blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
44be92edbd4686e354ce691569964fad2a11f50e
b54ba6923597138d744c890c21f09ceb768ea0ac
/Python 8 to 9AM/BasicExamples/Demo11.py
eb5a3414b5d2f196b98720855020d0c7a65b179c
[]
no_license
ashokreddy7013/python
ad3893e598a827bf520a97ed63e7441ce5ebea62
e9032166ad32001e5fc89903b62d419d6d68b6d0
refs/heads/master
2020-05-01T08:54:19.106039
2019-03-24T08:19:18
2019-03-24T08:19:18
171,410,344
0
0
null
null
null
null
UTF-8
Python
false
false
89
py
class Employee: def __init__(self): print("I am Default Const") Employee()
dc757c59fdf8ee93aa9bf252e1823c13c8c21ba9
9bd82e484b3d32c4059ef57dec70e64bced8dde7
/OTB/OTB/pipelines.py
693eeb3a38760be718dbda4b5478b7a5cebc9419
[ "MIT" ]
permissive
houzw/knowledge-base-data
8a4df88558edcc5fcc25bac82788c6eb96119854
60771e8bf300227e1a26c9e77f56b09d23acd64a
refs/heads/master
2021-06-02T02:28:09.624790
2020-10-21T07:02:26
2020-10-21T07:02:26
148,170,033
0
1
null
null
null
null
UTF-8
Python
false
false
284
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html class OtbPipeline(object): def process_item(self, item, spider): return item
e16b8c9808ebc38687cf672a338a6f901cd42936
9f1039075cc611198a988034429afed6ec6d7408
/tensorflow-stubs/contrib/framework/python/framework/checkpoint_utils.pyi
e6e501dad7d3fcdf5bcb59bd42acdb9afc2b5d9c
[]
no_license
matangover/tensorflow-stubs
9422fbb1cb3a3638958d621461291c315f9c6ec2
664bd995ef24f05ba2b3867d979d23ee845cb652
refs/heads/master
2020-05-23T12:03:40.996675
2019-05-15T06:21:43
2019-05-15T06:21:43
186,748,093
0
0
null
null
null
null
UTF-8
Python
false
false
650
pyi
# Stubs for tensorflow.contrib.framework.python.framework.checkpoint_utils (Python 3) # # NOTE: This dynamically typed stub was automatically generated by stubgen. from tensorflow.python.ops import io_ops as io_ops, state_ops as state_ops, variables as variables from tensorflow.python.platform import gfile as gfile from tensorflow.python.training import checkpoint_management as checkpoint_management from typing import Any as Any def load_checkpoint(filepattern: Any): ... def load_variable(checkpoint_dir: Any, name: Any): ... def list_variables(checkpoint_dir: Any): ... def init_from_checkpoint(checkpoint_dir: Any, assignment_map: Any): ...
0478b50dada5ebde6ba5cc4ed593631ad0a7f72d
00ee6a3c859362bbc20342c568a27ea2a493e427
/src/x007007007/djapp/raspberry/net/models/__init__.py
df1ebdbcd68a29e15c124791e2bb900e5e47a5bf
[ "MIT" ]
permissive
x007007007/raspberrypi
7721b1fde2763fd28db579ca65217b81ee2193ae
9dfe49666c029b8bb617830a5c5a873a6106d853
refs/heads/master
2022-10-04T04:51:29.974216
2022-10-03T16:36:00
2022-10-03T16:36:00
56,951,270
0
0
null
null
null
null
UTF-8
Python
false
false
19
py
from .. import hook
22a0ca8e1e08f8516eb0a7d34b276c7390c35474
c15a28ae62eb94dbf3ed13e2065195e572a9988e
/Cook book/src/8/lazily_computed_attributes/example1.py
a872f26e188323bd9e96e4b786016ffff9d9d6d8
[]
no_license
xuyuchends1/python
10798c92840a1a59d50f5dc5738b2881e65f7865
545d950a3d2fee799902658e8133e3692939496b
refs/heads/master
2021-01-25T07:07:04.812140
2020-02-28T09:25:15
2020-02-28T09:25:15
93,647,064
0
0
null
null
null
null
UTF-8
Python
false
false
704
py
class lazyproperty: def __init__(self, func): self.func = func def __get__(self, instance, cls): if instance is None: return self else: value = self.func(instance) setattr(instance, self.func.__name__, value) return value if __name__ == '__main__': import math class Circle: def __init__(self, radius): self.radius = radius @lazyproperty def area(self): print('Computing area') return math.pi * self.radius ** 2 @lazyproperty def perimeter(self): print('Computing perimeter') return 2 * math.pi * self.radius
66ba6597d61378a91d5ee82df352bcc2eba93876
d8d95b609a103454b408634bc3a61e4c1fb72dd6
/6주차/my_SIFT for student.py
d29df1b53fb430f6b303991b82775340a443ecd1
[]
no_license
sglee487/ComputerGraphics
b7d8cb26a93c91bcfa8515807dce5b09a5bf4384
5468b807d98589fda5c9effc64740f1963d7550b
refs/heads/master
2020-07-31T10:03:54.900052
2020-04-04T08:07:01
2020-04-04T08:07:01
210,547,794
0
0
null
null
null
null
UTF-8
Python
false
false
9,154
py
import cv2 import numpy as np def get_extrema(DoG, ext): for i in range(1, 4): for j in range(1, DoG.shape[0]-1): for k in range(1, DoG.shape[1]-1): # 최대값 혹은 최소값인 지점을 extrema로 구해주세요. DoG1localMax = np.max(DoG[j-1:j+2,k-1:k+2,i-1]) DoG1localMin = np.min(DoG[j-1:j+2,k-1:k+2,i-1]) DoG2localMax = np.max(DoG[j-1:j+2,k-1:k+2,i]) DoG2localMin = np.min(DoG[j-1:j+2,k-1:k+2,i]) DoG3localMax = np.max(DoG[j-1:j+2,k-1:k+2,i+1]) DoG3localMin = np.min(DoG[j-1:j+2,k-1:k+2,i+1]) allLocalMax = max(DoG1localMax,DoG2localMax,DoG3localMax) allLocalMin = min(DoG1localMin,DoG2localMin,DoG3localMin) if ((allLocalMax == DoG[j][k][i]) or (allLocalMin == DoG[j][k][i])): # xhat과 D(xhat)을 구하기 위한 미분을 수행해주세요. dDdx = (DoG[j,k+1,i]-DoG[j,k-1,i])/2 dDdy = (DoG[j+1,k,i]-DoG[j-1,k,i])/2 dDds = (DoG[j,k,i+1]-DoG[j,k,i-1])/2 d2Ddx2 = DoG[j,k+1,i] - DoG[j,k-1,i] + 2 * DoG[j,k,i] d2Ddy2 = DoG[j+1, k , i] - DoG[j-1, k, i] + 2 * DoG[j, k, i] d2Dds2 = DoG[j, k , i+1] - DoG[j, k , i-1] + 2 * DoG[j, k, i] d2Ddxy = (((DoG[j+1,k+1,i]) - DoG[j+1,k-1,i])-((DoG[j-1,k+1,i]-DoG[j-1,k-1,i])))/4 d2Ddxs = (((DoG[j, k + 1, i+1]) - DoG[j, k - 1, i+1]) - ( (DoG[j, k + 1, i-1] - DoG[j, k - 1, i-1]))) / 4 d2Ddys = (((DoG[j + 1, k, i+1]) - DoG[j + 1, k, i-1]) - ( (DoG[j - 1, k, i+1] - DoG[j - 1, k, i-1]))) / 4 H = [[d2Ddx2,d2Ddxy,d2Ddxs],[d2Ddxy,d2Ddy2,d2Ddxy],[d2Ddxs,d2Ddys,d2Dds2]] dD = np.transpose([dDdx,dDdy,dDds]) xhat = np.linalg.lstsq(np.dot(-1,H), dD, rcond=-1)[0] target = DoG[j,k,i] Dxhat = target + 0.5 * np.dot(dD.transpose(), xhat) # Thresholding을 수행해주세요. ( 적절한 위치만 ext 배열에 저장해주세요, ) if(np.abs(Dxhat) < thresh or np.min(np.abs(xhat)) > 0.5): continue Hpart = np.array([[d2Ddx2,d2Ddxy],[d2Ddxy,d2Ddy2]]) traceHpartsquare = np.trace(Hpart) ** 2 detHpart = np.linalg.det(Hpart) rc = ((r + 1) ** 2)/r if (detHpart<0 or (traceHpartsquare/detHpart) > rc): continue ext[j,k,i-1] = 1 return ext def SIFT(src, thresh, r): s = 1.3 #초기 sigma a = 3. #극점을 찾을 이미지 수 k = 2. ** (1/a) # scale step lv1sigma = np.array([s , s * k, s * (k**2), s * (k**3), s * (k**4), s * (k**5)]) #double image에 적용될 sigma. lv2sigma = np.array([s * (k**3) , s * (k**4), s * (k**5), s * (k**6), s * (k**7), s * (k**8) ]) #Original size image #start : 2 * sigma lv3sigma = np.array([s * (k**6) , s * (k**7), s * (k**8), s * (k**9), s * (k**10), s * (k**11) ]) #half size image #start : 4 * sigma lv4sigma = np.array([s * (k**9) , s * (k**10), s * (k**11), s * (k**12), s * (k**13), s * (k**14) ]) #quater size image #start : 8 * sigma #image resize doubled = cv2.resize(src,None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR) #원본의 2배로 이미지를 resize 해주세요. cv2.INTER_LINEAR, cv2.INTER_NEAREST 자유롭게 사용. normal = src #원본과 동일 half = cv2.resize(src,None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR) #가로 세로 각각 1/2 quarter = cv2.resize(src,None,fx=0.25,fy=0.25,interpolation=cv2.INTER_LINEAR) #가로 세로 각각 1/4 # Gaussian 피라미드 저장할 3차원 배열 lv1py = np.zeros((doubled.shape[0], doubled.shape[1], 6)) lv2py = np.zeros((normal.shape[0], normal.shape[1], 6)) lv3py = np.zeros((half.shape[0], half.shape[1], 6)) lv4py = np.zeros((quarter.shape[0], quarter.shape[1], 6)) print('make gaussian pyr') # Gaussian을 계산 # ksize = 2 * int(4 * sigma + 0.5) + 1 for i in range(6): #Gaussian Pyramids를 만들어주세요. #예제에서는 한 Level(Octave)에 6개의 Gaussian Image가 저장됩니다. ksize = 2 * int(4 * lv1sigma[i] + 0.5) + 1 lv1py[:,:,i] = cv2.GaussianBlur(doubled, (ksize, ksize), lv1sigma[i]) ksize = 2 * int(4 * lv2sigma[i] + 0.5) + 1 lv2py[:,:,i] = cv2.GaussianBlur(normal,(ksize,ksize),lv2sigma[i]) ksize = 2 * int(4 * lv3sigma[i] + 0.5) + 1 lv3py[:,:,i] = cv2.GaussianBlur(half,(ksize,ksize),lv3sigma[i]) ksize = 2 * int(4 * lv4sigma[i] + 0.5) + 1 lv4py[:,:,i] = cv2.GaussianBlur(quarter,(ksize,ksize),lv4sigma[i]) #DoG 피라미드를 저장할 3차원 배열 DoGlv1 = np.zeros((doubled.shape[0], doubled.shape[1], 5)) DoGlv2 = np.zeros((normal.shape[0], normal.shape[1], 5)) DoGlv3 = np.zeros((half.shape[0], half.shape[1], 5)) DoGlv4 = np.zeros((quarter.shape[0], quarter.shape[1], 5)) print('calc DoG') # DoG를 계산 for i in range(5): #Difference of Gaussian Image pyramids 를 구해주세요. DoGlv1[:,:,i] = cv2.subtract(lv1py[:,:,i],lv1py[:,:,i+1]) DoGlv2[:,:,i] = cv2.subtract(lv2py[:,:,i],lv2py[:,:,i+1]) DoGlv3[:,:,i] = cv2.subtract(lv3py[:,:,i],lv3py[:,:,i+1]) DoGlv4[:,:,i] = cv2.subtract(lv4py[:,:,i],lv4py[:,:,i+1]) # 극값의 위치를 표시할 3차원 배열 extPy1 = np.zeros((doubled.shape[0], doubled.shape[1], 3)) extPy2 = np.zeros((normal.shape[0], normal.shape[1], 3)) extPy3 = np.zeros((half.shape[0], half.shape[1], 3)) extPy4 = np.zeros((quarter.shape[0], quarter.shape[1], 3)) # Extrema의 위치 계산 print('find extrema') extPy1 = get_extrema(DoGlv1, extPy1) extPy2 = get_extrema(DoGlv2, extPy2) extPy3 = get_extrema(DoGlv3, extPy3) extPy4 = get_extrema(DoGlv4, extPy4) extr_sum = extPy1.sum() + extPy2.sum() + extPy3.sum() + extPy4.sum() extr_sum = extr_sum.astype(np.int) keypoints = np.zeros((extr_sum, 3)) # 원래는 3가지의 정보가 들어가나 과제에선 Y좌표, X 좌표, scale 세 가지의 값만 저장한다. #값 저장 count = 0 #keypoints 수를 Count for i in range(3): for j in range(doubled.shape[0]): for k in range(doubled.shape[1]): #Lv1 #Keypoints 배열에 Keypoint의 정보를 저장하세요. 함수로 만들어서 수행하셔도 됩니다. if (extPy1[j,k,i] == 1): keypoints[count,0] = j * 0.5 keypoints[count,1] = k * 0.5 keypoints[count,2] = i count += 1 for i in range(3): for j in range(normal.shape[0]): for k in range(normal.shape[1]): #Lv2 #Keypoints 배열에 Keypoint의 정보를 저장하세요. if (extPy2[j,k,i] == 1): keypoints[count,0] = j keypoints[count,1] = k keypoints[count,2] = i count += 1 for i in range(3): for j in range(half.shape[0]): for k in range(half.shape[1]): #Lv3 #Keypoints 배열에 Keypoint의 정보를 저장하세요. if (extPy3[j,k,i] == 1): keypoints[count,0] = j * 2 keypoints[count,1] = k * 2 keypoints[count,2] = i count += 1 for i in range(3): for j in range(quarter.shape[0]): for k in range(quarter.shape[1]): #Lv4 #Keypoints 배열에 Keypoint의 정보를 저장하세요. if (extPy4[j,k,i] == 1): keypoints[count,0] = j * 4 keypoints[count,1] = k * 4 keypoints[count,2] = i count += 1 return keypoints if __name__ == '__main__': src = cv2.imread('./building.jpg') gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) gray = gray.astype(np.double) gray /= 255. thresh = 0.03 r = 10. #원 논문에서 값을 10으로 사용 keypoints = SIFT(gray, thresh = thresh, r = r) for i in range(len(keypoints)): cv2.circle(src, (int(keypoints[i,1]), int(keypoints[i,0])), int(1 * keypoints[i,2]), (0, 0, 255), 1) # 해당 위치에 원을 그려주는 함수 src2 = cv2.imread('./building_temp.jpg') gray2 = cv2.cvtColor(src2, cv2.COLOR_BGR2GRAY) gray2 = gray2.astype(np.double) / 255. keypoints2 = SIFT(gray2, thresh=thresh, r=r) for i in range(len(keypoints2)): cv2.circle(src2, (int(keypoints2[i,1]), int(keypoints2[i,0])), int(1 * keypoints2[i,2]), (0, 0, 255), 1) # 해당 위치에 원을 그려주는 함수 cv2.imshow('src', src) cv2.imshow('src2', src2) cv2.waitKey() cv2.destroyAllWindows()
f1fae0f924c00a9486c0b986eec4af374aa7f501
ea83e60e2be606813005081a9f1b9516de018c7d
/language/realm/retrieval.py
7962c9d8ad6fdb8180adf7d556fcee0ec5c34d37
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
optimopium/language
1562a1f150cf4374cf8d2e6a0b7ab4a44c5b8961
bcc90d312aa355f507ed128e39b7f6ea4b709537
refs/heads/master
2022-04-03T03:51:28.831387
2022-03-16T21:41:17
2022-03-16T22:50:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,555
py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Utilities for performing retrieval.""" import abc from concurrent import futures import time from absl import logging from language.realm import featurization from language.realm import parallel from language.realm import profile import numpy as np import tensorflow.compat.v1 as tf import tensorflow_hub as hub class Retriever(abc.ABC): """Retrieves documents for a query.""" @abc.abstractmethod def retrieve(self, query_batch): """Retrieves candidates for a batch of queries. Args: query_batch (list[Query]): a list of queries. Returns: a batch of lists, where each list is a list of Documents for the corresponding query. """ raise NotImplementedError() class DummyRetriever(Retriever): """Dummy retriever for testing.""" def __init__(self, num_neighbors): self._num_neighbors = num_neighbors self.total_candidates = 13353718 self.embed_dim = 128 with tf.device('/CPU:0'): self._doc_embeds = tf.zeros((self.total_candidates, self.embed_dim)) def retrieve(self, query_batch): # [batch_size, embed_dim] query_embeds = tf.zeros((len(query_batch), self.embed_dim)) with tf.device('/CPU:0'): # [batch_size, total_candidates] cand_scores = tf.matmul(query_embeds, self._doc_embeds, transpose_b=True) _, top_ids_batch = tf.math.top_k(cand_scores, k=self._num_neighbors) title_ids = np.zeros(10, dtype=np.int32) body_ids = np.zeros(280, dtype=np.int32) retrievals_batch = [] for top_ids in top_ids_batch: retrievals = [ featurization.Document(0, title_ids, body_ids) for i in top_ids ] retrievals_batch.append(retrievals) return retrievals_batch class BruteForceRetriever(Retriever): """Retrieves documents using brute force matrix multiplication.""" def __init__(self, query_embedder, documents, doc_embeds_or_path, num_neighbors): """Constructs BruteForceRetriever. Args: query_embedder: an instance of QueryEmbedder. documents: a list of Document objects. doc_embeds_or_path: either a [num_docs, embed_dim] TF Tensor, or a path to load it. num_neighbors: number of neighbors to retrieve. """ total_candidates = len(documents) self._query_embedder = query_embedder self._num_neighbors = num_neighbors self._documents = documents # Load embeddings. if isinstance(doc_embeds_or_path, str): with tf.device('/CPU:0'): ckpt_reader = tf.train.load_checkpoint(doc_embeds_or_path) self._doc_embeds = ckpt_reader.get_tensor('block_emb') else: self._doc_embeds = doc_embeds_or_path logging.info('Loaded document embeddings.') # Check shapes. if self._doc_embeds.shape[0] != total_candidates: raise ValueError('Did not load the right number of embeddings.') @profile.profiled_function def retrieve(self, query_batch): # [batch_size, embed_dim] query_embeds = self._query_embedder.embed(query_batch) with tf.device('/CPU:0'): # [batch_size, total_candidates] cand_scores = tf.matmul(query_embeds, self._doc_embeds, transpose_b=True) _, top_ids_batch = tf.math.top_k(cand_scores, k=self._num_neighbors) retrievals_batch = [] for top_ids in top_ids_batch: retrievals = [self._documents[i] for i in top_ids] retrievals_batch.append(retrievals) return retrievals_batch def count_tf_records(file_path): """Counts the number of records in a GZIP'd TFRecord file.""" gzip_option = tf.python_io.TFRecordOptions( tf.python_io.TFRecordCompressionType.GZIP) count = 0 for _ in tf.python_io.tf_record_iterator(file_path, gzip_option): count += 1 return count def count_tf_records_parallel_helper(args): """Just a helper function for count_tf_records_parallel.""" file_idx, file_path = args return (file_idx, count_tf_records(file_path)) def count_tf_records_parallel(file_paths, num_processes=None): """Counts number of records in TFRecord files in parallel. Args: file_paths: a list of paths, where each path points to a GZIP-ed TFRecord file. num_processes: number of Python processes to use in parallel. If None, will use all available CPUs. Returns: shard_sizes: a list of ints. """ num_files = len(file_paths) with parallel.Executor( create_worker=lambda: count_tf_records_parallel_helper, queue_size=num_files, num_workers=num_processes) as executor: for file_idx, file_path in enumerate(file_paths): executor.submit((file_idx, file_path)) counts = [None] * num_files results = executor.results(max_to_yield=num_files) for i, (file_idx, count) in enumerate(results): counts[file_idx] = count logging.info('Counted %d / %d files.', i + 1, num_files) return counts def load_documents(path): """Loads Documents from a GZIP-ed TFRecords file into a Python list.""" gzip_option = tf.python_io.TFRecordOptions( tf.python_io.TFRecordCompressionType.GZIP) def get_bytes_feature(ex, name): return list(ex.features.feature[name].bytes_list.value) def get_ints_feature(ex, name): # 32-bit Numpy arrays are more memory-efficient than Python lists. return np.array(ex.features.feature[name].int64_list.value, dtype=np.int32) docs = [] for val in tf.python_io.tf_record_iterator(path, gzip_option): ex = tf.train.Example.FromString(val) title = get_bytes_feature(ex, 'title')[0] body = get_bytes_feature(ex, 'body')[0] doc_uid = featurization.get_document_uid(title, body) title_token_ids = get_ints_feature(ex, 'title_token_ids') body_token_ids = get_ints_feature(ex, 'body_token_ids') doc = featurization.Document( uid=doc_uid, title_token_ids=title_token_ids, body_token_ids=body_token_ids) docs.append(doc) return docs def load_documents_from_shard(args): """A helper function for load_documents_from_shards.""" shard_idx, shard_path = args docs = load_documents(shard_path) return (shard_idx, docs) @profile.profiled_function def load_documents_from_shards(shard_paths, num_processes=None): """Loads Documents from a sharded, GZIP-ed TFRecords file into a Python list. Uses multiple processes to perform IO in parallel. Args: shard_paths: a list of paths, where each path points to a GZIP-ed TFRecords file. Documents loaded from each shard will be concatenated in the order of shard_paths. num_processes: number of Python processes to use in parallel. If None, will use all available CPUs. Returns: a list of Document instances. """ num_shards = len(shard_paths) with parallel.Executor( create_worker=lambda: load_documents_from_shard, queue_size=num_shards, num_workers=num_processes) as executor: for shard_idx, shard_path in enumerate(shard_paths): executor.submit((shard_idx, shard_path)) results = [] for shard_idx, docs in executor.results(max_to_yield=num_shards): results.append((shard_idx, docs)) logging.info('Loaded %d of %d document shards.', len(results), num_shards) # Sorts results by shard_idx. results.sort() logging.info('Combining data from all document shards.') all_docs = [] for shard_idx, docs in results: all_docs.extend(docs) logging.info('Finished loading all shards.') return all_docs class QueryEmbedder(object): """Embeds queries.""" def __init__(self, embedder_model_or_path, featurizer): if isinstance(embedder_model_or_path, str): # Assume it is a path to a SavedModel self._model = tf.saved_model.load_v2(embedder_model_or_path, tags={}) else: # Assume it is an already loaded SavedModel self._model = embedder_model_or_path logging.info('Loaded query embedder.') self._featurizer = featurizer def embed(self, query_batch): """Embeds a batch of queries. Args: query_batch: a list of Query instances. Returns: embeds: a [batch_size, embed_dim] float Tensor. """ with profile.Timer('embed_featurize'): feature_dicts = [self._featurizer.featurize_query(q) for q in query_batch] # Concatenate features into a single dict with the following structure: # input_ids: [batch_size, seq_len] <int32> # input_mask: [batch_size, seq_len] <int32> # segment_ids: [batch_size, seq_len] <int32> model_inputs = featurization.batch_feature_dicts(feature_dicts) with profile.Timer('embed_tf'): return self._model.signatures['projected'](**model_inputs)['default'] class DocumentEmbedder(object): """Embeds documents using TF Estimator. Note: this only works with the REALM Hub modules. An ICT Hub module won't work because it has a different set of signatures. """ def __init__(self, hub_module_spec, featurizer, use_tpu, run_config=None): """Constructs the DocumentEmbedder.""" if run_config is None: if use_tpu: raise ValueError('Must supply a RunConfig if use_tpu.') else: run_config = tf.estimator.tpu.RunConfig() # Just supply a default. self._hub_module_spec = hub_module_spec self._featurizer = featurizer self._use_tpu = use_tpu self._run_config = run_config self._log_interval = 10 # When embedding, log every 10 seconds. def embed(self, get_documents_dataset, total_docs, batch_size): """Embeds a Dataset of documents using Estimator. Args: get_documents_dataset: a function that returns a TF Dataset, where each element is a dict with attributes described below. total_docs: total number of documents in the Dataset. batch_size: number of documents to embed in each batch. Each element in the Dataset returned by get_documents_dataset should be a dict with the attributes described below. get_documents_dataset should return a Dataset over dicts, each containing at least the following attributes: - title_token_ids: a 1-D int Tensor. - body_token_ids: a 1-D int Tensor. Yields: a [embed_dim] Numpy array, one for each document. """ if total_docs < 1: raise ValueError('Must embed at least 1 document.') # These hyperparams are passed to Estimator. params = { 'vocab_path': self._featurizer.tokenizer.vocab_path, 'do_lower_case': self._featurizer.tokenizer.do_lower_case, 'query_seq_len': self._featurizer.query_seq_len, 'candidate_seq_len': self._featurizer.candidate_seq_len, 'num_candidates': self._featurizer.num_candidates, 'max_masks': self._featurizer.max_masks, 'separate_candidate_segments': self._featurizer.separate_candidate_segments, } def input_fn(params): """Constructs the dataset fed to Estimator.""" # We cannot access self._featurizer via closure, because this function is # passed to another device. Hence, we need to reconstruct the featurizer # from its hyerparameters (passed through `params`). tokenizer = featurization.Tokenizer( vocab_path=params['vocab_path'], do_lower_case=params['do_lower_case']) featurizer = featurization.Featurizer( query_seq_len=params['query_seq_len'], candidate_seq_len=params['candidate_seq_len'], num_candidates=params['num_candidates'], max_masks=params['max_masks'], tokenizer=tokenizer, separate_candidate_segments=params['separate_candidate_segments']) dataset = get_documents_dataset() def featurize(doc_dict): return featurizer.featurize_document_tf(doc_dict['title_token_ids'], doc_dict['body_token_ids']) dataset = dataset.map( featurize, num_parallel_calls=tf.data.experimental.AUTOTUNE) # Add a document index variable. dataset = dataset.enumerate() def _enumerate_to_dict(result_idx, tensor_dict): return dict(tensor_dict, result_idx=result_idx) dataset = dataset.map( _enumerate_to_dict, num_parallel_calls=tf.data.experimental.AUTOTUNE) # Pad the end of the dataset with one full extra batch. # This ensures that we don't drop the remainder. if total_docs % batch_size != 0: # Pad using the first value of the dataset, repeated batch_size times. pad_vals = dataset.take(1).repeat(batch_size) dataset = dataset.concatenate(pad_vals) # Batch the dataset. dataset = dataset.batch(batch_size, drop_remainder=True) dataset = dataset.prefetch(2) # Prefetch for efficiency. return dataset def model_fn(features, labels, mode, params): """Constructs the model used by Estimator.""" del labels, params embedder_module = hub.Module( spec=self._hub_module_spec, name='embedder', trainable=False) # Remove the result_idx before feeding features to the module. result_idx = features.pop('result_idx') # [batch_size, embed_dim] embeds = embedder_module(inputs=features, signature='projected') return tf.estimator.tpu.TPUEstimatorSpec( mode=mode, predictions={ 'embeds': embeds, 'result_idx': result_idx }) estimator = tf.estimator.tpu.TPUEstimator( use_tpu=self._use_tpu, model_fn=model_fn, model_dir=None, # Don't persist model. config=self._run_config, params=params, train_batch_size=batch_size, predict_batch_size=batch_size) logging.info('Embedding %d documents total.', total_docs) predictions = estimator.predict( input_fn=input_fn, yield_single_examples=True) for result in yield_predictions_from_estimator( predictions, total=total_docs, log_interval=self._log_interval): yield result['embeds'] def yield_predictions_from_estimator(predictions, total, log_interval=10): """Yields predictions from Estimator.predict, with added error correction. This function handles the case of Estimator.predict occasionally restarting, causing results to be yielded out of order. Args: predictions: the return value of Estimator.predict. An iterable of dicts. Each dict MUST have a 'result_idx' attribute, used to track result order. total (int): total expected number of elements to yield from predictions. log_interval: log every this many seconds. Yields: the same dicts yielded from Estimator.predict, but in the right order. The result_idx element is removed from every dict. """ predictions_iter = iter(predictions) total_yielded = 0 start_time = time.time() last_log_timestamp = time.time() while total_yielded < total: try: result = next(predictions_iter) except StopIteration: raise ValueError( 'Estimator.predict terminated before we got all results.') result_idx = result.pop('result_idx') if result_idx == total_yielded: # If results are always emitted from Estimator.predict in the same # order that they were fed into the Estimator, then we should always # expect result_idx to equal total_yielded. However, this does not always # happen, so we handle that in the `else` case below. yield result total_yielded += 1 # Log progress. current_time = time.time() if current_time - last_log_timestamp > log_interval: total_time = current_time - start_time log_msg = 'Yielded {} results in {:.2f} secs.'.format( total_yielded, total_time) logging.info(log_msg) last_log_timestamp = current_time else: # If results start to arrive out of order, something has gone wrong. if result_idx < total_yielded: # This can happen if the TPU worker dies, causing Estimator.predict to # restart from the beginning. In this case, we just don't yield # anything on this step. Instead, we keep pulling things from the # iterator until we are back to where we were. if result_idx == 0: logging.warning('TPU worker seems to have restarted.') elif result_idx > total_yielded: # Something has gone really wrong. raise ValueError('Estimator.predict has somehow missed a result.') def embed_documents_using_multiple_tpu_workers( shard_paths, shard_sizes, hub_module_spec, featurizer, tpu_workers, batch_size, num_tpu_cores_per_worker): """Embeds documents using multiple TPU workers. Args: shard_paths: a list of file paths, each specifying a GZIP'd TFRecord file containing documents stored as TF Examples. Doc embeddings will be concatenated in the order of shard_paths. shard_sizes: a list parallel to shard_paths, specifying the number of documents in each shard. hub_module_spec: path to the Hub module that will be used to embed the documents. featurizer: a Featurizer used to convert documents into Tensor features. tpu_workers: list of addresses of available TPU workers. batch_size: each TPU worker embeds documents in batches of this size. num_tpu_cores_per_worker: number of cores to use on each TPU worker. Returns: a [total_docs, embed_dim] Numpy array. """ num_shards = len(shard_paths) num_tpu_workers = len(tpu_workers) tpu_config = tf.estimator.tpu.TPUConfig( iterations_per_loop=1, # This seems to be ignored by predict(). num_shards=num_tpu_cores_per_worker) # Distribute the data shards as evenly as possible among the workers. num_shards_per_worker = [num_shards // num_tpu_workers] * num_tpu_workers for worker_idx in range(num_shards % num_tpu_workers): num_shards_per_worker[worker_idx] += 1 worker_kwargs = [] shards_assigned = 0 for k, num_shards_k in enumerate(num_shards_per_worker): worker_kwargs.append({ 'tpu_run_config': tf.estimator.tpu.RunConfig( master=tpu_workers[k], tpu_config=tpu_config), 'shard_paths': shard_paths[shards_assigned:shards_assigned + num_shards_k], 'shard_sizes': shard_sizes[shards_assigned:shards_assigned + num_shards_k], 'hub_module_spec': hub_module_spec, 'featurizer': featurizer, 'batch_size': batch_size, }) shards_assigned += num_shards_k # All shards should be assigned. assert shards_assigned == num_shards # Run all workers in parallel via separate threads. with futures.ThreadPoolExecutor(max_workers=num_tpu_workers) as executor: # A list of [num_docs_per_worker, embed_dim] Numpy arrays. embeds_list = list( executor.map(lambda kwargs: embed_documents(**kwargs), worker_kwargs)) # A [total_docs, embed_dim] Numpy array. embeds = np.concatenate(embeds_list, axis=0) return embeds def embed_documents( shard_paths, shard_sizes, hub_module_spec, featurizer, batch_size, tpu_run_config = None): """Embeds documents either locally (CPU/GPU) or with a TPU worker. Note: TPUEstimator.predict currently requires the TPU worker to have a single "host" (a machine running TensorFlow that is physically connected to the TPU chips). This is not true for all TPU topologies -- some have multiple hosts. Args: shard_paths: a list of file paths, each specifying a GZIP'd TFRecord file containing documents stored as TF Examples. Doc embeddings will be concatenated in the order of shard_paths. shard_sizes: a list parallel to shard_paths, specifying the number of documents in each shard. hub_module_spec: path to the Hub module that will be used to embed the documents. featurizer: a Featurizer used to convert documents into Tensor features. batch_size: embed documents in batches of this size. tpu_run_config: configures the TPU worker. If None, run on CPU/GPU. Returns: a [total_docs, embed_dim] Numpy array. """ embedder = DocumentEmbedder( hub_module_spec=hub_module_spec, featurizer=featurizer, use_tpu=(tpu_run_config is not None), run_config=tpu_run_config) def parse_tf_example(serialized): # FixedLenSequenceFeature requires allow_missing to be True, even though we # can't actually handle those cases. feature_spec = { 'title': tf.FixedLenSequenceFeature([], tf.string, allow_missing=True), 'text': tf.FixedLenSequenceFeature([], tf.string, allow_missing=True), 'title_token_ids': tf.FixedLenSequenceFeature([], tf.int64, allow_missing=True), 'body_token_ids': tf.FixedLenSequenceFeature([], tf.int64, allow_missing=True), } features = tf.parse_single_example(serialized, feature_spec) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(features.keys()): tensor = features[name] if tensor.dtype == tf.int64: tensor = tf.cast(tensor, tf.int32) features[name] = tensor return features def get_documents_dataset(): # Note: num_parallel_reads should be None to guarantee that shard_paths # are visited sequentially, not in parallel. dataset = tf.data.TFRecordDataset( shard_paths, compression_type='GZIP', buffer_size=8 * 1024 * 1024, num_parallel_reads=None) return dataset.map( parse_tf_example, num_parallel_calls=tf.data.experimental.AUTOTUNE) embeds = embedder.embed( get_documents_dataset=get_documents_dataset, total_docs=sum(shard_sizes), batch_size=batch_size) # A list of [embed_dim] Numpy arrays. embeds_list = list(embeds) # A [total_docs, embed_dim] Numpy array. return np.stack(embeds_list, axis=0)
82303825a36ae127081f7c965f2fa948b36e6fcc
d7ae8db44b31de83eabaf0e286b1452d4ada24ff
/IoT_Domain_Analyst_ECE_3502/Lab_3/Linear_Regression.py
524229a56949837e42e249dd6a58236604882ea0
[ "CC0-1.0" ]
permissive
eshan5/VIT-Labs
ae4c6719b86fb5e2f30e0f5a023171597cf33d42
5a20b9571a10b4550b886d588969592e595dac1d
refs/heads/main
2023-08-24T06:50:23.888426
2021-10-09T10:18:32
2021-10-09T10:18:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
798
py
import numpy as np from sklearn.linear_model import LinearRegression x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1)) y = np.array([5, 20, 14, 32, 22, 38]) print(x) print(y) model = LinearRegression().fit(x, y) r_sq = model.score(x, y) print('coefficient of determination:', r_sq) print('intercept:', model.intercept_) print('slope:', model.coef_) """new_model = LinearRegression().fit(x, y.reshape((-1, 1))) print('intercept:', new_model.intercept_) print('slope:', new_model.coef_) y_pred = model.predict(x) print('predicted response:', y_pred, sep='\n') y_pred = model.intercept_ + model.coef_ * x print('predicted response:', y_pred, sep='\n') x_new = np.arange(5).reshape((-1, 1)) print(" First few points of the line :") print(x_new) y_new = model.predict(x_new) print(y_new)"""
1882e6bd42af8f728c9d7796b25c44164b46c8a0
d2915ef6ee9c1ea01f47d3468bba8e320a8f5914
/design_patterns/behavioural/template_method.py
b4d81ca7739be92fcbe5d17b1a54a35d7cf159d6
[]
no_license
asing177/python_basics
a269adbaf166fb760d2692874601528ef230bbbd
48ce7d5d6356edbd9bc21f8ebb55ec95787d4340
refs/heads/main
2023-01-11T12:11:44.155102
2020-11-13T07:24:54
2020-11-13T07:24:54
300,806,395
0
0
null
null
null
null
UTF-8
Python
false
false
3,123
py
from test_abc import ABC, abstractmethod class AbstractClass(ABC): """ The Abstract Class defines a template method that contains a skeleton of some algorithm, composed of calls to (usually) abstract primitive operations. Concrete subclasses should implement these operations, but leave the template method itself intact. """ def template_method(self) -> None: """ The template method defines the skeleton of an algorithm. """ self.base_operation1() self.required_operations1() self.base_operation2() self.hook1() self.required_operations2() self.base_operation3() self.hook2() # These operations already have implementations. def base_operation1(self) -> None: print("AbstractClass says: I am doing the bulk of the work") def base_operation2(self) -> None: print("AbstractClass says: But I let subclasses override some operations") def base_operation3(self) -> None: print("AbstractClass says: But I am doing the bulk of the work anyway") # These operations have to be implemented in subclasses. @abstractmethod def required_operations1(self) -> None: pass @abstractmethod def required_operations2(self) -> None: pass # These are "hooks." Subclasses may override them, but it's not mandatory # since the hooks already have default (but empty) implementation. Hooks # provide additional extension points in some crucial places of the # algorithm. def hook1(self) -> None: pass def hook2(self) -> None: pass class ConcreteClass1(AbstractClass): """ Concrete classes have to implement all abstract operations of the base class. They can also override some operations with a default implementation. """ def required_operations1(self) -> None: print("ConcreteClass1 says: Implemented Operation1") def required_operations2(self) -> None: print("ConcreteClass1 says: Implemented Operation2") class ConcreteClass2(AbstractClass): """ Usually, concrete classes override only a fraction of base class' operations. """ def required_operations1(self) -> None: print("ConcreteClass2 says: Implemented Operation1") def required_operations2(self) -> None: print("ConcreteClass2 says: Implemented Operation2") def hook1(self) -> None: print("ConcreteClass2 says: Overridden Hook1") def client_code(abstract_class: AbstractClass) -> None: """ The client code calls the template method to execute the algorithm. Client code does not have to know the concrete class of an object it works with, as long as it works with objects through the interface of their base class. """ # ... abstract_class.template_method() # ... if __name__ == "__main__": print("Same client code can work with different subclasses:") client_code(ConcreteClass1()) print("") print("Same client code can work with different subclasses:") client_code(ConcreteClass2())
1d4a7962f047e1507edd5b010afde2fc751120b8
e400d4a141f35bc4240293253048535f1e737d4e
/src/03_IPhreeqcPy/02_phreeqc_mixing_CSH.py
0ef9294bb86ad1f2be65ad009b6c572debf6e331
[]
no_license
annavarzina/carbonation
94416935f92cdfb1874c61407c8d1909178bd6c9
030b222f000d79538e9890fb9047d57ced7bad2d
refs/heads/master
2021-06-23T07:33:20.147869
2021-03-02T13:29:34
2021-03-02T13:29:34
193,922,887
0
1
null
null
null
null
UTF-8
Python
false
false
3,356
py
import numpy as np import matplotlib.pylab as plt from mixing import PhreeqcMixing from kinetics import PhreeqcKinetics class PhreeqcMixingCSH(PhreeqcMixing): def __init__(self, n, fraction, csh, database): self.phase = csh['name'] self.csh = csh self.steps = n self.fraction = fraction self.database = database self.phrqc_input = [] self.selected_output = [] self.phrqc_string = '' self.simulation_time = 0 def generate_phrqc_string(self): self.phases() self.solution_1() self.solution_2() for i in np.arange(0, self.steps): self.mix_2() self.selected_output_1() self.user_punch() self.mix_3() self.phrqc_string = '\n'.join(self.phrqc_input) def phases(self): phrqc_input = [] # CSH stochiometry s = self.csh['stochiometry'] h = s['H+'] h2o = s['H2O'] + s['H+'] - s['Ca'] sign1 = '+' if h < 0: sign1 = '-' h *= -1 sign2 = '+' if h2o < 0: sign2 = '-' h2o *= -1 # input phrqc_input.append('PHASES') phrqc_input.append(self.phase) phrqc_input.append('\t(CaO)' + str(s['Ca']) +'(SiO2)'+ str(s['Si']) + \ '(H2O)' + str(s['H2O']) + ' ' + sign1 + ' ' + str(h) + 'H+ = ' + \ str(s['Ca']) + 'Ca+2 + ' + str(s['Si']) + 'SiO2 ' + sign2 +\ ' ' + str(h2o) + ' H2O') #phrqc_input.append('\t-Vm\t' + str(csh['vm']) ) phrqc_input.append('\t-log_K\t' + str(self.csh['log_k']) + '\n') self.phrqc_input += phrqc_input def user_punch(self): phrqc_input = [] phrqc_input.append('USER_PUNCH') phrqc_input.append('\t-headings\tCa\t' + self.phase) phrqc_input.append('\t-start') phrqc_input.append('\t10\tpunch\ttot("Ca")') phrqc_input.append('\t15\tpunch\ttot("Si")') phrqc_input.append('\t20\tpunch\ttot("' + self.phase + '")') phrqc_input.append('\t30\tpunch') phrqc_input.append('\t-end') phrqc_input.append('END') self.phrqc_input += phrqc_input #%% PARAMETERS database = 'C:\Anaconda2\lib\site-packages\databases\cemdata18.dat' csh = {'name':'CSH', 'stochiometry':{'Ca':1.67, 'Si':1.0, 'H2O':4.34, 'H+':3.34}, 'log_k':29.133,} n = 400000 # time should be ~10 minutes krate = 10**(-8.0) #1e-7 s = 800#scale factor fraction = krate * s print('Kinetic rate = ' + str(krate)) print('Mixing fraction = ' + str(fraction)) #%% RUN pm = PhreeqcMixingCSH(n, fraction, csh, database) pm.run_phreeqc() print('Mixing fraction simulation time = ' + str(pm.simulation_time)) #%% PLOT h = 1 t = range(1, n+1) t = [i/3600. for i in t] ca_m = [] si_m = [] for i in range(len(pm.selected_output)): if pm.selected_output[i][0]==3: ca_m.append(pm.selected_output[i][1]) si_m.append(pm.selected_output[i][2]) plt.figure() plt.plot(t, ca_m, label = "mix") plt.xlabel('time (h)') plt.ylabel('Ca (mol/l)') plt.legend() plt.figure() plt.plot(t, si_m, label = "mix") plt.xlabel('time (h)') plt.ylabel('Si (mol/l)') plt.legend() plt.show()
913e406199d7adf3fcacb33850752f52a57881fa
69e5f24fa12346f892b1c907e802286045b3641f
/train.py
c17b2ccaaaaae82b11f58306d9b719d7f6098609
[]
no_license
hope-yao/failed_adversarial_training
0cf9d05333767756134db1eb8ea2424ace8449c9
be87e05b59aaeecec9001c1d6ae69afcf9382c1d
refs/heads/master
2020-04-01T19:04:32.433080
2018-10-17T22:39:48
2018-10-17T22:39:48
153,532,414
0
0
null
null
null
null
UTF-8
Python
false
false
5,181
py
"""Trains a model, saving checkpoints and tensorboard summaries along the way.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import json import os import shutil from timeit import default_timer as timer import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data from model import Model from pgd_attack import LinfPGDAttack with open('config.json') as config_file: config = json.load(config_file) # Setting up training parameters tf.set_random_seed(config['random_seed']) max_num_training_steps = config['max_num_training_steps'] num_output_steps = config['num_output_steps'] num_summary_steps = config['num_summary_steps'] num_checkpoint_steps = config['num_checkpoint_steps'] batch_size = config['training_batch_size'] # Setting up the data and the model mnist = input_data.read_data_sets('MNIST_data', one_hot=False) global_step = tf.contrib.framework.get_or_create_global_step() model = Model() # Setting up the optimizer train_step = tf.train.AdamOptimizer(1e-4).minimize(model.xent, global_step=global_step) # Set up adversary attack = LinfPGDAttack(model, config['epsilon'], config['k'], config['a'], config['random_start'], config['loss_func']) # Setting up the Tensorboard and checkpoint outputs model_dir = config['model_dir'] if not os.path.exists(model_dir): os.makedirs(model_dir) # We add accuracy and xent twice so we can easily make three types of # comparisons in Tensorboard: # - train vs eval (for a single run) # - train of different runs # - eval of different runs saver = tf.train.Saver(max_to_keep=3) tf.summary.scalar('accuracy adv train', model.accuracy) tf.summary.scalar('accuracy adv', model.accuracy) tf.summary.scalar('xent adv train', model.xent / batch_size) tf.summary.scalar('xent adv', model.xent / batch_size) tf.summary.image('images adv train', model.x_image) merged_summaries = tf.summary.merge_all() shutil.copy('config.json', model_dir) with tf.Session() as sess: # Initialize the summary writer, global variables, and our time counter. summary_writer = tf.summary.FileWriter(model_dir, sess.graph) sess.run(tf.global_variables_initializer()) # saver.restore(sess,'/home/hope-yao/Documents/madrys_code/mnist_challenge/models/a_very_robust_model_run2/checkpoint-99900') training_time = 0.0 # Main training loop for ii in range(max_num_training_steps): if ii%10000 == 0: num_adv_batch = 1000 x_pool_nat = np.zeros((num_adv_batch * batch_size, 784)) x_pool_adv = np.zeros((num_adv_batch * batch_size, 784)) y_pool = np.zeros((num_adv_batch * batch_size)) from tqdm import tqdm for jj in tqdm(range(num_adv_batch)): x_batch, y_batch = mnist.train.next_batch(batch_size) x_batch_adv = attack.perturb(x_batch, y_batch, sess) x_pool_nat[jj * batch_size:(jj + 1) * batch_size] = x_batch x_pool_adv[jj * batch_size:(jj + 1) * batch_size] = x_batch_adv y_pool[jj * batch_size:(jj + 1) * batch_size] = y_batch np.save('x_pool_adv_itr{}'.format(ii), x_pool_adv) np.save('x_pool_nat_itr{}'.format(ii), x_pool_nat) np.save('y_pool_itr{}'.format(ii), y_pool) # x_batch, y_batch = mnist.train.next_batch(batch_size) # # Compute Adversarial Perturbations # start = timer() # x_batch_adv = attack.perturb(x_batch, y_batch, sess) # end = timer() # training_time += end - start x_batch = x_pool_nat[ii%1000 * batch_size:(ii%1000 + 1) * batch_size] x_batch_adv = x_pool_adv[ii%1000 * batch_size:(ii%1000 + 1) * batch_size] y_batch = y_pool[ii%1000 * batch_size:(ii%1000 + 1) * batch_size] nat_dict = {model.x_input: x_batch, model.y_input: y_batch} adv_dict = {model.x_input: x_batch_adv, model.y_input: y_batch} # Output to stdout if ii % num_output_steps == 0: nat_acc = sess.run(model.accuracy, feed_dict=nat_dict) adv_acc = sess.run(model.accuracy, feed_dict=adv_dict) print('Step {}: ({})'.format(ii, datetime.now())) print(' training nat accuracy {:.4}%'.format(nat_acc * 100)) print(' training adv accuracy {:.4}%'.format(adv_acc * 100)) if ii != 0: print(' {} examples per second'.format( num_output_steps * batch_size / training_time)) training_time = 0.0 # Tensorboard summaries if ii % num_summary_steps == 0: summary = sess.run(merged_summaries, feed_dict=adv_dict) summary_writer.add_summary(summary, global_step.eval(sess)) # Write a checkpoint if ii % num_checkpoint_steps == 0: saver.save(sess, os.path.join(model_dir, 'checkpoint'), global_step=global_step) # Actual training step start = timer() for jj in range(5): sess.run(train_step, feed_dict=adv_dict) end = timer() training_time += end - start
03fa270be63af49d803b50f06e2f566610bf1159
1c962341f3b580f2be0529a2d5804d49804470f6
/judge_2152.py
a4cdbad8d0c1c0d6e41d3a7a54609469d3035777
[]
no_license
andersonmarquees/-uri_python
7bc14b50198bd238f9594b37a86553ecfb277f76
379518cd17433725d6a859526de356162b26aa40
refs/heads/master
2020-05-05T09:08:51.483638
2019-04-14T16:42:24
2019-04-14T16:42:24
179,892,376
0
0
null
null
null
null
UTF-8
Python
false
false
1,090
py
n = int(input()) while n > 0: number = list(map(int, input().split())) if number[2] == 0 and number[0] >= 10 and number[1] >= 10: print("{}:{} - A porta fechou!".format(number[0], number[1])) elif number[2] == 1 and number[0] >= 10 and number[1] >= 10: print("{}:{} - A porta abriu!".format(number[0], number[1])) elif number[2] == 0 and number[0] < 10 and number[1] < 10: print("0{}:0{} - A porta fechou!".format(number[0], number[1])) elif number[2] == 1 and number[0] < 10 and number[1] < 10: print("0{}:0{} - A porta abriu!".format(number[0], number[1])) elif number[2] == 0 and number[0] < 10: print("0{}:{} - A porta fechou!".format(number[0], number[1])) elif number[2] == 1 and number[0] < 10: print("0{}:{} - A porta abriu!".format(number[0], number[1])) elif number[2] == 0 and number[1] < 10: print("{}:0{} - A porta fechou!".format(number[0], number[1])) elif number[2] == 1 and number[1] < 10: print("{}:0{} - A porta abriu!".format(number[0], number[1])) n -= 1
b189d011d6657ef5e6f9b4e1061f09ba5eb4c1a7
3a891a79be468621aae43defd9a5516f9763f36e
/apps/beeswax/gen-py/TCLIService/TCLIService.py
3bf8cee42c53891d5ab95aa26926dd4078f58c7f
[ "Apache-2.0" ]
permissive
oyorooms/hue
b53eb87f805063a90f957fd2e1733f21406269aa
4082346ef8d5e6a8365b05752be41186840dc868
refs/heads/master
2020-04-15T20:31:56.931218
2019-01-09T19:02:21
2019-01-09T19:05:36
164,998,117
4
2
Apache-2.0
2019-01-10T05:47:36
2019-01-10T05:47:36
null
UTF-8
Python
false
true
104,941
py
# # Autogenerated by Thrift Compiler (0.9.0) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # # options string: py:new_style # from thrift.Thrift import TType, TMessageType, TException, TApplicationException from ttypes import * from thrift.Thrift import TProcessor from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol, TProtocol try: from thrift.protocol import fastbinary except: fastbinary = None class Iface(object): def OpenSession(self, req): """ Parameters: - req """ pass def CloseSession(self, req): """ Parameters: - req """ pass def GetInfo(self, req): """ Parameters: - req """ pass def ExecuteStatement(self, req): """ Parameters: - req """ pass def GetTypeInfo(self, req): """ Parameters: - req """ pass def GetCatalogs(self, req): """ Parameters: - req """ pass def GetSchemas(self, req): """ Parameters: - req """ pass def GetTables(self, req): """ Parameters: - req """ pass def GetTableTypes(self, req): """ Parameters: - req """ pass def GetColumns(self, req): """ Parameters: - req """ pass def GetFunctions(self, req): """ Parameters: - req """ pass def GetOperationStatus(self, req): """ Parameters: - req """ pass def CancelOperation(self, req): """ Parameters: - req """ pass def CloseOperation(self, req): """ Parameters: - req """ pass def GetResultSetMetadata(self, req): """ Parameters: - req """ pass def FetchResults(self, req): """ Parameters: - req """ pass def GetDelegationToken(self, req): """ Parameters: - req """ pass def CancelDelegationToken(self, req): """ Parameters: - req """ pass def RenewDelegationToken(self, req): """ Parameters: - req """ pass def GetLog(self, req): """ Parameters: - req """ pass class Client(Iface): def __init__(self, iprot, oprot=None): self._iprot = self._oprot = iprot if oprot is not None: self._oprot = oprot self._seqid = 0 def OpenSession(self, req): """ Parameters: - req """ self.send_OpenSession(req) return self.recv_OpenSession() def send_OpenSession(self, req): self._oprot.writeMessageBegin('OpenSession', TMessageType.CALL, self._seqid) args = OpenSession_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_OpenSession(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = OpenSession_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "OpenSession failed: unknown result"); def CloseSession(self, req): """ Parameters: - req """ self.send_CloseSession(req) return self.recv_CloseSession() def send_CloseSession(self, req): self._oprot.writeMessageBegin('CloseSession', TMessageType.CALL, self._seqid) args = CloseSession_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_CloseSession(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = CloseSession_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "CloseSession failed: unknown result"); def GetInfo(self, req): """ Parameters: - req """ self.send_GetInfo(req) return self.recv_GetInfo() def send_GetInfo(self, req): self._oprot.writeMessageBegin('GetInfo', TMessageType.CALL, self._seqid) args = GetInfo_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_GetInfo(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = GetInfo_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "GetInfo failed: unknown result"); def ExecuteStatement(self, req): """ Parameters: - req """ self.send_ExecuteStatement(req) return self.recv_ExecuteStatement() def send_ExecuteStatement(self, req): self._oprot.writeMessageBegin('ExecuteStatement', TMessageType.CALL, self._seqid) args = ExecuteStatement_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_ExecuteStatement(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = ExecuteStatement_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "ExecuteStatement failed: unknown result"); def GetTypeInfo(self, req): """ Parameters: - req """ self.send_GetTypeInfo(req) return self.recv_GetTypeInfo() def send_GetTypeInfo(self, req): self._oprot.writeMessageBegin('GetTypeInfo', TMessageType.CALL, self._seqid) args = GetTypeInfo_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_GetTypeInfo(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = GetTypeInfo_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "GetTypeInfo failed: unknown result"); def GetCatalogs(self, req): """ Parameters: - req """ self.send_GetCatalogs(req) return self.recv_GetCatalogs() def send_GetCatalogs(self, req): self._oprot.writeMessageBegin('GetCatalogs', TMessageType.CALL, self._seqid) args = GetCatalogs_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_GetCatalogs(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = GetCatalogs_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "GetCatalogs failed: unknown result"); def GetSchemas(self, req): """ Parameters: - req """ self.send_GetSchemas(req) return self.recv_GetSchemas() def send_GetSchemas(self, req): self._oprot.writeMessageBegin('GetSchemas', TMessageType.CALL, self._seqid) args = GetSchemas_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_GetSchemas(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = GetSchemas_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "GetSchemas failed: unknown result"); def GetTables(self, req): """ Parameters: - req """ self.send_GetTables(req) return self.recv_GetTables() def send_GetTables(self, req): self._oprot.writeMessageBegin('GetTables', TMessageType.CALL, self._seqid) args = GetTables_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_GetTables(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = GetTables_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "GetTables failed: unknown result"); def GetTableTypes(self, req): """ Parameters: - req """ self.send_GetTableTypes(req) return self.recv_GetTableTypes() def send_GetTableTypes(self, req): self._oprot.writeMessageBegin('GetTableTypes', TMessageType.CALL, self._seqid) args = GetTableTypes_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_GetTableTypes(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = GetTableTypes_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "GetTableTypes failed: unknown result"); def GetColumns(self, req): """ Parameters: - req """ self.send_GetColumns(req) return self.recv_GetColumns() def send_GetColumns(self, req): self._oprot.writeMessageBegin('GetColumns', TMessageType.CALL, self._seqid) args = GetColumns_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_GetColumns(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = GetColumns_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "GetColumns failed: unknown result"); def GetFunctions(self, req): """ Parameters: - req """ self.send_GetFunctions(req) return self.recv_GetFunctions() def send_GetFunctions(self, req): self._oprot.writeMessageBegin('GetFunctions', TMessageType.CALL, self._seqid) args = GetFunctions_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_GetFunctions(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = GetFunctions_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "GetFunctions failed: unknown result"); def GetOperationStatus(self, req): """ Parameters: - req """ self.send_GetOperationStatus(req) return self.recv_GetOperationStatus() def send_GetOperationStatus(self, req): self._oprot.writeMessageBegin('GetOperationStatus', TMessageType.CALL, self._seqid) args = GetOperationStatus_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_GetOperationStatus(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = GetOperationStatus_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "GetOperationStatus failed: unknown result"); def CancelOperation(self, req): """ Parameters: - req """ self.send_CancelOperation(req) return self.recv_CancelOperation() def send_CancelOperation(self, req): self._oprot.writeMessageBegin('CancelOperation', TMessageType.CALL, self._seqid) args = CancelOperation_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_CancelOperation(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = CancelOperation_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "CancelOperation failed: unknown result"); def CloseOperation(self, req): """ Parameters: - req """ self.send_CloseOperation(req) return self.recv_CloseOperation() def send_CloseOperation(self, req): self._oprot.writeMessageBegin('CloseOperation', TMessageType.CALL, self._seqid) args = CloseOperation_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_CloseOperation(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = CloseOperation_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "CloseOperation failed: unknown result"); def GetResultSetMetadata(self, req): """ Parameters: - req """ self.send_GetResultSetMetadata(req) return self.recv_GetResultSetMetadata() def send_GetResultSetMetadata(self, req): self._oprot.writeMessageBegin('GetResultSetMetadata', TMessageType.CALL, self._seqid) args = GetResultSetMetadata_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_GetResultSetMetadata(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = GetResultSetMetadata_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "GetResultSetMetadata failed: unknown result"); def FetchResults(self, req): """ Parameters: - req """ self.send_FetchResults(req) return self.recv_FetchResults() def send_FetchResults(self, req): self._oprot.writeMessageBegin('FetchResults', TMessageType.CALL, self._seqid) args = FetchResults_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_FetchResults(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = FetchResults_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "FetchResults failed: unknown result"); def GetDelegationToken(self, req): """ Parameters: - req """ self.send_GetDelegationToken(req) return self.recv_GetDelegationToken() def send_GetDelegationToken(self, req): self._oprot.writeMessageBegin('GetDelegationToken', TMessageType.CALL, self._seqid) args = GetDelegationToken_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_GetDelegationToken(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = GetDelegationToken_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "GetDelegationToken failed: unknown result"); def CancelDelegationToken(self, req): """ Parameters: - req """ self.send_CancelDelegationToken(req) return self.recv_CancelDelegationToken() def send_CancelDelegationToken(self, req): self._oprot.writeMessageBegin('CancelDelegationToken', TMessageType.CALL, self._seqid) args = CancelDelegationToken_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_CancelDelegationToken(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = CancelDelegationToken_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "CancelDelegationToken failed: unknown result"); def RenewDelegationToken(self, req): """ Parameters: - req """ self.send_RenewDelegationToken(req) return self.recv_RenewDelegationToken() def send_RenewDelegationToken(self, req): self._oprot.writeMessageBegin('RenewDelegationToken', TMessageType.CALL, self._seqid) args = RenewDelegationToken_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_RenewDelegationToken(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = RenewDelegationToken_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "RenewDelegationToken failed: unknown result"); def GetLog(self, req): """ Parameters: - req """ self.send_GetLog(req) return self.recv_GetLog() def send_GetLog(self, req): self._oprot.writeMessageBegin('GetLog', TMessageType.CALL, self._seqid) args = GetLog_args() args.req = req args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_GetLog(self, ): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = GetLog_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "GetLog failed: unknown result"); class Processor(Iface, TProcessor): def __init__(self, handler): self._handler = handler self._processMap = {} self._processMap["OpenSession"] = Processor.process_OpenSession self._processMap["CloseSession"] = Processor.process_CloseSession self._processMap["GetInfo"] = Processor.process_GetInfo self._processMap["ExecuteStatement"] = Processor.process_ExecuteStatement self._processMap["GetTypeInfo"] = Processor.process_GetTypeInfo self._processMap["GetCatalogs"] = Processor.process_GetCatalogs self._processMap["GetSchemas"] = Processor.process_GetSchemas self._processMap["GetTables"] = Processor.process_GetTables self._processMap["GetTableTypes"] = Processor.process_GetTableTypes self._processMap["GetColumns"] = Processor.process_GetColumns self._processMap["GetFunctions"] = Processor.process_GetFunctions self._processMap["GetOperationStatus"] = Processor.process_GetOperationStatus self._processMap["CancelOperation"] = Processor.process_CancelOperation self._processMap["CloseOperation"] = Processor.process_CloseOperation self._processMap["GetResultSetMetadata"] = Processor.process_GetResultSetMetadata self._processMap["FetchResults"] = Processor.process_FetchResults self._processMap["GetDelegationToken"] = Processor.process_GetDelegationToken self._processMap["CancelDelegationToken"] = Processor.process_CancelDelegationToken self._processMap["RenewDelegationToken"] = Processor.process_RenewDelegationToken self._processMap["GetLog"] = Processor.process_GetLog def process(self, iprot, oprot): (name, type, seqid) = iprot.readMessageBegin() if name not in self._processMap: iprot.skip(TType.STRUCT) iprot.readMessageEnd() x = TApplicationException(TApplicationException.UNKNOWN_METHOD, 'Unknown function %s' % (name)) oprot.writeMessageBegin(name, TMessageType.EXCEPTION, seqid) x.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() return else: self._processMap[name](self, seqid, iprot, oprot) return True def process_OpenSession(self, seqid, iprot, oprot): args = OpenSession_args() args.read(iprot) iprot.readMessageEnd() result = OpenSession_result() result.success = self._handler.OpenSession(args.req) oprot.writeMessageBegin("OpenSession", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_CloseSession(self, seqid, iprot, oprot): args = CloseSession_args() args.read(iprot) iprot.readMessageEnd() result = CloseSession_result() result.success = self._handler.CloseSession(args.req) oprot.writeMessageBegin("CloseSession", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_GetInfo(self, seqid, iprot, oprot): args = GetInfo_args() args.read(iprot) iprot.readMessageEnd() result = GetInfo_result() result.success = self._handler.GetInfo(args.req) oprot.writeMessageBegin("GetInfo", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_ExecuteStatement(self, seqid, iprot, oprot): args = ExecuteStatement_args() args.read(iprot) iprot.readMessageEnd() result = ExecuteStatement_result() result.success = self._handler.ExecuteStatement(args.req) oprot.writeMessageBegin("ExecuteStatement", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_GetTypeInfo(self, seqid, iprot, oprot): args = GetTypeInfo_args() args.read(iprot) iprot.readMessageEnd() result = GetTypeInfo_result() result.success = self._handler.GetTypeInfo(args.req) oprot.writeMessageBegin("GetTypeInfo", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_GetCatalogs(self, seqid, iprot, oprot): args = GetCatalogs_args() args.read(iprot) iprot.readMessageEnd() result = GetCatalogs_result() result.success = self._handler.GetCatalogs(args.req) oprot.writeMessageBegin("GetCatalogs", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_GetSchemas(self, seqid, iprot, oprot): args = GetSchemas_args() args.read(iprot) iprot.readMessageEnd() result = GetSchemas_result() result.success = self._handler.GetSchemas(args.req) oprot.writeMessageBegin("GetSchemas", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_GetTables(self, seqid, iprot, oprot): args = GetTables_args() args.read(iprot) iprot.readMessageEnd() result = GetTables_result() result.success = self._handler.GetTables(args.req) oprot.writeMessageBegin("GetTables", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_GetTableTypes(self, seqid, iprot, oprot): args = GetTableTypes_args() args.read(iprot) iprot.readMessageEnd() result = GetTableTypes_result() result.success = self._handler.GetTableTypes(args.req) oprot.writeMessageBegin("GetTableTypes", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_GetColumns(self, seqid, iprot, oprot): args = GetColumns_args() args.read(iprot) iprot.readMessageEnd() result = GetColumns_result() result.success = self._handler.GetColumns(args.req) oprot.writeMessageBegin("GetColumns", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_GetFunctions(self, seqid, iprot, oprot): args = GetFunctions_args() args.read(iprot) iprot.readMessageEnd() result = GetFunctions_result() result.success = self._handler.GetFunctions(args.req) oprot.writeMessageBegin("GetFunctions", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_GetOperationStatus(self, seqid, iprot, oprot): args = GetOperationStatus_args() args.read(iprot) iprot.readMessageEnd() result = GetOperationStatus_result() result.success = self._handler.GetOperationStatus(args.req) oprot.writeMessageBegin("GetOperationStatus", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_CancelOperation(self, seqid, iprot, oprot): args = CancelOperation_args() args.read(iprot) iprot.readMessageEnd() result = CancelOperation_result() result.success = self._handler.CancelOperation(args.req) oprot.writeMessageBegin("CancelOperation", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_CloseOperation(self, seqid, iprot, oprot): args = CloseOperation_args() args.read(iprot) iprot.readMessageEnd() result = CloseOperation_result() result.success = self._handler.CloseOperation(args.req) oprot.writeMessageBegin("CloseOperation", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_GetResultSetMetadata(self, seqid, iprot, oprot): args = GetResultSetMetadata_args() args.read(iprot) iprot.readMessageEnd() result = GetResultSetMetadata_result() result.success = self._handler.GetResultSetMetadata(args.req) oprot.writeMessageBegin("GetResultSetMetadata", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_FetchResults(self, seqid, iprot, oprot): args = FetchResults_args() args.read(iprot) iprot.readMessageEnd() result = FetchResults_result() result.success = self._handler.FetchResults(args.req) oprot.writeMessageBegin("FetchResults", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_GetDelegationToken(self, seqid, iprot, oprot): args = GetDelegationToken_args() args.read(iprot) iprot.readMessageEnd() result = GetDelegationToken_result() result.success = self._handler.GetDelegationToken(args.req) oprot.writeMessageBegin("GetDelegationToken", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_CancelDelegationToken(self, seqid, iprot, oprot): args = CancelDelegationToken_args() args.read(iprot) iprot.readMessageEnd() result = CancelDelegationToken_result() result.success = self._handler.CancelDelegationToken(args.req) oprot.writeMessageBegin("CancelDelegationToken", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_RenewDelegationToken(self, seqid, iprot, oprot): args = RenewDelegationToken_args() args.read(iprot) iprot.readMessageEnd() result = RenewDelegationToken_result() result.success = self._handler.RenewDelegationToken(args.req) oprot.writeMessageBegin("RenewDelegationToken", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_GetLog(self, seqid, iprot, oprot): args = GetLog_args() args.read(iprot) iprot.readMessageEnd() result = GetLog_result() result.success = self._handler.GetLog(args.req) oprot.writeMessageBegin("GetLog", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() # HELPER FUNCTIONS AND STRUCTURES class OpenSession_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TOpenSessionReq, TOpenSessionReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TOpenSessionReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('OpenSession_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class OpenSession_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TOpenSessionResp, TOpenSessionResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TOpenSessionResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('OpenSession_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class CloseSession_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TCloseSessionReq, TCloseSessionReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TCloseSessionReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('CloseSession_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class CloseSession_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TCloseSessionResp, TCloseSessionResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TCloseSessionResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('CloseSession_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetInfo_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TGetInfoReq, TGetInfoReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TGetInfoReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetInfo_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetInfo_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TGetInfoResp, TGetInfoResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TGetInfoResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetInfo_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class ExecuteStatement_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TExecuteStatementReq, TExecuteStatementReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TExecuteStatementReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('ExecuteStatement_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class ExecuteStatement_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TExecuteStatementResp, TExecuteStatementResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TExecuteStatementResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('ExecuteStatement_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetTypeInfo_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TGetTypeInfoReq, TGetTypeInfoReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TGetTypeInfoReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetTypeInfo_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetTypeInfo_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TGetTypeInfoResp, TGetTypeInfoResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TGetTypeInfoResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetTypeInfo_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetCatalogs_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TGetCatalogsReq, TGetCatalogsReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TGetCatalogsReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetCatalogs_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetCatalogs_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TGetCatalogsResp, TGetCatalogsResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TGetCatalogsResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetCatalogs_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetSchemas_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TGetSchemasReq, TGetSchemasReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TGetSchemasReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetSchemas_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetSchemas_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TGetSchemasResp, TGetSchemasResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TGetSchemasResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetSchemas_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetTables_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TGetTablesReq, TGetTablesReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TGetTablesReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetTables_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetTables_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TGetTablesResp, TGetTablesResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TGetTablesResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetTables_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetTableTypes_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TGetTableTypesReq, TGetTableTypesReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TGetTableTypesReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetTableTypes_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetTableTypes_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TGetTableTypesResp, TGetTableTypesResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TGetTableTypesResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetTableTypes_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetColumns_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TGetColumnsReq, TGetColumnsReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TGetColumnsReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetColumns_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetColumns_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TGetColumnsResp, TGetColumnsResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TGetColumnsResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetColumns_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetFunctions_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TGetFunctionsReq, TGetFunctionsReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TGetFunctionsReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetFunctions_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetFunctions_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TGetFunctionsResp, TGetFunctionsResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TGetFunctionsResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetFunctions_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetOperationStatus_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TGetOperationStatusReq, TGetOperationStatusReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TGetOperationStatusReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetOperationStatus_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetOperationStatus_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TGetOperationStatusResp, TGetOperationStatusResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TGetOperationStatusResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetOperationStatus_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class CancelOperation_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TCancelOperationReq, TCancelOperationReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TCancelOperationReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('CancelOperation_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class CancelOperation_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TCancelOperationResp, TCancelOperationResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TCancelOperationResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('CancelOperation_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class CloseOperation_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TCloseOperationReq, TCloseOperationReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TCloseOperationReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('CloseOperation_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class CloseOperation_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TCloseOperationResp, TCloseOperationResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TCloseOperationResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('CloseOperation_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetResultSetMetadata_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TGetResultSetMetadataReq, TGetResultSetMetadataReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TGetResultSetMetadataReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetResultSetMetadata_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetResultSetMetadata_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TGetResultSetMetadataResp, TGetResultSetMetadataResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TGetResultSetMetadataResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetResultSetMetadata_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class FetchResults_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TFetchResultsReq, TFetchResultsReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TFetchResultsReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('FetchResults_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class FetchResults_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TFetchResultsResp, TFetchResultsResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TFetchResultsResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('FetchResults_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetDelegationToken_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TGetDelegationTokenReq, TGetDelegationTokenReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TGetDelegationTokenReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetDelegationToken_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetDelegationToken_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TGetDelegationTokenResp, TGetDelegationTokenResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TGetDelegationTokenResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetDelegationToken_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class CancelDelegationToken_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TCancelDelegationTokenReq, TCancelDelegationTokenReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TCancelDelegationTokenReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('CancelDelegationToken_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class CancelDelegationToken_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TCancelDelegationTokenResp, TCancelDelegationTokenResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TCancelDelegationTokenResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('CancelDelegationToken_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class RenewDelegationToken_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TRenewDelegationTokenReq, TRenewDelegationTokenReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TRenewDelegationTokenReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('RenewDelegationToken_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class RenewDelegationToken_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TRenewDelegationTokenResp, TRenewDelegationTokenResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TRenewDelegationTokenResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('RenewDelegationToken_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetLog_args(object): """ Attributes: - req """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'req', (TGetLogReq, TGetLogReq.thrift_spec), None, ), # 1 ) def __init__(self, req=None,): self.req = req def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.req = TGetLogReq() self.req.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetLog_args') if self.req is not None: oprot.writeFieldBegin('req', TType.STRUCT, 1) self.req.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class GetLog_result(object): """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (TGetLogResp, TGetLogResp.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = TGetLogResp() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('GetLog_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other)
284deb502b460d18389044ea5103890c7f6686d0
01a8c5ecea9cb4d40d3e26a1ca08cb1ccc17e98a
/common/prep_terrain_data.py
a35188d77e0eab7d0ba710f5dbfa6d1addca21c6
[]
no_license
pelinbalci/intro_to_ml
fe570cfe5a556cdd55fccabd1f7096b42124a7a7
450ba3cff7d3f2009d94a526527ed76fee6e1fdf
refs/heads/master
2022-11-15T04:22:29.372686
2020-07-12T10:13:05
2020-07-12T10:13:05
277,359,558
1
0
null
null
null
null
UTF-8
Python
false
false
1,825
py
#!/usr/bin/python import random def makeTerrainData(n_points=1000): """make the toy dataset """ random.seed(42) grade = [random.random() for i in range(0, n_points)] #[0.63, 0.025, 0.275, 0.223, 0.736, 0.676, 0.89, 0.085, 0.42, 0.029] bumpy = [random.random() for i in range(0, n_points)] #[0.218, 0.50, 0.026, 0.19, 0.649, 0.54, 0.22, 0.58, 0.809, 0.006] error = [random.random() for i in range(0, n_points)] y = [round(grade[i]*bumpy[i]+0.3+0.1*error[i]) for i in range(0, n_points)] #[1, 0, 0, 0, 1, 1, 1, 0, 1, 0] for i in range(0, len(y)): if grade[i] > 0.8 or bumpy[i] > 0.8: y[i] = 1.0 # <class 'list'>: [1, 0, 0, 0, 1, 1, 1.0, 0, 1.0, 0] # split into train/test sets X = [[gg, ss] for gg, ss in zip(grade, bumpy)] split = int(0.75 * n_points) X_train = X[0:split] # [[0.63, 0.218], [0.025, 0.50] ... ] X_test = X[split:] y_train = y[0:split] # [1, 0, 0, 0, 1, 1, 1.0] y_test = y[split:] grade_sig = [X_train[i][0] for i in range(0, len(X_train)) if y_train[i] == 0] bumpy_sig = [X_train[i][1] for i in range(0, len(X_train)) if y_train[i] == 0] grade_bkg = [X_train[i][0] for i in range(0, len(X_train)) if y_train[i] == 1] bumpy_bkg = [X_train[i][1] for i in range(0, len(X_train)) if y_train[i] == 1] grade_sig = [X_test[i][0] for i in range(0, len(X_test)) if y_test[i] == 0] bumpy_sig = [X_test[i][1] for i in range(0, len(X_test)) if y_test[i] == 0] grade_bkg = [X_test[i][0] for i in range(0, len(X_test)) if y_test[i] == 1] bumpy_bkg = [X_test[i][1] for i in range(0, len(X_test)) if y_test[i] == 1] test_data = {"fast": {"grade": grade_sig, "bumpiness": bumpy_sig}, "slow": {"grade": grade_bkg, "bumpiness": bumpy_bkg}} return X, y, X_train, y_train, X_test, y_test
a307d190864c688240df95388d0101710746d094
16eff60c29062849d7d2fc035a9fbb4a3f93e206
/crnn_model/cnn_basenet.py
4bc2c25734ae536b5105871a303e2fb722471c70
[]
no_license
marjeylee/text_recognization
3144d3f3903918d1c9a9e75b14597288b92af8cd
efc7982198cbdea8f330de2f758583be6ba3c23f
refs/heads/master
2020-03-23T18:09:57.215751
2018-07-22T13:07:57
2018-07-22T13:07:57
141,893,083
1
1
null
null
null
null
UTF-8
Python
false
false
11,465
py
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name: cnn_basenet Description : Author : 'li' date: 2018/7/22 ------------------------------------------------- Change Activity: 2018/7/22: ------------------------------------------------- """ __author__ = 'li' import tensorflow as tf import numpy as np from abc import ABCMeta """ cnn基本方法库 """ class CNNBaseModel(metaclass=ABCMeta): """ 基本方法库模型 """ def __init__(self): pass @staticmethod def conv2d(inputdata, out_channel, kernel_size, padding='SAME', stride=1, w_init=None, b_init=None, nl=tf.identity, split=1, use_bias=True, data_format='NHWC', name=None): """ 卷积操作 :param name: op name :param inputdata: A 4D tensorflow tensor which ust have known number of channels, but can have other unknown dimensions. :param out_channel: number of output channel. :param kernel_size: int so only support square kernel convolution :param padding: 'VALID' or 'SAME' :param stride: int so only support square stride :param w_init: initializer for convolution weights :param b_init: initializer for bias :param nl: a tensorflow identify function :param split: split channels as used in Alexnet mainly group for GPU memory save. :param use_bias: whether to use bias. :param data_format: default set to NHWC according tensorflow :return: tf.Tensor named ``output`` """ with tf.variable_scope(name): in_shape = inputdata.get_shape().as_list() channel_axis = 3 if data_format == 'NHWC' else 1 in_channel = in_shape[channel_axis] assert in_channel is not None, "[Conv2D] Input cannot have unknown channel!" assert in_channel % split == 0 assert out_channel % split == 0 padding = padding.upper() if isinstance(kernel_size, list): filter_shape = [kernel_size[0], kernel_size[1]] + [in_channel / split, out_channel] else: filter_shape = [kernel_size, kernel_size] + [in_channel / split, out_channel] if isinstance(stride, list): strides = [1, stride[0], stride[1], 1] if data_format == 'NHWC' else [1, 1, stride[0], stride[1]] else: strides = [1, stride, stride, 1] if data_format == 'NHWC' else [1, 1, stride, stride] if w_init is None: w_init = tf.contrib.layers.variance_scaling_initializer() if b_init is None: b_init = tf.constant_initializer() w = tf.get_variable('W', filter_shape, initializer=w_init) b = None if use_bias: b = tf.get_variable('b', [out_channel], initializer=b_init) if split == 1: conv = tf.nn.conv2d(inputdata, w, strides, padding, data_format=data_format) else: inputs = tf.split(inputdata, split, channel_axis) kernels = tf.split(w, split, 3) outputs = [tf.nn.conv2d(i, k, strides, padding, data_format=data_format) for i, k in zip(inputs, kernels)] conv = tf.concat(outputs, channel_axis) ret = nl(tf.nn.bias_add(conv, b, data_format=data_format) if use_bias else conv, name=name) return ret @staticmethod def relu(input_data, name=None): """ relu方法 :param name: :param input_data: :return: """ return tf.nn.relu(features=input_data, name=name) @staticmethod def sigmoid(inputdata, name=None): """ sigmoid方法 :param name: :param inputdata: :return: """ return tf.nn.sigmoid(x=inputdata, name=name) @staticmethod def maxpooling(inputdata, kernel_size, stride=None, padding='VALID', data_format='NHWC', name=None): """ 池化操作 :param name: :param inputdata: :param kernel_size: :param stride: :param padding: :param data_format: :return: """ padding = padding.upper() if stride is None: stride = kernel_size if isinstance(kernel_size, list): kernel = [1, kernel_size[0], kernel_size[1], 1] if data_format == 'NHWC' else \ [1, 1, kernel_size[0], kernel_size[1]] else: kernel = [1, kernel_size, kernel_size, 1] if data_format == 'NHWC' else [1, 1, kernel_size, kernel_size] if isinstance(stride, list): strides = [1, stride[0], stride[1], 1] if data_format == 'NHWC' else [1, 1, stride[0], stride[1]] else: strides = [1, stride, stride, 1] if data_format == 'NHWC' else [1, 1, stride, stride] return tf.nn.max_pool(value=inputdata, ksize=kernel, strides=strides, padding=padding, data_format=data_format, name=name) @staticmethod def avgpooling(inputdata, kernel_size, stride=None, padding='VALID', data_format='NHWC', name=None): """ 平均值池话 :param name: :param inputdata: :param kernel_size: :param stride: :param padding: :param data_format: :return: """ if stride is None: stride = kernel_size kernel = [1, kernel_size, kernel_size, 1] if data_format == 'NHWC' else [1, 1, kernel_size, kernel_size] strides = [1, stride, stride, 1] if data_format == 'NHWC' else [1, 1, stride, stride] return tf.nn.avg_pool(value=inputdata, ksize=kernel, strides=strides, padding=padding, data_format=data_format, name=name) @staticmethod def globalavgpooling(inputdata, data_format='NHWC', name=None): """ 全局平均值池话 :param name: :param inputdata: :param data_format: :return: """ assert inputdata.shape.ndims == 4 assert data_format in ['NHWC', 'NCHW'] axis = [1, 2] if data_format == 'NHWC' else [2, 3] return tf.reduce_mean(input_tensor=inputdata, axis=axis, name=name) @staticmethod def layernorm(inputdata, epsilon=1e-5, use_bias=True, use_scale=True, data_format='NHWC', name=None): """ batch normalize操作 :param name: :param inputdata: :param epsilon: epsilon to avoid divide-by-zero. :param use_bias: whether to use the extra affine transformation or not. :param use_scale: whether to use the extra affine transformation or not. :param data_format: :return: """ shape = inputdata.get_shape().as_list() ndims = len(shape) assert ndims in [2, 4] mean, var = tf.nn.moments(inputdata, list(range(1, len(shape))), keep_dims=True) if data_format == 'NCHW': channnel = shape[1] new_shape = [1, channnel, 1, 1] else: channnel = shape[-1] new_shape = [1, 1, 1, channnel] if ndims == 2: new_shape = [1, channnel] if use_bias: beta = tf.get_variable('beta', [channnel], initializer=tf.constant_initializer()) beta = tf.reshape(beta, new_shape) else: beta = tf.zeros([1] * ndims, name='beta') if use_scale: gamma = tf.get_variable('gamma', [channnel], initializer=tf.constant_initializer(1.0)) gamma = tf.reshape(gamma, new_shape) else: gamma = tf.ones([1] * ndims, name='gamma') return tf.nn.batch_normalization(inputdata, mean, var, beta, gamma, epsilon, name=name) @staticmethod def instancenorm(inputdata, epsilon=1e-5, data_format='NHWC', use_affine=True, name=None): """ :param name: :param inputdata: :param epsilon: :param data_format: :param use_affine: :return: """ shape = inputdata.get_shape().as_list() if len(shape) != 4: raise ValueError("Input data of instancebn layer has to be 4D tensor") if data_format == 'NHWC': axis = [1, 2] ch = shape[3] new_shape = [1, 1, 1, ch] else: axis = [2, 3] ch = shape[1] new_shape = [1, ch, 1, 1] if ch is None: raise ValueError("Input of instancebn require known channel!") mean, var = tf.nn.moments(inputdata, axis, keep_dims=True) if not use_affine: return tf.divide(inputdata - mean, tf.sqrt(var + epsilon), name='output') beta = tf.get_variable('beta', [ch], initializer=tf.constant_initializer()) beta = tf.reshape(beta, new_shape) gamma = tf.get_variable('gamma', [ch], initializer=tf.constant_initializer(1.0)) gamma = tf.reshape(gamma, new_shape) return tf.nn.batch_normalization(inputdata, mean, var, beta, gamma, epsilon, name=name) @staticmethod def dropout(inputdata, keep_prob, noise_shape=None, name=None): """ dropout :param name: :param inputdata: :param keep_prob: :param noise_shape: :return: """ return tf.nn.dropout(inputdata, keep_prob=keep_prob, noise_shape=noise_shape, name=name) @staticmethod def fullyconnect(inputdata, out_dim, w_init=None, b_init=None, nl=tf.identity, use_bias=True, name=None): """ 全连接层 :param inputdata: a tensor to be flattened except for the first dimension. :param out_dim: output dimension :param w_init: initializer for w. Defaults to `variance_scaling_initializer`. :param b_init: initializer for b. Defaults to zero :param nl: a nonlinearity function :param use_bias: whether to use bias. :param name: :return: tf.Tensor: a NC tensor named ``output`` with attribute `variables`. """ shape = inputdata.get_shape().as_list()[1:] if None not in shape: inputdata = tf.reshape(inputdata, [-1, int(np.prod(shape))]) else: inputdata = tf.reshape(inputdata, tf.stack([tf.shape(inputdata)[0], -1])) if w_init is None: w_init = tf.contrib.layers.variance_scaling_initializer() if b_init is None: b_init = tf.constant_initializer() ret = tf.layers.dense(inputs=inputdata, activation=lambda x: nl(x, name='output'), use_bias=use_bias, name=name, kernel_initializer=w_init, bias_initializer=b_init, trainable=True, units=out_dim) return ret @staticmethod def layerbn(inputdata, is_training): """ batch norm :param inputdata: :param is_training: :return: """ output = tf.contrib.layers.batch_norm(inputdata, scale=True, is_training=is_training, updates_collections=None) return output @staticmethod def squeeze(inputdata, axis=None, name=None): """ 从tensor中删除所有大小是1的维度 :param inputdata: :param axis: :param name: :return: """ return tf.squeeze(input=inputdata, axis=axis, name=name)
c39cc5dda80f909656f9411ff1e0ff395f66ea2f
9da0798b6f309d2274c65077efa81c3766b78051
/SearchQuery.py
398bb743fac51257f35f8c955e13f286be2efd41
[]
no_license
theriley106/RandomSearchQuery
09b37c23c3798b873c45db529158b326410d759e
e084a1a63279994fe06ef8dd594d2bc8e1d7b445
refs/heads/master
2021-01-13T04:57:56.583001
2017-02-07T05:04:07
2017-02-07T05:04:07
81,155,360
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
import random import csv QueryList = open('QueryList.csv', 'r') QueryList = csv.reader(QueryList) QueryList = [row for row in QueryList] QueryList = [l[0] for l in QueryList] def Random(): return random.choice(QueryList) def Multi(): return QueryList
4a13e69ae72231f2bbbeccfef203a95165134ed0
98fd3275aa34c90c26d1f43d70983ae762c69064
/floor_division.py
1f092bde43f669fac26bc9d825a9243c8393537d
[]
no_license
hasnatosman/problem_solving
62b5eaf6a418ae7f75d187b2c8e1e4b0ab4750fd
1f33acc6289d322a9e950b6e39185a505159b7e2
refs/heads/main
2023-06-17T05:34:33.908078
2021-07-15T06:36:45
2021-07-15T06:36:45
383,810,211
0
0
null
null
null
null
UTF-8
Python
false
false
572
py
""" PROBLEM 4: Find the floor division of two numbers. HINTS: Just use two // instead of one. """ num1 = int(input('Enter the first number: ')) num2 = int(input('Enter the second number: ')) result = num1 // num2 print("Result is: ", result) """ Explanation: When you divide one number by another you get two things. One is called the integer part of the division. Another is the remainder. To get the quotient (result without the remainder), you can use two-division symbols. """ """ import math result = math.floor(3.4) print(result) """
c52b322c1c1fb0464674ec1211c34b90dcd6b4b1
24fe1f54fee3a3df952ca26cce839cc18124357a
/servicegraph/lib/python2.7/site-packages/acimodel-4.0_3d-py2.7.egg/cobra/modelimpl/eqptdiag/entity.py
86ae5c47a213aa5ec2540a9fb905cafd8a5403b0
[]
no_license
aperiyed/servicegraph-cloudcenter
4b8dc9e776f6814cf07fe966fbd4a3481d0f45ff
9eb7975f2f6835e1c0528563a771526896306392
refs/heads/master
2023-05-10T17:27:18.022381
2020-01-20T09:18:28
2020-01-20T09:18:28
235,065,676
0
0
null
2023-05-01T21:19:14
2020-01-20T09:36:37
Python
UTF-8
Python
false
false
6,254
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2019 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class Entity(Mo): """ Diag-related entity information """ meta = ClassMeta("cobra.model.eqptdiag.Entity") meta.moClassName = "eqptdiagEntity" meta.rnFormat = "diag" meta.category = MoCategory.REGULAR meta.label = "Equipment Diagnostics Entity" meta.writeAccessMask = 0x880080000000001 meta.readAccessMask = 0x880080000000001 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.childClasses.add("cobra.model.health.Inst") meta.childClasses.add("cobra.model.fault.Counts") meta.childClasses.add("cobra.model.eqptdiagp.GrpTests") meta.childClasses.add("cobra.model.eqptdiag.Rule") meta.childNamesAndRnPrefix.append(("cobra.model.eqptdiagp.GrpTests", "grptests-")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Counts", "fltCnts")) meta.childNamesAndRnPrefix.append(("cobra.model.health.Inst", "health")) meta.childNamesAndRnPrefix.append(("cobra.model.eqptdiag.Rule", "rule-")) meta.parentClasses.add("cobra.model.top.System") meta.superClasses.add("cobra.model.nw.Conn") meta.superClasses.add("cobra.model.nw.CpEntity") meta.superClasses.add("cobra.model.nw.Item") meta.superClasses.add("cobra.model.nw.GEp") meta.rnPrefixes = [ ('diag', False), ] prop = PropMeta("str", "adminSt", "adminSt", 3670, PropCategory.REGULAR) prop.label = "Admin State" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 1 prop.defaultValueStr = "enabled" prop._addConstant("disabled", "disabled", 2) prop._addConstant("enabled", "enabled", 1) meta.props.add("adminSt", prop) prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "monPolDn", "monPolDn", 14498, PropCategory.REGULAR) prop.label = "Monitoring policy attached to this observable object" prop.isImplicit = True prop.isAdmin = True meta.props.add("monPolDn", prop) prop = PropMeta("str", "name", "name", 3669, PropCategory.REGULAR) prop.label = "Name" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.range = [(1, 128)] meta.props.add("name", prop) prop = PropMeta("str", "operErr", "operErr", 3672, PropCategory.REGULAR) prop.label = "Operational Errors Qualifier" prop.isOper = True prop._addConstant("feature-unsupported", "feature-unsupported", 64) prop._addConstant("init-err", "initialization-error", 1) prop._addConstant("int-err", "internal-error", 8) prop._addConstant("ipc-err", "ipc-error", 4) prop._addConstant("mem-err", "memory-error", 2) prop._addConstant("proto-err", "protocol-error", 32) prop._addConstant("sock-err", "socket-error", 16) meta.props.add("operErr", prop) prop = PropMeta("str", "operSt", "operSt", 3671, PropCategory.REGULAR) prop.label = "Operational State" prop.isOper = True prop.defaultValue = 1 prop.defaultValueStr = "enabled" prop._addConstant("disabled", "disabled", 2) prop._addConstant("enabled", "enabled", 1) prop._addConstant("failed", "failed", 4) prop._addConstant("initializing", "initializing", 3) prop._addConstant("unknown", "unknown", 0) meta.props.add("operSt", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
615006d06bcf4d93bc93ed9798d73762df416462
947fa6a4a6155ffce0038b11f4d743603418ad68
/.c9/metadata/environment/clean_code/clean_code_submissions/clean_code_assignment_004/fb_post/utils/reply_to_comment.py
bf2b3191ba7a9a31d3d72f9ff3c6587ad9dd601e
[]
no_license
bharathi151/bharathi_diyyala
bd75e10639d7d22b332d5ce677e7799402dc4984
99f8657d010c790a0e4e4c9d6b57f81814784eb0
refs/heads/master
2022-11-21T12:43:48.401239
2020-07-23T09:05:52
2020-07-23T09:05:52
281,903,260
0
0
null
null
null
null
UTF-8
Python
false
false
12,914
py
{"filter":false,"title":"reply_to_comment.py","tooltip":"/clean_code/clean_code_submissions/clean_code_assignment_004/fb_post/utils/reply_to_comment.py","undoManager":{"mark":57,"position":57,"stack":[[{"start":{"row":21,"column":45},"end":{"row":22,"column":0},"action":"insert","lines":["",""],"id":2},{"start":{"row":22,"column":0},"end":{"row":22,"column":8},"action":"insert","lines":[" "]}],[{"start":{"row":22,"column":4},"end":{"row":22,"column":8},"action":"remove","lines":[" "],"id":3},{"start":{"row":22,"column":0},"end":{"row":22,"column":4},"action":"remove","lines":[" "]}],[{"start":{"row":21,"column":8},"end":{"row":21,"column":45},"action":"remove","lines":["is_valid_reply_content(reply_content)"],"id":4}],[{"start":{"row":21,"column":4},"end":{"row":21,"column":8},"action":"remove","lines":[" "],"id":5},{"start":{"row":21,"column":0},"end":{"row":21,"column":4},"action":"remove","lines":[" "]},{"start":{"row":20,"column":53},"end":{"row":21,"column":0},"action":"remove","lines":["",""]}],[{"start":{"row":18,"column":66},"end":{"row":19,"column":0},"action":"insert","lines":["",""],"id":6},{"start":{"row":19,"column":0},"end":{"row":19,"column":4},"action":"insert","lines":[" "]}],[{"start":{"row":19,"column":4},"end":{"row":19,"column":41},"action":"insert","lines":["is_valid_reply_content(reply_content)"],"id":7}],[{"start":{"row":19,"column":41},"end":{"row":20,"column":0},"action":"insert","lines":["",""],"id":8},{"start":{"row":20,"column":0},"end":{"row":20,"column":4},"action":"insert","lines":[" "]}],[{"start":{"row":20,"column":0},"end":{"row":20,"column":4},"action":"remove","lines":[" "],"id":9},{"start":{"row":19,"column":41},"end":{"row":20,"column":0},"action":"remove","lines":["",""]}],[{"start":{"row":19,"column":41},"end":{"row":20,"column":0},"action":"insert","lines":["",""],"id":10},{"start":{"row":20,"column":0},"end":{"row":20,"column":4},"action":"insert","lines":[" "]}],[{"start":{"row":8,"column":49},"end":{"row":9,"column":0},"action":"insert","lines":["",""],"id":11},{"start":{"row":9,"column":0},"end":{"row":9,"column":12},"action":"insert","lines":[" "]}],[{"start":{"row":9,"column":8},"end":{"row":9,"column":12},"action":"remove","lines":[" "],"id":12},{"start":{"row":9,"column":4},"end":{"row":9,"column":8},"action":"remove","lines":[" "]},{"start":{"row":9,"column":0},"end":{"row":9,"column":4},"action":"remove","lines":[" "]},{"start":{"row":8,"column":49},"end":{"row":9,"column":0},"action":"remove","lines":["",""]}],[{"start":{"row":8,"column":34},"end":{"row":8,"column":35},"action":"insert","lines":["\\"],"id":13}],[{"start":{"row":8,"column":35},"end":{"row":9,"column":0},"action":"insert","lines":["",""],"id":14},{"start":{"row":9,"column":0},"end":{"row":9,"column":8},"action":"insert","lines":[" "]}],[{"start":{"row":9,"column":8},"end":{"row":9,"column":12},"action":"insert","lines":[" "],"id":15}],[{"start":{"row":9,"column":12},"end":{"row":9,"column":16},"action":"insert","lines":[" "],"id":16}],[{"start":{"row":9,"column":16},"end":{"row":9,"column":20},"action":"insert","lines":[" "],"id":17}],[{"start":{"row":9,"column":20},"end":{"row":9,"column":24},"action":"insert","lines":[" "],"id":18}],[{"start":{"row":10,"column":48},"end":{"row":10,"column":49},"action":"remove","lines":[" "],"id":19},{"start":{"row":10,"column":44},"end":{"row":10,"column":48},"action":"remove","lines":[" "]},{"start":{"row":10,"column":40},"end":{"row":10,"column":44},"action":"remove","lines":[" "]}],[{"start":{"row":10,"column":46},"end":{"row":11,"column":0},"action":"insert","lines":["",""],"id":20},{"start":{"row":11,"column":0},"end":{"row":11,"column":40},"action":"insert","lines":[" "]}],[{"start":{"row":11,"column":36},"end":{"row":11,"column":40},"action":"remove","lines":[" "],"id":21},{"start":{"row":11,"column":32},"end":{"row":11,"column":36},"action":"remove","lines":[" "]},{"start":{"row":11,"column":28},"end":{"row":11,"column":32},"action":"remove","lines":[" "]},{"start":{"row":11,"column":24},"end":{"row":11,"column":28},"action":"remove","lines":[" "]}],[{"start":{"row":18,"column":37},"end":{"row":19,"column":0},"action":"insert","lines":["",""],"id":22},{"start":{"row":19,"column":0},"end":{"row":19,"column":8},"action":"insert","lines":[" "]},{"start":{"row":19,"column":8},"end":{"row":19,"column":9},"action":"insert","lines":["r"]},{"start":{"row":19,"column":9},"end":{"row":19,"column":10},"action":"insert","lines":["e"]}],[{"start":{"row":19,"column":10},"end":{"row":19,"column":11},"action":"insert","lines":["r"],"id":23},{"start":{"row":19,"column":11},"end":{"row":19,"column":12},"action":"insert","lines":["u"]}],[{"start":{"row":19,"column":11},"end":{"row":19,"column":12},"action":"remove","lines":["u"],"id":24},{"start":{"row":19,"column":10},"end":{"row":19,"column":11},"action":"remove","lines":["r"]}],[{"start":{"row":19,"column":10},"end":{"row":19,"column":11},"action":"insert","lines":["t"],"id":25},{"start":{"row":19,"column":11},"end":{"row":19,"column":12},"action":"insert","lines":["u"]},{"start":{"row":19,"column":12},"end":{"row":19,"column":13},"action":"insert","lines":["r"]},{"start":{"row":19,"column":13},"end":{"row":19,"column":14},"action":"insert","lines":["n"]}],[{"start":{"row":19,"column":14},"end":{"row":20,"column":0},"action":"insert","lines":["",""],"id":26},{"start":{"row":20,"column":0},"end":{"row":20,"column":8},"action":"insert","lines":[" "]},{"start":{"row":20,"column":4},"end":{"row":20,"column":8},"action":"remove","lines":[" "]}],[{"start":{"row":20,"column":0},"end":{"row":20,"column":4},"action":"remove","lines":[" "],"id":27}],[{"start":{"row":20,"column":0},"end":{"row":21,"column":0},"action":"insert","lines":["",""],"id":28}],[{"start":{"row":19,"column":8},"end":{"row":19,"column":14},"action":"remove","lines":["return"],"id":29},{"start":{"row":19,"column":4},"end":{"row":19,"column":8},"action":"remove","lines":[" "]}],[{"start":{"row":13,"column":8},"end":{"row":15,"column":29},"action":"remove","lines":["new_comment_id = comment_creation(user_id, comment_id,"," reply_content, comment)"," return new_comment_id"],"id":30}],[{"start":{"row":13,"column":4},"end":{"row":13,"column":8},"action":"remove","lines":[" "],"id":31},{"start":{"row":13,"column":0},"end":{"row":13,"column":4},"action":"remove","lines":[" "]}],[{"start":{"row":17,"column":0},"end":{"row":17,"column":4},"action":"remove","lines":[" "],"id":32}],[{"start":{"row":18,"column":0},"end":{"row":18,"column":4},"action":"insert","lines":[" "],"id":33}],[{"start":{"row":18,"column":4},"end":{"row":20,"column":29},"action":"insert","lines":["new_comment_id = comment_creation(user_id, comment_id,"," reply_content, comment)"," return new_comment_id"],"id":34}],[{"start":{"row":20,"column":6},"end":{"row":20,"column":7},"action":"remove","lines":[" "],"id":35}],[{"start":{"row":20,"column":6},"end":{"row":20,"column":7},"action":"remove","lines":[" "],"id":36},{"start":{"row":20,"column":5},"end":{"row":20,"column":6},"action":"remove","lines":[" "]},{"start":{"row":20,"column":4},"end":{"row":20,"column":5},"action":"remove","lines":[" "]}],[{"start":{"row":13,"column":0},"end":{"row":14,"column":0},"action":"remove","lines":["",""],"id":37},{"start":{"row":12,"column":0},"end":{"row":13,"column":0},"action":"remove","lines":["",""]}],[{"start":{"row":10,"column":36},"end":{"row":10,"column":40},"action":"remove","lines":[" "],"id":38}],[{"start":{"row":10,"column":36},"end":{"row":10,"column":37},"action":"insert","lines":[" "],"id":39},{"start":{"row":10,"column":37},"end":{"row":10,"column":38},"action":"insert","lines":[" "]},{"start":{"row":10,"column":38},"end":{"row":10,"column":39},"action":"insert","lines":[" "]},{"start":{"row":10,"column":39},"end":{"row":10,"column":40},"action":"insert","lines":[" "]}],[{"start":{"row":10,"column":36},"end":{"row":10,"column":40},"action":"remove","lines":[" "],"id":40}],[{"start":{"row":10,"column":36},"end":{"row":10,"column":37},"action":"insert","lines":[" "],"id":41},{"start":{"row":10,"column":37},"end":{"row":10,"column":38},"action":"insert","lines":[" "]},{"start":{"row":10,"column":38},"end":{"row":10,"column":39},"action":"insert","lines":[" "]}],[{"start":{"row":11,"column":20},"end":{"row":11,"column":24},"action":"remove","lines":[" "],"id":42}],[{"start":{"row":11,"column":16},"end":{"row":11,"column":20},"action":"remove","lines":[" "],"id":43},{"start":{"row":11,"column":12},"end":{"row":11,"column":16},"action":"remove","lines":[" "]}],[{"start":{"row":11,"column":12},"end":{"row":11,"column":16},"action":"insert","lines":[" "],"id":44}],[{"start":{"row":11,"column":16},"end":{"row":11,"column":20},"action":"insert","lines":[" "],"id":45}],[{"start":{"row":11,"column":16},"end":{"row":11,"column":20},"action":"remove","lines":[" "],"id":46}],[{"start":{"row":11,"column":16},"end":{"row":11,"column":17},"action":"insert","lines":[" "],"id":47}],[{"start":{"row":11,"column":16},"end":{"row":11,"column":17},"action":"remove","lines":[" "],"id":48},{"start":{"row":11,"column":12},"end":{"row":11,"column":16},"action":"remove","lines":[" "]},{"start":{"row":11,"column":8},"end":{"row":11,"column":12},"action":"remove","lines":[" "]},{"start":{"row":11,"column":4},"end":{"row":11,"column":8},"action":"remove","lines":[" "]},{"start":{"row":11,"column":0},"end":{"row":11,"column":4},"action":"remove","lines":[" "]}],[{"start":{"row":10,"column":45},"end":{"row":11,"column":0},"action":"remove","lines":["",""],"id":49},{"start":{"row":10,"column":44},"end":{"row":10,"column":45},"action":"remove","lines":["'"]}],[{"start":{"row":10,"column":44},"end":{"row":10,"column":45},"action":"insert","lines":["'"],"id":50}],[{"start":{"row":10,"column":38},"end":{"row":10,"column":39},"action":"remove","lines":[" "],"id":51},{"start":{"row":10,"column":37},"end":{"row":10,"column":38},"action":"remove","lines":[" "]},{"start":{"row":10,"column":36},"end":{"row":10,"column":37},"action":"remove","lines":[" "]},{"start":{"row":10,"column":32},"end":{"row":10,"column":36},"action":"remove","lines":[" "]},{"start":{"row":10,"column":28},"end":{"row":10,"column":32},"action":"remove","lines":[" "]},{"start":{"row":10,"column":24},"end":{"row":10,"column":28},"action":"remove","lines":[" "]},{"start":{"row":10,"column":20},"end":{"row":10,"column":24},"action":"remove","lines":[" "]},{"start":{"row":10,"column":16},"end":{"row":10,"column":20},"action":"remove","lines":[" "]},{"start":{"row":10,"column":12},"end":{"row":10,"column":16},"action":"remove","lines":[" "]}],[{"start":{"row":10,"column":8},"end":{"row":10,"column":12},"action":"remove","lines":[" "],"id":52},{"start":{"row":10,"column":4},"end":{"row":10,"column":8},"action":"remove","lines":[" "]},{"start":{"row":10,"column":0},"end":{"row":10,"column":4},"action":"remove","lines":[" "]},{"start":{"row":9,"column":56},"end":{"row":10,"column":0},"action":"remove","lines":["",""]}],[{"start":{"row":9,"column":56},"end":{"row":9,"column":57},"action":"insert","lines":[" "],"id":53}],[{"start":{"row":9,"column":39},"end":{"row":10,"column":0},"action":"insert","lines":["",""],"id":54},{"start":{"row":10,"column":0},"end":{"row":10,"column":28},"action":"insert","lines":[" "]}],[{"start":{"row":10,"column":52},"end":{"row":11,"column":0},"action":"insert","lines":["",""],"id":55},{"start":{"row":11,"column":0},"end":{"row":11,"column":28},"action":"insert","lines":[" "]}],[{"start":{"row":11,"column":24},"end":{"row":11,"column":28},"action":"remove","lines":[" "],"id":56}],[{"start":{"row":17,"column":41},"end":{"row":17,"column":42},"action":"remove","lines":[" "],"id":57},{"start":{"row":17,"column":40},"end":{"row":17,"column":41},"action":"remove","lines":[" "]},{"start":{"row":17,"column":36},"end":{"row":17,"column":40},"action":"remove","lines":[" "]}],[{"start":{"row":17,"column":36},"end":{"row":17,"column":37},"action":"insert","lines":[" "],"id":58},{"start":{"row":17,"column":37},"end":{"row":17,"column":38},"action":"insert","lines":[" "]}],[{"start":{"row":23,"column":0},"end":{"row":23,"column":4},"action":"remove","lines":[" "],"id":59}]]},"ace":{"folds":[],"scrolltop":199.04411764705884,"scrollleft":0,"selection":{"start":{"row":4,"column":0},"end":{"row":38,"column":0},"isBackwards":false},"options":{"guessTabSize":true,"useWrapMode":false,"wrapToView":true},"firstLineState":{"row":10,"state":"start","mode":"ace/mode/python"}},"timestamp":1588050830706,"hash":"97b5a1bf73781825fea117ab0236a3a13f64600e"}
7f78ff3bbfee0ec659df2d2fe6639af9fe66f59b
72b00923d4aa11891f4a3038324c8952572cc4b2
/python/datastruct/dd_oob/pgm06_13.txt
68d0a171c8d350cdcfdc58f5ebe0b45790150e1e
[]
no_license
taowuwen/codec
3698110a09a770407e8fb631e21d86ba5a885cd5
d92933b07f21dae950160a91bb361fa187e26cd2
refs/heads/master
2022-03-17T07:43:55.574505
2022-03-10T05:20:44
2022-03-10T05:20:44
87,379,261
0
0
null
2019-03-25T15:40:27
2017-04-06T02:50:54
C
UTF-8
Python
false
false
1,058
txt
# # This file contains the Python code from Program 6.13 of # "Data Structures and Algorithms # with Object-Oriented Design Patterns in Python" # by Bruno R. Preiss. # # Copyright (c) 2003 by Bruno R. Preiss, P.Eng. All rights reserved. # # http://www.brpreiss.com/books/opus7/programs/pgm06_13.txt # class QueueAsArray(Queue): def getHead(self): if self._count == 0: raise ContainerEmpty return self._array[self._head] def enqueue(self, obj): if self._count == len(self._array): raise ContainerFull self._tail = self._tail + 1 if self._tail == len(self._array): self._tail = 0 self._array[self._tail] = obj self._count += 1 def dequeue(self): if self._count == 0: raise ContainerEmpty result = self._array[self._head] self._array[self._head] = None self._head = self._head + 1 if self._head == len(self._array): self._head = 0 self._count -= 1 return result # ...
1ddbfb75321c4a6c9628325701f965d26cc4ace3
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03254/s765346849.py
33081586b65e211540fb56775a50c4be338f79f8
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
n, x = map(int, input().split()) a = list(map(int, input().split())) a.sort() ans = 0 for i in range(n-1): if x >= a[i]: x -= a[i] ans += 1 if x == a[-1]: ans += 1 print(ans)
4219a4b68fda829e5ffe9f53e3fc479e6f4e4f2f
26f6313772161851b3b28b32a4f8d255499b3974
/Python/PseudoPalindromicPathsinaBinaryTree.py
f55438ead603aea16a74885f9461cc385a4c486d
[]
no_license
here0009/LeetCode
693e634a3096d929e5c842c5c5b989fa388e0fcd
f96a2273c6831a8035e1adacfa452f73c599ae16
refs/heads/master
2023-06-30T19:07:23.645941
2021-07-31T03:38:51
2021-07-31T03:38:51
266,287,834
1
0
null
null
null
null
UTF-8
Python
false
false
2,315
py
""" Given a binary tree where node values are digits from 1 to 9. A path in the binary tree is said to be pseudo-palindromic if at least one permutation of the node values in the path is a palindrome. Return the number of pseudo-palindromic paths going from the root node to leaf nodes. Example 1: Input: root = [2,3,1,3,1,null,1] Output: 2 Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the red path [2,3,3], the green path [2,1,1], and the path [2,3,1]. Among these paths only red path and green path are pseudo-palindromic paths since the red path [2,3,3] can be rearranged in [3,2,3] (palindrome) and the green path [2,1,1] can be rearranged in [1,2,1] (palindrome). Example 2: Input: root = [2,1,1,1,3,null,null,null,null,null,1] Output: 1 Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the green path [2,1,1], the path [2,1,3,1], and the path [2,1]. Among these paths only the green path is pseudo-palindromic since [2,1,1] can be rearranged in [1,2,1] (palindrome). Example 3: Input: root = [9] Output: 1 Constraints: The given binary tree will have between 1 and 10^5 nodes. Node values are digits from 1 to 9. """ # Definition for a binary tree node. from collections import Counter class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def pseudoPalindromicPaths(self, root: TreeNode) -> int: def ispseduoPalindrom(string): """ return whether a string is a pseudoPalindrom if the counts of a letter is odd, then odd +=1 if odd >=2, then the string is not a pseudoPalindrom """ c_string = Counter(string) odds = sum([v % 2 for v in c_string.values()]) return odds < 2 def dfs(node, string): if node: string += str(node.val) if not node.left and not node.right: res += int(ispseduoPalindrom(string)) dfs(node.left, string) dfs(node.right, string) res = 0 dfs(root, '') return res
4b1e6ff8dcab39ce71d92053b69511dbb5cc419d
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/APPIAN-STRATUM-MIB.py
06de6f8880fa3548a8b448db96e72c44e32cc272
[ "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
19,741
py
# # PySNMP MIB module APPIAN-STRATUM-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/APPIAN-STRATUM-MIB # Produced by pysmi-0.3.4 at Wed May 1 11:23:58 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # acChassisCurrentTime, acChassisRingId = mibBuilder.importSymbols("APPIAN-CHASSIS-MIB", "acChassisCurrentTime", "acChassisRingId") acOsap, AcOpStatus, AcNodeId = mibBuilder.importSymbols("APPIAN-SMI-MIB", "acOsap", "AcOpStatus", "AcNodeId") ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ConstraintsIntersection, SingleValueConstraint, ConstraintsUnion, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ConstraintsIntersection", "SingleValueConstraint", "ConstraintsUnion", "ValueSizeConstraint") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") IpAddress, ModuleIdentity, Bits, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType, TimeTicks, Counter64, Gauge32, ObjectIdentity, Counter32, MibIdentifier, Integer32, iso, Unsigned32 = mibBuilder.importSymbols("SNMPv2-SMI", "IpAddress", "ModuleIdentity", "Bits", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType", "TimeTicks", "Counter64", "Gauge32", "ObjectIdentity", "Counter32", "MibIdentifier", "Integer32", "iso", "Unsigned32") TruthValue, DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "TruthValue", "DisplayString", "TextualConvention") acStratum = ModuleIdentity((1, 3, 6, 1, 4, 1, 2785, 2, 9)) acStratum.setRevisions(('1900-08-22 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: acStratum.setRevisionsDescriptions(('Draft MIB for Engineering use only.',)) if mibBuilder.loadTexts: acStratum.setLastUpdated('0008220000Z') if mibBuilder.loadTexts: acStratum.setOrganization('Appian Communications, Inc.') if mibBuilder.loadTexts: acStratum.setContactInfo('Brian Johnson') if mibBuilder.loadTexts: acStratum.setDescription('Appian Communications Stratum MIB contain the definitions for the configuration and control of Stratum Clock module hardware information and status.') acStratumTable = MibTable((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1), ) if mibBuilder.loadTexts: acStratumTable.setStatus('current') if mibBuilder.loadTexts: acStratumTable.setDescription('This table contains two rows for access and control of the Stratum-3 clock modules.') acStratumEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1), ).setIndexNames((0, "APPIAN-STRATUM-MIB", "acStratumNodeId")) if mibBuilder.loadTexts: acStratumEntry.setStatus('current') if mibBuilder.loadTexts: acStratumEntry.setDescription('A row within the Stratum table containing access control and status information relating to the operation of the Stratum-3 clock module.') acStratumNodeId = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 1), AcNodeId()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: acStratumNodeId.setStatus('current') if mibBuilder.loadTexts: acStratumNodeId.setDescription("The unique node identification number representing a chassis within a ring of OSAP's.") acStratumClockSource = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("internal", 1), ("bits", 2), ("line", 3))).clone('internal')).setMaxAccess("readwrite") if mibBuilder.loadTexts: acStratumClockSource.setStatus('current') if mibBuilder.loadTexts: acStratumClockSource.setDescription('This attribute determines the clock source.') acStratumOpStatusModuleA = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 3), AcOpStatus()).setMaxAccess("readonly") if mibBuilder.loadTexts: acStratumOpStatusModuleA.setStatus('current') if mibBuilder.loadTexts: acStratumOpStatusModuleA.setDescription('This field indicates the current operational status for the clock card in slot 16, module A . Only the following values are applicable to the module: operational, offline, initializing, selfTesting, upgrading, standby, shuttingDown, failed, and hw not present.') acStratumOpStatusModuleB = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 4), AcOpStatus()).setMaxAccess("readonly") if mibBuilder.loadTexts: acStratumOpStatusModuleB.setStatus('current') if mibBuilder.loadTexts: acStratumOpStatusModuleB.setDescription('This field indicates the current operational status for the clock card in slot 16, module B . Only the following values are applicable to the module: operational, offline, initializing, selfTesting, upgrading, standby, shuttingDown, failed, and hw not present.') acStratumAlarmStatusModuleA = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 6))).setMaxAccess("readonly") if mibBuilder.loadTexts: acStratumAlarmStatusModuleA.setStatus('current') if mibBuilder.loadTexts: acStratumAlarmStatusModuleA.setDescription('This attribute contains the current status of the clock alarms. The acStratumAlarmStatus is a bit map represented as a sum. Normal may only be set if and only if no other alarms are set. The various bit positions are: 1 normal No alarm present 2 los Loss of Signal 4 lof Loss of Frame ') acStratumAlarmStatusModuleB = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 6))).setMaxAccess("readonly") if mibBuilder.loadTexts: acStratumAlarmStatusModuleB.setStatus('current') if mibBuilder.loadTexts: acStratumAlarmStatusModuleB.setDescription('This attribute contains the current status of the clock alarms. The acStratumAlarmStatus is a bit map represented as a sum. Normal must be set if and oly if no other flash is set. The various bit positions are: 1 normal No alarm present 2 los Loss of Signal 4 lof Loss of Frame ') acStratumCurrentClockSourceModuleA = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))).clone(namedValues=NamedValues(("unknown", 0), ("none", 1), ("bits-a", 2), ("bits-b", 3), ("line-slot1-port1", 4), ("line-slot1-port2", 5), ("line-slot2-port1", 6), ("line-slot2-port2", 7), ("holdover", 8), ("internal", 9)))).setMaxAccess("readonly") if mibBuilder.loadTexts: acStratumCurrentClockSourceModuleA.setStatus('current') if mibBuilder.loadTexts: acStratumCurrentClockSourceModuleA.setDescription('This attribute displays the current source that the clock card is selecting.') acStratumCurrentClockSourceModuleB = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))).clone(namedValues=NamedValues(("unknown", 0), ("none", 1), ("bits-a", 2), ("bits-b", 3), ("line-slot1-port1", 4), ("line-slot1-port2", 5), ("line-slot2-port1", 6), ("line-slot2-port2", 7), ("holdover", 8), ("internal", 9)))).setMaxAccess("readonly") if mibBuilder.loadTexts: acStratumCurrentClockSourceModuleB.setStatus('current') if mibBuilder.loadTexts: acStratumCurrentClockSourceModuleB.setDescription('This attribute displays the current source that the clock card is selecting.') acStratumLockoutReference = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 9), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 63))).setMaxAccess("readwrite") if mibBuilder.loadTexts: acStratumLockoutReference.setStatus('current') if mibBuilder.loadTexts: acStratumLockoutReference.setDescription('This attribute is a bit mask of clock references that should be locked out from selection for the clock source. None can only be selected when no other lockout references are selected. The various bit positions are: 0 none No clock references are locked out from selection. 1 bits-a BITS source from clock module A is locked out. 2 bits-b BITS source from clock module B is locked out. 4 line-slot1 LINE timing source from SONET slot 1 is locked out. 8 line-slot2 LINE timing source from SONET slot 2 is locked out. 16 holdover-a Holdover from clock module A is locked out. 32 holdover-b Holdover from clock module B is locked out. ') acStratumManualSwitch = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4))).clone(namedValues=NamedValues(("none", 0), ("bits-a", 1), ("bits-b", 2), ("line-slot1", 3), ("line-slot2", 4)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: acStratumManualSwitch.setStatus('current') if mibBuilder.loadTexts: acStratumManualSwitch.setDescription('This attribute will manually switch the clock references. If the clock reference does not exist, is locked out, or the reference has failed, the switch will not take place.') acStratumForcedSwitch = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 11), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4))).clone(namedValues=NamedValues(("none", 0), ("bits-a", 1), ("bits-b", 2), ("line-slot1", 3), ("line-slot2", 4)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: acStratumForcedSwitch.setStatus('current') if mibBuilder.loadTexts: acStratumForcedSwitch.setDescription('This attribute will force switch the clock references. If the clock reference does not exist or is locked out, the switch will not take place.') acStratumRevertiveRefSwitchEnabled = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 12), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: acStratumRevertiveRefSwitchEnabled.setStatus('current') if mibBuilder.loadTexts: acStratumRevertiveRefSwitchEnabled.setDescription('Setting of this attribute to true(1) will the reference to revert back to the original reference when that reference become ready again.') acStratumClearAlarms = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 13), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: acStratumClearAlarms.setStatus('current') if mibBuilder.loadTexts: acStratumClearAlarms.setDescription('Setting of this attribute to true(1) will cause the alarm contacts to clear. Reading this attribute will always return false.') acStratumLineTimingPortSlot1 = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 14), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2)).clone(1)).setMaxAccess("readwrite") if mibBuilder.loadTexts: acStratumLineTimingPortSlot1.setStatus('current') if mibBuilder.loadTexts: acStratumLineTimingPortSlot1.setDescription('When configured for line timing, this value describes which port on the SONET card will be used to drive the line. This value is not applicable when not configured for line timing.') acStratumLineTimingPortSlot2 = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 15), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2)).clone(1)).setMaxAccess("readwrite") if mibBuilder.loadTexts: acStratumLineTimingPortSlot2.setStatus('current') if mibBuilder.loadTexts: acStratumLineTimingPortSlot2.setDescription('When configured for line timing, this value describes which port on the SONET card will be used to drive the line. This value is not applicable when not configured for line timing.') acStratumBITSFramingType = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 16), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("esf", 1), ("d4", 2))).clone('esf')).setMaxAccess("readwrite") if mibBuilder.loadTexts: acStratumBITSFramingType.setStatus('current') if mibBuilder.loadTexts: acStratumBITSFramingType.setDescription('When configured for BITS timing, this value describes the type of framing that will be used on the BITS interface. This value is not applicable when not configured for BITS timing.') acStratumCurrentClockSourceSystem = MibTableColumn((1, 3, 6, 1, 4, 1, 2785, 2, 9, 1, 1, 17), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12))).clone(namedValues=NamedValues(("unknown", 0), ("bits-a", 1), ("bits-b", 2), ("line-slot1-port1", 3), ("line-slot1-port2", 4), ("line-slot2-port1", 5), ("line-slot2-port2", 6), ("holdover-clock-a", 7), ("holdover-clock-b", 8), ("internal-clock-a", 9), ("internal-clock-b", 10), ("internal-sonet-slot1", 11), ("internal-sonet-slot2", 12)))).setMaxAccess("readonly") if mibBuilder.loadTexts: acStratumCurrentClockSourceSystem.setStatus('current') if mibBuilder.loadTexts: acStratumCurrentClockSourceSystem.setDescription('This attribute displays the current clock source that the system is selecting.') acStratumTraps = MibIdentifier((1, 3, 6, 1, 4, 1, 2785, 2, 9, 0)) acStratumFailedModuleATrap = NotificationType((1, 3, 6, 1, 4, 1, 2785, 2, 9, 0, 1)).setObjects(("APPIAN-CHASSIS-MIB", "acChassisCurrentTime"), ("APPIAN-CHASSIS-MIB", "acChassisRingId"), ("APPIAN-STRATUM-MIB", "acStratumNodeId")) if mibBuilder.loadTexts: acStratumFailedModuleATrap.setStatus('current') if mibBuilder.loadTexts: acStratumFailedModuleATrap.setDescription('The stratum clock module failed.') acStratumFailedModuleBTrap = NotificationType((1, 3, 6, 1, 4, 1, 2785, 2, 9, 0, 2)).setObjects(("APPIAN-CHASSIS-MIB", "acChassisCurrentTime"), ("APPIAN-CHASSIS-MIB", "acChassisRingId"), ("APPIAN-STRATUM-MIB", "acStratumNodeId")) if mibBuilder.loadTexts: acStratumFailedModuleBTrap.setStatus('current') if mibBuilder.loadTexts: acStratumFailedModuleBTrap.setDescription('The stratum clock module failed.') acStratumClockFailureModuleATrap = NotificationType((1, 3, 6, 1, 4, 1, 2785, 2, 9, 0, 3)).setObjects(("APPIAN-CHASSIS-MIB", "acChassisCurrentTime"), ("APPIAN-CHASSIS-MIB", "acChassisRingId"), ("APPIAN-STRATUM-MIB", "acStratumNodeId"), ("APPIAN-STRATUM-MIB", "acStratumAlarmStatusModuleA")) if mibBuilder.loadTexts: acStratumClockFailureModuleATrap.setStatus('current') if mibBuilder.loadTexts: acStratumClockFailureModuleATrap.setDescription('Stratum clock agent has detected a clock timing failure.') acStratumClockFailureModuleBTrap = NotificationType((1, 3, 6, 1, 4, 1, 2785, 2, 9, 0, 4)).setObjects(("APPIAN-CHASSIS-MIB", "acChassisCurrentTime"), ("APPIAN-CHASSIS-MIB", "acChassisRingId"), ("APPIAN-STRATUM-MIB", "acStratumNodeId"), ("APPIAN-STRATUM-MIB", "acStratumAlarmStatusModuleB")) if mibBuilder.loadTexts: acStratumClockFailureModuleBTrap.setStatus('current') if mibBuilder.loadTexts: acStratumClockFailureModuleBTrap.setDescription('Stratum clock agent has detected a clock timing failure.') acStratumRemovalModuleATrap = NotificationType((1, 3, 6, 1, 4, 1, 2785, 2, 9, 0, 5)).setObjects(("APPIAN-CHASSIS-MIB", "acChassisCurrentTime"), ("APPIAN-CHASSIS-MIB", "acChassisRingId"), ("APPIAN-STRATUM-MIB", "acStratumNodeId")) if mibBuilder.loadTexts: acStratumRemovalModuleATrap.setStatus('current') if mibBuilder.loadTexts: acStratumRemovalModuleATrap.setDescription('The stratum clock module has been removed from the system.') acStratumRemovalModuleBTrap = NotificationType((1, 3, 6, 1, 4, 1, 2785, 2, 9, 0, 6)).setObjects(("APPIAN-CHASSIS-MIB", "acChassisCurrentTime"), ("APPIAN-CHASSIS-MIB", "acChassisRingId"), ("APPIAN-STRATUM-MIB", "acStratumNodeId")) if mibBuilder.loadTexts: acStratumRemovalModuleBTrap.setStatus('current') if mibBuilder.loadTexts: acStratumRemovalModuleBTrap.setDescription('The stratum clock module has been removed from the system.') acStratumInsertedModuleATrap = NotificationType((1, 3, 6, 1, 4, 1, 2785, 2, 9, 0, 7)).setObjects(("APPIAN-CHASSIS-MIB", "acChassisCurrentTime"), ("APPIAN-CHASSIS-MIB", "acChassisRingId"), ("APPIAN-STRATUM-MIB", "acStratumNodeId")) if mibBuilder.loadTexts: acStratumInsertedModuleATrap.setStatus('current') if mibBuilder.loadTexts: acStratumInsertedModuleATrap.setDescription('A stratum clock module has been inserted into the system.') acStratumInsertedModuleBTrap = NotificationType((1, 3, 6, 1, 4, 1, 2785, 2, 9, 0, 8)).setObjects(("APPIAN-CHASSIS-MIB", "acChassisCurrentTime"), ("APPIAN-CHASSIS-MIB", "acChassisRingId"), ("APPIAN-STRATUM-MIB", "acStratumNodeId")) if mibBuilder.loadTexts: acStratumInsertedModuleBTrap.setStatus('current') if mibBuilder.loadTexts: acStratumInsertedModuleBTrap.setDescription('A stratum clock module has been inserted into the system.') acStratumClockModuleAOk = NotificationType((1, 3, 6, 1, 4, 1, 2785, 2, 9, 0, 9)).setObjects(("APPIAN-CHASSIS-MIB", "acChassisCurrentTime"), ("APPIAN-CHASSIS-MIB", "acChassisRingId"), ("APPIAN-STRATUM-MIB", "acStratumNodeId"), ("APPIAN-STRATUM-MIB", "acStratumAlarmStatusModuleA")) if mibBuilder.loadTexts: acStratumClockModuleAOk.setStatus('current') if mibBuilder.loadTexts: acStratumClockModuleAOk.setDescription('Stratum clock agent has recovered clock timing.') acStratumClockModuleBOk = NotificationType((1, 3, 6, 1, 4, 1, 2785, 2, 9, 0, 10)).setObjects(("APPIAN-CHASSIS-MIB", "acChassisCurrentTime"), ("APPIAN-CHASSIS-MIB", "acChassisRingId"), ("APPIAN-STRATUM-MIB", "acStratumNodeId"), ("APPIAN-STRATUM-MIB", "acStratumAlarmStatusModuleB")) if mibBuilder.loadTexts: acStratumClockModuleBOk.setStatus('current') if mibBuilder.loadTexts: acStratumClockModuleBOk.setDescription('Stratum clock agent has recovered clock timing.') acStratumSystemClockSourceChange = NotificationType((1, 3, 6, 1, 4, 1, 2785, 2, 9, 0, 11)).setObjects(("APPIAN-CHASSIS-MIB", "acChassisCurrentTime"), ("APPIAN-CHASSIS-MIB", "acChassisRingId"), ("APPIAN-STRATUM-MIB", "acStratumNodeId"), ("APPIAN-STRATUM-MIB", "acStratumCurrentClockSourceSystem")) if mibBuilder.loadTexts: acStratumSystemClockSourceChange.setStatus('current') if mibBuilder.loadTexts: acStratumSystemClockSourceChange.setDescription('Stratum clock source has changed to acStratumCurrentClockSourceSystem.') mibBuilder.exportSymbols("APPIAN-STRATUM-MIB", acStratumClockFailureModuleATrap=acStratumClockFailureModuleATrap, acStratumManualSwitch=acStratumManualSwitch, acStratumClockModuleBOk=acStratumClockModuleBOk, acStratumRemovalModuleBTrap=acStratumRemovalModuleBTrap, acStratumBITSFramingType=acStratumBITSFramingType, acStratumTable=acStratumTable, acStratumRevertiveRefSwitchEnabled=acStratumRevertiveRefSwitchEnabled, acStratumRemovalModuleATrap=acStratumRemovalModuleATrap, acStratumFailedModuleBTrap=acStratumFailedModuleBTrap, acStratumLineTimingPortSlot2=acStratumLineTimingPortSlot2, acStratumInsertedModuleATrap=acStratumInsertedModuleATrap, acStratumFailedModuleATrap=acStratumFailedModuleATrap, acStratumTraps=acStratumTraps, acStratumAlarmStatusModuleA=acStratumAlarmStatusModuleA, acStratumNodeId=acStratumNodeId, acStratumClockModuleAOk=acStratumClockModuleAOk, acStratumOpStatusModuleB=acStratumOpStatusModuleB, acStratumForcedSwitch=acStratumForcedSwitch, acStratumCurrentClockSourceModuleA=acStratumCurrentClockSourceModuleA, acStratumAlarmStatusModuleB=acStratumAlarmStatusModuleB, acStratumCurrentClockSourceSystem=acStratumCurrentClockSourceSystem, acStratumClockSource=acStratumClockSource, acStratumCurrentClockSourceModuleB=acStratumCurrentClockSourceModuleB, PYSNMP_MODULE_ID=acStratum, acStratum=acStratum, acStratumLineTimingPortSlot1=acStratumLineTimingPortSlot1, acStratumSystemClockSourceChange=acStratumSystemClockSourceChange, acStratumEntry=acStratumEntry, acStratumOpStatusModuleA=acStratumOpStatusModuleA, acStratumClearAlarms=acStratumClearAlarms, acStratumLockoutReference=acStratumLockoutReference, acStratumClockFailureModuleBTrap=acStratumClockFailureModuleBTrap, acStratumInsertedModuleBTrap=acStratumInsertedModuleBTrap)
1b43082d768a96c889d523cd9c34162a613e63b8
5c883c87f337be7ffd52f49f0a4e6c72bbd58932
/apps/almacenes/migrations/0026_auto_20170322_1009.py
6bc93dfdfc7667e77ff7d1173f2e6f96fe4acf6f
[]
no_license
DARKDEYMON/Tesis-2-Vidaurre-J.C.
f1b0d8e8a593a9d4a585bdd14b21d4809d55ce9f
4299cea2e990ee798b02724849d747bfd558b97d
refs/heads/master
2021-06-20T09:25:53.273225
2017-05-25T22:20:31
2017-05-25T22:20:31
65,408,196
0
0
null
null
null
null
UTF-8
Python
false
false
1,348
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-03-22 14:09 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('almacenes', '0025_auto_20161029_1535'), ] operations = [ migrations.AlterField( model_name='herramientas', name='decripcion', field=models.CharField(max_length=100, unique=True), ), migrations.AlterField( model_name='insumos', name='decripcion', field=models.CharField(max_length=100, unique=True), ), migrations.AlterField( model_name='maquinaria_equipo', name='decripcion', field=models.CharField(max_length=100, unique=True), ), migrations.AlterField( model_name='material', name='decripcion', field=models.CharField(max_length=100, unique=True), ), migrations.AlterField( model_name='proveedor', name='rason_social', field=models.CharField(max_length=100, unique=True), ), migrations.AlterField( model_name='tipoactivo', name='tipo', field=models.CharField(max_length=60, unique=True), ), ]
a7a10c869e455f85d0277f3c8391df0683381241
742f8aa424b5ef4d9865dee98bebbd5f741a3831
/tests/test_pregel.py
8c876136c50ef8db82da2cb79530357b615bc4f3
[ "MIT" ]
permissive
TZubiri/python-arango
a8be86f2cf9190c2d74d99eb2ef8f5f48b9f45c6
232c2d09c7bf9b5e0b71b7ab16fbce6682db383d
refs/heads/master
2020-04-04T22:24:03.898075
2018-11-06T03:59:54
2018-11-06T03:59:54
156,322,851
0
0
null
2018-11-06T03:51:04
2018-11-06T03:51:03
null
UTF-8
Python
false
false
1,823
py
from __future__ import absolute_import, unicode_literals from six import string_types from arango.exceptions import ( PregelJobCreateError, PregelJobGetError, PregelJobDeleteError ) from tests.helpers import ( assert_raises, generate_string ) def test_pregel_attributes(db, username): assert db.pregel.context in ['default', 'async', 'batch', 'transaction'] assert db.pregel.username == username assert db.pregel.db_name == db.name assert repr(db.pregel) == '<Pregel in {}>'.format(db.name) def test_pregel_management(db, graph): # Test create pregel job job_id = db.pregel.create_job( graph.name, 'pagerank', store=False, max_gss=100, thread_count=1, async_mode=False, result_field='result', algorithm_params={'threshold': 0.000001} ) assert isinstance(job_id, int) # Test create pregel job with unsupported algorithm with assert_raises(PregelJobCreateError) as err: db.pregel.create_job(graph.name, 'invalid') assert err.value.error_code == 10 # Test get existing pregel job job = db.pregel.job(job_id) assert isinstance(job['state'], string_types) assert isinstance(job['aggregators'], dict) assert isinstance(job['gss'], int) assert isinstance(job['received_count'], int) assert isinstance(job['send_count'], int) assert isinstance(job['total_runtime'], float) # Test delete existing pregel job assert db.pregel.delete_job(job_id) is True with assert_raises(PregelJobGetError) as err: db.pregel.job(job_id) assert err.value.error_code == 10 # Test delete missing pregel job with assert_raises(PregelJobDeleteError) as err: db.pregel.delete_job(generate_string()) assert err.value.error_code == 10
6244ec064900b8dd809f7c79a459e071ac1fbc06
cfa26ab2d83f25f88c61b040e385a8e2b80fad49
/cmsplugin_cascade/cms_plugins.py
8f455e4e6ff33669d4cff5e3df130c47f22dc72d
[ "MIT" ]
permissive
jrief/djangocms-cascade
e952ed65c5f8ec14a2d81b424b0797bc5a87413d
6e4d5ec7d5cbcc076aa1ea9e16b7c55c07f0ef25
refs/heads/master
2023-07-07T07:40:20.368478
2022-09-13T14:52:53
2022-09-13T14:52:53
12,973,900
143
95
MIT
2022-05-11T08:16:45
2013-09-20T13:20:48
Python
UTF-8
Python
false
false
1,088
py
import sys from importlib import import_module from django.core.exceptions import ImproperlyConfigured from . import app_settings for module in app_settings.CASCADE_PLUGINS: try: # if a module was specified, load all plugins in module settings module_settings = import_module('{}.settings'.format(module)) module_plugins = getattr(module_settings, 'CASCADE_PLUGINS', []) for p in module_plugins: try: import_module('{}.{}'.format(module, p)) except ImportError as err: traceback = sys.exc_info()[2] msg = "Plugin {} as specified in {}.settings.CASCADE_PLUGINS could not be loaded: {}" raise ImproperlyConfigured(msg.format(p, module, err.with_traceback(traceback))) except ImportError: try: # otherwise try with cms_plugins in the named module import_module('{}.cms_plugins'.format(module)) except ImportError: # otherwise just use the named module as plugin import_module('{}'.format(module))
8bdad359dcf597e9a4a118fba408d6d99665be07
0102d0999e74deada2aacb8ccfcdc5896a2064a8
/_request.py
813f53258f15457ff6a4976a513774c2ea72de36
[ "Apache-2.0" ]
permissive
CashWin2020/VideoCrawlerEngine
1b09921add00bb492c8b01dcb0569f5d20c7bed1
175bb488dbf29cb0a7d7d15a93536889d022d1fb
refs/heads/master
2022-10-20T22:24:12.450461
2020-06-16T14:32:28
2020-06-16T14:32:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,112
py
from functools import wraps, partial from inspect import getfullargspec, iscoroutinefunction from context import impl_ctx from utils import current_time from worker import get_worker from traceback import format_exc import threading from queue import Queue import re class Request: """ Request 请求对象是用来描述从脚本的开始到完成过程中的处理方式。 name: 请求名称 """ name = None WEIGHT = 1 __simple__ = None @property def progress(self): return self.__progress__ def start_request(self, context=None): if context is None: context = {} context = impl_ctx(context) self.progress.enqueue() return get_worker(self.name).submit(self, context) def end_request(self): """ 结束请求。""" raise NotImplementedError def subrequest(self): """ 返回该请求的子请求。 """ return [] def error_handler(self, exception): """ 异常处理。""" self.progress.error(format_exc()) def getresponse(self): """ 返回响应 """ return self.__progress__.details() def get_data(self, name, default=None): return self.__progress__.data.get(name, default) def sketch(self): sketch = self.__progress__.sketch() sketch.update({ 'name': self.name, }) return sketch def details(self, log=False): return self.__progress__.details(log) def stop(self): return self.progress.stop() def __repr__(self): return f'<{self.__class__.__name__}>' def __new__(cls, *args, **kwargs): inst = object.__new__(cls) inst.__progress__ = RequestProgress() return inst def requester(request_name, weight=1, sketch_data=(), bases_cls=None, root=False, auto_search=True): """ 简单请求构建器。 Args: request_name: 请求者名称 weight: 当前请求器在百分比percent中所占的权重 sketch_data: 上传upload的数据中被sketch()返回的数据字段组成的列表。 bases_cls: root: auto_search: """ def wrapper(func): nonlocal bases_cls argnames, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations = getfullargspec(func) @wraps(func) def wrapped(*args, **kwargs): _worker = partial(inner_worker, *args, **kwargs) kws = {} # 设置默认的列表参数 for i, v in enumerate(argnames[len(argnames) - len(defaults or ()):]): kws[v] = defaults[i] narg = min(len(args), len(argnames)) # 设置列表参数 for i in range(narg): kws[argnames[i]] = args[i] # 关键词转列表参数 for k in tuple(kwargs): if k in argnames: kws[k] = kwargs.pop(k) # 设置默认的关键词参数 for k in kwonlyargs: kws[k] = kwargs.pop(k, kwonlydefaults[k]) # 设置未定义的关键词参数 kws.update({ 'args': args[narg:], 'kwargs': kwargs }) req = result(**kws) req.end_request = _worker if callable(initializer): initializer(req) if auto_search: subs = _search_request(args) subs.extend(_search_request(kwargs)) req.__subrequest__ = tuple(subs) return req initializer = None def wrapped_init(init_func): nonlocal initializer initializer = init_func return init_func wrapped.initializer = wrapped_init if iscoroutinefunction(func): async def inner_worker(*args, **kwargs): return await func(*args, **kwargs) else: def inner_worker(*args, **kwargs): return func(*args, **kwargs) def __init__(self, **kwargs): self.args = () self.kwargs = {} _ = {self.__setattr__(k, v) for k, v in kwargs.items()} def __repr__(self): return f'<{__name__}>' def subrequest(self): return self.__subrequest__ if sketch_data: def sketch(self): sk = Request.sketch(self) for k in sketch_data: sk[k] = self.get_data(k) return sk else: sketch = Request.sketch __name__ = f'{request_name.title()}Request' __slots__ = tuple(list(argnames) + kwonlyargs + ['args', 'kwargs']) class_namespace = { 'name': request_name, 'subrequest': subrequest, 'sketch': sketch, 'WEIGHT': weight, '__slots__': __slots__, '__init__': __init__, '__repr__': __repr__, '__doc__': func.__doc__, '__subrequest__': (), '__simple__': wrapped, } if bases_cls is None: bases_cls = [] if root: bases = (RootRequest,) else: bases = (Request,) if bases[0] not in bases_cls: bases_cls = bases + tuple(bases_cls) result = type(__name__, bases_cls, class_namespace) return wrapped return wrapper def get_requester(name): """ 返回指定名称的请求器。 Args: name: 请求器名称 """ for req_cls in Request.__subclasses__(): if name == req_cls.name: if req_cls.__simple__: return req_cls.__simple__ else: return req_cls return None def _is_related_types(obj): return isinstance(obj, (Request, Option, Optional)) def _search_request(arg): def _list_tuple_set(o): for v in o: if _is_related_types(v): rs.append(v) else: _do(v) def _dict(o): for k, v in o.items(): if _is_related_types(k): rs.append(k) else: _do(k) if _is_related_types(v): rs.append(v) else: _do(v) def _do(o): typ = type(o) if typ in (list, tuple, set): _list_tuple_set(o) elif typ is dict: _dict(o) elif _is_related_types(o): rs.append(o) rs = [] _do(arg) return rs class RequestProgress: EXPORT_ATTR = frozenset({ 'percent', 'speed', 'timeleft', 'status' }) EXPORT_METH = frozenset({ 'upload', 'upload_default', 'start', 'close', 'task_done', 'get_data', 'error', 'success', 'info', 'warning', 'report', 'sketch', 'details', 'add_stopper' }) __slots__ = ('data', 'logs', '_status', '_percent', '_speed', '_timeleft', '__worker__', '_stoppers', '_stoppers', '_closed', '_lock', '_started') def __init__(self): self.data = {} self.logs = [] self._status = REQ_READY self._percent = 0 self._speed = 0 self._timeleft = float('inf') self.__worker__ = None self._stoppers = Queue() self._lock = threading.Lock() self._closed = False self._started = False @property def status(self): status = self._status return status() if callable(status) else status @status.setter def status(self, value): self._status = value @property def percent(self): percent = self._percent return percent() if callable(percent) else percent @percent.setter def percent(self, value): self._percent = value @property def speed(self): speed = self._speed return speed() if callable(speed) else speed @speed.setter def speed(self, value): self._speed = value @property def timeleft(self): timeleft = self._timeleft return timeleft() if callable(timeleft) else timeleft @timeleft.setter def timeleft(self, value): self._timeleft = value def sketch(self): return { 'percent': self.percent, 'status': self.status, 'speed': self.speed, 'timeleft': self.timeleft, 'latest': (self.logs and self.logs[-1]) or '' } def details(self, log=False): data = {k: v() if callable(v) else v for k, v in self.data.items()} info = self.sketch() info.update({ 'data': data, }) if log: info['logs'] = self.logs return info def get_data(self, key, default=None): return self.data.get(key, default) def upload(self, **kwargs): """ 上传数据。 :param **kwargs: 描述信息 """ for k, v in kwargs.items(): self.data[k] = v def upload_default(self, key, default): if key not in self.data: self.data[key] = default def enqueue(self, message=''): self._status = REQ_QUEUING self.percent = 0 self.report('ENQUEUE:' + message) def start(self, worker=None): with self._lock: self._started = True self._status = REQ_RUNNING self.percent = 0 self.timeleft = float('inf') self.report('START:') self.__worker__ = worker def stop(self): self._status = REQ_STOPPED with self._lock: if self._started: if self._closed: return False while True: stopper = self._stoppers.get() if stopper is None: break try: stopper() except: pass def close(self, *args, **kwargs): self._stoppers.put(None) def add_stopper(self, func): self._stoppers.put(func) def task_done(self, message=''): if self.status == REQ_RUNNING: self._status = REQ_DONE self.percent = 100 self.timeleft = 0 self.report('TASK DONE:' + message) def error(self, message): self._status = REQ_ERROR self.report('ERROR: ' + message) def success(self, message): self.report('SUCCESS: ' + message) def info(self, message): self.report('INFO: ' + message) def warning(self, message): self.report('WARNING: ' + message) def report(self, message): message = current_time() + ' ' + message self.logs.append(message) class Optional: """ 可选请求列表 """ __slots__ = '_options', '_selected' def __init__(self, options): """ :param list: 可选择的项列表 sort_key: 项目排序的key """ self._options = options self._selected = None def __iter__(self): return iter(self._options) @property def selected(self): """ 返回被选择的项。""" if self._selected is None: raise ValueError('未选择的列表。') return self._selected def select(self, rule): """ 根据rule来选择最恰当的选项。 :param rule: 选择规则 - high: 最高质量 100 - middle: 中等质量 50 - low: 最低质量 1 - %d: 1-100 [1,100] - (注意: 倾向于高质量。) """ if rule == 'high': rule = 100 elif rule == 'low': rule = 1 elif rule == 'middle': rule = 50 if isinstance(rule, int) and 1 <= rule <= 100: selected = self._options[max(0, int((100-rule) * len(self._options) / 100) - 1)] else: selected = self._options[0] self._selected = selected return selected def __getattr__(self, item): return getattr(self._selected, item) def __repr__(self): return repr(self._selected) class Option: """ 可选列表的选项 """ __slots__ = '_content', 'descriptions' def __init__(self, content, descriptions=None): self._content = content if descriptions is None: descriptions = {} self.descriptions = descriptions def __repr__(self): return str(self._content) def __getattr__(self, item): return getattr(self._content, item) @property def content(self): return self._content class Response: def __init__(self, request, **desc): self.__name = request.name desc.update(request.progress.data) self.__datadict = desc def __getattr__(self, item): return self.__datadict[item] def __repr__(self): return '<%s %s>' % (self.__name, str(self.__dict__)) REQ_READY = 0 REQ_QUEUING = 1 REQ_RUNNING = 2 REQ_STOPPED = 3 REQ_WARNING = 4 REQ_ERROR = -1 REQ_DONE = 5 RE_VALID_PATHNAME = re.compile(r'[\\/:*?"<>|\r\n]+') class RootRequest(Request): name = 'root' discard_next = False def end_request(self): raise NotImplementedError def _all_status(iteration): status = REQ_DONE for i in iteration: _b = i.status() if _b == REQ_ERROR: status = REQ_ERROR break elif _b == REQ_STOPPED: status = REQ_STOPPED break elif _b == REQ_RUNNING: status = REQ_RUNNING break elif _b != REQ_DONE: status = REQ_QUEUING break return status def requester_info(): return_dict = {} for v in Request.__subclasses__(): return_dict[v.name] = { 'weight': v.WEIGHT } return return_dict
7ec4112133d33b3aff667aac27a9a4b8451f92f9
fbb53a3366a0f10a7eb8070620cacec5101459fb
/company/m-solutions2019/c.py
16ee9cebc54f31595a786fb0932d2b433b17b306
[]
no_license
penicillin0/atcoder
272bf0b9f211907c9f7f2491335f0d34f2dcd43b
827d5cdc03531d48a44e021bd702f80b305f64d6
refs/heads/master
2023-08-05T09:43:50.114694
2021-09-20T09:21:07
2021-09-20T09:21:07
256,395,305
0
0
null
null
null
null
UTF-8
Python
false
false
1,161
py
N = int(input()) par = [-1] * N # 親だった場合は-(その集合のサイズ) if N == 1: print(0) # xがどのグループに属しているか調べる def find(x): if par[x] < 0: return x else: par[x] = find(par[x]) return find(par[x]) # 自分のいるグループの数 def size(x): return -par[find(x)] # xとyの属する集合を併合 def unite(x, y): # 根を探す x, y = find(x), find(y) # 根が一緒 if x == y: return # 大きい方に小さい方をくっつける if size(x) < size(y): x, y = y, x # xのサイズを更新 par[x] += par[y] # yの親をxにする par[y] = x # 同じ集合に属するか判定 def same(x, y): return find(x) == find(y) AB = [list(map(int, input().split())) for _ in range(N - 1)] C = list(map(int, input().split())) for ab in AB: a, b = ab a, b = a - 1, b - 1 if same(a, b): continue else: unite(a, b) n = find(0) # print(n) ret = sum(C) - max(C) print(ret) m = C.index(max(C)) if n != m: C[n], C[m] = C[m], C[n] C = list(map(str, C)) print(' '.join(C))
3623f7dea2f82a675fd99637d86022f3c7006302
41986b7a1b95784f0a6256ae24d5942c70ced4d7
/prod/google-cloud-sdk/lib/googlecloudsdk/third_party/apis/gkehub/v1/gkehub_v1_messages.py
a3f4adacead73fa41eb1423f39268a2fe43b0d51
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
wakabayashi-seiya/terraform_gcp
ed829a5a21d5d19d6663804ee5d5f7f3d23b4ec4
f757e56779f33c2fabd8a8eed9c51ff0b897a38f
refs/heads/master
2021-07-07T21:51:35.993317
2020-03-11T05:42:57
2020-03-11T05:42:57
239,411,772
0
1
null
2021-04-30T21:05:04
2020-02-10T02:32:04
Python
UTF-8
Python
false
false
44,251
py
"""Generated message classes for gkehub version v1. """ # NOTE: This file is autogenerated and should not be edited by hand. from apitools.base.protorpclite import messages as _messages from apitools.base.py import encoding from apitools.base.py import extra_types package = 'gkehub' class AuditConfig(_messages.Message): r"""Specifies the audit configuration for a service. The configuration determines which permission types are logged, and what identities, if any, are exempted from logging. An AuditConfig must have one or more AuditLogConfigs. If there are AuditConfigs for both `allServices` and a specific service, the union of the two AuditConfigs is used for that service: the log_types specified in each AuditConfig are enabled, and the exempted_members in each AuditLogConfig are exempted. Example Policy with multiple AuditConfigs: { "audit_configs": [ { "service": "allServices" "audit_log_configs": [ { "log_type": "DATA_READ", "exempted_members": [ "user:[email protected]" ] }, { "log_type": "DATA_WRITE", }, { "log_type": "ADMIN_READ", } ] }, { "service": "sampleservice.googleapis.com" "audit_log_configs": [ { "log_type": "DATA_READ", }, { "log_type": "DATA_WRITE", "exempted_members": [ "user:[email protected]" ] } ] } ] } For sampleservice, this policy enables DATA_READ, DATA_WRITE and ADMIN_READ logging. It also exempts [email protected] from DATA_READ logging, and [email protected] from DATA_WRITE logging. Fields: auditLogConfigs: The configuration for logging of each type of permission. service: Specifies a service that will be enabled for audit logging. For example, `storage.googleapis.com`, `cloudsql.googleapis.com`. `allServices` is a special value that covers all services. """ auditLogConfigs = _messages.MessageField('AuditLogConfig', 1, repeated=True) service = _messages.StringField(2) class AuditLogConfig(_messages.Message): r"""Provides the configuration for logging a type of permissions. Example: { "audit_log_configs": [ { "log_type": "DATA_READ", "exempted_members": [ "user:[email protected]" ] }, { "log_type": "DATA_WRITE", } ] } This enables 'DATA_READ' and 'DATA_WRITE' logging, while exempting [email protected] from DATA_READ logging. Enums: LogTypeValueValuesEnum: The log type that this config enables. Fields: exemptedMembers: Specifies the identities that do not cause logging for this type of permission. Follows the same format of Binding.members. logType: The log type that this config enables. """ class LogTypeValueValuesEnum(_messages.Enum): r"""The log type that this config enables. Values: LOG_TYPE_UNSPECIFIED: Default case. Should never be this. ADMIN_READ: Admin reads. Example: CloudIAM getIamPolicy DATA_WRITE: Data writes. Example: CloudSQL Users create DATA_READ: Data reads. Example: CloudSQL Users list """ LOG_TYPE_UNSPECIFIED = 0 ADMIN_READ = 1 DATA_WRITE = 2 DATA_READ = 3 exemptedMembers = _messages.StringField(1, repeated=True) logType = _messages.EnumField('LogTypeValueValuesEnum', 2) class Binding(_messages.Message): r"""Associates `members` with a `role`. Fields: condition: The condition that is associated with this binding. NOTE: An unsatisfied condition will not allow user access via current binding. Different bindings, including their conditions, are examined independently. members: Specifies the identities requesting access for a Cloud Platform resource. `members` can have the following values: * `allUsers`: A special identifier that represents anyone who is on the internet; with or without a Google account. * `allAuthenticatedUsers`: A special identifier that represents anyone who is authenticated with a Google account or a service account. * `user:{emailid}`: An email address that represents a specific Google account. For example, `[email protected]` . * `serviceAccount:{emailid}`: An email address that represents a service account. For example, `my-other- [email protected]`. * `group:{emailid}`: An email address that represents a Google group. For example, `[email protected]`. * `deleted:user:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a user that has been recently deleted. For example, `[email protected]?uid=123456789012345678901`. If the user is recovered, this value reverts to `user:{emailid}` and the recovered user retains the role in the binding. * `deleted:serviceAccount:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a service account that has been recently deleted. For example, `my-other- [email protected]?uid=123456789012345678901`. If the service account is undeleted, this value reverts to `serviceAccount:{emailid}` and the undeleted service account retains the role in the binding. * `deleted:group:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a Google group that has been recently deleted. For example, `[email protected]?uid=123456789012345678901`. If the group is recovered, this value reverts to `group:{emailid}` and the recovered group retains the role in the binding. * `domain:{domain}`: The G Suite domain (primary) that represents all the users of that domain. For example, `google.com` or `example.com`. role: Role that is assigned to `members`. For example, `roles/viewer`, `roles/editor`, or `roles/owner`. """ condition = _messages.MessageField('Expr', 1) members = _messages.StringField(2, repeated=True) role = _messages.StringField(3) class CancelOperationRequest(_messages.Message): r"""The request message for Operations.CancelOperation.""" class ConnectAgentResource(_messages.Message): r"""ConnectAgentResource represents a Kubernetes resource manifest for connect agnet deployment. Fields: manifest: YAML manifest of the resource. type: Kubernetes type of the resource. """ manifest = _messages.StringField(1) type = _messages.MessageField('TypeMeta', 2) class Empty(_messages.Message): r"""A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for `Empty` is empty JSON object `{}`. """ class Expr(_messages.Message): r"""Represents a textual expression in the Common Expression Language (CEL) syntax. CEL is a C-like expression language. The syntax and semantics of CEL are documented at https://github.com/google/cel-spec. Example (Comparison): title: "Summary size limit" description: "Determines if a summary is less than 100 chars" expression: "document.summary.size() < 100" Example (Equality): title: "Requestor is owner" description: "Determines if requestor is the document owner" expression: "document.owner == request.auth.claims.email" Example (Logic): title: "Public documents" description: "Determine whether the document should be publicly visible" expression: "document.type != 'private' && document.type != 'internal'" Example (Data Manipulation): title: "Notification string" description: "Create a notification string with a timestamp." expression: "'New message received at ' + string(document.create_time)" The exact variables and functions that may be referenced within an expression are determined by the service that evaluates it. See the service documentation for additional information. Fields: description: Optional. Description of the expression. This is a longer text which describes the expression, e.g. when hovered over it in a UI. expression: Textual representation of an expression in Common Expression Language syntax. location: Optional. String indicating the location of the expression for error reporting, e.g. a file name and a position in the file. title: Optional. Title for the expression, i.e. a short string describing its purpose. This can be used e.g. in UIs which allow to enter the expression. """ description = _messages.StringField(1) expression = _messages.StringField(2) location = _messages.StringField(3) title = _messages.StringField(4) class GenerateConnectManifestResponse(_messages.Message): r"""Response message for `GkeHubService.GenerateConnectManifest` method. Fields: manifest: The ordered list of Kubernetes resources that need to be applied to the cluster for GKE Connect agent installation/upgrade. """ manifest = _messages.MessageField('ConnectAgentResource', 1, repeated=True) class GkeCluster(_messages.Message): r"""GkeCluster represents a k8s cluster on GKE. Fields: resourceLink: Self-link of the GCP resource for the GKE cluster. For example: //container.googleapis.com/v1/projects/my-project/zones/us- west1-a/clusters/my-cluster It can be at the most 1000 characters in length. """ resourceLink = _messages.StringField(1) class GkehubProjectsLocationsGetRequest(_messages.Message): r"""A GkehubProjectsLocationsGetRequest object. Fields: name: Resource name for the location. """ name = _messages.StringField(1, required=True) class GkehubProjectsLocationsListRequest(_messages.Message): r"""A GkehubProjectsLocationsListRequest object. Fields: filter: The standard list filter. name: The resource that owns the locations collection, if applicable. pageSize: The standard list page size. pageToken: The standard list page token. """ filter = _messages.StringField(1) name = _messages.StringField(2, required=True) pageSize = _messages.IntegerField(3, variant=_messages.Variant.INT32) pageToken = _messages.StringField(4) class GkehubProjectsLocationsMembershipsCreateRequest(_messages.Message): r"""A GkehubProjectsLocationsMembershipsCreateRequest object. Fields: membership: A Membership resource to be passed as the request body. membershipId: Required. Client chosen ID for the membership. The ID must be a valid RFC 1123 compliant DNS label. In particular, the ID must be: 1. At most 63 characters in length 2. It must consist of lower case alphanumeric characters or `-` 3. It must start and end with an alphanumeric character I.e. ID must match the regex: `[a-z0-9]([-a-z0-9]*[a-z0-9])?` with at most 63 characters. parent: Required. The parent in whose context the membership is created. The parent value is in the format: `projects/[project_id]/locations/global`. """ membership = _messages.MessageField('Membership', 1) membershipId = _messages.StringField(2) parent = _messages.StringField(3, required=True) class GkehubProjectsLocationsMembershipsDeleteRequest(_messages.Message): r"""A GkehubProjectsLocationsMembershipsDeleteRequest object. Fields: name: Required. The membership resource name in the format: `projects/[project_id]/locations/global/memberships/[membership_id]` """ name = _messages.StringField(1, required=True) class GkehubProjectsLocationsMembershipsGenerateConnectManifestRequest(_messages.Message): r"""A GkehubProjectsLocationsMembershipsGenerateConnectManifestRequest object. Fields: imagePullSecretContent: Optional. The image pull secret content for the registry, if not public. isUpgrade: Optional. If true, generate the resources for upgrade only. Some resources (e.g. secrets) generated for installation will be excluded. name: Required. The membership resource the connect agent is associated with. `projects/[project_id]/locations/global/memberships/[membership_id]`. namespace: Optional. Namespace for GKE Connect agent resources. If empty, uses 'gke-connect'. proxy: Optional. URI of a proxy if connectivity from the agent to gkeconnect.googleapis.com requires the use of a proxy. Format must be in the form http(s)://{proxy_address}, depending on the HTTP/HTTPS protocol supported by the proxy. This will direct the connect agent's outbound traffic through a HTTP(S) proxy. registry: Optional. The registry to fetch connect agent image; default to gcr.io/gkeconnect. version: Optional. The version to use for connect agent. If empty, the current default version will be used. """ imagePullSecretContent = _messages.BytesField(1) isUpgrade = _messages.BooleanField(2) name = _messages.StringField(3, required=True) namespace = _messages.StringField(4) proxy = _messages.BytesField(5) registry = _messages.StringField(6) version = _messages.StringField(7) class GkehubProjectsLocationsMembershipsGetIamPolicyRequest(_messages.Message): r"""A GkehubProjectsLocationsMembershipsGetIamPolicyRequest object. Fields: options_requestedPolicyVersion: Optional. The policy format version to be returned. Valid values are 0, 1, and 3. Requests specifying an invalid value will be rejected. Requests for policies with any conditional bindings must specify version 3. Policies without any conditional bindings may specify any valid value or leave the field unset. resource: REQUIRED: The resource for which the policy is being requested. See the operation documentation for the appropriate value for this field. """ options_requestedPolicyVersion = _messages.IntegerField(1, variant=_messages.Variant.INT32) resource = _messages.StringField(2, required=True) class GkehubProjectsLocationsMembershipsGetRequest(_messages.Message): r"""A GkehubProjectsLocationsMembershipsGetRequest object. Fields: name: Required. The Membership resource name in the format: `projects/[project_id]/locations/global/memberships/[membership_id]` """ name = _messages.StringField(1, required=True) class GkehubProjectsLocationsMembershipsListRequest(_messages.Message): r"""A GkehubProjectsLocationsMembershipsListRequest object. Fields: filter: Optional. Lists the Memberships that match the filter expression. A filter expression filters the resources listed in the response. The expression must be of the form `{field} {operator} {value}` where operators: `<`, `>`, `<=`,`>=`, `!=`, `=`, `:` are supported (colon `:` represents a HAS operator which is roughly synonymous with equality). `{field}` can refer to a proto or JSON field, or a synthetic field. Field names can be camelCase or snake_case. Examples: - Filter by name: name = "projects/foo-proj/locations/global/membership/bar - Filter by labels: - Resources that have a key called `foo` labels.foo:* - Resources that have a key called `foo` whose value is `bar` labels.foo = bar - Filter by state: - Members in CREATING state. state = CREATING orderBy: Optional. Field to use to sort the list. pageSize: Optional. When requesting a 'page' of resources, `page_size` specifies number of resources to return. If unspecified or set to 0, all resources will be returned. pageToken: Optional. Token returned by previous call to `ListMemberships` which specifies the position in the list from where to continue listing the resources. parent: Required. The parent in whose context the memberships are listed. The parent value is in the format: `projects/[project_id]/locations/global`. """ filter = _messages.StringField(1) orderBy = _messages.StringField(2) pageSize = _messages.IntegerField(3, variant=_messages.Variant.INT32) pageToken = _messages.StringField(4) parent = _messages.StringField(5, required=True) class GkehubProjectsLocationsMembershipsPatchRequest(_messages.Message): r"""A GkehubProjectsLocationsMembershipsPatchRequest object. Fields: membership: A Membership resource to be passed as the request body. name: Required. The membership resource name in the format: `projects/[project_id]/locations/global/memberships/[membership_id]` updateMask: Required. Mask of fields to update. At least one field path must be specified in this mask. """ membership = _messages.MessageField('Membership', 1) name = _messages.StringField(2, required=True) updateMask = _messages.StringField(3) class GkehubProjectsLocationsMembershipsSetIamPolicyRequest(_messages.Message): r"""A GkehubProjectsLocationsMembershipsSetIamPolicyRequest object. Fields: resource: REQUIRED: The resource for which the policy is being specified. See the operation documentation for the appropriate value for this field. setIamPolicyRequest: A SetIamPolicyRequest resource to be passed as the request body. """ resource = _messages.StringField(1, required=True) setIamPolicyRequest = _messages.MessageField('SetIamPolicyRequest', 2) class GkehubProjectsLocationsMembershipsTestIamPermissionsRequest(_messages.Message): r"""A GkehubProjectsLocationsMembershipsTestIamPermissionsRequest object. Fields: resource: REQUIRED: The resource for which the policy detail is being requested. See the operation documentation for the appropriate value for this field. testIamPermissionsRequest: A TestIamPermissionsRequest resource to be passed as the request body. """ resource = _messages.StringField(1, required=True) testIamPermissionsRequest = _messages.MessageField('TestIamPermissionsRequest', 2) class GkehubProjectsLocationsOperationsCancelRequest(_messages.Message): r"""A GkehubProjectsLocationsOperationsCancelRequest object. Fields: cancelOperationRequest: A CancelOperationRequest resource to be passed as the request body. name: The name of the operation resource to be cancelled. """ cancelOperationRequest = _messages.MessageField('CancelOperationRequest', 1) name = _messages.StringField(2, required=True) class GkehubProjectsLocationsOperationsDeleteRequest(_messages.Message): r"""A GkehubProjectsLocationsOperationsDeleteRequest object. Fields: name: The name of the operation resource to be deleted. """ name = _messages.StringField(1, required=True) class GkehubProjectsLocationsOperationsGetRequest(_messages.Message): r"""A GkehubProjectsLocationsOperationsGetRequest object. Fields: name: The name of the operation resource. """ name = _messages.StringField(1, required=True) class GkehubProjectsLocationsOperationsListRequest(_messages.Message): r"""A GkehubProjectsLocationsOperationsListRequest object. Fields: filter: The standard list filter. name: The name of the operation's parent resource. pageSize: The standard list page size. pageToken: The standard list page token. """ filter = _messages.StringField(1) name = _messages.StringField(2, required=True) pageSize = _messages.IntegerField(3, variant=_messages.Variant.INT32) pageToken = _messages.StringField(4) class GoogleRpcStatus(_messages.Message): r"""The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). Messages: DetailsValueListEntry: A DetailsValueListEntry object. Fields: code: The status code, which should be an enum value of google.rpc.Code. details: A list of messages that carry the error details. There is a common set of message types for APIs to use. message: A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client. """ @encoding.MapUnrecognizedFields('additionalProperties') class DetailsValueListEntry(_messages.Message): r"""A DetailsValueListEntry object. Messages: AdditionalProperty: An additional property for a DetailsValueListEntry object. Fields: additionalProperties: Properties of the object. Contains field @type with type URL. """ class AdditionalProperty(_messages.Message): r"""An additional property for a DetailsValueListEntry object. Fields: key: Name of the additional property. value: A extra_types.JsonValue attribute. """ key = _messages.StringField(1) value = _messages.MessageField('extra_types.JsonValue', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) code = _messages.IntegerField(1, variant=_messages.Variant.INT32) details = _messages.MessageField('DetailsValueListEntry', 2, repeated=True) message = _messages.StringField(3) class ListLocationsResponse(_messages.Message): r"""The response message for Locations.ListLocations. Fields: locations: A list of locations that matches the specified filter in the request. nextPageToken: The standard List next-page token. """ locations = _messages.MessageField('Location', 1, repeated=True) nextPageToken = _messages.StringField(2) class ListMembershipsResponse(_messages.Message): r"""Response message for the `GkeHub.ListMemberships` method. Fields: nextPageToken: A token to request the next page of resources from the `ListMemberships` method. The value of an empty string means that there are no more resources to return. resources: The list of Memberships contained within the parent. unreachable: List of locations that could not be reached while fetching this list. """ nextPageToken = _messages.StringField(1) resources = _messages.MessageField('Membership', 2, repeated=True) unreachable = _messages.StringField(3, repeated=True) class ListOperationsResponse(_messages.Message): r"""The response message for Operations.ListOperations. Fields: nextPageToken: The standard List next-page token. operations: A list of operations that matches the specified filter in the request. """ nextPageToken = _messages.StringField(1) operations = _messages.MessageField('Operation', 2, repeated=True) class Location(_messages.Message): r"""A resource that represents Google Cloud Platform location. Messages: LabelsValue: Cross-service attributes for the location. For example {"cloud.googleapis.com/region": "us-east1"} MetadataValue: Service-specific metadata. For example the available capacity at the given location. Fields: displayName: The friendly name for this location, typically a nearby city name. For example, "Tokyo". labels: Cross-service attributes for the location. For example {"cloud.googleapis.com/region": "us-east1"} locationId: The canonical id for this location. For example: `"us-east1"`. metadata: Service-specific metadata. For example the available capacity at the given location. name: Resource name for the location, which may vary between implementations. For example: `"projects/example-project/locations/us- east1"` """ @encoding.MapUnrecognizedFields('additionalProperties') class LabelsValue(_messages.Message): r"""Cross-service attributes for the location. For example {"cloud.googleapis.com/region": "us-east1"} Messages: AdditionalProperty: An additional property for a LabelsValue object. Fields: additionalProperties: Additional properties of type LabelsValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a LabelsValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) @encoding.MapUnrecognizedFields('additionalProperties') class MetadataValue(_messages.Message): r"""Service-specific metadata. For example the available capacity at the given location. Messages: AdditionalProperty: An additional property for a MetadataValue object. Fields: additionalProperties: Properties of the object. Contains field @type with type URL. """ class AdditionalProperty(_messages.Message): r"""An additional property for a MetadataValue object. Fields: key: Name of the additional property. value: A extra_types.JsonValue attribute. """ key = _messages.StringField(1) value = _messages.MessageField('extra_types.JsonValue', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) displayName = _messages.StringField(1) labels = _messages.MessageField('LabelsValue', 2) locationId = _messages.StringField(3) metadata = _messages.MessageField('MetadataValue', 4) name = _messages.StringField(5) class Membership(_messages.Message): r"""Membership contains information about a member cluster. Messages: LabelsValue: Optional. GCP labels for this membership. Fields: createTime: Output only. Timestamp for when the Membership was created. deleteTime: Output only. Timestamp for when the Membership was deleted. description: Output only. Description of this membership, limited to 63 characters. It will match the regex: `a-zA-Z0-9*` This field is present for legacy purposes. endpoint: Optional. Endpoint information to reach this member. externalId: Optional. An externally-generated and managed ID for this Membership. This ID may still be modified after creation but it is not recommended to do so. The ID must match the regex: `a-zA-Z0-9*` labels: Optional. GCP labels for this membership. lastConnectionTime: Output only. For clusters using Connect, the timestamp of the most recent connection established with Google Cloud. This time is updated every several minutes, not continuously. For clusters that do not use GKE Connect, or that have never connected successfully, this field will be unset. name: Output only. The unique name of this domain resource in the format: `projects/[project_id]/locations/global/memberships/[membership_id]`. `membership_id` can only be set at creation time using the `membership_id` field in the creation request. `membership_id` must be a valid RFC 1123 compliant DNS label. In particular, it must be: 1. At most 63 characters in length 2. It must consist of lower case alphanumeric characters or `-` 3. It must start and end with an alphanumeric character I.e. `membership_id` must match the regex: `[a-z0-9]([-a-z0-9]*[a-z0-9])?` with at most 63 characters. state: Output only. State of the Membership resource. updateTime: Output only. Timestamp for when the Membership was last updated. """ @encoding.MapUnrecognizedFields('additionalProperties') class LabelsValue(_messages.Message): r"""Optional. GCP labels for this membership. Messages: AdditionalProperty: An additional property for a LabelsValue object. Fields: additionalProperties: Additional properties of type LabelsValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a LabelsValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) createTime = _messages.StringField(1) deleteTime = _messages.StringField(2) description = _messages.StringField(3) endpoint = _messages.MessageField('MembershipEndpoint', 4) externalId = _messages.StringField(5) labels = _messages.MessageField('LabelsValue', 6) lastConnectionTime = _messages.StringField(7) name = _messages.StringField(8) state = _messages.MessageField('MembershipState', 9) updateTime = _messages.StringField(10) class MembershipEndpoint(_messages.Message): r"""MembershipEndpoint contains the information to reach a member. Fields: gkeCluster: If this Membership is a Kubernetes API server hosted on GKE, this is a self link to its GCP resource. """ gkeCluster = _messages.MessageField('GkeCluster', 1) class MembershipState(_messages.Message): r"""State of the Membership resource. Enums: CodeValueValuesEnum: Code indicating the state of the Membership resource. Fields: code: Code indicating the state of the Membership resource. description: Human readable description of the issue. updateTime: The last update time of this state by the controllers """ class CodeValueValuesEnum(_messages.Enum): r"""Code indicating the state of the Membership resource. Values: CODE_UNSPECIFIED: Not set. CREATING: CREATING indicates the cluster is being registered. READY: READY indicates the cluster is registered. DELETING: DELETING indicates that the cluster is being unregistered. UPDATING: UPDATING indicates that the cluster registration is being updated. """ CODE_UNSPECIFIED = 0 CREATING = 1 READY = 2 DELETING = 3 UPDATING = 4 code = _messages.EnumField('CodeValueValuesEnum', 1) description = _messages.StringField(2) updateTime = _messages.StringField(3) class Operation(_messages.Message): r"""This resource represents a long-running operation that is the result of a network API call. Messages: MetadataValue: Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any. ResponseValue: The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`. Fields: done: If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available. error: The error result of the operation in case of failure or cancellation. metadata: Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any. name: The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`. response: The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`. """ @encoding.MapUnrecognizedFields('additionalProperties') class MetadataValue(_messages.Message): r"""Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any. Messages: AdditionalProperty: An additional property for a MetadataValue object. Fields: additionalProperties: Properties of the object. Contains field @type with type URL. """ class AdditionalProperty(_messages.Message): r"""An additional property for a MetadataValue object. Fields: key: Name of the additional property. value: A extra_types.JsonValue attribute. """ key = _messages.StringField(1) value = _messages.MessageField('extra_types.JsonValue', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) @encoding.MapUnrecognizedFields('additionalProperties') class ResponseValue(_messages.Message): r"""The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`. Messages: AdditionalProperty: An additional property for a ResponseValue object. Fields: additionalProperties: Properties of the object. Contains field @type with type URL. """ class AdditionalProperty(_messages.Message): r"""An additional property for a ResponseValue object. Fields: key: Name of the additional property. value: A extra_types.JsonValue attribute. """ key = _messages.StringField(1) value = _messages.MessageField('extra_types.JsonValue', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) done = _messages.BooleanField(1) error = _messages.MessageField('GoogleRpcStatus', 2) metadata = _messages.MessageField('MetadataValue', 3) name = _messages.StringField(4) response = _messages.MessageField('ResponseValue', 5) class Policy(_messages.Message): r"""An Identity and Access Management (IAM) policy, which specifies access controls for Google Cloud resources. A `Policy` is a collection of `bindings`. A `binding` binds one or more `members` to a single `role`. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). A `role` is a named list of permissions; each `role` can be an IAM predefined role or a user-created custom role. Optionally, a `binding` can specify a `condition`, which is a logical expression that allows access to a resource only if the expression evaluates to `true`. A condition can add constraints based on attributes of the request, the resource, or both. **JSON example:** { "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:[email protected]", "group:[email protected]", "domain:google.com", "serviceAccount:my-project- [email protected]" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:[email protected]"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ], "etag": "BwWWja0YfJA=", "version": 3 } **YAML example:** bindings: - members: - user:[email protected] - group:[email protected] - domain:google.com - serviceAccount :[email protected] role: roles/resourcemanager.organizationAdmin - members: - user:[email protected] role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z') - etag: BwWWja0YfJA= - version: 3 For a description of IAM and its features, see the [IAM documentation](https://cloud.google.com/iam/docs/). Fields: auditConfigs: Specifies cloud audit logging configuration for this policy. bindings: Associates a list of `members` to a `role`. Optionally, may specify a `condition` that determines how and when the `bindings` are applied. Each of the `bindings` must contain at least one member. etag: `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read- modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. version: Specifies the format of the policy. Valid values are `0`, `1`, and `3`. Requests that specify an invalid value are rejected. Any operation that affects conditional role bindings must specify version `3`. This requirement applies to the following operations: * Getting a policy that includes a conditional role binding * Adding a conditional role binding to a policy * Changing a conditional role binding in a policy * Removing any role binding, with or without a condition, from a policy that includes conditions **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. If a policy does not include any conditions, operations on that policy may specify any valid version or leave the field unset. """ auditConfigs = _messages.MessageField('AuditConfig', 1, repeated=True) bindings = _messages.MessageField('Binding', 2, repeated=True) etag = _messages.BytesField(3) version = _messages.IntegerField(4, variant=_messages.Variant.INT32) class SetIamPolicyRequest(_messages.Message): r"""Request message for `SetIamPolicy` method. Fields: policy: REQUIRED: The complete policy to be applied to the `resource`. The size of the policy is limited to a few 10s of KB. An empty policy is a valid policy but certain Cloud Platform services (such as Projects) might reject them. updateMask: OPTIONAL: A FieldMask specifying which fields of the policy to modify. Only the fields in the mask will be modified. If no mask is provided, the following default mask is used: paths: "bindings, etag" This field is only used by Cloud IAM. """ policy = _messages.MessageField('Policy', 1) updateMask = _messages.StringField(2) class StandardQueryParameters(_messages.Message): r"""Query parameters accepted by all methods. Enums: FXgafvValueValuesEnum: V1 error format. AltValueValuesEnum: Data format for response. Fields: f__xgafv: V1 error format. access_token: OAuth access token. alt: Data format for response. callback: JSONP fields: Selector specifying which fields to include in a partial response. key: API key. Your API key identifies your project and provides you with API access, quota, and reports. Required unless you provide an OAuth 2.0 token. oauth_token: OAuth 2.0 token for the current user. prettyPrint: Returns response with indentations and line breaks. quotaUser: Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exceed 40 characters. trace: A tracing token of the form "token:<tokenid>" to include in api requests. uploadType: Legacy upload protocol for media (e.g. "media", "multipart"). upload_protocol: Upload protocol for media (e.g. "raw", "multipart"). """ class AltValueValuesEnum(_messages.Enum): r"""Data format for response. Values: json: Responses with Content-Type of application/json media: Media download with context-dependent Content-Type proto: Responses with Content-Type of application/x-protobuf """ json = 0 media = 1 proto = 2 class FXgafvValueValuesEnum(_messages.Enum): r"""V1 error format. Values: _1: v1 error format _2: v2 error format """ _1 = 0 _2 = 1 f__xgafv = _messages.EnumField('FXgafvValueValuesEnum', 1) access_token = _messages.StringField(2) alt = _messages.EnumField('AltValueValuesEnum', 3, default=u'json') callback = _messages.StringField(4) fields = _messages.StringField(5) key = _messages.StringField(6) oauth_token = _messages.StringField(7) prettyPrint = _messages.BooleanField(8, default=True) quotaUser = _messages.StringField(9) trace = _messages.StringField(10) uploadType = _messages.StringField(11) upload_protocol = _messages.StringField(12) class TestIamPermissionsRequest(_messages.Message): r"""Request message for `TestIamPermissions` method. Fields: permissions: The set of permissions to check for the `resource`. Permissions with wildcards (such as '*' or 'storage.*') are not allowed. For more information see [IAM Overview](https://cloud.google.com/iam/docs/overview#permissions). """ permissions = _messages.StringField(1, repeated=True) class TestIamPermissionsResponse(_messages.Message): r"""Response message for `TestIamPermissions` method. Fields: permissions: A subset of `TestPermissionsRequest.permissions` that the caller is allowed. """ permissions = _messages.StringField(1, repeated=True) class TypeMeta(_messages.Message): r"""TypeMeta is the type information needed for content unmarshalling of the Kubernetes resources in the manifest. Fields: apiVersion: APIVersion of the resource (e.g. v1). kind: Kind of the resource (e.g. Deployment). """ apiVersion = _messages.StringField(1) kind = _messages.StringField(2) encoding.AddCustomJsonFieldMapping( StandardQueryParameters, 'f__xgafv', '$.xgafv') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_1', '1') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_2', '2')
f151e8badd6b1cb50965d9bd65e92835c2ea1db8
e5abf2028b9e0b39a5bf905f14c401d3645bdb9a
/display.py
2bcbbfdf5758468c37a0db038d2334e6b808bfba
[ "MIT" ]
permissive
vieirafrancisco/car-adventure
2d2723e44fcb216f2ea37c1b35a1ec5f6f6fba8a
79a86d830699f131fd4e4aa2031969aa7eae1a50
refs/heads/master
2020-03-30T00:01:11.845899
2018-09-28T22:27:57
2018-09-28T22:27:57
150,501,069
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
import pygame class DisplaySurface: def __init__(self, width, height): self.width = width self.height = height self._size = (self.width, self.height) self._display_surface = pygame.display.set_mode(self._size, pygame.HWSURFACE | pygame.DOUBLEBUF) def get_display_surface(self): return self._display_surface def get_size(self): return self._size
6f310f436ac9574a69159a506b99a3faa814ef2b
f9b6c56cec99eb2147777c4448b4b8ad757ff074
/longest_harmounious_subsequence.py
1f2b1f59cd7bdf90c4e192bd21e008bf7b4f26d3
[]
no_license
zhrmrz/longest_harmounious_subsequence
268676d4c1d7f76cddb10fcaa42fb8718689f3c6
71ddac4edd4d3948d462aae430ba7154f4aa921f
refs/heads/master
2020-08-29T03:39:23.468859
2019-10-27T20:34:52
2019-10-27T20:34:52
217,913,179
0
0
null
null
null
null
UTF-8
Python
false
false
273
py
from collections import Counter class Sol: def longest_harmounious_subsequence(self,nums): max_subarr=0 freq=Counter(nums) for num,count in freq.items(): if num+1 in freq: max_subarr=max(max_subarr,count+freq[num+1])
611a2b09ca927db5d34e83c7de96170e37583a7a
fdc0b72a3782a06952df4d723783dfa1bae65753
/admin_request_for_information/models/__init__.py
a840dc8f0a87fc036e57720fc0f08c1b21d27938
[]
no_license
Denbho/vendor_portal
0878ad82bf3c40d38f6e123f6b25a358bfebce4f
341a7ca77cbd310f3835d4b43de5012354a307c5
refs/heads/main
2023-04-19T21:26:56.115346
2021-05-17T04:16:53
2021-05-17T04:16:53
364,744,567
2
0
null
2021-05-06T04:34:51
2021-05-06T00:52:09
Python
UTF-8
Python
false
false
62
py
# -*- coding: utf-8 -*- from . import request_for_information
81ca32d7661a077e47039a5f78868c9fc5d381a8
66fda6586a902f8043b1f5e9532699babc7b591a
/lib_openshift/models/v1_build_config_status.py
fd78c8cbca2d5966a2f4258b5b0d00f8861062a6
[ "Apache-2.0" ]
permissive
chouseknecht/lib_openshift
86eff74b4659f05dfbab1f07d2d7f42b21e2252d
02b0e4348631e088e72a982a55c214b30a4ab9d9
refs/heads/master
2020-12-11T05:23:17.081794
2016-07-28T20:15:39
2016-07-28T20:15:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,610
py
# coding: utf-8 """ OpenAPI spec version: Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from pprint import pformat from six import iteritems import re class V1BuildConfigStatus(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ operations = [ ] def __init__(self, last_version=None): """ V1BuildConfigStatus - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'last_version': 'int' } self.attribute_map = { 'last_version': 'lastVersion' } self._last_version = last_version @property def last_version(self): """ Gets the last_version of this V1BuildConfigStatus. LastVersion is used to inform about number of last triggered build. :return: The last_version of this V1BuildConfigStatus. :rtype: int """ return self._last_version @last_version.setter def last_version(self, last_version): """ Sets the last_version of this V1BuildConfigStatus. LastVersion is used to inform about number of last triggered build. :param last_version: The last_version of this V1BuildConfigStatus. :type: int """ self._last_version = last_version def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
b13f38f3e8d8a5795b2d0d326e3fc93575f01d54
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02577/s751792218.py
eea7ba3706c9f7076b7627d00c4c3aa5626f695a
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
122
py
N = input() N_list = [] for i in N: N_list.append(int(i)) if sum(N_list) % 9 == 0: print("Yes") else: print("No")
d080a80308e02553e9baac9420d73834f92a2979
c026581b6c3855c75e7c9f9c6397acadc7833fb7
/idm_core/name/urls.py
5778785362e85f4443b71c0f79b76a31eb6f7cbe
[]
no_license
mans0954/idm-core
5734fd08a3c8c5deaec62167c9470336f0c6c6ef
2a3cf326e0bb3db469e2b318b122033a7dd92b83
refs/heads/master
2021-07-24T04:13:47.021951
2017-11-02T22:09:25
2017-11-02T22:09:25
109,317,967
1
0
null
2017-11-02T20:56:01
2017-11-02T20:55:58
null
UTF-8
Python
false
false
745
py
from django.conf.urls import url from . import views uuid_re = '[0-9a-f]{8}-[0-9a-f]{4}-[1-5][0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}' urlpatterns = [ url(r'^name/$', views.NameListView.as_view(), name='name-list-self'), url(r'^(?P<identity_type>[a-z-]+)/(?P<identity_id>' + uuid_re + ')/name/$', views.NameListView.as_view(), name='name-list'), url(r'^name/(?P<pk>[1-9][0-9]*)/$', views.NameDetailView.as_view(), name='name-detail'), url(r'^name/new:(?P<context>[\w-]+)/$', views.NameCreateView.as_view(), name='name-create-self'), url(r'^(?P<identity_type>[a-z-]+)/(?P<identity_id>' + uuid_re + ')/name/new:(?P<context>[\w-]+)/$', views.NameCreateView.as_view(), name='name-create'), ]
37d18cddc7cd04f237cb183c58d0244a8489f42e
a9c3c0c958ed33646a6acfe97780d4939e1e0308
/tensorflow/contrib/distribute/python/estimator_training_test.py
bd643bdbb4f4793433f41577484ae6545ba7d1bf
[ "Apache-2.0" ]
permissive
therladbsgh/tensorflow
458fa3d34a48449845ded366cc8243fd177bfe49
9d5d35bf74c2dd4b65303a76b817fd1cf060df9b
refs/heads/master
2020-05-15T00:33:30.533332
2019-04-18T01:15:45
2019-04-18T01:30:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,119
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests that show Distribute Coordinator works with Estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import glob import json import os import sys import tempfile from absl.testing import parameterized import numpy as np from tensorflow.contrib.distribute.python import collective_all_reduce_strategy from tensorflow.contrib.distribute.python import mirrored_strategy from tensorflow.contrib.distribute.python import parameter_server_strategy from tensorflow.contrib.optimizer_v2 import adagrad from tensorflow.python.data.ops import dataset_ops from tensorflow.python.distribute import combinations from tensorflow.python.distribute import cross_device_ops as cross_device_ops_lib from tensorflow.python.distribute import distribute_coordinator as dc from tensorflow.python.distribute import estimator_training as dc_training from tensorflow.python.distribute import multi_worker_test_base from tensorflow.python.distribute.distribute_config import DistributeConfig from tensorflow.python.eager import context from tensorflow.python.estimator import exporter as exporter_lib from tensorflow.python.estimator import run_config as run_config_lib from tensorflow.python.estimator import training as estimator_training from tensorflow.python.estimator.canned import dnn_linear_combined from tensorflow.python.estimator.canned import prediction_keys from tensorflow.python.estimator.export import export as export_lib from tensorflow.python.feature_column import feature_column_lib as feature_column from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary import summary_iterator from tensorflow.python.summary.writer import writer_cache from tensorflow.python.training import session_manager BATCH_SIZE = 10 LABEL_DIMENSION = 2 DATA = np.linspace( 0., 2., BATCH_SIZE * LABEL_DIMENSION, dtype=np.float32).reshape( BATCH_SIZE, LABEL_DIMENSION) EVAL_NAME = "foo" EXPORTER_NAME = "saved_model_exporter" MAX_STEPS = 10 CHIEF = dc._TaskType.CHIEF EVALUATOR = dc._TaskType.EVALUATOR WORKER = dc._TaskType.WORKER PS = dc._TaskType.PS original_run_std_server = dc._run_std_server class DistributeCoordinatorIntegrationTest( multi_worker_test_base.IndependentWorkerTestBase, parameterized.TestCase): @classmethod def setUpClass(cls): """Create a local cluster with 2 workers.""" super(DistributeCoordinatorIntegrationTest, cls).setUpClass() cls._cluster_spec = multi_worker_test_base.create_in_process_cluster( num_workers=3, num_ps=2, has_eval=True) def setUp(self): self._model_dir = tempfile.mkdtemp() super(DistributeCoordinatorIntegrationTest, self).setUp() def dataset_input_fn(self, x, y, batch_size, shuffle): def input_fn(): dataset = dataset_ops.Dataset.from_tensor_slices((x, y)) if shuffle: dataset = dataset.shuffle(batch_size) dataset = dataset.repeat(100).batch(batch_size) return dataset return input_fn def _get_exporter(self, name, fc): feature_spec = feature_column.make_parse_example_spec(fc) serving_input_receiver_fn = ( export_lib.build_parsing_serving_input_receiver_fn(feature_spec)) return exporter_lib.LatestExporter( name, serving_input_receiver_fn=serving_input_receiver_fn) def _extract_loss_and_global_step(self, event_folder): """Returns the loss and global step in last event.""" event_paths = glob.glob(os.path.join(event_folder, "events*")) self.assertNotEmpty( event_paths, msg="Event file not found in dir %s" % event_folder) loss = None global_step_count = None for e in summary_iterator.summary_iterator(event_paths[-1]): current_loss = None for v in e.summary.value: if v.tag == "loss": current_loss = v.simple_value # If loss is not found, global step is meaningless. if current_loss is None: continue current_global_step = e.step if global_step_count is None or current_global_step > global_step_count: global_step_count = current_global_step loss = current_loss return (loss, global_step_count) def _get_estimator(self, train_distribute, eval_distribute, remote_cluster=None): input_dimension = LABEL_DIMENSION linear_feature_columns = [ feature_column.numeric_column("x", shape=(input_dimension,)) ] dnn_feature_columns = [ feature_column.numeric_column("x", shape=(input_dimension,)) ] return dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=linear_feature_columns, dnn_hidden_units=(2, 2), dnn_feature_columns=dnn_feature_columns, label_dimension=LABEL_DIMENSION, model_dir=self._model_dir, dnn_optimizer=adagrad.AdagradOptimizer(0.001), linear_optimizer=adagrad.AdagradOptimizer(0.001), config=run_config_lib.RunConfig( experimental_distribute=DistributeConfig( train_distribute=train_distribute, eval_distribute=eval_distribute, remote_cluster=remote_cluster))) def _complete_flow(self, train_distribute, eval_distribute, remote_cluster=None, use_train_and_evaluate=True): estimator = self._get_estimator(train_distribute, eval_distribute, remote_cluster) input_dimension = LABEL_DIMENSION train_input_fn = self.dataset_input_fn( x={"x": DATA}, y=DATA, batch_size=BATCH_SIZE // train_distribute.num_replicas_in_sync, shuffle=True) if eval_distribute: eval_batch_size = BATCH_SIZE // eval_distribute.num_replicas_in_sync else: eval_batch_size = BATCH_SIZE eval_input_fn = self.dataset_input_fn( x={"x": DATA}, y=DATA, batch_size=eval_batch_size, shuffle=False) linear_feature_columns = [ feature_column.numeric_column("x", shape=(input_dimension,)) ] dnn_feature_columns = [ feature_column.numeric_column("x", shape=(input_dimension,)) ] feature_columns = linear_feature_columns + dnn_feature_columns eval_spec = estimator_training.EvalSpec( name=EVAL_NAME, input_fn=eval_input_fn, steps=None, exporters=self._get_exporter(EXPORTER_NAME, feature_columns), start_delay_secs=0, throttle_secs=1) if use_train_and_evaluate: estimator_training.train_and_evaluate( estimator, estimator_training.TrainSpec(train_input_fn, max_steps=MAX_STEPS), eval_spec) else: estimator.train(train_input_fn, max_steps=MAX_STEPS) latest_ckpt_path = estimator.latest_checkpoint() metrics = estimator.evaluate(eval_input_fn, checkpoint_path=latest_ckpt_path, name=EVAL_NAME) # Export the eval result to files. eval_result = estimator_training._EvalResult( status=estimator_training._EvalStatus.EVALUATED, metrics=metrics, checkpoint_path=latest_ckpt_path) evaluator = estimator_training._TrainingExecutor._Evaluator(estimator, eval_spec, None) evaluator._export_eval_result(eval_result, True) return estimator def _inspect_train_and_eval_events(self, estimator): # Make sure nothing is stuck in limbo. writer_cache.FileWriterCache.clear() # Examine the training events. Use a range to check global step to avoid # flakyness due to global step race condition. training_loss, _ = self._extract_loss_and_global_step(self._model_dir) self.assertIsNotNone(training_loss) # Examine the eval events. The global step should be accurate. eval_dir = os.path.join(self._model_dir, "eval_" + EVAL_NAME) eval_loss, eval_global_step = self._extract_loss_and_global_step( event_folder=eval_dir) self.assertIsNotNone(eval_loss) self.assertGreaterEqual(eval_global_step, MAX_STEPS) # Examine the export folder. export_dir = os.path.join( os.path.join(self._model_dir, "export"), EXPORTER_NAME) self.assertTrue(gfile.Exists(export_dir)) # Examine the ckpt for predict. def predict_input_fn(): return dataset_ops.Dataset.from_tensor_slices({ "x": DATA }).batch(BATCH_SIZE) predicted_proba = np.array([ x[prediction_keys.PredictionKeys.PREDICTIONS] for x in estimator.predict(predict_input_fn) ]) self.assertAllEqual((BATCH_SIZE, LABEL_DIMENSION), predicted_proba.shape) def _make_cross_device_ops(self, num_gpus_per_worker): return cross_device_ops_lib.MultiWorkerAllReduce( ["/job:worker/task:0", "/job:worker/task:1", "/job:worker/task:2"], num_gpus_per_worker) def _get_strategy_object(self, strategy_cls): if strategy_cls == mirrored_strategy.CoreMirroredStrategy: return strategy_cls( cross_device_ops=self._make_cross_device_ops( num_gpus_per_worker=context.num_gpus())) elif strategy_cls == mirrored_strategy.MirroredStrategy: return strategy_cls( num_gpus_per_worker=context.num_gpus(), cross_device_ops=self._make_cross_device_ops( num_gpus_per_worker=context.num_gpus())) else: return strategy_cls(num_gpus_per_worker=context.num_gpus()) @combinations.generate( combinations.combine( mode=["graph"], train_distribute_cls=[ collective_all_reduce_strategy.CollectiveAllReduceStrategy, mirrored_strategy.MirroredStrategy, mirrored_strategy.CoreMirroredStrategy, parameter_server_strategy.ParameterServerStrategy ], eval_distribute_cls=[ None, mirrored_strategy.MirroredStrategy, mirrored_strategy.CoreMirroredStrategy, parameter_server_strategy.ParameterServerStrategy, collective_all_reduce_strategy.CollectiveAllReduceStrategy, ], required_gpus=[0, 1])) def test_complete_flow_standalone_client(self, train_distribute_cls, eval_distribute_cls): train_distribute = self._get_strategy_object(train_distribute_cls) if eval_distribute_cls: eval_distribute = self._get_strategy_object(eval_distribute_cls) else: eval_distribute = None cluster_spec = copy.deepcopy(self._cluster_spec) if (train_distribute_cls != parameter_server_strategy.ParameterServerStrategy): cluster_spec.pop("ps", None) estimator = self._complete_flow(train_distribute, eval_distribute, cluster_spec) self._inspect_train_and_eval_events(estimator) @combinations.generate( combinations.combine( mode=["graph"], eval_distribute_class=[ None, mirrored_strategy.MirroredStrategy, mirrored_strategy.CoreMirroredStrategy, parameter_server_strategy.ParameterServerStrategy, ], required_gpus=[0, 1])) def test_complete_flow_standalone_client_collective_nccl( self, eval_distribute_class): train_distribute = ( collective_all_reduce_strategy.CollectiveAllReduceStrategy( num_gpus_per_worker=context.num_gpus(), communication=cross_device_ops_lib.CollectiveCommunication.NCCL)) if eval_distribute_class: eval_distribute = self._get_strategy_object(eval_distribute_class) else: eval_distribute = None cluster_spec = copy.deepcopy(self._cluster_spec) cluster_spec.pop("ps", None) estimator = self._complete_flow(train_distribute, eval_distribute, cluster_spec) self._inspect_train_and_eval_events(estimator) @combinations.generate( combinations.combine( mode=["graph"], train_distribute_cls=[ mirrored_strategy.MirroredStrategy, mirrored_strategy.CoreMirroredStrategy, ], eval_distribute_cls=[ None, mirrored_strategy.MirroredStrategy, mirrored_strategy.CoreMirroredStrategy, ], required_gpus=[0, 1])) def test_estimator_standalone_client(self, train_distribute_cls, eval_distribute_cls): train_distribute = self._get_strategy_object(train_distribute_cls) if eval_distribute_cls: eval_distribute = self._get_strategy_object(eval_distribute_cls) else: eval_distribute = None # We use the whole cluster for evaluation. cluster = copy.deepcopy(self._cluster_spec) cluster.pop("evaluator", None) estimator = self._complete_flow( train_distribute, eval_distribute, remote_cluster=cluster, use_train_and_evaluate=False) self._inspect_train_and_eval_events(estimator) def _mock_run_std_server(self, *args, **kwargs): ret = original_run_std_server(*args, **kwargs) # Wait for all std servers to be brought up in order to reduce the chance of # remote sessions taking local ports that have been assigned to std servers. self._barrier.wait() return ret def _independent_worker_fn( self, train_distribute, eval_distribute, ): with test.mock.patch.object(dc, "_run_std_server", self._mock_run_std_server): self._complete_flow(train_distribute, eval_distribute) @combinations.generate( combinations.combine( mode=["graph"], train_distribute_cls=[ collective_all_reduce_strategy.CollectiveAllReduceStrategy, parameter_server_strategy.ParameterServerStrategy, ], eval_distribute_cls=[ None, mirrored_strategy.MirroredStrategy, mirrored_strategy.CoreMirroredStrategy, parameter_server_strategy.ParameterServerStrategy, collective_all_reduce_strategy.CollectiveAllReduceStrategy, ], required_gpus=[0, 1])) def test_complete_flow_independent_worker_between_graph( self, train_distribute_cls, eval_distribute_cls): if (context.num_gpus() < 2 and eval_distribute_cls == collective_all_reduce_strategy.CollectiveAllReduceStrategy): self.skipTest("`CollectiveAllReduceStrategy` needs at least two towers.") train_distribute = self._get_strategy_object(train_distribute_cls) if eval_distribute_cls: eval_distribute = self._get_strategy_object(eval_distribute_cls) else: eval_distribute = None if (train_distribute_cls == parameter_server_strategy .ParameterServerStrategy): cluster_spec = multi_worker_test_base.create_cluster_spec( num_workers=3, num_ps=2, has_eval=True) # 3 workers, 2 ps and 1 evaluator. self._barrier = dc._Barrier(6) else: cluster_spec = multi_worker_test_base.create_cluster_spec( num_workers=3, num_ps=0, has_eval=True) # 3 workers and 1 evaluator. self._barrier = dc._Barrier(4) threads = self.run_multiple_tasks_in_threads(self._independent_worker_fn, cluster_spec, train_distribute, eval_distribute) threads_to_join = [] for task_type, ts in threads.items(): if task_type == PS: continue for t in ts: threads_to_join.append(t) self.join_independent_workers(threads_to_join) estimator = self._get_estimator(train_distribute, eval_distribute) self._inspect_train_and_eval_events(estimator) @combinations.generate( combinations.combine( mode=["graph"], train_distribute_cls=[ mirrored_strategy.MirroredStrategy, mirrored_strategy.CoreMirroredStrategy ], eval_distribute_cls=[ None, mirrored_strategy.MirroredStrategy, mirrored_strategy.CoreMirroredStrategy ], required_gpus=[0, 1])) def test_complete_flow_independent_worker_in_graph(self, train_distribute_cls, eval_distribute_cls): train_distribute = self._get_strategy_object(train_distribute_cls) if eval_distribute_cls: eval_distribute = self._get_strategy_object(eval_distribute_cls) else: eval_distribute = None cluster_spec = multi_worker_test_base.create_cluster_spec( num_workers=3, num_ps=0, has_eval=True) # 3 workers and 1 evaluator. self._barrier = dc._Barrier(4) threads = self.run_multiple_tasks_in_threads(self._independent_worker_fn, cluster_spec, train_distribute, eval_distribute) self.join_independent_workers([threads[WORKER][0], threads[EVALUATOR][0]]) estimator = self._get_estimator(train_distribute, eval_distribute) self._inspect_train_and_eval_events(estimator) TF_CONFIG_WITH_CHIEF = { "cluster": { "chief": ["fake_chief"], }, "task": { "type": "chief", "index": 0 } } TF_CONFIG_WITH_MASTER = { "cluster": { "master": ["fake_master"], }, "task": { "type": "master", "index": 0 } } TF_CONFIG_WITHOUT_TASK = {"cluster": {"chief": ["fake_worker"]}} class RunConfigTest(test.TestCase): def test_previously_unexpected_cluster_spec(self): with test.mock.patch.dict( "os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITHOUT_TASK)}): run_config_lib.RunConfig( experimental_distribute=DistributeConfig( train_distribute=mirrored_strategy.CoreMirroredStrategy( ["/device:GPU:0", "/device:GPU:1"]))) def test_should_run_distribute_coordinator(self): """Tests that should_run_distribute_coordinator return a correct value.""" # We don't use distribute coordinator for local training. self.assertFalse( dc_training.should_run_distribute_coordinator( run_config_lib.RunConfig())) # When `train_distribute` is not specified, don't use distribute # coordinator. with test.mock.patch.dict("os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITH_CHIEF)}): self.assertFalse( dc_training.should_run_distribute_coordinator( run_config_lib.RunConfig())) # When `train_distribute` is specified and TF_CONFIG is detected, use # distribute coordinator. with test.mock.patch.dict("os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITH_CHIEF)}): config_with_train_distribute = run_config_lib.RunConfig( experimental_distribute=DistributeConfig( train_distribute=mirrored_strategy.CoreMirroredStrategy( ["/device:GPU:0", "/device:GPU:1"]))) config_with_eval_distribute = run_config_lib.RunConfig( experimental_distribute=DistributeConfig( eval_distribute=mirrored_strategy.CoreMirroredStrategy( ["/device:GPU:0", "/device:GPU:1"]))) self.assertTrue( dc_training.should_run_distribute_coordinator( config_with_train_distribute)) self.assertFalse( dc_training.should_run_distribute_coordinator( config_with_eval_distribute)) # With a master in the cluster, don't run distribute coordinator. with test.mock.patch.dict("os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITH_MASTER)}): config = run_config_lib.RunConfig( experimental_distribute=DistributeConfig( train_distribute=mirrored_strategy.CoreMirroredStrategy( ["/device:GPU:0", "/device:GPU:1"]))) self.assertFalse(dc_training.should_run_distribute_coordinator(config)) def test_init_run_config_duplicate_distribute(self): with self.assertRaises(ValueError): run_config_lib.RunConfig( train_distribute=mirrored_strategy.CoreMirroredStrategy(), experimental_distribute=DistributeConfig( train_distribute=mirrored_strategy.CoreMirroredStrategy())) with self.assertRaises(ValueError): run_config_lib.RunConfig( eval_distribute=mirrored_strategy.CoreMirroredStrategy(), experimental_distribute=DistributeConfig( eval_distribute=mirrored_strategy.CoreMirroredStrategy())) def test_init_run_config_none_distribute_coordinator_mode(self): # We don't use distribute coordinator for local training. config = run_config_lib.RunConfig( train_distribute=mirrored_strategy.CoreMirroredStrategy()) dc_training.init_run_config(config, {}) self.assertIsNone(config._distribute_coordinator_mode) # With a master in the cluster, don't run distribute coordinator. with test.mock.patch.dict("os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITH_MASTER)}): config = run_config_lib.RunConfig( train_distribute=mirrored_strategy.CoreMirroredStrategy()) self.assertIsNone(config._distribute_coordinator_mode) # When `train_distribute` is not specified, don't use distribute # coordinator. with test.mock.patch.dict("os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITH_CHIEF)}): config = run_config_lib.RunConfig() self.assertFalse(hasattr(config, "_distribute_coordinator_mode")) def test_init_run_config_independent_worker(self): # When `train_distribute` is specified and TF_CONFIG is detected, use # distribute coordinator with INDEPENDENT_WORKER mode. with test.mock.patch.dict("os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITH_CHIEF)}): config = run_config_lib.RunConfig( train_distribute=mirrored_strategy.CoreMirroredStrategy()) self.assertEqual(config._distribute_coordinator_mode, dc.CoordinatorMode.INDEPENDENT_WORKER) def test_init_run_config_standalone_client(self): # When `train_distribute` is specified, TF_CONFIG is detected and # `experimental.remote_cluster` is set use distribute coordinator with # STANDALONE_CLIENT mode. config = run_config_lib.RunConfig( train_distribute=mirrored_strategy.CoreMirroredStrategy(), experimental_distribute=DistributeConfig( remote_cluster={"chief": ["fake_worker"]})) self.assertEqual(config._distribute_coordinator_mode, dc.CoordinatorMode.STANDALONE_CLIENT) if __name__ == "__main__": # Reduce `recovery_wait_secs` from 30 seconds so the test completes quickly. orig_init = session_manager.SessionManager.__init__ def new_init(*args, **kwargs): kwargs.pop("recovery_wait_secs", None) kwargs["recovery_wait_secs"] = 0.5 orig_init(*args, **kwargs) session_manager.SessionManager.__init__ = new_init with test.mock.patch.object(sys, "exit", os._exit): test.main()
5ad0428c695af2b019eeb2f0663b66e863d03a50
c11c27b07086e97c633a833d37787474724bd2d2
/src/ResNeXt/concateFeature.py
6d8f98b7b69a10e8dff467812e4cacb8108ba6ef
[ "MIT" ]
permissive
willyspinner/High-Performance-Face-Recognition
d1826a73653dede6b43799439e4fb692f119c70b
c5caad61be97fd20f9c47a727278ff938dc5cc8f
refs/heads/master
2020-06-22T16:36:29.663302
2019-07-19T09:41:47
2019-07-19T09:41:47
197,746,624
0
0
MIT
2019-07-19T09:42:00
2019-07-19T09:41:59
null
UTF-8
Python
false
false
1,953
py
import scipy.io as sio import pickle import numpy as np import os import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from scipy import spatial from sklearn.externals import joblib import time reducedDim = 2048 pca = PCA(n_components = reducedDim, whiten = True) path = "/media/zhaojian/6TB/data/extra_general_model_feature/" with open(path + "NovelSet_List/NovelSet_1.txt", 'r') as f: lines = f.readlines() vggFeatures = np.loadtxt(path + 'NovelSet_Fea/VGG_NOVELSET_1.txt') print "vggFeatures.shape: ", vggFeatures.shape inputFeaturePath = "extracted_feature/NovelSet_1IdentityFeature/" outputFeaturePath = "extracted_feature/NovelSet_1IdentityFeaturePCA2048/" features = [] labelList = [] for index in range(len(lines)): print index line = lines[index] ID = line.split("/")[-2] print ID labelList.append(ID) vggFeature = feature = vggFeatures[index].flatten() print "vggFeature.shape", vggFeature.shape # caffeFeature = sio.loadmat(inputFeaturePath + ID + ".mat")["identityFeature"].flatten() # print "caffeFeature.shape", caffeFeature.shape # # identityFeature = np.concatenate((caffeFeature, vggFeature), axis = 0) # print "identityFeature.shape: ", identityFeature.shape identityFeature = vggFeature features.append(identityFeature) features = np.asarray(features) print "features..shape: ", features.shape # sio.savemat("concatenateFeatures", {"identityFeature": features}) # sio.savemat("vggNovelSet_1_Features", {"identityFeature": features}) features = sio.loadmat("vggNovelSet_1_Features")['identityFeature'] # # features = pca.fit_transform(features) # print "features..shape: ", features.shape # # for index in range(len(features)): identityFeature = features[index] print "identityFeature.shape: ", identityFeature.shape label = labelList[index] # print index # print label sio.savemat(outputFeaturePath + label, {"identityFeature": identityFeature})
35f3e6fc87bf0e774aa1fc4dd0a9fff46bc4aee3
bd4dcd90d41aa228f0384c9ba03edd105a93d7ec
/products/migrations/0101_auto_20200221_2128.py
40b496b06fcc159e8132ad5c55c7e06b1c94a954
[]
no_license
deganoth/mu-shop
0be0bb0cfa635986b37edbe371daf8373f09aefd
dc1a77ecf6217286c005d762b559fe3f61ef2f6d
refs/heads/master
2023-02-17T08:23:36.339586
2023-01-10T17:51:21
2023-01-10T17:51:21
243,972,792
0
1
null
2023-02-15T23:10:09
2020-02-29T13:22:02
Python
UTF-8
Python
false
false
5,567
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.24 on 2020-02-21 21:28 from __future__ import unicode_literals from django.db import migrations import djmoney.models.fields class Migration(migrations.Migration): dependencies = [ ('products', '0100_auto_20200221_2125'), ] operations = [ migrations.AlterField( model_name='product', name='price_currency', field=djmoney.models.fields.CurrencyField(choices=[('XUA', 'ADB Unit of Account'), ('AFN', 'Afghani'), ('DZD', 'Algerian Dinar'), ('ARS', 'Argentine Peso'), ('AMD', 'Armenian Dram'), ('AWG', 'Aruban Guilder'), ('AUD', 'Australian Dollar'), ('AZN', 'Azerbaijanian Manat'), ('BSD', 'Bahamian Dollar'), ('BHD', 'Bahraini Dinar'), ('THB', 'Baht'), ('PAB', 'Balboa'), ('BBD', 'Barbados Dollar'), ('BYN', 'Belarussian Ruble'), ('BYR', 'Belarussian Ruble'), ('BZD', 'Belize Dollar'), ('BMD', 'Bermudian Dollar (customarily known as Bermuda Dollar)'), ('BTN', 'Bhutanese ngultrum'), ('VEF', 'Bolivar Fuerte'), ('BOB', 'Boliviano'), ('XBA', 'Bond Markets Units European Composite Unit (EURCO)'), ('BRL', 'Brazilian Real'), ('BND', 'Brunei Dollar'), ('BGN', 'Bulgarian Lev'), ('BIF', 'Burundi Franc'), ('XOF', 'CFA Franc BCEAO'), ('XAF', 'CFA franc BEAC'), ('XPF', 'CFP Franc'), ('CAD', 'Canadian Dollar'), ('CVE', 'Cape Verde Escudo'), ('KYD', 'Cayman Islands Dollar'), ('CLP', 'Chilean peso'), ('XTS', 'Codes specifically reserved for testing purposes'), ('COP', 'Colombian peso'), ('KMF', 'Comoro Franc'), ('CDF', 'Congolese franc'), ('BAM', 'Convertible Marks'), ('NIO', 'Cordoba Oro'), ('CRC', 'Costa Rican Colon'), ('HRK', 'Croatian Kuna'), ('CUP', 'Cuban Peso'), ('CUC', 'Cuban convertible peso'), ('CZK', 'Czech Koruna'), ('GMD', 'Dalasi'), ('DKK', 'Danish Krone'), ('MKD', 'Denar'), ('DJF', 'Djibouti Franc'), ('STD', 'Dobra'), ('DOP', 'Dominican Peso'), ('VND', 'Dong'), ('XCD', 'East Caribbean Dollar'), ('EGP', 'Egyptian Pound'), ('SVC', 'El Salvador Colon'), ('ETB', 'Ethiopian Birr'), ('EUR', 'Euro'), ('XBB', 'European Monetary Unit (E.M.U.-6)'), ('XBD', 'European Unit of Account 17(E.U.A.-17)'), ('XBC', 'European Unit of Account 9(E.U.A.-9)'), ('FKP', 'Falkland Islands Pound'), ('FJD', 'Fiji Dollar'), ('HUF', 'Forint'), ('GHS', 'Ghana Cedi'), ('GIP', 'Gibraltar Pound'), ('XAU', 'Gold'), ('XFO', 'Gold-Franc'), ('PYG', 'Guarani'), ('GNF', 'Guinea Franc'), ('GYD', 'Guyana Dollar'), ('HTG', 'Haitian gourde'), ('HKD', 'Hong Kong Dollar'), ('UAH', 'Hryvnia'), ('ISK', 'Iceland Krona'), ('INR', 'Indian Rupee'), ('IRR', 'Iranian Rial'), ('IQD', 'Iraqi Dinar'), ('IMP', 'Isle of Man Pound'), ('JMD', 'Jamaican Dollar'), ('JOD', 'Jordanian Dinar'), ('KES', 'Kenyan Shilling'), ('PGK', 'Kina'), ('LAK', 'Kip'), ('KWD', 'Kuwaiti Dinar'), ('AOA', 'Kwanza'), ('MMK', 'Kyat'), ('GEL', 'Lari'), ('LVL', 'Latvian Lats'), ('LBP', 'Lebanese Pound'), ('ALL', 'Lek'), ('HNL', 'Lempira'), ('SLL', 'Leone'), ('LSL', 'Lesotho loti'), ('LRD', 'Liberian Dollar'), ('LYD', 'Libyan Dinar'), ('SZL', 'Lilangeni'), ('LTL', 'Lithuanian Litas'), ('MGA', 'Malagasy Ariary'), ('MWK', 'Malawian Kwacha'), ('MYR', 'Malaysian Ringgit'), ('TMM', 'Manat'), ('MUR', 'Mauritius Rupee'), ('MZN', 'Metical'), ('MXV', 'Mexican Unidad de Inversion (UDI)'), ('MXN', 'Mexican peso'), ('MDL', 'Moldovan Leu'), ('MAD', 'Moroccan Dirham'), ('BOV', 'Mvdol'), ('NGN', 'Naira'), ('ERN', 'Nakfa'), ('NAD', 'Namibian Dollar'), ('NPR', 'Nepalese Rupee'), ('ANG', 'Netherlands Antillian Guilder'), ('ILS', 'New Israeli Sheqel'), ('RON', 'New Leu'), ('TWD', 'New Taiwan Dollar'), ('NZD', 'New Zealand Dollar'), ('KPW', 'North Korean Won'), ('NOK', 'Norwegian Krone'), ('PEN', 'Nuevo Sol'), ('MRO', 'Ouguiya'), ('TOP', 'Paanga'), ('PKR', 'Pakistan Rupee'), ('XPD', 'Palladium'), ('MOP', 'Pataca'), ('PHP', 'Philippine Peso'), ('XPT', 'Platinum'), ('GBP', 'Pound Sterling'), ('BWP', 'Pula'), ('QAR', 'Qatari Rial'), ('GTQ', 'Quetzal'), ('ZAR', 'Rand'), ('OMR', 'Rial Omani'), ('KHR', 'Riel'), ('MVR', 'Rufiyaa'), ('IDR', 'Rupiah'), ('RUB', 'Russian Ruble'), ('RWF', 'Rwanda Franc'), ('XDR', 'SDR'), ('SHP', 'Saint Helena Pound'), ('SAR', 'Saudi Riyal'), ('RSD', 'Serbian Dinar'), ('SCR', 'Seychelles Rupee'), ('XAG', 'Silver'), ('SGD', 'Singapore Dollar'), ('SBD', 'Solomon Islands Dollar'), ('KGS', 'Som'), ('SOS', 'Somali Shilling'), ('TJS', 'Somoni'), ('SSP', 'South Sudanese Pound'), ('LKR', 'Sri Lanka Rupee'), ('XSU', 'Sucre'), ('SDG', 'Sudanese Pound'), ('SRD', 'Surinam Dollar'), ('SEK', 'Swedish Krona'), ('CHF', 'Swiss Franc'), ('SYP', 'Syrian Pound'), ('BDT', 'Taka'), ('WST', 'Tala'), ('TZS', 'Tanzanian Shilling'), ('KZT', 'Tenge'), ('XXX', 'The codes assigned for transactions where no currency is involved'), ('TTD', 'Trinidad and Tobago Dollar'), ('MNT', 'Tugrik'), ('TND', 'Tunisian Dinar'), ('TRY', 'Turkish Lira'), ('TMT', 'Turkmenistan New Manat'), ('TVD', 'Tuvalu dollar'), ('AED', 'UAE Dirham'), ('XFU', 'UIC-Franc'), ('USD', 'US Dollar'), ('USN', 'US Dollar (Next day)'), ('UGX', 'Uganda Shilling'), ('CLF', 'Unidad de Fomento'), ('COU', 'Unidad de Valor Real'), ('UYI', 'Uruguay Peso en Unidades Indexadas (URUIURUI)'), ('UYU', 'Uruguayan peso'), ('UZS', 'Uzbekistan Sum'), ('VUV', 'Vatu'), ('CHE', 'WIR Euro'), ('CHW', 'WIR Franc'), ('KRW', 'Won'), ('YER', 'Yemeni Rial'), ('JPY', 'Yen'), ('CNY', 'Yuan Renminbi'), ('ZMK', 'Zambian Kwacha'), ('ZMW', 'Zambian Kwacha'), ('ZWD', 'Zimbabwe Dollar A/06'), ('ZWN', 'Zimbabwe dollar A/08'), ('ZWL', 'Zimbabwe dollar A/09'), ('PLN', 'Zloty')], default=None, editable=False, max_length=3, null=True), ), ]
5762741a29ba36f2c36980cbe7c87cd3d2f89121
a01e7f87a0088965e2e0a02476d2df12a49a1a18
/package/tfi_helper/dhcp/hapack/dhcpparser.py
dea3a1526ea3c35f8b80c04e697d0a60a841bed7
[]
no_license
gsrr/IFT_jerry
0456a8a1fb98f84ad5c26dc36bdf32e2d85c750c
4c2f6900dfd7ae7f6b3cc2150b1c1be236b4c95c
refs/heads/master
2020-04-04T05:30:10.544252
2019-08-22T09:12:03
2019-08-22T09:12:03
48,145,836
0
0
null
null
null
null
UTF-8
Python
false
false
686
py
import argparse class DHCPParser: def __init__(self): self.cmds = ['dhcp_test'] self.parser_dhcp = argparse.ArgumentParser(prog="dhcp", add_help=False) self.parser_dhcp_test = argparse.ArgumentParser(prog="dhcp_test", add_help=False) self.parser_dhcp_test.add_argument("-z", nargs="?", required=True) def find(self, args): cnt = 0 cmd = "dhcp" while cnt < len(args): cmd += ("_" + args[cnt]) if cmd in self.cmds: break cnt += 1 args = args[cnt+1:] namespace = getattr(self, "parser" + "_" + cmd).parse_args(args).__dict__ return cmd, namespace
d3173858f10737bbb574b5291c639096bd42fdb8
1ebe5a07e7f6260c2c2ceb6ca00dcf2a0341e544
/op_impl/built-in/ai_core/tbe/impl/power.py
e29e5eed1d10da730e4062ba4a475b68b162ebd6
[]
no_license
gekowa/ascend-opp
f5e09905336d85f9974d555d03d37a75cb8185c1
5c28a2faf9d2a117ea6f0923efe35fcd53904dd2
refs/heads/master
2023-04-09T12:14:40.337104
2021-04-19T23:00:59
2021-04-19T23:00:59
359,620,865
2
0
null
null
null
null
UTF-8
Python
false
false
9,024
py
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ power """ # pylint: disable=redefined-outer-name import math from functools import reduce import te.lang.cce from te import tvm from te.platform.fusion_manager import fusion_manager from te import platform as tbe_platform from te.utils.op_utils import * from topi import generic from topi.cce import util def positive_compute(base, power, version, input_dtype): """ calculate power for positive elements of base tensor Parameters ---------- base: the base tensor power: attr power version: the product version input_dtype: dtype of input Returns ---------- res: the result tensor """ base_cast = base if input_dtype == "float16" and \ tbe_platform.cce_conf.api_check_support("te.lang.cce.vexp", "float32") and \ tbe_platform.cce_conf.api_check_support("te.lang.cce.vlog", "float32"): base_cast = te.lang.cce.cast_to(base, "float32") log_val = te.lang.cce.vlog(base_cast) mul_val = te.lang.cce.vmuls(log_val, power) exp_val = te.lang.cce.vexp(mul_val) if exp_val.dtype.lower() != input_dtype: exp_val = te.lang.cce.cast_to(exp_val, input_dtype) return exp_val def negtive_compute(base, power, nan_values, version, input_dtype): """ calculate power for negative elements of base tensor Parameters ---------- base: the base tensor power: attr power nan_values: a tensor with nan values version: the product version input_dtype: dtype of input Returns ---------- res: the result tensor """ if float(power).is_integer(): base_cast = base if input_dtype == "float16" and \ tbe_platform.cce_conf.api_check_support("te.lang.cce.vexp", "float32") and \ tbe_platform.cce_conf.api_check_support("te.lang.cce.vlog", "float32"): base_cast = te.lang.cce.cast_to(base, "float32") sign_value = math.pow(-1, power) abs_base_value = te.lang.cce.vabs(base_cast) log_value = te.lang.cce.vlog(abs_base_value) mul_value = te.lang.cce.vmuls(log_value, power) exp_value = te.lang.cce.vexp(mul_value) res = te.lang.cce.vmuls(exp_value, sign_value) if res.dtype.lower() != input_dtype: res = te.lang.cce.cast_to(res, input_dtype) return res return nan_values def zero_compute(power, nan_values, zero_values): """ calculate power for zero elements of base tensor Parameters ---------- power: attr power nan_values: a tensor with nan values zero_values: a tensor with zero values Returns ---------- res: the result tensor """ if power > 0.0: return zero_values return nan_values def power_scalar(input_x, base, power): """ calculate power when attr scale is 0.0 and attr power is not Parameters ---------- input_x: placeholder of input base: the base value, equals attr shift power: attr power Returns ---------- res: the result when attr scale is 0.0 and attr power is not """ tmp_zero = te.lang.cce.vmuls(input_x, 0) ones = te.lang.cce.vadds(tmp_zero, 1) zeros = tmp_zero if base > 0.0: res = te.lang.cce.vmuls(ones, math.pow(base, power)) return res if base < 0.0: if float(power).is_integer(): res = te.lang.cce.vmuls(ones, math.pow(base, power)) return res # return abnormal value res = te.lang.cce.vrec(zeros) return res if power > 0: return zeros # return abnormal value res = te.lang.cce.vrec(zeros) return res def zero_diff_scale_compute(input_x, shift, power): """ calculate power when power*scale is 0.0 Parameters ---------- input_x: placeholder of input shift: attr shift power: attr power Returns ---------- res: the result when power*scale is 0.0 """ if power == 0.0: tmp_zero = te.lang.cce.vmuls(input_x, 0) res = te.lang.cce.vadds(tmp_zero, 1) return res res = power_scalar(input_x, shift, power) return res # pylint: disable=locally-disabled,unused-argument,too-many-arguments @fusion_manager.register("power") def power_compute(input_x, output_y, power=1.0, scale=1.0, shift=0.0, kernel_name="power"): """ calculate power according to different cases Parameters ---------- input_x: placeholder of input power: attr power scale: attr scale shift: attr shift Returns ---------- res: result of power """ cce_product = tbe_platform.cce_conf.get_soc_spec("SOC_VERSION") input_dtype = input_x.dtype.lower() diff_scale = power * scale if diff_scale == 0.0: res = zero_diff_scale_compute(input_x, shift, power) return res shift_scaled_x = te.lang.cce.vmuls(input_x, scale) shift_scaled_x = te.lang.cce.vadds(shift_scaled_x, shift) tmp_zero = te.lang.cce.vmuls(input_x, 0) zeros = tmp_zero nan_value = te.lang.cce.vrec(zeros) if power == 1.0: res = shift_scaled_x return res if power == 2.0: res = te.lang.cce.vmul(shift_scaled_x, shift_scaled_x) return res if power == 3.0: res = te.lang.cce.vmul(shift_scaled_x, shift_scaled_x) res = te.lang.cce.vmul(res, shift_scaled_x) return res positive_pow_val = \ positive_compute(shift_scaled_x, power, cce_product, input_dtype) negative_pow_val = \ negtive_compute(shift_scaled_x, power, nan_value, cce_product, input_dtype) zero_pow_val = zero_compute(power, nan_value, zeros) res = te.lang.cce.vcmpsel(shift_scaled_x, zeros, 'gt', positive_pow_val, negative_pow_val) res = te.lang.cce.vcmpsel(shift_scaled_x, zeros, 'eq', zero_pow_val, res) return res # pylint: disable=redefined-outer-name, too-many-arguments, unused-variable @check_op_params(REQUIRED_INPUT, REQUIRED_OUTPUT, OPTION_ATTR_FLOAT, OPTION_ATTR_FLOAT, OPTION_ATTR_FLOAT, KERNEL_NAME) def power(input_x, output_y, power=1.0, scale=1.0, shift=0.0, kernel_name="power"): """ calculate power of input tensor according to y = (x * scale + shift) ** power Parameters ---------- input_x: dict of input, include shape and dtype, dtype support float16, float32 output_y: dict of output, include shape and dtype, dtype support float16, float32 power: attr power, default value is 1.0 scale: attr scale, default value is 1.0 shift: attr shift, default value is 0.0 kernel_name: cce kernel name, default value is "power" Returns ---------- None """ shape = input_x.get("shape") input_dtype = input_x.get("dtype").lower() check_shape(shape, param_name="x") type_tuple = ("float16", "float32") check_dtype(input_dtype, type_tuple, param_name="x") fuseshape = [1] fuseshape[0] = reduce(lambda x, y: x*y, shape) data_input = tvm.placeholder(fuseshape, name="data_input", dtype=input_dtype) cur_cce_product = tbe_platform.cce_conf.get_soc_spec("SOC_VERSION") if cur_cce_product in ("Ascend310", "Hi3796CV300ES", "Hi3796CV300CS"): if input_dtype == "float32": error_info = {} error_info['errCode'] = 'E80008' error_info['param_name'] = 'input_x' error_info['op_name'] = 'power' error_info['expect_value'] = "float16" error_info['real_value'] = input_dtype raise RuntimeError(error_info, "In op[%s], the parameter[%s]'s dtype " "should be [%s], but actually is [%s]." % (error_info['op_name'], error_info['param_name'], error_info['expect_value'], error_info['real_value'])) res = power_compute(data_input, output_y, power, scale, shift, kernel_name) else: res = power_compute(data_input, output_y, power, scale, shift, kernel_name) with tvm.target.cce(): sch = generic.auto_schedule(res) config = {"name": kernel_name, "tensor_list": [data_input, res], "print_ir": True} te.lang.cce.cce_build_code(sch, config)
9d82a9d1425b1deae0c45fc833fe73e80449e0b6
2b7c7e9b00ed9b2dbbac943ee4b79865a96d10de
/Figure_script/Figure_1.py
7caa0f0d7080d155e2572b49ddd294af94fa11d9
[]
no_license
YaojieLu/Plant_traits_inversion
ad973e60bb32717d9d718f774c2ec77433c38ced
ec83642ae2a2e6ef96502e58f8074bffdadfefe8
refs/heads/master
2021-06-21T15:22:00.225498
2020-12-13T22:12:21
2020-12-13T22:12:21
140,017,309
1
1
null
null
null
null
UTF-8
Python
false
false
1,680
py
import pickle import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.lines import Line2D from scipy import stats # load traces ts = pickle.load(open("../Data/45.pickle", "rb")) params = ['alpha', 'c', 'g1', 'kxmax', 'p50', 'L'] true_values = [0.02, 16, 50, 7, -4.5, 2] # figure labels = ['$\\alpha$', '$\\mathit{c}$', '$\\mathit{g_{1}}$', '$\\mathit{k_{xmax}}$', '$\\psi_{x50}$', '$\\mathit{L}$'] ranges = [[0.001, 0.2], [2, 20], [10, 100], [1, 10], [-10, -0.1], [0.5, 5]] fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(30, 20)) for i, row in enumerate(axs): for j, col in enumerate(row): idx = i*3+j param = params[idx] df = pd.DataFrame({param: ts[param]}).iloc[:, 0] col.hist(df, range=[ranges[idx][0], ranges[idx][1]], bins=100) # kde = stats.gaussian_kde(df) # param_range = np.linspace(ranges[idx][0], ranges[idx][1], 1000) # col.plot(param_range, kde(param_range), linewidth=2.5, color='blue') mean, std = df.mean(), df.std() cv = abs(round(std/mean, 2)) col.set_title('RSD = {}'.format(cv), fontsize=30) col.axvline(x=true_values[idx], c='black', label='True value', linestyle='dashed') col.axes.get_yaxis().set_visible(False) col.tick_params(labelsize=30) col.set_xlabel(labels[idx], fontsize=30) if idx == 0: col.legend([Line2D([0], [0], linestyle='dashed', color='black')], ['True value'], loc='upper right', fontsize=30, framealpha=0) plt.subplots_adjust(hspace=0.25, wspace=0.1) plt.savefig('../Figures/Figure 45.png', bbox_inches = 'tight')
[ "=" ]
=
8f28ab12e6205691d69253b9b16c31e06f857774
b5cc6d7b5f7ccea36fce4eab961979404414f8b0
/kent-report/py/beam_distances.py
2cc89895ad6d3fed6c27470bb32f1dfd505d8989
[]
no_license
MiroK/cutFEM-beam
adf0c925dbe64b370dab48e82335617450675f5d
2fb3686804e836d4031fbf231a36a0f9ac8a3012
refs/heads/master
2021-01-21T23:54:32.868307
2015-02-14T13:14:59
2015-02-14T13:14:59
25,625,143
0
0
null
null
null
null
UTF-8
Python
false
false
3,537
py
from __future__ import division from sympy import sin, cos, pi, sqrt, symbols, lambdify from sympy.mpmath import quad import numpy as np x, y, s = symbols('x, y, s') def eigen_basis(n): ''' Return first n eigenfunctions of Laplacian over biunit interval with homog. Dirichlet bcs. at endpoints -1, 1. Functions of x. ''' k = 0 functions = [] while k < n: alpha = pi/2 + k*pi/2 if k % 2 == 0: functions.append(cos(alpha*x)) else: functions.append(sin(alpha*x)) k += 1 return functions def shen_basis(n): ''' Return first n Shen basis functions. Special polynomials made of Legendre polynomials that have 0 values at -1, 1. Functions of x. ''' k = 0 functions = [] while k < n: weight = 1/sqrt(4*k + 6) functions.append(weight*(legendre(k+2, x) - legendre(k, x))) k += 1 return functions def beam_restrict(A, B, u): ''' Restict function(s) u of x, y to beam = {(x, y)=0.5*A*(1-s) + 0.5*B*(1+s)}. ''' if isinstance(u, list): return [beam_restrict(A, B, v) for v in u] else: assert x in u.atoms() and y in u.atoms() ux = u.subs(x, A[0]/2*(1-s) + B[0]/2*(1+s)) u = ux.subs(y, A[1]/2*(1-s) + B[1]/2*(1+s)) return u def L2_distance(f, g): 'L2 norm over [-1, 1] of f-g.' d = f-g d = lambdify(s, d) return sqrt(quad(lambda s: d(s)**2, [-1, 1])) def H10_distance(f, g): 'H10 norm over [-1, 1] of f-g.' d = (f-g).diff(s, 1) d = lambdify(s, d) return sqrt(quad(lambda s: d(s)**2, [-1, 1])) def distance_matrices(A, B, Vp, Vb, Q, norm): ''' Given beam specified by A, B return two matrices. The first matrix has norm(u-q) where u are functions from Vp restricted to beam and q are functions from Q. The other matrix is norm(p-q) for p in Vb and Q in Q. ''' if norm == 'L2': distance = L2_distance elif norm == 'H10': distance = H10_distance else: raise ValueError m, n, r = len(Vp), len(Vb), len(Q) mat0 = np.zeros((m, r)) # First do the restriction Vp = beam_restrict(A, B, Vp) for i, u in enumerate(Vp): for j, q in enumerate(Q): mat0[i, j] = distance(u, q) mat1 = np.zeros((n, r)) for i, p in enumerate(Vb): for j, q in enumerate(Q): mat1[i, j] = distance(p, q) return mat0, mat1 # ----------------------------------------------------------------------------- if __name__ == '__main__': import matplotlib.pyplot as plt from itertools import product # Number of plate function in 1d, number of beam functions and number of # functions for Lagrange multiplier space m, n, r = 20, 20, 20 # Vp basis - functions of x, y Vp = [fx*fy.subs(x, y) for fx, fy in product(eigen_basis(m), eigen_basis(m))] # Vb basis - functions of s Vb = [f.subs(x, s) for f in eigen_basis(n)] # Q basis - functions of s Q = [f.subs(x, s) for f in eigen_basis(r)] # Sample beam A = np.array([0, 0]) B = np.array([1, 1]) for norm in ['L2', 'H10']: matBp, matBb = distance_matrices(A, B, Vp, Vb, Q, norm) plt.figure() plt.title(norm) plt.pcolor(matBp) plt.xlabel('$Q$') plt.ylabel('$V_p$') plt.colorbar() plt.figure() plt.title(norm) plt.pcolor(matBb) plt.xlabel('$Q$') plt.ylabel('$V_b$') plt.colorbar() plt.show()
1bd68140d32eb41f4a7e8552136f8d5ef1080f18
1ab7b3f2aa63de8488ce7c466a67d367771aa1f2
/Ricardo_OS/Python_backend/venv/lib/python3.8/site-packages/pandas/tests/indexing/test_partial.py
337ec683ee745d97ace410b4d302af252d40ba04
[ "MIT" ]
permissive
icl-rocketry/Avionics
9d39aeb11aba11115826fd73357b415026a7adad
95b7a061eabd6f2b607fba79e007186030f02720
refs/heads/master
2022-07-30T07:54:10.642930
2022-07-10T12:19:10
2022-07-10T12:19:10
216,184,670
9
1
MIT
2022-06-27T10:17:06
2019-10-19T09:57:07
C++
UTF-8
Python
false
false
23,869
py
""" test setting *parts* of objects both positionally and label based TODO: these should be split among the indexer tests """ import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Period, Series, Timestamp, date_range, period_range import pandas._testing as tm class TestPartialSetting: def test_partial_setting(self): # GH2578, allow ix and friends to partially set # series s_orig = Series([1, 2, 3]) s = s_orig.copy() s[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s[5] = 5.0 expected = Series([1, 2, 3, 5.0], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5.0 expected = Series([1, 2, 3, 5.0], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) # iloc/iat raise s = s_orig.copy() msg = "iloc cannot enlarge its target object" with pytest.raises(IndexError, match=msg): s.iloc[3] = 5.0 msg = "index 3 is out of bounds for axis 0 with size 3" with pytest.raises(IndexError, match=msg): s.iat[3] = 5.0 # ## frame ## df_orig = DataFrame( np.arange(6).reshape(3, 2), columns=["A", "B"], dtype="int64" ) # iloc/iat raise df = df_orig.copy() msg = "iloc cannot enlarge its target object" with pytest.raises(IndexError, match=msg): df.iloc[4, 2] = 5.0 msg = "index 2 is out of bounds for axis 0 with size 2" with pytest.raises(IndexError, match=msg): df.iat[4, 2] = 5.0 # row setting where it exists expected = DataFrame(dict({"A": [0, 4, 4], "B": [1, 5, 5]})) df = df_orig.copy() df.iloc[1] = df.iloc[2] tm.assert_frame_equal(df, expected) expected = DataFrame(dict({"A": [0, 4, 4], "B": [1, 5, 5]})) df = df_orig.copy() df.loc[1] = df.loc[2] tm.assert_frame_equal(df, expected) # like 2578, partial setting with dtype preservation expected = DataFrame(dict({"A": [0, 2, 4, 4], "B": [1, 3, 5, 5]})) df = df_orig.copy() df.loc[3] = df.loc[2] tm.assert_frame_equal(df, expected) # single dtype frame, overwrite expected = DataFrame(dict({"A": [0, 2, 4], "B": [0, 2, 4]})) df = df_orig.copy() df.loc[:, "B"] = df.loc[:, "A"] tm.assert_frame_equal(df, expected) # mixed dtype frame, overwrite expected = DataFrame(dict({"A": [0, 2, 4], "B": Series([0, 2, 4])})) df = df_orig.copy() df["B"] = df["B"].astype(np.float64) df.loc[:, "B"] = df.loc[:, "A"] tm.assert_frame_equal(df, expected) # single dtype frame, partial setting expected = df_orig.copy() expected["C"] = df["A"] df = df_orig.copy() df.loc[:, "C"] = df.loc[:, "A"] tm.assert_frame_equal(df, expected) # mixed frame, partial setting expected = df_orig.copy() expected["C"] = df["A"] df = df_orig.copy() df.loc[:, "C"] = df.loc[:, "A"] tm.assert_frame_equal(df, expected) # GH 8473 dates = date_range("1/1/2000", periods=8) df_orig = DataFrame( np.random.randn(8, 4), index=dates, columns=["A", "B", "C", "D"] ) expected = pd.concat( [df_orig, DataFrame({"A": 7}, index=dates[-1:] + dates.freq)], sort=True ) df = df_orig.copy() df.loc[dates[-1] + dates.freq, "A"] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + dates.freq, "A"] = 7 tm.assert_frame_equal(df, expected) exp_other = DataFrame({0: 7}, index=dates[-1:] + dates.freq) expected = pd.concat([df_orig, exp_other], axis=1) df = df_orig.copy() df.loc[dates[-1] + dates.freq, 0] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + dates.freq, 0] = 7 tm.assert_frame_equal(df, expected) def test_partial_setting_mixed_dtype(self): # in a mixed dtype environment, try to preserve dtypes # by appending df = DataFrame([[True, 1], [False, 2]], columns=["female", "fitness"]) s = df.loc[1].copy() s.name = 2 expected = df.append(s) df.loc[2] = df.loc[1] tm.assert_frame_equal(df, expected) # columns will align df = DataFrame(columns=["A", "B"]) df.loc[0] = Series(1, index=range(4)) tm.assert_frame_equal(df, DataFrame(columns=["A", "B"], index=[0])) # columns will align df = DataFrame(columns=["A", "B"]) df.loc[0] = Series(1, index=["B"]) exp = DataFrame([[np.nan, 1]], columns=["A", "B"], index=[0], dtype="float64") tm.assert_frame_equal(df, exp) # list-like must conform df = DataFrame(columns=["A", "B"]) msg = "cannot set a row with mismatched columns" with pytest.raises(ValueError, match=msg): df.loc[0] = [1, 2, 3] # TODO: #15657, these are left as object and not coerced df = DataFrame(columns=["A", "B"]) df.loc[3] = [6, 7] exp = DataFrame([[6, 7]], index=[3], columns=["A", "B"], dtype="object") tm.assert_frame_equal(df, exp) def test_series_partial_set(self): # partial set with new index # Regression from GH4825 ser = Series([0.1, 0.2], index=[1, 2]) # loc equiv to .reindex expected = Series([np.nan, 0.2, np.nan], index=[3, 2, 3]) with pytest.raises(KeyError, match="with any missing labels"): result = ser.loc[[3, 2, 3]] result = ser.reindex([3, 2, 3]) tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.2, np.nan, np.nan], index=[3, 2, 3, "x"]) with pytest.raises(KeyError, match="with any missing labels"): result = ser.loc[[3, 2, 3, "x"]] result = ser.reindex([3, 2, 3, "x"]) tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, 0.1], index=[2, 2, 1]) result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, np.nan, 0.1], index=[2, 2, "x", 1]) with pytest.raises(KeyError, match="with any missing labels"): result = ser.loc[[2, 2, "x", 1]] result = ser.reindex([2, 2, "x", 1]) tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing in in the index msg = ( r"\"None of \[Int64Index\(\[3, 3, 3\], dtype='int64'\)\] are " r"in the \[index\]\"" ) with pytest.raises(KeyError, match=msg): ser.loc[[3, 3, 3]] expected = Series([0.2, 0.2, np.nan], index=[2, 2, 3]) with pytest.raises(KeyError, match="with any missing labels"): ser.loc[[2, 2, 3]] result = ser.reindex([2, 2, 3]) tm.assert_series_equal(result, expected, check_index_type=True) s = Series([0.1, 0.2, 0.3], index=[1, 2, 3]) expected = Series([0.3, np.nan, np.nan], index=[3, 4, 4]) with pytest.raises(KeyError, match="with any missing labels"): s.loc[[3, 4, 4]] result = s.reindex([3, 4, 4]) tm.assert_series_equal(result, expected, check_index_type=True) s = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]) expected = Series([np.nan, 0.3, 0.3], index=[5, 3, 3]) with pytest.raises(KeyError, match="with any missing labels"): s.loc[[5, 3, 3]] result = s.reindex([5, 3, 3]) tm.assert_series_equal(result, expected, check_index_type=True) s = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]) expected = Series([np.nan, 0.4, 0.4], index=[5, 4, 4]) with pytest.raises(KeyError, match="with any missing labels"): s.loc[[5, 4, 4]] result = s.reindex([5, 4, 4]) tm.assert_series_equal(result, expected, check_index_type=True) s = Series([0.1, 0.2, 0.3, 0.4], index=[4, 5, 6, 7]) expected = Series([0.4, np.nan, np.nan], index=[7, 2, 2]) with pytest.raises(KeyError, match="with any missing labels"): s.loc[[7, 2, 2]] result = s.reindex([7, 2, 2]) tm.assert_series_equal(result, expected, check_index_type=True) s = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]) expected = Series([0.4, np.nan, np.nan], index=[4, 5, 5]) with pytest.raises(KeyError, match="with any missing labels"): s.loc[[4, 5, 5]] result = s.reindex([4, 5, 5]) tm.assert_series_equal(result, expected, check_index_type=True) # iloc expected = Series([0.2, 0.2, 0.1, 0.1], index=[2, 2, 1, 1]) result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_series_partial_set_with_name(self): # GH 11497 idx = Index([1, 2], dtype="int64", name="idx") ser = Series([0.1, 0.2], index=idx, name="s") # loc with pytest.raises(KeyError, match="with any missing labels"): ser.loc[[3, 2, 3]] with pytest.raises(KeyError, match="with any missing labels"): ser.loc[[3, 2, 3, "x"]] exp_idx = Index([2, 2, 1], dtype="int64", name="idx") expected = Series([0.2, 0.2, 0.1], index=exp_idx, name="s") result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) with pytest.raises(KeyError, match="with any missing labels"): ser.loc[[2, 2, "x", 1]] # raises as nothing in in the index msg = ( r"\"None of \[Int64Index\(\[3, 3, 3\], dtype='int64', " r"name='idx'\)\] are in the \[index\]\"" ) with pytest.raises(KeyError, match=msg): ser.loc[[3, 3, 3]] with pytest.raises(KeyError, match="with any missing labels"): ser.loc[[2, 2, 3]] idx = Index([1, 2, 3], dtype="int64", name="idx") with pytest.raises(KeyError, match="with any missing labels"): Series([0.1, 0.2, 0.3], index=idx, name="s").loc[[3, 4, 4]] idx = Index([1, 2, 3, 4], dtype="int64", name="idx") with pytest.raises(KeyError, match="with any missing labels"): Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[5, 3, 3]] idx = Index([1, 2, 3, 4], dtype="int64", name="idx") with pytest.raises(KeyError, match="with any missing labels"): Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[5, 4, 4]] idx = Index([4, 5, 6, 7], dtype="int64", name="idx") with pytest.raises(KeyError, match="with any missing labels"): Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[7, 2, 2]] idx = Index([1, 2, 3, 4], dtype="int64", name="idx") with pytest.raises(KeyError, match="with any missing labels"): Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[4, 5, 5]] # iloc exp_idx = Index([2, 2, 1, 1], dtype="int64", name="idx") expected = Series([0.2, 0.2, 0.1, 0.1], index=exp_idx, name="s") result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_partial_set_invalid(self): # GH 4940 # allow only setting of 'valid' values orig = tm.makeTimeDataFrame() df = orig.copy() # don't allow not string inserts msg = "cannot insert DatetimeArray with incompatible label" with pytest.raises(TypeError, match=msg): df.loc[100.0, :] = df.iloc[0] with pytest.raises(TypeError, match=msg): df.loc[100, :] = df.iloc[0] # allow object conversion here df = orig.copy() df.loc["a", :] = df.iloc[0] exp = orig.append(Series(df.iloc[0], name="a")) tm.assert_frame_equal(df, exp) tm.assert_index_equal(df.index, Index(orig.index.tolist() + ["a"])) assert df.index.dtype == "object" def test_partial_set_empty_series(self): # GH5226 # partially set with an empty object series s = Series(dtype=object) s.loc[1] = 1 tm.assert_series_equal(s, Series([1], index=[1])) s.loc[3] = 3 tm.assert_series_equal(s, Series([1, 3], index=[1, 3])) s = Series(dtype=object) s.loc[1] = 1.0 tm.assert_series_equal(s, Series([1.0], index=[1])) s.loc[3] = 3.0 tm.assert_series_equal(s, Series([1.0, 3.0], index=[1, 3])) s = Series(dtype=object) s.loc["foo"] = 1 tm.assert_series_equal(s, Series([1], index=["foo"])) s.loc["bar"] = 3 tm.assert_series_equal(s, Series([1, 3], index=["foo", "bar"])) s.loc[3] = 4 tm.assert_series_equal(s, Series([1, 3, 4], index=["foo", "bar", 3])) def test_partial_set_empty_frame(self): # partially set with an empty object # frame df = DataFrame() msg = "cannot set a frame with no defined columns" with pytest.raises(ValueError, match=msg): df.loc[1] = 1 with pytest.raises(ValueError, match=msg): df.loc[1] = Series([1], index=["foo"]) msg = "cannot set a frame with no defined index and a scalar" with pytest.raises(ValueError, match=msg): df.loc[:, 1] = 1 # these work as they don't really change # anything but the index # GH5632 expected = DataFrame(columns=["foo"], index=Index([], dtype="object")) def f(): df = DataFrame(index=Index([], dtype="object")) df["foo"] = Series([], dtype="object") return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() df["foo"] = Series(df.index) return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() df["foo"] = df.index return df tm.assert_frame_equal(f(), expected) expected = DataFrame(columns=["foo"], index=Index([], dtype="int64")) expected["foo"] = expected["foo"].astype("float64") def f(): df = DataFrame(index=Index([], dtype="int64")) df["foo"] = [] return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame(index=Index([], dtype="int64")) df["foo"] = Series(np.arange(len(df)), dtype="float64") return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame(index=Index([], dtype="int64")) df["foo"] = range(len(df)) return df expected = DataFrame(columns=["foo"], index=Index([], dtype="int64")) expected["foo"] = expected["foo"].astype("float64") tm.assert_frame_equal(f(), expected) df = DataFrame() tm.assert_index_equal(df.columns, Index([], dtype=object)) df2 = DataFrame() df2[1] = Series([1], index=["foo"]) df.loc[:, 1] = Series([1], index=["foo"]) tm.assert_frame_equal(df, DataFrame([[1]], index=["foo"], columns=[1])) tm.assert_frame_equal(df, df2) # no index to start expected = DataFrame({0: Series(1, index=range(4))}, columns=["A", "B", 0]) df = DataFrame(columns=["A", "B"]) df[0] = Series(1, index=range(4)) df.dtypes str(df) tm.assert_frame_equal(df, expected) df = DataFrame(columns=["A", "B"]) df.loc[:, 0] = Series(1, index=range(4)) df.dtypes str(df) tm.assert_frame_equal(df, expected) def test_partial_set_empty_frame_row(self): # GH5720, GH5744 # don't create rows when empty expected = DataFrame(columns=["A", "B", "New"], index=Index([], dtype="int64")) expected["A"] = expected["A"].astype("int64") expected["B"] = expected["B"].astype("float64") expected["New"] = expected["New"].astype("float64") df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]}) y = df[df.A > 5] y["New"] = np.nan tm.assert_frame_equal(y, expected) # tm.assert_frame_equal(y,expected) expected = DataFrame(columns=["a", "b", "c c", "d"]) expected["d"] = expected["d"].astype("int64") df = DataFrame(columns=["a", "b", "c c"]) df["d"] = 3 tm.assert_frame_equal(df, expected) tm.assert_series_equal(df["c c"], Series(name="c c", dtype=object)) # reindex columns is ok df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]}) y = df[df.A > 5] result = y.reindex(columns=["A", "B", "C"]) expected = DataFrame(columns=["A", "B", "C"], index=Index([], dtype="int64")) expected["A"] = expected["A"].astype("int64") expected["B"] = expected["B"].astype("float64") expected["C"] = expected["C"].astype("float64") tm.assert_frame_equal(result, expected) def test_partial_set_empty_frame_set_series(self): # GH 5756 # setting with empty Series df = DataFrame(Series(dtype=object)) tm.assert_frame_equal(df, DataFrame({0: Series(dtype=object)})) df = DataFrame(Series(name="foo", dtype=object)) tm.assert_frame_equal(df, DataFrame({"foo": Series(dtype=object)})) def test_partial_set_empty_frame_empty_copy_assignment(self): # GH 5932 # copy on empty with assignment fails df = DataFrame(index=[0]) df = df.copy() df["a"] = 0 expected = DataFrame(0, index=[0], columns=["a"]) tm.assert_frame_equal(df, expected) def test_partial_set_empty_frame_empty_consistencies(self): # GH 6171 # consistency on empty frames df = DataFrame(columns=["x", "y"]) df["x"] = [1, 2] expected = DataFrame(dict(x=[1, 2], y=[np.nan, np.nan])) tm.assert_frame_equal(df, expected, check_dtype=False) df = DataFrame(columns=["x", "y"]) df["x"] = ["1", "2"] expected = DataFrame(dict(x=["1", "2"], y=[np.nan, np.nan]), dtype=object) tm.assert_frame_equal(df, expected) df = DataFrame(columns=["x", "y"]) df.loc[0, "x"] = 1 expected = DataFrame(dict(x=[1], y=[np.nan])) tm.assert_frame_equal(df, expected, check_dtype=False) @pytest.mark.parametrize( "idx,labels,expected_idx", [ ( period_range(start="2000", periods=20, freq="D"), ["2000-01-04", "2000-01-08", "2000-01-12"], [ Period("2000-01-04", freq="D"), Period("2000-01-08", freq="D"), Period("2000-01-12", freq="D"), ], ), ( date_range(start="2000", periods=20, freq="D"), ["2000-01-04", "2000-01-08", "2000-01-12"], [ Timestamp("2000-01-04", freq="D"), Timestamp("2000-01-08", freq="D"), Timestamp("2000-01-12", freq="D"), ], ), ( pd.timedelta_range(start="1 day", periods=20), ["4D", "8D", "12D"], [pd.Timedelta("4 day"), pd.Timedelta("8 day"), pd.Timedelta("12 day")], ), ], ) def test_loc_with_list_of_strings_representing_datetimes( self, idx, labels, expected_idx ): # GH 11278 s = Series(range(20), index=idx) df = DataFrame(range(20), index=idx) expected_value = [3, 7, 11] expected_s = Series(expected_value, expected_idx) expected_df = DataFrame(expected_value, expected_idx) tm.assert_series_equal(expected_s, s.loc[labels]) tm.assert_series_equal(expected_s, s[labels]) tm.assert_frame_equal(expected_df, df.loc[labels]) @pytest.mark.parametrize( "idx,labels", [ ( period_range(start="2000", periods=20, freq="D"), ["2000-01-04", "2000-01-30"], ), ( date_range(start="2000", periods=20, freq="D"), ["2000-01-04", "2000-01-30"], ), (pd.timedelta_range(start="1 day", periods=20), ["3 day", "30 day"]), ], ) def test_loc_with_list_of_strings_representing_datetimes_missing_value( self, idx, labels ): # GH 11278 s = Series(range(20), index=idx) df = DataFrame(range(20), index=idx) msg = r"with any missing labels" with pytest.raises(KeyError, match=msg): s.loc[labels] with pytest.raises(KeyError, match=msg): s[labels] with pytest.raises(KeyError, match=msg): df.loc[labels] @pytest.mark.parametrize( "idx,labels,msg", [ ( period_range(start="2000", periods=20, freq="D"), ["4D", "8D"], ( r"None of \[Index\(\['4D', '8D'\], dtype='object'\)\] " r"are in the \[index\]" ), ), ( date_range(start="2000", periods=20, freq="D"), ["4D", "8D"], ( r"None of \[Index\(\['4D', '8D'\], dtype='object'\)\] " r"are in the \[index\]" ), ), ( pd.timedelta_range(start="1 day", periods=20), ["2000-01-04", "2000-01-08"], ( r"None of \[Index\(\['2000-01-04', '2000-01-08'\], " r"dtype='object'\)\] are in the \[index\]" ), ), ], ) def test_loc_with_list_of_strings_representing_datetimes_not_matched_type( self, idx, labels, msg ): # GH 11278 s = Series(range(20), index=idx) df = DataFrame(range(20), index=idx) with pytest.raises(KeyError, match=msg): s.loc[labels] with pytest.raises(KeyError, match=msg): s[labels] with pytest.raises(KeyError, match=msg): df.loc[labels] def test_indexing_timeseries_regression(self): # Issue 34860 arr = date_range("1/1/2008", "1/1/2009") result = arr.to_series()["2008"] rng = date_range(start="2008-01-01", end="2008-12-31") expected = Series(rng, index=rng) tm.assert_series_equal(result, expected) def test_index_name_empty(self): # GH 31368 df = pd.DataFrame({}, index=pd.RangeIndex(0, name="df_index")) series = pd.Series(1.23, index=pd.RangeIndex(4, name="series_index")) df["series"] = series expected = pd.DataFrame( {"series": [1.23] * 4}, index=pd.RangeIndex(4, name="df_index") ) tm.assert_frame_equal(df, expected) # GH 36527 df = pd.DataFrame() series = pd.Series(1.23, index=pd.RangeIndex(4, name="series_index")) df["series"] = series expected = pd.DataFrame( {"series": [1.23] * 4}, index=pd.RangeIndex(4, name="series_index") ) tm.assert_frame_equal(df, expected)
a728bf9ae2c46a9eeba638b54da02ebb8ac8ddca
a35b24c8c3c5bdf861f3cda9396f2fa6795ec929
/abc/abc037/a/main.py
bb4c99a18af37578e976b0d53202738d5e7c3592
[]
no_license
Msksgm/atcoder_msksgm_practice
92a19e2d6c034d95e1cfaf963aff5739edb4ab6e
3ae2dcb7d235a480cdfdfcd6a079e183936979b4
refs/heads/master
2021-08-18T16:08:08.551718
2020-09-24T07:01:11
2020-09-24T07:01:11
224,743,360
0
0
null
null
null
null
UTF-8
Python
false
false
226
py
def main(): a, b, c = map(int, input().split()) min_price = min(a, b) max_price = max(a, b) ans = (c // min_price) ans += (c % min_price) // max_price print(ans) if __name__ == "__main__": main()
79f7198200be4d319c47ef26eb3c57f5f1be53d5
5cd0807f442e6d3890167c5d9c4715c32ee4dfcc
/Hello/product/admin.py
0ac66c87b29eec67df5f5a9cf675bd28596b0216
[]
no_license
udoy382/PythonForBeginners
592b2890a71e6895c2db43dbaf39f08156ef5826
686f5e982ae40f149688a76ded53b90c6f17af8a
refs/heads/main
2023-03-27T05:14:08.705961
2021-03-25T14:35:19
2021-03-25T14:35:19
351,468,393
0
0
null
null
null
null
UTF-8
Python
false
false
89
py
from django.contrib import admin from .models import Product admin.site.register(Product)
9815087e80c3f0b15bf9a109a3263889e8a125ae
ae2c75fd7f9e86860ee013c8c05416fa9c688f1d
/manage.py
94f12bedc46b2d514400712c428e7aefc1760406
[]
no_license
crowdbotics-apps/new-app-chetna-soni--4500
733fc277bb085256867f1a8af29d1b444aa9aa86
50b03200b0fe8fa6b2b72214634a3beb6c5bf192
refs/heads/master
2023-05-27T22:30:32.627736
2020-05-13T13:57:29
2020-05-13T13:57:29
263,645,180
0
0
null
2021-06-12T18:03:30
2020-05-13T13:56:59
Python
UTF-8
Python
false
false
645
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'new_app_chetna_soni__4500.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
13590eb83cedf7e78563f292ee34f03b3d739622
a0a288a9563ed4519cfe9f9c24ecc41237753dbc
/thechronic/strange.py
417876af3a2960256bd2b445292b60da0c62abbd
[ "MIT" ]
permissive
iluxonchik/the-chronic
99b236456efb9c32dfb9e3978f9e2cc28910a03c
4dd41ea1a96e4c5cb1741de02d55cf09b2e78979
refs/heads/master
2021-04-28T22:40:51.993595
2018-04-02T13:38:04
2018-04-02T13:38:04
77,719,263
0
0
null
null
null
null
UTF-8
Python
false
false
696
py
class Strange(object): """ Wrapper arround the built-in range() function, which returns str instead of int on iteration. Just like a range object, an instance of Srange can be iterated over multiple times. """ def __init__(self, start, stop=None, step=1): if stop is None: stop = start start = 0 self._range = range(start, stop, step) self._iter = iter(self._range) def __iter__(self): return self def __next__(self): try: str_num = str(next(self._iter)) except StopIteration as err: self._iter = iter(self._range) raise err return str_num
8a7f44524ce9a081def3a9a9ada89f66644202d9
05e634a232574f676434dfa8e4183f3d0a1a4bc9
/tutorials/mobilenetv3_prod/Step1-5/mobilenetv3_ref/torchvision/transforms/autoaugment.py
d2317602b1e7662fe828258ffcda461867fe541f
[ "Apache-2.0" ]
permissive
PaddlePaddle/models
67ac00d93c5255ac64a9d80ae5be2e8927e47cee
8042c21b690ffc0162095e749a41b94dd38732da
refs/heads/release/2.4
2023-09-04T15:23:59.543625
2023-07-20T11:54:16
2023-07-20T11:54:16
88,868,842
7,633
3,597
Apache-2.0
2023-09-05T23:23:54
2017-04-20T13:30:15
Python
UTF-8
Python
false
false
12,501
py
import math import torch from enum import Enum from torch import Tensor from typing import List, Tuple, Optional from . import functional as F, InterpolationMode __all__ = ["AutoAugmentPolicy", "AutoAugment"] class AutoAugmentPolicy(Enum): """AutoAugment policies learned on different datasets. Available policies are IMAGENET, CIFAR10 and SVHN. """ IMAGENET = "imagenet" CIFAR10 = "cifar10" SVHN = "svhn" def _get_transforms(policy: AutoAugmentPolicy): if policy == AutoAugmentPolicy.IMAGENET: return [ (("Posterize", 0.4, 8), ("Rotate", 0.6, 9)), (("Solarize", 0.6, 5), ("AutoContrast", 0.6, None)), (("Equalize", 0.8, None), ("Equalize", 0.6, None)), (("Posterize", 0.6, 7), ("Posterize", 0.6, 6)), (("Equalize", 0.4, None), ("Solarize", 0.2, 4)), (("Equalize", 0.4, None), ("Rotate", 0.8, 8)), (("Solarize", 0.6, 3), ("Equalize", 0.6, None)), (("Posterize", 0.8, 5), ("Equalize", 1.0, None)), (("Rotate", 0.2, 3), ("Solarize", 0.6, 8)), (("Equalize", 0.6, None), ("Posterize", 0.4, 6)), (("Rotate", 0.8, 8), ("Color", 0.4, 0)), (("Rotate", 0.4, 9), ("Equalize", 0.6, None)), (("Equalize", 0.0, None), ("Equalize", 0.8, None)), (("Invert", 0.6, None), ("Equalize", 1.0, None)), (("Color", 0.6, 4), ("Contrast", 1.0, 8)), (("Rotate", 0.8, 8), ("Color", 1.0, 2)), (("Color", 0.8, 8), ("Solarize", 0.8, 7)), (("Sharpness", 0.4, 7), ("Invert", 0.6, None)), (("ShearX", 0.6, 5), ("Equalize", 1.0, None)), (("Color", 0.4, 0), ("Equalize", 0.6, None)), (("Equalize", 0.4, None), ("Solarize", 0.2, 4)), (("Solarize", 0.6, 5), ("AutoContrast", 0.6, None)), (("Invert", 0.6, None), ("Equalize", 1.0, None)), (("Color", 0.6, 4), ("Contrast", 1.0, 8)), (("Equalize", 0.8, None), ("Equalize", 0.6, None)), ] elif policy == AutoAugmentPolicy.CIFAR10: return [ (("Invert", 0.1, None), ("Contrast", 0.2, 6)), (("Rotate", 0.7, 2), ("TranslateX", 0.3, 9)), (("Sharpness", 0.8, 1), ("Sharpness", 0.9, 3)), (("ShearY", 0.5, 8), ("TranslateY", 0.7, 9)), (("AutoContrast", 0.5, None), ("Equalize", 0.9, None)), (("ShearY", 0.2, 7), ("Posterize", 0.3, 7)), (("Color", 0.4, 3), ("Brightness", 0.6, 7)), (("Sharpness", 0.3, 9), ("Brightness", 0.7, 9)), (("Equalize", 0.6, None), ("Equalize", 0.5, None)), (("Contrast", 0.6, 7), ("Sharpness", 0.6, 5)), (("Color", 0.7, 7), ("TranslateX", 0.5, 8)), (("Equalize", 0.3, None), ("AutoContrast", 0.4, None)), (("TranslateY", 0.4, 3), ("Sharpness", 0.2, 6)), (("Brightness", 0.9, 6), ("Color", 0.2, 8)), (("Solarize", 0.5, 2), ("Invert", 0.0, None)), (("Equalize", 0.2, None), ("AutoContrast", 0.6, None)), (("Equalize", 0.2, None), ("Equalize", 0.6, None)), (("Color", 0.9, 9), ("Equalize", 0.6, None)), (("AutoContrast", 0.8, None), ("Solarize", 0.2, 8)), (("Brightness", 0.1, 3), ("Color", 0.7, 0)), (("Solarize", 0.4, 5), ("AutoContrast", 0.9, None)), (("TranslateY", 0.9, 9), ("TranslateY", 0.7, 9)), (("AutoContrast", 0.9, None), ("Solarize", 0.8, 3)), (("Equalize", 0.8, None), ("Invert", 0.1, None)), (("TranslateY", 0.7, 9), ("AutoContrast", 0.9, None)), ] elif policy == AutoAugmentPolicy.SVHN: return [ (("ShearX", 0.9, 4), ("Invert", 0.2, None)), (("ShearY", 0.9, 8), ("Invert", 0.7, None)), (("Equalize", 0.6, None), ("Solarize", 0.6, 6)), (("Invert", 0.9, None), ("Equalize", 0.6, None)), (("Equalize", 0.6, None), ("Rotate", 0.9, 3)), (("ShearX", 0.9, 4), ("AutoContrast", 0.8, None)), (("ShearY", 0.9, 8), ("Invert", 0.4, None)), (("ShearY", 0.9, 5), ("Solarize", 0.2, 6)), (("Invert", 0.9, None), ("AutoContrast", 0.8, None)), (("Equalize", 0.6, None), ("Rotate", 0.9, 3)), (("ShearX", 0.9, 4), ("Solarize", 0.3, 3)), (("ShearY", 0.8, 8), ("Invert", 0.7, None)), (("Equalize", 0.9, None), ("TranslateY", 0.6, 6)), (("Invert", 0.9, None), ("Equalize", 0.6, None)), (("Contrast", 0.3, 3), ("Rotate", 0.8, 4)), (("Invert", 0.8, None), ("TranslateY", 0.0, 2)), (("ShearY", 0.7, 6), ("Solarize", 0.4, 8)), (("Invert", 0.6, None), ("Rotate", 0.8, 4)), (("ShearY", 0.3, 7), ("TranslateX", 0.9, 3)), (("ShearX", 0.1, 6), ("Invert", 0.6, None)), (("Solarize", 0.7, 2), ("TranslateY", 0.6, 7)), (("ShearY", 0.8, 4), ("Invert", 0.8, None)), (("ShearX", 0.7, 9), ("TranslateY", 0.8, 3)), (("ShearY", 0.8, 5), ("AutoContrast", 0.7, None)), (("ShearX", 0.7, 2), ("Invert", 0.1, None)), ] def _get_magnitudes(): _BINS = 10 return { # name: (magnitudes, signed) "ShearX": (torch.linspace(0.0, 0.3, _BINS), True), "ShearY": (torch.linspace(0.0, 0.3, _BINS), True), "TranslateX": (torch.linspace(0.0, 150.0 / 331.0, _BINS), True), "TranslateY": (torch.linspace(0.0, 150.0 / 331.0, _BINS), True), "Rotate": (torch.linspace(0.0, 30.0, _BINS), True), "Brightness": (torch.linspace(0.0, 0.9, _BINS), True), "Color": (torch.linspace(0.0, 0.9, _BINS), True), "Contrast": (torch.linspace(0.0, 0.9, _BINS), True), "Sharpness": (torch.linspace(0.0, 0.9, _BINS), True), "Posterize": (torch.tensor([8, 8, 7, 7, 6, 6, 5, 5, 4, 4]), False), "Solarize": (torch.linspace(256.0, 0.0, _BINS), False), "AutoContrast": (None, None), "Equalize": (None, None), "Invert": (None, None), } class AutoAugment(torch.nn.Module): r"""AutoAugment data augmentation method based on `"AutoAugment: Learning Augmentation Strategies from Data" <https://arxiv.org/pdf/1805.09501.pdf>`_. If the image is torch Tensor, it should be of type torch.uint8, and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions. If img is PIL Image, it is expected to be in mode "L" or "RGB". Args: policy (AutoAugmentPolicy): Desired policy enum defined by :class:`torchvision.transforms.autoaugment.AutoAugmentPolicy`. Default is ``AutoAugmentPolicy.IMAGENET``. interpolation (InterpolationMode): Desired interpolation enum defined by :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``. If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported. fill (sequence or number, optional): Pixel fill value for the area outside the transformed image. If given a number, the value is used for all bands respectively. """ def __init__(self, policy: AutoAugmentPolicy=AutoAugmentPolicy.IMAGENET, interpolation: InterpolationMode=InterpolationMode.NEAREST, fill: Optional[List[float]]=None): super().__init__() self.policy = policy self.interpolation = interpolation self.fill = fill self.transforms = _get_transforms(policy) if self.transforms is None: raise ValueError( "The provided policy {} is not recognized.".format(policy)) self._op_meta = _get_magnitudes() @staticmethod def get_params(transform_num: int) -> Tuple[int, Tensor, Tensor]: """Get parameters for autoaugment transformation Returns: params required by the autoaugment transformation """ policy_id = torch.randint(transform_num, (1, )).item() probs = torch.rand((2, )) signs = torch.randint(2, (2, )) return policy_id, probs, signs def _get_op_meta(self, name: str) -> Tuple[Optional[Tensor], Optional[bool]]: return self._op_meta[name] def forward(self, img: Tensor): """ img (PIL Image or Tensor): Image to be transformed. Returns: PIL Image or Tensor: AutoAugmented image. """ fill = self.fill if isinstance(img, Tensor): if isinstance(fill, (int, float)): fill = [float(fill)] * F._get_image_num_channels(img) elif fill is not None: fill = [float(f) for f in fill] transform_id, probs, signs = self.get_params(len(self.transforms)) for i, (op_name, p, magnitude_id) in enumerate(self.transforms[transform_id]): if probs[i] <= p: magnitudes, signed = self._get_op_meta(op_name) magnitude = float(magnitudes[magnitude_id].item()) \ if magnitudes is not None and magnitude_id is not None else 0.0 if signed is not None and signed and signs[i] == 0: magnitude *= -1.0 if op_name == "ShearX": img = F.affine( img, angle=0.0, translate=[0, 0], scale=1.0, shear=[math.degrees(magnitude), 0.0], interpolation=self.interpolation, fill=fill) elif op_name == "ShearY": img = F.affine( img, angle=0.0, translate=[0, 0], scale=1.0, shear=[0.0, math.degrees(magnitude)], interpolation=self.interpolation, fill=fill) elif op_name == "TranslateX": img = F.affine( img, angle=0.0, translate=[ int(F._get_image_size(img)[0] * magnitude), 0 ], scale=1.0, interpolation=self.interpolation, shear=[0.0, 0.0], fill=fill) elif op_name == "TranslateY": img = F.affine( img, angle=0.0, translate=[ 0, int(F._get_image_size(img)[1] * magnitude) ], scale=1.0, interpolation=self.interpolation, shear=[0.0, 0.0], fill=fill) elif op_name == "Rotate": img = F.rotate( img, magnitude, interpolation=self.interpolation, fill=fill) elif op_name == "Brightness": img = F.adjust_brightness(img, 1.0 + magnitude) elif op_name == "Color": img = F.adjust_saturation(img, 1.0 + magnitude) elif op_name == "Contrast": img = F.adjust_contrast(img, 1.0 + magnitude) elif op_name == "Sharpness": img = F.adjust_sharpness(img, 1.0 + magnitude) elif op_name == "Posterize": img = F.posterize(img, int(magnitude)) elif op_name == "Solarize": img = F.solarize(img, magnitude) elif op_name == "AutoContrast": img = F.autocontrast(img) elif op_name == "Equalize": img = F.equalize(img) elif op_name == "Invert": img = F.invert(img) else: raise ValueError( "The provided operator {} is not recognized.".format( op_name)) return img def __repr__(self): return self.__class__.__name__ + '(policy={}, fill={})'.format( self.policy, self.fill)
4baf087e4e4c72d03eb1f4f5b7f52fbbaa305d56
b71e91d4eb55b6826dbe378180aa7b2b8a717bdf
/Capitulo1/exerc4_3_v5.py
1058a9e307d85293890de1402b022dd0572ac930
[]
no_license
gustavopierre/think_python
49a9ceb50f760b41f6fbac54a07f6b394aa8d637
a3ad6e660db4e6ce2aa105f5084e585f95936867
refs/heads/main
2023-03-24T23:48:29.415573
2021-03-15T22:15:30
2021-03-15T22:15:30
348,137,048
0
0
null
null
null
null
UTF-8
Python
false
false
336
py
import turtle import math def arc(t, r, angle): n = int(2*math.pi*r/10) x = int(n*angle/360) for count in range(x): t.fd(10) t.lt(360/n) print(f'r = {r}') print(f'angle = {angle}') print(f'n = {n}') print(f'x = {x}') bob = turtle.Turtle() print(bob) arc(bob, 100, 270) turtle.mainloop()
6e02a4cd2c2891c084f93dad75871c179905debf
b54097ce251925a82e591a08ae625fa884500b9c
/tests/test_github.py
e942b6bfaabe6db425870e1377356785c841cac2
[ "BSD-3-Clause" ]
permissive
johnnoone/aiovault
b45b576cfb30570b1bbe9ab018a3247156dbefea
03e1bfb6f0404dcf97ce87a98c539027c4e78a37
refs/heads/master
2021-01-10T19:56:50.715283
2015-07-10T21:15:21
2015-07-10T21:15:21
35,452,083
1
0
null
null
null
null
UTF-8
Python
false
false
2,199
py
from aiovault import Vault, LoginError from conftest import async_test import pytest @async_test def test_github_raw_loading(dev_server): client = Vault(dev_server.addr, token=dev_server.root_token) response = yield from client.read('/sys/auth/github/login', params={"help": 1}) data = yield from response.json() print(data['help']) # low level create/delete response = yield from client.write('/sys/auth/github', json={"type": "github"}) assert response.status == 204, 'Must add github auth backend' response = yield from client.delete('/sys/auth/github') assert response.status == 204, 'Must delete github auth backend' # high level create/delete response = yield from client.auth.enable('github') assert response.type == 'github', 'Must add github auth backend' response = yield from client.auth.disable('github') assert response is True, 'Must delete github auth backend' @async_test def test_help(dev_server): client = Vault(dev_server.addr, token=dev_server.root_token) response = yield from client.read('/sys/auth/github', params={"help": 1}) data = yield from response.json() assert 'help' in data @async_test def test_github_loading(dev_server, env): try: github_org = env.GITHUB_ORG github_token = env.GITHUB_TOKEN except AttributeError: return 'GITHUB_ORG or GITHUB_TOKEN missing' client = Vault(dev_server.addr, token=dev_server.root_token) backend1 = backend = yield from client.auth.enable('github') configured = yield from backend.configure(organization=github_org) assert configured configured = yield from backend.write_team('test', policies='foo') assert configured client = Vault(dev_server.addr) backend = client.auth.load('github') dummy_token = '1111111111111111111111111111111111111111' with pytest.raises(LoginError): yield from backend.login(github_token=dummy_token) yield from backend.login(github_token=github_token) disabled = yield from backend1.disable() assert disabled
d36a0fd44877c71c01b65bf4986938b78a9d64dc
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/remove_invalid_submissions.py
bea3c87a9227a23ef93473ae7d1cd253ca981bc3
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
2,261
py
import os from collections import Counter import shutil import sys import argparse import tempfile # for example call this script on hamming from exercism_data directory like: python remove_invalid_submissions.py "ruby/hamming/" "filtered-submissions/" "compute" parser = argparse.ArgumentParser(description='Filter and clean data and put in src directory') parser.add_argument('data_directory', help='Directory for original data') parser.add_argument('filtered_submissions', help='Directory to store filtered data') parser.add_argument('method', help='Method to extract') args = parser.parse_args() data_directory = args.data_directory filtered_submissions =args.filtered_submissions method = args.method mapfile = open("mapping.csv", "w") count = 0 for f in os.listdir(data_directory): count+=1 print 'starting with submissions: ' + str(count) if not os.path.isdir(filtered_submissions): os.mkdir(filtered_submissions) else: shutil.rmtree(filtered_submissions) os.mkdir(filtered_submissions) if not os.path.isdir('src'): os.mkdir('src') else: shutil.rmtree('src') os.mkdir('src') for f in os.listdir(data_directory): t = tempfile.NamedTemporaryFile(mode="r+") with open(data_directory+f) as filename: for line in filename: line = line.partition('#')[0] line = line.rstrip() + "\n" t.write(line) t.seek(0) data = t.read() #if not (data.count('def') == 1 or data.find('def word_count') == -1 or data.find('def initialize') == -1): if data.count('def') == 1 and (data.find('def self.' + str(method)) != -1 or data.find('def ' + str(method)) != -1): data = data.replace('def self.' + str(method), 'def ' + str(method)) num_ends_to_strip = data.count('class') + data.count('module') data = data[data.find('def ' + str(method)):] for i in range(num_ends_to_strip): data = data[:data.rfind('end')] data = data.rstrip() out = open(filtered_submissions+f, "w+") out.write(data) t.close() count = 0 for f in os.listdir(filtered_submissions): submission_id = f.strip(".rb") index_id = len(os.listdir('src')) shutil.copyfile(filtered_submissions+f, 'src/'+str(index_id)+'.rb') mapfile.write(str(submission_id) + ' : ' + str(index_id) + '\n') count += 1 print 'filtered to submissions: ' + str(count)
b80cff1f63fc85e2e367363d8d4217c52f1bcb9c
3e3741d9ea06f1dcd560e27145256bd3177bed14
/01_py基础/第2周/day01/test05.py
0b0877d5b07aa6ba958a21bc84e6b7a6d5a0890e
[]
no_license
Lousm/Python
778bc730db09ab135bf53c7b62af29df2407199a
d3f19600012b3576cd5d58df510c17590fcaec14
refs/heads/master
2020-03-26T16:40:01.188306
2018-11-06T03:56:20
2018-11-06T03:56:20
145,116,187
0
0
null
null
null
null
UTF-8
Python
false
false
185
py
a = [i*10 for i in range(1, 13)] b = [i*2 for i in range(1, 13)] def sy(a, b): c = [] for i in range(len(a)): c.append(a[i]+b[i]) return c c = sy(a, b) print(c)
1b6b591a2a8ad31a5c1bd110be072f800865522b
e838ea567fe5216bd83b72d5cc549363a666ac3d
/community/migrations/0001_initial.py
756f713d6f763cc2a681b7383369ae2c3dc63f28
[]
no_license
iuriramos/swim-registry
f7ffee9a57b92021e7066820249092d1558a944d
7c71d294b5aa7cb40e01ed559e2fcb81d2e1f43a
refs/heads/master
2021-09-13T20:22:29.624535
2018-05-03T21:30:26
2018-05-03T21:30:26
85,312,675
0
0
null
null
null
null
UTF-8
Python
false
false
4,544
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-05-18 18:20 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('registry', '0001_initial'), ] operations = [ migrations.CreateModel( name='Participant', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('name', models.CharField(max_length=255)), ('description', models.TextField(null=True)), ('image', models.ImageField(default='participants/images/profiles/none/default.jpg', upload_to='participants/images/profiles/')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='ParticipantCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(choices=[('AIRSPACE COMPANY', 'Airspace company'), ('RESEARCH ORGANIZATION', 'Research Organization'), ('AIRPORT', 'Airport'), ('AERODROME', 'Aerodrome'), ('RESEARCH INSTITUTION', 'Research Institution'), ('PUBLIC AGENCY', 'Public Agency'), ('OTHER', 'Other')], max_length=50, unique=True)), ], options={ 'verbose_name_plural': 'participant categories', 'verbose_name': 'participant category', }, ), migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('notification_frequency', models.CharField(choices=[('NEVER', 'Never'), ('IMMEDIATE', 'Immediate'), ('DAILY', 'Daily'), ('WEEKLY', 'Weekly')], default='NEVER', max_length=10)), ('following_organizations', models.ManyToManyField(related_name='followers', to='community.Participant')), ('subscriptions_activity', models.ManyToManyField(related_name='profiles', to='registry.ActivityCategory')), ('subscriptions_content_type', models.ManyToManyField(related_name='profiles', to='registry.SubscriptionContentType')), ('subscriptions_data', models.ManyToManyField(related_name='profiles', to='registry.DataCategory')), ('subscriptions_flight_phase', models.ManyToManyField(related_name='profiles', to='registry.FlightPhaseCategory')), ('subscriptions_region', models.ManyToManyField(related_name='profiles', to='registry.RegionCategory')), ('subscriptions_stakeholder', models.ManyToManyField(related_name='profiles', to='registry.StakeholderCategory')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='profile', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='RegistrationRequest', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('first_name', models.CharField(max_length=255)), ('last_name', models.CharField(max_length=255)), ('email', models.EmailField(max_length=254)), ('organization', models.CharField(max_length=255)), ('role', models.CharField(max_length=255)), ], options={ 'abstract': False, }, ), migrations.AddField( model_name='participant', name='category', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='participants', to='community.ParticipantCategory'), ), ]
b46422a949e65f9e0a70a77877dc9dc67c456dbf
ff439153e551f58850ecfb32d1b067c9a5d7405d
/krcal/core/ltmaps_test.py
9a01f3bf67925c9760722ab399af3e8c2dc0ae63
[]
no_license
jmhaefner/ICAROS
79d18b9f372e0d8cd180d9c4ba7572d9ec1efcf3
4477157abd9ab5df42a28012c167d9e0a9a1ce5a
refs/heads/master
2021-08-06T14:27:50.179501
2021-06-24T19:31:29
2021-06-24T19:31:29
167,604,724
0
1
null
2019-01-25T19:50:55
2019-01-25T19:50:54
null
UTF-8
Python
false
false
8,249
py
import os import pandas as pd import numpy as np from invisible_cities.io.dst_io import load_dsts from krcal.core.core_functions import time_delta_from_time from krcal.core.analysis_functions import kr_event from krcal.core.analysis_functions import event_map from krcal.core.analysis_functions import select_xy_sectors from krcal.core.analysis_functions import select_rphi_sectors from krcal.core.fit_lt_functions import get_time_series from krcal.core.fit_lt_functions import time_fcs from krcal.core.fit_lt_functions import fit_fcs_in_xy_bin from krcal.core.fit_lt_functions import fit_fcs_in_rphi_sectors from krcal.core.fit_lt_functions import fit_map_xy from krcal.core.rphi_maps_functions import rphi_sector_map_def from krcal.core.rphi_maps_functions import define_rphi_sectors from krcal.core.kr_types import FitType, KrSector, MapType import warnings import pytest @pytest.fixture(scope='session') def DST(dst_filenames_path): dst = load_dsts(dst_filenames_path, "DST", "Events") dst_time = dst.sort_values('event') T = dst_time.time.values DT = time_delta_from_time(T) kge = kr_event(dst, DT, dst.S2e, dst.S2q) return dst, DT, kge @pytest.fixture(scope='session') def time_series(DST): nt = 10 dst, DT, kge = DST ts, masks = get_time_series(nt, (DT[0],DT[-1]), kge) return nt, ts, masks @pytest.fixture(scope='session') def kBins(): return np.array([-200., -120., -40., 40., 120., 200.]) def test_get_time_series(time_series, DST): dst, DT, kge = DST nt, ts, masks = time_series lengths = [len(mask)for mask in masks] assert len(masks) == len(ts) == nt assert len(masks[0]) == len(kge.X) == len(dst) assert np.equal(lengths, len(dst) * np.ones(len(lengths))).all() def test_time_fcs(time_series, DST): dst, DT, kge = DST nt, ts, masks = time_series fps = time_fcs(ts, masks, kge, nbins_z = 10, nbins_e = 25, range_z = (50, 550), range_e = (5000, 13500), energy = 'S2e', fit = FitType.profile) fpu = time_fcs(ts, masks, kge, nbins_z = 10, nbins_e = 25, range_z = (50, 550), range_e = (5000, 13500), energy = 'S2e', fit = FitType.unbined) assert np.allclose(fps.e0, fpu.e0, rtol=1e-02) assert np.allclose(fps.lt, fpu.lt, rtol=1e-02) def test_fit_fcs_in_xy_bin(DST, kBins): dst, DT, kge = DST KRE = select_xy_sectors(dst, DT, dst.S2e.values, dst.S2q.values, kBins, kBins) neM = event_map(KRE) fps_p = fit_fcs_in_xy_bin (xybin = (2,2), selection_map = KRE, event_map = neM, n_time_bins = 1, time_diffs = DT, nbins_z = 25, nbins_e = 50, range_z =(50, 550), range_e = (5000, 13500), energy = 'S2e', fit = FitType.profile, n_min = 100) fps_u = fit_fcs_in_xy_bin (xybin = (2,2), selection_map = KRE, event_map = neM, n_time_bins = 1, time_diffs = DT, nbins_z = 25, nbins_e = 50, range_z =(50, 550), range_e = (5000, 13500), energy = 'S2e', fit = FitType.unbined, n_min = 100) np.allclose(fps_p.e0 / fps_u.e0, 1, rtol=1e-02) np.allclose(fps_p.lt / fps_u.lt, 1, rtol=1e-02) def test_fit_fcs_in_rphi_sectors(DST, kBins): dst, DT, kge = DST rpsmf = rphi_sector_map_def(nSectors =4, rmax =200, sphi =90) rps = define_rphi_sectors(rpsmf) KRES = select_rphi_sectors(dst, DT, dst.S2e, dst.S2q, rps) neM = event_map(KRES) fcs_u = fit_fcs_in_rphi_sectors(sector = 0, selection_map = KRES, event_map = neM, n_time_bins =1, time_diffs =DT, nbins_z = 25, nbins_e = 50, range_z =(50, 550), range_e = (5000, 13500), energy = 'S2e', fit = FitType.unbined, n_min = 100) fcs_p = fit_fcs_in_rphi_sectors(sector = 0, selection_map = KRES, event_map = neM, n_time_bins =1, time_diffs =DT, nbins_z = 25, nbins_e = 50, range_z =(50, 550), range_e = (5000, 13500), energy = 'S2e', fit = FitType.profile, n_min = 100) for i in range(4): np.allclose(fcs_u[i].e0 / fcs_p[i].e0, 1, rtol=1e-02) np.allclose(fcs_u[i].lt / fcs_p[i].lt, 1, rtol=1e-02) def test_select_xy_sectors(DST, kBins): dst, DT, kge = DST KRE = select_xy_sectors(dst, DT, dst.S2e.values, dst.S2q.values, kBins, kBins) neM = event_map(KRE) l = ((neM[0]/neM[4]).values > 0.8).all() r = ((neM[0]/neM[4]).values < 1.1).all() assert l & r def test_fit_xy_map(DST, kBins): dst, DT, kge = DST def get_maps_t0(fmxy): pE0 = {} pLT = {} pC2 = {} for nx in fmxy.keys(): pE0[nx] = [fmxy[nx][ny].e0[0] for ny in range(len(fmxy[nx]))] # notice [0] ts bin pLT[nx] = [fmxy[nx][ny].lt[0] for ny in range(len(fmxy[nx]))] pC2[nx] = [fmxy[nx][ny].c2[0] for ny in range(len(fmxy[nx]))] return (pd.DataFrame.from_dict(pE0), pd.DataFrame.from_dict(pLT), pd.DataFrame.from_dict(pC2)) KRE = select_xy_sectors(dst, DT, dst.S2e.values, dst.S2q.values, kBins, kBins) neM = event_map(KRE) fpmxy = fit_map_xy(selection_map = KRE, event_map = neM, n_time_bins = 1, time_diffs = DT, nbins_z = 25, nbins_e = 50, range_z =(50, 550), range_e = (5000, 13500), energy = 'S2e', fit = FitType.profile, n_min = 100) mE0p, mLTp, mC2p = get_maps_t0(fpmxy) fumxy = fit_map_xy(selection_map = KRE, event_map = neM, n_time_bins = 1, time_diffs = DT, nbins_z = 25, nbins_e = 50, range_z =(50, 550), range_e = (5000, 13500), energy = 'S2e', fit = FitType.unbined, n_min = 100) mE0u, mLTu, mC2u = get_maps_t0(fumxy) r1 = (mLTp / mLTu).values l1 = np.allclose(r1, 1, rtol=1e-01) r2 = mE0p / mE0u l2 = np.allclose(r2, 1, rtol=1e-02) assert l1 & l2
e67dd18e17853bde0845ae57c5ee63c25d10828b
a657283ae5208611351606f35b05f46f63581d5c
/website/routes.py
83404e7b3b86c06c28d0c50b12f5eb7115140b6e
[]
no_license
rrkas/handwriting-generation-flask
e17c71f0335231a6157c728c78ce4c30d7d6df61
049091b1a3d341af0ce50e07d484c1bbf98fd3d8
refs/heads/master
2023-07-14T22:12:56.482115
2021-08-29T10:14:56
2021-08-29T10:14:56
391,993,520
0
0
null
null
null
null
UTF-8
Python
false
false
2,975
py
import io import os import uuid import pywhatkit as kit from flask import * from werkzeug.datastructures import FileStorage from website import app output_dir = os.path.join('website', 'static', 'output') if not os.path.exists(output_dir): os.mkdir(output_dir) allowed_file_ext = ['txt'] def allowed_file(filename): return filename.split('.')[-1] in allowed_file_ext def generate_signature(file): try: output_filename = str(uuid.uuid4().hex) if isinstance(file, FileStorage): if os.path.exists('pywhatkit_dbs.txt'): os.remove('pywhatkit_dbs.txt') file.save(os.path.join(output_dir, output_filename + '.txt')) with open(os.path.join(output_dir, output_filename + '.txt'), 'r') as f: text = f.read() os.remove(os.path.join(output_dir, output_filename + '.txt')) else: text = file kit.text_to_handwriting( string=text, rgb=(0, 0, 0), save_to=os.path.join(output_dir, output_filename + '.png'), ) return output_filename, True except BaseException as e: print(e) return str(e), False @app.route('/', methods=['POST', 'GET']) def home(): if request.method == 'POST': # print("request", request) print("form", request.form) if request.form.get('inputtype') == 'file': if 'file' not in request.files: flash('No file part!') return redirect(request.url) file = request.files.get('file') if not allowed_file(file.filename): flash('Invalid File!') return redirect(request.url) else: file = request.form.get('text') img_name, valid = generate_signature(file) if valid: flash('Image Generated Successfully!', 'success') else: flash('Something went wrong! Please try again!!', 'error') return redirect(request.url) return redirect(url_for('home', img_name=img_name)) filename = request.args.get('img_name') result_path = os.path.join(output_dir, str(filename) + '.png') if filename and not os.path.exists(result_path): abort(404) return render_template('home.html', img_name=request.args.get('img_name')) @app.route('/download/<string:filename>', methods=['GET', 'POST']) def download(filename): result_path = os.path.join(output_dir, filename + '.png') if not os.path.exists(result_path): abort(404) return_data = io.BytesIO() with open(result_path, 'rb') as fo: return_data.write(fo.read()) return_data.seek(0) os.remove(result_path) return send_file( return_data, mimetype='image/png', as_attachment=True, attachment_filename='txt2handwriting.png' ) @app.errorhandler(404) def error_400(error): return render_template('errors/404.html')
611500bc11e4bf0093b270c1e76a4ec33c642061
e61e664d95af3b93150cda5b92695be6551d2a7c
/vega/security/load_pickle.py
206511004faf87ad32800052b332f62e12f296b8
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
huawei-noah/vega
44aaf8bb28b45f707ed6cd4e871ba70fc0c04846
12e37a1991eb6771a2999fe0a46ddda920c47948
refs/heads/master
2023-09-01T20:16:28.746745
2023-02-15T09:36:59
2023-02-15T09:36:59
273,667,533
850
184
NOASSERTION
2023-02-15T09:37:01
2020-06-20T08:20:06
Python
UTF-8
Python
false
false
1,812
py
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Load pickle.""" import pickle __all__ = ["restricted_loads"] safe_builtins = { 'vega', 'torch', 'torchvision', 'functools', 'timm', 'mindspore', 'tensorflow', 'numpy', 'imageio', 'collections', 'apex', 'ascend_automl' } class RestrictedUnpickler(pickle.Unpickler): """Restrict unpickler.""" def __init__(self, file, fix_imports, encoding, errors, security): super(RestrictedUnpickler, self).__init__(file=file, fix_imports=fix_imports, encoding=encoding, errors=errors) self.security = security def find_class(self, module, name): """Find class.""" _class = super().find_class(module, name) if self.security: if module.split('.')[0] in safe_builtins: return _class raise pickle.UnpicklingError(f"global '{module}' is forbidden") else: return _class def restricted_loads(file, fix_imports=True, encoding="ASCII", errors="strict", security=False): """Load obj.""" return RestrictedUnpickler(file, fix_imports=fix_imports, encoding=encoding, errors=errors, security=security).load()
486752af90a81014c8a2c8b798d2c1b5fc1c35eb
9dbe507104b03275b1ed5dc91a4aaa2ae6af4f51
/hearthbreaker/cards/minions/shaman.py
800985cec4d413a7eaac702479486e1dcdcc24bf
[ "MIT" ]
permissive
bussiere/hearthbreaker
55fc7c77d8ffb37cda2b5d9afb7ccd44c250702c
074e20de3498d078877e77b3603580b511e8522b
refs/heads/master
2021-01-16T22:13:32.110626
2014-12-17T13:37:32
2014-12-17T13:37:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,946
py
from hearthbreaker.tags.action import ChangeAttack, Draw, ChangeHealth, Damage, Give, Windfury from hearthbreaker.tags.base import Aura, Effect, Battlecry from hearthbreaker.tags.condition import Adjacent, HasOverload from hearthbreaker.tags.event import TurnEnded, CardPlayed from hearthbreaker.tags.selector import MinionSelector, SelfSelector, PlayerSelector, CharacterSelector, BothPlayer, \ UserPicker from hearthbreaker.constants import CHARACTER_CLASS, CARD_RARITY, MINION_TYPE from hearthbreaker.game_objects import MinionCard, Minion class AlAkirTheWindlord(MinionCard): def __init__(self): super().__init__("Al'Akir the Windlord", 8, CHARACTER_CLASS.SHAMAN, CARD_RARITY.LEGENDARY) def create_minion(self, player): return Minion(3, 5, windfury=True, charge=True, divine_shield=True, taunt=True) class DustDevil(MinionCard): def __init__(self): super().__init__("Dust Devil", 1, CHARACTER_CLASS.SHAMAN, CARD_RARITY.COMMON, overload=2) def create_minion(self, player): return Minion(3, 1, windfury=True) class EarthElemental(MinionCard): def __init__(self): super().__init__("Earth Elemental", 5, CHARACTER_CLASS.SHAMAN, CARD_RARITY.EPIC, overload=3) def create_minion(self, player): return Minion(7, 8, taunt=True) class FireElemental(MinionCard): def __init__(self): super().__init__("Fire Elemental", 6, CHARACTER_CLASS.SHAMAN, CARD_RARITY.COMMON, battlecry=Battlecry(Damage(3), CharacterSelector(players=BothPlayer(), picker=UserPicker()))) def create_minion(self, player): return Minion(6, 5) class FlametongueTotem(MinionCard): def __init__(self): super().__init__("Flametongue Totem", 2, CHARACTER_CLASS.SHAMAN, CARD_RARITY.COMMON, MINION_TYPE.TOTEM) def create_minion(self, player): return Minion(0, 3, auras=[Aura(ChangeAttack(2), MinionSelector(Adjacent()))]) class ManaTideTotem(MinionCard): def __init__(self): super().__init__("Mana Tide Totem", 3, CHARACTER_CLASS.SHAMAN, CARD_RARITY.RARE, MINION_TYPE.TOTEM) def create_minion(self, player): return Minion(0, 3, effects=[Effect(TurnEnded(), Draw(), PlayerSelector())]) class UnboundElemental(MinionCard): def __init__(self): super().__init__("Unbound Elemental", 3, CHARACTER_CLASS.SHAMAN, CARD_RARITY.COMMON) def create_minion(self, player): return Minion(2, 4, effects=[Effect(CardPlayed(HasOverload()), ChangeAttack(1), SelfSelector()), Effect(CardPlayed(HasOverload()), ChangeHealth(1), SelfSelector())]) class Windspeaker(MinionCard): def __init__(self): super().__init__("Windspeaker", 4, CHARACTER_CLASS.SHAMAN, CARD_RARITY.COMMON, battlecry=Battlecry(Give(Windfury()), MinionSelector(picker=UserPicker()))) def create_minion(self, player): return Minion(3, 3)
8277d4f471be2dee3c2676a6bf9cbd30cf236a64
c0ad282ab743a315e2f252a627933cb168434c1d
/models/agreement/type_prior.py
bde43251219d85d73f078c3d0ba4fad4980ae25c
[ "MIT" ]
permissive
AlexKuhnle/ShapeWorld
6d1e16adc94e860abae99ade869f72575f573bc4
e720bf46e57fc01326d04d639fa6133d9c12158f
refs/heads/master
2021-07-09T00:02:33.808969
2021-04-19T11:10:52
2021-04-19T11:10:52
80,815,972
58
28
MIT
2021-04-19T11:10:53
2017-02-03T09:40:19
Python
UTF-8
Python
false
false
2,722
py
from models.TFMacros.tf_macros import * def model(model, inputs, dataset_parameters): caption = Input(name='caption_rpn', shape=dataset_parameters['caption_rpn_shape'], dtype='int', tensor=inputs.get('caption_rpn'))() caption_length = Input(name='caption_rpn_length', shape=(), dtype='int', tensor=inputs.get('caption_rpn_length')) agreement = Input(name='agreement', shape=(), dtype='float', tensor=inputs.get('agreement'))() agreement = ( (caption, caption_length, agreement) >> SuffixPrior(suffix_length=1, vocabulary_size=dataset_parameters['rpn_vocabulary_size']) >> Binary(name='agreement', binary_transform=False, tensor=agreement) ) return agreement class SuffixPrior(Unit): num_in = 3 num_out = 1 def __init__(self, suffix_length, vocabulary_size): super(SuffixPrior, self).__init__() self.suffix_length = suffix_length self.vocabulary_size = vocabulary_size def initialize(self, caption, caption_length, agreement): super(SuffixPrior, self).initialize(caption, caption_length, agreement) shape = tuple(self.vocabulary_size for _ in range(self.suffix_length)) + (2,) self.suffix_agreement_counts = tf.get_variable(name='suffix-agreement-counts', shape=shape, dtype=tf.int32, initializer=tf.zeros_initializer(dtype=tf.int32), trainable=False) def forward(self, caption, caption_length, agreement): super(SuffixPrior, self).forward(caption, caption_length, agreement) batch_size = tf.shape(input=caption)[0] slice_indices = [tf.stack(values=(tf.range(batch_size), caption_length - (self.suffix_length - n)), axis=1) for n in range(self.suffix_length)] suffix = tf.stack(values=[tf.gather_nd(params=caption, indices=indices) for indices in slice_indices], axis=1) agreement_counts = tf.gather_nd(params=self.suffix_agreement_counts, indices=suffix) prior = tf.where( condition=(agreement_counts[:, 0] > agreement_counts[:, 1]), x=tf.zeros(shape=(batch_size,)), y=tf.where( condition=(agreement_counts[:, 0] < agreement_counts[:, 1]), x=tf.ones(shape=(batch_size,)), y=(tf.ones(shape=(batch_size,)) * 0.5) ) ) agreement = tf.expand_dims(input=tf.cast(x=agreement, dtype=Model.dtype('int')), axis=1) indices = tf.concat(values=(suffix, agreement), axis=1) updates = tf.ones(shape=(batch_size,), dtype=Model.dtype('int')) assert Model.current.optimization is None Model.current.optimization = tf.scatter_nd_add(ref=self.suffix_agreement_counts, indices=indices, updates=updates) return prior
952ecae4e414db6b616a055126571c0e7b129cdf
8b427d0a012d7dbd3b49eb32c279588f9ebd4e6e
/05 排序和搜索/binary_search.py
33fe499fccf320c9b9bcc7589236e441fdbcd076
[]
no_license
chenyang929/Problem-Solving-with-Algorithms-and-Data-Structures-using-Python-Notes
e9f1b324d86963333edaf855fdb9e126e59e8542
aed976e020147fe30a8e0bb708dfbe4bab4c15f7
refs/heads/master
2020-03-18T02:46:12.385967
2018-07-24T08:24:41
2018-07-24T08:24:41
134,206,437
0
0
null
null
null
null
UTF-8
Python
false
false
1,023
py
# binary_search.py # 循环版 def binary_search(lst, item): low = 0 high = len(lst) - 1 while low <= high: mid = (low + high) // 2 guess = lst[mid] if item == guess: return mid elif item > guess: low += 1 else: high -= 1 return -1 # 递归版(内存开销大) def binary_search1(lst, item, low=0, high=None): if high is None: high = len(lst) - 1 if low > high: return -1 else: mid = (low + high) // 2 guess = lst[mid] if item == guess: return mid elif item > guess: low += 1 return binary_search1(lst, item, low, high) else: high -= 1 return binary_search1(lst, item, low, high) if __name__ == '__main__': l = [1, 3, 4, 7, 9, 12, 14] print(binary_search(l, 12)) # 5 print(binary_search1(l, 12)) # 5 print(binary_search(l, 5)) # -1 print(binary_search1(l, 5)) # -1
1c18a6ddc3944da8e2ba5f5ef396825ac6423869
6e13f7fdae0144dd0397031c59397b0372f0872a
/horch/layers/_se.py
43f7469184fbc7b507af7080e15eb8071fc1c974
[]
no_license
sbl1996/horch
02e9996f764748c62648464d58318ceff92c87ed
50d4f4da241a5727e3924a36fbc730dc61284904
refs/heads/master
2020-03-20T05:00:43.444092
2018-07-27T00:14:45
2018-07-27T00:14:45
137,201,939
0
0
null
null
null
null
UTF-8
Python
false
false
671
py
import horch as H from ._linear import Linear from ._module import Module class SE(Module): """Squeeze and Excitation Module """ def __init__(self, channels, reduction_ratio=16): super().__init__() self.channels = channels self.reduction_ratio = reduction_ratio reduced_channels = channels // reduction_ratio self.fc1 = Linear(channels, reduced_channels) self.fc2 = Linear(reduced_channels, channels) def forward(self, x): z = H.mean(x, axis=(2,3)) z = self.fc1(z) z = H.relu(z) z = self.fc2(z) s = H.sigmoid(z) n, c = s.shape s = s.reshape(n, c, 1, 1) x = x * s return x
ffd7b753f12a8fff9b52468226a6155d9a60a7c9
7bd9be7f25be80791f9220b62025f06170273293
/end-plugins/pycerebro/examples/excel_export.py
7ccaaa79c69f3f70111f28d64cfa01c407d3180a
[]
no_license
cerebrohq/cerebro-plugins
ab46b4844adcb12c51d14e21f2c0d8b758b0bb57
e2e0f97b548ef22957e13d614200027ba89215e0
refs/heads/master
2021-11-12T16:25:48.228521
2021-10-22T11:25:58
2021-10-22T11:25:58
143,178,631
5
3
null
null
null
null
UTF-8
Python
false
false
7,156
py
# -*- coding: utf-8 -*- """ Пример экспорта задачи(проекта) со всеми вложенными задачами в Excel. Этот пример демонстрирует экспорт свойств задачи в Excel. Для записи в формат Excel используется сторонний пакет xlsxwriter (https://xlsxwriter.readthedocs.org/) Для преобразования текста в формате html используется сторонний пакет html2text (http://www.aaronsw.com/2002/html2text/). В модуле используются следующие функции: do_export - Функция экспорта. Принимает параметры: Имя пользователя, Пароль пользователя, Путь до задачи, Путь к файлу Excel. write - Функция, которая записывает свойства задачи и всех вложенных задач в файл Excel. connect_db - Функция для соединения с базой данных Cerebro. write_info, write_error - Функции для логирования. Пример использования: do_export('Имя_пользователя', 'Пароль_пользователя', '/Путь/к/Задаче', 'C:/путь/к/файлу.xlsx') """ # Имена колонок Excel columns = { 0: "Задача", 1: "Описание", 2: "Назначено", 3: "Начало", 4: "Окончание", 5: "Запланировано"} # Ширина колонок columns_w = { 0: 50, 1: 50, 2: 10, 3: 10, 4: 10, 5: 15} # Высота строк row_h = 50 import sys import os local_dir = os.path.realpath(__file__).replace('\\', '/').rsplit('/', 1)[0] backend_dir = local_dir + '/../..' sys.path.append(backend_dir) import xlsxwriter from pycerebro import database, dbtypes import html2text import datetime def do_export(db_user, db_password, task, file_name): """ Функция экспорта. Параметры db_user и db_password - логин и пароль пользователя Cerebro. task - тектовый локатор(путь) до задачи. Формат локатора: '/Проект/Задача 1/Задача 2', то есть по сути путь до задачи. Примечание: Имена задач регистрозависимы! Пример вызова функции: :: import excel_export excel_export.do_export('user', 'password', '/Проект/Задача 1/Задача 2', 'c:/temp/export.xlsx') :: """ # Устанавливаем соединение с базой данных db = connect_db(db_user, db_password) if (db): # Создаем файл Excel wb = xlsxwriter.Workbook(file_name) if (wb): # Добавляем лист ws = wb.add_worksheet() if (ws): # Создаем формат для заголовка format = wb.add_format() format.set_bold(True) # Жирный шрифт format.set_align('center_across') # По центру for col in columns: # Задаем ширину колонок ws.set_column(col, col, columns_w[col]) # Создаем Заголовок ws.write(0, col, columns[col], format) # Получаем идентификатор задачи (проекта) task_id = db.task_by_url(task)[0] if (task_id): write(db, task_id, ws, wb.add_format()) wb.close() write_info('Export finished!') else: write_error('Can not connect to db: ' + host) _i = 0 def write(db, task_id, ws, format): """ Функция для записи свойств задачи и вложенных задач в файл Excel. db - переменная для работы с базой данных. task_id - идентификатор задачи. ws - лист Excel. format - переменная форматирования рабочей кники Excel. """ global _i _i += 1 # Создадим формат для выравнивания по верхней границы ячейки и переноса по словам format_top_text_wrap = format format_top_text_wrap.set_align('top') format_top_text_wrap.set_text_wrap() # Устанавливаем высоту строки ws.set_row(_i, row_h) # Получаем задачу по идентификатору task = db.task(task_id) # Получаем постановку задачи task_def = db.task_definition(task_id) # Получаем полный путь к задаче name = task[dbtypes.TASK_DATA_PARENT_URL] + task[dbtypes.TASK_DATA_NAME] # Записываем полный путь к задаче ws.write(_i, 0, name, format_top_text_wrap) # Если у задачи есть "Постановка задачи" записываем ее в файл if (task_def): ws.write(_i, 1, html2text.html2text(task_def[dbtypes.MESSAGE_DATA_TEXT]), format_top_text_wrap) # Получаем список пользователей, назначенных на задачу user_name = task[dbtypes.TASK_DATA_ALLOCATED] # Если есть назначенные на задачу пользователи, сохраняем их в файл if (user_name): ws.write(_i, 2, user_name, format_top_text_wrap) # Получаем начальную дату отсчета datetime_2000 = datetime.datetime(2000, 1, 1) # Получаем дату старта задачи datetime_start = datetime_2000 + datetime.timedelta(task[dbtypes.TASK_DATA_OFFSET]) # Сохраняем дату старта в файл ws.write(_i, 3, datetime_start.strftime('%d.%m.%y %H:%M'), format_top_text_wrap) # Получаем дату окончания задачи datetime_stop = datetime_start + datetime.timedelta(task[dbtypes.TASK_DATA_DURATION]) # Сохраняем дату окончания в файл ws.write(_i, 4, datetime_stop.strftime('%d.%m.%y %H:%M'), format_top_text_wrap) # Сохраняем запланированное время ws.write(_i, 5, task[dbtypes.TASK_DATA_PLANNED], format_top_text_wrap) # Если у задачи есть вложенные задачи, так-же сохраняем их в файл for child in db.task_children(task_id): write(db, child[dbtypes.TASK_DATA_ID], ws, format) def connect_db(user, password): """ Функция для соединения с базой данных. user - имя пользователя cerebro. password - пароль пользователя cerebro. """ # Создаем объект базы данных db = database.Database() # Соединяемся с базой данных db.connect(user, password) return db def write_info(text): """ Функция для логирования информационных сообщений. text - текст сообщения. """ print('info: ' + text) def write_error(text): """ Функция для логирования ошибок. text - текст сообщения. """ print('error: ' + text)
c478c0d6aed9b07eae4b4ea4776e7c073d3b4ace
e6a5fce33aad4fcba37842e135a51ba441b06f48
/Python/Errors and Exceptions/Exceptions.py
5f5278b64b8e82541685d00cec1a244dd307ddce
[ "MIT" ]
permissive
pavstar619/HackerRank
6710ddd450b06fbb69da5abad9f570e5e26bbbc0
697ee46b6e621ad884a064047461d7707b1413cd
refs/heads/master
2020-06-18T18:53:53.421685
2020-02-18T09:35:48
2020-02-18T09:35:48
196,408,726
0
0
MIT
2019-07-11T14:18:16
2019-07-11T14:18:16
null
UTF-8
Python
false
false
438
py
class Main: def __init__(self): self.t = int(input()) for i in range(0, self.t): try: self.n, self.m = map(int, input().split()) print(self.n // self.m) except ZeroDivisionError as e: print("Error Code:", e) except ValueError as e: print("Error Code:", e) if __name__ == '__main__': obj = Main()
7c9e8b7bfead44bee572fa7070396b90066e9a6e
746a9c1f65674cd5bcdce6dbd1971b6a16345f9d
/account/forms.py
e907a732e6e142794a14079dcb07a70bcd7fc718
[]
no_license
mazulo/bookmarks
4dc25dc09772663c65698d3cc9f5b653fd409ba9
5c2ce3c3ad811466c63f7b0f3a21bf33a6a28f5e
refs/heads/master
2021-01-10T07:23:37.185414
2016-03-23T06:40:53
2016-03-23T05:40:53
54,158,063
0
0
null
null
null
null
UTF-8
Python
false
false
1,002
py
from django import forms from django.contrib.auth.models import User from .models import Profile class LoginForm(forms.Form): username = forms.CharField() password = forms.CharField(widget=forms.PasswordInput) class UserRegistrationForm(forms.ModelForm): password = forms.CharField(label='Password', widget=forms.PasswordInput) password2 = forms.CharField( label='Repeat password', widget=forms.PasswordInput ) class Meta: model = User fields = ('username', 'first_name', 'email') def clean_password2(self): cd = self.cleaned_data if cd['password'] != cd['password2']: raise forms.ValidationError('Passwords don\'t match.') return cd['password2'] class UserEditForm(forms.ModelForm): class Meta: model = User fields = ('first_name', 'last_name', 'email') class ProfileEditForm(forms.ModelForm): class Meta: model = Profile fields = ('date_of_birth', 'photo')
0ae53c0486a272162874ca46f41ecb302e6654f0
a9d65a3fb6e990c5bb250cfde44220182f6cd430
/indra/tools/analyze_ontology.py
2f8bda343d488ebd0f277e9aedab4e858bfe2742
[ "BSD-2-Clause", "BSD-2-Clause-Views" ]
permissive
dianakolusheva/indra
66e6c69b762922d4f79757e388b693f76b3fcd56
205a719c5b1ff2333e415476b4136e8c57c22949
refs/heads/master
2022-03-14T23:10:57.718762
2022-02-11T14:58:12
2022-02-11T14:58:12
170,338,649
0
0
BSD-2-Clause
2019-02-12T15:09:36
2019-02-12T15:09:30
Python
UTF-8
Python
false
false
1,402
py
from collections import Counter, defaultdict import networkx from indra.ontology.bio import bio_ontology def plot_problem(problem): import matplotlib.pyplot as plt plt.ion() plt.figure() G = bio_ontology.subgraph(problem) pos = networkx.spring_layout(G) networkx.draw_networkx(G, pos, node_color='pink') edge_labels = networkx.get_edge_attributes(G, 'source') networkx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) plt.show() if __name__ == '__main__': bio_ontology.initialize() xrefs = [(e[0], e[1]) for e in bio_ontology.edges(data=True) if e[2]['type'] == 'xref'] xrefg = bio_ontology.edge_subgraph(xrefs) comps = networkx.algorithms.strongly_connected_components(xrefg) problems = [] for comp in comps: namespaces = [bio_ontology.get_ns(node) for node in comp] cnt = Counter(namespaces) if any(v > 1 for k, v in cnt.items()): problems.append(comp) print('Found %d problems in total' % len(problems)) problems_by_ns = defaultdict(list) for problem in problems: nscnt = Counter([bio_ontology.get_ns(n) for n in problem]) namespaces = [ns for ns, cnt in nscnt.items() if cnt > 1] for ns in namespaces: problems_by_ns[ns].append(problem) for ns, problems_ns in problems_by_ns.items(): print(ns, len(problems_ns))
d89ebcab0f970fc4bf36d21e6205b3316c25af4a
a8079efec61894fb6082986e66c4c146757fc895
/src/__main__.py
03f618d7b50266b668d1b471f5e62afc4edc2244
[]
no_license
gsdlab/ClaferSMT
aaa5bd0c0c72f6a9b156529a871cced40e006cba
d8240b4503107641d62f7f913ebe50a88182d9a3
refs/heads/master
2021-01-16T21:23:22.838308
2015-08-20T00:24:54
2015-08-20T00:24:54
9,037,961
2
1
null
2018-08-21T13:48:02
2013-03-26T19:00:12
TeX
UTF-8
Python
false
false
127
py
''' Created on Jul 10, 2014 @author: ezulkosk ''' from front import ClaferRun if __name__ == '__main__': ClaferRun.main()
2e92fd124092bb606c4af2b949bf986b8f0f39e0
33c6b5d9f1852ac878aada3eb646ac2eabc6b705
/junk/users2/signals.py
490388c9433b9bb4b0c0de06090ea7a91ecbb2b2
[]
no_license
detalikota/trading2
3c0e4308f45a620fe4c034403143cf68dd16db9c
1aaafb6bf7d304be1896efb5ea0963fc40893b23
refs/heads/master
2023-02-04T14:03:10.860410
2020-12-17T14:28:12
2020-12-17T14:28:12
313,858,784
0
0
null
null
null
null
UTF-8
Python
false
false
486
py
from django.db.models.signals import post_save from django.contrib.auth.models import User from django.dispatch import receiver from .models import Profile2 @receiver(post_save, sender=User) #when the user is saved - send this signal def create_profile(sender, instance, created, **kwargs): if created: Profile2.objects.create(user=instance) @receiver(post_save, sender=User) # save the profile def save_profile(sender, instance, **kwargs): instance.profile.save()
0b34b5732a18165fbcd70164b4c2648ea5eaeeb0
661b6c3d0d2344f86ed126d9b4f6f10c0d9c630b
/track/admin.py
1d2bcc9fdd717c1e4f90db9346add4da60c66ec6
[]
no_license
Sababa123/activity_tracker
69eae58dbbf7523dcc144d3f05f6952cc4e4225b
7c5e2c83e5fc76f8c9a2c5f58569ed92c9eb4421
refs/heads/master
2020-06-25T17:43:14.321638
2019-08-11T21:45:16
2019-08-11T21:45:16
199,380,581
0
0
null
2019-07-29T04:53:25
2019-07-29T04:53:24
null
UTF-8
Python
false
false
175
py
from django.contrib import admin from .models import Activity, ActivityTracker # Register your models here. admin.site.register(Activity) admin.site.register(ActivityTracker)
7b15c3a5d2060f2149607d1ee7ea040fb35c2eb7
913fb9ec1e709a5140676ba7b2371b1976afca72
/seqPeaks/mirrorPeaks.py
db673bb1b55f332087c53b7b17d7dc5e614e6de3
[]
no_license
cgreer/ResearchScripts
171cfe9555ea06fdeb91084c12d07d1b45a2335c
1107803bb1459d6b6e1dfb1a89679d2b6fd49062
refs/heads/master
2016-09-05T10:43:19.090247
2012-04-12T21:38:11
2012-04-12T21:38:11
1,673,080
0
3
null
null
null
null
UTF-8
Python
false
false
840
py
import cgPeaks import compareData as compare import math import bioLibCG as cg knowns = compare.tccFileToList('mouseKnownMirs.tcc', 0) eLevels = [] for known in knowns: chrom, strand, start, end = cg.tccSplit(known, True) #text... if strand == '1': strand = '-1' else: strand = '1' oppTcc = cg.makeTcc(chrom, strand, start, end) knownStretch = cgPeaks.stretch(known) knownStretch.createPeaks(1,20) kPos = knownStretch.getHighestPeak() if kPos: eLevels.append(knownStretch.profile[kPos]) oppStretch = cgPeaks.stretch(oppTcc) oppStretch.createPeaks(1,20) oPos = oppStretch.getHighestPeak() if oPos and kPos: #determine if they are close enough to be considered mirrored... if math.fabs(int(kPos) - int(oPos)) < 12: print known, oPos, kPos, oppStretch.profile[oPos], knownStretch.profile[kPos] print eLevels
113f2aeb9ba582a085e977d64df0240587c81645
5c5e7b03c3373e6217665842f542ca89491290ff
/2016/day18.py
b5a92f12f811a0ccb9b0c88bae32c9802f1ce21c
[]
no_license
incnone/AdventOfCode
9c35214e338e176b6252e52a25a0141a01e290c8
29eac5d42403141fccef3c3ddbb986e01c89a593
refs/heads/master
2022-12-21T21:54:02.058024
2022-12-15T17:33:58
2022-12-15T17:33:58
229,338,789
0
0
null
null
null
null
UTF-8
Python
false
false
970
py
from getinput import get_input def parse_input(s): return [True if c == '^' else False for c in s] def next_trap_row(s): next_row = [s[1]] next_row += [(s1 and not s2) or (not s1 and s2) for s1, s2 in zip(s, s[2:])] next_row += [s[-2]] return next_row def generate_traps(init_row, num_rows): traps = [init_row] for _ in range(num_rows - 1): traps.append(next_trap_row(traps[-1])) return traps def trap_str(traps): return '\n'.join(''.join('^' if c else '.' for c in line) for line in traps) def part_1(trap_row): traps = generate_traps(trap_row, 40) return sum(sum(1 for x in line if not x) for line in traps) def part_2(trap_row): traps = generate_traps(trap_row, 400000) return sum(sum(1 for x in line if not x) for line in traps) if __name__ == "__main__": the_trap_list = parse_input(get_input(18)) print('Part 1:', part_1(the_trap_list)) print('Part 2:', part_2(the_trap_list))
f1da8fb43bb78b4f502b576a1f67c671e6e1abed
1a4bc1a11fdb3f714f22f5e0e826b47aa0569de2
/lab/lab04/tests/q1_3.py
79768f8de727ed291ba49dffc59b456e772584a8
[]
no_license
taylorgibson/ma4110-fa21
201af7a044fd7d99140c68c48817306c18479610
a306e1b6e7516def7de968781f6c8c21deebeaf5
refs/heads/main
2023-09-05T21:31:44.259079
2021-11-18T17:42:15
2021-11-18T17:42:15
395,439,687
0
1
null
null
null
null
UTF-8
Python
false
false
227
py
test = { 'name': 'q1_3', 'points': None, 'suites': [{'cases': [{'code': ">>> disemvowel('datasceince')\n'dtscnc'", 'hidden': False, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
7e2a67db930a6ea17d2bd8cc7a88bf10d46aef32
0fde82bf8a529c1045595b0f451dc7005a9d90cf
/generate/test.py
23d7846f745c166c7e2e9d872e50a0103ee75942
[ "MIT" ]
permissive
cosinekitty/astronomy
18ccec1d62bbae24a8424b3eb807f4b3b97c04a1
056076b85aa591ba756ef8a24fc017ddb3b3029b
refs/heads/master
2023-09-04T18:00:34.676849
2023-08-28T19:20:08
2023-08-28T19:20:08
180,022,816
305
56
MIT
2023-08-28T19:20:10
2019-04-07T20:55:20
C
UTF-8
Python
false
false
159,205
py
#!/usr/bin/env python3 import sys import math import re import os from itertools import chain sys.path.append('../source/python') import astronomy #----------------------------------------------------------------------------------------------------------- Verbose = False SECONDS_PER_DAY = 86400.0 MINUTES_PER_DAY = 1440.0 def Debug(text): if Verbose: print(text) def Pass(funcname): print('PY {}: PASS'.format(funcname)) return 0 def Fail(funcname, reason): print('PY {} FAIL: {}'.format(funcname, reason)) return 1 def v(x): # Verify that a number is really numeric if not isinstance(x, (int, float)): raise Exception('Not a numeric type: {}'.format(x)) if not math.isfinite(x): raise Exception('Not a finite numeric value: {}'.format(x)) return x def vabs(x): return abs(v(x)) def vmax(a, b): return max(v(a), v(b)) def vmin(a, b): return min(v(a), v(b)) def sqrt(x): return v(math.sqrt(v(x))) def AssertGoodTime(text, correct): time = astronomy.Time.Parse(text) check = str(time) if check != correct: print('Python AssertGoodTime FAILURE: parsed "{}", got "{}", expected "{}"'.format(text, check, correct)) sys.exit(1) Debug('PY AssertGoodTime: "{}" OK'.format(text)) def AssertBadTime(text): try: astronomy.Time.Parse(text) except astronomy.DateTimeFormatError: Debug('PY AssertBadTime: "{}" OK'.format(text)) else: print('PY AssertBadTime FAILURE: should not have parsed "{}"'.format(text)) sys.exit(1) def CalendarCase(year, month, day, hour, minute, second): # Convert to Astronomy Engine Time object. time = astronomy.Time.Make(year, month, day, hour, minute, second) # Convert to back calendar date tuple. (cyear, cmonth, cday, chour, cminute, csecond) = time.Calendar() if (cyear, cmonth, cday) != (year, month, day): return Fail('CalendarCase', 'Expected {:06d}-{:02d}-{:02d} but found {:06d}-{:02d}-{:02d}'.format( year, month, day, cyear, cmonth, cday )) expectedMillis = 1000.0*(second + 60.0*(minute + 60.0*hour)) calcMillis = 1000.0*(csecond + 60.0*(cminute + 60.0*chour)) diffMillis = vabs(calcMillis - expectedMillis) if diffMillis > 4.0: return Fail('CalendarCase', 'EXCESSIVE millisecond error = {:0.6f} for {:06d}-{:02d}-{:02d}'.format( diffMillis, year, month, day )) return 0 def AstroTime(): expected_ut = 6910.270978506945 expected_tt = 6910.271800214368 time = astronomy.Time.Make(2018, 12, 2, 18, 30, 12.543) diff = time.ut - expected_ut if vabs(diff) > 1.0e-12: print('PY AstroTime: excessive UT error {}'.format(diff)) return 1 diff = time.tt - expected_tt if vabs(diff) > 1.0e-12: print('PY AstroTime: excessive TT error {}'.format(diff)) return 1 s = str(time.Utc()) if s != '2018-12-02 18:30:12.543000': print('PY AstroTime: Utc() returned incorrect string "{}"'.format(s)) return 1 time = astronomy.Time.Make(2018, 12, 31, 23, 59, 59.9999) expected = '2018-12-31T23:59:59.999Z' s = str(time) if s != expected: print('PY AstroTime: expected {} but found {}'.format(expected, s)) return 1 print('PY Current time =', astronomy.Time.Now()) AssertGoodTime('2015-12-31T23:45Z', '2015-12-31T23:45:00.000Z') AssertGoodTime('2015-01-02T23:45:17Z', '2015-01-02T23:45:17.000Z') AssertGoodTime('1971-03-17T03:30:55.976Z', '1971-03-17T03:30:55.976Z') AssertBadTime('') AssertBadTime('1971-13-01') AssertBadTime('1971-12-32') AssertBadTime('1971-12-31T24:00:00Z') AssertBadTime('1971-12-31T23:60:00Z') AssertBadTime('1971-12-31T23:00:60Z') AssertBadTime('1971-03-17T03:30:55.976') # Extreme year values... AssertGoodTime('-4172-12-02T14:30:45.123Z', '-004172-12-02T14:30:45.123Z') AssertGoodTime('-4173-12-02T14:30:45.123Z', '-004173-12-02T14:30:45.123Z') AssertGoodTime('-4174-12-02T14:30:45.123Z', '-004174-12-02T14:30:45.123Z') AssertGoodTime('-4175-12-02T14:30:45.123Z', '-004175-12-02T14:30:45.123Z') AssertGoodTime('-4176-12-02T14:30:45.123Z', '-004176-12-02T14:30:45.123Z') AssertGoodTime('-2300-12-19T16:22:26.325Z', '-002300-12-19T16:22:26.325Z') AssertGoodTime('-2300-12-19T16:22:26.325Z', '-002300-12-19T16:22:26.325Z') AssertGoodTime('+12345-12-11T13:30:10.041Z', '+012345-12-11T13:30:10.040Z') AssertGoodTime('+12346-12-11T13:30:10.041Z', '+012346-12-11T13:30:10.040Z') AssertGoodTime('+12347-12-11T13:30:10.041Z', '+012347-12-11T13:30:10.040Z') AssertGoodTime('+12348-12-11T13:30:10.041Z', '+012348-12-11T13:30:10.040Z') AssertGoodTime('-123456-01-14T22:55:12.000Z', '-123456-01-14T22:55:11.999Z') AssertGoodTime('+123456-01-14T22:55:12.000Z', '+123456-01-14T22:55:11.999Z') AssertGoodTime('-999995-01-14T22:55:12.297Z', '-999995-01-14T22:55:12.297Z') AssertGoodTime('-999996-01-14T22:55:12.297Z', '-999996-01-14T22:55:12.297Z') AssertGoodTime('-999997-01-14T22:55:12.297Z', '-999997-01-14T22:55:12.297Z') AssertGoodTime('-999998-01-14T22:55:12.297Z', '-999998-01-14T22:55:12.297Z') AssertGoodTime('-999999-01-14T22:55:12.000Z', '-999999-01-14T22:55:11.998Z') AssertGoodTime('+999999-01-14T22:55:12.000Z', '+999999-01-14T22:55:11.998Z') nyears = 0 for year in chain(range(-999999, -995999), range(-3000, 3001), range(+996000, +1000000)): # Check just before and after each potential leap day. if CalendarCase(year, 2, 28, 14, 45, 28.321): return 1 if CalendarCase(year, 3, 1, 14, 45, 28.321): return 1 nyears += 1 return Pass('AstroTime({} calendar years)'.format(nyears)) #----------------------------------------------------------------------------------------------------------- def GeoMoon(): time = astronomy.Time.Make(2019, 6, 24, 15, 45, 37) vec = astronomy.GeoMoon(time) print('PY GeoMoon: vec = {:0.16f}, {:0.16f}, {:0.16f}'.format(vec.x, vec.y, vec.z)) # Correct values obtained from C version of GeoMoon calculation cx, cy, cz = +0.002674037026701135, -0.0001531610316600666, -0.0003150159927069429 dx, dy, dz = vec.x - cx, vec.y - cy, vec.z - cz diff = sqrt(dx*dx + dy*dy + dz*dz) print('PY GeoMoon: diff = {}'.format(diff)) if diff > 4.34e-19: print('PY GeoMoon: EXCESSIVE ERROR') return 1 return 0 #----------------------------------------------------------------------------------------------------------- def SelectJupiterMoon(jm, mindex): return [jm.io, jm.europa, jm.ganymede, jm.callisto][mindex] def AstroCheck(printflag): time = astronomy.Time.Make(1700, 1, 1, 0, 0, 0) stop = astronomy.Time.Make(2200, 1, 1, 0, 0, 0) observer = astronomy.Observer(29, -81, 10) if printflag: print('o {:0.6f} {:0.6f} {:0.6f}'.format(observer.latitude, observer.longitude, observer.height)) dt = 10 + math.pi/100 bodylist = [ astronomy.Body.Sun, astronomy.Body.Moon, astronomy.Body.Mercury, astronomy.Body.Venus, astronomy.Body.Earth, astronomy.Body.Mars, astronomy.Body.Jupiter, astronomy.Body.Saturn, astronomy.Body.Uranus, astronomy.Body.Neptune, astronomy.Body.Pluto, astronomy.Body.SSB, astronomy.Body.EMB ] while time.tt < stop.tt: for body in bodylist: name = body.name if body != astronomy.Body.Moon: pos = astronomy.HelioVector(body, time) if printflag: print('v {} {:0.18e} {:0.18e} {:0.18e} {:0.18e}'.format(name, pos.t.tt, pos.x, pos.y, pos.z)) if body != astronomy.Body.Earth and body != astronomy.Body.EMB and body != astronomy.Body.SSB: j2000 = astronomy.Equator(body, time, observer, False, False) ofdate = astronomy.Equator(body, time, observer, True, True) hor = astronomy.Horizon(time, observer, ofdate.ra, ofdate.dec, astronomy.Refraction.Airless) if printflag: print('s {} {:0.18e} {:0.18e} {:0.18e} {:0.18e} {:0.18e} {:0.18e} {:0.18e}'.format(name, time.tt, time.ut, j2000.ra, j2000.dec, j2000.dist, hor.azimuth, hor.altitude)) pos = astronomy.GeoMoon(time) if printflag: print('v GM {:0.18e} {:0.18e} {:0.18e} {:0.18e}'.format(pos.t.tt, pos.x, pos.y, pos.z)) j2000 = astronomy.Equator(astronomy.Body.Moon, time, observer, False, False) ofdate = astronomy.Equator(astronomy.Body.Moon, time, observer, True, True) hor = astronomy.Horizon(time, observer, ofdate.ra, ofdate.dec, astronomy.Refraction.Airless) if printflag: print('s GM {:0.18e} {:0.18e} {:0.18e} {:0.18e} {:0.18e} {:0.18e} {:0.18e}'.format(time.tt, time.ut, j2000.ra, j2000.dec, j2000.dist, hor.azimuth, hor.altitude)) jm = astronomy.JupiterMoons(time) if printflag: for mindex in range(4): moon = SelectJupiterMoon(jm, mindex) print('j {:d} {:0.18e} {:0.18e} {:0.18e} {:0.18e} {:0.18e} {:0.18e} {:0.18e} {:0.18e}'.format(mindex, time.tt, time.ut, moon.x, moon.y, moon.z, moon.vx, moon.vy, moon.vz)) if printflag: # Nutation calculations print('n {:0.18e} {:0.18e}'.format(time._et.dpsi, time._et.deps)) sphere = astronomy.EclipticGeoMoon(time) if printflag: print('m {:0.18f} {:0.18f} {:0.18f}'.format(sphere.lat, sphere.lon, sphere.dist)) time = time.AddDays(dt) return 0 #----------------------------------------------------------------------------------------------------------- def Seasons(filename = 'seasons/seasons.txt'): with open(filename, 'rt') as infile: lnum = 0 current_year = 0 mar_count = sep_count = jun_count = dec_count = 0 max_minutes = 0.0 for line in infile: lnum += 1 line = line.strip() m = re.match(r'^(\d+)-(\d+)-(\d+)T(\d+):(\d+)Z\s+([A-Za-z]+)$', line) if not m: print('PY Seasons: Invalid data on line {} of file {}'.format(lnum, filename)) return 1 year = int(m.group(1)) month = int(m.group(2)) day = int(m.group(3)) hour = int(m.group(4)) minute = int(m.group(5)) name = m.group(6) if year != current_year: current_year = year seasons = astronomy.Seasons(year) correct_time = astronomy.Time.Make(year, month, day, hour, minute, 0) if name == 'Equinox': if month == 3: calc_time = seasons.mar_equinox mar_count += 1 elif month == 9: calc_time = seasons.sep_equinox sep_count += 1 else: print('PY Seasons: {} line {}: Invalid equinox date in test data'.format(filename, lnum)) return 1 elif name == 'Solstice': if month == 6: calc_time = seasons.jun_solstice jun_count += 1 elif month == 12: calc_time = seasons.dec_solstice dec_count += 1 else: print('PY Seasons: {} line {}: Invalid solstice date in test data'.format(filename, lnum)) return 1 elif name == 'Aphelion': continue # not yet calculated elif name == 'Perihelion': continue # not yet calculated else: print('PY Seasons: {} line {}: unknown event type {}'.format(filename, lnum, name)) return 1 # Verify that the calculated time matches the correct time for this event. diff_minutes = (24.0 * 60.0) * vabs(calc_time.tt - correct_time.tt) if diff_minutes > max_minutes: max_minutes = diff_minutes if diff_minutes > 2.37: print('PY Seasons: {} line {}: excessive error ({}): {} minutes.'.format(filename, lnum, name, diff_minutes)) return 1 print('PY Seasons: verified {} lines from file {} : max error minutes = {:0.3f}'.format(lnum, filename, max_minutes)) print('PY Seasons: Event counts: mar={}, jun={}, sep={}, dec={}'.format(mar_count, jun_count, sep_count, dec_count)) return 0 def SeasonsIssue187(): # This is a regression test for: # https://github.com/cosinekitty/astronomy/issues/187 # For years far from the present, the seasons search was sometimes failing. for year in range(1, 9999, 1): try: astronomy.Seasons(year) except astronomy.InternalError: print('PY SeasonsIssue187: FAIL - internal error for year {}'.format(year)) return 1 print('PY SeasonsIssue187: PASS') return 0 #----------------------------------------------------------------------------------------------------------- def MoonPhase(filename = 'moonphase/moonphases.txt'): threshold_seconds = 90.0 # max tolerable prediction error in seconds max_arcmin = 0.0 maxdiff = 0.0 quarter_count = 0 with open(filename, 'rt') as infile: lnum = 0 prev_year = 0 for line in infile: lnum += 1 line = line.strip() m = re.match(r'^([0-3]) (\d+)-(\d+)-(\d+)T(\d+):(\d+):(\d+\.\d+)Z$', line) if not m: print('PY MoonPhase: invalid data format in {} line {}'.format(filename, lnum)) return 1 quarter = int(m.group(1)) year = int(m.group(2)) month = int(m.group(3)) day = int(m.group(4)) hour = int(m.group(5)) minute = int(m.group(6)) second = float(m.group(7)) expected_elong = 90.0 * quarter expected_time = astronomy.Time.Make(year, month, day, hour, minute, second) angle = astronomy.MoonPhase(expected_time) degree_error = vabs(angle - expected_elong) if degree_error > 180.0: degree_error = 360.0 - degree_error arcmin = 60.0 * degree_error if arcmin > 1.0: print('PY MoonPhase({} line {}): EXCESSIVE ANGULAR ERROR: {} arcmin'.format(filename, lnum, arcmin)) return 1 max_arcmin = vmax(max_arcmin, arcmin) if year != prev_year: prev_year = year # The test data contains a single year's worth of data for every 10 years. # Every time we see the year value change, it breaks continuity of the phases. # Start the search over again. start_time = astronomy.Time.Make(year, 1, 1, 0, 0, 0.0) mq = astronomy.SearchMoonQuarter(start_time) else: # Yet another lunar quarter in the same year. expected_quarter = (1 + mq.quarter) % 4 mq = astronomy.NextMoonQuarter(mq) # Expect the next consecutive quarter. if expected_quarter != mq.quarter: print('PY MoonPhase({} line {}): SearchMoonQuarter returned quarter {}, but expected {}.'.format(filename, lnum, mq.quarter, expected_quarter)) return 1 quarter_count += 1 # Make sure the time matches what we expect. diff_seconds = vabs(mq.time.tt - expected_time.tt) * SECONDS_PER_DAY if diff_seconds > threshold_seconds: print('PY MoonPhase({} line {}): excessive time error {:0.3f} seconds.'.format(filename, lnum, diff_seconds)) return 1 maxdiff = vmax(maxdiff, diff_seconds) print('PY MoonPhase: passed {} lines for file {} : max_arcmin = {:0.6f}, maxdiff = {:0.3f} seconds, {} quarters.' .format(lnum, filename, max_arcmin, maxdiff, quarter_count)) return 0 #----------------------------------------------------------------------------------------------------------- def TestElongFile(filename, targetRelLon): with open(filename, 'rt') as infile: lnum = 0 for line in infile: lnum += 1 line = line.strip() m = re.match(r'^(\d+)-(\d+)-(\d+)T(\d+):(\d+)Z ([A-Za-z]+)$', line) if not m: print('PY TestElongFile({} line {}): invalid data format'.format(filename, lnum)) return 1 year = int(m.group(1)) month = int(m.group(2)) day = int(m.group(3)) hour = int(m.group(4)) minute = int(m.group(5)) name = m.group(6) body = astronomy.BodyCode(name) if body.value == astronomy.Body.Invalid: print('PY TestElongFile({} line {}): invalid body name "{}"'.format(filename, lnum, name)) return 1 search_time = astronomy.Time.Make(year, 1, 1, 0, 0, 0) expected_time = astronomy.Time.Make(year, month, day, hour, minute, 0) found_time = astronomy.SearchRelativeLongitude(body, targetRelLon, search_time) if found_time is None: print('PY TestElongFile({} line {}): SearchRelativeLongitude failed.'.format(filename, lnum)) return 1 diff_minutes = (24.0 * 60.0) * (found_time.tt - expected_time.tt) Debug('PY TestElongFile: {:<7s} error = {:6.3} minutes'.format(name, diff_minutes)) if vabs(diff_minutes) > 6.8: print('PY TestElongFile({} line {}): EXCESSIVE ERROR.'.format(filename, lnum)) return 1 print('PY TestElongFile: passed {} rows of data'.format(lnum)) return 0 def TestPlanetLongitudes(body, outFileName, zeroLonEventName): startYear = 1700 stopYear = 2200 rlon = 0.0 sum_diff = 0.0 count = 0 name = body.name with open(outFileName, 'wt') as outfile: time = astronomy.Time.Make(startYear, 1, 1, 0, 0, 0) stopTime = astronomy.Time.Make(stopYear, 1, 1, 0, 0, 0) while time.tt < stopTime.tt: count += 1 event = zeroLonEventName if rlon == 0.0 else 'sup' found_time = astronomy.SearchRelativeLongitude(body, rlon, time) if found_time is None: print('PY TestPlanetLongitudes({}): SearchRelativeLongitudes failed'.format(name)) return 1 if count >= 2: # Check for consistent intervals. # Mainly I don't want to skip over an event! day_diff = found_time.tt - time.tt sum_diff += day_diff if count == 2: min_diff = max_diff = day_diff else: min_diff = vmin(min_diff, day_diff) max_diff = vmax(max_diff, day_diff) geo = astronomy.GeoVector(body, found_time, True) dist = geo.Length() outfile.write('e {} {} {:0.16f} {:0.16f}\n'.format(name, event, found_time.tt, dist)) # Search for the opposite longitude vent next time. time = found_time rlon = 180.0 - rlon if body == astronomy.Body.Mercury: thresh = 1.65 elif body == astronomy.Body.Mars: thresh = 1.30 else: thresh = 1.07 ratio = max_diff / min_diff Debug('PY TestPlanetLongitudes({:<7s}): {:5d} events, ratio={:5.3f}, file: {}'.format(name, count, ratio, outFileName)) if ratio > thresh: print('PY TestPlanetLongitudes({}): EXCESSIVE EVENT INTERVAL RATIO'.format(name)) return 1 return 0 ElongTestData = [ # Max elongation data obtained from: # http://www.skycaramba.com/greatest_elongations.shtml ( astronomy.Body.Mercury, "2010-01-17T05:22Z", "2010-01-27T05:22Z", 24.80, 'morning' ), ( astronomy.Body.Mercury, "2010-05-16T02:15Z", "2010-05-26T02:15Z", 25.10, 'morning' ), ( astronomy.Body.Mercury, "2010-09-09T17:24Z", "2010-09-19T17:24Z", 17.90, 'morning' ), ( astronomy.Body.Mercury, "2010-12-30T14:33Z", "2011-01-09T14:33Z", 23.30, 'morning' ), ( astronomy.Body.Mercury, "2011-04-27T19:03Z", "2011-05-07T19:03Z", 26.60, 'morning' ), ( astronomy.Body.Mercury, "2011-08-24T05:52Z", "2011-09-03T05:52Z", 18.10, 'morning' ), ( astronomy.Body.Mercury, "2011-12-13T02:56Z", "2011-12-23T02:56Z", 21.80, 'morning' ), ( astronomy.Body.Mercury, "2012-04-08T17:22Z", "2012-04-18T17:22Z", 27.50, 'morning' ), ( astronomy.Body.Mercury, "2012-08-06T12:04Z", "2012-08-16T12:04Z", 18.70, 'morning' ), ( astronomy.Body.Mercury, "2012-11-24T22:55Z", "2012-12-04T22:55Z", 20.60, 'morning' ), ( astronomy.Body.Mercury, "2013-03-21T22:02Z", "2013-03-31T22:02Z", 27.80, 'morning' ), ( astronomy.Body.Mercury, "2013-07-20T08:51Z", "2013-07-30T08:51Z", 19.60, 'morning' ), ( astronomy.Body.Mercury, "2013-11-08T02:28Z", "2013-11-18T02:28Z", 19.50, 'morning' ), ( astronomy.Body.Mercury, "2014-03-04T06:38Z", "2014-03-14T06:38Z", 27.60, 'morning' ), ( astronomy.Body.Mercury, "2014-07-02T18:22Z", "2014-07-12T18:22Z", 20.90, 'morning' ), ( astronomy.Body.Mercury, "2014-10-22T12:36Z", "2014-11-01T12:36Z", 18.70, 'morning' ), ( astronomy.Body.Mercury, "2015-02-14T16:20Z", "2015-02-24T16:20Z", 26.70, 'morning' ), ( astronomy.Body.Mercury, "2015-06-14T17:10Z", "2015-06-24T17:10Z", 22.50, 'morning' ), ( astronomy.Body.Mercury, "2015-10-06T03:20Z", "2015-10-16T03:20Z", 18.10, 'morning' ), ( astronomy.Body.Mercury, "2016-01-28T01:22Z", "2016-02-07T01:22Z", 25.60, 'morning' ), ( astronomy.Body.Mercury, "2016-05-26T08:45Z", "2016-06-05T08:45Z", 24.20, 'morning' ), ( astronomy.Body.Mercury, "2016-09-18T19:27Z", "2016-09-28T19:27Z", 17.90, 'morning' ), ( astronomy.Body.Mercury, "2017-01-09T09:42Z", "2017-01-19T09:42Z", 24.10, 'morning' ), ( astronomy.Body.Mercury, "2017-05-07T23:19Z", "2017-05-17T23:19Z", 25.80, 'morning' ), ( astronomy.Body.Mercury, "2017-09-02T10:14Z", "2017-09-12T10:14Z", 17.90, 'morning' ), ( astronomy.Body.Mercury, "2017-12-22T19:48Z", "2018-01-01T19:48Z", 22.70, 'morning' ), ( astronomy.Body.Mercury, "2018-04-19T18:17Z", "2018-04-29T18:17Z", 27.00, 'morning' ), ( astronomy.Body.Mercury, "2018-08-16T20:35Z", "2018-08-26T20:35Z", 18.30, 'morning' ), ( astronomy.Body.Mercury, "2018-12-05T11:34Z", "2018-12-15T11:34Z", 21.30, 'morning' ), ( astronomy.Body.Mercury, "2019-04-01T19:40Z", "2019-04-11T19:40Z", 27.70, 'morning' ), ( astronomy.Body.Mercury, "2019-07-30T23:08Z", "2019-08-09T23:08Z", 19.00, 'morning' ), ( astronomy.Body.Mercury, "2019-11-18T10:31Z", "2019-11-28T10:31Z", 20.10, 'morning' ), ( astronomy.Body.Mercury, "2010-03-29T23:32Z", "2010-04-08T23:32Z", 19.40, 'evening' ), ( astronomy.Body.Mercury, "2010-07-28T01:03Z", "2010-08-07T01:03Z", 27.40, 'evening' ), ( astronomy.Body.Mercury, "2010-11-21T15:42Z", "2010-12-01T15:42Z", 21.50, 'evening' ), ( astronomy.Body.Mercury, "2011-03-13T01:07Z", "2011-03-23T01:07Z", 18.60, 'evening' ), ( astronomy.Body.Mercury, "2011-07-10T04:56Z", "2011-07-20T04:56Z", 26.80, 'evening' ), ( astronomy.Body.Mercury, "2011-11-04T08:40Z", "2011-11-14T08:40Z", 22.70, 'evening' ), ( astronomy.Body.Mercury, "2012-02-24T09:39Z", "2012-03-05T09:39Z", 18.20, 'evening' ), ( astronomy.Body.Mercury, "2012-06-21T02:00Z", "2012-07-01T02:00Z", 25.70, 'evening' ), ( astronomy.Body.Mercury, "2012-10-16T21:59Z", "2012-10-26T21:59Z", 24.10, 'evening' ), ( astronomy.Body.Mercury, "2013-02-06T21:24Z", "2013-02-16T21:24Z", 18.10, 'evening' ), ( astronomy.Body.Mercury, "2013-06-02T16:45Z", "2013-06-12T16:45Z", 24.30, 'evening' ), ( astronomy.Body.Mercury, "2013-09-29T09:59Z", "2013-10-09T09:59Z", 25.30, 'evening' ), ( astronomy.Body.Mercury, "2014-01-21T10:00Z", "2014-01-31T10:00Z", 18.40, 'evening' ), ( astronomy.Body.Mercury, "2014-05-15T07:06Z", "2014-05-25T07:06Z", 22.70, 'evening' ), ( astronomy.Body.Mercury, "2014-09-11T22:20Z", "2014-09-21T22:20Z", 26.40, 'evening' ), ( astronomy.Body.Mercury, "2015-01-04T20:26Z", "2015-01-14T20:26Z", 18.90, 'evening' ), ( astronomy.Body.Mercury, "2015-04-27T04:46Z", "2015-05-07T04:46Z", 21.20, 'evening' ), ( astronomy.Body.Mercury, "2015-08-25T10:20Z", "2015-09-04T10:20Z", 27.10, 'evening' ), ( astronomy.Body.Mercury, "2015-12-19T03:11Z", "2015-12-29T03:11Z", 19.70, 'evening' ), ( astronomy.Body.Mercury, "2016-04-08T14:00Z", "2016-04-18T14:00Z", 19.90, 'evening' ), ( astronomy.Body.Mercury, "2016-08-06T21:24Z", "2016-08-16T21:24Z", 27.40, 'evening' ), ( astronomy.Body.Mercury, "2016-12-01T04:36Z", "2016-12-11T04:36Z", 20.80, 'evening' ), ( astronomy.Body.Mercury, "2017-03-22T10:24Z", "2017-04-01T10:24Z", 19.00, 'evening' ), ( astronomy.Body.Mercury, "2017-07-20T04:34Z", "2017-07-30T04:34Z", 27.20, 'evening' ), ( astronomy.Body.Mercury, "2017-11-14T00:32Z", "2017-11-24T00:32Z", 22.00, 'evening' ), ( astronomy.Body.Mercury, "2018-03-05T15:07Z", "2018-03-15T15:07Z", 18.40, 'evening' ), ( astronomy.Body.Mercury, "2018-07-02T05:24Z", "2018-07-12T05:24Z", 26.40, 'evening' ), ( astronomy.Body.Mercury, "2018-10-27T15:25Z", "2018-11-06T15:25Z", 23.30, 'evening' ), ( astronomy.Body.Mercury, "2019-02-17T01:23Z", "2019-02-27T01:23Z", 18.10, 'evening' ), ( astronomy.Body.Mercury, "2019-06-13T23:14Z", "2019-06-23T23:14Z", 25.20, 'evening' ), ( astronomy.Body.Mercury, "2019-10-10T04:00Z", "2019-10-20T04:00Z", 24.60, 'evening' ), ( astronomy.Body.Venus, "2010-12-29T15:57Z", "2011-01-08T15:57Z", 47.00, 'morning' ), ( astronomy.Body.Venus, "2012-08-05T08:59Z", "2012-08-15T08:59Z", 45.80, 'morning' ), ( astronomy.Body.Venus, "2014-03-12T19:25Z", "2014-03-22T19:25Z", 46.60, 'morning' ), ( astronomy.Body.Venus, "2015-10-16T06:57Z", "2015-10-26T06:57Z", 46.40, 'morning' ), ( astronomy.Body.Venus, "2017-05-24T13:09Z", "2017-06-03T13:09Z", 45.90, 'morning' ), ( astronomy.Body.Venus, "2018-12-27T04:24Z", "2019-01-06T04:24Z", 47.00, 'morning' ), ( astronomy.Body.Venus, "2010-08-10T03:19Z", "2010-08-20T03:19Z", 46.00, 'evening' ), ( astronomy.Body.Venus, "2012-03-17T08:03Z", "2012-03-27T08:03Z", 46.00, 'evening' ), ( astronomy.Body.Venus, "2013-10-22T08:00Z", "2013-11-01T08:00Z", 47.10, 'evening' ), ( astronomy.Body.Venus, "2015-05-27T18:46Z", "2015-06-06T18:46Z", 45.40, 'evening' ), ( astronomy.Body.Venus, "2017-01-02T13:19Z", "2017-01-12T13:19Z", 47.10, 'evening' ), ( astronomy.Body.Venus, "2018-08-07T17:02Z", "2018-08-17T17:02Z", 45.90, 'evening' ) ] def TestMaxElong(body, searchText, eventText, angle, visibility): name = body.name searchTime = astronomy.Time.Parse(searchText) eventTime = astronomy.Time.Parse(eventText) evt = astronomy.SearchMaxElongation(body, searchTime) if evt is None: print('PY TestMaxElong({} {}): SearchMaxElongation failed.'.format(name, searchText)) return 1 if evt.visibility != visibility: print('PY TestMaxElong({} {}): SearchMaxElongation returned visibility {}, but expected {}'.format(name, searchText, evt.visibility.name, visibility.name)) return 1 hour_diff = 24.0 * vabs(evt.time.tt - eventTime.tt) arcmin_diff = 60.0 * vabs(evt.elongation - angle) Debug('PY TestMaxElong: {:<7s} {:<7s} elong={:5.2f} ({:4.2f} arcmin, {:5.3f} hours)'.format(name, visibility.name, evt.elongation, arcmin_diff, hour_diff)) if hour_diff > 0.6: print('PY TestMaxElong({} {}): EXCESSIVE HOUR ERROR.'.format(name, searchText)) return 1 if arcmin_diff > 3.4: print('PY TestMaxElong({} {}): EXCESSIVE ARCMIN ERROR.'.format(name, searchText)) return 1 return 0 def SearchElongTest(): for (body, searchText, eventText, angle, visibility) in ElongTestData: if 0 != TestMaxElong(body, searchText, eventText, angle, astronomy.Visibility[visibility.title()]): return 1 return 0 def Elongation(): return ( TestElongFile('longitude/opposition_2018.txt', 0.0) or TestPlanetLongitudes(astronomy.Body.Mercury, "temp/py_longitude_Mercury.txt", "inf") or TestPlanetLongitudes(astronomy.Body.Venus, "temp/py_longitude_Venus.txt", "inf") or TestPlanetLongitudes(astronomy.Body.Mars, "temp/py_longitude_Mars.txt", "opp") or TestPlanetLongitudes(astronomy.Body.Jupiter, "temp/py_longitude_Jupiter.txt", "opp") or TestPlanetLongitudes(astronomy.Body.Saturn, "temp/py_longitude_Saturn.txt", "opp") or TestPlanetLongitudes(astronomy.Body.Uranus, "temp/py_longitude_Uranus.txt", "opp") or TestPlanetLongitudes(astronomy.Body.Neptune, "temp/py_longitude_Neptune.txt", "opp") or TestPlanetLongitudes(astronomy.Body.Pluto, "temp/py_longitude_Pluto.txt", "opp") or SearchElongTest() or Pass('Elongation') ) #----------------------------------------------------------------------------------------------------------- def MonthNumber(mtext): return 1 + ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'].index(mtext) def ParseJplHorizonsDateTime(line): m = re.match(r'^\s*(\d{4})-(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)-(\d{2})\s(\d{2}):(\d{2})\s+(.*)$', line) if not m: return None, None year = int(m.group(1)) month = MonthNumber(m.group(2)) day = int(m.group(3)) hour = int(m.group(4)) minute = int(m.group(5)) rest = m.group(6) time = astronomy.Time.Make(year, month, day, hour, minute, 0) return time, rest def CheckMagnitudeData(body, filename): limit = 0.012 sum_squared_diff = 0.0 with open(filename, 'rt') as infile: count = lnum = 0 for line in infile: lnum += 1 line = line.strip() (time, rest) = ParseJplHorizonsDateTime(line) if (time is not None) and (rest is not None) and not ('n.a.' in rest): data = [float(t) for t in rest.split()] if len(data) != 7: print('PY CheckMagnitudeData({} line {}): invalid data format'.format(filename, lnum)) return 1 (mag, sbrt, dist, rdot, delta, deldot, phase_angle) = data illum = astronomy.Illumination(body, time) diff = illum.mag - mag if vabs(diff) > limit: print('PY CheckMagnitudeData({} line {}): EXCESSIVE ERROR: correct mag={}, calc mag={}'.format(filename, lnum, mag, illum.mag)) return 1 sum_squared_diff += diff * diff if count == 0: diff_lo = diff_hi = diff else: diff_lo = vmin(diff_lo, diff) diff_hi = vmax(diff_hi, diff) count += 1 if count == 0: print('PY CheckMagnitudeData: Did not find any data in file: {}'.format(filename)) return 1 rms = sqrt(sum_squared_diff / count) Debug('PY CheckMagnitudeData: {:<21s} {:5d} rows diff_lo={:0.4f} diff_hi={:0.4f} rms={:0.4f}'.format(filename, count, diff_lo, diff_hi, rms)) return 0 def CheckSaturn(): # JPL Horizons does not include Saturn's rings in its magnitude models. # I still don't have authoritative test data for Saturn's magnitude. # For now, I just test for consistency with Paul Schlyter's formulas at: # http://www.stjarnhimlen.se/comp/ppcomp.html#15 data = [ ( "1972-01-01T00:00Z", -0.31725492, +24.43386475 ), ( "1980-01-01T00:00Z", +0.85796177, -1.72627324 ), ( "2009-09-04T00:00Z", +1.01932560, +0.01834451 ), ( "2017-06-15T00:00Z", -0.12303373, -26.60068380 ), ( "2019-05-01T00:00Z", +0.33124502, -23.47173574 ), ( "2025-09-25T00:00Z", +0.50543708, +1.69118986 ), ( "2032-05-15T00:00Z", -0.04649573, +26.95238680 ) ] error = 0 for (dtext, mag, tilt) in data: time = astronomy.Time.Parse(dtext) illum = astronomy.Illumination(astronomy.Body.Saturn, time) Debug('PY Saturn: date={} calc mag={:12.8f} ring_tilt={:12.8f}'.format(dtext, illum.mag, illum.ring_tilt)) mag_diff = vabs(illum.mag - mag) if mag_diff > 1.0e-4: print('PY CheckSaturn: Excessive magnitude error {}'.format(mag_diff)) error = 1 tilt_diff = vabs(illum.ring_tilt - tilt) if (tilt_diff > 3.0e-5): print('PY CheckSaturn: Excessive ring tilt error {}'.format(tilt_diff)) error = 1 return error def TestMaxMag(body, filename): # Example of input data: # # 2001-02-21T08:00Z 2001-02-27T08:00Z 23.17 19.53 -4.84 # # JPL Horizons test data has limited floating point precision in the magnitude values. # There is a pair of dates for the beginning and end of the max magnitude period, # given the limited precision. We pick the point halfway between as the supposed max magnitude time. with open(filename, 'rt') as infile: lnum = 0 search_time = astronomy.Time.Make(2001, 1, 1, 0, 0, 0) for line in infile: lnum += 1 line = line.strip() tokenlist = line.split() if len(tokenlist) == 5: time1 = astronomy.Time.Parse(tokenlist[0]) time2 = astronomy.Time.Parse(tokenlist[1]) if time1 and time2: center_time = time1.AddDays(0.5*(time2.ut - time1.ut)) correct_mag = float(tokenlist[4]) illum = astronomy.SearchPeakMagnitude(body, search_time) mag_diff = vabs(illum.mag - correct_mag) hours_diff = 24.0 * vabs(illum.time.ut - center_time.ut) Debug('PY TestMaxMag: mag_diff={:0.3f}, hours_diff={:0.3f}'.format(mag_diff, hours_diff)) if hours_diff > 7.1: print('PY TestMaxMag({} line {}): EXCESSIVE TIME DIFFERENCE.'.format(filename, lnum)) return 1 if mag_diff > 0.005: print('PY TestMaxMag({} line {}): EXCESSIVE MAGNITUDE DIFFERENCE.'.format(filename, lnum)) return 1 search_time = time2 Debug('PY TestMaxMag: processed {} lines from file {}'.format(lnum, filename)) return 0 def Magnitude(): nfailed = 0 nfailed += CheckMagnitudeData(astronomy.Body.Sun, 'magnitude/Sun.txt') nfailed += CheckMagnitudeData(astronomy.Body.Moon, 'magnitude/Moon.txt') nfailed += CheckMagnitudeData(astronomy.Body.Mercury, 'magnitude/Mercury.txt') nfailed += CheckMagnitudeData(astronomy.Body.Venus, 'magnitude/Venus.txt') nfailed += CheckMagnitudeData(astronomy.Body.Mars, 'magnitude/Mars.txt') nfailed += CheckMagnitudeData(astronomy.Body.Jupiter, 'magnitude/Jupiter.txt') nfailed += CheckSaturn() nfailed += CheckMagnitudeData(astronomy.Body.Uranus, 'magnitude/Uranus.txt') nfailed += CheckMagnitudeData(astronomy.Body.Neptune, 'magnitude/Neptune.txt') nfailed += CheckMagnitudeData(astronomy.Body.Pluto, 'magnitude/Pluto.txt') nfailed += TestMaxMag(astronomy.Body.Venus, 'magnitude/maxmag_Venus.txt') if nfailed == 0: print('PY Magnitude: PASS') else: print('PY Magnitude: failed {} test(s).'.format(nfailed)) return 1 return 0 #----------------------------------------------------------------------------------------------------------- def ToggleDir(dir): return astronomy.Direction(-dir.value) def RiseSetSlot(ut1, ut2, direction, observer): maxDiff = 0.0 nslots = 100 for i in range(1, nslots): ut = ut1 + (i / nslots)*(ut2 - ut1) time = astronomy.Time(ut) result = astronomy.SearchRiseSet(astronomy.Body.Sun, observer, direction, time, -1.0) if not result: print('PY RiseSetSlot: backward slot search failed for {} before {}'.format(direction, time)) return 1 diff = SECONDS_PER_DAY * vabs(result.ut - ut1) maxDiff = max(maxDiff, diff) result = astronomy.SearchRiseSet(astronomy.Body.Sun, observer, direction, time, +1.0) if not result: print('PY RiseSetSlot: forward slot search failed for {} after {}'.format(direction, time)) return 1 diff = SECONDS_PER_DAY * vabs(result.ut - ut2) maxDiff = max(maxDiff, diff) if maxDiff > 0.13: print('PY RiseSetSlot: EXCESSIVE {} slot-test discrepancy = {:0.6f} seconds.'.format(direction, maxDiff)) return 1 Debug('PY RiseSetSlot: {} slot-test discrepancy = {:0.6f} seconds.'.format(direction, maxDiff)) return 0 def RiseSetReverse(): nsamples = 5000 nudge = 0.1 utList = [] observer = astronomy.Observer(30.5, -90.7, 0.0) dtMin = +1000.0 dtMax = -1000.0 maxDiff = 0.0 # Find alternating sunrise/sunset events in forward chronological order. dir = astronomy.Direction.Rise time = astronomy.Time.Make(2022, 1, 1, 0, 0, 0) for i in range(nsamples): result = astronomy.SearchRiseSet(astronomy.Body.Sun, observer, dir, time, +1.0) if not result: print('PY RiseSetReverse: cannot find {} event after {}'.format(dir, time)) return 1 utList.append(result.ut) if i > 0: # Check the time between consecutive sunrise/sunset events. # These will vary considerably with the seasons, so just make sure we don't miss any entirely. dt = v(utList[i] - utList[i-1]) dtMin = min(dtMin, dt) dtMax = max(dtMax, dt) dir = ToggleDir(dir) time = result.AddDays(+nudge) Debug('PY RiseSetReverse: dtMin={:0.6f} days, dtMax={:0.6f} days.'.format(dtMin, dtMax)) if (dtMin < 0.411) or (dtMax > 0.589): print('PY RiseSetReverse: Invalid intervals between sunrise/sunset.') return 1 # Perform the same search in reverse. Verify we get consistent rise/set times. for i in range(nsamples-1, -1, -1): dir = ToggleDir(dir) result = astronomy.SearchRiseSet(astronomy.Body.Sun, observer, dir, time, -1.0) if not result: print('PY RiseSetReverse: cannot find {] event before {}.'.format(dir, time)) return 1 diff = SECONDS_PER_DAY * vabs(utList[i] - result.ut) maxDiff = max(maxDiff, diff) time = result.AddDays(-nudge) if maxDiff > 0.1: print('PY RiseSetReverse: EXCESSIVE forward/backward discrepancy = {:0.6f} seconds.'.format(maxDiff)) return 1 Debug('PY RiseSetReverse: forward/backward discrepancy = {:0.6f} seconds.'.format(maxDiff)) # All even indexes in utList hold sunrise times. # All odd indexes in utList hold sunset times. # Verify that forward/backward searches for consecutive sunrises/sunsets # resolve correctly for 100 time slots between them. k = (nsamples // 2) & ~1 return ( RiseSetSlot(utList[k], utList[k+2], astronomy.Direction.Rise, observer) or RiseSetSlot(utList[k+1], utList[k+3], astronomy.Direction.Set, observer) or Pass('RiseSetReverse') ) #----------------------------------------------------------------------------------------------------------- def RiseSet(filename = 'riseset/riseset.txt'): sum_minutes = 0.0 max_minutes = 0.0 nudge_days = 0.01 observer = None current_body = None a_dir = 0 b_dir = 0 with open(filename, 'rt') as infile: lnum = 0 for line in infile: lnum += 1 line = line.strip() # Moon 103 -61 1944-01-02T17:08Z s # Moon 103 -61 1944-01-03T05:47Z r m = re.match(r'^([A-Za-z]+)\s+(-?[0-9\.]+)\s+(-?[0-9\.]+)\s+(\d+)-(\d+)-(\d+)T(\d+):(\d+)Z\s+([sr])$', line) if not m: print('PY RiseSet({} line {}): invalid data format'.format(filename, lnum)) return 1 name = m.group(1) longitude = float(m.group(2)) latitude = float(m.group(3)) year = int(m.group(4)) month = int(m.group(5)) day = int(m.group(6)) hour = int(m.group(7)) minute = int(m.group(8)) kind = m.group(9) correct_time = astronomy.Time.Make(year, month, day, hour, minute, 0) direction = astronomy.Direction.Rise if kind == 'r' else astronomy.Direction.Set body = astronomy.BodyCode(name) if body == astronomy.Body.Invalid: print('PY RiseSet({} line {}): invalid body name "{}"'.format(filename, lnum, name)) return 1 # Every time we see a new geographic location, start a new iteration # of finding all rise/set times for that UTC calendar year. if (observer is None) or (observer.latitude != latitude) or (observer.longitude != longitude) or (current_body != body): current_body = body observer = astronomy.Observer(latitude, longitude, 0) r_search_date = s_search_date = astronomy.Time.Make(year, 1, 1, 0, 0, 0) b_evt = None Debug('PY RiseSet: {:<7s} lat={:0.1f} lon={:0.1f}'.format(name, latitude, longitude)) if b_evt is not None: # Recycle the second event from the previous iteration as the first event. a_evt = b_evt a_dir = b_dir b_evt = None else: r_evt = astronomy.SearchRiseSet(body, observer, astronomy.Direction.Rise, r_search_date, 366.0) if r_evt is None: print('PY RiseSet({} line {}): rise search failed'.format(filename, lnum)) return 1 s_evt = astronomy.SearchRiseSet(body, observer, astronomy.Direction.Set, s_search_date, 366.0) if s_evt is None: print('PY RiseSet({} line {}): set search failed'.format(filename, lnum)) return 1 # Expect the current event to match the earlier of the found times. if r_evt.tt < s_evt.tt: a_evt = r_evt b_evt = s_evt a_dir = astronomy.Direction.Rise b_dir = astronomy.Direction.Set else: a_evt = s_evt b_evt = r_evt a_dir = astronomy.Direction.Set b_dir = astronomy.Direction.Rise # Nudge the event times forward a tiny amount. r_search_date = r_evt.AddDays(nudge_days) s_search_date = s_evt.AddDays(nudge_days) if a_dir != direction: print('PY RiseSet({} line {}): expected dir={} but found {}'.format(filename, lnum, direction, a_dir)) return 1 error_minutes = (24.0 * 60.0) * vabs(a_evt.tt - correct_time.tt) sum_minutes += error_minutes ** 2 max_minutes = vmax(max_minutes, error_minutes) if error_minutes > 1.18: print('PY RiseSet({} line {}): excessive prediction time error = {} minutes.'.format(filename, lnum, error_minutes)) print(' correct = {}, calculated = {}'.format(correct_time, a_evt)) return 1 rms_minutes = sqrt(sum_minutes / lnum) print('PY RiseSet: passed {} lines: time errors in minutes: rms={:0.4f}, max={:0.4f}'.format(lnum, rms_minutes, max_minutes)) return 0 #----------------------------------------------------------------------------------------------------------- def LunarApsis(filename = 'apsides/moon.txt'): max_minutes = 0.0 max_km = 0.0 with open(filename, 'rt') as infile: start_time = astronomy.Time.Make(2001, 1, 1, 0, 0, 0) lnum = 0 for line in infile: lnum += 1 if lnum == 1: apsis = astronomy.SearchLunarApsis(start_time) else: apsis = astronomy.NextLunarApsis(apsis) tokenlist = line.split() if len(tokenlist) != 3: print('PY LunarApsis({} line {}): invalid data format'.format(filename, lnum)) return 1 correct_time = astronomy.Time.Parse(tokenlist[1]) if not correct_time: print('PY LunarApsis({} line {}): invalid time'.format(filename, lnum)) return 1 kind = astronomy.ApsisKind(int(tokenlist[0])) if apsis.kind != kind: print('PY LunarApsis({} line {}): Expected kind {} but found {}'.format(filename, lnum, kind, apsis.kind)) return 1 dist_km = float(tokenlist[2]) diff_minutes = (24.0 * 60.0) * vabs(apsis.time.ut - correct_time.ut) diff_km = vabs(apsis.dist_km - dist_km) if diff_minutes > 35.0: print('PY LunarApsis({} line {}): Excessive time error = {} minutes.'.format(filename, lnum, diff_minutes)) return 1 if diff_km > 25.0: print('PY LunarApsis({} line {}): Excessive distance error = {} km.'.format(filename, lnum, diff_km)) return 1 max_minutes = vmax(max_minutes, diff_minutes) max_km = vmax(max_km, diff_km) print('PY LunarApsis: found {} events, max time error = {:0.3f} minutes, max distance error = {:0.3f} km.'.format(lnum, max_minutes, max_km)) return 0 #----------------------------------------------------------------------------------------------------------- def CompareMatrices(caller, a, b, tolerance): for i in range(3): for j in range(3): diff = vabs(a.rot[i][j] - b.rot[i][j]) if diff > tolerance: print('PY CompareMatrices ERROR({}): matrix[{}][{}] = {}, expected {}, diff {}'.format(caller, i, j, a.rot[i][j], b.rot[i][j], diff)) sys.exit(1) def CompareVectors(caller, a, b, tolerance): diff = vabs(a.x - b.x) if diff > tolerance: print('PY CompareVectors ERROR({}): vector x = {}, expected {}, diff {}'.format(caller, a.x, b.x, diff)) sys.exit(1) diff = vabs(a.y - b.y) if diff > tolerance: print('PY CompareVectors ERROR({}): vector y = {}, expected {}, diff {}'.format(caller, a.y, b.y, diff)) sys.exit(1) diff = vabs(a.z - b.z) if diff > tolerance: print('PY CompareVectors ERROR({}): vector z = {}, expected {}, diff {}'.format(caller, a.z, b.z, diff)) sys.exit(1) def Rotation_MatrixInverse(): a = astronomy.RotationMatrix([ [1, 4, 7], [2, 5, 8], [3, 6, 9] ]) v = astronomy.RotationMatrix([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]) b = astronomy.InverseRotation(a) CompareMatrices('Rotation_MatrixInverse', b, v, 0) def Rotation_MatrixMultiply(): a = astronomy.RotationMatrix([ [1, 4, 7], [2, 5, 8], [3, 6, 9] ]) b = astronomy.RotationMatrix([ [10, 13, 16], [11, 14, 17], [12, 15, 18] ]) v = astronomy.RotationMatrix([ [84, 201, 318], [90, 216, 342], [96, 231, 366] ]) c = astronomy.CombineRotation(b, a) CompareMatrices('Rotation_MatrixMultiply', c, v, 0) def VectorDiff(a, b): dx = a.x - b.x dy = a.y - b.y dz = a.z - b.z return sqrt(dx*dx + dy*dy + dz*dz) def Test_GAL_EQJ_NOVAS(filename): THRESHOLD_SECONDS = 8.8 rot = astronomy.Rotation_EQJ_GAL() time = astronomy.Time(0.0) # placeholder time - value does not matter with open(filename, 'rt') as infile: lnum = 0 max_diff = 0.0 for line in infile: lnum += 1 token = line.split() if len(token) != 4: print('PY Test_GAL_EQJ_NOVAS({} line {}): Wrong number of tokens.'.format(filename, lnum)) sys.exit(1) ra = float(token[0]) dec = float(token[1]) glon = float(token[2]) glat = float(token[3]) eqj_sphere = astronomy.Spherical(dec, 15.0*ra, 1.0) eqj_vec = astronomy.VectorFromSphere(eqj_sphere, time) gal_vec = astronomy.RotateVector(rot, eqj_vec) gal_sphere = astronomy.SphereFromVector(gal_vec) dlat = gal_sphere.lat - glat dlon = math.cos(math.radians(glat)) * (gal_sphere.lon - glon) diff = 3600.0 * math.hypot(dlon, dlat) if diff > THRESHOLD_SECONDS: print('PY Test_GAL_EQJ_NOVAS({} line {}): EXCESSIVE ERROR = {:0.3f}'.format(filename, lnum, diff)) sys.exit(1) if diff > max_diff: max_diff = diff Debug('PY Test_GAL_EQJ_NOVAS: PASS. max_diff = {:0.3f} arcseconds.'.format(max_diff)) return 0 def Test_EQJ_EQD(body): # Verify conversion of equatorial J2000 to equatorial of-date, and back. # Use established functions to calculate spherical coordinates for the body, in both EQJ and EQD. time = astronomy.Time.Make(2019, 12, 8, 20, 50, 0) observer = astronomy.Observer(+35, -85, 0) eq2000 = astronomy.Equator(body, time, observer, False, True) eqdate = astronomy.Equator(body, time, observer, True, True) # Convert EQJ spherical coordinates to vector. v2000 = eq2000.vec # Find rotation matrix. r = astronomy.Rotation_EQJ_EQD(time) # Rotate EQJ vector to EQD vector. vdate = astronomy.RotateVector(r, v2000) # Convert vector back to angular equatorial coordinates. equcheck = astronomy.EquatorFromVector(vdate) # Compare the result with the eqdate. ra_diff = vabs(equcheck.ra - eqdate.ra) dec_diff = vabs(equcheck.dec - eqdate.dec) dist_diff = vabs(equcheck.dist - eqdate.dist) Debug('PY Test_EQJ_EQD: {} ra={}, dec={}, dist={}, ra_diff={}, dec_diff={}, dist_diff={}'.format( body.name, eqdate.ra, eqdate.dec, eqdate.dist, ra_diff, dec_diff, dist_diff )) if ra_diff > 1.0e-14 or dec_diff > 1.0e-14 or dist_diff > 4.0e-15: print('PY Test_EQJ_EQD: EXCESSIVE ERROR') sys.exit(1) # Perform the inverse conversion back to equatorial J2000 coordinates. ir = astronomy.Rotation_EQD_EQJ(time) t2000 = astronomy.RotateVector(ir, vdate) diff = VectorDiff(t2000, v2000) Debug('PY Test_EQJ_EQD: {} inverse diff = {}'.format(body.name, diff)) if diff > 5.0e-15: print('PY Test_EQJ_EQD: EXCESSIVE INVERSE ERROR') sys.exit(1) def Test_EQD_HOR(body): # Use existing functions to calculate horizontal coordinates of the body for the time+observer. time = astronomy.Time.Make(1970, 12, 13, 5, 15, 0) observer = astronomy.Observer(-37, +45, 0) eqd = astronomy.Equator(body, time, observer, True, True) Debug('PY Test_EQD_HOR {}: OFDATE ra={}, dec={}'.format(body.name, eqd.ra, eqd.dec)) hor = astronomy.Horizon(time, observer, eqd.ra, eqd.dec, astronomy.Refraction.Normal) # Calculate the position of the body as an equatorial vector of date. vec_eqd = eqd.vec # Calculate rotation matrix to convert equatorial J2000 vector to horizontal vector. rot = astronomy.Rotation_EQD_HOR(time, observer) # Rotate the equator of date vector to a horizontal vector. vec_hor = astronomy.RotateVector(rot, vec_eqd) # Convert the horizontal vector to horizontal angular coordinates. xsphere = astronomy.HorizonFromVector(vec_hor, astronomy.Refraction.Normal) diff_alt = vabs(xsphere.lat - hor.altitude) diff_az = vabs(xsphere.lon - hor.azimuth) Debug('PY Test_EQD_HOR {}: trusted alt={}, az={}; test alt={}, az={}; diff_alt={}, diff_az={}'.format( body.name, hor.altitude, hor.azimuth, xsphere.lat, xsphere.lon, diff_alt, diff_az)) if diff_alt > 4.0e-14 or diff_az > 1.2e-13: print('PY Test_EQD_HOR: EXCESSIVE HORIZONTAL ERROR.') sys.exit(1) # Confirm that we can convert back to horizontal vector. check_hor = astronomy.VectorFromHorizon(xsphere, time, astronomy.Refraction.Normal) diff = VectorDiff(check_hor, vec_hor) Debug('PY Test_EQD_HOR {}: horizontal recovery: diff = {}'.format(body.name, diff)) if diff > 3.0e-15: print('PY Test_EQD_HOR: EXCESSIVE ERROR IN HORIZONTAL RECOVERY.') sys.exit(1) # Verify the inverse translation from horizontal vector to equatorial of-date vector. irot = astronomy.Rotation_HOR_EQD(time, observer) check_eqd = astronomy.RotateVector(irot, vec_hor) diff = VectorDiff(check_eqd, vec_eqd) Debug('PY Test_EQD_HOR {}: OFDATE inverse rotation diff = {}'.format(body.name, diff)) if diff > 2.7e-15: print('PY Test_EQD_HOR: EXCESSIVE OFDATE INVERSE HORIZONTAL ERROR.') sys.exit(1) # Exercise HOR to EQJ translation. eqj = astronomy.Equator(body, time, observer, False, True) vec_eqj = eqj.vec yrot = astronomy.Rotation_HOR_EQJ(time, observer) check_eqj = astronomy.RotateVector(yrot, vec_hor) diff = VectorDiff(check_eqj, vec_eqj) Debug('PY Test_EQD_HOR {}: J2000 inverse rotation diff = {}'.format(body.name, diff)) if diff > 5.0e-15: print('PY Test_EQD_HOR: EXCESSIVE J2000 INVERSE HORIZONTAL ERROR.') sys.exit(1) # Verify the inverse translation: EQJ to HOR. zrot = astronomy.Rotation_EQJ_HOR(time, observer) another_hor = astronomy.RotateVector(zrot, vec_eqj) diff = VectorDiff(another_hor, vec_hor) Debug('PY Test_EQD_HOR {}: EQJ inverse rotation diff = {}'.format(body.name, diff)) if diff > 6.0e-15: print('PY Test_EQD_HOR: EXCESSIVE EQJ INVERSE HORIZONTAL ERROR.') sys.exit(1) IdentityMatrix = astronomy.RotationMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) def CheckInverse(aname, bname, arot, brot): crot = astronomy.CombineRotation(arot, brot) caller = 'CheckInverse({},{})'.format(aname, bname) CompareMatrices(caller, crot, IdentityMatrix, 2.0e-15) def CheckCycle(cyclename, arot, brot, crot): xrot = astronomy.CombineRotation(arot, brot) irot = astronomy.InverseRotation(xrot) CompareMatrices(cyclename, crot, irot, 2.0e-15) def Test_RotRoundTrip(): # In each round trip, calculate a forward rotation and a backward rotation. # Verify the two are inverse matrices. time = astronomy.Time.Make(2067, 5, 30, 14, 45, 0) observer = astronomy.Observer(+28, -82, 0) # Round trip #1: EQJ <==> EQD. eqj_eqd = astronomy.Rotation_EQJ_EQD(time) eqd_eqj = astronomy.Rotation_EQD_EQJ(time) CheckInverse('eqj_eqd', 'eqd_eqj', eqj_eqd, eqd_eqj) # Round trip #2: EQJ <==> ECL. eqj_ecl = astronomy.Rotation_EQJ_ECL() ecl_eqj = astronomy.Rotation_ECL_EQJ() CheckInverse('eqj_ecl', 'ecl_eqj', eqj_ecl, ecl_eqj) # Round trip #3: EQJ <==> HOR. eqj_hor = astronomy.Rotation_EQJ_HOR(time, observer) hor_eqj = astronomy.Rotation_HOR_EQJ(time, observer) CheckInverse('eqj_hor', 'hor_eqj', eqj_hor, hor_eqj) # Round trip #4: EQD <==> HOR. eqd_hor = astronomy.Rotation_EQD_HOR(time, observer) hor_eqd = astronomy.Rotation_HOR_EQD(time, observer) CheckInverse('eqd_hor', 'hor_eqd', eqd_hor, hor_eqd) # Round trip #5: EQD <==> ECL. eqd_ecl = astronomy.Rotation_EQD_ECL(time) ecl_eqd = astronomy.Rotation_ECL_EQD(time) CheckInverse('eqd_ecl', 'ecl_eqd', eqd_ecl, ecl_eqd) # Round trip #6: HOR <==> ECL. hor_ecl = astronomy.Rotation_HOR_ECL(time, observer) ecl_hor = astronomy.Rotation_ECL_HOR(time, observer) CheckInverse('hor_ecl', 'ecl_hor', hor_ecl, ecl_hor) # Round trip #7: EQD <==> ECT eqd_ect = astronomy.Rotation_EQD_ECT(time) ect_eqd = astronomy.Rotation_ECT_EQD(time) CheckInverse('eqd_ect', 'ect_eqd', eqd_ect, ect_eqd) # Round trip #8: EQJ <==> ECT eqj_ect = astronomy.Rotation_EQJ_ECT(time) ect_eqj = astronomy.Rotation_ECT_EQJ(time) CheckInverse('eqj_ect', 'ect_eqj', eqj_ect, ect_eqj) # Verify that combining different sequences of rotations result # in the expected combination. # For example, (EQJ ==> HOR ==> ECL) must be the same matrix as (EQJ ==> ECL). CheckCycle('eqj_ecl, ecl_eqd, eqd_eqj', eqj_ecl, ecl_eqd, eqd_eqj) CheckCycle('eqj_hor, hor_ecl, ecl_eqj', eqj_hor, hor_ecl, ecl_eqj) CheckCycle('eqj_hor, hor_eqd, eqd_eqj', eqj_hor, hor_eqd, eqd_eqj) CheckCycle('ecl_eqd, eqd_hor, hor_ecl', ecl_eqd, eqd_hor, hor_ecl) CheckCycle('eqj_eqd, eqd_ect, ect_eqj', eqj_eqd, eqd_ect, ect_eqj) Debug('PY Test_RotRoundTrip: PASS') def Rotation_Pivot(): tolerance = 1.0e-15 # Start with an identity matrix. ident = astronomy.IdentityMatrix() # Pivot 90 degrees counterclockwise around the z-axis. r = astronomy.Pivot(ident, 2, +90.0) # Put the expected answer in 'a'. a = astronomy.RotationMatrix([ [ 0, +1, 0], [-1, 0, 0], [ 0, 0, +1], ]) # Compare actual 'r' with expected 'a'. CompareMatrices('Rotation_Pivot #1', r, a, tolerance) # Pivot again, -30 degrees around the x-axis. r = astronomy.Pivot(r, 0, -30.0) # Pivot a third time, 180 degrees around the y-axis. r = astronomy.Pivot(r, 1, +180.0) # Use the 'r' matrix to rotate a vector. v1 = astronomy.Vector(1, 2, 3, astronomy.Time(0)) v2 = astronomy.RotateVector(r, v1) # Initialize the expected vector 've'. ve = astronomy.Vector(+2.0, +2.3660254037844390, -2.0980762113533156, v1.t) CompareVectors('Rotation_Pivot #2', v2, ve, tolerance) Debug('PY Rotation_Pivot: PASS') def Test_EQD_ECT(): time = astronomy.Time.Make(1900, 1, 1, 0, 0, 0.0) stopTime = astronomy.Time.Make(2100, 1, 1, 0, 0, 0.0) count = 0 max_diff = 0.0 while time.ut <= stopTime.ut: # Get Moon's geocentric position in EQJ. eqj = astronomy.GeoMoon(time) # Convert EQJ to EQD. eqj_eqd = astronomy.Rotation_EQJ_EQD(time) eqd = astronomy.RotateVector(eqj_eqd, eqj) # Convert EQD to ECT. eqd_ect = astronomy.Rotation_EQD_ECT(time) ect = astronomy.RotateVector(eqd_ect, eqd) # Independently get the Moon's spherical coordinates in ECT. sphere = astronomy.EclipticGeoMoon(time) # Convert spherical coordinates to ECT vector. check_ect = astronomy.VectorFromSphere(sphere, time) # Verify the two ECT vectors are identical, within tolerance. max_diff = max(max_diff, VectorDiff(ect, check_ect)) time = time.AddDays(10.0) count += 1 if max_diff > 3.743e-18: print('PY Test_EQD_ECT: excessive vector diff = {:0.6e} au.'.format(max_diff)) sys.exit(1) Debug('PY Test_EQD_ECT: PASS: count = {}, max_diff = {:0.6e} au.'.format(count, max_diff)) def Ecliptic(): time = astronomy.Time.Make(1900, 1, 1, 0, 0, 0.0) stopTime = astronomy.Time.Make(2100, 1, 1, 0, 0, 0.0) count = 0 max_vec_diff = 0 max_angle_diff = 0.0 while time.ut <= stopTime.ut: # Get Moon's geocentric position in EQJ. eqj = astronomy.GeoMoon(time) # Convert EQJ to ECT. eclip = astronomy.Ecliptic(eqj) # Confirm that the ecliptic angles and ecliptic vector are consistent. check_sphere = astronomy.Spherical(eclip.elat, eclip.elon, eclip.vec.Length()) check_vec = astronomy.VectorFromSphere(check_sphere, time) max_angle_diff = max(max_angle_diff, VectorDiff(eclip.vec, check_vec)) # Independently get the Moon's spherical coordinates in ECT. sphere = astronomy.EclipticGeoMoon(time) # Convert spherical coordinates to ECT vector. check_ect = astronomy.VectorFromSphere(sphere, time) # Verify the two ECT vectors are identical, within tolerance. max_vec_diff = max(max_vec_diff, VectorDiff(eclip.vec, check_ect)) time = time.AddDays(10.0) count += 1 if max_vec_diff > 3.388e-18: return Fail('Ecliptic', 'EXCESSIVE VECTOR DIFF = {:0.6e} au.'.format(max_vec_diff)) if max_angle_diff > 3.007e-18: return Fail('Ecliptic', 'EXCESSIVE ANGLE DIFF = {:0.6e} au.'.format(max_angle_diff)) print('PY Ecliptic: PASS: count = {:d}, max_vec_diff = {:0.6e} au, max_angle_diff = {:0.6e} au.'.format(count, max_vec_diff, max_angle_diff)) return 0 def Rotation(): Rotation_MatrixInverse() Rotation_MatrixMultiply() Rotation_Pivot() Test_GAL_EQJ_NOVAS('temp/galeqj.txt') Test_EQJ_EQD(astronomy.Body.Mercury) Test_EQJ_EQD(astronomy.Body.Venus) Test_EQJ_EQD(astronomy.Body.Mars) Test_EQJ_EQD(astronomy.Body.Jupiter) Test_EQJ_EQD(astronomy.Body.Saturn) Test_EQD_HOR(astronomy.Body.Mercury) Test_EQD_HOR(astronomy.Body.Venus) Test_EQD_HOR(astronomy.Body.Mars) Test_EQD_HOR(astronomy.Body.Jupiter) Test_EQD_HOR(astronomy.Body.Saturn) Test_EQD_ECT() Test_RotRoundTrip() print('PY Rotation: PASS') return 0 #----------------------------------------------------------------------------------------------------------- def Refraction(): alt = -90.1 while alt <= +90.1: refr = astronomy.RefractionAngle(astronomy.Refraction.Normal, alt) corrected = alt + refr inv_refr = astronomy.InverseRefractionAngle(astronomy.Refraction.Normal, corrected) check_alt = corrected + inv_refr diff = vabs(check_alt - alt) if diff > 2.0e-14: print('PY Refraction: ERROR - excessive error: alt={}, refr={}, diff={}'.format(alt, refr, diff)) return 1 alt += 0.001 print('PY Refraction: PASS') return 0 #----------------------------------------------------------------------------------------------------------- def PlanetApsis(): start_time = astronomy.Time.Make(1700, 1, 1, 0, 0, 0) body = astronomy.Body.Mercury while body.value <= astronomy.Body.Pluto.value: count = 1 period = astronomy.PlanetOrbitalPeriod(body) filename = os.path.join('apsides', 'apsis_{}.txt'.format(body.value)) min_interval = -1.0 max_diff_days = 0.0 max_dist_ratio = 0.0 apsis = astronomy.SearchPlanetApsis(body, start_time) with open(filename, 'rt') as infile: for line in infile: token = line.split() if len(token) != 3: print('PY PlanetApsis({} line {}): Invalid data format: {} tokens'.format(filename, count, len(token))) return 1 expected_kind = astronomy.ApsisKind(int(token[0])) expected_time = astronomy.Time.Parse(token[1]) expected_distance = float(token[2]) if apsis.kind != expected_kind: print('PY PlanetApsis({} line {}): WRONG APSIS KIND: expected {}, found {}'.format(filename, count, expected_kind, apsis.kind)) return 1 diff_days = vabs(expected_time.tt - apsis.time.tt) max_diff_days = vmax(max_diff_days, diff_days) diff_degrees = (diff_days / period) * 360 degree_threshold = 0.1 if diff_degrees > degree_threshold: print('PY PlanetApsis: FAIL - {} exceeded angular threshold ({} vs {} degrees)'.format(body.name, diff_degrees, degree_threshold)) return 1 diff_dist_ratio = vabs(expected_distance - apsis.dist_au) / expected_distance max_dist_ratio = vmax(max_dist_ratio, diff_dist_ratio) if diff_dist_ratio > 1.05e-4: print('PY PlanetApsis({} line {}): distance ratio {} is too large.'.format(filename, count, diff_dist_ratio)) return 1 # Calculate the next apsis. prev_time = apsis.time apsis = astronomy.NextPlanetApsis(body, apsis) count += 1 interval = apsis.time.tt - prev_time.tt if min_interval < 0.0: min_interval = max_interval = interval else: min_interval = vmin(min_interval, interval) max_interval = vmax(max_interval, interval) if count < 2: print('PY PlanetApsis: FAILED to find apsides for {}'.format(body)) return 1 Debug('PY PlanetApsis: {:4d} apsides for {:<9s} -- intervals: min={:0.2f}, max={:0.2f}, ratio={:0.6f}; max day={:0.3f}, degrees={:0.3f}, dist ratio={:0.6f}'.format( count, body.name, min_interval, max_interval, max_interval / min_interval, max_diff_days, (max_diff_days / period) * 360.0, max_dist_ratio )) body = astronomy.Body(body.value + 1) print('PY PlanetApsis: PASS') return 0 #----------------------------------------------------------------------------------------------------------- def Constellation(): inFileName = 'constellation/test_input.txt' lnum = 0 failcount = 0 with open(inFileName, 'rt') as infile: for line in infile: lnum += 1 m = re.match(r'^\s*(\d+)\s+(\S+)\s+(\S+)\s+([A-Z][a-zA-Z]{2})\s*$', line) if not m: print('PY Constellation: invalid line {} in file {}'.format(lnum, inFileName)) return 1 id = int(m.group(1)) ra = float(m.group(2)) dec = float(m.group(3)) symbol = m.group(4) constel = astronomy.Constellation(ra, dec) if constel.symbol != symbol: print('Star {:6d}: expected {}, found {} at B1875 RA={:10.6f}, DEC={:10.6f}'.format(id, symbol, constel.symbol, constel.ra1875, constel.dec1875)) failcount += 1 if failcount > 0: print('PY Constellation: {} failures'.format(failcount)) return 1 print('PY Constellation: PASS (verified {})'.format(lnum)) return 0 #----------------------------------------------------------------------------------------------------------- def LunarEclipseIssue78(): # https://github.com/cosinekitty/astronomy/issues/78 eclipse = astronomy.SearchLunarEclipse(astronomy.Time.Make(2020, 12, 19, 0, 0, 0)) expected_peak = astronomy.Time.Make(2021, 5, 26, 11, 18, 42) # https://www.timeanddate.com/eclipse/lunar/2021-may-26 dt = (expected_peak.tt - eclipse.peak.tt) * SECONDS_PER_DAY if vabs(dt) > 40.0: print('LunarEclipseIssue78: Excessive prediction error = {} seconds.'.format(dt)) return 1 if eclipse.kind != astronomy.EclipseKind.Total: print('Expected total eclipse; found: {}'.format(eclipse.kind)) return 1 print('PY LunarEclipseIssue78: PASS') return 0 #----------------------------------------------------------------------------------------------------------- def LunarEclipse(): filename = 'eclipse/lunar_eclipse.txt' with open(filename, 'rt') as infile: eclipse = astronomy.SearchLunarEclipse(astronomy.Time.Make(1701, 1, 1, 0, 0, 0)) lnum = 0 skip_count = 0 diff_count = 0 sum_diff_minutes = 0.0 max_diff_minutes = 0.0 diff_limit = 2.0 for line in infile: lnum += 1 # Make sure numeric data are finite numbers. v(eclipse.obscuration) v(eclipse.sd_partial) v(eclipse.sd_penum) v(eclipse.sd_total) if len(line) < 17: print('PY LunarEclipse({} line {}): line is too short.'.format(filename, lnum)) return 1 time_text = line[0:17] peak_time = astronomy.Time.Parse(time_text) token = line[17:].split() if len(token) != 2: print('PY LunarEclipse({} line {}): wrong number of tokens.'.format(filename, lnum)) return 1 partial_minutes = float(token[0]) total_minutes = float(token[1]) sd_valid = False frac_valid = False # Verify that the calculated eclipse semi-durations are consistent with the kind. # Verify that obscurations also make sense for the kind. if eclipse.kind == astronomy.EclipseKind.Penumbral: sd_valid = (eclipse.sd_penum > 0.0) and (eclipse.sd_partial == 0.0) and (eclipse.sd_total == 0.0) frac_valid = (eclipse.obscuration == 0.0) elif eclipse.kind == astronomy.EclipseKind.Partial: sd_valid = (eclipse.sd_penum > 0.0) and (eclipse.sd_partial > 0.0) and (eclipse.sd_total == 0.0) frac_valid = (0.0 < eclipse.obscuration < 1.0) elif eclipse.kind == astronomy.EclipseKind.Total: sd_valid = (eclipse.sd_penum > 0.0) and (eclipse.sd_partial > 0.0) and (eclipse.sd_total > 0.0) frac_valid = (eclipse.obscuration == 1.0) else: print('PY LunarEclipse({} line {}): invalid eclipse kind {}.'.format(filename, lnum, eclipse.kind)) return 1 if not sd_valid: print('PY LunarEclipse({} line {}): invalid semidurations.'.format(filename, lnum)) return 1 if not frac_valid: print('PY LunarEclipse({} line {}): invalid obscuration {:0.8f} for eclipsekind {}.'.format(filename, lnum, eclipse.obscuration, eclipse.kind)) # Check eclipse peak time. diff_days = eclipse.peak.ut - peak_time.ut # Tolerate missing penumbral eclipses - skip to next input line without calculating next eclipse. if partial_minutes == 0.0 and diff_days > 20.0: skip_count += 1 continue diff_minutes = (24.0 * 60.0) * vabs(diff_days) sum_diff_minutes += diff_minutes diff_count += 1 if diff_minutes > diff_limit: print("PY LunarEclipse expected center: {}".format(peak_time)) print("PY LunarEclipse found center: {}".format(eclipse.peak)) print("PY LunarEclipse({} line {}): EXCESSIVE center time error = {} minutes ({} days).".format(filename, lnum, diff_minutes, diff_days)) return 1 if diff_minutes > max_diff_minutes: max_diff_minutes = diff_minutes # check partial eclipse duration diff_minutes = vabs(partial_minutes - eclipse.sd_partial) sum_diff_minutes += diff_minutes diff_count += 1 if diff_minutes > diff_limit: print("PY LunarEclipse({} line {}): EXCESSIVE partial eclipse semiduration error: {} minutes".format(filename, lnum, diff_minutes)) return 1 if diff_minutes > max_diff_minutes: max_diff_minutes = diff_minutes # check total eclipse duration diff_minutes = vabs(total_minutes - eclipse.sd_total) sum_diff_minutes += diff_minutes diff_count += 1 if diff_minutes > diff_limit: print("PY LunarEclipse({} line {}): EXCESSIVE total eclipse semiduration error: {} minutes".format(filename, lnum, diff_minutes)) return 1 if diff_minutes > max_diff_minutes: max_diff_minutes = diff_minutes # calculate for next iteration eclipse = astronomy.NextLunarEclipse(eclipse.peak) print("PY LunarEclipse: PASS (verified {}, skipped {}, max_diff_minutes = {}, avg_diff_minutes = {})".format(lnum, skip_count, max_diff_minutes, (sum_diff_minutes / diff_count))) return 0 #----------------------------------------------------------------------------------------------------------- def VectorFromAngles(lat, lon): rlat = math.radians(v(lat)) rlon = math.radians(v(lon)) coslat = math.cos(rlat) return [ math.cos(rlon) * coslat, math.sin(rlon) * coslat, math.sin(rlat) ] def AngleDiff(alat, alon, blat, blon): a = VectorFromAngles(alat, alon) b = VectorFromAngles(blat, blon) dot = a[0]*b[0] + a[1]*b[1] + a[2]*b[2] if dot <= -1.0: return 180.0 if dot >= +1.0: return 0.0 return v(math.degrees(math.acos(dot))) def KindFromChar(typeChar): return { 'P': astronomy.EclipseKind.Partial, 'A': astronomy.EclipseKind.Annular, 'T': astronomy.EclipseKind.Total, 'H': astronomy.EclipseKind.Total, }[typeChar] def GlobalSolarEclipse(): expected_count = 1180 max_minutes = 0.0 max_angle = 0.0 skip_count = 0 eclipse = astronomy.SearchGlobalSolarEclipse(astronomy.Time.Make(1701, 1, 1, 0, 0, 0)) filename = 'eclipse/solar_eclipse.txt' with open(filename, 'rt') as infile: lnum = 0 for line in infile: lnum += 1 # 1889-12-22T12:54:15Z -6 T -12.7 -12.8 token = line.split() if len(token) != 5: print('PY GlobalSolarEclipse({} line {}): invalid token count = {}'.format(filename, lnum, len(token))) return 1 peak = astronomy.Time.Parse(token[0]) expected_kind = KindFromChar(token[2]) lat = float(token[3]) lon = float(token[4]) diff_days = eclipse.peak.tt - peak.tt # Sometimes we find marginal eclipses that aren't listed in the test data. # Ignore them if the distance between the Sun/Moon shadow axis and the Earth's center is large. while diff_days < -25.0 and eclipse.distance > 9000.0: skip_count += 1 eclipse = astronomy.NextGlobalSolarEclipse(eclipse.peak) diff_days = eclipse.peak.ut - peak.ut # Validate the eclipse prediction. diff_minutes = (24 * 60) * vabs(diff_days) if diff_minutes > 7.56: print('PY GlobalSolarEclipse({} line {}): EXCESSIVE TIME ERROR = {} minutes'.format(filename, lnum, diff_minutes)) return 1 if diff_minutes > max_minutes: max_minutes = diff_minutes # Validate the eclipse kind, but only when it is not a "glancing" eclipse. if (eclipse.distance < 6360) and (eclipse.kind != expected_kind): print('PY GlobalSolarEclipse({} line {}): WRONG ECLIPSE KIND: expected {}, found {}'.format(filename, lnum, expected_kind, eclipse.kind)) return 1 if eclipse.kind == astronomy.EclipseKind.Total or eclipse.kind == astronomy.EclipseKind.Annular: # When the distance between the Moon's shadow ray and the Earth's center is beyond 6100 km, # it creates a glancing blow whose geographic coordinates are excessively sensitive to # slight changes in the ray. Therefore, it is unreasonable to count large errors there. if eclipse.distance < 6100.0: diff_angle = AngleDiff(lat, lon, eclipse.latitude, eclipse.longitude) if diff_angle > 0.247: print('PY GlobalSolarEclipse({} line {}): EXCESSIVE GEOGRAPHIC LOCATION ERROR = {} degrees'.format(filename, lnum, diff_angle)) return 1 if diff_angle > max_angle: max_angle = diff_angle # Verify the obscuration value is consistent with the eclipse kind. if eclipse.kind == astronomy.EclipseKind.Partial: if eclipse.obscuration is not None: print('PY GlobalSolarEclipse({} line {}): Expected obscuration = None for partial eclipse, but found {}'.format(filename, lnum, eclipse.obscuration)) return 1 elif eclipse.kind == astronomy.EclipseKind.Annular: if not (0.8 < v(eclipse.obscuration) < 1.0): print('PY GlobalSolarEclipse({} line {}): Invalid obscuration = {:0.8f} for annular eclipse.'.format(filename, lnum, eclipse.obscuration)) return 1 elif eclipse.kind == astronomy.EclipseKind.Total: if v(eclipse.obscuration) != 1.0: print('PY GlobalSolarEclipse({} line {}): Invalid obscuration = {:0.8f} for total eclipse.'.format(filename, lnum, eclipse.obscuration)) return 1 else: print('PY GlobalSolarEclipse({} line {}): Unhandled eclipse kind {}'.format(filename, lnum, eclipse.kind)) return 1 eclipse = astronomy.NextGlobalSolarEclipse(eclipse.peak) if lnum != expected_count: print('PY GlobalSolarEclipse: WRONG LINE COUNT = {}, expected {}'.format(lnum, expected_count)) return 1 if skip_count > 2: print('PY GlobalSolarEclipse: EXCESSIVE SKIP COUNT = {}'.format(skip_count)) return 1 print('PY GlobalSolarEclipse: PASS ({} verified, {} skipped, max minutes = {}, max angle = {})'.format(lnum, skip_count, max_minutes, max_angle)) return 0 #----------------------------------------------------------------------------------------------------------- def LocalSolarEclipse1(): expected_count = 1180 max_minutes = 0.0 skip_count = 0 filename = 'eclipse/solar_eclipse.txt' with open(filename, 'rt') as infile: lnum = 0 for line in infile: lnum += 1 funcname = 'LocalSolarEclipse({} line {})'.format(filename, lnum) # 1889-12-22T12:54:15Z -6 T -12.7 -12.8 token = line.split() if len(token) != 5: return Fail(funcname, 'invalid token count = {}'.format(len(token))) peak = astronomy.Time.Parse(token[0]) #typeChar = token[2] lat = float(token[3]) lon = float(token[4]) observer = astronomy.Observer(lat, lon, 0.0) # Start the search 20 days before we know the eclipse should peak. search_start = peak.AddDays(-20) eclipse = astronomy.SearchLocalSolarEclipse(search_start, observer) # Validate the predicted eclipse peak time. diff_days = eclipse.peak.time.tt - peak.tt if diff_days > 20: skip_count += 1 continue diff_minutes = (24 * 60) * vabs(diff_days) if diff_minutes > 7.737: return Fail(funcname, 'EXCESSIVE TIME ERROR = {} minutes'.format(diff_minutes)) if diff_minutes > max_minutes: max_minutes = diff_minutes # Verify obscuration makes sense for this kind of eclipse. v(eclipse.obscuration) if eclipse.kind in [astronomy.EclipseKind.Annular, astronomy.EclipseKind.Partial]: frac_valid = (0.0 < eclipse.obscuration < 1.0) elif eclipse.kind == astronomy.EclipseKind.Total: frac_valid = (eclipse.obscuration == 1.0) else: return Fail(funcname, 'Invalid eclipse kind {}'.format(eclipse.kind)) if not frac_valid: return Fail(funcname, 'Invalid eclipse obscuration {:0.8f} for {} eclipse.'.format(eclipse.obscuration, eclipse.kind)) funcname = 'LocalSolarEclipse1({})'.format(filename) if lnum != expected_count: return Fail(funcname, 'WRONG LINE COUNT = {}, expected {}'.format(lnum, expected_count)) if skip_count > 6: return Fail(funcname, 'EXCESSIVE SKIP COUNT = {}'.format(skip_count)) print('PY LocalSolarEclipse1: PASS ({} verified, {} skipped, max minutes = {})'.format(lnum, skip_count, max_minutes)) return 0 def TrimLine(line): # Treat '#' as a comment character. poundIndex = line.find('#') if poundIndex >= 0: line = line[:poundIndex] return line.strip() def ParseEvent(time_str, alt_str, required): if required: time = astronomy.Time.Parse(time_str) altitude = float(alt_str) return astronomy.EclipseEvent(time, altitude) if time_str != '-': raise Exception('Expected event time to be "-" but found "{}"'.format(time_str)) return None def LocalSolarEclipse2(): # Test ability to calculate local solar eclipse conditions away from # the peak position on the Earth. filename = 'eclipse/local_solar_eclipse.txt' lnum = 0 verify_count = 0 max_minutes = 0.0 max_degrees = 0.0 def CheckEvent(calc, expect): nonlocal max_minutes, max_degrees diff_minutes = (24 * 60) * vabs(expect.time.ut - calc.time.ut) if diff_minutes > max_minutes: max_minutes = diff_minutes if diff_minutes > 1.0: raise Exception('CheckEvent({} line {}): EXCESSIVE TIME ERROR: {} minutes.'.format(filename, lnum, diff_minutes)) # Ignore discrepancies for negative altitudes, because of quirky and irrelevant differences in refraction models. if expect.altitude >= 0.0: diff_alt = vabs(expect.altitude - calc.altitude) if diff_alt > max_degrees: max_degrees = diff_alt if diff_alt > 0.5: raise Exception('CheckEvent({} line {}): EXCESSIVE ALTITUDE ERROR: {} degrees.'.format(filename, lnum, diff_alt)) with open(filename, 'rt') as infile: for line in infile: lnum += 1 line = TrimLine(line) if line == '': continue token = line.split() if len(token) != 13: print('PY LocalSolarEclipse2({} line {}): Incorrect token count = {}'.format(filename, lnum, len(token))) return 1 latitude = float(token[0]) longitude = float(token[1]) observer = astronomy.Observer(latitude, longitude, 0) expected_kind = KindFromChar(token[2]) is_umbral = (expected_kind != astronomy.EclipseKind.Partial) p1 = ParseEvent(token[3], token[4], True) t1 = ParseEvent(token[5], token[6], is_umbral) peak = ParseEvent(token[7], token[8], True) t2 = ParseEvent(token[9], token[10], is_umbral) p2 = ParseEvent(token[11], token[12], True) search_time = p1.time.AddDays(-20) eclipse = astronomy.SearchLocalSolarEclipse(search_time, observer) if eclipse.kind != expected_kind: print('PY LocalSolarEclipse2({} line {}): expected eclipse kind "{}" but found "{}".'.format( filename, lnum, expected_kind, eclipse.kind )) return 1 CheckEvent(eclipse.peak, peak) CheckEvent(eclipse.partial_begin, p1) CheckEvent(eclipse.partial_end, p2) if is_umbral: CheckEvent(eclipse.total_begin, t1) CheckEvent(eclipse.total_end, t2) verify_count += 1 print('PY LocalSolarEclipse2: PASS ({} verified, max_minutes = {}, max_degrees = {})'.format(verify_count, max_minutes, max_degrees)) return 0 def LocalSolarEclipse(): return ( LocalSolarEclipse1() or LocalSolarEclipse2() ) #----------------------------------------------------------------------------------------------------------- def GlobalAnnularCase(year, month, day, obscuration): # Search for the first solar eclipse that occurs after the given date. time = astronomy.Time.Make(year, month, day, 0, 0, 0.0) eclipse = astronomy.SearchGlobalSolarEclipse(time) funcname = 'GlobalAnnularCase({:04d}-{:02d}-{:02d})'.format(year, month, day) # Verify the eclipse is within 1 day after the search basis time. dt = v(eclipse.peak.ut - time.ut) if not (0.0 <= dt <= 1.0): return Fail(funcname, 'found eclipse {:0.4f} days after search time.'.format(dt)) # Verify we found an annular solar eclipse. if eclipse.kind != astronomy.EclipseKind.Annular: return Fail(funcname, 'expected annular eclipse but found {}'.format(eclipse.kind)) # Check how accurately we calculated obscuration. diff = v(eclipse.obscuration - obscuration) if abs(diff) > 0.0000904: return Fail(funcname, 'excessive obscuration error = {:0.8f}, expected = {:0.8f}, actual = {:0.8f}'.format(diff, obscuration, eclipse.obscuration)) Debug('{}: obscuration error = {:11.8f}'.format(funcname, diff)) return 0 def LocalSolarCase(year, month, day, latitude, longitude, kind, obscuration, tolerance): funcname = 'LocalSolarCase({:04d}-{:02d}-{:02d})'.format(year, month, day) time = astronomy.Time.Make(year, month, day, 0, 0, 0.0) observer = astronomy.Observer(latitude, longitude, 0.0) eclipse = astronomy.SearchLocalSolarEclipse(time, observer) dt = v(eclipse.peak.time.ut - time.ut) if not (0.0 <= dt <= 1.0): return Fail(funcname, 'eclipse found {:0.4f} days after search date'.format(dt)) if eclipse.kind != kind: return Fail(funcname, 'expected {} eclipse, but found {}.'.format(kind, eclipse.kind)) diff = v(eclipse.obscuration - obscuration) if abs(diff) > tolerance: return Fail(funcname, 'obscuration diff = {:0.8f}, expected = {:0.8f}, actual = {:0.8f}'.format(diff, obscuration, eclipse.obscuration)) Debug('{}: obscuration diff = {:11.8f}'.format(funcname, diff)) return 0 def SolarFraction(): return ( # Verify global solar eclipse obscurations for annular eclipses only. # This is because they are the only nontrivial values for global solar eclipses. # The trivial values are all validated exactly by GlobalSolarEclipseTest(). GlobalAnnularCase(2023, 10, 14, 0.90638) or # https://www.eclipsewise.com/solar/SEprime/2001-2100/SE2023Oct14Aprime.html GlobalAnnularCase(2024, 10, 2, 0.86975) or # https://www.eclipsewise.com/solar/SEprime/2001-2100/SE2024Oct02Aprime.html GlobalAnnularCase(2027, 2, 6, 0.86139) or # https://www.eclipsewise.com/solar/SEprime/2001-2100/SE2027Feb06Aprime.html GlobalAnnularCase(2028, 1, 26, 0.84787) or # https://www.eclipsewise.com/solar/SEprime/2001-2100/SE2028Jan26Aprime.html GlobalAnnularCase(2030, 6, 1, 0.89163) or # https://www.eclipsewise.com/solar/SEprime/2001-2100/SE2030Jun01Aprime.html # Verify obscuration values for specific locations on the Earth. # Local solar eclipse calculations include obscuration for all types of eclipse, not just annular and total. LocalSolarCase(2023, 10, 14, 11.3683, -83.1017, astronomy.EclipseKind.Annular, 0.90638, 0.000080) or # https://www.eclipsewise.com/solar/SEprime/2001-2100/SE2023Oct14Aprime.html LocalSolarCase(2023, 10, 14, 25.78, -80.22, astronomy.EclipseKind.Partial, 0.578, 0.000023) or # https://aa.usno.navy.mil/calculated/eclipse/solar?eclipse=22023&lat=25.78&lon=-80.22&label=Miami%2C+FL&height=0&submit=Get+Data LocalSolarCase(2023, 10, 14, 30.2666, -97.7000, astronomy.EclipseKind.Partial, 0.8867, 0.001016) or # http://astro.ukho.gov.uk/eclipse/0332023/Austin_TX_United_States_2023Oct14.png LocalSolarCase(2024, 4, 8, 25.2900, -104.1383, astronomy.EclipseKind.Total, 1.0, 0.0 ) or # https://www.eclipsewise.com/solar/SEprime/2001-2100/SE2024Apr08Tprime.html LocalSolarCase(2024, 4, 8, 37.76, -122.44, astronomy.EclipseKind.Partial, 0.340, 0.000604) or # https://aa.usno.navy.mil/calculated/eclipse/solar?eclipse=12024&lat=37.76&lon=-122.44&label=San+Francisco%2C+CA&height=0&submit=Get+Data LocalSolarCase(2024, 10, 2, -21.9533, -114.5083, astronomy.EclipseKind.Annular, 0.86975, 0.000061) or # https://www.eclipsewise.com/solar/SEprime/2001-2100/SE2024Oct02Aprime.html LocalSolarCase(2024, 10, 2, -33.468, -70.636, astronomy.EclipseKind.Partial, 0.436, 0.000980) or # https://aa.usno.navy.mil/calculated/eclipse/solar?eclipse=22024&lat=-33.468&lon=-70.636&label=Santiago%2C+Chile&height=0&submit=Get+Data LocalSolarCase(2030, 6, 1, 56.525, 80.0617, astronomy.EclipseKind.Annular, 0.89163, 0.000067) or # https://www.eclipsewise.com/solar/SEprime/2001-2100/SE2030Jun01Aprime.html LocalSolarCase(2030, 6, 1, 40.388, 49.914, astronomy.EclipseKind.Partial, 0.67240, 0.000599) or # http://xjubier.free.fr/en/site_pages/SolarEclipseCalc_Diagram.html LocalSolarCase(2030, 6, 1, 40.3667, 49.8333, astronomy.EclipseKind.Partial, 0.6736, 0.001464) or # http://astro.ukho.gov.uk/eclipse/0132030/Baku_Azerbaijan_2030Jun01.png Pass('SolarFraction') ) #----------------------------------------------------------------------------------------------------------- def TransitFile(body, filename, limit_minutes, limit_sep): lnum = 0 max_minutes = 0 max_sep = 0 with open(filename, 'rt') as infile: transit = astronomy.SearchTransit(body, astronomy.Time.Make(1600, 1, 1, 0, 0, 0)) for line in infile: lnum += 1 token = line.strip().split() # 22:17 1881-11-08T00:57Z 03:38 3.8633 if len(token) != 4: print('PY TransitFile({} line {}): bad data format.'.format(filename, lnum)) return 1 textp = token[1] text1 = textp[0:11] + token[0] + 'Z' text2 = textp[0:11] + token[2] + 'Z' timep = astronomy.Time.Parse(textp) time1 = astronomy.Time.Parse(text1) time2 = astronomy.Time.Parse(text2) separation = float(token[3]) # If the start time is after the peak time, it really starts on the previous day. if time1.ut > timep.ut: time1 = time1.AddDays(-1.0) # If the finish time is before the peak time, it really starts on the following day. if time2.ut < timep.ut: time2 = time2.AddDays(+1.0) diff_start = (24.0 * 60.0) * vabs(time1.ut - transit.start.ut ) diff_peak = (24.0 * 60.0) * vabs(timep.ut - transit.peak.ut ) diff_finish = (24.0 * 60.0) * vabs(time2.ut - transit.finish.ut) diff_sep = vabs(separation - transit.separation) max_minutes = vmax(max_minutes, diff_start) max_minutes = vmax(max_minutes, diff_peak) max_minutes = vmax(max_minutes, diff_finish) if max_minutes > limit_minutes: print('PY TransitFile({} line {}): EXCESSIVE TIME ERROR = {} minutes.'.format(filename, lnum, max_minutes)) return 1 max_sep = vmax(max_sep, diff_sep) if max_sep > limit_sep: print('PY TransitFile({} line {}): EXCESSIVE SEPARATION ERROR = {} arcminutes.'.format(filename, lnum, max_sep)) return 1 transit = astronomy.NextTransit(body, transit.finish) print('PY TransitFile({}): PASS - verified {}, max minutes = {}, max sep arcmin = {}'.format(filename, lnum, max_minutes, max_sep)) return 0 def Transit(): if 0 != TransitFile(astronomy.Body.Mercury, 'eclipse/mercury.txt', 10.710, 0.2121): return 1 if 0 != TransitFile(astronomy.Body.Venus, 'eclipse/venus.txt', 9.109, 0.6772): return 1 return 0 #----------------------------------------------------------------------------------------------------------- def PlutoCheckDate(ut, arcmin_tolerance, x, y, z): time = astronomy.Time(ut) try: timeText = str(time) except OverflowError: timeText = "???" Debug('PY PlutoCheck: {} = {} UT = {} TT'.format(timeText, time.ut, time.tt)) vector = astronomy.HelioVector(astronomy.Body.Pluto, time) dx = v(vector.x - x) dy = v(vector.y - y) dz = v(vector.z - z) diff = sqrt(dx*dx + dy*dy + dz*dz) dist = sqrt(x*x + y*y + z*z) - 1.0 arcmin = (diff / dist) * (180.0 * 60.0 / math.pi) Debug('PY PlutoCheck: calc pos = [{}, {}, {}]'.format(vector.x, vector.y, vector.z)) Debug('PY PlutoCheck: ref pos = [{}, {}, {}]'.format(x, y, z)) Debug('PY PlutoCheck: del pos = [{}, {}, {}]'.format(vector.x - x, vector.y - y, vector.z - z)) Debug('PY PlutoCheck: diff = {} AU, {} arcmin'.format(diff, arcmin)) if v(arcmin) > arcmin_tolerance: print('PY PlutoCheck: EXCESSIVE ERROR') return 1 Debug('') return 0 def PlutoCheck(): if PlutoCheckDate( +18250.0, 0.089, +37.4377303523676090, -10.2466292454075898, -14.4773101310875809): return 1 if PlutoCheckDate( -856493.0, 4.067, +23.4292113199166252, +42.1452685817740829, +6.0580908436642940): return 1 if PlutoCheckDate( +435633.0, 0.016, -27.3178902095231813, +18.5887022581070305, +14.0493896259306936): return 1 if PlutoCheckDate( 0.0, 8e-9, -9.8753673425269000, -27.9789270580402771, -5.7537127596369588): return 1 if PlutoCheckDate( +800916.0, 2.286, -29.5266052645301365, +12.0554287322176474, +12.6878484911631091): return 1 print("PY PlutoCheck: PASS") return 0 #----------------------------------------------------------------------------------------------------------- def GeoidTestCase(time, observer, ofdate): topo_moon = astronomy.Equator(astronomy.Body.Moon, time, observer, ofdate, False) surface = astronomy.ObserverVector(time, observer, ofdate) geo_moon = astronomy.GeoVector(astronomy.Body.Moon, time, False) if ofdate: # GeoVector() returns J2000 coordinates. Convert to equator-of-date coordinates. rot = astronomy.Rotation_EQJ_EQD(time) geo_moon = astronomy.RotateVector(rot, geo_moon) dx = astronomy.KM_PER_AU * v((geo_moon.x - surface.x) - topo_moon.vec.x) dy = astronomy.KM_PER_AU * v((geo_moon.y - surface.y) - topo_moon.vec.y) dz = astronomy.KM_PER_AU * v((geo_moon.z - surface.z) - topo_moon.vec.z) diff = sqrt(dx*dx + dy*dy + dz*dz) Debug('PY GeoidTestCase: ofdate={}, time={}, obs={}, surface=({}, {}, {}), diff = {} km'.format( ofdate, time, observer, astronomy.KM_PER_AU * surface.x, astronomy.KM_PER_AU * surface.y, astronomy.KM_PER_AU * surface.z, diff )) # Require 1 millimeter accuracy! (one millionth of a kilometer). if diff > 1.0e-6: print('PY GeoidTestCase: EXCESSIVE POSITION ERROR.') return 1 # Verify that we can convert the surface vector back to an observer. vobs = astronomy.VectorObserver(surface, ofdate) lat_diff = vabs(vobs.latitude - observer.latitude) # Longitude is meaningless at the poles, so don't bother checking it there. if -89.99 <= observer.latitude <= +89.99: lon_diff = vabs(vobs.longitude - observer.longitude) if lon_diff > 180.0: lon_diff = 360.0 - lon_diff lon_diff = vabs(lon_diff * math.cos(math.degrees(observer.latitude))) if lon_diff > 1.0e-6: print('PY GeoidTestCase: EXCESSIVE longitude check error = {}'.format(lon_diff)) return 1 else: lon_diff = 0.0 h_diff = vabs(vobs.height - observer.height) Debug('PY GeoidTestCase: vobs={}, lat_diff={}, lon_diff={}, h_diff={}'.format(vobs, lat_diff, lon_diff, h_diff)) if lat_diff > 1.0e-6: print('PY GeoidTestCase: EXCESSIVE latitude check error = {}'.format(lat_diff)) return 1 if h_diff > 0.001: print('PY GeoidTestCase: EXCESSIVE height check error = {}'.format(h_diff)) return 1 return 0 def Geoid(): time_list = [ astronomy.Time.Parse('1066-09-27T18:00:00Z'), astronomy.Time.Parse('1970-12-13T15:42:00Z'), astronomy.Time.Parse('1970-12-13T15:43:00Z'), astronomy.Time.Parse('2015-03-05T02:15:45Z') ] observer_list = [ astronomy.Observer( 0.0, 0.0, 0.0), astronomy.Observer( +1.5, +2.7, 7.4), astronomy.Observer( -1.5, -2.7, 7.4), astronomy.Observer(-53.7, +141.7, 100.0), astronomy.Observer(+30.0, -85.2, -50.0), astronomy.Observer(+90.0, +45.0, -50.0), astronomy.Observer(-90.0, -180.0, 0.0), astronomy.Observer(-89.0, -81.0, 1234.0), astronomy.Observer(+89.0, -103.4, 279.8), astronomy.Observer(+48.2, 24.5, 2019.0), astronomy.Observer(+28.5, -82.3, -3.4) ] # Test hand-crafted locations. for observer in observer_list: for time in time_list: if GeoidTestCase(time, observer, False): return 1 if GeoidTestCase(time, observer, True): return 1 # More exhaustive tests for a single time value across many different geographic coordinates. # Solving for latitude is the most complicated part of VectorObserver, so # I test for every 1-degree increment of latitude, but with 5-degree increments for longitude. time = astronomy.Time.Parse('2021-06-20T15:08:00Z') lat = -90 while lat <= +90: lon = -175 while lon <= +180: observer = astronomy.Observer(lat, lon, 0.0) if GeoidTestCase(time, observer, True): return 1 lon += 5 lat += 1 print('PY GeoidTest: PASS') return 0 #----------------------------------------------------------------------------------------------------------- def JupiterMoons_CheckJpl(mindex, tt, pos, vel): pos_tolerance = 9.0e-4 vel_tolerance = 9.0e-4 time = astronomy.Time.FromTerrestrialTime(tt) jm = astronomy.JupiterMoons(time) moon = SelectJupiterMoon(jm, mindex) dx = v(pos[0] - moon.x) dy = v(pos[1] - moon.y) dz = v(pos[2] - moon.z) mag = sqrt(pos[0]*pos[0] + pos[1]*pos[1] + pos[2]*pos[2]) pos_diff = sqrt(dx*dx + dy*dy + dz*dz) / mag if pos_diff > pos_tolerance: print('PY JupiterMoons_CheckJpl(mindex={}, tt={}): excessive position error {}'.format(mindex, tt, pos_diff)) return 1 dx = v(vel[0] - moon.vx) dy = v(vel[1] - moon.vy) dz = v(vel[2] - moon.vz) mag = sqrt(vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]) vel_diff = sqrt(dx*dx + dy*dy + dz*dz) / mag if vel_diff > vel_tolerance: print('PY JupiterMoons_CheckJpl(mindex={}, tt={}): excessive velocity error {}'.format(mindex, tt, vel_diff)) return 1 Debug('PY JupiterMoons_CheckJpl: mindex={}, tt={}, pos_diff={}, vel_diff={}'.format(mindex, tt, pos_diff, vel_diff)) return 0 def JupiterMoons(): for mindex in range(4): filename = 'jupiter_moons/horizons/jm{}.txt'.format(mindex) with open(filename, 'rt') as infile: lnum = 0 found = False part = -1 expected_count = 5001 count = 0 for line in infile: line = line.rstrip() lnum += 1 if not found: if line == '$$SOE': found = True part = 0 elif line.startswith('Revised:'): check_mindex = int(line[76:]) - 501 if mindex != check_mindex: print('PY JupiterMoons({} line {}): moon index does not match: check={}, mindex={}'.format(filename, lnum, check_mindex, mindex)) return 1 elif line == '$$EOE': break else: if part == 0: # 2446545.000000000 = A.D. 1986-Apr-24 12:00:00.0000 TDB tt = float(line.split()[0]) - 2451545.0 # convert JD to J2000 TT elif part == 1: # X = 1.134408131605554E-03 Y =-2.590904586750408E-03 Z =-7.490427225904720E-05 match = re.match(r'\s*X =\s*(\S+) Y =\s*(\S+) Z =\s*(\S+)', line) if not match: print('PY JupiterMoons({} line {}): cannot parse position vector.'.format(filename, lnum)) return 1 pos = [ float(match.group(1)), float(match.group(2)), float(match.group(3)) ] else: # part == 2 # VX= 9.148038778472862E-03 VY= 3.973823407182510E-03 VZ= 2.765660368640458E-04 match = re.match(r'\s*VX=\s*(\S+) VY=\s*(\S+) VZ=\s*(\S+)', line) if not match: print('PY JupiterMoons({} line {}): cannot parse velocity vector.'.format(filename, lnum)) return 1 vel = [ float(match.group(1)), float(match.group(2)), float(match.group(3)) ] if JupiterMoons_CheckJpl(mindex, tt, pos, vel): print('PY JupiterMoons({} line {}): FAILED VERIFICATION.'.format(filename, lnum)) return 1 count += 1 part = (part + 1) % 3 if count != expected_count: print('PY JupiterMoons: expected {} test cases, but found {}'.format(expected_count, count)) return 1 print('PY JupiterMoons: PASS') return 0 #----------------------------------------------------------------------------------------------------------- def Issue103(): # https://github.com/cosinekitty/astronomy/issues/103 observer = astronomy.Observer(29, -81, 10) ut = -8.817548982869034808e+04 time = astronomy.Time(ut) body = astronomy.Body.Venus ofdate = astronomy.Equator(body, time, observer, True, True) hor = astronomy.Horizon(time, observer, ofdate.ra, ofdate.dec, astronomy.Refraction.Airless) print('tt = {:23.16f}'.format(time.tt)) print('az = {:23.16f}'.format(hor.azimuth)) print('alt = {:23.16f}'.format(hor.altitude)) return 0 #----------------------------------------------------------------------------------------------------------- class _bary_stats_t: def __init__(self): self.max_rdiff = 0.0 self.max_vdiff = 0.0 def StateVectorDiff(relative, vec, x, y, z): dx = v(vec[0] - x) dy = v(vec[1] - y) dz = v(vec[2] - z) diff_squared = dx*dx + dy*dy + dz*dz if relative: diff_squared /= (vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]) return sqrt(diff_squared) #----------------------------------------------------------------------------------------------------------- def VerifyState(func, stats, filename, lnum, time, pos, vel, r_thresh, v_thresh): state = func.Eval(time) rdiff = StateVectorDiff((r_thresh > 0.0), pos, state.x, state.y, state.z) if rdiff > stats.max_rdiff: stats.max_rdiff = rdiff vdiff = StateVectorDiff((v_thresh > 0.0), vel, state.vx, state.vy, state.vz) if vdiff > stats.max_vdiff: stats.max_vdiff = vdiff if rdiff > abs(r_thresh): print('PY VerifyState({} line {}): EXCESSIVE position error = {:0.4e}'.format(filename, lnum, rdiff)) return 1 if vdiff > abs(v_thresh): print('PY VerifyState({} line {}): EXCESSIVE velocity error = {:0.4e}'.format(filename, lnum, vdiff)) return 1 return 0 class JplStateRecord: def __init__(self, lnum, state): self.lnum = lnum self.state = state def JplHorizonsStateVectors(filename): with open(filename, 'rt') as infile: lnum = 0 part = 0 found_begin = False for line in infile: line = line.rstrip() lnum += 1 if not found_begin: if line == '$$SOE': found_begin = True elif line == '$$EOE': break else: if part == 0: # 2446545.000000000 = A.D. 1986-Apr-24 12:00:00.0000 TDB tt = float(line.split()[0]) - 2451545.0 # convert JD to J2000 TT time = astronomy.Time.FromTerrestrialTime(tt) elif part == 1: # X = 1.134408131605554E-03 Y =-2.590904586750408E-03 Z =-7.490427225904720E-05 match = re.match(r'\s*X =\s*(\S+) Y =\s*(\S+) Z =\s*(\S+)', line) if not match: print('PY JplHorizonsStateVectors({} line {}): cannot parse position vector.'.format(filename, lnum)) return 1 rx, ry, rz = float(match.group(1)), float(match.group(2)), float(match.group(3)) else: # part == 2 # VX= 9.148038778472862E-03 VY= 3.973823407182510E-03 VZ= 2.765660368640458E-04 match = re.match(r'\s*VX=\s*(\S+) VY=\s*(\S+) VZ=\s*(\S+)', line) if not match: print('PY JplHorizonsStateVectors({} line {}): cannot parse velocity vector.'.format(filename, lnum)) return 1 vx, vy, vz = float(match.group(1)), float(match.group(2)), float(match.group(3)) yield JplStateRecord(lnum, astronomy.StateVector(rx, ry, rz, vx, vy, vz, time)) part = (part + 1) % 3 return 0 def VerifyStateBody(func, filename, r_thresh, v_thresh): stats = _bary_stats_t() count = 0 for rec in JplHorizonsStateVectors(filename): time = rec.state.t pos = [rec.state.x, rec.state.y, rec.state.z] vel = [rec.state.vx, rec.state.vy, rec.state.vz] if VerifyState(func, stats, filename, rec.lnum, time, pos, vel, r_thresh, v_thresh): print('PY VerifyStateBody({} line {}): FAILED VERIFICATION.'.format(filename, rec.lnum)) return 1 count += 1 Debug('PY VerifyStateBody({}): PASS - Tested {} cases. max rdiff={:0.3e}, vdiff={:0.3e}'.format(filename, count, stats.max_rdiff, stats.max_vdiff)) return 0 #----------------------------------------------------------------------------------------------------------- # Constants for use inside unit tests only; they doesn't make sense for public consumption. _Body_GeoMoon = -100 _Body_Geo_EMB = -101 class BaryStateFunc: def __init__(self, body): self.body = body def Eval(self, time): if self.body == _Body_GeoMoon: return astronomy.GeoMoonState(time) if self.body == _Body_Geo_EMB: return astronomy.GeoEmbState(time) return astronomy.BaryState(self.body, time) def BaryState(): if VerifyStateBody(BaryStateFunc(astronomy.Body.Sun), 'barystate/Sun.txt', -1.224e-05, -1.134e-07): return 1 if VerifyStateBody(BaryStateFunc(astronomy.Body.Mercury), 'barystate/Mercury.txt', 1.672e-04, 2.698e-04): return 1 if VerifyStateBody(BaryStateFunc(astronomy.Body.Venus), 'barystate/Venus.txt', 4.123e-05, 4.308e-05): return 1 if VerifyStateBody(BaryStateFunc(astronomy.Body.Earth), 'barystate/Earth.txt', 2.296e-05, 6.359e-05): return 1 if VerifyStateBody(BaryStateFunc(astronomy.Body.Mars), 'barystate/Mars.txt', 3.107e-05, 5.550e-05): return 1 if VerifyStateBody(BaryStateFunc(astronomy.Body.Jupiter), 'barystate/Jupiter.txt', 7.389e-05, 2.471e-04): return 1 if VerifyStateBody(BaryStateFunc(astronomy.Body.Saturn), 'barystate/Saturn.txt', 1.067e-04, 3.220e-04): return 1 if VerifyStateBody(BaryStateFunc(astronomy.Body.Uranus), 'barystate/Uranus.txt', 9.035e-05, 2.519e-04): return 1 if VerifyStateBody(BaryStateFunc(astronomy.Body.Neptune), 'barystate/Neptune.txt', 9.838e-05, 4.446e-04): return 1 if VerifyStateBody(BaryStateFunc(astronomy.Body.Pluto), 'barystate/Pluto.txt', 4.259e-05, 7.827e-05): return 1 if VerifyStateBody(BaryStateFunc(astronomy.Body.Moon), "barystate/Moon.txt", 2.354e-05, 6.604e-05): return 1 if VerifyStateBody(BaryStateFunc(astronomy.Body.EMB), "barystate/EMB.txt", 2.353e-05, 6.511e-05): return 1 if VerifyStateBody(BaryStateFunc(_Body_GeoMoon), "barystate/GeoMoon.txt", 4.086e-05, 5.347e-05): return 1 if VerifyStateBody(BaryStateFunc(_Body_Geo_EMB), "barystate/GeoEMB.txt", 4.076e-05, 5.335e-05): return 1 print('PY BaryState: PASS') return 0 #----------------------------------------------------------------------------------------------------------- class HelioStateFunc: def __init__(self, body): self.body = body def Eval(self, time): return astronomy.HelioState(self.body, time) def HelioState(): if VerifyStateBody(HelioStateFunc(astronomy.Body.SSB), 'heliostate/SSB.txt', -1.209e-05, -1.125e-07): return 1 if VerifyStateBody(HelioStateFunc(astronomy.Body.Mercury), 'heliostate/Mercury.txt', 1.481e-04, 2.756e-04): return 1 if VerifyStateBody(HelioStateFunc(astronomy.Body.Venus), 'heliostate/Venus.txt', 3.528e-05, 4.485e-05): return 1 if VerifyStateBody(HelioStateFunc(astronomy.Body.Earth), 'heliostate/Earth.txt', 1.476e-05, 6.105e-05): return 1 if VerifyStateBody(HelioStateFunc(astronomy.Body.Mars), 'heliostate/Mars.txt', 3.154e-05, 5.603e-05): return 1 if VerifyStateBody(HelioStateFunc(astronomy.Body.Jupiter), 'heliostate/Jupiter.txt', 7.455e-05, 2.562e-04): return 1 if VerifyStateBody(HelioStateFunc(astronomy.Body.Saturn), 'heliostate/Saturn.txt', 1.066e-04, 3.150e-04): return 1 if VerifyStateBody(HelioStateFunc(astronomy.Body.Uranus), 'heliostate/Uranus.txt', 9.034e-05, 2.712e-04): return 1 if VerifyStateBody(HelioStateFunc(astronomy.Body.Neptune), 'heliostate/Neptune.txt', 9.834e-05, 4.534e-04): return 1 if VerifyStateBody(HelioStateFunc(astronomy.Body.Pluto), 'heliostate/Pluto.txt', 4.271e-05, 1.198e-04): return 1 if VerifyStateBody(HelioStateFunc(astronomy.Body.Moon), 'heliostate/Moon.txt', 1.477e-05, 6.195e-05): return 1 if VerifyStateBody(HelioStateFunc(astronomy.Body.EMB), 'heliostate/EMB.txt', 1.476e-05, 6.106e-05): return 1 print('PY HelioState: PASS') return 0 #----------------------------------------------------------------------------------------------------------- class TopoStateFunc: def __init__(self, body): self.body = body def Eval(self, time): observer = astronomy.Observer(30.0, -80.0, 1000.0) observer_state = astronomy.ObserverState(time, observer, False) if self.body == _Body_Geo_EMB: state = astronomy.GeoEmbState(time) elif self.body == astronomy.Body.Earth: state = astronomy.StateVector(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, time) else: raise Exception('PY TopoStateFunction: unsupported body ' + self.body) state.x -= observer_state.x state.y -= observer_state.y state.z -= observer_state.z state.vx -= observer_state.vx state.vy -= observer_state.vy state.vz -= observer_state.vz return state def TopoState(): if VerifyStateBody(TopoStateFunc(astronomy.Body.Earth), 'topostate/Earth_N30_W80_1000m.txt', 2.108e-04, 2.430e-04): return 1 if VerifyStateBody(TopoStateFunc(_Body_Geo_EMB), 'topostate/EMB_N30_W80_1000m.txt', 7.197e-04, 2.497e-04): return 1 print('PY TopoState: PASS') return 0 #----------------------------------------------------------------------------------------------------------- def Aberration(): THRESHOLD_SECONDS = 0.453 filename = 'equatorial/Mars_j2000_ofdate_aberration.txt' count = 0 with open(filename, 'rt') as infile: lnum = 0 found_begin = False max_diff_seconds = 0.0 for line in infile: lnum += 1 line = line.rstrip() if not found_begin: if line == '$$SOE': found_begin = True elif line == '$$EOE': break else: # 2459371.500000000 * 118.566080210 22.210647456 118.874086738 22.155784122 token = line.split() if len(token) < 5: print('PY Aberration({} line {}): not enough tokens'.format(filename, lnum)) return 1 jd = float(token[0]) jra = float(token[-4]) jdec = float(token[-3]) dra = float(token[-2]) ddec = float(token[-1]) # Convert julian day value to AstroTime. time = astronomy.Time(jd - 2451545.0) # Convert EQJ angular coordinates (jra, jdec) to an EQJ vector. # Make the maginitude of the vector the speed of light, # to prepare for aberration correction. eqj_sphere = astronomy.Spherical(jdec, jra, astronomy.C_AUDAY) eqj_vec = astronomy.VectorFromSphere(eqj_sphere, time) # Aberration correction: calculate the Earth's barycentric # velocity vector in EQJ coordinates. eqj_earth = astronomy.BaryState(astronomy.Body.Earth, time) # Use non-relativistic approximation: add light vector to Earth velocity vector. # This gives aberration-corrected apparent position of the start in EQJ. eqj_vec.x += eqj_earth.vx eqj_vec.y += eqj_earth.vy eqj_vec.z += eqj_earth.vz # Calculate the rotation matrix that converts J2000 coordinates to of-date coordinates. rot = astronomy.Rotation_EQJ_EQD(time) # Use the rotation matrix to re-orient the EQJ vector to an EQD vector. eqd_vec = astronomy.RotateVector(rot, eqj_vec) # Convert the EQD vector back to spherical angular coordinates. eqd_sphere = astronomy.SphereFromVector(eqd_vec) # Calculate the differences in RA and DEC between expected and calculated values. factor = math.cos(math.radians(v(eqd_sphere.lat))) # RA errors are less important toward the poles. xra = factor * vabs(eqd_sphere.lon - dra) xdec = vabs(eqd_sphere.lat - ddec) diff_seconds = 3600.0 * sqrt(xra*xra + xdec*xdec) Debug('PY Aberration({} line {}): xra={:0.6f} deg, xdec={:0.6f} deg, diff_seconds={:0.3f}.'.format(filename, lnum, xra, xdec, diff_seconds)) if diff_seconds > THRESHOLD_SECONDS: print('PY Aberration({} line {}): EXCESSIVE ANGULAR ERROR = {:0.3f} seconds.'.format(filename, lnum, diff_seconds)); return 1 if diff_seconds > max_diff_seconds: max_diff_seconds = diff_seconds # We have completed one more test case. count += 1 print('PY AberrationTest({}): PASS - Tested {} cases. max_diff_seconds = {:0.3f}'.format(filename, count, max_diff_seconds)) return 0 #----------------------------------------------------------------------------------------------------------- def Twilight(): tolerance_seconds = 60.0 max_diff = 0.0 filename = 'riseset/twilight.txt' with open(filename, 'rt') as infile: lnum = 0 for line in infile: lnum += 1 tokens = line.split() if len(tokens) != 9: print('PY Twilight({} line {}): incorrect number of tokens = {}'.format(filename, lnum, len(tokens))) return 1 observer = astronomy.Observer(float(tokens[0]), float(tokens[1]), 0.0) searchDate = astronomy.Time.Parse(tokens[2]) correctTimes = [astronomy.Time.Parse(t) for t in tokens[3:]] calcTimes = [ astronomy.SearchAltitude(astronomy.Body.Sun, observer, astronomy.Direction.Rise, searchDate, 1.0, -18.0), # astronomical dawn astronomy.SearchAltitude(astronomy.Body.Sun, observer, astronomy.Direction.Rise, searchDate, 1.0, -12.0), # nautical dawn astronomy.SearchAltitude(astronomy.Body.Sun, observer, astronomy.Direction.Rise, searchDate, 1.0, -6.0), # civil dawn astronomy.SearchAltitude(astronomy.Body.Sun, observer, astronomy.Direction.Set, searchDate, 1.0, -6.0), # civil dusk astronomy.SearchAltitude(astronomy.Body.Sun, observer, astronomy.Direction.Set, searchDate, 1.0, -12.0), # nautical dusk astronomy.SearchAltitude(astronomy.Body.Sun, observer, astronomy.Direction.Set, searchDate, 1.0, -18.0) # astronomical dusk ] for i in range(6): correct = correctTimes[i] calc = calcTimes[i] diff = SECONDS_PER_DAY * vabs(calc.ut - correct.ut) if diff > tolerance_seconds: print('PY Twilight({} line {}): EXCESSIVE ERROR = {} seconds for case {}'.format(filename, lnum, diff, i)) return 1 if diff > max_diff: max_diff = diff print('PY Twilight: PASS ({} test cases, max error = {} seconds)'.format(lnum, max_diff)) return 0 #----------------------------------------------------------------------------------------------------------- def LibrationFile(filename): max_diff_elon = 0.0 max_diff_elat = 0.0 max_diff_distance = 0.0 max_diff_diam = 0.0 max_eclip_lon = -900.0 count = 0 with open(filename, 'rt') as infile: lnum = 0 for line in infile: lnum += 1 token = line.split() if lnum == 1: if line != " Date Time Phase Age Diam Dist RA Dec Slon Slat Elon Elat AxisA\n": print('PY LibrationFile({} line {}): unexpected header line'.format(filename, lnum)) return 1 else: if len(token) != 16: print('PY LibrationFile({} line {}): expected 16 tokens, found {}'.format(filename, lnum, len(token))) return 1 day = int(token[0]) month = MonthNumber(token[1]) year = int(token[2]) hmtoken = token[3].split(':') if len(hmtoken) != 2: print('PY LibrationFile({} line {}): expected hh:mm but found "{}"'.format(filename, lnum, hmtoken)) return 1 hour = int(hmtoken[0]) minute = int(hmtoken[1]) time = astronomy.Time.Make(year, month, day, hour, minute, 0.0) diam = float(token[7]) / 3600.0 dist = float(token[8]) elon = float(token[13]) elat = float(token[14]) lib = astronomy.Libration(time) diff_elon = 60.0 * vabs(lib.elon - elon) if diff_elon > max_diff_elon: max_diff_elon = diff_elon diff_elat = 60.0 * vabs(lib.elat - elat) if diff_elat > max_diff_elat: max_diff_elat = diff_elat diff_distance = vabs(lib.dist_km - dist) if diff_distance > max_diff_distance: max_diff_distance = diff_distance diff_diam = vabs(lib.diam_deg - diam) if diff_diam > max_diff_diam: max_diff_diam = diff_diam if lib.mlon > max_eclip_lon: max_eclip_lon = lib.mlon if diff_elon > 0.1304: print('PY LibrationFile({} line {}): EXCESSIVE diff_elon = {}'.format(filename, lnum, diff_elon)) return 1 if diff_elat > 1.6476: print('PY LibrationFile({} line {}): EXCESSIVE diff_elat = {}'.format(filename, lnum, diff_elat)) return 1 if diff_distance > 54.377: print('PY LibrationFile({} line {}): EXCESSIVE diff_distance = {}'.format(filename, lnum, diff_distance)) return 1 if diff_diam > 0.00009: print('PY LibrationFile({} line {}): EXCESSIVE diff_diam = {}'.format(filename, lnum, diff_diam)) return 1 count += 1 if not (359.0 < max_eclip_lon < 360.0): print('PY LibrationFile({}): INVALID max ecliptic longitude = {:0.3f}'.format(filename, max_eclip_lon)) return 1 print('PY LibrationFile({}): PASS ({} test cases, max_diff_elon = {} arcmin, max_diff_elat = {} arcmin, max_diff_distance = {} km, max_diff_diam = {} deg)'.format( filename, count, max_diff_elon, max_diff_elat, max_diff_distance, max_diff_diam )) return 0 def Libration(): return ( LibrationFile('libration/mooninfo_2020.txt') or LibrationFile('libration/mooninfo_2021.txt') or LibrationFile('libration/mooninfo_2022.txt') ) #----------------------------------------------------------------------------------------------------------- def Axis(): if AxisTestBody(astronomy.Body.Sun, 'axis/Sun.txt', 0.0) : return 1 if AxisTestBody(astronomy.Body.Mercury, 'axis/Mercury.txt', 0.074340) : return 1 if AxisTestBody(astronomy.Body.Venus, 'axis/Venus.txt', 0.0) : return 1 if AxisTestBody(astronomy.Body.Earth, 'axis/Earth.txt', 0.002032) : return 1 if AxisTestBody(astronomy.Body.Moon, 'axis/Moon.txt', 0.264845) : return 1 if AxisTestBody(astronomy.Body.Mars, 'axis/Mars.txt', 0.075323) : return 1 if AxisTestBody(astronomy.Body.Jupiter, 'axis/Jupiter.txt', 0.000324) : return 1 if AxisTestBody(astronomy.Body.Saturn, 'axis/Saturn.txt', 0.000304) : return 1 if AxisTestBody(astronomy.Body.Uranus, 'axis/Uranus.txt', 0.0) : return 1 if AxisTestBody(astronomy.Body.Neptune, 'axis/Neptune.txt', 0.000464) : return 1 if AxisTestBody(astronomy.Body.Pluto, 'axis/Pluto.txt', 0.0) : return 1 print('PY AxisTest: PASS') return 0 def AxisTestBody(body, filename, arcmin_tolerance): max_arcmin = 0 lnum = 0 count = 0 found_data = False with open(filename, 'rt') as infile: for line in infile: line = line.strip() lnum += 1 if not found_data: if line == '$$SOE': found_data = True else: if line == '$$EOE': break token = line.split() # [ '1970-Jan-01', '00:00', '2440587.500000000', '281.01954', '61.41577' ] jd = float(token[2]) ra = float(token[3]) dec = float(token[4]) time = astronomy.Time(jd - 2451545.0) axis = astronomy.RotationAxis(body, time) sphere = astronomy.Spherical(dec, ra, 1.0) north = astronomy.VectorFromSphere(sphere, time) arcmin = 60.0 * astronomy.AngleBetween(north, axis.north) if arcmin > max_arcmin: max_arcmin = arcmin count += 1 Debug('PY AxisTestBody({}): {} test cases, max arcmin error = {}.'.format(body, count, max_arcmin)) if max_arcmin > arcmin_tolerance: print('PY AxisTestBody({}): EXCESSIVE ERROR = {}'.format(body, max_arcmin)) return 1 return 0 #----------------------------------------------------------------------------------------------------------- def MoonNodes(): filename = 'moon_nodes/moon_nodes.txt' with open(filename, 'rt') as infile: max_angle = 0.0 max_minutes = 0.0 prev_kind = '?' lnum = 0 for line in infile: line = line.strip() lnum += 1 token = line.split() if len(token) != 4: print('PY MoonNodes({} line {}): syntax error'.format(filename, lnum)) return 1 kind = token[0] if kind not in 'AD': print('PY MoonNodes({} line {}): invalid node kind'.format(filename, lnum)) return 1 if kind == prev_kind: print('PY MoonNodes({} line {}): duplicate ascending/descending node'.format(filename, lnum)) return 1 time = astronomy.Time.Parse(token[1]) ra = float(token[2]) dec = float(token[3]) sphere = astronomy.Spherical(dec, 15.0 * ra, 1.0) vec_test = astronomy.VectorFromSphere(sphere, time) # Calculate EQD coordinates of the Moon. Verify against input file. vec_eqj = astronomy.GeoMoon(time) rot = astronomy.Rotation_EQJ_EQD(time) vec_eqd = astronomy.RotateVector(rot, vec_eqj) angle = astronomy.AngleBetween(vec_test, vec_eqd) diff_angle = 60.0 * abs(angle) if diff_angle > max_angle: max_angle = diff_angle if diff_angle > 1.54: print('PY MoonNodes({} line {}): EXCESSIVE equatorial error = {:0.3f} arcmin'.format(filename, lnum, diff_angle)) if lnum == 1: # The very first time, so search for the first node in the series. # Back up a few days to make sure we really are finding it ourselves. earlier = time.AddDays(-6.5472) # back up by a weird amount of time node = astronomy.SearchMoonNode(earlier) else: # Use the previous node to find the next node. node = astronomy.NextMoonNode(node) # Verify the ecliptic latitude is very close to zero at the alleged node. ecl = astronomy.EclipticGeoMoon(node.time) diff_lat = 60.0 * abs(ecl.lat) if diff_lat > 8.1e-4: print('PY MoonNodes({} line {}): found node has excessive latitude = {:0.4f} arcmin.'.format(filename, lnum, diff_lat)) return 1 # Verify the time agrees with Espenak's time to within a few minutes. diff_minutes = (24.0 * 60.0) * abs(node.time.tt - time.tt) if diff_minutes > max_minutes: max_minutes = diff_minutes # Verify the kind of node matches what Espenak says (ascending or descending). if kind == 'A' and node.kind != astronomy.NodeEventKind.Ascending: print('PY MoonNodes({} line {}): did not find ascending node as expected.'.format(filename, lnum)) return 1 if kind == 'D' and node.kind != astronomy.NodeEventKind.Descending: print('PY MoonNodes({} line {}): did not find descending node as expected.'.format(filename, lnum)) return 1 prev_kind = kind if max_minutes > 3.681: print('PY MoonNodes: EXCESSIVE time prediction error = {:0.3f} minutes.'.format(max_minutes)) return 1 print('PY MoonNodes: PASS ({} nodes, max equ error = {:0.3f} arcmin, max time error = {:0.3f} minutes.)'.format(lnum, max_angle, max_minutes)) return 0 #----------------------------------------------------------------------------------------------------------- def MoonReversePhase(longitude): # Verify that SearchMoonPhase works both forward and backward in time. nphases = 5000 utList = [] dtMin = +1000.0 dtMax = -1000.0 # Search forward in time from 1800 to find consecutive phase events events. time = astronomy.Time.Make(1800, 1, 1, 0, 0, 0.0) for i in range(nphases): result = astronomy.SearchMoonPhase(longitude, time, +40.0) if result is None: print('PY MoonReversePhase(lon={}, i={}): failed to find event after {}'.format(longitude, i, time)) return 1 utList.append(result.ut) if i > 0: # Verify that consecutive events are reasonably close to the synodic period (29.5 days) apart. dt = v(utList[i] - utList[i-1]) if dt < dtMin: dtMin = dt if dt > dtMax: dtMax = dt time = result.AddDays(+0.1) Debug('PY MoonReversePhase({}): dtMin={:0.6f} days, dtMax={:0.6f} days.'.format(longitude, dtMin, dtMax)) if (dtMin < 29.175) or (dtMax > 29.926): print('PY MoonReversePhase({}): Time between consecutive events is suspicious.'.format(longitude)) return 1 # Do a reverse chronological search and make sure the results are consistent with the forward search. time = time.AddDays(20.0) maxDiff = 0.0 for i in range(nphases-1, -1, -1): result = astronomy.SearchMoonPhase(longitude, time, -40.0) if result is None: print('PY MoonReversePhase(lon={}, i={}): failed to find event before {}'.format(longitude, i, time)) return 1 diff = SECONDS_PER_DAY * vabs(result.ut - utList[i]) if diff > maxDiff: maxDiff = diff time = result.AddDays(-0.1) Debug('PY MoonReversePhase({}): Maximum discrepancy in reverse search = {:0.6f} seconds.'.format(longitude, maxDiff)) if maxDiff > 0.164: print('PY MoonReversePhase({}): EXCESSIVE DISCREPANCY in reverse search.'.format(longitude)) return 1 # Pick a pair of consecutive events from the middle of the list. # Verify forward and backward searches work correctly from many intermediate times. nslots = 100 k = nphases // 2 ut1 = utList[k] ut2 = utList[k+1] for i in range(1, nslots): ut = ut1 + (i/nslots)*(ut2 - ut1) time = astronomy.Time(ut) before = astronomy.SearchMoonPhase(longitude, time, -40.0) if before is None: print('PY MoonReversePhase(lon={}, time={}): backward search failed'.format(longitude, time)) return 1 diff = SECONDS_PER_DAY * vabs(before.ut - ut1) if diff > 0.07: print('PY MoonReversePhase(lon={}, time={}): backward search error = {:0.4e} seconds'.format(longitude, time, diff)) return 1 after = astronomy.SearchMoonPhase(longitude, time, +40.0) if after is None: print('PY MoonReversePhase(lon={}, time={}): forward search failed'.format(longitude, time)) return 1 diff = SECONDS_PER_DAY * vabs(after.ut - ut2) if diff > 0.07: print('PY MoonReversePhase(lon={}, time={}): forward search error = {:0.4e} seconds'.format(longitude, time, diff)) return 1 print('PY MoonReversePhase({}): PASS'.format(longitude)) return 0 def MoonReverse(): return ( MoonReversePhase(0.0) or MoonReversePhase(90.0) or MoonReversePhase(180.0) or MoonReversePhase(270.0) ) #----------------------------------------------------------------------------------------------------------- class LagrangeFunc: def __init__(self, point, major_body, minor_body): self.point = point self.major_body = major_body self.minor_body = minor_body def Eval(self, time): return astronomy.LagrangePoint(self.point, time, self.major_body, self.minor_body) def VerifyStateLagrange(major_body, minor_body, point, filename, r_thresh, v_thresh): func = LagrangeFunc(point, major_body, minor_body) return VerifyStateBody(func, filename, r_thresh, v_thresh) def Lagrange(): # Test Sun/EMB Lagrange points. if VerifyStateLagrange(astronomy.Body.Sun, astronomy.Body.EMB, 1, 'lagrange/semb_L1.txt', 1.33e-5, 6.13e-5): return 1 if VerifyStateLagrange(astronomy.Body.Sun, astronomy.Body.EMB, 2, 'lagrange/semb_L2.txt', 1.33e-5, 6.13e-5): return 1 if VerifyStateLagrange(astronomy.Body.Sun, astronomy.Body.EMB, 4, 'lagrange/semb_L4.txt', 3.75e-5, 5.28e-5): return 1 if VerifyStateLagrange(astronomy.Body.Sun, astronomy.Body.EMB, 5, 'lagrange/semb_L5.txt', 3.75e-5, 5.28e-5): return 1 # Test Earth/Moon Lagrange points. if VerifyStateLagrange(astronomy.Body.Earth, astronomy.Body.Moon, 1, 'lagrange/em_L1.txt', 3.79e-5, 5.06e-5): return 1 if VerifyStateLagrange(astronomy.Body.Earth, astronomy.Body.Moon, 2, 'lagrange/em_L2.txt', 3.79e-5, 5.06e-5): return 1 if VerifyStateLagrange(astronomy.Body.Earth, astronomy.Body.Moon, 4, 'lagrange/em_L4.txt', 3.79e-5, 1.59e-3): return 1 if VerifyStateLagrange(astronomy.Body.Earth, astronomy.Body.Moon, 5, 'lagrange/em_L5.txt', 3.79e-5, 1.59e-3): return 1 print('PY Lagrange: PASS') return 0 #----------------------------------------------------------------------------------------------------------- def SiderealTime(): correct = 9.3983699280076483 time = astronomy.Time.Make(2022, 3, 15, 21, 50, 0) gast = astronomy.SiderealTime(time) diff = abs(gast - correct) print('PY SiderealTime: gast={:0.15f}, correct={:0.15f}, diff={:0.3e}'.format(gast, correct, diff)) if diff > 1.0e-15: print('PY SiderealTime: EXCESSIVE ERROR') return 1 print('PY SiderealTime: PASS') return 0 #----------------------------------------------------------------------------------------------------------- def Repr(): time = astronomy.Time.Make(2022, 3, 31, 21, 4, 45.123) if str(time) != '2022-03-31T21:04:45.123Z': print('PY Repr: FAIL str(time)') return 1 if repr(time) != "Time('2022-03-31T21:04:45.123Z')": print('PY Repr: FAIL repr(time)') return 1 vec = astronomy.Vector(-1.8439088914585775, 1.51657508881031, 0.8366600265340756, time) if repr(vec) != "Vector(-1.8439088914585775, 1.51657508881031, 0.8366600265340756, Time('2022-03-31T21:04:45.123Z'))": print('PY Repr: FAIL repr(vec)') return 1 state = astronomy.StateVector(vec.x, vec.y, vec.z, -vec.x/3, -vec.y/3, -vec.z/3, vec.t) if repr(state) != "StateVector(x=-1.8439088914585775, y=1.51657508881031, z=0.8366600265340756, vx=0.6146362971528592, vy=-0.5055250296034367, vz=-0.27888667551135854, t=Time('2022-03-31T21:04:45.123Z'))": print('PY Repr: FAIL repr(state)') return 1 observer = astronomy.Observer(32.1, 45.6, 98.765) if repr(observer) != 'Observer(latitude=32.1, longitude=45.6, height=98.765)': print('PY Repr: FAIL repr(observer)') return 1 rot = astronomy.Rotation_EQJ_ECL() if repr(rot) != 'RotationMatrix([[1, 0, 0], [0, 0.9174821430670688, -0.3977769691083922], [0, 0.3977769691083922, 0.9174821430670688]])': print('PY Repr: FAIL repr(rot)') return 1 sph = astronomy.Spherical(lat=-27.3, lon=85.2, dist=2.54) if repr(sph) != 'Spherical(lat=-27.3, lon=85.2, dist=2.54)': print('PY Repr: FAIL repr(sph)') return 1 equ = astronomy.Equatorial(8.54, -23.753, 2.986, vec) if repr(equ) != "Equatorial(ra=8.54, dec=-23.753, dist=2.986, vec=Vector(-1.8439088914585775, 1.51657508881031, 0.8366600265340756, Time('2022-03-31T21:04:45.123Z')))": print('PY Repr: FAIL repr(equ)') return 1 print('PY Repr: PASS') return 0 #----------------------------------------------------------------------------------------------------------- def GravSimTest(): Debug("") if 0 != GravSimEmpty("barystate/Sun.txt", astronomy.Body.SSB, astronomy.Body.Sun, 0.0269, 1.9635): return 1 if 0 != GravSimEmpty("barystate/Mercury.txt", astronomy.Body.SSB, astronomy.Body.Mercury, 0.5725, 0.9332): return 1 if 0 != GravSimEmpty("barystate/Venus.txt", astronomy.Body.SSB, astronomy.Body.Venus, 0.1433, 0.1458): return 1 if 0 != GravSimEmpty("barystate/Earth.txt", astronomy.Body.SSB, astronomy.Body.Earth, 0.0651, 0.2098): return 1 if 0 != GravSimEmpty("barystate/Mars.txt", astronomy.Body.SSB, astronomy.Body.Mars, 0.1150, 0.1896): return 1 if 0 != GravSimEmpty("barystate/Jupiter.txt", astronomy.Body.SSB, astronomy.Body.Jupiter, 0.2546, 0.8831): return 1 if 0 != GravSimEmpty("barystate/Saturn.txt", astronomy.Body.SSB, astronomy.Body.Saturn, 0.3660, 1.0818): return 1 if 0 != GravSimEmpty("barystate/Uranus.txt", astronomy.Body.SSB, astronomy.Body.Uranus, 0.3107, 0.9321): return 1 if 0 != GravSimEmpty("barystate/Neptune.txt", astronomy.Body.SSB, astronomy.Body.Neptune, 0.3382, 1.5586): return 1 if 0 != GravSimEmpty("heliostate/Mercury.txt", astronomy.Body.Sun, astronomy.Body.Mercury, 0.5087, 0.9473): return 1 if 0 != GravSimEmpty("heliostate/Venus.txt", astronomy.Body.Sun, astronomy.Body.Venus, 0.1214, 0.1543): return 1 if 0 != GravSimEmpty("heliostate/Earth.txt", astronomy.Body.Sun, astronomy.Body.Earth, 0.0508, 0.2099): return 1 if 0 != GravSimEmpty("heliostate/Mars.txt", astronomy.Body.Sun, astronomy.Body.Mars, 0.1085, 0.1927): return 1 if 0 != GravSimEmpty("heliostate/Jupiter.txt", astronomy.Body.Sun, astronomy.Body.Jupiter, 0.2564, 0.8805): return 1 if 0 != GravSimEmpty("heliostate/Saturn.txt", astronomy.Body.Sun, astronomy.Body.Saturn, 0.3664, 1.0826): return 1 if 0 != GravSimEmpty("heliostate/Uranus.txt", astronomy.Body.Sun, astronomy.Body.Uranus, 0.3106, 0.9322): return 1 if 0 != GravSimEmpty("heliostate/Neptune.txt", astronomy.Body.Sun, astronomy.Body.Neptune, 0.3381, 1.5584): return 1 Debug("") nsteps = 20 if 0 != GravSimFile("barystate/Ceres.txt", astronomy.Body.SSB, nsteps, 0.6640, 0.6226): return 1 if 0 != GravSimFile("barystate/Pallas.txt", astronomy.Body.SSB, nsteps, 0.4687, 0.3474): return 1 if 0 != GravSimFile("barystate/Vesta.txt", astronomy.Body.SSB, nsteps, 0.5806, 0.5462): return 1 if 0 != GravSimFile("barystate/Juno.txt", astronomy.Body.SSB, nsteps, 0.6760, 0.5750): return 1 if 0 != GravSimFile("barystate/Bennu.txt", astronomy.Body.SSB, nsteps, 3.7444, 2.6581): return 1 if 0 != GravSimFile("barystate/Halley.txt", astronomy.Body.SSB, nsteps, 0.0539, 0.0825): return 1 if 0 != GravSimFile("heliostate/Ceres.txt", astronomy.Body.Sun, nsteps, 0.0445, 0.0355): return 1 if 0 != GravSimFile("heliostate/Pallas.txt", astronomy.Body.Sun, nsteps, 0.1062, 0.0854): return 1 if 0 != GravSimFile("heliostate/Vesta.txt", astronomy.Body.Sun, nsteps, 0.1432, 0.1308): return 1 if 0 != GravSimFile("heliostate/Juno.txt", astronomy.Body.Sun, nsteps, 0.1554, 0.1328): return 1 if 0 != GravSimFile("geostate/Ceres.txt", astronomy.Body.Earth, nsteps, 6.5689, 6.4797): return 1 if 0 != GravSimFile("geostate/Pallas.txt", astronomy.Body.Earth, nsteps, 9.3288, 7.3533): return 1 if 0 != GravSimFile("geostate/Vesta.txt", astronomy.Body.Earth, nsteps, 3.2980, 3.8863): return 1 if 0 != GravSimFile("geostate/Juno.txt", astronomy.Body.Earth, nsteps, 6.0962, 7.7147): return 1 Debug("") print("PY GravSimTest: PASS") return 0 def GravSimEmpty(filename, origin, body, rthresh, vthresh): max_rdiff = 0.0 max_vdiff = 0.0 sim = None for rec in JplHorizonsStateVectors(filename): if sim is None: sim = astronomy.GravitySimulator(origin, rec.state.t, []) sim.Update(rec.state.t) calc = sim.SolarSystemBodyState(body) if origin == astronomy.Body.SSB and body == astronomy.Body.Sun: rdiff = SsbArcminPosError(rec.state, calc) else: rdiff = ArcminPosError(rec.state, calc) if rdiff > rthresh: print('PY GravSimEmpty({} line {}): excessive position error = {} arcmin.'.format(filename, rec.lnum, rdiff)) return 1 if rdiff > max_rdiff: max_rdiff = rdiff vdiff = ArcminVelError(rec.state, calc) if vdiff > vthresh: print('PY GravSimEmpty({} line {}): excessive velocity error = {} arcmin.'.format(filename, rec.lnum, vdiff)) return 1 if vdiff > max_vdiff: max_vdiff = vdiff Debug('PY GravSimEmpty({:22s}): PASS - max pos error = {:0.4f} arcmin, max vel error = {:0.4f} arcmin.'.format(filename, max_rdiff, max_vdiff)) return 0 def GravSimFile(filename, originBody, nsteps, rthresh, vthresh): sim = None max_rdiff = 0.0 max_vdiff = 0.0 for rec in JplHorizonsStateVectors(filename): if sim is None: sim = astronomy.GravitySimulator(originBody, rec.state.t, [rec.state]) time = rec.state.t smallBodyArray = sim.Update(time) else: tt1 = prev.state.t.tt tt2 = rec.state.t.tt dt = (tt2 - tt1) / nsteps for k in range(1, nsteps+1): time = astronomy.Time.FromTerrestrialTime(tt1 + k*dt) smallBodyArray = sim.Update(time) if len(smallBodyArray) != 1: print('PY GravSimFile({} line {}): unexpected smallBodyArray.length = {}'.format(filename, rec.lnum, len(smallBodyArray))) return 1 if time.tt != sim.GetTime().tt: print('PY GravSimFile({} line {}): expected {} but simulator reports {}'.format(filename, rec.lnum, time, sim.GetTime())) return 1 rdiff = ArcminPosError(rec.state, smallBodyArray[0]) if rdiff > rthresh: print('PY GravSimFile({} line {}): excessive position error = {}'.format(filename, rec.lnum, rdiff)) return 1 if rdiff > max_rdiff: max_rdiff = rdiff vdiff = ArcminVelError(rec.state, smallBodyArray[0]) if vdiff > vthresh: print('PY GravSimFile({} line {}): excessive position error = {}'.format(filename, rec.lnum, vdiff)) return 1 if vdiff > max_vdiff: max_vdiff = vdiff prev = rec Debug('PY GravSimFile({:22s}): PASS - max pos error = {:0.4f} arcmin, max vel error = {:0.4f} arcmin.'.format(filename, max_rdiff, max_vdiff)) return 0 def SsbArcminPosError(correct, calc): # Scale the SSB based on 1 AU, not on its absolute magnitude, which can become very close to zero. dx = calc.x - correct.x dy = calc.y - correct.y dz = calc.z - correct.z diffSquared = dx*dx + dy*dy + dz*dz radians = sqrt(diffSquared) return 60.0 * math.degrees(radians) def ArcminPosError(correct, calc): dx = calc.x - correct.x dy = calc.y - correct.y dz = calc.z - correct.z diffSquared = dx*dx + dy*dy + dz*dz magSquared = correct.x*correct.x + correct.y*correct.y + correct.z*correct.z radians = sqrt(diffSquared / magSquared) return 60.0 * math.degrees(radians) def ArcminVelError(correct, calc): dx = calc.vx - correct.vx dy = calc.vy - correct.vy dz = calc.vz - correct.vz diffSquared = dx*dx + dy*dy + dz*dz magSquared = correct.vx*correct.vx + correct.vy*correct.vy + correct.vz*correct.vz radians = sqrt(diffSquared / magSquared) return 60.0 * math.degrees(radians) #----------------------------------------------------------------------------------------------------------- def CheckDecemberSolstice(year, expected): si = astronomy.Seasons(year) actual = str(si.dec_solstice) if actual != expected: print('PY DatesIssue250: FAIL: year {}, expected [{}], actual [{}]'.format(year, expected, actual)) return 1 return 0 def DatesIssue250(): # Make sure we can handle dates outside the range supported by System.DateTime. # https://github.com/cosinekitty/astronomy/issues/250 return ( CheckDecemberSolstice( 2022, "2022-12-21T21:47:54.455Z") or CheckDecemberSolstice(-2300, "-002300-12-19T16:22:27.929Z") or CheckDecemberSolstice(12345, "+012345-12-11T13:30:10.276Z") or Pass('DatesIssue250') ) #----------------------------------------------------------------------------------------------------------- def LunarFractionCase(year, month, day, obscuration): time = astronomy.Time.Make(year, month, day, 0, 0, 0.0) eclipse = astronomy.SearchLunarEclipse(time) # This should be a partial lunar eclipse. if eclipse.kind != astronomy.EclipseKind.Partial: print('PY LunarFractionCase({:04d}-{:02d}-{:02d}) FAIL: expected partial eclipse, but found {}.'.format(year, month, day, eclipse.kind)) return 1 # The partial eclipse should always happen within 24 hours of the given date. dt = v(eclipse.peak.ut - time.ut) if dt < 0.0 or dt > 1.0: print('PY LunarFractionCase({:04d}-{:02d}-{:02d}) FAIL: eclipse occurs {:0.4f} days after predicted date.'.format(year, month, day, dt)) return 1 diff = v(eclipse.obscuration - obscuration) if abs(diff) > 0.00763: print('PY LunarFractionCase({:04d}-{:02d}-{:02d}) FAIL: excessive obscuration diff = {:0.8f}, expected = {:0.8f}, actual = {:0.8f}'.format(year, month, day, diff, obscuration, eclipse.obscuration)) return 1 Debug('PY LunarFractionCase({:04d}-{:02d}-{:02d}): obscuration diff = {:11.8f}'.format(year, month, day, diff)) return 0 def LunarFraction(): # Verify calculation of the fraction of the Moon's disc covered by the Earth's umbra during a partial eclipse. # Data for this is more tedious to gather, because Espenak data does not contain it. # We already verify fraction=0.0 for penumbral eclipses and fraction=1.0 for total eclipses in LunarEclipseTest. return ( LunarFractionCase(2010, 6, 26, 0.506) or # https://www.timeanddate.com/eclipse/lunar/2010-june-26 LunarFractionCase(2012, 6, 4, 0.304) or # https://www.timeanddate.com/eclipse/lunar/2012-june-4 LunarFractionCase(2013, 4, 25, 0.003) or # https://www.timeanddate.com/eclipse/lunar/2013-april-25 LunarFractionCase(2017, 8, 7, 0.169) or # https://www.timeanddate.com/eclipse/lunar/2017-august-7 LunarFractionCase(2019, 7, 16, 0.654) or # https://www.timeanddate.com/eclipse/lunar/2019-july-16 LunarFractionCase(2021, 11, 19, 0.991) or # https://www.timeanddate.com/eclipse/lunar/2021-november-19 LunarFractionCase(2023, 10, 28, 0.060) or # https://www.timeanddate.com/eclipse/lunar/2023-october-28 LunarFractionCase(2024, 9, 18, 0.035) or # https://www.timeanddate.com/eclipse/lunar/2024-september-18 LunarFractionCase(2026, 8, 28, 0.962) or # https://www.timeanddate.com/eclipse/lunar/2026-august-28 LunarFractionCase(2028, 1, 12, 0.024) or # https://www.timeanddate.com/eclipse/lunar/2028-january-12 LunarFractionCase(2028, 7, 6, 0.325) or # https://www.timeanddate.com/eclipse/lunar/2028-july-6 LunarFractionCase(2030, 6, 15, 0.464) or # https://www.timeanddate.com/eclipse/lunar/2030-june-15 Pass('LunarFraction') ) #----------------------------------------------------------------------------------------------------------- def StarRiseSetCulmCase(starName, ra, dec, distLy, observer, year, month, day, riseHour, riseMinute, culmHour, culmMinute, setHour, setMinute): func = 'StarRiseSetCulmCase({})'.format(starName) # Calculate expected event times. expectedRiseTime = astronomy.Time.Make(year, month, day, riseHour, riseMinute, 0.0) expectedCulmTime = astronomy.Time.Make(year, month, day, culmHour, culmMinute, 0.0) expectedSetTime = astronomy.Time.Make(year, month, day, setHour, setMinute, 0.0) # Define a custom star object. astronomy.DefineStar(astronomy.Body.Star1, ra, dec, distLy) # Use Astronomy Engine to search for event times. searchTime = astronomy.Time.Make(year, month, day, 0, 0, 0.0) rise = astronomy.SearchRiseSet(astronomy.Body.Star1, observer, astronomy.Direction.Rise, searchTime, 1.0) if rise is None: return Fail(func, 'Star rise search failed.') culm = astronomy.SearchHourAngle(astronomy.Body.Star1, observer, 0.0, searchTime, +1) if culm is None: return Fail(func, 'Star culmination search failed.') set = astronomy.SearchRiseSet(astronomy.Body.Star1, observer, astronomy.Direction.Set, searchTime, 1.0) if set is None: return Fail(func, 'Star set search failed.') # Compare expected times with calculated times. rdiff = MINUTES_PER_DAY * vabs(expectedRiseTime.ut - rise.ut) cdiff = MINUTES_PER_DAY * vabs(expectedCulmTime.ut - culm.time.ut) sdiff = MINUTES_PER_DAY * vabs(expectedSetTime.ut - set.ut) Debug("{}: minutes rdiff = {:0.4f}, cdiff = {:0.4f}, sdiff = {:0.4f}".format(func, rdiff, cdiff, sdiff)) if rdiff > 0.5: return Fail(func, "excessive rise time error = {:0.4f} minutes.".format(rdiff)) if cdiff > 0.5: return Fail(func, "excessive culm time error = {:0.4f} minutes.".format(cdiff)) if sdiff > 0.5: return Fail(func, "excessive set time error = {:0.4f} minutes.".format(sdiff)) return 0 def StarRiseSetCulm(): observer = astronomy.Observer(+25.77, -80.19, 0.0) return ( StarRiseSetCulmCase("Sirius", 6.7525, -16.7183, 8.6, observer, 2022, 11, 21, 2, 37, 8, 6, 13, 34) or StarRiseSetCulmCase("Sirius", 6.7525, -16.7183, 8.6, observer, 2022, 11, 25, 2, 22, 7, 50, 13, 18) or StarRiseSetCulmCase("Canopus", 6.3992, -52.6956, 310.0, observer, 2022, 11, 21, 4, 17, 7, 44, 11, 11) or StarRiseSetCulmCase("Canopus", 6.3992, -52.6956, 310.0, observer, 2022, 11, 25, 4, 1, 7, 28, 10, 56) or Pass("StarRiseSetCulm") ) #----------------------------------------------------------------------------------------------------------- class HourAngleTester: def __init__(self): self.cases = 0 self.maxdiff = 0.0 def Case(self, latitude, longitude, hourAngle): threshold = 0.1 / 3600 # SearchHourAngle() accuracy: 0.1 seconds converted to hours observer = astronomy.Observer(latitude, longitude, 0) startTime = astronomy.Time.Make(2023, 2, 11, 0, 0, 0) search = astronomy.SearchHourAngle(astronomy.Body.Sun, observer, hourAngle, startTime, +1) calc = astronomy.HourAngle(astronomy.Body.Sun, search.time, observer) diff = vabs(calc - hourAngle) if diff > 12.0: diff = 24.0 - diff; if diff > self.maxdiff: self.maxdiff = diff self.cases += 1 if diff > threshold: print('PY HourAngleCase: EXCESSIVE ERROR = {:0.6e}, calc HA = {:0.16f}, for hourAngle={:0.1f}'.format(diff, calc, hourAngle)) return False Debug('PY HourAngleCase: Hour angle = {:4.1f}, longitude = {:6.1f}, diff = {:9.4e}'.format(hourAngle, longitude, diff)) return True def Pass(self): print('PY HourAngle ({:d} cases, maxdiff = {:9.4e}): PASS'.format(self.cases, self.maxdiff)) return 0 def HourAngle(): tester = HourAngleTester() latitude = 35 longitude = -170 while longitude <= 180: hour = 0 while hour < 24: if not tester.Case(latitude, longitude, hour): return 1 hour += 1 longitude += 5 return tester.Pass() #----------------------------------------------------------------------------------------------------------- def Atmosphere(): filename = 'riseset/atmosphere.csv' maxdiff = 0.0 ncases = 0 tolerance = 8.8e-11 with open(filename, 'rt') as infile: lnum = 0 for line in infile: line = line.strip() lnum += 1 if lnum == 1: if line != 'elevation,temperature,pressure,density,relative_density': return Fail('Atmosphere', 'Expected header line but found [{}]'.format(line)) else: tokens = line.split(',') if len(tokens) != 5: return Fail('Atmosphere({} line {})'.format(filename, lnum), 'expected 5 numeric tokens but found {}'.format(len(tokens))) elevation = v(float(tokens[0])) temperature = v(float(tokens[1])) pressure = v(float(tokens[2])) # ignore tokens[3] = absolute_density relative_density = v(float(tokens[4])) atmos = astronomy.Atmosphere(elevation) diff = vabs(atmos.temperature - temperature) maxdiff = max(maxdiff, diff) if diff > tolerance: return Fail('Atmosphere', 'EXCESSIVE temperature difference = {}'.format(diff)) diff = vabs(atmos.pressure - pressure) maxdiff = max(maxdiff, diff) if diff > tolerance: return Fail('Atmosphere', 'EXCESSIVE pressure difference = {}'.format(diff)) diff = vabs(atmos.density - relative_density) maxdiff = max(maxdiff, diff) if diff > tolerance: return Fail('Atmosphere', 'EXCESSIVE density difference = {}'.format(diff)) ncases += 1 if ncases != 34: return Fail('Atmosphere', 'expected 34 cases but found {}'.format(ncases)) return Pass('Atmosphere') #----------------------------------------------------------------------------------------------------------- def RiseSetElevationBodyCase(body, observer, direction, metersAboveGround, startTime, eventOffsetDays): time = astronomy.SearchRiseSet(body, observer, direction, startTime, 2.0, metersAboveGround) if not time: return Fail('RiseSetElevationBodyCase {} {}: search failed.'.format(body, direction)) diff = v(time.ut - (startTime.ut + eventOffsetDays)) if diff > 0.5: diff -= 1.0 # assume event actually takes place on the next day diff = vabs(MINUTES_PER_DAY * diff) # convert signed days to absolute minutes if diff > 0.5: return Fail('RiseSetElevationBodyCase {} {}: EXCESSIVE diff = {}.'.format(body, direction, diff)) return 0 def RiseSetElevation(): regex = re.compile(r'^(\d+)-(\d+)-(\d+)\s+(\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s+(\d+):(\d+)\s+(\d+):(\d+)\s+(\d+):(\d+)\s+(\d+):(\d+)\s+(\S+)\s*$') filename = 'riseset/elevation.txt' with open(filename, 'rt') as infile: lnum = 0 for line in infile: lnum += 1 if line.startswith('#'): continue m = regex.match(line) if not m: return Fail('RiseSetElevation({} line {})'.format(filename, lnum), 'Invalid data format') year = int(m.group(1)) month = int(m.group(2)) day = int(m.group(3)) latitude = v(float(m.group(4))) longitude = v(float(m.group(5))) height = v(float(m.group(6))) metersAboveGround = v(float(m.group(7))) srh = int(m.group( 8)) srm = int(m.group( 9)) ssh = int(m.group(10)) ssm = int(m.group(11)) mrh = int(m.group(12)) mrm = int(m.group(13)) msh = int(m.group(14)) msm = int(m.group(15)) # Get search origin time time = astronomy.Time.Make(year, month, day, 0, 0, 0.0) # Convert scanned values into sunrise, sunset, moonrise, moonset day offsets. sr = (srh + srm/60.0) / 24.0 ss = (ssh + ssm/60.0) / 24.0 mr = (mrh + mrm/60.0) / 24.0 ms = (msh + msm/60.0) / 24.0 observer = astronomy.Observer(latitude, longitude, height) if (0 != RiseSetElevationBodyCase(astronomy.Body.Sun, observer, astronomy.Direction.Rise, metersAboveGround, time, sr) or 0 != RiseSetElevationBodyCase(astronomy.Body.Sun, observer, astronomy.Direction.Set, metersAboveGround, time, ss) or 0 != RiseSetElevationBodyCase(astronomy.Body.Moon, observer, astronomy.Direction.Rise, metersAboveGround, time, mr) or 0 != RiseSetElevationBodyCase(astronomy.Body.Moon, observer, astronomy.Direction.Set, metersAboveGround, time, ms)): return 1 return Pass('RiseSetElevation') #----------------------------------------------------------------------------------------------------------- UnitTests = { 'aberration': Aberration, 'atmosphere': Atmosphere, 'axis': Axis, 'barystate': BaryState, 'constellation': Constellation, 'dates250': DatesIssue250, 'ecliptic': Ecliptic, 'elongation': Elongation, 'geoid': Geoid, 'global_solar_eclipse': GlobalSolarEclipse, 'gravsim': GravSimTest, 'heliostate': HelioState, 'hour_angle': HourAngle, 'issue_103': Issue103, 'jupiter_moons': JupiterMoons, 'lagrange': Lagrange, 'libration': Libration, 'local_solar_eclipse': LocalSolarEclipse, 'lunar_apsis': LunarApsis, 'lunar_eclipse': LunarEclipse, 'lunar_eclipse_78': LunarEclipseIssue78, 'lunar_fraction': LunarFraction, 'magnitude': Magnitude, 'moon': GeoMoon, 'moon_nodes': MoonNodes, 'moon_reverse': MoonReverse, 'moonphase': MoonPhase, 'planet_apsis': PlanetApsis, 'pluto': PlutoCheck, 'refraction': Refraction, 'repr': Repr, 'riseset': RiseSet, 'riseset_elevation': RiseSetElevation, 'riseset_reverse': RiseSetReverse, 'rotation': Rotation, 'seasons': Seasons, 'seasons187': SeasonsIssue187, 'sidereal': SiderealTime, 'solar_fraction': SolarFraction, 'star_risesetculm': StarRiseSetCulm, 'time': AstroTime, 'topostate': TopoState, 'transit': Transit, 'twilight': Twilight, } #----------------------------------------------------------------------------------------------------------- if __name__ == '__main__': if len(sys.argv) > 1 and sys.argv[1] == '-v': sys.argv = sys.argv[1:] Verbose = True if len(sys.argv) == 2: name = sys.argv[1] if name in UnitTests: sys.exit(UnitTests[name]()) if name in ['astro_check', 'astro_profile']: sys.exit(AstroCheck(sys.argv[1] == 'astro_check')) if name == 'all': for name in sorted(UnitTests.keys()): func = UnitTests[name] Debug('test.py: Starting test "{}"'.format(name)) rc = func() Debug('test.py: Test "{}" returned {}'.format(name, rc)) if rc != 0: sys.exit(1) print('test.py: ALL PASS') sys.exit(0) print('test.py: Invalid command line arguments.') sys.exit(1)
44c7ea4c09cf76c997f45dc2c463741f3ba3af03
5f6425e9d83b57b864e48f227e1dc58356a555c0
/utils/palettes/personalized/piotr_kozlowski.py
8f12ab59b92e28ce4bf7bd066c55b145ec16a2f9
[ "MIT" ]
permissive
jan-warchol/selenized
b374fa7822f281b16aa8b52e34bd1e585db75904
df1c7f1f94f22e2c717f8224158f6f4097c5ecbe
refs/heads/master
2023-06-22T09:37:02.962677
2022-09-12T20:24:40
2022-09-12T20:24:40
45,570,283
663
58
MIT
2023-04-18T09:33:22
2015-11-04T22:00:52
Emacs Lisp
UTF-8
Python
false
false
217
py
import selenized_base name = 'Piotr Kozlowski' palette = selenized_base.generate_palette( background=(97, 0, 8), foreground=(25, -6, -6), saturation=1.4, accent_offset=5, accent_l_spread=30, )
dac13f5e5e05cde9a0e794a85a9b310f0cb35528
bc5f2a7cce6093ba1f5785b02215df34d7e48a68
/src/YYOwnBlog/settings.py
e80d47fc13792931076af62f165026ea519a18bb
[]
no_license
congyingTech/YYOwnBlog
5b84bfd1cb7884f323ec76a67ec26bb1afc8a406
57718ba3363385ac4da0840f56d7cd15f903d512
refs/heads/master
2021-01-20T20:24:43.736682
2016-06-17T03:20:36
2016-06-17T03:20:36
61,342,280
0
0
null
null
null
null
UTF-8
Python
false
false
3,290
py
""" Django settings for YYOwnBlog project. Generated by 'django-admin startproject' using Django 1.9.6. For more information on this file, see https://docs.djangoproject.com/en/1.9/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.9/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.9/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '(d0dmfin1@=g8-16bs&r&-4u-cbd@aj_kf6ak0n=*uc%qf$!_q' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog', # don't forget register blog in INSTALLED_APPS ] MIDDLEWARE_CLASSES = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'YYOwnBlog.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates').replace('\\', '/')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'YYOwnBlog.wsgi.application' # Database # https://docs.djangoproject.com/en/1.9/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.9/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.9/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.9/howto/static-files/ STATIC_URL = '/static/'
452f266344d14193f6028c183b1c1184c8728329
fab14fae2b494068aa793901d76464afb965df7e
/benchmarks/ltl_maxplus/f3/maxplus_24_91.py
1be82cb21b86b50ca49efd9cc197df337fc8d3d4
[ "MIT" ]
permissive
teodorov/F3
673f6f9ccc25acdfdecbfc180f439253474ba250
c863215c318d7d5f258eb9be38c6962cf6863b52
refs/heads/master
2023-08-04T17:37:38.771863
2021-09-16T07:38:28
2021-09-16T07:38:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
60,763
py
from collections import Iterable from mathsat import msat_term, msat_env from mathsat import msat_make_true, msat_make_false from mathsat import msat_make_constant, msat_declare_function from mathsat import msat_get_rational_type from mathsat import msat_make_and as _msat_make_and from mathsat import msat_make_or as _msat_make_or from mathsat import msat_make_not from mathsat import msat_make_leq, msat_make_equal from mathsat import msat_make_number, msat_make_plus, msat_make_times from ltl.ltl import TermMap, LTLEncoder from utils import name_next def msat_make_and(menv: msat_env, *args): if len(args) == 0: return msat_make_true(menv) if len(args) == 1: return args[0] res = _msat_make_and(menv, args[0], args[1]) for arg in args[2:]: res = _msat_make_and(menv, res, arg) return res def msat_make_or(menv: msat_env, *args): if len(args) == 0: return msat_make_false(menv) if len(args) == 1: return args[0] res = _msat_make_or(menv, args[0], args[1]) for arg in args[2:]: res = _msat_make_or(menv, res, arg) return res def msat_make_minus(menv: msat_env, arg0: msat_term, arg1: msat_term): n_m1 = msat_make_number(menv, "-1") arg1 = msat_make_times(menv, arg1, n_m1) return msat_make_plus(menv, arg0, arg1) def msat_make_lt(menv: msat_env, arg0: msat_term, arg1: msat_term): geq = msat_make_geq(menv, arg0, arg1) return msat_make_not(menv, geq) def msat_make_geq(menv: msat_env, arg0: msat_term, arg1: msat_term): return msat_make_leq(menv, arg1, arg0) def msat_make_gt(menv: msat_env, arg0: msat_term, arg1: msat_term): leq = msat_make_leq(menv, arg0, arg1) return msat_make_not(menv, leq) def msat_make_impl(menv: msat_env, arg0: msat_term, arg1: msat_term): n_arg0 = msat_make_not(menv, arg0) return msat_make_or(menv, n_arg0, arg1) def check_ltl(menv: msat_env, enc: LTLEncoder) -> (Iterable, msat_term, msat_term, msat_term): assert menv assert isinstance(menv, msat_env) assert enc assert isinstance(enc, LTLEncoder) real_type = msat_get_rational_type(menv) names = ["x_0", "x_1", "x_2", "x_3", "x_4", "x_5", "x_6", "x_7", "x_8", "x_9", "x_10", "x_11", "x_12", "x_13", "x_14", "x_15", "x_16", "x_17", "x_18", "x_19", "x_20", "x_21", "x_22", "x_23"] xs = [msat_declare_function(menv, name, real_type) for name in names] xs = [msat_make_constant(menv, x) for x in xs] x_xs = [msat_declare_function(menv, name_next(name), real_type) for name in names] x_xs = [msat_make_constant(menv, x_x) for x_x in x_xs] curr2next = {x: x_x for x, x_x in zip(xs, x_xs)} n_10_0 = msat_make_number(menv, "10.0") n_11_0 = msat_make_number(menv, "11.0") n_12_0 = msat_make_number(menv, "12.0") n_13_0 = msat_make_number(menv, "13.0") n_14_0 = msat_make_number(menv, "14.0") n_15_0 = msat_make_number(menv, "15.0") n_16_0 = msat_make_number(menv, "16.0") n_17_0 = msat_make_number(menv, "17.0") n_18_0 = msat_make_number(menv, "18.0") n_19_0 = msat_make_number(menv, "19.0") n_1_0 = msat_make_number(menv, "1.0") n_20_0 = msat_make_number(menv, "20.0") n_2_0 = msat_make_number(menv, "2.0") n_3_0 = msat_make_number(menv, "3.0") n_4_0 = msat_make_number(menv, "4.0") n_5_0 = msat_make_number(menv, "5.0") n_6_0 = msat_make_number(menv, "6.0") n_7_0 = msat_make_number(menv, "7.0") n_8_0 = msat_make_number(menv, "8.0") n_9_0 = msat_make_number(menv, "9.0") init = msat_make_true(menv) trans = msat_make_true(menv) # transitions expr0 = msat_make_plus(menv, xs[3], n_9_0) expr1 = msat_make_plus(menv, xs[4], n_5_0) expr2 = msat_make_plus(menv, xs[6], n_16_0) expr3 = msat_make_plus(menv, xs[9], n_15_0) expr4 = msat_make_plus(menv, xs[10], n_8_0) expr5 = msat_make_plus(menv, xs[12], n_10_0) expr6 = msat_make_plus(menv, xs[14], n_9_0) expr7 = msat_make_plus(menv, xs[15], n_18_0) expr8 = msat_make_plus(menv, xs[17], n_4_0) expr9 = msat_make_plus(menv, xs[18], n_6_0) expr10 = msat_make_plus(menv, xs[21], n_4_0) expr11 = msat_make_plus(menv, xs[22], n_18_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[0], expr0), msat_make_geq(menv, x_xs[0], expr1), msat_make_geq(menv, x_xs[0], expr2), msat_make_geq(menv, x_xs[0], expr3), msat_make_geq(menv, x_xs[0], expr4), msat_make_geq(menv, x_xs[0], expr5), msat_make_geq(menv, x_xs[0], expr6), msat_make_geq(menv, x_xs[0], expr7), msat_make_geq(menv, x_xs[0], expr8), msat_make_geq(menv, x_xs[0], expr9), msat_make_geq(menv, x_xs[0], expr10), msat_make_geq(menv, x_xs[0], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[0], expr0), msat_make_equal(menv, x_xs[0], expr1), msat_make_equal(menv, x_xs[0], expr2), msat_make_equal(menv, x_xs[0], expr3), msat_make_equal(menv, x_xs[0], expr4), msat_make_equal(menv, x_xs[0], expr5), msat_make_equal(menv, x_xs[0], expr6), msat_make_equal(menv, x_xs[0], expr7), msat_make_equal(menv, x_xs[0], expr8), msat_make_equal(menv, x_xs[0], expr9), msat_make_equal(menv, x_xs[0], expr10), msat_make_equal(menv, x_xs[0], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[1], n_7_0) expr1 = msat_make_plus(menv, xs[2], n_19_0) expr2 = msat_make_plus(menv, xs[3], n_11_0) expr3 = msat_make_plus(menv, xs[6], n_12_0) expr4 = msat_make_plus(menv, xs[8], n_14_0) expr5 = msat_make_plus(menv, xs[11], n_11_0) expr6 = msat_make_plus(menv, xs[12], n_18_0) expr7 = msat_make_plus(menv, xs[14], n_17_0) expr8 = msat_make_plus(menv, xs[15], n_10_0) expr9 = msat_make_plus(menv, xs[16], n_8_0) expr10 = msat_make_plus(menv, xs[18], n_11_0) expr11 = msat_make_plus(menv, xs[22], n_9_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[1], expr0), msat_make_geq(menv, x_xs[1], expr1), msat_make_geq(menv, x_xs[1], expr2), msat_make_geq(menv, x_xs[1], expr3), msat_make_geq(menv, x_xs[1], expr4), msat_make_geq(menv, x_xs[1], expr5), msat_make_geq(menv, x_xs[1], expr6), msat_make_geq(menv, x_xs[1], expr7), msat_make_geq(menv, x_xs[1], expr8), msat_make_geq(menv, x_xs[1], expr9), msat_make_geq(menv, x_xs[1], expr10), msat_make_geq(menv, x_xs[1], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[1], expr0), msat_make_equal(menv, x_xs[1], expr1), msat_make_equal(menv, x_xs[1], expr2), msat_make_equal(menv, x_xs[1], expr3), msat_make_equal(menv, x_xs[1], expr4), msat_make_equal(menv, x_xs[1], expr5), msat_make_equal(menv, x_xs[1], expr6), msat_make_equal(menv, x_xs[1], expr7), msat_make_equal(menv, x_xs[1], expr8), msat_make_equal(menv, x_xs[1], expr9), msat_make_equal(menv, x_xs[1], expr10), msat_make_equal(menv, x_xs[1], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_18_0) expr1 = msat_make_plus(menv, xs[2], n_7_0) expr2 = msat_make_plus(menv, xs[3], n_1_0) expr3 = msat_make_plus(menv, xs[4], n_13_0) expr4 = msat_make_plus(menv, xs[6], n_9_0) expr5 = msat_make_plus(menv, xs[7], n_8_0) expr6 = msat_make_plus(menv, xs[8], n_18_0) expr7 = msat_make_plus(menv, xs[10], n_7_0) expr8 = msat_make_plus(menv, xs[13], n_2_0) expr9 = msat_make_plus(menv, xs[15], n_18_0) expr10 = msat_make_plus(menv, xs[18], n_14_0) expr11 = msat_make_plus(menv, xs[21], n_8_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[2], expr0), msat_make_geq(menv, x_xs[2], expr1), msat_make_geq(menv, x_xs[2], expr2), msat_make_geq(menv, x_xs[2], expr3), msat_make_geq(menv, x_xs[2], expr4), msat_make_geq(menv, x_xs[2], expr5), msat_make_geq(menv, x_xs[2], expr6), msat_make_geq(menv, x_xs[2], expr7), msat_make_geq(menv, x_xs[2], expr8), msat_make_geq(menv, x_xs[2], expr9), msat_make_geq(menv, x_xs[2], expr10), msat_make_geq(menv, x_xs[2], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[2], expr0), msat_make_equal(menv, x_xs[2], expr1), msat_make_equal(menv, x_xs[2], expr2), msat_make_equal(menv, x_xs[2], expr3), msat_make_equal(menv, x_xs[2], expr4), msat_make_equal(menv, x_xs[2], expr5), msat_make_equal(menv, x_xs[2], expr6), msat_make_equal(menv, x_xs[2], expr7), msat_make_equal(menv, x_xs[2], expr8), msat_make_equal(menv, x_xs[2], expr9), msat_make_equal(menv, x_xs[2], expr10), msat_make_equal(menv, x_xs[2], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_4_0) expr1 = msat_make_plus(menv, xs[2], n_2_0) expr2 = msat_make_plus(menv, xs[3], n_9_0) expr3 = msat_make_plus(menv, xs[5], n_7_0) expr4 = msat_make_plus(menv, xs[6], n_5_0) expr5 = msat_make_plus(menv, xs[9], n_10_0) expr6 = msat_make_plus(menv, xs[11], n_8_0) expr7 = msat_make_plus(menv, xs[13], n_14_0) expr8 = msat_make_plus(menv, xs[15], n_13_0) expr9 = msat_make_plus(menv, xs[18], n_7_0) expr10 = msat_make_plus(menv, xs[20], n_2_0) expr11 = msat_make_plus(menv, xs[22], n_8_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[3], expr0), msat_make_geq(menv, x_xs[3], expr1), msat_make_geq(menv, x_xs[3], expr2), msat_make_geq(menv, x_xs[3], expr3), msat_make_geq(menv, x_xs[3], expr4), msat_make_geq(menv, x_xs[3], expr5), msat_make_geq(menv, x_xs[3], expr6), msat_make_geq(menv, x_xs[3], expr7), msat_make_geq(menv, x_xs[3], expr8), msat_make_geq(menv, x_xs[3], expr9), msat_make_geq(menv, x_xs[3], expr10), msat_make_geq(menv, x_xs[3], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[3], expr0), msat_make_equal(menv, x_xs[3], expr1), msat_make_equal(menv, x_xs[3], expr2), msat_make_equal(menv, x_xs[3], expr3), msat_make_equal(menv, x_xs[3], expr4), msat_make_equal(menv, x_xs[3], expr5), msat_make_equal(menv, x_xs[3], expr6), msat_make_equal(menv, x_xs[3], expr7), msat_make_equal(menv, x_xs[3], expr8), msat_make_equal(menv, x_xs[3], expr9), msat_make_equal(menv, x_xs[3], expr10), msat_make_equal(menv, x_xs[3], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[1], n_20_0) expr1 = msat_make_plus(menv, xs[3], n_4_0) expr2 = msat_make_plus(menv, xs[4], n_12_0) expr3 = msat_make_plus(menv, xs[5], n_3_0) expr4 = msat_make_plus(menv, xs[6], n_16_0) expr5 = msat_make_plus(menv, xs[11], n_6_0) expr6 = msat_make_plus(menv, xs[14], n_16_0) expr7 = msat_make_plus(menv, xs[15], n_9_0) expr8 = msat_make_plus(menv, xs[16], n_1_0) expr9 = msat_make_plus(menv, xs[18], n_6_0) expr10 = msat_make_plus(menv, xs[21], n_3_0) expr11 = msat_make_plus(menv, xs[22], n_12_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[4], expr0), msat_make_geq(menv, x_xs[4], expr1), msat_make_geq(menv, x_xs[4], expr2), msat_make_geq(menv, x_xs[4], expr3), msat_make_geq(menv, x_xs[4], expr4), msat_make_geq(menv, x_xs[4], expr5), msat_make_geq(menv, x_xs[4], expr6), msat_make_geq(menv, x_xs[4], expr7), msat_make_geq(menv, x_xs[4], expr8), msat_make_geq(menv, x_xs[4], expr9), msat_make_geq(menv, x_xs[4], expr10), msat_make_geq(menv, x_xs[4], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[4], expr0), msat_make_equal(menv, x_xs[4], expr1), msat_make_equal(menv, x_xs[4], expr2), msat_make_equal(menv, x_xs[4], expr3), msat_make_equal(menv, x_xs[4], expr4), msat_make_equal(menv, x_xs[4], expr5), msat_make_equal(menv, x_xs[4], expr6), msat_make_equal(menv, x_xs[4], expr7), msat_make_equal(menv, x_xs[4], expr8), msat_make_equal(menv, x_xs[4], expr9), msat_make_equal(menv, x_xs[4], expr10), msat_make_equal(menv, x_xs[4], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[1], n_10_0) expr1 = msat_make_plus(menv, xs[3], n_7_0) expr2 = msat_make_plus(menv, xs[5], n_14_0) expr3 = msat_make_plus(menv, xs[6], n_9_0) expr4 = msat_make_plus(menv, xs[7], n_11_0) expr5 = msat_make_plus(menv, xs[9], n_18_0) expr6 = msat_make_plus(menv, xs[10], n_10_0) expr7 = msat_make_plus(menv, xs[11], n_18_0) expr8 = msat_make_plus(menv, xs[15], n_20_0) expr9 = msat_make_plus(menv, xs[17], n_2_0) expr10 = msat_make_plus(menv, xs[18], n_17_0) expr11 = msat_make_plus(menv, xs[21], n_8_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[5], expr0), msat_make_geq(menv, x_xs[5], expr1), msat_make_geq(menv, x_xs[5], expr2), msat_make_geq(menv, x_xs[5], expr3), msat_make_geq(menv, x_xs[5], expr4), msat_make_geq(menv, x_xs[5], expr5), msat_make_geq(menv, x_xs[5], expr6), msat_make_geq(menv, x_xs[5], expr7), msat_make_geq(menv, x_xs[5], expr8), msat_make_geq(menv, x_xs[5], expr9), msat_make_geq(menv, x_xs[5], expr10), msat_make_geq(menv, x_xs[5], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[5], expr0), msat_make_equal(menv, x_xs[5], expr1), msat_make_equal(menv, x_xs[5], expr2), msat_make_equal(menv, x_xs[5], expr3), msat_make_equal(menv, x_xs[5], expr4), msat_make_equal(menv, x_xs[5], expr5), msat_make_equal(menv, x_xs[5], expr6), msat_make_equal(menv, x_xs[5], expr7), msat_make_equal(menv, x_xs[5], expr8), msat_make_equal(menv, x_xs[5], expr9), msat_make_equal(menv, x_xs[5], expr10), msat_make_equal(menv, x_xs[5], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_18_0) expr1 = msat_make_plus(menv, xs[3], n_14_0) expr2 = msat_make_plus(menv, xs[4], n_2_0) expr3 = msat_make_plus(menv, xs[5], n_5_0) expr4 = msat_make_plus(menv, xs[6], n_8_0) expr5 = msat_make_plus(menv, xs[9], n_7_0) expr6 = msat_make_plus(menv, xs[11], n_17_0) expr7 = msat_make_plus(menv, xs[15], n_5_0) expr8 = msat_make_plus(menv, xs[16], n_6_0) expr9 = msat_make_plus(menv, xs[19], n_16_0) expr10 = msat_make_plus(menv, xs[20], n_20_0) expr11 = msat_make_plus(menv, xs[22], n_10_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[6], expr0), msat_make_geq(menv, x_xs[6], expr1), msat_make_geq(menv, x_xs[6], expr2), msat_make_geq(menv, x_xs[6], expr3), msat_make_geq(menv, x_xs[6], expr4), msat_make_geq(menv, x_xs[6], expr5), msat_make_geq(menv, x_xs[6], expr6), msat_make_geq(menv, x_xs[6], expr7), msat_make_geq(menv, x_xs[6], expr8), msat_make_geq(menv, x_xs[6], expr9), msat_make_geq(menv, x_xs[6], expr10), msat_make_geq(menv, x_xs[6], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[6], expr0), msat_make_equal(menv, x_xs[6], expr1), msat_make_equal(menv, x_xs[6], expr2), msat_make_equal(menv, x_xs[6], expr3), msat_make_equal(menv, x_xs[6], expr4), msat_make_equal(menv, x_xs[6], expr5), msat_make_equal(menv, x_xs[6], expr6), msat_make_equal(menv, x_xs[6], expr7), msat_make_equal(menv, x_xs[6], expr8), msat_make_equal(menv, x_xs[6], expr9), msat_make_equal(menv, x_xs[6], expr10), msat_make_equal(menv, x_xs[6], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[2], n_3_0) expr1 = msat_make_plus(menv, xs[3], n_18_0) expr2 = msat_make_plus(menv, xs[4], n_10_0) expr3 = msat_make_plus(menv, xs[5], n_9_0) expr4 = msat_make_plus(menv, xs[7], n_20_0) expr5 = msat_make_plus(menv, xs[10], n_3_0) expr6 = msat_make_plus(menv, xs[12], n_4_0) expr7 = msat_make_plus(menv, xs[14], n_16_0) expr8 = msat_make_plus(menv, xs[18], n_20_0) expr9 = msat_make_plus(menv, xs[20], n_14_0) expr10 = msat_make_plus(menv, xs[21], n_18_0) expr11 = msat_make_plus(menv, xs[22], n_6_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[7], expr0), msat_make_geq(menv, x_xs[7], expr1), msat_make_geq(menv, x_xs[7], expr2), msat_make_geq(menv, x_xs[7], expr3), msat_make_geq(menv, x_xs[7], expr4), msat_make_geq(menv, x_xs[7], expr5), msat_make_geq(menv, x_xs[7], expr6), msat_make_geq(menv, x_xs[7], expr7), msat_make_geq(menv, x_xs[7], expr8), msat_make_geq(menv, x_xs[7], expr9), msat_make_geq(menv, x_xs[7], expr10), msat_make_geq(menv, x_xs[7], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[7], expr0), msat_make_equal(menv, x_xs[7], expr1), msat_make_equal(menv, x_xs[7], expr2), msat_make_equal(menv, x_xs[7], expr3), msat_make_equal(menv, x_xs[7], expr4), msat_make_equal(menv, x_xs[7], expr5), msat_make_equal(menv, x_xs[7], expr6), msat_make_equal(menv, x_xs[7], expr7), msat_make_equal(menv, x_xs[7], expr8), msat_make_equal(menv, x_xs[7], expr9), msat_make_equal(menv, x_xs[7], expr10), msat_make_equal(menv, x_xs[7], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[1], n_10_0) expr1 = msat_make_plus(menv, xs[2], n_2_0) expr2 = msat_make_plus(menv, xs[3], n_14_0) expr3 = msat_make_plus(menv, xs[4], n_6_0) expr4 = msat_make_plus(menv, xs[10], n_8_0) expr5 = msat_make_plus(menv, xs[11], n_3_0) expr6 = msat_make_plus(menv, xs[12], n_14_0) expr7 = msat_make_plus(menv, xs[14], n_4_0) expr8 = msat_make_plus(menv, xs[16], n_15_0) expr9 = msat_make_plus(menv, xs[18], n_5_0) expr10 = msat_make_plus(menv, xs[20], n_3_0) expr11 = msat_make_plus(menv, xs[23], n_8_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[8], expr0), msat_make_geq(menv, x_xs[8], expr1), msat_make_geq(menv, x_xs[8], expr2), msat_make_geq(menv, x_xs[8], expr3), msat_make_geq(menv, x_xs[8], expr4), msat_make_geq(menv, x_xs[8], expr5), msat_make_geq(menv, x_xs[8], expr6), msat_make_geq(menv, x_xs[8], expr7), msat_make_geq(menv, x_xs[8], expr8), msat_make_geq(menv, x_xs[8], expr9), msat_make_geq(menv, x_xs[8], expr10), msat_make_geq(menv, x_xs[8], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[8], expr0), msat_make_equal(menv, x_xs[8], expr1), msat_make_equal(menv, x_xs[8], expr2), msat_make_equal(menv, x_xs[8], expr3), msat_make_equal(menv, x_xs[8], expr4), msat_make_equal(menv, x_xs[8], expr5), msat_make_equal(menv, x_xs[8], expr6), msat_make_equal(menv, x_xs[8], expr7), msat_make_equal(menv, x_xs[8], expr8), msat_make_equal(menv, x_xs[8], expr9), msat_make_equal(menv, x_xs[8], expr10), msat_make_equal(menv, x_xs[8], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_7_0) expr1 = msat_make_plus(menv, xs[3], n_15_0) expr2 = msat_make_plus(menv, xs[4], n_2_0) expr3 = msat_make_plus(menv, xs[5], n_1_0) expr4 = msat_make_plus(menv, xs[10], n_19_0) expr5 = msat_make_plus(menv, xs[11], n_12_0) expr6 = msat_make_plus(menv, xs[13], n_10_0) expr7 = msat_make_plus(menv, xs[15], n_14_0) expr8 = msat_make_plus(menv, xs[18], n_16_0) expr9 = msat_make_plus(menv, xs[19], n_14_0) expr10 = msat_make_plus(menv, xs[20], n_8_0) expr11 = msat_make_plus(menv, xs[21], n_12_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[9], expr0), msat_make_geq(menv, x_xs[9], expr1), msat_make_geq(menv, x_xs[9], expr2), msat_make_geq(menv, x_xs[9], expr3), msat_make_geq(menv, x_xs[9], expr4), msat_make_geq(menv, x_xs[9], expr5), msat_make_geq(menv, x_xs[9], expr6), msat_make_geq(menv, x_xs[9], expr7), msat_make_geq(menv, x_xs[9], expr8), msat_make_geq(menv, x_xs[9], expr9), msat_make_geq(menv, x_xs[9], expr10), msat_make_geq(menv, x_xs[9], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[9], expr0), msat_make_equal(menv, x_xs[9], expr1), msat_make_equal(menv, x_xs[9], expr2), msat_make_equal(menv, x_xs[9], expr3), msat_make_equal(menv, x_xs[9], expr4), msat_make_equal(menv, x_xs[9], expr5), msat_make_equal(menv, x_xs[9], expr6), msat_make_equal(menv, x_xs[9], expr7), msat_make_equal(menv, x_xs[9], expr8), msat_make_equal(menv, x_xs[9], expr9), msat_make_equal(menv, x_xs[9], expr10), msat_make_equal(menv, x_xs[9], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[1], n_15_0) expr1 = msat_make_plus(menv, xs[2], n_14_0) expr2 = msat_make_plus(menv, xs[3], n_4_0) expr3 = msat_make_plus(menv, xs[4], n_20_0) expr4 = msat_make_plus(menv, xs[5], n_3_0) expr5 = msat_make_plus(menv, xs[8], n_18_0) expr6 = msat_make_plus(menv, xs[9], n_5_0) expr7 = msat_make_plus(menv, xs[10], n_20_0) expr8 = msat_make_plus(menv, xs[11], n_10_0) expr9 = msat_make_plus(menv, xs[12], n_1_0) expr10 = msat_make_plus(menv, xs[14], n_15_0) expr11 = msat_make_plus(menv, xs[15], n_20_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[10], expr0), msat_make_geq(menv, x_xs[10], expr1), msat_make_geq(menv, x_xs[10], expr2), msat_make_geq(menv, x_xs[10], expr3), msat_make_geq(menv, x_xs[10], expr4), msat_make_geq(menv, x_xs[10], expr5), msat_make_geq(menv, x_xs[10], expr6), msat_make_geq(menv, x_xs[10], expr7), msat_make_geq(menv, x_xs[10], expr8), msat_make_geq(menv, x_xs[10], expr9), msat_make_geq(menv, x_xs[10], expr10), msat_make_geq(menv, x_xs[10], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[10], expr0), msat_make_equal(menv, x_xs[10], expr1), msat_make_equal(menv, x_xs[10], expr2), msat_make_equal(menv, x_xs[10], expr3), msat_make_equal(menv, x_xs[10], expr4), msat_make_equal(menv, x_xs[10], expr5), msat_make_equal(menv, x_xs[10], expr6), msat_make_equal(menv, x_xs[10], expr7), msat_make_equal(menv, x_xs[10], expr8), msat_make_equal(menv, x_xs[10], expr9), msat_make_equal(menv, x_xs[10], expr10), msat_make_equal(menv, x_xs[10], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_11_0) expr1 = msat_make_plus(menv, xs[4], n_3_0) expr2 = msat_make_plus(menv, xs[5], n_16_0) expr3 = msat_make_plus(menv, xs[7], n_10_0) expr4 = msat_make_plus(menv, xs[9], n_20_0) expr5 = msat_make_plus(menv, xs[10], n_13_0) expr6 = msat_make_plus(menv, xs[11], n_6_0) expr7 = msat_make_plus(menv, xs[13], n_10_0) expr8 = msat_make_plus(menv, xs[15], n_8_0) expr9 = msat_make_plus(menv, xs[19], n_20_0) expr10 = msat_make_plus(menv, xs[21], n_19_0) expr11 = msat_make_plus(menv, xs[22], n_14_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[11], expr0), msat_make_geq(menv, x_xs[11], expr1), msat_make_geq(menv, x_xs[11], expr2), msat_make_geq(menv, x_xs[11], expr3), msat_make_geq(menv, x_xs[11], expr4), msat_make_geq(menv, x_xs[11], expr5), msat_make_geq(menv, x_xs[11], expr6), msat_make_geq(menv, x_xs[11], expr7), msat_make_geq(menv, x_xs[11], expr8), msat_make_geq(menv, x_xs[11], expr9), msat_make_geq(menv, x_xs[11], expr10), msat_make_geq(menv, x_xs[11], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[11], expr0), msat_make_equal(menv, x_xs[11], expr1), msat_make_equal(menv, x_xs[11], expr2), msat_make_equal(menv, x_xs[11], expr3), msat_make_equal(menv, x_xs[11], expr4), msat_make_equal(menv, x_xs[11], expr5), msat_make_equal(menv, x_xs[11], expr6), msat_make_equal(menv, x_xs[11], expr7), msat_make_equal(menv, x_xs[11], expr8), msat_make_equal(menv, x_xs[11], expr9), msat_make_equal(menv, x_xs[11], expr10), msat_make_equal(menv, x_xs[11], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_16_0) expr1 = msat_make_plus(menv, xs[4], n_18_0) expr2 = msat_make_plus(menv, xs[6], n_13_0) expr3 = msat_make_plus(menv, xs[7], n_4_0) expr4 = msat_make_plus(menv, xs[8], n_10_0) expr5 = msat_make_plus(menv, xs[9], n_8_0) expr6 = msat_make_plus(menv, xs[12], n_4_0) expr7 = msat_make_plus(menv, xs[15], n_9_0) expr8 = msat_make_plus(menv, xs[19], n_1_0) expr9 = msat_make_plus(menv, xs[20], n_12_0) expr10 = msat_make_plus(menv, xs[22], n_4_0) expr11 = msat_make_plus(menv, xs[23], n_19_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[12], expr0), msat_make_geq(menv, x_xs[12], expr1), msat_make_geq(menv, x_xs[12], expr2), msat_make_geq(menv, x_xs[12], expr3), msat_make_geq(menv, x_xs[12], expr4), msat_make_geq(menv, x_xs[12], expr5), msat_make_geq(menv, x_xs[12], expr6), msat_make_geq(menv, x_xs[12], expr7), msat_make_geq(menv, x_xs[12], expr8), msat_make_geq(menv, x_xs[12], expr9), msat_make_geq(menv, x_xs[12], expr10), msat_make_geq(menv, x_xs[12], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[12], expr0), msat_make_equal(menv, x_xs[12], expr1), msat_make_equal(menv, x_xs[12], expr2), msat_make_equal(menv, x_xs[12], expr3), msat_make_equal(menv, x_xs[12], expr4), msat_make_equal(menv, x_xs[12], expr5), msat_make_equal(menv, x_xs[12], expr6), msat_make_equal(menv, x_xs[12], expr7), msat_make_equal(menv, x_xs[12], expr8), msat_make_equal(menv, x_xs[12], expr9), msat_make_equal(menv, x_xs[12], expr10), msat_make_equal(menv, x_xs[12], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[2], n_6_0) expr1 = msat_make_plus(menv, xs[5], n_16_0) expr2 = msat_make_plus(menv, xs[6], n_9_0) expr3 = msat_make_plus(menv, xs[7], n_13_0) expr4 = msat_make_plus(menv, xs[8], n_14_0) expr5 = msat_make_plus(menv, xs[9], n_13_0) expr6 = msat_make_plus(menv, xs[11], n_7_0) expr7 = msat_make_plus(menv, xs[13], n_9_0) expr8 = msat_make_plus(menv, xs[15], n_1_0) expr9 = msat_make_plus(menv, xs[19], n_19_0) expr10 = msat_make_plus(menv, xs[21], n_7_0) expr11 = msat_make_plus(menv, xs[23], n_14_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[13], expr0), msat_make_geq(menv, x_xs[13], expr1), msat_make_geq(menv, x_xs[13], expr2), msat_make_geq(menv, x_xs[13], expr3), msat_make_geq(menv, x_xs[13], expr4), msat_make_geq(menv, x_xs[13], expr5), msat_make_geq(menv, x_xs[13], expr6), msat_make_geq(menv, x_xs[13], expr7), msat_make_geq(menv, x_xs[13], expr8), msat_make_geq(menv, x_xs[13], expr9), msat_make_geq(menv, x_xs[13], expr10), msat_make_geq(menv, x_xs[13], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[13], expr0), msat_make_equal(menv, x_xs[13], expr1), msat_make_equal(menv, x_xs[13], expr2), msat_make_equal(menv, x_xs[13], expr3), msat_make_equal(menv, x_xs[13], expr4), msat_make_equal(menv, x_xs[13], expr5), msat_make_equal(menv, x_xs[13], expr6), msat_make_equal(menv, x_xs[13], expr7), msat_make_equal(menv, x_xs[13], expr8), msat_make_equal(menv, x_xs[13], expr9), msat_make_equal(menv, x_xs[13], expr10), msat_make_equal(menv, x_xs[13], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[2], n_19_0) expr1 = msat_make_plus(menv, xs[6], n_4_0) expr2 = msat_make_plus(menv, xs[7], n_8_0) expr3 = msat_make_plus(menv, xs[9], n_11_0) expr4 = msat_make_plus(menv, xs[10], n_14_0) expr5 = msat_make_plus(menv, xs[11], n_20_0) expr6 = msat_make_plus(menv, xs[12], n_16_0) expr7 = msat_make_plus(menv, xs[15], n_15_0) expr8 = msat_make_plus(menv, xs[17], n_15_0) expr9 = msat_make_plus(menv, xs[21], n_10_0) expr10 = msat_make_plus(menv, xs[22], n_7_0) expr11 = msat_make_plus(menv, xs[23], n_17_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[14], expr0), msat_make_geq(menv, x_xs[14], expr1), msat_make_geq(menv, x_xs[14], expr2), msat_make_geq(menv, x_xs[14], expr3), msat_make_geq(menv, x_xs[14], expr4), msat_make_geq(menv, x_xs[14], expr5), msat_make_geq(menv, x_xs[14], expr6), msat_make_geq(menv, x_xs[14], expr7), msat_make_geq(menv, x_xs[14], expr8), msat_make_geq(menv, x_xs[14], expr9), msat_make_geq(menv, x_xs[14], expr10), msat_make_geq(menv, x_xs[14], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[14], expr0), msat_make_equal(menv, x_xs[14], expr1), msat_make_equal(menv, x_xs[14], expr2), msat_make_equal(menv, x_xs[14], expr3), msat_make_equal(menv, x_xs[14], expr4), msat_make_equal(menv, x_xs[14], expr5), msat_make_equal(menv, x_xs[14], expr6), msat_make_equal(menv, x_xs[14], expr7), msat_make_equal(menv, x_xs[14], expr8), msat_make_equal(menv, x_xs[14], expr9), msat_make_equal(menv, x_xs[14], expr10), msat_make_equal(menv, x_xs[14], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_8_0) expr1 = msat_make_plus(menv, xs[1], n_11_0) expr2 = msat_make_plus(menv, xs[3], n_7_0) expr3 = msat_make_plus(menv, xs[4], n_11_0) expr4 = msat_make_plus(menv, xs[5], n_6_0) expr5 = msat_make_plus(menv, xs[8], n_15_0) expr6 = msat_make_plus(menv, xs[9], n_5_0) expr7 = msat_make_plus(menv, xs[11], n_9_0) expr8 = msat_make_plus(menv, xs[13], n_17_0) expr9 = msat_make_plus(menv, xs[14], n_18_0) expr10 = msat_make_plus(menv, xs[15], n_10_0) expr11 = msat_make_plus(menv, xs[19], n_3_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[15], expr0), msat_make_geq(menv, x_xs[15], expr1), msat_make_geq(menv, x_xs[15], expr2), msat_make_geq(menv, x_xs[15], expr3), msat_make_geq(menv, x_xs[15], expr4), msat_make_geq(menv, x_xs[15], expr5), msat_make_geq(menv, x_xs[15], expr6), msat_make_geq(menv, x_xs[15], expr7), msat_make_geq(menv, x_xs[15], expr8), msat_make_geq(menv, x_xs[15], expr9), msat_make_geq(menv, x_xs[15], expr10), msat_make_geq(menv, x_xs[15], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[15], expr0), msat_make_equal(menv, x_xs[15], expr1), msat_make_equal(menv, x_xs[15], expr2), msat_make_equal(menv, x_xs[15], expr3), msat_make_equal(menv, x_xs[15], expr4), msat_make_equal(menv, x_xs[15], expr5), msat_make_equal(menv, x_xs[15], expr6), msat_make_equal(menv, x_xs[15], expr7), msat_make_equal(menv, x_xs[15], expr8), msat_make_equal(menv, x_xs[15], expr9), msat_make_equal(menv, x_xs[15], expr10), msat_make_equal(menv, x_xs[15], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_11_0) expr1 = msat_make_plus(menv, xs[5], n_19_0) expr2 = msat_make_plus(menv, xs[8], n_2_0) expr3 = msat_make_plus(menv, xs[9], n_6_0) expr4 = msat_make_plus(menv, xs[10], n_6_0) expr5 = msat_make_plus(menv, xs[13], n_18_0) expr6 = msat_make_plus(menv, xs[14], n_17_0) expr7 = msat_make_plus(menv, xs[15], n_2_0) expr8 = msat_make_plus(menv, xs[17], n_11_0) expr9 = msat_make_plus(menv, xs[20], n_18_0) expr10 = msat_make_plus(menv, xs[21], n_14_0) expr11 = msat_make_plus(menv, xs[23], n_2_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[16], expr0), msat_make_geq(menv, x_xs[16], expr1), msat_make_geq(menv, x_xs[16], expr2), msat_make_geq(menv, x_xs[16], expr3), msat_make_geq(menv, x_xs[16], expr4), msat_make_geq(menv, x_xs[16], expr5), msat_make_geq(menv, x_xs[16], expr6), msat_make_geq(menv, x_xs[16], expr7), msat_make_geq(menv, x_xs[16], expr8), msat_make_geq(menv, x_xs[16], expr9), msat_make_geq(menv, x_xs[16], expr10), msat_make_geq(menv, x_xs[16], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[16], expr0), msat_make_equal(menv, x_xs[16], expr1), msat_make_equal(menv, x_xs[16], expr2), msat_make_equal(menv, x_xs[16], expr3), msat_make_equal(menv, x_xs[16], expr4), msat_make_equal(menv, x_xs[16], expr5), msat_make_equal(menv, x_xs[16], expr6), msat_make_equal(menv, x_xs[16], expr7), msat_make_equal(menv, x_xs[16], expr8), msat_make_equal(menv, x_xs[16], expr9), msat_make_equal(menv, x_xs[16], expr10), msat_make_equal(menv, x_xs[16], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[1], n_13_0) expr1 = msat_make_plus(menv, xs[3], n_15_0) expr2 = msat_make_plus(menv, xs[4], n_10_0) expr3 = msat_make_plus(menv, xs[6], n_8_0) expr4 = msat_make_plus(menv, xs[9], n_2_0) expr5 = msat_make_plus(menv, xs[11], n_19_0) expr6 = msat_make_plus(menv, xs[12], n_5_0) expr7 = msat_make_plus(menv, xs[13], n_7_0) expr8 = msat_make_plus(menv, xs[14], n_8_0) expr9 = msat_make_plus(menv, xs[18], n_9_0) expr10 = msat_make_plus(menv, xs[21], n_7_0) expr11 = msat_make_plus(menv, xs[22], n_9_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[17], expr0), msat_make_geq(menv, x_xs[17], expr1), msat_make_geq(menv, x_xs[17], expr2), msat_make_geq(menv, x_xs[17], expr3), msat_make_geq(menv, x_xs[17], expr4), msat_make_geq(menv, x_xs[17], expr5), msat_make_geq(menv, x_xs[17], expr6), msat_make_geq(menv, x_xs[17], expr7), msat_make_geq(menv, x_xs[17], expr8), msat_make_geq(menv, x_xs[17], expr9), msat_make_geq(menv, x_xs[17], expr10), msat_make_geq(menv, x_xs[17], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[17], expr0), msat_make_equal(menv, x_xs[17], expr1), msat_make_equal(menv, x_xs[17], expr2), msat_make_equal(menv, x_xs[17], expr3), msat_make_equal(menv, x_xs[17], expr4), msat_make_equal(menv, x_xs[17], expr5), msat_make_equal(menv, x_xs[17], expr6), msat_make_equal(menv, x_xs[17], expr7), msat_make_equal(menv, x_xs[17], expr8), msat_make_equal(menv, x_xs[17], expr9), msat_make_equal(menv, x_xs[17], expr10), msat_make_equal(menv, x_xs[17], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_6_0) expr1 = msat_make_plus(menv, xs[3], n_10_0) expr2 = msat_make_plus(menv, xs[4], n_1_0) expr3 = msat_make_plus(menv, xs[5], n_14_0) expr4 = msat_make_plus(menv, xs[7], n_8_0) expr5 = msat_make_plus(menv, xs[8], n_17_0) expr6 = msat_make_plus(menv, xs[9], n_2_0) expr7 = msat_make_plus(menv, xs[15], n_3_0) expr8 = msat_make_plus(menv, xs[20], n_8_0) expr9 = msat_make_plus(menv, xs[21], n_10_0) expr10 = msat_make_plus(menv, xs[22], n_17_0) expr11 = msat_make_plus(menv, xs[23], n_1_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[18], expr0), msat_make_geq(menv, x_xs[18], expr1), msat_make_geq(menv, x_xs[18], expr2), msat_make_geq(menv, x_xs[18], expr3), msat_make_geq(menv, x_xs[18], expr4), msat_make_geq(menv, x_xs[18], expr5), msat_make_geq(menv, x_xs[18], expr6), msat_make_geq(menv, x_xs[18], expr7), msat_make_geq(menv, x_xs[18], expr8), msat_make_geq(menv, x_xs[18], expr9), msat_make_geq(menv, x_xs[18], expr10), msat_make_geq(menv, x_xs[18], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[18], expr0), msat_make_equal(menv, x_xs[18], expr1), msat_make_equal(menv, x_xs[18], expr2), msat_make_equal(menv, x_xs[18], expr3), msat_make_equal(menv, x_xs[18], expr4), msat_make_equal(menv, x_xs[18], expr5), msat_make_equal(menv, x_xs[18], expr6), msat_make_equal(menv, x_xs[18], expr7), msat_make_equal(menv, x_xs[18], expr8), msat_make_equal(menv, x_xs[18], expr9), msat_make_equal(menv, x_xs[18], expr10), msat_make_equal(menv, x_xs[18], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_15_0) expr1 = msat_make_plus(menv, xs[3], n_7_0) expr2 = msat_make_plus(menv, xs[6], n_10_0) expr3 = msat_make_plus(menv, xs[8], n_7_0) expr4 = msat_make_plus(menv, xs[10], n_17_0) expr5 = msat_make_plus(menv, xs[11], n_3_0) expr6 = msat_make_plus(menv, xs[12], n_20_0) expr7 = msat_make_plus(menv, xs[15], n_8_0) expr8 = msat_make_plus(menv, xs[17], n_7_0) expr9 = msat_make_plus(menv, xs[18], n_4_0) expr10 = msat_make_plus(menv, xs[19], n_20_0) expr11 = msat_make_plus(menv, xs[20], n_15_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[19], expr0), msat_make_geq(menv, x_xs[19], expr1), msat_make_geq(menv, x_xs[19], expr2), msat_make_geq(menv, x_xs[19], expr3), msat_make_geq(menv, x_xs[19], expr4), msat_make_geq(menv, x_xs[19], expr5), msat_make_geq(menv, x_xs[19], expr6), msat_make_geq(menv, x_xs[19], expr7), msat_make_geq(menv, x_xs[19], expr8), msat_make_geq(menv, x_xs[19], expr9), msat_make_geq(menv, x_xs[19], expr10), msat_make_geq(menv, x_xs[19], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[19], expr0), msat_make_equal(menv, x_xs[19], expr1), msat_make_equal(menv, x_xs[19], expr2), msat_make_equal(menv, x_xs[19], expr3), msat_make_equal(menv, x_xs[19], expr4), msat_make_equal(menv, x_xs[19], expr5), msat_make_equal(menv, x_xs[19], expr6), msat_make_equal(menv, x_xs[19], expr7), msat_make_equal(menv, x_xs[19], expr8), msat_make_equal(menv, x_xs[19], expr9), msat_make_equal(menv, x_xs[19], expr10), msat_make_equal(menv, x_xs[19], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[5], n_17_0) expr1 = msat_make_plus(menv, xs[6], n_6_0) expr2 = msat_make_plus(menv, xs[7], n_5_0) expr3 = msat_make_plus(menv, xs[9], n_12_0) expr4 = msat_make_plus(menv, xs[10], n_13_0) expr5 = msat_make_plus(menv, xs[12], n_3_0) expr6 = msat_make_plus(menv, xs[15], n_14_0) expr7 = msat_make_plus(menv, xs[16], n_17_0) expr8 = msat_make_plus(menv, xs[17], n_10_0) expr9 = msat_make_plus(menv, xs[19], n_3_0) expr10 = msat_make_plus(menv, xs[22], n_18_0) expr11 = msat_make_plus(menv, xs[23], n_1_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[20], expr0), msat_make_geq(menv, x_xs[20], expr1), msat_make_geq(menv, x_xs[20], expr2), msat_make_geq(menv, x_xs[20], expr3), msat_make_geq(menv, x_xs[20], expr4), msat_make_geq(menv, x_xs[20], expr5), msat_make_geq(menv, x_xs[20], expr6), msat_make_geq(menv, x_xs[20], expr7), msat_make_geq(menv, x_xs[20], expr8), msat_make_geq(menv, x_xs[20], expr9), msat_make_geq(menv, x_xs[20], expr10), msat_make_geq(menv, x_xs[20], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[20], expr0), msat_make_equal(menv, x_xs[20], expr1), msat_make_equal(menv, x_xs[20], expr2), msat_make_equal(menv, x_xs[20], expr3), msat_make_equal(menv, x_xs[20], expr4), msat_make_equal(menv, x_xs[20], expr5), msat_make_equal(menv, x_xs[20], expr6), msat_make_equal(menv, x_xs[20], expr7), msat_make_equal(menv, x_xs[20], expr8), msat_make_equal(menv, x_xs[20], expr9), msat_make_equal(menv, x_xs[20], expr10), msat_make_equal(menv, x_xs[20], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[1], n_15_0) expr1 = msat_make_plus(menv, xs[4], n_17_0) expr2 = msat_make_plus(menv, xs[5], n_19_0) expr3 = msat_make_plus(menv, xs[6], n_2_0) expr4 = msat_make_plus(menv, xs[8], n_19_0) expr5 = msat_make_plus(menv, xs[9], n_2_0) expr6 = msat_make_plus(menv, xs[15], n_10_0) expr7 = msat_make_plus(menv, xs[16], n_17_0) expr8 = msat_make_plus(menv, xs[17], n_9_0) expr9 = msat_make_plus(menv, xs[18], n_9_0) expr10 = msat_make_plus(menv, xs[20], n_9_0) expr11 = msat_make_plus(menv, xs[23], n_12_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[21], expr0), msat_make_geq(menv, x_xs[21], expr1), msat_make_geq(menv, x_xs[21], expr2), msat_make_geq(menv, x_xs[21], expr3), msat_make_geq(menv, x_xs[21], expr4), msat_make_geq(menv, x_xs[21], expr5), msat_make_geq(menv, x_xs[21], expr6), msat_make_geq(menv, x_xs[21], expr7), msat_make_geq(menv, x_xs[21], expr8), msat_make_geq(menv, x_xs[21], expr9), msat_make_geq(menv, x_xs[21], expr10), msat_make_geq(menv, x_xs[21], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[21], expr0), msat_make_equal(menv, x_xs[21], expr1), msat_make_equal(menv, x_xs[21], expr2), msat_make_equal(menv, x_xs[21], expr3), msat_make_equal(menv, x_xs[21], expr4), msat_make_equal(menv, x_xs[21], expr5), msat_make_equal(menv, x_xs[21], expr6), msat_make_equal(menv, x_xs[21], expr7), msat_make_equal(menv, x_xs[21], expr8), msat_make_equal(menv, x_xs[21], expr9), msat_make_equal(menv, x_xs[21], expr10), msat_make_equal(menv, x_xs[21], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_10_0) expr1 = msat_make_plus(menv, xs[2], n_19_0) expr2 = msat_make_plus(menv, xs[5], n_12_0) expr3 = msat_make_plus(menv, xs[6], n_14_0) expr4 = msat_make_plus(menv, xs[7], n_20_0) expr5 = msat_make_plus(menv, xs[8], n_3_0) expr6 = msat_make_plus(menv, xs[9], n_1_0) expr7 = msat_make_plus(menv, xs[10], n_8_0) expr8 = msat_make_plus(menv, xs[11], n_9_0) expr9 = msat_make_plus(menv, xs[13], n_10_0) expr10 = msat_make_plus(menv, xs[16], n_16_0) expr11 = msat_make_plus(menv, xs[21], n_9_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[22], expr0), msat_make_geq(menv, x_xs[22], expr1), msat_make_geq(menv, x_xs[22], expr2), msat_make_geq(menv, x_xs[22], expr3), msat_make_geq(menv, x_xs[22], expr4), msat_make_geq(menv, x_xs[22], expr5), msat_make_geq(menv, x_xs[22], expr6), msat_make_geq(menv, x_xs[22], expr7), msat_make_geq(menv, x_xs[22], expr8), msat_make_geq(menv, x_xs[22], expr9), msat_make_geq(menv, x_xs[22], expr10), msat_make_geq(menv, x_xs[22], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[22], expr0), msat_make_equal(menv, x_xs[22], expr1), msat_make_equal(menv, x_xs[22], expr2), msat_make_equal(menv, x_xs[22], expr3), msat_make_equal(menv, x_xs[22], expr4), msat_make_equal(menv, x_xs[22], expr5), msat_make_equal(menv, x_xs[22], expr6), msat_make_equal(menv, x_xs[22], expr7), msat_make_equal(menv, x_xs[22], expr8), msat_make_equal(menv, x_xs[22], expr9), msat_make_equal(menv, x_xs[22], expr10), msat_make_equal(menv, x_xs[22], expr11),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_5_0) expr1 = msat_make_plus(menv, xs[1], n_10_0) expr2 = msat_make_plus(menv, xs[3], n_11_0) expr3 = msat_make_plus(menv, xs[4], n_19_0) expr4 = msat_make_plus(menv, xs[9], n_2_0) expr5 = msat_make_plus(menv, xs[10], n_13_0) expr6 = msat_make_plus(menv, xs[11], n_18_0) expr7 = msat_make_plus(menv, xs[15], n_14_0) expr8 = msat_make_plus(menv, xs[16], n_3_0) expr9 = msat_make_plus(menv, xs[19], n_9_0) expr10 = msat_make_plus(menv, xs[20], n_1_0) expr11 = msat_make_plus(menv, xs[22], n_17_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[23], expr0), msat_make_geq(menv, x_xs[23], expr1), msat_make_geq(menv, x_xs[23], expr2), msat_make_geq(menv, x_xs[23], expr3), msat_make_geq(menv, x_xs[23], expr4), msat_make_geq(menv, x_xs[23], expr5), msat_make_geq(menv, x_xs[23], expr6), msat_make_geq(menv, x_xs[23], expr7), msat_make_geq(menv, x_xs[23], expr8), msat_make_geq(menv, x_xs[23], expr9), msat_make_geq(menv, x_xs[23], expr10), msat_make_geq(menv, x_xs[23], expr11),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[23], expr0), msat_make_equal(menv, x_xs[23], expr1), msat_make_equal(menv, x_xs[23], expr2), msat_make_equal(menv, x_xs[23], expr3), msat_make_equal(menv, x_xs[23], expr4), msat_make_equal(menv, x_xs[23], expr5), msat_make_equal(menv, x_xs[23], expr6), msat_make_equal(menv, x_xs[23], expr7), msat_make_equal(menv, x_xs[23], expr8), msat_make_equal(menv, x_xs[23], expr9), msat_make_equal(menv, x_xs[23], expr10), msat_make_equal(menv, x_xs[23], expr11),)) trans = msat_make_and(menv, trans, _t) # ltl property: (X (F (G (F (x_3 - x_20 >= 1))))) ltl = enc.make_X(enc.make_F(enc.make_G(enc.make_F(msat_make_geq(menv, msat_make_minus(menv, xs[3], xs[20]), msat_make_number(menv, "1")))))) return TermMap(curr2next), init, trans, ltl
45297b843b717fd571b9a542906a15e1a9b43bb3
8b3ca44ee3d990233e74655b7131d616094f70c2
/experiments/sparsity/methylation_gm/gaussian_truncatednormal_hierarchical.py
427b535bd7e7c6d03bb77c738acc2c5ee7ee563c
[]
no_license
zshwuhan/BMF_Priors
8b8c54271285a72d2085a56a9475c0756f375e67
6a600da1c41f1ccde2f2ba99298b40e68fb9910a
refs/heads/master
2021-05-13T19:10:07.203215
2017-12-01T13:30:21
2017-12-01T13:30:21
116,883,181
1
0
null
2018-01-09T23:36:13
2018-01-09T23:36:13
null
UTF-8
Python
false
false
1,480
py
''' Measure sparsity experiment on the methylation GM dataset, with the Gaussian + Truncated Normal + hierarchical model. ''' project_location = "/Users/thomasbrouwer/Documents/Projects/libraries/" import sys sys.path.append(project_location) from BMF_Priors.code.models.bmf_gaussian_truncatednormal_hierarchical import BMF_Gaussian_TruncatedNormal_Hierarchical from BMF_Priors.data.methylation.load_data import load_gene_body_methylation_integer from BMF_Priors.experiments.sparsity.sparsity_experiment import sparsity_experiment import matplotlib.pyplot as plt ''' Run the experiment. ''' R, M = load_gene_body_methylation_integer() model_class = BMF_Gaussian_TruncatedNormal_Hierarchical n_repeats = 10 stratify_rows = False fractions_unknown = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99] settings = { 'R': R, 'M': M, 'K': 5, 'hyperparameters': { 'alpha':1., 'beta':1., 'mu_mu':0., 'tau_mu':0.1, 'a':1., 'b':1. }, 'init': 'random', 'iterations': 250, 'burn_in': 200, 'thinning': 2, } fout = './results/performances_gaussian_truncatednormal_hierarchical.txt' average_performances, all_performances = sparsity_experiment( n_repeats=n_repeats, fractions_unknown=fractions_unknown, stratify_rows=stratify_rows, model_class=model_class, settings=settings, fout=fout) ''' Plot the performance. ''' plt.figure() plt.title("Sparsity performances") plt.plot(fractions_unknown, average_performances['MSE']) plt.ylim(0,10)
4e6151e08844e9f992a2200fb36b50f34d975023
9bff711e7e28f5c3b59d3faa9c0f851719dff4e6
/blair/__init__.py
cfe408230df1f0ee7935709afce62772cba2fc14
[]
no_license
crzeller11/Debiasing-Word-Embeddings
e61c46adc7440927030d8436ea9568710423d03a
70de33a89be147a0091f6fb75c7e688f2db99564
refs/heads/master
2020-03-28T16:28:55.082077
2019-03-29T17:57:13
2019-03-29T17:57:13
148,699,831
0
1
null
2019-03-29T17:57:14
2018-09-13T21:23:45
Python
UTF-8
Python
false
false
107
py
from .evaluate import read_dataset_directory, score_embedding from .src.embeddings import WrappedEmbedding
250692130016bd8b68bba47f883404dbe047de02
c7b1d4037804c809687b6bd839c45f7da0ccaac8
/proplot/config.py
c218b25feb1503dfe66b98466efde282dd829fa1
[ "MIT" ]
permissive
gepcel/proplot
af03d4302d6a8cbaf88bc2032368d8240c7d19d3
afeb7da4cd52f83e34bf3e2f8e781efa1dd2b763
refs/heads/master
2022-11-16T00:26:52.142575
2020-07-10T03:38:36
2020-07-10T03:38:36
278,497,577
0
0
MIT
2020-07-10T00:09:13
2020-07-10T00:09:12
null
UTF-8
Python
false
false
62,496
py
#!/usr/bin/env python3 """ Tools for setting up ProPlot and configuring global settings. See the :ref:`configuration guide <ug_config>` for details. """ # NOTE: The matplotlib analogue to this file is actually __init__.py # but it makes more sense to have all the setup actions in a separate file # so the namespace of the top-level module is unpolluted. # NOTE: Why also load colormaps and cycles in this file and not colors.py? # Because I think it makes sense to have all the code that "runs" (i.e. not # just definitions) in the same place, and I was having issues with circular # dependencies and where import order of __init__.py was affecting behavior. import logging import os import re from collections import namedtuple import cycler import matplotlib as mpl import matplotlib.cbook as cbook import matplotlib.colors as mcolors import matplotlib.font_manager as mfonts import matplotlib.mathtext # noqa import matplotlib.rcsetup as msetup import matplotlib.style.core as mstyle import numpy as np from . import colors as pcolors from .internals import ic # noqa: F401 from .internals import _not_none, docstring, rcsetup, timers, warnings from .utils import to_xyz, units try: from IPython import get_ipython except ImportError: def get_ipython(): return __all__ = [ 'rc', 'RcConfigurator', 'register_cmaps', 'register_cycles', 'register_colors', 'register_fonts', 'config_inline_backend', 'use_style', 'inline_backend_fmt', 'rc_configurator', # deprecated ] logger = logging.getLogger('matplotlib.mathtext') logger.setLevel(logging.ERROR) # suppress warnings! # Dictionaries used to track custom proplot settings rc_proplot = rcsetup._rc_proplot_default.copy() rc_matplotlib = mpl.rcParams # PEP8 4 lyfe RcParams = mpl.RcParams # the special class _RcContext = namedtuple('RcContext', ('mode', 'kwargs', 'rc_new', 'rc_old')) # Misc constants # TODO: Use explicit validators for specific settings like matplotlib. REGEX_STRING = re.compile('\\A(\'.*\'|".*")\\Z') REGEX_POINTS = re.compile( r'\A(?!colorbar|subplots|pdf|ps).*(width|space|size|pad|len)\Z' ) ALWAYS_ADD = ( *( # common fancy names or natural names 'charcoal', 'tomato', 'burgundy', 'maroon', 'burgundy', 'lavendar', 'taupe', 'ocre', 'sand', 'stone', 'earth', 'sand brown', 'sienna', 'terracotta', 'moss', 'crimson', 'mauve', 'rose', 'teal', 'forest', 'grass', 'sage', 'pine', 'vermillion', 'russet', 'cerise', 'avocado', 'wine', 'brick', 'umber', 'mahogany', 'puce', 'grape', 'blurple', 'cranberry', 'sand', 'aqua', 'jade', 'coral', 'olive', 'magenta', 'turquoise', 'sea blue', 'royal blue', 'slate blue', 'slate grey', 'baby blue', 'salmon', 'beige', 'peach', 'mustard', 'lime', 'indigo', 'cornflower', 'marine', 'cloudy blue', 'tangerine', 'scarlet', 'navy', 'cool grey', 'warm grey', 'chocolate', 'raspberry', 'denim', 'gunmetal', 'midnight', 'chartreuse', 'ivory', 'khaki', 'plum', 'silver', 'tan', 'wheat', 'buff', 'bisque', 'cerulean', ), *( # common combos 'red orange', 'yellow orange', 'yellow green', 'blue green', 'blue violet', 'red violet', ), *( # common names prefix + color for color in ( 'red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet', 'brown', 'grey' ) for prefix in ( '', 'light ', 'dark ', 'medium ', 'pale ', ) ) ) ALWAYS_REMOVE = ( # filter these out, let's try to be professional here... 'shit', 'poop', 'poo', 'pee', 'piss', 'puke', 'vomit', 'snot', 'booger', 'bile', 'diarrhea', ) TRANSLATE_COLORS = ( # prevent registering similar-sounding names ('/', ' '), ("'s", ''), ('forrest', 'forest'), # typo? ('reddish', 'red'), # remove 'ish' ('purplish', 'purple'), ('bluish', 'blue'), ('ish ', ' '), ('grey', 'gray'), ('pinky', 'pink'), ('greeny', 'green'), ('bluey', 'blue'), ('purply', 'purple'), ('purpley', 'purple'), ('yellowy', 'yellow'), ('robin egg', 'robins egg'), ('egg blue', 'egg'), ('bluegray', 'blue gray'), ('grayblue', 'gray blue'), ('lightblue', 'light blue'), ('yellowgreen', 'yellow green'), ('yelloworange', 'yellow orange'), ) OPEN_COLORS = {} # populated during register_colors XKCD_COLORS = {} # populated during register_colors BASE_COLORS = { **mcolors.BASE_COLORS, # shorthand names like 'r', 'g', etc. 'blue': (0, 0, 1), 'green': (0, 0.5, 0), 'red': (1, 0, 0), 'cyan': (0, 0.75, 0.75), 'magenta': (0.75, 0, 0.75), 'yellow': (0.75, 0.75, 0), 'black': (0, 0, 0), 'white': (1, 1, 1), } _config_docstring = """ user : bool, optional Whether to reload user {name}. Default is ``True``. default : bool, optional Whether to reload default proplot {name}. Default is ``False``. """ docstring.snippets['register_cmaps.params'] = _config_docstring.format(name='colormaps') docstring.snippets['register_cycles.params'] = _config_docstring.format(name='cycles') docstring.snippets['register_colors.params'] = _config_docstring.format(name='colors') docstring.snippets['rc.params'] = """ local : bool, optional Whether to reload ``.proplotrc`` settings in this directory and parent directories. Default is ``True``. user : bool, optional Whether to reload ``~/.proplotrc`` user settings. Default is ``True``. default : bool, optional Whether to reload default proplot settings. Default is ``True``. """ docstring.snippets['register.ext_table'] = """ Valid file extensions are as follows: ================== ===================================================================================================================================================================================================================== Extension Description ================== ===================================================================================================================================================================================================================== ``.hex`` List of HEX strings in any format (comma-separated, separate lines, with double quotes... anything goes). ``.xml`` XML files with ``<Point .../>`` tags specifying ``x``, ``r``, ``g``, ``b``, and (optionally) ``o`` parameters, where ``x`` is the coordinate and the rest are the red, blue, green, and opacity channel values. ``.rgb``, ``.txt`` 3-4 column table of red, blue, green, and (optionally) opacity channel values, delimited by commas or spaces. If values larger than 1 are detected, they are assumed to be on the 0-255 scale and are divided by 255. ================== ===================================================================================================================================================================================================================== """ # noqa: E501 def _get_data_paths(subfolder, user=True, default=True, reverse=False): """ Return data folder paths in reverse order of precedence. """ # When loading colormaps, cycles, and colors, files in the latter # directories overwrite files in the former directories. When loading # fonts, the resulting paths need to be *reversed*. paths = [] if user: paths.append(os.path.join(os.path.dirname(__file__), subfolder)) if default: paths.append(os.path.join(os.path.expanduser('~'), '.proplot', subfolder)) if reverse: paths = paths[::-1] return paths def _iter_data_paths(subfolder, **kwargs): """ Iterate over all files in the data paths. Also yield an index indicating whether these are default ProPlot files or user files. """ for i, path in enumerate(_get_data_paths(subfolder, **kwargs)): for dirname, dirnames, filenames in os.walk(path): for filename in filenames: if filename[0] == '.': # UNIX-style hidden files continue yield i, dirname, filename class RcConfigurator(object): """ Magical abstract class for managing matplotlib's `builtin settings <rc_matplotlib>`_ and ProPlot's :ref:`added settings <rc_proplot>`. When ProPlot is imported, this class is instantiated as the `rc` object and the ProPlot default settings and ``.proplotrc`` user overrides are applied. To modify these settings, use the `rc` object. See the :ref:`configuration guide <ug_config>` for details. """ def __repr__(self): rcdict = type('rc', (dict,), {})({ # encapsulate params in temporary class key: value for key, value in rc_proplot.items() if '.' not in key # show short names }) string = type(rc_matplotlib).__repr__(rcdict) return string.strip()[:-2] + ',\n ... <rcParams> ...\n })' def __str__(self): rcdict = type('rc', (dict,), {})({ key: value for key, value in rc_proplot.items() if '.' not in key # show short names }) string = type(rc_matplotlib).__str__(rcdict) return string + '\n... <rcParams> ...' def __iter__(self): # lets us build dict """ Iterate over keys and values of matplotlib and proplot settings. """ for key in sorted((*rc_proplot, *rc_matplotlib)): yield key, self[key] def __contains__(self, key): """ Test whether key exists as matplotlib or proplot setting. """ return key in rc_proplot or key in rc_matplotlib @docstring.add_snippets def __init__(self, local=True, user=True, default=True): """ Parameters ---------- %(rc.params)s """ self._context = [] self.reset(local=local, user=user, default=default) def __enter__(self): """ Apply settings from the most recent context block. """ if not self._context: raise RuntimeError( 'rc object must be initialized for context block ' 'using rc.context().' ) context = self._context[-1] kwargs = context.kwargs rc_new = context.rc_new # used for context-based _get_item rc_old = context.rc_old # used to re-apply settings without copying whole dict for key, value in kwargs.items(): kw_proplot, kw_matplotlib = self._get_synced_params(key, value) for rc_dict, kw_new in zip( (rc_proplot, rc_matplotlib), (kw_proplot, kw_matplotlib), ): for key, value in kw_new.items(): rc_old[key] = rc_dict[key] rc_new[key] = rc_dict[key] = value def __exit__(self, *args): # noqa: U100 """ Restore settings from the most recent context block. """ if not self._context: raise RuntimeError( 'rc object must be initialized for context block ' 'using rc.context().' ) context = self._context[-1] for key, value in context.rc_old.items(): kw_proplot, kw_matplotlib = self._get_synced_params(key, value) rc_proplot.update(kw_proplot) rc_matplotlib.update(kw_matplotlib) del self._context[-1] def __delitem__(self, item): # noqa: 100 """ Raise an error. This enforces pseudo-immutability. """ raise RuntimeError('rc settings cannot be deleted.') def __delattr__(self, item): # noqa: 100 """ Raise an error. This enforces pseudo-immutability. """ raise RuntimeError('rc settings cannot be deleted.') def __getattr__(self, attr): """ Pass the attribute to `~RcConfigurator.__getitem__` and return the result. """ if attr[:1] == '_': return super().__getattribute__(attr) else: return self[attr] def __getitem__(self, key): """ Return a `builtin matplotlib setting <rc_matplotlib>`_ or a ProPlot :ref:`added setting <rc_proplot>`. """ key = self._sanitize_key(key) if key is None: # means key was *removed*, warnings was issued return None for kw in (rc_proplot, rc_matplotlib): try: return kw[key] except KeyError: continue raise KeyError(f'Invalid setting name {key!r}.') def __setattr__(self, attr, value): """ Pass the attribute and value to `~RcConfigurator.__setitem__`. """ if attr[:1] == '_': super().__setattr__(attr, value) else: self.__setitem__(attr, value) def __setitem__(self, key, value): """ Modify a `builtin matplotlib setting <rc_matplotlib>`_ or a ProPlot :ref:`added setting <rc_proplot>`. """ kw_proplot, kw_matplotlib = self._get_synced_params(key, value) rc_proplot.update(kw_proplot) rc_matplotlib.update(kw_matplotlib) def _get_context_mode(self): """ Return lowest (most permissive) context mode. """ return min((context.mode for context in self._context), default=0) def _get_item(self, key, mode=None): """ As with `~RcConfigurator.__getitem__` but the search is limited based on the context mode and ``None`` is returned if the key is not found in the dictionaries. """ if mode is None: mode = self._get_context_mode() cache = tuple(context.rc_new for context in self._context) if mode == 0: rcdicts = (*cache, rc_proplot, rc_matplotlib) elif mode == 1: rcdicts = (*cache, rc_proplot) # custom only! elif mode == 2: rcdicts = (*cache,) else: raise KeyError(f'Invalid caching mode {mode!r}.') for rcdict in rcdicts: if not rcdict: continue try: return rcdict[key] except KeyError: continue if mode == 0: raise KeyError(f'Invalid setting name {key!r}.') else: return def _get_synced_params(self, key, value): """ Return dictionaries for updating the `rc_proplot` and `rc_matplotlib` properties associated with this key. """ key = self._sanitize_key(key) if key is None: # means setting was removed return {}, {}, {} keys = (key,) + rcsetup._rc_children.get(key, ()) # settings to change value = self._sanitize_value(value) kw_proplot = {} # custom properties that global setting applies to kw_matplotlib = {} # builtin properties that global setting applies to # Permit arbitary units for builtin matplotlib params # See: https://matplotlib.org/users/customizing.html, props matching # the below strings use the units 'points'. # TODO: Incorporate into more sophisticated validation system if any(REGEX_POINTS.match(_) for _ in keys): try: self._scale_font(value) # *validate* but do not translate except KeyError: value = units(value, 'pt') # Special key: configure inline backend if key == 'inlinefmt': config_inline_backend(value) # Special key: apply stylesheet elif key == 'style': if value is not None: kw_matplotlib, kw_proplot = _get_style_dicts(value, infer=True) # Cycler elif key == 'cycle': colors = _get_cycle_colors(value) kw_matplotlib['patch.facecolor'] = 'C0' kw_matplotlib['axes.prop_cycle'] = cycler.cycler('color', colors) # Zero linewidth almost always means zero tick length # TODO: Document this feature elif key == 'linewidth' and value == 0: ikw_proplot, ikw_matplotlib = self._get_synced_params('ticklen', 0) kw_proplot.update(ikw_proplot) kw_matplotlib.update(ikw_matplotlib) # Tick length/major-minor tick length ratio elif key in ('tick.len', 'tick.lenratio'): if key == 'tick.len': ticklen = value ratio = rc_proplot['tick.lenratio'] else: ticklen = rc_proplot['tick.len'] ratio = value kw_matplotlib['xtick.minor.size'] = ticklen * ratio kw_matplotlib['ytick.minor.size'] = ticklen * ratio # Spine width/major-minor tick width ratio elif key in ('linewidth', 'tick.ratio'): if key == 'linewidth': tickwidth = value ratio = rc_proplot['tick.ratio'] else: tickwidth = rc_proplot['linewidth'] ratio = value kw_matplotlib['xtick.minor.width'] = tickwidth * ratio kw_matplotlib['ytick.minor.width'] = tickwidth * ratio # Gridline width elif key in ('grid.linewidth', 'grid.ratio'): if key == 'grid.linewidth': gridwidth = value ratio = rc_proplot['grid.ratio'] else: gridwidth = rc_matplotlib['grid.linewidth'] ratio = value kw_proplot['gridminor.linewidth'] = gridwidth * ratio # Gridline toggling, complicated because of the clunky way this is # implemented in matplotlib. There should be a gridminor setting! elif key in ('grid', 'gridminor'): b = value ovalue = rc_matplotlib['axes.grid'] owhich = rc_matplotlib['axes.grid.which'] # Instruction is to turn off gridlines if not value: # Gridlines are already off, or they are on for the particular # ones that we want to turn off. Instruct to turn both off. if ( not ovalue or key == 'grid' and owhich == 'major' or key == 'gridminor' and owhich == 'minor' ): which = 'both' # disable both sides # Gridlines are currently on for major and minor ticks, so we # instruct to turn on gridlines for the one we *don't* want off elif owhich == 'both': # and ovalue is True, as already tested # if gridminor=False, enable major, and vice versa b = True which = 'major' if key == 'gridminor' else 'minor' # Gridlines are on for the ones that we *didn't* instruct to # turn off, and off for the ones we do want to turn off. This # just re-asserts the ones that are already on. else: b = True which = owhich # Instruction is to turn on gridlines else: # Gridlines are already both on, or they are off only for the # ones that we want to turn on. Turn on gridlines for both. if ( owhich == 'both' or key == 'grid' and owhich == 'minor' or key == 'gridminor' and owhich == 'major' ): which = 'both' # Gridlines are off for both, or off for the ones that we # don't want to turn on. We can just turn on these ones. else: which = owhich # Finally apply settings kw_matplotlib['axes.grid'] = b kw_matplotlib['axes.grid.which'] = which # Update original setting and linked settings for key in keys: if key in rc_proplot: kw_proplot[key] = value elif key in rc_matplotlib: kw_matplotlib[key] = value else: raise KeyError(f'Invalid rc key {key!r}.') return kw_proplot, kw_matplotlib @staticmethod def _get_local_paths(): """ Return locations of local proplotrc files in this directory and in parent directories. """ idir = os.getcwd() paths = [] while idir: # not empty string ipath = os.path.join(idir, '.proplotrc') if os.path.exists(ipath): paths.append(ipath) ndir = os.path.dirname(idir) if ndir == idir: # root break idir = ndir return paths[::-1] # sort from decreasing to increasing importantce @staticmethod def _get_user_path(): """ Return location of user proplotrc file. """ return os.path.join(os.path.expanduser('~'), '.proplotrc') @staticmethod def _sanitize_key(key): """ Ensure string and convert keys with omitted dots. """ if not isinstance(key, str): raise KeyError(f'Invalid key {key!r}. Must be string.') # Translate from nodots to 'full' version if '.' not in key: key = rcsetup._rc_nodots.get(key, key) # Handle deprecations if key in rcsetup._rc_removed: alternative, version = rcsetup._rc_removed[key] message = f'rc setting {key!r} was removed in version {version}.' if alternative: # provide an alternative message = f'{message} {alternative}' warnings._warn_proplot(warnings) key = None if key in rcsetup._rc_renamed: key_new, version = rcsetup._rc_renamed[key] warnings._warn_proplot( f'rc setting {key!r} was renamed to {key_new} in version {version}.' ) key = key_new return key.lower() @staticmethod def _sanitize_value(value): """ Convert numpy ndarray to list. """ if isinstance(value, np.ndarray): if value.size <= 1: value = value.item() else: value = value.tolist() return value @staticmethod def _scale_font(size): """ Translate font size to numeric. """ # NOTE: Critical this remains KeyError so except clause # in _get_synced_params works. if isinstance(size, str): try: scale = mfonts.font_scalings[size] except KeyError: raise KeyError( f'Invalid font scaling {size!r}. Options are: ' + ', '.join( f'{key!r} ({value})' for key, value in mfonts.font_scalings.items() ) + '.' ) else: size = rc_matplotlib['font.size'] * scale return size def category(self, cat, *, trimcat=True, context=False): """ Return a dictionary of settings beginning with the substring ``cat + '.'``. Parameters ---------- cat : str, optional The `rc` setting category. trimcat : bool, optional Whether to trim ``cat`` from the key names in the output dictionary. Default is ``True``. context : bool, optional If ``True``, then each category setting that is not found in the context mode dictionaries is omitted from the output dictionary. See `~RcConfigurator.context`. """ if cat not in rcsetup._rc_categories: raise ValueError( f'Invalid rc category {cat!r}. Valid categories are ' ', '.join(map(repr, rcsetup._rc_categories)) + '.' ) kw = {} mode = 0 if not context else None for rcdict in (rc_proplot, rc_matplotlib): for key in rcdict: if not re.match(fr'\A{cat}\.[^.]+\Z', key): continue value = self._get_item(key, mode) if value is None: continue if trimcat: key = re.sub(fr'\A{cat}\.', '', key) kw[key] = value return kw def context(self, *args, mode=0, file=None, **kwargs): """ Temporarily modify the rc settings in a "with as" block. Parameters ---------- *args Dictionaries of `rc` names and values. file : str, optional Filename from which settings should be loaded. **kwargs `rc` names and values passed as keyword arguments. If the name has dots, simply omit them. Other parameters ---------------- mode : {0, 1, 2}, optional The context mode. Dictates the behavior of `~RcConfigurator.get`, `~RcConfigurator.fill`, and `~RcConfigurator.category` within a "with as" block when called with ``context=True``. The options are as follows: 0. Matplotlib's `builtin settings <rc_matplotlib>`_ and ProPlot's :ref:`added settings <rc_proplot>` are all returned, whether or not `~RcConfigurator.context` has changed them. 1. *Unchanged* `matplotlib settings <rc_matplotlib>`_ return ``None``. All of ProPlot's :ref:`added settings <rc_proplot>` are returned whether or not `~RcConfigurator.context` has changed them. This is used in the `~proplot.axes.Axes.__init__` call to `~proplot.axes.Axes.format`. When a lookup returns ``None``, `~proplot.axes.Axes.format` does not apply it. 2. All unchanged settings return ``None``. This is used during user calls to `~proplot.axes.Axes.format`. Note ---- This is used by ProPlot internally but may also be useful for power users. It was invented to prevent successive calls to `~proplot.axes.Axes.format` from constantly looking up and re-applying unchanged settings. These gratuitous lookups increased runtime significantly, and resulted in successive calls to `~proplot.axes.Axes.format` overwriting the previous calls. Example ------- The below applies settings to axes in a specific figure using `~RcConfigurator.context`. >>> import proplot as plot >>> with plot.rc.context(linewidth=2, ticklen=5): >>> fig, ax = plot.subplots() >>> ax.plot(data) The below applies settings to a specific axes using `~proplot.axes.Axes.format`, which uses `~RcConfigurator.context` internally. >>> import proplot as plot >>> fig, ax = plot.subplots() >>> ax.format(linewidth=2, ticklen=5) """ # Add input dictionaries for arg in args: if not isinstance(arg, dict): raise ValueError('Non-dictionary argument {arg!r}.') kwargs.update(arg) # Add settings from file # TODO: Incoporate with matplotlib 'stylesheets' if file is not None: kw_proplot, kw_matplotlib = self._load_file(file) kwargs.update(kw_proplot) kwargs.update(kw_matplotlib) # Activate context object if mode not in range(3): raise ValueError(f'Invalid mode {mode!r}.') context = _RcContext(mode=mode, kwargs=kwargs, rc_new={}, rc_old={}) self._context.append(context) return self def get(self, key, *, context=False): """ Return a single setting. Parameters ---------- key : str The setting name. context : bool, optional If ``True``, then ``None`` is returned if the setting is not found in the context mode dictionaries. See `~RcConfigurator.context`. """ mode = 0 if not context else None return self._get_item(key, mode) def fill(self, props, *, context=False): """ Return a dictionary filled with settings whose names match the string values in the input dictionary. Parameters ---------- props : dict-like Dictionary whose values are `rc` setting names. context : bool, optional If ``True``, then each setting that is not found in the context mode dictionaries is omitted from the output dictionary. See `~RcConfigurator.context`. """ kw = {} mode = 0 if not context else None for key, value in props.items(): item = self._get_item(value, mode) if item is not None: kw[key] = item return kw def update(self, *args, **kwargs): """ Update several settings at once with a dictionary and/or keyword arguments. Parameters ---------- *args : str, dict, or (str, dict), optional A dictionary containing `rc` keys and values. You can also pass a "category" name as the first argument, in which case all settings are prepended with ``'category.'``. For example, ``rc.update('axes', labelsize=20, titlesize=20)`` changes the :rcraw:`axes.labelsize` and :rcraw:`axes.titlesize` properties. **kwargs, optional `rc` keys and values passed as keyword arguments. If the name has dots, simply omit them. """ # Parse args kw = {} prefix = '' if len(args) > 2: raise ValueError( f'rc.update() accepts 1-2 arguments, got {len(args)}. Usage ' 'is rc.update(kw), rc.update(category, kw), ' 'rc.update(**kwargs), or rc.update(category, **kwargs).' ) elif len(args) == 2: prefix = args[0] kw = args[1] elif len(args) == 1: if isinstance(args[0], str): prefix = args[0] else: kw = args[0] # Apply settings if prefix: prefix = prefix + '.' kw.update(kwargs) for key, value in kw.items(): self.__setitem__(prefix + key, value) @docstring.add_snippets def reset(self, local=True, user=True, default=True): """ Reset the configurator to its initial state. Parameters ---------- %(rc.params)s """ # Always remove context objects self._context.clear() # Update from default settings # NOTE: see _remove_blacklisted_style_params bugfix if default: rc_matplotlib.update(_get_style_dicts('original', filter=False)) rc_matplotlib.update(rcsetup._rc_matplotlib_default) rc_proplot.update(rcsetup._rc_proplot_default) for key, value in rc_proplot.items(): kw_proplot, kw_matplotlib = self._get_synced_params(key, value) rc_matplotlib.update(kw_matplotlib) rc_proplot.update(kw_proplot) # Update from user home user_path = None if user: user_path = self._get_user_path() if os.path.isfile(user_path): self.load_file(user_path) # Update from local paths if local: local_paths = self._get_local_paths() for path in local_paths: if path == user_path: # local files always have precedence continue self.load_file(path) def _load_file(self, path): """ Return dictionaries of proplot and matplotlib settings loaded from the file. """ added = set() path = os.path.expanduser(path) kw_proplot = {} kw_matplotlib = {} with open(path, 'r') as fh: for cnt, line in enumerate(fh): # Parse line and ignore comments stripped = line.split('#', 1)[0].strip() if not stripped: continue pair = stripped.split(':', 1) if len(pair) != 2: warnings._warn_proplot( f'Illegal line #{cnt + 1} in file {path!r}:\n{line!r}"' ) continue # Get key value pair key, val = pair key = key.strip() val = val.strip() if key in added: warnings._warn_proplot( f'Duplicate key {key!r} on line #{cnt + 1} in file {path!r}.' ) added.add(key) # *Very primitive* type conversion system for proplot settings. # Matplotlib does this automatically. if REGEX_STRING.match(val): # also do this for matplotlib settings val = val[1:-1] # remove quotes from string if key in rc_proplot: if not val: val = None # older proplot versions supported this elif val in ('True', 'False', 'None'): val = eval(val) # rare case where eval is o.k. else: try: val = float(val) if '.' in val else int(val) except ValueError: pass # Add to dictionaries try: ikw_proplot, ikw_matplotlib = self._get_synced_params(key, val) kw_proplot.update(ikw_proplot) kw_matplotlib.update(ikw_matplotlib) except KeyError: warnings._warn_proplot( f'Invalid key {key!r} on line #{cnt} in file {path!r}.' ) return kw_proplot, kw_matplotlib def load_file(self, path): """ Load settings from the specified file. Parameters ---------- path : str The file path. """ kw_proplot, kw_matplotlib = self._load_file(path) rc_proplot.update(kw_proplot) rc_matplotlib.update(kw_matplotlib) @staticmethod def _save_rst(path): """ Used internally to create table for online docs. """ string = rcsetup._gen_rst_table() with open(path, 'w') as fh: fh.write(string) @staticmethod def _save_proplotrc(path, comment=False): """ Used internally to create initial proplotrc file and file for online docs. """ self = object() # self is unused when 'user' is False RcConfigurator.save(self, path, user=False, backup=False, comment=comment) def save(self, path=None, user=True, comment=None, backup=True, description=False): """ Save the current settings to a ``.proplotrc`` file. This writes the default values commented out plus the values that *differ* from the defaults at the top of the file. Parameters ---------- path : str, optional The path name. The default file name is ``.proplotrc`` and the default directory is the home directory. Use ``path=''`` to save to the current directory. user : bool, optional If ``True`` (the default), the settings you changed since importing proplot are shown uncommented at the very top of the file. backup : bool, optional If the file already exists and this is set to ``True``, it is moved to a backup file with the suffix ``.bak``. comment : bool, optional Whether to comment out the default settings. Default is the value of `user`. description : bool, optional Whether to include descriptions of each setting as comments. Default is ``False``. """ if path is None: path = '~' path = os.path.abspath(os.path.expanduser(path)) if os.path.isdir(path): path = os.path.join(path, '.proplotrc') if os.path.isfile(path) and backup: os.rename(path, path + '.bak') warnings._warn_proplot( f'Existing proplotrc file {path!r} was moved to {path + ".bak"!r}.' ) # Generate user-specific table, ignoring non-style related # settings that may be changed from defaults like 'backend' rc_user = () if user: # Changed settings rcdict = { key: value for key, value in self if value != rcsetup._get_default_param(key) } # Special handling for certain settings # TODO: For now not sure how to detect if prop cycle changed since # we cannot load it from _cmap_database in rcsetup. rcdict.pop('interactive', None) # changed by backend rcdict.pop('axes.prop_cycle', None) # Filter and get table rcdict = _get_filtered_dict(rcdict, warn=False) rc_user_table = rcsetup._gen_yaml_table(rcdict, comment=False) rc_user = ('# Settings changed by user', rc_user_table, '') # + blank line # Generate tables and write comment = _not_none(comment, user) rc_proplot_table = rcsetup._gen_yaml_table( rcsetup._rc_proplot, comment=comment, description=description, ) rc_matplotlib_table = rcsetup._gen_yaml_table( rcsetup._rc_matplotlib_default, comment=comment ) with open(path, 'w') as fh: fh.write('\n'.join(( '#--------------------------------------------------------------------', '# Use this file to change the default proplot and matplotlib settings', '# The syntax is identical to matplotlibrc syntax. For details see:', '# https://proplot.readthedocs.io/en/latest/configuration.html', '# https://matplotlib.org/3.1.1/tutorials/introductory/customizing', '#--------------------------------------------------------------------', *rc_user, # includes blank line '# ProPlot settings', rc_proplot_table, '\n# Matplotlib settings', rc_matplotlib_table, ))) def items(self): """ Return an iterator that loops over all setting names and values. Same as `dict.items`. """ for key in self: yield key, self[key] def keys(self): """ Return an iterator that loops over all setting names. Same as `dict.keys`. """ for key in self: yield key def values(self): """ Return an iterator that loops over all setting values. Same as `dict.values`. """ for key in self: yield self[key] def config_inline_backend(fmt=None): """ Set up the `ipython inline backend \ <https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-matplotlib>`__ format and ensure that inline figures always look the same as saved figures. This runs the following ipython magic commands: .. code-block:: ipython %config InlineBackend.figure_formats = rc['inlinefmt'] %config InlineBackend.rc = {} # never override rc settings %config InlineBackend.close_figures = True \ # cells start with no active figures %config InlineBackend.print_figure_kwargs = {'bbox_inches': None} \ # never override rc settings When the inline backend is inactive or unavailable, this has no effect. This function is called when you modify the :rcraw:`inlinefmt` property. Parameters ---------- fmt : str or list of str, optional The inline backend file format(s). Default is :rc:`inlinefmt`. Valid formats include ``'jpg'``, ``'png'``, ``'svg'``, ``'pdf'``, and ``'retina'``. """ # Note if inline backend is unavailable this will fail silently ipython = get_ipython() if ipython is None: return fmt = _not_none(fmt, rc_proplot['inlinefmt']) if isinstance(fmt, str): fmt = [fmt] elif np.iterable(fmt): fmt = list(fmt) else: raise ValueError( f'Invalid inline backend format {fmt!r}. Must be string or list thereof.' ) ipython.magic('config InlineBackend.figure_formats = ' + repr(fmt)) ipython.magic('config InlineBackend.rc = {}') ipython.magic('config InlineBackend.close_figures = True') ipython.magic("config InlineBackend.print_figure_kwargs = {'bbox_inches': None}") def _get_cycle_colors(cycle): """ Update the color cycle. """ try: colors = pcolors._cmap_database[cycle].colors except (KeyError, AttributeError): cycles = sorted( name for name, cmap in pcolors._cmap_database.items() if isinstance(cmap, pcolors.ListedColormap) ) raise ValueError( f'Invalid cycle name {cycle!r}. Options are: ' + ', '.join(map(repr, cycles)) + '.' ) return colors def _get_default_dict(): """ Get the default rc parameters dictionary with deprecated parameters filtered. """ # NOTE: Use RcParams update to filter and translate deprecated settings # before actually applying them to rcParams down pipeline. This way we can # suppress warnings for deprecated default params but still issue warnings # when user-supplied stylesheets have deprecated params. # WARNING: Some deprecated rc params remain in dictionary as None so we # filter them out. Beware if hidden attribute changes. rcdict = _get_filtered_dict(mpl.rcParamsDefault, warn=False) with cbook._suppress_matplotlib_deprecation_warning(): rcdict = dict(RcParams(rcdict)) for attr in ('_deprecated_remain_as_none', '_deprecated_set'): if hasattr(mpl, attr): # _deprecated_set is in matplotlib before v3 for deprecated in getattr(mpl, attr): rcdict.pop(deprecated, None) return rcdict def _get_filtered_dict(rcdict, warn=True): """ Filter out blacklisted style parameters. """ # NOTE: This implements bugfix: https://github.com/matplotlib/matplotlib/pull/17252 # This fix is *critical* for proplot because we always run style.use() # when the configurator is made. Without fix backend is reset every time # you import proplot in jupyter notebooks. So apply retroactively. rcdict_filtered = {} for key in rcdict: if key in mstyle.STYLE_BLACKLIST: if warn: warnings._warn_proplot( f'Dictionary includes a parameter, {key!r}, that is not related ' 'to style. Ignoring.' ) else: rcdict_filtered[key] = rcdict[key] return rcdict_filtered def _get_style_dicts(style, infer=False, filter=True): """ Return a dictionary of settings belonging to the requested style(s). If `infer` is ``True``, two dictionaries are returned, where the second contains custom ProPlot settings "inferred" from the matplotlib settings. If `filter` is ``True``, invalid style parameters like `backend` are filtered out. """ # NOTE: This is adapted from matplotlib source for the following changes: # 1. Add 'original' option. Like rcParamsOrig except we also *reload* # from user matplotlibrc file. # 2. When the style is changed we reset to the *default* state ignoring # matplotlibrc. Matplotlib applies styles on top of current state # (including matplotlibrc changes and runtime rcParams changes) but # IMO the word 'style' implies a *rigid* static format. # 3. Add a separate function that returns lists of style dictionaries so # that we can modify the active style in a context block. ProPlot context # is more conservative than matplotlib's rc_context because it gets # called a lot (e.g. every time you make an axes and every format() call). # Instead of copying the entire rcParams dict we just track the keys # that were changed. style_aliases = { '538': 'fivethirtyeight', 'mpl20': 'default', 'mpl15': 'classic', 'original': mpl.matplotlib_fname(), } # Always apply the default style *first* so styles are rigid kw_matplotlib = _get_default_dict() if style == 'default' or style is mpl.rcParamsDefault: return kw_matplotlib # Apply "pseudo" default properties. Pretend some proplot settings are part of # the matplotlib specification so they propagate to other styles. kw_matplotlib['font.family'] = 'sans-serif' kw_matplotlib['font.sans-serif'] = rcsetup._rc_matplotlib_default['font.sans-serif'] # Apply user input style(s) one by one # NOTE: Always use proplot fonts if style does not explicitly set them. if isinstance(style, str) or isinstance(style, dict): styles = [style] else: styles = style for style in styles: if isinstance(style, dict): kw = style elif isinstance(style, str): style = style_aliases.get(style, style) if style in mstyle.library: kw = mstyle.library[style] else: try: kw = mpl.rc_params_from_file(style, use_default_template=False) except IOError: raise IOError( f'Style {style!r} not found in the style library and input is ' 'not a valid URL or path. Available styles are: ' + ', '.join(map(repr, mstyle.available)) + '.' ) else: raise ValueError(f'Invalid style {style!r}. Must be string or dictionary.') if filter: kw = _get_filtered_dict(kw, warn=True) kw_matplotlib.update(kw) # Infer proplot params from stylesheet params if infer: kw_proplot = _infer_added_params(kw_matplotlib) return kw_matplotlib, kw_proplot else: return kw_matplotlib def _infer_added_params(kw_params): """ Infer values for proplot's "added" parameters from stylesheets. """ kw_proplot = {} mpl_to_proplot = { 'font.size': ('tick.labelsize',), 'axes.titlesize': ( 'abc.size', 'suptitle.size', 'title.size', 'leftlabel.size', 'rightlabel.size', 'toplabel.size', 'bottomlabel.size', ), 'text.color': ( 'abc.color', 'suptitle.color', 'tick.labelcolor', 'title.color', 'leftlabel.color', 'rightlabel.color', 'toplabel.color', 'bottomlabel.color', ), } for key, params in mpl_to_proplot.items(): if key in kw_params: value = kw_params[key] for param in params: kw_proplot[param] = value return kw_proplot def use_style(style): """ Apply the `matplotlib style(s) \ <https://matplotlib.org/tutorials/introductory/customizing.html>`__ with `matplotlib.style.use`. This function is called when you modify the :rcraw:`style` property. Parameters ---------- style : str, dict, or list thereof The matplotlib style name(s) or stylesheet filename(s), or dictionary(s) of settings. Use ``'default'`` to apply matplotlib default settings and ``'original'`` to include settings from your user ``matplotlibrc`` file. """ # NOTE: This function is not really necessary but makes proplot's # stylesheet-supporting features obvious. Plus changing the style does # so much *more* than changing rc params or quick settings, so it is # nice to have dedicated function instead of just another rc_param name. kw_matplotlib, kw_proplot = _get_style_dicts(style, infer=True) rc_matplotlib.update(kw_matplotlib) rc_proplot.update(kw_proplot) @docstring.add_snippets def register_cmaps(user=True, default=False): """ Register colormaps packaged with ProPlot or saved to the ``~/.proplot/cmaps`` folder. This is called on import. Colormaps are registered according to their filenames -- for example, ``name.xyz`` will be registered as ``'name'``. %(register.ext_table)s To visualize the registered colormaps, use `~proplot.demos.show_cmaps`. Parameters ---------- %(register_cmaps.params)s """ for i, dirname, filename in _iter_data_paths('cmaps', user=user, default=default): path = os.path.join(dirname, filename) cmap = pcolors.LinearSegmentedColormap.from_file(path, warn_on_failure=True) if not cmap: continue if i == 0 and cmap.name.lower() in ( 'phase', 'graycycle', 'romao', 'broco', 'corko', 'viko', ): cmap.set_cyclic(True) pcolors._cmap_database[cmap.name] = cmap @docstring.add_snippets def register_cycles(user=True, default=False): """ Register color cycles packaged with ProPlot or saved to the ``~/.proplot/cycles`` folder. This is called on import. Color cycles are registered according to their filenames -- for example, ``name.hex`` will be registered as ``'name'``. %(register.ext_table)s To visualize the registered color cycles, use `~proplot.demos.show_cycles`. Parameters ---------- %(register_cycles.params)s """ for _, dirname, filename in _iter_data_paths('cycles', user=user, default=default): path = os.path.join(dirname, filename) cmap = pcolors.ListedColormap.from_file(path, warn_on_failure=True) if not cmap: continue pcolors._cmap_database[cmap.name] = cmap @docstring.add_snippets def register_colors(user=True, default=False, space='hcl', margin=0.10): """ Register the `open-color <https://yeun.github.io/open-color/>`_ colors, XKCD `color survey <https://xkcd.com/color/rgb/>`_ colors, and colors saved to the ``~/.proplot/colors`` folder. This is called on import. The color survey colors are filtered to a subset that is "perceptually distinct" in the HCL colorspace. The user color names are loaded from ``.txt`` files saved in ``~/.proplot/colors``. Each file should contain one line per color in the format ``name : hex``. Whitespace is ignored. To visualize the registered colors, use `~proplot.demos.show_colors`. Parameters ---------- %(register_colors.params)s space : {'hcl', 'hsl', 'hpl'}, optional The colorspace used to detect "perceptually distinct" colors. margin : float, optional The margin by which a color's normalized hue, saturation, and luminance channel values must differ from the normalized channel values of the other colors to be deemed "perceptually distinct." """ # Reset native colors dictionary mcolors.colorConverter.colors.clear() # clean out! mcolors.colorConverter.cache.clear() # clean out! # Add in base colors and CSS4 colors so user has no surprises for name, dict_ in (('base', BASE_COLORS), ('css', mcolors.CSS4_COLORS)): mcolors.colorConverter.colors.update(dict_) # Load colors from file and get their HCL values # NOTE: Colors that come *later* overwrite colors that come earlier. hex = re.compile(rf'\A{pcolors.HEX_PATTERN}\Z') # match each string for i, dirname, filename in _iter_data_paths('colors', user=user, default=default): path = os.path.join(dirname, filename) cat, ext = os.path.splitext(filename) if ext != '.txt': raise ValueError( f'Unknown color data file extension ({path!r}). ' 'All files in this folder should have extension .txt.' ) # Read data loaded = {} with open(path, 'r') as fh: for cnt, line in enumerate(fh): # Load colors from file stripped = line.strip() if not stripped or stripped[0] == '#': continue pair = tuple( item.strip().lower() for item in line.split(':') ) if len(pair) != 2 or not hex.match(pair[1]): warnings._warn_proplot( f'Illegal line #{cnt + 1} in file {path!r}:\n' f'{line!r}\n' f'Lines must be formatted as "name: hexcolor".' ) continue # Never overwrite "base" colors with xkcd colors. # Only overwrite with user colors. name, color = pair if i == 0 and name in BASE_COLORS: continue loaded[name] = color # Add every user color and every opencolor color and ensure XKCD # colors are "perceptually distinct". if i == 1: mcolors.colorConverter.colors.update(loaded) elif cat == 'opencolor': mcolors.colorConverter.colors.update(loaded) OPEN_COLORS.update(loaded) elif cat == 'xkcd': # Always add these colors, but make sure not to add other # colors too close to them. hcls = [] filtered = [] for name in ALWAYS_ADD: color = loaded.pop(name, None) if color is None: continue if 'grey' in name: name = name.replace('grey', 'gray') hcls.append(to_xyz(color, space=space)) filtered.append((name, color)) mcolors.colorConverter.colors[name] = color XKCD_COLORS[name] = color # Get locations of "perceptually distinct" colors # WARNING: Unique axis argument requires numpy version >=1.13 for name, color in loaded.items(): for string, replace in TRANSLATE_COLORS: if string in name: name = name.replace(string, replace) if any(string in name for string in ALWAYS_REMOVE): continue # remove "unpofessional" names hcls.append(to_xyz(color, space=space)) filtered.append((name, color)) # category name pair hcls = np.asarray(hcls) if not hcls.size: continue hcls = hcls / np.array([360, 100, 100]) hcls = np.round(hcls / margin).astype(np.int64) _, idxs = np.unique(hcls, return_index=True, axis=0) # Register "distinct" colors for idx in idxs: name, color = filtered[idx] mcolors.colorConverter.colors[name] = color XKCD_COLORS[name] = color else: raise ValueError(f'Unknown proplot color database {path!r}.') def register_fonts(): """ Add fonts packaged with ProPlot or saved to the ``~/.proplot/fonts`` folder, if they are not already added. Detects ``.ttf`` and ``.otf`` files -- see `this link \ <https://gree2.github.io/python/2015/04/27/python-change-matplotlib-font-on-mac>`__ for a guide on converting various other font file types to ``.ttf`` and ``.otf`` for use with matplotlib. To visualize the registered fonts, use `~proplot.demos.show_fonts`. """ # Find proplot fonts # WARNING: If you include a font file with an unrecognized style, # matplotlib may use that font instead of the 'normal' one! Valid styles: # 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', # 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black' # https://matplotlib.org/api/font_manager_api.html # For macOS the only fonts with 'Thin' in one of the .ttf file names # are Helvetica Neue and .SF NS Display Condensed. Never try to use these! paths_proplot = _get_data_paths('fonts', reverse=True) fnames_proplot = set(mfonts.findSystemFonts(paths_proplot)) # Detect user-input ttc fonts and issue warning fnames_proplot_ttc = { file for file in fnames_proplot if os.path.splitext(file)[1] == '.ttc' } if fnames_proplot_ttc: warnings._warn_proplot( 'Ignoring the following .ttc fonts because they cannot be ' 'saved into PDF or EPS files (see matplotlib issue #3135): ' + ', '.join(map(repr, sorted(fnames_proplot_ttc))) + '. Please consider expanding them into separate .ttf files.' ) # Rebuild font cache only if necessary! Can be >50% of total import time! fnames_all = {font.fname for font in mfonts.fontManager.ttflist} fnames_proplot -= fnames_proplot_ttc if not fnames_all >= fnames_proplot: warnings._warn_proplot('Rebuilding font cache.') if hasattr(mfonts.fontManager, 'addfont'): # New API lets us add font files manually for fname in fnames_proplot: mfonts.fontManager.addfont(fname) mfonts.json_dump(mfonts.fontManager, mfonts._fmcache) else: # Old API requires us to modify TTFPATH # NOTE: Previously we tried to modify TTFPATH before importing # font manager with hope that it would load proplot fonts on # initialization. But 99% of the time font manager just imports # the FontManager from cache, so this doesn't work. paths = ':'.join(paths_proplot) if 'TTFPATH' not in os.environ: os.environ['TTFPATH'] = paths elif paths not in os.environ['TTFPATH']: os.environ['TTFPATH'] += ':' + paths mfonts._rebuild() # Remove ttc files and 'Thin' fonts *after* rebuild # NOTE: 'Thin' filter is ugly kludge but without this matplotlib picks up on # Roboto thin ttf files installed on the RTD server when compiling docs. mfonts.fontManager.ttflist = [ font for font in mfonts.fontManager.ttflist if os.path.splitext(font.fname)[1] != '.ttc' or 'Thin' in os.path.basename(font.fname) ] def _patch_validators(): """ Fix the fontsize validators to allow for new font scalings. """ # First define valdiators # NOTE: In the future will subclass RcParams directly and control the # validators ourselves. def _validate_fontsize(s): fontsizes = list(mfonts.font_scalings) if isinstance(s, str): s = s.lower() if s in fontsizes: return s try: return float(s) except ValueError: raise ValueError( f'{s!r} is not a valid font size. Valid sizes are: ' ', '.join(map(repr, fontsizes)) ) def _validate_fontsize_None(s): if s is None or s == 'None': return None else: return _validate_fontsize(s) _validate_fontsizelist = None if hasattr(msetup, '_listify_validator'): _validate_fontsizelist = msetup._listify_validator(_validate_fontsize) # Apply new functions validate = RcParams.validate for key in list(validate): # modify in-place validator = validate[key] if validator is msetup.validate_fontsize: validate[key] = _validate_fontsize elif validator is getattr(msetup, 'validate_fontsize_None', None): validate[key] = _validate_fontsize_None elif validator is getattr(msetup, 'validate_fontsizelist', None): if _validate_fontsizelist is not None: validate[key] = _validate_fontsizelist # Initialize .proplotrc file _user_rc_file = os.path.join(os.path.expanduser('~'), '.proplotrc') if not os.path.exists(_user_rc_file): RcConfigurator._save_proplotrc(_user_rc_file, comment=True) # Initialize customization folders _rc_folder = os.path.join(os.path.expanduser('~'), '.proplot') if not os.path.isdir(_rc_folder): os.mkdir(_rc_folder) for _rc_sub in ('cmaps', 'cycles', 'colors', 'fonts'): _rc_sub = os.path.join(_rc_folder, _rc_sub) if not os.path.isdir(_rc_sub): os.mkdir(_rc_sub) # Add custom font scalings to font_manager and monkey patch rcParams validator # NOTE: This is because we prefer large sizes if hasattr(mfonts, 'font_scalings'): mfonts.font_scalings['med-small'] = 0.9 mfonts.font_scalings['med-large'] = 1.1 _patch_validators() # Convert colormaps that *should* be LinearSegmented from Listed for _name in ('viridis', 'plasma', 'inferno', 'magma', 'cividis', 'twilight'): _cmap = pcolors._cmap_database.get(_name, None) if _cmap and isinstance(_cmap, pcolors.ListedColormap): del pcolors._cmap_database[_name] pcolors._cmap_database[_name] = pcolors.LinearSegmentedColormap.from_list( _name, _cmap.colors, cyclic=(_name == 'twilight') ) # Register objects and configure settings with timers._benchmark('cmaps'): register_cmaps(default=True) with timers._benchmark('cycles'): register_cycles(default=True) with timers._benchmark('colors'): register_colors(default=True) with timers._benchmark('fonts'): register_fonts() with timers._benchmark('rc'): _ = RcConfigurator() #: Instance of `RcConfigurator`. This is used to change global settings. #: See the :ref:`configuration guide <ug_config>` for details. rc = _ # Modify N of existing colormaps because ProPlot settings may have changed # image.lut. We have to register colormaps and cycles first so that the 'cycle' # property accepts named cycles registered by ProPlot. No performance hit here. lut = rc['image.lut'] for cmap in pcolors._cmap_database.values(): if isinstance(cmap, mcolors.LinearSegmentedColormap): cmap.N = lut # Deprecated inline_backend_fmt, rc_configurator = warnings._rename_objs( '0.6', inline_backend_fmt=config_inline_backend, RcConfigurator=config_inline_backend, )
77eae7de5545c636d596feec9e0fe110b7b5700a
bc441bb06b8948288f110af63feda4e798f30225
/architecture_view_sdk/model/flowable_service/bpmn_end_event_pb2.py
3c2b2fa877b300c5b615c5a2704c5007ff77e7ce
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
3,097
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: bpmn_end_event.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from architecture_view_sdk.model.flowable_service import bpmn_links_pb2 as architecture__view__sdk_dot_model_dot_flowable__service_dot_bpmn__links__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='bpmn_end_event.proto', package='flowable_service', syntax='proto3', serialized_options=_b('ZJgo.easyops.local/contracts/protorepo-models/easyops/model/flowable_service'), serialized_pb=_b('\n\x14\x62pmn_end_event.proto\x12\x10\x66lowable_service\x1a=architecture_view_sdk/model/flowable_service/bpmn_links.proto\"F\n\x0c\x42PMNEndEvent\x12\n\n\x02id\x18\x01 \x01(\t\x12*\n\x05links\x18\x02 \x01(\x0b\x32\x1b.flowable_service.BPMNLinksBLZJgo.easyops.local/contracts/protorepo-models/easyops/model/flowable_serviceb\x06proto3') , dependencies=[architecture__view__sdk_dot_model_dot_flowable__service_dot_bpmn__links__pb2.DESCRIPTOR,]) _BPMNENDEVENT = _descriptor.Descriptor( name='BPMNEndEvent', full_name='flowable_service.BPMNEndEvent', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='flowable_service.BPMNEndEvent.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='links', full_name='flowable_service.BPMNEndEvent.links', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=105, serialized_end=175, ) _BPMNENDEVENT.fields_by_name['links'].message_type = architecture__view__sdk_dot_model_dot_flowable__service_dot_bpmn__links__pb2._BPMNLINKS DESCRIPTOR.message_types_by_name['BPMNEndEvent'] = _BPMNENDEVENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) BPMNEndEvent = _reflection.GeneratedProtocolMessageType('BPMNEndEvent', (_message.Message,), { 'DESCRIPTOR' : _BPMNENDEVENT, '__module__' : 'bpmn_end_event_pb2' # @@protoc_insertion_point(class_scope:flowable_service.BPMNEndEvent) }) _sym_db.RegisterMessage(BPMNEndEvent) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
03bca080a7ade2f5c8e31f19c07701b55b95c6aa
8f7c595f2b9d075a89417760b7fbf9abb1fecb72
/tele_twitter.py
8b5573134e70b914312a9c197b1313e688781062
[ "MIT" ]
permissive
MainakMaitra/trading-utils
555ed240a20b26d4876f1490fc8a2d9273231fc5
3e73091b4d3432e74c385a9677b7f7ca4192c67f
refs/heads/main
2023-07-04T09:19:40.122188
2021-08-08T09:01:37
2021-08-08T09:01:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,825
py
""" Twitter -> Telegram """ import logging import os import time from argparse import ArgumentParser from peewee import * from common import uuid_gen from common.environment import GROUP_CHAT_ID from common.logger import init_logging from common.tele_notifier import send_message_to_telegram from common.twitter_api import get_twitter_home_timeline home_dir = os.getenv("HOME") db = SqliteDatabase(home_dir + "/tele_twitter.db") class TweetData(Model): id = UUIDField(primary_key=True) twitter_handle = CharField() timestamp = BigIntegerField() tweet_id = CharField() tweet = CharField() posted_at = DateTimeField(null=True) class Meta: database = db @staticmethod def save_from(twitter_handle, tweet, tweet_id, posted_at): entity = dict( id=uuid_gen(), timestamp=time.time(), twitter_handle=twitter_handle, tweet_id=tweet_id, tweet=tweet, posted_at=posted_at, ) TweetData.insert(entity).execute() TweetData.create_table() def save_data(tweet_data): TweetData.save_from(**tweet_data) def tweet_already_processed(current_tweet_id): selected_tweet = TweetData.get_or_none(TweetData.tweet_id == current_tweet_id) return selected_tweet is not None def extract_tweet_id(new_tweet): return new_tweet.id def extract_tweet_time(recent_tweet): return recent_tweet.created_at def main(poll_freq_in_secs): home_timeline = get_twitter_home_timeline() logging.info("==> Found tweets {}".format(len(home_timeline))) for tweet in home_timeline: tweet_author_name = tweet.author.name tweet_author_screen_name = tweet.author.screen_name tweet_id = tweet.id tweet_posted_date = tweet.created_at formatted_posted_dt = tweet_posted_date.strftime("%H:%M(%d %B)") tweet_text = tweet.text if tweet_already_processed(tweet_id): logging.warning( "Old Tweet from {} at {} -> {} - already processed".format( tweet_author_screen_name, tweet_posted_date, tweet_id ) ) continue else: entity = dict( twitter_handle=tweet_author_screen_name, tweet=tweet_text, tweet_id=tweet_id, posted_at=tweet_posted_date, ) save_data(entity) if tweet_text.startswith("RT"): continue try: header = f"""👀 {tweet_author_name} at [{formatted_posted_dt}](https://twitter.com/{tweet_author_screen_name}/status/{tweet_id})""" send_message_to_telegram( header, disable_web_preview=False, override_chat_id=GROUP_CHAT_ID ) except: send_message_to_telegram( "🚨 Something went wrong trying to process {}".format(tweet) ) logging.info(f"⏱ Sleeping for {poll_freq_in_secs}") time.sleep(poll_freq_in_secs) def parse_args(): parser = ArgumentParser(description=__doc__) parser.add_argument( "-w", "--wait-in-seconds", type=int, help="Wait between sending tweets in seconds", default=30, ) parser.add_argument( "-r", "--run-once", action="store_true", default=False, help="Run once" ) return parser.parse_args() if __name__ == "__main__": args = parse_args() init_logging() poll_freq_in_secs = args.wait_in_seconds run_once = args.run_once while True: try: main(poll_freq_in_secs) if run_once: logging.info("Running once => Exit") break except Exception: logging.exception("🚨🚨🚨 Something is wrong")
3bcd4da0f4a0652b9ceae41db83ea03b41ab9201
99bfa15723593ea351191d82fac80e36ab25aab1
/LeetCode/merge_interval.py
602b47cb4dc68d07416d23bb801d695654ec3578
[]
no_license
Kartavya-verma/Python-Projects
f23739ef29eab67a8e25569e3f7bf110e42576cb
02ffe926a7ed82bc783e4c4034a2fa53d4d1a870
refs/heads/master
2023-06-22T07:59:39.595084
2021-07-18T15:51:55
2021-07-18T15:51:55
387,139,965
0
0
null
null
null
null
UTF-8
Python
false
false
504
py
# interval = [[1,3],[2,6],[8,10],[15,18]] interval = [[1,4],[4,5]] n = interval.copy() print(n) res = [] v = [] for i in range(len(n)-1): for j in range(len(n)): print(n[i][1], n[i+1][0]) if n[i][1] > n[i+1][0]: # print(n[i][1], n[i+1][0]) n[i].pop() n[i].append(n[i+1][1]) v = n[i+1] print(n[i],v) n.remove(v) print(n) # l = list() # for i in interval: # for j in range(i[0], i[1]+1): # l.append(j) # print(l)
4df3ceca1f9d06815d43914cad8c76bf3d206085
cd78d84441e69c1fc40b6a6e9e235e7cf6882454
/python/48.rotate_image.py
75ea51649a271ec6a48d11d85c9fa7c4a00e2bc0
[]
no_license
buy/leetcode
53a12d4e0298284a5a2034c88353d0dc195aa66c
da0e834e3f2e3016396fffc96ef943ab9ec58ea4
refs/heads/master
2021-01-13T01:48:01.176632
2015-06-14T06:17:17
2015-06-14T06:17:17
31,863,627
1
1
null
null
null
null
UTF-8
Python
false
false
821
py
# You are given an n x n 2D matrix representing an image. # Rotate the image by 90 degrees (clockwise). # Follow up: # Could you do this in-place? # /* # * clockwise rotate # * first reverse up to down, then swap the symmetry # * 1 2 3 7 8 9 7 4 1 # * 4 5 6 => 4 5 6 => 8 5 2 # * 7 8 9 1 2 3 9 6 3 # */ class Solution: # @param matrix, a list of lists of integers # @return a list of lists of integers def rotate(self, matrix): matrix.reverse() for i in range(len(matrix)): for j in range(i): matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j] # /* # * anticlockwise rotate # * first reverse left to right, then swap the symmetry # * 1 2 3 3 2 1 3 6 9 # * 4 5 6 => 6 5 4 => 2 5 8 # * 7 8 9 9 8 7 1 4 7 # */
2a7ecd17534e9ce6ebfd36b4b2168cfe3d21c7a2
03d1982e2d594f13567afb37f2a5cea2f0d631b6
/setup.py
cde1cd7244e468fc53e94c6fb1355245c8ab6099
[ "Apache-2.0" ]
permissive
maartendraijer/django-fluent-dashboard
e26f29d434528d3b11360549c6452812176e4ecb
8a00fa810f001d1a778eada88b8a390f495f9994
refs/heads/master
2020-04-03T04:22:38.353890
2012-09-26T19:55:18
2012-09-26T19:58:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,478
py
#!/usr/bin/env python from setuptools import setup, find_packages from os.path import dirname, join import sys, os # When creating the sdist, make sure the django.mo file also exists: try: os.chdir('fluent_dashboard') from django.core.management.commands.compilemessages import compile_messages compile_messages(sys.stderr) finally: os.chdir('..') setup( name='django-fluent-dashboard', version='0.4.0dev', license='Apache License, Version 2.0', install_requires=[ 'django-admin-tools>=0.4.1', # 0.4.1 is the first release with Django 1.3 support. ], extras_require = { 'cachestatus': ['dashboardmods>=0.2.2'], }, description='An improved django-admin-tools dashboard for Django projects', long_description=open(join(dirname(__file__), 'README.rst')).read(), author='Diederik van der Boor', author_email='[email protected]', url='https://github.com/edoburu/django-fluent-dashboard', download_url='https://github.com/edoburu/django-fluent-dashboard/zipball/master', packages=find_packages(), include_package_data=True, zip_safe=False, classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Framework :: Django', ] )
65bb65eef08655b1bc9f00fecef269efb447b5c5
8e115fc8273fd7123438fa8cb85cd7b7992246f5
/App_Login/migrations/0003_follow.py
1e2b7e845c904aeaa10db6c63664e1517b698f1c
[]
no_license
tasim313/Social_Media_django_project
35160f83fa278acd616f9f952ac5acd3ec6430e6
78cf24305a32dfe937d7fcb031ed2f78649a4775
refs/heads/main
2023-06-16T00:45:39.025388
2021-07-11T06:38:38
2021-07-11T06:38:38
384,453,963
1
0
null
null
null
null
UTF-8
Python
false
false
962
py
# Generated by Django 2.2.5 on 2021-07-07 13:52 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('App_Login', '0002_auto_20210706_1237'), ] operations = [ migrations.CreateModel( name='Follow', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True)), ('follower', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='follower', to=settings.AUTH_USER_MODEL)), ('following', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='following', to=settings.AUTH_USER_MODEL)), ], ), ]
c321533388cef074c4a7501847d5ddca0b9ae10e
fcc88521f63a3c22c81a9242ae3b203f2ea888fd
/Python3/0838-Push-Dominoes/soln-1.py
b7c9ed30d6e1a5c6ea1654056f23001653264cab
[ "MIT" ]
permissive
wyaadarsh/LeetCode-Solutions
b5963e3427aa547d485d3a2cb24e6cedc72804fd
3719f5cb059eefd66b83eb8ae990652f4b7fd124
refs/heads/master
2022-12-06T15:50:37.930987
2020-08-30T15:49:27
2020-08-30T15:49:27
291,811,790
0
1
MIT
2020-08-31T19:57:35
2020-08-31T19:57:34
null
UTF-8
Python
false
false
1,479
py
class Solution: def pushDominoes(self, dominoes: str) -> str: leftRs = [] left_R = None n = len(dominoes) ans = [None] * n for i, d in enumerate(dominoes): if d == 'R': left_R = 0 ans[i] = 'R' elif d == 'L': left_R = None ans[i] = 'L' else: if left_R is not None: left_R += 1 ans[i] = 'R' else: ans[i] = '.' leftRs.append(left_R) right_L = None for i in reversed(range(n)): d = dominoes[i] if d == 'L': right_L = 0 ans[i] = 'L' elif d == 'R': right_L = None ans[i] = 'R' else: if right_L is not None: right_L += 1 if leftRs[i] is None: ans[i] = 'L' else: if leftRs[i] < right_L: ans[i] = 'R' elif leftRs[i] == right_L: ans[i] = '.' else: ans[i] = 'L' else: if leftRs[i] is not None: ans[i] = 'R' else: ans[i] = '.' return ''.join(ans)
06ebdcbe79fc30e8f7dbeae6f53b24398009b675
6df0d7a677129e9b325d4fdb4bbf72d512dd08b2
/PycharmProjects/my_practice/untitled/1.py
851d7606c9479fbaebdefa185ba912d562a89abd
[]
no_license
yingxingtianxia/python
01265a37136f2ad73fdd142f72d70f7c962e0241
3e1a7617a4b6552bce4a7e15a182f30e1bae221e
refs/heads/master
2021-06-14T15:48:00.939472
2019-12-13T05:57:36
2019-12-13T05:57:36
152,200,507
0
0
null
2021-06-10T20:54:26
2018-10-09T06:40:10
Python
UTF-8
Python
false
false
102
py
#!/usr/bin/env python3 # -*-coding: utf8-*- f = open('1.txt', 'a') f.write('this is test\n') f.close()
76c8f94b2f1120d880d69b6121372442259a80bc
a08409f712dc0b1045f695fd2ffee2bb6cc7835b
/math/0x02-calculus/17-integrate.py~
07a15858a238dab1c6d0b0de4984d551527088f4
[]
no_license
mohsenabedelaal/holbertonschool-machine_learning
d3f2137761e10d620472ca6e5f3288c45898381d
2765a09ba3064168b024952d18b1a2471952c8a2
refs/heads/main
2023-06-02T16:11:55.600921
2021-06-10T19:08:13
2021-06-10T19:08:13
318,244,087
0
1
null
null
null
null
UTF-8
Python
false
false
754
#!/usr/bin/env python3 """derivative poly""" def poly_integral(poly, C=0): """Module for integral""" if not isinstance(poly, list): return None if len(poly) == 0: return None if len(poly) == 1: return [0] if len(poly) == 2: return [poly(1)] else: integral = [] for i in range(0, len(poly)): if isinstance(poly[i], (int, float)): if i == 0: integral.append(0) if poly[i] % (i + 1) == 0: result = int((1/(i+1)) * poly[i]) else: result = (1/(i+1)) * poly[i] integral.append(result) else: return None return der
6562ceefb580fe6394f1e927b79291c2063a56c7
5692e8a3357f7afe6284b43c4a9770d81957a511
/student/migrations/0015_auto_20201119_1605.py
8fc7c2324f4ec87bd9f70cdb6eabaa98d7202789
[]
no_license
OmarFateh/student-management-system
49bcfbdf15a631cf7f64ff200d530a44a44409ac
2c53f81a55fe631406b642365a68de19501c0f17
refs/heads/master
2023-07-16T00:02:54.796428
2021-08-25T01:54:02
2021-08-25T01:54:02
355,033,774
0
0
null
null
null
null
UTF-8
Python
false
false
440
py
# Generated by Django 3.1.2 on 2020-11-19 14:05 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('student', '0014_sessionyear_date_range'), ] operations = [ migrations.AlterModelOptions( name='student', options={'ordering': ['user__full_name'], 'verbose_name': 'Student', 'verbose_name_plural': 'Students'}, ), ]
89509c3ebcab0d26460f14bf5810e0a088b1aa54
1fa16c1df35fd8247f9274b26a70523a514210f0
/dependencies/amitools-0.1.0/amitools/vamos/lib/dos/FileManager.py
c9ed60eea544afb45ca4756963bba90fd9cacfbe
[ "GPL-1.0-or-later", "MIT" ]
permissive
limi/AGSImager
25a816b1c5b9ce8553cd6e3a47babce574f15119
d3771800308e61a7a07df4a9b361e5bd5ba9e409
refs/heads/master
2023-01-10T11:19:52.248376
2020-04-14T19:59:23
2020-04-14T19:59:23
255,813,813
0
0
MIT
2020-04-15T05:26:57
2020-04-15T05:26:56
null
UTF-8
Python
false
false
8,753
py
import sys import os.path import os import logging import errno import stat from amitools.vamos.Log import log_file from amitools.vamos.AccessStruct import AccessStruct from DosStruct import DosPacketDef from amitools.vamos.lib.lexec.ExecStruct import MessageDef from Error import * from DosProtection import DosProtection from FileHandle import FileHandle class FileManager: def __init__(self, path_mgr, alloc, mem): self.path_mgr = path_mgr self.alloc = alloc self.mem = mem self.files_by_b_addr = {} # get current umask self.umask = os.umask(0) os.umask(self.umask) def setup(self, fs_handler_port): self.fs_handler_port = fs_handler_port # setup std input/output self.std_input = FileHandle(sys.stdin,'<STDIN>','',need_close=False) self.std_output = FileHandle(sys.stdout,'<STDOUT>','',need_close=False) self._register_file(self.std_input) self._register_file(self.std_output) def finish(self,have_native_shell): if not have_native_shell: #the Shell otherwise closes the streams for us self._unregister_file(self.std_input) self._unregister_file(self.std_output) def get_fs_handler_port(self): return self.fs_handler_port def _register_file(self, fh): baddr = fh.alloc_fh(self.alloc, self.fs_handler_port) self.files_by_b_addr[baddr] = fh log_file.info("registered: %s" % fh) def _unregister_file(self,fh): if fh.b_addr in self.files_by_b_addr: check = self.files_by_b_addr[fh.b_addr] if check != fh: raise ValueError("Invalid File to unregister: %s" % fh) else: raise ValueError("Invalid File to unregister: %s" % fh) del self.files_by_b_addr[fh.b_addr] log_file.info("unregistered: %s"% fh) fh.free_fh(self.alloc) def get_input(self): return self.std_input def get_output(self): return self.std_output def open(self, lock, ami_path, f_mode): try: # special names uname = ami_path.upper() # thor: NIL: and CONSOLE: also work as device names # and the file names behind are ignored. if uname.startswith('NIL:'): sys_name = "/dev/null" if f_mode == "rwb+": f_mode = "rb+" fobj = open(sys_name, f_mode) fh = FileHandle(fobj, ami_path, sys_name, is_nil = True) elif uname == '*' or uname.startswith('CONSOLE:'): sys_name = '' fh = FileHandle(sys.stdout,'*','',need_close=False) else: # map to system path sys_path = self.path_mgr.ami_to_sys_path(lock,ami_path,searchMulti=True) if sys_path == None: log_file.info("file not found: '%s' -> '%s'" % (ami_path, sys_path)) return None # make some checks on existing file if os.path.exists(sys_path): # if not writeable -> no append mode if f_mode == "rwb+": f_mode = "rb+" if not os.access(sys_path, os.W_OK): if f_mode[-1] == '+': f_mode = f_mode[:-1] else: # if the file does not exist, but the mode is MODE_READWRITE, create it. if f_mode == "rwb+": f_mode = "wb+" log_file.debug("opening file: '%s' -> '%s' f_mode=%s" % (ami_path, sys_path, f_mode)) fobj = open(sys_path, f_mode) fh = FileHandle(fobj, ami_path, sys_path) self._register_file(fh) return fh except IOError as e: log_file.info("error opening: '%s' -> '%s' f_mode=%s -> %s" % (ami_path, sys_path, f_mode, e)) return None def close(self, fh): fh.close() self._unregister_file(fh) def get_by_b_addr(self, b_addr, for_writing = None): if b_addr == 0: return None if b_addr in self.files_by_b_addr: fh = self.files_by_b_addr[b_addr] # AmigaDos has no problem reading from an output console handle # or writing to the input handle for the console. if for_writing == True and fh.obj == sys.stdin: return self.std_output elif for_writing == False and fh.obj == sys.stdout: return self.std_input return fh else: addr = b_addr << 2 raise ValueError("Invalid File Handle at b@%06x = %06x" % (b_addr, addr)) def delete(self, lock, ami_path): sys_path = self.path_mgr.ami_to_sys_path(lock,ami_path) if sys_path == None or not os.path.exists(sys_path): log_file.info("file to delete not found: '%s'" % (ami_path)) return ERROR_OBJECT_NOT_FOUND try: if os.path.isdir(sys_path): os.rmdir(sys_path) else: os.remove(sys_path) return 0 except OSError as e: if e.errno == errno.ENOTEMPTY: # Directory not empty log_file.info("can't delete directory: '%s' -> not empty!" % (ami_path)) return ERROR_DIRECTORY_NOT_EMPTY else: log_file.info("can't delete file: '%s' -> %s" % (ami_path, e)) return ERROR_OBJECT_IN_USE def rename(self, lock, old_ami_path, new_ami_path): old_sys_path = self.path_mgr.ami_to_sys_path(lock,old_ami_path) new_sys_path = self.path_mgr.ami_to_sys_path(lock,new_ami_path) if old_sys_path == None or not os.path.exists(old_sys_path): log_file.info("old file to rename not found: '%s'" % old_ami_path) return ERROR_OBJECT_NOT_FOUND if new_sys_path == None: log_file.info("new file to rename not found: '%s'" % new_ami_path) return ERROR_OBJECT_NOT_FOUND try: os.rename(old_sys_path, new_sys_path) return 0 except OSError as e: log_file.info("can't rename file: '%s','%s' -> %s" % (old_ami_path, new_ami_path, e)) return ERROR_OBJECT_IN_USE def is_file_system(self, lock, name): uname = name.upper() if uname.startswith('NIL:'): return False elif uname == '*' or uname.startswith('CONSOLE:'): return False # Everything else is a file system here, we don't support any # other devices. return True def set_protection(self, lock, ami_path, mask): sys_path = self.path_mgr.ami_to_sys_path(lock, ami_path) if sys_path == None or not os.path.exists(sys_path): log_file.info("file to set proteciton not found: '%s'", ami_path) return ERROR_OBJECT_NOT_FOUND prot = DosProtection(mask) posix_mask = 0 if prot.is_e(): posix_mask |= stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH if prot.is_w(): posix_mask |= stat.S_IWUSR | stat.S_IWGRP | stat.S_IWOTH if prot.is_r(): posix_mask |= stat.S_IRUSR | stat.S_IRGRP | stat.S_IROTH posix_mask &= ~self.umask log_file.info("set protection: '%s': %s -> '%s': posix_mask=%03o umask=%03o", ami_path, prot, sys_path, posix_mask, self.umask) try: os.chmod(sys_path, posix_mask) return NO_ERROR except OSError: return ERROR_OBJECT_WRONG_TYPE def create_dir(self, lock, ami_path): sys_path = self.path_mgr.ami_to_sys_path(lock, ami_path) try: os.mkdir(sys_path) return NO_ERROR except OSError: return ERROR_OBJECT_EXISTS # ----- Direct Handler Access ----- # callback from port manager for fs handler port # -> Async I/O def put_msg(self, port_mgr, msg_addr): msg = AccessStruct(self.mem,MessageDef,struct_addr=msg_addr) dos_pkt_addr = msg.r_s("mn_Node.ln_Name") dos_pkt = AccessStruct(self.mem,DosPacketDef,struct_addr=dos_pkt_addr) reply_port_addr = dos_pkt.r_s("dp_Port") pkt_type = dos_pkt.r_s("dp_Type") log_file.info("DosPacket: msg=%06x -> pkt=%06x: reply_port=%06x type=%06x", msg_addr, dos_pkt_addr, reply_port_addr, pkt_type) # handle packet if pkt_type == ord('R'): # read fh_b_addr = dos_pkt.r_s("dp_Arg1") buf_ptr = dos_pkt.r_s("dp_Arg2") size = dos_pkt.r_s("dp_Arg3") # get fh and read fh = self.get_by_b_addr(fh_b_addr) data = fh.read(size) self.mem.access.w_data(buf_ptr, data) got = len(data) log_file.info("DosPacket: Read fh_b_addr=%06x buf=%06x len=%06x -> got=%06x fh=%s", fh_b_addr, buf_ptr, size, got, fh) dos_pkt.w_s("dp_Res1", got) elif pkt_type == ord('W'): # write fh_b_addr = dos_pkt.r_s("dp_Arg1") buf_ptr = dos_pkt.r_s("dp_Arg2") size = dos_pkt.r_s("dp_Arg3") fh = self.get_by_b_addr(fh_b_addr) data = self.mem.access.r_data(buf_ptr, size) fh.write(data) put = len(data) log_file.info("DosPacket: Write fh=%06x buf=%06x len=%06x -> put=%06x fh=%s", fh_b_addr, buf_ptr, size, put, fh) dos_pkt.w_s("dp_Res1", put) else: raise UnsupportedFeatureError("Unsupported DosPacket: type=%d" % pkt_type) # do reply if not port_mgr.has_port(reply_port_addr): port_mgr.register_port(reply_port_addr) port_mgr.put_msg(reply_port_addr, msg_addr)
91a80f36411eaa0287c81fe0a4414a82d2b3022a
a7104434e0ddb4575ef0a6cd467bac6620570de8
/hunter108.py
ff44819a2ca4401163bea362d9ae1cf41d6bc5c3
[]
no_license
GauthamAjayKannan/GUVI-1
7b276eef3195bec9671eec8bb6bcc588cb5c970e
fafabab93df55abcc399f6e2664286ed511fd683
refs/heads/master
2020-06-25T07:38:08.465414
2019-05-17T11:24:53
2019-05-17T11:24:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
243
py
x = list(input()) list1 = [] out = 0 if len(x) == 1: out = int(x[0]) * int(x[0]) else: for i in x: list1.append(int(i)) for i in range(len(list1)-1): out += (list1[i] ** list1[i+1]) out += (list1[len(list1)-1] ** list1[0] ) print(out)
def3dce5cc56dc5116d525765b8c6bc66cb2e7fa
a44cfbdacdb9d695533f425ee72da86f904232c1
/bin/summarize-days
3a7583591a34ce37d84e1baec23fe453d926fdf1
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
sofie-lu/quac
434d1481949ad0a229e10b7ccc725f54740c2d44
03e3bd9691dddd819f629aba628e9fe6d45c2d3b
refs/heads/master
2020-04-08T09:33:54.217874
2014-05-15T20:32:00
2014-05-15T20:32:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
744
#!/usr/bin/env python '''Parse the given metadata pickle file and print, TSV format, a summary of each day's metadata on stdout. Column order matches the metadata field documentation.''' # Copyright (c) 2012-2013 Los Alamos National Security, LLC, and others. import argparse import sys import quacpath import pickle_glue import tsv_glue import u ap = argparse.ArgumentParser() ap.add_argument('file', metavar='METADATA_FILE') args = u.parse_args(ap) tsv = tsv_glue.Writer(sys.stdout.fileno()) for (day, md) in sorted(pickle_glue.File(args.file).data['days'].items()): tsv.writerow([str(day), md['count'] or 0, md['count_geotag'], md['min_id'], md['max_id']])
25933a755301dda6561a58f195d7462cdc9f384c
a9e3f3ad54ade49c19973707d2beb49f64490efd
/Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/openedx/core/djangoapps/api_admin/api/filters.py
63d4bf6ec7132ca2326fad9c709142a6713249fd
[ "MIT", "AGPL-3.0-only", "AGPL-3.0-or-later" ]
permissive
luque/better-ways-of-thinking-about-software
8c3dda94e119f0f96edbfe5ba60ca6ec3f5f625d
5809eaca7079a15ee56b0b7fcfea425337046c97
refs/heads/master
2021-11-24T15:10:09.785252
2021-11-22T12:14:34
2021-11-22T12:14:34
163,850,454
3
1
MIT
2021-11-22T12:12:31
2019-01-02T14:21:30
JavaScript
UTF-8
Python
false
false
432
py
""" Filters for api_admin api """ from rest_framework import filters class IsOwnerOrStaffFilterBackend(filters.BaseFilterBackend): """ Filter that only allows users to see their own objects or all objects if it is staff user. """ def filter_queryset(self, request, queryset, view): if request.user.is_staff: return queryset else: return queryset.filter(user=request.user)
76ea21e0cd0bb9f8f9684fc16048be3713d1df62
1cc54d31a4a443230668ca063bcd27179ff096c2
/store/urls.py
fbf6972755a0e56ef5d0ca947869dfff8b9f903d
[]
no_license
akhmadakhmedov/e-commerce
8d84f0ae7acd4dc80c8afbe3ab55ed13873ef631
6708aa62dec08be9b18fae15125eeef266d869e3
refs/heads/main
2023-05-29T21:36:40.354231
2021-06-14T13:23:22
2021-06-14T13:23:22
370,982,449
0
0
null
null
null
null
UTF-8
Python
false
false
350
py
from django.urls import path from . import views urlpatterns = [ path('', views.store, name='store'), path('category/<slug:category_slug>/', views.store, name='products_by_category'), path('category/<slug:category_slug>/<product_slug>/', views.product_detail, name='product_detail'), path('search/', views.search, name='search'), ]
53aa1b2409b3fe45fb8cacb3d6c9abc63b5229eb
f6f3ade5a59fcb904a147fa3cf1933a1b225338f
/src/gate_timer.py
536a3cef3cb573db60d205d844c69d50ccab9872
[]
no_license
HajimeKawahara/autobop
3b559011f9dceba68b02e47cd95fdef4fa9ef41e
2c99625895206d24587db90a2ac03d1e536eb9ca
refs/heads/master
2021-01-16T01:03:01.351588
2018-03-18T09:15:53
2018-03-18T09:15:53
107,845,791
1
0
null
null
null
null
UTF-8
Python
false
false
607
py
#!/usr/bin/python import sys import numpy as np import matplotlib import matplotlib.pyplot as plt import pylab import argparse #import chord_probability as cp import rest def gate_stop(mnow,counter,finger=1,width=5.0,c=65.0): if c==np.inf: counter=counter+1 return mnow, counter numrest=rest.get_numrest() stopp=1.0/(1+np.exp(-(1.0/width)*(float(counter)-c))) #stop probability (sigmoid type) j=np.random.random() if j < stopp: mnow=numrest*np.ones(finger,dtype=int) counter=-1 else: counter=counter+1 return mnow, counter
55e4a9778ff59c0161d9877f8b727552e30befcb
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5738606668808192_0/Python/Nihilant/p3.py
9a79afbff433b6e056e4bf1c99769fccfd98c045
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
1,096
py
import sys, functools, math def jc(n, j): coin_n = 2**(n-1) + 1 for i in range(j): test = True while test: coin = bin(coin_n)[2:] sol = [] for base in range(2, 11): num = int(coin, base=base) k = -1 limit = int(math.sqrt(num)) for div in range(2, limit): if num % div == 0: k = div break if k == -1: coin_n = coin_n + 2 break else: sol.append(k) if len(sol) == 9: coin_n = coin_n + 2 print(coin, ' '.join(map(str, sol))) test = False if __name__ == "__main__": f = sys.stdin if len(sys.argv) >= 2: fn = sys.argv[1] if fn != '-': f = open(fn) T = int(f.readline()) for i in range(T): N, J = f.readline().strip('\n').split(" ") print("Case #{0}:".format(i + 1)) jc(int(N), int(J))
3f1ce17c7e56aa343e288281207e4e0013191cf9
ec53949dafa4b6ad675d679b05ed7c83fef2c69a
/DataStructuresAndAlgo/DynamicProgramming/FibonacciTabulation.py
d691cd1c6b7a1de451aa33b49df8d84df1b3b17e
[]
no_license
tpotjj/Python
9a5a20a53cd7a6ec14386c1db8ce155e0fc9ab8a
ca73c116ada4d05c0c565508163557744c86fc76
refs/heads/master
2023-07-11T16:37:10.039522
2021-08-14T11:17:55
2021-08-14T11:17:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
def fibTab(n): tb = [0, 1] for i in range(2, n): tb.append(tb[i-1] + tb[i-2]) return tb[n-1] print(fibTab(6))
5bcb0760c6c64e527ed4a662ff790c3cb71afad6
b1ff576cdde5adf698b98446538e0b56d18f070f
/grading/apps.py
b507c75018b33f6f0904ff9ce425d1006d934d9a
[]
no_license
DUMBALINYOLO/gbc_oms
e3cfba17a12f3600b6503fc70cc9f3dcab5cc0e2
cdea6fd81333088b2db9911140681fec9577132a
refs/heads/main
2023-08-20T11:48:36.418990
2021-10-11T23:25:35
2021-10-11T23:25:35
322,593,446
0
0
null
null
null
null
UTF-8
Python
false
false
152
py
from django.apps import AppConfig class GradingConfig(AppConfig): name = 'grading' # def ready(self): # import grading.signals
3cf0e063b91a5be11fd48040ca02637fab5c720d
cb1d0dd68b1136b8a371f7d2b423e45171e98ab7
/src/xsd_trips/urls.py
4d153c6902a452d9f38693e3b2a855184692fcd9
[]
no_license
ScubaJimmE/xSACdb
86640ab791327392f88eb4993c858aa6d340c758
1996ab286ee0446b0a0e38882104bbf8904d8bdc
refs/heads/develop
2021-07-15T04:47:11.279138
2016-05-25T01:44:05
2016-05-25T01:44:05
62,212,226
0
0
null
2021-03-20T00:40:24
2016-06-29T09:09:50
Python
UTF-8
Python
false
false
256
py
from django.conf.urls import patterns, include, url from django.conf import settings from views import * urlpatterns = patterns('', url(r'^$', TripList.as_view(), name='TripList'), url(r'^new/$', TripCreate.as_view(), name='TripCreate'), )
da9e00f2af1599c983cb133c32b539da17ece7fe
155fa6aaa4ef31cc0dbb54b7cf528f36743b1663
/Static and Class Methods/Gym/subscription.py
c93a716815e0c338d34e9dadac30833811a61828
[]
no_license
GBoshnakov/SoftUni-OOP
efe77b5e1fd7d3def19338cc7819f187233ecab0
0145abb760b7633ca326d06a08564fad3151e1c5
refs/heads/main
2023-07-13T18:54:39.761133
2021-08-27T08:31:07
2021-08-27T08:31:07
381,711,275
1
0
null
null
null
null
UTF-8
Python
false
false
467
py
class Subscription: _id = 0 def __init__(self, date, customer_id, trainer_id, exercise_id): Subscription._id += 1 self.date = date self.customer_id = customer_id self.trainer_id = trainer_id self.exercise_id = exercise_id self.id = Subscription._id @staticmethod def get_next_id(): return Subscription._id + 1 def __repr__(self): return f"Subscription <{self.id}> on {self.date}"
cf0bc4a4904ba5ea0b1a33c31385a14eaf269f3c
02546f99c91e46d66055ba8022f00619dbf9edcf
/lungsc/figures_immune_paper/fig4.py
7d3f5ff2df49c1e027f182ebf3521fba76bec829
[ "MIT" ]
permissive
iosonofabio/lung_neonatal_immune
84a137492242a3946873e567db9eea531a90ecd6
d0f12d4c24a778d0b7b8febf7accbc46adb7c162
refs/heads/master
2022-11-15T15:11:57.574654
2020-07-08T00:56:54
2020-07-08T00:56:54
258,082,671
0
1
null
null
null
null
UTF-8
Python
false
false
11,274
py
# vim: fdm=indent ''' author: Fabio Zanini date: 12/07/19 content: Plot panels for Fig 4. ''' import os import sys import glob import gzip import pickle import subprocess as sp import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.lines as mlines import seaborn as sns from lungsc.pilots.load_dataset import DatasetLung, versions ctms = ['Mac I', 'Mac II', 'Mac III', 'Mac IV', 'Mac V'] fig_fdn = '../../figures/immune_paper_figs/immune_paper_figure_4/' if __name__ == '__main__': ds0 = DatasetLung.load(preprocess=True, version=versions[-2]) ds0.query_samples_by_metadata( '(cellType == "immune") & (doublet == 0)', inplace=True) ds = ds0.query_samples_by_metadata('cellSubtype in @ctms', local_dict=locals()) if False: print('Feature selection') features = ds.feature_selection.overdispersed_within_groups('Mousename', inplace=False) dsf = ds.query_features_by_name(features) print('PCA') dsc = dsf.dimensionality.pca(n_dims=25, robust=False, return_dataset='samples') print('tSNE') vs = dsc.dimensionality.tsne(perplexity=30) print('Load tSNE from file') vs = pd.read_csv( '../../data/sequencing/datasets/all_{:}/tsne_immune.tsv'.format(versions[-2]), sep='\t', index_col=0, ) vs = vs.loc[ds.samplenames] if True: print('Plot tSNE with Gal, Car4, Itgax, C1qa, Plac8, Ifitm6') genes = ['Gal', 'H2-Eb1', 'Itgax', 'Car4', 'C1qa', 'Plac8', 'Ifitm6'] for gene in genes: fig, ax = plt.subplots(figsize=(4.8, 4.2)) ds.plot.scatter_reduced_samples( vs, ax=ax, s=12, alpha=0.30, cmap='viridis', color_by=gene, color_log=True, ) ax.grid(False) ax.set_axis_off() fig.tight_layout() if True: for ext in ['svg', 'pdf', ['png', 600]]: if isinstance(ext, list): ext, dpi = ext fig.savefig(fig_fdn+'immune_tsne_{:}.{:}'.format( gene, ext), dpi=dpi) else: fig.savefig(fig_fdn+'immune_tsne_{:}.{:}'.format( gene, ext)) if True: print('Make table with top DE genes within macrophages') fn_comp = '../../data/gene_lists/immune_DEGs_macros.pkl' if not os.path.isfile(fn_comp): comps = {} for cst in ctms: print('DE for {:}'.format(cst)) ds.samplesheet['is_focal'] = ds.samplesheet['cellSubtype'] == cst dsp = ds.split('is_focal') # Subsample for key in dsp: if dsp[key].n_samples > 300: dsp[key].subsample(300, inplace=True) comp = dsp[True].compare(dsp[False]) comp['log2_fc'] = np.log2(dsp[True].counts.mean(axis=1) + 0.1) - np.log2(dsp[False].counts.mean(axis=1) + 0.1) comp.name = cst comps[cst] = comp del ds.samplesheet['is_focal'] with open(fn_comp, 'wb') as f: pickle.dump(comps, f) else: with open(fn_comp, 'rb') as f: comps = pickle.load(f) if False: print('Save tables to file') tops = {} for cst in ctms: fn_comp_tsv = '../../data/gene_lists/immune_DEGs_{:}.tsv'.format(mp) comp = comps[cst] top = comp.loc[comp['log2_fc'] > 0].nlargest(50, 'statistic') tops[cst] = top top.to_csv(fn_comp_tsv, sep='\t', index=True) top_sum = pd.DataFrame([], index=np.arange(50)) for mp, top in tops.items(): top_sum[mp] = top.index fn_comp_tsv_sum = '../../data/gene_lists/immune_DEGs_macros_summary.tsv' top_sum.to_csv(fn_comp_tsv_sum, sep='\t', index=False) if True: print('Plot heatmap with single top DE genes') tops = {} for cst, comp in comps.items(): tops[cst] = comp.loc[comp['log2_fc'] > 0].nlargest(5, 'statistic').index.tolist() genes = sum(tops.values(), []) genes = [ # Common 'Ptprc', 'Cd68', 'Axl', 'Dab2', # Mac I 'Gal', 'Mcm5', 'Mcm2', 'Mcm3', 'Mcm4', 'Mcm6', 'Bub1', 'Plk1', 'Top2a', 'Mki67', # Mac II, 'Car4', 'Atp6v0d2', 'Mgll', 'Krt19', 'Slc39a2', 'Coro6', 'Marco', 'Siglecf', 'Gpnmb', 'Ear1', 'Cd200r4', 'Ctsk', 'Ly75', 'Bhlhe41', 'Slc7a2', 'Cdh1', 'Pex11a', # Mac III 'Itgax', 'Adgrl3', # Mac IV 'Fcrls', 'Pf4', 'C1qa', 'C1qb', 'C1qc', 'C3ar1', 'Tmem176b', 'Cxcl12', 'Ccl12', 'Cxcl16', 'Stab1', 'Ms4a7', 'Ms4a4a', 'Igfbp4', 'Apoe', 'Lgmn', 'Maf', # Mac V 'Pla2g7', 'Ifitm2', 'Ifitm3', 'Ifitm6', 'Plac8', 'Pglyrp1', 'Serpinb10', 'Adgre4', 'Adgre5', 'Napsa', 'Rnase6', 'Fyb', 'Clec4a1', 'Itga4', 'Samhd1', ] data = pd.DataFrame([], index=genes) for cst in ctms: dsi = ds.query_samples_by_metadata( 'cellSubtype == @cst', local_dict=locals(), ) mat = np.log10(0.1 + dsi.counts.loc[genes]).mean(axis=1) data[cst] = mat # Normalize by max expression of that gene data += 1 data = (data.T / data.max(axis=1)).T fig, ax = plt.subplots(figsize=(3, 10.5)) sns.heatmap( data, ax=ax, cmap='plasma', vmin=0, vmax=1, fmt='.1f', xticklabels=True, yticklabels=True, cbar=False, ) for tk in ax.get_yticklabels(): tk.set_rotation(0) for tk in ax.get_xticklabels(): tk.set_rotation(90) ax.set_xlim(0, 5) ax.set_ylim(len(genes), 0) fig.tight_layout() if True: fig.savefig(fig_fdn+'heatmap_single_genes_full.png') if True: print('Plot heatmap with pathways') pathways = [ ('cell cycle', ['Ncapd2', 'Mcm5', 'Mcm7', 'Cdca8', 'Smc2']), ('glycolysis', ['Cluh', 'Dbi', 'Eno1', 'Ldha', 'Pkm']), ('lipid metabolism', ['Lpl', 'Lipa', 'Abcg1', 'Sdc4', 'Abca9', 'Abca1']), ('matrix\nremodelling', ['Crispld2', 'Spint1', 'Tgm2']), ('angiogenesis', ['Fn1', 'Il18', 'Axl', 'Gas6', 'Pf4', 'Apoe']), ('alveolar', ['Adgrl3', 'Clec4n', 'Pparg', 'Ear2', 'Itgax', 'Car4', 'Bhlhe41', 'Trim29']), ('cell migration', ['Ccr2', 'Ccr5', 'Cx3cr1', 'Cxcl16', 'Cxcl2']), ('antibacterial', ['Acp5', 'Mpeg1', 'Plac8', 'Rnase6', 'Lyz2']), ('complement', ['C1qc', 'C1qa', 'C1qb', 'C3ar1']), ('alternative\nactivation', ['Ms4a8a', 'Axl', 'Il18', 'Maf', 'Lgmn']), ('type-I IFN', ['Adgrl3', 'Ifitm6', 'Ifitm3', 'Ifi27l2a', 'Ifitm2']), ('neg reg of\ninflammation', ['Cd200r4', 'Gpnmb', 'Il1rn', 'Dapk1', 'Dok2', 'Cd300a', 'Nr4a1', 'Lst1']), ] genes = sum((x[1] for x in pathways), []) data = pd.DataFrame([], index=genes) for cst in ctms: dsi = ds.query_samples_by_metadata( 'cellSubtype == @cst', local_dict=locals(), ) mat = np.log10(0.1 + dsi.counts.loc[genes]).mean(axis=1) data[cst] = mat # Normalize by max expression of that gene data += 1 data = (data.T / data.max(axis=1)).T fig, axs = plt.subplots( 2, 1, figsize=(11, 4), sharex=True, gridspec_kw={'height_ratios': [1, 20]}) sns.heatmap( data.iloc[:, :5].T, ax=axs[1], cmap='plasma', vmin=0, vmax=1, fmt='.1f', xticklabels=True, yticklabels=True, cbar=False, ) for tk in axs[1].get_yticklabels(): tk.set_rotation(0) for tk in axs[1].get_xticklabels(): tk.set_rotation(90) tk.set_fontsize(8) axs[1].set_ylim(5, 0) axs[1].set_xlim(0, len(genes)) i = 0 for ipw, (pw, gns) in enumerate(pathways): if i != 0: axs[1].plot([i] * 2, [0, len(genes)], lw=2, color='lightgrey', alpha=0.9) i += len(gns) # Legend labels = ['none', 'low', 'mid', 'high'] sfun = plt.cm.plasma handles = [ axs[1].scatter([], [], marker='s', s=50, color=sfun(0)), axs[1].scatter([], [], marker='s', s=50, color=sfun(0.33)), axs[1].scatter([], [], marker='s', s=50, color=sfun(0.67)), axs[1].scatter([], [], marker='s', s=50, color=sfun(1.0)), ] leg = axs[1].legend( handles, labels, title='Gene\nexpression:', bbox_to_anchor=(1.01, 0.99), loc='upper left', ) axs[0].set_ylim(0, 1) axs[0].set_xlim(0, len(genes)) color_d = dict(zip( (x[0] for x in pathways), sns.color_palette('muted', n_colors=len(pathways)), )) i = 0 for ipw, (pw, gns) in enumerate(pathways): w = len(gns) rect = plt.Rectangle( (i, 0), w, 1, facecolor=color_d[pw], edgecolor='none', lw=0, ) axs[0].add_artist(rect) wt = i + 0.5 * w - 0.15 * w * (pw == 'lipid metabolism') ht = 2 + 1.5 * (ipw % 2) axs[0].text( wt, ht, pw, ha='center', va='bottom', fontsize=10, clip_on=False, ) if ipw % 2: axs[0].plot( [wt] * 2, [ht - 0.2, 1.2], lw=1, color='k', clip_on=False, ) i += w axs[0].set_axis_off() fig.tight_layout(h_pad=0.01) if True: fig.savefig(fig_fdn+'heatmap_pathways.png') plt.ion() plt.show()
5690b8a65b35121276c3493f5273eae7f9e1b7fb
609ee4aad38036c29456581f821a9bad4d6b729a
/tests/test_pay.py
37b2629d535646bc20848fbf05772211f9a8c3b2
[]
no_license
sdkwe/pywe-pay
32f14d218b0f8c029fb08a54df99ba70b90374b4
daf1699c7dafd0960359b0c3f570f32cc906dc5f
refs/heads/master
2020-05-29T15:13:05.371833
2020-04-27T07:32:54
2020-04-27T07:32:54
62,115,428
5
4
null
null
null
null
UTF-8
Python
false
false
677
py
# -*- coding: utf-8 -*- import time from pywe_pay import WeChatPay from local_config_example import WechatPayConfig class TestPayCommands(object): def test_native_unifiedorder(self): native = WechatPayConfig.get('JSAPI', {}) wxpay = WeChatPay(native.get('appID'), native.get('apiKey'), native.get('mchID')) result = wxpay.order.create(body=u'支付测试', notify_url='https://a.com', out_trade_no=int(time.time() * 1000), total_fee=1, trade_type='NATIVE') assert isinstance(result, dict) assert result.get('return_code') == 'SUCCESS' assert result.get('result_code') == 'SUCCESS' assert result.get('code_url')