data (DOI or URL)')) if not self.subject_group: self.points.append((-1, 'Missing subject group')) if not self.acquisition: self.points.append((-1, 'Missing acquisition')) return class AnalysisWorkflow(Entity): field_defs = (('method', Field, 'Method'), ('methodurl', URLField, 'Method URL'), ('software', Field, 'Software'), ('softwarenitrcid', NITRCIDField, 'NITRC ID'), ('softwarerrid', RRIDField, 'Software RRID'), ('softwareurl', URLField, 'Software URL')) table = 'analysis_workflow' @classmethod def _get_from_db(cls, pub, cursor): d = {} query = """SELECT * FROM analysis_workflow WHERE publication = %s""" cursor.execute(query, (pub.pmid, )) cols = [ el[0] for el in cursor.description ] for row in cursor: row_dict = dict(zip(cols, row)) obj = AnalysisWorkflow(pub, row_dict['id']) obj.fields['method'].set(row_dict['method']) obj.fields['methodurl'].set(row_dict['methodurl']) obj.fields['software'].set(row_dict['software']) obj.fields['softwarenitrcid'].set(row_dict['software_nitrc_id']) obj.fields['softwarerrid'].set(row_dict['software_rrid']) obj.fields['softwareurl'].set(row_dict['software_url']) d[row_dict['id']] = obj AnalysisWorkflow._get_annotation_ids_from_db(pub, d, cursor) AnalysisWorkflow._get_errors_from_db(pub, d, cursor) return d def _insert(self, cursor): query = """INSERT INTO analysis_workflow (publication, id, method, methodurl, software, software_nitrc_id, software_rrid, software_url) VALUES (%s, %s, %s, %s, %s, %s, %s, %s)""" params = (self.pub.pmid, self.id, self['method'], self['methodurl'], self['software'], self['softwarenitrcid'], self['softwarerrid'], self['softwareurl']) cursor.execute(query, params) self._insert_annotations(cursor) self._insert_errors(cursor) return def score(self): self.points.append((7, 'Existential credit')) if not self['method']: self.points.append((-1, 'Missing method')) if not self['methodurl']: self.points.append((-2, 'Missing method URL')) if not self['software']: self.points.append((-1, 'Missing software')) if not self['softwarenitrcid'] \ and not self['softwarerrid'] \ and not self['softwareurl']: self.points.append((-2, 'Missing software link')) return class Observation(Entity): field_defs = (('data', MultiField, 'Data'), ('analysisworkflow', Field, 'Analysis Workflow'), ('measure', Field, 'Measure')) table = 'observation' @classmethod def _get_from_db(cls, pub, cursor): d = {} query = """SELECT * FROM observation WHERE publication = %s""" cursor.execute(query, (pub.pmid, )) cols = [ el[0] for el in cursor.description ] for row in cursor: row_dict = dict(zip(cols, row)) obj = Observation(pub, row_dict['id']) obj.fields['analysisworkflow'].set(row_dict['analysis_workflow']) obj.fields['measure'].set(row_dict['measure']) d[row_dict['id']] = obj query = """SELECT observation, data FROM dataXobservation WHERE publication = %s""" cursor.execute(query, (pub.pmid, )) for (observation_id, data_id) in cursor: d[observation_id].fields['data'].set(data_id) Observation._get_annotation_ids_from_db(pub, d, cursor) Observation._get_errors_from_db(pub, d, cursor) return d @classmethod def _clear_pmid(cls, pmid, cursor): query = "DELETE FROM dataXobservation WHERE publication = %s" cursor.execute(query, (pmid, )) query = """DELETE FROM observationXmodel_application WHERE publication = %s""" cursor.execute(query, (pmid, )) super(Observation, cls)._clear_pmid(pmid, cursor) return def __init__(self, pub, id): super(Observation, self).__init__(pub, id) # set in ModelApplication.set_related() self.model_applications = [] return def _insert(self, cursor): query = """INSERT INTO observation (publication, id, analysis_workflow, measure) VALUES (%s, %s, %s, %s)""" if self.analysis_workflow: aw = self.analysis_workflow.id else: aw = None params = (self.pub.pmid, self.id, aw, self['measure']) cursor.execute(query, params) query = """INSERT INTO dataXobservation (publication, data, observation) VALUES (%s, %s, %s)""" for data in self.data: params = (self.pub.pmid, data.id, self.id) cursor.execute(query, params) self._insert_annotations(cursor) self._insert_errors(cursor) return def set_related(self): aw_id = self['analysisworkflow'] if aw_id is None: self.analysis_workflow = None elif aw_id not in self.pub.entities['AnalysisWorkflow']: self.fields['analysisworkflow'].reset() self.analysis_workflow = None err = errors.LinkError('Undefined analysis workflow "%s"' % aw) self.errors.append(err) else: aw = self.pub.entities['AnalysisWorkflow'][aw_id] self.analysis_workflow = aw self.data = [] if self['data']: d_ids = list(self['data']) self.fields['data'].reset() for d_id in d_ids: if d_id not in self.pub.entities['Data']: err = errors.LinkError('Undefined data "%s"' % d_id) self.errors.append(err) else: self.fields['data'].set(d_id) d = self.pub.entities['Data'][d_id] self.data.append(d) d.observations.append(self) return def score(self): self.points.append((10, 'Existential credit')) if not self['measure']: self.points.append((-5, 'Missing measure')) if not self.data: self.points.append((-2, 'Missing data')) if not self.analysis_workflow: self.points.append((-2, 'Missing analysis workflow')) return class Model(Entity): field_defs = (('type', Field, 'Type'), ('variable', MultiField, 'Variables')) table = 'model' @classmethod def _get_from_db(cls, pub, cursor): d = {} query = """SELECT * FROM model WHERE publication = %s""" cursor.execute(query, (pub.pmid, )) cols = [ el[0] for el in cursor.description ] for row in cursor: row_dict = dict(zip(cols, row)) obj = Model(pub, row_dict['id']) obj.fields['type'].set(row_dict['type']) d[row_dict['id']] = obj query = """SELECT model, variable FROM model_variable WHERE publication = %s""" cursor.execute(query, (pub.pmid, )) for (model_id, variable) in cursor: d[model_id].fields['variable'].set(variable) Model._get_annotation_ids_from_db(pub, d, cursor) Model._get_errors_from_db(pub, d, cursor) return d @classmethod def _clear_pmid(cls, pmid, cursor): query = "DELETE FROM model_variable WHERE publication = %s" cursor.execute(query, (pmid, )) super(Model, cls)._clear_pmid(pmid, cursor) return def _insert(self, cursor): query = "INSERT INTO model (publication, id, type) VALUES (%s, %s, %s)" params = (self.pub.pmid, self.id, self['type']) cursor.execute(query, params) if self['variable'] is not None: query = """INSERT INTO model_variable (publication, model, variable) VALUES (%s, %s, %s)""" for val in self['variable']: params = (self.pub.pmid, self.id, val) cursor.execute(query, params) self._insert_annotations(cursor) self._insert_errors(cursor) return def score(self): self.points.append((10, 'Existential credit')) # check if any variables are defined # check for bad interaction variables if not self['type']: self.points.append((-4, 'No model type defined')) if not self['variable']: self.points.append((-4, 'No variables defined')) else: simple_vars = [] int_vars = [] bad_components = set() for var in self['variable']: if '+' in var: int_vars.append(var) else: simple_vars.append(var) for int_var in int_vars: for int_component in int_var.split('+'): if int_component not in simple_vars: bad_components.add(int_component) if bad_components: vars = ', '.join(sorted(bad_components)) msg = 'Variables only in interaction terms: %s' % vars self.points.append((-2, msg)) return class ModelApplication(Entity): field_defs = (('observation', MultiField, 'Observations'), ('model', Field, 'Model'), ('url', URLField, 'URL'), ('software', Field, 'Software')) table = 'model_application' @classmethod def _get_from_db(cls, pub, cursor): d = {} query = """SELECT * FROM model_application WHERE publication = %s""" cursor.execute(query, (pub.pmid, )) cols = [ el[0] for el in cursor.description ] for row in cursor: row_dict = dict(zip(cols, row)) obj = ModelApplication(pub, row_dict['id']) obj.fields['model'].set(row_dict['model']) obj.fields['url'].set(row_dict['url']) obj.fields['software'].set(row_dict['software']) d[row_dict['id']] = obj query = """SELECT observation, model_application FROM observationXmodel_application WHERE publication = %s""" cursor.execute(query, (pub.pmid, )) for (observation_id, model_application_id) in cursor: d[model_application_id].fields['observation'].set(observation_id) ModelApplication._get_annotation_ids_from_db(pub, d, cursor) ModelApplication._get_errors_from_db(pub, d, cursor) return d @classmethod def _clear_pmid(cls, pmid, cursor): query = """DELETE FROM observationXmodel_application WHERE publication = %s""" cursor.execute(query, (pmid, )) super(ModelApplication, cls)._clear_pmid(pmid, cursor) return def _insert(self, cursor): query = """INSERT INTO model_application (publication, id, model, url, software) VALUES (%s, %s, %s, %s, %s)""" if self.model: model = self.model.id else: model = None params = (self.pub.pmid, self.id, model, self['url'], self['software']) cursor.execute(query, params) query = """INSERT INTO observationXmodel_application (publication, observation, model_application) VALUES (%s, %s, %s)""" print '=', self.id for obs in self.observations: print obs.id params = (self.pub.pmid, obs.id, self.id) cursor.execute(query, params) self._insert_annotations(cursor) self._insert_errors(cursor) return def set_related(self): m_id = self['model'] if m_id is None: self.model = None elif m_id not in self.pub.entities['Model']: self.fields['model'].reset() self.model = None self.errors.append(errors.LinkError('Undefined model "%s"' % m_id)) else: self.model = self.pub.entities['Model'][m_id] self.observations = [] if self['observation']: # make a copy o_ids = list(self['observation']) self.fields['observation'].reset() for o_id in o_ids: if o_id not in self.pub.entities['Observation']: err = errors.LinkError('Undefined observation "%s"' % o_id) self.errors.append(err) else: self.fields['observation'].set(o_id) obs = self.pub.entities['Observation'][o_id] self.observations.append(obs) obs.model_applications.append(self) return def score(self): self.points.append((11, 'Existential credit')) if not self['url']: self.points.append((-5, 'No link to analysis')) if not self['software']: self.points.append((-1, 'Missing software')) if not self.model: self.points.append((-2, 'Missing model')) if not self['observation']: self.points.append((-2, 'Missing observation(s)')) return class Result(Entity): field_defs = (('modelapplication', Field, 'Model Application'), ('value', Field, 'Value'), ('variable', MultiField, 'Variables'), ('f', Field, 'f'), ('p', Field, 'p'), ('interpretation', Field, 'Interpretation')) table = 'result' @classmethod def _get_from_db(cls, pub, cursor): d = {} query = """SELECT * FROM result WHERE publication = %s""" cursor.execute(query, (pub.pmid, )) cols = [ el[0] for el in cursor.description ] for row in cursor: row_dict = dict(zip(cols, row)) obj = Result(pub, row_dict['id']) obj.fields['modelapplication'].set(row_dict['model_application']) obj.fields['value'].set(row_dict['value']) obj.fields['f'].set(row_dict['f']) obj.fields['p'].set(row_dict['p']) obj.fields['interpretation'].set(row_dict['interpretation']) d[row_dict['id']] = obj query = """SELECT result, variable FROM result_variable WHERE publication = %s""" cursor.execute(query, (pub.pmid, )) for (result_id, variable) in cursor: d[result_id].fields['variable'].set(variable) Result._get_annotation_ids_from_db(pub, d, cursor) Result._get_errors_from_db(pub, d, cursor) return d @classmethod def _clear_pmid(cls, pmid, cursor): query = "DELETE FROM result_variable WHERE publication = %s" cursor.execute(query, (pmid, )) super(Result, cls)._clear_pmid(pmid, cursor) return def _insert(self, cursor): query = """INSERT INTO result (publication, id, model_application, value, f, p, interpretation) VALUES (%s, %s, %s, %s, %s, %s, %s)""" if self.model_application: ma = self.model_application.id else: ma = None params = (self.pub.pmid, self.id, ma, self['value'], self['f'], self['p'], self['interpretation']) cursor.execute(query, params) if self['variable'] is not None: query = """INSERT INTO result_variable (publication, result, variable) VALUES (%s, %s, %s)""" for val in self['variable']: params = (self.pub.pmid, self.id, val) cursor.execute(query, params) self._insert_annotations(cursor) self._insert_errors(cursor) return def set_related(self): ma_id = self['modelapplication'] if ma_id is None: self.model_application = None elif ma_id not in self.pub.entities['ModelApplication']: self.fields['modelapplication'].reset() self.model_application = None err = errors.LinkError('Undefined model application "%s"' % ma_id) self.errors.append(err) else: ma = self.pub.entities['ModelApplication'][ma_id] self.model_application = ma return def score(self): self.points.append((23, 'Existential credit')) if not self['value']: self.points.append((-3, 'Missing "Value"')) if not self['f']: self.points.append((-2, 'Missing F')) if not self['p']: self.points.append((-5, 'Missing P')) if not self['interpretation']: self.points.append((-2, 'Missing interpretation')) model_vars = [] if not self.model_application: self.points.append((-5, 'Missing model application')) elif self.model_application.model: model_vars = self.model_application.model['variable'] if not self['variable']: self.points.append((-5, 'Missing variable(s)')) else: bad_vars = set() for var in self['variable']: if var not in model_vars: bad_vars.add(var) if bad_vars: fmt = 'Variables not defined in the model: %s' msg = fmt % ', '.join(sorted(bad_vars)) self.points.append((-2, msg)) return # entities[markup entity type] = entity class # this order propagates to Publication.entities, whose order is used to put # the entities in the database entities = OrderedDict() entities['SubjectGroup'] = SubjectGroup entities['AcquisitionInstrument'] = AcquisitionInstrument entities['Acquisition'] = Acquisition entities['Data'] = Data entities['AnalysisWorkflow'] = AnalysisWorkflow entities['Observation'] = Observation entities['Model'] = Model entities['ModelApplication'] = ModelApplication entities['Result'] = Result # eof
448bcd261807fa05a45781f836527a3b1d6f27f8
8d2e5b5ea408579faa699c09bdbea39e864cdee1
/ufora/util/ThreadSafeDict.py
75509f50e6a673f9c5cf633da81f7f424242c589
[ "dtoa", "MIT", "BSD-3-Clause", "BSL-1.0", "Apache-2.0", "LicenseRef-scancode-public-domain", "CC0-1.0" ]
permissive
iantuioti/ufora
2218ef4c7e33c171268ce11458e9335be7421943
04db96ab049b8499d6d6526445f4f9857f1b6c7e
refs/heads/master
2021-01-17T17:08:39.228987
2017-01-30T16:00:45
2017-01-30T16:00:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,955
py
# Copyright 2015 Ufora Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import with_statement import threading import thread class ThreadSafeDict: def __init__(self, vals = dict()): self.vals = dict(vals) self.lock = threading.RLock() def __str__(self): return self.vals.__str__() def __getitem__(self, index): with self.lock: return self.vals[index] def __setitem__(self, index, val): with self.lock: self.vals[index] = val def updateItem(self, index, f, noneisdel = True): with self.lock: self.vals[index] = f(self.vals[index] if self.vals.has_key(index) else None) if noneisdel and self.vals[index] is None: del self.vals[index] def update(self, foreignDict): with self.lock: self.vals.update(foreignDict) def has_key(self, index): with self.lock: return self.vals.has_key(index) def keys(self): with self.lock: return list(self.vals.keys()) def __delitem__(self, key): with self.lock: del self.vals[key] def __len__(self): with self.lock: return len(self.vals) def scan(self,f): with self.lock: for k in self.vals: f(k, self.vals[k]) def dictCopy(self): with self.lock: return dict(self.vals)
e4cb407440b02134b7fb10f738ba19ed0698aa2f
786de89be635eb21295070a6a3452f3a7fe6712c
/pyimgalgos/tags/V00-00-13/src/image_crop.py
3c24a7427ffe5f080f718d92b120ac8d33ba992e
[]
no_license
connectthefuture/psdmrepo
85267cfe8d54564f99e17035efe931077c8f7a37
f32870a987a7493e7bf0f0a5c1712a5a030ef199
refs/heads/master
2021-01-13T03:26:35.494026
2015-09-03T22:22:11
2015-09-03T22:22:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,994
py
#-------------------------------------------------------------------------- # File and Version Information: # $Id$ # # Description: # Pyana/psana user analysis module image_crop... # #------------------------------------------------------------------------ """User analysis module for pyana and psana frameworks. This software was developed for the LCLS project. If you use all or part of it, please give an appropriate acknowledgment. @version $Id: template!pyana-module!py 2987 2012-02-25 03:28:58Z [email protected] $ @author Mikhail S. Dubrovin """ #------------------------------ # Module's version from SVN -- #------------------------------ __version__ = "$Revision: 2987 $" # $Source$ #-------------------------------- # Imports of standard modules -- #-------------------------------- import sys import logging #----------------------------- # Imports for other modules -- #----------------------------- #from psana import * import numpy as np class image_crop (object) : """Get image from the evt store crop it and put it back in the evt store""" def __init__ ( self ) : """Class constructor. Parameters are passed from pyana.cfg configuration file. All parameters are passed as strings @param source string, address of Detector.Id:Device.ID @param key_in string, keyword for input image 2-d array @param key_out string, unique keyword for output image array @param rowmin int, row minimal to crop image (dafault = 0 - for full size) @param rowmax int, row maximal to crop image (dafault = -1 - for full size) @param colmin int, column minimal to crop image (dafault = 0 - for full size) @param colmax int, column maximal to crop image (dafault = -1 - for full size) @param print_bits int, bit-word for verbosity control """ self.m_src = self.configSrc ('source', '*-*|Cspad-*') self.m_key_in = self.configStr ('key_in', 'image_in') self.m_key_out = self.configStr ('key_out', 'image_out') self.rowmin = self.configInt ('rowmin', 0) self.rowmax = self.configInt ('rowmax', -1) self.colmin = self.configInt ('colmin', 0) self.colmax = self.configInt ('colmax', -1) self.m_print_bits = self.configInt ('print_bits', 1) self.counter = 0 if self.m_print_bits & 1 : self.print_input_pars() def beginjob( self, evt, env ) : pass def beginrun( self, evt, env ) : self.run = evt.run() self.exp = env.experiment() self.evnum = 0 def begincalibcycle( self, evt, env ) : pass def event( self, evt, env ) : """This method is called for every L1Accept transition. @param evt event data object @param env environment object """ # Should work for both pyana and pytonic-psana (as compatability method): #print '\nimage_crop: evt.keys():', evt.keys() if env.fwkName() == "psana": #self.arr = evt.get(np.ndarray, self.m_key_in) self.arr = evt.get(np.ndarray, self.m_src, self.m_key_in) else : self.arr = evt.get(self.m_key_in) self.counter +=1 if self.arr is None : #if self.m_print_bits & 32 : msg = __name__ + ': WARNING! CSPAD array object %s is not found in evt' % self.m_key_in #logging.info( msg ) print msg return if self.m_print_bits & 2 and self.counter == 1 : self.print_image_parameters() self.img2d = np.array(self.arr[self.rowmin:self.rowmax, self.colmin:self.colmax]) #self.img2d = self.arr #evt.put( self.img2d, self.m_key_out ) # save image in event as 2d numpy array evt.put( self.img2d, self.m_src, self.m_key_out ) # save image in event as 2d numpy array def endcalibcycle( self, evt, env ) : pass def endrun ( self, evt, env ) : pass def endjob ( self, evt, env ) : pass #----------------------------- def print_input_pars( self ) : msg = '\n%s: List of input parameters\n source %s\n key_in %s\n key_out %s\n print_bits: %4d' % \ (__name__ , self.m_src, self.m_key_in, self.m_key_out, self.m_print_bits) + \ '\n rowmin %s\n rowmax %s\n colmin %s\n colmax %s\n' % \ (self.rowmin, self.rowmax, self.colmin, self.colmax) #logging.info( msg ) print msg def print_image_parameters( self ) : msg = '%s: Input image parameters for run = %s:\n' % (__name__, self.run) \ + ' shape = %s' % str(self.arr.shape) \ + ' dtype = %s' % str(self.arr.dtype) # + '\narray:\n' + str(self.arr) #logging.info( msg ) print msg #----------------------------- #-----------------------------
[ "[email protected]@b967ad99-d558-0410-b138-e0f6c56caec7" ]
[email protected]@b967ad99-d558-0410-b138-e0f6c56caec7
7fef47453d50a19daade3ccb1cac7c5cf2db9935
3f6c16ea158a8fb4318b8f069156f1c8d5cff576
/.PyCharm2019.1/system/python_stubs/-1317042838/_codecs.py
19d1dd99bb98e64143e5afef560b11128f7229a6
[]
no_license
sarthak-patidar/dotfiles
08494170d2c0fedc0bbe719cc7c60263ce6fd095
b62cd46f3491fd3f50c704f0255730af682d1f80
refs/heads/master
2020-06-28T23:42:17.236273
2019-10-01T13:56:27
2019-10-01T13:56:27
200,369,900
0
0
null
2019-08-03T12:56:33
2019-08-03T11:53:29
Shell
UTF-8
Python
false
false
8,128
py
# encoding: utf-8 # module _codecs # from (built-in) # by generator 1.147 # no doc # no imports # functions def ascii_decode(*args, **kwargs): # real signature unknown pass def ascii_encode(*args, **kwargs): # real signature unknown pass def charmap_build(*args, **kwargs): # real signature unknown pass def charmap_decode(*args, **kwargs): # real signature unknown pass def charmap_encode(*args, **kwargs): # real signature unknown pass def decode(*args, **kwargs): # real signature unknown """ Decodes obj using the codec registered for encoding. Default encoding is 'utf-8'. errors may be given to set a different error handling scheme. Default is 'strict' meaning that encoding errors raise a ValueError. Other possible values are 'ignore', 'replace' and 'backslashreplace' as well as any other name registered with codecs.register_error that can handle ValueErrors. """ pass def encode(*args, **kwargs): # real signature unknown """ Encodes obj using the codec registered for encoding. The default encoding is 'utf-8'. errors may be given to set a different error handling scheme. Default is 'strict' meaning that encoding errors raise a ValueError. Other possible values are 'ignore', 'replace' and 'backslashreplace' as well as any other name registered with codecs.register_error that can handle ValueErrors. """ pass def escape_decode(*args, **kwargs): # real signature unknown pass def escape_encode(*args, **kwargs): # real signature unknown pass def latin_1_decode(*args, **kwargs): # real signature unknown pass def latin_1_encode(*args, **kwargs): # real signature unknown pass def lookup(*args, **kwargs): # real signature unknown """ Looks up a codec tuple in the Python codec registry and returns a CodecInfo object. """ pass def lookup_error(errors): # real signature unknown; restored from __doc__ """ lookup_error(errors) -> handler Return the error handler for the specified error handling name or raise a LookupError, if no handler exists under this name. """ pass def raw_unicode_escape_decode(*args, **kwargs): # real signature unknown pass def raw_unicode_escape_encode(*args, **kwargs): # real signature unknown pass def readbuffer_encode(*args, **kwargs): # real signature unknown pass def register(*args, **kwargs): # real signature unknown """ Register a codec search function. Search functions are expected to take one argument, the encoding name in all lower case letters, and either return None, or a tuple of functions (encoder, decoder, stream_reader, stream_writer) (or a CodecInfo object). """ pass def register_error(*args, **kwargs): # real signature unknown """ Register the specified error handler under the name errors. handler must be a callable object, that will be called with an exception instance containing information about the location of the encoding/decoding error and must return a (replacement, new position) tuple. """ pass def unicode_escape_decode(*args, **kwargs): # real signature unknown pass def unicode_escape_encode(*args, **kwargs): # real signature unknown pass def unicode_internal_decode(*args, **kwargs): # real signature unknown pass def unicode_internal_encode(*args, **kwargs): # real signature unknown pass def utf_16_be_decode(*args, **kwargs): # real signature unknown pass def utf_16_be_encode(*args, **kwargs): # real signature unknown pass def utf_16_decode(*args, **kwargs): # real signature unknown pass def utf_16_encode(*args, **kwargs): # real signature unknown pass def utf_16_ex_decode(*args, **kwargs): # real signature unknown pass def utf_16_le_decode(*args, **kwargs): # real signature unknown pass def utf_16_le_encode(*args, **kwargs): # real signature unknown pass def utf_32_be_decode(*args, **kwargs): # real signature unknown pass def utf_32_be_encode(*args, **kwargs): # real signature unknown pass def utf_32_decode(*args, **kwargs): # real signature unknown pass def utf_32_encode(*args, **kwargs): # real signature unknown pass def utf_32_ex_decode(*args, **kwargs): # real signature unknown pass def utf_32_le_decode(*args, **kwargs): # real signature unknown pass def utf_32_le_encode(*args, **kwargs): # real signature unknown pass def utf_7_decode(*args, **kwargs): # real signature unknown pass def utf_7_encode(*args, **kwargs): # real signature unknown pass def utf_8_decode(*args, **kwargs): # real signature unknown pass def utf_8_encode(*args, **kwargs): # real signature unknown pass def _forget_codec(*args, **kwargs): # real signature unknown """ Purge the named codec from the internal codec lookup cache """ pass # classes class __loader__(object): """ Meta path import for built-in modules. All methods are either class or static methods to avoid the need to instantiate the class. """ @classmethod def create_module(cls, *args, **kwargs): # real signature unknown """ Create a built-in module """ pass @classmethod def exec_module(cls, *args, **kwargs): # real signature unknown """ Exec a built-in module """ pass @classmethod def find_module(cls, *args, **kwargs): # real signature unknown """ Find the built-in module. If 'path' is ever specified then the search is considered a failure. This method is deprecated. Use find_spec() instead. """ pass @classmethod def find_spec(cls, *args, **kwargs): # real signature unknown pass @classmethod def get_code(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have code objects. """ pass @classmethod def get_source(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have source code. """ pass @classmethod def is_package(cls, *args, **kwargs): # real signature unknown """ Return False as built-in modules are never packages. """ pass @classmethod def load_module(cls, *args, **kwargs): # real signature unknown """ Load the specified module into sys.modules and return it. This method is deprecated. Use loader.exec_module instead. """ pass def module_repr(module): # reliably restored by inspect """ Return repr for the module. The method is deprecated. The import machinery does the job itself. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass __weakref__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """list of weak references to the object (if defined)""" __dict__ = None # (!) real value is "mappingproxy({'__module__': '_frozen_importlib', '__doc__': 'Meta path import for built-in modules.\\n\\n All methods are either class or static methods to avoid the need to\\n instantiate the class.\\n\\n ', 'module_repr': <staticmethod object at 0x7f3ceeae5048>, 'find_spec': <classmethod object at 0x7f3ceeae5080>, 'find_module': <classmethod object at 0x7f3ceeae50b8>, 'create_module': <classmethod object at 0x7f3ceeae50f0>, 'exec_module': <classmethod object at 0x7f3ceeae5128>, 'get_code': <classmethod object at 0x7f3ceeae5198>, 'get_source': <classmethod object at 0x7f3ceeae5208>, 'is_package': <classmethod object at 0x7f3ceeae5278>, 'load_module': <classmethod object at 0x7f3ceeae52b0>, '__dict__': <attribute '__dict__' of 'BuiltinImporter' objects>, '__weakref__': <attribute '__weakref__' of 'BuiltinImporter' objects>})" # variables with complex values __spec__ = None # (!) real value is "ModuleSpec(name='_codecs', loader=<class '_frozen_importlib.BuiltinImporter'>, origin='built-in')"
419ece67d00ba37f7460c57ca43884e4ca9e0b2f
dafd25bce1c1fe6c667119e7a541b3cdb44b6181
/youtube_tranding/auto.py
454beae653fc6832b41abb2c345f1805d9012b0e
[]
no_license
armannurhidayat/python_scraper
23fd84dfb7263b7e23a96bb72ee8b7ce68cb52df
5b0b56247e753f190a9dfdd0bbc150f84d1609f9
refs/heads/master
2023-02-05T00:00:48.380383
2020-12-27T02:28:29
2020-12-27T02:28:29
250,330,177
1
1
null
null
null
null
UTF-8
Python
false
false
1,010
py
import mysql.connector from selenium import webdriver from selenium.webdriver.chrome.options import Options import time config = { 'user' : 'root', 'password': 'root', 'host' : 'localhost', 'port' : 8889, 'database': 'yt_trending', 'raise_on_warnings': True } url = 'https://www.youtube.com/feed/trending?gl=ID&hl=id' path_driver = "/Users/armannurhidayat/Desktop/selenium/driver/chromedriver" chrome_options = Options() chrome_options.add_argument("--incognito") driver = webdriver.Chrome(executable_path=path_driver, options=chrome_options) driver.get(url) video_title = driver.find_elements_by_xpath('//*[@id="video-title"]') for rec in video_title: title = rec.text link = rec.get_attribute('href') # Insert SQL print('{} - {}'.format(title, link)) cnx = mysql.connector.connect(**config) cursor = cnx.cursor(dictionary=True) cursor.execute("INSERT INTO `trand` (`title`,`url`) VALUES ('{}', '{}')".format(title, link)) cnx.commit() time.sleep(2)
de900b93a39989817a16977f10cddadf7b234e32
06292f96cba132ca57777672a447cfff7c5abee6
/Asm1/ThamKhao/testPhuc/ParserSuite.py
940fca2dcbd72c810ca6309115c038b9b10115ef
[]
no_license
kietteik/ppl
1746440b12affe71e67d6f958922b32b1fdaab5c
2ee60582e81595b8d8b5d0f8212d20151cfe9264
refs/heads/master
2023-03-01T00:24:36.969189
2021-01-31T05:15:13
2021-01-31T05:15:13
305,802,556
0
0
null
null
null
null
UTF-8
Python
false
false
4,965
py
import unittest from TestUtils import TestParser class ParserSuite(unittest.TestCase): def test_var_dec_1(self): input = """Var: a = 5;""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,201)) def test_var_dec_2(self): input = """Var: ;""" expect = "Error on line 1 col 5: ;" self.assertTrue(TestParser.checkParser(input,expect,202)) def test_var_dec_3(self): input = """Var: b[2][3] = {{2,3,4},{4,5,6}};""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,203)) def test_var_dec_4(self): input = """Var: c, d = 6, e, f;""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,204)) def test_var_dec_5(self): input = """Var: m, n[10];""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,205)) def test_var_dec_6(self): input = """Var: n[10], m;""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,206)) def test_assignment_stm_1(self): input = """a[3 + foo(2)] = a[b [2][3]] + 4;""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,207)) def test_assignment_stm_2(self): input = """v = (4. \. 3.) *. 3.14 *. r *. r *. r;""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,208)) def test_callee_stm_1(self): input = """foo(a[1][2] + 2, x + 1);""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,209)) def test_callee_stm_2(self): input = """x = foo(a[1][2] + 2, x + 1);""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,210)) def test_function_1(self): input = """Function: foo Parameter: a[5], b Body: Var: i = 0; While (i < 5) Do a[i] = b +. 1.0; i = i + 1; EndWhile. EndBody.""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,211)) def test_for_1(self): input = """For (i = 0, i < 10, 2) Do writeln(i); EndFor.""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,212)) def test_var_dec_7(self): input = """Var: a = 5; Var: b[2][3] = {{2,3,4},{4,5,6}}; Var: c, d = 6, e, f; Var: m, n[10];""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,213)) def test_var_dec_func_dec_1(self): input = """Var: x; Function: fact Parameter: n Body: If n == 0 Then Return 1; Else Return n * fact (n - 1); EndIf. EndBody. Function: main Body: x = 10; fact (x); EndBody.""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,214)) def test_var_dec_8(self): input = """Var: a[5] = {1,4,3,2,0}; Var: b[2][3]={{1,2,3},{4,5,6}};""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,215)) def test_var_dec_func_dec_2(self): input = """Var: x; Function: fact Parameter: n Body: If n == 0 Then Return 1; Else Return n * fact (n - 1); EndIf. EndBody. Function: main Body: x = 10; fact (x); EndBody.""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,216)) def test_callee_stm_3(self): input = """foo (2 + x, 4. \. y); goo ();""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,217)) def test_type_coercions_1(self): input = """If bool_of_string ("True") Then a = int_of_string (read ()); b = float_of_int (a) +. 2.0; EndIf.""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,218)) def test_var_dec_func_dec_3(self): input = """Function: test Parameter: n Body: If n > 10 Then Return 5; Else Return False; EndIf. EndBody.""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,219)) def test_var_dec_9(self): input = """a = 1; b[2][3] = 5; c[2] = {{1,3},{1,5,7}};""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,220)) def test_var_dec_func_dec_4(self): input = """Function: test Parameter: n Body: If n > 10 Then Return 5; Else Return a[4][5 + b[2][3]]; EndIf. EndBody.""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,221)) def test_var_dec_10(self): input = """Var: a = "Xin chao moi nguoi!"; Var: b = 5, c = False;""" expect = "successful" self.assertTrue(TestParser.checkParser(input,expect,222))
7c7c20cdfdc1ad53c73c20ab931e5efcff7528aa
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/Gauss_v45r9/Gen/DecFiles/options/15174011.py
d436adf8e9635a383cb4126186976d45e43be6ef
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
774
py
# file /home/hep/ss4314/cmtuser/Gauss_v45r9/Gen/DecFiles/options/15174011.py generated: Fri, 27 Mar 2015 16:10:06 # # Event Type: 15174011 # # ASCII decay Descriptor: [Lambda_b0 -> D+(-> K- pi+ pi+) mu-]cc # from Configurables import Generation Generation().EventType = 15174011 Generation().SampleGenerationTool = "SignalPlain" from Configurables import SignalPlain Generation().addTool( SignalPlain ) Generation().SignalPlain.ProductionTool = "PythiaProduction" from Configurables import ToolSvc from Configurables import EvtGenDecay ToolSvc().addTool( EvtGenDecay ) ToolSvc().EvtGenDecay.UserDecayFile = "$DECFILESROOT/dkfiles/Lb_D+mu,Kpipi=phsp,DecProdCut.dec" Generation().SignalPlain.CutTool = "DaughtersInLHCb" Generation().SignalPlain.SignalPIDList = [ 5122,-5122 ]
6dae49d404619d13917ca5e5dd08fa811d287aad
37db56765276c0835a2c7e3955c412ce204836c1
/241.py
19a44d3fb46bd049d5ae60b83250f8d7f974f167
[]
no_license
supperllx/LeetCode
9d0a3a7258d1cff6afa6e77f61a2e697834914ca
df3a589ea858218f689fe315d134adc957c3debd
refs/heads/master
2023-05-01T06:57:17.403568
2021-05-19T18:29:25
2021-05-19T18:34:03
288,351,041
0
0
null
null
null
null
UTF-8
Python
false
false
658
py
class Solution: @functools.cache def diffWaysToCompute(self, input: str) -> List[int]: if input.isnumeric(): return [int(input)] else: ops = {'+': operator.add, '-': operator.sub, '*': operator.mul} res = [] indexes = [] for i, ch in enumerate(input): if ch in ops: indexes.append(i) for i in indexes: for left in self.diffWaysToCompute(input[:i]): for right in self.diffWaysToCompute(input[i+1:]): res.append(ops[input[i]](left, right)) return list(res)
ab05aff12541f245de8fe7bd4437943a46a928ec
77166c6ed9b872fa69b454d3682f63527f5f3951
/tests/unit2/test_load_textures.py
9f74bd64ebe79c8225596d0f8f2a84e1267ace5a
[ "MIT" ]
permissive
biggzlar/arcade
d72d936f3c244a9d5173b6f36bca3ede3382a0ae
fc444db356452660ac6cb2ffe241f0b1a3d4bcf3
refs/heads/master
2020-12-14T06:30:18.997456
2020-01-18T04:44:03
2020-01-18T04:44:03
234,668,560
1
0
NOASSERTION
2020-01-18T02:07:41
2020-01-18T02:07:40
null
UTF-8
Python
false
false
4,737
py
import os import arcade SCREEN_WIDTH = 800 SCREEN_HEIGHT = 600 LINE_HEIGHT = 20 CHARACTER_SCALING = 0.5 COIN_SCALE = 0.25 class MyTestWindow(arcade.Window): def __init__(self, width, height, title): super().__init__(width, height, title) file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) self.frame_count = 0 arcade.set_background_color(arcade.color.AMAZON) self.character_list = arcade.SpriteList() self.player = arcade.AnimatedWalkingSprite() self.player.stand_right_textures = [arcade.load_texture(":resources:images/animated_characters/robot/robot_idle.png")] self.player.stand_left_textures = [arcade.load_texture(":resources:images/animated_characters/robot/robot_idle.png", mirrored=True)] self.player.walk_right_textures = [arcade.load_texture(":resources:images/animated_characters/robot/robot_walk0.png"), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk1.png"), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk2.png"), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk3.png"), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk4.png"), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk5.png"), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk6.png"), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk7.png")] self.player.walk_left_textures = [arcade.load_texture(":resources:images/animated_characters/robot/robot_walk0.png", mirrored=True), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk1.png", mirrored=True), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk2.png", mirrored=True), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk3.png", mirrored=True), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk4.png", mirrored=True), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk5.png", mirrored=True), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk6.png", mirrored=True), arcade.load_texture(":resources:images/animated_characters/robot/robot_walk7.png", mirrored=True)] self.player.texture_change_distance = 20 self.player.center_x = SCREEN_WIDTH // 2 self.player.center_y = SCREEN_HEIGHT // 2 self.player.scale = 0.8 self.player.change_x = 2 self.player.texture = self.player.stand_left_textures[0] self.character_list.append(self.player) self.coin_list = arcade.SpriteList() coin = arcade.AnimatedTimeSprite(scale=0.5) coin.center_x = 500 coin.center_y = 500 coin.textures = [] coin.textures.append(arcade.load_texture(":resources:images/items/gold_1.png", scale=COIN_SCALE)) coin.textures.append(arcade.load_texture(":resources:images/items/gold_2.png", scale=COIN_SCALE)) coin.textures.append(arcade.load_texture(":resources:images/items/gold_3.png", scale=COIN_SCALE)) coin.textures.append(arcade.load_texture(":resources:images/items/gold_4.png", scale=COIN_SCALE)) coin.textures.append(arcade.load_texture(":resources:images/items/gold_3.png", scale=COIN_SCALE)) coin.textures.append(arcade.load_texture(":resources:images/items/gold_2.png", scale=COIN_SCALE)) coin.set_texture(0) self.coin_list.append(coin) def on_draw(self): arcade.start_render() self.coin_list.draw() self.character_list.draw() def update(self, delta_time): self.frame_count += 1 if self.frame_count == 70: self.player.change_x *= -1 self.coin_list.update() self.coin_list.update_animation(delta_time) self.character_list.update() self.character_list.update_animation(delta_time) def test_sprite(): window = MyTestWindow(SCREEN_WIDTH, SCREEN_HEIGHT, "Test Animation") window.test(90) window.close()
ca40a4e3bed0d8bd97234170a3f8ec82dfa77d02
4b44a299bafbd4ca408ce1c89c9fe4a449632783
/python3/14_Code_Quality/04_mocking/example_2/test_calculator.py
773fb6d377820f066c3352f19151f1de0c8dade3
[]
no_license
umunusb1/PythonMaterial
ecd33d32b2de664eaaae5192be7c3f6d6bef1d67
1e0785c55ccb8f5b9df1978e1773365a29479ce0
refs/heads/master
2023-01-23T23:39:35.797800
2020-12-02T19:29:00
2020-12-02T19:29:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
244
py
from unittest import TestCase from main import Calculator class TestCalculator(TestCase): def setUp(self): self.calc = Calculator() def test_sum(self): answer = self.calc.sum(2, 4) self.assertEqual(answer, 6)
1965d29d375c6499f282d0e556160f23324bf4c5
bec623f2fab5bafc95eb5bd95e7527e06f6eeafe
/django-gc-shared/visitor_analytics/migrations/0001_initial.py
8f99c744d9c12c4a97d23a04880458deedb220fe
[]
no_license
riyanhax/a-demo
d714735a8b59eceeb9cd59f788a008bfb4861790
302324dccc135f55d92fb705c58314c55fed22aa
refs/heads/master
2022-01-21T07:24:56.468973
2017-10-12T13:48:55
2017-10-12T13:48:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,255
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='UtmAnalytics', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('utm_source', models.CharField(default=b'', max_length=256)), ('utm_medium', models.CharField(default=b'', max_length=256)), ('utm_campaign', models.CharField(default=b'', max_length=256)), ('utm_timestamp', models.DateTimeField(null=True)), ('referrer', models.CharField(default=b'', max_length=2048)), ('referrer_timestamp', models.DateTimeField(null=True)), ('agent_code_timestamp', models.DateTimeField(null=True)), ('registration_page', models.CharField(default=b'', max_length=4096)), ('user', models.OneToOneField(related_name='utm_analytics', to=settings.AUTH_USER_MODEL)), ], ), ]
[ "ibalyko@ubuntu-server-16-04" ]
ibalyko@ubuntu-server-16-04
c51fe65b0eea696958298037853329c6a2320d97
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/62/usersdata/172/29550/submittedfiles/ex1.py
c6a1b4c62ab0c54ae5cb58541624113d1e9cb84a
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
194
py
# -*- coding: utf-8 -*- from __future__ import division a = float(input('Digite a: ')) b = float(input('Digite b: ')) c = float(input('Digite c: ')) #COMECE A PARTIR DAQUI! d=b*b-4(a*c) print(d)
7d24a6875659d927451451cfe5c01e242aee20e7
417ab6024a95e97b4d2236c67e28d00e6d1defc0
/python/fetch/mayi01/img.py
589afd6265b67e6b4c17fef51b293b349378b05d
[]
no_license
zeus911/myconf
11139069948f7c46f760ca0a8f1bd84df5ec4275
6dc7a6761ab820d6e97a33a55a8963f7835dbf34
refs/heads/master
2020-04-18T02:16:09.560219
2019-01-22T18:15:08
2019-01-22T18:15:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,826
py
#!/usr/bin python # -*- coding: utf-8 -*- import datetime import threading from common import common from baseparse import * from common import db_ops from common.envmod import * from common import dateutil from fetch.profile import * global baseurl class ImgParse(BaseParse): def __init__(self): threading.Thread.__init__(self) def run(self): objs = self.parseChannel() dbVPN = db.DbVPN() ops = db_ops.DbOps(dbVPN) for obj in objs: ops.inertImgChannel(obj) dbVPN.commit() for obj in objs: for i in range(1, maxImgPage): url = obj['url'] if i!=1: url= "%s%s%s"%(url.replace("0.html",""),i,".html") print url count = self.update(url, ops, obj['url'], i) dbVPN.commit() if count == 0: break def parseChannel(self): ahrefs = self.header("header3.html") objs = [] for ahref in ahrefs: obj = {} obj['name']= ahref.text obj['url']=ahref.get("href") obj['baseurl'] = baseurlImg obj['updateTime'] = datetime.datetime.now() obj['rate'] = 1.1 obj['showType'] = 3 obj['channel'] = 'porn_sex' objs.append(obj) return objs def update(self, url, ops, channel, i): objs = self.fetchImgItemsData(url, channel) print "解析 Img 图片ok----channl=", channel, ' 页数=', i, " 数量=", len(objs) for obj in objs: try: ops.inertImgItems(obj) for picItem in obj['picList']: item = {} item['itemUrl'] = obj['url'] item['picUrl'] = picItem ops.inertImgItems_item(item) except Exception as e: print common.format_exception(e) return len(objs) def fetchDataHead(self, url): try: soup = self.fetchUrl(baseurlImg+url) div = soup.first("div", {"class": "container"}) if div != None: return div.findAll('a') return [] except Exception as e: print common.format_exception(e) def fetchImgItemsData(self, url, channel): try: lis = self.fetchDataHead(url) print url, ";itemsLen=", len(lis) objs = [] sortType = dateutil.y_m_d() for item in lis: obj = {} obj['name'] = item.first("div",{"class":"float-left"}).text print obj['name'] obj['url'] = item.get('href') obj['fileDate'] = item.first("div",{"class":"float-right"}).text obj['baseurl'] = baseurlImg obj['channel'] = channel obj['updateTime'] = datetime.datetime.now() pics = self.fetchImgs(item.get('href')) if len(pics) == 0: print '没有 图片文件--', item, '---', url continue obj['picList'] = pics obj['pics'] = len(pics) obj['sortType'] = sortType obj['showType'] = 3 print 'url=', obj['url'], 'filedate=', obj['fileDate'], ' 图片数量=', len(pics) objs.append(obj) return objs except Exception as e: print common.format_exception(e) def fetchImgs(self, url): soup = self.fetchUrl(baseurlImg+url) picData = soup.first("div", {"class": "imgList"}) picList = picData.findAll("img") pics = [] for item in picList: pics.append(item.get('data-original')) return pics
54a4f16e087a850dd1d3dd642d82d5f350eae00e
de28d64694919a861760fa8db8ff5ff781c9e4e3
/wild_card_matching.py
653f701bd6d307a858b2dc5d5dc736c7214b34a3
[]
no_license
pramitsawant/interview_prep_python
2202ac6bd7574316885f6067a8c6ac98fc5e88af
7a3dad53b954f874995bafdbfd5677959f8b8de7
refs/heads/master
2020-09-25T06:34:26.903728
2016-12-12T13:59:46
2016-12-12T13:59:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,219
py
# coding=utf-8 ''' '?' Matches any single character. '*' Matches any sequence of characters (including the empty sequence). The matching should cover the entire input string (not partial). The function prototype should be: bool isMatch(const char *s, const char *p) Some examples: isMatch("aa","a") → false isMatch("aa","aa") → true isMatch("aaa","aa") → false isMatch("aa", "*") → true isMatch("aa", "a*") → true isMatch("ab", "?*") → true isMatch("aab", "c*a*b") → false ''' def wild_card(word, pattern, word_index, pattern_index): if len(pattern) == pattern_index and len(word) == word_index: return True if len(pattern) == pattern_index or len(word) == word_index: return False if pattern[pattern_index] == '?': return wild_card(word, pattern, word_index + 1, pattern_index + 1) elif pattern[pattern_index] == '*': while word_index < len(word) - 1 and (word_index == 0 or word[word_index + 1] == word[word_index]): word_index += 1 return wild_card(word, pattern, word_index + 1, pattern_index + 1) elif word[word_index] == pattern[pattern_index]: return wild_card(word, pattern, word_index + 1, pattern_index + 1) else: return False print wild_card('aaaab', '*?', 0, 0)
8f4bb724abec5c2be28133f11fadc5f0306fc94f
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/fv/from.py
59ac01b9a307e3cca82f10539aba98acaab784ca
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
7,246
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class From(Mo): meta = ClassMeta("cobra.model.fv.From") meta.isAbstract = True meta.moClassName = "fvFrom" meta.moClassName = "fvFrom" meta.rnFormat = "" meta.category = MoCategory.RELATIONSHIP_FROM_LOCAL meta.label = "None" meta.writeAccessMask = 0x0 meta.readAccessMask = 0x0 meta.isDomainable = False meta.isReadOnly = False meta.isConfigurable = True meta.isDeletable = False meta.isContextRoot = False meta.superClasses.add("cobra.model.reln.From") meta.superClasses.add("cobra.model.reln.Inst") meta.concreteSubClasses.add("cobra.model.nw.RtL3EpDefToPathEp") meta.concreteSubClasses.add("cobra.model.mgmt.RtRtdMgmtConf") meta.concreteSubClasses.add("cobra.model.pc.RtAccBndlGrpToAggrIf") meta.concreteSubClasses.add("cobra.model.fv.RtIpEppAtt") meta.concreteSubClasses.add("cobra.model.l3ext.RtAddrToIpDef") meta.concreteSubClasses.add("cobra.model.cons.RtConsRoot") meta.concreteSubClasses.add("cobra.model.l3.RtIpCktEpIfConn") meta.concreteSubClasses.add("cobra.model.l2.RtSpanSrcToL2CktEpAtt") meta.concreteSubClasses.add("cobra.model.l1.RtEncPhysRtdConf") meta.concreteSubClasses.add("cobra.model.svccopy.RtToCopyDestGrp") meta.concreteSubClasses.add("cobra.model.dhcp.RtRelayAddrToProv") meta.concreteSubClasses.add("cobra.model.fv.RtQinqEppAtt") meta.concreteSubClasses.add("cobra.model.pc.RtFcAccBndlGrpToFcAggrIf") meta.concreteSubClasses.add("cobra.model.l1.RtBrConf") meta.concreteSubClasses.add("cobra.model.rtextcom.RtExtCommAtt") meta.concreteSubClasses.add("cobra.model.qosp.RtDot1pRuleAtt") meta.concreteSubClasses.add("cobra.model.qosp.RtL3dscpRuleAtt") meta.concreteSubClasses.add("cobra.model.fv.RtLbIfToLocale") meta.concreteSubClasses.add("cobra.model.leqpt.RtEpDefToLooseNode") meta.concreteSubClasses.add("cobra.model.fv.RtIpAddr") meta.concreteSubClasses.add("cobra.model.l1.RtPhysRtdConf") meta.concreteSubClasses.add("cobra.model.svcredir.RtHealthGrpAtt") meta.concreteSubClasses.add("cobra.model.l3.RtEPgDefToL3Dom") meta.concreteSubClasses.add("cobra.model.nw.RtVsanLabelAtt") meta.concreteSubClasses.add("cobra.model.l1.RtIoPPhysConf") meta.concreteSubClasses.add("cobra.model.fv.RtCtxToEpP") meta.concreteSubClasses.add("cobra.model.fv.RtMacEppAtt") meta.concreteSubClasses.add("cobra.model.l1.RtToObservedEthIf") meta.concreteSubClasses.add("cobra.model.pc.RtPcFcAggrBrConf") meta.concreteSubClasses.add("cobra.model.nw.RtVsanPathAtt") meta.concreteSubClasses.add("cobra.model.fv.RtVlanEppAtt") meta.concreteSubClasses.add("cobra.model.fv.RtVxlanEppAtt") meta.concreteSubClasses.add("cobra.model.nw.RtEpDefToPathEp") meta.concreteSubClasses.add("cobra.model.ip.RtRtDefIpAddr") meta.concreteSubClasses.add("cobra.model.l2.RtDomIfConn") meta.concreteSubClasses.add("cobra.model.pc.RtVpcConf") meta.concreteSubClasses.add("cobra.model.pc.RtFexBndlGrpToAggrIf") meta.concreteSubClasses.add("cobra.model.rtregcom.RtRegCommAtt") meta.concreteSubClasses.add("cobra.model.rtpfx.RtRtNhAtt") meta.concreteSubClasses.add("cobra.model.nw.RtPathDomAtt") meta.concreteSubClasses.add("cobra.model.fv.RtExtBD") meta.concreteSubClasses.add("cobra.model.l2.RtSrvExtIfMap") meta.concreteSubClasses.add("cobra.model.qosp.RtL3dot1pRuleAtt") meta.concreteSubClasses.add("cobra.model.l1.RtExtConf") meta.concreteSubClasses.add("cobra.model.qosp.RtDscpRuleAtt") meta.concreteSubClasses.add("cobra.model.l1.RtFcBrConf") meta.concreteSubClasses.add("cobra.model.fv.RtToTunDef") meta.concreteSubClasses.add("cobra.model.analytics.RtMonitorAtt") meta.concreteSubClasses.add("cobra.model.fv.RtL3If") meta.concreteSubClasses.add("cobra.model.fv.RtRouteToIfConn") meta.concreteSubClasses.add("cobra.model.fv.RtToEpgProt") meta.concreteSubClasses.add("cobra.model.l1.RtLocaleToObservedEthIf") meta.concreteSubClasses.add("cobra.model.rtpfx.RtRtDstAtt") meta.concreteSubClasses.add("cobra.model.l2.RtEPgDefToL2Dom") meta.concreteSubClasses.add("cobra.model.ip.RtRouteToRouteDef") meta.concreteSubClasses.add("cobra.model.svcredir.RtToRedirDestGrp") meta.concreteSubClasses.add("cobra.model.fv.RtMacBaseEppAtt") meta.concreteSubClasses.add("cobra.model.nw.RtEpDefRefToPathEp") meta.concreteSubClasses.add("cobra.model.svccopy.RtCopyDestAtt") meta.concreteSubClasses.add("cobra.model.rtpfx.RtRtSrcAtt") meta.rnPrefixes = [ ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "tCl", "tCl", 101, PropCategory.REGULAR) prop.label = "Target-class" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("unspecified", "unspecified", 0) meta.props.add("tCl", prop) prop = PropMeta("str", "tDn", "tDn", 100, PropCategory.REGULAR) prop.label = "Target-dn" prop.isImplicit = True prop.isAdmin = True meta.props.add("tDn", prop) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
d3920561c0ee2d24d702c2e5d3ce5eb4d555dbd3
b94ab99f9c1f8bbb99afd23e1bfcd2332060b4bd
/run.py
4e3d7e4f1400e503e81bde7fd29bd036b083e6d3
[]
no_license
georgecai904/bookshelf
e54ccae00d4ee48e91ca1564a425ba4586b52d93
0002207dc8ca586ce1127d3ea98bb53102d043df
refs/heads/master
2021-01-02T22:52:26.046535
2017-08-05T15:32:13
2017-08-05T15:32:13
99,409,971
0
0
null
null
null
null
UTF-8
Python
false
false
275
py
import time def run_bash_command(command): import subprocess process = subprocess.Popen(command.split(), stdout=subprocess.PIPE, stdin=subprocess.PIPE) print(process.communicate()) while True: run_bash_command("python manage.py runcrons") time.sleep(60)
09ab405b4618a48b3621a5259a4853a7ee190e10
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/HPN-ICF-MULTICAST-SNOOPING-MIB.py
f19c2866685a9ddc231b0cb4568dcf6412d89090
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
44,155
py
# # PySNMP MIB module HPN-ICF-MULTICAST-SNOOPING-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/HPN-ICF-MULTICAST-SNOOPING-MIB # Produced by pysmi-0.3.4 at Wed May 1 13:40:29 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "Integer", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsUnion, ValueRangeConstraint, SingleValueConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ValueRangeConstraint", "SingleValueConstraint", "ConstraintsIntersection") hpnicfCommon, = mibBuilder.importSymbols("HPN-ICF-OID-MIB", "hpnicfCommon") InterfaceIndex, = mibBuilder.importSymbols("IF-MIB", "InterfaceIndex") InetAddress, InetAddressType = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetAddress", "InetAddressType") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Bits, Integer32, TimeTicks, Gauge32, ObjectIdentity, Unsigned32, Counter64, MibIdentifier, MibScalar, MibTable, MibTableRow, MibTableColumn, IpAddress, iso, ModuleIdentity, NotificationType, Counter32 = mibBuilder.importSymbols("SNMPv2-SMI", "Bits", "Integer32", "TimeTicks", "Gauge32", "ObjectIdentity", "Unsigned32", "Counter64", "MibIdentifier", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "IpAddress", "iso", "ModuleIdentity", "NotificationType", "Counter32") DisplayString, TruthValue, TextualConvention, RowStatus = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TruthValue", "TextualConvention", "RowStatus") hpnicfMulticastSnoop = ModuleIdentity((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123)) hpnicfMulticastSnoop.setRevisions(('2014-05-14 17:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: hpnicfMulticastSnoop.setRevisionsDescriptions(('The initial version of this MIB file.',)) if mibBuilder.loadTexts: hpnicfMulticastSnoop.setLastUpdated('201405141700Z') if mibBuilder.loadTexts: hpnicfMulticastSnoop.setOrganization('') if mibBuilder.loadTexts: hpnicfMulticastSnoop.setContactInfo('') if mibBuilder.loadTexts: hpnicfMulticastSnoop.setDescription('IGMP/MLD Snooping Management MIB') class HpnicfVirtualUnitType(TextualConvention, Integer32): description = 'VLAN configuration or VSI configuration.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2)) namedValues = NamedValues(("vlan", 1), ("vsi", 2)) hpnicfMulticastSnoopObject = MibIdentifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1)) hpnicfMcsGlobalConfigTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 1), ) if mibBuilder.loadTexts: hpnicfMcsGlobalConfigTable.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsGlobalConfigTable.setDescription('Table containing information about the global configuration of IGMP/MLD snooping.') hpnicfMcsGlobalConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 1, 1), ).setIndexNames((0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsGlbSnoopingType")) if mibBuilder.loadTexts: hpnicfMcsGlobalConfigEntry.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsGlobalConfigEntry.setDescription('Entry containing information about the global configuration of IGMP/MLD snooping.') hpnicfMcsGlbSnoopingType = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 1, 1, 1), InetAddressType()) if mibBuilder.loadTexts: hpnicfMcsGlbSnoopingType.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsGlbSnoopingType.setDescription('Type of the global configuration. IPv4 means IGMP snooping configuration, and IPv6 means MLD snooping configuration.') hpnicfMcsGlbRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 1, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsGlbRowStatus.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsGlbRowStatus.setDescription('The activation of a row enables IGMP/MLD snooping globally. The destruction of a row disables IGMP/MLD snooping globally.') hpnicfMcsGlbEntryLimit = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 1, 1, 3), Unsigned32()).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsGlbEntryLimit.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsGlbEntryLimit.setDescription('Global maximum number of IGMP/MLD snooping forwarding entries.') hpnicfMcsGlbHostAgingTime = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 1, 1, 4), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 8097894)).clone(260)).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsGlbHostAgingTime.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsGlbHostAgingTime.setDescription('Global aging time of the multicast group on ports.') hpnicfMcsGlbMaxResponseTime = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 1, 1, 5), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 3174)).clone(10)).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsGlbMaxResponseTime.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsGlbMaxResponseTime.setDescription('Global maximum query response time.') hpnicfMcsGlbRouterAgingTime = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 1, 1, 6), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 8097894)).clone(260)).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsGlbRouterAgingTime.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsGlbRouterAgingTime.setDescription('Global aging time of router ports.') hpnicfMcsGlbLastMemQryInterval = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 1, 1, 7), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 25)).clone(1)).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsGlbLastMemQryInterval.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsGlbLastMemQryInterval.setDescription('Global last member query interval.') hpnicfMcsGlbDropUnknownEnabled = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 1, 1, 8), TruthValue().clone('false')).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsGlbDropUnknownEnabled.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsGlbDropUnknownEnabled.setDescription('Whether the feature of dropping unknown packets is enabled globally.') hpnicfMcsVirtualUnitConfigTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2), ) if mibBuilder.loadTexts: hpnicfMcsVirtualUnitConfigTable.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVirtualUnitConfigTable.setDescription('Table containing configuration information about the specified VLAN or VSI.') hpnicfMcsVirtualUnitConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1), ).setIndexNames((0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsVUType"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsVUID"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsVUSnoopingType")) if mibBuilder.loadTexts: hpnicfMcsVirtualUnitConfigEntry.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVirtualUnitConfigEntry.setDescription('Entry containing information of the specified VLAN or VSI.') hpnicfMcsVUType = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 1), HpnicfVirtualUnitType()) if mibBuilder.loadTexts: hpnicfMcsVUType.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVUType.setDescription('Type of virtual unit.') hpnicfMcsVUID = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 2), Unsigned32()) if mibBuilder.loadTexts: hpnicfMcsVUID.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVUID.setDescription('VLAN ID or VSI Index. Its value ranges from 1 to 4094 when type is VLAN, and from 0 to 0xFFFFFFFE when type is VSI') hpnicfMcsVUSnoopingType = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 3), InetAddressType()) if mibBuilder.loadTexts: hpnicfMcsVUSnoopingType.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVUSnoopingType.setDescription('Type of the configuration. IPv4 means IGMP snooping configuration, and IPv6 means MLD snooping configuration.') hpnicfMcsVURowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVURowStatus.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVURowStatus.setDescription('The activation of a row enables IGMP/MLD snooping in the VLAN or VSI. The destruction of a row disables IGMP/MLD snooping in the VLAN or VSI.') hpnicfMcsVUHostAgingTime = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 5), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 8097894))).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVUHostAgingTime.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVUHostAgingTime.setDescription('Aging time of the multicast group on ports in the VLAN or VSI. A value of zero indicates that it is not configured in the VLAN or VSI.') hpnicfMcsVUMaxResponseTime = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 6), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 3174))).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVUMaxResponseTime.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVUMaxResponseTime.setDescription('Maximum query response time in the VLAN or VSI. A value of zero indicates that it is not configured in the VLAN or VSI.') hpnicfMcsVURouterAgingTime = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 7), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 8097894))).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVURouterAgingTime.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVURouterAgingTime.setDescription('Aging time of the router port in the VLAN or VSI. A value of zero indicates that it is not configured in the VLAN or VSI.') hpnicfMcsVULastMemQryInterval = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 8), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 25))).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVULastMemQryInterval.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVULastMemQryInterval.setDescription('Last member query interval in the VLAN or VSI. A value of zero indicates that it is not configured in the VLAN or VSI.') hpnicfMcsVUDropUnknownEnabled = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 9), TruthValue().clone('false')).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVUDropUnknownEnabled.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVUDropUnknownEnabled.setDescription('Whether the feature of dropping unknown packets is enabled in the VLAN or VSI.') hpnicfMcsVUPimSnoopingEnabled = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 10), TruthValue().clone('false')).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVUPimSnoopingEnabled.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVUPimSnoopingEnabled.setDescription('Whether PIM snooping is enabled in the VLAN or VSI.') hpnicfMcsVUVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 11), Unsigned32().subtype(subtypeSpec=ConstraintsUnion(ValueRangeConstraint(2, 2), ValueRangeConstraint(3, 3), )).clone(2)).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVUVersion.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVUVersion.setDescription('Version of IGMP/MLD snooping that is running on the VLAN. Value 2 represents IGMPv2 snooping and MLDv1 snooping, and value 3 represents IGMPv3 snooping and MLDv2 snooping.') hpnicfMcsVUQuerierEnabled = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 12), TruthValue().clone('false')).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVUQuerierEnabled.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVUQuerierEnabled.setDescription('Whether the querier feature is enabled in the VLAN or VSI.') hpnicfMcsVUQuerierInterval = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 13), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(2, 31744)).clone(125)).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVUQuerierInterval.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVUQuerierInterval.setDescription('Query interval.') hpnicfMcsVUGeneQuerierSourceAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 14), InetAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVUGeneQuerierSourceAddress.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVUGeneQuerierSourceAddress.setDescription('Source IP address of IGMP or MLD general query packets. Its value is 255.255.255.255 or FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF when not configured.') hpnicfMcsVUSpecQuerierSourceAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 15), InetAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVUSpecQuerierSourceAddress.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVUSpecQuerierSourceAddress.setDescription('Source IP address of IGMP or MLD group-specific query packets. Its value is 255.255.255.255 or FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF when not configured.') hpnicfMcsVULeaveSourceAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 16), InetAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVULeaveSourceAddress.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVULeaveSourceAddress.setDescription('Source IP address of IGMP or MLD leave packets. Its value is 255.255.255.255 or FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF when not configured.') hpnicfMcsVUReportSourceAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 2, 1, 17), InetAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsVUReportSourceAddress.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsVUReportSourceAddress.setDescription('Source IP address of IGMP or MLD report packets. Its value is 255.255.255.255 or FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF when not configured.') hpnicfMcsL2EntryTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 3), ) if mibBuilder.loadTexts: hpnicfMcsL2EntryTable.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsL2EntryTable.setDescription('Table containing a list of Layer 2 multicast group entries.') hpnicfMcsL2EntryEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 3, 1), ).setIndexNames((0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsL2EntryVUType"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsL2EntryVUID"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsL2EntryAddressType"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsL2EntryGroupAddress"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsL2EntrySourceAddress"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsL2EntryIfIndex")) if mibBuilder.loadTexts: hpnicfMcsL2EntryEntry.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsL2EntryEntry.setDescription('Entry of l2-multicast group, which is created for each group learned or configured in the VLAN or VSI.') hpnicfMcsL2EntryVUType = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 3, 1, 1), HpnicfVirtualUnitType()) if mibBuilder.loadTexts: hpnicfMcsL2EntryVUType.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsL2EntryVUType.setDescription('Type of virtual unit.') hpnicfMcsL2EntryVUID = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 3, 1, 2), Unsigned32()) if mibBuilder.loadTexts: hpnicfMcsL2EntryVUID.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsL2EntryVUID.setDescription('VLAN ID or VSI Index. Its value ranges from 1 to 4094 when type is VLAN, and from 0 to 0xFFFFFFFE when type is VSI.') hpnicfMcsL2EntryAddressType = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 3, 1, 3), InetAddressType()) if mibBuilder.loadTexts: hpnicfMcsL2EntryAddressType.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsL2EntryAddressType.setDescription('Type of multicast IP address.') hpnicfMcsL2EntryGroupAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 3, 1, 4), InetAddress()) if mibBuilder.loadTexts: hpnicfMcsL2EntryGroupAddress.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsL2EntryGroupAddress.setDescription('IP address of the multicast group which the port joined.') hpnicfMcsL2EntrySourceAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 3, 1, 5), InetAddress()) if mibBuilder.loadTexts: hpnicfMcsL2EntrySourceAddress.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsL2EntrySourceAddress.setDescription('IP address of the unicast source which the port joined.') hpnicfMcsL2EntryIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 3, 1, 6), InterfaceIndex()) if mibBuilder.loadTexts: hpnicfMcsL2EntryIfIndex.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsL2EntryIfIndex.setDescription('IfIndex value of the port that joined the Layer 2 IP multicast group entry.') hpnicfMcsL2EntryPortType = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 3, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("interface", 1), ("ac", 2), ("npw", 3), ("upw", 4), ("trill", 5)))).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsL2EntryPortType.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsL2EntryPortType.setDescription('Type of the port.') hpnicfMcsL2EntryPortAttribute = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 3, 1, 8), Bits().clone(namedValues=NamedValues(("d", 0), ("s", 1), ("p", 2), ("k", 3), ("r", 4), ("w", 5)))).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsL2EntryPortAttribute.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsL2EntryPortAttribute.setDescription("Attribute of the port. 'd' means learned from IGMP/MLD packets, 's' means configured statically, 'p' means learned from PIM snooping, 'k' means obtained from the kernel, 'r' means learned from (*, *) entries, 'w' means learned from (*, G) entries.") hpnicfMcsPacketStatisticsTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4), ) if mibBuilder.loadTexts: hpnicfMcsPacketStatisticsTable.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPacketStatisticsTable.setDescription('Table containing the IGMP/MLD packets statistics.') hpnicfMcsPacketStatisticsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1), ).setIndexNames((0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsStatisticsSnoopingType")) if mibBuilder.loadTexts: hpnicfMcsPacketStatisticsEntry.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPacketStatisticsEntry.setDescription('Entry containing the statistic information of IGMP/MLD packets that have been transmitted and received in the device.') hpnicfMcsStatisticsSnoopingType = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 1), InetAddressType()) if mibBuilder.loadTexts: hpnicfMcsStatisticsSnoopingType.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsStatisticsSnoopingType.setDescription('Type of the snooping, IPv4 means the statistics for IGMP snooping, and IPv6 means the statistics for MLD snooping.') hpnicfMcsRxGeneryQueryNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 2), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsRxGeneryQueryNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRxGeneryQueryNum.setDescription('Statistics of IGMP or MLD general query packets received on the device.') hpnicfMcsRxV2SpecificQueryNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 3), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsRxV2SpecificQueryNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRxV2SpecificQueryNum.setDescription('Statistics of IGMPv2 or MLDv1 group-specific query packets received on the device.') hpnicfMcsRxV3SpecificQueryNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 4), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsRxV3SpecificQueryNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRxV3SpecificQueryNum.setDescription('The statistics of IGMPv3 or MLDv2 group-specific query packets received on the device.') hpnicfMcsRxV3SpecificSGQueryNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 5), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsRxV3SpecificSGQueryNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRxV3SpecificSGQueryNum.setDescription('Statistics of IGMPv3 or MLDv2 group-and-source-specific query packets received on the device.') hpnicfMcsRxV1ReportNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 6), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsRxV1ReportNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRxV1ReportNum.setDescription('Statistics of IGMPv1 report packets received on the device.') hpnicfMcsRxV2ReportNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 7), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsRxV2ReportNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRxV2ReportNum.setDescription('Statistics of IGMPv2 or MLDv1 report packets received on the device.') hpnicfMcsRxV3ReportNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 8), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsRxV3ReportNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRxV3ReportNum.setDescription('Statistics of IGMPv3 or MLDv2 report packets received on the device.') hpnicfMcsRxV3ErrCorReportNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 9), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsRxV3ErrCorReportNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRxV3ErrCorReportNum.setDescription('Statistics of IGMPv3 or MLDv2 report packets with correct and incorrect records received on the device.') hpnicfMcsRxLeaveNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 10), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsRxLeaveNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRxLeaveNum.setDescription('Statistics of leave packets received on the device.') hpnicfMcsRxPimHelloNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 11), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsRxPimHelloNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRxPimHelloNum.setDescription('Statistics of PIM hello packets received on the device.') hpnicfMcsRxErrorPacketNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 12), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsRxErrorPacketNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRxErrorPacketNum.setDescription('Statistics of error IGMP/MLD packets received on the device.') hpnicfMcsTxV2SpecificQueryNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 13), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsTxV2SpecificQueryNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsTxV2SpecificQueryNum.setDescription('Statistics of IGMPv2 or MLDv1 group-specific query packets sent from the device.') hpnicfMcsTxV3SpecificQueryNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 14), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsTxV3SpecificQueryNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsTxV3SpecificQueryNum.setDescription('Statistics of IGMPv3 or MLDv2 group-specific query packets sent from the device.') hpnicfMcsTxV3SpecificSGQueryNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 4, 1, 15), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfMcsTxV3SpecificSGQueryNum.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsTxV3SpecificSGQueryNum.setDescription('Statistics of IGMPv3 or MLDv2 group-and-source-specific query packets sent from the device.') hpnicfMcsPortJoinGroupConfigTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 5), ) if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupConfigTable.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupConfigTable.setDescription('Table for configuring a port as a simulated member host for a multicast group.') hpnicfMcsPortJoinGroupConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 5, 1), ).setIndexNames((0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsPortJoinGroupIfIndex"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsPortJoinGroupSnoopingType"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsPortJoinGroupVlanID"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsPortJoinGroupGroupAddress"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsPortJoinGroupSourceAddress")) if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupConfigEntry.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupConfigEntry.setDescription('Entry for configuring a port as a simulated member host for a multicast group.') hpnicfMcsPortJoinGroupIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 5, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupIfIndex.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupIfIndex.setDescription('Port for which this entry contains information.') hpnicfMcsPortJoinGroupSnoopingType = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 5, 1, 2), InetAddressType()) if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupSnoopingType.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupSnoopingType.setDescription('Type of the configuration. IPv4 means IGMP snooping configuration, and IPv6 means MLD snooping configuration.') hpnicfMcsPortJoinGroupVlanID = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 5, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4094))) if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupVlanID.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupVlanID.setDescription('Index uniquely identifying the specified VLAN in which a host on a port joined the multicast group.') hpnicfMcsPortJoinGroupGroupAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 5, 1, 4), InetAddress()) if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupGroupAddress.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupGroupAddress.setDescription('IP address of the group to which the host belongs.') hpnicfMcsPortJoinGroupSourceAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 5, 1, 5), InetAddress()) if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupSourceAddress.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupSourceAddress.setDescription('IP address of the source. A value of zero indicates that the multicast packets of this group can come from any sources.') hpnicfMcsPortJoinGroupStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 5, 1, 6), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupStatus.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortJoinGroupStatus.setDescription("This object is responsible for managing rows, which supports 'active', 'createAndGo' and 'destroy'.") hpnicfMcsPortStaticGroupConfigTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 6), ) if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupConfigTable.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupConfigTable.setDescription('Table for configuring static group membership entries on a port.') hpnicfMcsPortStaticGroupConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 6, 1), ).setIndexNames((0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsPortStaticGroupIfIndex"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsPortStaticGroupSnoopingType"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsPortStaticGroupVlanID"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsPortStaticGroupGroupAddress"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsPortStaticGroupSourceAddress")) if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupConfigEntry.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupConfigEntry.setDescription('Entry for configuring static group membership entries on a port.') hpnicfMcsPortStaticGroupIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 6, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupIfIndex.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupIfIndex.setDescription('Port for which this entry contains information.') hpnicfMcsPortStaticGroupSnoopingType = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 6, 1, 2), InetAddressType()) if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupSnoopingType.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupSnoopingType.setDescription('Type of the configuration. IPv4 means IGMP snooping configuration, and IPv6 means MLD snooping configuration.') hpnicfMcsPortStaticGroupVlanID = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 6, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4094))) if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupVlanID.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupVlanID.setDescription('Index uniquely identifying the specified VLAN in which a port statically joined the multicast group.') hpnicfMcsPortStaticGroupGroupAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 6, 1, 4), InetAddress()) if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupGroupAddress.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupGroupAddress.setDescription('IP address of the multicast group.') hpnicfMcsPortStaticGroupSourceAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 6, 1, 5), InetAddress()) if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupSourceAddress.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupSourceAddress.setDescription('IP address of the source. A value of zero indicates that the multicast packets of this group can come from any sources.') hpnicfMcsPortStaticGroupStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 6, 1, 6), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupStatus.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortStaticGroupStatus.setDescription("This object is responsible for managing the creation and deletion of rows, which supports 'active', 'createAndGo' and 'destroy'.") hpnicfMcsRouterPortConfigTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 7), ) if mibBuilder.loadTexts: hpnicfMcsRouterPortConfigTable.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRouterPortConfigTable.setDescription('Table for configuring a port as a static router port.') hpnicfMcsRouterPortConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 7, 1), ).setIndexNames((0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsRouterPortConfigIfIndex"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsRouterPortConfigSnoopingType"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsRouterPortConfigVlanID")) if mibBuilder.loadTexts: hpnicfMcsRouterPortConfigEntry.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRouterPortConfigEntry.setDescription('Entry for configuring a port as a static router port.') hpnicfMcsRouterPortConfigIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 7, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: hpnicfMcsRouterPortConfigIfIndex.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRouterPortConfigIfIndex.setDescription('Port for which this entry contains information.') hpnicfMcsRouterPortConfigSnoopingType = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 7, 1, 2), InetAddressType()) if mibBuilder.loadTexts: hpnicfMcsRouterPortConfigSnoopingType.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRouterPortConfigSnoopingType.setDescription('Type of the configuration. IPv4 means IGMP snooping configuration, and IPv6 means MLD snooping configuration.') hpnicfMcsRouterPortConfigVlanID = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 7, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4094))) if mibBuilder.loadTexts: hpnicfMcsRouterPortConfigVlanID.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRouterPortConfigVlanID.setDescription('Index uniquely identifying the specified VLAN in which a port act as a static router port.') hpnicfMcsRouterPortConfigRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 7, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsRouterPortConfigRowStatus.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsRouterPortConfigRowStatus.setDescription("This object is a conceptual row entry that allows to add or delete entries to or from the hpnicfMcsRouterPortConfigTable. When an entry is created in this table 'createAndGo' method is used and the value of this object is set to 'active'. Deactivation of an 'active' entry is not allowed. When an entry is deleted in this table 'destroy' method is used.") hpnicfMcsPortConfigTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 8), ) if mibBuilder.loadTexts: hpnicfMcsPortConfigTable.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortConfigTable.setDescription('Table for configuring the fast leave status, group limit number, group policy parameter and overflow replace status on a port in the specified VLAN.') hpnicfMcsPortConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 8, 1), ).setIndexNames((0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsPortConfigIfIndex"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsPortConfigSnoopingType"), (0, "HPN-ICF-MULTICAST-SNOOPING-MIB", "hpnicfMcsPortConfigVlanID")) if mibBuilder.loadTexts: hpnicfMcsPortConfigEntry.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortConfigEntry.setDescription('Entry containing information about the fast leave status, group limit number, group policy parameter and overflow replace status of a port in the specified VLAN.') hpnicfMcsPortConfigIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 8, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: hpnicfMcsPortConfigIfIndex.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortConfigIfIndex.setDescription('Port for which this entry contains information.') hpnicfMcsPortConfigSnoopingType = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 8, 1, 2), InetAddressType()) if mibBuilder.loadTexts: hpnicfMcsPortConfigSnoopingType.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortConfigSnoopingType.setDescription('Type of the configuration. IPv4 means IGMP snooping configuration, and IPv6 means MLD snooping configuration.') hpnicfMcsPortConfigVlanID = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 8, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4094))) if mibBuilder.loadTexts: hpnicfMcsPortConfigVlanID.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortConfigVlanID.setDescription('VLAN ID.') hpnicfMcsPortConfigGroupLimitNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 8, 1, 4), Unsigned32()).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsPortConfigGroupLimitNumber.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortConfigGroupLimitNumber.setDescription('Group limit number of the port.') hpnicfMcsPortConfigFastLeaveStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 8, 1, 5), TruthValue().clone('false')).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsPortConfigFastLeaveStatus.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortConfigFastLeaveStatus.setDescription('Fast leave status of the port.') hpnicfMcsPortConfigGroupPolicyParameter = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 8, 1, 6), Unsigned32().subtype(subtypeSpec=ConstraintsUnion(ValueRangeConstraint(0, 0), ValueRangeConstraint(2000, 3999), ))).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsPortConfigGroupPolicyParameter.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortConfigGroupPolicyParameter.setDescription('ACL number which is used as the group policy parameter of the port.') hpnicfMcsPortConfigOverflowReplace = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 8, 1, 7), TruthValue().clone('false')).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsPortConfigOverflowReplace.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortConfigOverflowReplace.setDescription('This object is related to the object hpnicfMcsPortConfigGroupLimitNumber. If the current group number is less than the value of hpnicfMcsPortConfigGroupLimitNumber, any new group is permitted. If the current group number equals to the value of hpnicfMcsPortConfigGroupLimitNumber and the value of this object is enabled, the group with the minimum multicast address will be replaced by the new group. If the current group number equals to the value of hpnicfMcsPortConfigGroupLimitNumber and the value of this object is disabled, none of new group will be permitted.') hpnicfMcsPortConfigRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 123, 1, 8, 1, 8), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: hpnicfMcsPortConfigRowStatus.setStatus('current') if mibBuilder.loadTexts: hpnicfMcsPortConfigRowStatus.setDescription("The object is responsible for managing the creation and deletion of rows, which supports 'active', 'createAndGo' and 'destroy'.") mibBuilder.exportSymbols("HPN-ICF-MULTICAST-SNOOPING-MIB", hpnicfMcsVUVersion=hpnicfMcsVUVersion, hpnicfMcsRouterPortConfigIfIndex=hpnicfMcsRouterPortConfigIfIndex, hpnicfMcsPortJoinGroupStatus=hpnicfMcsPortJoinGroupStatus, hpnicfMcsPortConfigEntry=hpnicfMcsPortConfigEntry, hpnicfMcsPortStaticGroupConfigTable=hpnicfMcsPortStaticGroupConfigTable, hpnicfMcsTxV3SpecificQueryNum=hpnicfMcsTxV3SpecificQueryNum, hpnicfMcsPortConfigVlanID=hpnicfMcsPortConfigVlanID, hpnicfMcsGlobalConfigTable=hpnicfMcsGlobalConfigTable, hpnicfMcsGlbDropUnknownEnabled=hpnicfMcsGlbDropUnknownEnabled, hpnicfMcsStatisticsSnoopingType=hpnicfMcsStatisticsSnoopingType, hpnicfMcsPortStaticGroupConfigEntry=hpnicfMcsPortStaticGroupConfigEntry, hpnicfMcsPacketStatisticsTable=hpnicfMcsPacketStatisticsTable, hpnicfMcsRxV3ReportNum=hpnicfMcsRxV3ReportNum, hpnicfMcsPortStaticGroupStatus=hpnicfMcsPortStaticGroupStatus, hpnicfMcsGlbRowStatus=hpnicfMcsGlbRowStatus, hpnicfMcsL2EntrySourceAddress=hpnicfMcsL2EntrySourceAddress, hpnicfMcsL2EntryIfIndex=hpnicfMcsL2EntryIfIndex, hpnicfMcsPacketStatisticsEntry=hpnicfMcsPacketStatisticsEntry, hpnicfMcsPortJoinGroupConfigTable=hpnicfMcsPortJoinGroupConfigTable, hpnicfMcsPortJoinGroupSourceAddress=hpnicfMcsPortJoinGroupSourceAddress, hpnicfMcsL2EntryPortType=hpnicfMcsL2EntryPortType, hpnicfMcsVUHostAgingTime=hpnicfMcsVUHostAgingTime, hpnicfMcsGlobalConfigEntry=hpnicfMcsGlobalConfigEntry, hpnicfMcsRouterPortConfigSnoopingType=hpnicfMcsRouterPortConfigSnoopingType, hpnicfMcsRxGeneryQueryNum=hpnicfMcsRxGeneryQueryNum, hpnicfMcsGlbHostAgingTime=hpnicfMcsGlbHostAgingTime, hpnicfMcsVUPimSnoopingEnabled=hpnicfMcsVUPimSnoopingEnabled, hpnicfMcsVUSnoopingType=hpnicfMcsVUSnoopingType, hpnicfMcsGlbLastMemQryInterval=hpnicfMcsGlbLastMemQryInterval, hpnicfMcsPortConfigRowStatus=hpnicfMcsPortConfigRowStatus, hpnicfMcsVUSpecQuerierSourceAddress=hpnicfMcsVUSpecQuerierSourceAddress, hpnicfMcsVUDropUnknownEnabled=hpnicfMcsVUDropUnknownEnabled, hpnicfMcsVULeaveSourceAddress=hpnicfMcsVULeaveSourceAddress, hpnicfMcsL2EntryGroupAddress=hpnicfMcsL2EntryGroupAddress, hpnicfMcsPortConfigGroupPolicyParameter=hpnicfMcsPortConfigGroupPolicyParameter, hpnicfMcsVULastMemQryInterval=hpnicfMcsVULastMemQryInterval, hpnicfMcsPortStaticGroupIfIndex=hpnicfMcsPortStaticGroupIfIndex, hpnicfMcsRouterPortConfigVlanID=hpnicfMcsRouterPortConfigVlanID, hpnicfMcsGlbRouterAgingTime=hpnicfMcsGlbRouterAgingTime, hpnicfMcsL2EntryPortAttribute=hpnicfMcsL2EntryPortAttribute, hpnicfMcsRouterPortConfigTable=hpnicfMcsRouterPortConfigTable, hpnicfMcsTxV2SpecificQueryNum=hpnicfMcsTxV2SpecificQueryNum, hpnicfMcsPortStaticGroupGroupAddress=hpnicfMcsPortStaticGroupGroupAddress, hpnicfMcsPortConfigTable=hpnicfMcsPortConfigTable, hpnicfMcsPortJoinGroupGroupAddress=hpnicfMcsPortJoinGroupGroupAddress, hpnicfMcsRxV3ErrCorReportNum=hpnicfMcsRxV3ErrCorReportNum, hpnicfMcsRouterPortConfigRowStatus=hpnicfMcsRouterPortConfigRowStatus, hpnicfMcsVUMaxResponseTime=hpnicfMcsVUMaxResponseTime, hpnicfMcsVUQuerierEnabled=hpnicfMcsVUQuerierEnabled, hpnicfMcsVirtualUnitConfigTable=hpnicfMcsVirtualUnitConfigTable, hpnicfMcsPortStaticGroupSnoopingType=hpnicfMcsPortStaticGroupSnoopingType, hpnicfMcsRxLeaveNum=hpnicfMcsRxLeaveNum, hpnicfMcsL2EntryEntry=hpnicfMcsL2EntryEntry, hpnicfMcsL2EntryVUID=hpnicfMcsL2EntryVUID, hpnicfMcsL2EntryTable=hpnicfMcsL2EntryTable, hpnicfMcsVUGeneQuerierSourceAddress=hpnicfMcsVUGeneQuerierSourceAddress, hpnicfMcsGlbEntryLimit=hpnicfMcsGlbEntryLimit, hpnicfMcsRxV3SpecificQueryNum=hpnicfMcsRxV3SpecificQueryNum, hpnicfMcsGlbMaxResponseTime=hpnicfMcsGlbMaxResponseTime, hpnicfMcsPortJoinGroupVlanID=hpnicfMcsPortJoinGroupVlanID, hpnicfMcsGlbSnoopingType=hpnicfMcsGlbSnoopingType, hpnicfMcsRxV2ReportNum=hpnicfMcsRxV2ReportNum, hpnicfMcsVirtualUnitConfigEntry=hpnicfMcsVirtualUnitConfigEntry, hpnicfMcsPortJoinGroupSnoopingType=hpnicfMcsPortJoinGroupSnoopingType, hpnicfMulticastSnoopObject=hpnicfMulticastSnoopObject, hpnicfMcsRxV2SpecificQueryNum=hpnicfMcsRxV2SpecificQueryNum, hpnicfMcsRouterPortConfigEntry=hpnicfMcsRouterPortConfigEntry, PYSNMP_MODULE_ID=hpnicfMulticastSnoop, HpnicfVirtualUnitType=HpnicfVirtualUnitType, hpnicfMcsTxV3SpecificSGQueryNum=hpnicfMcsTxV3SpecificSGQueryNum, hpnicfMcsPortStaticGroupSourceAddress=hpnicfMcsPortStaticGroupSourceAddress, hpnicfMcsVUQuerierInterval=hpnicfMcsVUQuerierInterval, hpnicfMcsVURouterAgingTime=hpnicfMcsVURouterAgingTime, hpnicfMcsPortConfigIfIndex=hpnicfMcsPortConfigIfIndex, hpnicfMcsVUReportSourceAddress=hpnicfMcsVUReportSourceAddress, hpnicfMcsPortConfigSnoopingType=hpnicfMcsPortConfigSnoopingType, hpnicfMcsRxErrorPacketNum=hpnicfMcsRxErrorPacketNum, hpnicfMulticastSnoop=hpnicfMulticastSnoop, hpnicfMcsRxV3SpecificSGQueryNum=hpnicfMcsRxV3SpecificSGQueryNum, hpnicfMcsRxV1ReportNum=hpnicfMcsRxV1ReportNum, hpnicfMcsPortJoinGroupConfigEntry=hpnicfMcsPortJoinGroupConfigEntry, hpnicfMcsL2EntryVUType=hpnicfMcsL2EntryVUType, hpnicfMcsVURowStatus=hpnicfMcsVURowStatus, hpnicfMcsVUID=hpnicfMcsVUID, hpnicfMcsPortConfigGroupLimitNumber=hpnicfMcsPortConfigGroupLimitNumber, hpnicfMcsPortJoinGroupIfIndex=hpnicfMcsPortJoinGroupIfIndex, hpnicfMcsPortConfigFastLeaveStatus=hpnicfMcsPortConfigFastLeaveStatus, hpnicfMcsL2EntryAddressType=hpnicfMcsL2EntryAddressType, hpnicfMcsPortConfigOverflowReplace=hpnicfMcsPortConfigOverflowReplace, hpnicfMcsVUType=hpnicfMcsVUType, hpnicfMcsPortStaticGroupVlanID=hpnicfMcsPortStaticGroupVlanID, hpnicfMcsRxPimHelloNum=hpnicfMcsRxPimHelloNum)
3cd0cb1f539962e82c9f27b78dcb28ab1cbaeb63
5821e83ccdd97c7d4d472b6d854490950854ba9f
/code/pike_ex1.py
7de4a0dee8d596e0ba3e94f7e626d74c313856d9
[ "CC-BY-4.0" ]
permissive
dhellmann/presentation-regex-implementations
b44b6b0a2ed6304c1c7f63c8702d23f7aa54cdb2
c02b74651876b596201c59b0d35758ef36298081
refs/heads/master
2022-12-15T20:21:24.953111
2019-11-03T20:34:06
2019-11-03T20:34:06
219,158,579
1
0
null
2022-12-11T11:47:57
2019-11-02T13:35:33
CSS
UTF-8
Python
false
false
65
py
#!/usr/bin/env python3 import pike pike.match('ab*c', 'abccd')
757ea65c43bbe012863e19534632fc725f47f4b1
1ec6d8691fa9355a53fbcf93d3a47b4a15a80fe6
/build/lib/lcopt/__init__.py
2ad3293a32502e9c30c5fc0a521d5a5c76c8588a
[ "BSD-3-Clause" ]
permissive
cmutel/lcopt
f3be8bbd0808323de807c56a8a501993d2e7fd8b
4c9087a5812f0d86804cdda999ef3bdf491a6fa8
refs/heads/master
2021-01-22T14:45:51.072282
2017-08-18T11:33:08
2017-08-18T11:33:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
48
py
from lcopt.io import * from lcopt.model import *
c9ea21dbe986fc835e4e862c46e843454f7a3906
1c78b144662c5d0473e53ff5622e6cbf8c593ef9
/nba_matchup/yfs.py
6f89a3e678a6563409b64ce31519d6b5e36ce0aa
[ "MIT" ]
permissive
sharadmv/nba-fantasy-optimize
fe1eb45df26a8c23b47de1ff5ad98ada877dfd77
81fdfa78fce4ce356220c91a1063a6efcfa4ff02
refs/heads/master
2022-12-13T10:34:51.756539
2021-11-23T05:54:12
2021-11-23T05:54:12
168,676,401
4
0
MIT
2022-12-08T01:44:37
2019-02-01T09:48:53
Python
UTF-8
Python
false
false
774
py
from yaspin import yaspin import datetime from yahoo_oauth import OAuth2 from fantasy_sport import FantasySport __all__ = ['yfs', 'LEAGUE_KEY', 'CURRENT_WEEK', 'START_DATE'] LEAGUE_KEY = "nba.l.64384" oauth = OAuth2(None, None, from_file='oauth.json', base_url='https://fantasysports.yahooapis.com/fantasy/v2/') yfs = FantasySport(oauth, fmt='json') with yaspin(text="Fetching league data", color='cyan'): response = yfs.get_leagues([LEAGUE_KEY]).json()['fantasy_content']['leagues']['0']['league'][0] START_DATE = datetime.datetime.strptime(response['start_date'], "%Y-%m-%d").date() while START_DATE.weekday() != 0: START_DATE -= datetime.timedelta(days=1) diff = datetime.datetime.today().date() - START_DATE CURRENT_WEEK = response.get('current_week', None)
5c48e7effb0eb65a92e95ec6ab09a44a7f7f028d
192dec1ea734fd67a3c3720228826cf754b2da5a
/valeo/vr/models.py
a1a86f3d91add9b73c1e35fc55c2fc8182a5293b
[]
no_license
fafaschiavo/cpi_valeo
a4df4e64161e58e44ade276f0b6284abfb5af6d2
777ef6173bbc4bf5941098cb2ea3b13fccf490c1
refs/heads/master
2020-04-06T04:14:59.226013
2017-05-02T22:39:00
2017-05-02T22:39:00
82,980,893
0
0
null
null
null
null
UTF-8
Python
false
false
513
py
from __future__ import unicode_literals from django.db import models # Create your models here. class joystick(models.Model): joystick_data = models.CharField(max_length=200) angle = models.IntegerField(default=90) pedal = models.FloatField(default=0) left_buttons = models.IntegerField(default=0) right_buttons = models.IntegerField(default=0) # state = joystick(joystick_data = '', angle = 90, pedal = 0, left_buttons = 0, right_buttons = 0) # state.save() # joystick.objects.get(id = 1)
f6dba0a7e196a8718ed2fb1a7978fd42953ee6e8
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_322/ch30_2019_03_26_18_43_32_991323.py
901b0a5a75d9547c3b7aa65aa4eecdd7ec4a9796
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
328
py
import math velocidade = int(input("Qual a velocidade?:")) angulo = int(input("Qual o angulo?:")) distancia = (((velocidade ** 2) * (math.sin(2 * math.radians( angulo))))) / (9.8) if distancia >= 98 and distancia <= 102 print('Acertou!') if distancia < 98: print('Muito perto') if distancia > 102: print('Muito longe')
e8fedba445c7d316d56ebdb5ed0292e721f568e9
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/59/usersdata/162/61510/submittedfiles/testes.py
fdf544d79486196cce5adcbccad32091483213bf
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
925
py
import numpy as np def menorlinha(a): for i in range(0,a.shape[0],1): for j in range(0,a.shape[1],1): if a[i,j]==1: return(i) def menorcoluna(a): for j in range(0,a.shape[1],1): for i in range(0,a.shape[0],1): if a[i,j]==1: return(j) def maiorlinha(a): for i in range(a.shape[0]-1,-1,-1): for j in range(a.shape[1]-1,-1,-1): if a[i,j]==1: return(i) def maiorlinha(a): for j in range(a.shape[0]-1,-1,-1): for i in range(a.shape[1]-1,-1,-1): if a[i,j]==1: return(j) linhas=int(input('linhas: ')) colunas=int(input('colunas: ')) a=np.zeros((linhas,colunas)) for i in range(0,a.shape[0],1): for j in range(0,a.shape[1],1): a[i,j]=int(input('digite a matriz')) x=menorlinha(a) y=maiorlinha(a) z=menorcoluna(a) w=maiorcoluna(a) print(a[x:y+1,z:w+1])
f97d1a8d1a8a7dc659883a5b5bc249e619f17c03
f1c071430a352ef82a4e7b902d6081851e5d569a
/neuronunit/capabilities/channel.py
87c52e19babe3b1c5dbc25efe5553022cee45991
[]
no_license
rgerkin/neuronunit
b1e5aeadc03c0be3507b0182ae81c89371c5f899
85330f1c4e4206b347d5a5e7792d41536ae71a0a
refs/heads/master
2021-01-17T05:41:06.109463
2015-10-23T22:22:30
2015-10-23T22:22:30
8,037,496
2
1
null
2015-06-25T15:32:01
2013-02-05T20:37:39
Python
UTF-8
Python
false
false
1,382
py
"""Channel capabilities""" import inspect import sciunit class NML2_Channel_Runnable(sciunit.Capability): """Capability for models that can be run using functions available in pyNeuroML.analsysi.NML2ChannelAnalysis""" def NML2_channel_run(self,**run_params): return NotImplementedError("%s not implemented" % inspect.stack()[0][3]) class ProducesIVCurve(sciunit.Capability): """The capability to produce a current-voltage plot for a set of voltage steps""" def produce_iv_curve(self, **run_params): """Produces steady-state and peak IV curve at voltages and conditions given according to 'run_params'""" return NotImplementedError("%s not implemented" % inspect.stack()[0][3]) def produce_iv_curve_ss(self,**run_params): """Produces steady-state IV curve at voltages and conditions given according to 'run_params'""" return NotImplementedError("%s not implemented" % inspect.stack()[0][3]) def produce_iv_curve_peak(self,*run_params): """Produces peak current IV curve at voltages and conditions given according to 'run_params'""" return NotImplementedError("%s not implemented" % inspect.stack()[0][3]) def plot_iv_curve(self,iv_data): """Plots IV Curve using results from 'iv_data'""" return NotImplementedError("%s not implemented" % inspect.stack()[0][3])
e7391ef71192ed06e3c4ff224131362673034076
2b4badbedab24ed4376ab65818d0e59af6539144
/messcode/mail_first.py
5e2d1b63c30dd456564b90b3732846639eeebee1
[]
no_license
matthewangbin/Python
878d8180d12d235f8d238574414bb41edad5ceee
c9a94b4203380a06364da1f7466aafc4b141d951
refs/heads/master
2021-10-11T01:45:22.890144
2019-01-21T02:44:25
2019-01-21T02:44:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,071
py
# -*- coding: utf-8 -*- # @Time : 2017/12/25 21:55 # @Author : Matthew # @Site : # @File : mail_first.py # @Software: PyCharm from email import encoders from email.header import Header from email.mime.text import MIMEText from email.utils import parseaddr, formataddr import smtplib def _format_addr(s): name, addr = parseaddr(s) return formataddr(( \ Header(name, 'utf-8').encode(), \ addr.encode('utf-8') if isinstance(addr, unicode) else addr)) from_addr = '[email protected]' password = 'wb284745' to_addr = '[email protected]' smtp_server = 'smtp.163.com' msg = MIMEText('hello, send by Python...', 'plain', 'utf-8') msg['From'] = _format_addr(u'Python爱好者 <%s>' % from_addr) msg['To'] = _format_addr(u'管理员 <%s>' % to_addr) msg['Subject'] = Header(u'来自SMTP的问候……', 'utf-8').encode() #msg.attach(MIMEText('send with files','plain','utf-8')) server = smtplib.SMTP(smtp_server, 25) server.set_debuglevel(1) server.login(from_addr, password) server.sendmail(from_addr, [to_addr], msg.as_string()) server.quit()
87cc4210ce4c5b742377c17cba6924f894a19b86
c1ba3127b3526aba8b9bf25fddd172020a8858a8
/easy/array/max_product_of_3_numbers/max_product_of_3_numbers.py
92170a0b39e7a4c064842c5fbae87866cdf17d9c
[ "MIT" ]
permissive
deepshig/leetcode-solutions
f5c627215e79323dba3bb6d4005e35e33f31c858
1e99e0852b8329bf699eb149e7dfe312f82144bc
refs/heads/master
2022-11-30T20:50:02.007164
2020-08-06T19:21:02
2020-08-06T19:21:02
279,260,022
0
0
null
null
null
null
UTF-8
Python
false
false
1,058
py
class Solution(object): def maximumProduct(self, nums): """ :type nums: List[int] :rtype: int """ first_min, second_min = float("inf"), float("inf") first_max, second_max, third_max = - \ float("inf"), -float("inf"), -float("inf") for n in nums: if n <= first_min: second_min, first_min = first_min, n elif n <= second_min: second_min = n if n >= first_max: third_max, second_max, first_max = second_max, first_max, n elif n >= second_max: third_max, second_max = second_max, n elif n >= third_max: third_max = n product_1 = first_min*second_min*first_max product_2 = first_max*second_max*third_max return max(product_1, product_2) s = Solution() print("Solution 1 : ", s.maximumProduct([1, 2, 3])) print("Solution 2 : ", s.maximumProduct([1, 2, 3, 4])) print("Solution 3 : ", s.maximumProduct([-4, -3, -2, -1, 60]))
fdf0aba38c57fae8c11e4e5cdb741c8e4a0951be
743ad4ed116b838da917f105909d9e84e10a4b31
/day06/ResponseAndRequest/ResponseAndRequest/spiders/myspider.py
7568ce3d3f4c4f39a6c46469c61ae47cf2fc81a5
[]
no_license
heiyouyou/Scrapy
62bb90638a8d6ee1aa62dcf525463c6b0a6a46e6
afa74f885d30ae3486b1da52dc90d0b7118f4dc1
refs/heads/master
2021-09-07T12:44:11.063627
2018-02-23T03:05:39
2018-02-23T03:05:39
113,541,279
0
1
null
null
null
null
UTF-8
Python
false
false
196
py
import scrapy class MySpider(scrapy.Spider): name = 'myspider' start_urls = ['http://example.com'] def parse(self,response): print('Existing settings: %s' % self.settings.attributes.keys())
6f0728d8e2f5aeeb689a2bb3c96ffab2ed3f3d84
3d154d9b3fe7487356d155c23d2b3541dacae1c1
/dao/userhelper.py
dc1d343b7a1cb51c8d4dcdd22c7e3441947cccc7
[]
no_license
igortereshchenko/python_oracle_orm_service
ef847fff7d0762813edf64f54235f471cdccd62f
d824fa0f01b2fdcc92b053ea942bb382266a0b43
refs/heads/master
2020-05-23T12:06:54.729982
2019-05-16T19:12:05
2019-05-16T19:12:05
186,751,346
0
0
null
null
null
null
UTF-8
Python
false
false
1,490
py
from dao.db import OracleDb import cx_Oracle class UserHelper: def __init__(self): self.db = OracleDb() def getSkillData(self, skill_name=None): if skill_name: skill_name="'{0}'".format(skill_name) else: skill_name='null' query = "select * from table(user_skillS.GetSkillData({0}))".format(skill_name) result = self.db.execute(query) return result.fetchall() def getUserId(self, user_email, user_password): user_id = self.db.cursor.callfunc("USER_AUTH.GET_USER_ID", cx_Oracle.NATIVE_INT, [user_email, user_password]) return user_id def newUser(self, USER_STUDYBOOK, USER_YEAR, USER_NAME, USER_EMAIL, USER_BIRTHDAY, USER_PASSWORD): cursor = self.db.cursor user_id = cursor.var(cx_Oracle.NATIVE_INT) status = cursor.var(cx_Oracle.STRING) cursor.callproc("USER_AUTH.NEW_USER", [user_id, status, USER_STUDYBOOK, USER_YEAR, USER_NAME, USER_EMAIL, USER_BIRTHDAY.upper(), USER_PASSWORD]) return user_id.getvalue(), status.getvalue() def getUsers(self): return self.db.execute('SELECT * FROM "user"').fetchall() if __name__ == "__main__": helper = UserHelper() print(helper.getSkillData('Java')) print(helper.getSkillData()) print(helper.getUserId('[email protected]','222')) print(helper.newUser('KM5555', '10-OCT-17', 'Kate', '[email protected]', '21-OCT-97','555')) print(helper.getUsers())
cc7e03607b31f4438fef4e654117ffd8353d2dc4
58afefdde86346760bea40690b1675c6639c8b84
/leetcode/minimum-initial-energy-to-finish-tasks/422867377.py
4ecf5f68fe76384049941bdc723c184406bd6d20
[]
no_license
ausaki/data_structures_and_algorithms
aaa563f713cbab3c34a9465039d52b853f95548e
4f5f5124534bd4423356a5f5572b8a39b7828d80
refs/heads/master
2021-06-21T10:44:44.549601
2021-04-06T11:30:21
2021-04-06T11:30:21
201,942,771
1
0
null
null
null
null
UTF-8
Python
false
false
1,041
py
# title: minimum-initial-energy-to-finish-tasks # detail: https://leetcode.com/submissions/detail/422867377/ # datetime: Sun Nov 22 14:20:04 2020 # runtime: 1260 ms # memory: 59.4 MB class Solution: def minimumEffort(self, tasks: List[List[int]]) -> int: ''' 假设T是tasks列表的最优排列,初始energy等于E,最后剩余的energy等于L, 题目转化为找到T和L使得E最小。 从后往前推导: 第n步,E[n] = L 第n - 1步,E[n - 1] = max(E[n] + T[n - 1][0], T[n - 1][1]) 第n - 2步,E[n - 2] = max(E[n - 1] + T[n - 2][0], T[n - 2][1]) ... 第0步, E[0] = max(E[1] + T[0][0], E[0] >= T[0][1]) 递推公式: E[n] = max(E[n + 1] + T[n][0], E[n] >= T[n][1]) 假设只有一个task, 那么E[0]等于T[0][1], E[1] = T[0][1] - T[0][0]. ''' tasks.sort(key=lambda p: p[1] - p[0]) e = 0 for a, m in tasks: e = max(e + a, m) return e
4085500854bc565a03cb7ed04cbd39c6bb4c3dca
b7255be7fc09f7fd8178b820c6ff3c69d7e4d750
/flask-api/python_go/pythonjs/runtime/go_builtins.py
52c0758a59fb24623525b8c7a61e7f2eaaca7eb8
[]
no_license
divyajyotiuk/go-asn-playground
e65bcd5474674005fb64567ec205b3b5f757e438
ee7fd0c57e86f84e045bbc888fb3c4f265bdb969
refs/heads/master
2021-02-05T02:09:02.338834
2020-04-13T10:40:31
2020-04-13T10:40:31
243,732,017
0
3
null
null
null
null
UTF-8
Python
false
false
1,434
py
# PythonJS Go builtins # by Brett Hartshorn - copyright 2014 # License: "New BSD" import strconv inline(""" type __object__ struct { __class__ string } type object interface{ getclassname() string } func (self __object__) getclassname() string { return self.__class__ } func ord(x string) int { r := []rune(x) return int(r[0]) } func __test_if_true__(v interface{}) bool { switch v.(type) { case nil: return false case int: i,_ := v.(int) return i != 0 case float64: i,_ := v.(int) return i != 0.0 case bool: b,_ := v.(bool) return b case string: s,_ := v.(string) return s != "" default: return false } } func str(v interface{}) string { switch v.(type) { case nil: return "None" case int: i,_ := v.(int) return strconv.Itoa(i) case float64: return "TODO float" case bool: b,_ := v.(bool) if b { return "True" } else { return "False" } case string: s,_ := v.(string) return s default: return "TODO unknown type" } } func range1( x int ) *[]int { arr := make([]int, x) for i := 0; i < x; i++ { arr[i]=i } return &arr } func range2( start int, stop int ) *[]int { arr := make([]int, stop-start) for i := start; i < stop; i++ { arr[i]=i } return &arr } func range3( start int, stop int, step int ) *[]int { arr := make([]int, stop-start) for i := start; i < stop; i+=step { arr[i]=i } return &arr } """)
bd866540d8720bd5ec59b2b3bc0c4f34b4c1c817
4cf14ded3e404a9801f7fc1103d7a72019fecd0c
/alembic/unused_versions/b70252e34014_use_sqlitecompat_module.py
f581905adf8096ee4040a7550b77a921cd531c63
[]
no_license
elthran/RPG-Game
8315aac6b0b162e9233a901d5af5c018ca4bf9d1
6168d7938c72a5a0bb36ca40b96a2a7232021cb5
refs/heads/master
2018-09-23T14:51:27.111954
2018-06-12T18:28:02
2018-06-12T18:28:02
64,792,548
0
0
null
2018-06-12T18:32:20
2016-08-02T21:05:58
Python
UTF-8
Python
false
false
992
py
"""Use SQLiteCompat module to drop a column. Also first revision, yay! IMPORTANT!! Fancy method to drop a column when using SQLite. Yes, it it super long and stupidly complex. All it does is replicate: op.drop_column('forum', 'title') Revision ID: b70252e34014 Revises: Create Date: 2018-01-31 20:48:18.530044 """ from alembic import op import sqlalchemy as sa import sys import os # Get the name of the current directory for this file and split it. old_path = os.path.dirname(os.path.abspath(__file__)).split(os.sep) new_path = os.sep.join(old_path[:-1]) # -1 refers to how many levels of directory to go up sys.path.insert(0, new_path) from sqlite_compat import SQLiteCompat sys.path.pop(0) # revision identifiers, used by Alembic. revision = 'b70252e34014' down_revision = None branch_labels = None depends_on = None def upgrade(): op.add_column('forum', sa.Column('title', sa.String)) def downgrade(): compat = SQLiteCompat() compat.drop_column('forum', 'title')
567b57a6d4840a4a37fbb66684b700fe4a6dd28f
74983098c5de53007bde6052a631845c781b5ba8
/hartmann6/hartmann6_54/hartmann6.py
bbbeab0123de21bfab6548b67e88e58a1eaed978
[]
no_license
numairmansur/Experiments
94ccdd60f4c2cf538fab41556ac72405656c9d77
592f39916461c7a9f7d400fa26f849043d1377ed
refs/heads/master
2021-04-29T12:39:16.845074
2017-02-15T07:36:47
2017-02-15T07:36:47
78,043,284
0
0
null
null
null
null
UTF-8
Python
false
false
653
py
import numpy as np import sys import math import time import csv from hpolib.benchmarks.synthetic_functions import Hartmann6 from time import gmtime, strftime def main(job_id, params): print '!!! Entered Main !!!' print 'Anything printed here will end up in the output directory for job #:', str(job_id) print params f = Hartmann6() res = f.objective_function([params['x'], params['y'], params['z'], params['xx'], params['yy'], params['zz']]) print res with open('/home/mansurm/Experiments/hartmann6/run54.csv','a') as csvfile: writer = csv.writer(csvfile, delimiter=',') writer.writerow([res['main'][0]]) return res['main'][0]
1bf849a5f322986e8eb6180f2477adc70b8f1651
63b0fed007d152fe5e96640b844081c07ca20a11
/yukicoder/MMA Contest 016/f.py
8898f332475726cac9f98f6195e8c1c880d65675
[]
no_license
Nikkuniku/AtcoderProgramming
8ff54541c8e65d0c93ce42f3a98aec061adf2f05
fbaf7b40084c52e35c803b6b03346f2a06fb5367
refs/heads/master
2023-08-21T10:20:43.520468
2023-08-12T09:53:07
2023-08-12T09:53:07
254,373,698
0
0
null
null
null
null
UTF-8
Python
false
false
270
py
S = input() N = len(S) alp = [[] for _ in range(26)] ans = 0 for i, v in enumerate(S): alp[ord(v)-65].append(i) for i in range(26): for j in range(1, len(alp[i])): idx = alp[i][j] tmp = j*(N-idx-1-(len(alp[i])-j-1)) ans += tmp print(ans)
eb3684cf5f531df58ed97cd89a662dc3087080a9
d951b8b2d87121947d7c0bfb7ad659d0ddb247ee
/thermo/electrochem.py
7502bbbfb717815d2e9d71c321eec47f79b8becc
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
alchemyst/thermo
5c86cadfe41cbbd7c6fb15825b3dfa5981f94439
745ea4733e7ec5d3a4e0cad43f9e8b855ab5968b
refs/heads/master
2020-12-02T06:35:55.370811
2017-07-09T18:46:16
2017-07-09T18:46:16
96,860,644
3
0
null
2017-07-11T06:50:02
2017-07-11T06:50:02
null
UTF-8
Python
false
false
26,515
py
# -*- coding: utf-8 -*- '''Chemical Engineering Design Library (ChEDL). Utilities for process modeling. Copyright (C) 2016, Caleb Bell <[email protected]> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' from __future__ import division __all__ = ['conductivity', 'Laliberte_density', 'Laliberte_heat_capacity', 'Laliberte_viscosity', 'Laliberte_data', 'Laliberte_viscosity_w', 'Laliberte_viscosity_i', 'Laliberte_density_w', 'Laliberte_density_i', 'Laliberte_heat_capacity_w', 'Laliberte_heat_capacity_i', 'Lange_cond_pure', 'conductivity_methods', 'Magomedovk_thermal_cond', 'thermal_conductivity_Magomedov', 'ionic_strength', 'Kweq_1981', 'Kweq_IAPWS_gas', 'Kweq_IAPWS'] import os from thermo.utils import exp, log10 from thermo.utils import e, N_A from thermo.utils import to_num from scipy.interpolate import interp1d import pandas as pd F = e*N_A folder = os.path.join(os.path.dirname(__file__), 'Electrolytes') _Laliberte_Density_ParametersDict = {} _Laliberte_Viscosity_ParametersDict = {} _Laliberte_Heat_Capacity_ParametersDict = {} # Do not re-implement with Pandas, as current methodology uses these dicts in each function with open(os.path.join(folder, 'Laliberte2009.tsv')) as f: next(f) for line in f: values = to_num(line.split('\t')) _name, CASRN, _formula, _MW, c0, c1, c2, c3, c4, Tmin, Tmax, wMax, pts = values[0:13] if c0: _Laliberte_Density_ParametersDict[CASRN] = {"Name":_name, "Formula":_formula, "MW":_MW, "C0":c0, "C1":c1, "C2":c2, "C3":c3, "C4":c4, "Tmin":Tmin, "Tmax":Tmax, "wMax":wMax} v1, v2, v3, v4, v5, v6, Tmin, Tmax, wMax, pts = values[13:23] if v1: _Laliberte_Viscosity_ParametersDict[CASRN] = {"Name":_name, "Formula":_formula, "MW":_MW, "V1":v1, "V2":v2, "V3":v3, "V4":v4, "V5":v5, "V6":v6, "Tmin":Tmin, "Tmax":Tmax, "wMax":wMax} a1, a2, a3, a4, a5, a6, Tmin, Tmax, wMax, pts = values[23:34] if a1: _Laliberte_Heat_Capacity_ParametersDict[CASRN] = {"Name":_name, "Formula":_formula, "MW":_MW, "A1":a1, "A2":a2, "A3":a3, "A4":a4, "A5":a5, "A6":a6, "Tmin":Tmin, "Tmax":Tmax, "wMax":wMax} Laliberte_data = pd.read_csv(os.path.join(folder, 'Laliberte2009.tsv'), sep='\t', index_col=0) ### Laliberty Viscosity Functions def Laliberte_viscosity_w(T): r'''Calculate the viscosity of a water using the form proposed by [1]_. No parameters are needed, just a temperature. Units are Kelvin and Pa*s. t is temperature in degrees Celcius. .. math:: \mu_w = \frac{t + 246}{(0.05594t+5.2842)t + 137.37} Parameters ---------- T : float Temperature of fluid [K] Returns ------- mu_w : float Water viscosity, Pa*s Notes ----- Original source or pure water viscosity is not cited. No temperature range is given for this equation. Examples -------- >>> Laliberte_viscosity_w(298) 0.0008932264487033279 References ---------- .. [1] Laliberte, Marc. "A Model for Calculating the Heat Capacity of Aqueous Solutions, with Updated Density and Viscosity Data." Journal of Chemical & Engineering Data 54, no. 6 (June 11, 2009): 1725-60. doi:10.1021/je8008123 ''' t = T-273.15 mu_w = (t + 246)/((0.05594*t+5.2842)*t + 137.37) return mu_w/1000. def Laliberte_viscosity_i(T, w_w, v1, v2, v3, v4, v5, v6): r'''Calculate the viscosity of a solute using the form proposed by [1]_ Parameters are needed, and a temperature. Units are Kelvin and Pa*s. .. math:: \mu_i = \frac{\exp\left( \frac{v_1(1-w_w)^{v_2}+v_3}{v_4 t +1}\right)} {v_5(1-w_w)^{v_6}+1} Parameters ---------- T : float Temperature of fluid [K] w_w : float Weight fraction of water in the solution v1-v6 : floats Function fit parameters Returns ------- mu_i : float Solute partial viscosity, Pa*s Notes ----- Temperature range check is outside of this function. Check is performed using NaCl at 5 degC from the first value in [1]_'s spreadsheet. Examples -------- >>> d = _Laliberte_Viscosity_ParametersDict['7647-14-5'] >>> Laliberte_viscosity_i(273.15+5, 1-0.005810, d["V1"], d["V2"], d["V3"], d["V4"], d["V5"], d["V6"] ) 0.004254025533308794 References ---------- .. [1] Laliberte, Marc. "A Model for Calculating the Heat Capacity of Aqueous Solutions, with Updated Density and Viscosity Data." Journal of Chemical & Engineering Data 54, no. 6 (June 11, 2009): 1725-60. doi:10.1021/je8008123 ''' t = T-273.15 mu_i = exp((v1*(1-w_w)**v2 + v3)/(v4*t+1))/(v5*(1-w_w)**v6 + 1) return mu_i/1000. def Laliberte_viscosity(T, ws, CASRNs): r'''Calculate the viscosity of an aqueous mixture using the form proposed by [1]_. Parameters are loaded by the function as needed. Units are Kelvin and Pa*s. .. math:: \mu_m = \mu_w^{w_w} \Pi\mu_i^{w_i} Parameters ---------- T : float Temperature of fluid [K] ws : array Weight fractions of fluid components other than water CASRNs : array CAS numbers of the fluid components other than water Returns ------- mu_i : float Solute partial viscosity, Pa*s Notes ----- Temperature range check is not used here. Check is performed using NaCl at 5 degC from the first value in [1]_'s spreadsheet. Examples -------- >>> Laliberte_viscosity(273.15+5, [0.005810], ['7647-14-5']) 0.0015285828581961414 References ---------- .. [1] Laliberte, Marc. "A Model for Calculating the Heat Capacity of Aqueous Solutions, with Updated Density and Viscosity Data." Journal of Chemical & Engineering Data 54, no. 6 (June 11, 2009): 1725-60. doi:10.1021/je8008123 ''' mu_w = Laliberte_viscosity_w(T)*1000. w_w = 1 - sum(ws) mu = mu_w**(w_w) for i in range(len(CASRNs)): d = _Laliberte_Viscosity_ParametersDict[CASRNs[i]] mu_i = Laliberte_viscosity_i(T, w_w, d["V1"], d["V2"], d["V3"], d["V4"], d["V5"], d["V6"])*1000. mu = mu_i**(ws[i])*mu return mu/1000. ### Laliberty Density Functions def Laliberte_density_w(T): r'''Calculate the density of water using the form proposed by [1]_. No parameters are needed, just a temperature. Units are Kelvin and kg/m^3h. .. math:: \rho_w = \frac{\left\{\left([(-2.8054253\times 10^{-10}\cdot t + 1.0556302\times 10^{-7})t - 4.6170461\times 10^{-5}]t -0.0079870401\right)t + 16.945176 \right\}t + 999.83952} {1 + 0.01687985\cdot t} Parameters ---------- T : float Temperature of fluid [K] Returns ------- rho_w : float Water density, [kg/m^3] Notes ----- Original source not cited No temperature range is used. Examples -------- >>> Laliberte_density_w(298.15) 997.0448954179155 >>> Laliberte_density_w(273.15 + 50) 988.0362916114763 References ---------- .. [1] Laliberte, Marc. "A Model for Calculating the Heat Capacity of Aqueous Solutions, with Updated Density and Viscosity Data." Journal of Chemical & Engineering Data 54, no. 6 (June 11, 2009): 1725-60. doi:10.1021/je8008123 ''' t = T-273.15 rho_w = (((((-2.8054253E-10*t + 1.0556302E-7)*t - 4.6170461E-5)*t - 0.0079870401)*t + 16.945176)*t + 999.83952) \ / (1 + 0.01687985*t) return rho_w def Laliberte_density_i(T, w_w, c0, c1, c2, c3, c4): r'''Calculate the density of a solute using the form proposed by Laliberte [1]_. Parameters are needed, and a temperature, and water fraction. Units are Kelvin and Pa*s. .. math:: \rho_{app,i} = \frac{(c_0[1-w_w]+c_1)\exp(10^{-6}[t+c_4]^2)} {(1-w_w) + c_2 + c_3 t} Parameters ---------- T : float Temperature of fluid [K] w_w : float Weight fraction of water in the solution c0-c4 : floats Function fit parameters Returns ------- rho_i : float Solute partial density, [kg/m^3] Notes ----- Temperature range check is TODO Examples -------- >>> d = _Laliberte_Density_ParametersDict['7647-14-5'] >>> Laliberte_density_i(273.15+0, 1-0.0037838838, d["C0"], d["C1"], d["C2"], d["C3"], d["C4"]) 3761.8917585699983 References ---------- .. [1] Laliberte, Marc. "A Model for Calculating the Heat Capacity of Aqueous Solutions, with Updated Density and Viscosity Data." Journal of Chemical & Engineering Data 54, no. 6 (June 11, 2009): 1725-60. doi:10.1021/je8008123 ''' t = T - 273.15 return ((c0*(1 - w_w)+c1)*exp(1E-6*(t + c4)**2))/((1 - w_w) + c2 + c3*t) def Laliberte_density(T, ws, CASRNs): r'''Calculate the density of an aqueous electrolyte mixture using the form proposed by [1]_. Parameters are loaded by the function as needed. Units are Kelvin and Pa*s. .. math:: \rho_m = \left(\frac{w_w}{\rho_w} + \sum_i \frac{w_i}{\rho_{app_i}}\right)^{-1} Parameters ---------- T : float Temperature of fluid [K] ws : array Weight fractions of fluid components other than water CASRNs : array CAS numbers of the fluid components other than water Returns ------- rho_i : float Solution density, [kg/m^3] Notes ----- Temperature range check is not used here. Examples -------- >>> Laliberte_density(273.15, [0.0037838838], ['7647-14-5']) 1002.6250120185854 References ---------- .. [1] Laliberte, Marc. "A Model for Calculating the Heat Capacity of Aqueous Solutions, with Updated Density and Viscosity Data." Journal of Chemical & Engineering Data 54, no. 6 (June 11, 2009): 1725-60. doi:10.1021/je8008123 ''' rho_w = Laliberte_density_w(T) w_w = 1 - sum(ws) rho = w_w/rho_w for i in range(len(CASRNs)): d = _Laliberte_Density_ParametersDict[CASRNs[i]] rho_i = Laliberte_density_i(T, w_w, d["C0"], d["C1"], d["C2"], d["C3"], d["C4"]) rho = rho + ws[i]/rho_i return 1./rho ### Laliberty Heat Capacity Functions _T_array = [-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140] _Cp_array = [4294.03, 4256.88, 4233.58, 4219.44, 4204.95, 4195.45, 4189.1, 4184.8, 4181.9, 4180.02, 4178.95, 4178.86, 4178.77, 4179.56, 4180.89, 4182.77, 4185.17, 4188.1, 4191.55, 4195.52, 4200.01, 4205.02, 4210.57, 4216.64, 4223.23, 4230.36, 4238.07, 4246.37, 4255.28, 4264.84, 4275.08, 4286.04] Laliberte_heat_capacity_w_interp = interp1d(_T_array, _Cp_array, kind='cubic') def Laliberte_heat_capacity_w(T): r'''Calculate the heat capacity of water using the interpolation proposed by [1]_. No parameters are needed, just a temperature. .. math:: Cp_w = Cp_1 + (Cp_2-Cp_1) \left( \frac{t-t_1}{t_2-t_1}\right) + \frac{(Cp_3 - 2Cp_2 + Cp_1)}{2}\left( \frac{t-t_1}{t_2-t_1}\right) \left( \frac{t-t_1}{t_2-t_1}-1\right) Parameters ---------- T : float Temperature of fluid [K] Returns ------- Cp_w : float Water heat capacity, [J/kg/K] Notes ----- Units are Kelvin and J/kg/K. Original source not cited No temperature range is used. The original equation is not used, but rather a cubic scipy interpolation routine. Examples -------- >>> Laliberte_heat_capacity_w(273.15+3.56) 4208.878020261102 References ---------- .. [1] Laliberte, Marc. "A Model for Calculating the Heat Capacity of Aqueous Solutions, with Updated Density and Viscosity Data." Journal of Chemical & Engineering Data 54, no. 6 (June 11, 2009): 1725-60. doi:10.1021/je8008123 ''' return float(Laliberte_heat_capacity_w_interp(T - 273.15)) def Laliberte_heat_capacity_i(T, w_w, a1, a2, a3, a4, a5, a6): r'''Calculate the heat capacity of a solute using the form proposed by [1]_ Parameters are needed, and a temperature, and water fraction. .. math:: Cp_i = a_1 e^\alpha + a_5(1-w_w)^{a_6} \alpha = a_2 t + a_3 \exp(0.01t) + a_4(1-w_w) Parameters ---------- T : float Temperature of fluid [K] w_w : float Weight fraction of water in the solution a1-a6 : floats Function fit parameters Returns ------- Cp_i : float Solute partial heat capacity, [J/kg/K] Notes ----- Units are Kelvin and J/kg/K. Temperature range check is TODO Examples -------- >>> d = _Laliberte_Heat_Capacity_ParametersDict['7647-14-5'] >>> Laliberte_heat_capacity_i(1.5+273.15, 1-0.00398447, d["A1"], d["A2"], d["A3"], d["A4"], d["A5"], d["A6"]) -2930.7353945880477 References ---------- .. [1] Laliberte, Marc. "A Model for Calculating the Heat Capacity of Aqueous Solutions, with Updated Density and Viscosity Data." Journal of Chemical & Engineering Data 54, no. 6 (June 11, 2009): 1725-60. doi:10.1021/je8008123 ''' t = T - 273.15 alpha = a2*t + a3*exp(0.01*t) + a4*(1. - w_w) Cp_i = a1*exp(alpha) + a5*(1. - w_w)**a6 return Cp_i*1000. def Laliberte_heat_capacity(T, ws, CASRNs): r'''Calculate the heat capacity of an aqueous electrolyte mixture using the form proposed by [1]_. Parameters are loaded by the function as needed. .. math:: TODO Parameters ---------- T : float Temperature of fluid [K] ws : array Weight fractions of fluid components other than water CASRNs : array CAS numbers of the fluid components other than water Returns ------- Cp : float Solution heat capacity, [J/kg/K] Notes ----- Temperature range check is not implemented. Units are Kelvin and J/kg/K. Examples -------- >>> Laliberte_heat_capacity(273.15+1.5, [0.00398447], ['7647-14-5']) 4186.569908672113 References ---------- .. [1] Laliberte, Marc. "A Model for Calculating the Heat Capacity of Aqueous Solutions, with Updated Density and Viscosity Data." Journal of Chemical & Engineering Data 54, no. 6 (June 11, 2009): 1725-60. doi:10.1021/je8008123 ''' Cp_w = Laliberte_heat_capacity_w(T) w_w = 1 - sum(ws) Cp = w_w*Cp_w for i in range(len(CASRNs)): d = _Laliberte_Heat_Capacity_ParametersDict[CASRNs[i]] Cp_i = Laliberte_heat_capacity_i(T, w_w, d["A1"], d["A2"], d["A3"], d["A4"], d["A5"], d["A6"]) Cp = Cp + ws[i]*Cp_i return Cp #print Laliberte_heat_capacity(298.15, [0.1], ['7664-41-7']) #4186.0988 ## Aqueous HCl, trying to find heat capacity of Cl- as H+ is zero. #zero = Laliberte_heat_capacity(298.15, [0.0000000000000001], ['7647-01-0']) #small = Laliberte_heat_capacity(298.15, [0.1], ['7647-01-0']) # 1 molal #print zero, small #print (zero-small)*36.46094/100 ## cRC gives -136.4 J/mol ## I cannot reproduce this at all. ### Electrical Conductivity Lange_cond_pure = pd.read_csv(os.path.join(folder, 'Lange Pure Species Conductivity.tsv'), sep='\t', index_col=0) LANGE_COND = "LANGE_COND" NONE = 'None' conductivity_methods = [LANGE_COND] def conductivity(CASRN=None, AvailableMethods=False, Method=None, full_info=True): r'''This function handles the retrieval of a chemical's conductivity. Lookup is based on CASRNs. Will automatically select a data source to use if no Method is provided; returns None if the data is not available. Function has data for approximately 100 chemicals. Parameters ---------- CASRN : string CASRN [-] Returns ------- kappa : float Electrical conductivity of the fluid, [S/m] T : float, only returned if full_info == True Temperature at which conductivity measurement was made methods : list, only returned if AvailableMethods == True List of methods which can be used to obtain RI with the given inputs Other Parameters ---------------- Method : string, optional A string for the method name to use, as defined by constants in conductivity_methods AvailableMethods : bool, optional If True, function will determine which methods can be used to obtain conductivity for the desired chemical, and will return methods instead of conductivity full_info : bool, optional If True, function will return the temperature at which the conductivity reading was made Notes ----- Only one source is available in this function. It is: * 'LANGE_COND' which is from Lange's Handbook, Table 8.34 Electrical Conductivity of Various Pure Liquids', a compillation of data in [1]_. Examples -------- >>> conductivity('7732-18-5') (4e-06, 291.15) References ---------- .. [1] Speight, James. Lange's Handbook of Chemistry. 16 edition. McGraw-Hill Professional, 2005. ''' def list_methods(): methods = [] if CASRN in Lange_cond_pure.index: methods.append(LANGE_COND) methods.append(NONE) return methods if AvailableMethods: return list_methods() if not Method: Method = list_methods()[0] if Method == LANGE_COND: kappa = float(Lange_cond_pure.at[CASRN, 'Conductivity']) if full_info: T = float(Lange_cond_pure.at[CASRN, 'T']) elif Method == NONE: kappa, T = None, None else: raise Exception('Failure in in function') if full_info: return kappa, T else: return kappa Magomedovk_thermal_cond = pd.read_csv(os.path.join(folder, 'Magomedov Thermal Conductivity.tsv'), sep='\t', index_col=0) def thermal_conductivity_Magomedov(T, P, ws, CASRNs, k_w=None): r'''Calculate the thermal conductivity of an aqueous mixture of electrolytes using the form proposed by Magomedov [1]_. Parameters are loaded by the function as needed. Function will fail if an electrolyte is not in the database. .. math:: \lambda = \lambda_w\left[ 1 - \sum_{i=1}^n A_i (w_i + 2\times10^{-4} w_i^3)\right] - 2\times10^{-8} PT\sum_{i=1}^n w_i Parameters ---------- T : float Temperature of liquid [K] P : float Pressure of the liquid [Pa] ws : array Weight fractions of liquid components other than water CASRNs : array CAS numbers of the liquid components other than water k_w : float Liquid thermal condiuctivity or pure water at T and P, [W/m/K] Returns ------- kl : float Liquid thermal condiuctivity, [W/m/K] Notes ----- Range from 273 K to 473 K, P from 0.1 MPa to 100 MPa. C from 0 to 25 mass%. Internal untis are MPa for pressure and weight percent. An example is sought for this function. It is not possible to reproduce the author's values consistently. Examples -------- >>> thermal_conductivity_Magomedov(293., 1E6, [.25], ['7758-94-3'], k_w=0.59827) 0.548654049375 References ---------- .. [1] Magomedov, U. B. "The Thermal Conductivity of Binary and Multicomponent Aqueous Solutions of Inorganic Substances at High Parameters of State." High Temperature 39, no. 2 (March 1, 2001): 221-26. doi:10.1023/A:1017518731726. ''' P = P/1E6 ws = [i*100 for i in ws] if not k_w: raise Exception('k_w correlation must be provided') sum1 = 0 for i, CASRN in enumerate(CASRNs): Ai = float(Magomedovk_thermal_cond.at[CASRN, 'Ai']) sum1 += Ai*(ws[i] + 2E-4*ws[i]**3) return k_w*(1 - sum1) - 2E-8*P*T*sum(ws) def ionic_strength(mis, zis): r'''Calculate the ionic strength of a solution in one of two ways, depending on the inputs only. For Pitzer and Bromley models, `mis` should be molalities of each component. For eNRTL models, `mis` should be mole fractions of each electrolyte in the solution. This will sum to be much less than 1. .. math:: I = \frac{1}{2} \sum M_i z_i^2 I = \frac{1}{2} \sum x_i z_i^2 Parameters ---------- mis : list Molalities of each ion, or mole fractions of each ion [mol/kg or -] zis : list Charges of each ion [-] Returns ------- I : float ionic strength, [?] Examples -------- >>> ionic_strength([0.1393, 0.1393], [1, -1]) 0.1393 References ---------- .. [1] Chen, Chau-Chyun, H. I. Britt, J. F. Boston, and L. B. Evans. "Local Composition Model for Excess Gibbs Energy of Electrolyte Systems. Part I: Single Solvent, Single Completely Dissociated Electrolyte Systems." AIChE Journal 28, no. 4 (July 1, 1982): 588-96. doi:10.1002/aic.690280410 .. [2] Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation. Weinheim, Germany: Wiley-VCH, 2012. ''' return 0.5*sum([mi*zi*zi for mi, zi in zip(mis, zis)]) def Kweq_1981(T, rho_w): r'''Calculates equilibrium constant for OH- and H+ in water, according to [1]_. Second most recent formulation. .. math:: \log_{10} K_w= A + B/T + C/T^2 + D/T^3 + (E+F/T+G/T^2)\log_{10} \rho_w Parameters ---------- T : float Temperature of fluid [K] rho_w : float Density of water, [kg/m^3] Returns ------- Kweq : float Ionization constant of water, [-] Notes ----- Density is internally converted to units of g/cm^3. A = -4.098; B = -3245.2; C = 2.2362E5; D = -3.984E7; E = 13.957; F = -1262.3; G = 8.5641E5 Examples -------- >>> -1*log10(Kweq_1981(600, 700)) 11.274522047458206 References ---------- .. [1] Marshall, William L., and E. U. Franck. "Ion Product of Water Substance, 0-1000 degree C, 1010,000 Bars New International Formulation and Its Background." Journal of Physical and Chemical Reference Data 10, no. 2 (April 1, 1981): 295-304. doi:10.1063/1.555643. ''' rho_w = rho_w/1000. A = -4.098 B = -3245.2 C = 2.2362E5 D = -3.984E7 E = 13.957 F = -1262.3 G = 8.5641E5 return 10**(A + B/T + C/T**2 + D/T**3 + (E + F/T + G/T**2)*log10(rho_w)) def Kweq_IAPWS_gas(T): r'''Calculates equilibrium constant for OH- and H+ in water vapor, according to [1]_. This is the most recent formulation available. .. math:: -log_{10} K_w^G = \gamma_0 + \gamma_1 T^{-1} + \gamma_2 T^{-2} + \gamma_3 T^{-3} Parameters ---------- T : float Temperature of H2O [K] Returns ------- K_w_G : float Notes ----- gamma0 = 6.141500E-1; gamma1 = 4.825133E4; gamma2 = -6.770793E4; gamma3 = 1.010210E7 Examples -------- >>> Kweq_IAPWS_gas(800) 1.4379721554798815e-61 References ---------- .. [1] Bandura, Andrei V., and Serguei N. Lvov. "The Ionization Constant of Water over Wide Ranges of Temperature and Density." Journal of Physical and Chemical Reference Data 35, no. 1 (March 1, 2006): 15-30. doi:10.1063/1.1928231 ''' gamma0 = 6.141500E-1 gamma1 = 4.825133E4 gamma2 = -6.770793E4 gamma3 = 1.010210E7 K_w_G = 10**(-1*(gamma0 + gamma1/T + gamma2/T**2 + gamma3/T**3)) return K_w_G def Kweq_IAPWS(T, rho_w): r'''Calculates equilibrium constant for OH- and H+ in water, according to [1]_. This is the most recent formulation available. .. math:: Q = \rho \exp(\alpha_0 + \alpha_1 T^{-1} + \alpha_2 T^{-2} \rho^{2/3}) - \log_{10} K_w = -2n \left[ \log_{10}(1+Q) - \frac{Q}{Q+1} \rho (\beta_0 + \beta_1 T^{-1} + \beta_2 \rho) \right] -\log_{10} K_w^G + 2 \log_{10} \frac{18.015268}{1000} Parameters ---------- T : float Temperature of water [K] rho_w : float Density of water at temperature and pressure [kg/m^3] Returns ------- Kweq : float Ionization constant of water, [-] Notes ----- Formulation is in terms of density in g/cm^3; density is converted internally. n = 6; alpha0 = -0.864671; alpha1 = 8659.19; alpha2 = -22786.2; beta0 = 0.642044; beta1 = -56.8534; beta2 = -0.375754 Examples -------- Example from IAPWS check: >>> -1*log10(Kweq_IAPWS(600, 700)) 11.203153057603775 References ---------- .. [1] Bandura, Andrei V., and Serguei N. Lvov. "The Ionization Constant of Water over Wide Ranges of Temperature and Density." Journal of Physical and Chemical Reference Data 35, no. 1 (March 1, 2006): 15-30. doi:10.1063/1.1928231 ''' K_w_G = Kweq_IAPWS_gas(T) rho_w = rho_w/1000. n = 6 alpha0 = -0.864671 alpha1 = 8659.19 alpha2 = -22786.2 beta0 = 0.642044 beta1 = -56.8534 beta2 = -0.375754 Q = rho_w*exp(alpha0 + alpha1/T + alpha2/T**2*rho_w**(2/3.)) K_w = 10**(-1*(-2*n*(log10(1+Q)-Q/(Q+1) * rho_w *(beta0 + beta1/T + beta2*rho_w)) - log10(K_w_G) + 2*log10(18.015268/1000) )) return K_w
dad7e56953388c605ffb3cee21d10c587cc1f059
3002ce1c3a5628386fe747c8f1733b2f482780b9
/tests/densities/test_posterior_gp_classification_ard.py
ce104a3bdc897f1397b9c19df1fb5cae0676e0e7
[]
no_license
exord/kernel_hmc
eb74f58d4c4a5a121f7383ba11dabfc1f1c95220
f74e9eafe5637c4c95af1823d629140ca3b4b909
refs/heads/master
2020-03-19T10:28:05.767470
2018-06-06T19:01:04
2018-06-06T19:01:04
136,373,212
0
0
null
2018-06-06T18:54:42
2018-06-06T18:54:42
null
UTF-8
Python
false
false
674
py
# depends on shogun, which might not be available from nose import SkipTest import numpy as np try: from kernel_hmc.densities.posterior_gp_classification_ard import GlassPosterior glass_available = True except ImportError: glass_available = False def test_glass_posterior_setup_execute(): if not glass_available: raise SkipTest("Shogun not available") GlassPosterior().set_up() def test_glass_posterior_log_pdf_execute(): if not glass_available: raise SkipTest("Shogun not available") D = 9 theta = np.random.randn(D) target = GlassPosterior() target.set_up() target.log_pdf(theta)
552b996cc76cd62cf2dd0b73ebf1972aec0af841
988176bcdae841e08106b0fe5cf07aabbc210c83
/minimum sum of the maximum elements obtained by considering all consecutive pairs of adjacent elements after rearranging the array suitably.py
c871699196e8fd15530261a7480607de06e2522f
[]
no_license
gopiprasad008/GUVI_CODEKATA_PYTHON_CODE
ce1a63c7eea2a099c01748162c1deb47172dcd0a
78f374e344df25aab181408d8f41b3ebe03b34ef
refs/heads/master
2023-03-16T00:27:31.539524
2020-05-16T11:46:08
2020-05-16T11:46:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
284
py
from itertools import permutations n = int(input()) l = [int(x) for x in input().split()] n = len(l) m = list(permutations(l,len(l))) a = 0 for i in range(len(m)): b = 0 for j in range(len(m[i])-1): b += max(m[i][j], m[i][j+1]) if b > a: a = b print(a)
087a01950facd0b6e12f0c2c3ec8eeef6135feb5
0b01cb61a4ae4ae236a354cbfa23064e9057e434
/alipay/aop/api/response/KoubeiTradeOrderEnterpriseQueryResponse.py
d46129cc828bcc061ec6d475c1359df544675c21
[ "Apache-2.0" ]
permissive
hipacloud/alipay-sdk-python-all
e4aec2869bf1ea6f7c6fb97ac7cc724be44ecd13
bdbffbc6d5c7a0a3dd9db69c99443f98aecf907d
refs/heads/master
2022-11-14T11:12:24.441822
2020-07-14T03:12:15
2020-07-14T03:12:15
277,970,730
0
0
Apache-2.0
2020-07-08T02:33:15
2020-07-08T02:33:14
null
UTF-8
Python
false
false
4,551
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class KoubeiTradeOrderEnterpriseQueryResponse(AlipayResponse): def __init__(self): super(KoubeiTradeOrderEnterpriseQueryResponse, self).__init__() self._buyer_user_id = None self._ext_info = None self._merchant_subsidy_amount = None self._order_no = None self._order_product = None self._out_order_no = None self._partner_id = None self._real_amount = None self._seller_id = None self._shop_id = None self._status = None self._subject = None self._subsidy_amount = None self._total_amount = None @property def buyer_user_id(self): return self._buyer_user_id @buyer_user_id.setter def buyer_user_id(self, value): self._buyer_user_id = value @property def ext_info(self): return self._ext_info @ext_info.setter def ext_info(self, value): self._ext_info = value @property def merchant_subsidy_amount(self): return self._merchant_subsidy_amount @merchant_subsidy_amount.setter def merchant_subsidy_amount(self, value): self._merchant_subsidy_amount = value @property def order_no(self): return self._order_no @order_no.setter def order_no(self, value): self._order_no = value @property def order_product(self): return self._order_product @order_product.setter def order_product(self, value): self._order_product = value @property def out_order_no(self): return self._out_order_no @out_order_no.setter def out_order_no(self, value): self._out_order_no = value @property def partner_id(self): return self._partner_id @partner_id.setter def partner_id(self, value): self._partner_id = value @property def real_amount(self): return self._real_amount @real_amount.setter def real_amount(self, value): self._real_amount = value @property def seller_id(self): return self._seller_id @seller_id.setter def seller_id(self, value): self._seller_id = value @property def shop_id(self): return self._shop_id @shop_id.setter def shop_id(self, value): self._shop_id = value @property def status(self): return self._status @status.setter def status(self, value): self._status = value @property def subject(self): return self._subject @subject.setter def subject(self, value): self._subject = value @property def subsidy_amount(self): return self._subsidy_amount @subsidy_amount.setter def subsidy_amount(self, value): self._subsidy_amount = value @property def total_amount(self): return self._total_amount @total_amount.setter def total_amount(self, value): self._total_amount = value def parse_response_content(self, response_content): response = super(KoubeiTradeOrderEnterpriseQueryResponse, self).parse_response_content(response_content) if 'buyer_user_id' in response: self.buyer_user_id = response['buyer_user_id'] if 'ext_info' in response: self.ext_info = response['ext_info'] if 'merchant_subsidy_amount' in response: self.merchant_subsidy_amount = response['merchant_subsidy_amount'] if 'order_no' in response: self.order_no = response['order_no'] if 'order_product' in response: self.order_product = response['order_product'] if 'out_order_no' in response: self.out_order_no = response['out_order_no'] if 'partner_id' in response: self.partner_id = response['partner_id'] if 'real_amount' in response: self.real_amount = response['real_amount'] if 'seller_id' in response: self.seller_id = response['seller_id'] if 'shop_id' in response: self.shop_id = response['shop_id'] if 'status' in response: self.status = response['status'] if 'subject' in response: self.subject = response['subject'] if 'subsidy_amount' in response: self.subsidy_amount = response['subsidy_amount'] if 'total_amount' in response: self.total_amount = response['total_amount']
0fa7fd97a12aa5fda184f563ef020c56e3b9b228
3209e66f38b23400916296daa022be3f19ab4f98
/venv/bin/easy_install-3.8
b0ac408f2f89f56349c3aee83a8c3b68105f9ed6
[]
no_license
surajbeston/multi_tenant
5fd5ae88e6585592fa8f2a34f19591aad1febf6d
205c7360cb58e32ec53387ab222a7c28d82b426b
refs/heads/master
2023-06-02T16:50:42.931252
2021-06-28T18:22:06
2021-06-28T18:22:06
380,757,423
0
0
null
null
null
null
UTF-8
Python
false
false
269
8
#!/home/suraj/projects/work/multi_tenant/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
55a28b610c9796ee5d9f9724c9a0bfe4eb09061c
f3b233e5053e28fa95c549017bd75a30456eb50c
/bace_input/L4M/4M-4J_wat_20Abox/set_3.py
4e1279d74cc1ddc180be8d4b21bde67aa12bb920
[]
no_license
AnguseZhang/Input_TI
ddf2ed40ff1c0aa24eea3275b83d4d405b50b820
50ada0833890be9e261c967d00948f998313cb60
refs/heads/master
2021-05-25T15:02:38.858785
2020-02-18T16:57:04
2020-02-18T16:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
738
py
import os dir = '/mnt/scratch/songlin3/run/bace/L4M/wat_20Abox/ti_one-step/4M_4J/' filesdir = dir + 'files/' temp_prodin = filesdir + 'temp_prod_3.in' temp_pbs = filesdir + 'temp_3.pbs' lambd = [ 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078] for j in lambd: os.chdir("%6.5f" %(j)) workdir = dir + "%6.5f" %(j) + '/' #prodin prodin = workdir + "%6.5f_prod_3.in" %(j) os.system("cp %s %s" %(temp_prodin, prodin)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, prodin)) #PBS pbs = workdir + "%6.5f_3.pbs" %(j) os.system("cp %s %s" %(temp_pbs, pbs)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, pbs)) #submit pbs #os.system("qsub %s" %(pbs)) os.chdir(dir)
b84e8238b02903cb56003a86f49f4d732686de63
2ec26d004a653c0576594e48ac13dd71f539b30a
/gist_dump/sine_destruction.py
48a1342ece579d42dc108367e41efe8f91e1bd2b
[]
no_license
kastnerkyle/research_megarepo
6aca5b2c3b2413e0def1093b23f2826e3e7e5e97
ab182667650fd59b99f75d4b599d7ace77a3f30b
refs/heads/master
2021-01-17T20:31:52.250050
2016-12-27T01:28:54
2016-12-27T01:28:54
68,341,074
13
2
null
null
null
null
UTF-8
Python
false
false
419
py
# Author: Kyle Kastner # License: BSD 3-clause import matplotlib.pyplot as plt import numpy as np fs = 100 # sample rate of 100 samples / sec, with max f 50 f = 5 # 5 Hz frequency samples = 25 # .25 seconds of samples @ 100 samples / sec x = np.arange(samples) y1 = np.sin(2 * np.pi * f * x / fs + .5 * np.pi) y2 = np.sin(2 * np.pi * f * x / fs + -.5 * np.pi) plt.plot(y1) plt.plot(y2) plt.plot(y1 + y2) plt.show()
cf9c444fa59eb0b67c60813865bf38503df80ad9
e728a7b5447c4ca03ba799bec61459528f30fd88
/esvi/model.py
6effe6136b1881fe62efa747a7f8180ffab43f4b
[]
no_license
reritom/Esvi
deb75c0ca4b17494ed80adc3b735be008e0b3352
1e3242c61ec86af7b7479cd71f12a8677fcbde1f
refs/heads/master
2020-03-20T02:08:01.695643
2018-11-04T18:35:52
2018-11-04T18:35:52
137,100,179
0
0
null
null
null
null
UTF-8
Python
false
false
6,492
py
from esvi import fields from esvi.query import Query from esvi.model_instance import ModelInstance from esvi.query_executor import QueryExecutor from esvi.model_set import ModelSet from typing import Optional class Model(): """ This class is to be inherited by child models. The static methods for interacting with the DB executor also call __new__ so that the child attributes can be retrieved without the child class needing to be instanciated first. """ child_retrieved = False def __new__(cls, internal=False): print("In model new") # To allow the classmethods to access child properties without an explicit instanciation, this method gets called by each # classmethod. The following flag checks whether it has already been ran or not if cls.child_retrieved == True and internal == True: return # Initialise the model name cls.model_name = getattr(cls, 'model_name') if hasattr(cls, 'model_name') else cls.__name__ + "Model" # Initialise the fields cls.model_fields = dict() # Primary Key flag pk_flag = 0 # Here we grab any fields from the child class attributes for value in dir(cls): class_attribute = getattr(cls, value) if hasattr(class_attribute, '__class__') and class_attribute.__class__.__base__ == fields.BaseField: cls.model_fields[value] = class_attribute if class_attribute.is_primary(): cls.primary_key = value pk_flag += 1 if pk_flag is not 1: raise Exception("Model {0} is missing a primary key field".format(cls.model_name)) cls.child_retrieved = True cls.executor = QueryExecutor() return cls @classmethod def get_model_name(cls) -> str: """ Return the model name from the child """ Model.__new__(cls, internal=True) return cls.model_name @classmethod def get_primary_key(cls) -> str: """ Return the model name from the child """ Model.__new__(cls, internal=True) return cls.primary_key @classmethod def get_fields(cls) -> dict: """ Return a dictionary with the field names and their field classes """ Model.__new__(cls, internal=True) return cls.model_fields @classmethod def _initialise_in_db(cls) -> None: """ This will add the model definition to the DB """ Model.__new__(cls, internal=True) # Here we create the query and pass it to the executor query = Query(model_name=cls.model_name, model_fields=cls.model_fields, action="initialise") response = cls.executor.execute(query) @classmethod def _get_defition_from_db(cls) -> None: """ Retrieves the model fields from the DB in a list of field names in the correct order """ Model.__new__(cls, internal=True) # Here we create the query and pass it to the executor query = Query(model_name=cls.model_name, model_fields=None, action="definition") response = cls.executor.execute(query) @classmethod def create(cls, **kwargs) -> ModelInstance: """ Create a model item in the DB """ Model.__new__(cls, internal=True) # Initialise the content of this model content = dict() # Here we validate that the model is being initialised with enough information for field_name, definition in cls.model_fields.items(): if field_name in kwargs: # Check if it is in the kwargs definition.validate(kwargs[field_name]) print("Field name {} is class {}".format(field_name, kwargs[field_name].__class__.__name__)) # If it is a foreign key (the value is a ModelInstance) if isinstance(kwargs[field_name], ModelInstance): print("Is model instance") # We convert the value to the primary key and primary value primary_key = kwargs[field_name].get_primary_key() print("Primary key is {}".format(primary_key)) content[primary_key] = kwargs[field_name].get(primary_key) continue content[field_name] = kwargs[field_name] elif definition.has_default(): # Check if it has a default value content[field_name] = definition.get_default() else: raise Exception("{} missing as parameter and has no default".format(field_name)) # Here we create the query and pass it to the executor query = Query(model_name=cls.model_name, model_fields=cls.model_fields, action="create", content=content) response = cls.executor.execute(query) return ModelInstance(model_name=cls.model_name, model_fields=cls.model_fields, model_content=response) if response else None @classmethod def retrieve(cls, primary_key_value) -> Optional[ModelInstance]: """ Retrieve a single model by primary key """ Model.__new__(cls, internal=True) query = Query(model_name=cls.model_name, model_fields=cls.model_fields, action="retrieve", content=primary_key_value) response = cls.executor.execute(query) return ModelInstance(model_name=cls.model_name, model_fields=cls.model_fields, model_content=response) if response else None @classmethod def retrieve_all(cls) -> ModelSet: """ Retrieve all of the model items from the db and returns them in a model set """ Model.__new__(cls, internal=True) query = Query(model_name=cls.model_name, model_fields=cls.model_fields, action="all") response = cls.executor.execute(query) print("Retrieve all response is {}".format(response)) return ModelSet([ModelInstance(model_name=cls.model_name, model_fields=cls.model_fields, model_content=i) for i in response]) @classmethod def filter(cls, **kwargs) -> ModelSet: Model.__new__(cls, internal=True) filters = ['_less_or_equal', '_greater_or_equal', 'equal', '_less_than', '_greater_than', 'between_inc', 'between', 'not'] pass
18cb063d140ca52402076ae16b83ac2bbdaa92cb
3a6a211ea0d32405497fbd6486c490bb147e25f9
/third_party/pyasn1_modules/pyasn1_modules/rfc3779.py
aaf856e822b6d15286373124b860200a0e6768d6
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
catapult-project/catapult
e2cbdd5eb89f3b1492fc8752494e62ea1df4bae0
53102de187a48ac2cfc241fef54dcbc29c453a8e
refs/heads/main
2021-05-25T07:37:22.832505
2021-05-24T08:01:49
2021-05-25T06:07:38
33,947,548
2,032
742
BSD-3-Clause
2022-08-26T16:01:18
2015-04-14T17:49:05
HTML
UTF-8
Python
false
false
2,750
py
# # This file is part of pyasn1-modules software. # # Created by Russ Housley with assistance from asn1ate v.0.6.0. # # Copyright (c) 2019, Vigil Security, LLC # License: http://snmplabs.com/pyasn1/license.html # # X.509 Extensions for IP Addresses and AS Identifiers # # ASN.1 source from: # https://www.rfc-editor.org/rfc/rfc3779.txt # from pyasn1.type import univ, char, namedtype, namedval, tag, constraint, useful # IP Address Delegation Extension id_pe_ipAddrBlocks = univ.ObjectIdentifier('1.3.6.1.5.5.7.1.7') class IPAddress(univ.BitString): pass class IPAddressRange(univ.Sequence): pass IPAddressRange.componentType = namedtype.NamedTypes( namedtype.NamedType('min', IPAddress()), namedtype.NamedType('max', IPAddress()) ) class IPAddressOrRange(univ.Choice): pass IPAddressOrRange.componentType = namedtype.NamedTypes( namedtype.NamedType('addressPrefix', IPAddress()), namedtype.NamedType('addressRange', IPAddressRange()) ) class IPAddressChoice(univ.Choice): pass IPAddressChoice.componentType = namedtype.NamedTypes( namedtype.NamedType('inherit', univ.Null()), namedtype.NamedType('addressesOrRanges', univ.SequenceOf(componentType=IPAddressOrRange())) ) class IPAddressFamily(univ.Sequence): pass IPAddressFamily.componentType = namedtype.NamedTypes( namedtype.NamedType('addressFamily', univ.OctetString().subtype(subtypeSpec=constraint.ValueSizeConstraint(2, 3))), namedtype.NamedType('ipAddressChoice', IPAddressChoice()) ) class IPAddrBlocks(univ.SequenceOf): pass IPAddrBlocks.componentType = IPAddressFamily() # Autonomous System Identifier Delegation Extension id_pe_autonomousSysIds = univ.ObjectIdentifier('1.3.6.1.5.5.7.1.8') class ASId(univ.Integer): pass class ASRange(univ.Sequence): pass ASRange.componentType = namedtype.NamedTypes( namedtype.NamedType('min', ASId()), namedtype.NamedType('max', ASId()) ) class ASIdOrRange(univ.Choice): pass ASIdOrRange.componentType = namedtype.NamedTypes( namedtype.NamedType('id', ASId()), namedtype.NamedType('range', ASRange()) ) class ASIdentifierChoice(univ.Choice): pass ASIdentifierChoice.componentType = namedtype.NamedTypes( namedtype.NamedType('inherit', univ.Null()), namedtype.NamedType('asIdsOrRanges', univ.SequenceOf(componentType=ASIdOrRange())) ) class ASIdentifiers(univ.Sequence): pass ASIdentifiers.componentType = namedtype.NamedTypes( namedtype.OptionalNamedType('asnum', ASIdentifierChoice().subtype(explicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatConstructed, 0))), namedtype.OptionalNamedType('rdi', ASIdentifierChoice().subtype(explicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatConstructed, 1))) )
08ef2eccd84d514f3ce0b256c869f809ca0f08a9
7caa438706a423dd9779a81f8345fcf1ec11e921
/NXT-Python/pyglet-1.2.4/examples/soundspace/soundspace.py
82d76b2cabf3419b1931d08ad73170c7c952cb6b
[ "BSD-3-Clause" ]
permissive
tamarinvs19/python-learning
5dd2582f5dc504e19a53e9176677adc5170778b0
1e514ad7ca8f3d2e2f785b11b0be4d57696dc1e9
refs/heads/master
2021-07-15T13:23:24.238594
2021-07-08T07:07:21
2021-07-08T07:07:21
120,604,826
3
0
null
null
null
null
UTF-8
Python
false
false
18,493
py
#!/usr/bin/env python # ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2008 Alex Holkner # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- # $Id$ import math import os import pyglet from pyglet.gl import * import reader pyglet.resource.path.append('res') pyglet.resource.reindex() # Check for AVbin try: from pyglet.media import avbin except ImportError: raise ImportError('AVbin is required for this example, see ' 'http://code.google.com/p/avbin') def disc(r, x, y, slices=20, start=0, end=2*math.pi): d = (end - start) / (slices - 1) s = start points = [(x, y)] + [(x + r * math.cos(a*d+s), y + r * math.sin(a*d+s)) \ for a in range(slices)] points = ((GLfloat * 2) * len(points))(*points) glPushClientAttrib(GL_CLIENT_VERTEX_ARRAY_BIT) glEnableClientState(GL_VERTEX_ARRAY) glVertexPointer(2, GL_FLOAT, 0, points) glDrawArrays(GL_TRIANGLE_FAN, 0, len(points)) glPopClientAttrib() def circle(r, x, y, slices=20): d = 2 * math.pi / slices points = [(x + r * math.cos(a*d), y + r * math.sin(a*d)) \ for a in range(slices)] points = ((GLfloat * 2) * len(points))(*points) glPushClientAttrib(GL_CLIENT_VERTEX_ARRAY_BIT) glEnableClientState(GL_VERTEX_ARRAY) glVertexPointer(2, GL_FLOAT, 0, points) glDrawArrays(GL_LINE_LOOP, 0, len(points)) glPopClientAttrib() def orientation_angle(orientation): return math.atan2(orientation[2], orientation[0]) class Handle(object): tip = '' def __init__(self, player): self.player = player def hit_test(self, x, y, z): dx, dy, dz = [a - b for a, b in zip(self.pos(), (x, y, z))] if dx * dx + dy * dy + dz * dz < self.radius * self.radius: return -dx, -dy, -dz def draw(self): pass def begin_drag(self, window, offset): self.win = window self.offset = offset return self def on_mouse_press(self, x, y, button, modifiers): self.win.remove_handlers(self) def on_mouse_release(self, x, y, button, modifiers): self.win.remove_handlers(self) class LabelHandle(Handle): def __init__(self, player): super(LabelHandle, self).__init__(player) self.text = pyglet.text.Label('', font_size=10, color=(0, 0, 0, 255), anchor_y='top', anchor_x='center') def hit_test(self, x, y, z): return None def draw(self): if hasattr(self.player, 'label'): x, _, y = self.player.position # ech. fudge scale back to 1 mat = (GLfloat * 16)() glGetFloatv(GL_MODELVIEW_MATRIX, mat) glPushMatrix() glTranslatef(x, y, 0) glScalef(1/mat[0], 1/mat[5], 1/mat[10]) glTranslatef(0, -5, 0) self.text.text = self.player.label self.text.draw() glPopMatrix() class PositionHandle(Handle): tip = 'position' radius = .3 def draw(self): glPushMatrix() glTranslatef(self.player.position[0], self.player.position[2], 0) glColor3f(1, 0, 0) glBegin(GL_TRIANGLES) glVertex2f(0, self.radius) glVertex2f(-self.radius * math.sqrt(3) / 2, -.5 * self.radius) glVertex2f(self.radius * math.sqrt(3) / 2, -.5 * self.radius) glEnd() glPopMatrix() def pos(self): return self.player.position def on_mouse_drag(self, x, y, dx, dy, buttons, modifiers): pos = self.win.mouse_transform(x, y) self.player.position = \ (pos[0] - self.offset[0], pos[1] - self.offset[1], pos[2] - self.offset[2]) class OrientationHandle(Handle): radius = .1 length = 1.5 def pos(self): x, _, z = self.player.position dir = self.get_orientation() sz = math.sqrt(dir[0] ** 2 + dir[1] ** 2 + dir[2] ** 2) or 1 if sz != 0: x += dir[0] / sz * self.length z += dir[2] / sz * self.length return x, 0, z def draw(self): glPushAttrib(GL_ENABLE_BIT | GL_CURRENT_BIT) px, _, py = self.player.position x, _, y = self.pos() # Dashed line glColor3f(.3, .3, .3) glEnable(GL_LINE_STIPPLE) glLineStipple(1, 0x7777) glBegin(GL_LINES) glVertex2f(px, py) glVertex2f(x, y) glEnd() # This handle (orientation) glColor3f(1, 1, 0) disc(self.radius, x, y) glPopAttrib() def on_mouse_drag(self, x, y, dx, dy, buttons, modifiers): px, py, pz = self.player.position hx, hy, hz = self.win.mouse_transform(x, y) self.set_orientation( (hx - self.offset[0] - px, hy - self.offset[1] - py, hz - self.offset[2] - pz)) class ConeOrientationHandle(OrientationHandle): tip = 'cone_orientation' def get_orientation(self): return self.player.cone_orientation def set_orientation(self, orientation): self.player.cone_orientation = orientation class ForwardOrientationHandle(OrientationHandle): tip = 'forward_orientation' def get_orientation(self): return self.player.forward_orientation def set_orientation(self, orientation): self.player.forward_orientation = orientation class ConeAngleHandle(Handle): radius = .1 def pos(self): px, py, pz = self.player.position angle = orientation_angle(self.player.cone_orientation) angle += self.get_angle() * math.pi / 180. / 2 x = math.cos(angle) * self.length z = math.sin(angle) * self.length return px + x, py, pz + z def draw(self): glPushAttrib(GL_ENABLE_BIT | GL_CURRENT_BIT) # Fill glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glColor4f(*self.fill_color) px, _, py = self.player.position angle = orientation_angle(self.player.cone_orientation) a = self.get_angle() * math.pi / 180. disc(self.length, px, py, start=angle - a/2, end=angle + a/2) # Handle x, _, y = self.pos() glColor4f(*self.color) disc(self.radius, x, y) glPopAttrib() def on_mouse_drag(self, x, y, dx, dy, buttons, modifiers): px, py, pz = self.player.position hx, hy, hz = self.win.mouse_transform(x, y) angle = orientation_angle(self.player.cone_orientation) hangle = orientation_angle((hx - px, hy - py, hz - pz)) if hangle < angle: hangle += math.pi * 2 res = min(max((hangle - angle) * 2, 0), math.pi * 2) self.set_angle(res * 180. / math.pi) class ConeInnerAngleHandle(ConeAngleHandle): tip = 'cone_inner_angle' length = 1. color = (.2, .8, .2, 1) fill_color = (0, 1, 0, .1) def get_angle(self): return self.player.cone_inner_angle def set_angle(self, angle): self.player.cone_inner_angle = angle class ConeOuterAngleHandle(ConeAngleHandle): tip = 'cone_outer_angle' length = 1.2 color = (.2, .2, .8, 1) fill_color = (0, 0, 1, .1) def get_angle(self): return self.player.cone_outer_angle def set_angle(self, angle): self.player.cone_outer_angle = angle class MoreHandle(Handle): tip = 'More...' radius = .2 open = False open_width = 1.5 open_height = 1.5 def pos(self): x, y, z = self.player.position return x + 1, y, z + 1 def draw(self): x, _, z = self.pos() if self.open: x -= .2 z += .2 glPushAttrib(GL_ENABLE_BIT) glEnable(GL_BLEND) glColor4f(1, 1, 1, .8) glBegin(GL_QUADS) glVertex2f(x, z) glVertex2f(x + self.open_width, z) glVertex2f(x + self.open_width, z - self.open_height) glVertex2f(x, z - self.open_height) glEnd() glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) glColor4f(0, 0, 0, 1) glBegin(GL_QUADS) glVertex2f(x, z) glVertex2f(x + self.open_width, z) glVertex2f(x + self.open_width, z - self.open_height) glVertex2f(x, z - self.open_height) glEnd() glPolygonMode(GL_FRONT_AND_BACK, GL_FILL) glPopAttrib() else: glColor3f(1, 1, 1) disc(self.radius, x, z) glColor3f(0, 0, 0) circle(self.radius, x, z) r = self.radius - 0.1 glBegin(GL_LINES) glVertex2f(x - r, z) glVertex2f(x + r, z) glVertex2f(x, z - r) glVertex2f(x, z + r) glEnd() def begin_drag(self, window, offset): self.open = True self.win = window self.win.set_more_player_handles(self.player) return self def on_mouse_press(self, x, y, button, modifiers): x, y, z = self.win.mouse_transform(x, y) for handle in self.win.more_handles: if handle.hit_test(x, y, z): return self.win.set_more_player_handles(None) self.win.remove_handlers(self) self.open = False def on_mouse_release(self, x, y, button, modifiers): pass class SliderHandle(Handle): length = 1. width = .05 radius = .1 def __init__(self, player, x, z): super(SliderHandle, self).__init__(player) self.x = x self.z = z def pos(self): x, y, z = self.player.position x += self.x + self.get_value() * self.length z += self.z return x, y, z def draw(self): x = self.x + self.player.position[0] z = self.z + self.player.position[2] # Groove glColor3f(.5, .5, .5) glBegin(GL_QUADS) glVertex2f(x, z - self.width/2) glVertex2f(x + self.length, z - self.width/2) glVertex2f(x + self.length, z + self.width/2) glVertex2f(x, z + self.width/2) glEnd() # Thumb x, _, z = self.pos() glColor3f(.2, .2, .2) disc(self.radius, x, z) def on_mouse_drag(self, x, y, dx, dy, buttons, modifiers): px, py, pz = self.player.position hx, hy, hz = self.win.mouse_transform(x, y) value = float(hx - px - self.x) / self.length value = min(max(value, 0), 1) self.set_value(value) class VolumeHandle(SliderHandle): tip = 'volume' def __init__(self, player): super(VolumeHandle, self).__init__(player, 1, .9) def get_value(self): return self.player.volume def set_value(self, value): self.player.volume = value class ListenerVolumeHandle(SliderHandle): tip = 'volume' def __init__(self, player): super(ListenerVolumeHandle, self).__init__(player, -.5, -1) def get_value(self): return self.player.volume def set_value(self, value): self.player.volume = value class MinDistanceHandle(SliderHandle): tip = 'min_distance' def __init__(self, player): super(MinDistanceHandle, self).__init__(player, 1, .6) def get_value(self): return self.player.min_distance / 5. def set_value(self, value): self.player.min_distance = value * 5. class MaxDistanceHandle(SliderHandle): tip = 'max_distance' def __init__(self, player): super(MaxDistanceHandle, self).__init__(player, 1, .3) def get_value(self): return min(self.player.max_distance / 5., 1.0) def set_value(self, value): self.player.max_distance = value * 5. class ConeOuterGainHandle(SliderHandle): tip = 'cone_outer_gain' def __init__(self, player): super(ConeOuterGainHandle, self).__init__(player, 1, 0) def get_value(self): return self.player.cone_outer_gain def set_value(self, value): self.player.cone_outer_gain = value class SoundSpaceWindow(pyglet.window.Window): def __init__(self, **kwargs): kwargs.update(dict( caption='Sound Space', resizable=True, )) super(SoundSpaceWindow, self).__init__(**kwargs) self.players = [] self.handles = [] self.more_handles = [] listener = pyglet.media.get_audio_driver().get_listener() self.handles.append(PositionHandle(listener)) self.handles.append(ForwardOrientationHandle(listener)) self.handles.append(ListenerVolumeHandle(listener)) self.handles.append(LabelHandle(listener)) self.tip = pyglet.text.Label('', font_size=10, color=(0, 0, 0, 255), anchor_y='top', anchor_x='center') self.tip_player = None # pixels per unit self.zoom = 40 self.tx = self.width/2 self.ty = self.height/2 def add_player(self, player): self.players.append(player) self.handles.append(PositionHandle(player)) self.handles.append(ConeOrientationHandle(player)) self.handles.append(ConeInnerAngleHandle(player)) self.handles.append(ConeOuterAngleHandle(player)) self.handles.append(LabelHandle(player)) self.handles.append(MoreHandle(player)) def set_more_player_handles(self, player): if player: self.more_handles = [ VolumeHandle(player), MinDistanceHandle(player), MaxDistanceHandle(player), ConeOuterGainHandle(player), ] else: self.more_handles = [] def draw_background(self): glLoadIdentity() glPushAttrib(GL_CURRENT_BIT) glColor3f(1, 1, 1) glBegin(GL_LINES) for i in range(0, self.width, self.zoom): glVertex2f(i, 0) glVertex2f(i, self.height) for i in range(0, self.height, self.zoom): glVertex2f(0, i) glVertex2f(self.width, i) glEnd() glPopAttrib() def camera_transform(self): glLoadIdentity() glTranslatef(self.tx, self.ty, 0) glScalef(self.zoom, self.zoom, 1) def mouse_transform(self, x, y): return (float(x - self.tx) / self.zoom, 0, float(y - self.ty) / self.zoom) def player_transform(self, player): return (player.position[0] * self.zoom + self.tx, player.position[2] * self.zoom + self.ty) def hit_test(self, mouse_x, mouse_y): x, y, z = self.mouse_transform(mouse_x, mouse_y) for handle in self.more_handles[::-1] + self.handles[::-1]: offset = handle.hit_test(x, y, z) if offset: return handle, offset return None, None def on_draw(self): glClearColor(.8, .8, .8, 1) self.clear() self.draw_background() glPushMatrix() self.camera_transform() for handle in self.handles + self.more_handles: handle.draw() glPopMatrix() if self.tip_player: player_pos = self.player_transform(self.tip_player) self.tip.x = player_pos[0] self.tip.y = player_pos[1] - 15 self.tip.draw() def on_mouse_scroll(self, x, y, dx, dy): self.zoom += dy * 10 self.zoom = min(max(self.zoom, 10), 100) def on_mouse_press(self, x, y, button, modifiers): handle, offset = self.hit_test(x, y) if handle: self.push_handlers(handle.begin_drag(self, offset)) else: self.push_handlers(PanView(self)) def on_mouse_motion(self, x, y, dx, dy): handle, offset = self.hit_test(x, y) if handle: self.tip.text = handle.tip pos = self.player_transform(handle.player) self.tip_player = handle.player else: self.tip.text = '' class PanView(object): def __init__(self, window): self.win = window def on_mouse_release(self, x, y, button, modifiers): self.win.remove_handlers(self) def on_mouse_press(self, x, y, button, modifiers): self.win.remove_handlers(self) def on_mouse_drag(self, x, y, dx, dy, buttons, modifiers): self.win.tx += dx self.win.ty += dy if __name__ == '__main__': # We swap Y and Z, moving to left-handed system listener = pyglet.media.get_audio_driver().get_listener() listener.up_orientation = (0, -1, 0) # Start facing up (er, forwards) listener.forward_orientation = (0, 0, 1) listener.label = 'Listener' w = SoundSpaceWindow() r = reader.SpaceReader(w) r.read(pyglet.resource.file('space.txt')) player_group = pyglet.media.PlayerGroup(w.players) player_group.play() pyglet.app.run()
4eb2f293067b5f57a370ad4125140d766cdc0ad6
4374b25bd4d7ea4a8d890b08b68ae52ed93c5eaf
/neural_sp/bin/model_name.py
2121447c1841b0f00c16ed8c596d9bf4f95d6c89
[ "Apache-2.0" ]
permissive
smilelite/neural_sp
61833dc20f6ddd36b21e55663f539929c69a9399
86fee124982f7483656aa6b8d5db3715fda12460
refs/heads/master
2023-04-06T23:31:19.258575
2021-04-06T16:02:11
2021-04-06T16:02:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,097
py
# Copyright 2019 Kyoto University (Hirofumi Inaguma) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Set model name.""" import os from neural_sp.bin.train_utils import load_config def _define_encoder_name(dir_name, args): if args.enc_type == 'tds': from neural_sp.models.seq2seq.encoders.tds import TDSEncoder as module elif args.enc_type == 'gated_conv': from neural_sp.models.seq2seq.encoders.gated_conv import GatedConvEncoder as module elif 'transformer' in args.enc_type: from neural_sp.models.seq2seq.encoders.transformer import TransformerEncoder as module elif 'conformer' in args.enc_type: from neural_sp.models.seq2seq.encoders.conformer import ConformerEncoder as module else: from neural_sp.models.seq2seq.encoders.rnn import RNNEncoder as module if hasattr(module, 'define_name'): dir_name = module.define_name(dir_name, args) else: raise NotImplementedError(module) return dir_name def _define_decoder_name(dir_name, args): if args.dec_type in ['transformer', 'transformer_xl']: from neural_sp.models.seq2seq.decoders.transformer import TransformerDecoder as module elif args.dec_type in ['transformer_transducer', 'transformer_transducer_xl']: from neural_sp.models.seq2seq.decoders.transformer_transducer import TransformerTransducer as module elif args.dec_type in ['lstm_transducer', 'gru_transducer']: from neural_sp.models.seq2seq.decoders.rnn_transducer import RNNTransducer as module elif args.dec_type == 'asg': from neural_sp.models.seq2seq.decoders.asg import ASGDecoder as module else: from neural_sp.models.seq2seq.decoders.las import RNNDecoder as module if hasattr(module, 'define_name'): dir_name = module.define_name(dir_name, args) else: raise NotImplementedError(module) return dir_name def _define_lm_name(dir_name, args): if 'gated_conv' in args.lm_type: from neural_sp.models.lm.gated_convlm import GatedConvLM as module elif args.lm_type == 'transformer': from neural_sp.models.lm.transformerlm import TransformerLM as module elif args.lm_type == 'transformer_xl': from neural_sp.models.lm.transformer_xl import TransformerXL as module else: from neural_sp.models.lm.rnnlm import RNNLM as module if hasattr(module, 'define_name'): dir_name = module.define_name(dir_name, args) else: raise NotImplementedError(module) return dir_name def set_asr_model_name(args): # encoder dir_name = args.enc_type.replace('conv_', '') dir_name = _define_encoder_name(dir_name, args) if args.n_stacks > 1: dir_name += '_stack' + str(args.n_stacks) else: dir_name += '_' + args.subsample_type + str(args.subsample_factor) if args.sequence_summary_network: dir_name += '_ssn' # decoder if args.ctc_weight < 1: dir_name = _define_decoder_name(dir_name, args) # optimization dir_name += '_' + args.optimizer if args.optimizer == 'noam': dir_name += '_lr' + str(args.lr_factor) else: dir_name += '_lr' + str(args.lr) dir_name += '_bs' + str(args.batch_size) if args.train_dtype in ["O0", "O1", "O2", "O3"]: dir_name += '_' + args.train_dtype # if args.shuffle_bucket: # dir_name += '_bucket' # if 'transformer' in args.enc_type or 'transformer' in args.dec_type: # dir_name += '_' + args.transformer_param_init # regularization if args.lsm_prob > 0: dir_name += '_ls' + str(args.lsm_prob) if args.warmup_n_steps > 0: dir_name += '_warmup' + str(args.warmup_n_steps) if args.accum_grad_n_steps > 1: dir_name += '_accum' + str(args.accum_grad_n_steps) # LM integration if args.lm_fusion: dir_name += '_' + args.lm_fusion # MTL if args.mtl_per_batch: if args.ctc_weight > 0: dir_name += '_' + args.unit + 'ctc' if args.bwd_weight > 0: dir_name += '_' + args.unit + 'bwd' for sub in ['sub1', 'sub2']: if args.get('train_set_' + sub) is not None: dir_name += '_' + args.get('unit_' + sub) + str(args.get('vocab_' + sub)) if args.get('ctc_weight_' + sub, 0) > 0: dir_name += 'ctc' if args.get(sub + '_weight', 0) - args.get('ctc_weight_' + sub, 0) > 0: dir_name += 'fwd' else: if args.ctc_weight > 0: dir_name += '_ctc' + str(args.ctc_weight) if args.bwd_weight > 0: dir_name += '_bwd' + str(args.bwd_weight) for sub in ['sub1', 'sub2']: if args.get(sub + '_weight', 0) > 0: dir_name += '_' + args.get('unit_' + sub) + str(args.get('vocab_' + sub)) if args.get('ctc_weight_' + sub, 0) > 0: dir_name += 'ctc%.1f' % args.get('ctc_weight_' + sub) if args.get(sub + '_weight', 0) - args.get('ctc_weight_' + sub, 0) > 0: dir_name += 'fwd%.2f' % (args.total_weight - args.get(sub + '_weight', 0) - args.get('ctc_weight_' + sub, 0)) if args.task_specific_layer: dir_name += '_tsl' # SpecAugment if args.n_freq_masks > 0: dir_name += '_' + str(args.freq_width) + 'FM' + str(args.n_freq_masks) if args.n_time_masks > 0: if args.adaptive_number_ratio > 0: dir_name += '_pnum' + str(args.adaptive_number_ratio) else: dir_name += '_' + str(args.time_width) + 'TM' + str(args.n_time_masks) if args.adaptive_size_ratio > 0: dir_name += '_psize' + str(args.adaptive_size_ratio) if args.input_noise_std > 0: dir_name += '_Inoise' if args.weight_noise_std > 0: dir_name += '_Wnoise' # contextualization if args.discourse_aware: dir_name += '_discourse' if args.mem_len > 0: dir_name += '_mem' + str(args.mem_len) if args.bptt > 0: dir_name += '_bptt' + str(args.bptt) # Pre-training if args.asr_init and os.path.isfile(args.asr_init): conf_init = load_config(os.path.join(os.path.dirname(args.asr_init), 'conf.yml')) dir_name += '_' + conf_init['unit'] + 'pt' if args.freeze_encoder: dir_name += '_encfreeze' if args.lm_init: dir_name += '_lminit' # knowledge distillation if args.teacher: dir_name += '_KD' + str(args.soft_label_weight) if args.teacher_lm: dir_name += '_lmKD' + str(args.soft_label_weight) # MBR training if args.mbr_training: dir_name += '_MBR' + str(args.recog_beam_width) + 'best' dir_name += '_ce' + str(args.mbr_ce_weight) + '_smooth' + str(args.recog_softmax_smoothing) if args.n_gpus > 1: dir_name += '_' + str(args.n_gpus) + 'GPU' return dir_name def set_lm_name(args): dir_name = '' dir_name = _define_lm_name(dir_name, args) # optimization dir_name += '_' + args.optimizer if args.optimizer == 'noam': dir_name += '_lr' + str(args.lr_factor) else: dir_name += '_lr' + str(args.lr) dir_name += '_bs' + str(args.batch_size) if args.train_dtype in ["O0", "O1", "O2", "O3"]: dir_name += '_' + args.train_dtype dir_name += '_bptt' + str(args.bptt) # regularization dir_name += '_dropI' + str(args.dropout_in) + 'H' + str(args.dropout_hidden) if args.get('dropout_layer', 0) > 0: dir_name += 'Layer' + str(args.dropout_layer) if args.lsm_prob > 0: dir_name += '_ls' + str(args.lsm_prob) if args.warmup_n_steps > 0: dir_name += '_warmup' + str(args.warmup_n_steps) if args.accum_grad_n_steps > 1: dir_name += '_accum' + str(args.accum_grad_n_steps) if args.backward: dir_name += '_bwd' if args.shuffle: dir_name += '_shuffle' if args.serialize: dir_name += '_serialize' return dir_name
4a94d4e0f476fcbb73a0a653a656166d0438ab10
2be678ddc49b9ce9c2f7bd198d12b6be94374ddd
/precise/scripts/graph.py
14cf83e4ec816dd3eabc2a3e18c0d72b66f281b2
[ "Apache-2.0" ]
permissive
andreselizondo-adestech/mycroft-precise
2a7f08c7d74d39a1455ea1c15ded47fdedc89096
0e0ac5b8b14ff6a6ecffd300c40049131990e8c9
refs/heads/dev
2021-05-21T01:21:30.066505
2020-08-19T19:37:05
2020-08-19T19:37:05
252,484,092
3
1
Apache-2.0
2020-08-19T19:32:00
2020-04-02T14:49:40
Python
UTF-8
Python
false
false
5,814
py
#!/usr/bin/env python3 # Copyright 2019 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import numpy as np from functools import partial from os.path import basename, splitext from prettyparse import Usage from typing import Callable, Tuple from precise.network_runner import Listener from precise.params import inject_params, pr from precise.scripts.base_script import BaseScript from precise.stats import Stats from precise.threshold_decoder import ThresholdDecoder from precise.train_data import TrainData def get_thresholds(points=100, power=3) -> list: """Run a function with a series of thresholds between 0 and 1""" return [(i / (points + 1)) ** power for i in range(1, points + 1)] class CachedDataLoader: """ Class for reloading train data every time the params change Args: loader: Function that loads the train data (something that calls TrainData.load) """ def __init__(self, loader: Callable): self.prev_cache = None self.data = None self.loader = loader def load_for(self, model: str) -> Tuple[list, list]: """Injects the model parameters, reloading if they changed, and returning the data""" inject_params(model) if self.prev_cache != pr.vectorization_md5_hash(): self.prev_cache = pr.vectorization_md5_hash() self.data = self.loader() return self.data def load_plt(): try: import matplotlib.pyplot as plt return plt except ImportError: print('Please install matplotlib first') raise SystemExit(2) def calc_stats(model_files, loader, use_train, filenames): model_data = {} for model in model_files: train, test = loader.load_for(model) inputs, targets = train if use_train else test print('Running network...') predictions = Listener.find_runner(model)(model).predict(inputs) print(inputs.shape, targets.shape) print('Generating statistics...') stats = Stats(predictions, targets, filenames) print('\n' + stats.counts_str() + '\n\n' + stats.summary_str() + '\n') model_name = basename(splitext(model)[0]) model_data[model_name] = stats return model_data class GraphScript(BaseScript): usage = Usage(''' Show ROC curves for a series of models ... :-t --use-train Evaluate training data instead of test data :-nf --no-filenames Don't print out the names of files that failed :-r --resolution int 100 Number of points to generate :-p --power float 3.0 Power of point distribution :-l --labels Print labels attached to each point :-o --output-file str - File to write data instead of displaying it :-i --input-file str - File to read data from and visualize ... ''') usage.add_argument('models', nargs='*', help='Either Keras (.net) or TensorFlow (.pb) models to test') usage |= TrainData.usage def __init__(self, args): super().__init__(args) if not args.models and not args.input_file and args.folder: args.input_file = args.folder if bool(args.models) == bool(args.input_file): raise ValueError('Please specify either a list of models or an input file') if not args.output_file: load_plt() # Error early if matplotlib not installed def run(self): args = self.args if args.models: data = TrainData.from_both(args.tags_file, args.tags_folder, args.folder) print('Data:', data) filenames = sum(data.train_files if args.use_train else data.test_files, []) loader = CachedDataLoader(partial( data.load, args.use_train, not args.use_train, shuffle=False )) model_data = calc_stats(args.models, loader, args.use_train, filenames) else: model_data = { name: Stats.from_np_dict(data) for name, data in np.load(args.input_file)['data'].item().items() } for name, stats in model_data.items(): print('=== {} ===\n{}\n\n{}\n'.format(name, stats.counts_str(), stats.summary_str())) if args.output_file: np.savez(args.output_file, data={name: stats.to_np_dict() for name, stats in model_data.items()}) else: plt = load_plt() decoder = ThresholdDecoder(pr.threshold_config, pr.threshold_center) thresholds = [decoder.encode(i) for i in np.linspace(0.0, 1.0, args.resolution)[1:-1]] for model_name, stats in model_data.items(): x = [stats.false_positives(i) for i in thresholds] y = [stats.false_negatives(i) for i in thresholds] plt.plot(x, y, marker='x', linestyle='-', label=model_name) if args.labels: for x, y, threshold in zip(x, y, thresholds): plt.annotate('{:.4f}'.format(threshold), (x, y)) plt.legend() plt.xlabel('False Positives') plt.ylabel('False Negatives') plt.show() main = GraphScript.run_main if __name__ == '__main__': main()
f6835052381793f2c861225e2220abd09398454e
61dd3524e904ee055a761815239da55db26f03eb
/PYTHON-SALA DE AULA/Exercicios condicionais/exe-37.py
42797fee163339669239668fce6cbf3207f3a018
[ "Apache-2.0" ]
permissive
JaumVitor/HOMEWORK-PYTHON
149e4cb6d10421d1e980dd5b75a92f87355582f8
7be3299f36af3a924fc5c6f4a63aeed0fd8fb38e
refs/heads/master
2022-09-15T11:00:55.019562
2022-08-26T18:46:06
2022-08-26T18:46:06
256,103,198
0
0
null
null
null
null
UTF-8
Python
false
false
1,123
py
print ('- salários até R$ 280,00 (incluindo) : aumento de 20%') print ('- salários entre R$ 280,00 e R$ 700,00 : aumento de 15%') print ('- salários entre R$ 700,00 e R$ 1500,00 : aumento de 10%') print ('-salários de R$ 1.500,00 em diante : aumento de 5%') print ('='*43) sal = float ( input ('Qual valor do salario ? ')) if (sal <= 280 ): nsal1 = ( sal * 1.20 ) print ('='*43) print ('-Aumento de 20 %') print ('-Salario antigo : R${:.2f}'.format(sal)) print ('-Novo salario é R${:.2f}'.format(nsal1)) elif (sal > 280 ) and ( sal <= 700 ): nsal2 = ( sal * 1.15 ) print ('='*43) print ('-Aumento de 15 %') print ('-Salario antigo : R${:.2f}'.format(sal)) print ('-Novo salario é R${:.2f}'.format(nsal2)) elif (sal > 750 ) and ( sal <= 1500 ): nsal3 = ( sal * 1.10 ) print ('='*43) print ('-Aumento de 10 %') print ('-Salario antigo : R${:.2f}'.format(sal)) print ('-Novo salario é R${:.2f}'.format(nsal3)) elif (sal > 1500 ): nsal4 = ( sal * 1.5 ) print ('='*43) print ('-Aumento de 5%') print ('-Salario antigo : R${:.2f}'.format(sal)) print ('-Novo salario é R${:.2f}'.format(nsal4))
dde80391d1a289f17f39b3d1db3696e9b50a41ec
530797702626216b6aebc8fa5b55fc0cb494ad3e
/cryptid/cryptid_maps_generator.py
684018146052a3fe0e77e6788d3135746871f012
[]
no_license
trung-hn/fun-stuffs
fbe3951bad6a12a5c703892268f0422640aa2232
afadd2788e8eeff256e47a2c6a23ee6089bd2595
refs/heads/master
2023-08-31T20:55:28.662905
2023-08-29T20:38:54
2023-08-29T20:38:54
203,461,969
0
1
null
null
null
null
UTF-8
Python
false
false
3,782
py
#%% import base64 import json from selenium import webdriver from pathlib import Path from selenium.webdriver.support.ui import Select from selenium.webdriver.common.by import By import time DRIVER_PATH = "D:\Workspace\sandbox\chromedriver.exe" driver = webdriver.Chrome(executable_path=DRIVER_PATH) driver.get("https://ospreypublishing.com/playcryptid/") #%% def download_map_to_path(driver, path): # Save Image canvas = driver.find_element(by=By.XPATH, value="//*[@id='mapCanvas']") # get the canvas as a PNG base64 string canvas_base64 = driver.execute_script( "return arguments[0].toDataURL('image/png').substring(21);", canvas ) # decode canvas_png = base64.b64decode(canvas_base64) Path(path.rsplit("/", 1)[0]).mkdir(parents=True, exist_ok=True) with open(path, "wb") as f: f.write(canvas_png) def save_clues_to_path(path, clues): Path(path.rsplit("/", 1)[0]).mkdir(parents=True, exist_ok=True) with open(path, "w") as f: json.dump(clues, f) def save_text_to_path(path, clue): Path(path.rsplit("/", 1)[0]).mkdir(parents=True, exist_ok=True) with open(path, "w") as f: f.write(clue) def save_clues_for_each_player(driver, folder, player_no): clues = {} for player in range(1, player_no + 1): driver.find_element(by=By.XPATH, value="//*[@id='clueButton']").click() time.sleep(1) clue = driver.find_element(by=By.XPATH, value="//*[@id='clueText']") clues[f"Player {player}:"] = clue.text save_text_to_path( folder + f"player {player} clue.txt", clue.text, ) driver.find_element(by=By.XPATH, value="//*[@id='clueButton']").click() time.sleep(0.6) save_clues_to_path(folder + "clues.json", clues) return clues # %% visited = set() drop_down = Select(driver.find_element(by=By.XPATH, value="//*[@id='ngfPlayers']")) for order in range(1, 101): for player_no in (2, 3, 4, 5): drop_down.select_by_value(str(player_no)) time.sleep(0.5) # Start Game driver.find_element(by=By.XPATH, value="//*[@id='ngfStart']").click() time.sleep(0.1) try: driver.find_element( by=By.XPATH, value='//button[normalize-space()="OK"]' ).click() except: pass time.sleep(0.5) folder = f"data/Advance {player_no} players/Game {order}/" download_map_to_path(driver, folder + "map.png") # Save clues for each player clues = save_clues_for_each_player(driver, folder, player_no) jsonified_clues = json.dumps(clues) if jsonified_clues in visited: print(f"{order} already visited") continue visited.add(jsonified_clues) # Get hint time.sleep(1) driver.find_element( by=By.XPATH, value='//button[normalize-space()="Reveal Hint"]' ).click() time.sleep(0.1) driver.find_element(value="hint_confirm_yes").click() time.sleep(0.4) hint = driver.find_element(by=By.XPATH, value="//*[@id='hintText']") save_text_to_path(folder + "hint.txt", hint.text) # Get solution driver.find_element(value="targetButton").click() time.sleep(0.1) driver.find_element(value="target_confirm_yes").click() time.sleep(1) download_map_to_path(driver, folder + "solution/solution.png") # Quit driver.find_element(by=By.XPATH, value="//*[@id='quitButton']").click() time.sleep(0.4) try: driver.find_element( by=By.XPATH, value="//*[@id='quit_confirm_yes']" ).click() except: pass time.sleep(0.5) # %%
0f43d2c8b893f082d38427beb7a50cfa5047b97d
f60eb7d15ce3ca06e2db1dc0af8b3b87bed08c37
/home/migrations/0026_auto_20170613_1726.py
c701f4e2b1b402be2ac5c422cd43ebada3d8feb6
[]
no_license
wlminimal/epc
96136f0c5f2b4ddc04fbc7e7b76d6a41c631ea26
2127a4e273a69a3ca0d5711fd1452c1bc5ab7590
refs/heads/master
2022-12-12T11:33:57.711869
2019-04-12T16:33:58
2019-04-12T16:33:58
92,700,181
0
0
null
2022-12-07T23:58:05
2017-05-29T02:20:33
Python
UTF-8
Python
false
false
496
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-06-13 17:26 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0025_auto_20170613_1721'), ] operations = [ migrations.AlterField( model_name='homepage', name='service_button_text', field=models.CharField(default='See more Service info', max_length=50), ), ]
54a0fca131604d36c4f3e8a1caf9b2e7d1d89f9f
a945bbf73016b1689a0dc9811171fac51fad0bba
/research/limited_gradient_smoothing/utils.py
5638b9cceadc87fb45822807b1342e110ba9cef1
[ "MIT" ]
permissive
jamietknight/AutoEq
a40cc47e5c19625191903c404cb785ac1ca3883b
8ef7ffefcfe8786d318f59b2004ec68af09ed61d
refs/heads/master
2023-01-14T21:09:16.405027
2020-11-29T12:49:00
2020-11-29T12:49:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,055
py
# -*- coding: utf-8 -*- import sys from pathlib import Path ROOT_PATH = Path().resolve().parent.parent if str(ROOT_PATH) not in sys.path: sys.path.insert(str(ROOT_PATH)) import numpy as np import scipy from frequency_response import FrequencyResponse def limited_slope_plots(fr, limit): fr.equalization = -fr.error limited, smoothed, limited_forward, clipped_forward, limited_backward, clipped_backward, peak_inds, dip_inds, \ backward_start, protection_mask = limited_slope(fr.frequency, fr.equalization, limit) x = fr.frequency.copy() y = smoothed # Plot graphs fig, ax = fr.plot_graph( show=False, raw=False, error=False, target=False, equalization_plot_kwargs={ 'color': 'C2', 'linewidth': 1, 'label': 'Raw equalization', 'linestyle': 'dashed' }) fig.set_size_inches(20, 9) ax.plot(x, y, label='Smoothed equalization', color='C2') ax.plot(x, limited, label='Limited', color='C1') ax.fill_between(x, clipped_forward * -5, clipped_forward * 10, label='Limited left to right', color='blue', alpha=0.1) ax.fill_between(x, clipped_backward * -10, clipped_backward * 5, label='Limited right to left', color='red', alpha=0.1) ax.fill_between(x, protection_mask * -12, protection_mask * 12, label='Limitation-safe zone', color='limegreen', alpha=0.2) ax.scatter(x[peak_inds], y[peak_inds], color='red') ax.scatter(x[backward_start], y[backward_start], 200, marker='<', label='Backward start', color='black') ax.scatter(x[dip_inds], y[dip_inds], color='limegreen') ax.legend() return fig, ax def limited_slope(x, y, limit): """Bi-directional slope limitation for a frequency response curve Args: x: frequencies y: amplitudes limit: Returns: """ fr = FrequencyResponse(name='fr', frequency=x, raw=y) # Smoothen data, heavily on treble to avoid problems in +10 kHz region fr.smoothen_fractional_octave(window_size=1 / 12, treble_window_size=2, treble_f_lower=9000, treble_f_upper=11500) # Copy data x = fr.frequency.copy() y = fr.smoothed.copy() # Find peaks and notches # TODO: these affect which regions are rejected peak_inds, peak_props = scipy.signal.find_peaks(y, prominence=1) dip_inds, dip_props = scipy.signal.find_peaks(-y, prominence=1) limit_free_mask = protection_mask(y, dip_inds) # Find backward start index backward_start = find_backward_start(y, peak_inds, dip_inds) # TODO: backward start # Find forward and backward limitations # limited_forward is y but with slopes limited when traversing left to right # clipped_forward is boolean mask for limited samples when traversing left to right # limited_backward is found using forward algorithm but with flipped data limited_forward, clipped_forward, regions_forward = limited_forward_slope( x, y, limit, start_index=0, peak_inds=peak_inds, limit_free_mask=limit_free_mask) limited_backward, clipped_backward, regions_backward = limited_backward_slope( x, y, limit, start_index=backward_start, peak_inds=peak_inds, limit_free_mask=limit_free_mask) # TODO: Find notches which are lower in level than adjacent notches # TODO: Set detected notches as slope clipping free zones up to levels of adjacent notches # Forward and backward limited curves are combined with min function # Combination function is smoothed to get rid of hard kinks limiter = FrequencyResponse( name='limiter', frequency=x.copy(), raw=np.min(np.vstack([limited_forward, limited_backward]), axis=0)) limiter.smoothen_fractional_octave(window_size=1 / 5, treble_window_size=1 / 5) #limiter.smoothed = limiter.raw.copy() return limiter.smoothed.copy(), fr.smoothed.copy(), limited_forward, clipped_forward, limited_backward, clipped_backward, \ peak_inds, dip_inds, backward_start, limit_free_mask def protection_mask(y, dip_inds): """Finds zones around dips which are lower than their adjacent dips. Zones extend to the lower level of the adjacent dips. Args: x: frequencies y: amplitudes dip_inds: Indices of dips Returns: Boolean mask for limitation-free indices """ mask = np.zeros(len(y)).astype(bool) if len(dip_inds) < 3: return mask # Find peaks which are lower in level than their adjacent dips dip_levels = y[dip_inds] # First row contains levels of previous dips # Second row contains levels of current dips # Third row contains levels of next dips # First and last dips are ignored because they don't have both adjacent dips stack = np.vstack([dip_levels[2:], dip_levels[1:-1], dip_levels[:-2]]) # Boolean mask for dips which are lower than their adjacent dips null_mask = np.concatenate([[False], np.argmin(stack, axis=0) == 1, [False]]) # Indices of dips which are lower than their adjacent dips null_inds = np.argwhere(null_mask)[:, 0] if len(null_inds) < 1: return mask # First column is the level of the previous dip # Second column is the level of the next dip adjacent_dip_levels = np.vstack([dip_levels[null_inds - 1], dip_levels[null_inds + 1]]) adjacent_dip_levels = np.transpose(adjacent_dip_levels) # Find indexes on both sides where the curve goes above the adjacent dips minimum level for i in range(len(null_inds)): dip_ind = dip_inds[null_inds[i]] target_left = adjacent_dip_levels[i, 0] target_right = adjacent_dip_levels[i, 1] # TODO: Should left and right side targets be separate? #target = np.min([target_left, target_right]) # TODO: Should target be where gradient reduces below certain threshold? left_ind = np.argwhere(y[:dip_ind] >= target_left)[-1, 0] + 1 right_ind = np.argwhere(y[dip_ind:] >= target_right) right_ind = right_ind[0, 0] + dip_ind - 1 mask[left_ind:right_ind + 1] = np.ones(right_ind - left_ind + 1).astype(bool) return mask def limited_backward_slope(x, y, limit, start_index=0, peak_inds=None, limit_free_mask=None): """Limits forwards slope of a frequency response curve while traversing backwards Args: x: frequencies y: amplitudes limit: maximum slope in dB / oct start_index: Index where to start traversing, no limitations apply before this peak_inds: Peak indexes. Regions will require to touch one of these if given. limit_free_mask: Boolean mask for indices where limitation must not be applied Returns: limited: Limited curve mask: Boolean mask for clipped indexes regions: Clipped regions, one per row, 1st column is the start index, 2nd column is the end index (exclusive) """ start_index = len(x) - start_index - 1 if peak_inds is not None: peak_inds = len(x) - peak_inds - 1 if limit_free_mask is not None: limit_free_mask = np.flip(limit_free_mask) limited_backward, clipped_backward, regions_backward = limited_forward_slope( x, np.flip(y), limit, start_index=start_index, peak_inds=peak_inds, limit_free_mask=limit_free_mask) limited_backward = np.flip(limited_backward) clipped_backward = np.flip(clipped_backward) regions_backward = len(x) - regions_backward - 1 return limited_backward, clipped_backward, regions_backward def limited_forward_slope(x, y, limit, start_index=0, peak_inds=None, limit_free_mask=None): """Limits forwards slope of a frequency response curve Args: x: frequencies y: amplitudes limit: maximum slope in dB / oct start_index: Index where to start traversing, no limitations apply before this peak_inds: Peak indexes. Regions will require to touch one of these if given. limit_free_mask: Boolean mask for indices where limitation must not be applied Returns: limited: Limited curve mask: Boolean mask for clipped indexes regions: Clipped regions, one per row, 1st column is the start index, 2nd column is the end index (exclusive) """ if peak_inds is not None: peak_inds = np.array(peak_inds) limited = [] clipped = [] regions = [] for i in range(len(x)): if i <= start_index: # No clipping before start index limited.append(y[i]) clipped.append(False) continue # Calculate slope and local limit slope = log_log_gradient(x[i], x[i - 1], y[i], limited[-1]) # Local limit is 25% of the limit between 8 kHz and 10 kHz # TODO: limit 9 kHz notch 8 kHz to 11 kHz? local_limit = limit / 4 if 8000 <= x[i] <= 11500 else limit if slope > local_limit and (limit_free_mask is None or not limit_free_mask[i]): # Slope between the two samples is greater than the local maximum slope, clip to the max if not clipped[-1]: # Start of clipped region regions.append([i]) clipped.append(True) # Add value with limited change octaves = np.log(x[i] / x[i - 1]) / np.log(2) limited.append(limited[-1] + local_limit * octaves) else: # Moderate slope, no need to limit limited.append(y[i]) if clipped[-1]: # Previous sample clipped but this one didn't, means it's the end of clipped region # Add end index to the region regions[-1].append(i + 1) region_start = regions[-1][0] if peak_inds is not None and not np.any(np.logical_and(peak_inds >= region_start, peak_inds < i)): # None of the peak indices found in the current region, discard limitations limited[region_start:i] = y[region_start:i] clipped[region_start:i] = [False] * (i - region_start) regions.pop() clipped.append(False) if len(regions) and len(regions[-1]) == 1: regions[-1].append(len(x) - 1) return np.array(limited), np.array(clipped), np.array(regions) def log_log_gradient(f0, f1, g0, g1): octaves = np.log(f1 / f0) / np.log(2) gain = g1 - g0 return gain / octaves def find_backward_start(y, peak_inds, notch_inds): # Find starting index for the backward pass if peak_inds[-1] > notch_inds[-1]: # Last peak is a positive peak # Find index on the right side of the peak where the curve crosses the left side minimum backward_start = np.argwhere(y[peak_inds[-1]:] <= y[notch_inds[-1]]) if len(backward_start): backward_start = backward_start[0, 0] + peak_inds[-1] else: backward_start = len(y) - 1 else: # Last peak is a negative peak, start there backward_start = notch_inds[-1] return backward_start
d35824f9c7bc1d9b5bdf9ab1821580ea4c94cc6e
3d9640bf3fb1da00f2739424723fbf6d74b574c0
/project/accounts/migrations/0002_auto_20200809_1536.py
9bb3a316cc8f71e82a6646748c93e6a9df7fbec6
[]
no_license
brahim024/django-user-auth
265df0de18bdce4756c53c616ba097755175b519
41339d449f6d2abb07ab30e087234915ada59186
refs/heads/master
2022-12-22T06:13:02.973405
2020-09-26T00:08:58
2020-09-26T00:08:58
279,684,766
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
# Generated by Django 3.1 on 2020-08-09 13:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0001_initial'), ] operations = [ migrations.AlterField( model_name='profile', name='phone', field=models.CharField(blank=True, max_length=20, null=True), ), ]
bba7005497f25a02a0b5b5133051bdc931a6245d
64327166debec734cdbdceed673affc7ef806901
/backend/test_expo_app_23831/settings.py
267df1ccc5565082c44b00a4f948a140ec41ff5d
[]
no_license
crowdbotics-apps/test-expo-app-23831
85aa164045a6d6988b4507ecb316d72a1482db74
67c0d3990ecc85359f9897676d58dad00bcdd3e7
refs/heads/master
2023-02-16T00:18:19.859203
2021-01-14T00:33:41
2021-01-14T00:33:41
329,466,667
0
0
null
null
null
null
UTF-8
Python
false
false
4,782
py
""" Django settings for test_expo_app_23831 project. Generated by 'django-admin startproject' using Django 1.11.16. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os import environ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ env = environ.Env() environ.Env.read_env(os.path.join(BASE_DIR, '.env')) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool('DEBUG', default=True) ALLOWED_HOSTS = ['*'] SITE_ID = 1 # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', ] ROOT_URLCONF = 'test_expo_app_23831.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'test_expo_app_23831.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'test_expo_app_23831', 'USER': 'test_expo_app_23831', 'PASSWORD': 'test_expo_app_23831', 'HOST': 'localhost', 'PORT': '5432', } } if env.str('DATABASE_URL', default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) # allauth ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = None LOGIN_REDIRECT_URL = '/' if DEBUG: # output email to console instead of sending EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' EMAIL_HOST = 'smtp.sendgrid.net' EMAIL_HOST_USER = env.str('SENDGRID_USERNAME', '') EMAIL_HOST_PASSWORD = env.str('SENDGRID_PASSWORD', '') EMAIL_PORT = 587 EMAIL_USE_TLS = True # Import local settings try: from .local_settings import * INSTALLED_APPS += DEBUG_APPS except: pass
431e0d44cfd2d2914eee2be9382d559ed9d7fc01
4daff90cfce1f253a3d8b14583dc0a038d553ca5
/PyMess/MAG/SaveAllDip.py
0e4e30b2180fcae15b7a47f17ab897311e2a895b
[ "MIT" ]
permissive
mattkjames7/PyMess
42d0119a91d130649b3c601889ef132e38facb4f
f2c68285a7845a24d98284e20ed4292ed5e58138
refs/heads/master
2021-06-28T14:43:32.748427
2020-10-27T10:27:52
2020-10-27T10:27:52
174,409,228
0
0
null
null
null
null
UTF-8
Python
false
false
1,171
py
import numpy as np from ._SaveDip import _SaveDip from .DataAvailability import DataAvailability def SaveAllDip(Minute=False,StartI=0,EndI=None): ''' This procedure should save all magnetometer data rotated into a coordinate system useful for studying waves, with components in the poloidal, toroidal and parallel directions. Inputs: Minute: Set to True to use minute resolution data, or False for full time resolution data. res: Tells the function to resample the MAG data to this time resolution in seconds. ModelParams: Parameters to use for the KT17 magnetic field model When set to None, the values used are calculated based on Mercury's distance from the Sun. Ab: Aberration angle in degrees, set to None to calculate automatically. DetectGaps: If not None, then the routine will search for gaps larger than DetectGaps in hours and insert NaNs, gaps smaller than this are interpolated over. ''' dates = DataAvailability(Minute,Type='MSO') nf = np.size(dates) if EndI is None: EndI = nf for i in range(StartI,EndI): print('Converting File {0} of {1} ({2})'.format(i+1,nf,dates[i])) _SaveDip(dates[i],Minute)
6a244720c1ec569ef5ad9d6d031558d08080eddc
87f574548a321a668f325bc3d120a45366b0b76b
/booking/migrations/0029_auto_20151020_1527.py
a7ae5a2639c51692d05636dbc2675c9b1f1421d8
[]
no_license
judy2k/pipsevents
1d19fb4c07e4a94d285e6b633e6ae013da0d1efd
88b6ca7bb64b0bbbbc66d85d2fa9e975b1bd3081
refs/heads/master
2021-01-14T11:11:26.616532
2016-10-07T20:47:39
2016-10-07T20:55:13
36,600,721
0
0
null
2015-05-31T11:51:14
2015-05-31T11:51:14
null
UTF-8
Python
false
false
5,457
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.utils.timezone import django_extensions.db.fields from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('booking', '0028_event_cancelled'), ] operations = [ migrations.CreateModel( name='Ticket', fields=[ ('id', models.AutoField(serialize=False, verbose_name='ID', primary_key=True, auto_created=True)), ('extra_ticket_info', models.TextField(default='', blank=True)), ('extra_ticket_info1', models.TextField(default='', blank=True)), ], ), migrations.CreateModel( name='TicketBooking', fields=[ ('id', models.AutoField(serialize=False, verbose_name='ID', primary_key=True, auto_created=True)), ('date_booked', models.DateTimeField(default=django.utils.timezone.now)), ('date_rebooked', models.DateTimeField(null=True, blank=True)), ('paid', models.BooleanField(default=False)), ('payment_confirmed', models.BooleanField(help_text='Payment confirmed by admin/organiser', default=False)), ('date_payment_confirmed', models.DateTimeField(null=True, blank=True)), ('cancelled', models.BooleanField(default=False)), ('reminder_sent', models.BooleanField(default=False)), ('warning_sent', models.BooleanField(default=False)), ('booking_reference', models.CharField(max_length=255)), ], ), migrations.CreateModel( name='TicketedEvent', fields=[ ('id', models.AutoField(serialize=False, verbose_name='ID', primary_key=True, auto_created=True)), ('name', models.CharField(max_length=255)), ('description', models.TextField(default='', blank=True)), ('date', models.DateTimeField()), ('location', models.CharField(max_length=255, default='Watermelon Studio')), ('max_tickets', models.PositiveIntegerField(help_text='Leave blank if no max number', null=True, blank=True)), ('contact_person', models.CharField(max_length=255, default='Gwen Burns')), ('contact_email', models.EmailField(max_length=254, default='[email protected]')), ('ticket_cost', models.DecimalField(default=0, decimal_places=2, max_digits=8)), ('advance_payment_required', models.BooleanField(default=True)), ('show_on_site', models.BooleanField(help_text='Tick to show on the site', default=True)), ('payment_open', models.BooleanField(default=True)), ('payment_info', models.TextField(blank=True)), ('payment_due_date', models.DateTimeField(help_text='Tickets that are not paid by the payment due date will be automatically cancelled (a warning email will be sent to users first).', null=True, blank=True)), ('payment_time_allowed', models.PositiveIntegerField(help_text='Number of hours allowed for payment after booking (after this ticket purchases will be cancelled. This will be ignored if there is a payment due date set on the event itself. ', null=True, blank=True)), ('email_studio_when_purchased', models.BooleanField(default=False)), ('max_ticket_purchase', models.PositiveIntegerField(help_text='Limit the number of tickets that can be purchased at one time', null=True, blank=True)), ('extra_ticket_info_label', models.CharField(max_length=255, default='', blank=True)), ('extra_ticket_info_help', models.CharField(help_text='Description/details/help text to display under the extra info field', max_length=255, default='', blank=True)), ('extra_ticket_info_required', models.BooleanField(help_text='Tick if this information is mandatory when booking tickets', default=False)), ('extra_ticket_info1_label', models.CharField(max_length=255, default='', blank=True)), ('extra_ticket_info1_help', models.CharField(help_text='Description/details/help text to display under the extra info field', max_length=255, default='', blank=True)), ('extra_ticket_info1_required', models.BooleanField(help_text='Tick if this information is mandatory when booking tickets', default=False)), ('slug', django_extensions.db.fields.AutoSlugField(max_length=40, unique=True, populate_from='name', blank=True, editable=False)), ], options={ 'ordering': ['-date'], }, ), migrations.AddField( model_name='ticketbooking', name='ticketed_event', field=models.ForeignKey(related_name='ticket_bookings', to='booking.TicketedEvent'), ), migrations.AddField( model_name='ticketbooking', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='ticket', name='ticket_booking', field=models.ForeignKey(related_name='tickets', to='booking.TicketBooking'), ), ]