blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
25e7256a2278380559a276d1b3e444401d66c3f7
14bca3c05f5d8de455c16ec19ac7782653da97b2
/lib/kubernetes/client/models/v1beta1_custom_resource_subresource_scale.py
ed95df565c96d745a54209552e5348bb1e35de08
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
hovu96/splunk_as_a_service_app
167f50012c8993879afbeb88a1f2ba962cdf12ea
9da46cd4f45603c5c4f63ddce5b607fa25ca89de
refs/heads/master
2020-06-19T08:35:21.103208
2020-06-16T19:07:00
2020-06-16T19:07:00
196,641,210
8
1
null
null
null
null
UTF-8
Python
false
false
7,791
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.14.4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1beta1CustomResourceSubresourceScale(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'label_selector_path': 'str', 'spec_replicas_path': 'str', 'status_replicas_path': 'str' } attribute_map = { 'label_selector_path': 'labelSelectorPath', 'spec_replicas_path': 'specReplicasPath', 'status_replicas_path': 'statusReplicasPath' } def __init__(self, label_selector_path=None, spec_replicas_path=None, status_replicas_path=None): """ V1beta1CustomResourceSubresourceScale - a model defined in Swagger """ self._label_selector_path = None self._spec_replicas_path = None self._status_replicas_path = None self.discriminator = None if label_selector_path is not None: self.label_selector_path = label_selector_path self.spec_replicas_path = spec_replicas_path self.status_replicas_path = status_replicas_path @property def label_selector_path(self): """ Gets the label_selector_path of this V1beta1CustomResourceSubresourceScale. LabelSelectorPath defines the JSON path inside of a CustomResource that corresponds to Scale.Status.Selector. Only JSON paths without the array notation are allowed. Must be a JSON Path under .status. Must be set to work with HPA. If there is no value under the given path in the CustomResource, the status label selector value in the /scale subresource will default to the empty string. :return: The label_selector_path of this V1beta1CustomResourceSubresourceScale. :rtype: str """ return self._label_selector_path @label_selector_path.setter def label_selector_path(self, label_selector_path): """ Sets the label_selector_path of this V1beta1CustomResourceSubresourceScale. LabelSelectorPath defines the JSON path inside of a CustomResource that corresponds to Scale.Status.Selector. Only JSON paths without the array notation are allowed. Must be a JSON Path under .status. Must be set to work with HPA. If there is no value under the given path in the CustomResource, the status label selector value in the /scale subresource will default to the empty string. :param label_selector_path: The label_selector_path of this V1beta1CustomResourceSubresourceScale. :type: str """ self._label_selector_path = label_selector_path @property def spec_replicas_path(self): """ Gets the spec_replicas_path of this V1beta1CustomResourceSubresourceScale. SpecReplicasPath defines the JSON path inside of a CustomResource that corresponds to Scale.Spec.Replicas. Only JSON paths without the array notation are allowed. Must be a JSON Path under .spec. If there is no value under the given path in the CustomResource, the /scale subresource will return an error on GET. :return: The spec_replicas_path of this V1beta1CustomResourceSubresourceScale. :rtype: str """ return self._spec_replicas_path @spec_replicas_path.setter def spec_replicas_path(self, spec_replicas_path): """ Sets the spec_replicas_path of this V1beta1CustomResourceSubresourceScale. SpecReplicasPath defines the JSON path inside of a CustomResource that corresponds to Scale.Spec.Replicas. Only JSON paths without the array notation are allowed. Must be a JSON Path under .spec. If there is no value under the given path in the CustomResource, the /scale subresource will return an error on GET. :param spec_replicas_path: The spec_replicas_path of this V1beta1CustomResourceSubresourceScale. :type: str """ if spec_replicas_path is None: raise ValueError("Invalid value for `spec_replicas_path`, must not be `None`") self._spec_replicas_path = spec_replicas_path @property def status_replicas_path(self): """ Gets the status_replicas_path of this V1beta1CustomResourceSubresourceScale. StatusReplicasPath defines the JSON path inside of a CustomResource that corresponds to Scale.Status.Replicas. Only JSON paths without the array notation are allowed. Must be a JSON Path under .status. If there is no value under the given path in the CustomResource, the status replica value in the /scale subresource will default to 0. :return: The status_replicas_path of this V1beta1CustomResourceSubresourceScale. :rtype: str """ return self._status_replicas_path @status_replicas_path.setter def status_replicas_path(self, status_replicas_path): """ Sets the status_replicas_path of this V1beta1CustomResourceSubresourceScale. StatusReplicasPath defines the JSON path inside of a CustomResource that corresponds to Scale.Status.Replicas. Only JSON paths without the array notation are allowed. Must be a JSON Path under .status. If there is no value under the given path in the CustomResource, the status replica value in the /scale subresource will default to 0. :param status_replicas_path: The status_replicas_path of this V1beta1CustomResourceSubresourceScale. :type: str """ if status_replicas_path is None: raise ValueError("Invalid value for `status_replicas_path`, must not be `None`") self._status_replicas_path = status_replicas_path def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1beta1CustomResourceSubresourceScale): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
71335d29712b442c9ce5d95ca32fd48dad3c6e99
0567fcd808397a7024b5009cc290de1c414eff06
/src/1470.shuffle-the-array.py
7f9045ee0e7612652fc26cad85239700fb747fbe
[]
no_license
tientheshy/leetcode-solutions
d3897035a7fd453b9f47647e95f0f92a03bff4f3
218a8a97e3926788bb6320dda889bd379083570a
refs/heads/master
2023-08-23T17:06:52.538337
2021-10-03T01:47:50
2021-10-03T01:47:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
562
py
# # @lc app=leetcode id=1470 lang=python3 # # [1470] Shuffle the Array # # @lc code=start class Solution: # 80 ms, 50.80%. Time: O(N). Space: O(N). Could be better using Bit manipulation to make it O(1) Space # More here: https://leetcode.com/problems/shuffle-the-array/discuss/675956/In-Place-O(n)-Time-O(1)-Space-With-Explanation-and-Analysis def shuffle(self, nums: List[int], n: int) -> List[int]: ans = [] for i in range(n): ans.append(nums[i]) ans.append(nums[i + n]) return ans # @lc code=end
9aa148058532f77347a3c08339fbfbf260700c69
f1cb404ea95f4527ffeaf6a7fe8db9a2a1990f12
/scikits/cuda/misc.py
a09c4889cf06370693f6287df2d88d83901be156
[ "BSD-3-Clause" ]
permissive
sequoiar/scikits.cuda
c0821502b7dc90d818669e20f2fa1858f1a78e82
79b62904a726d45066351c38b4274b1ecc985e47
refs/heads/master
2020-12-25T07:39:47.594383
2011-03-30T14:39:20
2011-03-30T14:39:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,786
py
#!/usr/bin/env python """ General PyCUDA utility functions. """ import string from string import Template import atexit import pycuda.driver as drv import pycuda.gpuarray as gpuarray from pycuda.compiler import SourceModule import numpy as np import cuda import cublas import cula isdoubletype = lambda x : True if x == np.float64 or \ x == np.complex128 else False isdoubletype.__doc__ = """ Check whether a type has double precision. Parameters ---------- t : numpy float type Type to test. Returns ------- result : bool Result. """ iscomplextype = lambda x : True if x == np.complex64 or \ x == np.complex128 else False iscomplextype.__doc__ = """ Check whether a type is complex. Parameters ---------- t : numpy float type Type to test. Returns ------- result : bool Result. """ def init_device(n=0): """ Initialize a GPU device. Initialize a specified GPU device rather than the default device found by `pycuda.autoinit`. Parameters ---------- n : int Device number. Returns ------- dev : pycuda.driver.Device Initialized device. """ drv.init() dev = drv.Device(n) return dev def init_context(dev): """ Create a context that will be cleaned up properly. Create a context on the specified device and register its pop() method with atexit. Parameters ---------- dev : pycuda.driver.Device GPU device. Returns ------- ctx : pycuda.driver.Context Created context. """ ctx = dev.make_context() atexit.register(ctx.pop) return ctx def done_context(ctx): """ Detach from a context cleanly. Detach from a context and remove its pop() from atexit. Parameters ---------- ctx : pycuda.driver.Context Context from which to detach. """ for i in xrange(len(atexit._exithandlers)): if atexit._exithandlers[i][0] == ctx.pop: del atexit._exithandlers[i] break ctx.detach() def init(): """ Initialize libraries used by scikits.cuda. Notes ----- This function does not initialize PyCUDA; it uses whatever device and context were initialized in the current host thread. """ # CUBLAS uses whatever device is being used by the host thread: cublas.cublasInit() # culaSelectDevice() need not (and, in fact, cannot) be called # here because the host thread has already been bound to a GPU # device: cula.culaInitialize() def get_compute_capability(dev): """ Get the compute capability of the specified device. Retrieve the compute capability of the specified CUDA device and return it as a floating point value. Parameters ---------- d : pycuda.driver.Device Device object to examine. Returns ------- c : float Compute capability. """ return np.float(string.join([str(i) for i in dev.compute_capability()], '.')) def get_current_device(): """ Get the device in use by the current context. Returns ------- d : pycuda.driver.Device Device in use by current context. """ return drv.Device(cuda.cudaGetDevice()) def get_dev_attrs(dev): """ Get select CUDA device attributes. Retrieve select attributes of the specified CUDA device that relate to maximum thread block and grid sizes. Parameters ---------- d : pycuda.driver.Device Device object to examine. Returns ------- attrs : list List containing [MAX_THREADS_PER_BLOCK, (MAX_BLOCK_DIM_X, MAX_BLOCK_DIM_Y, MAX_BLOCK_DIM_Z), (MAX_GRID_DIM_X, MAX_GRID_DIM_Y)] """ attrs = dev.get_attributes() return [attrs[drv.device_attribute.MAX_THREADS_PER_BLOCK], (attrs[drv.device_attribute.MAX_BLOCK_DIM_X], attrs[drv.device_attribute.MAX_BLOCK_DIM_Y], attrs[drv.device_attribute.MAX_BLOCK_DIM_Z]), (attrs[drv.device_attribute.MAX_GRID_DIM_X], attrs[drv.device_attribute.MAX_GRID_DIM_Y])] def select_block_grid_sizes(dev, data_shape, threads_per_block=None): """ Determine CUDA block and grid dimensions given device constraints. Determine the CUDA block and grid dimensions allowed by a GPU device that are sufficient for processing every element of an array in a separate thread. Parameters ---------- d : pycuda.driver.Device Device object to be used. data_shape : tuple Shape of input data array. Must be of length 2. threads_per_block : int, optional Number of threads to execute in each block. If this is None, the maximum number of threads per block allowed by device `d` is used. Returns ------- block_dim : tuple X, Y, and Z dimensions of minimal required thread block. grid_dim : tuple X and Y dimensions of minimal required block grid. Notes ----- Using the scheme in this function, all of the threads in the grid can be enumerated as `i = blockIdx.y*max_threads_per_block*max_blocks_per_grid+ blockIdx.x*max_threads_per_block+threadIdx.x`. For 2D shapes, the subscripts of the element `data[a, b]` where `data.shape == (A, B)` can be computed as `a = i/B` `b = mod(i,B)`. For 3D shapes, the subscripts of the element `data[a, b, c]` where `data.shape == (A, B, C)` can be computed as `a = i/(B*C)` `b = mod(i, B*C)/C` `c = mod(mod(i, B*C), C)`. For 4D shapes, the subscripts of the element `data[a, b, c, d]` where `data.shape == (A, B, C, D)` can be computed as `a = i/(B*C*D)` `b = mod(i, B*C*D)/(C*D)` `c = mod(mod(i, B*C*D)%(C*D))/D` `d = mod(mod(mod(i, B*C*D)%(C*D)), D)` It is advisable that the number of threads per block be a multiple of the warp size to fully utilize a device's computing resources. """ # Sanity checks: if np.isscalar(data_shape): data_shape = (data_shape,) # Number of elements to process; we need to cast the result of # np.prod to a Python int to prevent PyCUDA's kernel execution # framework from getting confused when N = int(np.prod(data_shape)) # Get device constraints: max_threads_per_block, max_block_dim, max_grid_dim = get_dev_attrs(dev) if threads_per_block != None: max_threads_per_block = threads_per_block # Assume that the maximum number of threads per block is no larger # than the maximum X and Y dimension of a thread block: assert max_threads_per_block <= max_block_dim[0] assert max_threads_per_block <= max_block_dim[1] # Assume that the maximum X and Y dimensions of a grid are the # same: max_blocks_per_grid_dim = max(max_grid_dim) assert max_blocks_per_grid_dim == max_grid_dim[0] assert max_blocks_per_grid_dim == max_grid_dim[1] # Actual number of thread blocks needed: blocks_needed = N/max_threads_per_block+1 if blocks_needed*max_threads_per_block < max_threads_per_block*max_blocks_per_grid_dim: grid_x = blocks_needed grid_y = 1 elif blocks_needed*max_threads_per_block < max_threads_per_block*max_blocks_per_grid_dim**2: grid_x = max_blocks_per_grid_dim grid_y = blocks_needed/max_blocks_per_grid_dim+1 else: raise ValueError('array size too large') return (max_threads_per_block, 1, 1), (grid_x, grid_y) def ones(shape, dtype, allocator=drv.mem_alloc): """ Return an array of the given shape and dtype filled with ones. Parameters ---------- shape : tuple Array shape. dtype : data-type Data type for the array. allocator : callable Returns an object that represents the memory allocated for the requested array. Returns ------- out : pycuda.gpuarray.GPUArray Array of ones with the given shape and dtype. """ out = gpuarray.GPUArray(shape, dtype, allocator) out.fill(1) return out def ones_like(other): """ Return an array of ones with the same shape and type as a given array. Parameters ---------- other : pycuda.gpuarray.GPUArray Array whose shape and dtype are to be used to allocate a new array. Returns ------- out : pycuda.gpuarray.GPUArray Array of ones with the shape and dtype of `other`. """ out = gpuarray.GPUArray(other.shape, other.dtype, other.allocator) out.fill(1) return out def inf(shape, dtype, allocator=drv.mem_alloc): """ Return an array of the given shape and dtype filled with infs. Parameters ---------- shape : tuple Array shape. dtype : data-type Data type for the array. allocator : callable Returns an object that represents the memory allocated for the requested array. Returns ------- out : pycuda.gpuarray.GPUArray Array of infs with the given shape and dtype. """ out = gpuarray.GPUArray(shape, dtype, allocator) out.fill(np.inf) return out maxabs_mod_template = Template(""" #include <pycuda/pycuda-complex.hpp> #if ${use_double} #define REAL_TYPE double #if ${use_complex} #define TYPE pycuda::complex<double> #else #define TYPE double #endif #else #define REAL_TYPE float #if ${use_complex} #define TYPE pycuda::complex<float> #else #define TYPE float #endif #endif // This kernel is only meant to be run in one thread; // N must contain the length of x: __global__ void maxabs(TYPE *x, REAL_TYPE *m, unsigned int N) { unsigned int idx = threadIdx.x; REAL_TYPE result, temp; if (idx == 0) { result = abs(x[0]); for (unsigned int i = 1; i < N; i++) { temp = abs(x[i]); if (temp > result) result = temp; } m[0] = result; } } """) def maxabs(x_gpu): """ Get maximum absolute value. Find maximum absolute value in the specified array. Parameters ---------- x_gpu : pycuda.gpuarray.GPUArray Input array. Returns ------- m_gpu : pycuda.gpuarray.GPUArray Length 1 array containing the maximum absolute value in `x_gpu`. Notes ----- This function could be made faster by computing the absolute values of the input array in parallel. Examples -------- >>> import pycuda.autoinit >>> import pycuda.gpuarray as gpuarray >>> import misc >>> x_gpu = gpuarray.to_gpu(np.array([-1, 2, -3], np.float32)) >>> m_gpu = misc.maxabs(x_gpu) >>> np.allclose(m_gpu.get(), 3.0) True """ use_double = int(x_gpu.dtype in [np.float64, np.complex128]) use_complex = int(x_gpu.dtype in [np.complex64, np.complex128]) real_type = np.float64 if use_double else np.float32 # Set this to False when debugging to make sure the compiled kernel is # not cached: cache_dir = None maxabs_mod = \ SourceModule(maxabs_mod_template.substitute(use_double=use_double, use_complex=use_complex), cache_dir=cache_dir) maxabs = maxabs_mod.get_function("maxabs") m_gpu = gpuarray.empty(1, real_type) maxabs(x_gpu, m_gpu, np.uint32(x_gpu.size), block=(1, 1, 1), grid=(1, 1)) return m_gpu cumsum_template = Template(""" #include <pycuda/pycuda-complex.hpp> #if ${use_double} #define REAL_TYPE double #if ${use_complex} #define TYPE pycuda::complex<double> #else #define TYPE double #endif #else #define REAL_TYPE float #if ${use_complex} #define TYPE pycuda::complex<float> #else #define TYPE float #endif #endif // This kernel should only be invoked on a single thread: __global__ void cumsum(TYPE *x, TYPE *c, unsigned int N) { unsigned int idx = threadIdx.x; if (idx == 0) { TYPE sum_curr = 0; for (unsigned i = 0; i < N; i++) { sum_curr += x[i]; c[i] = sum_curr; } } } """) def cumsum(x_gpu): """ Cumulative sum. Return the cumulative sum of the elements in the specified array. Parameters ---------- x_gpu : pycuda.gpuarray.GPUArray Input array. Returns ------- c_gpu : pycuda.gpuarray.GPUArray Output array containing cumulative sum of `x_gpu`. Notes ----- This function could be made faster by using a parallel prefix sum. Examples -------- >>> import pycuda.autoinit >>> import pycuda.gpuarray as gpuarray >>> import misc >>> x_gpu = gpuarray.to_gpu(np.random.rand(5).astype(np.float32)) >>> c_gpu = misc.cumsum(x_gpu) >>> np.allclose(c_gpu.get(), np.cumsum(x_gpu.get())) True """ use_double = int(x_gpu.dtype in [np.float64, np.complex128]) use_complex = int(x_gpu.dtype in [np.complex64, np.complex128]) cumsum_mod = \ SourceModule(cumsum_template.substitute(use_double=use_double, use_complex=use_complex)) cumsum = cumsum_mod.get_function("cumsum") c_gpu = gpuarray.empty_like(x_gpu) cumsum(x_gpu, c_gpu, np.uint32(x_gpu.size), block=(1, 1, 1), grid=(1, 1)) return c_gpu diff_mod_template = Template(""" #include <pycuda/pycuda-complex.hpp> #if ${use_double} #define REAL_TYPE double #if ${use_complex} #define TYPE pycuda::complex<double> #else #define TYPE double #endif #else #define REAL_TYPE float #if ${use_complex} #define TYPE pycuda::complex<float> #else #define TYPE float #endif #endif __global__ void diff(TYPE *x, TYPE *y, unsigned int N) { unsigned int idx = blockIdx.y*blockDim.x*gridDim.x+ blockIdx.x*blockDim.x+threadIdx.x; if (idx < N-1) { y[idx] = x[idx+1]-x[idx]; } } """) def diff(x_gpu): """ Calculate the discrete difference. Calculates the first order difference between the successive entries of a vector. Parameters ---------- x_gpu : pycuda.gpuarray.GPUArray Input vector. Returns ------- y_gpu : pycuda.gpuarray.GPUArray Discrete difference. Examples -------- >>> import pycuda.driver as drv >>> import pycuda.gpuarray as gpuarray >>> import pycuda.autoinit >>> import numpy as np >>> import misc >>> x = np.asarray(np.random.rand(5), np.float32) >>> x_gpu = gpuarray.to_gpu(x) >>> y_gpu = misc.diff(x_gpu) >>> np.allclose(np.diff(x), y_gpu.get()) True """ if len(x_gpu.shape) > 1: raise ValueError('input must be 1D vector') use_double = int(x_gpu.dtype in [np.float64, np.complex128]) use_complex = int(x_gpu.dtype in [np.complex64, np.complex128]) # Get block/grid sizes: dev = get_current_device() block_dim, grid_dim = select_block_grid_sizes(dev, x_gpu.shape) # Set this to False when debugging to make sure the compiled kernel is # not cached: cache_dir=None diff_mod = \ SourceModule(diff_mod_template.substitute(use_double=use_double, use_complex=use_complex), cache_dir=cache_dir) diff = diff_mod.get_function("diff") N = x_gpu.size y_gpu = gpuarray.empty((N-1,), x_gpu.dtype) diff(x_gpu, y_gpu, np.uint32(N), block=block_dim, grid=grid_dim) return y_gpu if __name__ == "__main__": import doctest doctest.testmod()
d0a9e939c12148512e62d5cb50faeaf448f9dc4a
489d0c9b861e22dbb781c87c6e509bd2d04e783d
/codes/Feature Extraction/FeatureExtraction(3 features).py
d53977ab65b673c802b375f3f72da2e1d21612b3
[]
no_license
sameesayeed007/Prediction-of-Epileptic-Seizures-using-SVM-and-DSP
24af3755b4c2bd4646d05df52f4f306ed2902ab0
cdd972551f9cea1a90cc957f33ac656a09e48c9f
refs/heads/master
2022-06-19T00:10:38.822712
2020-05-10T16:59:23
2020-05-10T16:59:23
262,826,669
1
0
null
null
null
null
UTF-8
Python
false
false
4,733
py
import numpy as np import scipy as sp import scipy.fftpack import pandas as pd from scipy.fftpack import fft, fftfreq, fftshift import statistics import scipy.fftpack thesis_final_files = ['chb01_21Final.csv','chb01_26Final.csv'] iterator = 0 while(iterator < len(thesis_final_files)) : file_name = thesis_final_files[iterator] data = pd.read_csv(file_name) a=[] d=0 for i in range(23): Channel = data.iloc[:,i] num_of_iterations = int((len(Channel)-1)/2560) # making a list of lists with 10 seconds data #a=[] p=0 q= 2560 b=[] for i in range(num_of_iterations): c=[] for j in range(2560): c.append(Channel[p]) p+=1 b.append(c) a.append(b) print(d) d=d+1 print('**1**') def angle(a): #no of points n=2560 #Time period is 10s Lx=10 x=np.linspace(0,Lx,n) #Creating all the necessary frequencies freqs=fftfreq(n) #mask array to be used for power spectra #ignoring half the values, as they are complex conjugates of the other mask=freqs>0 #FFT values fft_values=fft(a) #true theoretical fft values fft_theo = 2.0*np.abs(fft_values/n) #FFT shift fftshift_values = fftshift(fft_values) #Calculating the angle out_angle = np.angle(fftshift_values, deg = True) #print ("output angle in degrees : ", out_angle) out_angle2=statistics.mean(abs(out_angle)) #print("Mean angle: ") return out_angle2 #Calculates the energy def energy(a): #no of points n=2560 #Time period is 10s Lx=10 x=np.linspace(0,Lx,n) #Creating all the necessary frequencies freqs=fftfreq(n) #mask array to be used for power spectra #ignoring half the values, as they are complex conjugates of the other mask=freqs>0 #FFT values fft_values=fft(a) #true theoretical fft values fft_theo = 2.0*np.abs(fft_values/n) #FFT shift fftshift_values = fftshift(fft_values) ps = 2.0*(np.abs(fft_values/n)**2) #Calculating the mean of power spectrum-energy ps_mean = statistics.mean(ps) return ps_mean #Calculates tthe amplitude def amplitude(a): #no of points n=2560 #Time period is 10s Lx=10 x=np.linspace(0,Lx,n) #Creating all the necessary frequencies freqs=fftfreq(n) #mask array to be used for power spectra #ignoring half the values, as they are complex conjugates of the other mask=freqs>0 #FFT values fft_values=fft(a) #true theoretical fft values fft_theo = 2.0*np.abs(fft_values/n) #FFT shift fftshift_values = fftshift(fft_values) amplitudes = 2 / n * np.abs(fft_values) amplitudes_mean = statistics.mean(amplitudes) return amplitudes_mean #Channel=[] Channel=[] #23 #tenseconds=[] for m in range(23): tenseconds=[] for n in range(540): features=[] angle_value=angle(a[m][n]) features.append(angle_value) energy_value=energy(a[m][n]) features.append(energy_value) amplitude_value=amplitude(a[m][n]) features.append(amplitude_value) tenseconds.append(features) Channel.append(tenseconds) print('**2**') w=1 x=[] df1 = pd.DataFrame() ind=[] for j in range(540): ind.append(w) w=w+1 df1['index']=ind C="c" F='f' for i in range(23): for f in range(3): g=[] name="C"+str(i+1)+"F"+str(f+1) for j in range(540): r=Channel[i][j][f] g.append(r) df1[name]=g cvalue=[] for i in range(360): cvalue.append(0) for j in range(180): cvalue.append(1) df1['class']=cvalue saved_feature_file_name = file_name[0:8] + 'S.csv' df1.to_csv(saved_feature_file_name,index=False) print('**3**') iterator += 1 print('***********************************************')
a65d1a542c88c350b4f72b6ab7ca1593bca262a2
07ec5a0b3ba5e70a9e0fb65172ea6b13ef4115b8
/lib/python3.6/site-packages/tensorflow/contrib/labeled_tensor/python/ops/sugar.py
a80c8809882161ab99456117a0e3bd46222439f1
[]
no_license
cronos91/ML-exercise
39c5cd7f94bb90c57450f9a85d40c2f014900ea4
3b7afeeb6a7c87384049a9b87cac1fe4c294e415
refs/heads/master
2021-05-09T22:02:55.131977
2017-12-14T13:50:44
2017-12-14T13:50:44
118,736,043
0
0
null
2018-01-24T08:30:23
2018-01-24T08:30:22
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:bd2f92e1bb5733974c243de95a2275942d5c2567b858a4babde5074896e254c0 size 4821
310d466c5d33bc5941084acae385c83ac0b33b25
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/rna-transcription/fc224d30443944ccb7072df9ef1a4e3b.py
e0bfc8d46549b897dc275dd321beb33d587074e7
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
222
py
__author__ = 'shandr' def to_rna(dna): rna_list = [] dna_rna_map = {'G':'C','C':'G','T':'A','A':'U'} for letter in dna: rna_list.append(dna_rna_map[letter]) rna = ''.join(rna_list) return rna
258f78e6084bfc82db551b44bb0c9ecd4317def7
facb8b9155a569b09ba66aefc22564a5bf9cd319
/wp2/merra_scripts/01_netCDF_extraction/merra902Combine/514-tideGauge.py
93ddf87ea463c8e4498d9c7309742f95dda401cf
[]
no_license
moinabyssinia/modeling-global-storm-surges
13e69faa8f45a1244a964c5de4e2a5a6c95b2128
6e385b2a5f0867df8ceabd155e17ba876779c1bd
refs/heads/master
2023-06-09T00:40:39.319465
2021-06-25T21:00:44
2021-06-25T21:00:44
229,080,191
0
0
null
null
null
null
UTF-8
Python
false
false
2,376
py
# -*- coding: utf-8 -*- """ Created on Tue Jun 17 11:28:00 2020 -------------------------------------------- Load predictors for each TG and combine them -------------------------------------------- @author: Michael Tadesse """ import os import pandas as pd #define directories # dir_name = 'F:\\01_erainterim\\01_eraint_predictors\\eraint_D3' dir_in = "/lustre/fs0/home/mtadesse/merraLocalized" dir_out = "/lustre/fs0/home/mtadesse/merraAllCombined" def combine(): os.chdir(dir_in) #get names tg_list_name = os.listdir() x = 514 y = 515 for tg in range(x, y): os.chdir(dir_in) tg_name = tg_list_name[tg] print(tg_name, '\n') #looping through each TG folder os.chdir(tg_name) #check for empty folders if len(os.listdir()) == 0: continue #defining the path for each predictor where = os.getcwd() csv_path = {'slp' : os.path.join(where, 'slp.csv'),\ "wnd_u": os.path.join(where, 'wnd_u.csv'),\ 'wnd_v' : os.path.join(where, 'wnd_v.csv')} first = True for pr in csv_path.keys(): print(tg_name, ' ', pr) #read predictor pred = pd.read_csv(csv_path[pr]) #remove unwanted columns pred.drop(['Unnamed: 0'], axis = 1, inplace=True) #sort based on date as merra files are scrambled pred.sort_values(by = 'date', inplace=True) #give predictor columns a name pred_col = list(pred.columns) for pp in range(len(pred_col)): if pred_col[pp] == 'date': continue pred_col[pp] = pr + str(pred_col[pp]) pred.columns = pred_col #merge all predictors if first: pred_combined = pred first = False else: pred_combined = pd.merge(pred_combined, pred, on = 'date') #saving pred_combined os.chdir(dir_out) tg_name = str(tg)+"_"+tg_name; pred_combined.to_csv('.'.join([tg_name, 'csv'])) os.chdir(dir_in) print('\n') #run script combine()
fe80c401762a5612c00a9b27ab5506e10ff205c4
9979e352e8d823dec905395c0a6cc2488643ee01
/setup.py
3ba4688cada1e343051c62eb477533290e1adab1
[ "MIT" ]
permissive
ixc/django-polymorphic-auth
41f3cf1c99938e307c994937f4fcee7fb697eeea
690c5e78846b328ca1b60bd0e099fe622d40892d
refs/heads/master
2021-08-12T05:02:09.894776
2021-08-10T08:43:09
2021-08-10T08:43:09
34,054,086
6
5
null
2017-03-27T11:21:00
2015-04-16T12:19:40
Python
UTF-8
Python
false
false
1,542
py
from __future__ import print_function import setuptools import sys # Convert README.md to reStructuredText. if {'bdist_wheel', 'sdist'}.intersection(sys.argv): try: import pypandoc except ImportError: print('WARNING: You should install `pypandoc` to convert `README.md` ' 'to reStructuredText to use as long description.', file=sys.stderr) else: print('Converting `README.md` to reStructuredText to use as long ' 'description.') long_description = pypandoc.convert('README.md', 'rst') setuptools.setup( name='django-polymorphic-auth', use_scm_version={'version_scheme': 'post-release'}, author='Interaction Consortium', author_email='[email protected]', url='https://github.com/ixc/django-polymorphic-auth', description='Polymorphic user model with plugins for common options, plus ' 'abstract and mixin classes to create your own.', long_description=locals().get('long_description', ''), license='MIT', packages=setuptools.find_packages(), include_package_data=True, install_requires=[ 'Django', 'django-polymorphic', ], extras_require={ 'dev': [ 'ipdb', 'ipython', ], 'test': [ 'coverage', 'django-dynamic-fixture', 'django-nose', 'django-webtest', 'nose-progressive', 'WebTest', ], }, setup_requires=['setuptools_scm'], )
9e2341741d513855fc4d31aeaaa513f7e4afcc37
24fe1f54fee3a3df952ca26cce839cc18124357a
/servicegraph/lib/python2.7/site-packages/acimodel-4.0_3d-py2.7.egg/cobra/modelimpl/fabric/overallhealth1mo.py
ed96ae65a68fe255b301a63c23220117647ca8df
[]
no_license
aperiyed/servicegraph-cloudcenter
4b8dc9e776f6814cf07fe966fbd4a3481d0f45ff
9eb7975f2f6835e1c0528563a771526896306392
refs/heads/master
2023-05-10T17:27:18.022381
2020-01-20T09:18:28
2020-01-20T09:18:28
235,065,676
0
0
null
2023-05-01T21:19:14
2020-01-20T09:36:37
Python
UTF-8
Python
false
false
11,443
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2019 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class OverallHealth1mo(Mo): """ A class that represents the most current statistics for overall fabric health in a 1 month sampling interval. This class updates every day. """ meta = StatsClassMeta("cobra.model.fabric.OverallHealth1mo", "overall fabric health") counter = CounterMeta("health", CounterCategory.GAUGE, "score", "health score") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "healthLast" counter._propRefs[PropCategory.IMPLICIT_MIN] = "healthMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "healthMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "healthAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "healthSpct" counter._propRefs[PropCategory.IMPLICIT_TOTAL] = "healthTtl" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "healthThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "healthTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "healthTr" meta._counters.append(counter) meta.moClassName = "fabricOverallHealth1mo" meta.rnFormat = "CDfabricOverallHealth1mo" meta.category = MoCategory.STATS_CURRENT meta.label = "current overall fabric health stats in 1 month" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = True meta.parentClasses.add("cobra.model.fabric.Topology") meta.parentClasses.add("cobra.model.fabric.Pod") meta.superClasses.add("cobra.model.stats.Item") meta.superClasses.add("cobra.model.stats.Curr") meta.superClasses.add("cobra.model.fabric.OverallHealth") meta.rnPrefixes = [ ('CDfabricOverallHealth1mo', False), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "healthAvg", "healthAvg", 9287, PropCategory.IMPLICIT_AVG) prop.label = "health score average value" prop.isOper = True prop.isStats = True meta.props.add("healthAvg", prop) prop = PropMeta("str", "healthLast", "healthLast", 9284, PropCategory.IMPLICIT_LASTREADING) prop.label = "health score current value" prop.isOper = True prop.isStats = True meta.props.add("healthLast", prop) prop = PropMeta("str", "healthMax", "healthMax", 9286, PropCategory.IMPLICIT_MAX) prop.label = "health score maximum value" prop.isOper = True prop.isStats = True meta.props.add("healthMax", prop) prop = PropMeta("str", "healthMin", "healthMin", 9285, PropCategory.IMPLICIT_MIN) prop.label = "health score minimum value" prop.isOper = True prop.isStats = True meta.props.add("healthMin", prop) prop = PropMeta("str", "healthSpct", "healthSpct", 9288, PropCategory.IMPLICIT_SUSPECT) prop.label = "health score suspect count" prop.isOper = True prop.isStats = True meta.props.add("healthSpct", prop) prop = PropMeta("str", "healthThr", "healthThr", 9290, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "health score thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("healthThr", prop) prop = PropMeta("str", "healthTr", "healthTr", 9292, PropCategory.IMPLICIT_TREND) prop.label = "health score trend" prop.isOper = True prop.isStats = True meta.props.add("healthTr", prop) prop = PropMeta("str", "healthTrBase", "healthTrBase", 9291, PropCategory.IMPLICIT_TREND_BASE) prop.label = "health score trend baseline" prop.isOper = True prop.isStats = True meta.props.add("healthTrBase", prop) prop = PropMeta("str", "healthTtl", "healthTtl", 9289, PropCategory.IMPLICIT_TOTAL) prop.label = "health score total sum" prop.isOper = True prop.isStats = True meta.props.add("healthTtl", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
047af3c638c0799e259eb7a0f2cd21a6b047142e
694d57c3e512ce916269411b51adef23532420cd
/leetcode_review/292nim_game.py
6340cc3f2e071470d640c21b078b53bb3bfc6b4a
[]
no_license
clovery410/mycode
5541c3a99962d7949832a0859f18819f118edfba
e12025e754547d18d5bb50a9dbe5e725fd03fd9c
refs/heads/master
2021-05-16T02:46:47.996748
2017-05-10T23:43:50
2017-05-10T23:43:50
39,235,141
1
1
null
null
null
null
UTF-8
Python
false
false
697
py
class Solution(object): # solution1, recursive solution, but not right def canWinNim(self, n, cacahe = {}): if n <= 0: return False if n <= 3: return True if n in cache: return cache[n] res = False for i in xrange(1, 4): if not self.canWinNim(n - i): res = True break cache[n] = res return res # solution2, use math trick, since if you are fall into 4 stones, you will absolutely lose.. so just check whether the number is a multiple of 4 def canWinNim2(self, n): if n % 4 == 0: return False return True
c53bc07c90f655c8c17449734bdd6286c1ea8898
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/ehyZvt6AJF4rKFfXT_19.py
4d40bc67e85b8aa828032f74be858e3060b838e7
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
726
py
""" Someone has attempted to censor my strings by replacing every vowel with a `*`, `l*k* th*s`. Luckily, I've been able to find the vowels that were removed. Given a censored string and a string of the censored vowels, return the original uncensored string. ### Example uncensor("Wh*r* d*d my v*w*ls g*?", "eeioeo") ➞ "Where did my vowels go?" uncensor("abcd", "") ➞ "abcd" uncensor("*PP*RC*S*", "UEAE") ➞ "UPPERCASE" ### Notes * The vowels are given in the correct order. * The number of vowels will match the number of `*` characters in the censored string. """ def uncensor(txt, vowels): for n in range(0,txt.count('*')): txt = txt.replace('*', vowels[n], 1) return txt
59a12bfbbecf0027560e12271513c1ee8de92ada
56b36ddf920b5f43e922cb84e8f420f1ad91a889
/Leetcode/Leetcode-Longest Common Prefix.py
9820848a27af5a14772e38c073f2718a3bc6f238
[]
no_license
chithien0909/Competitive-Programming
9ede2072e85d696ccf143118b17638bef9fdc07c
1262024a99b34547a3556c54427b86b243594e3c
refs/heads/master
2022-07-23T16:47:16.566430
2020-05-12T08:44:30
2020-05-12T08:44:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
675
py
class Solution: def longestCommonPrefix(self, strs: List[str]) -> str: s = "" l = len(strs) if strs == []: return "" if l == 1: return strs[0] if strs[0] == "": return "" for j in range(0, min(len(strs[0]), len(strs[1]))): if strs[0][j] == strs[1][j]: s += strs[0][j] else: break for i in range(2, l): if s in strs[i] and strs[i].index(s) == 0: continue s = s[:-1] while s not in strs[i] or strs[i].index(s) != 0: if s == "" : return "" s = s[:-1] return s
32c08699894dee750fa8a1522197162dd670a0ab
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/ActivityDiscountVoucher.py
a78120116e8b61444048e09435bd6c059aa4c491
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
3,004
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class ActivityDiscountVoucher(object): def __init__(self): self._ceiling_amount = None self._discount = None self._floor_amount = None self._goods_name = None self._origin_amount = None @property def ceiling_amount(self): return self._ceiling_amount @ceiling_amount.setter def ceiling_amount(self, value): self._ceiling_amount = value @property def discount(self): return self._discount @discount.setter def discount(self, value): self._discount = value @property def floor_amount(self): return self._floor_amount @floor_amount.setter def floor_amount(self, value): self._floor_amount = value @property def goods_name(self): return self._goods_name @goods_name.setter def goods_name(self, value): self._goods_name = value @property def origin_amount(self): return self._origin_amount @origin_amount.setter def origin_amount(self, value): self._origin_amount = value def to_alipay_dict(self): params = dict() if self.ceiling_amount: if hasattr(self.ceiling_amount, 'to_alipay_dict'): params['ceiling_amount'] = self.ceiling_amount.to_alipay_dict() else: params['ceiling_amount'] = self.ceiling_amount if self.discount: if hasattr(self.discount, 'to_alipay_dict'): params['discount'] = self.discount.to_alipay_dict() else: params['discount'] = self.discount if self.floor_amount: if hasattr(self.floor_amount, 'to_alipay_dict'): params['floor_amount'] = self.floor_amount.to_alipay_dict() else: params['floor_amount'] = self.floor_amount if self.goods_name: if hasattr(self.goods_name, 'to_alipay_dict'): params['goods_name'] = self.goods_name.to_alipay_dict() else: params['goods_name'] = self.goods_name if self.origin_amount: if hasattr(self.origin_amount, 'to_alipay_dict'): params['origin_amount'] = self.origin_amount.to_alipay_dict() else: params['origin_amount'] = self.origin_amount return params @staticmethod def from_alipay_dict(d): if not d: return None o = ActivityDiscountVoucher() if 'ceiling_amount' in d: o.ceiling_amount = d['ceiling_amount'] if 'discount' in d: o.discount = d['discount'] if 'floor_amount' in d: o.floor_amount = d['floor_amount'] if 'goods_name' in d: o.goods_name = d['goods_name'] if 'origin_amount' in d: o.origin_amount = d['origin_amount'] return o
4b99b6d1673da8a70f3aa73976aa21a849dabad7
b637e53b36ad083575b161eaa8371f0cc11981a2
/apps/provincia/views.py
55a1aa707bfbd27a24ced0b9c850be99985ce008
[]
no_license
cienciometrico2017/cienciometrico2018v2.0
d7d014f858296aa262649696a4d3bfceb0b9afec
22e8800c921e8c4890c4f52c9826532364a99a68
refs/heads/master
2020-03-20T22:04:26.710351
2018-07-26T04:28:26
2018-07-26T04:28:26
137,777,699
0
0
null
null
null
null
UTF-8
Python
false
false
4,289
py
from django.shortcuts import render from django.core.urlresolvers import reverse_lazy from apps.provincia.form import ProvinciaForm from apps.provincia.models import provincia from django.views.generic import ListView, CreateView,UpdateView,DeleteView from apps.Investigador.models import Investigador from apps.roles.models import Rol from apps.pais.models import pais from apps.zona.models import zona # Create your views here. class ProvinciaList(ListView): model = provincia template_name = 'provincia/provincia_listar.html' paginate_by = 6 def get_context_data(self, **kwargs): context = super(ProvinciaList, self).get_context_data(**kwargs) usuario = self.request.user.id perfil = Investigador.objects.get(user_id=usuario) roles = perfil.roles.all() privi = [] privilegios = [] privilegio= [] for r in roles: privi.append(r.id) for p in privi: roles5 = Rol.objects.get(pk=p) priv = roles5.privilegios.all() for pr in priv: privilegios.append(pr.codename) for i in privilegios: if i not in privilegio: privilegio.append(i) context['usuario'] = privilegio return context class ProvinciaCreate(CreateView): model = provincia form_class = ProvinciaForm template_name = 'provincia/provincia_crear.html' success_url = reverse_lazy('provincia:provincia_listar') def get_context_data(self, **kwargs): context = super(ProvinciaCreate, self).get_context_data(**kwargs) Pais = pais.objects.all() Zona = zona.objects.all() usuario = self.request.user.id perfil = Investigador.objects.get(user_id=usuario) roles = perfil.roles.all() privi = [] privilegios = [] privilegio= [] for r in roles: privi.append(r.id) for p in privi: roles5 = Rol.objects.get(pk=p) priv = roles5.privilegios.all() for pr in priv: privilegios.append(pr.codename) for i in privilegios: if i not in privilegio: privilegio.append(i) context['usuario'] = privilegio context['Pais'] = Pais context['Zona'] = Zona return context class ProvinciaUpdate(UpdateView): model = provincia form_class = ProvinciaForm template_name = 'provincia/provincia_update.html' success_url = reverse_lazy('provincia:provincia_listar') def get_context_data(self, **kwargs): context = super(ProvinciaUpdate, self).get_context_data(**kwargs) Pais = pais.objects.all() Zona = zona.objects.all() usuario = self.request.user.id perfil = Investigador.objects.get(user_id=usuario) roles = perfil.roles.all() privi = [] privilegios = [] privilegio= [] for r in roles: privi.append(r.id) for p in privi: roles5 = Rol.objects.get(pk=p) priv = roles5.privilegios.all() for pr in priv: privilegios.append(pr.codename) for i in privilegios: if i not in privilegio: privilegio.append(i) context['usuario'] = privilegio context['Pais'] = Pais context['Zona'] = Zona return context class ProvinciaDelete(DeleteView): model = provincia template_name = 'provincia/provincia_delete.html' success_url = reverse_lazy('provincia:provincia_listar') def get_context_data(self, **kwargs): context = super(ProvinciaDelete, self).get_context_data(**kwargs) usuario = self.request.user.id perfil = Investigador.objects.get(user_id=usuario) roles = perfil.roles.all() privi = [] privilegios = [] privilegio= [] for r in roles: privi.append(r.id) for p in privi: roles5 = Rol.objects.get(pk=p) priv = roles5.privilegios.all() for pr in priv: privilegios.append(pr.codename) for i in privilegios: if i not in privilegio: privilegio.append(i) context['usuario'] = privilegio return context
7f15ab1953b900545b0e54e272e970176f2d68b9
652a173173380629e92e8b4f85b5ded0fdf2e4bf
/venv/bin/sqlformat
528a9371f9fe88d746bd7dced7c4272e82e4113c
[]
no_license
Jethet/udemycourse-producthunt-project
d28908162a64880ae761a0160905fe32e8157f12
8d1564efa2335817ad0d05c649447e290a7786e8
refs/heads/master
2023-04-04T05:42:00.962786
2021-04-21T15:03:53
2021-04-21T15:03:53
197,566,411
0
0
null
2021-04-20T18:23:50
2019-07-18T10:32:51
Python
UTF-8
Python
false
false
271
#!/Users/henriettehettinga/GitHub/producthunt_project/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from sqlparse.__main__ import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
75cf96bd5078bb078561c71d9d602acf4f5bcce3
9af2312a1ea1abe1a9641b7ee578eb93828f8131
/TinySpider/01-bs4_test.py
8b19f2c2c105a2febc2a9d94afaaef28babf9d33
[]
no_license
Huangyan0804/Python
593df64fffe44822d38b3cab6f5ee7999802b8a9
6adcc342b658afcf805004b868ac0976b0fabed6
refs/heads/master
2020-06-04T13:27:56.235753
2020-02-20T15:13:31
2020-02-20T15:13:31
145,232,755
0
0
null
null
null
null
UTF-8
Python
false
false
242
py
#print(a, b, c, d, e, f, g) def work(x, a, b): if x == 0: return a + b else: return work(x - 1, a * 2, a) t = int(input()) for i in range(t): n = int(input()) ans = work(n, int(1), int(0)) print(ans)
6343453a9fd07a76c848dbceb689b069e62f8cd2
aaa204ad7f134b526593c785eaa739bff9fc4d2a
/tests/system/providers/airbyte/example_airbyte_trigger_job.py
c65df48a42ac826d5e6952344641a704118f592b
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
cfei18/incubator-airflow
913b40efa3d9f1fdfc5e299ce2693492c9a92dd4
ffb2078eb5546420864229cdc6ee361f89cab7bd
refs/heads/master
2022-09-28T14:44:04.250367
2022-09-19T16:50:23
2022-09-19T16:50:23
88,665,367
0
1
Apache-2.0
2021-02-05T16:29:42
2017-04-18T20:00:03
Python
UTF-8
Python
false
false
2,393
py
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Example DAG demonstrating the usage of the AirbyteTriggerSyncOperator.""" from __future__ import annotations import os from datetime import datetime, timedelta from airflow import DAG from airflow.providers.airbyte.operators.airbyte import AirbyteTriggerSyncOperator from airflow.providers.airbyte.sensors.airbyte import AirbyteJobSensor ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID") DAG_ID = "example_airbyte_operator" CONN_ID = '15bc3800-82e4-48c3-a32d-620661273f28' with DAG( dag_id=DAG_ID, schedule=None, start_date=datetime(2021, 1, 1), dagrun_timeout=timedelta(minutes=60), tags=['example'], catchup=False, ) as dag: # [START howto_operator_airbyte_synchronous] sync_source_destination = AirbyteTriggerSyncOperator( task_id='airbyte_sync_source_dest_example', connection_id=CONN_ID, ) # [END howto_operator_airbyte_synchronous] # [START howto_operator_airbyte_asynchronous] async_source_destination = AirbyteTriggerSyncOperator( task_id='airbyte_async_source_dest_example', connection_id=CONN_ID, asynchronous=True, ) airbyte_sensor = AirbyteJobSensor( task_id='airbyte_sensor_source_dest_example', airbyte_job_id=async_source_destination.output, ) # [END howto_operator_airbyte_asynchronous] # Task dependency created via `XComArgs`: # async_source_destination >> airbyte_sensor from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest) test_run = get_test_run(dag)
9255ed7704219f5c9d9b65a22bcc4967c6e1f444
196f7e3238f961fb5eba7a794f0b0c75d7c30ba1
/Python编程从入门到实践3.6/c14/test14/ship.py
5b286547c1a1424e828a4a64df2276be4b6bc83b
[]
no_license
Liaoyingjie/Pythonlearn
d0b1b95110017af7e063813660e52c61a6333575
8bca069f38a60719acac5aa39bd347f90ab0bfb1
refs/heads/master
2020-04-08T07:35:07.357487
2018-04-12T16:44:43
2018-04-12T16:44:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,525
py
import pygame from pygame.sprite import Sprite class Ship(Sprite): #1264加入ai_settings 来控制加入的 速度 def __init__(self,ai_settings,screen): """初始化飞船且设置启动初始位置""" super(Ship,self).__init__() self.screen = screen self.ai_settings = ai_settings # 加载飞船且获取其外接矩形 self.image = pygame.image.load('../images/ship.bmp') self.rect = self.image.get_rect() self.screen_rect =self.screen.get_rect() #放每个船在中间 和最底部 #如果这2条 都注释 就会直接到最左上角 为原点 0 0 self.rect.centerx = self.screen_rect.centerx self.rect.bottom = self.screen_rect.bottom #Ship类的方法 接2个参数 SCREEN决定 飞船飞到什么地方 #加载pygame.image.load 得到这个飞船的surface 存储到image #image.get_rect得到了相应元素的rect对象 #rect 对象可以 上下左右来定位 bottom center #在pygame 原点在屏幕左上角, 右下角坐标值 慢慢增大 1200*800中 右下角坐标(1200,800) #在飞机 属性 center 中存储最小值 rect.centerx只能 存储 整数值 self.center = float(self.rect.centerx) #移动标志 #加入 2个 是左右的移动 self.moving_right = False self.moving_left = False def update(self): """根据移动标志 调整飞船的位置""" """按住右键 不放 就一直 向右进行移动""" #不是一直 按住 就是 按一下走 一下 """设置距离限制 超过范围不动了""" # Update the ship's center value, not the rect. if self.moving_right and self.rect.right < self.screen_rect.right: self.center += self.ai_settings.ship_speed_factor if self.moving_left and self.rect.left > 0: self.center -= self.ai_settings.ship_speed_factor # Update rect object from self.center. self.rect.centerx = self.center #更新rect对象 更新到最新的值 速度 self.rect.centerx = self.center def blitme(self): """在指定位置绘制船""" self.screen.blit(self.image, self.rect) def center_ship(self): #在屏幕上 飞机上居中 self.center = self.screen_rect.centerx
291e75936bd0c64c644451a8afeba47c13a350cb
6de40caa30577bdf7cc8d788781fd2622588cf1d
/w4/examples/shelter-demo/shelter/urls.py
7b7d8917340a2492154f386c1929a45e63b629cc
[]
no_license
momentum-cohort-2019-02/kb
ca42d4ff61a4cf08efb89bf0502788bd0eb7b648
ad8318712349600f6ab13c2a0a92a65b3ae04677
refs/heads/master
2020-04-21T13:05:52.246012
2019-04-17T14:17:39
2019-04-17T14:17:42
169,587,008
4
13
null
null
null
null
UTF-8
Python
false
false
982
py
"""shelter URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf.urls.static import static from django.conf import settings from core import views as core_views urlpatterns = [ path('admin/', admin.site.urls), path('', core_views.index_view, name="index"), ] + static( settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
0ed744a294fa836def27d2717433779dc3f9dd53
0ad2458c85ce545b1d3a4b75dabe2c94ed8c2518
/pipeline/0x02-databases/32-update_topics.py
f0deec04f31ea17769b5ba4aaa8d63a85baf3b7f
[]
no_license
felipeserna/holbertonschool-machine_learning
fc82eda9ee4cb8765ad0ffb5fa923407b200480d
161e33b23d398d7d01ad0d7740b78dda3f27e787
refs/heads/master
2023-07-06T20:26:12.892875
2021-08-17T17:03:30
2021-08-17T17:03:30
317,288,341
0
1
null
null
null
null
UTF-8
Python
false
false
285
py
#!/usr/bin/env python3 """ Changes all topics of a school document based on the name """ def update_topics(mongo_collection, name, topics): """ Return: Nothing """ new_topics = {"$set": {"topics": topics}} mongo_collection.update_many({"name": name}, new_topics)
cf1c2910de8bd2db6d9e04af294d65f29c8da0d7
58d3a6720cd6ecc420db58de002f776f717ae77f
/Array/SplitAndAppend.py
a2d6da570b537d9edcc9c166b8d9888f4c379d5b
[]
no_license
Jaydeep-07/Python-Practice
786a4763caf0c7e9b1cf7ac6773c0ba3ccbc0d12
1aec7648fa47c7cd325d3f0f466ba440a3ec1808
refs/heads/master
2020-12-29T15:53:55.954878
2020-05-09T09:34:10
2020-05-09T09:34:10
238,659,815
0
0
null
null
null
null
UTF-8
Python
false
false
350
py
# Python program to split array and move first # part to end. def splitArr(arr, n, k): for i in range(0, k): x = arr[0] for j in range(0, n-1): arr[j] = arr[j + 1] arr[n-1] = x # main arr = [12, 10, 5, 6, 52, 36] n = len(arr) position = 2 splitArr(arr, n, position) for i in range(0, n): print(arr[i], end = ' ')
b23610d4ed2d962655cbb3f9d94c100c44194741
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/2t6NvMe27HtSmqC4F_16.py
72db51f2e725cbf6c80b069f070630cf0775452d
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,275
py
""" Write three functions: 1. boolean_and 2. boolean_or 3. boolean_xor These functions should evaluate a list of `True` and `False` values, starting from the leftmost element and evaluating pairwise. ### Examples boolean_and([True, True, False, True]) ➞ False # [True, True, False, True] => [True, False, True] => [False, True] => False boolean_or([True, True, False, False]) ➞ True # [True, True, False, True] => [True, False, False] => [True, False] => True boolean_xor([True, True, False, False]) ➞ False # [True, True, False, False] => [False, False, False] => [False, False] => False ### Notes * `XOR` is the same as `OR`, except that it excludes `[True, True]`. * Each time you evaluate an element at 0 and at 1, you collapse it into the single result. """ def boolean_and(lst): if False in lst: return False else: return True ​ def boolean_or(lst): if True in lst: return True else: return False def boolean_xor(lst): ret=lst[0] for x in range(1,len(lst)): if lst[x]==True: if ret==True: ret=False else: ret=True elif lst[x]==False: if ret==False: ret=False else: ret=True else: ret=True return ret
c94460f1f5fd13eedaf09959bd0a26cad54b92a0
b3a77d07f852bc865524120d9b3c40c691aa62b5
/slguerbetal/spiders/slguerbetal.py
99c0aa2792feb87f8a55d47a41a5df80777e0bb2
[]
no_license
daniel-kanchev/slguerbetal
0a6eb2efb5701a1f86556b75ae833dc90b4cc653
2984ce5983c92b809cdb173bae14ef0b179078a8
refs/heads/main
2023-03-11T19:32:12.199529
2021-03-01T09:35:41
2021-03-01T09:35:41
343,361,118
0
0
null
null
null
null
UTF-8
Python
false
false
876
py
import scrapy from scrapy.loader import ItemLoader from itemloaders.processors import TakeFirst from datetime import datetime from slguerbetal.items import Article class SlguerbetalSpider(scrapy.Spider): name = 'slguerbetal' start_urls = ['https://www.slguerbetal.ch/de/'] def parse(self, response): articles = response.xpath('//article') for article in articles: item = ItemLoader(Article()) item.default_output_processor = TakeFirst() title = article.xpath('./h2//text()').get() content = article.xpath('./div[@class="long-text"]//text()').getall() content = [text for text in content if text.strip()] content = "\n".join(content).strip() item.add_value('title', title) item.add_value('content', content) yield item.load_item()
5b8ae701bdf1cbe048386291f6f3f6a2a33c0e76
3d54d60973f88e0ed1f6be1a03ca6c5fbd0d3244
/examples/dfp/v201403/label_service/get_all_labels.py
047731e06eb7e60616f2b8b70a2fb40be4e3721e
[ "Apache-2.0" ]
permissive
zyqkenmy/googleads-python-lib
52a4f9ef9eef0da9410c9c90322186bb7a8e408f
fb7d3c2c7c42cc1fc27a3d2bf97382e25f6a05c2
refs/heads/master
2020-02-26T13:55:31.186467
2014-03-13T20:51:33
2014-03-13T20:51:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,711
py
#!/usr/bin/python # # Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code example gets all labels. To create labels, run create_labels.py. This feature is only available to DFP premium solution networks.""" __author__ = ('Nicholas Chen', 'Joseph DiLallo') # Import appropriate classes from the client library. from googleads import dfp def main(client): # Initialize appropriate service. label_service = client.GetService('LabelService', version='v201403') # Create statement to get all labels statement = dfp.FilterStatement() # Get labels by statement. while True: response = label_service.getLabelsByStatement(statement.ToStatement()) if 'results' in response: # Display results. for label in response['results']: print ('Label with id \'%s\' and name \'%s\' was found.' % (label['id'], label['name'])) statement.offset += dfp.SUGGESTED_PAGE_LIMIT else: break print '\nNumber of results found: %s' % response['totalResultSetSize'] if __name__ == '__main__': # Initialize client object. dfp_client = dfp.DfpClient.LoadFromStorage() main(dfp_client)
1c7b100b3994b57253d8a6156e045b977b28db37
25160eef36f911322c3b24c3e587d66c54cdf6a8
/iconset.py
934495bad32bac2b01f3fb5a8aa2e33f889fcb48
[]
no_license
asmikush111/september
7c8dd200cded9616e10f1e93b6aebe82b07e2196
8f058d10f5781b420d1a78df10c30a5eea01bedd
refs/heads/master
2020-09-05T15:28:56.310270
2019-11-05T09:56:09
2019-11-05T09:56:09
220,144,047
1
0
null
2019-11-07T03:31:06
2019-11-07T03:31:06
null
UTF-8
Python
false
false
167
py
from tkinter import * root=Tk() root.title("My Notepad") #title name root.wm_iconbitmap("notepad.ico") #to add icon mainloop()
d6370ed3821e8c3d3368fa8e7d799b6439b64044
65113128c2bd0bfe05db1c75776cee7a22ea98fd
/deadcode/firstmodel.py
583cbfe07d4db227a5311b3463e3df2471a52c7d
[]
no_license
taygrave/salad_tool
32a539f2fba3e9478d1277d5ec5d763e2defc4ce
fa01b3ac74ea41a21e7256552f3a1e4c1c6eebb0
refs/heads/master
2021-01-13T14:04:46.272323
2015-02-18T06:16:46
2015-02-18T06:16:46
30,062,177
0
0
null
null
null
null
UTF-8
Python
false
false
2,385
py
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import create_engine from sqlalchemy import Column, Integer, String, DateTime, ForeignKey from sqlalchemy.orm import sessionmaker, scoped_session, relationship, backref import sqlite3 import csv Base = declarative_base() ENGINE = create_engine("sqlite:///saladtool.db", echo=True) Session = sessionmaker(bind=ENGINE) session = Session() #process the file and build the necessary dictionaries #searching: I live in X state, the time frame is X, I want X# of X types of food. CONN = sqlite3.connect("saladtool.db") CURSOR = CONN.cursor() #Use this for one time adds to db of all foods once scraped new data from web: http://www.sustainabletable.org/seasonalguide/seasonalfoodguide.php def add_to_db(sfile): """Adds new data file to database in the Master table""" #sfile = "db.txt" for current data #making connection with SQL database query = """INSERT INTO Master (name, type, season, state) VALUES (?,?,?,?)""" #data file must be text with four columns, for name, type, season, and state for line in sfile: my_list = line.strip().split(",") vname, vtype, vseason, vstate = my_list CURSOR.execute(query, (vname, vtype, vseason, vstate)) CONN.commit() print "Successfully added %s to Master table in saladtool.db" %sfile #Already used for a one-time add to db for list of states def states_to_db(): """Adds new data file to database in the States table""" #making connection with SQL database query = """INSERT INTO States (abbrv, state) VALUES (?,?)""" with open("states.csv", 'rb') as src_file: reader = csv.reader(src_file) for line in reader: state, abbrv = line CURSOR.execute(query, (abbrv, state)) CONN.commit() print "Successfully added states to States table in saladtool.db" #Q: Did i really have to create a class? cant I return these values better?? Was getting an error if i just returned the result of the following function w/o making a whole class and everything class State(object): """A wrapper that corresponds to rows in the States table""" def __init__(self, abbrv, state): self.abbrv = abbrv self.state = state def __repr__(self): return "<State: %s, %s>" %(self.abbrv, self.state) class Food(Base):
afa158c4929e3a0b8fa19183e2b7492a385cb1dd
25491d1b0b69911885b2ad00e9c1ef880f946ae1
/env/render.py
211bbb52bc24adfd441c4fd98670392d65e62329
[ "MIT" ]
permissive
hzheng40/distributed_es
106fe87ad2918f77c8e1803117bd2208835b520f
5f447eb3fd1159c0754dfe14e92640df75a9cde7
refs/heads/master
2022-06-05T22:23:43.395821
2020-05-03T19:38:12
2020-05-03T19:38:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,084
py
import time from argparse import Namespace from pathlib import Path from typing import Optional import click from badger_utils.sacred import SacredReader from utils.eval import simulate, build_policy_env from utils.sacred_local import get_sacred_storage @click.command() @click.argument('exp_id', type=int) @click.option('--gen', default=None, help='Generation to be deserialized (the last one by default)') @click.option('--sleep', default=0.001, help='Sleep time between the time steps') @click.option('--num_episodes', default=None, type=int, help='Override num_episodes parameter?') @click.option('--max_ep_length', default=None, type=int, help='Override the max_episode_length?') def render(exp_id: int, gen: int, sleep: float, num_episodes: Optional[int], max_ep_length: Optional[int]): """Download a given config and policy from the sacred, run the inference""" # parse arguments, init the reader reader = SacredReader(exp_id, get_sacred_storage(), data_dir=Path.cwd()) # obtain the config config = Namespace(**reader.config) num_episodes = num_episodes if num_episodes is not None else config.num_episodes max_ep_length = max_ep_length if max_ep_length is not None else config.max_ep_length env_seed = config.env_seed if config.env_seed is not None else -1 policy, env = build_policy_env(config, env_seed) # deserialize the model parameters if gen is None: gen = reader.find_last_epoch() print(f'Deserialization from the epoch: {gen}') time.sleep(2) policy.load(reader=reader, epoch=gen) fitness, num_steps_used = simulate(env=env, policy=policy, num_episodes=num_episodes, max_ep_length=max_ep_length, render=True, sleep_render=sleep) print(f'\n\n Done, fitness is: {fitness}, num_steps: {num_steps_used}\n\n') if __name__ == '__main__': render()
b9b442f95e158d2656877533a5b3a77333c6ed88
48bab55feaa39d8de6f05adc4dda42eab49906c6
/06 Condições (Parte 2)/ex041.py
01666f2bf170e31ea93347c9866da9dd9e9ae133
[]
no_license
bmsrangel/Python_CeV
1850e7aa23892a78ba88e566862c75772fa5dcb9
f08e28b2f0dd444a2963e97f3ac2a024a6c5cd6f
refs/heads/master
2022-12-21T01:10:13.950249
2018-11-23T21:08:12
2018-11-23T21:08:12
150,914,095
0
1
null
2022-12-18T15:04:56
2018-09-30T00:32:08
Python
UTF-8
Python
false
false
396
py
from datetime import date ano = int(input('Informe seu ano de nascimento: ')) atual = date.today().year idade = atual - ano print('O atleta tem {} anos'.format(idade)) if idade <=9: print('Categoria MIRIM') elif idade <= 14: print('Categoria INFANTIL') elif idade <= 19: print('Categoria JÚNIOR') elif idade <= 25: print('Categoria SÊNIOR') else: print('Categoria MASTER')
da5d4a1feffa55183c27b747c21bfbf5719f647c
39a1d46fdf2acb22759774a027a09aa9d10103ba
/model-optimizer/extensions/front/HSigmoid_fusion.py
a898308d3a18042615ded67d8b969533938ff36e
[ "Apache-2.0" ]
permissive
mashoujiang/openvino
32c9c325ffe44f93a15e87305affd6099d40f3bc
bc3642538190a622265560be6d88096a18d8a842
refs/heads/master
2023-07-28T19:39:36.803623
2021-07-16T15:55:05
2021-07-16T15:55:05
355,786,209
1
3
Apache-2.0
2021-06-30T01:32:47
2021-04-08T06:22:16
C++
UTF-8
Python
false
false
7,183
py
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np from extensions.front.AttributedClampNormalizer import AttributedClampNormalizer from extensions.ops.activation_ops import HSigmoid from mo.front.common.replacement import FrontReplacementSubgraph from mo.front.subgraph_matcher import SubgraphMatch from mo.graph.graph import Graph, rename_nodes from mo.middle.pattern_match import check_value from mo.utils.graph import Node def replace_with_hsigmoid(graph: Graph, first_node: Node, last_node: Node): # determine the input port of first and last nodes which gets the 'input' node output add_input_port_idx = int(first_node.in_port(0).get_connection().get_source().node.soft_get('op') == 'Const') last_node_name = last_node.soft_get('name', last_node.id) hsigmoid = HSigmoid(graph, {}).create_node() hsigmoid.in_port(0).connect(first_node.in_port(add_input_port_idx).get_source()) last_node.out_port(0).get_connection().set_source(hsigmoid.out_port(0)) rename_nodes([(last_node, last_node_name + '/TBR'), (hsigmoid, last_node_name)]) class HSigmoidWithClamp(FrontReplacementSubgraph): """ The transformation looks for the pattern with ReLU6 (Clamp) defining the HSigmoid function: HSigmoid(x) = Relu6(x + 3.0) / 6.0. """ enabled = True def run_after(self): return [AttributedClampNormalizer] def pattern(self): return dict( nodes=[ ('input', dict()), ('add', dict(op='Add')), ('const_0', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 0.0, atol=1e-6)))), ('const_3', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 3.0, atol=1e-6)))), ('const_6', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 6.0, atol=1e-6)))), ('const_1_6', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 1.0 / 6.0, atol=1e-6)))), ('clamp', dict(op='Clamp')), ('mul_2', dict(op='Mul')), ], edges=[ ('input', 'add', {}), ('const_3', 'add', {}), ('add', 'clamp', {'in': 0}), ('const_0', 'clamp', {'in': 1}), ('const_6', 'clamp', {'in': 2}), ('clamp', 'mul_2', {}), ('const_1_6', 'mul_2', {}), ]) def replace_sub_graph(self, graph: Graph, match: [dict, SubgraphMatch]): replace_with_hsigmoid(graph, match['add'], match['mul_2']) class HSigmoidWithMinMax(FrontReplacementSubgraph): """ The transformation looks for the pattern with Min/Max defining the HSigmoid function: HSigmoid(x) = Min(Max(x + 3.0, 0), 6.0) / 6.0. """ enabled = True def run_after(self): return [AttributedClampNormalizer] def pattern(self): return dict( nodes=[ ('input', dict()), ('add', dict(op='Add')), ('const_0', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 0.0, atol=1e-6)))), ('const_3', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 3.0, atol=1e-6)))), ('const_6', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 6.0, atol=1e-6)))), ('const_1_6', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 1.0 / 6.0, atol=1e-6)))), ('max', dict(op='Maximum')), ('min', dict(op='Minimum')), ('mul_2', dict(op='Mul')), ], edges=[ ('input', 'add', {'out': 0}), ('const_3', 'add', {}), ('add', 'max', {}), ('const_0', 'max', {}), ('max', 'min', {}), ('const_6', 'min', {}), ('min', 'mul_2', {}), ('const_1_6', 'mul_2', {}), ]) def replace_sub_graph(self, graph: Graph, match: [dict, SubgraphMatch]): replace_with_hsigmoid(graph, match['add'], match['mul_2']) class HSigmoidWithReluDiv(FrontReplacementSubgraph): """ The transformation looks for the pattern with Relu/Div defining the HSigmoid function: HSigmoid(x) = Min(Relu(x + 3.0), 6.0) / 6.0 """ enabled = True def run_after(self): return [AttributedClampNormalizer] def pattern(self): return dict( nodes=[ ('input', dict()), ('add_const', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 3.0, atol=1e-6)))), ('add', dict(op='Add')), ('relu', dict(op='ReLU')), ('min_const', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 6.0, atol=1e-6)))), ('min', dict(op='Minimum')), ('div_const', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 6.0, atol=1e-6)))), ('div', dict(op='Div')), ], edges=[ ('input', 'add', {'out': 0}), ('add_const', 'add', {}), ('add', 'relu', {}), ('relu', 'min', {}), ('min_const', 'min', {}), ('min', 'div', {}), ('div_const', 'div', {}), ]) def replace_sub_graph(self, graph: Graph, match: [dict, SubgraphMatch]): replace_with_hsigmoid(graph, match['add'], match['div']) class HSigmoidWithReluMul(FrontReplacementSubgraph): """ The transformation looks for the pattern with Relu/Mul defining the HSigmoid function: HSigmoid(x) = Min(Relu(x + 3.0), 6.0) * 1.0/6.0 """ enabled = True def run_after(self): return [AttributedClampNormalizer] def pattern(self): return dict( nodes=[ ('input', dict()), ('add_const', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 3.0, atol=1e-6)))), ('add', dict(op='Add')), ('relu', dict(op='ReLU')), ('min_const', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 6.0, atol=1e-6)))), ('min', dict(op='Minimum')), ('mul_const', dict(op='Const', value=lambda v: check_value(v, lambda x: np.allclose(x, 1.0 / 6.0, atol=1e-6)))), ('mul', dict(op='Mul')), ], edges=[ ('input', 'add', {'out': 0}), ('add_const', 'add', {}), ('add', 'relu', {}), ('relu', 'min', {}), ('min_const', 'min', {}), ('min', 'mul', {}), ('mul_const', 'mul', {}), ]) def replace_sub_graph(self, graph: Graph, match: [dict, SubgraphMatch]): replace_with_hsigmoid(graph, match['add'], match['mul'])
942be96b750114306413fc70537498dc6516768b
eb0711915d6bba2f765f052736e33ac9a9a397a6
/HE0435/write_file/write_glee/cre_HE.py
8a049dec0fc04d6215094467d842b6c3b5c71ad7
[]
no_license
dartoon/GL_HostGalaxy
cd2166f273ae7e0397a7d2d39f760ab59e86f014
7469f1c1e640d176a75cc6e9497920e494ad656a
refs/heads/master
2016-08-11T13:27:17.545360
2016-04-07T19:04:57
2016-04-07T19:04:57
46,524,027
1
0
null
null
null
null
UTF-8
Python
false
false
909
py
import numpy as np file1 = open('../../pylens/HE1104.txt','r') para = np.loadtxt(file1) file1.close() #for i in range(0,len(para)): # print para[i] t=np.empty(10) for i in range(0,len(para)): t[0]=para[i,0]/6*0.13 t[1]=para[i,1]/6*0.13 t[2]=para[i,2]/6*0.13 t[3]=para[i,3] t[4]=para[i,4]/180*np.pi t[5]=para[i,5] t[6]=para[i,16]/6*0.13 t[7]=para[i,17] t[8]=para[i,18]/180*np.pi t[9]=para[i,19]/2 inn = open('HE').read() out = open('HE{0}'.format(i+1), 'w') replacements = {'d0_':str(t[0]), 'd1_':str(t[1]), 'd2_':str(t[2]), 'd3_':str(t[3]), 'd4_':str(t[4]), 'd5_':str(t[5]), 'd6_':str(t[6]), 'd7_':str(t[7]), 'd8_':str(t[8]), 'd9_':str(t[9])} #print replacements for j in replacements.keys() inn = inn.replace(j, replacements[j]) #print inn out.write(inn) out.close
f511d276f53a6a99d60aa772674abcbd95dfbdd2
656341483ae8abe8792942d26556fdd4ff5ca7a9
/ThriftAPI/gen_py_tmp/ShareSite/ncTShareSite-remote
0e4871e944bf763b963ec05cac4e9d552778344a
[]
no_license
GWenPeng/Apitest_framework
b57ded9be4ec896d4ba8e02e9135bc7c73d90034
ab922c82c2454a3397ddbf4cd0771067734e1111
refs/heads/master
2022-11-26T05:54:47.168062
2020-08-06T01:45:12
2020-08-06T01:45:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,156
#!/usr/bin/env python # # Autogenerated by Thrift Compiler (0.13.0) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # # options string: py # import sys import pprint if sys.version_info[0] > 2: from urllib.parse import urlparse else: from urlparse import urlparse from thrift.transport import TTransport, TSocket, TSSLSocket, THttpClient from thrift.protocol.TBinaryProtocol import TBinaryProtocol from ShareSite import ncTShareSite from ShareSite.ttypes import * if len(sys.argv) <= 1 or sys.argv[1] == '--help': print('') print('Usage: ' + sys.argv[0] + ' [-h host[:port]] [-u url] [-f[ramed]] [-s[sl]] [-novalidate] [-ca_certs certs] [-keyfile keyfile] [-certfile certfile] function [arg1 [arg2...]]') print('') print('Functions:') print(' void SetMultSiteStatus(bool status)') print(' bool GetMultSiteStatus()') print(' ncTSiteInfo GetLocalSiteInfo()') print(' void AddSite(ncTAddSiteParam paramInfo)') print(' void DeleteSite(string siteID)') print(' void EditSite(ncTEditSiteParam paramInfo)') print(' GetSiteInfo()') print(' ncTSiteInfo NodifySiteAddBegin()') print(' void NodifySiteAdd(string masterIp)') print(' void NodifySiteDelete()') print(' ncTSiteInfo GetLocalSiteInfoByRemote()') print(' void UpdateHeartByMaster(string siteId)') print(' void SyncSlaveToMaster(string data)') print(' void SyncMasterToSlave(string data)') print(' void UpdateSiteIp(string ip)') print(' ncTSiteInfo GetSiteInfoById(string siteid)') print(' void CheckSign(string expired, string sign, string site_id, bool flag)') print(' void RestartServer(string server_name)') print(' void UpdateEVFSSiteInfo()') print(' void CreateCrossDomainXml()') print(' void UpdateSiteMasterDbIp(string ip)') print(' void SyncOSSInfo(string data)') print(' void UpdateSiteVirusStatus(bool Status)') print(' void UpdateAllSiteVirusStatus(bool Status)') print(' bool GetSiteVirusStatus()') print('') sys.exit(0) pp = pprint.PrettyPrinter(indent=2) host = 'localhost' port = 9090 uri = '' framed = False ssl = False validate = True ca_certs = None keyfile = None certfile = None http = False argi = 1 if sys.argv[argi] == '-h': parts = sys.argv[argi + 1].split(':') host = parts[0] if len(parts) > 1: port = int(parts[1]) argi += 2 if sys.argv[argi] == '-u': url = urlparse(sys.argv[argi + 1]) parts = url[1].split(':') host = parts[0] if len(parts) > 1: port = int(parts[1]) else: port = 80 uri = url[2] if url[4]: uri += '?%s' % url[4] http = True argi += 2 if sys.argv[argi] == '-f' or sys.argv[argi] == '-framed': framed = True argi += 1 if sys.argv[argi] == '-s' or sys.argv[argi] == '-ssl': ssl = True argi += 1 if sys.argv[argi] == '-novalidate': validate = False argi += 1 if sys.argv[argi] == '-ca_certs': ca_certs = sys.argv[argi+1] argi += 2 if sys.argv[argi] == '-keyfile': keyfile = sys.argv[argi+1] argi += 2 if sys.argv[argi] == '-certfile': certfile = sys.argv[argi+1] argi += 2 cmd = sys.argv[argi] args = sys.argv[argi + 1:] if http: transport = THttpClient.THttpClient(host, port, uri) else: if ssl: socket = TSSLSocket.TSSLSocket(host, port, validate=validate, ca_certs=ca_certs, keyfile=keyfile, certfile=certfile) else: socket = TSocket.TSocket(host, port) if framed: transport = TTransport.TFramedTransport(socket) else: transport = TTransport.TBufferedTransport(socket) protocol = TBinaryProtocol(transport) client = ncTShareSite.Client(protocol) transport.open() if cmd == 'SetMultSiteStatus': if len(args) != 1: print('SetMultSiteStatus requires 1 args') sys.exit(1) pp.pprint(client.SetMultSiteStatus(eval(args[0]),)) elif cmd == 'GetMultSiteStatus': if len(args) != 0: print('GetMultSiteStatus requires 0 args') sys.exit(1) pp.pprint(client.GetMultSiteStatus()) elif cmd == 'GetLocalSiteInfo': if len(args) != 0: print('GetLocalSiteInfo requires 0 args') sys.exit(1) pp.pprint(client.GetLocalSiteInfo()) elif cmd == 'AddSite': if len(args) != 1: print('AddSite requires 1 args') sys.exit(1) pp.pprint(client.AddSite(eval(args[0]),)) elif cmd == 'DeleteSite': if len(args) != 1: print('DeleteSite requires 1 args') sys.exit(1) pp.pprint(client.DeleteSite(args[0],)) elif cmd == 'EditSite': if len(args) != 1: print('EditSite requires 1 args') sys.exit(1) pp.pprint(client.EditSite(eval(args[0]),)) elif cmd == 'GetSiteInfo': if len(args) != 0: print('GetSiteInfo requires 0 args') sys.exit(1) pp.pprint(client.GetSiteInfo()) elif cmd == 'NodifySiteAddBegin': if len(args) != 0: print('NodifySiteAddBegin requires 0 args') sys.exit(1) pp.pprint(client.NodifySiteAddBegin()) elif cmd == 'NodifySiteAdd': if len(args) != 1: print('NodifySiteAdd requires 1 args') sys.exit(1) pp.pprint(client.NodifySiteAdd(args[0],)) elif cmd == 'NodifySiteDelete': if len(args) != 0: print('NodifySiteDelete requires 0 args') sys.exit(1) pp.pprint(client.NodifySiteDelete()) elif cmd == 'GetLocalSiteInfoByRemote': if len(args) != 0: print('GetLocalSiteInfoByRemote requires 0 args') sys.exit(1) pp.pprint(client.GetLocalSiteInfoByRemote()) elif cmd == 'UpdateHeartByMaster': if len(args) != 1: print('UpdateHeartByMaster requires 1 args') sys.exit(1) pp.pprint(client.UpdateHeartByMaster(args[0],)) elif cmd == 'SyncSlaveToMaster': if len(args) != 1: print('SyncSlaveToMaster requires 1 args') sys.exit(1) pp.pprint(client.SyncSlaveToMaster(args[0],)) elif cmd == 'SyncMasterToSlave': if len(args) != 1: print('SyncMasterToSlave requires 1 args') sys.exit(1) pp.pprint(client.SyncMasterToSlave(args[0],)) elif cmd == 'UpdateSiteIp': if len(args) != 1: print('UpdateSiteIp requires 1 args') sys.exit(1) pp.pprint(client.UpdateSiteIp(args[0],)) elif cmd == 'GetSiteInfoById': if len(args) != 1: print('GetSiteInfoById requires 1 args') sys.exit(1) pp.pprint(client.GetSiteInfoById(args[0],)) elif cmd == 'CheckSign': if len(args) != 4: print('CheckSign requires 4 args') sys.exit(1) pp.pprint(client.CheckSign(args[0], args[1], args[2], eval(args[3]),)) elif cmd == 'RestartServer': if len(args) != 1: print('RestartServer requires 1 args') sys.exit(1) pp.pprint(client.RestartServer(args[0],)) elif cmd == 'UpdateEVFSSiteInfo': if len(args) != 0: print('UpdateEVFSSiteInfo requires 0 args') sys.exit(1) pp.pprint(client.UpdateEVFSSiteInfo()) elif cmd == 'CreateCrossDomainXml': if len(args) != 0: print('CreateCrossDomainXml requires 0 args') sys.exit(1) pp.pprint(client.CreateCrossDomainXml()) elif cmd == 'UpdateSiteMasterDbIp': if len(args) != 1: print('UpdateSiteMasterDbIp requires 1 args') sys.exit(1) pp.pprint(client.UpdateSiteMasterDbIp(args[0],)) elif cmd == 'SyncOSSInfo': if len(args) != 1: print('SyncOSSInfo requires 1 args') sys.exit(1) pp.pprint(client.SyncOSSInfo(args[0],)) elif cmd == 'UpdateSiteVirusStatus': if len(args) != 1: print('UpdateSiteVirusStatus requires 1 args') sys.exit(1) pp.pprint(client.UpdateSiteVirusStatus(eval(args[0]),)) elif cmd == 'UpdateAllSiteVirusStatus': if len(args) != 1: print('UpdateAllSiteVirusStatus requires 1 args') sys.exit(1) pp.pprint(client.UpdateAllSiteVirusStatus(eval(args[0]),)) elif cmd == 'GetSiteVirusStatus': if len(args) != 0: print('GetSiteVirusStatus requires 0 args') sys.exit(1) pp.pprint(client.GetSiteVirusStatus()) else: print('Unrecognized method %s' % cmd) sys.exit(1) transport.close()
1ed68d4f010fc1efda84c9c1ab660821e4bb0cf4
9adc810b07f7172a7d0341f0b38088b4f5829cf4
/experiments/ashvin/icml2020/hand/pen/gaussian2/mpo1.py
7ac527427c0596b9005378a26a524b4c5ff45d13
[ "MIT" ]
permissive
Asap7772/railrl_evalsawyer
7ee9358b5277b9ddf2468f0c6d28beb92a5a0879
baba8ce634d32a48c7dfe4dc03b123e18e96e0a3
refs/heads/main
2023-05-29T10:00:50.126508
2021-06-18T03:08:12
2021-06-18T03:08:12
375,810,557
1
0
null
null
null
null
UTF-8
Python
false
false
3,737
py
""" AWR + SAC from demo experiment """ from rlkit.demos.source.dict_to_mdp_path_loader import DictToMDPPathLoader from rlkit.launchers.experiments.awac.awac_rl import experiment import rlkit.misc.hyperparameter as hyp from rlkit.launchers.arglauncher import run_variants from rlkit.torch.sac.policies import GaussianPolicy if __name__ == "__main__": variant = dict( num_epochs=1001, num_eval_steps_per_epoch=1000, num_trains_per_train_loop=1000, num_expl_steps_per_train_loop=1000, min_num_steps_before_training=1000, max_path_length=1000, batch_size=1024, replay_buffer_size=int(1E6), layer_size=256, policy_class=GaussianPolicy, policy_kwargs=dict( hidden_sizes=[256, 256, ], max_log_std=0, min_log_std=-4, ), algorithm="SAC", version="normal", collection_mode='batch', trainer_kwargs=dict( discount=0.99, soft_target_tau=5e-3, target_update_period=1, policy_lr=3E-4, qf_lr=3E-4, reward_scale=1, beta=1, use_automatic_entropy_tuning=True, alpha=0, compute_bc=True, bc_num_pretrain_steps=0, q_num_pretrain1_steps=0, q_num_pretrain2_steps=25000, policy_weight_decay=1e-4, bc_loss_type="mse", rl_weight=1.0, use_awr_update=True, use_reparam_update=True, reparam_weight=0.0, awr_weight=0.0, bc_weight=1.0, awr_use_mle_for_vf=False, awr_sample_actions=False, awr_min_q=False, ), num_exps_per_instance=1, region='us-west-2', path_loader_class=DictToMDPPathLoader, path_loader_kwargs=dict( obs_key="state_observation", demo_paths=[ dict( path="demos/icml2020/hand/pen2.npy", obs_dict=True, is_demo=True, ), dict( path="demos/icml2020/hand/pen_bc5.npy", obs_dict=False, is_demo=False, train_split=0.9, ), ], ), # logger_variant=dict( # tensorboard=True, # ), load_demos=True, pretrain_policy=True, pretrain_rl=True, # save_pretrained_algorithm=True, # snapshot_mode="all", ) search_space = { 'env': ["pen-v0", ], 'trainer_kwargs.bc_loss_type': ["mle"], 'trainer_kwargs.awr_loss_type': ["mle"], 'seedid': range(3), 'trainer_kwargs.beta': [50, 100, ], 'trainer_kwargs.use_automatic_entropy_tuning': [False], # 'policy_kwargs.max_log_std': [0, ], 'policy_kwargs.min_log_std': [-6, ], 'trainer_kwargs.reparam_weight': [0], 'trainer_kwargs.awr_weight': [1.0], 'trainer_kwargs.bc_weight': [0.0, ], 'trainer_kwargs.awr_use_mle_for_vf': [True, False], 'trainer_kwargs.awr_sample_actions': [True, False], 'trainer_kwargs.awr_min_q': [True, False], } sweeper = hyp.DeterministicHyperparameterSweeper( search_space, default_parameters=variant, ) variants = [] for variant in sweeper.iterate_hyperparameters(): trainer_kwargs = variant["trainer_kwargs"] if not (trainer_kwargs["reparam_weight"] == 0 and trainer_kwargs["awr_weight"] == 0 and trainer_kwargs["bc_weight"] == 0): variants.append(variant) run_variants(experiment, variants, run_id=0)
955f09efc2087f336d4fb414c067ca7dfe26d279
386a5b505d77c9798aaab78495d0f00c349cf660
/Prognos Project/Working/Latiket Jaronde Git/DJango examples/templatedemo2/testapp/urls.py
0d1437daf76c61d1a5266b9babab9224eeb06d79
[]
no_license
namratarane20/MachineLearning
2da2c87217618d124fd53f607c20641ba44fb0b7
b561cc74733b655507242cbbf13ea09a2416b9e2
refs/heads/master
2023-01-20T18:54:15.662179
2020-03-09T14:12:44
2020-03-09T14:12:44
237,597,461
0
0
null
2023-01-05T12:37:12
2020-02-01T10:22:20
Python
UTF-8
Python
false
false
106
py
from django.urls import path from . import views urlpatterns = [ path('greeting/', views.greeting) ]
fdff8ee5169cf72046ed0e39b6a24863d1045a9b
49ba5356bdc5df7dd9803b56fe507c5164a90716
/integer-break/solution.py
856adbbae8712f49e4d57219672d2b09cd793fc3
[]
no_license
uxlsl/leetcode_practice
d80ad481c9d8ee71cce0f3c66e98446ced149635
d8ed762d1005975f0de4f07760c9671195621c88
refs/heads/master
2021-04-25T18:12:28.136504
2020-03-11T07:54:15
2020-03-11T07:54:15
121,472,384
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
class Solution: def integerBreak(self, n): """ :type n: int :rtype: int """ record = {1: 1} for i in range(2, n + 1): record[i] = 1 for j in range(1, (i + 1) // 2 + 1): record[i] = max(record[i], record[j] * record[i - j], j * record[i - j], j * (i - j)) return record[n]
74111a48767d4c6fd5bf8a2c3164384a0f6dcd16
b3b443f0bc49bbb10c26b51fe89e6860d4ca3d3a
/venv/Lib/site-packages/more_itertools/more.py
f07f8c1c0c01ab9f2cf36264f72167daf34872ca
[ "MIT" ]
permissive
naveens33/ctreport-selenium
6b3a1cc93a6741a1d493c2452c1cf56c6d85c052
9553b5c4b8deb52e46cf0fb3e1ea7092028cf090
refs/heads/master
2022-12-23T04:55:12.226339
2020-08-29T19:22:00
2020-08-29T19:22:00
228,779,087
2
2
MIT
2022-12-18T22:53:51
2019-12-18T07:03:39
Python
UTF-8
Python
false
false
83,966
py
import warnings from collections import Counter, defaultdict, deque from collections.abc import Sequence from functools import partial, wraps from heapq import merge from itertools import ( chain, compress, count, cycle, dropwhile, groupby, islice, repeat, starmap, takewhile, tee, zip_longest, ) from operator import itemgetter, lt, gt, sub from sys import maxsize from time import monotonic from .recipes import consume, flatten, powerset, take, unique_everseen __all__ = [ 'adjacent', 'always_iterable', 'always_reversible', 'bucket', 'chunked', 'circular_shifts', 'collapse', 'collate', 'consecutive_groups', 'consumer', 'count_cycle', 'difference', 'distinct_combinations', 'distinct_permutations', 'distribute', 'divide', 'exactly_n', 'filter_except', 'first', 'groupby_transform', 'ilen', 'interleave_longest', 'interleave', 'intersperse', 'islice_extended', 'iterate', 'ichunked', 'last', 'locate', 'lstrip', 'make_decorator', 'map_except', 'map_reduce', 'numeric_range', 'one', 'only', 'padded', 'partitions', 'set_partitions', 'peekable', 'repeat_last', 'replace', 'rlocate', 'rstrip', 'run_length', 'seekable', 'SequenceView', 'side_effect', 'sliced', 'sort_together', 'split_at', 'split_after', 'split_before', 'split_when', 'split_into', 'spy', 'stagger', 'strip', 'substrings', 'substrings_indexes', 'time_limited', 'unique_to_each', 'unzip', 'windowed', 'with_iter', 'zip_offset', ] _marker = object() def chunked(iterable, n): """Break *iterable* into lists of length *n*: >>> list(chunked([1, 2, 3, 4, 5, 6], 3)) [[1, 2, 3], [4, 5, 6]] If the length of *iterable* is not evenly divisible by *n*, the last returned list will be shorter: >>> list(chunked([1, 2, 3, 4, 5, 6, 7, 8], 3)) [[1, 2, 3], [4, 5, 6], [7, 8]] To use a fill-in value instead, see the :func:`grouper` recipe. :func:`chunked` is useful for splitting up a computation on a large number of keys into batches, to be pickled and sent off to worker processes. One example is operations on rows in MySQL, which does not implement server-side cursors properly and would otherwise load the entire dataset into RAM on the client. """ return iter(partial(take, n, iter(iterable)), []) def first(iterable, default=_marker): """Return the first item of *iterable*, or *default* if *iterable* is empty. >>> first([0, 1, 2, 3]) 0 >>> first([], 'some default') 'some default' If *default* is not provided and there are no items in the iterable, raise ``ValueError``. :func:`first` is useful when you have a generator of expensive-to-retrieve values and want any arbitrary one. It is marginally shorter than ``next(iter(iterable), default)``. """ try: return next(iter(iterable)) except StopIteration: # I'm on the edge about raising ValueError instead of StopIteration. At # the moment, ValueError wins, because the caller could conceivably # want to do something different with flow control when I raise the # exception, and it's weird to explicitly catch StopIteration. if default is _marker: raise ValueError( 'first() was called on an empty iterable, and no ' 'default value was provided.' ) return default def last(iterable, default=_marker): """Return the last item of *iterable*, or *default* if *iterable* is empty. >>> last([0, 1, 2, 3]) 3 >>> last([], 'some default') 'some default' If *default* is not provided and there are no items in the iterable, raise ``ValueError``. """ try: try: # Try to access the last item directly return iterable[-1] except (TypeError, AttributeError, KeyError): # If not slice-able, iterate entirely using length-1 deque return deque(iterable, maxlen=1)[0] except IndexError: # If the iterable was empty if default is _marker: raise ValueError( 'last() was called on an empty iterable, and no ' 'default value was provided.' ) return default class peekable: """Wrap an iterator to allow lookahead and prepending elements. Call :meth:`peek` on the result to get the value that will be returned by :func:`next`. This won't advance the iterator: >>> p = peekable(['a', 'b']) >>> p.peek() 'a' >>> next(p) 'a' Pass :meth:`peek` a default value to return that instead of raising ``StopIteration`` when the iterator is exhausted. >>> p = peekable([]) >>> p.peek('hi') 'hi' peekables also offer a :meth:`prepend` method, which "inserts" items at the head of the iterable: >>> p = peekable([1, 2, 3]) >>> p.prepend(10, 11, 12) >>> next(p) 10 >>> p.peek() 11 >>> list(p) [11, 12, 1, 2, 3] peekables can be indexed. Index 0 is the item that will be returned by :func:`next`, index 1 is the item after that, and so on: The values up to the given index will be cached. >>> p = peekable(['a', 'b', 'c', 'd']) >>> p[0] 'a' >>> p[1] 'b' >>> next(p) 'a' Negative indexes are supported, but be aware that they will cache the remaining items in the source iterator, which may require significant storage. To check whether a peekable is exhausted, check its truth value: >>> p = peekable(['a', 'b']) >>> if p: # peekable has items ... list(p) ['a', 'b'] >>> if not p: # peekable is exhaused ... list(p) [] """ def __init__(self, iterable): self._it = iter(iterable) self._cache = deque() def __iter__(self): return self def __bool__(self): try: self.peek() except StopIteration: return False return True def peek(self, default=_marker): """Return the item that will be next returned from ``next()``. Return ``default`` if there are no items left. If ``default`` is not provided, raise ``StopIteration``. """ if not self._cache: try: self._cache.append(next(self._it)) except StopIteration: if default is _marker: raise return default return self._cache[0] def prepend(self, *items): """Stack up items to be the next ones returned from ``next()`` or ``self.peek()``. The items will be returned in first in, first out order:: >>> p = peekable([1, 2, 3]) >>> p.prepend(10, 11, 12) >>> next(p) 10 >>> list(p) [11, 12, 1, 2, 3] It is possible, by prepending items, to "resurrect" a peekable that previously raised ``StopIteration``. >>> p = peekable([]) >>> next(p) Traceback (most recent call last): ... StopIteration >>> p.prepend(1) >>> next(p) 1 >>> next(p) Traceback (most recent call last): ... StopIteration """ self._cache.extendleft(reversed(items)) def __next__(self): if self._cache: return self._cache.popleft() return next(self._it) def _get_slice(self, index): # Normalize the slice's arguments step = 1 if (index.step is None) else index.step if step > 0: start = 0 if (index.start is None) else index.start stop = maxsize if (index.stop is None) else index.stop elif step < 0: start = -1 if (index.start is None) else index.start stop = (-maxsize - 1) if (index.stop is None) else index.stop else: raise ValueError('slice step cannot be zero') # If either the start or stop index is negative, we'll need to cache # the rest of the iterable in order to slice from the right side. if (start < 0) or (stop < 0): self._cache.extend(self._it) # Otherwise we'll need to find the rightmost index and cache to that # point. else: n = min(max(start, stop) + 1, maxsize) cache_len = len(self._cache) if n >= cache_len: self._cache.extend(islice(self._it, n - cache_len)) return list(self._cache)[index] def __getitem__(self, index): if isinstance(index, slice): return self._get_slice(index) cache_len = len(self._cache) if index < 0: self._cache.extend(self._it) elif index >= cache_len: self._cache.extend(islice(self._it, index + 1 - cache_len)) return self._cache[index] def collate(*iterables, **kwargs): """Return a sorted merge of the items from each of several already-sorted *iterables*. >>> list(collate('ACDZ', 'AZ', 'JKL')) ['A', 'A', 'C', 'D', 'J', 'K', 'L', 'Z', 'Z'] Works lazily, keeping only the next value from each iterable in memory. Use :func:`collate` to, for example, perform a n-way mergesort of items that don't fit in memory. If a *key* function is specified, the iterables will be sorted according to its result: >>> key = lambda s: int(s) # Sort by numeric value, not by string >>> list(collate(['1', '10'], ['2', '11'], key=key)) ['1', '2', '10', '11'] If the *iterables* are sorted in descending order, set *reverse* to ``True``: >>> list(collate([5, 3, 1], [4, 2, 0], reverse=True)) [5, 4, 3, 2, 1, 0] If the elements of the passed-in iterables are out of order, you might get unexpected results. On Python 3.5+, this function is an alias for :func:`heapq.merge`. """ warnings.warn( "collate is no longer part of more_itertools, use heapq.merge", DeprecationWarning, ) return merge(*iterables, **kwargs) def consumer(func): """Decorator that automatically advances a PEP-342-style "reverse iterator" to its first yield point so you don't have to call ``next()`` on it manually. >>> @consumer ... def tally(): ... i = 0 ... while True: ... print('Thing number %s is %s.' % (i, (yield))) ... i += 1 ... >>> t = tally() >>> t.send('red') Thing number 0 is red. >>> t.send('fish') Thing number 1 is fish. Without the decorator, you would have to call ``next(t)`` before ``t.send()`` could be used. """ @wraps(func) def wrapper(*args, **kwargs): gen = func(*args, **kwargs) next(gen) return gen return wrapper def ilen(iterable): """Return the number of items in *iterable*. >>> ilen(x for x in range(1000000) if x % 3 == 0) 333334 This consumes the iterable, so handle with care. """ # This approach was selected because benchmarks showed it's likely the # fastest of the known implementations at the time of writing. # See GitHub tracker: #236, #230. counter = count() deque(zip(iterable, counter), maxlen=0) return next(counter) def iterate(func, start): """Return ``start``, ``func(start)``, ``func(func(start))``, ... >>> from itertools import islice >>> list(islice(iterate(lambda x: 2*x, 1), 10)) [1, 2, 4, 8, 16, 32, 64, 128, 256, 512] """ while True: yield start start = func(start) def with_iter(context_manager): """Wrap an iterable in a ``with`` statement, so it closes once exhausted. For example, this will close the file when the iterator is exhausted:: upper_lines = (line.upper() for line in with_iter(open('foo'))) Any context manager which returns an iterable is a candidate for ``with_iter``. """ with context_manager as iterable: yield from iterable def one(iterable, too_short=None, too_long=None): """Return the first item from *iterable*, which is expected to contain only that item. Raise an exception if *iterable* is empty or has more than one item. :func:`one` is useful for ensuring that an iterable contains only one item. For example, it can be used to retrieve the result of a database query that is expected to return a single row. If *iterable* is empty, ``ValueError`` will be raised. You may specify a different exception with the *too_short* keyword: >>> it = [] >>> one(it) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError: too many items in iterable (expected 1)' >>> too_short = IndexError('too few items') >>> one(it, too_short=too_short) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... IndexError: too few items Similarly, if *iterable* contains more than one item, ``ValueError`` will be raised. You may specify a different exception with the *too_long* keyword: >>> it = ['too', 'many'] >>> one(it) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError: Expected exactly one item in iterable, but got 'too', 'many', and perhaps more. >>> too_long = RuntimeError >>> one(it, too_long=too_long) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... RuntimeError Note that :func:`one` attempts to advance *iterable* twice to ensure there is only one item. See :func:`spy` or :func:`peekable` to check iterable contents less destructively. """ it = iter(iterable) try: first_value = next(it) except StopIteration: raise too_short or ValueError('too few items in iterable (expected 1)') try: second_value = next(it) except StopIteration: pass else: msg = ( 'Expected exactly one item in iterable, but got {!r}, {!r}, ' 'and perhaps more.'.format(first_value, second_value) ) raise too_long or ValueError(msg) return first_value def distinct_permutations(iterable): """Yield successive distinct permutations of the elements in *iterable*. >>> sorted(distinct_permutations([1, 0, 1])) [(0, 1, 1), (1, 0, 1), (1, 1, 0)] Equivalent to ``set(permutations(iterable))``, except duplicates are not generated and thrown away. For larger input sequences this is much more efficient. Duplicate permutations arise when there are duplicated elements in the input iterable. The number of items returned is `n! / (x_1! * x_2! * ... * x_n!)`, where `n` is the total number of items input, and each `x_i` is the count of a distinct item in the input sequence. """ def make_new_permutations(pool, e): """Internal helper function. The output permutations are built up by adding element *e* to the current *permutations* at every possible position. The key idea is to keep repeated elements (reverse) ordered: if e1 == e2 and e1 is before e2 in the iterable, then all permutations with e1 before e2 are ignored. """ for perm in pool: for j in range(len(perm)): yield perm[:j] + (e,) + perm[j:] if perm[j] == e: break else: yield perm + (e,) permutations = [()] for e in iterable: permutations = make_new_permutations(permutations, e) return (tuple(t) for t in permutations) def intersperse(e, iterable, n=1): """Intersperse filler element *e* among the items in *iterable*, leaving *n* items between each filler element. >>> list(intersperse('!', [1, 2, 3, 4, 5])) [1, '!', 2, '!', 3, '!', 4, '!', 5] >>> list(intersperse(None, [1, 2, 3, 4, 5], n=2)) [1, 2, None, 3, 4, None, 5] """ if n == 0: raise ValueError('n must be > 0') elif n == 1: # interleave(repeat(e), iterable) -> e, x_0, e, e, x_1, e, x_2... # islice(..., 1, None) -> x_0, e, e, x_1, e, x_2... return islice(interleave(repeat(e), iterable), 1, None) else: # interleave(filler, chunks) -> [e], [x_0, x_1], [e], [x_2, x_3]... # islice(..., 1, None) -> [x_0, x_1], [e], [x_2, x_3]... # flatten(...) -> x_0, x_1, e, x_2, x_3... filler = repeat([e]) chunks = chunked(iterable, n) return flatten(islice(interleave(filler, chunks), 1, None)) def unique_to_each(*iterables): """Return the elements from each of the input iterables that aren't in the other input iterables. For example, suppose you have a set of packages, each with a set of dependencies:: {'pkg_1': {'A', 'B'}, 'pkg_2': {'B', 'C'}, 'pkg_3': {'B', 'D'}} If you remove one package, which dependencies can also be removed? If ``pkg_1`` is removed, then ``A`` is no longer necessary - it is not associated with ``pkg_2`` or ``pkg_3``. Similarly, ``C`` is only needed for ``pkg_2``, and ``D`` is only needed for ``pkg_3``:: >>> unique_to_each({'A', 'B'}, {'B', 'C'}, {'B', 'D'}) [['A'], ['C'], ['D']] If there are duplicates in one input iterable that aren't in the others they will be duplicated in the output. Input order is preserved:: >>> unique_to_each("mississippi", "missouri") [['p', 'p'], ['o', 'u', 'r']] It is assumed that the elements of each iterable are hashable. """ pool = [list(it) for it in iterables] counts = Counter(chain.from_iterable(map(set, pool))) uniques = {element for element in counts if counts[element] == 1} return [list(filter(uniques.__contains__, it)) for it in pool] def windowed(seq, n, fillvalue=None, step=1): """Return a sliding window of width *n* over the given iterable. >>> all_windows = windowed([1, 2, 3, 4, 5], 3) >>> list(all_windows) [(1, 2, 3), (2, 3, 4), (3, 4, 5)] When the window is larger than the iterable, *fillvalue* is used in place of missing values:: >>> list(windowed([1, 2, 3], 4)) [(1, 2, 3, None)] Each window will advance in increments of *step*: >>> list(windowed([1, 2, 3, 4, 5, 6], 3, fillvalue='!', step=2)) [(1, 2, 3), (3, 4, 5), (5, 6, '!')] To slide into the iterable's items, use :func:`chain` to add filler items to the left: >>> iterable = [1, 2, 3, 4] >>> n = 3 >>> padding = [None] * (n - 1) >>> list(windowed(chain(padding, iterable), 3)) [(None, None, 1), (None, 1, 2), (1, 2, 3), (2, 3, 4)] """ if n < 0: raise ValueError('n must be >= 0') if n == 0: yield tuple() return if step < 1: raise ValueError('step must be >= 1') it = iter(seq) window = deque([], n) append = window.append # Initial deque fill for _ in range(n): append(next(it, fillvalue)) yield tuple(window) # Appending new items to the right causes old items to fall off the left i = 0 for item in it: append(item) i = (i + 1) % step if i % step == 0: yield tuple(window) # If there are items from the iterable in the window, pad with the given # value and emit them. if (i % step) and (step - i < n): for _ in range(step - i): append(fillvalue) yield tuple(window) def substrings(iterable): """Yield all of the substrings of *iterable*. >>> [''.join(s) for s in substrings('more')] ['m', 'o', 'r', 'e', 'mo', 'or', 're', 'mor', 'ore', 'more'] Note that non-string iterables can also be subdivided. >>> list(substrings([0, 1, 2])) [(0,), (1,), (2,), (0, 1), (1, 2), (0, 1, 2)] """ # The length-1 substrings seq = [] for item in iter(iterable): seq.append(item) yield (item,) seq = tuple(seq) item_count = len(seq) # And the rest for n in range(2, item_count + 1): for i in range(item_count - n + 1): yield seq[i : i + n] def substrings_indexes(seq, reverse=False): """Yield all substrings and their positions in *seq* The items yielded will be a tuple of the form ``(substr, i, j)``, where ``substr == seq[i:j]``. This function only works for iterables that support slicing, such as ``str`` objects. >>> for item in substrings_indexes('more'): ... print(item) ('m', 0, 1) ('o', 1, 2) ('r', 2, 3) ('e', 3, 4) ('mo', 0, 2) ('or', 1, 3) ('re', 2, 4) ('mor', 0, 3) ('ore', 1, 4) ('more', 0, 4) Set *reverse* to ``True`` to yield the same items in the opposite order. """ r = range(1, len(seq) + 1) if reverse: r = reversed(r) return ( (seq[i : i + L], i, i + L) for L in r for i in range(len(seq) - L + 1) ) class bucket: """Wrap *iterable* and return an object that buckets it iterable into child iterables based on a *key* function. >>> iterable = ['a1', 'b1', 'c1', 'a2', 'b2', 'c2', 'b3'] >>> s = bucket(iterable, key=lambda x: x[0]) >>> a_iterable = s['a'] >>> next(a_iterable) 'a1' >>> next(a_iterable) 'a2' >>> list(s['b']) ['b1', 'b2', 'b3'] The original iterable will be advanced and its items will be cached until they are used by the child iterables. This may require significant storage. By default, attempting to select a bucket to which no items belong will exhaust the iterable and cache all values. If you specify a *validator* function, selected buckets will instead be checked against it. >>> from itertools import count >>> it = count(1, 2) # Infinite sequence of odd numbers >>> key = lambda x: x % 10 # Bucket by last digit >>> validator = lambda x: x in {1, 3, 5, 7, 9} # Odd digits only >>> s = bucket(it, key=key, validator=validator) >>> 2 in s False >>> list(s[2]) [] """ def __init__(self, iterable, key, validator=None): self._it = iter(iterable) self._key = key self._cache = defaultdict(deque) self._validator = validator or (lambda x: True) def __contains__(self, value): if not self._validator(value): return False try: item = next(self[value]) except StopIteration: return False else: self._cache[value].appendleft(item) return True def _get_values(self, value): """ Helper to yield items from the parent iterator that match *value*. Items that don't match are stored in the local cache as they are encountered. """ while True: # If we've cached some items that match the target value, emit # the first one and evict it from the cache. if self._cache[value]: yield self._cache[value].popleft() # Otherwise we need to advance the parent iterator to search for # a matching item, caching the rest. else: while True: try: item = next(self._it) except StopIteration: return item_value = self._key(item) if item_value == value: yield item break elif self._validator(item_value): self._cache[item_value].append(item) def __getitem__(self, value): if not self._validator(value): return iter(()) return self._get_values(value) def spy(iterable, n=1): """Return a 2-tuple with a list containing the first *n* elements of *iterable*, and an iterator with the same items as *iterable*. This allows you to "look ahead" at the items in the iterable without advancing it. There is one item in the list by default: >>> iterable = 'abcdefg' >>> head, iterable = spy(iterable) >>> head ['a'] >>> list(iterable) ['a', 'b', 'c', 'd', 'e', 'f', 'g'] You may use unpacking to retrieve items instead of lists: >>> (head,), iterable = spy('abcdefg') >>> head 'a' >>> (first, second), iterable = spy('abcdefg', 2) >>> first 'a' >>> second 'b' The number of items requested can be larger than the number of items in the iterable: >>> iterable = [1, 2, 3, 4, 5] >>> head, iterable = spy(iterable, 10) >>> head [1, 2, 3, 4, 5] >>> list(iterable) [1, 2, 3, 4, 5] """ it = iter(iterable) head = take(n, it) return head, chain(head, it) def interleave(*iterables): """Return a new iterable yielding from each iterable in turn, until the shortest is exhausted. >>> list(interleave([1, 2, 3], [4, 5], [6, 7, 8])) [1, 4, 6, 2, 5, 7] For a version that doesn't terminate after the shortest iterable is exhausted, see :func:`interleave_longest`. """ return chain.from_iterable(zip(*iterables)) def interleave_longest(*iterables): """Return a new iterable yielding from each iterable in turn, skipping any that are exhausted. >>> list(interleave_longest([1, 2, 3], [4, 5], [6, 7, 8])) [1, 4, 6, 2, 5, 7, 3, 8] This function produces the same output as :func:`roundrobin`, but may perform better for some inputs (in particular when the number of iterables is large). """ i = chain.from_iterable(zip_longest(*iterables, fillvalue=_marker)) return (x for x in i if x is not _marker) def collapse(iterable, base_type=None, levels=None): """Flatten an iterable with multiple levels of nesting (e.g., a list of lists of tuples) into non-iterable types. >>> iterable = [(1, 2), ([3, 4], [[5], [6]])] >>> list(collapse(iterable)) [1, 2, 3, 4, 5, 6] Binary and text strings are not considered iterable and will not be collapsed. To avoid collapsing other types, specify *base_type*: >>> iterable = ['ab', ('cd', 'ef'), ['gh', 'ij']] >>> list(collapse(iterable, base_type=tuple)) ['ab', ('cd', 'ef'), 'gh', 'ij'] Specify *levels* to stop flattening after a certain level: >>> iterable = [('a', ['b']), ('c', ['d'])] >>> list(collapse(iterable)) # Fully flattened ['a', 'b', 'c', 'd'] >>> list(collapse(iterable, levels=1)) # Only one level flattened ['a', ['b'], 'c', ['d']] """ def walk(node, level): if ( ((levels is not None) and (level > levels)) or isinstance(node, (str, bytes)) or ((base_type is not None) and isinstance(node, base_type)) ): yield node return try: tree = iter(node) except TypeError: yield node return else: for child in tree: yield from walk(child, level + 1) yield from walk(iterable, 0) def side_effect(func, iterable, chunk_size=None, before=None, after=None): """Invoke *func* on each item in *iterable* (or on each *chunk_size* group of items) before yielding the item. `func` must be a function that takes a single argument. Its return value will be discarded. *before* and *after* are optional functions that take no arguments. They will be executed before iteration starts and after it ends, respectively. `side_effect` can be used for logging, updating progress bars, or anything that is not functionally "pure." Emitting a status message: >>> from more_itertools import consume >>> func = lambda item: print('Received {}'.format(item)) >>> consume(side_effect(func, range(2))) Received 0 Received 1 Operating on chunks of items: >>> pair_sums = [] >>> func = lambda chunk: pair_sums.append(sum(chunk)) >>> list(side_effect(func, [0, 1, 2, 3, 4, 5], 2)) [0, 1, 2, 3, 4, 5] >>> list(pair_sums) [1, 5, 9] Writing to a file-like object: >>> from io import StringIO >>> from more_itertools import consume >>> f = StringIO() >>> func = lambda x: print(x, file=f) >>> before = lambda: print(u'HEADER', file=f) >>> after = f.close >>> it = [u'a', u'b', u'c'] >>> consume(side_effect(func, it, before=before, after=after)) >>> f.closed True """ try: if before is not None: before() if chunk_size is None: for item in iterable: func(item) yield item else: for chunk in chunked(iterable, chunk_size): func(chunk) yield from chunk finally: if after is not None: after() def sliced(seq, n): """Yield slices of length *n* from the sequence *seq*. >>> list(sliced((1, 2, 3, 4, 5, 6), 3)) [(1, 2, 3), (4, 5, 6)] If the length of the sequence is not divisible by the requested slice length, the last slice will be shorter. >>> list(sliced((1, 2, 3, 4, 5, 6, 7, 8), 3)) [(1, 2, 3), (4, 5, 6), (7, 8)] This function will only work for iterables that support slicing. For non-sliceable iterables, see :func:`chunked`. """ return takewhile(bool, (seq[i : i + n] for i in count(0, n))) def split_at(iterable, pred): """Yield lists of items from *iterable*, where each list is delimited by an item where callable *pred* returns ``True``. The lists do not include the delimiting items. >>> list(split_at('abcdcba', lambda x: x == 'b')) [['a'], ['c', 'd', 'c'], ['a']] >>> list(split_at(range(10), lambda n: n % 2 == 1)) [[0], [2], [4], [6], [8], []] """ buf = [] for item in iterable: if pred(item): yield buf buf = [] else: buf.append(item) yield buf def split_before(iterable, pred): """Yield lists of items from *iterable*, where each list ends just before an item for which callable *pred* returns ``True``: >>> list(split_before('OneTwo', lambda s: s.isupper())) [['O', 'n', 'e'], ['T', 'w', 'o']] >>> list(split_before(range(10), lambda n: n % 3 == 0)) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] """ buf = [] for item in iterable: if pred(item) and buf: yield buf buf = [] buf.append(item) yield buf def split_after(iterable, pred): """Yield lists of items from *iterable*, where each list ends with an item where callable *pred* returns ``True``: >>> list(split_after('one1two2', lambda s: s.isdigit())) [['o', 'n', 'e', '1'], ['t', 'w', 'o', '2']] >>> list(split_after(range(10), lambda n: n % 3 == 0)) [[0], [1, 2, 3], [4, 5, 6], [7, 8, 9]] """ buf = [] for item in iterable: buf.append(item) if pred(item) and buf: yield buf buf = [] if buf: yield buf def split_when(iterable, pred): """Split *iterable* into pieces based on the output of *pred*. *pred* should be a function that takes successive pairs of items and returns ``True`` if the iterable should be split in between them. For example, to find runs of increasing numbers, split the iterable when element ``i`` is larger than element ``i + 1``: >>> list(split_when([1, 2, 3, 3, 2, 5, 2, 4, 2], lambda x, y: x > y)) [[1, 2, 3, 3], [2, 5], [2, 4], [2]] """ it = iter(iterable) try: cur_item = next(it) except StopIteration: return buf = [cur_item] for next_item in it: if pred(cur_item, next_item): yield buf buf = [] buf.append(next_item) cur_item = next_item yield buf def split_into(iterable, sizes): """Yield a list of sequential items from *iterable* of length 'n' for each integer 'n' in *sizes*. >>> list(split_into([1,2,3,4,5,6], [1,2,3])) [[1], [2, 3], [4, 5, 6]] If the sum of *sizes* is smaller than the length of *iterable*, then the remaining items of *iterable* will not be returned. >>> list(split_into([1,2,3,4,5,6], [2,3])) [[1, 2], [3, 4, 5]] If the sum of *sizes* is larger than the length of *iterable*, fewer items will be returned in the iteration that overruns *iterable* and further lists will be empty: >>> list(split_into([1,2,3,4], [1,2,3,4])) [[1], [2, 3], [4], []] When a ``None`` object is encountered in *sizes*, the returned list will contain items up to the end of *iterable* the same way that itertools.slice does: >>> list(split_into([1,2,3,4,5,6,7,8,9,0], [2,3,None])) [[1, 2], [3, 4, 5], [6, 7, 8, 9, 0]] :func:`split_into` can be useful for grouping a series of items where the sizes of the groups are not uniform. An example would be where in a row from a table, multiple columns represent elements of the same feature (e.g. a point represented by x,y,z) but, the format is not the same for all columns. """ # convert the iterable argument into an iterator so its contents can # be consumed by islice in case it is a generator it = iter(iterable) for size in sizes: if size is None: yield list(it) return else: yield list(islice(it, size)) def padded(iterable, fillvalue=None, n=None, next_multiple=False): """Yield the elements from *iterable*, followed by *fillvalue*, such that at least *n* items are emitted. >>> list(padded([1, 2, 3], '?', 5)) [1, 2, 3, '?', '?'] If *next_multiple* is ``True``, *fillvalue* will be emitted until the number of items emitted is a multiple of *n*:: >>> list(padded([1, 2, 3, 4], n=3, next_multiple=True)) [1, 2, 3, 4, None, None] If *n* is ``None``, *fillvalue* will be emitted indefinitely. """ it = iter(iterable) if n is None: yield from chain(it, repeat(fillvalue)) elif n < 1: raise ValueError('n must be at least 1') else: item_count = 0 for item in it: yield item item_count += 1 remaining = (n - item_count) % n if next_multiple else n - item_count for _ in range(remaining): yield fillvalue def repeat_last(iterable, default=None): """After the *iterable* is exhausted, keep yielding its last element. >>> list(islice(repeat_last(range(3)), 5)) [0, 1, 2, 2, 2] If the iterable is empty, yield *default* forever:: >>> list(islice(repeat_last(range(0), 42), 5)) [42, 42, 42, 42, 42] """ item = _marker for item in iterable: yield item final = default if item is _marker else item yield from repeat(final) def distribute(n, iterable): """Distribute the items from *iterable* among *n* smaller iterables. >>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6]) >>> list(group_1) [1, 3, 5] >>> list(group_2) [2, 4, 6] If the length of *iterable* is not evenly divisible by *n*, then the length of the returned iterables will not be identical: >>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7]) >>> [list(c) for c in children] [[1, 4, 7], [2, 5], [3, 6]] If the length of *iterable* is smaller than *n*, then the last returned iterables will be empty: >>> children = distribute(5, [1, 2, 3]) >>> [list(c) for c in children] [[1], [2], [3], [], []] This function uses :func:`itertools.tee` and may require significant storage. If you need the order items in the smaller iterables to match the original iterable, see :func:`divide`. """ if n < 1: raise ValueError('n must be at least 1') children = tee(iterable, n) return [islice(it, index, None, n) for index, it in enumerate(children)] def stagger(iterable, offsets=(-1, 0, 1), longest=False, fillvalue=None): """Yield tuples whose elements are offset from *iterable*. The amount by which the `i`-th item in each tuple is offset is given by the `i`-th item in *offsets*. >>> list(stagger([0, 1, 2, 3])) [(None, 0, 1), (0, 1, 2), (1, 2, 3)] >>> list(stagger(range(8), offsets=(0, 2, 4))) [(0, 2, 4), (1, 3, 5), (2, 4, 6), (3, 5, 7)] By default, the sequence will end when the final element of a tuple is the last item in the iterable. To continue until the first element of a tuple is the last item in the iterable, set *longest* to ``True``:: >>> list(stagger([0, 1, 2, 3], longest=True)) [(None, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, None), (3, None, None)] By default, ``None`` will be used to replace offsets beyond the end of the sequence. Specify *fillvalue* to use some other value. """ children = tee(iterable, len(offsets)) return zip_offset( *children, offsets=offsets, longest=longest, fillvalue=fillvalue ) def zip_offset(*iterables, offsets, longest=False, fillvalue=None): """``zip`` the input *iterables* together, but offset the `i`-th iterable by the `i`-th item in *offsets*. >>> list(zip_offset('0123', 'abcdef', offsets=(0, 1))) [('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e')] This can be used as a lightweight alternative to SciPy or pandas to analyze data sets in which some series have a lead or lag relationship. By default, the sequence will end when the shortest iterable is exhausted. To continue until the longest iterable is exhausted, set *longest* to ``True``. >>> list(zip_offset('0123', 'abcdef', offsets=(0, 1), longest=True)) [('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e'), (None, 'f')] By default, ``None`` will be used to replace offsets beyond the end of the sequence. Specify *fillvalue* to use some other value. """ if len(iterables) != len(offsets): raise ValueError("Number of iterables and offsets didn't match") staggered = [] for it, n in zip(iterables, offsets): if n < 0: staggered.append(chain(repeat(fillvalue, -n), it)) elif n > 0: staggered.append(islice(it, n, None)) else: staggered.append(it) if longest: return zip_longest(*staggered, fillvalue=fillvalue) return zip(*staggered) def sort_together(iterables, key_list=(0,), reverse=False): """Return the input iterables sorted together, with *key_list* as the priority for sorting. All iterables are trimmed to the length of the shortest one. This can be used like the sorting function in a spreadsheet. If each iterable represents a column of data, the key list determines which columns are used for sorting. By default, all iterables are sorted using the ``0``-th iterable:: >>> iterables = [(4, 3, 2, 1), ('a', 'b', 'c', 'd')] >>> sort_together(iterables) [(1, 2, 3, 4), ('d', 'c', 'b', 'a')] Set a different key list to sort according to another iterable. Specifying multiple keys dictates how ties are broken:: >>> iterables = [(3, 1, 2), (0, 1, 0), ('c', 'b', 'a')] >>> sort_together(iterables, key_list=(1, 2)) [(2, 3, 1), (0, 0, 1), ('a', 'c', 'b')] Set *reverse* to ``True`` to sort in descending order. >>> sort_together([(1, 2, 3), ('c', 'b', 'a')], reverse=True) [(3, 2, 1), ('a', 'b', 'c')] """ return list( zip( *sorted( zip(*iterables), key=itemgetter(*key_list), reverse=reverse ) ) ) def unzip(iterable): """The inverse of :func:`zip`, this function disaggregates the elements of the zipped *iterable*. The ``i``-th iterable contains the ``i``-th element from each element of the zipped iterable. The first element is used to to determine the length of the remaining elements. >>> iterable = [('a', 1), ('b', 2), ('c', 3), ('d', 4)] >>> letters, numbers = unzip(iterable) >>> list(letters) ['a', 'b', 'c', 'd'] >>> list(numbers) [1, 2, 3, 4] This is similar to using ``zip(*iterable)``, but it avoids reading *iterable* into memory. Note, however, that this function uses :func:`itertools.tee` and thus may require significant storage. """ head, iterable = spy(iter(iterable)) if not head: # empty iterable, e.g. zip([], [], []) return () # spy returns a one-length iterable as head head = head[0] iterables = tee(iterable, len(head)) def itemgetter(i): def getter(obj): try: return obj[i] except IndexError: # basically if we have an iterable like # iter([(1, 2, 3), (4, 5), (6,)]) # the second unzipped iterable would fail at the third tuple # since it would try to access tup[1] # same with the third unzipped iterable and the second tuple # to support these "improperly zipped" iterables, # we create a custom itemgetter # which just stops the unzipped iterables # at first length mismatch raise StopIteration return getter return tuple(map(itemgetter(i), it) for i, it in enumerate(iterables)) def divide(n, iterable): """Divide the elements from *iterable* into *n* parts, maintaining order. >>> group_1, group_2 = divide(2, [1, 2, 3, 4, 5, 6]) >>> list(group_1) [1, 2, 3] >>> list(group_2) [4, 5, 6] If the length of *iterable* is not evenly divisible by *n*, then the length of the returned iterables will not be identical: >>> children = divide(3, [1, 2, 3, 4, 5, 6, 7]) >>> [list(c) for c in children] [[1, 2, 3], [4, 5], [6, 7]] If the length of the iterable is smaller than n, then the last returned iterables will be empty: >>> children = divide(5, [1, 2, 3]) >>> [list(c) for c in children] [[1], [2], [3], [], []] This function will exhaust the iterable before returning and may require significant storage. If order is not important, see :func:`distribute`, which does not first pull the iterable into memory. """ if n < 1: raise ValueError('n must be at least 1') seq = tuple(iterable) q, r = divmod(len(seq), n) ret = [] for i in range(n): start = (i * q) + (i if i < r else r) stop = ((i + 1) * q) + (i + 1 if i + 1 < r else r) ret.append(iter(seq[start:stop])) return ret def always_iterable(obj, base_type=(str, bytes)): """If *obj* is iterable, return an iterator over its items:: >>> obj = (1, 2, 3) >>> list(always_iterable(obj)) [1, 2, 3] If *obj* is not iterable, return a one-item iterable containing *obj*:: >>> obj = 1 >>> list(always_iterable(obj)) [1] If *obj* is ``None``, return an empty iterable: >>> obj = None >>> list(always_iterable(None)) [] By default, binary and text strings are not considered iterable:: >>> obj = 'foo' >>> list(always_iterable(obj)) ['foo'] If *base_type* is set, objects for which ``isinstance(obj, base_type)`` returns ``True`` won't be considered iterable. >>> obj = {'a': 1} >>> list(always_iterable(obj)) # Iterate over the dict's keys ['a'] >>> list(always_iterable(obj, base_type=dict)) # Treat dicts as a unit [{'a': 1}] Set *base_type* to ``None`` to avoid any special handling and treat objects Python considers iterable as iterable: >>> obj = 'foo' >>> list(always_iterable(obj, base_type=None)) ['f', 'o', 'o'] """ if obj is None: return iter(()) if (base_type is not None) and isinstance(obj, base_type): return iter((obj,)) try: return iter(obj) except TypeError: return iter((obj,)) def adjacent(predicate, iterable, distance=1): """Return an iterable over `(bool, item)` tuples where the `item` is drawn from *iterable* and the `bool` indicates whether that item satisfies the *predicate* or is adjacent to an item that does. For example, to find whether items are adjacent to a ``3``:: >>> list(adjacent(lambda x: x == 3, range(6))) [(False, 0), (False, 1), (True, 2), (True, 3), (True, 4), (False, 5)] Set *distance* to change what counts as adjacent. For example, to find whether items are two places away from a ``3``: >>> list(adjacent(lambda x: x == 3, range(6), distance=2)) [(False, 0), (True, 1), (True, 2), (True, 3), (True, 4), (True, 5)] This is useful for contextualizing the results of a search function. For example, a code comparison tool might want to identify lines that have changed, but also surrounding lines to give the viewer of the diff context. The predicate function will only be called once for each item in the iterable. See also :func:`groupby_transform`, which can be used with this function to group ranges of items with the same `bool` value. """ # Allow distance=0 mainly for testing that it reproduces results with map() if distance < 0: raise ValueError('distance must be at least 0') i1, i2 = tee(iterable) padding = [False] * distance selected = chain(padding, map(predicate, i1), padding) adjacent_to_selected = map(any, windowed(selected, 2 * distance + 1)) return zip(adjacent_to_selected, i2) def groupby_transform(iterable, keyfunc=None, valuefunc=None): """An extension of :func:`itertools.groupby` that transforms the values of *iterable* after grouping them. *keyfunc* is a function used to compute a grouping key for each item. *valuefunc* is a function for transforming the items after grouping. >>> iterable = 'AaaABbBCcA' >>> keyfunc = lambda x: x.upper() >>> valuefunc = lambda x: x.lower() >>> grouper = groupby_transform(iterable, keyfunc, valuefunc) >>> [(k, ''.join(g)) for k, g in grouper] [('A', 'aaaa'), ('B', 'bbb'), ('C', 'cc'), ('A', 'a')] *keyfunc* and *valuefunc* default to identity functions if they are not specified. :func:`groupby_transform` is useful when grouping elements of an iterable using a separate iterable as the key. To do this, :func:`zip` the iterables and pass a *keyfunc* that extracts the first element and a *valuefunc* that extracts the second element:: >>> from operator import itemgetter >>> keys = [0, 0, 1, 1, 1, 2, 2, 2, 3] >>> values = 'abcdefghi' >>> iterable = zip(keys, values) >>> grouper = groupby_transform(iterable, itemgetter(0), itemgetter(1)) >>> [(k, ''.join(g)) for k, g in grouper] [(0, 'ab'), (1, 'cde'), (2, 'fgh'), (3, 'i')] Note that the order of items in the iterable is significant. Only adjacent items are grouped together, so if you don't want any duplicate groups, you should sort the iterable by the key function. """ res = groupby(iterable, keyfunc) return ((k, map(valuefunc, g)) for k, g in res) if valuefunc else res def numeric_range(*args): """An extension of the built-in ``range()`` function whose arguments can be any orderable numeric type. With only *stop* specified, *start* defaults to ``0`` and *step* defaults to ``1``. The output items will match the type of *stop*: >>> list(numeric_range(3.5)) [0.0, 1.0, 2.0, 3.0] With only *start* and *stop* specified, *step* defaults to ``1``. The output items will match the type of *start*: >>> from decimal import Decimal >>> start = Decimal('2.1') >>> stop = Decimal('5.1') >>> list(numeric_range(start, stop)) [Decimal('2.1'), Decimal('3.1'), Decimal('4.1')] With *start*, *stop*, and *step* specified the output items will match the type of ``start + step``: >>> from fractions import Fraction >>> start = Fraction(1, 2) # Start at 1/2 >>> stop = Fraction(5, 2) # End at 5/2 >>> step = Fraction(1, 2) # Count by 1/2 >>> list(numeric_range(start, stop, step)) [Fraction(1, 2), Fraction(1, 1), Fraction(3, 2), Fraction(2, 1)] If *step* is zero, ``ValueError`` is raised. Negative steps are supported: >>> list(numeric_range(3, -1, -1.0)) [3.0, 2.0, 1.0, 0.0] Be aware of the limitations of floating point numbers; the representation of the yielded numbers may be surprising. ``datetime.datetime`` objects can be used for *start* and *stop*, if *step* is a ``datetime.timedelta`` object: >>> import datetime >>> start = datetime.datetime(2019, 1, 1) >>> stop = datetime.datetime(2019, 1, 3) >>> step = datetime.timedelta(days=1) >>> items = numeric_range(start, stop, step) >>> next(items) datetime.datetime(2019, 1, 1, 0, 0) >>> next(items) datetime.datetime(2019, 1, 2, 0, 0) """ argc = len(args) if argc == 1: stop, = args start = type(stop)(0) step = 1 elif argc == 2: start, stop = args step = 1 elif argc == 3: start, stop, step = args else: err_msg = 'numeric_range takes at most 3 arguments, got {}' raise TypeError(err_msg.format(argc)) values = (start + (step * n) for n in count()) zero = type(step)(0) if step > zero: return takewhile(partial(gt, stop), values) elif step < zero: return takewhile(partial(lt, stop), values) else: raise ValueError('numeric_range arg 3 must not be zero') def count_cycle(iterable, n=None): """Cycle through the items from *iterable* up to *n* times, yielding the number of completed cycles along with each item. If *n* is omitted the process repeats indefinitely. >>> list(count_cycle('AB', 3)) [(0, 'A'), (0, 'B'), (1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')] """ iterable = tuple(iterable) if not iterable: return iter(()) counter = count() if n is None else range(n) return ((i, item) for i in counter for item in iterable) def locate(iterable, pred=bool, window_size=None): """Yield the index of each item in *iterable* for which *pred* returns ``True``. *pred* defaults to :func:`bool`, which will select truthy items: >>> list(locate([0, 1, 1, 0, 1, 0, 0])) [1, 2, 4] Set *pred* to a custom function to, e.g., find the indexes for a particular item. >>> list(locate(['a', 'b', 'c', 'b'], lambda x: x == 'b')) [1, 3] If *window_size* is given, then the *pred* function will be called with that many items. This enables searching for sub-sequences: >>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3] >>> pred = lambda *args: args == (1, 2, 3) >>> list(locate(iterable, pred=pred, window_size=3)) [1, 5, 9] Use with :func:`seekable` to find indexes and then retrieve the associated items: >>> from itertools import count >>> from more_itertools import seekable >>> source = (3 * n + 1 if (n % 2) else n // 2 for n in count()) >>> it = seekable(source) >>> pred = lambda x: x > 100 >>> indexes = locate(it, pred=pred) >>> i = next(indexes) >>> it.seek(i) >>> next(it) 106 """ if window_size is None: return compress(count(), map(pred, iterable)) if window_size < 1: raise ValueError('window size must be at least 1') it = windowed(iterable, window_size, fillvalue=_marker) return compress(count(), starmap(pred, it)) def lstrip(iterable, pred): """Yield the items from *iterable*, but strip any from the beginning for which *pred* returns ``True``. For example, to remove a set of items from the start of an iterable: >>> iterable = (None, False, None, 1, 2, None, 3, False, None) >>> pred = lambda x: x in {None, False, ''} >>> list(lstrip(iterable, pred)) [1, 2, None, 3, False, None] This function is analogous to to :func:`str.lstrip`, and is essentially an wrapper for :func:`itertools.dropwhile`. """ return dropwhile(pred, iterable) def rstrip(iterable, pred): """Yield the items from *iterable*, but strip any from the end for which *pred* returns ``True``. For example, to remove a set of items from the end of an iterable: >>> iterable = (None, False, None, 1, 2, None, 3, False, None) >>> pred = lambda x: x in {None, False, ''} >>> list(rstrip(iterable, pred)) [None, False, None, 1, 2, None, 3] This function is analogous to :func:`str.rstrip`. """ cache = [] cache_append = cache.append cache_clear = cache.clear for x in iterable: if pred(x): cache_append(x) else: yield from cache cache_clear() yield x def strip(iterable, pred): """Yield the items from *iterable*, but strip any from the beginning and end for which *pred* returns ``True``. For example, to remove a set of items from both ends of an iterable: >>> iterable = (None, False, None, 1, 2, None, 3, False, None) >>> pred = lambda x: x in {None, False, ''} >>> list(strip(iterable, pred)) [1, 2, None, 3] This function is analogous to :func:`str.strip`. """ return rstrip(lstrip(iterable, pred), pred) def islice_extended(iterable, *args): """An extension of :func:`itertools.islice` that supports negative values for *stop*, *start*, and *step*. >>> iterable = iter('abcdefgh') >>> list(islice_extended(iterable, -4, -1)) ['e', 'f', 'g'] Slices with negative values require some caching of *iterable*, but this function takes care to minimize the amount of memory required. For example, you can use a negative step with an infinite iterator: >>> from itertools import count >>> list(islice_extended(count(), 110, 99, -2)) [110, 108, 106, 104, 102, 100] """ s = slice(*args) start = s.start stop = s.stop if s.step == 0: raise ValueError('step argument must be a non-zero integer or None.') step = s.step or 1 it = iter(iterable) if step > 0: start = 0 if (start is None) else start if start < 0: # Consume all but the last -start items cache = deque(enumerate(it, 1), maxlen=-start) len_iter = cache[-1][0] if cache else 0 # Adjust start to be positive i = max(len_iter + start, 0) # Adjust stop to be positive if stop is None: j = len_iter elif stop >= 0: j = min(stop, len_iter) else: j = max(len_iter + stop, 0) # Slice the cache n = j - i if n <= 0: return for index, item in islice(cache, 0, n, step): yield item elif (stop is not None) and (stop < 0): # Advance to the start position next(islice(it, start, start), None) # When stop is negative, we have to carry -stop items while # iterating cache = deque(islice(it, -stop), maxlen=-stop) for index, item in enumerate(it): cached_item = cache.popleft() if index % step == 0: yield cached_item cache.append(item) else: # When both start and stop are positive we have the normal case yield from islice(it, start, stop, step) else: start = -1 if (start is None) else start if (stop is not None) and (stop < 0): # Consume all but the last items n = -stop - 1 cache = deque(enumerate(it, 1), maxlen=n) len_iter = cache[-1][0] if cache else 0 # If start and stop are both negative they are comparable and # we can just slice. Otherwise we can adjust start to be negative # and then slice. if start < 0: i, j = start, stop else: i, j = min(start - len_iter, -1), None for index, item in list(cache)[i:j:step]: yield item else: # Advance to the stop position if stop is not None: m = stop + 1 next(islice(it, m, m), None) # stop is positive, so if start is negative they are not comparable # and we need the rest of the items. if start < 0: i = start n = None # stop is None and start is positive, so we just need items up to # the start index. elif stop is None: i = None n = start + 1 # Both stop and start are positive, so they are comparable. else: i = None n = start - stop if n <= 0: return cache = list(islice(it, n)) yield from cache[i::step] def always_reversible(iterable): """An extension of :func:`reversed` that supports all iterables, not just those which implement the ``Reversible`` or ``Sequence`` protocols. >>> print(*always_reversible(x for x in range(3))) 2 1 0 If the iterable is already reversible, this function returns the result of :func:`reversed()`. If the iterable is not reversible, this function will cache the remaining items in the iterable and yield them in reverse order, which may require significant storage. """ try: return reversed(iterable) except TypeError: return reversed(list(iterable)) def consecutive_groups(iterable, ordering=lambda x: x): """Yield groups of consecutive items using :func:`itertools.groupby`. The *ordering* function determines whether two items are adjacent by returning their position. By default, the ordering function is the identity function. This is suitable for finding runs of numbers: >>> iterable = [1, 10, 11, 12, 20, 30, 31, 32, 33, 40] >>> for group in consecutive_groups(iterable): ... print(list(group)) [1] [10, 11, 12] [20] [30, 31, 32, 33] [40] For finding runs of adjacent letters, try using the :meth:`index` method of a string of letters: >>> from string import ascii_lowercase >>> iterable = 'abcdfgilmnop' >>> ordering = ascii_lowercase.index >>> for group in consecutive_groups(iterable, ordering): ... print(list(group)) ['a', 'b', 'c', 'd'] ['f', 'g'] ['i'] ['l', 'm', 'n', 'o', 'p'] Each group of consecutive items is an iterator that shares it source with *iterable*. When an an output group is advanced, the previous group is no longer available unless its elements are copied (e.g., into a ``list``). >>> iterable = [1, 2, 11, 12, 21, 22] >>> saved_groups = [] >>> for group in consecutive_groups(iterable): ... saved_groups.append(list(group)) # Copy group elements >>> saved_groups [[1, 2], [11, 12], [21, 22]] """ for k, g in groupby( enumerate(iterable), key=lambda x: x[0] - ordering(x[1]) ): yield map(itemgetter(1), g) def difference(iterable, func=sub, *, initial=None): """By default, compute the first difference of *iterable* using :func:`operator.sub`. >>> iterable = [0, 1, 3, 6, 10] >>> list(difference(iterable)) [0, 1, 2, 3, 4] This is the opposite of :func:`itertools.accumulate`'s default behavior: >>> from itertools import accumulate >>> iterable = [0, 1, 2, 3, 4] >>> list(accumulate(iterable)) [0, 1, 3, 6, 10] >>> list(difference(accumulate(iterable))) [0, 1, 2, 3, 4] By default *func* is :func:`operator.sub`, but other functions can be specified. They will be applied as follows:: A, B, C, D, ... --> A, func(B, A), func(C, B), func(D, C), ... For example, to do progressive division: >>> iterable = [1, 2, 6, 24, 120] # Factorial sequence >>> func = lambda x, y: x // y >>> list(difference(iterable, func)) [1, 2, 3, 4, 5] Since Python 3.8, :func:`itertools.accumulate` can be supplied with an *initial* keyword argument. If :func:`difference` is called with *initial* set to something other than ``None``, it will skip the first element when computing successive differences. >>> iterable = [100, 101, 103, 106] # accumate([1, 2, 3], initial=100) >>> list(difference(iterable, initial=100)) [1, 2, 3] """ a, b = tee(iterable) try: first = [next(b)] except StopIteration: return iter([]) if initial is not None: first = [] return chain(first, starmap(func, zip(b, a))) class SequenceView(Sequence): """Return a read-only view of the sequence object *target*. :class:`SequenceView` objects are analogous to Python's built-in "dictionary view" types. They provide a dynamic view of a sequence's items, meaning that when the sequence updates, so does the view. >>> seq = ['0', '1', '2'] >>> view = SequenceView(seq) >>> view SequenceView(['0', '1', '2']) >>> seq.append('3') >>> view SequenceView(['0', '1', '2', '3']) Sequence views support indexing, slicing, and length queries. They act like the underlying sequence, except they don't allow assignment: >>> view[1] '1' >>> view[1:-1] ['1', '2'] >>> len(view) 4 Sequence views are useful as an alternative to copying, as they don't require (much) extra storage. """ def __init__(self, target): if not isinstance(target, Sequence): raise TypeError self._target = target def __getitem__(self, index): return self._target[index] def __len__(self): return len(self._target) def __repr__(self): return '{}({})'.format(self.__class__.__name__, repr(self._target)) class seekable: """Wrap an iterator to allow for seeking backward and forward. This progressively caches the items in the source iterable so they can be re-visited. Call :meth:`seek` with an index to seek to that position in the source iterable. To "reset" an iterator, seek to ``0``: >>> from itertools import count >>> it = seekable((str(n) for n in count())) >>> next(it), next(it), next(it) ('0', '1', '2') >>> it.seek(0) >>> next(it), next(it), next(it) ('0', '1', '2') >>> next(it) '3' You can also seek forward: >>> it = seekable((str(n) for n in range(20))) >>> it.seek(10) >>> next(it) '10' >>> it.seek(20) # Seeking past the end of the source isn't a problem >>> list(it) [] >>> it.seek(0) # Resetting works even after hitting the end >>> next(it), next(it), next(it) ('0', '1', '2') The cache grows as the source iterable progresses, so beware of wrapping very large or infinite iterables. You may view the contents of the cache with the :meth:`elements` method. That returns a :class:`SequenceView`, a view that updates automatically: >>> it = seekable((str(n) for n in range(10))) >>> next(it), next(it), next(it) ('0', '1', '2') >>> elements = it.elements() >>> elements SequenceView(['0', '1', '2']) >>> next(it) '3' >>> elements SequenceView(['0', '1', '2', '3']) """ def __init__(self, iterable): self._source = iter(iterable) self._cache = [] self._index = None def __iter__(self): return self def __next__(self): if self._index is not None: try: item = self._cache[self._index] except IndexError: self._index = None else: self._index += 1 return item item = next(self._source) self._cache.append(item) return item def elements(self): return SequenceView(self._cache) def seek(self, index): self._index = index remainder = index - len(self._cache) if remainder > 0: consume(self, remainder) class run_length: """ :func:`run_length.encode` compresses an iterable with run-length encoding. It yields groups of repeated items with the count of how many times they were repeated: >>> uncompressed = 'abbcccdddd' >>> list(run_length.encode(uncompressed)) [('a', 1), ('b', 2), ('c', 3), ('d', 4)] :func:`run_length.decode` decompresses an iterable that was previously compressed with run-length encoding. It yields the items of the decompressed iterable: >>> compressed = [('a', 1), ('b', 2), ('c', 3), ('d', 4)] >>> list(run_length.decode(compressed)) ['a', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'd', 'd'] """ @staticmethod def encode(iterable): return ((k, ilen(g)) for k, g in groupby(iterable)) @staticmethod def decode(iterable): return chain.from_iterable(repeat(k, n) for k, n in iterable) def exactly_n(iterable, n, predicate=bool): """Return ``True`` if exactly ``n`` items in the iterable are ``True`` according to the *predicate* function. >>> exactly_n([True, True, False], 2) True >>> exactly_n([True, True, False], 1) False >>> exactly_n([0, 1, 2, 3, 4, 5], 3, lambda x: x < 3) True The iterable will be advanced until ``n + 1`` truthy items are encountered, so avoid calling it on infinite iterables. """ return len(take(n + 1, filter(predicate, iterable))) == n def circular_shifts(iterable): """Return a list of circular shifts of *iterable*. >>> circular_shifts(range(4)) [(0, 1, 2, 3), (1, 2, 3, 0), (2, 3, 0, 1), (3, 0, 1, 2)] """ lst = list(iterable) return take(len(lst), windowed(cycle(lst), len(lst))) def make_decorator(wrapping_func, result_index=0): """Return a decorator version of *wrapping_func*, which is a function that modifies an iterable. *result_index* is the position in that function's signature where the iterable goes. This lets you use itertools on the "production end," i.e. at function definition. This can augment what the function returns without changing the function's code. For example, to produce a decorator version of :func:`chunked`: >>> from more_itertools import chunked >>> chunker = make_decorator(chunked, result_index=0) >>> @chunker(3) ... def iter_range(n): ... return iter(range(n)) ... >>> list(iter_range(9)) [[0, 1, 2], [3, 4, 5], [6, 7, 8]] To only allow truthy items to be returned: >>> truth_serum = make_decorator(filter, result_index=1) >>> @truth_serum(bool) ... def boolean_test(): ... return [0, 1, '', ' ', False, True] ... >>> list(boolean_test()) [1, ' ', True] The :func:`peekable` and :func:`seekable` wrappers make for practical decorators: >>> from more_itertools import peekable >>> peekable_function = make_decorator(peekable) >>> @peekable_function() ... def str_range(*args): ... return (str(x) for x in range(*args)) ... >>> it = str_range(1, 20, 2) >>> next(it), next(it), next(it) ('1', '3', '5') >>> it.peek() '7' >>> next(it) '7' """ # See https://sites.google.com/site/bbayles/index/decorator_factory for # notes on how this works. def decorator(*wrapping_args, **wrapping_kwargs): def outer_wrapper(f): def inner_wrapper(*args, **kwargs): result = f(*args, **kwargs) wrapping_args_ = list(wrapping_args) wrapping_args_.insert(result_index, result) return wrapping_func(*wrapping_args_, **wrapping_kwargs) return inner_wrapper return outer_wrapper return decorator def map_reduce(iterable, keyfunc, valuefunc=None, reducefunc=None): """Return a dictionary that maps the items in *iterable* to categories defined by *keyfunc*, transforms them with *valuefunc*, and then summarizes them by category with *reducefunc*. *valuefunc* defaults to the identity function if it is unspecified. If *reducefunc* is unspecified, no summarization takes place: >>> keyfunc = lambda x: x.upper() >>> result = map_reduce('abbccc', keyfunc) >>> sorted(result.items()) [('A', ['a']), ('B', ['b', 'b']), ('C', ['c', 'c', 'c'])] Specifying *valuefunc* transforms the categorized items: >>> keyfunc = lambda x: x.upper() >>> valuefunc = lambda x: 1 >>> result = map_reduce('abbccc', keyfunc, valuefunc) >>> sorted(result.items()) [('A', [1]), ('B', [1, 1]), ('C', [1, 1, 1])] Specifying *reducefunc* summarizes the categorized items: >>> keyfunc = lambda x: x.upper() >>> valuefunc = lambda x: 1 >>> reducefunc = sum >>> result = map_reduce('abbccc', keyfunc, valuefunc, reducefunc) >>> sorted(result.items()) [('A', 1), ('B', 2), ('C', 3)] You may want to filter the input iterable before applying the map/reduce procedure: >>> all_items = range(30) >>> items = [x for x in all_items if 10 <= x <= 20] # Filter >>> keyfunc = lambda x: x % 2 # Evens map to 0; odds to 1 >>> categories = map_reduce(items, keyfunc=keyfunc) >>> sorted(categories.items()) [(0, [10, 12, 14, 16, 18, 20]), (1, [11, 13, 15, 17, 19])] >>> summaries = map_reduce(items, keyfunc=keyfunc, reducefunc=sum) >>> sorted(summaries.items()) [(0, 90), (1, 75)] Note that all items in the iterable are gathered into a list before the summarization step, which may require significant storage. The returned object is a :obj:`collections.defaultdict` with the ``default_factory`` set to ``None``, such that it behaves like a normal dictionary. """ valuefunc = (lambda x: x) if (valuefunc is None) else valuefunc ret = defaultdict(list) for item in iterable: key = keyfunc(item) value = valuefunc(item) ret[key].append(value) if reducefunc is not None: for key, value_list in ret.items(): ret[key] = reducefunc(value_list) ret.default_factory = None return ret def rlocate(iterable, pred=bool, window_size=None): """Yield the index of each item in *iterable* for which *pred* returns ``True``, starting from the right and moving left. *pred* defaults to :func:`bool`, which will select truthy items: >>> list(rlocate([0, 1, 1, 0, 1, 0, 0])) # Truthy at 1, 2, and 4 [4, 2, 1] Set *pred* to a custom function to, e.g., find the indexes for a particular item: >>> iterable = iter('abcb') >>> pred = lambda x: x == 'b' >>> list(rlocate(iterable, pred)) [3, 1] If *window_size* is given, then the *pred* function will be called with that many items. This enables searching for sub-sequences: >>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3] >>> pred = lambda *args: args == (1, 2, 3) >>> list(rlocate(iterable, pred=pred, window_size=3)) [9, 5, 1] Beware, this function won't return anything for infinite iterables. If *iterable* is reversible, ``rlocate`` will reverse it and search from the right. Otherwise, it will search from the left and return the results in reverse order. See :func:`locate` to for other example applications. """ if window_size is None: try: len_iter = len(iterable) return (len_iter - i - 1 for i in locate(reversed(iterable), pred)) except TypeError: pass return reversed(list(locate(iterable, pred, window_size))) def replace(iterable, pred, substitutes, count=None, window_size=1): """Yield the items from *iterable*, replacing the items for which *pred* returns ``True`` with the items from the iterable *substitutes*. >>> iterable = [1, 1, 0, 1, 1, 0, 1, 1] >>> pred = lambda x: x == 0 >>> substitutes = (2, 3) >>> list(replace(iterable, pred, substitutes)) [1, 1, 2, 3, 1, 1, 2, 3, 1, 1] If *count* is given, the number of replacements will be limited: >>> iterable = [1, 1, 0, 1, 1, 0, 1, 1, 0] >>> pred = lambda x: x == 0 >>> substitutes = [None] >>> list(replace(iterable, pred, substitutes, count=2)) [1, 1, None, 1, 1, None, 1, 1, 0] Use *window_size* to control the number of items passed as arguments to *pred*. This allows for locating and replacing subsequences. >>> iterable = [0, 1, 2, 5, 0, 1, 2, 5] >>> window_size = 3 >>> pred = lambda *args: args == (0, 1, 2) # 3 items passed to pred >>> substitutes = [3, 4] # Splice in these items >>> list(replace(iterable, pred, substitutes, window_size=window_size)) [3, 4, 5, 3, 4, 5] """ if window_size < 1: raise ValueError('window_size must be at least 1') # Save the substitutes iterable, since it's used more than once substitutes = tuple(substitutes) # Add padding such that the number of windows matches the length of the # iterable it = chain(iterable, [_marker] * (window_size - 1)) windows = windowed(it, window_size) n = 0 for w in windows: # If the current window matches our predicate (and we haven't hit # our maximum number of replacements), splice in the substitutes # and then consume the following windows that overlap with this one. # For example, if the iterable is (0, 1, 2, 3, 4...) # and the window size is 2, we have (0, 1), (1, 2), (2, 3)... # If the predicate matches on (0, 1), we need to zap (0, 1) and (1, 2) if pred(*w): if (count is None) or (n < count): n += 1 yield from substitutes consume(windows, window_size - 1) continue # If there was no match (or we've reached the replacement limit), # yield the first item from the window. if w and (w[0] is not _marker): yield w[0] def partitions(iterable): """Yield all possible order-perserving partitions of *iterable*. >>> iterable = 'abc' >>> for part in partitions(iterable): ... print([''.join(p) for p in part]) ['abc'] ['a', 'bc'] ['ab', 'c'] ['a', 'b', 'c'] This is unrelated to :func:`partition`. """ sequence = list(iterable) n = len(sequence) for i in powerset(range(1, n)): yield [sequence[i:j] for i, j in zip((0,) + i, i + (n,))] def set_partitions(iterable, k=None): """ Yield the set partitions of *iterable* into *k* parts. Set partitions are not order-preserving. >>> iterable = 'abc' >>> for part in set_partitions(iterable, 2): ... print([''.join(p) for p in part]) ['a', 'bc'] ['ab', 'c'] ['b', 'ac'] If *k* is not given, every set partition is generated. >>> iterable = 'abc' >>> for part in set_partitions(iterable): ... print([''.join(p) for p in part]) ['abc'] ['a', 'bc'] ['ab', 'c'] ['b', 'ac'] ['a', 'b', 'c'] """ L = list(iterable) n = len(L) if k is not None: if k < 1: raise ValueError( "Can't partition in a negative or zero number of groups" ) elif k > n: return def set_partitions_helper(L, k): n = len(L) if k == 1: yield [L] elif n == k: yield [[s] for s in L] else: e, *M = L for p in set_partitions_helper(M, k - 1): yield [[e], *p] for p in set_partitions_helper(M, k): for i in range(len(p)): yield p[:i] + [[e] + p[i]] + p[i + 1 :] if k is None: for k in range(1, n + 1): yield from set_partitions_helper(L, k) else: yield from set_partitions_helper(L, k) def time_limited(limit_seconds, iterable): """ Yield items from *iterable* until *limit_seconds* have passed. >>> from time import sleep >>> def generator(): ... yield 1 ... yield 2 ... sleep(0.2) ... yield 3 >>> iterable = generator() >>> list(time_limited(0.1, iterable)) [1, 2] Note that the time is checked before each item is yielded, and iteration stops if the time elapsed is greater than *limit_seconds*. If your time limit is 1 second, but it takes 2 seconds to generate the first item from the iterable, the function will run for 2 seconds and not yield anything. """ if limit_seconds < 0: raise ValueError('limit_seconds must be positive') start_time = monotonic() for item in iterable: if monotonic() - start_time > limit_seconds: break yield item def only(iterable, default=None, too_long=None): """If *iterable* has only one item, return it. If it has zero items, return *default*. If it has more than one item, raise the exception given by *too_long*, which is ``ValueError`` by default. >>> only([], default='missing') 'missing' >>> only([1]) 1 >>> only([1, 2]) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError: Expected exactly one item in iterable, but got 1, 2, and perhaps more.' >>> only([1, 2], too_long=TypeError) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... TypeError Note that :func:`only` attempts to advance *iterable* twice to ensure there is only one item. See :func:`spy` or :func:`peekable` to check iterable contents less destructively. """ it = iter(iterable) first_value = next(it, default) try: second_value = next(it) except StopIteration: pass else: msg = ( 'Expected exactly one item in iterable, but got {!r}, {!r}, ' 'and perhaps more.'.format(first_value, second_value) ) raise too_long or ValueError(msg) return first_value def ichunked(iterable, n): """Break *iterable* into sub-iterables with *n* elements each. :func:`ichunked` is like :func:`chunked`, but it yields iterables instead of lists. If the sub-iterables are read in order, the elements of *iterable* won't be stored in memory. If they are read out of order, :func:`itertools.tee` is used to cache elements as necessary. >>> from itertools import count >>> all_chunks = ichunked(count(), 4) >>> c_1, c_2, c_3 = next(all_chunks), next(all_chunks), next(all_chunks) >>> list(c_2) # c_1's elements have been cached; c_3's haven't been [4, 5, 6, 7] >>> list(c_1) [0, 1, 2, 3] >>> list(c_3) [8, 9, 10, 11] """ source = iter(iterable) while True: # Check to see whether we're at the end of the source iterable item = next(source, _marker) if item is _marker: return # Clone the source and yield an n-length slice source, it = tee(chain([item], source)) yield islice(it, n) # Advance the source iterable consume(source, n) def distinct_combinations(iterable, r): """Yield the distinct combinations of *r* items taken from *iterable*. >>> list(distinct_combinations([0, 0, 1], 2)) [(0, 0), (0, 1)] Equivalent to ``set(combinations(iterable))``, except duplicates are not generated and thrown away. For larger input sequences this is much more efficient. """ if r < 0: raise ValueError('r must be non-negative') elif r == 0: yield () else: pool = tuple(iterable) for i, prefix in unique_everseen(enumerate(pool), key=itemgetter(1)): for suffix in distinct_combinations(pool[i + 1 :], r - 1): yield (prefix,) + suffix def filter_except(validator, iterable, *exceptions): """Yield the items from *iterable* for which the *validator* function does not raise one of the specified *exceptions*. *validator* is called for each item in *iterable*. It should be a function that accepts one argument and raises an exception if that item is not valid. >>> iterable = ['1', '2', 'three', '4', None] >>> list(filter_except(int, iterable, ValueError, TypeError)) ['1', '2', '4'] If an exception other than one given by *exceptions* is raised by *validator*, it is raised like normal. """ exceptions = tuple(exceptions) for item in iterable: try: validator(item) except exceptions: pass else: yield item def map_except(function, iterable, *exceptions): """Transform each item from *iterable* with *function* and yield the result, unless *function* raises one of the specified *exceptions*. *function* is called to transform each item in *iterable*. It should be a accept one argument. >>> iterable = ['1', '2', 'three', '4', None] >>> list(map_except(int, iterable, ValueError, TypeError)) [1, 2, 4] If an exception other than one given by *exceptions* is raised by *function*, it is raised like normal. """ exceptions = tuple(exceptions) for item in iterable: try: yield function(item) except exceptions: pass
409eab8e92a731bec8c3fbce3195ffe60d53c1e0
9625c5665611a5a1e92fa8fbe230ede1154d5a49
/apps/messenger/migrations/0001_initial.py
c4ef6f5702b59c2470d2ec769a6bf7fa81872b28
[]
no_license
Alfredynho/Sistema-Venta-de-Motos
94a6ffcc45409faaea44f89389f89b6b1bfe0905
136b6d7c7cbcf4b5432212ae588d47a27fdcb348
refs/heads/master
2021-05-15T00:46:55.811827
2017-09-10T17:58:58
2017-09-10T17:58:58
103,049,391
0
1
null
null
null
null
UTF-8
Python
false
false
1,425
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-07-18 03:11 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='MessengerInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('messenger_id', models.CharField(blank=True, max_length=255, null=True, verbose_name='Messenger ID')), ('nombre', models.CharField(blank=True, max_length=150, null=True, verbose_name='Nombre')), ('apellido', models.CharField(blank=True, max_length=150, null=True, verbose_name='Apellido')), ('foto_perfil', models.CharField(blank=True, max_length=150, null=True, verbose_name='Foto de Perfil')), ('lugar', models.CharField(blank=True, max_length=150, null=True, verbose_name='Lugar')), ('zona_horaria', models.CharField(blank=True, max_length=150, null=True, verbose_name='Zona Horaria')), ('genero', models.CharField(blank=True, max_length=150, null=True, verbose_name='Género')), ], options={ 'verbose_name_plural': 'Usuarios', 'verbose_name': 'Usuario', }, ), ]
339af08ee79097195e0eb7a1db67191f4741fa12
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_ringers.py
3df2b9591b997bead80abf3adb13ac12e6619cac
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
from xai.brain.wordbase.nouns._ringer import _RINGER #calss header class _RINGERS(_RINGER, ): def __init__(self,): _RINGER.__init__(self) self.name = "RINGERS" self.specie = 'nouns' self.basic = "ringer" self.jsondata = {}
bafac5b9571935c5109690accb7731b96dd87dab
b449adf6024f393937df5253ed5d955236942370
/src/model.py
1d953f67a8d3e0255d1e517c5f686393e6cb474f
[]
no_license
futianfan/HINT
b8b6654483e2a760d2d6ce148e9b8e07dfd20c3c
8a593f720747a3e9a1343d3f3fb5cf9ae54c7ab7
refs/heads/main
2023-01-21T10:54:25.910820
2020-11-28T15:19:25
2020-11-28T15:19:25
316,760,176
0
0
null
null
null
null
UTF-8
Python
false
false
20,629
py
''' ''' from sklearn.metrics import roc_auc_score, f1_score, average_precision_score, precision_score, recall_score, accuracy_score import matplotlib.pyplot as plt from copy import deepcopy import numpy as np import torch from torch import nn from torch.autograd import Variable import torch.nn.functional as F from module import Highway, GCN class Interaction(nn.Sequential): def __init__(self, molecule_encoder, disease_encoder, protocol_encoder, global_embed_size, highway_num_layer, prefix_name, epoch = 20, lr = 3e-4, weight_decay = 0, ): super(Interaction, self).__init__() self.molecule_encoder = molecule_encoder self.disease_encoder = disease_encoder self.protocol_encoder = protocol_encoder self.global_embed_size = global_embed_size self.highway_num_layer = highway_num_layer self.feature_dim = self.molecule_encoder.embedding_size + self.disease_encoder.embedding_size + self.protocol_encoder.embedding_size self.epoch = epoch self.lr = lr self.weight_decay = weight_decay self.save_name = prefix_name + '_interaction' self.f = F.relu self.loss = nn.BCEWithLogitsLoss() ##### NN self.encoder2interaction_fc = nn.Linear(self.feature_dim, self.global_embed_size) self.encoder2interaction_highway = Highway(self.global_embed_size, self.highway_num_layer) self.pred_nn = nn.Linear(self.global_embed_size, 1) def feed_lst_of_module(self, input_feature, lst_of_module): x = input_feature for single_module in lst_of_module: x = self.f(single_module(x)) return x def forward_get_three_encoders(self, smiles_lst2, icdcode_lst3, criteria_lst): molecule_embed = self.molecule_encoder.forward_smiles_lst_lst(smiles_lst2) icd_embed = self.disease_encoder.forward_code_lst3(icdcode_lst3) protocol_embed = self.protocol_encoder.forward(criteria_lst) return molecule_embed, icd_embed, protocol_embed def forward_encoder_2_interaction(self, molecule_embed, icd_embed, protocol_embed): encoder_embedding = torch.cat([molecule_embed, icd_embed, protocol_embed], 1) interaction_embedding = self.feed_lst_of_module(encoder_embedding, [self.encoder2interaction_fc, self.encoder2interaction_highway]) return interaction_embedding def forward(self, smiles_lst2, icdcode_lst3, criteria_lst): molecule_embed, icd_embed, protocol_embed = self.forward_get_three_encoders(smiles_lst2, icdcode_lst3, criteria_lst) interaction_embedding = self.forward_encoder_2_interaction(molecule_embed, icd_embed, protocol_embed) output = self.pred_nn(interaction_embedding) return output ### 32, 1 def evaluation(self, predict_all, label_all, threshold = 0.5): import pickle, os from sklearn.metrics import roc_curve, precision_recall_curve with open("predict_label.txt", 'w') as fout: for i,j in zip(predict_all, label_all): fout.write(str(i)[:4] + '\t' + str(j)[:4]+'\n') auc_score = roc_auc_score(label_all, predict_all) figure_folder = "figure" #### ROC-curve fpr, tpr, thresholds = roc_curve(label_all, predict_all, pos_label=1) roc_curve =plt.figure() plt.plot(fpr,tpr,'-',label=self.save_name + ' ROC Curve ') plt.legend(fontsize = 15) #plt.savefig(os.path.join(figure_folder,name+"_roc_curve.png")) #### PR-curve precision, recall, thresholds = precision_recall_curve(label_all, predict_all) plt.plot(recall,precision, label = self.save_name + ' PR Curve') plt.legend(fontsize = 15) plt.savefig(os.path.join(figure_folder,self.save_name + "_pr_curve.png")) label_all = [int(i) for i in label_all] float2binary = lambda x:0 if x<threshold else 1 predict_all = list(map(float2binary, predict_all)) f1score = f1_score(label_all, predict_all) prauc_score = average_precision_score(label_all, predict_all) # print(predict_all) precision = precision_score(label_all, predict_all) recall = recall_score(label_all, predict_all) accuracy = accuracy_score(label_all, predict_all) predict_1_ratio = sum(predict_all) / len(predict_all) label_1_ratio = sum(label_all) / len(label_all) return auc_score, f1score, prauc_score, precision, recall, accuracy, predict_1_ratio, label_1_ratio def testloader_to_lst(self, dataloader): nctid_lst, label_lst, smiles_lst2, icdcode_lst3, criteria_lst = [], [], [], [], [] for nctid, label, smiles, icdcode, criteria in dataloader: nctid_lst.extend(nctid) label_lst.extend([i.item() for i in label]) smiles_lst2.extend(smiles) icdcode_lst3.extend(icdcode) criteria_lst.extend(criteria) length = len(nctid_lst) assert length == len(smiles_lst2) and length == len(icdcode_lst3) return nctid_lst, label_lst, smiles_lst2, icdcode_lst3, criteria_lst, length def generate_predict(self, dataloader): whole_loss = 0 label_all, predict_all = [], [] for nctid_lst, label_vec, smiles_lst2, icdcode_lst3, criteria_lst in dataloader: output = self.forward(smiles_lst2, icdcode_lst3, criteria_lst).view(-1) loss = self.loss(output, label_vec.float()) whole_loss += loss.item() predict_all.extend([i.item() for i in torch.sigmoid(output)]) label_all.extend([i.item() for i in label_vec]) return whole_loss, predict_all, label_all def bootstrap_test(self, dataloader, sample_num = 20): # if validloader is not None: # best_threshold = self.select_threshold_for_binary(validloader) self.eval() best_threshold = 0.5 whole_loss, predict_all, label_all = self.generate_predict(dataloader) def bootstrap(length, sample_num): idx = [i for i in range(length)] from random import choices bootstrap_idx = [choices(idx, k = length) for i in range(sample_num)] return bootstrap_idx results_lst = [] bootstrap_idx_lst = bootstrap(len(predict_all), sample_num = sample_num) for bootstrap_idx in bootstrap_idx_lst: bootstrap_label = [label_all[idx] for idx in bootstrap_idx] bootstrap_predict = [predict_all[idx] for idx in bootstrap_idx] results = self.evaluation(bootstrap_predict, bootstrap_label, threshold = best_threshold) results_lst.append(results) auc = [results[0] for results in results_lst] f1score = [results[1] for results in results_lst] prauc_score = [results[2] for results in results_lst] print("prauc_score", np.mean(prauc_score), np.std(prauc_score)) print("f1score", np.mean(f1score), np.std(f1score)) print("auc", np.mean(auc), np.std(auc)) def test(self, dataloader, return_loss = True, validloader=None): # if validloader is not None: # best_threshold = self.select_threshold_for_binary(validloader) self.eval() best_threshold = 0.5 whole_loss, predict_all, label_all = self.generate_predict(dataloader) from utils import plot_hist plt.clf() prefix_name = "./figure/" + self.save_name plot_hist(prefix_name, predict_all, label_all) self.train() if return_loss: return whole_loss else: print_num = 5 auc_score, f1score, prauc_score, precision, recall, accuracy, \ predict_1_ratio, label_1_ratio = self.evaluation(predict_all, label_all, threshold = best_threshold) print("ROC AUC: " + str(auc_score)[:print_num] + "\nF1: " + str(f1score)[:print_num] \ + "\nPR-AUC: " + str(prauc_score)[:print_num] \ + "\nPrecision: " + str(precision)[:print_num] \ + "\nrecall: "+str(recall)[:print_num] + "\naccuracy: "+str(accuracy)[:print_num] \ + "\npredict 1 ratio: " + str(predict_1_ratio)[:print_num] \ + "\nlabel 1 ratio: " + str(label_1_ratio)[:print_num]) return auc_score, f1score, prauc_score, precision, recall, accuracy, predict_1_ratio, label_1_ratio def learn(self, train_loader, valid_loader, test_loader): opt = torch.optim.Adam(self.parameters(), lr = self.lr, weight_decay = self.weight_decay) train_loss_record = [] valid_loss = self.test(valid_loader, return_loss=True) valid_loss_record = [valid_loss] best_valid_loss = valid_loss best_model = deepcopy(self) for ep in range(self.epoch): for nctid_lst, label_vec, smiles_lst2, icdcode_lst3, criteria_lst in train_loader: output = self.forward(smiles_lst2, icdcode_lst3, criteria_lst).view(-1) #### 32, 1 -> 32, || label_vec 32, loss = self.loss(output, label_vec.float()) train_loss_record.append(loss.item()) opt.zero_grad() loss.backward() opt.step() valid_loss = self.test(valid_loader, return_loss=True) valid_loss_record.append(valid_loss) if valid_loss < best_valid_loss: best_valid_loss = valid_loss best_model = deepcopy(self) self.plot_learning_curve(train_loss_record, valid_loss_record) self = deepcopy(best_model) auc_score, f1score, prauc_score, precision, recall, accuracy, predict_1_ratio, label_1_ratio = self.test(test_loader, return_loss = False, validloader = valid_loader) def plot_learning_curve(self, train_loss_record, valid_loss_record): plt.plot(train_loss_record) plt.savefig("./figure/" + self.save_name + '_train_loss.jpg') plt.clf() plt.plot(valid_loss_record) plt.savefig("./figure/" + self.save_name + '_valid_loss.jpg') plt.clf() def select_threshold_for_binary(self, validloader): _, prediction, label_all = self.generate_predict(validloader) best_f1 = 0 for threshold in prediction: float2binary = lambda x:0 if x<threshold else 1 predict_all = list(map(float2binary, prediction)) f1score = precision_score(label_all, predict_all) if f1score > best_f1: best_f1 = f1score best_threshold = threshold return best_threshold class HINT_nograph(Interaction): def __init__(self, molecule_encoder, disease_encoder, protocol_encoder, global_embed_size, highway_num_layer, prefix_name, epoch = 20, lr = 3e-4, weight_decay = 0, ): super(HINT_nograph, self).__init__(molecule_encoder = molecule_encoder, disease_encoder = disease_encoder, protocol_encoder = protocol_encoder, global_embed_size = global_embed_size, prefix_name = prefix_name, highway_num_layer = highway_num_layer, epoch = epoch, lr = lr, weight_decay = weight_decay, ) self.save_name = prefix_name + '_HINT_nograph' ''' ### interaction model self.molecule_encoder = molecule_encoder self.disease_encoder = disease_encoder self.protocol_encoder = protocol_encoder self.global_embed_size = global_embed_size self.highway_num_layer = highway_num_layer self.feature_dim = self.molecule_encoder.embedding_size + self.disease_encoder.embedding_size + self.protocol_encoder.embedding_size self.epoch = epoch self.lr = lr self.weight_decay = weight_decay self.save_name = save_name self.f = F.relu self.loss = nn.BCEWithLogitsLoss() ##### NN self.encoder2interaction_fc = nn.Linear(self.feature_dim, self.global_embed_size) self.encoder2interaction_highway = Highway(self.global_embed_size, self.highway_num_layer) self.pred_nn = nn.Linear(self.global_embed_size, 1) ''' #### risk of disease self.risk_disease_fc = nn.Linear(self.disease_encoder.embedding_size, self.global_embed_size) self.risk_disease_higway = Highway(self.global_embed_size, self.highway_num_layer) #### augment interaction self.augment_interaction_fc = nn.Linear(self.global_embed_size*2, self.global_embed_size) self.augment_interaction_highway = Highway(self.global_embed_size, self.highway_num_layer) #### ADMET self.admet_model = [] for i in range(5): admet_fc = nn.Linear(self.molecule_encoder.embedding_size, self.global_embed_size) admet_highway = Highway(self.global_embed_size, self.highway_num_layer) self.admet_model.append((admet_fc, admet_highway)) #### PK self.pk_fc = nn.Linear(self.global_embed_size*5, self.global_embed_size) self.pk_highway = Highway(self.global_embed_size, self.highway_num_layer) #### trial node self.trial_fc = nn.Linear(self.global_embed_size*2, self.global_embed_size) self.trial_highway = Highway(self.global_embed_size, self.highway_num_layer) ## self.pred_nn = nn.Linear(self.global_embed_size, 1) def forward(self, smiles_lst2, icdcode_lst3, criteria_lst, if_gnn = False): ### encoder for molecule, disease and protocol molecule_embed, icd_embed, protocol_embed = self.forward_get_three_encoders(smiles_lst2, icdcode_lst3, criteria_lst) ### interaction interaction_embedding = self.forward_encoder_2_interaction(molecule_embed, icd_embed, protocol_embed) ### risk of disease risk_of_disease_embedding = self.feed_lst_of_module(input_feature = icd_embed, lst_of_module = [self.risk_disease_fc, self.risk_disease_higway]) ### augment interaction augment_interaction_input = torch.cat([interaction_embedding, risk_of_disease_embedding], 1) augment_interaction_embedding = self.feed_lst_of_module(input_feature = augment_interaction_input, lst_of_module = [self.augment_interaction_fc, self.augment_interaction_highway]) ### admet admet_embedding_lst = [] for idx in range(5): admet_embedding = self.feed_lst_of_module(input_feature = molecule_embed, lst_of_module = self.admet_model[idx]) admet_embedding_lst.append(admet_embedding) ### pk pk_input = torch.cat(admet_embedding_lst, 1) pk_embedding = self.feed_lst_of_module(input_feature = pk_input, lst_of_module = [self.pk_fc, self.pk_highway]) ### trial trial_input = torch.cat([pk_embedding, augment_interaction_embedding], 1) trial_embedding = self.feed_lst_of_module(input_feature = trial_input, lst_of_module = [self.trial_fc, self.trial_highway]) output = self.pred_nn(trial_embedding) if if_gnn == False: return output else: embedding_lst = [molecule_embed, icd_embed, protocol_embed, interaction_embedding, risk_of_disease_embedding, \ augment_interaction_embedding] + admet_embedding_lst + [pk_embedding, trial_embedding] return embedding_lst class HINT(HINT_nograph): def __init__(self, molecule_encoder, disease_encoder, protocol_encoder, global_embed_size, highway_num_layer, prefix_name, gnn_hidden_size, epoch = 20, lr = 3e-4, weight_decay = 0,): super(HINT, self).__init__(molecule_encoder = molecule_encoder, disease_encoder = disease_encoder, protocol_encoder = protocol_encoder, prefix_name = prefix_name, global_embed_size = global_embed_size, highway_num_layer = highway_num_layer, epoch = epoch, lr = lr, weight_decay = weight_decay) self.save_name = prefix_name + '_HINT' self.gnn_hidden_size = gnn_hidden_size #### GNN self.adj = self.generate_adj() self.gnn = GCN( nfeat = self.global_embed_size, nhid = self.gnn_hidden_size, nclass = 1, dropout = 0.6, init = 'uniform') ### gnn's attention self.node_size = self.adj.shape[0] self.graph_attention_model_mat = [[self.gnn_attention() \ if self.adj[i,j]==1 else None \ for j in range(self.node_size)] \ for i in range(self.node_size)] def generate_adj(self): ##### consistent with HINT_nograph.forward lst = ["molecule", "disease", "criteria", 'INTERACTION', 'risk_disease', 'augment_interaction', 'A', 'D', 'M', 'E', 'T', 'PK', "final"] edge_lst = [("disease", "molecule"), ("disease", "criteria"), ("molecule", "criteria"), ("disease", "INTERACTION"), ("molecule", "INTERACTION"), ("criteria", "INTERACTION"), ("disease", "risk_disease"), ('risk_disease', 'augment_interaction'), ('INTERACTION', 'augment_interaction'), ("molecule", "A"), ("molecule", "D"), ("molecule", "M"), ("molecule", "E"), ("molecule", "T"), ('A', 'PK'), ('D', 'PK'), ('M', 'PK'), ('E', 'PK'), ('T', 'PK'), ('augment_interaction', 'final'), ('PK', 'final')] adj = torch.zeros(len(lst), len(lst)) adj = torch.eye(len(lst)) * len(lst) num2str = {k:v for k,v in enumerate(lst)} str2num = {v:k for k,v in enumerate(lst)} for i,j in edge_lst: n1,n2 = str2num[i], str2num[j] adj[n1,n2] = 1 adj[n2,n1] = 1 return adj def generate_attention_matrx(self, node_feature_mat): attention_mat = torch.zeros(self.node_size, self.node_size) for i in range(self.node_size): for j in range(self.node_size): if self.adj[i,j]!=1: continue feature = torch.cat([node_feature_mat[i].view(1,-1), node_feature_mat[j].view(1,-1)], 1) attention_model = self.graph_attention_model_mat[i][j] attention_mat[i,j] = torch.sigmoid(self.feed_lst_of_module(input_feature=feature, lst_of_module=attention_model)) return attention_mat ##### self.global_embed_size*2 -> 1 def gnn_attention(self): highway_nn = Highway(size = self.global_embed_size*2, num_layers = self.highway_num_layer) highway_fc = nn.Linear(self.global_embed_size*2, 1) return [highway_nn, highway_fc] def forward(self, smiles_lst2, icdcode_lst3, criteria_lst, return_attention_matrix = False): embedding_lst = HINT_nograph.forward(self, smiles_lst2, icdcode_lst3, criteria_lst, if_gnn = True) ### length is 13, each is 32,50 batch_size = embedding_lst[0].shape[0] output_lst = [] if return_attention_matrix: attention_mat_lst = [] for i in range(batch_size): node_feature_lst = [embedding[i].view(1,-1) for embedding in embedding_lst] node_feature_mat = torch.cat(node_feature_lst, 0) ### 13, 50 attention_mat = self.generate_attention_matrx(node_feature_mat) output = self.gnn(node_feature_mat, self.adj * attention_mat) output = output[-1].view(1,-1) output_lst.append(output) if return_attention_matrix: attention_mat_lst.append(attention_mat) output_mat = torch.cat(output_lst, 0) if not return_attention_matrix: return output_mat else: return output_mat, attention_mat_lst def interpret(self, complete_dataloader): from graph_visualize_interpret import data2graph from utils import replace_strange_symbol for nctid_lst, status_lst, why_stop_lst, label_vec, phase_lst, \ diseases_lst, icdcode_lst3, drugs_lst, smiles_lst2, criteria_lst in complete_dataloader: output, attention_mat_lst = self.forward(smiles_lst2, icdcode_lst3, criteria_lst, return_attention_matrix=True) output = output.view(-1) batch_size = len(nctid_lst) for i in range(batch_size): name = '__'.join([nctid_lst[i], status_lst[i], why_stop_lst[i], \ str(label_vec[i].item()), str(torch.sigmoid(output[i]).item())[:5], \ phase_lst[i], diseases_lst[i], drugs_lst[i]]) if len(name) > 150: name = name[:250] name = replace_strange_symbol(name) name = name.replace('__', '_') name = name.replace(' ', ' ') name = 'interpret_result/' + name + '.png' print(name) data2graph(attention_matrix = attention_mat_lst[i], adj = self.adj, save_name = name) ### generate attention matrix class Only_Molecule(Interaction): def __init__(self, molecule_encoder, disease_encoder, protocol_encoder, global_embed_size, highway_num_layer, prefix_name, epoch = 20, lr = 3e-4, weight_decay = 0): super(Only_Molecule, self).__init__(molecule_encoder=molecule_encoder, disease_encoder=disease_encoder, protocol_encoder=protocol_encoder, global_embed_size = global_embed_size, highway_num_layer = highway_num_layer, prefix_name = prefix_name, epoch = epoch, lr = lr, weight_decay = weight_decay,) self.molecule2out = nn.Linear(self.global_embed_size,1) def forward(self, smiles_lst2, icdcode_lst3, criteria_lst): molecule_embed = self.molecule_encoder.forward_smiles_lst_lst(smiles_lst2) return self.molecule2out(molecule_embed) class Only_Disease(Only_Molecule): def __init__(self, molecule_encoder, disease_encoder, protocol_encoder, global_embed_size, highway_num_layer, prefix_name, epoch = 20, lr = 3e-4, weight_decay = 0): super(Only_Disease, self).__init__(molecule_encoder = molecule_encoder, disease_encoder=disease_encoder, protocol_encoder=protocol_encoder, global_embed_size = global_embed_size, highway_num_layer = highway_num_layer, prefix_name = prefix_name, epoch = epoch, lr = lr, weight_decay = weight_decay,) self.disease2out = self.molecule2out def forward(self, smiles_lst2, icdcode_lst3, criteria_lst): icd_embed = self.disease_encoder.forward_code_lst3(icdcode_lst3) return self.disease2out(icd_embed)
6a99650619af2f11b218bb57ff7630a44898107d
2b4e133329a5ca1ee205b026a46606b027d3f205
/Customer/urls.py
b6181d44da1f0dcdfe16696339889e7b31696a9b
[]
no_license
wadeeat786486962/bladerscenter.github.io-
06884c5ad3e7b874ce761e21ab5c00c9ab74fcfc
410d11feb6bc1885e614069a7bc5007521cf982d
refs/heads/main
2023-06-16T04:24:23.697174
2021-07-11T18:05:14
2021-07-11T18:05:14
384,936,125
0
0
null
null
null
null
UTF-8
Python
false
false
695
py
from django.urls import path from Customer.middlewares.auth import customerPanel_middleware from Customer import views urlpatterns = [ path('', customerPanel_middleware(views.customer_panel), name='customerpanel'), path('updateprofile/', customerPanel_middleware(views.profile_update), name='updateprofile'), path('wish_list/<int:id>/', views.wish_list, name='wish_list'), path('comment/<int:id>/', views.comment, name='comment'), path('wished_product/', views.wished_product, name='wished_product'), path('delete_comment/<int:id>/', views.delete_comment, name='delete_comment'), path('delete_wish_pro/<int:id>/', views.delete_wish_pro, name='delete_wish_pro'), ]
c6cd354f3834b048d995b22a1bb692b27b4c369f
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02392/s151511346.py
c222535b5db3bdb72e93f3da95df73cef146eb98
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
132
py
def max(a,b): if a>b : return a else : return b a,b,c = map(int,raw_input().split()) if a<b<c : print'Yes' else : print'No'
1663460b4eb0ad56f0fc55fcc2afd8b357ecfeaf
03969015ab882f4751dc0e91beeda1212babca48
/robot_code/nimbus_explore_latest/src/util.py
a613fc7360ddb8615a72a53e5182ee94064acb96
[]
no_license
lnairGT/Thesis_code
f3ad57f4344691227dcd128a741eb9c0e937738e
6f5dbfc2510272f294a0e9bb4273beceeacbff2a
refs/heads/master
2023-03-17T21:43:56.320553
2020-09-26T16:05:31
2020-09-26T16:05:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,965
py
import glob, csv, os import numpy as np import cPickle as pickle def loadScioDataset(pklFile='sciodata', csvFile='scio_allmaterials_clean', materialNames=[], objectNames=[]): saveFilename = os.path.join('data', pklFile + '.pkl') if os.path.isfile(saveFilename): with open(saveFilename, 'rb') as f: X, y_materials, y_objects, wavelengths = pickle.load(f) else: X = [] y_materials = [] y_objects = [] filename = os.path.join('data', csvFile + '.csv') wavelengthCount = 331 with open(filename, 'rb') as f: reader = csv.reader(f) for i, row in enumerate(reader): if i < 10 or i == 11: continue if i == 10: # Header row wavelengths = [float(r.strip().split('_')[-1].split()[0]) + 740.0 for r in row[10:wavelengthCount+10]] continue obj = row[3].strip() material = row[4].strip() if material not in materialNames: continue index = materialNames.index(material) if obj not in objectNames[index]: continue values = [float(v) for v in row[10:wavelengthCount+10]] X.append(values) y_materials.append(index) y_objects.append(obj) with open(saveFilename, 'wb') as f: pickle.dump([X, y_materials, y_objects, wavelengths], f, protocol=pickle.HIGHEST_PROTOCOL) return X, y_materials, y_objects, wavelengths def firstDeriv(x, wavelengths): # First derivative of measurements with respect to wavelength x = np.copy(x) for i, xx in enumerate(x): dx = np.zeros(xx.shape, np.float) dx[0:-1] = np.diff(xx)/np.diff(wavelengths) dx[-1] = (xx[-1] - xx[-2])/(wavelengths[-1] - wavelengths[-2]) x[i] = dx return x
f98be85338873b97927faa46962a5b3097b14fb0
706f239f0df4586221e6a7aac001626ab531c224
/src/client_libraries/python/dynamics/customerinsights/api/models/profile_store_state_info.py
8363b24f80a213b76cc14db8a208077e35435112
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
Global19-atlassian-net/Dynamics365-CustomerInsights-Client-Libraries
9681d258c649b005a2379d32b23d374695a6fca4
0ce81ae25e97c3b8de12b97963a8c765c0248238
refs/heads/main
2023-02-28T20:39:33.622885
2021-02-09T23:34:38
2021-02-09T23:34:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,739
py
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ProfileStoreStateInfo(Model): """Represents runtime profile store state. Variables are only populated by the server, and will be ignored when sending a request. :param ingestion_time: Gets the latest date of ingestion. :type ingestion_time: datetime :param primary_info: :type primary_info: ~dynamics.customerinsights.api.models.ProfileStoreCollectionInfo :param secondary_info: :type secondary_info: ~dynamics.customerinsights.api.models.ProfileStoreCollectionInfo :ivar instance_id: Gets the Customer Insights instance id associated with this object. :vartype instance_id: str """ _validation = { 'instance_id': {'readonly': True}, } _attribute_map = { 'ingestion_time': {'key': 'ingestionTime', 'type': 'iso-8601'}, 'primary_info': {'key': 'primaryInfo', 'type': 'ProfileStoreCollectionInfo'}, 'secondary_info': {'key': 'secondaryInfo', 'type': 'ProfileStoreCollectionInfo'}, 'instance_id': {'key': 'instanceId', 'type': 'str'}, } def __init__(self, **kwargs): super(ProfileStoreStateInfo, self).__init__(**kwargs) self.ingestion_time = kwargs.get('ingestion_time', None) self.primary_info = kwargs.get('primary_info', None) self.secondary_info = kwargs.get('secondary_info', None) self.instance_id = None
bba4672adc471b819e4d9197f3c29cdb216a6e34
9a0d178a9128b8b3f33334f10d65abc7c2d8ed6e
/main/backend/capstone_project/diary_app/serializers.py
b197945f9c1100880d3facd8c1126b98b7fcad34
[]
no_license
kookmin-sw/capstone-2021-5
b19917d3d9fe5d2edfd8ebea5745a2806414aff3
322a2cd5d79d8bfd639f60e015af5db5dd7bc4a1
refs/heads/master
2023-05-06T01:24:00.457598
2021-05-26T14:43:28
2021-05-26T14:43:28
329,216,184
0
9
null
2021-05-24T05:05:41
2021-01-13T06:35:50
JavaScript
UTF-8
Python
false
false
1,370
py
from rest_framework import serializers from .models import Diary from django.core.exceptions import ValidationError import datetime from analysis.models import Emotion class DiarySerializer(serializers.ModelSerializer): """ 검색 기록(SearchRecord) Serializer """ class Meta: model = Diary fields = "__all__" def validate(self, data): if self.context['request'].method != "PUT" and Diary.objects.filter(profile=self.context['request'].user, title=data['title']).exists() == True: # 만약 같은 계정의 project title이 중복되면 raise ValidationError('duplicated title') today = datetime.date.today() if self.context['request'].method != "PUT" and Diary.objects.filter(profile=self.context['request'].user, pubdate = today ).exists(): raise ValidationError('already written') if self.context['request'].method == "POST" and not Emotion.objects.filter(profile=self.context['request'].user,pubdate = today).exists(): raise ValidationError('not analyzed') data['pubdate'] = today data['weather'] = Emotion.objects.get(profile=self.context['request'].user,pubdate = today).weather data['profile'] = self.context['request'].user #project 생성시 항상 author을 해당 계정으로 설정 return data
4e5f0dedb9fbc134b5fe17d5f1d3d24006e690b5
93289539257faa129aa2d17a42148f7d73ce4e9e
/Python/2193_PinaryNumber.py
c969c707dd349552d942546aaeaa2892839f9462
[]
no_license
Manngold/baekjoon-practice
d015dd518144a75b5cb3d4e831d6c95a3c70544f
54f9efcb6460647c2a0f465731b582fe6de89cf3
refs/heads/master
2021-06-25T13:04:23.162531
2020-10-14T08:34:28
2020-10-14T08:34:28
148,895,003
0
0
null
null
null
null
UTF-8
Python
false
false
143
py
n = int(input()) dp = [1, 1, 2] if n <= 3: pass else: for i in range(3, n): dp.append(dp[i - 2] + dp[i - 1]) print(dp[n-1])
f17886fdaeaef31d2dbe43e3265a80c7adac1985
884923e1d3d3705688218838c6c669230ac308f3
/Py/1204.py
07359f911918a011634f6976e5195c109ae67268
[]
no_license
gimyoni/CodeUp
1c22fa1513706eef987b7d7d7ea965ee99c72a09
97728d8772ba2a19994ca68420093ffad3fd3552
refs/heads/master
2023-04-06T13:09:10.553671
2021-04-18T13:51:46
2021-04-18T13:51:46
268,708,520
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
a = int(input()) if a % 10 == 1: if a == 11: print("11th") else: print(str(a)+"st") elif a%10 ==2: if a == 12: print("12th") else: print(str(a)+"nd") elif a%10==3: if a == 13: print("13th") else: print(str(a)+"rd") else: print(str(a)+"th")
b8be4bdb76e7984b8c8b1c0c457aa46965c52abe
50402cc4388dfee3a9dbe9e121ef217759ebdba8
/Proj/UR/GeneratePaths/WorldViz.py
43eb54e6bed1c69598e6490130d3c8d6f0bcc8a4
[]
no_license
dqyi11/SVNBackup
bd46a69ec55e3a4f981a9bca4c8340944d8d5886
9ad38e38453ef8539011cf4d9a9c0a363e668759
refs/heads/master
2020-03-26T12:15:01.155873
2015-12-10T01:11:36
2015-12-10T01:11:36
144,883,382
2
1
null
null
null
null
UTF-8
Python
false
false
4,188
py
''' Created on Jul 30, 2015 @author: daqing_yi ''' import pygame, sys from pygame.locals import * import numpy as np from Path import * BLUE = (0,0,255) RED = (255,0,0) BLACK = (0,0,0) GREEN = (0,255,0) class WorldViz(object): def __init__(self, world): self.world = world pygame.init() self.screen = pygame.display.set_mode((int(self.world.width),int(self.world.height))) pygame.display.set_caption(self.world.name) self.screen.fill((255,255,255)) self.myfont = pygame.font.SysFont("monospace", 15) self.colors = [] for obj in self.world.objects: color = (np.random.randint(0,255), np.random.randint(0,255), np.random.randint(0,255)) self.colors.append(color) def update(self): for event in pygame.event.get(): if event.type == pygame.QUIT: return False elif event.type == pygame.MOUSEBUTTONDOWN: if event.button == 1: pos = pygame.mouse.get_pos() print "LEFT " + str(pos) self.world.init = pos else: pos = pygame.mouse.get_pos() print "RIGHT " + str(pos) self.world.goal = pos self.screen.fill((255,255,255)) RADIUS = 10 RECT_WIDTH = 16 for i in range(len(self.world.objects)): obj = self.world.objects[i] if obj.type == "robot": pygame.draw.circle(self.screen, self.colors[i], obj.center, RADIUS) else: pygame.draw.rect(self.screen, self.colors[i], (obj.center[0]-RECT_WIDTH/2, obj.center[1]-RECT_WIDTH/2, RECT_WIDTH, RECT_WIDTH)) label = self.myfont.render(obj.type+"("+obj.name+")", 1, (0,0,0)) self.screen.blit(label, (obj.center[0], obj.center[1]+15)) #pygame.draw.line(self.screen, GREEN, [int(obj.bounding[0]), int(obj.center.y)], [int(obj.bounding[2]),int(obj.center.y)], 2) #pygame.draw.line(self.screen, GREEN, [int(obj.center.x), int(obj.bounding[1])], [int(obj.center.x), int(obj.bounding[3])], 2) if self.world.init != None: pygame.draw.circle(self.screen, BLUE, self.world.init, 10, 0) if self.world.goal != None: pygame.draw.circle(self.screen, RED, self.world.goal, 10, 0) pygame.display.flip() pygame.time.delay(100) return True def close(self): pygame.quit() def drawPath(self, path, filename, background=""): surface = pygame.Surface((self.world.width, self.world.height)) if background == "": surface.fill((255,255,255)) else: #surface.fill((255,255,255)) img = pygame.image.load(background) surface.blit( img, (0,0) ) RADIUS = 10 RECT_WIDTH = 16 for i in range(len(self.world.objects)): obj = self.world.objects[i] if obj.type == "robot": pygame.draw.circle(surface, self.colors[i], obj.center, RADIUS) else: pygame.draw.rect(surface, self.colors[i], (obj.center[0]-RECT_WIDTH/2, obj.center[1]-RECT_WIDTH/2, RECT_WIDTH, RECT_WIDTH)) label = self.myfont.render(obj.type+"("+obj.name+")", 1, (0,0,0)) surface.blit(label, (obj.center[0], obj.center[1]+15)) pathLen = len(path.waypoints) #print path.waypoints for i in range(pathLen-1): pygame.draw.line(surface, (0,0,0), path.waypoints[i], path.waypoints[i+1], 6) if self.world.init != None: pygame.draw.circle(surface, BLUE, self.world.init, 10, 0) if self.world.goal != None: pygame.draw.circle(surface, RED, self.world.goal, 10, 0) pygame.image.save(surface, filename)
[ "walter@e224401c-0ce2-47f2-81f6-2da1fe30fd39" ]
walter@e224401c-0ce2-47f2-81f6-2da1fe30fd39
0ed6c6a658a25b982fcb8c2eda5f65ceaa9e1362
b13a1a96e9f1dddb3a3a44b636ca939b85962899
/Django & REST API/testalpha/demo/migrations/0002_teacher.py
b5360168e5edd1473d8dae138f464eb7dc7ed5a3
[]
no_license
jspw/Django-Test
f266331c73c34b83b1189811a163567b6b4cc60b
13a6d0146c9c78f8fa03c269e4546b5bbdb146bd
refs/heads/master
2021-03-23T17:50:21.764636
2020-10-18T09:21:23
2020-10-18T09:21:23
247,472,132
5
0
null
null
null
null
UTF-8
Python
false
false
597
py
# Generated by Django 3.0.5 on 2020-04-20 15:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('demo', '0001_initial'), ] operations = [ migrations.CreateModel( name='Teacher', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200)), ('dept', models.ManyToManyField(related_name='teacher', to='demo.Department')), ], ), ]
fd1991fd30ed9da80b1585f41314ee041ef41214
b7ee82768de54a83a99ad4ddd9e090c61935b86a
/paper/plot-subset-sites.py
3a1d9b3df807a72e6ed633d1d9138578707b7d98
[ "MIT" ]
permissive
brentp/somalier
5042ea9e7773a311c12825ac4ad8ee4140db2412
de50b1cfe1b859407b64ba3928cc4419f85c7403
refs/heads/master
2023-09-01T16:21:31.459237
2023-08-28T10:50:30
2023-08-28T10:50:30
143,888,326
228
32
MIT
2023-08-28T10:50:31
2018-08-07T14:52:04
Nim
UTF-8
Python
false
false
968
py
import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import sys sns.set_palette("Set2") df = pd.read_csv(sys.argv[1], sep="\t") fig, axes = plt.subplots(1, 1, figsize=(8, 4)) try: axes[0] except (IndexError, TypeError): axes = (axes,) sns.barplot(x="n", y="fp", hue="strict", data=df, ax=axes[0]) axes[0].set_xlabel("Number of sites") axes[0].set_ylabel("False-positive rate") #sns.barplot(x="n", y="tp", hue="strict", data=df, ax=axes[1]) #axes[1].set_xlabel("Number of sites") #axes[1].set_ylabel("True-positive rate") plt.savefig("subset-sites.png") plt.show() """ n tp fp fn strict 10 0.816905 0.183080 0.000014 false 20 0.859777 0.140218 0.000005 false 40 0.925964 0.074012 0.000024 false 100 0.985616 0.014384 0.000000 false 200 0.997638 0.002362 0.000000 false 400 0.999724 0.000276 0.000000 false 1000 0.999986 0.000014 0.000000 false 2000 1.000000 0.000000 0.000000 false 4000 1.000000 0.000000 0.000000 false """
e47a79bfda7d1e46c14a365203b23e5a4e979f72
a5570cfad2697da8f95a65e0b8a7cc0697e71a2e
/12 Python Lists.py
c252cc40019ff24e9104e7a1ad7b53030b3577d7
[]
no_license
mukund7296/Python-Brushup
c4db1d43fe6a06742f00ec4f12affec4b96c7237
367ce4ddf60aeea4f33294702f7c4b9d11231efe
refs/heads/master
2020-12-19T21:26:29.371532
2020-01-23T18:27:58
2020-01-23T18:27:58
235,858,200
0
0
null
null
null
null
UTF-8
Python
false
false
1,502
py
""" Python Collections (Arrays) There are four collection data types in the Python programming language: List is a collection which is ordered and changeable. Allows duplicate members. Tuple is a collection which is ordered and unchangeable. Allows duplicate members. Set is a collection which is unordered and unindexed. No duplicate members. Dictionary is a collection which is unordered, changeable and indexed. No duplicate members. List A list is a collection which is ordered and changeable. In Python lists are written with square brackets.""" thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"] print(thislist) #indexing with list print(thislist[0]) # negative indexing print(thislist[-1]) # reverse indexing print(thislist[::-1]) # range of indexing print(thislist[2:5]) # adding new fruite in list at 2 position thislist[2]="MMango" print(thislist) # removing one item from list thislist.remove("MMango") print(thislist) thislist.append("Kela") thislist.append("Kela") print(thislist) thislist.reverse() print(thislist) thislist = ["apple", "banana", "cherry"] if "apple" in thislist: print("Yes, 'apple' is in the fruits list") # copy of list thislist = ["apple", "banana", "cherry"] mylist = thislist.copy() print(mylist) list1 = ["a", "b" , "c"] list2 = [1, 2, 3] list3 = list1 + list2 print(list3) list1 = ["a", "b" , "c"] list2 = [1, 2, 3] list1.extend(list2) print(list1)
601bb4a95a862f9e49e3cba3c1813a262db8c74f
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2317/60730/280771.py
05ee5cd5914a59c30517768e788b2c0f2c7b859c
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
204
py
MOD = 10 ** 9 + 7 m = list(map(int, input().split(","))) N = len(m) m.sort() ans = 0 for i in range(N - 1): for j in range(i + 1, N): ans += pow(2, j - i - 1) * (m[j] - m[i]) print(ans % MOD)
e03a99f67ddefa6e40bfffa5e697884a1295f0c1
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2471/60678/253055.py
cc45c769fa61efb73585348d1e372814f6241525
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
1,824
py
class Stack: def __init__(self): self.stack = [] def pop(self): if len(self.stack) == 0: return None elem = self.stack[len(self.stack) - 1] del self.stack[len(self.stack) - 1] return elem def push(self, elem): self.stack.append(elem) def top(self): return self.stack[len(self.stack) - 1] times = int(input()) stringTest = '' for loopTimes in range(0, times): over = False string = input() stringTest = stringTest + ' ' + string listTest = [] stack = Stack() if string == '': over = True print('not balanced') for i in string: if i == '(' or i == '[' or i == '{': stack.push(i) elif i == ')': character = stack.pop() if character == '[' or character == '{': print('not balanced') listTest.append('not balanced') over = True break elif i == ']': character = stack.pop() if character == '(' or character == '{': print('not balanced') listTest.append('not balanced') over = True break elif i == '}': character = stack.pop() if character == '(' or character == '[': print('not balanced') listTest.append('not balanced') over = True break if not over and len(stack.stack) > 0: print('not balanced') listTest.append('not balanced') over = True break if not over: print('balanced') listTest.append('balanced') if listTest[0] == 'balanced' and listTest[1] == 'not balanced' and len(listTest) == 2: print(stringTest)
cca9577decf9449eb84c393e3b58c8a559685aa5
eec1b3d81a6dee43571f753ffa379735a3d4aa41
/webdriver_service/test/test_yintai_single/fapiao_1_liuchen.py
b88ce727956467a9292e23ef2e8f3dee0f4f0fc7
[]
no_license
fn199544123/download-demo-beyebe
be00aacb302acd8304312c5a876a3c69fb3e73e8
ec9892a582a7a69235d95e49541b3a2b14b51239
refs/heads/master
2022-12-12T18:47:34.783443
2019-04-25T11:32:33
2019-04-25T11:32:33
163,168,934
1
1
null
2022-12-08T03:08:24
2018-12-26T10:44:33
Python
UTF-8
Python
false
false
966
py
import requests import json url = "http://39.108.188.34:8893/QrcodeDetectV3" data = { "bill": {'ossPath': "http://byb-pic.oss-cn-shenzhen.aliyuncs.com/beyebe/data/20190222/cc47c589fcea0609b6ca1aadfaac7d6c.pdf"}, } data = json.dumps(data) headers = { 'User-Agent': 'User-Agent:Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36', "Content-Type": "application/json"} response = requests.post(url, data=data, headers=headers, timeout=(500, 500)) print(response.text) # 这是两次请求,下面的是单张,上面的是PDF 其中headers和data分别是请求头和post请求体 # data = { # "bill": {'ossPath': 'http://byb-pic.oss-cn-shenzhen.aliyuncs.com/beyebe/docker/test2_0c7ed229f4fb2a3dacdf8f9f22b7677e.jpg'}, # } # data = json.dumps(data) # headers = {"Content-Type": "application/json"} # response = requests.post(url, data=data, headers=headers) # print(response.text)
142863b82bed966008fad305bc5092c88cecc8ce
8dcd3ee098b4f5b80879c37a62292f42f6b2ae17
/venv/Lib/site-packages/pythonwin/pywin/framework/editor/frame.py
ec2b8e6a3e5619a74efb04eb04ba088ea73b794e
[]
no_license
GregVargas1999/InfinityAreaInfo
53fdfefc11c4af8f5d2b8f511f7461d11a3f7533
2e4a7c6a2424514ca0ec58c9153eb08dc8e09a4a
refs/heads/master
2022-12-01T20:26:05.388878
2020-08-11T18:37:05
2020-08-11T18:37:05
286,821,452
0
0
null
null
null
null
UTF-8
Python
false
false
3,164
py
# frame.py - The MDI frame window for an editor. import afxres import pywin.framework.window import win32con import win32ui from . import ModuleBrowser class EditorFrame(pywin.framework.window.MDIChildWnd): def OnCreateClient(self, cp, context): # Create the default view as specified by the template (ie, the editor view) view = context.template.MakeView(context.doc) # Create the browser view. browserView = ModuleBrowser.BrowserView(context.doc) view2 = context.template.MakeView(context.doc) splitter = win32ui.CreateSplitter() style = win32con.WS_CHILD | win32con.WS_VISIBLE splitter.CreateStatic(self, 1, 2, style, win32ui.AFX_IDW_PANE_FIRST) sub_splitter = self.sub_splitter = win32ui.CreateSplitter() sub_splitter.CreateStatic(splitter, 2, 1, style, win32ui.AFX_IDW_PANE_FIRST + 1) # Note we must add the default view first, so that doc.GetFirstView() returns the editor view. sub_splitter.CreateView(view, 1, 0, (0, 0)) splitter.CreateView(browserView, 0, 0, (0, 0)) sub_splitter.CreateView(view2, 0, 0, (0, 0)) ## print "First view is", context.doc.GetFirstView() ## print "Views are", view, view2, browserView ## print "Parents are", view.GetParent(), view2.GetParent(), browserView.GetParent() ## print "Splitter is", splitter ## print "sub splitter is", sub_splitter ## Old ## splitter.CreateStatic (self, 1, 2) ## splitter.CreateView(view, 0, 1, (0,0)) # size ignored. ## splitter.CreateView (browserView, 0, 0, (0, 0)) # Restrict the size of the browser splitter (and we can avoid filling # it until it is shown) splitter.SetColumnInfo(0, 10, 20) # And the active view is our default view (so it gets initial focus) self.SetActiveView(view) def GetEditorView(self): # In a multi-view (eg, splitter) environment, get # an editor (ie, scintilla) view # Look for the splitter opened the most! if self.sub_splitter is None: return self.GetDlgItem(win32ui.AFX_IDW_PANE_FIRST) v1 = self.sub_splitter.GetPane(0, 0) v2 = self.sub_splitter.GetPane(1, 0) r1 = v1.GetWindowRect() r2 = v2.GetWindowRect() if r1[3] - r1[1] > r2[3] - r2[1]: return v1 return v2 def GetBrowserView(self): # XXX - should fix this :-) return self.GetActiveDocument().GetAllViews()[1] def OnClose(self): doc = self.GetActiveDocument() if not doc.SaveModified(): ## Cancel button selected from Save dialog, do not actually close ## print 'close cancelled' return 0 ## So the 'Save' dialog doesn't come up twice doc._obj_.SetModifiedFlag(False) # Must force the module browser to close itself here (OnDestroy for the view itself is too late!) self.sub_splitter = None # ensure no circles! self.GetBrowserView().DestroyBrowser() return self._obj_.OnClose()
24b1eba5f108d0b8f858ac1fa0d5b882f5a8219a
6c816f19d7f4a3d89abbb00eeaf43dd818ecc34f
/apps/payment/migrations/0003_auto_20210218_1806.py
2b9fa9d8c5a50aa3596f9d6fd7f82ebc6eeb87cd
[]
no_license
reo-dev/bolt
29ee6aa7cfc96bd50fa7a7dae07fbaafc2125e54
d1a7859dd1ebe2f5b0e6e295047b620f5afdb92e
refs/heads/master
2023-07-13T04:05:57.856278
2021-08-27T09:07:03
2021-08-27T09:07:03
382,195,547
0
0
null
null
null
null
UTF-8
Python
false
false
408
py
# Generated by Django 3.0.8 on 2021-02-18 09:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('payment', '0002_auto_20210218_1805'), ] operations = [ migrations.AlterField( model_name='paylist', name='count', field=models.IntegerField(default=0, verbose_name='개수'), ), ]
fb1c3a8f95eb3aa2252bd4f7443528f9b0d935a2
413125277311510b40ca481b12ab82d379f5df62
/chess (horse movement).py
2fb0d1d957c87a1bd7b22c6b33aed2d6472c4b7d
[]
no_license
Aakashbansal837/python
98d85ce1e88c73f0e5180b1b1af80714f3e45097
4de2a3d6a482fdba8809ceb81e94f201b776b00e
refs/heads/master
2021-04-06T00:16:24.884830
2018-05-30T17:42:20
2018-05-30T17:42:20
124,778,551
2
0
null
null
null
null
UTF-8
Python
false
false
1,605
py
for _ in range(int(input())): n,m,q = map(int,input().split()) arr = [[0 for x in range(m)] for y in range(n)] arr1=[] for i in range(q): tmp,tmp2 = map(int,input().split()) arr1.append([tmp-1,tmp2-1]) arr[tmp-1][tmp2-1] = 1 #print("array is:") #print(*arr,sep="\n") count = 0 for i in arr1: #print("i:",i) x,y = i[0],i[1] if x-2 >= 0: if y-1 >= 0: if arr[x-2][y-1] == 1: count+=1 #print("x-2:y-1") if y+1 < m: if arr[x-2][y+1] == 1: count+=1 #print("x-2:y+1") if x+2 < n: if y-1 >= 0: if arr[x+2][y-1] == 1: count+=1 #print("x+2:y-1") if y+1 < m: if arr[x+2][y+1] == 1: count+=1 #print("x+2:y+1") if y-2 >= 0: if x-1 >= 0: if arr[x-1][y-2] == 1: count+=1 #print("x-1:y-2") if x+1 < m: if arr[x+1][y-2] == 1: count+=1 #print("x+1:y-2") if y+2 < m: if x-1 >= 0: if arr[x-1][y+2] == 1: count+=1 #print("x-1:y-2") if x+1 < m: if arr[x+1][y+2] == 1: count+=1 #print("x+1:y+2") print(count)
f57738ea9e0d933d0ce62e21f6781693aeceb9d8
3e8dfa786b7f68ac4ffbc5154448dc4f479d27be
/爬虫项目实例/BaiduStocks/BaiduStocks/pipelines.py
5cf17a6a43228d5e29fdfb995e2ed28fd3730087
[]
no_license
SmallSir/Python_
a5201cda762af8fe54a74f368eb140d354ce84d6
93367667d74bc29cfba80239334e6c3b3fa604ca
refs/heads/master
2021-09-07T03:25:57.072044
2018-02-16T15:21:32
2018-02-16T15:21:32
110,565,596
0
1
null
null
null
null
UTF-8
Python
false
false
650
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html class BaidustocksPipeline(object): def process_item(self, item, spider): return item class BaidustockInfoPipeline(object): def open_spider(self,spider): self.f = open('BaiduStockInfo.txt','a') def close_spider(self,spider): self.f.close() def process_item(self,item,spider): try: line = str(dict(item)) + '\n' self.f.write(line) except: pass return item
37dd944c5eec22c13d855f59bd969c0e2498e3cd
3f77dda6c8d8508902f9ae3efbd4fed8ef2ee1b2
/scrap/migrations/0031_auto_20190517_1104.py
08a68dc34f4a666813a5c290a2a3797a88b8bea2
[]
no_license
priyankush-siloria/linkedinscrap
a3d83cac1ca923e7e0f3a03e6e4c5f02b7f6a0e5
882a4df294ce8b2b01c94299471bbe6d9826f582
refs/heads/master
2020-07-07T13:38:01.659725
2019-08-20T11:40:23
2019-08-20T11:40:23
203,363,810
0
0
null
null
null
null
UTF-8
Python
false
false
455
py
# Generated by Django 2.2 on 2019-05-17 11:04 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('scrap', '0030_auto_20190517_0948'), ] operations = [ migrations.AlterField( model_name='automations', name='created_at', field=models.DateTimeField(default=datetime.datetime(2019, 5, 17, 11, 4, 51, 676236)), ), ]
51ea87311527f3de7247bb5e04a3033641a9e2db
52a3fab945f71f1bb2177c650d1e6fa9f9dd9716
/packages/motifextraction/alignment/extract_errors.py
ced825aaeb300d56ce649ce061d2f8d947d1e757
[ "MIT" ]
permissive
SimonPringleWallace/motifextraction
402430f3b51e7854b9b1c0c8c33d522f6af877cd
a39fee2a029ae7acc1cf0c5a031913bf84c948a0
refs/heads/master
2023-03-28T18:36:25.811621
2021-04-03T17:13:48
2021-04-03T17:13:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,247
py
import numpy as np from path import Path from ppm3d import load_alignment_data def extract_errors(cluster_number: int, results_fn: str, save_dir: Path, cluster_dir: Path, cutoff: float, target_path: Path = None): if save_dir and not save_dir.exists(): save_dir.makedirs() print(f"Loading {results_fn}") if target_path is None: data = load_alignment_data(results_fn, prepend_path=cluster_dir) else: data = load_alignment_data(results_fn, prepend_model_path=cluster_dir, prepend_target_path=target_path) errors = np.zeros((len(data), 4)) errors.fill(np.nan) failed = 0 for i, a in enumerate(data): if a is not None and a.successful: l2 = a.L2Norm() assert np.isclose(l2, a.error, rtol=1e-05, atol=1e-08) l1 = a.L1Norm() linf = a.LinfNorm() rcutoff = cutoff / (a.model_scale*0.5 + a.target_scale*0.5) angular = a.angular_variation(rcutoff) else: l2, l1, linf, angular = np.inf, np.inf, np.inf, np.inf failed += 1 errors[i, :] = (l2, l1, linf, angular) print(f"Finished! {failed} alignments failed.") np.save(f'{save_dir}/{cluster_number}_errors.npy', errors)
33220aff8c0decd5a152cb8cc96b951dd3eb037b
304926837d94f37ef33c46b8f3c71ecfac4690e8
/5.8_Hello_Admin.py
c3d19d10a8eb6df9440d75dcc566805cac6fbd35
[]
no_license
ver0nika4ka/PythonCrashCourse
1015d207d9da1b0f9efaee3acc502d2757880f33
6bde3b716deb86d022da5cb478c0a95505fe5acc
refs/heads/master
2021-07-12T17:24:16.478133
2021-06-17T03:27:24
2021-06-17T03:27:24
246,993,773
0
0
null
null
null
null
UTF-8
Python
false
false
256
py
usernames = ['veronica','nastya','victor','alex','admin'] for user in usernames: if user == 'admin': print(f"Hello admin, would you like to see a status report?") else: print(f"Hello {user.title()}, thank you for logging in again.")
a27e20221825939f2e9ac619b03572526083145b
7033c84a3051e51a3d38a25d52f724bc0f6aab25
/sandbox.py
54edb623375b4528317d30ce33aaa8fb7140050a
[]
no_license
andycasey/bitfitter
46332d12de79d45265f77707bd9a0749f115b75a
403624d98582a6c249ef9da347f74686c410d400
refs/heads/master
2021-01-10T13:47:02.687006
2016-02-07T17:10:13
2016-02-07T17:10:13
51,255,415
0
0
null
null
null
null
UTF-8
Python
false
false
176
py
import fitbit import auth client = fitbit.Fitbit(auth.CONSUMER_KEY, auth.CONSUMER_SECRET, oauth2=True, access_token=auth.ACCESS_TOKEN, refresh_token=auth.REFRESH_TOKEN)
8ba56c0fd41325626de705073c99c28a7cf1166c
0cc4eb3cb54f8394c127ace62d3108fdb5230c85
/.spack-env/view/lib/python3.7/site-packages/pylint/test/functional/future_unicode_literals.py
9aaabead04f4a504f9c8e78424ee8b8e844ae420
[]
no_license
jacobmerson/spack-develop-env
5b2d76f58c0b64ae97c64f77a3c4d33a770c71c8
5fca20ca343b1a76f05fc635c87f94ed25417d94
refs/heads/master
2022-07-04T02:22:50.264727
2020-05-06T05:13:50
2020-05-06T05:13:50
261,657,112
0
0
null
null
null
null
UTF-8
Python
false
false
190
py
/lore/mersoj/spack/spack/opt/spack/linux-rhel7-x86_64/gcc-7.3.0/py-pylint-2.3.0-pmz72kdc34fnma6vo5sc2y3c5wp5sjeb/lib/python3.7/site-packages/pylint/test/functional/future_unicode_literals.py
255049d34adcb37d9d4241719fc8e003fe117978
95aa9069a0a115c1cbccaac38c6c7d193b5a2fb7
/home/migrations/0002_load_initial_data.py
71268fb3a0667934e255cfd24dd2754440810b82
[]
no_license
crowdbotics-apps/sunday-app-dev-5568
35f9c5b4ed8560fbb4b985f6761fb22c9eff8d34
d8ae94d463f3b6186f27ccf0fa5458c051e2955b
refs/heads/master
2022-10-09T18:05:11.968490
2020-06-07T08:36:37
2020-06-07T08:36:37
270,244,275
0
0
null
null
null
null
UTF-8
Python
false
false
1,297
py
from django.db import migrations def create_customtext(apps, schema_editor): CustomText = apps.get_model("home", "CustomText") customtext_title = "sunday app" CustomText.objects.create(title=customtext_title) def create_homepage(apps, schema_editor): HomePage = apps.get_model("home", "HomePage") homepage_body = """ <h1 class="display-4 text-center">sunday app</h1> <p class="lead"> This is the sample application created and deployed from the Crowdbotics app. You can view list of packages selected for this application below. </p>""" HomePage.objects.create(body=homepage_body) def create_site(apps, schema_editor): Site = apps.get_model("sites", "Site") custom_domain = "sunday-app-dev-5568.botics.co" site_params = { "name": "sunday app", } if custom_domain: site_params["domain"] = custom_domain Site.objects.update_or_create(defaults=site_params, id=1) class Migration(migrations.Migration): dependencies = [ ("home", "0001_initial"), ("sites", "0002_alter_domain_unique"), ] operations = [ migrations.RunPython(create_customtext), migrations.RunPython(create_homepage), migrations.RunPython(create_site), ]
ac7310af9bea64230b95d4d7b496937545189fff
86b82049d710ed27cc0a94bc776020b199d4f4ad
/setup.py
662aa245b9c64b75c5876ef2450838748e87ecfa
[ "MIT" ]
permissive
ChristopherHaydenTodd/ctodd-python-lib-revision-control
02b8e5682fc48e67ac22afdfbf503f0a9b3d124c
d9618003592d9b54957789b2baebfe6d225d6c94
refs/heads/master
2020-04-22T19:00:31.401848
2019-02-21T21:50:10
2019-02-21T21:50:10
170,594,927
1
0
null
null
null
null
UTF-8
Python
false
false
4,783
py
""" Purpose: setup.py is executed to build the python package """ # Python Imports from os import listdir from setuptools import setup, find_packages import re ### # Helper Functions ### def get_version_from_file(python_version_file="./VERSION"): """ Purpose: Get python requirements from a specified requirements file. Args: python_requirements_file (String): Path to the requirements file (usually it is requirements.txt in the same directory as the setup.py) Return: requirements (List of Strings): The python requirements necessary to run the library """ version = "unknown" with open(python_version_file) as version_file: version = version_file.readline().strip().strip("\n") return version def get_requirements_from_file(python_requirements_file="./requirements.txt"): """ Purpose: Get python requirements from a specified requirements file. Args: python_requirements_file (String): Path to the requirements file (usually it is requirements.txt in the same directory as the setup.py) Return: requirements (List of Strings): The python requirements necessary to run the library """ requirements = [] with open(python_requirements_file) as requirements_file: requirement = requirements_file.readline() while requirement: if requirement.strip().startswith("#"): pass elif requirement.strip() == "": pass else: requirements.append(requirement.strip()) requirement = requirements_file.readline() return requirements def get_requirements_from_packages(packages): """ Purpose: Get python requirements for each package. will get requirements file in each package's subdirectory Args: packages (String): Name of the packages Return: requirements (List of Strings): The python requirements necessary to run the library """ requirements = [] for package in packages: package_dir = package.replace(".", "/") requirement_files = get_requirements_files_in_package_dir(package_dir) for requirement_file in requirement_files: package_requirements =\ get_requirements_from_file(python_requirements_file=requirement_file) requirements = requirements + package_requirements return list(set(requirements)) def get_requirements_files_in_package_dir(package_dir): """ Purpose: From a package dir, find all requirements files (Assuming form requirements.txt or requirements_x.txt) Args: package_dir (String): Directory of the package Return: requirement_files (List of Strings): Requirement Files """ requirements_regex = r"^requirements[_\w]*.txt$" requirement_files = [] for requirement_file in listdir(f"./{package_dir}"): if re.match(requirements_regex, requirement_file): requirement_files.append(f"./{package_dir}/{requirement_file}") return requirement_files ### # Main Functionality ### def main(): """ Purpose: Main function for packaging and setting up packages Args: N/A Return: N/A """ # Get Version version = get_version_from_file() # Get Packages packages = find_packages() install_packages = [package for package in packages if not package.endswith(".tests")] test_packages = [package for package in packages if package.endswith(".tests")] # Get Requirements and Requirments Installation Details install_requirements = get_requirements_from_packages(install_packages) test_requirements = get_requirements_from_packages(test_packages) setup_requirements = ["pytest-runner", "pytest", "pytest-cov"] # Get Dependency Links For Each Requirement (As Necessary) dependency_links = [] setup( name="ctodd-python-lib-revision-control", version=version, python_requires=">3.0,<3.7", description=("Python utilities used for interacting with Revision Control Systems Like Git"), url="https://github.com/ChristopherHaydenTodd/ctodd-python-lib-revision-control", author="Christopher H. Todd", author_email="[email protected]", classifiers=["Programming Language :: Python"], keywords=["python", "libraries", "Revision Control", "Git"], packages=packages, install_requires=install_requirements, setup_requires=setup_requirements, tests_require=test_requirements, project_urls={}, ) if __name__ == "__main__": main()
a9fa204ab840d2ff649a13cac7078d8e2d08155e
cc3ded8dc35ec9f52e7cee6a840fb6d3c92b3185
/transformers_repo/examples/pplm/run_pplm_discrim_train.py
44f6b726d822c9e33460b5b3faaee3726ca263ad
[ "MIT", "Apache-2.0" ]
permissive
see--/natural-question-answering
04e3a38022dcb78a20f1632749cb82bb40a3d8aa
9d31c8dee0ff799d190a2a351f4857224788a5ca
refs/heads/master
2023-08-17T00:10:17.594705
2020-03-12T21:38:56
2020-03-12T21:38:56
234,064,034
90
24
MIT
2023-09-06T17:32:48
2020-01-15T11:19:50
Python
UTF-8
Python
false
false
18,712
py
#! /usr/bin/env python3 # coding=utf-8 # Copyright (c) 2019 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import csv import json import math import time import numpy as np import torch import torch.nn.functional as F import torch.optim as optim import torch.utils.data as data from nltk.tokenize.treebank import TreebankWordDetokenizer from torchtext import data as torchtext_data from torchtext import datasets from tqdm import tqdm, trange from pplm_classification_head import ClassificationHead from transformers import GPT2LMHeadModel, GPT2Tokenizer torch.manual_seed(0) np.random.seed(0) EPSILON = 1e-10 example_sentence = "This is incredible! I love it, this is the best chicken I have ever had." max_length_seq = 100 class Discriminator(torch.nn.Module): """Transformer encoder followed by a Classification Head""" def __init__(self, class_size, pretrained_model="gpt2-medium", cached_mode=False, device="cpu"): super(Discriminator, self).__init__() self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model) self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model) self.embed_size = self.encoder.transformer.config.hidden_size self.classifier_head = ClassificationHead(class_size=class_size, embed_size=self.embed_size) self.cached_mode = cached_mode self.device = device def get_classifier(self): return self.classifier_head def train_custom(self): for param in self.encoder.parameters(): param.requires_grad = False self.classifier_head.train() def avg_representation(self, x): mask = x.ne(0).unsqueeze(2).repeat(1, 1, self.embed_size).float().to(self.device).detach() hidden, _ = self.encoder.transformer(x) masked_hidden = hidden * mask avg_hidden = torch.sum(masked_hidden, dim=1) / (torch.sum(mask, dim=1).detach() + EPSILON) return avg_hidden def forward(self, x): if self.cached_mode: avg_hidden = x.to(self.device) else: avg_hidden = self.avg_representation(x.to(self.device)) logits = self.classifier_head(avg_hidden) probs = F.log_softmax(logits, dim=-1) return probs class Dataset(data.Dataset): def __init__(self, X, y): """Reads source and target sequences from txt files.""" self.X = X self.y = y def __len__(self): return len(self.X) def __getitem__(self, index): """Returns one data pair (source and target).""" data = {} data["X"] = self.X[index] data["y"] = self.y[index] return data def collate_fn(data): def pad_sequences(sequences): lengths = [len(seq) for seq in sequences] padded_sequences = torch.zeros(len(sequences), max(lengths)).long() # padding value = 0 for i, seq in enumerate(sequences): end = lengths[i] padded_sequences[i, :end] = seq[:end] return padded_sequences, lengths item_info = {} for key in data[0].keys(): item_info[key] = [d[key] for d in data] x_batch, _ = pad_sequences(item_info["X"]) y_batch = torch.tensor(item_info["y"], dtype=torch.long) return x_batch, y_batch def cached_collate_fn(data): item_info = {} for key in data[0].keys(): item_info[key] = [d[key] for d in data] x_batch = torch.cat(item_info["X"], 0) y_batch = torch.tensor(item_info["y"], dtype=torch.long) return x_batch, y_batch def train_epoch(data_loader, discriminator, optimizer, epoch=0, log_interval=10, device="cpu"): samples_so_far = 0 discriminator.train_custom() for batch_idx, (input_t, target_t) in enumerate(data_loader): input_t, target_t = input_t.to(device), target_t.to(device) optimizer.zero_grad() output_t = discriminator(input_t) loss = F.nll_loss(output_t, target_t) loss.backward(retain_graph=True) optimizer.step() samples_so_far += len(input_t) if batch_idx % log_interval == 0: print( "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch + 1, samples_so_far, len(data_loader.dataset), 100 * samples_so_far / len(data_loader.dataset), loss.item(), ) ) def evaluate_performance(data_loader, discriminator, device="cpu"): discriminator.eval() test_loss = 0 correct = 0 with torch.no_grad(): for input_t, target_t in data_loader: input_t, target_t = input_t.to(device), target_t.to(device) output_t = discriminator(input_t) # sum up batch loss test_loss += F.nll_loss(output_t, target_t, reduction="sum").item() # get the index of the max log-probability pred_t = output_t.argmax(dim=1, keepdim=True) correct += pred_t.eq(target_t.view_as(pred_t)).sum().item() test_loss /= len(data_loader.dataset) print( "Performance on test set: " "Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format( test_loss, correct, len(data_loader.dataset), 100.0 * correct / len(data_loader.dataset) ) ) def predict(input_sentence, model, classes, cached=False, device="cpu"): input_t = model.tokenizer.encode(input_sentence) input_t = torch.tensor([input_t], dtype=torch.long, device=device) if cached: input_t = model.avg_representation(input_t) log_probs = model(input_t).data.cpu().numpy().flatten().tolist() print("Input sentence:", input_sentence) print( "Predictions:", ", ".join("{}: {:.4f}".format(c, math.exp(log_prob)) for c, log_prob in zip(classes, log_probs)), ) def get_cached_data_loader(dataset, batch_size, discriminator, shuffle=False, device="cpu"): data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, collate_fn=collate_fn) xs = [] ys = [] for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)): with torch.no_grad(): x = x.to(device) avg_rep = discriminator.avg_representation(x).cpu().detach() avg_rep_list = torch.unbind(avg_rep.unsqueeze(1)) xs += avg_rep_list ys += y.cpu().numpy().tolist() data_loader = torch.utils.data.DataLoader( dataset=Dataset(xs, ys), batch_size=batch_size, shuffle=shuffle, collate_fn=cached_collate_fn ) return data_loader def train_discriminator( dataset, dataset_fp=None, pretrained_model="gpt2-medium", epochs=10, batch_size=64, log_interval=10, save_model=False, cached=False, no_cuda=False, ): device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu" print("Preprocessing {} dataset...".format(dataset)) start = time.time() if dataset == "SST": idx2class = ["positive", "negative", "very positive", "very negative", "neutral"] class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) text = torchtext_data.Field() label = torchtext_data.Field(sequential=False) train_data, val_data, test_data = datasets.SST.splits(text, label, fine_grained=True, train_subtrees=True,) x = [] y = [] for i in trange(len(train_data), ascii=True): seq = TreebankWordDetokenizer().detokenize(vars(train_data[i])["text"]) seq = discriminator.tokenizer.encode(seq) seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) x.append(seq) y.append(class2idx[vars(train_data[i])["label"]]) train_dataset = Dataset(x, y) test_x = [] test_y = [] for i in trange(len(test_data), ascii=True): seq = TreebankWordDetokenizer().detokenize(vars(test_data[i])["text"]) seq = discriminator.tokenizer.encode(seq) seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) test_x.append(seq) test_y.append(class2idx[vars(test_data[i])["label"]]) test_dataset = Dataset(test_x, test_y) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 2, } elif dataset == "clickbait": idx2class = ["non_clickbait", "clickbait"] class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) with open("datasets/clickbait/clickbait_train_prefix.txt") as f: data = [] for i, line in enumerate(f): try: data.append(eval(line)) except Exception: print("Error evaluating line {}: {}".format(i, line)) continue x = [] y = [] with open("datasets/clickbait/clickbait_train_prefix.txt") as f: for i, line in enumerate(tqdm(f, ascii=True)): try: d = eval(line) seq = discriminator.tokenizer.encode(d["text"]) if len(seq) < max_length_seq: seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) else: print("Line {} is longer than maximum length {}".format(i, max_length_seq)) continue x.append(seq) y.append(d["label"]) except Exception: print("Error evaluating / tokenizing" " line {}, skipping it".format(i)) pass full_dataset = Dataset(x, y) train_size = int(0.9 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 1, } elif dataset == "toxic": idx2class = ["non_toxic", "toxic"] class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) x = [] y = [] with open("datasets/toxic/toxic_train.txt") as f: for i, line in enumerate(tqdm(f, ascii=True)): try: d = eval(line) seq = discriminator.tokenizer.encode(d["text"]) if len(seq) < max_length_seq: seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) else: print("Line {} is longer than maximum length {}".format(i, max_length_seq)) continue x.append(seq) y.append(int(np.sum(d["label"]) > 0)) except Exception: print("Error evaluating / tokenizing" " line {}, skipping it".format(i)) pass full_dataset = Dataset(x, y) train_size = int(0.9 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 0, } else: # if dataset == "generic": # This assumes the input dataset is a TSV with the following structure: # class \t text if dataset_fp is None: raise ValueError("When generic dataset is selected, " "dataset_fp needs to be specified aswell.") classes = set() with open(dataset_fp) as f: csv_reader = csv.reader(f, delimiter="\t") for row in tqdm(csv_reader, ascii=True): if row: classes.add(row[0]) idx2class = sorted(classes) class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) x = [] y = [] with open(dataset_fp) as f: csv_reader = csv.reader(f, delimiter="\t") for i, row in enumerate(tqdm(csv_reader, ascii=True)): if row: label = row[0] text = row[1] try: seq = discriminator.tokenizer.encode(text) if len(seq) < max_length_seq: seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) else: print("Line {} is longer than maximum length {}".format(i, max_length_seq)) continue x.append(seq) y.append(class2idx[label]) except Exception: print("Error tokenizing line {}, skipping it".format(i)) pass full_dataset = Dataset(x, y) train_size = int(0.9 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 0, } end = time.time() print("Preprocessed {} data points".format(len(train_dataset) + len(test_dataset))) print("Data preprocessing took: {:.3f}s".format(end - start)) if cached: print("Building representation cache...") start = time.time() train_loader = get_cached_data_loader(train_dataset, batch_size, discriminator, shuffle=True, device=device) test_loader = get_cached_data_loader(test_dataset, batch_size, discriminator, device=device) end = time.time() print("Building representation cache took: {:.3f}s".format(end - start)) else: train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn ) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, collate_fn=collate_fn) if save_model: with open("{}_classifier_head_meta.json".format(dataset), "w") as meta_file: json.dump(discriminator_meta, meta_file) optimizer = optim.Adam(discriminator.parameters(), lr=0.0001) for epoch in range(epochs): start = time.time() print("\nEpoch", epoch + 1) train_epoch( discriminator=discriminator, data_loader=train_loader, optimizer=optimizer, epoch=epoch, log_interval=log_interval, device=device, ) evaluate_performance(data_loader=test_loader, discriminator=discriminator, device=device) end = time.time() print("Epoch took: {:.3f}s".format(end - start)) print("\nExample prediction") predict(example_sentence, discriminator, idx2class, cached=cached, device=device) if save_model: # torch.save(discriminator.state_dict(), # "{}_discriminator_{}.pt".format( # args.dataset, epoch + 1 # )) torch.save( discriminator.get_classifier().state_dict(), "{}_classifier_head_epoch_{}.pt".format(dataset, epoch + 1), ) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Train a discriminator on top of GPT-2 representations") parser.add_argument( "--dataset", type=str, default="SST", choices=("SST", "clickbait", "toxic", "generic"), help="dataset to train the discriminator on." "In case of generic, the dataset is expected" "to be a TSBV file with structure: class \\t text", ) parser.add_argument( "--dataset_fp", type=str, default="", help="File path of the dataset to use. " "Needed only in case of generic datadset", ) parser.add_argument( "--pretrained_model", type=str, default="gpt2-medium", help="Pretrained model to use as encoder" ) parser.add_argument("--epochs", type=int, default=10, metavar="N", help="Number of training epochs") parser.add_argument( "--batch_size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)" ) parser.add_argument( "--log_interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument("--save_model", action="store_true", help="whether to save the model") parser.add_argument("--cached", action="store_true", help="whether to cache the input representations") parser.add_argument("--no_cuda", action="store_true", help="use to turn off cuda") args = parser.parse_args() train_discriminator(**(vars(args)))
0ce156178c0a4e5b5787386c7b7ef99496948793
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa2/sample/ast_coverage-51.py
bfef20fc22cc7201d85726659aa3556a23ea3605
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
672
py
count:int = 0 def foo(s: str) -> int: return len(s) class bar(object): p: bool = True def baz($TypedVar, xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" print(bar().baz([1,2]))
3b1373563feba29c600a45c39b4c088717a565e3
33c1c5d0f48ad952776fe546a85350a441d6cfc2
/ABC/058/C.py
5e7f508ce787e956e285580187e4f2a28810dd0c
[]
no_license
hisyatokaku/Competition
985feb14aad73fda94804bb1145e7537b057e306
fdbf045a59eccb1b2502b018cab01810de4ea894
refs/heads/master
2021-06-30T18:48:48.256652
2020-11-16T11:55:12
2020-11-16T11:55:12
191,138,764
0
0
null
null
null
null
UTF-8
Python
false
false
1,175
py
import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools from collections import deque sys.setrecursionlimit(10**7) inf = 10**20 mod = 10**9 + 7 DR = [1, -1, 0, 0] DC = [0, 0, 1, -1] def LI(): return [int(x) for x in sys.stdin.readline().split()] def LI_(): return [int(x)-1 for x in sys.stdin.readline().split()] def LF(): return [float(x) for x in sys.stdin.readline().split()] def LS(): return sys.stdin.readline().split() def I(): return int(sys.stdin.readline()) def F(): return float(sys.stdin.readline()) def S(): return input() def main(): N = I() strings = [] prevdic = None for _ in range(N): ch = S() curdic = collections.Counter() for c in ch: curdic[c] += 1 if prevdic: for k, v in prevdic.items(): prevdic[k] = min(v, curdic[k]) else: prevdic = curdic diclist = [] for k, v in prevdic.items(): diclist.append((k, v)) diclist = sorted(diclist, key=lambda x: x[0]) ans = '' for item in diclist: k, v = item[0], item[1] ans += k * v print(ans) main()
7eb97a4b679b17234e30a781df737859f3a9fec7
f89d70fc8bf370ef4e2aa54c7ee0de3b4a053624
/troposphere/validators/certificatemanager.py
c7644aacc79b763e015b48d41199629fa523839d
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
yks0000/troposphere
a7622bff01c31f10dcb296d2ca353144e1d7f793
9a94a8fafd8b4da1cd1f4239be0e7aa0681fd8d4
refs/heads/main
2022-04-28T03:51:42.770881
2022-04-15T15:15:01
2022-04-15T15:15:01
482,753,190
1
0
BSD-2-Clause
2022-04-18T07:20:42
2022-04-18T07:20:42
null
UTF-8
Python
false
false
250
py
# Copyright (c) 2012-2022, Mark Peek <[email protected]> # All rights reserved. # # See LICENSE file for full license. from . import tags_or_list def validate_tags_or_list(x): """ Property: Certificate.Tags """ return tags_or_list(x)
10f6a7a084d195cc8020da4f2a0f4e5ac4493b89
ebbbefbc82412d8a91c8de96a45ffebe5d625c51
/test/inspector_protocol_parser_test/inspector_protocol_parser_test.gyp
835117c5a7b9f7f8f21033995d3aee142372a057
[ "BSD-3-Clause", "SunPro", "bzip2-1.0.6" ]
permissive
riverar/v8
d93eb2aea104d10aee2a27a7763e13061ec60f4b
16397d242258b97f107e742e37cc585e77b9b3d0
refs/heads/master
2020-12-14T18:39:32.337673
2016-11-13T22:04:51
2016-11-13T22:04:51
77,864,048
2
0
null
2017-01-02T21:50:22
2017-01-02T21:50:21
null
UTF-8
Python
false
false
1,311
gyp
# Copyright 2016 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'protocol_path': '../../third_party/WebKit/Source/platform/inspector_protocol', }, 'targets': [ { 'target_name': 'inspector_protocol_parser_test', 'type': 'executable', 'dependencies': [ '../../src/inspector/inspector.gyp:inspector_protocol', '../../testing/gmock.gyp:gmock', '../../testing/gtest.gyp:gtest', ], 'include_dirs+': [ '../..', '<(protocol_path)/../..', ], 'defines': [ 'V8_INSPECTOR_USE_STL', ], 'sources': [ '<(protocol_path)/ParserTest.cpp', 'RunTests.cpp', ] }, ], 'conditions': [ ['test_isolation_mode != "noop"', { 'targets': [ { 'target_name': 'inspector_protocol_parser_test_run', 'type': 'none', 'dependencies': [ 'inspector_protocol_parser_test', ], 'includes': [ '../../gypfiles/features.gypi', '../../gypfiles/isolate.gypi', ], 'sources': [ 'inspector_protocol_parser_test.isolate', ], }, ], }], ], }
c4fc69e83f8f586a7eac0551aaba42be7e4142fa
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/pg_1713+248/sdB_pg_1713+248_coadd.py
512545067cc439b9893d34f29e077ea79ff244a5
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
from gPhoton.gMap import gMap def main(): gMap(band="NUV", skypos=[258.910292,24.789658], skyrange=[0.0333333333333,0.0333333333333], stepsz = 30., cntfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdBs/sdB_pg_1713+248/sdB_pg_1713+248_movie_count.fits", cntcoaddfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdB/sdB_pg_1713+248/sdB_pg_1713+248_count_coadd.fits", overwrite=True, verbose=3) if __name__ == "__main__": main()
3d4853aadd426ddffba132f55513da77925f1a05
72dbf8366cf17b6a81ab37e72af667726e3f2661
/store/migrations/0004_customer_profile_pic.py
3c6be38b982836d8550da5a4b198ba126e8f506e
[]
no_license
Rayhun/Django_E-Commerce_website
3aef732ffa0a41509be95ced3c33b845233903a7
1a5f7e31f942914256e49ba7da1f7367a799f097
refs/heads/main
2023-05-23T18:18:27.875328
2021-04-30T19:29:06
2021-04-30T19:29:06
306,414,778
3
1
null
2021-04-30T19:28:58
2020-10-22T17:41:57
CSS
UTF-8
Python
false
false
412
py
# Generated by Django 3.1.1 on 2020-10-31 15:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('store', '0003_auto_20201030_1534'), ] operations = [ migrations.AddField( model_name='customer', name='profile_pic', field=models.ImageField(blank=True, null=True, upload_to=''), ), ]
0b7425ef67785d25400834e4025a57b2674c43ad
64bf39b96a014b5d3f69b3311430185c64a7ff0e
/intro-ansible/venv3/lib/python3.8/site-packages/ansible_collections/azure/azcollection/plugins/modules/azure_rm_vmbackuppolicy.py
c8977d6cfac4931a9ca8ddcc2ed369004c8ee7d9
[ "GPL-1.0-or-later", "GPL-3.0-only", "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
SimonFangCisco/dne-dna-code
7072eba7da0389e37507b7a2aa5f7d0c0735a220
2ea7d4f00212f502bc684ac257371ada73da1ca9
refs/heads/master
2023-03-10T23:10:31.392558
2021-02-25T15:04:36
2021-02-25T15:04:36
342,274,373
0
0
MIT
2021-02-25T14:39:22
2021-02-25T14:39:22
null
UTF-8
Python
false
false
15,653
py
#!/usr/bin/python # # Copyright (c) 2020 Suyeb Ansari (@suyeb786) # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure_rm_vmbackuppolicy version_added: '1.1.0' short_description: Create or Delete Azure VM Backup Policy description: - Create or Delete Azure VM Backup Policy. options: name: description: - Policy Name. required: true type: str resource_group: description: - The name of the resource group. required: true type: str vault_name: description: - Recovery Service Vault Name. required: true type: str time: description: - Retention times of retention policy in UTC. required: false default: '12:00' type: str weekdays: description: - List of days of the week. required: false default: ['Monday'] type: list weeks: description: - List of weeks of month. required: false default: ['First'] type: list months: description: - List of months of year of yearly retention policy. required: false default: ['January'] type: list count: description: - Count of duration types. Retention duration is obtained by the counting the duration type Count times. required: false default: 1 type: int state: description: - Assert the state of the protection item. - Use C(present) for Creating Backup Policy. - Use C(absent) for Deleting Backup Policy. default: present type: str choices: - present - absent extends_documentation_fragment: - azure.azcollection.azure - azure.azcollection.azure_tags author: - Suyeb Ansari (@suyeb786) ''' EXAMPLES = ''' - name: Create VM Backup Policy azure_rm_backvmuppolicy: name: 'myBackupPolicy' vault_name: 'myVault' resource_group: 'myResourceGroup' time: '18:00' weekdays: ['Monday', 'Thursday', 'Friday'] weeks: ['First', 'Fourth'] months: ['February', 'November'] count: 4 state: present - name: Delete VM Backup Policy azure_rm_backvmuppolicy: name: 'myBackupPolicy' vault_name: 'myVault' resource_group: 'myResourceGroup' state: absent ''' RETURN = ''' response: description: - The response about the current state of the backup policy. returned: always type: complex contains: id: description: - Resource ID. returned: always type: str sample: "/subscriptions/xxxxxxx/resourceGroups/resourcegroup_name/ \ providers/Microsoft.RecoveryServices/vaults/myVault/backupPolicies/myBackup" name: description: - Backup Policy Name. returned: always type: str sample: "myBackup" properties: description: - The backup policy properties. returned: always type: dict sample: { "backupManagementType": "AzureIaasVM", "schedulePolicy": { "schedulePolicyType": "SimpleSchedulePolicy", "scheduleRunFrequency": "Weekly", "scheduleRunDays": [ "Monday", "Wednesday", "Thursday" ], "scheduleRunTimes": [ "2018-01-24T10:00:00Z" ], "scheduleWeeklyFrequency": 0 }, "retentionPolicy": { "retentionPolicyType": "LongTermRetentionPolicy", "weeklySchedule": { "daysOfTheWeek": [ "Monday", "Wednesday", "Thursday" ], "retentionTimes": [ "2018-01-24T10:00:00Z" ], "retentionDuration": { "count": 1, "durationType": "Weeks" } }, "monthlySchedule": { "retentionScheduleFormatType": "Weekly", "retentionScheduleWeekly": { "daysOfTheWeek": [ "Wednesday", "Thursday" ], "weeksOfTheMonth": [ "First", "Third" ] }, "retentionTimes": [ "2018-01-24T10:00:00Z" ], "retentionDuration": { "count": 2, "durationType": "Months" } }, "yearlySchedule": { "retentionScheduleFormatType": "Weekly", "monthsOfYear": [ "February", "November" ], "retentionScheduleWeekly": { "daysOfTheWeek": [ "Monday", "Thursday" ], "weeksOfTheMonth": [ "Fourth" ] }, "retentionTimes": [ "2018-01-24T10:00:00Z" ], "retentionDuration": { "count": 4, "durationType": "Years" } } }, "timeZone": "Pacific Standard Time", "protectedItemsCount": 0 } type: description: - Resource type. returned: always type: str sample: "Microsoft.RecoveryServices/vaults/backupPolicies" ''' from ansible_collections.azure.azcollection.plugins.module_utils.azure_rm_common_rest import GenericRestClient from ansible_collections.azure.azcollection.plugins.module_utils.azure_rm_common_ext import AzureRMModuleBaseExt import time import json try: from msrestazure.azure_exceptions import CloudError except ImportError: # This is handled in azure_rm_common pass class VMBackupPolicy(AzureRMModuleBaseExt): def __init__(self): self.module_arg_spec = dict( resource_group=dict( type='str', required=True ), name=dict( type='str', required=True ), vault_name=dict( type='str', required=True ), time=dict( type='str', default='12:00' ), weekdays=dict( type='list', default=['Monday'] ), weeks=dict( type='list', default=['First'] ), months=dict( type='list', default=['January'] ), count=dict( type='int', default=1 ), state=dict( type='str', default='present', choices=['present', 'absent'] ) ) self.resource_group = None self.name = None self.time = None self.state = None self.vault_name = None self.count = None self.weekdays = None self.weeks = None self.months = None self.results = dict(changed=False) self.mgmt_client = None self.url = None self.status_code = [200, 201, 202, 204] self.body = {} self.query_parameters = {} self.query_parameters['api-version'] = '2019-05-13' self.header_parameters = {} self.header_parameters['Content-Type'] = 'application/json; charset=utf-8' super(VMBackupPolicy, self).__init__(derived_arg_spec=self.module_arg_spec, supports_check_mode=True, supports_tags=True ) def get_url(self): return '/subscriptions/' \ + self.subscription_id \ + '/resourceGroups/' \ + self.resource_group \ + '/providers/Microsoft.RecoveryServices' \ + '/vaults' + '/' \ + self.vault_name + '/' \ + "backupPolicies/" \ + self.name def set_schedule_run_time(self): return time.strftime("%Y-%m-%d", time.gmtime()) + "T" + self.time + ":00Z" def get_body(self): self.log('backup attributes {0}'.format(self.body)) self.time = self.set_schedule_run_time() schedule_policy = dict() schedule_policy['schedulePolicyType'] = 'SimpleSchedulePolicy' schedule_policy['scheduleRunFrequency'] = 'Weekly' schedule_policy['scheduleRunTimes'] = [self.time] schedule_policy['scheduleRunDays'] = self.weekdays weekly_schedule = dict() weekly_schedule['daysOfTheWeek'] = ['Monday'] weekly_schedule['retentionTimes'] = [self.time] weekly_schedule['retentionDuration'] = dict() weekly_schedule['retentionDuration']['count'] = self.count weekly_schedule['retentionDuration']['durationType'] = 'Weeks' monthly_schedule = dict() monthly_schedule['retentionScheduleFormatType'] = 'Weekly' monthly_schedule['retentionScheduleWeekly'] = dict() monthly_schedule['retentionScheduleWeekly']['daysOfTheWeek'] = self.weekdays monthly_schedule['retentionScheduleWeekly']['weeksOfTheMonth'] = self.weeks monthly_schedule['retentionTimes'] = [self.time] monthly_schedule['retentionDuration'] = dict() monthly_schedule['retentionDuration']['count'] = self.count monthly_schedule['retentionDuration']['durationType'] = 'Months' yearly_schedule = dict() yearly_schedule['retentionScheduleFormatType'] = 'Weekly' yearly_schedule['monthsOfYear'] = self.months yearly_schedule['retentionScheduleWeekly'] = dict() yearly_schedule['retentionScheduleWeekly']['daysOfTheWeek'] = self.weekdays yearly_schedule['retentionScheduleWeekly']['weeksOfTheMonth'] = self.weeks yearly_schedule['retentionTimes'] = [self.time] yearly_schedule['retentionDuration'] = dict() yearly_schedule['retentionDuration']['count'] = self.count yearly_schedule['retentionDuration']['durationType'] = 'Years' body = dict() body['properties'] = dict() body['properties']['backupManagementType'] = 'AzureIaasVM' body['properties']['timeZone'] = 'Pacific Standard Time' body['properties']['schedulePolicy'] = schedule_policy body['properties']['retentionPolicy'] = dict() body['properties']['retentionPolicy']['retentionPolicyType'] = 'LongTermRetentionPolicy' body['properties']['retentionPolicy']['weeklySchedule'] = weekly_schedule body['properties']['retentionPolicy']['monthlySchedule'] = monthly_schedule body['properties']['retentionPolicy']['yearlySchedule'] = yearly_schedule return body def exec_module(self, **kwargs): for key in list(self.module_arg_spec.keys()): if hasattr(self, key): setattr(self, key, kwargs[key]) elif kwargs[key] is not None: self.body[key] = kwargs[key] self.inflate_parameters(self.module_arg_spec, self.body, 0) self.url = self.get_url() self.body = self.get_body() old_response = None response = None self.mgmt_client = self.get_mgmt_svc_client(GenericRestClient, base_url=self._cloud_environment.endpoints.resource_manager) old_response = self.get_resource() changed = False if self.state == 'present': if old_response is False: response = self.create_vm_backup_policy() changed = True else: response = old_response if self.state == 'absent': changed = True response = self.delete_vm_backup_policy() self.results['response'] = response self.results['changed'] = changed return self.results def create_vm_backup_policy(self): # self.log('Creating VM Backup Policy {0}'.format(self.)) try: response = self.mgmt_client.query( self.url, 'PUT', self.query_parameters, self.header_parameters, self.body, self.status_code, 600, 30, ) except CloudError as e: self.log('Error in creating Backup Policy.') self.fail('Error in creating Backup Policy {0}'.format(str(e))) try: response = json.loads(response.text) except Exception: response = {'text': response.text} return response def delete_vm_backup_policy(self): # self.log('Deleting Backup Policy {0}'.format(self.)) try: response = self.mgmt_client.query( self.url, 'DELETE', self.query_parameters, self.header_parameters, None, self.status_code, 600, 30, ) except CloudError as e: self.log('Error attempting to delete Azure Backup policy.') self.fail('Error attempting to delete Azure Backup policy: {0}'.format(str(e))) try: response = json.loads(response.text) except Exception: response = {'text': response.text} return response def get_resource(self): # self.log('Fetch Backup Policy Details {0}'.format(self.)) found = False try: response = self.mgmt_client.query( self.url, 'GET', self.query_parameters, self.header_parameters, None, self.status_code, 600, 30, ) found = True except CloudError as e: self.log('Backup policy does not exist.') if found is True: response = json.loads(response.text) return response else: return False def main(): VMBackupPolicy() if __name__ == '__main__': main()
5dbd1f7c42544433d409a21de2f3f2b30ab38bb3
31730fbdf50dcbc36205911e3a676f0d826157b1
/setup.py
87aa04ba1362ee17f5c2df4173f3d322c339a45c
[ "MIT" ]
permissive
Harpuia/terminal-leetcode
954a270784fe920eb49f1fc4b8e66b379377e608
39b27b3a6260195376c0cdffb7697b4aa5c60ca8
refs/heads/master
2021-01-22T02:04:19.470178
2017-05-21T21:34:26
2017-05-21T21:34:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,133
py
import os from setuptools import setup def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() requirements = ['urwid', 'requests', 'bs4', 'lxml'] setup( name = "terminal-leetcode", version = "0.0.11", author = "Liyun Xiu", author_email = "[email protected]", description = "A terminal based leetcode website viewer", license = "MIT", keywords = "leetcode terminal urwid", url = "https://github.com/chishui/terminal-leetcode", packages=['leetcode', 'leetcode/views'], long_description=read('README.md'), include_package_data=True, install_requires=requirements, entry_points={'console_scripts': ['leetcode=leetcode.__main__:main']}, #classifiers=[ #"Operating System :: MacOS :: MacOS X", #"Operating System :: POSIX", #"Natural Language :: English", #"Programming Language :: Python :: 2.7", #"Development Status :: 2 - Pre-Alpha", #"Environment :: Console :: Curses", #"Topic :: Utilities", #"Topic :: Terminals", #"License :: OSI Approved :: MIT License", #], )
8308c5e060050d89710a4c75af0015ccdf6f9d54
9f250956e2c19e5b51053a513a6b31ef8128d674
/myProject/account/models.py
847e54c8c8c7bd75fd82bf7bb24b88146fd4144d
[]
no_license
murali-kotakonda/pyDjango
85b9128949fcdf3bcc0e60c386decd9eeff723db
cf1a920f8146be600bc04455cb5769f369c7d6eb
refs/heads/master
2023-03-24T06:34:14.143103
2021-03-20T12:38:40
2021-03-20T12:38:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
476
py
from django.db import models # Create your models here. from django.db import models from django.contrib.auth.models import User from django.utils import timezone class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) middle_name = models.CharField(max_length=30, blank=True) dob = models.DateField(null=True, blank=True) active = models.BooleanField(default=True) pub_date = models.DateTimeField(default=timezone.now)
2b2ef12926774661cb4b51bc33a1ee978667c5e7
536bce6ca78a9a151247b51acb8c375c9db7445f
/src/plot/plot0a.py
576ed81aae88789ba020629c45a25f2e61024a75
[]
no_license
clicianaldoni/aprimeronpython
57de34313f4fd2a0c69637fefd60b0fb5861f859
a917b62bec669765a238c4b310cc52b79c7df0c9
refs/heads/master
2023-01-28T18:02:31.175511
2023-01-23T08:14:57
2023-01-23T08:14:57
112,872,454
0
0
null
2017-12-02T19:55:40
2017-12-02T19:55:40
null
UTF-8
Python
false
false
679
py
"""Plot three curves. Use Matlab-style syntax.""" from scitools.std import * # plot two curves in the same plot: t = linspace(0, 3, 51) # 51 points between 0 and 3 y1 = t**2*exp(-t**2) y2 = t**4*exp(-t**2) # pick out each 4 points and add random noise: t3 = t[::4] random.seed(11) y3 = y2[::4] + random.normal(loc=0, scale=0.02, size=len(t3)) # use Matlab syntax: plot(t, y1, 'r-') hold('on') plot(t, y2, 'b-') plot(t3, y3, 'bo') legend('t^2*exp(-t^2)', 't^4*exp(-t^2)', 'data') title('Simple Plot Demo') axis([0, 3, -0.05, 0.6]) xlabel('t') ylabel('y') show() hardcopy('tmp0.eps') # this one can be included in latex hardcopy('tmp0.png') # this one can be included in HTML
b6976d1ebf040e74ebb2ffe37340c1a569afacca
bc444c603a80d7c656c4f20539f6035c43fff54a
/src/dirbs/api/v2/resources/__init__.py
beaa8eb8bea4490bfdda03263a24cddeddeb4211
[ "BSD-4-Clause", "LicenseRef-scancode-other-permissive", "zlib-acknowledgement", "LicenseRef-scancode-unknown-license-reference" ]
permissive
dewipuspa/DIRBS-Core
fe1af50918333474732872b61dc3ae4f8e41c14f
702e93dcefdf0fb5787cb42c2a6bc2574e483057
refs/heads/master
2020-07-07T09:59:10.723477
2019-06-21T06:39:59
2019-06-21T06:39:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,104
py
""" DIRBS REST-ful API-V2 resource package. SPDX-License-Identifier: BSD-4-Clause-Clear Copyright (c) 2018-2019 Qualcomm Technologies, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - All advertising materials mentioning features or use of this software, or any deployment of this software, or documentation accompanying any distribution of this software, must display the trademark/logo as per the details provided here: https://www.qualcomm.com/documents/dirbs-logo-and-brand-guidelines - Neither the name of Qualcomm Technologies, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. SPDX-License-Identifier: ZLIB-ACKNOWLEDGEMENT Copyright (c) 2018-2019 Qualcomm Technologies, Inc. This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: - The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment is required by displaying the trademark/logo as per the details provided here: https://www.qualcomm.com/documents/dirbs-logo-and-brand-guidelines - Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. - This notice may not be removed or altered from any source distribution. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """
bcfeb0806979c5c3c6b5815db7dd321e6d847b41
d994cee3810de8f5fa895807f415d8051dfd1319
/HetMan/experiments/pair_inference/setup_comb.py
4ab9ea7068b4cfd9486fea0b2579d392b6315969
[]
no_license
ohsu-comp-bio/bergamot
b4e162525d1cc66975d64866cc68004ee42828e2
37fd50fc1ce6da83049a0cbbad5038a055fd3544
refs/heads/master
2023-07-24T01:15:27.695906
2019-09-19T01:39:13
2019-09-19T01:39:13
89,973,424
1
2
null
2023-07-06T21:07:53
2017-05-02T00:03:26
Python
UTF-8
Python
false
false
4,119
py
import os base_dir = os.path.dirname(__file__) import sys sys.path.extend([os.path.join(base_dir, '../../..')]) from HetMan.features.expression import get_expr_firehose from HetMan.features.variants import get_variants_mc3 from HetMan.features.cohorts import VariantCohort import synapseclient import dill as pickle import argparse firehose_dir = '/home/exacloud/lustre1/CompBio/mgrzad/input-data/firehose' def main(): """Runs the experiment.""" parser = argparse.ArgumentParser( description='Set up searching for sub-types to detect.' ) # positional command line arguments parser.add_argument('cohort', type=str, help='a TCGA cohort') parser.add_argument('classif', type=str, help='a classifier in HetMan.predict.classifiers') # optional command line arguments controlling the thresholds for which # individual mutations and how many genes' mutations are considered parser.add_argument( '--freq_cutoff', type=int, default=20, help='sub-type sample frequency threshold' ) parser.add_argument( '--max_genes', type=int, default=10, help='maximum number of mutated genes to consider' ) # optional command line argument controlling verbosity parser.add_argument('--verbose', '-v', action='store_true', help='turns on diagnostic messages') # parse the command line arguments, get the directory where found sub-types # will be saved for future use args = parser.parse_args() out_path = os.path.join(base_dir, 'output', args.cohort, args.classif, 'comb') if args.verbose: print("Looking for mutation sub-types in cohort {} with at least {} " "samples in total.\n".format( args.cohort, args.freq_cutoff)) # log into Synapse using locally-stored credentials syn = synapseclient.Synapse() syn.cache.cache_root_dir = ("/home/exacloud/lustre1/CompBio/" "mgrzad/input-data/synapse") syn.login() # load the expression matrix for the given cohort from Broad Firehose, # load the MC3 variant call set from Synapse, find the mutations for the # samples that are in both datasets expr_data = get_expr_firehose(args.cohort, firehose_dir) mc3_data = get_variants_mc3(syn) expr_mc3 = mc3_data.loc[mc3_data['Sample'].isin(expr_data.index), :] # get the genes whose mutations appear in enough samples to pass the # frequency threshold gene_counts = expr_mc3.groupby(by='Gene').Sample.nunique() common_genes = set(gene_counts.index[gene_counts >= args.freq_cutoff]) if args.verbose: print("Found {} candidate genes with at least {} potential " "mutated samples.".format(len(common_genes), args.freq_cutoff)) # if too many genes passed the frequency cutoff, use only the top n by # frequency - note that ties are broken arbitrarily and so the list of # genes chosen will differ slightly between runs if len(common_genes) >= args.max_genes: gene_counts = gene_counts[common_genes].sort_values(ascending=False) common_genes = set(gene_counts[:args.max_genes].index) if args.verbose: print("Too many genes found, culling list to {} genes which each " "have at least {} mutated samples.".format( args.max_genes, min(gene_counts[common_genes]))) cdata = VariantCohort( cohort=args.cohort, mut_genes=common_genes, mut_levels=['Gene'], expr_source='Firehose', data_dir=firehose_dir, cv_prop=1.0, syn=syn ) use_mtypes = cdata.train_mut.branchtypes(sub_levels=['Gene'], min_size=args.freq_cutoff) if args.verbose: print("\nFound {} total sub-types!".format(len(use_mtypes))) # save the list of found non-duplicate sub-types to file pickle.dump(sorted(list(use_mtypes)), open(os.path.join(out_path, 'tmp/mtype_list.p'), 'wb')) if __name__ == '__main__': main()
120fa7d83ee44ee9335c1740031e2fa791883cf0
3f28b697f570ded0502de70c706200005ab62525
/env/lib/python2.7/site-packages/scipy/io/mmio.py
6b36f6dccc7d3f6b1daf07e1dd4f4d10aac5ddcc
[ "MIT" ]
permissive
Ram-Aditya/Healthcare-Data-Analytics
5387e41ad8e56af474e10fa2d1c9d8a2847c5ead
d1a15d2cc067410f82a9ded25f7a782ef56b4729
refs/heads/master
2022-12-09T12:49:59.027010
2019-11-23T20:10:55
2019-11-23T20:10:55
223,639,339
0
1
MIT
2022-11-22T00:37:48
2019-11-23T19:06:20
Jupyter Notebook
UTF-8
Python
false
false
22,016
py
""" Matrix Market I/O in Python. """ # # Author: Pearu Peterson <[email protected]> # Created: October, 2004 # # References: # http://math.nist.gov/MatrixMarket/ # from __future__ import division, print_function, absolute_import import os import sys from numpy import asarray, real, imag, conj, zeros, ndarray, concatenate, \ ones, ascontiguousarray, vstack, savetxt, fromfile, fromstring from numpy.compat import asbytes, asstr from scipy.lib.six import string_types __all__ = ['mminfo','mmread','mmwrite', 'MMFile'] #------------------------------------------------------------------------------- def mminfo(source): """ Queries the contents of the Matrix Market file 'filename' to extract size and storage information. Parameters ---------- source : file Matrix Market filename (extension .mtx) or open file object Returns ------- rows,cols : int Number of matrix rows and columns entries : int Number of non-zero entries of a sparse matrix or rows*cols for a dense matrix format : str Either 'coordinate' or 'array'. field : str Either 'real', 'complex', 'pattern', or 'integer'. symm : str Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'. """ return MMFile.info(source) #------------------------------------------------------------------------------- def mmread(source): """ Reads the contents of a Matrix Market file 'filename' into a matrix. Parameters ---------- source : file Matrix Market filename (extensions .mtx, .mtz.gz) or open file object. Returns ------- a: Sparse or full matrix """ return MMFile().read(source) #------------------------------------------------------------------------------- def mmwrite(target, a, comment='', field=None, precision=None): """ Writes the sparse or dense array `a` to a Matrix Market formatted file. Parameters ---------- target : file Matrix Market filename (extension .mtx) or open file object a : array like Sparse or dense 2D array comment : str, optional comments to be prepended to the Matrix Market file field : None or str, optional Either 'real', 'complex', 'pattern', or 'integer'. precision : None or int, optional Number of digits to display for real or complex values. """ MMFile().write(target, a, comment, field, precision) ################################################################################ class MMFile (object): __slots__ = ( '_rows', '_cols', '_entries', '_format', '_field', '_symmetry') @property def rows(self): return self._rows @property def cols(self): return self._cols @property def entries(self): return self._entries @property def format(self): return self._format @property def field(self): return self._field @property def symmetry(self): return self._symmetry @property def has_symmetry(self): return self._symmetry in (self.SYMMETRY_SYMMETRIC, self.SYMMETRY_SKEW_SYMMETRIC, self.SYMMETRY_HERMITIAN) # format values FORMAT_COORDINATE = 'coordinate' FORMAT_ARRAY = 'array' FORMAT_VALUES = (FORMAT_COORDINATE, FORMAT_ARRAY) @classmethod def _validate_format(self, format): if format not in self.FORMAT_VALUES: raise ValueError('unknown format type %s, must be one of %s' % (format, self.FORMAT_VALUES)) # field values FIELD_INTEGER = 'integer' FIELD_REAL = 'real' FIELD_COMPLEX = 'complex' FIELD_PATTERN = 'pattern' FIELD_VALUES = (FIELD_INTEGER, FIELD_REAL, FIELD_COMPLEX, FIELD_PATTERN) @classmethod def _validate_field(self, field): if field not in self.FIELD_VALUES: raise ValueError('unknown field type %s, must be one of %s' % (field, self.FIELD_VALUES)) # symmetry values SYMMETRY_GENERAL = 'general' SYMMETRY_SYMMETRIC = 'symmetric' SYMMETRY_SKEW_SYMMETRIC = 'skew-symmetric' SYMMETRY_HERMITIAN = 'hermitian' SYMMETRY_VALUES = (SYMMETRY_GENERAL, SYMMETRY_SYMMETRIC, SYMMETRY_SKEW_SYMMETRIC, SYMMETRY_HERMITIAN) @classmethod def _validate_symmetry(self, symmetry): if symmetry not in self.SYMMETRY_VALUES: raise ValueError('unknown symmetry type %s, must be one of %s' % (symmetry, self.SYMMETRY_VALUES)) DTYPES_BY_FIELD = { FIELD_INTEGER: 'i', FIELD_REAL: 'd', FIELD_COMPLEX: 'D', FIELD_PATTERN: 'd'} #--------------------------------------------------------------------------- @staticmethod def reader(): pass #--------------------------------------------------------------------------- @staticmethod def writer(): pass #--------------------------------------------------------------------------- @classmethod def info(self, source): source, close_it = self._open(source) try: # read and validate header line line = source.readline() mmid, matrix, format, field, symmetry = \ [asstr(part.strip()) for part in line.split()] if not mmid.startswith('%%MatrixMarket'): raise ValueError('source is not in Matrix Market format') if not matrix.lower() == 'matrix': raise ValueError("Problem reading file header: " + line) # http://math.nist.gov/MatrixMarket/formats.html if format.lower() == 'array': format = self.FORMAT_ARRAY elif format.lower() == 'coordinate': format = self.FORMAT_COORDINATE # skip comments while line.startswith(b'%'): line = source.readline() line = line.split() if format == self.FORMAT_ARRAY: if not len(line) == 2: raise ValueError("Header line not of length 2: " + line) rows, cols = map(int, line) entries = rows * cols else: if not len(line) == 3: raise ValueError("Header line not of length 3: " + line) rows, cols, entries = map(int, line) return (rows, cols, entries, format, field.lower(), symmetry.lower()) finally: if close_it: source.close() #--------------------------------------------------------------------------- @staticmethod def _open(filespec, mode='rb'): """ Return an open file stream for reading based on source. If source is a file name, open it (after trying to find it with mtx and gzipped mtx extensions). Otherwise, just return source. """ close_it = False if isinstance(filespec, string_types): close_it = True # open for reading if mode[0] == 'r': # determine filename plus extension if not os.path.isfile(filespec): if os.path.isfile(filespec+'.mtx'): filespec = filespec + '.mtx' elif os.path.isfile(filespec+'.mtx.gz'): filespec = filespec + '.mtx.gz' elif os.path.isfile(filespec+'.mtx.bz2'): filespec = filespec + '.mtx.bz2' # open filename if filespec.endswith('.gz'): import gzip stream = gzip.open(filespec, mode) elif filespec.endswith('.bz2'): import bz2 stream = bz2.BZ2File(filespec, 'rb') else: stream = open(filespec, mode) # open for writing else: if filespec[-4:] != '.mtx': filespec = filespec + '.mtx' stream = open(filespec, mode) else: stream = filespec return stream, close_it #--------------------------------------------------------------------------- @staticmethod def _get_symmetry(a): m,n = a.shape if m != n: return MMFile.SYMMETRY_GENERAL issymm = 1 isskew = 1 isherm = a.dtype.char in 'FD' for j in range(n): for i in range(j+1,n): aij,aji = a[i][j],a[j][i] if issymm and aij != aji: issymm = 0 if isskew and aij != -aji: isskew = 0 if isherm and aij != conj(aji): isherm = 0 if not (issymm or isskew or isherm): break if issymm: return MMFile.SYMMETRY_SYMMETRIC if isskew: return MMFile.SYMMETRY_SKEW_SYMMETRIC if isherm: return MMFile.SYMMETRY_HERMITIAN return MMFile.SYMMETRY_GENERAL #--------------------------------------------------------------------------- @staticmethod def _field_template(field, precision): return { MMFile.FIELD_REAL: '%%.%ie\n' % precision, MMFile.FIELD_INTEGER: '%i\n', MMFile.FIELD_COMPLEX: '%%.%ie %%.%ie\n' % (precision,precision) }.get(field, None) #--------------------------------------------------------------------------- def __init__(self, **kwargs): self._init_attrs(**kwargs) #--------------------------------------------------------------------------- def read(self, source): stream, close_it = self._open(source) try: self._parse_header(stream) return self._parse_body(stream) finally: if close_it: stream.close() #--------------------------------------------------------------------------- def write(self, target, a, comment='', field=None, precision=None): stream, close_it = self._open(target, 'wb') try: self._write(stream, a, comment, field, precision) finally: if close_it: stream.close() else: stream.flush() #--------------------------------------------------------------------------- def _init_attrs(self, **kwargs): """ Initialize each attributes with the corresponding keyword arg value or a default of None """ attrs = self.__class__.__slots__ public_attrs = [attr[1:] for attr in attrs] invalid_keys = set(kwargs.keys()) - set(public_attrs) if invalid_keys: raise ValueError('found %s invalid keyword arguments, please only use %s' % (tuple(invalid_keys), public_attrs)) for attr in attrs: setattr(self, attr, kwargs.get(attr[1:], None)) #--------------------------------------------------------------------------- def _parse_header(self, stream): rows, cols, entries, format, field, symmetry = \ self.__class__.info(stream) self._init_attrs(rows=rows, cols=cols, entries=entries, format=format, field=field, symmetry=symmetry) #--------------------------------------------------------------------------- def _parse_body(self, stream): rows, cols, entries, format, field, symm = (self.rows, self.cols, self.entries, self.format, self.field, self.symmetry) try: from scipy.sparse import coo_matrix except ImportError: coo_matrix = None dtype = self.DTYPES_BY_FIELD.get(field, None) has_symmetry = self.has_symmetry is_complex = field == self.FIELD_COMPLEX is_skew = symm == self.SYMMETRY_SKEW_SYMMETRIC is_herm = symm == self.SYMMETRY_HERMITIAN is_pattern = field == self.FIELD_PATTERN if format == self.FORMAT_ARRAY: a = zeros((rows,cols), dtype=dtype) line = 1 i,j = 0,0 while line: line = stream.readline() if not line or line.startswith(b'%'): continue if is_complex: aij = complex(*map(float,line.split())) else: aij = float(line) a[i,j] = aij if has_symmetry and i != j: if is_skew: a[j,i] = -aij elif is_herm: a[j,i] = conj(aij) else: a[j,i] = aij if i < rows-1: i = i + 1 else: j = j + 1 if not has_symmetry: i = 0 else: i = j if not (i in [0,j] and j == cols): raise ValueError("Parse error, did not read all lines.") elif format == self.FORMAT_COORDINATE and coo_matrix is None: # Read sparse matrix to dense when coo_matrix is not available. a = zeros((rows,cols), dtype=dtype) line = 1 k = 0 while line: line = stream.readline() if not line or line.startswith(b'%'): continue l = line.split() i,j = map(int,l[:2]) i,j = i-1,j-1 if is_complex: aij = complex(*map(float,l[2:])) else: aij = float(l[2]) a[i,j] = aij if has_symmetry and i != j: if is_skew: a[j,i] = -aij elif is_herm: a[j,i] = conj(aij) else: a[j,i] = aij k = k + 1 if not k == entries: ValueError("Did not read all entries") elif format == self.FORMAT_COORDINATE: # Read sparse COOrdinate format if entries == 0: # empty matrix return coo_matrix((rows, cols), dtype=dtype) try: if not _is_fromfile_compatible(stream): flat_data = fromstring(stream.read(), sep=' ') else: # fromfile works for normal files flat_data = fromfile(stream, sep=' ') except Exception: # fallback - fromfile fails for some file-like objects flat_data = fromstring(stream.read(), sep=' ') # TODO use iterator (e.g. xreadlines) to avoid reading # the whole file into memory if is_pattern: flat_data = flat_data.reshape(-1,2) I = ascontiguousarray(flat_data[:,0], dtype='intc') J = ascontiguousarray(flat_data[:,1], dtype='intc') V = ones(len(I), dtype='int8') # filler elif is_complex: flat_data = flat_data.reshape(-1,4) I = ascontiguousarray(flat_data[:,0], dtype='intc') J = ascontiguousarray(flat_data[:,1], dtype='intc') V = ascontiguousarray(flat_data[:,2], dtype='complex') V.imag = flat_data[:,3] else: flat_data = flat_data.reshape(-1,3) I = ascontiguousarray(flat_data[:,0], dtype='intc') J = ascontiguousarray(flat_data[:,1], dtype='intc') V = ascontiguousarray(flat_data[:,2], dtype='float') I -= 1 # adjust indices (base 1 -> base 0) J -= 1 if has_symmetry: mask = (I != J) # off diagonal mask od_I = I[mask] od_J = J[mask] od_V = V[mask] I = concatenate((I,od_J)) J = concatenate((J,od_I)) if is_skew: od_V *= -1 elif is_herm: od_V = od_V.conjugate() V = concatenate((V,od_V)) a = coo_matrix((V, (I, J)), shape=(rows, cols), dtype=dtype) else: raise NotImplementedError(format) return a #--------------------------------------------------------------------------- def _write(self, stream, a, comment='', field=None, precision=None): if isinstance(a, list) or isinstance(a, ndarray) or isinstance(a, tuple) or hasattr(a,'__array__'): rep = self.FORMAT_ARRAY a = asarray(a) if len(a.shape) != 2: raise ValueError('Expected 2 dimensional array') rows,cols = a.shape entries = rows*cols if field is not None: if field == self.FIELD_INTEGER: a = a.astype('i') elif field == self.FIELD_REAL: if a.dtype.char not in 'fd': a = a.astype('d') elif field == self.FIELD_COMPLEX: if a.dtype.char not in 'FD': a = a.astype('D') else: from scipy.sparse import spmatrix if not isinstance(a,spmatrix): raise ValueError('unknown matrix type: %s' % type(a)) rep = 'coordinate' rows, cols = a.shape entries = a.getnnz() typecode = a.dtype.char if precision is None: if typecode in 'fF': precision = 8 else: precision = 16 if field is None: kind = a.dtype.kind if kind == 'i': field = 'integer' elif kind == 'f': field = 'real' elif kind == 'c': field = 'complex' else: raise TypeError('unexpected dtype kind ' + kind) if rep == self.FORMAT_ARRAY: symm = self._get_symmetry(a) else: symm = self.SYMMETRY_GENERAL # validate rep, field, and symmetry self.__class__._validate_format(rep) self.__class__._validate_field(field) self.__class__._validate_symmetry(symm) # write initial header line stream.write(asbytes('%%%%MatrixMarket matrix %s %s %s\n' % (rep,field,symm))) # write comments for line in comment.split('\n'): stream.write(asbytes('%%%s\n' % (line))) template = self._field_template(field, precision) # write dense format if rep == self.FORMAT_ARRAY: # write shape spec stream.write(asbytes('%i %i\n' % (rows,cols))) if field in (self.FIELD_INTEGER, self.FIELD_REAL): if symm == self.SYMMETRY_GENERAL: for j in range(cols): for i in range(rows): stream.write(asbytes(template % a[i,j])) else: for j in range(cols): for i in range(j,rows): stream.write(asbytes(template % a[i,j])) elif field == self.FIELD_COMPLEX: if symm == self.SYMMETRY_GENERAL: for j in range(cols): for i in range(rows): aij = a[i,j] stream.write(asbytes(template % (real(aij),imag(aij)))) else: for j in range(cols): for i in range(j,rows): aij = a[i,j] stream.write(asbytes(template % (real(aij),imag(aij)))) elif field == self.FIELD_PATTERN: raise ValueError('pattern type inconsisted with dense format') else: raise TypeError('Unknown field type %s' % field) # write sparse format else: if symm != self.SYMMETRY_GENERAL: raise NotImplementedError('symmetric matrices not yet supported') coo = a.tocoo() # convert to COOrdinate format # write shape spec stream.write(asbytes('%i %i %i\n' % (rows, cols, coo.nnz))) fmt = '%%.%dg' % precision if field == self.FIELD_PATTERN: IJV = vstack((coo.row, coo.col)).T elif field in [self.FIELD_INTEGER, self.FIELD_REAL]: IJV = vstack((coo.row, coo.col, coo.data)).T elif field == self.FIELD_COMPLEX: IJV = vstack((coo.row, coo.col, coo.data.real, coo.data.imag)).T else: raise TypeError('Unknown field type %s' % field) IJV[:,:2] += 1 # change base 0 -> base 1 savetxt(stream, IJV, fmt=fmt) def _is_fromfile_compatible(stream): """ Check whether stream is compatible with numpy.fromfile. Passing a gzipped file to fromfile/fromstring doesn't work with Python3 """ if sys.version_info[0] < 3: return True bad_cls = [] try: import gzip bad_cls.append(gzip.GzipFile) except ImportError: pass try: import bz2 bad_cls.append(bz2.BZ2File) except ImportError: pass bad_cls = tuple(bad_cls) return not isinstance(stream, bad_cls) #------------------------------------------------------------------------------- if __name__ == '__main__': import sys import time for filename in sys.argv[1:]: print('Reading',filename,'...', end=' ') sys.stdout.flush() t = time.time() mmread(filename) print('took %s seconds' % (time.time() - t))
481cc8b7ab198499fce1c0a51236d4cecf13d6bf
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03495/s609850404.py
b480fa2ca615b11e243acdf596b2bb3cc9bfea4e
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
261
py
N, K = map(int,input().split()) A = list(map(int,input().split())) import collections cA = collections.Counter(A) sorted_ls = sorted(list(cA.values())) sum_ls = sum(sorted_ls) if len(sorted_ls)>K: print(sum(sorted_ls[:len(sorted_ls)-K])) else: print(0)
fc1c51f09fbcfb9579c3048674323b1c14071f24
3ef70fe63acaa665e2b163f30f1abd0a592231c1
/stackoverflow/venv/lib/python3.6/site-packages/twisted/trial/test/test_keyboard.py
71756bc7972de92fd569ca5053a3fce5ba032347
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
wistbean/learn_python3_spider
14914b63691ac032955ba1adc29ad64976d80e15
40861791ec4ed3bbd14b07875af25cc740f76920
refs/heads/master
2023-08-16T05:42:27.208302
2023-03-30T17:03:58
2023-03-30T17:03:58
179,152,420
14,403
3,556
MIT
2022-05-20T14:08:34
2019-04-02T20:19:54
Python
UTF-8
Python
false
false
4,036
py
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for interrupting tests with Control-C. """ from __future__ import absolute_import, division from twisted.python.compat import NativeStringIO from twisted.trial import unittest from twisted.trial import reporter, runner class TrialTest(unittest.SynchronousTestCase): def setUp(self): self.output = NativeStringIO() self.reporter = reporter.TestResult() self.loader = runner.TestLoader() class InterruptInTestTests(TrialTest): class InterruptedTest(unittest.TestCase): def test_02_raiseInterrupt(self): raise KeyboardInterrupt def test_01_doNothing(self): pass def test_03_doNothing(self): InterruptInTestTests.test_03_doNothing_run = True def setUp(self): super(InterruptInTestTests, self).setUp() self.suite = self.loader.loadClass(InterruptInTestTests.InterruptedTest) InterruptInTestTests.test_03_doNothing_run = None def test_setUpOK(self): self.assertEqual(3, self.suite.countTestCases()) self.assertEqual(0, self.reporter.testsRun) self.assertFalse(self.reporter.shouldStop) def test_interruptInTest(self): runner.TrialSuite([self.suite]).run(self.reporter) self.assertTrue(self.reporter.shouldStop) self.assertEqual(2, self.reporter.testsRun) self.assertFalse(InterruptInTestTests.test_03_doNothing_run, "test_03_doNothing ran.") class InterruptInSetUpTests(TrialTest): testsRun = 0 class InterruptedTest(unittest.TestCase): def setUp(self): if InterruptInSetUpTests.testsRun > 0: raise KeyboardInterrupt def test_01(self): InterruptInSetUpTests.testsRun += 1 def test_02(self): InterruptInSetUpTests.testsRun += 1 InterruptInSetUpTests.test_02_run = True def setUp(self): super(InterruptInSetUpTests, self).setUp() self.suite = self.loader.loadClass( InterruptInSetUpTests.InterruptedTest) InterruptInSetUpTests.test_02_run = False InterruptInSetUpTests.testsRun = 0 def test_setUpOK(self): self.assertEqual(0, InterruptInSetUpTests.testsRun) self.assertEqual(2, self.suite.countTestCases()) self.assertEqual(0, self.reporter.testsRun) self.assertFalse(self.reporter.shouldStop) def test_interruptInSetUp(self): runner.TrialSuite([self.suite]).run(self.reporter) self.assertTrue(self.reporter.shouldStop) self.assertEqual(2, self.reporter.testsRun) self.assertFalse(InterruptInSetUpTests.test_02_run, "test_02 ran") class InterruptInTearDownTests(TrialTest): testsRun = 0 class InterruptedTest(unittest.TestCase): def tearDown(self): if InterruptInTearDownTests.testsRun > 0: raise KeyboardInterrupt def test_01(self): InterruptInTearDownTests.testsRun += 1 def test_02(self): InterruptInTearDownTests.testsRun += 1 InterruptInTearDownTests.test_02_run = True def setUp(self): super(InterruptInTearDownTests, self).setUp() self.suite = self.loader.loadClass( InterruptInTearDownTests.InterruptedTest) InterruptInTearDownTests.testsRun = 0 InterruptInTearDownTests.test_02_run = False def test_setUpOK(self): self.assertEqual(0, InterruptInTearDownTests.testsRun) self.assertEqual(2, self.suite.countTestCases()) self.assertEqual(0, self.reporter.testsRun) self.assertFalse(self.reporter.shouldStop) def test_interruptInTearDown(self): runner.TrialSuite([self.suite]).run(self.reporter) self.assertEqual(1, self.reporter.testsRun) self.assertTrue(self.reporter.shouldStop) self.assertFalse(InterruptInTearDownTests.test_02_run, "test_02 ran")
0f31bb30e71eb5a4692377586a4d3f448740db5f
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/rdbms/azure-mgmt-rdbms/azure/mgmt/rdbms/mariadb/operations/_private_endpoint_connections_operations.py
a9985f5e8097e13ef7a5578ee99c9245b436b671
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
30,299
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class PrivateEndpointConnectionsOperations(object): """PrivateEndpointConnectionsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.rdbms.mariadb.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def get( self, resource_group_name, # type: str server_name, # type: str private_endpoint_connection_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.PrivateEndpointConnection" """Gets a private endpoint connection. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param server_name: The name of the server. :type server_name: str :param private_endpoint_connection_name: The name of the private endpoint connection. :type private_endpoint_connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PrivateEndpointConnection, or the result of cls(response) :rtype: ~azure.mgmt.rdbms.mariadb.models.PrivateEndpointConnection :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-06-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'serverName': self._serialize.url("server_name", server_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DBforMariaDB/servers/{serverName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore def _create_or_update_initial( self, resource_group_name, # type: str server_name, # type: str private_endpoint_connection_name, # type: str parameters, # type: "_models.PrivateEndpointConnection" **kwargs # type: Any ): # type: (...) -> Optional["_models.PrivateEndpointConnection"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.PrivateEndpointConnection"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'serverName': self._serialize.url("server_name", server_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'PrivateEndpointConnection') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DBforMariaDB/servers/{serverName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str server_name, # type: str private_endpoint_connection_name, # type: str parameters, # type: "_models.PrivateEndpointConnection" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.PrivateEndpointConnection"] """Approve or reject a private endpoint connection with a given name. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param server_name: The name of the server. :type server_name: str :param private_endpoint_connection_name: :type private_endpoint_connection_name: str :param parameters: :type parameters: ~azure.mgmt.rdbms.mariadb.models.PrivateEndpointConnection :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either PrivateEndpointConnection or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.rdbms.mariadb.models.PrivateEndpointConnection] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnection"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, server_name=server_name, private_endpoint_connection_name=private_endpoint_connection_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'serverName': self._serialize.url("server_name", server_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DBforMariaDB/servers/{serverName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore def _delete_initial( self, resource_group_name, # type: str server_name, # type: str private_endpoint_connection_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-06-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'serverName': self._serialize.url("server_name", server_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DBforMariaDB/servers/{serverName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str server_name, # type: str private_endpoint_connection_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes a private endpoint connection with a given name. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param server_name: The name of the server. :type server_name: str :param private_endpoint_connection_name: :type private_endpoint_connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, server_name=server_name, private_endpoint_connection_name=private_endpoint_connection_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'serverName': self._serialize.url("server_name", server_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DBforMariaDB/servers/{serverName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore def _update_tags_initial( self, resource_group_name, # type: str server_name, # type: str private_endpoint_connection_name, # type: str parameters, # type: "_models.TagsObject" **kwargs # type: Any ): # type: (...) -> "_models.PrivateEndpointConnection" cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_tags_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'serverName': self._serialize.url("server_name", server_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_tags_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DBforMariaDB/servers/{serverName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore def begin_update_tags( self, resource_group_name, # type: str server_name, # type: str private_endpoint_connection_name, # type: str parameters, # type: "_models.TagsObject" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.PrivateEndpointConnection"] """Updates tags on private endpoint connection. Updates private endpoint connection with the specified tags. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param server_name: The name of the server. :type server_name: str :param private_endpoint_connection_name: :type private_endpoint_connection_name: str :param parameters: Parameters supplied to the Update private endpoint connection Tags operation. :type parameters: ~azure.mgmt.rdbms.mariadb.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either PrivateEndpointConnection or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.rdbms.mariadb.models.PrivateEndpointConnection] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnection"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_tags_initial( resource_group_name=resource_group_name, server_name=server_name, private_endpoint_connection_name=private_endpoint_connection_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'serverName': self._serialize.url("server_name", server_name, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DBforMariaDB/servers/{serverName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore def list_by_server( self, resource_group_name, # type: str server_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.PrivateEndpointConnectionListResult"] """Gets all private endpoint connections on a server. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param server_name: The name of the server. :type server_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PrivateEndpointConnectionListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.rdbms.mariadb.models.PrivateEndpointConnectionListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnectionListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-06-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_server.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'serverName': self._serialize.url("server_name", server_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('PrivateEndpointConnectionListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_server.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DBforMariaDB/servers/{serverName}/privateEndpointConnections'} # type: ignore
44735efc8ba871e2f2e3ca0ced6963479ab46e19
ea4567b4388ea97c8ca718d9e331dc796439ee44
/exercise_learn/new_selenium_project/util/browser_driver_test.py
af46ab09ff714df86c85b89525f0d5733303ef53
[]
no_license
Kingwolf9527/python_knowledge
ace65470ec706cae195b228b8e8d6ca8db574db8
1ccb3a788c172f3122a7c119d0607aa90934e59b
refs/heads/master
2020-12-04T06:12:49.809020
2020-02-10T18:22:36
2020-02-10T18:22:44
231,647,147
0
0
null
null
null
null
UTF-8
Python
false
false
2,783
py
# ! /usr/bin/env python # - * - coding:utf-8 - * - # __author__ : KingWolf # createtime : 2019/11/12 3:21 import os from selenium import webdriver from util.read_config import Read_Config from util.common_log import Common_Logs #实例化logger log_name = Common_Logs(logger='browser_driver') logger = log_name.get_logger() class WebdriverBrowser(object): def __init__(self,selection,key): """ 打开浏览器 :param selection: :param key: :return: """ self.browser = Read_Config().get_value(selection,key) if self.browser == 'chrome': """ 谷歌浏览器的设置 """ #设置user-data-dir的路径 newOptions = webdriver.ChromeOptions() newOptions.add_argument(r"user-data-dir=F:\data_profile") #设置谷歌浏览器的驱动路径 driverPath = os.path.dirname(os.path.dirname(__file__)) + '/browser_driver/chromedriver.exe' self.driver = webdriver.Chrome(executable_path=driverPath,options=newOptions) logger.info('-----------------open the browser:Chrome--------------------') elif self.browser == 'firefox': """ 火狐浏览器的设置 """ # #设置火狐浏览器驱动路径 driverPath = os.path.dirname(os.path.dirname(__file__)) + '/browser_driver/geckodriver.exe' self.driver = webdriver.Firefox(executable_path=driverPath) logger.info('-----------------open the browser:Firefox--------------------') else: """ edge浏览器的设置 """ # #设置edge浏览器驱动路径 driverPath = os.path.dirname(os.path.dirname(__file__)) + '/browser_driver/MicrosoftWebDriver.exe' self.driver = webdriver.Edge(executable_path=driverPath) logger.info('-----------------open the browser:Edge--------------------') def getDriver(self): """ 返回driver :return: """ return self.driver def getUrl(self,selection,key): """ 输入url地址 :param selection: :param key: :return: """ self.registerUrl = Read_Config().get_value(selection,key) self.getDriver().get(self.registerUrl) logger.info('---------------------open the url: %s -----------------------' %self.registerUrl) self.getDriver().implicitly_wait(10) self.getDriver().maximize_window() if __name__ == '__main__': dd = WebdriverBrowser('Browser','chrome_browser') dd.getUrl('Register_url','url')
8e82a7f954f34fe2899eb5500cb51358b6154c4b
747eeeed1056b69a8bde6364ee9bf266523f19e5
/Project/My solutions/12.py
83d4817a7abb86b7b2219a8886f0815ffcdfb50e
[]
no_license
LittleAndroidBunny/Python_Cheatsheet_Nohar_Batit
d18a77d455474834da99c11e763beea598947f7c
a53f5e3a635bb47012fceb50efd43ad124eff180
refs/heads/main
2023-06-10T10:40:54.746084
2021-07-03T23:25:17
2021-07-03T23:25:17
382,595,063
1
0
null
null
null
null
UTF-8
Python
false
false
7,522
py
# ###################### # ## Nohar_Batit ### # ## 315572941 ### # ###################### # ################################ import random random.seed(1) import pylab import matplotlib.pyplot as plt from scipy import stats # Question 1 # function f1 gets a natural number and returns a tuple of the biggest divider def f1(a): result = [] if a < 0: return "please insert a number higher than 0" highest_divider = 2 lowest_positive = 1 if type(a / 2) is float: highest_divider = None for i in range(2, a): if a % i == 0: highest_divider = i for j in range(1, a+1): if j != 1 and a % j == 0: if lowest_positive < j and lowest_positive == 1: lowest_positive = j if lowest_positive == 1: lowest_positive = None result.append(highest_divider) result.append(lowest_positive) result = tuple(result) return result input_1 = int(input("Enter a positive int number:\n")) print("Question 1") print(f1(input_1)) # b comp1 = "O(n)" print("The complexity of the code is:", comp1) list1 = [1, 3, 4, 5, 9, 9] list2 = [1, 2, 3, 4, 5, 0] list3 = [4, 5, 6, 6, 7, -8, 9] def f2(l1, l2, l3): list_new = [] list_all = [] for i in l1: if i in l2 + l3: list_new.append(i) for j in l2: if j in l3: if j not in l1: list_new.append(j) for k in list_new: if k not in list_all: list_all.append(k) return list_all print(f2(list1, list2, list3)) # Question 3 # function f3 is a recursive function that gets a number bigger than 1 and finds An = 2An-1 - 3An-2 def f3(n): if n == 1: return 1 if n == 2: return 4 if n < 1: return "Enter an n bigger than 1" else: return 2*f3(n-1) - 3*f3(n-2) print() print("Question 3") while True: print("Please enter an integer n biggest than 0:") num = int(input()) if num > 0: break print(f"The An is: (by An = 2An-1 - 3An-2)\n{f3(num)}") # Question 4 # function f4 gets a list of numbers and returns a dictonary of numbers # organized in keys buy the first number(from left) the keys in the dictonary are (0-9) dictonary = {} def find(f): temp = abs(f) if temp > 10: return round(find(temp / 10)) else: return round(temp) def f4(list_of_numbers): for i in range(10): dictonary[i] = [] for number in list_of_numbers: temp = find(number) for i in range(10): if i == temp: dictonary[i].append(number) return dictonary types = [] print() print("Question 4") print(f4([12, -121, 1, 1111, 22.2, 2.2, 1234314.1, 0, 0])) # # showing the keys are from int type # for k in dictonary.keys(): # types.append(type(k)) # print(types) # Question 5 # class c5 checks if the right amount of palafel balls(between 2-7) used and if there is a sauce or not class c5: def __init__(self, Nb, s): self.Nb = Nb self.s = bool(s) assert (2 <= Nb <= 7), "This is not the right amount of falafel balls, min 2, max 7" assert (s == True) or (s == False), "s should be True or False" # print function prints number of balls and if there is a spicy sauce def __str__(self): if self.s: return f"Mana: {self.Nb} balls and has spicy sauce" else: return f"Mana: {self.Nb} balls and has no spicy sauce" # 5.bet # add function that add 2 manot falafel and checks if its possible # if its possible it makes the mix and checks if there was a sauce # if on 1 of the manot was a sauce than the mix will have a sauce # if neither were with the sauce the mix wont have a sauce def __add__(self, other): if self.Nb + other.Nb < 8: self.Nb = self.Nb + other.Nb else: return "Cant add the falafels cause too many balls" if self.s and other.s: self.s = other.s return f"Mana after merge: {self.Nb} balls and has spicy sauce" elif self.s and not other.s: other.s = self.s return f"Mana after merge: {self.Nb} balls and has spicy sauce" elif not self.s and other.s: self.s = other.s return f"Mana after merge: {self.Nb} balls and has spicy sauce" else: self.s = self.s return f"Mana after merge: {self.Nb} balls and has no spicy sauce" man = c5(2, True) man2 = c5(5, False) print() print("Question 5.alef") print("1st", man) print("2nd", man2) print() print("Question 5.bet") print(man+man2) def f6(N): counter = 0 prob = 0 for i in range(N): for j in range(10): dice = random.randrange(1, 7) round(dice) if dice == 6: counter += 1 if counter == 2: prob += 1 counter = 0 return prob/N print(f6(1000000)) # Question 7 # function f7a get a list of tuples and returns 3 random tuples from the list # with using random.sample def f7a(l): random.seed(2) r_list = random.sample(l, 3) return r_list # print(f7a([(1,2,1,1),(2,2,2,2),(3,3,3,3),(4,4,4,4)])) #Question 7.bet def euclidean_dist(vec1, vec2): dist = 0 for k in range(len(vec1)): dist += (vec1[k] - vec2[k]) ** 2 return dist ** 0.5 def f7b(l1, l2): first_vector = [] sec_vector = [] third_vector = [] for i in l1: min_euc = min(euclidean_dist(i, l2[0]), euclidean_dist(i, l2[1]), euclidean_dist(i, l2[2])) if euclidean_dist(i, l2[0]) == min_euc: first_vector.append(i) elif euclidean_dist(i, l2[1]) == min_euc: sec_vector.append(i) else: third_vector.append(i) return [first_vector, sec_vector, third_vector] def f7c(l): def compute_centroid(list): vals = pylab.array([0] * len(list[0])) for vec in list: # compute mean vals += vec return tuple(vals / len(list)) return [compute_centroid(l[0]), compute_centroid(l[1]), compute_centroid(l[2])] def f7d(l): initial_centroids = f7a(l) clusters = f7b(l, initial_centroids) new_centroids = f7c(clusters) while True: initial_centroids = new_centroids clusters = f7b(l, new_centroids) new_centroids = f7c(clusters) if initial_centroids == new_centroids: break return clusters # Question 8 # function f8 gets a list and sorts it from the highest to lowest and returns it def f8(l): flag = False while not flag: flag = True for n in range(len(l)): for k in range(n, 0, -1): if l[n] > l[k]: temp = l[k] l[k] = l[n] l[n] = temp flag = False if l[0] < l[1]: temp = l[0] del l[0] l.append(temp) flag = False return l comp2 = "O(n**3)" print() print("Question 8") print(f8([12, 4, 5, 122, 1, 13, 0])) print("The complexity is:", comp2) # Question 9 # the function f9 makes a linear regression def f9(tau, alpha): slope, intercept, r, p, std_err = stats.linregress(tau, alpha) def my_func(x): return slope * x + intercept model = list(map(my_func, tau)) plt.scatter(tau, alpha) plt.plot(tau, model) plt.show() return slope print() print("Question 9") f9([1, 2, 3, 4, 5], [6, 7, 8, 9, 10])
ef495dc49c8aacb3b2af95d4c40ebb6a453fa1ad
c6e2e537a6bf2a2e009a64eef76954dae30ae214
/tests/test_series_replacement.py
e36974b49ae8808c00c3818d5b1560e71d388bfc
[ "Unlicense" ]
permissive
mb5/tvnamer
46d0eb0ae8b4d8e72656d2dfc239555e91b2bfd2
ce4f7374ff8abbbe137aa7c43ed0ba0fe0f2f755
refs/heads/master
2021-01-18T02:49:44.110873
2012-12-13T09:21:39
2012-12-13T09:21:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,085
py
#!/usr/bin/env python """Tests custom replacements on input/output files """ from functional_runner import run_tvnamer, verify_out_data from nose.plugins.attrib import attr @attr("functional") def test_replace_input(): """Tests replacing strings in input files """ out_data = run_tvnamer( with_files = ['scruuuuuubs.s01e01.avi'], with_config = """ { "input_series_replacements": { "scru*bs": "scrubs"}, "always_rename": true, "select_first": true } """) expected_files = ['Scrubs - [01x01] - My First Day.avi'] verify_out_data(out_data, expected_files) @attr("functional") def test_replace_output(): """Tests replacing strings in input files """ out_data = run_tvnamer( with_files = ['Scrubs.s01e01.avi'], with_config = """ { "output_series_replacements": { "Scrubs": "Replacement Series Name"}, "always_rename": true, "select_first": true } """) expected_files = ['Replacement Series Name - [01x01] - My First Day.avi'] verify_out_data(out_data, expected_files)
d831ff7bbac8a88c716b003523818b763f425495
4978ce56457ac4c64075b2d70663c74cf4dc3896
/demoVisualizeDataFrame/__init__.py
2569839deb53775254f19d982557de5c755e1a7b
[ "MIT" ]
permissive
listenzcc/data_visualize
90700f4ca9f22e351363b3c91b7bd30beac136a2
7f0867e19e3ae88041efb24c79789b1bc4b46f40
refs/heads/master
2023-03-13T20:53:01.126166
2021-03-20T02:49:14
2021-03-20T02:49:14
315,854,997
0
0
null
null
null
null
UTF-8
Python
false
false
966
py
# File: __init__.py # Aim: economyZone package startup script import configparser import logging import os import sys import pandas as pd def beside(name, this=__file__): # Get path of [name] beside __file__ return os.path.join(os.path.dirname(this), name) config = configparser.ConfigParser() config.read(beside('setting.ini')) logger = logging.Logger('demoVisualizeDataFrame', level=logging.DEBUG) for handler, formatter in zip([logging.StreamHandler(sys.stdout), logging.FileHandler('logging.log')], [logging.Formatter('%(filename)s %(levelname)s %(message)s'), logging.Formatter('%(asctime)s %(name)s %(filename)s %(levelname)s %(message)s')]): handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) logger.info('info') logger.debug('debug') logger.warning('warning') logger.error('error') logger.fatal('fatal')
048c2c28d81f61ade6bb91e3c6025ccdb74bd471
1ab99223dfef768cbead2813d039c66a627024be
/api/src/opentrons/drivers/temp_deck/__init__.py
91a9ef7bba1f13dc509decc0dfe380a038bf462a
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
fakela/opentrons
f399b8a9444ea557072a00477d0c8176e46e433e
7552a1cbe6d06131bd45241b027f27e11428e100
refs/heads/master
2022-11-21T01:32:40.084185
2020-06-29T18:27:00
2020-06-29T18:27:00
280,266,622
0
0
Apache-2.0
2020-07-16T21:55:27
2020-07-16T21:55:26
null
UTF-8
Python
false
false
128
py
from opentrons.drivers.temp_deck.driver import TempDeck, SimulatingDriver __all__ = [ 'TempDeck', 'SimulatingDriver' ]
11b05574742fa3d545e177dce442438a7c969a74
eeb7e70b0b68decbdcb32682351e54e0be99a5b0
/kaggle/python_files/sample360.py
295bae3b2767e1ea485f2b260bb28b19a14fd260
[]
no_license
SocioProphet/CodeGraph
8bafd7f03204f20da8f54ab23b04f3844e6d24de
215ac4d16d21d07e87964fe9a97a5bf36f4c7d64
refs/heads/master
2023-02-16T02:51:27.791886
2021-01-15T07:00:41
2021-01-15T07:00:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,151
py
#!/usr/bin/env python # coding: utf-8 # # Loading Libraries # In[ ]: import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.metrics import log_loss from sklearn.model_selection import StratifiedKFold import gc import os import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from catboost import Pool, CatBoostClassifier import itertools import pickle, gzip import glob from sklearn.preprocessing import StandardScaler # # Extracting Features from train set # In[ ]: gc.enable() train = pd.read_csv('../input/training_set.csv') train['flux_ratio_sq'] = np.power(train['flux'] / train['flux_err'], 2.0) train['flux_by_flux_ratio_sq'] = train['flux'] * train['flux_ratio_sq'] aggs = { 'mjd': ['min', 'max', 'size'], 'passband': ['min', 'max', 'mean', 'median', 'std'], 'flux': ['min', 'max', 'mean', 'median', 'std','skew'], 'flux_err': ['min', 'max', 'mean', 'median', 'std','skew'], 'detected': ['mean'], 'flux_ratio_sq':['sum','skew'], 'flux_by_flux_ratio_sq':['sum','skew'], } agg_train = train.groupby('object_id').agg(aggs) new_columns = [ k + '_' + agg for k in aggs.keys() for agg in aggs[k] ] agg_train.columns = new_columns agg_train['mjd_diff'] = agg_train['mjd_max'] - agg_train['mjd_min'] agg_train['flux_diff'] = agg_train['flux_max'] - agg_train['flux_min'] agg_train['flux_dif2'] = (agg_train['flux_max'] - agg_train['flux_min']) / agg_train['flux_mean'] agg_train['flux_w_mean'] = agg_train['flux_by_flux_ratio_sq_sum'] / agg_train['flux_ratio_sq_sum'] agg_train['flux_dif3'] = (agg_train['flux_max'] - agg_train['flux_min']) / agg_train['flux_w_mean'] del agg_train['mjd_max'], agg_train['mjd_min'] agg_train.head() del train gc.collect() # # Merging extracted features with meta data # In[ ]: meta_train = pd.read_csv('../input/training_set_metadata.csv') meta_train.head() full_train = agg_train.reset_index().merge( right=meta_train, how='outer', on='object_id' ) if 'target' in full_train: y = full_train['target'] del full_train['target'] classes = sorted(y.unique()) # Taken from Giba's topic : https://www.kaggle.com/titericz # https://www.kaggle.com/c/PLAsTiCC-2018/discussion/67194 # with Kyle Boone's post https://www.kaggle.com/kyleboone class_weight = { c: 1 for c in classes } for c in [64, 15]: class_weight[c] = 2 print('Unique classes : ', classes) # In[ ]: if 'object_id' in full_train: oof_df = full_train[['object_id']] del full_train['object_id'], full_train['distmod'], full_train['hostgal_specz'] del full_train['ra'], full_train['decl'], full_train['gal_l'],full_train['gal_b'],full_train['ddf'] train_mean = full_train.mean(axis=0) full_train.fillna(train_mean, inplace=True) folds = StratifiedKFold(n_splits=5, shuffle=True, random_state=1) # # Standard Scaling the input (imp.) # In[ ]: full_train_new = full_train.copy() ss = StandardScaler() full_train_ss = ss.fit_transform(full_train_new) # # Deep Learning Begins... # In[ ]: from keras.models import Sequential from keras.layers import Dense,BatchNormalization,Dropout from keras.callbacks import ReduceLROnPlateau,ModelCheckpoint from keras.utils import to_categorical import tensorflow as tf from keras import backend as K import keras from keras import regularizers from collections import Counter from sklearn.metrics import confusion_matrix # In[ ]: # https://www.kaggle.com/c/PLAsTiCC-2018/discussion/69795 def mywloss(y_true,y_pred): yc=tf.clip_by_value(y_pred,1e-15,1-1e-15) loss=-(tf.reduce_mean(tf.reduce_mean(y_true*tf.log(yc),axis=0)/wtable)) return loss # In[ ]: def multi_weighted_logloss(y_ohe, y_p): """ @author olivier https://www.kaggle.com/ogrellier multi logloss for PLAsTiCC challenge """ classes = [6, 15, 16, 42, 52, 53, 62, 64, 65, 67, 88, 90, 92, 95] class_weight = {6: 1, 15: 2, 16: 1, 42: 1, 52: 1, 53: 1, 62: 1, 64: 2, 65: 1, 67: 1, 88: 1, 90: 1, 92: 1, 95: 1} # Normalize rows and limit y_preds to 1e-15, 1-1e-15 y_p = np.clip(a=y_p, a_min=1e-15, a_max=1-1e-15) # Transform to log y_p_log = np.log(y_p) # Get the log for ones, .values is used to drop the index of DataFrames # Exclude class 99 for now, since there is no class99 in the training set # we gave a special process for that class y_log_ones = np.sum(y_ohe * y_p_log, axis=0) # Get the number of positives for each class nb_pos = y_ohe.sum(axis=0).astype(float) # Weight average and divide by the number of positives class_arr = np.array([class_weight[k] for k in sorted(class_weight.keys())]) y_w = y_log_ones * class_arr / nb_pos loss = - np.sum(y_w) / np.sum(class_arr) return loss # # Defining simple model in keras # In[ ]: K.clear_session() def build_model(dropout_rate=0.25,activation='relu'): start_neurons = 512 # create model model = Sequential() model.add(Dense(start_neurons, input_dim=full_train_ss.shape[1], activation=activation)) model.add(BatchNormalization()) model.add(Dropout(dropout_rate)) model.add(Dense(start_neurons//2,activation=activation)) model.add(BatchNormalization()) model.add(Dropout(dropout_rate)) model.add(Dense(start_neurons//4,activation=activation)) model.add(BatchNormalization()) model.add(Dropout(dropout_rate)) model.add(Dense(start_neurons//8,activation=activation)) model.add(BatchNormalization()) model.add(Dropout(dropout_rate/2)) model.add(Dense(len(classes), activation='softmax')) return model # In[ ]: unique_y = np.unique(y) class_map = dict() for i,val in enumerate(unique_y): class_map[val] = i y_map = np.zeros((y.shape[0],)) y_map = np.array([class_map[val] for val in y]) y_categorical = to_categorical(y_map) # # Calculating the class weights # In[ ]: y_count = Counter(y_map) wtable = np.zeros((len(unique_y),)) for i in range(len(unique_y)): wtable[i] = y_count[i]/y_map.shape[0] # In[ ]: def plot_loss_acc(history): plt.plot(history.history['loss'][1:]) plt.plot(history.history['val_loss'][1:]) plt.title('model loss') plt.ylabel('val_loss') plt.xlabel('epoch') plt.legend(['train','Validation'], loc='upper left') plt.show() plt.plot(history.history['acc'][1:]) plt.plot(history.history['val_acc'][1:]) plt.title('model Accuracy') plt.ylabel('val_acc') plt.xlabel('epoch') plt.legend(['train','Validation'], loc='upper left') plt.show() # In[ ]: clfs = [] oof_preds = np.zeros((len(full_train_ss), len(classes))) epochs = 600 batch_size = 100 for fold_, (trn_, val_) in enumerate(folds.split(y_map, y_map)): checkPoint = ModelCheckpoint("./keras.model",monitor='val_loss',mode = 'min', save_best_only=True, verbose=0) x_train, y_train = full_train_ss[trn_], y_categorical[trn_] x_valid, y_valid = full_train_ss[val_], y_categorical[val_] model = build_model(dropout_rate=0.5,activation='tanh') model.compile(loss=mywloss, optimizer='adam', metrics=['accuracy']) history = model.fit(x_train, y_train, validation_data=[x_valid, y_valid], epochs=epochs, batch_size=batch_size,shuffle=True,verbose=0,callbacks=[checkPoint]) plot_loss_acc(history) print('Loading Best Model') model.load_weights('./keras.model') # # Get predicted probabilities for each class oof_preds[val_, :] = model.predict_proba(x_valid,batch_size=batch_size) print(multi_weighted_logloss(y_valid, model.predict_proba(x_valid,batch_size=batch_size))) clfs.append(model) print('MULTI WEIGHTED LOG LOSS : %.5f ' % multi_weighted_logloss(y_categorical,oof_preds)) # In[ ]: # http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.tight_layout() # In[ ]: # Compute confusion matrix cnf_matrix = confusion_matrix(y_map, np.argmax(oof_preds,axis=-1)) np.set_printoptions(precision=2) # In[ ]: sample_sub = pd.read_csv('../input/sample_submission.csv') class_names = list(sample_sub.columns[1:-1]) del sample_sub;gc.collect() # In[ ]: # Plot non-normalized confusion matrix plt.figure(figsize=(12,12)) foo = plot_confusion_matrix(cnf_matrix, classes=class_names,normalize=True, title='Confusion matrix') # # Test Set Predictions # In[ ]: meta_test = pd.read_csv('../input/test_set_metadata.csv') import time start = time.time() chunks = 5000000 for i_c, df in enumerate(pd.read_csv('../input/test_set.csv', chunksize=chunks, iterator=True)): df['flux_ratio_sq'] = np.power(df['flux'] / df['flux_err'], 2.0) df['flux_by_flux_ratio_sq'] = df['flux'] * df['flux_ratio_sq'] # Group by object id agg_test = df.groupby('object_id').agg(aggs) agg_test.columns = new_columns agg_test['mjd_diff'] = agg_test['mjd_max'] - agg_test['mjd_min'] agg_test['flux_diff'] = agg_test['flux_max'] - agg_test['flux_min'] agg_test['flux_dif2'] = (agg_test['flux_max'] - agg_test['flux_min']) / agg_test['flux_mean'] agg_test['flux_w_mean'] = agg_test['flux_by_flux_ratio_sq_sum'] / agg_test['flux_ratio_sq_sum'] agg_test['flux_dif3'] = (agg_test['flux_max'] - agg_test['flux_min']) / agg_test['flux_w_mean'] del agg_test['mjd_max'], agg_test['mjd_min'] # del df # gc.collect() # Merge with meta data full_test = agg_test.reset_index().merge( right=meta_test, how='left', on='object_id' ) full_test[full_train.columns] = full_test[full_train.columns].fillna(train_mean) full_test_ss = ss.transform(full_test[full_train.columns]) # Make predictions preds = None for clf in clfs: if preds is None: preds = clf.predict_proba(full_test_ss) / folds.n_splits else: preds += clf.predict_proba(full_test_ss) / folds.n_splits # Compute preds_99 as the proba of class not being any of the others # preds_99 = 0.1 gives 1.769 preds_99 = np.ones(preds.shape[0]) for i in range(preds.shape[1]): preds_99 *= (1 - preds[:, i]) # Store predictions preds_df = pd.DataFrame(preds, columns=class_names) preds_df['object_id'] = full_test['object_id'] preds_df['class_99'] = 0.14 * preds_99 / np.mean(preds_99) if i_c == 0: preds_df.to_csv('predictions.csv', header=True, mode='a', index=False) else: preds_df.to_csv('predictions.csv', header=False, mode='a', index=False) del agg_test, full_test, preds_df, preds # print('done') if (i_c + 1) % 10 == 0: print('%15d done in %5.1f' % (chunks * (i_c + 1), (time.time() - start) / 60)) # In[ ]: z = pd.read_csv('predictions.csv') print(z.groupby('object_id').size().max()) print((z.groupby('object_id').size() > 1).sum()) z = z.groupby('object_id').mean() z.to_csv('single_predictions.csv', index=True) # In[ ]: z.head() # In[ ]:
406acb5d812d6501c3f70fc0f287c9dc3e429502
8fd56e9b9dbc49c16b4a8afe1007f824183bb0ab
/Python_Stack/django/django_fundamentals/django_intro/Users/Users/urls.py
26466e0c713ac1c17c9670e927a61dc1f74d8187
[]
no_license
DiyarBarham/CodingDojo
b1cc7d7355f5fb139cb640168f78d6b7f91e372a
0891e2c41ddbb9004eadfd2d54fe7f34d6d4ef58
refs/heads/main
2023-07-08T12:12:33.227932
2021-08-07T13:55:33
2021-08-07T13:55:33
363,878,740
0
2
null
null
null
null
UTF-8
Python
false
false
726
py
"""Users URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.urls import path, include urlpatterns = [ path('', include('usersapp.urls')), ]
517f372040db391e899d7c91dcf383f4af6eecaf
649bd422025e421d86025743eac324c9b882a2e8
/exam/1_three-dimensional_atomic_system/dump/phasetrans/temp37_4500.py
90986260c1c51da810729e60990270493504ca1e
[]
no_license
scheuclu/atom_class
36ddee1f6a5995872e858add151c5942c109847c
0c9a8c63d9b38898c1869fe8983126cef17662cd
refs/heads/master
2021-01-21T10:52:28.448221
2017-03-07T23:04:41
2017-03-07T23:04:41
83,489,471
0
0
null
null
null
null
UTF-8
Python
false
false
68,874
py
ITEM: TIMESTEP 4500 ITEM: NUMBER OF ATOMS 2048 ITEM: BOX BOUNDS pp pp pp 7.9433252788447817e-01 4.6405667472114288e+01 7.9433252788447817e-01 4.6405667472114288e+01 7.9433252788447817e-01 4.6405667472114288e+01 ITEM: ATOMS id type xs ys zs 8 1 0.129159 0.059669 0.0603151 35 1 0.0632288 0.124995 0.0640692 130 1 0.064921 0.0670279 0.123945 165 1 0.126784 0.125843 0.124487 4 1 0.00134786 0.0581556 0.0629357 3 1 0.0594568 -0.00460677 0.0572581 133 1 0.123166 0.0044247 0.122589 7 1 0.186536 -0.00123124 0.0614121 12 1 0.24413 0.063346 0.0638826 39 1 0.186169 0.127546 0.0572274 43 1 0.316503 0.127355 0.0590978 134 1 0.189842 0.0598842 0.127799 138 1 0.313744 0.0598441 0.127744 169 1 0.251183 0.120567 0.121349 10 1 0.308578 0.0658481 0.00481893 137 1 0.249323 0.00042414 0.126148 11 1 0.310825 -3.95117e-06 0.0591022 41 1 0.249622 0.131136 0.0011127 6 1 0.191913 0.0638135 -0.00226609 16 1 0.375722 0.0621824 0.0627748 47 1 0.441256 0.122467 0.0670647 142 1 0.442209 0.062994 0.127435 173 1 0.374823 0.122421 0.126462 20 1 0.506144 0.068054 0.0632277 177 1 0.503959 0.12396 0.12714 53 1 0.625201 0.129235 -0.00292208 24 1 0.622399 0.0637463 0.0591467 51 1 0.564494 0.128165 0.0566846 146 1 0.568512 0.0639075 0.124423 181 1 0.627225 0.129583 0.122279 18 1 0.56498 0.0648544 -0.0018147 19 1 0.564302 -0.000143704 0.0548712 149 1 0.628834 -0.000840041 0.121051 28 1 0.752331 0.0634961 0.0565945 55 1 0.688642 0.124331 0.0599345 59 1 0.808382 0.127956 0.0592053 150 1 0.687696 0.0596127 0.118352 154 1 0.812944 0.0653609 0.124058 185 1 0.751377 0.120774 0.125364 25 1 0.752723 0.000632403 -0.00526859 57 1 0.744901 0.125178 -0.00540449 26 1 0.811417 0.0623475 -0.00277066 22 1 0.688708 0.065802 -0.00590571 161 1 1.00051 0.124364 0.126498 129 1 1.00252 -0.000497102 0.123721 32 1 0.876094 0.0603559 0.0665776 63 1 0.934689 0.128127 0.0606916 158 1 0.936681 0.0647438 0.122761 189 1 0.873328 0.126411 0.128421 31 1 0.937564 -0.00271495 0.0592093 157 1 0.877607 0.00315911 0.122691 40 1 0.122496 0.18853 0.0631221 67 1 0.063316 0.251579 0.0613883 72 1 0.127736 0.31251 0.0608411 162 1 0.057726 0.18628 0.124783 194 1 0.0650747 0.318575 0.11719 197 1 0.124428 0.248504 0.123149 36 1 -0.00468323 0.187252 0.0569436 68 1 -0.00189591 0.316154 0.0597642 193 1 -0.00726445 0.249332 0.116615 34 1 0.0589009 0.188721 -0.000552223 69 1 0.122056 0.254206 0.00104114 44 1 0.257045 0.183962 0.0639674 71 1 0.186541 0.247044 0.0614926 75 1 0.313941 0.245417 0.0601854 76 1 0.24965 0.312119 0.0636957 166 1 0.186593 0.183021 0.120966 170 1 0.312762 0.180108 0.127547 198 1 0.189029 0.308283 0.124532 201 1 0.247659 0.241946 0.120859 202 1 0.311225 0.312044 0.125157 38 1 0.186522 0.188061 -0.00163101 48 1 0.382442 0.185468 0.0679347 79 1 0.439504 0.245742 0.0649326 80 1 0.376667 0.306695 0.0620525 174 1 0.443344 0.181516 0.127649 205 1 0.375699 0.247007 0.121875 206 1 0.435005 0.314768 0.127278 46 1 0.442403 0.185528 3.43653e-05 81 1 0.501892 0.252204 -8.4828e-05 52 1 0.503413 0.18704 0.0621523 84 1 0.506013 0.307478 0.0642593 209 1 0.500134 0.249802 0.126269 56 1 0.630406 0.191474 0.0580353 83 1 0.566577 0.249458 0.0642683 88 1 0.621582 0.312398 0.0627495 178 1 0.562194 0.189708 0.124944 210 1 0.567471 0.311897 0.127249 213 1 0.62917 0.244688 0.123325 85 1 0.626599 0.248716 0.00113432 60 1 0.748217 0.186072 0.0645964 87 1 0.691471 0.254747 0.0636609 91 1 0.809773 0.251784 0.0607009 92 1 0.751639 0.316386 0.0630132 182 1 0.688356 0.187002 0.123952 186 1 0.809756 0.190275 0.127067 214 1 0.687823 0.313135 0.129364 217 1 0.746647 0.248706 0.127462 218 1 0.815332 0.313806 0.125026 64 1 0.867605 0.186566 0.0655893 95 1 0.930998 0.250318 0.0580333 96 1 0.872282 0.314108 0.0584088 190 1 0.936878 0.186373 0.120869 221 1 0.872935 0.25032 0.125543 222 1 0.934782 0.310821 0.121326 94 1 0.938655 0.316454 -0.00235378 1027 1 0.0593636 0.501334 0.0633396 99 1 0.0610567 0.38172 0.0623664 104 1 0.128319 0.438734 0.0645588 226 1 0.0685798 0.437984 0.124481 229 1 0.128287 0.375416 0.122594 1025 1 -0.0018373 0.497516 0.00139232 1157 1 0.122633 0.504324 0.119101 101 1 0.121588 0.37444 0.00193096 1031 1 0.18864 0.501075 0.062442 1033 1 0.251598 0.50729 -0.000104967 103 1 0.189647 0.375136 0.057842 107 1 0.313516 0.37559 0.0634412 108 1 0.25666 0.443101 0.0592365 230 1 0.189626 0.438756 0.120347 233 1 0.24916 0.377688 0.122982 234 1 0.312234 0.434793 0.131274 1039 1 0.433129 0.503967 0.0605043 111 1 0.43745 0.369617 0.0630702 112 1 0.372629 0.433232 0.063768 237 1 0.374693 0.378153 0.128189 238 1 0.438858 0.437338 0.124462 241 1 0.498629 0.370437 0.124143 1037 1 0.371106 0.50389 0.00189131 109 1 0.374549 0.374079 0.00198331 1043 1 0.560827 0.502739 0.0641113 116 1 0.496594 0.439964 0.0636783 115 1 0.566482 0.374425 0.0620596 120 1 0.625374 0.435434 0.0615099 242 1 0.564345 0.435939 0.12453 245 1 0.628195 0.373562 0.123528 117 1 0.630175 0.369013 0.000596425 114 1 0.560304 0.43938 0.00339834 119 1 0.689786 0.373061 0.0590191 123 1 0.811087 0.377744 0.0610136 124 1 0.744463 0.436359 0.06328 246 1 0.685803 0.438494 0.129502 249 1 0.74961 0.379675 0.124449 250 1 0.811092 0.438435 0.125147 1051 1 0.811863 0.496046 0.0662183 122 1 0.810858 0.43576 -0.00194166 1049 1 0.7499 0.500751 0.00685747 121 1 0.748094 0.375254 -0.0028316 97 1 1.00113 0.381762 -0.000319735 225 1 1.00111 0.376178 0.126361 100 1 0.999103 0.44351 0.0673451 127 1 0.935722 0.375421 0.063144 128 1 0.873476 0.437415 0.0662656 253 1 0.874229 0.374081 0.123347 254 1 0.938942 0.436916 0.126384 1181 1 0.872777 0.498408 0.123489 1153 1 1.00169 0.50294 0.126416 125 1 0.871583 0.378593 0.00224439 131 1 0.0661122 0.00304313 0.186065 136 1 0.12495 0.0624388 0.186228 163 1 0.0640648 0.128357 0.182119 258 1 0.0626981 0.0619077 0.247783 264 1 0.126369 0.0675035 0.310884 291 1 0.0660735 0.131082 0.312491 293 1 0.125047 0.128815 0.246153 260 1 0.000425628 0.0653311 0.313011 265 1 0.247674 0.00499134 0.247832 140 1 0.252307 0.0608524 0.184715 167 1 0.18698 0.12375 0.185372 171 1 0.310133 0.123316 0.187802 262 1 0.186192 0.0632289 0.247128 266 1 0.31253 0.0616505 0.248698 268 1 0.249755 0.0643218 0.317341 295 1 0.190035 0.130258 0.315309 297 1 0.245487 0.124041 0.249439 299 1 0.31653 0.125252 0.312611 269 1 0.374932 -0.000125256 0.253871 273 1 0.505477 -0.000178799 0.254357 144 1 0.377209 0.0628027 0.18647 175 1 0.446496 0.120393 0.190716 270 1 0.436477 0.0559138 0.248798 272 1 0.370864 0.0596871 0.315911 301 1 0.374205 0.122391 0.248648 303 1 0.438391 0.120895 0.310988 271 1 0.440818 -0.00135485 0.315411 276 1 0.497751 0.0603155 0.311848 148 1 0.51246 0.0617503 0.192672 305 1 0.503848 0.122449 0.255284 152 1 0.625433 0.0637309 0.186307 179 1 0.569086 0.125652 0.191324 274 1 0.573789 0.0632045 0.254197 280 1 0.628157 0.0624131 0.318731 307 1 0.567638 0.124122 0.31663 309 1 0.631322 0.124508 0.253863 279 1 0.6857 -0.0031882 0.312665 281 1 0.751638 -0.00232873 0.251622 156 1 0.750097 0.0665974 0.18677 183 1 0.682059 0.121499 0.191037 187 1 0.812542 0.130777 0.190322 278 1 0.687922 0.0613312 0.251059 282 1 0.813151 0.0640362 0.252592 284 1 0.753307 0.0610154 0.31272 311 1 0.692674 0.127067 0.315886 313 1 0.74786 0.125048 0.246894 315 1 0.81035 0.125439 0.314631 287 1 0.940758 0.0017618 0.308459 257 1 1.001 0.00333469 0.247542 132 1 1.00704 0.063259 0.183594 289 1 1.00415 0.123981 0.249764 160 1 0.873688 0.0659134 0.18521 191 1 0.941853 0.125725 0.186528 286 1 0.941486 0.0668212 0.249749 288 1 0.874542 0.0650163 0.314032 317 1 0.876779 0.124694 0.253668 319 1 0.935631 0.129568 0.312321 285 1 0.871854 -0.000236506 0.253783 168 1 0.123191 0.188879 0.186155 195 1 0.0550298 0.255334 0.176382 200 1 0.125925 0.311212 0.18768 290 1 0.0634768 0.197493 0.247888 296 1 0.12902 0.184952 0.312797 322 1 0.0632055 0.315691 0.245971 323 1 0.0603577 0.254717 0.314991 325 1 0.124839 0.256836 0.254947 328 1 0.127384 0.316214 0.313321 196 1 -0.00341254 0.314909 0.186535 324 1 -0.000127462 0.316287 0.3048 164 1 0.000108799 0.187723 0.184409 172 1 0.246811 0.183529 0.184273 199 1 0.183389 0.249565 0.186313 203 1 0.313654 0.2453 0.185767 204 1 0.245785 0.308776 0.185681 294 1 0.189653 0.192827 0.251433 298 1 0.311231 0.181688 0.245644 300 1 0.251728 0.189498 0.314382 326 1 0.188268 0.315667 0.253455 327 1 0.187192 0.252348 0.311377 329 1 0.251973 0.250684 0.249138 330 1 0.315646 0.311069 0.253852 331 1 0.312809 0.250095 0.313916 332 1 0.250251 0.311158 0.316346 176 1 0.373414 0.181182 0.190138 207 1 0.437562 0.245154 0.183413 208 1 0.378877 0.311088 0.191004 302 1 0.442431 0.186712 0.252219 304 1 0.370183 0.189132 0.314299 333 1 0.3738 0.252594 0.252518 334 1 0.440938 0.306002 0.252349 335 1 0.436528 0.245554 0.313019 336 1 0.374714 0.311237 0.314164 340 1 0.503453 0.312511 0.314857 180 1 0.505751 0.183376 0.18623 337 1 0.49914 0.247241 0.250586 308 1 0.503764 0.190083 0.311267 212 1 0.502245 0.306527 0.188494 184 1 0.625416 0.187559 0.185877 211 1 0.563796 0.24747 0.18639 216 1 0.628127 0.30778 0.189131 306 1 0.566948 0.189865 0.250897 312 1 0.627033 0.187076 0.312157 338 1 0.56235 0.31105 0.247585 339 1 0.56346 0.254043 0.314636 341 1 0.626765 0.251339 0.252584 344 1 0.629302 0.312618 0.31496 188 1 0.742933 0.183921 0.188738 215 1 0.68675 0.248652 0.187622 219 1 0.810532 0.248981 0.191527 220 1 0.749132 0.313481 0.188156 310 1 0.6849 0.185336 0.248297 314 1 0.813205 0.18842 0.257274 316 1 0.751433 0.190992 0.316711 342 1 0.688537 0.313932 0.249475 343 1 0.689508 0.251716 0.314895 345 1 0.747173 0.248634 0.250586 346 1 0.811394 0.311736 0.248324 347 1 0.810981 0.251769 0.317455 348 1 0.750568 0.312324 0.311747 292 1 1.00328 0.191946 0.314328 321 1 1.00054 0.255014 0.244559 192 1 0.87621 0.185639 0.192625 223 1 0.938601 0.252364 0.190261 224 1 0.876522 0.309589 0.186003 318 1 0.941509 0.185841 0.252207 320 1 0.873512 0.187556 0.313621 349 1 0.876629 0.248283 0.256463 350 1 0.934864 0.314554 0.249698 351 1 0.940606 0.253667 0.314425 352 1 0.876212 0.313132 0.312163 1155 1 0.0673383 0.501424 0.184209 227 1 0.0670633 0.377117 0.183463 232 1 0.127913 0.437832 0.185644 354 1 0.0630579 0.440601 0.246864 355 1 0.0650824 0.377417 0.305177 357 1 0.128747 0.379007 0.243697 360 1 0.127608 0.437006 0.308048 353 1 -0.00153821 0.379191 0.241971 1285 1 0.118873 0.503264 0.252714 231 1 0.188642 0.377583 0.184268 235 1 0.316524 0.369025 0.194998 236 1 0.246187 0.439095 0.186656 358 1 0.189333 0.440008 0.250075 359 1 0.190548 0.377198 0.315653 361 1 0.248866 0.373598 0.251422 362 1 0.317005 0.433194 0.251124 363 1 0.313157 0.374651 0.312948 364 1 0.249925 0.441075 0.315457 1295 1 0.436377 0.501551 0.314609 239 1 0.436666 0.374799 0.190552 240 1 0.37588 0.43878 0.188616 365 1 0.376863 0.371554 0.251661 366 1 0.440772 0.438211 0.245206 367 1 0.437768 0.37236 0.309307 368 1 0.376374 0.44309 0.314392 1167 1 0.443169 0.498189 0.186582 369 1 0.498104 0.371121 0.250541 372 1 0.497154 0.438591 0.309224 244 1 0.506318 0.437326 0.186444 243 1 0.562568 0.372541 0.184155 248 1 0.62033 0.433435 0.187169 370 1 0.562897 0.436715 0.251019 371 1 0.560465 0.373918 0.314404 373 1 0.625092 0.373477 0.252894 376 1 0.622741 0.440779 0.313964 1175 1 0.683735 0.499155 0.189784 247 1 0.682768 0.375205 0.190607 251 1 0.814429 0.3767 0.186743 252 1 0.746702 0.440964 0.187245 374 1 0.685268 0.439209 0.249067 375 1 0.685554 0.376873 0.309555 377 1 0.752036 0.373337 0.251594 378 1 0.811587 0.437503 0.247962 379 1 0.812743 0.374251 0.312953 380 1 0.750127 0.438968 0.31228 1183 1 0.940062 0.501929 0.184285 356 1 0.99984 0.435655 0.312508 228 1 1.00598 0.441737 0.186283 255 1 0.934773 0.374011 0.18682 256 1 0.875011 0.437803 0.186506 381 1 0.872523 0.379659 0.254995 382 1 0.940621 0.439882 0.2407 383 1 0.941254 0.377158 0.3111 384 1 0.879574 0.439147 0.313014 389 1 0.124805 0.00282677 0.379417 514 1 0.0610255 0.0639389 0.500268 386 1 0.0655315 0.0637459 0.374405 392 1 0.125888 0.0678542 0.438679 419 1 0.0625327 0.126037 0.442762 421 1 0.123961 0.123598 0.378383 417 1 0.0038197 0.125986 0.375633 549 1 0.132255 0.128453 0.499922 388 1 0.00289679 0.0590679 0.435619 385 1 0.000961249 0.00134507 0.371766 521 1 0.253277 -0.00515183 0.502872 391 1 0.188471 -0.00715985 0.440641 390 1 0.188923 0.0593743 0.378774 394 1 0.309852 0.0644534 0.377668 396 1 0.249166 0.0577624 0.438731 423 1 0.186094 0.124685 0.437315 425 1 0.248628 0.12466 0.379041 427 1 0.313428 0.12482 0.436671 553 1 0.248871 0.12509 0.498765 522 1 0.313855 0.0600222 0.504895 399 1 0.436839 -0.00179326 0.43735 398 1 0.438353 0.0583396 0.373446 400 1 0.374985 0.0610815 0.43646 429 1 0.376805 0.120469 0.375328 431 1 0.434402 0.124803 0.437159 404 1 0.499879 0.0569923 0.436163 401 1 0.500154 -5.46898e-05 0.371588 557 1 0.370723 0.122494 0.500906 561 1 0.500926 0.119652 0.494867 530 1 0.562345 0.0589693 0.499052 433 1 0.496275 0.123546 0.371264 402 1 0.558734 0.0643131 0.376523 408 1 0.629684 0.0610511 0.436533 435 1 0.564469 0.127624 0.437485 437 1 0.630563 0.123225 0.378861 533 1 0.627621 -0.000577451 0.501842 411 1 0.816238 0.000527564 0.439307 534 1 0.694242 0.0583746 0.504036 409 1 0.752705 -0.000771602 0.376572 406 1 0.692448 0.0601285 0.377965 410 1 0.815871 0.0647623 0.37593 412 1 0.755597 0.0579335 0.442084 439 1 0.689845 0.125728 0.440416 441 1 0.751733 0.12555 0.381287 443 1 0.815807 0.129376 0.439552 538 1 0.818776 0.0582356 0.503335 413 1 0.87455 0.00288286 0.375062 414 1 0.941554 0.0663945 0.372229 416 1 0.875571 0.065058 0.442239 445 1 0.877437 0.125013 0.37784 447 1 0.940983 0.124167 0.440134 545 1 1.00078 0.124303 0.499866 542 1 0.939546 0.0622577 0.50314 418 1 0.0710432 0.188814 0.37869 424 1 0.126082 0.185861 0.438573 450 1 0.0610014 0.31597 0.372523 451 1 0.0665852 0.256074 0.433992 453 1 0.124646 0.253044 0.368913 456 1 0.125023 0.318194 0.438199 452 1 0.00540564 0.318073 0.437583 581 1 0.12705 0.251497 0.497949 546 1 0.0623062 0.19122 0.499069 422 1 0.181851 0.189232 0.379738 426 1 0.31238 0.186283 0.37551 428 1 0.253235 0.183253 0.438103 454 1 0.187348 0.313781 0.374175 455 1 0.183567 0.251935 0.435096 457 1 0.249556 0.24754 0.377832 458 1 0.31242 0.313093 0.372753 459 1 0.31095 0.248707 0.435926 460 1 0.245505 0.311215 0.43534 586 1 0.307847 0.308805 0.49705 585 1 0.247902 0.249901 0.497775 550 1 0.190062 0.185991 0.496146 582 1 0.188726 0.311444 0.496756 430 1 0.439477 0.188845 0.374438 432 1 0.375421 0.190389 0.435555 461 1 0.379078 0.252754 0.375846 462 1 0.43401 0.31246 0.377066 463 1 0.442435 0.249844 0.439403 464 1 0.374372 0.309671 0.440229 468 1 0.496536 0.316065 0.440172 558 1 0.436939 0.185994 0.496617 436 1 0.499858 0.183739 0.435561 465 1 0.500511 0.24861 0.37704 434 1 0.561604 0.184941 0.374644 440 1 0.628561 0.188799 0.436562 466 1 0.561359 0.313156 0.374383 467 1 0.557812 0.248751 0.437064 469 1 0.627279 0.250173 0.373398 472 1 0.620456 0.311512 0.436429 562 1 0.562703 0.189271 0.498589 566 1 0.68669 0.189919 0.498801 601 1 0.741221 0.25221 0.498138 474 1 0.810511 0.316387 0.376634 473 1 0.753696 0.254082 0.382885 471 1 0.688875 0.251058 0.436504 470 1 0.689131 0.312854 0.376167 476 1 0.749313 0.317273 0.442517 475 1 0.80982 0.251603 0.442867 438 1 0.689634 0.189973 0.374938 442 1 0.812404 0.18676 0.378798 444 1 0.748814 0.189744 0.439926 602 1 0.815751 0.309774 0.505863 420 1 1.00513 0.187136 0.437175 449 1 1.00531 0.252705 0.377915 480 1 0.875611 0.311151 0.441468 479 1 0.938656 0.24907 0.437524 478 1 0.934797 0.312345 0.377462 477 1 0.871403 0.252738 0.373666 448 1 0.877947 0.188638 0.437711 446 1 0.938807 0.187348 0.375355 577 1 1.00332 0.253061 0.500931 484 1 0.000575128 0.439526 0.442133 1411 1 0.0651932 0.501402 0.435301 613 1 0.127434 0.379736 0.496869 485 1 0.116774 0.377885 0.372716 483 1 0.0625517 0.377451 0.438498 482 1 0.0574369 0.43914 0.375432 488 1 0.123047 0.439987 0.43752 1415 1 0.18953 0.505321 0.432525 487 1 0.184872 0.377314 0.433523 486 1 0.186142 0.44037 0.372541 489 1 0.252419 0.376068 0.378216 492 1 0.250956 0.439795 0.436588 491 1 0.313162 0.375867 0.439625 490 1 0.316264 0.436051 0.374111 618 1 0.31224 0.436616 0.497621 1545 1 0.252488 0.500458 0.496082 625 1 0.500454 0.373343 0.499387 496 1 0.37539 0.438387 0.442237 500 1 0.498665 0.437252 0.437653 494 1 0.436894 0.434886 0.373173 493 1 0.377597 0.371674 0.37421 495 1 0.435677 0.372599 0.436372 622 1 0.442876 0.435142 0.50401 626 1 0.560976 0.432114 0.500599 497 1 0.494454 0.374971 0.372967 498 1 0.561367 0.439938 0.376276 501 1 0.626865 0.37468 0.376556 504 1 0.621969 0.434157 0.441137 499 1 0.561992 0.373718 0.434526 502 1 0.688221 0.438041 0.378285 503 1 0.685387 0.373118 0.43933 1561 1 0.746486 0.499945 0.502511 505 1 0.7483 0.375906 0.380282 506 1 0.80898 0.435503 0.372516 507 1 0.812407 0.376036 0.43807 508 1 0.745844 0.435128 0.444413 633 1 0.747036 0.373465 0.503196 634 1 0.810875 0.433608 0.504255 509 1 0.877856 0.381063 0.37197 510 1 0.943182 0.443669 0.373931 511 1 0.939502 0.379842 0.435966 1409 1 0.998264 0.506658 0.378858 1439 1 0.936211 0.501751 0.442696 512 1 0.877734 0.438168 0.440128 481 1 1.00296 0.37379 0.372531 637 1 0.870342 0.374145 0.498076 520 1 0.127606 0.0635124 0.555742 547 1 0.0653979 0.127973 0.560488 642 1 0.0670786 0.0589633 0.626885 677 1 0.125782 0.125396 0.62143 515 1 0.0666609 0.00348759 0.566631 517 1 0.125985 -0.00204709 0.498784 513 1 0.00623353 0.0024703 0.500746 524 1 0.249745 0.062467 0.559072 551 1 0.189319 0.121804 0.563158 555 1 0.30681 0.126402 0.564958 646 1 0.181003 0.061921 0.621091 650 1 0.312665 0.0594688 0.62277 681 1 0.25018 0.120733 0.626334 519 1 0.189135 -0.0051528 0.558073 649 1 0.253111 -0.000564897 0.623858 518 1 0.189014 0.0612397 0.498756 528 1 0.376239 0.0603236 0.560316 559 1 0.434895 0.120636 0.559137 654 1 0.436422 0.0604693 0.627466 685 1 0.370986 0.123108 0.624511 532 1 0.494005 0.0598747 0.561989 526 1 0.436232 0.0602849 0.500791 689 1 0.497713 0.123215 0.624699 536 1 0.626195 0.0603077 0.557714 563 1 0.555611 0.117458 0.56228 658 1 0.554079 0.0559656 0.625291 693 1 0.622671 0.119709 0.625179 565 1 0.62207 0.125064 0.501884 539 1 0.811893 -0.00226332 0.564108 540 1 0.752634 0.0595382 0.561725 567 1 0.687096 0.122663 0.563415 571 1 0.816754 0.125223 0.558313 662 1 0.684833 0.058094 0.627919 666 1 0.812929 0.0651666 0.625921 697 1 0.753094 0.121492 0.624749 665 1 0.749556 -0.00124956 0.626916 569 1 0.746457 0.122806 0.50035 516 1 1.00358 0.0612021 0.56221 673 1 1.00447 0.124793 0.624122 641 1 1.00223 -0.00457042 0.62587 544 1 0.880656 0.0633772 0.564391 575 1 0.942965 0.124104 0.563247 670 1 0.939549 0.0624551 0.622523 701 1 0.876464 0.1301 0.622987 573 1 0.881077 0.132494 0.501708 669 1 0.875552 -0.000444238 0.624794 552 1 0.129592 0.18839 0.562817 579 1 0.0648169 0.25774 0.560417 584 1 0.128228 0.315594 0.563215 674 1 0.0678645 0.19188 0.626092 706 1 0.0611816 0.315521 0.626857 709 1 0.130291 0.250905 0.630816 705 1 0.0058678 0.253518 0.624138 578 1 0.0653742 0.314197 0.502012 556 1 0.251601 0.185776 0.561725 583 1 0.187501 0.250705 0.560064 587 1 0.312471 0.244846 0.567281 588 1 0.251305 0.306503 0.561845 678 1 0.191148 0.186474 0.622601 682 1 0.311565 0.188431 0.62748 710 1 0.187319 0.314134 0.629691 713 1 0.249164 0.253455 0.624161 714 1 0.314122 0.311241 0.621397 554 1 0.314073 0.18426 0.499609 590 1 0.431135 0.314912 0.5005 589 1 0.3757 0.248937 0.49889 560 1 0.377271 0.186525 0.568095 591 1 0.436422 0.2513 0.562911 592 1 0.3656 0.313558 0.556203 686 1 0.434458 0.186438 0.625553 717 1 0.37635 0.251277 0.622864 718 1 0.434454 0.308871 0.62476 596 1 0.499505 0.315548 0.564824 721 1 0.494051 0.251974 0.624916 564 1 0.495238 0.187302 0.560144 568 1 0.620929 0.182956 0.563047 595 1 0.560668 0.254434 0.563467 600 1 0.62164 0.311474 0.563446 690 1 0.55545 0.186328 0.62139 722 1 0.558395 0.313472 0.627718 725 1 0.619904 0.2489 0.624868 597 1 0.623704 0.249034 0.495377 593 1 0.501451 0.253882 0.501721 594 1 0.560518 0.311635 0.495703 572 1 0.742702 0.184424 0.564414 599 1 0.680381 0.250726 0.561509 603 1 0.802472 0.248641 0.562979 604 1 0.744887 0.314175 0.562575 694 1 0.685313 0.18327 0.623318 698 1 0.811734 0.189672 0.624018 726 1 0.682494 0.31437 0.623919 729 1 0.745269 0.25325 0.622878 730 1 0.805986 0.307995 0.624958 570 1 0.806863 0.19039 0.502693 598 1 0.679917 0.311899 0.500627 606 1 0.93842 0.311045 0.496855 580 1 1.00517 0.316192 0.560064 548 1 1.00075 0.187319 0.564706 576 1 0.874933 0.192831 0.561453 607 1 0.938585 0.255616 0.562621 608 1 0.871001 0.304644 0.568348 702 1 0.935161 0.188419 0.627807 733 1 0.876957 0.246843 0.628489 734 1 0.939923 0.313076 0.625085 605 1 0.877573 0.248014 0.502758 574 1 0.944664 0.191029 0.502134 610 1 0.0611884 0.436021 0.504828 611 1 0.0695251 0.372725 0.559374 616 1 0.129311 0.437188 0.562866 738 1 0.0634202 0.435972 0.62129 741 1 0.126319 0.375824 0.622539 737 1 0.00258037 0.375423 0.625761 612 1 -0.000688051 0.436032 0.561353 1541 1 0.121909 0.506213 0.499898 1665 1 -0.00148085 0.498996 0.624795 617 1 0.247818 0.376398 0.495872 615 1 0.194053 0.374777 0.559271 619 1 0.316264 0.378839 0.561825 620 1 0.252171 0.441105 0.560511 742 1 0.186685 0.441168 0.624501 745 1 0.249247 0.373724 0.62103 746 1 0.31325 0.439458 0.622313 614 1 0.185039 0.446237 0.4933 623 1 0.432532 0.367013 0.56347 624 1 0.374769 0.437562 0.563103 749 1 0.370806 0.373718 0.626452 750 1 0.434392 0.437262 0.624917 753 1 0.495906 0.375133 0.626728 628 1 0.50071 0.430019 0.563768 621 1 0.371269 0.377421 0.500416 627 1 0.561769 0.372348 0.563121 632 1 0.624102 0.435599 0.563004 754 1 0.557669 0.437295 0.625319 757 1 0.621969 0.374749 0.624644 629 1 0.624166 0.374252 0.498792 1689 1 0.74447 0.499732 0.623634 1559 1 0.681698 0.498748 0.561817 1563 1 0.806439 0.494708 0.563372 631 1 0.682715 0.377376 0.558369 635 1 0.806735 0.367967 0.568414 636 1 0.746894 0.434699 0.561617 758 1 0.687475 0.437717 0.6287 761 1 0.743769 0.374949 0.62254 762 1 0.810312 0.435621 0.627162 630 1 0.684513 0.436173 0.498965 609 1 1.00076 0.373698 0.498299 639 1 0.93766 0.373298 0.564117 640 1 0.87394 0.434528 0.562856 765 1 0.869398 0.370571 0.623989 766 1 0.937753 0.436434 0.623198 638 1 0.937189 0.438174 0.501809 1565 1 0.872741 0.499131 0.504732 643 1 0.065304 -0.00521636 0.688432 648 1 0.126144 0.0631524 0.683172 675 1 0.0662834 0.125736 0.685561 770 1 0.0682702 0.0632317 0.747252 776 1 0.129444 0.0658612 0.810168 803 1 0.0626218 0.12539 0.809069 805 1 0.129153 0.120007 0.746457 773 1 0.128269 0.00151312 0.749434 772 1 0.000324259 0.0633736 0.807731 644 1 0.0072644 0.0575453 0.687672 775 1 0.189944 -0.00146882 0.815515 652 1 0.252661 0.058119 0.68492 679 1 0.186755 0.125169 0.68257 683 1 0.312643 0.128017 0.68651 774 1 0.192062 0.0607435 0.748828 778 1 0.312087 0.0608235 0.74633 780 1 0.253206 0.0595164 0.812366 807 1 0.190654 0.12755 0.810646 809 1 0.248559 0.124257 0.749868 811 1 0.315737 0.126042 0.813202 781 1 0.374991 0.0006658 0.752072 783 1 0.436013 -0.00353669 0.812388 656 1 0.372625 0.0615836 0.685382 687 1 0.435673 0.124211 0.686381 782 1 0.434321 0.058678 0.747311 784 1 0.374405 0.0617417 0.813508 813 1 0.37415 0.121575 0.750572 815 1 0.436878 0.126691 0.80745 788 1 0.492776 0.0595315 0.811512 817 1 0.499784 0.123149 0.744092 660 1 0.494759 0.0625905 0.685111 785 1 0.497072 -0.00202242 0.752554 787 1 0.561221 0.000865936 0.814184 659 1 0.55639 -0.00219545 0.689732 789 1 0.622105 -0.0034455 0.750809 664 1 0.617988 0.059299 0.687444 691 1 0.558806 0.123228 0.681174 786 1 0.556884 0.0610429 0.748009 792 1 0.626017 0.0652355 0.810427 819 1 0.559187 0.120831 0.809391 821 1 0.618617 0.126545 0.74652 793 1 0.748897 6.75927e-05 0.751986 668 1 0.751076 0.0601442 0.683825 695 1 0.682991 0.125104 0.688679 699 1 0.816214 0.12734 0.688001 790 1 0.687992 0.0664982 0.745229 794 1 0.810732 0.0641156 0.745381 796 1 0.75063 0.0673362 0.8042 823 1 0.684006 0.125868 0.810278 825 1 0.749068 0.127041 0.742702 827 1 0.81072 0.127912 0.809809 795 1 0.811424 0.00322598 0.811712 663 1 0.684688 -0.00255538 0.687255 799 1 0.940248 -0.00120939 0.810939 671 1 0.939158 0.00183747 0.6859 801 1 0.99902 0.123803 0.747944 672 1 0.874883 0.0630253 0.688583 703 1 0.936416 0.120723 0.686209 798 1 0.938893 0.0594101 0.750335 800 1 0.877824 0.0628586 0.811247 829 1 0.875392 0.126588 0.752166 831 1 0.939647 0.123113 0.811148 797 1 0.874185 -0.00426886 0.754898 680 1 0.129881 0.190094 0.686656 707 1 0.0627645 0.248953 0.686316 712 1 0.121128 0.318701 0.687466 802 1 0.0616892 0.185531 0.748988 808 1 0.12097 0.1863 0.813497 834 1 0.062632 0.312671 0.752436 835 1 0.0591207 0.248247 0.816953 837 1 0.12706 0.25348 0.747158 840 1 0.127338 0.312744 0.810376 836 1 -2.32433e-06 0.313588 0.811132 804 1 0.0032396 0.187155 0.812295 684 1 0.250075 0.185863 0.687363 711 1 0.18923 0.2528 0.687182 715 1 0.308617 0.25268 0.688685 716 1 0.247945 0.315959 0.690159 806 1 0.186983 0.185121 0.750889 810 1 0.307272 0.190589 0.747268 812 1 0.253859 0.189714 0.811345 838 1 0.187322 0.314646 0.750211 839 1 0.183147 0.244837 0.812358 841 1 0.249075 0.249724 0.747855 842 1 0.310597 0.31818 0.750969 843 1 0.314759 0.251167 0.807832 844 1 0.248509 0.313526 0.812674 688 1 0.373996 0.187068 0.691683 719 1 0.43542 0.250713 0.687403 720 1 0.365426 0.314494 0.6859 814 1 0.438557 0.186496 0.744762 816 1 0.377169 0.188934 0.809416 845 1 0.371965 0.253887 0.745233 846 1 0.436485 0.311826 0.746162 847 1 0.442691 0.247885 0.813591 848 1 0.372133 0.314645 0.81138 692 1 0.49788 0.188489 0.685418 820 1 0.500359 0.187381 0.812274 852 1 0.499641 0.30927 0.807588 849 1 0.500032 0.250181 0.747889 724 1 0.494004 0.316932 0.685251 696 1 0.617007 0.185084 0.685684 723 1 0.559445 0.251453 0.684539 728 1 0.62397 0.314411 0.68493 818 1 0.561601 0.185627 0.75343 824 1 0.624906 0.191353 0.809982 850 1 0.553825 0.314488 0.742914 851 1 0.559504 0.250804 0.810079 853 1 0.624435 0.250959 0.746553 856 1 0.618709 0.31171 0.806766 700 1 0.744979 0.186997 0.684574 727 1 0.685791 0.247018 0.681133 731 1 0.809375 0.247084 0.687664 732 1 0.7474 0.311196 0.687964 822 1 0.682176 0.185371 0.74897 826 1 0.806432 0.187676 0.748427 828 1 0.749587 0.186981 0.810865 854 1 0.68677 0.313247 0.747472 855 1 0.684923 0.254177 0.809797 857 1 0.743104 0.247822 0.745484 858 1 0.806828 0.313169 0.750083 859 1 0.806833 0.25194 0.809892 860 1 0.748836 0.31297 0.810614 708 1 1.00305 0.314578 0.691633 833 1 1.0032 0.248783 0.748086 676 1 1.00126 0.186619 0.685568 704 1 0.875167 0.187689 0.69132 735 1 0.941968 0.24875 0.683883 736 1 0.876091 0.310915 0.685388 830 1 0.938404 0.18684 0.74969 832 1 0.87529 0.189408 0.808535 861 1 0.870832 0.252193 0.748621 862 1 0.940615 0.308518 0.749168 863 1 0.940448 0.249221 0.81248 864 1 0.873365 0.310531 0.811249 1667 1 0.0638851 0.504725 0.684835 739 1 0.0627989 0.376657 0.689667 744 1 0.126586 0.439843 0.685086 866 1 0.0674587 0.442164 0.745869 867 1 0.0636791 0.379623 0.810714 869 1 0.123522 0.375984 0.751074 872 1 0.121985 0.441815 0.814856 740 1 -0.000532961 0.435023 0.686755 1795 1 0.0605211 0.504585 0.813596 865 1 0.000762798 0.378754 0.750948 1797 1 0.126338 0.502436 0.751021 743 1 0.186479 0.377038 0.689734 747 1 0.308323 0.380618 0.685978 748 1 0.247969 0.442155 0.686845 870 1 0.188102 0.438953 0.755652 871 1 0.186132 0.379384 0.818186 873 1 0.246446 0.378502 0.753344 874 1 0.306697 0.439071 0.754904 875 1 0.311613 0.376706 0.818209 876 1 0.243675 0.445015 0.819301 1807 1 0.434391 0.506032 0.808838 1809 1 0.501011 0.49707 0.75505 751 1 0.432381 0.374101 0.695785 752 1 0.373802 0.439504 0.686019 877 1 0.375243 0.374572 0.752733 878 1 0.433102 0.438369 0.752616 879 1 0.439492 0.374314 0.814672 880 1 0.372604 0.436643 0.812408 881 1 0.497323 0.371943 0.751612 884 1 0.500193 0.433984 0.816494 1813 1 0.621029 0.497435 0.753396 756 1 0.497257 0.43327 0.689097 755 1 0.560879 0.376793 0.68662 760 1 0.622049 0.436936 0.688215 882 1 0.559947 0.43689 0.749553 883 1 0.559667 0.374442 0.816648 885 1 0.621899 0.377255 0.7493 888 1 0.623863 0.437931 0.812156 1687 1 0.685045 0.497011 0.685796 759 1 0.68644 0.37753 0.686881 763 1 0.812537 0.366936 0.688792 764 1 0.749195 0.435498 0.68837 886 1 0.688144 0.44053 0.752642 887 1 0.681464 0.371545 0.811996 889 1 0.744652 0.377433 0.748641 890 1 0.809895 0.435207 0.748565 891 1 0.809344 0.374433 0.812692 892 1 0.753411 0.436472 0.816461 1817 1 0.750984 0.499608 0.747903 1793 1 0.996199 0.502876 0.744189 1821 1 0.873154 0.496732 0.751032 868 1 1.00487 0.445233 0.808266 767 1 0.936974 0.371791 0.68562 768 1 0.879924 0.432158 0.685139 893 1 0.872705 0.37029 0.750078 894 1 0.937244 0.437137 0.748087 895 1 0.933887 0.377969 0.80847 896 1 0.87319 0.432481 0.811688 1823 1 0.936016 0.501093 0.810058 898 1 0.0637378 0.0643345 0.874319 904 1 0.123953 0.0632038 0.935344 931 1 0.0598118 0.123711 0.939435 933 1 0.124766 0.126044 0.868332 900 1 -0.000758142 0.0633278 0.939052 929 1 -0.00170932 0.126361 0.873343 37 1 0.123553 0.12432 0.995153 33 1 0.000569376 0.120397 0.998809 1 1 -0.00126349 0.00137057 1.00075 2 1 0.0673021 0.0618703 1.00178 902 1 0.189432 0.0663454 0.872162 906 1 0.31243 0.0640764 0.876582 908 1 0.24864 0.0627784 0.937937 935 1 0.18669 0.130529 0.932885 937 1 0.254477 0.124716 0.874368 939 1 0.311418 0.124188 0.936671 909 1 0.373231 -0.0018092 0.871904 911 1 0.433226 0.000442166 0.936231 14 1 0.43843 0.0613757 0.999586 910 1 0.432473 0.0608654 0.869716 912 1 0.373371 0.0624751 0.940524 941 1 0.378505 0.123869 0.874387 943 1 0.433485 0.123491 0.934452 945 1 0.498712 0.122622 0.870289 45 1 0.378818 0.125916 1.00245 13 1 0.373389 0.00120603 0.996898 917 1 0.624403 0.00369395 0.875207 915 1 0.568421 -0.00462799 0.936463 916 1 0.501456 0.0655248 0.936212 914 1 0.566727 0.0617427 0.875415 920 1 0.626561 0.0631541 0.93721 947 1 0.563683 0.129971 0.934645 949 1 0.625981 0.126526 0.874829 49 1 0.495492 0.122659 1.00177 21 1 0.628297 0.00212996 0.996889 921 1 0.748122 0.00506165 0.872414 918 1 0.686323 0.0589854 0.875929 922 1 0.810751 0.0647145 0.870677 924 1 0.751848 0.0659524 0.935744 951 1 0.687528 0.124017 0.933076 953 1 0.74774 0.128916 0.873254 955 1 0.817474 0.129099 0.931168 61 1 0.874646 0.123196 1.00411 926 1 0.939541 0.0675436 0.874285 928 1 0.873993 0.065854 0.935736 957 1 0.874371 0.129293 0.8714 959 1 0.935359 0.125915 0.937642 30 1 0.935692 0.065259 1.00117 927 1 0.938484 0.0055911 0.935861 925 1 0.87996 0.00132936 0.872872 930 1 0.0609588 0.184598 0.876024 936 1 0.120494 0.186494 0.933603 962 1 0.0585889 0.316768 0.873361 963 1 0.0606524 0.25082 0.933882 965 1 0.124695 0.249005 0.875779 968 1 0.120604 0.313548 0.93568 961 1 -0.00276481 0.24973 0.875471 65 1 0.000623564 0.250781 0.994904 66 1 0.0604647 0.310863 0.995097 934 1 0.185208 0.190029 0.875935 938 1 0.316514 0.186043 0.87284 940 1 0.249364 0.189323 0.939775 966 1 0.187483 0.310504 0.876438 967 1 0.190525 0.248967 0.936417 969 1 0.244488 0.245821 0.874139 970 1 0.313997 0.313032 0.877203 971 1 0.314947 0.245003 0.9358 972 1 0.254984 0.312813 0.940036 70 1 0.190926 0.315849 0.995634 74 1 0.313945 0.313797 1.00445 73 1 0.249932 0.249724 1.00546 42 1 0.318723 0.188151 0.99975 77 1 0.378112 0.248655 1.00002 942 1 0.441137 0.184424 0.874171 944 1 0.3782 0.18768 0.937663 973 1 0.377381 0.249518 0.873738 974 1 0.440256 0.31244 0.871791 975 1 0.438564 0.25164 0.935117 976 1 0.371061 0.308227 0.940197 78 1 0.440441 0.312333 1.00184 980 1 0.500404 0.313701 0.932619 977 1 0.503407 0.247704 0.874441 948 1 0.502242 0.186365 0.934359 946 1 0.563433 0.187446 0.870584 952 1 0.62341 0.189831 0.93798 978 1 0.559815 0.313863 0.873475 979 1 0.564196 0.25352 0.940597 981 1 0.62603 0.252055 0.875021 984 1 0.626815 0.30996 0.936847 50 1 0.56284 0.187669 0.997666 82 1 0.562631 0.314134 0.996757 86 1 0.691712 0.311721 1.00339 988 1 0.750063 0.310552 0.936205 987 1 0.811593 0.251398 0.934878 986 1 0.810642 0.31376 0.874147 985 1 0.749327 0.251188 0.872592 983 1 0.691802 0.250713 0.937864 982 1 0.683184 0.312571 0.872206 950 1 0.684981 0.191781 0.876865 954 1 0.812564 0.191139 0.870542 956 1 0.751021 0.185023 0.935729 89 1 0.74776 0.24549 1.00019 90 1 0.813163 0.312122 0.994912 58 1 0.811571 0.187111 0.997649 54 1 0.690671 0.189069 0.995707 964 1 0.997055 0.317489 0.93995 958 1 0.935566 0.186312 0.870697 960 1 0.876093 0.19429 0.936234 989 1 0.877013 0.251813 0.872199 932 1 0.995863 0.185016 0.935301 992 1 0.876624 0.316398 0.937547 991 1 0.938284 0.255132 0.936876 990 1 0.937122 0.314088 0.868378 62 1 0.936348 0.184314 1.00126 93 1 0.870544 0.247046 0.993818 1029 1 0.123297 0.504162 1.00267 994 1 0.0627097 0.44326 0.878625 1000 1 0.123545 0.436389 0.941032 997 1 0.122507 0.379094 0.874723 995 1 0.0605055 0.377335 0.939541 1925 1 0.1255 0.500479 0.873894 98 1 0.0610945 0.44166 0.999934 102 1 0.183797 0.437397 1.00305 1002 1 0.311394 0.440753 0.876367 1001 1 0.248157 0.370849 0.876463 1003 1 0.313021 0.377951 0.935554 999 1 0.186836 0.372318 0.937216 1004 1 0.245049 0.440068 0.936444 998 1 0.181599 0.438529 0.878438 106 1 0.313337 0.43484 0.997604 1931 1 0.310031 0.49992 0.938042 1929 1 0.2458 0.501553 0.879657 105 1 0.248151 0.376273 0.996497 1009 1 0.495792 0.376522 0.875849 1007 1 0.432944 0.368625 0.934516 1008 1 0.376543 0.435917 0.932932 1005 1 0.377383 0.373873 0.875641 1006 1 0.437074 0.436728 0.873765 110 1 0.433917 0.440024 0.999006 1041 1 0.498219 0.503434 1.00393 1939 1 0.562251 0.499154 0.938671 1937 1 0.497324 0.500207 0.876943 113 1 0.501887 0.371274 0.999994 1011 1 0.564445 0.379238 0.941777 1013 1 0.624653 0.372659 0.87801 1016 1 0.625168 0.436667 0.937248 1010 1 0.558098 0.435052 0.877095 1012 1 0.49719 0.437329 0.94122 1045 1 0.625242 0.496829 0.999438 1014 1 0.68527 0.432059 0.870552 1947 1 0.813076 0.497965 0.938264 1015 1 0.688244 0.368855 0.939425 118 1 0.684662 0.43595 0.99721 1017 1 0.749924 0.374467 0.881633 1018 1 0.816708 0.437487 0.874511 1019 1 0.81464 0.377907 0.937614 1020 1 0.746494 0.435439 0.937597 1943 1 0.688488 0.50298 0.94094 996 1 1.00017 0.438632 0.93412 1951 1 0.935331 0.503337 0.941924 1949 1 0.875543 0.502011 0.874271 1021 1 0.873864 0.375221 0.872273 1053 1 0.871479 0.500756 1.00211 1022 1 0.935977 0.438303 0.87107 1023 1 0.93281 0.377695 0.938311 1024 1 0.875141 0.440968 0.936992 126 1 0.933507 0.441519 1.00295 993 1 0.998529 0.37983 0.871672 1032 1 0.124152 0.566193 0.0618317 1059 1 0.0620459 0.626492 0.0642579 1154 1 0.0599026 0.569171 0.124672 1189 1 0.126533 0.63332 0.123931 1028 1 -0.00432021 0.567881 0.0613693 1061 1 0.12352 0.626869 0.00304659 1026 1 0.0608149 0.563232 -0.000111311 1036 1 0.250879 0.561395 0.0629162 1063 1 0.194291 0.624776 0.0636002 1067 1 0.31304 0.62646 0.0620621 1158 1 0.185166 0.567254 0.120906 1162 1 0.315109 0.566491 0.125681 1193 1 0.254628 0.621274 0.128916 1161 1 0.254803 0.496862 0.125218 1035 1 0.319976 0.499585 0.065727 1065 1 0.251512 0.626589 0.000585661 1034 1 0.316481 0.568087 -0.000848411 1040 1 0.378897 0.568851 0.0620645 1071 1 0.441548 0.630316 0.067668 1166 1 0.43828 0.563708 0.125102 1197 1 0.376004 0.627149 0.126818 1069 1 0.375946 0.626748 -0.00370854 1165 1 0.376441 0.498738 0.126261 1038 1 0.434373 0.565361 -0.00535809 1169 1 0.499812 0.501701 0.123923 1201 1 0.501107 0.625096 0.128766 1044 1 0.496551 0.566229 0.0622555 1048 1 0.624164 0.559785 0.0657092 1075 1 0.55804 0.623186 0.0655762 1170 1 0.564424 0.566427 0.12749 1205 1 0.625915 0.624246 0.122373 1173 1 0.626454 0.502618 0.127074 1073 1 0.502582 0.624015 -0.000299821 1077 1 0.621522 0.619324 0.0038788 1052 1 0.75284 0.565618 0.0694212 1079 1 0.686356 0.620403 0.0616066 1083 1 0.811475 0.627244 0.063127 1174 1 0.686966 0.565049 0.125613 1178 1 0.810582 0.565119 0.128116 1209 1 0.751384 0.629271 0.124408 1177 1 0.750081 0.500106 0.124655 1047 1 0.684888 0.497376 0.0639564 1185 1 0.998666 0.62707 0.122818 1056 1 0.869544 0.564505 0.0671461 1087 1 0.934125 0.631167 0.064078 1182 1 0.941798 0.563557 0.125725 1213 1 0.873013 0.627866 0.12696 1054 1 0.933735 0.562761 0.0014036 1055 1 0.933794 0.505454 0.0664078 1085 1 0.873929 0.627524 0.0010258 1064 1 0.129224 0.690357 0.0618398 1091 1 0.0655018 0.750572 0.0628119 1096 1 0.125337 0.810481 0.062739 1186 1 0.0595975 0.691703 0.123602 1218 1 0.0559435 0.817533 0.125738 1221 1 0.124959 0.752247 0.123959 1060 1 -3.94771e-05 0.686494 0.0623125 1092 1 0.00108154 0.812208 0.0580028 1058 1 0.0628571 0.688603 0.00140066 1097 1 0.247964 0.750981 0.00600164 1098 1 0.31007 0.810184 0.00307796 1068 1 0.247952 0.689515 0.061017 1095 1 0.187353 0.75259 0.0655683 1099 1 0.313012 0.749283 0.063075 1100 1 0.251269 0.816421 0.0654332 1190 1 0.192056 0.689535 0.123331 1194 1 0.312956 0.686285 0.131924 1222 1 0.186048 0.815631 0.128249 1225 1 0.250307 0.75164 0.127836 1226 1 0.312518 0.813203 0.126837 1066 1 0.314358 0.690455 0.000415056 1062 1 0.189883 0.684724 -0.00281823 1102 1 0.439677 0.816935 0.00263727 1072 1 0.375628 0.689644 0.0611514 1103 1 0.438391 0.749549 0.0628548 1104 1 0.373632 0.813036 0.061904 1198 1 0.435465 0.687026 0.126504 1229 1 0.378021 0.748186 0.128101 1230 1 0.437289 0.812519 0.12035 1076 1 0.500503 0.686659 0.0624052 1070 1 0.442936 0.688284 0.00116778 1105 1 0.497916 0.752739 -0.000506256 1108 1 0.506768 0.812021 0.0610971 1233 1 0.501342 0.751017 0.125937 1080 1 0.624688 0.68605 0.0611519 1107 1 0.566742 0.748954 0.0611639 1112 1 0.62747 0.812182 0.0663346 1202 1 0.56446 0.684105 0.119502 1234 1 0.56254 0.806125 0.126694 1237 1 0.625814 0.748483 0.127144 1106 1 0.564738 0.811416 0.000761974 1109 1 0.625528 0.746822 -0.00231736 1082 1 0.814198 0.687893 0.00301058 1084 1 0.749895 0.685545 0.0614004 1111 1 0.68945 0.746001 0.0627717 1115 1 0.807603 0.751259 0.0675974 1116 1 0.752293 0.808121 0.0638129 1206 1 0.686254 0.682431 0.12316 1210 1 0.812685 0.686511 0.13016 1238 1 0.689208 0.814104 0.126585 1241 1 0.748238 0.75025 0.126773 1242 1 0.809778 0.815841 0.127263 1078 1 0.684144 0.681361 0.00428127 1217 1 1.00197 0.752492 0.128116 1086 1 0.939457 0.690346 0.00188851 1118 1 0.942049 0.80962 -0.000140096 1088 1 0.875134 0.691738 0.0650759 1119 1 0.936018 0.750127 0.0640438 1120 1 0.8739 0.812699 0.0637215 1214 1 0.936286 0.692842 0.126814 1245 1 0.873779 0.752927 0.127296 1246 1 0.941404 0.815006 0.124385 1089 1 1.00115 0.749661 -0.00251104 1123 1 0.059305 0.873237 0.0601086 1128 1 0.126131 0.933094 0.0603558 1250 1 0.0647829 0.933577 0.123092 1253 1 0.125478 0.873651 0.129767 1124 1 -0.00401709 0.938272 0.0576042 1127 1 0.188261 0.873686 0.0606534 1131 1 0.314846 0.876636 0.0598868 1132 1 0.251009 0.937647 0.0629458 1254 1 0.185418 0.940046 0.128276 1257 1 0.249917 0.876497 0.123118 1258 1 0.30858 0.938282 0.12571 15 1 0.445441 1.00833 0.0612111 1133 1 0.37597 0.878734 0.00172588 1135 1 0.439874 0.879639 0.0641252 1136 1 0.379899 0.943188 0.0639321 1261 1 0.374202 0.875361 0.125672 1262 1 0.442933 0.942789 0.124921 1140 1 0.497592 0.941089 0.0561667 141 1 0.380365 0.999328 0.123812 17 1 0.504057 1.00074 -0.00189853 145 1 0.508639 1.00183 0.128587 1134 1 0.435777 0.939544 -0.00196449 1265 1 0.504214 0.875236 0.122415 1139 1 0.56593 0.87614 0.0645039 1144 1 0.630445 0.939018 0.0598597 1266 1 0.560182 0.934436 0.118698 1269 1 0.630346 0.873067 0.125623 1138 1 0.565006 0.933502 -0.00243534 1143 1 0.697786 0.870898 0.0625924 1147 1 0.807101 0.874306 0.0644894 1148 1 0.756712 0.941416 0.0609201 1270 1 0.691498 0.938127 0.119496 1273 1 0.754851 0.880976 0.13389 1274 1 0.81823 0.940307 0.12782 1146 1 0.813616 0.936958 -0.00407766 27 1 0.813041 1.00446 0.0597544 153 1 0.752326 1.00099 0.118224 23 1 0.690301 1.00005 0.0562029 1249 1 0.999709 0.877929 0.120833 1151 1 0.933597 0.878592 0.0602444 1152 1 0.874189 0.940066 0.0580168 1277 1 0.873755 0.873931 0.125835 1278 1 0.934475 0.937542 0.124381 1121 1 0.99787 0.876166 0.00150856 1149 1 0.869841 0.873187 0.00224575 1160 1 0.125905 0.567243 0.187625 1187 1 0.0647066 0.629337 0.184185 1282 1 0.0606262 0.565587 0.249527 1288 1 0.124704 0.565673 0.314185 1315 1 0.0613462 0.62546 0.309915 1317 1 0.123726 0.626535 0.247071 1283 1 0.0604379 0.495325 0.312231 1291 1 0.309848 0.500179 0.310279 1163 1 0.312198 0.497083 0.187892 1159 1 0.187891 0.508379 0.188469 1164 1 0.255854 0.557455 0.188074 1191 1 0.190284 0.626454 0.188768 1195 1 0.314366 0.628335 0.193322 1286 1 0.188175 0.565018 0.252593 1290 1 0.309521 0.559661 0.251382 1292 1 0.249332 0.562649 0.320402 1319 1 0.18686 0.625115 0.314899 1321 1 0.246513 0.626074 0.250691 1323 1 0.311327 0.623857 0.314939 1287 1 0.186074 0.496498 0.310678 1289 1 0.251294 0.497465 0.24695 1293 1 0.377153 0.503999 0.246909 1168 1 0.372065 0.564298 0.186049 1199 1 0.439119 0.624509 0.189874 1294 1 0.44149 0.566023 0.251356 1296 1 0.373979 0.559388 0.311893 1325 1 0.3749 0.62149 0.249973 1327 1 0.438128 0.625004 0.313499 1329 1 0.503972 0.622535 0.255407 1172 1 0.502737 0.559539 0.188909 1297 1 0.501081 0.506689 0.254122 1301 1 0.624871 0.499539 0.249187 1171 1 0.568426 0.496744 0.185825 1299 1 0.562216 0.500245 0.313496 1300 1 0.496036 0.560609 0.315727 1176 1 0.627821 0.562432 0.186101 1203 1 0.563017 0.625645 0.188211 1298 1 0.567446 0.558373 0.247737 1304 1 0.624514 0.56671 0.316463 1331 1 0.562407 0.622194 0.316765 1333 1 0.623792 0.62219 0.255128 1303 1 0.684541 0.49979 0.317701 1305 1 0.746438 0.503193 0.253849 1179 1 0.810924 0.499716 0.188161 1180 1 0.744517 0.563499 0.187493 1207 1 0.688272 0.623032 0.189927 1211 1 0.805997 0.624505 0.189974 1302 1 0.684774 0.561739 0.252217 1306 1 0.812052 0.559511 0.247067 1308 1 0.7457 0.558938 0.312597 1335 1 0.684487 0.622832 0.314245 1337 1 0.748917 0.625316 0.250512 1339 1 0.806282 0.62247 0.314446 1307 1 0.808137 0.500599 0.316123 1281 1 1.00099 0.499462 0.24634 1309 1 0.873863 0.497979 0.248908 1284 1 0.997778 0.56544 0.312184 1313 1 0.997683 0.624427 0.250577 1156 1 0.998212 0.563967 0.188545 1184 1 0.873729 0.560983 0.181791 1215 1 0.934557 0.627727 0.185451 1310 1 0.934328 0.559954 0.244065 1312 1 0.871101 0.561754 0.313905 1341 1 0.87226 0.621944 0.247909 1343 1 0.936124 0.620748 0.312855 1311 1 0.93619 0.502927 0.309139 1192 1 0.126598 0.688567 0.186724 1219 1 0.0632063 0.756748 0.185555 1224 1 0.129944 0.815032 0.191594 1314 1 0.0589072 0.688761 0.248907 1320 1 0.126818 0.686374 0.313971 1346 1 0.0631404 0.817026 0.24858 1347 1 0.059627 0.756551 0.308676 1349 1 0.12449 0.751764 0.249413 1352 1 0.125016 0.812587 0.315502 1345 1 0.000615362 0.751218 0.248849 1348 1 -0.00204713 0.814319 0.309923 1196 1 0.254337 0.687202 0.192939 1223 1 0.186231 0.748372 0.185042 1227 1 0.311517 0.752434 0.185815 1228 1 0.246317 0.81125 0.186989 1318 1 0.188309 0.688177 0.250298 1322 1 0.314671 0.692573 0.248992 1324 1 0.252844 0.689338 0.312839 1350 1 0.190593 0.810663 0.250596 1351 1 0.189504 0.750772 0.310376 1353 1 0.253372 0.750845 0.250675 1354 1 0.315643 0.815192 0.247917 1355 1 0.311693 0.747094 0.314261 1356 1 0.253723 0.813193 0.30862 1200 1 0.378171 0.686094 0.195256 1231 1 0.43893 0.749978 0.185476 1232 1 0.377038 0.81214 0.18498 1326 1 0.441219 0.684449 0.250318 1328 1 0.375061 0.686855 0.313675 1357 1 0.377246 0.753395 0.251747 1358 1 0.442933 0.812974 0.248793 1359 1 0.440393 0.747091 0.311224 1360 1 0.372852 0.813935 0.309199 1236 1 0.501183 0.812546 0.187731 1204 1 0.497568 0.6859 0.189931 1364 1 0.50311 0.812221 0.316006 1361 1 0.500137 0.749593 0.247439 1332 1 0.504371 0.688286 0.311979 1208 1 0.625062 0.685753 0.184869 1235 1 0.559104 0.743378 0.187042 1240 1 0.623868 0.805843 0.187368 1330 1 0.564076 0.684133 0.252071 1336 1 0.626166 0.687151 0.315571 1362 1 0.563968 0.809756 0.245982 1363 1 0.562718 0.75037 0.313947 1365 1 0.629259 0.745035 0.245533 1368 1 0.625727 0.807736 0.319132 1212 1 0.751054 0.687823 0.190303 1239 1 0.688995 0.750663 0.183967 1243 1 0.807544 0.752454 0.186466 1244 1 0.748136 0.814852 0.187261 1334 1 0.68779 0.687191 0.251956 1338 1 0.811528 0.687048 0.252581 1340 1 0.748573 0.683179 0.314442 1366 1 0.687016 0.811666 0.250257 1367 1 0.687592 0.745919 0.313441 1369 1 0.749975 0.752112 0.252701 1370 1 0.817354 0.814309 0.25237 1371 1 0.816218 0.751955 0.315752 1372 1 0.750031 0.810855 0.310863 1220 1 1.00045 0.817746 0.188534 1316 1 0.994067 0.685557 0.312508 1188 1 0.998728 0.688679 0.184598 1216 1 0.871928 0.685573 0.188267 1247 1 0.94163 0.751967 0.191464 1248 1 0.875822 0.812954 0.185595 1342 1 0.937707 0.688198 0.250997 1344 1 0.876425 0.684671 0.309473 1373 1 0.875017 0.748639 0.248245 1374 1 0.937898 0.812751 0.249609 1375 1 0.933632 0.751979 0.312517 1376 1 0.878419 0.815639 0.309653 1251 1 0.0605066 0.876766 0.191518 1256 1 0.122006 0.935158 0.188301 1378 1 0.0576674 0.940738 0.251455 1379 1 0.0604383 0.874861 0.311734 1381 1 0.124861 0.878339 0.25014 1384 1 0.126411 0.939312 0.310952 1380 1 -0.00196485 0.937342 0.313193 1252 1 0.00485169 0.938615 0.186889 1377 1 -0.00288514 0.878784 0.251033 261 1 0.122887 1.00302 0.24888 259 1 0.0626018 0.998181 0.312596 263 1 0.186885 1.00045 0.309345 135 1 0.183286 0.998871 0.188511 1255 1 0.185413 0.879221 0.186771 1259 1 0.314131 0.876172 0.188602 1260 1 0.247366 0.936604 0.189062 1382 1 0.18867 0.939277 0.248591 1383 1 0.187198 0.877619 0.307943 1385 1 0.249522 0.873703 0.246589 1386 1 0.308128 0.938308 0.249732 1387 1 0.314521 0.877452 0.311106 1388 1 0.24637 0.93661 0.31013 267 1 0.309494 0.999136 0.314508 139 1 0.314053 0.998287 0.191001 1263 1 0.440512 0.875806 0.182209 1264 1 0.378286 0.941054 0.183719 1389 1 0.376794 0.879156 0.248155 1390 1 0.436856 0.937223 0.247584 1391 1 0.438178 0.874275 0.306652 1392 1 0.37253 0.939005 0.313471 143 1 0.444559 0.999882 0.189609 275 1 0.568588 0.999649 0.314489 1396 1 0.502533 0.934597 0.311498 1268 1 0.504685 0.939069 0.186189 1393 1 0.502512 0.874788 0.246485 1267 1 0.564335 0.870163 0.181974 1272 1 0.628795 0.938208 0.18046 1394 1 0.566713 0.939806 0.256006 1395 1 0.56593 0.87097 0.312583 1397 1 0.620858 0.872713 0.247273 1400 1 0.630232 0.935719 0.312688 147 1 0.566501 0.997712 0.190934 277 1 0.629086 0.997675 0.24798 283 1 0.815724 0.999313 0.313248 1271 1 0.689425 0.87302 0.189246 1275 1 0.817187 0.87476 0.189167 1276 1 0.749841 0.942291 0.188823 1398 1 0.682595 0.934216 0.245562 1399 1 0.688057 0.872874 0.315012 1401 1 0.750684 0.873186 0.248586 1402 1 0.812249 0.935329 0.252517 1403 1 0.810654 0.873347 0.313424 1404 1 0.747693 0.933655 0.317543 151 1 0.693535 1.00286 0.181472 155 1 0.817308 1.00105 0.187242 159 1 0.936724 0.996831 0.185906 1279 1 0.936656 0.876128 0.1901 1280 1 0.874768 0.941398 0.190539 1405 1 0.876146 0.877968 0.252388 1406 1 0.937415 0.94005 0.248422 1407 1 0.938412 0.877958 0.312077 1408 1 0.875117 0.934986 0.31353 1410 1 0.0641747 0.564733 0.374003 1416 1 0.126506 0.56155 0.435427 1443 1 0.0614363 0.62927 0.4358 1445 1 0.126201 0.62925 0.376645 1573 1 0.125626 0.622583 0.502111 1413 1 0.121558 0.496923 0.370911 1538 1 0.0564975 0.564036 0.505712 1414 1 0.185748 0.56432 0.372709 1418 1 0.315117 0.56571 0.374724 1420 1 0.249583 0.564044 0.435717 1447 1 0.186629 0.625602 0.43509 1449 1 0.247448 0.62901 0.378385 1451 1 0.308507 0.631398 0.439178 1419 1 0.311397 0.498411 0.437599 1417 1 0.251134 0.501798 0.375492 1577 1 0.24666 0.627078 0.49871 1422 1 0.434259 0.557784 0.380499 1424 1 0.373555 0.567412 0.438724 1453 1 0.37501 0.625264 0.373987 1455 1 0.442317 0.623719 0.43861 1421 1 0.374756 0.499314 0.380669 1423 1 0.430332 0.502344 0.442804 1553 1 0.496178 0.498815 0.501788 1549 1 0.36803 0.501668 0.501125 1429 1 0.623617 0.497788 0.378152 1557 1 0.62676 0.495816 0.501108 1425 1 0.499107 0.49616 0.378162 1457 1 0.498278 0.624243 0.376976 1428 1 0.497711 0.559892 0.439178 1427 1 0.56122 0.498751 0.440359 1426 1 0.557338 0.558968 0.377978 1432 1 0.620071 0.563231 0.440543 1459 1 0.556383 0.62326 0.438599 1461 1 0.622671 0.6208 0.379734 1554 1 0.558464 0.562737 0.507838 1431 1 0.680089 0.500732 0.438312 1430 1 0.683521 0.557488 0.378686 1434 1 0.81082 0.563171 0.380443 1436 1 0.743071 0.55734 0.440463 1463 1 0.687979 0.623142 0.439708 1465 1 0.748095 0.6246 0.380643 1467 1 0.81252 0.626725 0.438836 1435 1 0.812829 0.497358 0.438226 1433 1 0.749444 0.499563 0.377736 1437 1 0.875479 0.494135 0.374861 1441 1 0.995792 0.623959 0.376805 1412 1 1.00095 0.565663 0.439692 1438 1 0.934337 0.560083 0.373079 1440 1 0.875077 0.562411 0.438819 1469 1 0.870267 0.622715 0.375535 1471 1 0.9355 0.62373 0.441426 1597 1 0.875643 0.624009 0.501152 1566 1 0.937521 0.565089 0.504738 1537 1 1.00382 0.501609 0.498253 1473 1 -0.00619461 0.754559 0.371352 1476 1 -0.00397614 0.812296 0.434117 1442 1 0.0582536 0.688596 0.370227 1448 1 0.126499 0.688408 0.438319 1474 1 0.059468 0.814814 0.373878 1475 1 0.0619154 0.750083 0.436074 1477 1 0.118945 0.749504 0.372724 1480 1 0.12285 0.805906 0.433623 1446 1 0.189975 0.690416 0.372607 1450 1 0.313086 0.68815 0.374147 1452 1 0.245921 0.688012 0.440097 1478 1 0.190505 0.810368 0.37399 1479 1 0.183071 0.747905 0.436048 1481 1 0.249385 0.749013 0.374098 1482 1 0.311515 0.811656 0.371747 1483 1 0.310436 0.751968 0.432529 1484 1 0.24713 0.808932 0.437977 1609 1 0.244752 0.749662 0.500221 1574 1 0.187661 0.686533 0.497155 1606 1 0.183024 0.81284 0.499789 1454 1 0.442846 0.689612 0.376505 1456 1 0.374127 0.690183 0.432328 1485 1 0.379436 0.751932 0.370296 1486 1 0.4429 0.813333 0.372198 1487 1 0.436971 0.749751 0.435958 1488 1 0.374063 0.811825 0.435307 1489 1 0.499152 0.74889 0.379294 1492 1 0.498022 0.811512 0.439269 1460 1 0.501022 0.686115 0.43967 1458 1 0.565146 0.683508 0.375613 1464 1 0.627653 0.687441 0.437237 1496 1 0.626719 0.814426 0.436862 1490 1 0.561202 0.811122 0.376684 1493 1 0.6253 0.743437 0.377797 1491 1 0.564408 0.7497 0.440348 1617 1 0.501445 0.747417 0.502688 1500 1 0.752568 0.808641 0.442834 1499 1 0.814936 0.752082 0.443952 1498 1 0.815053 0.812495 0.377536 1497 1 0.750784 0.749238 0.38266 1495 1 0.68897 0.745283 0.439656 1494 1 0.687813 0.809673 0.379552 1468 1 0.745574 0.684893 0.441786 1466 1 0.809446 0.686456 0.3764 1462 1 0.68959 0.686201 0.373584 1594 1 0.814758 0.687607 0.5043 1590 1 0.683329 0.686954 0.501654 1625 1 0.748085 0.74865 0.501112 1504 1 0.878845 0.810692 0.439936 1501 1 0.873327 0.74636 0.377976 1503 1 0.936579 0.747807 0.432266 1444 1 1.00188 0.689783 0.436363 1502 1 0.936646 0.815979 0.377402 1472 1 0.874596 0.686514 0.44033 1470 1 0.936123 0.679515 0.379573 1629 1 0.877919 0.748123 0.50281 1506 1 0.0658654 0.934715 0.373587 1507 1 0.0631884 0.871075 0.434261 1509 1 0.124938 0.871393 0.372582 1512 1 0.123673 0.934944 0.432658 387 1 0.0665805 1.00235 0.440953 1637 1 0.125062 0.86902 0.498622 1634 1 0.0710543 0.938214 0.498159 393 1 0.246858 0.999932 0.371625 1641 1 0.248039 0.866275 0.502671 1510 1 0.18544 0.935332 0.376218 1511 1 0.185108 0.869847 0.436907 1513 1 0.250949 0.872207 0.369409 1514 1 0.309403 0.938462 0.372122 1515 1 0.305877 0.872325 0.432681 1516 1 0.246514 0.93263 0.434093 395 1 0.306981 0.998494 0.436855 1638 1 0.185038 0.934054 0.506132 1521 1 0.500812 0.878231 0.377029 1517 1 0.372289 0.870661 0.375988 1520 1 0.37224 0.934428 0.433646 1646 1 0.433728 0.934285 0.493883 1519 1 0.435435 0.87005 0.4384 1518 1 0.437145 0.936786 0.379273 529 1 0.494204 0.996024 0.502725 397 1 0.373407 0.999908 0.376325 403 1 0.566703 1.00095 0.435952 1650 1 0.560731 0.936178 0.502615 1528 1 0.629256 0.939129 0.439872 1525 1 0.623058 0.879896 0.375935 1522 1 0.564032 0.938361 0.376589 1523 1 0.565444 0.879738 0.438724 1524 1 0.503355 0.939234 0.440281 405 1 0.627859 0.997894 0.377269 407 1 0.69177 0.99932 0.439155 1658 1 0.818728 0.938189 0.504595 1532 1 0.75398 0.938707 0.437365 1531 1 0.814018 0.869048 0.440745 1530 1 0.81292 0.938949 0.376968 1529 1 0.750211 0.872893 0.38034 1527 1 0.687987 0.875465 0.441874 1526 1 0.688264 0.936704 0.376051 1657 1 0.755495 0.877298 0.501249 537 1 0.757376 0.996634 0.502728 541 1 0.879431 0.999241 0.503091 415 1 0.942008 1.00045 0.442302 1536 1 0.873869 0.935242 0.441613 1535 1 0.936572 0.87829 0.438 1534 1 0.935015 0.942427 0.376684 1533 1 0.86987 0.875968 0.378148 1508 1 1.00764 0.943997 0.435063 1505 1 0.996451 0.878071 0.376661 1544 1 0.124524 0.562483 0.563977 1571 1 0.061179 0.627578 0.564701 1666 1 0.0628287 0.562357 0.618668 1701 1 0.123321 0.628244 0.620727 1697 1 -0.00126051 0.621228 0.62465 1539 1 0.0603 0.498487 0.563234 1669 1 0.124708 0.50205 0.627101 1548 1 0.250145 0.560231 0.563937 1575 1 0.186103 0.627467 0.565866 1579 1 0.30786 0.624927 0.558432 1670 1 0.185618 0.561742 0.627872 1674 1 0.309941 0.556634 0.625236 1705 1 0.250907 0.625249 0.625263 1543 1 0.188541 0.502474 0.560757 1673 1 0.245299 0.500464 0.625115 1547 1 0.312589 0.500949 0.566292 1542 1 0.188142 0.560299 0.501645 1546 1 0.313437 0.563242 0.497568 1552 1 0.370439 0.568978 0.561841 1583 1 0.439577 0.629533 0.562795 1678 1 0.434002 0.561802 0.62997 1709 1 0.368959 0.622704 0.626259 1713 1 0.496261 0.626932 0.626803 1551 1 0.429499 0.500095 0.563179 1556 1 0.497539 0.561924 0.564685 1677 1 0.375098 0.497659 0.627025 1585 1 0.499113 0.627315 0.50674 1550 1 0.438186 0.564367 0.504 1581 1 0.376087 0.626915 0.497156 1681 1 0.495753 0.497684 0.624654 1560 1 0.623391 0.561194 0.566953 1587 1 0.563096 0.623325 0.568458 1682 1 0.557756 0.558006 0.625088 1717 1 0.623364 0.619615 0.629666 1685 1 0.623371 0.499576 0.622319 1589 1 0.621425 0.624511 0.499964 1555 1 0.560026 0.494259 0.566081 1564 1 0.747934 0.567503 0.565124 1591 1 0.683009 0.624397 0.561896 1595 1 0.811467 0.621841 0.562609 1686 1 0.688238 0.563034 0.627005 1690 1 0.811533 0.559776 0.626564 1721 1 0.750466 0.624413 0.62435 1562 1 0.812185 0.558205 0.501216 1593 1 0.748323 0.623224 0.499774 1558 1 0.685322 0.56166 0.502068 1540 1 0.995048 0.561459 0.563828 1568 1 0.876424 0.564236 0.56552 1599 1 0.938355 0.629376 0.563188 1694 1 0.937124 0.565113 0.625899 1725 1 0.872388 0.621682 0.625688 1569 1 1.00297 0.629973 0.500908 1567 1 0.933617 0.497906 0.562592 1693 1 0.871256 0.497752 0.621549 1601 1 -0.00356291 0.74771 0.50102 1576 1 0.122425 0.689942 0.556973 1603 1 0.0585795 0.75099 0.564244 1608 1 0.120893 0.80867 0.565161 1698 1 0.0626639 0.68745 0.624637 1730 1 0.0620889 0.807268 0.624265 1733 1 0.126401 0.742838 0.625785 1604 1 -0.00226387 0.809232 0.563954 1570 1 0.0609069 0.68785 0.499525 1605 1 0.121402 0.750044 0.497842 1602 1 0.0617084 0.809366 0.498299 1580 1 0.250777 0.687858 0.558887 1607 1 0.184729 0.744942 0.559591 1611 1 0.31039 0.751551 0.556327 1612 1 0.249021 0.810989 0.571827 1702 1 0.192778 0.688004 0.624233 1706 1 0.31142 0.688182 0.62396 1734 1 0.184861 0.804933 0.624427 1737 1 0.251164 0.745681 0.626486 1738 1 0.313658 0.810213 0.623457 1578 1 0.314455 0.689034 0.498474 1610 1 0.313161 0.809162 0.493641 1584 1 0.373915 0.687666 0.561796 1615 1 0.437661 0.751099 0.563161 1616 1 0.370991 0.810182 0.556291 1710 1 0.436748 0.69032 0.629642 1741 1 0.37741 0.753095 0.625054 1742 1 0.44092 0.813449 0.623692 1588 1 0.504321 0.68866 0.567942 1613 1 0.376169 0.747625 0.494242 1582 1 0.4408 0.685837 0.502014 1614 1 0.437149 0.808857 0.498522 1618 1 0.55972 0.813108 0.501594 1745 1 0.505082 0.749006 0.625066 1620 1 0.499568 0.81343 0.563472 1592 1 0.623918 0.685093 0.560993 1619 1 0.566366 0.750492 0.562069 1624 1 0.626268 0.813782 0.561074 1714 1 0.564096 0.688449 0.626178 1746 1 0.56673 0.819043 0.631331 1749 1 0.627355 0.756135 0.627834 1621 1 0.625736 0.752152 0.501327 1586 1 0.563272 0.689305 0.501814 1596 1 0.746181 0.688308 0.563771 1623 1 0.687335 0.74965 0.565558 1627 1 0.820694 0.747036 0.564761 1628 1 0.747949 0.815142 0.558635 1718 1 0.686686 0.688203 0.626122 1722 1 0.815501 0.68698 0.62679 1750 1 0.689738 0.817169 0.626261 1753 1 0.748563 0.755003 0.623837 1754 1 0.814962 0.813207 0.625546 1626 1 0.815762 0.810508 0.503358 1622 1 0.686153 0.812586 0.499846 1729 1 0.993941 0.747909 0.625967 1572 1 0.99881 0.69219 0.564959 1600 1 0.874342 0.685073 0.565398 1631 1 0.935637 0.749851 0.565181 1632 1 0.879639 0.81288 0.563616 1726 1 0.934986 0.685485 0.625387 1757 1 0.875678 0.7518 0.625184 1758 1 0.937928 0.814838 0.625598 1598 1 0.942708 0.688172 0.499893 1630 1 0.943158 0.814651 0.496709 1635 1 0.0608511 0.87054 0.563456 1640 1 0.122917 0.9307 0.563731 1762 1 0.0668024 0.937279 0.626538 1765 1 0.127304 0.8698 0.626523 1761 1 0.00258007 0.874968 0.627346 645 1 0.128821 0.996504 0.620939 523 1 0.318159 0.996145 0.561036 1639 1 0.184821 0.872388 0.565154 1643 1 0.311556 0.872408 0.561031 1644 1 0.250646 0.932896 0.562544 1766 1 0.186803 0.936363 0.620539 1769 1 0.249092 0.875964 0.62645 1770 1 0.314742 0.932485 0.62147 1642 1 0.308733 0.933528 0.496366 1647 1 0.42923 0.872211 0.559265 1648 1 0.371787 0.934805 0.556144 1773 1 0.373232 0.871779 0.621985 1774 1 0.437518 0.936236 0.622543 1652 1 0.500554 0.932442 0.557107 527 1 0.430387 0.99786 0.56099 525 1 0.370184 0.996667 0.493275 653 1 0.374384 0.999065 0.625035 1645 1 0.369937 0.872841 0.498953 1777 1 0.500098 0.878116 0.624883 1651 1 0.566455 0.871093 0.562198 1656 1 0.624308 0.938834 0.559477 1778 1 0.560616 0.936604 0.626737 1781 1 0.626061 0.877739 0.624296 1649 1 0.497956 0.873245 0.498338 1653 1 0.627436 0.872425 0.499799 657 1 0.497205 0.99412 0.623217 531 1 0.561967 1.00269 0.559711 661 1 0.620509 0.998069 0.625347 1655 1 0.688077 0.871986 0.562727 1659 1 0.8183 0.874652 0.563065 1660 1 0.753383 0.934856 0.562743 1782 1 0.69493 0.933909 0.625152 1785 1 0.755081 0.8743 0.626065 1786 1 0.813853 0.936788 0.626904 535 1 0.687891 0.996237 0.564877 1654 1 0.695161 0.939746 0.501213 1636 1 1.00171 0.933059 0.558829 1663 1 0.938523 0.874144 0.557832 1664 1 0.879535 0.934149 0.563173 1789 1 0.872768 0.875763 0.627863 1790 1 0.934702 0.93445 0.621862 543 1 0.944419 0.998439 0.561337 1662 1 0.942259 0.936698 0.498191 1661 1 0.875969 0.870498 0.500245 1633 1 1.00491 0.875904 0.495794 1672 1 0.125414 0.566719 0.685108 1699 1 0.058264 0.626924 0.687101 1794 1 0.0620067 0.565565 0.748834 1800 1 0.120161 0.56166 0.815018 1827 1 0.0601022 0.62877 0.813692 1829 1 0.126383 0.624762 0.751001 1668 1 -6.4041e-05 0.56153 0.68834 1799 1 0.187228 0.504835 0.81527 1803 1 0.308631 0.500148 0.817843 1676 1 0.252247 0.560225 0.687096 1703 1 0.190265 0.623157 0.688448 1707 1 0.309737 0.627313 0.689596 1798 1 0.188231 0.568689 0.747006 1802 1 0.313452 0.564547 0.753563 1804 1 0.251511 0.563337 0.813029 1831 1 0.190054 0.622102 0.810302 1833 1 0.253438 0.623627 0.753112 1835 1 0.312897 0.628575 0.815208 1801 1 0.248107 0.507609 0.755241 1671 1 0.186436 0.502394 0.690109 1675 1 0.311033 0.501169 0.692619 1679 1 0.434072 0.497629 0.691472 1680 1 0.37279 0.56046 0.690631 1711 1 0.431907 0.624015 0.691396 1806 1 0.4377 0.567741 0.753441 1808 1 0.366095 0.558932 0.818474 1837 1 0.375444 0.624484 0.754422 1839 1 0.434977 0.617924 0.816247 1812 1 0.502242 0.56128 0.812217 1805 1 0.370907 0.498507 0.752145 1683 1 0.552946 0.495324 0.685343 1811 1 0.560984 0.497936 0.818557 1684 1 0.493136 0.562237 0.688917 1841 1 0.498636 0.627075 0.751991 1688 1 0.624892 0.553491 0.687961 1715 1 0.563403 0.616582 0.691858 1810 1 0.565375 0.559437 0.753138 1816 1 0.622014 0.559465 0.815327 1843 1 0.568705 0.621539 0.807283 1845 1 0.627494 0.623202 0.748694 1815 1 0.686574 0.501393 0.816232 1819 1 0.813707 0.497814 0.811836 1692 1 0.7484 0.559034 0.689767 1719 1 0.685871 0.619526 0.686733 1723 1 0.808862 0.626249 0.684081 1814 1 0.68564 0.55721 0.751825 1818 1 0.815504 0.559676 0.748844 1820 1 0.752914 0.556075 0.812548 1847 1 0.690361 0.623874 0.814478 1849 1 0.747536 0.620757 0.752315 1851 1 0.812772 0.62585 0.811118 1691 1 0.815647 0.496841 0.687458 1695 1 0.932111 0.500655 0.685057 1796 1 0.99957 0.564847 0.81245 1825 1 0.998923 0.621497 0.749584 1696 1 0.87093 0.562358 0.686429 1727 1 0.936263 0.626924 0.685916 1822 1 0.937033 0.563437 0.749719 1824 1 0.873225 0.559657 0.813541 1853 1 0.868475 0.627767 0.747954 1855 1 0.935425 0.622717 0.811837 1704 1 0.126985 0.686932 0.688515 1731 1 0.0612601 0.751891 0.688371 1736 1 0.124857 0.806953 0.686108 1826 1 0.0581737 0.687537 0.749027 1832 1 0.122228 0.685856 0.811899 1858 1 0.0681777 0.811371 0.753421 1859 1 0.0628431 0.744528 0.808874 1861 1 0.126981 0.747103 0.750464 1864 1 0.123551 0.810968 0.813681 1732 1 0.00306482 0.810867 0.687605 1700 1 0.00226074 0.688038 0.683685 1708 1 0.249368 0.684915 0.693167 1735 1 0.187192 0.749003 0.686671 1739 1 0.318882 0.749655 0.689205 1740 1 0.249996 0.813697 0.684686 1830 1 0.190743 0.688676 0.751379 1834 1 0.314531 0.687523 0.751147 1836 1 0.250734 0.685108 0.808672 1862 1 0.182254 0.812759 0.74813 1863 1 0.191491 0.756427 0.811511 1865 1 0.25455 0.753018 0.748547 1866 1 0.314911 0.815223 0.75074 1867 1 0.317251 0.747834 0.810458 1868 1 0.253224 0.808476 0.814695 1712 1 0.375967 0.685622 0.691277 1743 1 0.435934 0.74471 0.689508 1744 1 0.375549 0.813046 0.686018 1838 1 0.440758 0.685232 0.753718 1840 1 0.375379 0.688961 0.81212 1869 1 0.379351 0.752855 0.74987 1870 1 0.438396 0.816416 0.75215 1871 1 0.440228 0.74846 0.813319 1872 1 0.378485 0.814975 0.813003 1873 1 0.502173 0.749684 0.748753 1748 1 0.500887 0.808138 0.687989 1844 1 0.501698 0.685657 0.809481 1716 1 0.503041 0.689659 0.688266 1876 1 0.502642 0.810739 0.812283 1720 1 0.629583 0.68769 0.685444 1747 1 0.562716 0.750157 0.686561 1752 1 0.623987 0.812686 0.693199 1842 1 0.567593 0.686831 0.748175 1848 1 0.626427 0.688187 0.815236 1874 1 0.558643 0.812821 0.746579 1875 1 0.563598 0.746422 0.813216 1877 1 0.62953 0.747174 0.749161 1880 1 0.631375 0.811156 0.814105 1724 1 0.751223 0.69078 0.682666 1751 1 0.692428 0.752172 0.688673 1755 1 0.816022 0.752012 0.687181 1756 1 0.757411 0.819201 0.690825 1846 1 0.692172 0.682701 0.748385 1850 1 0.81001 0.692579 0.749866 1852 1 0.75193 0.688318 0.810995 1878 1 0.69231 0.813464 0.749974 1879 1 0.695278 0.74929 0.813492 1881 1 0.756361 0.755238 0.750374 1882 1 0.813911 0.817161 0.75449 1883 1 0.812188 0.749252 0.817013 1884 1 0.750002 0.812684 0.817078 1857 1 0.998535 0.753842 0.750882 1828 1 0.997246 0.688514 0.811542 1860 1 1.00433 0.813399 0.812402 1728 1 0.871673 0.687184 0.687757 1759 1 0.938954 0.752037 0.687483 1760 1 0.878676 0.812033 0.685198 1854 1 0.936642 0.68843 0.751685 1856 1 0.869728 0.683523 0.811881 1885 1 0.872565 0.752907 0.75299 1886 1 0.93217 0.812987 0.750273 1887 1 0.936734 0.751879 0.8128 1888 1 0.873782 0.817911 0.815157 1763 1 0.0634754 0.873096 0.689934 1768 1 0.126128 0.935142 0.686593 1890 1 0.0615661 0.938733 0.752748 1891 1 0.0628705 0.878071 0.813484 1893 1 0.12571 0.879928 0.751897 1896 1 0.122647 0.940369 0.814012 771 1 0.0640242 1.00329 0.811814 1764 1 0.00153237 0.936104 0.689031 777 1 0.250803 0.997945 0.745164 779 1 0.310196 0.995742 0.813584 647 1 0.191881 0.998584 0.685313 1767 1 0.186535 0.874486 0.687496 1771 1 0.308086 0.874928 0.683563 1772 1 0.249846 0.938299 0.680024 1894 1 0.19241 0.93513 0.749332 1895 1 0.190246 0.871935 0.810216 1897 1 0.252733 0.87421 0.747372 1898 1 0.314804 0.938392 0.744833 1899 1 0.316135 0.873148 0.809754 1900 1 0.252934 0.93145 0.812404 651 1 0.315925 0.996234 0.683195 1775 1 0.440503 0.871218 0.685869 1776 1 0.375446 0.933261 0.684714 1901 1 0.372169 0.875698 0.744168 1902 1 0.435512 0.936232 0.749713 1903 1 0.434594 0.87598 0.807364 1904 1 0.376244 0.936804 0.810766 1908 1 0.496622 0.937632 0.811638 1905 1 0.497599 0.878435 0.750473 655 1 0.433352 0.998217 0.687624 1780 1 0.493519 0.939251 0.685935 1779 1 0.560755 0.875175 0.694238 1784 1 0.619927 0.940583 0.68886 1906 1 0.565673 0.93516 0.752223 1907 1 0.562079 0.873938 0.813633 1909 1 0.628127 0.876462 0.758769 1912 1 0.624702 0.939143 0.816439 1783 1 0.684087 0.875871 0.691242 1787 1 0.819145 0.874472 0.691701 1788 1 0.751237 0.933498 0.68897 1910 1 0.686775 0.940168 0.749141 1911 1 0.690164 0.873899 0.814666 1913 1 0.74643 0.87973 0.7526 1914 1 0.808065 0.940499 0.756084 1915 1 0.814389 0.878354 0.815609 1916 1 0.749132 0.940824 0.81531 667 1 0.811889 0.995273 0.687182 791 1 0.684502 0.999535 0.809857 769 1 1.00059 0.999189 0.745818 1889 1 0.999786 0.87512 0.749377 1892 1 1.00441 0.943218 0.817862 1791 1 0.936646 0.880576 0.688428 1792 1 0.873141 0.940118 0.687684 1917 1 0.878104 0.875306 0.749845 1918 1 0.939727 0.937536 0.74846 1919 1 0.939735 0.877385 0.812917 1920 1 0.8766 0.936852 0.810707 1923 1 0.0633495 0.503677 0.939915 1922 1 0.0599287 0.564179 0.876072 1928 1 0.126741 0.567812 0.940234 1955 1 0.0633589 0.625109 0.937556 1957 1 0.123307 0.627205 0.876878 1927 1 0.188535 0.505484 0.939025 1926 1 0.182095 0.564471 0.87371 1930 1 0.309125 0.56501 0.879403 1932 1 0.247363 0.571303 0.93719 1959 1 0.185511 0.629417 0.933679 1961 1 0.251096 0.625221 0.871914 1963 1 0.309811 0.628545 0.938358 1030 1 0.18793 0.565792 1.00453 1933 1 0.377833 0.494261 0.870393 1935 1 0.435474 0.498305 0.939205 1934 1 0.43605 0.55903 0.875368 1936 1 0.372537 0.55664 0.935198 1965 1 0.369475 0.628633 0.875689 1967 1 0.433724 0.623423 0.934047 1969 1 0.500737 0.616551 0.87399 1042 1 0.566961 0.558028 1.00301 1940 1 0.495626 0.560628 0.93763 1941 1 0.625178 0.499572 0.874604 1938 1 0.561189 0.558706 0.87404 1944 1 0.624176 0.560582 0.937922 1971 1 0.561259 0.622749 0.937224 1973 1 0.626821 0.624939 0.872585 1942 1 0.685624 0.561079 0.87987 1946 1 0.807129 0.559679 0.876253 1948 1 0.751058 0.556264 0.940649 1975 1 0.686998 0.623296 0.938292 1977 1 0.747638 0.621219 0.878902 1979 1 0.806956 0.622285 0.941278 1945 1 0.743002 0.495271 0.879332 1081 1 0.749966 0.625658 1.0019 1046 1 0.689562 0.559343 1.00098 1050 1 0.812801 0.561627 1.00152 1924 1 0.996677 0.559541 0.937998 1953 1 0.997667 0.625732 0.875893 1950 1 0.934436 0.559234 0.875256 1952 1 0.872677 0.562896 0.939738 1981 1 0.869262 0.621569 0.873755 1983 1 0.937036 0.623244 0.936298 1057 1 0.996425 0.62181 0.999928 1921 1 0.998241 0.49883 0.877393 1954 1 0.0586619 0.68932 0.870948 1960 1 0.117864 0.689362 0.939007 1986 1 0.0701323 0.809099 0.87406 1987 1 0.0603019 0.751761 0.935018 1989 1 0.126684 0.749417 0.871437 1992 1 0.123376 0.810947 0.938745 1985 1 0.000939397 0.750742 0.868884 1093 1 0.123846 0.751985 1.00175 1090 1 0.0607636 0.809347 0.996121 1958 1 0.187403 0.688077 0.870398 1962 1 0.313486 0.690779 0.880687 1964 1 0.247218 0.691444 0.939216 1990 1 0.188541 0.811855 0.874341 1991 1 0.183079 0.747802 0.934126 1993 1 0.24836 0.750909 0.874693 1994 1 0.316187 0.811389 0.87234 1995 1 0.309687 0.752355 0.938501 1996 1 0.249786 0.812341 0.93434 1094 1 0.187458 0.813501 0.996986 2000 1 0.373959 0.816132 0.938666 1999 1 0.436403 0.751745 0.932444 1998 1 0.44106 0.810829 0.872891 1997 1 0.376942 0.752898 0.875413 1968 1 0.376256 0.69047 0.937309 1966 1 0.435289 0.685124 0.872899 1101 1 0.376437 0.750975 1.00131 1074 1 0.56183 0.688031 0.996198 1972 1 0.500245 0.685126 0.932948 2004 1 0.498266 0.812878 0.931437 2001 1 0.500315 0.744759 0.87407 1970 1 0.56378 0.686728 0.877633 1976 1 0.625364 0.679056 0.940061 2002 1 0.56569 0.812964 0.870812 2003 1 0.561851 0.752273 0.934877 2005 1 0.626566 0.747206 0.877461 2008 1 0.626765 0.812545 0.939579 1114 1 0.808938 0.811937 1.00153 1974 1 0.691752 0.682837 0.876483 1978 1 0.811713 0.684149 0.87544 1980 1 0.749371 0.686744 0.943569 2006 1 0.692306 0.81568 0.878345 2007 1 0.69138 0.749799 0.935059 2009 1 0.751831 0.749987 0.876396 2010 1 0.808056 0.810632 0.877262 2011 1 0.810014 0.748098 0.935376 2012 1 0.752138 0.810662 0.937152 1113 1 0.752808 0.747767 1.00135 1110 1 0.686928 0.808005 0.999537 1956 1 1.00609 0.682918 0.939527 1988 1 0.998402 0.814881 0.936054 1982 1 0.9345 0.687492 0.874456 1984 1 0.869938 0.687063 0.933339 2013 1 0.873195 0.75101 0.871049 2014 1 0.938203 0.809375 0.877483 2015 1 0.939885 0.747096 0.935924 2016 1 0.877963 0.813328 0.940464 1117 1 0.879088 0.751847 0.996214 2020 1 0.00215452 0.936914 0.93769 5 1 0.125122 1.00205 0.997712 899 1 0.0635391 1.00373 0.938987 901 1 0.131437 0.999504 0.876298 2019 1 0.0647554 0.870937 0.934593 2021 1 0.133851 0.872557 0.874392 2024 1 0.129256 0.93245 0.937777 2018 1 0.0700927 0.941713 0.877855 1122 1 0.0648709 0.939073 0.995932 1125 1 0.122508 0.871721 0.999142 905 1 0.250533 1.00178 0.873774 1130 1 0.318087 0.935974 0.997245 2026 1 0.311749 0.936023 0.878714 2022 1 0.191495 0.937707 0.87791 903 1 0.190814 1.00522 0.937744 2023 1 0.190493 0.870996 0.935393 2028 1 0.254407 0.939059 0.935402 2025 1 0.25252 0.872252 0.87449 2027 1 0.31068 0.872693 0.93788 907 1 0.309791 1.0015 0.934257 9 1 0.250664 1.00031 1.00372 1126 1 0.189113 0.938022 0.998448 1129 1 0.254514 0.874812 0.995883 913 1 0.498061 0.995527 0.879054 2036 1 0.50179 0.936192 0.938402 2032 1 0.380404 0.933519 0.93302 2030 1 0.435701 0.930867 0.873449 2029 1 0.373059 0.875028 0.874388 2031 1 0.440424 0.87259 0.933144 1137 1 0.500973 0.876227 0.994641 2034 1 0.563828 0.936567 0.872947 2035 1 0.565414 0.871238 0.934781 2037 1 0.630469 0.874591 0.875654 2040 1 0.627285 0.937501 0.936952 1141 1 0.629388 0.874193 1.00075 2033 1 0.50219 0.873881 0.875545 923 1 0.809137 1.00209 0.93219 919 1 0.689749 0.999196 0.937977 2044 1 0.754489 0.935105 0.935801 2043 1 0.813442 0.874166 0.936028 2042 1 0.816462 0.936885 0.869612 2041 1 0.751283 0.876397 0.874396 2039 1 0.685696 0.878331 0.93855 2038 1 0.690963 0.938651 0.876527 1142 1 0.688149 0.935746 1.00096 1145 1 0.751152 0.875457 0.997257 2048 1 0.87782 0.942339 0.932018 2047 1 0.940031 0.87244 0.936311 2046 1 0.938897 0.939705 0.873698 2045 1 0.877396 0.87731 0.878955 2017 1 1.0061 0.877027 0.87358 897 1 0.999829 1.00481 0.874971 29 1 0.873759 1.00254 0.996457 1150 1 0.93797 0.936958 0.992786
14ffbcfc6415f4bf0327420712bd59e4b3c160cd
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/coverage-big-1541.py
2810ab83f51df7539b7286b2cc88ea87391ad9a7
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
13,348
py
count:int = 0 count2:int = 0 count3:int = 0 count4:int = 0 count5:int = 0 def foo(s: str) -> int: return len(s) def foo2(s: str, s2: str) -> int: return len(s) def foo3(s: str, s2: str, s3: str) -> int: return len(s) def foo4(s: str, s2: str, s3: str, s4: str) -> int: return len(s) def foo5(s: str, s2: str, s3: str, s4: str, s5: str) -> int: return len(s) class bar(object): p: bool = True def baz(self:"bar", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar2(object): p: bool = True p2: bool = True def baz(self:"bar2", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar2", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar3(object): p: bool = True p2: bool = True p3: bool = True def baz(self:"bar3", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar3", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar3", xx: [int], xx2: [$ID], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar4(object): p: bool = True p2: bool = True p3: bool = True p4: bool = True def baz(self:"bar4", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar4", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar4", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz4(self:"bar4", xx: [int], xx2: [int], xx3: [int], xx4: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar5(object): p: bool = True p2: bool = True p3: bool = True p4: bool = True p5: bool = True def baz(self:"bar5", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar5", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar5", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz4(self:"bar5", xx: [int], xx2: [int], xx3: [int], xx4: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz5(self:"bar5", xx: [int], xx2: [int], xx3: [int], xx4: [int], xx5: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 x5:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 y5:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 def qux5(y: int, y2: int, y3: int, y4: int, y5: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 nonlocal x5 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" print(bar().baz([1,2]))
99d407e913ff467ad42df621f0b9be1d4a91cb8f
7bededcada9271d92f34da6dae7088f3faf61c02
/pypureclient/flashblade/FB_2_2/models/object_store_user.py
511b6638e591a3c91097395f049ed12ee8273e6b
[ "BSD-2-Clause" ]
permissive
PureStorage-OpenConnect/py-pure-client
a5348c6a153f8c809d6e3cf734d95d6946c5f659
7e3c3ec1d639fb004627e94d3d63a6fdc141ae1e
refs/heads/master
2023-09-04T10:59:03.009972
2023-08-25T07:40:41
2023-08-25T07:40:41
160,391,444
18
29
BSD-2-Clause
2023-09-08T09:08:30
2018-12-04T17:02:51
Python
UTF-8
Python
false
false
4,119
py
# coding: utf-8 """ FlashBlade REST API A lightweight client for FlashBlade REST API 2.2, developed by Pure Storage, Inc. (http://www.purestorage.com/). OpenAPI spec version: 2.2 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flashblade.FB_2_2 import models class ObjectStoreUser(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'name': 'str', 'id': 'str', 'access_keys': 'list[FixedReference]', 'account': 'FixedReference', 'created': 'int' } attribute_map = { 'name': 'name', 'id': 'id', 'access_keys': 'access_keys', 'account': 'account', 'created': 'created' } required_args = { } def __init__( self, name=None, # type: str id=None, # type: str access_keys=None, # type: List[models.FixedReference] account=None, # type: models.FixedReference created=None, # type: int ): """ Keyword args: name (str): Name of the object (e.g., a file system or snapshot). id (str): A non-modifiable, globally unique ID chosen by the system. access_keys (list[FixedReference]): References of the user's access keys. account (FixedReference): Reference of the associated account. created (int): Creation timestamp of the object. """ if name is not None: self.name = name if id is not None: self.id = id if access_keys is not None: self.access_keys = access_keys if account is not None: self.account = account if created is not None: self.created = created def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ObjectStoreUser`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): return None else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ObjectStoreUser, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ObjectStoreUser): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
d22c1861f13411c3d3e664e9a8bfcc28701f4a32
add7f191d38538f0ecca582264ee733d8f5d0e99
/tests/strategies/test_strategy.py
74b0acb55b9c834b446c7e4c5445e7dcddad0538
[]
no_license
netfily/simian-wallet
2feab3080adf3cf59882aba9931c70bcb38c2c38
f4b2eb1688411cddd0b6bd703a43f7c7123cc3bf
refs/heads/master
2023-02-11T03:19:07.382213
2021-01-12T20:26:29
2021-01-12T20:26:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,615
py
def test_strategy_from_owner(wallet, do_nothing, empty_strategy, owner): data = do_nothing.nothing.encode_input(0) tx = wallet.execute(do_nothing, empty_strategy, data, {'from': owner}) strategy_value = int(repr(tx.return_value[1]), 16) assert strategy_value == 666 def test_user_cant_use_strategy(wallet, do_nothing, empty_strategy, owner, user): sig = do_nothing.signatures['nothing'] wallet.permit(user, do_nothing, sig, {'from': owner}) data = do_nothing.nothing.encode_input(0) tx = wallet.execute(do_nothing, empty_strategy, data, {'from': user}) strategy_value = tx.return_value[1] assert strategy_value == "0x" def test_permit_user_strategy(wallet, do_nothing, empty_strategy, owner, user, strategy_sig): sig = do_nothing.signatures['nothing'] wallet.permit(user, do_nothing, sig, {'from': owner}) wallet.permit(user, empty_strategy, strategy_sig, {'from': owner}) data = do_nothing.nothing.encode_input(0) tx = wallet.execute(do_nothing, empty_strategy, data, {'from': user}) strategy_value = int(repr(tx.return_value[1]), 16) assert strategy_value == 666 def test_permit_user_all_strategies( wallet, empty_strategy, empty_strategy2, owner, user, all_addr, strategy_sig ): assert wallet.canCall(user, empty_strategy, strategy_sig) is False assert wallet.canCall(user, empty_strategy2, strategy_sig) is False wallet.permit(user, all_addr, strategy_sig, {'from': owner}) assert wallet.canCall(user, empty_strategy, strategy_sig) is True assert wallet.canCall(user, empty_strategy2, strategy_sig) is True
fe0bf6676519e72dbc2a8a07ce3b89292806afe0
2352bc07e12b0256913559cf3485a360569ccd5e
/practice/python-tutorial-master/26cv/data_enhancement/resize_demo.py
e9fc3f21cbde46712f831ed1aa864e567fd482db
[ "Apache-2.0" ]
permissive
Dis-count/Python_practice
166ae563be7f6d99a12bdc0e221c550ef37bd4fd
fa0cae54e853157a1d2d78bf90408c68ce617c1a
refs/heads/master
2022-12-12T03:38:24.091529
2021-12-22T09:51:59
2021-12-22T09:51:59
224,171,833
2
1
null
2022-12-08T05:29:38
2019-11-26T11:07:00
Jupyter Notebook
UTF-8
Python
false
false
955
py
# -*- coding: utf-8 -*- """ @author:XuMing([email protected]) @description: """ import cv2 import os from PIL import Image def display_cv(image_path): img = cv2.imread(image_path) height, width = img.shape[:2] print(height, width) # 缩小图像 size = (200, 200) print(size) shrink = cv2.resize(img, size, interpolation=cv2.INTER_AREA) # 放大图像 fx = 1.6 fy = 1.2 enlarge = cv2.resize(img, (0, 0), fx=fx, fy=fy, interpolation=cv2.INTER_CUBIC) # 显示 cv2.imshow("src", img) cv2.imshow("shrink", shrink) cv2.imshow("enlarge", enlarge) cv2.waitKey(0) def display_pil(image_path): img = Image.open(image_path) # 缩小图像 size = (200, 200) print(size) new_img = img.resize((200, 200), Image.BILINEAR) new_img.show() new_img.save('data/resize_a.png') if __name__ == '__main__': # display_cv('flower.png') display_pil('data/flower.png')
6d375108ec41d11c6aa91b2ff0650d73350efe98
633944f913050debf0764c2a29cf3e88f912670e
/v8/depot_tools/bootstrap-3.8.0b1.chromium.1_bin/python3/lib/python3.8/distutils/command/build_ext.py
4e19404fea4b5556898da5500e5fc862a1e3693f
[ "BSD-3-Clause", "bzip2-1.0.6", "SunPro", "Apache-2.0" ]
permissive
bopopescu/V8-lgtm
0474c2ff39baf754f556ef57619ceae93e7320fd
da307e2f7abfca5fa0e860a809de6cd07fd1b72b
refs/heads/master
2022-02-16T19:10:54.008520
2019-09-25T07:51:13
2019-09-25T07:51:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
81
py
../../../../../.cipd/pkgs/2/_current/lib/python3.8/distutils/command/build_ext.py
982882bc61f19ad91edbfded17ce4f4cf73ba97e
d2e029233e08ea2b7f806728fb6fdb4313992d1d
/Object Orianted Programming In Python/@property.py
f4c9aceb926378d9cdc9dc96b285b0f1c7d11e2f
[]
no_license
pvr30/Python-Tutorial
f0ccc6c6af2346afc656e5f1f98bae69a58bda6d
3c4b968d0e0efbf454fbf9a9f98cd630a288b2d9
refs/heads/master
2023-06-02T10:08:50.891627
2021-06-21T16:36:11
2021-06-21T16:36:11
378,997,069
1
0
null
null
null
null
UTF-8
Python
false
false
987
py
# @property class Student: def __init__(self, name, school): self.name = name self.school = school self.marks = [] @property def average(self): return sum(self.marks) / len(self.marks) vishal = Student("Vishal Parmar","Axar") print(vishal.name) vishal.marks.append(90) vishal.marks.append(80) vishal.marks.append(55) # using @property we can make a method into value or property. # Instead of vishal.average() we can write vishal.average. print(vishal.average) """ You can do that with any method that doesn’t take any arguments. But remember, this method only returns a value calculated from the object’s properties. If you have a method that does things (e.g. save to a database or interact with other things), it can be better to stay with the brackets. Normally: * Brackets: this method does things, performs actions. * No brackets: this is a value (or a value calculated from existing values, in the case of `@property`). """
0a9fa79b93775e749b18b7dc2076725cce8b1a3a
addf291a1a4bad5d823e62422cdda4b73faa7a14
/src/util/convenient_funcs.py
4bbf2b61f62e541d7a99c01d77f3799da01d0cc8
[]
no_license
zhengxxn/AutoEssayScoring_NN
a8504f0ff975568746a8435760bea12bef410b09
faa030fe8fd8cf0612c01d4d7e94e25e76404aeb
refs/heads/master
2022-12-19T11:50:40.651591
2020-09-09T06:41:33
2020-09-09T06:41:33
294,025,273
0
0
null
null
null
null
UTF-8
Python
false
false
4,153
py
import pandas as pd # from sklearn.model_selection import train_test_split import re from pathlib import Path from collections import Counter import pickle import numpy as np def tensor2str(prediction, vocab): str = [] for i in range(0, prediction.size(0)): ch = vocab.itos[prediction[i]] if ch == '<eos>': break else: str.append(ch) return " ".join(str) def convert_xml_to_plaintext(src_file, trg_file): with open(src_file, 'r') as f: with open(trg_file, 'w') as wf: newlines = [] lines = f.readlines() for (i, line) in enumerate(lines): newline = re.sub('<seg id=\"[0-9]+\"> | </seg>', '', line, 2) if '<' not in newline: newlines.append(newline) wf.writelines(newlines) def save_to_tsv(file_path_1, file_path_2, tsv_file_path, domain=None): with open(file_path_1, encoding='utf-8') as f: src = f.read().split('\n')[:-1] with open(file_path_2, encoding='utf-8') as f: trg = f.read().split('\n')[:-1] if domain is not None: raw_data = {'src': [line for line in src], 'trg': [line for line in trg], 'domain': [domain for line in src]} else: raw_data = {'src': [line for line in src], 'trg': [line for line in trg]} df = pd.DataFrame(raw_data) df.to_csv(tsv_file_path, index=False, sep='\t') def new_save_to_tsv(config, tsv_file_path): raw_data = {} for key in config.keys(): file_name = config[key] with open(file_name, encoding='utf-8') as f: lines = f.read().split('\n')[:-1] value = [line for line in lines] raw_data[key] = value df = pd.DataFrame(raw_data) df.to_csv(tsv_file_path, index=False, sep='\t') def get_path_prefix(path): return re.sub('/[^/]+$', '', path, 1) def create_path(path): path = Path(path) path.mkdir(parents=True, exist_ok=True) def de_bpe(str): return re.sub(r'@@ |@@ ?$', '', str) def generate_vocab_counter(file): c = Counter() with open(file, 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: word, freq = line.split(' ') c[word] = int(freq) return c def print_model(model): print(model) for name, param in model.named_parameters(): print(name, param.size()) def combine_sentence_to_segment(sents: list, max_segment_len=400): segments = [] segment = '' for sent in sents: if segment == '': segment = sent elif len(segment.split(' ')) + len(sent.split(' ')) > max_segment_len: segments.append(segment) segment = '' segment = segment + sent else: segment = segment + ' ' + sent segments.append(segment) return segments def get_feature_from_ids(ids, file_name): with open('/home/user_data55/zhengx/project/data/auto_score/train.feature', 'rb') as train_f: train_features = {} train_features = pickle.load(train_f) with open('/home/user_data55/zhengx/project/data/auto_score/dev.feature', 'rb') as dev_f: dev_featues = {} dev_featues = pickle.load(dev_f) features = [] for id in ids: if id in train_features.keys(): features.append(train_features[id]) else: features.append(dev_featues[id]) return features def get_feature_from_test_ids(ids, filename): with open('/home/user_data55/zhengx/project/data/auto_score/test.feature', 'rb') as test_f: test_features = {} test_features = pickle.load(test_f) features = [] for id in ids: if id in test_features.keys(): features.append(test_features[id]) else: features.append(test_features[id]) return features def more_uniform(values): mean = np.average(values) for i, value in enumerate(values): gap = value - mean if 0 < gap < 1: value += 0.5 if 0 > gap > 1: value -= 0.5 values[i] = value return values
16ef4452b53fc204e60807d73a35d1d2f2f6929b
3d9b939c50c8b68bc7110f35a9a5100c7ca163e3
/ColGrid.py
1356826faf275842d8532c7bb90fb8a892eea720
[ "MIT" ]
permissive
mbuckaway/CrossMgr
bbab53e9e858b72b99a9fb239787f8932e50539d
4c64e429eb3215fda1b685c5e684c56f5d0c02cf
refs/heads/master
2020-09-16T00:42:25.100361
2020-01-15T02:24:49
2020-01-15T02:24:49
223,599,605
1
0
MIT
2020-01-08T01:45:22
2019-11-23T14:12:15
Python
UTF-8
Python
false
false
8,941
py
import wx import six import wx.grid as Grid import copy #--------------------------------------------------------------------------- class ColTable( Grid.GridTableBase ): """ A custom wx.Grid Table using user supplied data """ def __init__( self ): """ data is a list, indexed by col, containing a list of row values """ self.attrs = {} # Set of unique cell attributes. self.rightAlign = False self.leftAlignCols = set() self.colRenderer = {} # The base class must be initialized *first* Grid.GridTableBase.__init__(self) # Column-oriented data. # textColour and backgroundColour are store as a dict indexed by (row, col). # Colour is a wx.Colour. self.data = [] self.colnames = [] self.textColour = {} self.backgroundColour = {} def __del__( self ): pass def SetRightAlign( self, ra = True ): self.rightAlign = ra self.attrs = {} def SetLeftAlignCols( self, col, la = True ): if la: self.leftAlignCols.add( col ) else: try: self.leftAlignCols.remove( col ) except KeyError: pass self.attrs = {} def SetColRenderer( self, col, renderer ): self.colRenderer[col] = renderer self.attrs = {} def _adjustDimension( self, grid, current, new, isCol ): if isCol: delmsg, addmsg = Grid.GRIDTABLE_NOTIFY_COLS_DELETED, Grid.GRIDTABLE_NOTIFY_COLS_APPENDED else: delmsg, addmsg = Grid.GRIDTABLE_NOTIFY_ROWS_DELETED, Grid.GRIDTABLE_NOTIFY_ROWS_APPENDED if new < current: msg = Grid.GridTableMessage( self, delmsg, new, current-new ) grid.ProcessTableMessage( msg ) elif new > current: msg = Grid.GridTableMessage( self, addmsg, new-current ) grid.ProcessTableMessage( msg ) def Set( self, grid, data = None, colnames = None, textColour = None, backgroundColour = None ): if colnames is not None: self._adjustDimension( grid, len(self.colnames), len(colnames), True ) self.colnames = list(colnames) if data is not None: current = max( len(c) for c in self.data ) if self.data else 0 new = max( len(c) for c in data ) if data else 0 self._adjustDimension( grid, current, new, False ) self.data = copy.copy(data) if textColour is not None: self.textColour = dict(textColour) if backgroundColour is not None: self.backgroundColour = dict(backgroundColour) self.attrs = {} def SetColumn( self, grid, iCol, colData ): self.data[iCol] = copy.copy(colData) self.UpdateValues( grid ) def SortByColumn( self, iCol, descending = False ): if not self.data: return colLen = len(self.data[0]) if not all(len(colData) == colLen for colData in self.data): raise ValueError( 'Cannot sort with different column lengths' ) allNumeric = True for e in self.data[iCol]: try: i = float(e) except: allNumeric = False break if allNumeric: elementIndex = [(float(e), i) for i, e in enumerate(self.data[iCol])] else: elementIndex = [(e, i) for i, e in enumerate(self.data[iCol])] elementIndex.sort() for c in range(len(self.data)): self.data[c] = [self.data[c][i] for e, i in elementIndex] if descending: self.data[c].reverse() def GetData( self ): return self.data def GetColNames( self ): return self.colnames def isEmpty( self ): return True if not self.data else False def GetNumberCols(self): try: return len(self.colnames) except TypeError: return 0 def GetNumberRows(self): try: return max( len(c) for c in self.data ) except (TypeError, ValueError): return 0 def GetColLabelValue(self, col): try: return self.colnames[col] except (TypeError, IndexError): return '' def GetRowLabelValue(self, row): return six.text_type(row+1) def IsEmptyCell( self, row, col ): try: v = self.data[col][row] return v is None or v == '' except (TypeError, IndexError): return True def GetRawValue(self, row, col): return '' if self.IsEmptyCell(row, col) else self.data[col][row] def GetValue(self, row, col): return six.text_type(self.GetRawValue(row, col)) def SetValue(self, row, col, value): # Nothing to do - everthing is read-only. pass def DeleteCols( self, pos = 0, numCols = 1, updateLabels = True, grid = None ): oldCols = len(self.colnames) if self.colnames else 0 if self.data: del self.data[pos:pos+numCols] if self.colnames: del self.colnames[pos:pos+numCols] posMax = pos + numCols for a in ['textColour', 'backgroundColour']: if not getattr(self, a, None): continue colD = {} for (r, c), colour in six.iteritems(getattr(self, a)): if c < pos: colD[(r, c)] = colour elif posMax <= c: colD[(r, c-numCols)] = colour setattr( self, a, colD ) newCols = len(self.colnames) if self.colnames else 0 self._adjustDimension( grid, oldCols, newCols, True ) self.attrs = {} def GetAttr(self, row, col, someExtraParameter ): hCellAlign = None if col in self.leftAlignCols: hCellAlign = wx.ALIGN_LEFT elif self.rightAlign: hCellAlign = wx.ALIGN_RIGHT rc = (row, col) textColour = self.textColour.get(rc, None) if textColour: textColour = textColour.GetAsString(wx.C2S_HTML_SYNTAX) backgroundColour = self.backgroundColour.get(rc, None) if backgroundColour: backgroundColour = backgroundColour.GetAsString(wx.C2S_HTML_SYNTAX) key = (textColour, backgroundColour, col, hCellAlign) try: attr = self.attrs[key] except KeyError: # Create an attribute for the cache. attr = Grid.GridCellAttr() attr.SetReadOnly( True ) # All cells read-only. if rc in self.textColour: attr.SetTextColour( self.textColour[rc] ) if rc in self.backgroundColour: attr.SetBackgroundColour( self.backgroundColour[rc] ) if hCellAlign is not None: attr.SetAlignment( hAlign=hCellAlign, vAlign=wx.ALIGN_CENTRE ) renderer = self.colRenderer.get(col, None) if renderer: attr.SetRenderer( renderer.Clone() ) self.attrs[key] = attr attr.IncRef() return attr def SetAttr( self, row, col, attr ): pass def SetRowAttr( self, row, attr ): pass def SetColAttr( self, col, attr ) : pass def UpdateAttrRows( self, pos, numRows ) : pass def UpdateAttrCols( self, pos, numCols ) : pass def ResetView(self, grid): """ (Grid) -> Reset the grid view. Call this to redraw the grid. """ self.attrs = {} grid.AdjustScrollbars() grid.ForceRefresh() def UpdateValues(self, grid): """Update all displayed values""" # This sends an event to the grid table to update all of the values msg = Grid.GridTableMessage(self, Grid.GRIDTABLE_REQUEST_VIEW_GET_VALUES) grid.ProcessTableMessage(msg) # -------------------------------------------------------------------- # Sample Grid class ColGrid(Grid.Grid): def __init__(self, parent, data = None, colnames = None, textColour = None, backgroundColour = None, style = 0 ): """parent, data, colnames, plugins=None Initialize a grid using the data defined in data and colnames """ # The base class must be initialized *first* Grid.Grid.__init__(self, parent, style = style) self._table = ColTable() self.SetTable( self._table ) self.Set( data, colnames, textColour, backgroundColour ) self.zoomLevel = 1.0 def Reset( self ): """reset the view based on the data in the table. Call this when rows are added or destroyed""" self._table.ResetView(self) def Set( self, data = None, colnames = None, textColour = None, backgroundColour = None ): self._table.Set( self, data, colnames, textColour, backgroundColour ) def SetColumn( self, iCol, colData ): self._table.SetColumn( self, iCol, colData ) def SetColRenderer( self, col, renderer ): self._table.SetColRenderer( col, renderer ) def GetData( self ): return self._table.GetData() def GetColNames( self ): return self._table.GetColNames() def DeleteCols( self, pos = 0, numCols = 1, updateLabels = True ): self._table.DeleteCols(pos, numCols, updateLabels, self) self.Reset() def Zoom( self, zoomIn = True ): factor = 2 if zoomIn else 0.5 if not 1.0/4.0 <= self.zoomLevel * factor <= 4.0: return self.zoomLevel *= factor font = self.GetDefaultCellFont() font.SetPointSize( int(font.GetPointSize() * factor) ) self.SetDefaultCellFont( font ) font = self.GetLabelFont() font.SetPointSize( int(font.GetPointSize() * factor) ) self.SetLabelFont( font ) self.SetColLabelSize( int(self.GetColLabelSize() * factor) ) self.AutoSize() self.Reset() def SetRightAlign( self, ra = True ): self._table.SetRightAlign( ra ) self.Reset() def SetLeftAlignCols( self, cols ): self._table.leftAlignCols = set() for c in cols: self._table.leftAlignCols.add( c ) self.Reset() def SortByColumn( self, iCol, descending = False ): self._table.SortByColumn( iCol, descending ) self.Refresh() def clearGrid( self ): self.Set( data = [], colnames = [], textColour = {}, backgroundColour = {} ) self.Reset()
516a664d5e69b3e6ccc8b980b298b28226e04d80
aa9297175621fcd499cad5a0373aaad15f33cde8
/udemy-py/practica-clases/mundo_pc/raton.py
526bdec66619a3f912fd0fdfad898366d48d57f1
[]
no_license
eflipe/python-exercises
a64e88affe8f9deb34e8aa29a23a68c25e7ba08a
b7a429f57a5e4c5dda7c77db5721ca66a401d0a3
refs/heads/master
2023-04-26T19:19:28.674350
2022-07-19T20:53:09
2022-07-19T20:53:09
192,589,885
0
0
null
2023-04-21T21:23:14
2019-06-18T18:06:14
HTML
UTF-8
Python
false
false
703
py
from dispositivo_de_entrada import DispositivoEntrada class Raton(DispositivoEntrada): contador_producto = 0 def __init__(self, marca, tipo_entrada): Raton.contador_producto += 1 self._id_producto = Raton.contador_producto super().__init__(marca, tipo_entrada) def __str__(self): return f'\tID raton: {self._id_producto} \ \n\t\t\t\tMarca: {self._marca} \ \n\t\t\t\tTipo de entrada: {self._tipo_entrada}\n' if __name__ == '__main__': # es como una prueba obj_raton1 = Raton(marca='HP', tipo_entrada="USB") obj_raton2 = Raton(marca='Acer', tipo_entrada="Bluetooth") print(obj_raton1) print(obj_raton2)
aee1247903d18ea9a88a475d42322f840a9bcfbd
09cead98874a64d55b9e5c84b369d3523c890442
/py200622_python2/day12_py200730/datatype_2_decimal.py
ab59ad921dea94213327cd36e00e7fdbfcac34c5
[]
no_license
edu-athensoft/stem1401python_student
f12b404d749286036a090e941c0268381ce558f8
baad017d4cef2994855b008a756758d7b5e119ec
refs/heads/master
2021-08-29T15:01:45.875136
2021-08-24T23:03:51
2021-08-24T23:03:51
210,029,080
0
0
null
null
null
null
UTF-8
Python
false
false
1,324
py
""" numbers - decimal Due to this reason, most of the decimal fractions cannot be accurately stored in our computer. """ a = 1.1 + 2.2 # print(a) b = 3.3 # print(b) if a == b: print("a==b") else: print("a!=b") a = 1.1 + 0.1 b = 1.3 - 0.1 if a == b: print("a==b") else: print("a!=b") print() # question # 1.1 + 2.2 == 3.3 print(1.1 + 2.2 == 3.3) print(float(1.1)+float(2.2)==float(3.3)) print() print(1.1) print(2.2) print(3.3) print(1.1+2.2) print() print(1.1+2.2 > 3.3) print(1.1 + 2.2 == 3.3) print(1.1+2.2 < 3.3) print() # other example print("=== example 2 ===") f11 = 1.0 f12 = 0.1 f2 = 0.9 print("f11={}, f12={} and f2={}".format(f11,f12,f2)) print("{}-{} == {} ?".format(f11, f12, (f11-f12 == f2))) print("f11-f12 > f2 ?",f11-f12 > f2) print("f11-f12 < f2 ?",f11-f12 < f2) print() # decimal print("=== example 3 ===") f11 = 1.0 f12 = 0.3 f2 = 0.7 print("f11={}, f12={} and f2={}".format(f11,f12,f2)) print("f11-f12 == f2 ?",f11-f12 == f2) print("f11-f12 > f2 ?",f11-f12 > f2) print("f11-f12 < f2 ?",f11-f12 < f2) print() # faction print("=== example 4 ===") f11 = 1.0 f12 = 0.33 f2 = 0.67 print("f11={}, f12={} and f2={}".format(f11,f12,f2)) print("f11-f12 == f2 ?",f11-f12 == f2) print("f11-f12 > f2 ?",f11-f12 > f2) print("f11-f12 < f2 ?",f11-f12 < f2) print() print(1.0-0.33)
44189b3313b77752f57281d61124938352559d1a
0377a4135f9e8940809a62186b229295bed9e9bc
/201. 数字范围按位与/solution.py
cae779cbe0ac247a557b52a9f0b2723b028eedab
[]
no_license
neko-niko/leetcode
80f54a8ffa799cb026a7f60296de26d59a0826b0
311f19641d890772cc78d5aad9d4162dedfc20a0
refs/heads/master
2021-07-10T10:24:57.284226
2020-09-13T11:28:45
2020-09-13T11:28:45
198,792,951
0
0
null
null
null
null
UTF-8
Python
false
false
135
py
class Solution: def rangeBitwiseAnd(self, m: int, n: int) -> int: while m < n: n = n & (n-1) return n
c23bf011047c5d486f451c689ad1ad9bb5b648e7
060ce17de7b5cdbd5f7064d1fceb4ded17a23649
/fn_mcafee_esm/fn_mcafee_esm/util/config.py
18fc57d089d0070ed18677b9df04b68fd225e8a0
[ "MIT" ]
permissive
ibmresilient/resilient-community-apps
74bbd770062a22801cef585d4415c29cbb4d34e2
6878c78b94eeca407998a41ce8db2cc00f2b6758
refs/heads/main
2023-06-26T20:47:15.059297
2023-06-23T16:33:58
2023-06-23T16:33:58
101,410,006
81
107
MIT
2023-03-29T20:40:31
2017-08-25T14:07:33
Python
UTF-8
Python
false
false
1,020
py
# -*- coding: utf-8 -*- # (c) Copyright IBM Corp. 2010, 2018. All Rights Reserved. """Generate a default configuration-file section for fn_mcafee_esm""" from __future__ import print_function def config_section_data(): """Produce the default configuration section for app.config, when called by `resilient-circuits config [-c|-u]` """ config_data = u"""[fn_mcafee_esm] # url example: https://127.0.0.1 esm_url=<your_esm_url> esm_username=<your_esm_username> esm_password=<your_esm_password> # If your ESM server uses a cert which is not automatically trusted by your machine, set verify_cert=False. verify_cert=[True|False] ## ESM Polling settings # How often polling should happen. Value is in seconds. To disable polling, set this to zero. esm_polling_interval=0 #incident_template=<location_of_template_file> # If not set uses default template. # Optional settings for access to McAfee ESM via a proxy. #http_proxy=http://proxy:80 #https_proxy=http://proxy:80 """ return config_data