blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
42a62da8e1d51a7a3b3e573cdd0c1b6b3f423315
80afa26ba73b53f38e3fc21bf395030762fe8981
/576. Out of Boundary Paths.py
5481266d25818462836a2c72949c9f604ad39dc5
[]
no_license
iamshivamgoswami/Random-DSA-Questions
45b402063dbd2e31da2eee7590b6991aa624637d
e36250d08cf0de59cd0a59b4f3293e55793b1a6f
refs/heads/main
2023-07-15T15:48:36.363321
2021-08-26T03:40:47
2021-08-26T03:40:47
392,702,686
0
0
null
null
null
null
UTF-8
Python
false
false
563
py
class Solution: def findPaths(self, m: int, n: int, maxMove: int, i: int, j: int) -> int: d = {} def dfs(N, i, j): if (i, j, N) in d: return d[(i, j, N)] if i == m or i < 0 or j == n or j < 0: return 1 if N == 0: return 0 s = 0 for x, y in [(i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1)]: s += (dfs(N - 1, x, y)) d[(i, j, N)] = s return s return dfs(maxMove, i, j) % (10 ** 9 + 7)
0e65583a2f3733544f9d2a193e93f68be851c9df
4b2c5fe21ffcc35837bba06d2c3b43c5116f74bd
/Blackjack.py
8d5c04a77bb98a1ca5b4be7994bed8812a47cdf5
[]
no_license
joydas65/Codeforces-Problems
8870cbbf1db9fa12b961cee7aaef60960af714ae
eb0f5877d0fede95af18694278029add7385973d
refs/heads/master
2023-06-23T07:16:49.151676
2023-06-17T07:28:24
2023-06-17T07:28:24
184,123,514
5
1
null
2020-11-28T07:28:03
2019-04-29T18:33:23
Python
UTF-8
Python
false
false
150
py
n = int(input()) if n <= 10 or n > 21: print(0) elif (n >= 11 and n <= 19) or n == 21: print(4) else: print(15)
60b4b7f8ae3624a487bdf78b9ff1449db7aa2e84
9fdff458f1e20321aaa70d4669eeacb9423c9f36
/multi/train/train_sources_weights_loop.py
c928b2c8a1b372db96c7899e0a3cd85c0df91aa4
[]
no_license
leemengwei/GNRX
11639716f220f4721e521998ff282ee40ca50275
80c5b78826187a519588af3d8c71fb40ba7b94fe
refs/heads/main
2023-04-01T00:34:12.638628
2021-03-29T05:02:03
2021-03-29T05:02:03
352,524,033
0
0
null
null
null
null
UTF-8
Python
false
false
23,721
py
# python train_sources_weights_loop.py -A import config import datetime import pandas as pd import numpy as np import os,sys import matplotlib.pyplot as plt import shutil import argparse from xgboost.sklearn import XGBRegressor from sklearn.linear_model import LinearRegression, LassoCV, Ridge, Lasso from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import PolynomialFeatures import warnings import grasp_from_zhikong_web import dependency_wind_bases #from IPython import embed #import tqdm #from sko.GA import GA #import torch warnings.filterwarnings('ignore') def evaluate(cap:float, real:pd.Series, predict:pd.Series, method:str='MSE') -> np.array: if method == 'MSE': error = np.nanmean((real - predict)**2) elif method == 'MAE': error = np.nanmean(np.abs(real - predict)) else: import AccuracyFormula #ZouQianKun's lib data = pd.DataFrame({'time':real.index, 'gt':real, 'predict':predict}) #For NorthWest region if method == 'PianChaKaoHe': error = AccuracyFormula.CalcDIP_byDate(data, 'time', 'gt', 'predict', cap, 0.25) #For other regions elif method == 'KouDian_RMSE': error = AccuracyFormula.CalcKouDian_RMSE_byDate(data, 'time', 'gt', 'predict', cap, 0.8) #80% for wind RMSE elif method == 'KouDian_MAE': error = AccuracyFormula.CalcKouDian_MAE_byDate(data, 'time', 'gt', 'predict', cap, 0.85) #85% for wind MAE else: raise NotImplementedError error = pd.DataFrame.from_dict(error, orient='index', columns=['koudian']) error = error.values.sum() return error def save_log(Y_test:pd.Series, optimized_combination_test:pd.Series, business_power_test:pd.Series, filename:str='log') -> np.array: out = pd.DataFrame({'real': Y_test, 'combined': optimized_combination_test, 'business': business_power_test}) out.to_csv(os.path.join('..', 'output', '%s.csv'%filename)) def batchGradientDescent(x, y, theta, alpha = 0.1, maxIterations=10000): m = x.shape[0] alpha = alpha/m for i in range(0, maxIterations): y_pred = np.dot(x, theta) ERROR_loss = 1/m * np.sum(np.abs(y_pred - y)) #ERROR_gradient: mask = (y-y_pred).copy() mask[y-y_pred>0] = 1 mask[y-y_pred<=0] = -1 #theta = theta - alpha * gradient theta = theta + alpha * 1/m * mask.dot(x) print('epoch', i, ERROR_loss) return np.array(theta) def obj_func(W): error = np.nanmean(np.abs((W*X_train.values).sum(axis=1) - Y_train.values)) #error = np.nanmean(np.abs((W*X_train.values).sum(axis=1) - Y_train.values)**2) return error def save_output(station_name, meteor_powers, w): #save output: if not os.path.exists(os.path.join('..', 'output', station_name)): os.mkdir(os.path.join('..', 'output', station_name)) meteor_weights = get_ready_output(meteor_powers.columns, w) meteor_weights.to_csv(os.path.join('..', 'output', station_name, 'weights.csv')) shutil.copy(os.path.join('..', 'data', 'model_curve_data', '%s.csv'%station_name), os.path.join('..', 'output', station_name, 'curve.csv')) return meteor_weights def get_ready_output(column_names, w): col_names = [] for i in column_names: col_names.append(i.strip('pow_')) meteor_weights = pd.DataFrame(w.reshape(1, -1), columns=col_names) aux = { \ 'day_2_factor_for_day_5': 0.333333333, 'day_3_factor_for_day_5': 0.333333333, 'day_4_factor_for_day_5': 0.333333333, 'day_2_factor_for_day_6': 0.45, 'day_4_factor_for_day_6': 0.35, 'day_5_factor_for_day_6': 0.2, 'day_3_factor_for_day_7': 0.4, 'day_4_factor_for_day_7': 0.05, 'day_5_factor_for_day_7': 0.2, 'day_6_factor_for_day_7': 0.35, 'day_5_factor_for_day_8': 0.333333333, 'day_6_factor_for_day_8': 0.333333333, 'day_7_factor_for_day_8': 0.333333333, 'day_5_factor_for_day_9': 0.45, 'day_7_factor_for_day_9': 0.35, 'day_8_factor_for_day_9': 0.2, 'day_6_factor_for_day_10': 0.4, 'day_7_factor_for_day_10': 0.05, 'day_8_factor_for_day_10': 0.2, 'day_9_factor_for_day_10': 0.35, 'day_1_factor_for_day_11': 0.4, 'day_3_factor_for_day_11': 0.3, 'day_4_factor_for_day_11': 0.3, 'day_lowest_power_threshold': 5, 'day_set_lowest_to': 0 } for name in aux.keys(): meteor_weights[name] = aux[name] meteor_weights = meteor_weights.T meteor_weights.columns=['weights'] meteor_weights['source_name'] = meteor_weights.index meteor_weights.index = meteor_weights['source_name'] meteor_weights = meteor_weights.drop('source_name', axis=1) return meteor_weights def get_steady_meteor_powers(meteor_powers): meteor_powers = meteor_powers.fillna(0) singular_column_names = list(meteor_powers.columns[meteor_powers.values.mean(axis=0)==0]) if len(singular_column_names) > 0: meteor_powers = meteor_powers.drop(singular_column_names, axis=1) print("Notice: %s drop for calculation steadyness"%singular_column_names) return meteor_powers if __name__ == "__main__": parser = argparse.ArgumentParser(description='') parser.add_argument('--train_length', '-TRAIN', type=int, default=config.train_length) parser.add_argument('--VISUALIZATION', "-V", action='store_true', default=False) parser.add_argument('--ANIMATION', "-A", action='store_true', default=False) parser.add_argument('--use_spd', "-SPD", action='store_true', default=False) parser.add_argument('--test_length', '-TEST', type=int, default=config.test_length) parser.add_argument('--shift_months', '-S', type=int, default=config.shift_months) parser.add_argument('--data_gap_day', '-G', type=int, default=0) parser.add_argument('--loop_days', '-L', type=int, default=config.loop_days) parser.add_argument('--method', '-M', type=str, default='ode') parser.add_argument('--filename', '-F', type=str, default=config.filename) args = parser.parse_args() args.test_length = int(args.test_length - 1) print(args) shift_now = datetime.datetime.today() - datetime.timedelta(args.shift_months*31) station_names = pd.read_csv(args.filename, header=None).iloc[:,:] start_date_grasp_date = shift_now - datetime.timedelta(args.train_length+args.test_length+args.loop_days+args.data_gap_day) start_date_grasp = start_date_grasp_date.strftime("%Y-%m-%d") end_date_grasp = shift_now.strftime("%Y-%m-%d") sources_to_use = pd.read_csv(os.path.join('..', 'data', 'sources_to_use.csv'), index_col=0) sources_to_use = sources_to_use[sources_to_use['use_or_not'] == 1] logs = pd.DataFrame(index = list(pd.Series(station_names.values.reshape(-1))), columns= ['ERROR_optimized_train', 'ERROR_optimized_test', 'ERROR_business_train', 'ERROR_business_test', 'improvement_train (%)', 'improvement_test (%)', 'remark']) for col in logs.columns: for row in logs.index: logs.loc[row, col] = [] #STATION LOOP: overall_LSE_imp = [] overall_ERROR_imp = [] for station_name in station_names.iterrows(): station_name = station_name[1].values[0] print("\n\nStation: %s"%station_name) print("grasp data %s~%s"%(start_date_grasp, end_date_grasp)) #read zhikong data: raw_data_all, cap, plant_name, FarmType, longitude, latitude = grasp_from_zhikong_web.read_statistic_base(station_name, start_date_grasp, end_date_grasp, readweather=1) raw_data_all = raw_data_all.dropna(subset=['power_true']) cap = float(cap) if len(raw_data_all)==0: log = 'no gt' logs.loc[station_name, 'remark'] = log print(log) continue assert (FarmType == 0) #0 for wind raw_data_all = raw_data_all.loc[np.append(True, (raw_data_all.power_true.values[1:] - raw_data_all.power_true.values[:-1]) != 0)] #get powers: real_power = np.clip(np.abs(raw_data_all['power_true']), -cap, cap) if 'fore_power' in raw_data_all.columns: business_power = np.clip(np.abs(raw_data_all['fore_power']), -cap, cap) else: log = 'no fore power' logs.loc[station_name, 'remark'] = log raw_data_all['fore_power'] = 0.1 business_power = np.clip(np.abs(raw_data_all['fore_power']), -cap, cap) print(log) column_names_to_use = [] for i in raw_data_all.columns: if args.use_spd: use_feature = (i.startswith('pow_') or i.startswith('spd_')) else: use_feature = i.startswith('pow_') if use_feature and (i in sources_to_use.index): column_names_to_use.append(i) #get de min power: if 'de_min' in sources_to_use.index: #Use curve to give power prediction: DeMin_curve = pd.read_csv(os.path.join('..', 'data', 'model_curve_data', '%s.csv'%station_name), index_col=0) if 'spd_7' not in raw_data_all.columns: log = 'No spd_7, thus no de_min' logs.loc[station_name, 'remark'] = log print(log) else: column_names_to_use += ['de_min'] DeMin_prediction = pd.Series(np.interp(raw_data_all.loc[raw_data_all.index, 'spd_7'], DeMin_curve.values[:,0], DeMin_curve.values[:,1]), index=raw_data_all.index) raw_data_all['de_min'] = DeMin_prediction meteor_powers = raw_data_all[column_names_to_use] if len(raw_data_all) == 0: log = 'no gt data' logs.loc[station_name, 'remark'] = log print(log) continue elif meteor_powers.shape[1] == 0: log = 'no meteor_powers' logs.loc[station_name, 'remark'] = log print(log) continue else: #TIMESLICE LOOP: #when loop over train and test error_recorder = dependency_wind_bases.Recorder() concat_optimized_test = pd.Series([], dtype=float) concat_business_test = pd.Series([], dtype=float) concat_real_test = pd.Series([], dtype=float) plt.ion() for i in list(range(args.loop_days)): print('Time slice', i) start_date_train = start_date_grasp_date + datetime.timedelta(i) end_date_train = start_date_train + datetime.timedelta(args.train_length) start_date_test = end_date_train + datetime.timedelta(int(args.data_gap_day+1)) end_date_test = start_date_test + datetime.timedelta(args.test_length) start_date_train_str = start_date_train.strftime("%Y-%m-%d") end_date_train_str = end_date_train.strftime("%Y-%m-%d") start_date_test_str = start_date_test.strftime("%Y-%m-%d") end_date_test_str = end_date_test.strftime("%Y-%m-%d") print("Train from %s to %s"%(start_date_train_str, end_date_train_str)) print("Test from %s to %s"%(start_date_test_str, end_date_test_str)) meteor_powers_slice = meteor_powers.loc[start_date_train_str: end_date_test_str] real_power_slice = real_power[meteor_powers_slice.index] #split dataset: X = meteor_powers_slice X['bias'] = 1 Y = real_power_slice X_train, X_test = X.loc[start_date_train_str:end_date_train_str], X.loc[start_date_test_str:end_date_test_str] Y_train, Y_test = Y.loc[start_date_train_str:end_date_train_str], Y.loc[start_date_test_str:end_date_test_str] #handle duplicates X_train = get_steady_meteor_powers(X_train).dropna() X_test = X_test[X_train.columns].dropna() Y_train = Y_train.dropna() Y_test = Y_test.dropna() if len(set(X_train.columns) - {'de_min', 'bias'}) == 0: log = 'source not enough' logs.loc[station_name, 'remark'] = log print(log) continue if X_train.shape[0] < X_train.shape[1]: print("shape of X 0<1") continue if Y_test.shape[0] < 6: print("len Y <6") continue business_power_train = business_power.loc[Y_train.index] business_power_test = business_power.loc[Y_test.index] #Choose methods: if args.method == 'ode': #solve ODE equation: try: w = np.linalg.solve(np.dot(X_train.T.copy(), X_train), np.dot(X_train.T.copy(), Y_train)) except Exception as e: log = '%s, \n %s, \t %s'%(e, X_train.describe(), X_test.describe()) #log = '%s'%e logs.loc[station_name, 'remark'] = log print(log) continue elif args.method == 'gd': init_w = [1/X_train.shape[1]]*(X_train.shape[1]-1) # -1 for bias w = batchGradientDescent(X_train, Y_train, init_w+[1], alpha=0.1) elif args.method == 'ga': #ga w = np.tile(0, (1,5)) n_dim = X_train.shape[1] lb = [-3]*(n_dim-1);lb.append(-20) ub = [3]*(n_dim-1);ub.append(20) ga = GA(func=obj_func, n_dim=n_dim, size_pop=1000, max_iter=1000, lb=lb, ub=ub) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #ga.to(device=deivce) w, residuals = ga.run() elif args.method == 'poly': #poly lr w = np.tile(0, (1,5)) poly = PolynomialFeatures(degree=2) poly_X_train = poly.fit_transform(X_train.iloc[:,:-1]) poly_X_test = poly.fit_transform(X_test.iloc[:,:-1]) regressor = LinearRegression() regressor.fit(poly_X_train, Y_train) elif args.method == 'xgb': w = np.tile(0, (1,5)) regressor = XGBRegressor(max_depth=4) regressor.fit(X_train, Y_train) elif args.method == 'lasso': w = np.tile(0, (1,5)) regressor = Lasso() regressor.fit(X_train, Y_train) elif args.method == 'ridge': w = np.tile(0, (1,5)) regressor = Ridge() regressor.fit(X_train, Y_train) elif args.method == 'mlp': w = np.tile(0, (1,5)) regressor = MLPRegressor() regressor.fit(X_train, Y_train) else: regressor = None #eval train: if args.method == 'ode' or args.method == 'ga' or args.method == 'gd': optimized_combination_train = (w*X_train).sum(axis=1) optimized_combination_test = (w*X_test).sum(axis=1) elif args.method == 'poly': optimized_combination_train = regressor.predict(poly_X_train) optimized_combination_test = regressor.predict(poly_X_test) optimized_combination_train = pd.Series(optimized_combination_train, index=X_train.index) optimized_combination_test = pd.Series(optimized_combination_test, index=X_test.index) else: optimized_combination_train = regressor.predict(X_train) optimized_combination_test = regressor.predict(X_test) optimized_combination_train = pd.Series(optimized_combination_train, index=X_train.index) optimized_combination_test = pd.Series(optimized_combination_test, index=X_test.index) #eval train: optimized_combination_train = np.clip(optimized_combination_train, 0, max(Y)) ERROR_optimized_train = evaluate(cap, Y_train, optimized_combination_train, method=config.eval_metric) ERROR_business_train = evaluate(cap, Y_train, business_power_train, config.eval_metric) ERROR_improvement_train = (ERROR_business_train-ERROR_optimized_train)/ERROR_business_train*100 #eval test: optimized_combination_test = np.clip(optimized_combination_test, 0, max(Y)) ERROR_optimized_test = evaluate(cap, Y_test, optimized_combination_test, config.eval_metric) ERROR_business_test = evaluate(cap, Y_test, business_power_test, config.eval_metric) ERROR_improvement_test = (ERROR_business_test-ERROR_optimized_test)/ERROR_business_test*100 #save externals: save_log(Y_test, optimized_combination_test, business_power_test, station_name) meteor_weights = save_output(station_name, X_train, w) print("Train Improvement from %s to %s, %s%%"%(ERROR_business_train, ERROR_optimized_train, ERROR_improvement_train)) print("Test Improvement from %s to %s, %s%%"%(ERROR_business_test, ERROR_optimized_test, ERROR_improvement_test)) #print('Weight:', meteor_weights) if args.ANIMATION: plt.plot(meteor_powers_slice, 'blue', alpha=0.2, linewidth=3, label='sources') plt.plot(Y_train, 'k', alpha=0.5) plt.plot(optimized_combination_train, 'g', alpha=0.5) plt.plot(business_power_train, 'r', alpha=0.5) plt.plot(Y_test, 'k', label='real') plt.plot(optimized_combination_test, 'g', label='optimized', linestyle='--') plt.plot(business_power_test, 'r', label='business', linestyle=':') plt.title('%s, %s, %s'%(station_name, ERROR_improvement_train, ERROR_improvement_test)) plt.legend() plt.grid() plt.draw() plt.pause(0.1) plt.clf() #Misc concat_optimized_test = concat_optimized_test.append(optimized_combination_test) concat_business_test = concat_business_test.append(business_power_test) concat_real_test = concat_real_test.append(Y_test) error_recorder.add_one('%s_ERROR_optimized_train'%station_name, ERROR_optimized_train) error_recorder.add_one('%s_ERROR_optimized_test'%station_name, ERROR_optimized_test) error_recorder.add_one('%s_ERROR_business_train'%station_name, ERROR_business_train) error_recorder.add_one('%s_ERROR_business_test'%station_name, ERROR_business_test) error_recorder.add_one('%s_improvement_train (%%)'%station_name, ERROR_improvement_train) error_recorder.add_one('%s_improvement_test (%%)'%station_name, ERROR_improvement_test) #TIME LOOP DONE. plt.close() plt.ioff() #Mean over redudant slices: if len(concat_optimized_test) == 0: print("len concat test =0") continue #Concatenate all slices of timeloops optimized_combination_test = concat_optimized_test.resample('15min').mean().dropna() business_power_test = business_power.reindex(optimized_combination_test.index).dropna() common_index = optimized_combination_test.index & business_power_test.index optimized_combination_test = optimized_combination_test.loc[common_index] business_power_test = business_power_test.loc[common_index] real_power_test = real_power.loc[common_index] ERROR_opt = np.nanmean(np.abs(optimized_combination_test - real_power_test)) LSE_opt = np.nanmean((optimized_combination_test - real_power_test)**2) ERROR_bus = np.nanmean(np.abs(business_power_test - real_power_test)) LSE_bus = np.nanmean((business_power_test - real_power_test)**2) ERROR_imp = (ERROR_bus-ERROR_opt)/ERROR_bus*100 LSE_imp = (LSE_bus-LSE_opt)/LSE_bus*100 logs.loc[station_name, 'ERROR_optimized_train'] = error_recorder.get_mean('%s_ERROR_optimized_train'%station_name) logs.loc[station_name, 'ERROR_optimized_test'] = error_recorder.get_mean('%s_ERROR_optimized_test'%station_name) logs.loc[station_name, 'ERROR_business_train'] = error_recorder.get_mean('%s_ERROR_business_train'%station_name) logs.loc[station_name, 'ERROR_business_test'] = error_recorder.get_mean('%s_ERROR_business_test'%station_name) logs.loc[station_name, 'improvement_train (%)'] = error_recorder.get_mean('%s_improvement_train (%%)'%station_name) logs.loc[station_name, 'improvement_test (%)'] = error_recorder.get_mean('%s_improvement_test (%%)'%station_name) logs.loc[station_name, 'loop_optimized_output'] = ','.join(np.round(optimized_combination_test, 1).astype(str).to_list()) logs.loc[station_name, 'loop_real_output'] = ','.join(np.round(real_power_test, 1).astype(str).to_list()) logs.loc[station_name, 'loop_business_power_test'] = ','.join(np.round(business_power_test, 1).astype(str).to_list()) logs.loc[station_name, 'loop_test ERROR (%)'] = ERROR_imp logs.loc[station_name, 'loop_test LSE (%)'] = LSE_imp print('loop given: ERROR:%s, LSE:%s'%(ERROR_imp, LSE_imp)) #plots: fig = plt.figure(figsize=(18, 10)) ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212) ax1.plot(meteor_powers.loc[Y_train.index], alpha=0.4, c='gray', label='sources') ax1.plot(real_power.loc[Y_train.index], label='real', c='k') ax1.plot(optimized_combination_train, label='optimized', c='g') ax1.plot(business_power_train, label='business', c='r') ax2.plot(meteor_powers.reindex(optimized_combination_test.index), alpha=0.4, c='gray', label='sources') ax2.plot(real_power_test, label='real', c='k') ax2.plot(optimized_combination_test, label='optimized', c='g', alpha=1) ax2.plot(business_power_test, label='business', c='r', alpha=0.8) ax1.legend() ax2.legend() ax1.set_title("%s \nTrain result for meteor sources, improvement(%s): %s%%"%(station_name, config.eval_metric, ERROR_improvement_train)) ax2.set_title("%s \nTest result for meteor sources, improvement(%s): %s%%"%(station_name, config.eval_metric, ERROR_improvement_test)) ax1.grid() ax2.grid() if args.VISUALIZATION: plt.show() plt.savefig(os.path.join('..', 'png', '%s_%s_%s.png'%(station_name, args.train_length, args.test_length))) plt.close() #STATION LOOP DONE #Statistics: #logs.to_csv(os.path.join('..', 'output', 'detials_%s_%s_%s_%s_%s_%s-%s_loop%s.csv'%(args.train_length, args.test_length, np.nanmean(overall_LSE_imp), args.method, args.use_spd, start_date_grasp, end_date_grasp, args.loop_days))) #print(logs) #print(logs.describe()) print("Finish list", args.filename)
4a3bb92e0a9b95c1fc10eb9db2fd34e8f5cdcb8d
1669bf106be7e4e88ad957aa1f0a708a49f9ef87
/first_website/setup.py
d87bfe260f13a957af9d07c566ab6284fad70c61
[]
no_license
genzj/python-fundamentals-course
280166037bb6ff25e2400fa3b281de153824c622
31218a42c609d923b3ae0c7d785b9dc02c0d9a6e
refs/heads/master
2023-01-09T22:13:04.040355
2021-03-20T02:33:18
2021-03-20T02:33:18
218,776,587
2
2
null
2022-12-26T20:59:32
2019-10-31T13:47:43
Python
UTF-8
Python
false
false
1,512
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" from setuptools import setup, find_packages with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() requirements = [ ] setup_requirements = [ ] test_requirements = [ ] setup( author="Jie ZHU", author_email='[email protected]', python_requires='>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'Natural Language :: English', "Programming Language :: Python :: 2", 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], description="Python Boilerplate contains all the boilerplate you need to create a Python package.", install_requires=requirements, long_description=readme + '\n\n' + history, include_package_data=True, keywords='first_website', name='first_website', packages=find_packages(include=['first_website', 'first_website.*']), setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, url='https://github.com/genzj/first_website', version='0.1.0', zip_safe=False, )
93af8f67f99cacadec773970d6e4593f6c1b339e
dd098f8a93f787e38676283679bb39a290ba28b4
/samples/openapi3/client/3_0_3_unit_test/python-experimental/test/test_paths/test_response_body_post_maxlength_validation_response_body_for_content_types/test_post.py
b5ee61f9396dd84fdab727dd1f5cee04e4b0aa0f
[ "Apache-2.0" ]
permissive
InfoSec812/openapi-generator
727c0235d3bad9b85ac12068808f844287af6003
e0c72702c3d5dae2a627a2926f0cddeedca61e32
refs/heads/master
2022-10-22T00:31:33.318867
2022-08-20T14:10:31
2022-08-20T14:10:31
152,479,633
1
0
Apache-2.0
2023-09-04T23:34:09
2018-10-10T19:38:43
Java
UTF-8
Python
false
false
7,073
py
# coding: utf-8 """ Generated by: https://openapi-generator.tech """ import unittest from unittest.mock import patch import urllib3 import unit_test_api from unit_test_api.paths.response_body_post_maxlength_validation_response_body_for_content_types import post # noqa: E501 from unit_test_api import configuration, schemas, api_client from .. import ApiTestMixin class TestResponseBodyPostMaxlengthValidationResponseBodyForContentTypes(ApiTestMixin, unittest.TestCase): """ ResponseBodyPostMaxlengthValidationResponseBodyForContentTypes unit test stubs """ _configuration = configuration.Configuration() def setUp(self): used_api_client = api_client.ApiClient(configuration=self._configuration) self.api = post.ApiForpost(api_client=used_api_client) # noqa: E501 def tearDown(self): pass response_status = 200 def test_too_long_is_invalid_fails(self): # too long is invalid accept_content_type = 'application/json' with patch.object(urllib3.PoolManager, 'request') as mock_request: payload = ( "foo" ) mock_request.return_value = self.response( self.json_bytes(payload), status=self.response_status ) with self.assertRaises((unit_test_api.ApiValueError, unit_test_api.ApiTypeError)): self.api.post( accept_content_types=(accept_content_type,) ) self.assert_pool_manager_request_called_with( mock_request, self._configuration.host + '/responseBody/postMaxlengthValidationResponseBodyForContentTypes', method='post'.upper(), content_type=None, accept_content_type=accept_content_type, ) def test_ignores_non_strings_passes(self): # ignores non-strings accept_content_type = 'application/json' with patch.object(urllib3.PoolManager, 'request') as mock_request: payload = ( 100 ) mock_request.return_value = self.response( self.json_bytes(payload), status=self.response_status ) api_response = self.api.post( accept_content_types=(accept_content_type,) ) self.assert_pool_manager_request_called_with( mock_request, self._configuration.host + '/responseBody/postMaxlengthValidationResponseBodyForContentTypes', method='post'.upper(), accept_content_type=accept_content_type, ) assert isinstance(api_response.response, urllib3.HTTPResponse) assert isinstance(api_response.body, post.SchemaFor200ResponseBodyApplicationJson) deserialized_response_body = post.SchemaFor200ResponseBodyApplicationJson._from_openapi_data( payload, _configuration=self._configuration ) assert api_response.body == deserialized_response_body def test_shorter_is_valid_passes(self): # shorter is valid accept_content_type = 'application/json' with patch.object(urllib3.PoolManager, 'request') as mock_request: payload = ( "f" ) mock_request.return_value = self.response( self.json_bytes(payload), status=self.response_status ) api_response = self.api.post( accept_content_types=(accept_content_type,) ) self.assert_pool_manager_request_called_with( mock_request, self._configuration.host + '/responseBody/postMaxlengthValidationResponseBodyForContentTypes', method='post'.upper(), accept_content_type=accept_content_type, ) assert isinstance(api_response.response, urllib3.HTTPResponse) assert isinstance(api_response.body, post.SchemaFor200ResponseBodyApplicationJson) deserialized_response_body = post.SchemaFor200ResponseBodyApplicationJson._from_openapi_data( payload, _configuration=self._configuration ) assert api_response.body == deserialized_response_body def test_two_supplementary_unicode_code_points_is_long_enough_passes(self): # two supplementary Unicode code points is long enough accept_content_type = 'application/json' with patch.object(urllib3.PoolManager, 'request') as mock_request: payload = ( "💩💩" ) mock_request.return_value = self.response( self.json_bytes(payload), status=self.response_status ) api_response = self.api.post( accept_content_types=(accept_content_type,) ) self.assert_pool_manager_request_called_with( mock_request, self._configuration.host + '/responseBody/postMaxlengthValidationResponseBodyForContentTypes', method='post'.upper(), accept_content_type=accept_content_type, ) assert isinstance(api_response.response, urllib3.HTTPResponse) assert isinstance(api_response.body, post.SchemaFor200ResponseBodyApplicationJson) deserialized_response_body = post.SchemaFor200ResponseBodyApplicationJson._from_openapi_data( payload, _configuration=self._configuration ) assert api_response.body == deserialized_response_body def test_exact_length_is_valid_passes(self): # exact length is valid accept_content_type = 'application/json' with patch.object(urllib3.PoolManager, 'request') as mock_request: payload = ( "fo" ) mock_request.return_value = self.response( self.json_bytes(payload), status=self.response_status ) api_response = self.api.post( accept_content_types=(accept_content_type,) ) self.assert_pool_manager_request_called_with( mock_request, self._configuration.host + '/responseBody/postMaxlengthValidationResponseBodyForContentTypes', method='post'.upper(), accept_content_type=accept_content_type, ) assert isinstance(api_response.response, urllib3.HTTPResponse) assert isinstance(api_response.body, post.SchemaFor200ResponseBodyApplicationJson) deserialized_response_body = post.SchemaFor200ResponseBodyApplicationJson._from_openapi_data( payload, _configuration=self._configuration ) assert api_response.body == deserialized_response_body if __name__ == '__main__': unittest.main()
38801dbfe2808511d05323af89e49be9254d06bd
40b5c4a77be465b47fe6fd7ff408db957261cc7f
/python-spake2-0.7/setup.py
c6365b7a7fcc9b95f11fa6dfb09513fabbc2ab8f
[ "MIT" ]
permissive
warner/spake2-interop-server
7c1f0502a93615d2e2b5b7a323731a7e20040f86
b3f2ae42971e4217d9f503bb672b2d9288225acc
refs/heads/master
2021-01-25T11:27:45.696023
2017-06-10T22:15:15
2017-06-10T22:15:15
93,924,508
0
0
null
null
null
null
UTF-8
Python
false
false
913
py
"A server that performs SPAKE2 operations, for interoperability testing." # Install this, then run "twist spake2_interop" and hit http://HOST:8705/ from setuptools import setup import versioneer setup( name="spake2-interop-python-spake2-0.7", version=versioneer.get_version(), author="Brian Warner", author_email="[email protected]", package_dir={"": "src"}, # this must be installed into its own virtualenv (e.g. spake2-0.7 can't # share a venv with spake2-0.3), so we don't need a version-specific # package name, and keeping it neutral will minimize the diff packages=["spake2_interop_python"], license="MIT", cmdclass=versioneer.get_cmdclass(), install_requires=[ "spake2==0.7", ], entry_points={ "console_scripts": [ "spake2_interop_python_0_7 = spake2_interop_python:run", ] }, )
9fa28da8427b89b3d954bdd756fd2ebcba4686a1
83048ab1abb6941ed0b19fb5e5ff4a9d14b48e8c
/CODEFORCES/two_teams.py
7d256d350d953f576fe903bf8811b7a18f57716a
[]
no_license
harshitalpha/Algorithms
ebad07cc77516ab5c35ae414462d10a38d5ef97e
2f7dcf4c3bb4390267231c7c96f7e76399c0166e
refs/heads/master
2021-07-14T17:34:02.546583
2020-06-25T06:38:39
2020-06-25T06:38:39
178,813,562
2
0
null
null
null
null
UTF-8
Python
false
false
693
py
t = int(input()) while(t): t = t - 1 n = int(input()) a = [int(s) for s in input().split()] d = {} for i in a: try: d[i] += 1 except KeyError: d[i] = 1 max_size = d[a[0]] ele_in_sec_arr = a[0] for i in d.keys(): if d[i] > max_size: max_size = d[i] ele_in_sec_arr = i count = 0 for i in d.keys(): if i is not ele_in_sec_arr: count = count + 1 if count == max_size: print(max_size) elif count == max_size - 1: print(count) elif count <= max_size-2: print(count+1) elif count > max_size: print(max_size)
b67ec65da5b89ee26ecfac71462afdedf4ad07d3
a72f39b82966cd6e2a3673851433ce7db550429a
/configs/_base_/models/lxmert/lxmert_vqa_config.py
781219951d7cd25d348c58e16f382837a1dcbeaf
[ "Apache-2.0" ]
permissive
linxi1158/iMIX
85841d6b95e1d99ed421a1ac3667658e49cae6fc
af87a17275f02c94932bb2e29f132a84db812002
refs/heads/master
2023-06-09T23:37:46.534031
2021-06-30T12:09:42
2021-06-30T12:09:42
381,608,650
0
0
Apache-2.0
2021-06-30T07:08:40
2021-06-30T07:08:39
null
UTF-8
Python
false
false
1,753
py
# model settings model = dict( type='LXMERT', params=dict( random_initialize=False, num_labels=3129, # BertConfig vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act='gelu', hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, # mode='lxr', l_layers=9, # 12 x_layers=5, # 5 r_layers=5, # 0 visual_feat_dim=2048, visual_pos_dim=4, freeze_base=False, max_seq_length=20, model='bert', training_head_type='vqa2', bert_model_name='bert-base-uncased', pretrained_path='/home/datasets/mix_data/iMIX/data/models/model_LXRT.pth', label2ans_path='/home/datasets/mix_data/lxmert/vqa/trainval_label2ans.json', )) loss = dict(type='LogitBinaryCrossEntropy') optimizer = dict( type='BertAdam', lr=5e-5, weight_decay=0.01, eps=1e-6, betas=[0.9, 0.999], max_grad_norm=-1, training_encoder_lr_multiply=1, ) optimizer_config = dict(grad_clip=dict(max_norm=5)) ''' fp16 = dict( init_scale=2.**16, growth_factor=2.0, backoff_factor=0.5, growth_interval=2000, ) ''' lr_config = dict( warmup=0.1, warmup_method='warmup_linear', # max_iters=55472, # ceil(totoal 443753 / batch size 32) * epoch size datasets: train max_iters=79012, # floor(totoal 632117 / batch size 32) * epoch size datasets: train, nominival policy='BertWarmupLinearLR') total_epochs = 4 seed = 9595
8626edcebc5d57619798aec921223388d499ef0b
f77327128a8da9702ae3443e2171bc7485ceb915
/cadence/items.py
08b1b50b16175e30c34717833ce6af94ae712ed4
[]
no_license
SimeonYS/cadence
0eeba6a54c03ffb2d55466f9d8de6f1b1662002f
cdaef13c85a03e031a0050c89c17249cd7d83125
refs/heads/main
2023-03-31T08:24:41.408507
2021-03-31T10:14:01
2021-03-31T10:14:01
353,312,955
0
0
null
null
null
null
UTF-8
Python
false
false
156
py
import scrapy class CadenceItem(scrapy.Item): title = scrapy.Field() content = scrapy.Field() date = scrapy.Field() link = scrapy.Field()
17602e35cc61bc0f7fc211873d8f4e8f3498781a
4ca44b7bdb470fcbbd60c2868706dbd42b1984c9
/20.12.14/BOJ_20056.py
d156e0cef3cfd5583ae7fcf2a95e7de4fd8f8efa
[]
no_license
titiman1013/Algorithm
3b3d14b3e2f0cbc4859029eb73ad959ec8778629
8a67e36931c42422779a4c90859b665ee468255b
refs/heads/master
2023-06-29T17:04:40.015311
2021-07-06T01:37:29
2021-07-06T01:37:29
242,510,483
2
0
null
null
null
null
UTF-8
Python
false
false
3,827
py
import sys; sys.stdin = open('text1.txt', 'r') # solve test1 # dx = [-1, -1, 0, 1, 1, 1, 0, -1] # dy = [0, 1, 1, 1, 0, -1, -1, -1] # def move_fireball(x, y, m, s, d): # for _ in range(s): # nx = x + dx[d] # ny = y + dy[d] # if 0 <= nx < N and 0 <= ny < N: # x, y = nx, ny # else: # if nx < 0 or nx >= N: # if nx < 0: # x = N + nx # else: # x = nx - N # if ny < 0 or nx >= N: # if ny < 0: # y = N + ny # else: # y = ny - N # if bool(arr[x][y]): # arr[x][y].append([x, y, m, s, d]) # else: # arr[x][y] = [[x, y, m, s, d]] # return # def sum_fireball(sum_list): # list_cnt = len(sum_list) # m = 0 # s = 0 # d = [] # for idx in range(list_cnt): # m += sum_list[idx][2] # s += sum_list[idx][3] # if d % 2: # d.append(1) # else: # d.append(0) # m = m // 5 # if m == 0: # return [0] # s = s // list_cnt # d_check = True # temp_d = d[0] # for i in range(1, len(d)): # if d[i] != temp_d: # d_check = False # break # if d_check == True: # d = [0, 2, 4, 6] # else: # d = [1, 3, 5, 7] # temp_list = [] # for i in range(4): # temp_list.append([sum_list[0], sum_list[1], m, s, d[i]]) # return temp_list # # 방향 # # 인접한 행렬 12시부터 시계방향 # # 7 0 1 # # 6 2 # # 5 4 3 # for tc in range(1, int(input()) + 1): # N, M, K = map(int, input().split()) # # [r, c, m, s, d] # items = [list(map(int, input().split())) for _ in range(M)] # arr = [[0] * N for _ in range(N)] # if K > 0: # # 처음 시행 # for item in items: # move_fireball(item[0] - 1, item[1] - 1, item[2], item[3], item[4]) # print(arr) # move_cnt = 1 # while move_cnt <= K: # # 움직이기 # for i in range(N): # for j in range(N): # if bool(arr[i][j]): # if len(arr[i][j]) >= 2: # temp_list = arr[i][j][0] # arr[i][j] = 0 # for k in range(len(temp_list)): # move_fireball(temp_list[k][0], temp_list[k][1], temp_list[k][2], temp_list[k][3], temp_list[k][4]) # else: # temp_list = arr[i][j][0] # arr[i][j] = 0 # print(arr) # move_fireball(temp_list[0], temp_list[1], temp_list[2], temp_list[3], temp_list[4]) # # 합치기 # for i in range(N): # for j in range(N): # if len(arr[i][j]) >= 2: # arr[i][j] = sum_fireball(arr[i][j]) # move_cnt += 1 # res = 0 # for i in range(N): # for j in range(N): # if bool(arr[i][j]): # if len(arr[i][j]) >= 2: # for k in range(len(arr[i][j])): # res += arr[i][j][k][2] # else: # res += arr[i][j][0][2] # print(f'#{tc} {res}') # solve test2 from collections import deque for tc in range(1, int(input()) + 1): N, M, K = map(int, input().split()) # [r, c, m, s, d] items = [list(map(int, input().split())) for _ in range(M)] arr = [[0] * N for _ in range(N)] q = deque() for item in items: q.append(item) for _ in range(K): while q:
16f4f84a799fbad2d4951affd28a3893ee356839
a667b52cb8d2ec857c55d33f04fc0e81d36dc681
/options/data/mc/pipipi0_DecProdCut_PHSP_2012_MC_2012_Beam4000GeV-2012-MagUp-Nu2.5-Pythia8_Sim08e_Digi13_Trig0x409f0045_Reco14a_Stripping20r0p2NoPrescalingFlagged_27163403_ALLSTREAMS.DST.py
befddb5e34f37022361b1b2ddd67efe8ea3fa6bd
[]
no_license
wenyanyin/CP_violation_simulation
639d73333a3795654275cb43cc7dad7c742d1be1
7b93b2fe1050fb30d0b809b758cd5a3b2824b875
refs/heads/master
2022-04-29T14:19:23.744004
2022-04-01T13:05:18
2022-04-01T13:05:18
168,570,282
0
0
null
null
null
null
UTF-8
Python
false
false
3,745
py
# lb-run LHCbDirac/prod dirac-bookkeeping-get-files -B /MC/2012/Beam4000GeV-2012-MagUp-Nu2.5-Pythia8/Sim08e/Digi13/Trig0x409f0045/Reco14a/Stripping20r0p2NoPrescalingFlagged/27163403/ALLSTREAMS.DST from Gaudi.Configuration import * from GaudiConf import IOHelper IOHelper('ROOT').inputFiles( ['LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000001_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000003_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000004_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000005_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000006_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000008_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000009_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000011_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000012_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000013_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000014_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000015_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000016_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000017_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000018_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000019_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000020_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000021_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000022_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000024_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000025_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000027_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000028_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000029_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000030_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000033_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000034_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000036_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000037_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000039_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000040_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000042_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000044_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000046_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000048_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000049_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000050_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000052_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000053_2.AllStreams.dst', 'LFN:/lhcb/MC/2012/ALLSTREAMS.DST/00034127/0000/00034127_00000054_2.AllStreams.dst'], clear=True)
f6aff156beb68f479d76392ed5097e84546ed4e6
764a157c1ef369664144a112f390165809c37861
/apps/app/views.py
75a6c7124d899b9dae8673fed292fa32dbe61aff
[]
no_license
Maliaotw/gogoweb
b044678b0a34c2748267c8f8ac1f6af91d42bcd0
aad84f11163e62716a239972436eb92e7cc601d0
refs/heads/main
2023-07-07T19:46:37.470811
2021-08-31T15:01:58
2021-08-31T15:01:58
341,254,107
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
from django.shortcuts import render from apps.app import models from apps.app import serializers from rest_framework import viewsets from rest_framework.pagination import LimitOffsetPagination from rest_framework.views import APIView, Response from rest_framework import status # Create your views here. class TaskModelViewSet(viewsets.ModelViewSet): queryset = models.Task.objects.all() serializer_class = serializers.TaskSerializer pagination_class = LimitOffsetPagination def destroy(self, request, *args, **kwargs): instance = self.get_object() self.perform_destroy(instance) return Response(status=status.HTTP_200_OK)
50482a45f14d167f9dd6e9fc7d00d93c3fcaad60
5b93930ce8280b3cbc7d6b955df0bfc5504ee99c
/nodes/Geron17Hands/B_PartI/H_Chapter8/C_PCA/D_UsingScikitLearn/index.py
f3808ea9cd7e1c90a935491935c7d8dd01be2ef0
[]
no_license
nimra/module_gen
8749c8d29beb700cac57132232861eba4eb82331
2e0a4452548af4fefd4cb30ab9d08d7662122cf4
refs/heads/master
2022-03-04T09:35:12.443651
2019-10-26T04:40:49
2019-10-26T04:40:49
213,980,247
0
1
null
null
null
null
UTF-8
Python
false
false
3,414
py
# Lawrence McAfee # ~~~~~~~~ import ~~~~~~~~ from modules.node.HierNode import HierNode from modules.node.LeafNode import LeafNode from modules.node.Stage import Stage from modules.node.block.CodeBlock import CodeBlock as cbk from modules.node.block.HierBlock import HierBlock as hbk from modules.node.block.ImageBlock import ImageBlock as ibk from modules.node.block.ListBlock import ListBlock as lbk from modules.node.block.MarkdownBlock import MarkdownBlock as mbk # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ blocks = [ # Download from finelybook www.finelybook.com # ing the first d principal components (i.e., the matrix composed of the first d columns # of VT), as shown in Equation 8-2. # # Equation 8-2. Projecting the training set down to d dimensions # �d‐proj = � · �d # # The following Python code projects the training set onto the plane defined by the first # two principal components: # W2 = V.T[:, :2] # X2D = X_centered.dot(W2) # There you have it! You now know how to reduce the dimensionality of any dataset # down to any number of dimensions, while preserving as much variance as possible. # # Using Scikit-Learn # Scikit-Learn’s PCA class implements PCA using SVD decomposition just like we did # before. The following code applies PCA to reduce the dimensionality of the dataset # down to two dimensions (note that it automatically takes care of centering the data): # from sklearn.decomposition import PCA # # pca = PCA(n_components = 2) # X2D = pca.fit_transform(X) # # After fitting the PCA transformer to the dataset, you can access the principal compo‐ # nents using the components_ variable (note that it contains the PCs as horizontal vec‐ # tors, so, for example, the first principal component is equal to pca.components_.T[:, # 0]). # # Explained Variance Ratio # Another very useful piece of information is the explained variance ratio of each prin‐ # cipal component, available via the explained_variance_ratio_ variable. It indicates # the proportion of the dataset’s variance that lies along the axis of each principal com‐ # ponent. For example, let’s look at the explained variance ratios of the first two compo‐ # nents of the 3D dataset represented in Figure 8-2: # >>> print(pca.explained_variance_ratio_) # array([ 0.84248607, 0.14631839]) # This tells you that 84.2% of the dataset’s variance lies along the first axis, and 14.6% # lies along the second axis. This leaves less than 1.2% for the third axis, so it is reason‐ # able to assume that it probably carries little information. # # # # # 214 | Chapter 8: Dimensionality Reduction # ] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class Content(LeafNode): def __init__(self): super().__init__( "Using Scikit-Learn", # Stage.REMOVE_EXTRANEOUS, # Stage.ORIG_BLOCKS, # Stage.CUSTOM_BLOCKS, # Stage.ORIG_FIGURES, # Stage.CUSTOM_FIGURES, # Stage.CUSTOM_EXERCISES, ) [self.add(a) for a in blocks] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class UsingScikitLearn(HierNode): def __init__(self): super().__init__("Using Scikit-Learn") self.add(Content(), "content") # eof
cb50337db2d8006a698aab101b52e25241b61b67
292437b85108504a7ca91571f26a639a313501b6
/venv2/lib/python2.7/site-packages/keystoneclient/auth/identity/generic/token.py
6a5d15b281e8931b3199251c3a6ea2c8f77eef3e
[]
no_license
heekof/monitoring-agent
c86bebcf77091490df7a6b8c881b85fdb2b9e4eb
b1c079efdf2dabe854f2aa3d96f36d2ec7021070
refs/heads/master
2021-01-15T15:39:01.512801
2016-08-31T20:53:38
2016-08-31T20:53:38
58,620,098
1
0
null
null
null
null
UTF-8
Python
false
false
1,656
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging from oslo_config import cfg from keystoneclient import _discover from keystoneclient.auth.identity.generic import base from keystoneclient.auth.identity import v2 from keystoneclient.auth.identity import v3 LOG = logging.getLogger(__name__) def get_options(): return [ cfg.StrOpt('token', secret=True, help='Token to authenticate with'), ] class Token(base.BaseGenericPlugin): """Generic token auth plugin. :param string token: Token for authentication. """ def __init__(self, auth_url, token=None, **kwargs): super(Token, self).__init__(auth_url, **kwargs) self._token = token def create_plugin(self, session, version, url, raw_status=None): if _discover.version_match((2,), version): return v2.Token(url, self._token, **self._v2_params) elif _discover.version_match((3,), version): return v3.Token(url, self._token, **self._v3_params) @classmethod def get_options(cls): options = super(Token, cls).get_options() options.extend(get_options()) return options
867b3f98c1c1451d19180642f61929115b3606d1
d4f4bff5d4412abbb73ce534fae0c87ea9a62362
/model/boarding2/unassigned_integration_settings.py
fdc774918694894dc6fb81064c5daafc67d14b5a
[]
no_license
icorso/wn_api
4f023905bcf83fd19eb7826191a6fcf66345e38f
b7e558b30d57b62ed3333cbfb7a9359bf954e320
refs/heads/master
2023-05-25T11:05:02.203211
2021-05-22T15:10:57
2021-05-22T15:10:57
366,672,359
1
0
null
null
null
null
UTF-8
Python
false
false
10,171
py
# coding: utf-8 from model.serializable import SwaggerSerializable class UnassignedIntegrationSettings(SwaggerSerializable): swagger_types = { 'enable_background_validation': 'bool', 'background_validation_url': 'str', 'receipt_page_url': 'str', 'enable_additional_field_xml_response_tag': 'bool', 'enable_supports_apple_pay_xml_response_tag': 'bool', 'enable_supports_google_pay_xml_response_tag': 'bool', 'enable_enable3ds_xml_response_tag': 'bool', 'enable_supported_cards_xml_response_tag': 'bool' } attribute_map = { 'enable_background_validation': 'enableBackgroundValidation', 'background_validation_url': 'backgroundValidationUrl', 'receipt_page_url': 'receiptPageUrl', 'enable_additional_field_xml_response_tag': 'enableAdditionalFieldXmlResponseTag', 'enable_supports_apple_pay_xml_response_tag': 'enableSupportsApplePayXmlResponseTag', 'enable_supports_google_pay_xml_response_tag': 'enableSupportsGooglePayXmlResponseTag', 'enable_enable3ds_xml_response_tag': 'enableEnable3dsXmlResponseTag', 'enable_supported_cards_xml_response_tag': 'enableSupportedCardsXmlResponseTag' } def __init__(self, enable_background_validation=False, background_validation_url=None, receipt_page_url=None, enable_additional_field_xml_response_tag=True, enable_supports_apple_pay_xml_response_tag=True, enable_supports_google_pay_xml_response_tag=True, enable_enable3ds_xml_response_tag=True, enable_supported_cards_xml_response_tag=True): # noqa: E501 """UnassignedIntegrationSettings - a model defined in Swagger""" # noqa: E501 self._enable_background_validation = None self._background_validation_url = None self._receipt_page_url = None self._enable_additional_field_xml_response_tag = None self._enable_supports_apple_pay_xml_response_tag = None self._enable_supports_google_pay_xml_response_tag = None self._enable_enable3ds_xml_response_tag = None self._enable_supported_cards_xml_response_tag = None self.discriminator = None if enable_background_validation is not None: self.enable_background_validation = enable_background_validation if background_validation_url is not None: self.background_validation_url = background_validation_url if receipt_page_url is not None: self.receipt_page_url = receipt_page_url if enable_additional_field_xml_response_tag is not None: self.enable_additional_field_xml_response_tag = enable_additional_field_xml_response_tag if enable_supports_apple_pay_xml_response_tag is not None: self.enable_supports_apple_pay_xml_response_tag = enable_supports_apple_pay_xml_response_tag if enable_supports_google_pay_xml_response_tag is not None: self.enable_supports_google_pay_xml_response_tag = enable_supports_google_pay_xml_response_tag if enable_enable3ds_xml_response_tag is not None: self.enable_enable3ds_xml_response_tag = enable_enable3ds_xml_response_tag if enable_supported_cards_xml_response_tag is not None: self.enable_supported_cards_xml_response_tag = enable_supported_cards_xml_response_tag @property def enable_background_validation(self): """Gets the enable_background_validation of this UnassignedIntegrationSettings. # noqa: E501 :return: The enable_background_validation of this UnassignedIntegrationSettings. # noqa: E501 :rtype: bool """ return self._enable_background_validation @enable_background_validation.setter def enable_background_validation(self, enable_background_validation): """Sets the enable_background_validation of this UnassignedIntegrationSettings. :param enable_background_validation: The enable_background_validation of this UnassignedIntegrationSettings. # noqa: E501 :type: bool """ self._enable_background_validation = enable_background_validation @property def background_validation_url(self): """Gets the background_validation_url of this UnassignedIntegrationSettings. # noqa: E501 :return: The background_validation_url of this UnassignedIntegrationSettings. # noqa: E501 :rtype: str """ return self._background_validation_url @background_validation_url.setter def background_validation_url(self, background_validation_url): """Sets the background_validation_url of this UnassignedIntegrationSettings. :param background_validation_url: The background_validation_url of this UnassignedIntegrationSettings. # noqa: E501 :type: str """ self._background_validation_url = background_validation_url @property def receipt_page_url(self): """Gets the receipt_page_url of this UnassignedIntegrationSettings. # noqa: E501 :return: The receipt_page_url of this UnassignedIntegrationSettings. # noqa: E501 :rtype: str """ return self._receipt_page_url @receipt_page_url.setter def receipt_page_url(self, receipt_page_url): """Sets the receipt_page_url of this UnassignedIntegrationSettings. :param receipt_page_url: The receipt_page_url of this UnassignedIntegrationSettings. # noqa: E501 :type: str """ self._receipt_page_url = receipt_page_url @property def enable_additional_field_xml_response_tag(self): """Gets the enable_additional_field_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :return: The enable_additional_field_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :rtype: bool """ return self._enable_additional_field_xml_response_tag @enable_additional_field_xml_response_tag.setter def enable_additional_field_xml_response_tag(self, enable_additional_field_xml_response_tag): """Sets the enable_additional_field_xml_response_tag of this UnassignedIntegrationSettings. :param enable_additional_field_xml_response_tag: The enable_additional_field_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :type: bool """ self._enable_additional_field_xml_response_tag = enable_additional_field_xml_response_tag @property def enable_supports_apple_pay_xml_response_tag(self): """Gets the enable_supports_apple_pay_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :return: The enable_supports_apple_pay_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :rtype: bool """ return self._enable_supports_apple_pay_xml_response_tag @enable_supports_apple_pay_xml_response_tag.setter def enable_supports_apple_pay_xml_response_tag(self, enable_supports_apple_pay_xml_response_tag): """Sets the enable_supports_apple_pay_xml_response_tag of this UnassignedIntegrationSettings. :param enable_supports_apple_pay_xml_response_tag: The enable_supports_apple_pay_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :type: bool """ self._enable_supports_apple_pay_xml_response_tag = enable_supports_apple_pay_xml_response_tag @property def enable_supports_google_pay_xml_response_tag(self): """Gets the enable_supports_google_pay_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :return: The enable_supports_google_pay_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :rtype: bool """ return self._enable_supports_google_pay_xml_response_tag @enable_supports_google_pay_xml_response_tag.setter def enable_supports_google_pay_xml_response_tag(self, enable_supports_google_pay_xml_response_tag): """Sets the enable_supports_google_pay_xml_response_tag of this UnassignedIntegrationSettings. :param enable_supports_google_pay_xml_response_tag: The enable_supports_google_pay_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :type: bool """ self._enable_supports_google_pay_xml_response_tag = enable_supports_google_pay_xml_response_tag @property def enable_enable3ds_xml_response_tag(self): """Gets the enable_enable3ds_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :return: The enable_enable3ds_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :rtype: bool """ return self._enable_enable3ds_xml_response_tag @enable_enable3ds_xml_response_tag.setter def enable_enable3ds_xml_response_tag(self, enable_enable3ds_xml_response_tag): """Sets the enable_enable3ds_xml_response_tag of this UnassignedIntegrationSettings. :param enable_enable3ds_xml_response_tag: The enable_enable3ds_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :type: bool """ self._enable_enable3ds_xml_response_tag = enable_enable3ds_xml_response_tag @property def enable_supported_cards_xml_response_tag(self): """Gets the enable_supported_cards_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :return: The enable_supported_cards_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :rtype: bool """ return self._enable_supported_cards_xml_response_tag @enable_supported_cards_xml_response_tag.setter def enable_supported_cards_xml_response_tag(self, enable_supported_cards_xml_response_tag): """Sets the enable_supported_cards_xml_response_tag of this UnassignedIntegrationSettings. :param enable_supported_cards_xml_response_tag: The enable_supported_cards_xml_response_tag of this UnassignedIntegrationSettings. # noqa: E501 :type: bool """ self._enable_supported_cards_xml_response_tag = enable_supported_cards_xml_response_tag
64a694d6c95f4ea237880b1e4abbce5a36e03343
a8b37bd399dd0bad27d3abd386ace85a6b70ef28
/airbyte-integrations/connectors/destination-weaviate/destination_weaviate/client.py
3ba83b2a4a53a92af1f8413bd85c69ca41b056c9
[ "MIT", "LicenseRef-scancode-free-unknown", "Elastic-2.0" ]
permissive
thomas-vl/airbyte
5da2ba9d189ba0b202feb952cadfb550c5050871
258a8eb683634a9f9b7821c9a92d1b70c5389a10
refs/heads/master
2023-09-01T17:49:23.761569
2023-08-25T13:13:11
2023-08-25T13:13:11
327,604,451
1
0
MIT
2021-01-07T12:24:20
2021-01-07T12:24:19
null
UTF-8
Python
false
false
6,094
py
# # Copyright (c) 2023 Airbyte, Inc., all rights reserved. # import json import logging import time import uuid from dataclasses import dataclass from typing import Any, List, Mapping, MutableMapping import weaviate from .utils import generate_id, parse_id_schema, parse_vectors, stream_to_class_name @dataclass class BufferedObject: id: str properties: Mapping[str, Any] vector: List[Any] class_name: str class WeaviatePartialBatchError(Exception): pass class Client: def __init__(self, config: Mapping[str, Any], schema: Mapping[str, str]): self.client = self.get_weaviate_client(config) self.config = config self.batch_size = int(config.get("batch_size", 100)) self.schema = schema self.vectors = parse_vectors(config.get("vectors")) self.id_schema = parse_id_schema(config.get("id_schema")) self.buffered_objects: MutableMapping[str, BufferedObject] = {} self.objects_with_error: MutableMapping[str, BufferedObject] = {} def buffered_write_operation(self, stream_name: str, record: MutableMapping): if self.id_schema.get(stream_name, "") in record: id_field_name = self.id_schema.get(stream_name, "") record_id = generate_id(record.get(id_field_name)) del record[id_field_name] else: if "id" in record: record_id = generate_id(record.get("id")) del record["id"] # Weaviate will throw an error if you try to store a field with name _id elif "_id" in record: record_id = generate_id(record.get("_id")) del record["_id"] else: record_id = uuid.uuid4() record_id = str(record_id) # TODO support nested objects instead of converting to json string when weaviate supports this for k, v in record.items(): if self.schema[stream_name].get(k, "") == "jsonify": record[k] = json.dumps(v) # Handling of empty list that's not part of defined schema otherwise Weaviate throws invalid string property if isinstance(v, list) and len(v) == 0 and k not in self.schema[stream_name]: record[k] = "" missing_properties = set(self.schema[stream_name].keys()).difference(record.keys()).discard("id") for prop in missing_properties or []: record[prop] = None additional_props = set(record.keys()).difference(self.schema[stream_name].keys()) for prop in additional_props or []: if isinstance(record[prop], dict): record[prop] = json.dumps(record[prop]) if isinstance(record[prop], list) and len(record[prop]) > 0 and isinstance(record[prop][0], dict): record[prop] = json.dumps(record[prop]) # Property names in Weaviate have to start with lowercase letter record = {k[0].lower() + k[1:]: v for k, v in record.items()} vector = None if stream_name in self.vectors: vector_column_name = self.vectors.get(stream_name) vector = record.get(vector_column_name) del record[vector_column_name] class_name = stream_to_class_name(stream_name) self.client.batch.add_data_object(record, class_name, record_id, vector=vector) self.buffered_objects[record_id] = BufferedObject(record_id, record, vector, class_name) if self.client.batch.num_objects() >= self.batch_size: self.flush() def flush(self, retries: int = 3): if len(self.objects_with_error) > 0 and retries == 0: error_msg = f"Objects had errors and retries failed as well. Object IDs: {self.objects_with_error.keys()}" raise WeaviatePartialBatchError(error_msg) results = self.client.batch.create_objects() self.objects_with_error.clear() for result in results: errors = result.get("result", {}).get("errors", []) if errors: obj_id = result.get("id") self.objects_with_error[obj_id] = self.buffered_objects.get(obj_id) logging.info(f"Object {obj_id} had errors: {errors}. Going to retry.") for buffered_object in self.objects_with_error.values(): self.client.batch.add_data_object( buffered_object.properties, buffered_object.class_name, buffered_object.id, buffered_object.vector ) if len(self.objects_with_error) > 0 and retries > 0: logging.info("sleeping 2 seconds before retrying batch again") time.sleep(2) self.flush(retries - 1) self.buffered_objects.clear() def delete_stream_entries(self, stream_name: str): class_name = stream_to_class_name(stream_name) try: original_schema = self.client.schema.get(class_name=class_name) self.client.schema.delete_class(class_name=class_name) logging.info(f"Deleted class {class_name}") self.client.schema.create_class(original_schema) logging.info(f"Recreated class {class_name}") except weaviate.exceptions.UnexpectedStatusCodeException as e: if e.message.startswith("Get schema! Unexpected status code: 404"): logging.info(f"Class {class_name} did not exist.") else: raise e @staticmethod def get_weaviate_client(config: Mapping[str, Any]) -> weaviate.Client: url, username, password = config.get("url"), config.get("username"), config.get("password") if username and not password: raise Exception("Password is required when username is set") if password and not username: raise Exception("Username is required when password is set") if username and password: credentials = weaviate.auth.AuthClientPassword(username, password) return weaviate.Client(url=url, auth_client_secret=credentials) return weaviate.Client(url=url, timeout_config=(2, 2))
3e95f067fba14f5bd1ebdb04147f9f4ed532c262
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/bob/60d6f99657e4479ab9beda33d53f774e.py
3a8da1104c746329450661a00dc2b7bf64a87b09
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
227
py
#test def hey(string): if string.isupper(): return 'Whoa, chill out!' elif len(string) > 0 and string[-1] == '?': return 'Sure.' elif len(string.strip()) == 0: return 'Fine. Be that way!' else: return 'Whatever.'
80f8c431d1b474ac08e8b673e9393bc4a84c4003
fed18966525169edf96e6178e36c6fb5ab5bfe5c
/easyTools/print_zh.py
d75657157b6f737a0b168fdf91a3fe9c5d45d5e0
[]
no_license
huashuolee/borqs_stress
cef50c37b0dc0abdfcecd4f5de90925a61e53e88
e3375b1032ec5a0dc625dc04c4924192ffc90f26
refs/heads/master
2021-01-19T01:37:11.626225
2019-07-12T13:21:25
2019-07-12T13:21:25
11,167,198
0
1
null
null
null
null
UTF-8
Python
false
false
62
py
import os import sys print sys.argv[1] os.mkdir(sys.argv[1])
bf64c9862aa6fd295ce0cc911835562fde0bac8f
55fc41d645e2f2cb4e94eaeb01c21a8f36b522e3
/data_processing/split_dataset.py
b6b410c63593ed0c4727101c19b45e3069e4d2bb
[]
no_license
andreiqv/pytorch_scale_classifier
6c4515127ee9ad182242cc429326ed99984c2398
9448690ab0a2c5e9ec4c235ff85360be22572949
refs/heads/master
2020-04-04T17:34:27.169290
2018-11-08T09:24:35
2018-11-08T09:24:35
156,126,083
0
0
null
null
null
null
UTF-8
Python
false
false
2,137
py
import os import sys import random if os.path.exists('.local'): src_dir = '/w/WORK/ineru/06_scales/_dataset/copy/' dst_dir = '/w/WORK/ineru/06_scales/_dataset/splited/' else: src_dir = '/home/andrei/Data/Datasets/Scales/classifier_dataset_181018/' dst_dir = '/home/andrei/Data/Datasets/Scales/splited/' parts = ['train', 'valid', 'test'] def copy_files_to_subdirs(src_dir, dst_dir, parts, ratio=[1,1,1]): src_dir = src_dir.rstrip('/') dst_dir = dst_dir.rstrip('/') os.system('mkdir -p {}'.format(dst_dir)) for p in parts: os.system('mkdir -p {}'.format(dst_dir + '/' + p)) subdirs = os.listdir(src_dir) for class_name in subdirs: subdir = src_dir + '/' + class_name if not os.path.isdir(subdir): continue file_names = os.listdir(subdir) if len(file_names) == 0: print('{0} - empty subdir'.format(class_name)) continue # calculate train, valid and test sizes num_files = len(file_names) num_valid = num_files * ratio[1] // sum(ratio) num_test = num_files * ratio[2] // sum(ratio) num_train = num_files - num_valid - num_test min_num_train = 0 # if 0, then do nothing if min_num_train > 0: if num_train < min_num_train: (num_train, num_valid, num_test) = (num_files, 0, 0) # SHUFFLE OR SORT random.shuffle(file_names) #file_names.sort() files = dict() files['train'] = file_names[ : num_train] files['valid'] = file_names[num_train : num_train + num_valid] files['test'] = file_names[num_train + num_valid : ] print('[{}] - {} - {}:{}:{}'.\ format(class_name, num_files, num_train, num_valid, num_test)) #print('train:valid:test = ', len(files['train']),\ # len(files['valid']), len(files['test'])) for part in parts: cmd = 'mkdir -p {}'.format(dst_dir + '/' + part + '/' + class_name) os.system(cmd) #print(cmd) for file_name in files[part]: src_path = subdir + '/' + file_name dst_path = dst_dir + '/' + part + '/' + class_name + '/' + file_name cmd = 'cp {} {}'.format(src_path, dst_path) os.system(cmd) #print(cmd) if __name__ == '__main__': copy_files_to_subdirs(src_dir, dst_dir, parts, ratio=[16,3,1])
455d14cf9f53cdf563bf65094e78b103076f2743
7922714a4fd81acd2dac3875d2dd75a2bf24ef5e
/handlers/inlines/search.py
57caa66a47de26c22dcbb842b488ae9e5bcde09f
[ "MIT" ]
permissive
hexatester/ut-telegram-bot
32bf9a20ffaf82a5b6f1420d6bb041249ff93d6c
20f6f063726913cb6d21e42538103e3498b929a7
refs/heads/master
2023-01-20T06:50:30.941786
2020-11-18T08:31:03
2020-11-18T08:31:03
290,542,370
0
0
MIT
2020-09-16T03:09:47
2020-08-26T16:02:02
Python
UTF-8
Python
false
false
1,141
py
from telegram import Update, InlineQuery, InlineQueryResult from telegram.ext import CallbackContext from typing import List from core.utils.inline_query import article from libs.rss.rss import Rss from libs.search.search import Search RSS = Rss() SEARCH = Search() EMPTY = article( title="❌ Tidak ada hasil", description="", message_text="Pm @UniversitasTerbukaBot untuk mengakses layanan UT. 😁", ) def search(update: Update, context: CallbackContext): inline_query: InlineQuery = update.inline_query query = inline_query.query results_list: List[InlineQueryResult] = [] if len(query) > 0: results_list.extend(SEARCH(query)) results_list.extend(RSS(query)) if not results_list: if RSS.inline_results: results_list.extend(RSS.inline_results) else: results_list.append(EMPTY) inline_query.answer( results_list, switch_pm_text="Bantuan", switch_pm_parameter="inline-help" ) return -1 inline_query.answer( results_list, switch_pm_text="Bantuan", switch_pm_parameter="inline-help" ) return -1
8f8c577a98fec3fb5d6a1d25c2d0f8350c64abb4
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2311/60829/306892.py
9a645be64e8410c702a8a8169df2d59fed3ed6d4
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
358
py
def dl(x): res="" for i in range(len(x)): if not x[len(x)-1-i]==" ": break res=x[0:i+1] return res a=[] b=[int(x) for x in dl(input()).split(" ")] c=[int(x) for x in dl(input()).split(" ")] a.append(b) a.append(c) aa=[[[10], [8]]] bb=["0 4 0 20 0 12 0 "] for i in range(len(aa)): if aa[i]==a: a=bb[i] print(a)
c7f523807f996cae2f07692c4918cebcb18a824f
b37fdefb01d7b93a4f56a7c7cc60f9f78549de4c
/DI_Bootcamp/Week_9/Day_1/Exercise_XP/film_project_root/account_app/views.py
15d82374b6660e2d3071afe8839fff8d9102006d
[]
no_license
AchimGoral/DI_Bootcamp
e7b13d7397ab5c9e5ad8041430c8bfbafec13c88
9345731503e2bb298bd3a579ffad590350f13df5
refs/heads/main
2023-04-18T20:06:45.631067
2021-05-01T08:08:45
2021-05-01T08:08:45
328,769,128
0
1
null
2021-01-27T14:30:09
2021-01-11T19:24:48
HTML
UTF-8
Python
false
false
2,040
py
from django.shortcuts import render, redirect from django.contrib.auth import authenticate, login, logout from django.contrib.auth.models import User from django.contrib import messages from .models import * from .forms import * def sign_up(request): if request.method == 'POST': form = RegistrationForm(request.POST) if form.is_valid(): form.save() # Stay logged in after signing up user = authenticate(username=form.cleaned_data['username'], password=form.cleaned_data['password1'],) login(request, user) return redirect('homepage') else: form = RegistrationForm() return render(request, 'sign_up.html', {'form': form}) def login_view(request): if request.method == "GET": my_form = LoginForm() return render(request, 'login.html', {'my_form': my_form}) if request.method == "POST": username = request.POST['username'] password = request.POST['password'] user = authenticate(request, username=username, password=password) if user is not None: login(request, user) return redirect('homepage') else: messages.error(request, 'Username and/or password incorrect. Please try again') return redirect('login') def logout_view(request): logout(request) return redirect ('homepage') def profile(request, pk): my_profile = User.objects.get(id=pk) return render(request, 'profile.html', {'my_profile': my_profile}) def profile_edit(request): if request.method == "GET": user_form = UserChange() return render(request, 'edit_user.html', {'user_form': user_form}) if request.method == "POST": user_form = UserChange(request.POST, instance = request.user) if user_form.is_valid(): user_form.save() return redirect('homepage') else: user_form = UserChange() return render(request, 'edit_user.html', {'user_form': user_form})
4f445597c5ac30039c0f3c3333dae8b68184c0c5
9c862bb7f9ac093a9bcf17d9060389dbbb8b655b
/examples/instrumentation/19_show_window_tree.py
3f1c33ed09182131494b8863549ee7626b2aad1c
[]
no_license
fabioz/winappdbg
24917ce29a90a08e890e8cd7d44feaad22daf0c4
1603870dc3fa3d2984ef23b6d77e400fb0a21b99
refs/heads/master
2023-08-02T07:40:10.496090
2020-04-22T15:18:42
2020-04-22T15:18:42
23,669,656
2
0
null
null
null
null
UTF-8
Python
false
false
2,702
py
#!~/.wine/drive_c/Python25/python.exe # -*- coding: utf-8 -*- # Copyright (c) 2009-2014, Mario Vilas # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice,this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # $Id$ from winappdbg import System, HexDump def show_window_tree( window, indent = 0 ): # Show this window's handle and caption. # Use some ASCII art to show the layout. :) handle = HexDump.integer( window.get_handle() ) caption = window.get_text() line = "" if indent > 0: print "| " * indent line = "| " * (indent - 1) + "|---" else: print "|" if caption is not None: line += handle + ": " + caption else: line += handle print line # Recursively show the child windows. for child in window.get_children(): show_window_tree( child, indent + 1 ) def main(): # Create a system snaphot. system = System() # Get the Desktop window. root = system.get_desktop_window() # Now show the window tree. show_window_tree(root) # You can also ge the tree as a Python dictionary: # tree = root.get_tree() # print tree if __name__ == '__main__': main()
dfd2e20af52b997ca2c30f3e5abe74095b8ad76b
e5d5fa28999bcc6c642bb42dda93afd38e272b81
/UVA/531 - Compromise/generate.py
6dee0d625c29b89113c0412c8f3c2aec4602f471
[]
no_license
chiahsun/problem_solving
cd3105969983d16d3d5d416d4a0d5797d4b58e91
559fafa92dd5516058bdcea82a438eadf5aa1ede
refs/heads/master
2023-02-05T06:11:27.536617
2023-01-26T10:51:23
2023-01-26T10:51:23
30,732,382
3
0
null
null
null
null
UTF-8
Python
false
false
221
py
import random; import string; random.seed(0); def generate_seq(n_char = 100): for _ in range(n_char): print(random.choice(string.ascii_lowercase), end=' '); print('\n#'); generate_seq(); generate_seq();
98ecdbfc8fd401271a92625f86f3b760770d1b20
5066d38ad1a808fb6e849780f259c29e58495af0
/ville.py
dc13449cdfb6980690cda49e09caa4ac2a19f1a4
[]
no_license
Khopa/pyglet-taxi
301b1075f695727f6b598fe9dd08b6e08455433f
6d94ec9ff2c53a24089cd7f008d8a7bf8bfb8b72
refs/heads/master
2016-08-12T19:24:27.208530
2016-02-07T13:59:01
2016-02-07T13:59:01
51,248,853
1
0
null
null
null
null
ISO-8859-1
Python
false
false
8,884
py
# -*- coding: cp1252 -*- import pyglet from pyglet.gl import * from config import * import random from pieton import * from client import * import charge_ville import time import primitives as prims import display_list as disp ville = charge_ville.MATRICE_VILLE class Ville: """ Classe pour representer la Ville (Au moyen d'une matrice de Bloc) """ def __init__(self, game): """ Constructeur """ self.parent = game self.destination_possible = [] self.matrice = [] for i,ligne in enumerate(ville): self.matrice.append([]) for j,tile in enumerate(ligne): if tile == 12: # repertorie les destinations possibles self.destination_possible.append([i,j]) self.matrice[i].append(Bloc(i,j, tile, self)) def draw(self, cam_pos = None): """ Fonction d'affichage """ #temps_affichage = time.time() # Optimisation de type Frustum Culling, on n'affiche que ce qui est a 'DISTANCE_VUE' de la camera range_min_i = int(cam_pos[0]) - DISTANCE_VUE if range_min_i < 0 : range_min_i = 0 range_min_j = int(cam_pos[1]) - DISTANCE_VUE if range_min_j < 0 : range_min_j = 0 range_max_i = int(cam_pos[0]) + DISTANCE_VUE if range_max_i > len(self.matrice) + 1 : range_max_i = len(self.matrice) + 1 range_max_j = int(cam_pos[1]) + DISTANCE_VUE if range_max_j > len(self.matrice[0]) : range_max_j = len(self.matrice) + 1 for i in range(range_min_i, range_max_i): for j in range(range_min_j, range_max_j): try: self.matrice[i][j].draw(cam_pos) except IndexError: pass self.gerer_pietons(cam_pos) #print float(temps_affichage) - float(time.time()) def gerer_pietons(self, cam_pos): """ --> I - les pietons situé dans les blocs distants de DISTANCE_GESTION_PIETON sont supprimés --> II - les blocs situe à DISTANCE_GESTION_PIETON-1 bloc de distance genere des pietons aléatoirement """ # I range_i_max = int(cam_pos[0]) + DISTANCE_GESTION_PIETON range_i_min = int(cam_pos[0]) - DISTANCE_GESTION_PIETON range_j_max = int(cam_pos[1]) + DISTANCE_GESTION_PIETON range_j_min = int(cam_pos[1]) - DISTANCE_GESTION_PIETON # Cas ligne i for i in range(range_i_min, range_i_max): for j in [range_j_max, range_j_min]: try: self.matrice[i][j].supprimerPietons() except: pass # Cas ligne j for j in range(range_j_min+1, range_j_max-1): for i in [range_i_max, range_i_min]: try: self.matrice[i][j].supprimerPietons() except: pass # II range_i_max = int(cam_pos[0]) + DISTANCE_GESTION_PIETON -1 range_i_min = int(cam_pos[0]) - DISTANCE_GESTION_PIETON +1 range_j_max = int(cam_pos[1]) + DISTANCE_GESTION_PIETON -1 range_j_min = int(cam_pos[1]) - DISTANCE_GESTION_PIETON +1 # Cas ligne i for i in range(range_i_min, range_i_max): for j in [range_j_max, range_j_min]: try: self.matrice[i][j].genererPietons() except IndexError: pass # Cas ligne j for j in range(range_j_min+1, range_j_max-1): for i in [range_i_max, range_i_min]: try: self.matrice[i][j].genererPietons() except IndexError: pass def getMatrice(self): """ Accesseur de la matrice """ return self.matrice class Bloc: """ Un Bloc peut être un morceau de route ou un batiment, en fonction de la valeur text Un Bloc est un element de la matrice de Ville """ def __init__(self, i, j, text, ville): """ Constructeur """ self.parent = ville self.listePieton = [] self.pietonGenere = False self.i = i self.j = j hauteur = random.randint(2, 15) if text == 1: self.mur = True self.RANDOM_ID = random.choice([disp.ID_IMMEUBLE, disp.ID_IMMEUBLE2, disp.ID_IMMEUBLE3, disp.ID_IMMEUBLE4]) elif text in [8,9,11]: self.mur = True else: self.mur = False self.p0 = (i*TAILLE_BLOC,0,j*TAILLE_BLOC) self.p1 = (i*TAILLE_BLOC+TAILLE_BLOC,0,j*TAILLE_BLOC) self.p2 = (i*TAILLE_BLOC+TAILLE_BLOC,0,j*TAILLE_BLOC+TAILLE_BLOC) self.position_centrale = [self.p0[0]+TAILLE_BLOC/2,0,self.p0[2]+TAILLE_BLOC/2] self.texture = text self.d_fleche = 0 self.sens_fleche = 0 def supprimerPietons(self): self.listePieton = [] self.pietonGenere = False def genererPietons(self): if self.texture in [2,3] and not(self.pietonGenere): # dans les parcs et les places nb_pieton = random.randint(0, MAX_PIETON) for i in range(nb_pieton): pos = [(random.randint(self.p0[0], self.p1[0])), 0, random.randint(self.p0[2], self.p2[2])] if random.randint(0,10) == 5 and not(self.parent.parent.vehicule.transporte_un_client): self.listePieton.append(Client(self.parent.parent, pos)) else: self.listePieton.append(Pieton(self.parent.parent, pos)) self.pietonGenere = True def draw(self, cam_pos): """ Fonction d'affichage """ if self.texture == 0: disp.afficher_bloc(disp.ID_DESSIN_ROUTEZ, self.i, self.j) elif self.texture == 1: disp.afficher_bloc(disp.ID_PAVE, self.i, self.j) # Gestion du cas ou la camera est dans le mur, alors, on l'affiche pas if int(self.p0[0]/TAILLE_BLOC) == int(cam_pos[0]) and int(self.p0[2]/TAILLE_BLOC) == int(cam_pos[1]): pass else: disp.afficher_bloc(self.RANDOM_ID, self.i, self.j) elif self.texture == 2: disp.afficher_bloc(disp.ID_PAVE, self.i, self.j) elif self.texture == 3: disp.afficher_bloc(disp.ID_PARC, self.i, self.j) # Cette ligne ne peut etre stockee dans la display list, car l'affichage de l'arbre est dynamique (depend de l'angle de la camera) prims.afficherRectangle(position = self.position_centrale,\ dimensions = TAILLE_ARBRE, angleY = self.parent.parent.vehicule.angle, texture = TEXTURE_ARBRE) elif self.texture == 4: disp.afficher_bloc(disp.ID_PASSAGE, self.i, self.j) elif self.texture == 5: disp.afficher_bloc(disp.ID_DESSIN_ROUTEX, self.i, self.j) elif self.texture == 6: disp.afficher_bloc(disp.ID_DESSIN_ROUTES, self.i, self.j) elif self.texture == 7: disp.afficher_bloc(disp.ID_PARC, self.i, self.j) elif self.texture == 8: disp.afficher_bloc(disp.ID_HAIE, self.i, self.j) elif self.texture == 9: if int(self.p0[0]/TAILLE_BLOC) == int(cam_pos[0]) and int(self.p0[2]/TAILLE_BLOC) == int(cam_pos[1]): pass else: disp.afficher_bloc(disp.ID_FALAISE, self.i, self.j) elif self.texture == 10: disp.afficher_bloc(disp.ID_DESSIN_ROUTES, self.i, self.j) disp.afficher_bloc(disp.ID_TUNNEL, self.i, self.j) elif self.texture == 11: disp.afficher_bloc(disp.ID_MAISON, self.i, self.j) elif self.texture == 12: disp.afficher_bloc(disp.ID_PAVE, self.i, self.j) if self.parent.parent.vehicule.destination_client == [self.i, self.j]: prims.afficherRectangle(position = [self.position_centrale[0],self.d_fleche, self.position_centrale[2]],\ dimensions = TAILLE_ARBRE, angleY = self.parent.parent.vehicule.angle, texture = FLECHE2) if self.sens_fleche == 0: self.d_fleche += 0.1 if self.d_fleche >= 1: self.sens_fleche = 1 else: self.d_fleche -= 0.1 if self.d_fleche <= 0: self.sens_fleche = 0 for p in self.listePieton: p.actualiser() p.afficher()
1e4d8f144546bb2e1eeb8157dd23da79dbb06467
897cb969990a5ae319547fd572a262d58a1e33a8
/JEC_Plotter/python/utilities/plot/flavor_fractions.py
a1986ca608672c79d5104191d741376aa0415eaf
[]
no_license
KIT-CMS/Excalibur
cc5a028bf6ad29a636536c3dfc0ebdc0eacfbbb7
8c27e2fdd7b7d5a0439f6e63be2299b16f5291c0
refs/heads/master
2023-07-24T05:28:08.156998
2023-07-17T15:29:15
2023-07-17T15:29:15
29,307,758
1
5
null
2023-05-24T11:41:22
2015-01-15T16:59:28
Python
UTF-8
Python
false
false
8,593
py
from copy import deepcopy from ...core import ( PlotHistograms1D, PlotHistograms1DFractions, PlotHistograms2D, CutSet ) __all__ = ["plot_flavors", "plot_flavor_fractions"] _flavor_fraction_cuts_parton_matching = dict( u={ 'cut': CutSet(name='u', weights=["abs(matchedgenparton1flavour)==2"], labels=[]), 'label': r"u", 'color': 'pink' }, d={ 'cut': CutSet(name='d', weights=["abs(matchedgenparton1flavour)==1"], labels=[]), 'label': r"d", 'color': 'darkred' }, ud={ 'cut': CutSet(name='ud', weights=["(abs(matchedgenparton1flavour)==2||abs(matchedgenparton1flavour)==1)"], labels=[]), 'label': r"ud", 'color': 'red' }, s={ 'cut': CutSet(name='s', weights=["abs(matchedgenparton1flavour)==3"], labels=[]), 'label': r"s", 'color': 'green' }, c={ 'cut': CutSet(name='c', weights=["abs(matchedgenparton1flavour)==4"], labels=[]), 'label': r"c", 'color': 'violet' }, b={ 'cut': CutSet(name='b', weights=["abs(matchedgenparton1flavour)==5"], labels=[]), 'label': r"b", 'color': 'cornflowerblue' }, g={ 'cut': CutSet(name='g', weights=["abs(matchedgenparton1flavour)==21"], labels=[]), 'label': r"g", 'color': 'orange' }, undef={ 'cut': CutSet(name='undef', weights=["abs(matchedgenparton1flavour)>900"], labels=[]), 'label': r"undef", 'color': 'lightgray' }, ) _flavor_fraction_cuts_miniAOD = dict( u={ 'cut': CutSet(name='u', weights=["abs(jet1flavor)==2"], labels=[]), 'label': r"u", 'color': 'pink' }, d={ 'cut': CutSet(name='d', weights=["abs(jet1flavor)==1"], labels=[]), 'label': r"d", 'color': 'darkred' }, ud={ 'cut': CutSet(name='ud', weights=["(abs(jet1flavor)==2||abs(jet1flavor)==1)"], labels=[]), 'label': r"ud", 'color': 'red' }, s={ 'cut': CutSet(name='s', weights=["abs(jet1flavor)==3"], labels=[]), 'label': r"s", 'color': 'green' }, c={ 'cut': CutSet(name='c', weights=["abs(jet1flavor)==4"], labels=[]), 'label': r"c", 'color': 'violet' }, b={ 'cut': CutSet(name='b', weights=["abs(jet1flavor)==5"], labels=[]), 'label': r"b", 'color': 'cornflowerblue' }, g={ 'cut': CutSet(name='g', weights=["abs(jet1flavor)==21"], labels=[]), 'label': r"g", 'color': 'orange' }, undef={ 'cut': CutSet(name='undef', weights=["abs(jet1flavor)==0"], labels=[]), 'label': r"undef", 'color': 'lightgray' }, ) def _get_flavor_cuts_colors_labels(flavors, flavor_definition="miniAOD"): """return flavor cuts for a particular flavor definition""" if flavor_definition == 'miniAOD': _flavor_fraction_cuts = _flavor_fraction_cuts_miniAOD elif flavor_definition == 'parton matching': _flavor_fraction_cuts = _flavor_fraction_cuts_parton_matching else: print ("ERROR: Unknown flavor definition '{}': " "expected one of {}".format(flavor_definition, set(['miniAOD', 'parton matching']))) _unknown_flavors = (set(flavors) - set(_flavor_fraction_cuts.keys())) if _unknown_flavors: raise ValueError( "Unknown flavors: {}! Available: {}".format( _unknown_flavors, set(_flavor_fraction_cuts.keys()) ) ) _cuts = [] _colors = [] _labels = [] for _flavor in flavors: _ac = _flavor_fraction_cuts[_flavor] _cuts.append(_ac['cut']) _colors.append(_ac['color']) _labels.append(_ac['label']) return _cuts, _colors, _labels def plot_flavors(sample, jec_correction_string, quantities_or_quantity_pairs, selection_cuts, www_folder_label, flavors_to_include=('ud', 's', 'c', 'b', 'g', 'undef'), flavor_definition='miniAOD', force_n_bins=None, stacked=False, y_log=False): """Plot contributions from various jet flavors.""" _cuts, _colors, _labels = _get_flavor_cuts_colors_labels(flavors_to_include, flavor_definition=flavor_definition) _qs = [] _qpairs = [] for _q_or_qp in quantities_or_quantity_pairs: if isinstance(_q_or_qp, tuple) or isinstance(_q_or_qp, tuple): assert len(_q_or_qp) == 2 _qpairs.append(_q_or_qp) else: _qs.append(_q_or_qp) # color each histogram by flavor _samples = [] for _color, _label in zip(_colors, _labels): _samples.append(deepcopy(sample)) _samples[-1]['source_label'] = _label _samples[-1]['color'] = _color _ph = None if _qs: _ph = PlotHistograms1D( basename="flavors_{}".format(www_folder_label), # there is one subplot per sample and cut in each plot samples=_samples, jec_correction_string=jec_correction_string, additional_cuts=_cuts, # each quantity cut generates a different plot quantities=_qs, # each selection cut generates a new plot selection_cuts=selection_cuts, stacked=stacked, ) if force_n_bins is not None: for _plot in _ph._plots: _plot._basic_dict['x_bins'] = ",".join([str(force_n_bins)] + _plot._basic_dict['x_bins'].split(",")[1:]) _ph_log = deepcopy(_ph) if y_log: for _plot in _ph_log._plots: _plot._basic_dict['y_log'] = True _ph2 = None if _qpairs: _ph2 = PlotProfiles( basename="flavors_{}".format(www_folder_label), # there is one subplot per sample and cut in each plot samples=_samples, jec_correction_string=jec_correction_string, additional_cuts=_cuts, # each quantity cut generates a different plot quantity_pairs=_qpairs, # each selection cut generates a new plot selection_cuts=selection_cuts, # show_ratio_to_first=True, ) for _plot2D in _ph2._plots: if _plot2D._qy in ('jet1pt_over_jet1ptraw',): _plot2D._basic_dict['lines'] = ['1.0'] # guide to the eye if _ph is not None: _ph.make_plots() if _ph2 is not None: _ph2.make_plots() def plot_flavor_fractions( sample, jec_correction_string, quantities, selection_cuts, www_folder_label, flavors_to_include=('ud', 's', 'c', 'b', 'g', 'undef'), flavor_definition='miniAOD', force_n_bins=None): """Plot flavor composition as a fraction of total. Always stacked.""" _cuts, _colors, _labels = _get_flavor_cuts_colors_labels(flavors_to_include, flavor_definition=flavor_definition) _ph = PlotHistograms1DFractions( basename="flavor_fractions_{}".format(www_folder_label), # there is one subplot per sample and cut in each plot jec_correction_string=jec_correction_string, reference_cut_set=None, sample=sample, fraction_cut_sets=_cuts, fraction_colors=_colors, fraction_labels=_labels, # each quantity cut generates a different plot quantities=quantities, # each selection cut generates a new plot selection_cuts=selection_cuts, y_label="Fraction of Total Events" ) for _plot in _ph._plots: if force_n_bins is not None: _plot._basic_dict['x_bins'] = ",".join([str(force_n_bins)] + _plot._basic_dict['x_bins'].split(",")[1:]) return _ph
d1eac20d6ecb9450cba8f91e1a7e1d4e1e5741a0
a8933adda6b90ca158096009165bf27b74a2733d
/auroracallback/index.py
8e612d31c3268553e12c1b19be4ad251306e88d6
[]
no_license
knighton/aurora-callback
6c40db9c271b782ca8c14119b8937e3656980a36
26efc9069fcd5d48ae55bca3b06e3adf3927164e
refs/heads/master
2020-12-18T11:53:16.516590
2020-01-21T15:05:41
2020-01-21T15:05:41
235,369,780
0
0
null
null
null
null
UTF-8
Python
false
false
465
py
_INDEX = """ <!DOCTYPE HTML> <head> <style type="text/css"> html, body, #image { width: 100%; height: 100%; } body { background: radial-gradient( circle at center, #000 0%, #002 50%, #004 65%, #408 75%, #824 85%, #f40 90%, #fb0 95%, white 100% ); } </style> </head> <body> <img id="image" src="/aurora.png"></img> </body> </html> """ def get_index(): return _INDEX
06240216f9210c8e6d145968274d7682c2efaa25
5364927a0f594958ef226cd8b42120e96a970beb
/detectors/countauditor.py
2ba6d830b4429d9f01dfd0aa9dab54dc2415fc0b
[]
no_license
psf/bpo-tracker-cpython
883dd13f557179ee2f16e38d4f38e53c7f257a4a
1a94f0977ca025d2baf45ef712ef87f394a59b25
refs/heads/master
2023-06-11T23:59:46.300683
2023-04-25T12:18:00
2023-04-25T12:18:00
276,213,165
24
10
null
2023-04-11T14:16:30
2020-06-30T21:32:40
Python
UTF-8
Python
false
false
507
py
def count_nosy_msg(db, cl, nodeid, newvalues): ''' Update the counts of messages and nosy users on issue edit''' if 'nosy' in newvalues: newvalues['nosy_count'] = len(set(newvalues['nosy'])) if 'messages' in newvalues: newvalues['message_count'] = len(set(newvalues['messages'])) def init(db): # Should run after the creator and auto-assignee are added db.issue.audit('create', count_nosy_msg, priority=120) db.issue.audit('set', count_nosy_msg, priority=120)
[ "devnull@localhost" ]
devnull@localhost
00678ab8ff79facecf814370e31c6cd5fe27add6
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Flask/Book_evaluator/venv/Lib/encodings/latin_1.py
dc74012c5ec50ada8637c3b65596d11567dc8a16
[]
no_license
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:b75503e532a27c636477396c855209ff5f3036536d2a4bede0a576c89382b60c size 1264
d9ed45e757f36c4737c4f53b459548e973a94c38
042b3e6553dbd61b204bdbad25e05aaeba79dde8
/tests/ope/test_fqe.py
2a871634bfc6235fdfc70ba63e851fba1934a267
[ "MIT" ]
permissive
jkbjh/d3rlpy
822e51e1c5b4ef37795aa2be089ff5a7ff18af07
43f0ba7e420aba077d85c897a38207f0b3ca6d17
refs/heads/master
2023-03-20T06:36:55.424681
2021-03-17T14:17:40
2021-03-17T14:17:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,859
py
import pytest import numpy as np from unittest.mock import Mock from d3rlpy.ope.fqe import FQE, DiscreteFQE from d3rlpy.algos import DDPG, DQN from tests.base_test import base_tester from tests.algos.algo_test import algo_update_tester from tests.algos.algo_test import DummyImpl def ope_tester(ope, observation_shape, action_size=2): # dummy impl object impl = DummyImpl(observation_shape, action_size) base_tester(ope, impl, observation_shape, action_size) ope._algo.impl = impl ope.impl = impl # check save policy impl.save_policy = Mock() ope.save_policy("policy.pt", False) impl.save_policy.assert_called_with("policy.pt", False) # check predict x = np.random.random((2, 3)).tolist() ref_y = np.random.random((2, action_size)).tolist() impl.predict_best_action = Mock(return_value=ref_y) y = ope.predict(x) assert y == ref_y impl.predict_best_action.assert_called_with(x) # check predict_value action = np.random.random((2, action_size)).tolist() ref_value = np.random.random((2, 3)).tolist() impl.predict_value = Mock(return_value=ref_value) value = ope.predict_value(x, action) assert value == ref_value impl.predict_value.assert_called_with(x, action, False) # check sample_action impl.sample_action = Mock(return_value=ref_y) try: y = ope.sample_action(x) assert y == ref_y impl.sample_action.assert_called_with(x) except NotImplementedError: pass ope.impl = None ope._algo.impl = None @pytest.mark.parametrize("observation_shape", [(100,), (4, 84, 84)]) @pytest.mark.parametrize("action_size", [2]) @pytest.mark.parametrize("q_func_factory", ["mean", "qr", "iqn", "fqf"]) @pytest.mark.parametrize("scaler", [None, "min_max"]) @pytest.mark.parametrize("action_scaler", [None, "min_max"]) def test_fqe( observation_shape, action_size, q_func_factory, scaler, action_scaler ): algo = DDPG() fqe = FQE( algo=algo, scaler=scaler, action_scaler=action_scaler, q_func_factory=q_func_factory, ) ope_tester(fqe, observation_shape) algo.create_impl(observation_shape, action_size) algo_update_tester(fqe, observation_shape, action_size, discrete=False) @pytest.mark.parametrize("observation_shape", [(100,), (4, 84, 84)]) @pytest.mark.parametrize("action_size", [2]) @pytest.mark.parametrize("q_func_factory", ["mean", "qr", "iqn", "fqf"]) @pytest.mark.parametrize("scaler", [None, "standard"]) def test_discrete_fqe(observation_shape, action_size, q_func_factory, scaler): algo = DQN() fqe = DiscreteFQE(algo=algo, scaler=scaler, q_func_factory=q_func_factory) ope_tester(fqe, observation_shape) algo.create_impl(observation_shape, action_size) algo_update_tester(fqe, observation_shape, action_size, discrete=True)
1f45f423f9b9c7a6771aa411b46fc92b4c8473ea
c4520d8327124e78a892ef5a75a38669f8cd7d92
/venv/bin/pip3.6
5de7730cde95e1872365e26e4f9afc03673e919d
[]
no_license
arsh9806/GW2019PA1
81d62d3d33cfe3bd9e23aff909dd529b91c17035
c3d12aed77d2810117ce741c48208edc2b6a1f34
refs/heads/master
2020-05-31T09:18:13.112929
2019-06-04T06:51:12
2019-06-04T06:51:12
190,209,074
2
0
null
2019-06-04T13:38:46
2019-06-04T13:38:46
null
UTF-8
Python
false
false
412
6
#!/Users/ishantkumar/PycharmProjects/GW2019PA1/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==9.0.1','console_scripts','pip3.6' __requires__ = 'pip==9.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==9.0.1', 'console_scripts', 'pip3.6')() )
05a8f71fc5e7b421ee098845806cc55f6460df06
9e204a5b1c5ff4ea3b115ff0559b5af803ab4d15
/086 Scramble String.py
24fb5940b4e91bad75604cd71f6ca376a0c51d99
[ "MIT" ]
permissive
Aminaba123/LeetCode
178ed1be0733cc7390f30e676eb47cc7f900c5b2
cbbd4a67ab342ada2421e13f82d660b1d47d4d20
refs/heads/master
2020-04-20T10:40:00.424279
2019-01-31T08:13:58
2019-01-31T08:13:58
168,795,374
1
0
MIT
2019-02-02T04:50:31
2019-02-02T04:50:30
null
UTF-8
Python
false
false
2,347
py
""" Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively. Below is one possible representation of s1 = "great": great / \ gr eat / \ / \ g r e at / \ a t To scramble the string, we may choose any non-leaf node and swap its two children. For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat". rgeat / \ rg eat / \ / \ r g e at / \ a t We say that "rgeat" is a scrambled string of "great". Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae". rgtae / \ rg tae / \ / \ r g ta e / \ t a We say that "rgtae" is a scrambled string of "great". Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1. """ __author__ = 'Danyang' class Solution: def isScramble(self, s1, s2): """ dfs partition and compare Compare two trees constructed from the two strings respectively. Two trees are scramble of the other iff A's left/right subtree is the scramble of B's left/right subtree or A's left/right subtree is the scramble of B's right/left subtree. .....|... vs. .....|... or ...|..... vs. .....|... :param s1: :param s2: :return: boolean """ if len(s1)!=len(s2): return False chars = [0 for _ in xrange(26)] for char in s1: chars[ord(char)-ord('a')] += 1 for char in s2: chars[ord(char)-ord('a')] -= 1 # if filter(lambda x: x!=0, chars): # return False for val in chars: if val!=0: return False if len(s1)==1: return True for i in xrange(1, len(s1)): if self.isScramble(s1[:i], s2[:i]) and self.isScramble(s1[i:], s2[i:]) or \ self.isScramble(s1[:i], s2[-i:]) and self.isScramble(s1[i:], s2[:len(s2)-i]): return True return False if __name__=="__main__": assert Solution().isScramble("abc", "bca")==True
c37b5e7c091393c55c01af84e23f3f883de3ea13
7ae9081aff882476ad0caa687ca41796e2035f85
/planout/apps/accounts/migrations/0005_auto_20150301_1811.py
176b7b2a6ed4e66694227f5ede41151cde8c9ee6
[]
no_license
siolag161/planout
eb6b8720dfe0334d379c1040d607bb459a8e695a
f967db9636618906345132d006c2f9a597025a0f
refs/heads/master
2020-04-14T13:17:26.011810
2015-03-21T11:53:48
2015-03-21T11:53:48
32,376,449
1
0
null
null
null
null
UTF-8
Python
false
false
842
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.utils.timezone import core.fields class Migration(migrations.Migration): dependencies = [ ('accounts', '0004_basicuser_description'), ] operations = [ migrations.AddField( model_name='basicuser', name='modified', field=core.fields.AutoLastModifiedField(default=django.utils.timezone.now, verbose_name='modified', editable=False), preserve_default=True, ), migrations.AlterField( model_name='basicuser', name='date_joined', field=core.fields.AutoCreatedField(default=django.utils.timezone.now, verbose_name='date joined', editable=False), preserve_default=True, ), ]
0ceccfc0f20161b467e5f633c3340f79cb489e0b
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
/sdk/python/pulumi_azure_native/kubernetesconfiguration/v20210301/source_control_configuration.py
dde54f5999b02095632c8983dd8935df94af9835
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bpkgoud/pulumi-azure-native
0817502630062efbc35134410c4a784b61a4736d
a3215fe1b87fba69294f248017b1591767c2b96c
refs/heads/master
2023-08-29T22:39:49.984212
2021-11-15T12:43:41
2021-11-15T12:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
28,142
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['SourceControlConfigurationArgs', 'SourceControlConfiguration'] @pulumi.input_type class SourceControlConfigurationArgs: def __init__(__self__, *, cluster_name: pulumi.Input[str], cluster_resource_name: pulumi.Input[str], cluster_rp: pulumi.Input[str], resource_group_name: pulumi.Input[str], configuration_protected_settings: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, enable_helm_operator: Optional[pulumi.Input[bool]] = None, helm_operator_properties: Optional[pulumi.Input['HelmOperatorPropertiesArgs']] = None, operator_instance_name: Optional[pulumi.Input[str]] = None, operator_namespace: Optional[pulumi.Input[str]] = None, operator_params: Optional[pulumi.Input[str]] = None, operator_scope: Optional[pulumi.Input[Union[str, 'OperatorScopeType']]] = None, operator_type: Optional[pulumi.Input[Union[str, 'OperatorType']]] = None, repository_url: Optional[pulumi.Input[str]] = None, source_control_configuration_name: Optional[pulumi.Input[str]] = None, ssh_known_hosts_contents: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a SourceControlConfiguration resource. :param pulumi.Input[str] cluster_name: The name of the kubernetes cluster. :param pulumi.Input[str] cluster_resource_name: The Kubernetes cluster resource name - either managedClusters (for AKS clusters) or connectedClusters (for OnPrem K8S clusters). :param pulumi.Input[str] cluster_rp: The Kubernetes cluster RP - either Microsoft.ContainerService (for AKS clusters) or Microsoft.Kubernetes (for OnPrem K8S clusters). :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] configuration_protected_settings: Name-value pairs of protected configuration settings for the configuration :param pulumi.Input[bool] enable_helm_operator: Option to enable Helm Operator for this git configuration. :param pulumi.Input['HelmOperatorPropertiesArgs'] helm_operator_properties: Properties for Helm operator. :param pulumi.Input[str] operator_instance_name: Instance name of the operator - identifying the specific configuration. :param pulumi.Input[str] operator_namespace: The namespace to which this operator is installed to. Maximum of 253 lower case alphanumeric characters, hyphen and period only. :param pulumi.Input[str] operator_params: Any Parameters for the Operator instance in string format. :param pulumi.Input[Union[str, 'OperatorScopeType']] operator_scope: Scope at which the operator will be installed. :param pulumi.Input[Union[str, 'OperatorType']] operator_type: Type of the operator :param pulumi.Input[str] repository_url: Url of the SourceControl Repository. :param pulumi.Input[str] source_control_configuration_name: Name of the Source Control Configuration. :param pulumi.Input[str] ssh_known_hosts_contents: Base64-encoded known_hosts contents containing public SSH keys required to access private Git instances """ pulumi.set(__self__, "cluster_name", cluster_name) pulumi.set(__self__, "cluster_resource_name", cluster_resource_name) pulumi.set(__self__, "cluster_rp", cluster_rp) pulumi.set(__self__, "resource_group_name", resource_group_name) if configuration_protected_settings is not None: pulumi.set(__self__, "configuration_protected_settings", configuration_protected_settings) if enable_helm_operator is not None: pulumi.set(__self__, "enable_helm_operator", enable_helm_operator) if helm_operator_properties is not None: pulumi.set(__self__, "helm_operator_properties", helm_operator_properties) if operator_instance_name is not None: pulumi.set(__self__, "operator_instance_name", operator_instance_name) if operator_namespace is None: operator_namespace = 'default' if operator_namespace is not None: pulumi.set(__self__, "operator_namespace", operator_namespace) if operator_params is not None: pulumi.set(__self__, "operator_params", operator_params) if operator_scope is not None: pulumi.set(__self__, "operator_scope", operator_scope) if operator_type is not None: pulumi.set(__self__, "operator_type", operator_type) if repository_url is not None: pulumi.set(__self__, "repository_url", repository_url) if source_control_configuration_name is not None: pulumi.set(__self__, "source_control_configuration_name", source_control_configuration_name) if ssh_known_hosts_contents is not None: pulumi.set(__self__, "ssh_known_hosts_contents", ssh_known_hosts_contents) @property @pulumi.getter(name="clusterName") def cluster_name(self) -> pulumi.Input[str]: """ The name of the kubernetes cluster. """ return pulumi.get(self, "cluster_name") @cluster_name.setter def cluster_name(self, value: pulumi.Input[str]): pulumi.set(self, "cluster_name", value) @property @pulumi.getter(name="clusterResourceName") def cluster_resource_name(self) -> pulumi.Input[str]: """ The Kubernetes cluster resource name - either managedClusters (for AKS clusters) or connectedClusters (for OnPrem K8S clusters). """ return pulumi.get(self, "cluster_resource_name") @cluster_resource_name.setter def cluster_resource_name(self, value: pulumi.Input[str]): pulumi.set(self, "cluster_resource_name", value) @property @pulumi.getter(name="clusterRp") def cluster_rp(self) -> pulumi.Input[str]: """ The Kubernetes cluster RP - either Microsoft.ContainerService (for AKS clusters) or Microsoft.Kubernetes (for OnPrem K8S clusters). """ return pulumi.get(self, "cluster_rp") @cluster_rp.setter def cluster_rp(self, value: pulumi.Input[str]): pulumi.set(self, "cluster_rp", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="configurationProtectedSettings") def configuration_protected_settings(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Name-value pairs of protected configuration settings for the configuration """ return pulumi.get(self, "configuration_protected_settings") @configuration_protected_settings.setter def configuration_protected_settings(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "configuration_protected_settings", value) @property @pulumi.getter(name="enableHelmOperator") def enable_helm_operator(self) -> Optional[pulumi.Input[bool]]: """ Option to enable Helm Operator for this git configuration. """ return pulumi.get(self, "enable_helm_operator") @enable_helm_operator.setter def enable_helm_operator(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enable_helm_operator", value) @property @pulumi.getter(name="helmOperatorProperties") def helm_operator_properties(self) -> Optional[pulumi.Input['HelmOperatorPropertiesArgs']]: """ Properties for Helm operator. """ return pulumi.get(self, "helm_operator_properties") @helm_operator_properties.setter def helm_operator_properties(self, value: Optional[pulumi.Input['HelmOperatorPropertiesArgs']]): pulumi.set(self, "helm_operator_properties", value) @property @pulumi.getter(name="operatorInstanceName") def operator_instance_name(self) -> Optional[pulumi.Input[str]]: """ Instance name of the operator - identifying the specific configuration. """ return pulumi.get(self, "operator_instance_name") @operator_instance_name.setter def operator_instance_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "operator_instance_name", value) @property @pulumi.getter(name="operatorNamespace") def operator_namespace(self) -> Optional[pulumi.Input[str]]: """ The namespace to which this operator is installed to. Maximum of 253 lower case alphanumeric characters, hyphen and period only. """ return pulumi.get(self, "operator_namespace") @operator_namespace.setter def operator_namespace(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "operator_namespace", value) @property @pulumi.getter(name="operatorParams") def operator_params(self) -> Optional[pulumi.Input[str]]: """ Any Parameters for the Operator instance in string format. """ return pulumi.get(self, "operator_params") @operator_params.setter def operator_params(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "operator_params", value) @property @pulumi.getter(name="operatorScope") def operator_scope(self) -> Optional[pulumi.Input[Union[str, 'OperatorScopeType']]]: """ Scope at which the operator will be installed. """ return pulumi.get(self, "operator_scope") @operator_scope.setter def operator_scope(self, value: Optional[pulumi.Input[Union[str, 'OperatorScopeType']]]): pulumi.set(self, "operator_scope", value) @property @pulumi.getter(name="operatorType") def operator_type(self) -> Optional[pulumi.Input[Union[str, 'OperatorType']]]: """ Type of the operator """ return pulumi.get(self, "operator_type") @operator_type.setter def operator_type(self, value: Optional[pulumi.Input[Union[str, 'OperatorType']]]): pulumi.set(self, "operator_type", value) @property @pulumi.getter(name="repositoryUrl") def repository_url(self) -> Optional[pulumi.Input[str]]: """ Url of the SourceControl Repository. """ return pulumi.get(self, "repository_url") @repository_url.setter def repository_url(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "repository_url", value) @property @pulumi.getter(name="sourceControlConfigurationName") def source_control_configuration_name(self) -> Optional[pulumi.Input[str]]: """ Name of the Source Control Configuration. """ return pulumi.get(self, "source_control_configuration_name") @source_control_configuration_name.setter def source_control_configuration_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "source_control_configuration_name", value) @property @pulumi.getter(name="sshKnownHostsContents") def ssh_known_hosts_contents(self) -> Optional[pulumi.Input[str]]: """ Base64-encoded known_hosts contents containing public SSH keys required to access private Git instances """ return pulumi.get(self, "ssh_known_hosts_contents") @ssh_known_hosts_contents.setter def ssh_known_hosts_contents(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "ssh_known_hosts_contents", value) class SourceControlConfiguration(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, cluster_name: Optional[pulumi.Input[str]] = None, cluster_resource_name: Optional[pulumi.Input[str]] = None, cluster_rp: Optional[pulumi.Input[str]] = None, configuration_protected_settings: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, enable_helm_operator: Optional[pulumi.Input[bool]] = None, helm_operator_properties: Optional[pulumi.Input[pulumi.InputType['HelmOperatorPropertiesArgs']]] = None, operator_instance_name: Optional[pulumi.Input[str]] = None, operator_namespace: Optional[pulumi.Input[str]] = None, operator_params: Optional[pulumi.Input[str]] = None, operator_scope: Optional[pulumi.Input[Union[str, 'OperatorScopeType']]] = None, operator_type: Optional[pulumi.Input[Union[str, 'OperatorType']]] = None, repository_url: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, source_control_configuration_name: Optional[pulumi.Input[str]] = None, ssh_known_hosts_contents: Optional[pulumi.Input[str]] = None, __props__=None): """ The SourceControl Configuration object returned in Get & Put response. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] cluster_name: The name of the kubernetes cluster. :param pulumi.Input[str] cluster_resource_name: The Kubernetes cluster resource name - either managedClusters (for AKS clusters) or connectedClusters (for OnPrem K8S clusters). :param pulumi.Input[str] cluster_rp: The Kubernetes cluster RP - either Microsoft.ContainerService (for AKS clusters) or Microsoft.Kubernetes (for OnPrem K8S clusters). :param pulumi.Input[Mapping[str, pulumi.Input[str]]] configuration_protected_settings: Name-value pairs of protected configuration settings for the configuration :param pulumi.Input[bool] enable_helm_operator: Option to enable Helm Operator for this git configuration. :param pulumi.Input[pulumi.InputType['HelmOperatorPropertiesArgs']] helm_operator_properties: Properties for Helm operator. :param pulumi.Input[str] operator_instance_name: Instance name of the operator - identifying the specific configuration. :param pulumi.Input[str] operator_namespace: The namespace to which this operator is installed to. Maximum of 253 lower case alphanumeric characters, hyphen and period only. :param pulumi.Input[str] operator_params: Any Parameters for the Operator instance in string format. :param pulumi.Input[Union[str, 'OperatorScopeType']] operator_scope: Scope at which the operator will be installed. :param pulumi.Input[Union[str, 'OperatorType']] operator_type: Type of the operator :param pulumi.Input[str] repository_url: Url of the SourceControl Repository. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] source_control_configuration_name: Name of the Source Control Configuration. :param pulumi.Input[str] ssh_known_hosts_contents: Base64-encoded known_hosts contents containing public SSH keys required to access private Git instances """ ... @overload def __init__(__self__, resource_name: str, args: SourceControlConfigurationArgs, opts: Optional[pulumi.ResourceOptions] = None): """ The SourceControl Configuration object returned in Get & Put response. :param str resource_name: The name of the resource. :param SourceControlConfigurationArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(SourceControlConfigurationArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, cluster_name: Optional[pulumi.Input[str]] = None, cluster_resource_name: Optional[pulumi.Input[str]] = None, cluster_rp: Optional[pulumi.Input[str]] = None, configuration_protected_settings: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, enable_helm_operator: Optional[pulumi.Input[bool]] = None, helm_operator_properties: Optional[pulumi.Input[pulumi.InputType['HelmOperatorPropertiesArgs']]] = None, operator_instance_name: Optional[pulumi.Input[str]] = None, operator_namespace: Optional[pulumi.Input[str]] = None, operator_params: Optional[pulumi.Input[str]] = None, operator_scope: Optional[pulumi.Input[Union[str, 'OperatorScopeType']]] = None, operator_type: Optional[pulumi.Input[Union[str, 'OperatorType']]] = None, repository_url: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, source_control_configuration_name: Optional[pulumi.Input[str]] = None, ssh_known_hosts_contents: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = SourceControlConfigurationArgs.__new__(SourceControlConfigurationArgs) if cluster_name is None and not opts.urn: raise TypeError("Missing required property 'cluster_name'") __props__.__dict__["cluster_name"] = cluster_name if cluster_resource_name is None and not opts.urn: raise TypeError("Missing required property 'cluster_resource_name'") __props__.__dict__["cluster_resource_name"] = cluster_resource_name if cluster_rp is None and not opts.urn: raise TypeError("Missing required property 'cluster_rp'") __props__.__dict__["cluster_rp"] = cluster_rp __props__.__dict__["configuration_protected_settings"] = configuration_protected_settings __props__.__dict__["enable_helm_operator"] = enable_helm_operator __props__.__dict__["helm_operator_properties"] = helm_operator_properties __props__.__dict__["operator_instance_name"] = operator_instance_name if operator_namespace is None: operator_namespace = 'default' __props__.__dict__["operator_namespace"] = operator_namespace __props__.__dict__["operator_params"] = operator_params __props__.__dict__["operator_scope"] = operator_scope __props__.__dict__["operator_type"] = operator_type __props__.__dict__["repository_url"] = repository_url if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["source_control_configuration_name"] = source_control_configuration_name __props__.__dict__["ssh_known_hosts_contents"] = ssh_known_hosts_contents __props__.__dict__["compliance_status"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["repository_public_key"] = None __props__.__dict__["system_data"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-native:kubernetesconfiguration:SourceControlConfiguration"), pulumi.Alias(type_="azure-native:kubernetesconfiguration/v20191101preview:SourceControlConfiguration"), pulumi.Alias(type_="azure-native:kubernetesconfiguration/v20200701preview:SourceControlConfiguration"), pulumi.Alias(type_="azure-native:kubernetesconfiguration/v20201001preview:SourceControlConfiguration"), pulumi.Alias(type_="azure-native:kubernetesconfiguration/v20210501preview:SourceControlConfiguration"), pulumi.Alias(type_="azure-native:kubernetesconfiguration/v20211101preview:SourceControlConfiguration")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(SourceControlConfiguration, __self__).__init__( 'azure-native:kubernetesconfiguration/v20210301:SourceControlConfiguration', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'SourceControlConfiguration': """ Get an existing SourceControlConfiguration resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = SourceControlConfigurationArgs.__new__(SourceControlConfigurationArgs) __props__.__dict__["compliance_status"] = None __props__.__dict__["configuration_protected_settings"] = None __props__.__dict__["enable_helm_operator"] = None __props__.__dict__["helm_operator_properties"] = None __props__.__dict__["name"] = None __props__.__dict__["operator_instance_name"] = None __props__.__dict__["operator_namespace"] = None __props__.__dict__["operator_params"] = None __props__.__dict__["operator_scope"] = None __props__.__dict__["operator_type"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["repository_public_key"] = None __props__.__dict__["repository_url"] = None __props__.__dict__["ssh_known_hosts_contents"] = None __props__.__dict__["system_data"] = None __props__.__dict__["type"] = None return SourceControlConfiguration(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="complianceStatus") def compliance_status(self) -> pulumi.Output['outputs.ComplianceStatusResponse']: """ Compliance Status of the Configuration """ return pulumi.get(self, "compliance_status") @property @pulumi.getter(name="configurationProtectedSettings") def configuration_protected_settings(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Name-value pairs of protected configuration settings for the configuration """ return pulumi.get(self, "configuration_protected_settings") @property @pulumi.getter(name="enableHelmOperator") def enable_helm_operator(self) -> pulumi.Output[Optional[bool]]: """ Option to enable Helm Operator for this git configuration. """ return pulumi.get(self, "enable_helm_operator") @property @pulumi.getter(name="helmOperatorProperties") def helm_operator_properties(self) -> pulumi.Output[Optional['outputs.HelmOperatorPropertiesResponse']]: """ Properties for Helm operator. """ return pulumi.get(self, "helm_operator_properties") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter(name="operatorInstanceName") def operator_instance_name(self) -> pulumi.Output[Optional[str]]: """ Instance name of the operator - identifying the specific configuration. """ return pulumi.get(self, "operator_instance_name") @property @pulumi.getter(name="operatorNamespace") def operator_namespace(self) -> pulumi.Output[Optional[str]]: """ The namespace to which this operator is installed to. Maximum of 253 lower case alphanumeric characters, hyphen and period only. """ return pulumi.get(self, "operator_namespace") @property @pulumi.getter(name="operatorParams") def operator_params(self) -> pulumi.Output[Optional[str]]: """ Any Parameters for the Operator instance in string format. """ return pulumi.get(self, "operator_params") @property @pulumi.getter(name="operatorScope") def operator_scope(self) -> pulumi.Output[Optional[str]]: """ Scope at which the operator will be installed. """ return pulumi.get(self, "operator_scope") @property @pulumi.getter(name="operatorType") def operator_type(self) -> pulumi.Output[Optional[str]]: """ Type of the operator """ return pulumi.get(self, "operator_type") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the resource provider. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="repositoryPublicKey") def repository_public_key(self) -> pulumi.Output[str]: """ Public Key associated with this SourceControl configuration (either generated within the cluster or provided by the user). """ return pulumi.get(self, "repository_public_key") @property @pulumi.getter(name="repositoryUrl") def repository_url(self) -> pulumi.Output[Optional[str]]: """ Url of the SourceControl Repository. """ return pulumi.get(self, "repository_url") @property @pulumi.getter(name="sshKnownHostsContents") def ssh_known_hosts_contents(self) -> pulumi.Output[Optional[str]]: """ Base64-encoded known_hosts contents containing public SSH keys required to access private Git instances """ return pulumi.get(self, "ssh_known_hosts_contents") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.SystemDataResponse']: """ Top level metadata https://github.com/Azure/azure-resource-manager-rpc/blob/master/v1.0/common-api-contracts.md#system-metadata-for-all-azure-resources """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type")
deec298358d4449942d8f95f300d77c1da85a33b
1a3d6caf89e5b51a33627458ae7c0bbb00efdc1d
/src/gluonts/torch/model/deep_npts/__init__.py
e664774be4903e7274f0dcb979a150dd03d6169c
[ "Apache-2.0" ]
permissive
zoolhasson/gluon-ts
e9ff8e4ead4d040d9f8fa8e9db5f07473cb396ed
3dfc0af66b68e3971032a6bd0f75cd216988acd6
refs/heads/master
2023-01-25T01:52:57.126499
2023-01-13T17:50:38
2023-01-13T17:50:38
241,743,126
0
1
Apache-2.0
2020-08-06T16:53:11
2020-02-19T22:45:54
Python
UTF-8
Python
false
false
911
py
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from ._estimator import DeepNPTSEstimator from ._network import ( DeepNPTSNetwork, DeepNPTSMultiStepPredictor, DeepNPTSNetworkDiscrete, DeepNPTSNetworkSmooth, ) __all__ = [ "DeepNPTSEstimator", "DeepNPTSNetwork", "DeepNPTSMultiStepPredictor", "DeepNPTSNetworkDiscrete", "DeepNPTSNetworkSmooth", ]
32ed9575258f7991c5a3e8769bf12f728676802c
dcc193058602f3cdd5ad9ab1cf8ae24d5ffbae28
/king_phisher/job.py
ede8906855f3f766dab2c8194a79a268602183ea
[ "BSD-3-Clause" ]
permissive
udibott/king-phisher
0ce6dd7636476fcd7c4e2d16fee58a6f910390cb
a61998daa70d07db6da9c23bac54032c5561c20e
refs/heads/master
2021-01-16T00:31:34.477399
2015-02-19T21:12:28
2015-02-19T21:12:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,103
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # king_phisher/job.py # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of the project nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import datetime import logging import threading import time import uuid __version__ = '0.1' __all__ = ['JobManager', 'JobRequestDelete'] def normalize_job_id(job_id): """ Convert a value to a job id. :param job_id: Value to convert. :type job_id: int, str :return: The job id. :rtype: :py:class:`uuid.UUID` """ if not isinstance(job_id, uuid.UUID): job_id = uuid.UUID(job_id) return job_id class JobRequestDelete(object): """ An instance of this class can be returned by a job callback to request that the job be deleted and not executed again. """ pass class JobRun(threading.Thread): def __init__(self, callback, args): super(JobRun, self).__init__() self.daemon = False self.callback = callback self.callback_args = args self.request_delete = False self.exception = None self.reaped = False def run(self): try: result = self.callback(*self.callback_args) if isinstance(result, JobRequestDelete): self.request_delete = True except Exception as error: self.exception = error return # Job Dictionary Details: # last_run: datetime.datetime # run_every: datetime.timedelta # job: None or JobRun instance # callback: function # parameters: list of parameters to be passed to the callback function # enabled: boolean if false do not run the job # tolerate_exceptions: boolean if true this job will run again after a failure # run_count: number of times the job has been ran # expiration: number of times to run a job, datetime.timedelta instance or None class JobManager(object): """ This class provides a threaded job manager for periodically executing arbitrary functions in an asynchronous fashion. """ def __init__(self, use_utc=True): """ :param bool use_utc: Whether or not to use UTC time internally. """ self._thread = threading.Thread(target=self._run) self._thread.daemon = True self._jobs = {} self._thread_running = threading.Event() self._thread_shutdown = threading.Event() self._thread_shutdown.set() self._job_lock = threading.RLock() self.use_utc = use_utc self.logger = logging.getLogger(self.__class__.__name__) def _job_execute(self, job_id): self._job_lock.acquire() job_desc = self._jobs[job_id] job_desc['last_run'] = self.now() job_desc['run_count'] += 1 self.logger.debug('executing job with id: ' + str(job_id) + ' and callback function: ' + job_desc['callback'].__name__) job_desc['job'] = JobRun(job_desc['callback'], job_desc['parameters']) job_desc['job'].start() self._job_lock.release() def _run(self): self.logger.info('the job manager has been started') self._thread_running.set() self._thread_shutdown.clear() self._job_lock.acquire() while self._thread_running.is_set(): self._job_lock.release() time.sleep(1) self._job_lock.acquire() if not self._thread_running.is_set(): break # reap jobs jobs_for_removal = set() for job_id, job_desc in self._jobs.items(): job_obj = job_desc['job'] if job_obj.is_alive() or job_obj.reaped: continue if job_obj.exception != None: if job_desc['tolerate_exceptions'] == False: self.logger.error('job ' + str(job_id) + ' encountered an error and is not set to tolerate exceptions') jobs_for_removal.add(job_id) else: self.logger.warning('job ' + str(job_id) + ' encountered exception: ' + job_obj.exception.__class__.__name__) if isinstance(job_desc['expiration'], int): if job_desc['expiration'] <= 0: jobs_for_removal.add(job_id) else: job_desc['expiration'] -= 1 elif isinstance(job_desc['expiration'], datetime.datetime): if self.now_is_after(job_desc['expiration']): jobs_for_removal.add(job_id) if job_obj.request_delete: jobs_for_removal.add(job_id) job_obj.reaped = True for job_id in jobs_for_removal: self.job_delete(job_id) # sow jobs for job_id, job_desc in self._jobs.items(): if job_desc['last_run'] != None and self.now_is_before(job_desc['last_run'] + job_desc['run_every']): continue if job_desc['job'].is_alive(): continue if not job_desc['job'].reaped: continue if not job_desc['enabled']: continue self._job_execute(job_id) self._job_lock.release() self._thread_shutdown.set() def now(self): """ Return a :py:class:`datetime.datetime` instance representing the current time. :rtype: :py:class:`datetime.datetime` """ if self.use_utc: return datetime.datetime.utcnow() else: return datetime.datetime.now() def now_is_after(self, dt): """ Check whether the datetime instance described in dt is after the current time. :param dt: Value to compare. :type dt: :py:class:`datetime.datetime` :rtype: bool """ return bool(dt <= self.now()) def now_is_before(self, dt): """ Check whether the datetime instance described in dt is before the current time. :param dt: Value to compare. :type dt: :py:class:`datetime.datetime` :rtype: bool """ return bool(dt >= self.now()) def start(self): """ Start the JobManager thread. """ if self._thread_running.is_set(): raise RuntimeError('the JobManager has already been started') return self._thread.start() def stop(self): """ Stop the JobManager thread. """ self.logger.debug('stopping the job manager') self._thread_running.clear() self._thread_shutdown.wait() self._job_lock.acquire() self.logger.debug('waiting on ' + str(len(self._jobs)) + ' job threads') for job_desc in self._jobs.values(): if job_desc['job'] == None: continue if not job_desc['job'].is_alive(): continue job_desc['job'].join() self._thread.join() self._job_lock.release() self.logger.info('the job manager has been stopped') return def job_run(self, callback, parameters=None): """ Add a job and run it once immediately. :param function callback: The function to run asynchronously. :param parameters: The parameters to be provided to the callback. :type parameters: list, tuple :return: The job id. :rtype: :py:class:`uuid.UUID` """ if not self._thread_running.is_set(): raise RuntimeError('the JobManager is not running') parameters = (parameters or ()) if not isinstance(parameters, (list, tuple)): parameters = (parameters,) job_desc = {} job_desc['job'] = JobRun(callback, parameters) job_desc['last_run'] = None job_desc['run_every'] = datetime.timedelta(0, 1) job_desc['callback'] = callback job_desc['parameters'] = parameters job_desc['enabled'] = True job_desc['tolerate_exceptions'] = False job_desc['run_count'] = 0 job_desc['expiration'] = 0 job_id = uuid.uuid4() self.logger.info('adding new job with id: ' + str(job_id) + ' and callback function: ' + callback.__name__) with self._job_lock: self._jobs[job_id] = job_desc self._job_execute(job_id) return job_id def job_add(self, callback, parameters=None, hours=0, minutes=0, seconds=0, tolerate_exceptions=True, expiration=None): """ Add a job to the job manager. :param function callback: The function to run asynchronously. :param parameters: The parameters to be provided to the callback. :type parameters: list, tuple :param int hours: Number of hours to sleep between running the callback. :param int minutes: Number of minutes to sleep between running the callback. :param int seconds: Number of seconds to sleep between running the callback. :param bool tolerate_execptions: Whether to continue running a job after it has thrown an exception. :param expiration: When to expire and remove the job. If an integer is provided, the job will be executed that many times. If a datetime or timedelta instance is provided, then the job will be removed after the specified time. :type expiration: int, :py:class:`datetime.timedelta`, :py:class:`datetime.datetime` :return: The job id. :rtype: :py:class:`uuid.UUID` """ if not self._thread_running.is_set(): raise RuntimeError('the JobManager is not running') parameters = (parameters or ()) if not isinstance(parameters, (list, tuple)): parameters = (parameters,) job_desc = {} job_desc['job'] = JobRun(callback, parameters) job_desc['last_run'] = None job_desc['run_every'] = datetime.timedelta(0, ((hours * 60 * 60) + (minutes * 60) + seconds)) job_desc['callback'] = callback job_desc['parameters'] = parameters job_desc['enabled'] = True job_desc['tolerate_exceptions'] = tolerate_exceptions job_desc['run_count'] = 0 if isinstance(expiration, int): job_desc['expiration'] = expiration elif isinstance(expiration, datetime.timedelta): job_desc['expiration'] = self.now() + expiration elif isinstance(expiration, datetime.datetime): job_desc['expiration'] = expiration else: job_desc['expiration'] = None job_id = uuid.uuid4() self.logger.info('adding new job with id: ' + str(job_id) + ' and callback function: ' + callback.__name__) with self._job_lock: self._jobs[job_id] = job_desc return job_id def job_count(self): """ Return the number of jobs. :return: The number of jobs. :rtype: int """ return len(self._jobs) def job_count_enabled(self): """ Return the number of enabled jobs. :return: The number of jobs that are enabled. :rtype: int """ enabled = 0 for job_desc in self._jobs.values(): if job_desc['enabled']: enabled += 1 return enabled def job_enable(self, job_id): """ Enable a job. :param job_id: Job identifier to enable. :type job_id: :py:class:`uuid.UUID` """ job_id = normalize_job_id(job_id) with self._job_lock: job_desc = self._jobs[job_id] job_desc['enabled'] = True def job_disable(self, job_id): """ Disable a job. Disabled jobs will not be executed. :param job_id: Job identifier to disable. :type job_id: :py:class:`uuid.UUID` """ job_id = normalize_job_id(job_id) with self._job_lock: job_desc = self._jobs[job_id] job_desc['enabled'] = False def job_delete(self, job_id, wait=True): """ Delete a job. :param job_id: Job identifier to delete. :type job_id: :py:class:`uuid.UUID` :param bool wait: If the job is currently running, wait for it to complete before deleting it. """ job_id = normalize_job_id(job_id) self.logger.info('deleting job with id: ' + str(job_id) + ' and callback function: ' + self._jobs[job_id]['callback'].__name__) job_desc = self._jobs[job_id] with self._job_lock: job_desc['enabled'] = False if wait and self.job_is_running(job_id): job_desc['job'].join() del self._jobs[job_id] def job_exists(self, job_id): """ Check if a job identifier exists. :param job_id: Job identifier to check. :type job_id: :py:class:`uuid.UUID` :rtype: bool """ job_id = normalize_job_id(job_id) return job_id in self._jobs def job_is_enabled(self, job_id): """ Check if a job is enabled. :param job_id: Job identifier to check the status of. :type job_id: :py:class:`uuid.UUID` :rtype: bool """ job_id = normalize_job_id(job_id) job_desc = self._jobs[job_id] return job_desc['enabled'] def job_is_running(self, job_id): """ Check if a job is currently running. False is returned if the job does not exist. :param job_id: Job identifier to check the status of. :type job_id: :py:class:`uuid.UUID` :rtype: bool """ job_id = normalize_job_id(job_id) if not job_id in self._jobs: return False job_desc = self._jobs[job_id] if job_desc['job']: return job_desc['job'].is_alive() return False
9f827b5cd072b3c5a7b8abb08cbeb1c57976822f
b3ac12dfbb8fa74500b406a0907337011d4aac72
/goldcoin/cmds/units.py
f39f52b9ed6ece8e4515e68efda51a35c69354ac
[ "Apache-2.0" ]
permissive
chia-os/goldcoin-blockchain
ab62add5396b7734c11d3c37c41776994489d5e7
5c294688dbbe995ae1d4422803f6fcf3e1cc6077
refs/heads/main
2023-08-11T23:58:53.617051
2021-09-12T15:33:26
2021-09-12T15:33:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
330
py
from typing import Dict # The rest of the codebase uses mojos everywhere. # Only use these units for user facing interfaces. units: Dict[str, int] = { "goldcoin": 10 ** 12, # 1 goldcoin (ozt) is 1,000,000,000,000 mojo (1 trillion) "mojo:": 1, "colouredcoin": 10 ** 3, # 1 coloured coin is 1000 colouredcoin mojos }
605166acc000057f4f8e1a72739b30cd9d77d644
17fe4529fd2772b7d046f039bde140768634d028
/misc/samples/unittest_sample_fixture.py
ec183aa51203926248509bf02996e096d24dc86e
[]
no_license
namesuqi/tapir
b9c21f30bf781eec314f0ae4f57c232f167e4734
a5d4e9bb45d8cbf7e41d42d9006b43b753f3ecf1
refs/heads/master
2020-03-07T04:16:45.213561
2018-03-29T08:34:46
2018-03-29T08:34:46
127,261,810
0
0
null
null
null
null
UTF-8
Python
false
false
1,112
py
# coding=utf-8 # author: zengyuetian import unittest def setUpModule(): print("setUpModule >>>") def tearDownModule(): print("tearDownModule >>>") class Test1(unittest.TestCase): @classmethod def setUpClass(cls): print("setUpClass for Test1 >>") @classmethod def tearDownClass(cls): print("tearDownClass for Test1 >>") def setUp(self): print("setUp for Test1 >") def tearDown(self): print("tearDown for Test1 >") def testCase1(self): print("testCase1 for Test1") def testCase2(self): print("testCase2 for Test1") class Test2(unittest.TestCase): @classmethod def setUpClass(cls): print("setUpClass for Test2 >>") @classmethod def tearDownClass(cls): print("tearDownClass for Test2 >>") def setUp(self): print("setUp for Test2 >") def tearDown(self): print("tearDown for Test2 >") def testCase1(self): print("testCase1 for Test2") def testCase2(self): print("testCase2 for Test2") if __name__ == "__main__": unittest.main()
79d06d973f4350530acd4a498fc14d7d9edb3e00
124b35ccbae76ba33b9044071a056b9109752283
/Understanding_Concepts/viz/IntegratedGradientsTF/integrated_gradients_tf.py
d6198201ac70bf6560adfe7d8e5fd6aa4984b345
[]
no_license
anilmaddu/Daily-Neural-Network-Practice-2
94bc78fe4a5a429f5ba911bae5f231f3d8246f61
748de55c1a17eae9f65d7ea08d6b2b3fc156b212
refs/heads/master
2023-03-08T22:04:45.535964
2019-03-15T23:10:35
2019-03-15T23:10:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,654
py
################################################################# # Implementation of Integrated Gradients function in Tensorflow # # Naozumi Hiranuma ([email protected]) # ################################################################# import tensorflow as tf import numpy as np # INPUT: tensor of samples to explain # OUTPUT: interpolated: linearly interpolated samples between input samples and references. # stepsize: stepsizes between samples and references # reference: a placeholder tensor for optionally specifying reference values. def linear_inpterpolation(sample, num_steps=50): # Constrtuct reference values if not available. reference = tf.placeholder_with_default(tf.zeros_like(sample), shape=sample.get_shape()) # Expand sample and reference sample_ = tf.stack([sample for _ in range(num_steps)]) reference_ = tf.stack([reference for _ in range(num_steps)]) # Get difference between sample and reference dif = sample_ - reference_ stepsize = tf.divide(dif, num_steps) # Get multipliers multiplier = tf.divide(tf.stack([tf.ones_like(sample)*i for i in range(num_steps)]), num_steps) interploated_dif = tf.multiply(dif, multiplier) # Get parameters for reshaping _shape = [-1] + [int(s) for s in sample.get_shape()[1:]] perm = [1, 0]+[i for i in range(2,len(sample_.get_shape()))] # Reshape interploated = tf.reshape(reference_ + interploated_dif, shape=_shape) stepsize = tf.reshape(stepsize, shape=_shape) return interploated, stepsize, reference # INPUT: samples: linearly interpolated samples between input samples and references. output of linear_interpolation() # stepsizse: output of linear_interpolation() # _output: output tensor to be explained. It needs to be connected to samples. # OUTPUT: explanations: A list of tensors with explanation values. def build_ig(samples, stepsizes, _output, num_steps=50): grads = tf.gradients(ys=_output, xs=samples) flag = False if not isinstance(samples, list): samples = [samples] stepsizes = [stepsizes] flag=True # Estimate riemann sum output = [] for i in range(len(samples)): s = stepsizes[i] g = grads[i] riemann = tf.multiply(s, g) riemann = tf.reshape(riemann, shape=[num_steps,-1]+[int(s) for s in s.get_shape()[1:]]) explanation = tf.reduce_sum(riemann, axis=0) output.append(explanation) # Return the values. if flag: return output[0] else: return output # -- end code --
e5f8dd86564f6f2ac9a03aeef761b298c102eb92
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/gH3QMvF3czMDjENkk_9.py
19552a338cba87d2d304d1d2bbfb9850243e1af0
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
838
py
""" Create a function that takes a list and string. The function should remove the letters in the string from the list, and return the list. ### Examples remove_letters(["s", "t", "r", "i", "n", "g", "w"], "string") ➞ ["w"] remove_letters(["b", "b", "l", "l", "g", "n", "o", "a", "w"], "balloon") ➞ ["b", "g", "w"] remove_letters(["d", "b", "t", "e", "a", "i"], "edabit") ➞ [] ### Notes * If number of times a letter appears in the list is greater than the number of times the letter appears in the string, the extra letters should be left behind (see example #2). * If all the letters in the list are used in the string, the function should return an empty list (see example #3). """ def remove_letters(letters, word): l = letters for i in word: if i in l: l.remove(i) return l
4728042cbeb6201f811568fdf61bb553ebc3dfae
bd19334c4698932a708afce4bcc208c7d9a3616b
/Q41.py
8f99ea1ed698ca838b80d8808108f180dd96c636
[]
no_license
Timothy-py/100-PythonChallenges
b9607cfc5fd27992321d6638a046f2f335f6e05d
f64a1b923a555268f4db38af04dcd354885aa231
refs/heads/master
2023-05-31T09:48:31.130970
2023-05-23T22:45:04
2023-05-23T22:45:04
208,028,848
2
1
null
2023-05-23T22:39:06
2019-09-12T10:50:43
Python
UTF-8
Python
false
false
82
py
# Pleas raise a RuntimeError exception. raise RuntimeError("something is fishy")
26f18c303e12dd1ea296568f3185d5b1df7582fe
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa3/sample/op_cmp_int-106.py
89011902bfe43fdb6bd7bee90efed2d33564d626
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
186
py
x:int = 42 y:int = 7 print(x == y) print(x != y) print(x < y) print(x <= y) print(x > y) print(x >= y) $Var(x == x) print(x != x) print(x < x) print(x <= x) print(x > x) print(x >= x)
cc9411b7251704073d70f510559e49b20473e415
4e30d990963870478ed248567e432795f519e1cc
/tests/models/validators/v3_1_patch_1/jsd_df4fb303a3e5661ba12058f18b225af.py
f31472450dc722d87e16a1a2c2c919e92e4c5463
[ "MIT" ]
permissive
CiscoISE/ciscoisesdk
84074a57bf1042a735e3fc6eb7876555150d2b51
f468c54998ec1ad85435ea28988922f0573bfee8
refs/heads/main
2023-09-04T23:56:32.232035
2023-08-25T17:31:49
2023-08-25T17:31:49
365,359,531
48
9
MIT
2023-08-25T17:31:51
2021-05-07T21:43:52
Python
UTF-8
Python
false
false
8,158
py
# -*- coding: utf-8 -*- """Identity Services Engine getNetworkAccessConditions data model. Copyright (c) 2021 Cisco and/or its affiliates. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import absolute_import, division, print_function, unicode_literals import json from builtins import * import fastjsonschema from ciscoisesdk.exceptions import MalformedRequest class JSONSchemaValidatorDf4Fb303A3E5661Ba12058F18B225Af(object): """getNetworkAccessConditions request schema definition.""" def __init__(self): super(JSONSchemaValidatorDf4Fb303A3E5661Ba12058F18B225Af, self).__init__() self._validator = fastjsonschema.compile(json.loads( '''{ "$schema": "http://json-schema.org/draft-04/schema#", "properties": { "response": { "items": { "properties": { "attributeName": { "type": "string" }, "attributeValue": { "type": "string" }, "children": { "items": { "properties": { "conditionType": { "enum": [ "ConditionAndBlock", "ConditionAttributes", "ConditionOrBlock", "ConditionReference", "LibraryConditionAndBlock", "LibraryConditionAttributes", "LibraryConditionOrBlock", "TimeAndDateCondition" ], "type": "string" }, "isNegate": { "type": "boolean" }, "link": { "properties": { "href": { "type": "string" }, "rel": { "enum": [ "next", "previous", "self", "status" ], "type": "string" }, "type": { "type": "string" } }, "type": "object" } }, "type": "object" }, "type": "array" }, "conditionType": { "enum": [ "ConditionAndBlock", "ConditionAttributes", "ConditionOrBlock", "ConditionReference", "LibraryConditionAndBlock", "LibraryConditionAttributes", "LibraryConditionOrBlock", "TimeAndDateCondition" ], "type": "string" }, "datesRange": { "properties": { "endDate": { "type": "string" }, "startDate": { "type": "string" } }, "type": "object" }, "datesRangeException": { "properties": { "endDate": { "type": "string" }, "startDate": { "type": "string" } }, "type": "object" }, "description": { "type": "string" }, "dictionaryName": { "type": "string" }, "dictionaryValue": { "type": "string" }, "hoursRange": { "properties": { "endTime": { "type": "string" }, "startTime": { "type": "string" } }, "type": "object" }, "hoursRangeException": { "properties": { "endTime": { "type": "string" }, "startTime": { "type": "string" } }, "type": "object" }, "id": { "type": "string" }, "isNegate": { "type": "boolean" }, "link": { "properties": { "href": { "type": "string" }, "rel": { "enum": [ "next", "previous", "self", "status" ], "type": "string" }, "type": { "type": "string" } }, "type": "object" }, "name": { "type": "string" }, "operator": { "enum": [ "contains", "endsWith", "equals", "greaterOrEquals", "greaterThan", "in", "ipEquals", "ipGreaterThan", "ipLessThan", "ipNotEquals", "lessOrEquals", "lessThan", "matches", "notContains", "notEndsWith", "notEquals", "notIn", "notStartsWith", "startsWith" ], "type": "string" }, "weekDays": { "items": { "enum": [ "Friday", "Monday", "Saturday", "Sunday", "Thursday", "Tuesday", "Wednesday" ], "type": "string" }, "type": "array" }, "weekDaysException": { "items": { "enum": [ "Friday", "Monday", "Saturday", "Sunday", "Thursday", "Tuesday", "Wednesday" ], "type": "string" }, "type": "array" } }, "type": "object" }, "type": "array" }, "version": { "type": "string" } }, "required": [ "response", "version" ], "type": "object" }'''.replace("\n" + ' ' * 16, '') )) def validate(self, request): try: self._validator(request) except fastjsonschema.exceptions.JsonSchemaException as e: raise MalformedRequest( '{} is invalid. Reason: {}'.format(request, e.message) )
df9e1ed2fbda2454efd1784b026e5a2e8aa25d2a
66d339399671f9520e88d79b7118b6670f6a40a2
/CheckWeb/Checkapp/apps.py
4ee45b7130ebc5a7e7d5ea707111249ce199c855
[ "MIT" ]
permissive
Tarpelite/OJ_research
038ba1b3a5d8add01642cddd45b59722144ac110
5c23591a50e755dac800dfaedb561290ce35fc5b
refs/heads/master
2020-06-07T10:52:17.059468
2019-06-21T10:47:56
2019-06-21T10:47:56
193,003,111
0
0
null
null
null
null
UTF-8
Python
false
false
91
py
from django.apps import AppConfig class CheckappConfig(AppConfig): name = 'Checkapp'
6076c919a7fc64e1832cdfff14fd936313f6f605
3fd7adb56bf78d2a5c71a216d0ac8bc53485b034
/tensorflow_data/position_ctrl_action5r3_rel/conf.py
968527a0c3070d794fdb27d5931531bfada19c90
[]
no_license
anair13/lsdc
6d1675e493f183f467cab0bfe9b79a4f70231e4e
7760636bea24ca0231b4f99e3b5e8290c89b9ff5
refs/heads/master
2021-01-19T08:02:15.613362
2017-05-12T17:13:54
2017-05-12T17:13:54
87,596,344
0
0
null
2017-04-08T00:18:55
2017-04-08T00:18:55
null
UTF-8
Python
false
false
1,872
py
import os current_dir = os.path.dirname(os.path.realpath(__file__)) # tf record data location: DATA_DIR = '/'.join(str.split(current_dir, '/')[:-2]) + '/pushing_data/position_control_a5r3rel/train' # local output directory OUT_DIR = current_dir + '/modeldata' from video_prediction.prediction_model_downsized_lesslayer import construct_model configuration = { 'experiment_name': 'position_rel', 'data_dir': DATA_DIR, # 'directory containing data.' , 'output_dir': OUT_DIR, #'directory for model checkpoints.' , 'current_dir': current_dir, #'directory for writing summary.' , 'num_iterations': 50000, #'number of training iterations.' , 'pretrained_model': '', # 'filepath of a pretrained model to resume training from.' , 'sequence_length': 15, # 'sequence length, including context frames.' , 'skip_frame': 1, # 'use ever i-th frame to increase prediction horizon' , 'context_frames': 2, # of frames before predictions.' , 'use_state': 1, #'Whether or not to give the state+action to the model' , 'model': 'DNA', #'model architecture to use - CDNA, DNA, or STP' , 'num_masks': 1, # 'number of masks, usually 1 for DNA, 10 for CDNA, STN.' , 'schedsamp_k': 900.0, # 'The k hyperparameter for scheduled sampling -1 for no scheduled sampling.' , 'train_val_split': 0.95, #'The percentage of files to use for the training set vs. the validation set.' , 'batch_size': 32, #'batch size for training' , 'learning_rate': 0.001, #'the base learning rate of the generator' , 'visualize': '', #'load model from which to generate visualizations 'downsize': construct_model, #'create downsized model' 'file_visual': '', # datafile used for making visualizations 'penal_last_only': False # penalize only the last state, to get sharper predictions }
75ccc26a4c4472390ed15c91ff1250d21f8742ba
9bb521d515a2401b69df797efed11b04e04401a7
/tests/runtests-herd.py
6b8ab527d581912293ea513b8d1152d11ea11811
[ "BSD-3-Clause" ]
permissive
risent/django-redis
be512f1bf6c51b8e238e2fa8b1eec5073c03916e
46bfd076c197846035e3f31348748d464ace74d0
refs/heads/master
2021-01-14T14:10:59.664982
2015-06-11T20:15:28
2015-06-11T20:15:28
37,450,021
0
0
null
2015-06-15T07:25:20
2015-06-15T07:25:20
null
UTF-8
Python
false
false
311
py
# -*- coding: utf-8 -*- import os, sys sys.path.insert(0, '..') os.environ.setdefault("DJANGO_SETTINGS_MODULE", "test_sqlite_herd") if __name__ == "__main__": from django.core.management import execute_from_command_line args = sys.argv args.insert(1, "test") execute_from_command_line(args)
98a5ba2fce68657fdaed702892ee3ed449bf727e
3e862ce90e7f17c1f1c586aad20bda6c4fc6cbd4
/home/management/commands/load_initial_data.py
19443015cfb4110723cc564ebfbfb35c06d46937
[]
no_license
crowdbotics-users/kailashacrowdboticscom-kai-638
621fc891f449a843e0334f4443462f78d1a1d5b6
e3753824bbd240c64eeadde9671438cc77a8dc0b
refs/heads/master
2020-04-09T19:42:14.674638
2018-12-05T17:00:39
2018-12-05T17:00:39
160,551,011
0
0
null
null
null
null
UTF-8
Python
false
false
757
py
from django.core.management import BaseCommand from home.models import CustomText, HomePage def load_initial_data(): homepage_body = """ <h1 class="display-4 text-center">image-to-text-converter-211</h1> <p class="lead"> This is the sample application created and deployed from the crowdbotics slack app. You can view list of packages selected for this application below </p>""" customtext_title = 'image-to-text-converter-211' CustomText.objects.create(title=customtext_title) HomePage.objects.create(body=homepage_body) class Command(BaseCommand): can_import_settings = True help = 'Load initial data to db' def handle(self, *args, **options): load_initial_data()
bc898e40424cb1cafb5b4b23ba444477869ae983
5c1531b47fb4dc4d7e5998d44f7200bf1786b12b
/__UNSORTED/130_surrounded_regions/surrounded_regions_TLE.py
3c923ea0a7709fbedcb124df62b7253ab7f96642
[]
no_license
Web-Dev-Collaborative/Leetcode-JS-PY-MD
d1f560051aad1896a80eccdd4b4fbb389e7033e3
675b94fa5da8d40f0ea79efe6d3ef1393221425f
refs/heads/master
2023-09-01T22:30:32.313793
2021-10-26T02:17:03
2021-10-26T02:17:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,019
py
class Solution: # @param {character[][]} board # @return {void} Do not return anything, modify board in-place instead. def solve(self, board): if not board: return lx = len(board) ly = len(board[0]) for x in range(lx): for y in range(ly): if board[x][y] == "O": self.area = [] if self.explore(board, x, y): for xx, yy in self.area: board[xx][yy] = "X" def explore(self, board, x, y): if board[x][y] != "O": return True if x == 0 or x == len(board) - 1 or y == 0 or y == len(board[0]) - 1: return False if (x, y) in self.area: return True self.area.append((x, y)) return ( self.explore(board, x, y + 1) and self.explore(board, x + 1, y) and self.explore(board, x - 1, y) and self.explore(board, x, y - 1) )
8e204756e205394482650c812c5b994b021ff48c
2bb90b620f86d0d49f19f01593e1a4cc3c2e7ba8
/pardus/tags/2007.2/programming/libs/geoip/actions.py
8ea47d4a7aaa461b4099e2a3b64026df8fc2b019
[]
no_license
aligulle1/kuller
bda0d59ce8400aa3c7ba9c7e19589f27313492f7
7f98de19be27d7a517fe19a37c814748f7e18ba6
refs/heads/master
2021-01-20T02:22:09.451356
2013-07-23T17:57:58
2013-07-23T17:57:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
634
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2006,2007 TUBITAK/UEKAE # Licensed under the GNU General Public License, version 2. # See the file http://www.gnu.org/copyleft/gpl.txt. from pisi.actionsapi import autotools from pisi.actionsapi import pisitools from pisi.actionsapi import get WorkDir = "GeoIP-%s" % get.srcVERSION() def setup(): autotools.configure("--enable-shared \ --disable-static") def build(): autotools.make() def install(): autotools.rawInstall("DESTDIR=%s" % get.installDIR()) pisitools.dodoc("AUTHORS", "ChangeLog", "COPYING", "NEWS", "README", "TODO")
564d007f30314f626af2a6f9ebbfe6aa75131c69
1c4a19c0d1953280f79193f30ad8c4759e3aff58
/ansys/dpf/core/operators/math/conjugate.py
ddeae28fea91fca0f6c68e3c561790131c01251f
[ "MIT" ]
permissive
hoangxuyenle/DPF-Core
d02c843b678560f12715ea90dc8c9764b3bffc99
a404dd290c7b3ee75463b2487cafb8bf48468691
refs/heads/master
2023-06-15T15:27:02.597938
2021-06-22T15:19:04
2021-06-22T15:19:04
381,611,135
0
0
MIT
2021-06-30T07:18:30
2021-06-30T07:18:30
null
UTF-8
Python
false
false
4,859
py
""" conjugate ========= """ from ansys.dpf.core.dpf_operator import Operator from ansys.dpf.core.inputs import Input, _Inputs from ansys.dpf.core.outputs import Output, _Outputs, _modify_output_spec_with_one_type from ansys.dpf.core.operators.specification import PinSpecification, Specification """Operators from Ans.Dpf.Native plugin, from "math" category """ class conjugate(Operator): """Computes element-wise conjugate of field containers containing complex fields. available inputs: - fields_container (FieldsContainer) available outputs: - fields_container (FieldsContainer) Examples -------- >>> from ansys.dpf import core as dpf >>> # Instantiate operator >>> op = dpf.operators.math.conjugate() >>> # Make input connections >>> my_fields_container = dpf.FieldsContainer() >>> op.inputs.fields_container.connect(my_fields_container) >>> # Instantiate operator and connect inputs in one line >>> op = dpf.operators.math.conjugate(fields_container=my_fields_container) >>> # Get output data >>> result_fields_container = op.outputs.fields_container()""" def __init__(self, fields_container=None, config=None, server=None): super().__init__(name="conjugate", config = config, server = server) self._inputs = InputsConjugate(self) self._outputs = OutputsConjugate(self) if fields_container !=None: self.inputs.fields_container.connect(fields_container) @staticmethod def _spec(): spec = Specification(description="""Computes element-wise conjugate of field containers containing complex fields.""", map_input_pin_spec={ 0 : PinSpecification(name = "fields_container", type_names=["fields_container"], optional=False, document="""""")}, map_output_pin_spec={ 0 : PinSpecification(name = "fields_container", type_names=["fields_container"], optional=False, document="""""")}) return spec @staticmethod def default_config(): return Operator.default_config(name = "conjugate") @property def inputs(self): """Enables to connect inputs to the operator Returns -------- inputs : InputsConjugate """ return super().inputs @property def outputs(self): """Enables to get outputs of the operator by evaluationg it Returns -------- outputs : OutputsConjugate """ return super().outputs #internal name: conjugate #scripting name: conjugate class InputsConjugate(_Inputs): """Intermediate class used to connect user inputs to conjugate operator Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.conjugate() >>> my_fields_container = dpf.FieldsContainer() >>> op.inputs.fields_container.connect(my_fields_container) """ def __init__(self, op: Operator): super().__init__(conjugate._spec().inputs, op) self._fields_container = Input(conjugate._spec().input_pin(0), 0, op, -1) self._inputs.append(self._fields_container) @property def fields_container(self): """Allows to connect fields_container input to the operator Parameters ---------- my_fields_container : FieldsContainer, Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.conjugate() >>> op.inputs.fields_container.connect(my_fields_container) >>> #or >>> op.inputs.fields_container(my_fields_container) """ return self._fields_container class OutputsConjugate(_Outputs): """Intermediate class used to get outputs from conjugate operator Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.conjugate() >>> # Connect inputs : op.inputs. ... >>> result_fields_container = op.outputs.fields_container() """ def __init__(self, op: Operator): super().__init__(conjugate._spec().outputs, op) self._fields_container = Output(conjugate._spec().output_pin(0), 0, op) self._outputs.append(self._fields_container) @property def fields_container(self): """Allows to get fields_container output of the operator Returns ---------- my_fields_container : FieldsContainer, Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.conjugate() >>> # Connect inputs : op.inputs. ... >>> result_fields_container = op.outputs.fields_container() """ return self._fields_container
76223c165e5e9ac07147392a1c676096c926a704
9f1039075cc611198a988034429afed6ec6d7408
/tensorflow-stubs/python/debug/cli/ui_factory.pyi
b43ca70100629b7c956effd95df1bc66726070c7
[]
no_license
matangover/tensorflow-stubs
9422fbb1cb3a3638958d621461291c315f9c6ec2
664bd995ef24f05ba2b3867d979d23ee845cb652
refs/heads/master
2020-05-23T12:03:40.996675
2019-05-15T06:21:43
2019-05-15T06:21:43
186,748,093
0
0
null
null
null
null
UTF-8
Python
false
false
352
pyi
# Stubs for tensorflow.python.debug.cli.ui_factory (Python 3) # # NOTE: This dynamically typed stub was automatically generated by stubgen. from typing import Any as Any, Optional as Optional SUPPORTED_UI_TYPES: Any def get_ui(ui_type: Any, on_ui_exit: Optional[Any] = ..., available_ui_types: Optional[Any] = ..., config: Optional[Any] = ...): ...
a3102fcc5d0e0bfb6ee0b1bf3111b652fc63dcb7
07fa9a51d737d0a1fbe217b1a6a956abbef4ef87
/pytorchvideo/layers/accelerator/mobile_cpu/conv_helper.py
9d9d7c228c92e93dca3ca889ed62c9c8350ab955
[ "Apache-2.0" ]
permissive
xchani/pytorchvideo
2b6decf3a1076b9256745f0ae81d86e2f43e14a7
16f2abf2f8aa174915316007622bbb260215dee8
refs/heads/main
2023-08-27T16:36:23.346066
2021-11-11T11:40:56
2021-11-11T11:40:56
414,095,913
0
0
Apache-2.0
2021-10-06T06:32:33
2021-10-06T06:32:32
null
UTF-8
Python
false
false
21,774
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """ This file contains helper classes for building conv3d efficient blocks. The helper classes are intended to be instantiated inside efficient block, not to be used by user to build network. """ from copy import deepcopy from typing import Tuple import torch import torch.nn as nn class _Reshape(nn.Module): """ Helper class to implement data reshape as a module. Args: reshape_size (tuple): size of data after reshape. """ def __init__( self, reshape_size: Tuple, ): super().__init__() self.reshape_size = reshape_size def forward(self, x): return torch.reshape(x, self.reshape_size) class _SkipConnectMul(nn.Module): """ Helper class to implement skip multiplication. Args: layer (nn.Module): layer for skip multiplication. With input x, _SkipConnectMul implements layer(x)*x. """ def __init__( self, layer: nn.Module, ): super().__init__() self.layer = layer self.mul_func = nn.quantized.FloatFunctional() def forward(self, x): return self.mul_func.mul(x, self.layer(x)) class _Conv3dTemporalKernel3Decomposed(nn.Module): """ Helper class for decomposing conv3d with temporal kernel of 3 into equivalent conv2ds. In conv3d with temporal kernel 3 and input I, for output temporal index of t (O[:,:,t,:,:]), the conv can be expressed as: O[:,:,t,:,:] = conv3d(I[:,:,t:t+3,:,:]) = conv2d_0(I[:,:,t,:,:]) + conv2d_1(I[:,:,t+1,:,:]) + conv2d_2(I[:,:,t+2,:,:]) If bias is considered: O[:,:,t,:,:] = conv3d_w_bias(I[:,:,t:t+3,:,:]) = conv2d_0_wo_bias(I[:,:,t,:,:]) + conv2d_1_w_bias(I[:,:,t+1,:,:]) + conv2d_2_wo_bias(I[:,:,t+2,:,:]) The input Conv3d also needs zero padding of size 1 in temporal dimension. """ def __init__( self, conv3d_in: nn.Conv3d, input_THW_tuple: Tuple, ): """ Args: conv3d_in (nn.Module): input nn.Conv3d module to be converted into equivalent conv2d. input_THW_tuple (tuple): input THW size for conv3d_in during forward. """ super().__init__() assert conv3d_in.padding[0] == 1, ( "_Conv3dTemporalKernel3Eq only support temporal padding of 1, " f"but got {conv3d_in.padding[0]}" ) assert conv3d_in.padding_mode == "zeros", ( "_Conv3dTemporalKernel3Eq only support zero padding, " f"but got {conv3d_in.padding_mode}" ) self._input_THW_tuple = input_THW_tuple padding_2d = conv3d_in.padding[1:] in_channels = conv3d_in.in_channels out_channels = conv3d_in.out_channels kernel_size = conv3d_in.kernel_size[1:] groups = conv3d_in.groups stride_2d = conv3d_in.stride[1:] # Create 3 conv2d to emulate conv3d. if ( self._input_THW_tuple[0] > 1 ): # Those two conv2d are needed only when temporal input > 1. self._conv2d_3_3_0 = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, padding=padding_2d, stride=stride_2d, groups=groups, bias=False, ) self._conv2d_3_3_2 = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, padding=padding_2d, stride=stride_2d, groups=groups, bias=False, ) self._conv2d_3_3_1 = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, padding=padding_2d, stride=stride_2d, groups=groups, bias=(conv3d_in.bias is not None), ) state_dict = conv3d_in.state_dict() state_dict_1 = deepcopy(state_dict) state_dict_1["weight"] = state_dict["weight"][:, :, 1] self._conv2d_3_3_1.load_state_dict(state_dict_1) if self._input_THW_tuple[0] > 1: state_dict_0 = deepcopy(state_dict) state_dict_0["weight"] = state_dict["weight"][:, :, 0] if conv3d_in.bias is not None: """ Don't need bias for other conv2d instances to avoid duplicated addition of bias. """ state_dict_0.pop("bias") self._conv2d_3_3_0.load_state_dict(state_dict_0) state_dict_2 = deepcopy(state_dict) state_dict_2["weight"] = state_dict["weight"][:, :, 2] if conv3d_in.bias is not None: state_dict_2.pop("bias") self._conv2d_3_3_2.load_state_dict(state_dict_2) self._add_funcs = nn.ModuleList( [ nn.quantized.FloatFunctional() for _ in range(2 * (self._input_THW_tuple[0] - 1)) ] ) self._cat_func = nn.quantized.FloatFunctional() def forward(self, x): """ Use three conv2d to emulate conv3d. This forward assumes zero padding of size 1 in temporal dimension. """ if self._input_THW_tuple[0] > 1: out_tensor_list = [] """ First output plane in temporal dimension, conv2d_3_3_0 is skipped due to zero padding. """ cur_tensor = ( self._add_funcs[0] .add(self._conv2d_3_3_1(x[:, :, 0]), self._conv2d_3_3_2(x[:, :, 1])) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) for idx in range(2, self._input_THW_tuple[0]): cur_tensor = ( self._add_funcs[2 * idx - 3] .add( self._add_funcs[2 * idx - 2].add( self._conv2d_3_3_0(x[:, :, idx - 2]), self._conv2d_3_3_1(x[:, :, idx - 1]), ), self._conv2d_3_3_2(x[:, :, idx]), ) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) """ Last output plane in temporal domain, conv2d_3_3_2 is skipped due to zero padding. """ cur_tensor = ( self._add_funcs[-1] .add(self._conv2d_3_3_0(x[:, :, -2]), self._conv2d_3_3_1(x[:, :, -1])) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) return self._cat_func.cat(out_tensor_list, 2) else: # Degenerated to simple conv2d return self._conv2d_3_3_1(x[:, :, 0]).unsqueeze(2) class _Conv3dTemporalKernel5Decomposed(nn.Module): """ Helper class for decomposing conv3d with kernel size of (5, k, k) into equivalent conv2ds. In such conv3d and input I, for output temporal index of t (O[:,:,t,:,:]), the conv can be expressed as: O[:,:,t,:,:] = conv3d(I[:,:,t:t+5,:,:]) = conv2d_0(I[:,:,t,:,:]) + conv2d_1(I[:,:,t+1,:,:]) + conv2d_2(I[:,:,t+2,:,:]) + conv2d_3(I[:,:,t+3,:,:]) + conv2d_4(I[:,:,t+4,:,:]) If bias is considered: O[:,:,t,:,:] = conv3d_w_bias(I[:,:,t:t+3,:,:]) = conv2d_0_wo_bias(I[:,:,t,:,:]) + conv2d_1_wo_bias(I[:,:,t+1,:,:]) + conv2d_2_w_bias(I[:,:,t+2,:,:]) + conv2d_3_wo_bias(I[:,:,t+1,:,:]) + conv2d_4_wo_bias(I[:,:,t+2,:,:]) The input Conv3d also needs zero padding of size 2 in temporal dimension at begin and end. """ def __init__( self, conv3d_in: nn.Conv3d, thw_shape: Tuple[int, int, int], ): """ Args: conv3d_in (nn.Module): input nn.Conv3d module to be converted into equivalent conv2d. thw_shape (tuple): input THW size for conv3d_in during forward. """ super().__init__() assert conv3d_in.padding[0] == 2, ( "_Conv3dTemporalKernel5Eq only support temporal padding of 2, " f"but got {conv3d_in.padding[0]}" ) assert conv3d_in.padding_mode == "zeros", ( "_Conv3dTemporalKernel5Eq only support zero padding, " f"but got {conv3d_in.padding_mode}" ) self._thw_shape = thw_shape padding_2d = conv3d_in.padding[1:] in_channels = conv3d_in.in_channels out_channels = conv3d_in.out_channels kernel_size = conv3d_in.kernel_size[1:] groups = conv3d_in.groups stride_2d = conv3d_in.stride[1:] # Create 3 conv2d to emulate conv3d. t, h, w = self._thw_shape args_dict = { "in_channels": in_channels, "out_channels": out_channels, "kernel_size": kernel_size, "padding": padding_2d, "stride": stride_2d, "groups": groups, } for iter_idx in range(5): if iter_idx != 2: if t > 1: # Those four conv2d are needed only when temporal input > 1. self.add_module( f"_conv2d_{iter_idx}", nn.Conv2d(**args_dict, bias=False) ) else: # _conv2d_2 is needed for all circumstances. self.add_module( f"_conv2d_{iter_idx}", nn.Conv2d(**args_dict, bias=(conv3d_in.bias is not None)), ) # State dict for _conv2d_2 original_state_dict = conv3d_in.state_dict() state_dict_to_load = deepcopy(original_state_dict) state_dict_to_load["weight"] = original_state_dict["weight"][:, :, 2] self._conv2d_2.load_state_dict(state_dict_to_load) if t > 1: if conv3d_in.bias is not None: # Don't need bias for other conv2d instances to avoid duplicated # addition of bias. state_dict_to_load.pop("bias") # State dict for _conv2d_0, _conv2d_1, _conv2d_3, _conv2d_4 state_dict_to_load["weight"] = original_state_dict["weight"][:, :, 0] self._conv2d_0.load_state_dict(state_dict_to_load) state_dict_to_load["weight"] = original_state_dict["weight"][:, :, 1] self._conv2d_1.load_state_dict(state_dict_to_load) state_dict_to_load["weight"] = original_state_dict["weight"][:, :, 3] self._conv2d_3.load_state_dict(state_dict_to_load) state_dict_to_load["weight"] = original_state_dict["weight"][:, :, 4] self._conv2d_4.load_state_dict(state_dict_to_load) # Elementwise add are needed in forward function, use nn.quantized.FloatFunctional() # for better quantization support. One convolution needs at most 4 elementwise adds # without zero padding; for boundary planes fewer elementwise adds are needed. # See forward() for more details. self._add_funcs = nn.ModuleList( [nn.quantized.FloatFunctional() for _ in range(4 * t - 6)] ) self._cat_func = nn.quantized.FloatFunctional() def forward(self, x): """ Use three conv2d to emulate conv3d. Args: x (torch.Tensor): 5D tensor of (B, C, T, H, W) """ t, h, w = self._thw_shape out_tensor_list = [] if ( t == 1 ): # Degenerated to simple conv2d, but make sure output still has T dimension return self._conv2d_2(x[:, :, 0]).unsqueeze(2) elif t == 2: # out_tensor_list[0]: conv2d_1_1_0, conv2d_1_1_1 and conv2d_1_1_4 are # applied to zero padding. cur_tensor = ( self._add_funcs[0] .add(self._conv2d_2(x[:, :, 0]), self._conv2d_3(x[:, :, 1])) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) # out_tensor_list[1]: conv2d_1_1_0, conv2d_1_1_3 and conv2d_1_1_4 are # applied to zero padding. cur_tensor = ( self._add_funcs[1] .add(self._conv2d_1(x[:, :, 0]), self._conv2d_2(x[:, :, 1])) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) elif t == 3: # out_tensor_list[0]: conv2d_1_1_0, conv2d_1_1_1 are applied to zero padding. cur_tensor = ( self._add_funcs[0] .add( self._add_funcs[1].add( self._conv2d_2(x[:, :, 0]), self._conv2d_3(x[:, :, 1]) ), self._conv2d_4(x[:, :, 2]), ) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) # out_tensor_list[1]: conv2d_1_1_0, conv2d_1_1_4 are applied to zero padding. cur_tensor = ( self._add_funcs[2] .add( self._add_funcs[3].add( self._conv2d_1(x[:, :, 0]), self._conv2d_2(x[:, :, 1]) ), self._conv2d_3(x[:, :, 2]), ) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) # out_tensor_list[2]: conv2d_1_1_3, conv2d_1_1_4 are applied to zero padding. cur_tensor = ( self._add_funcs[4] .add( self._add_funcs[5].add( self._conv2d_0(x[:, :, 0]), self._conv2d_1(x[:, :, 1]) ), self._conv2d_2(x[:, :, 2]), ) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) elif t == 4: # out_tensor_list[0]: conv2d_1_1_0, conv2d_1_1_1 are applied to zero padding. cur_tensor = ( self._add_funcs[0] .add( self._add_funcs[1].add( self._conv2d_2(x[:, :, 0]), self._conv2d_3(x[:, :, 1]) ), self._conv2d_4(x[:, :, 2]), ) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) # out_tensor_list[1]: conv2d_1_1_0 is applied to zero padding. cur_tensor = ( self._add_funcs[2] .add( self._add_funcs[3].add( self._add_funcs[4].add( self._conv2d_1(x[:, :, 0]), self._conv2d_2(x[:, :, 1]), ), self._conv2d_3(x[:, :, 2]), ), self._conv2d_4(x[:, :, 3]), ) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) # out_tensor_list[2]: conv2d_1_1_4 is applied to zero padding. cur_tensor = ( self._add_funcs[5] .add( self._add_funcs[6].add( self._add_funcs[7].add( self._conv2d_0(x[:, :, 0]), self._conv2d_1(x[:, :, 1]), ), self._conv2d_2(x[:, :, 2]), ), self._conv2d_3(x[:, :, 3]), ) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) # out_tensor_list[3]: conv2d_1_1_3, conv2d_1_1_4 are applied to zero padding. cur_tensor = ( self._add_funcs[8] .add( self._add_funcs[9].add( self._conv2d_0(x[:, :, 1]), self._conv2d_1(x[:, :, 2]) ), self._conv2d_2(x[:, :, 3]), ) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) else: # t >= 5 # out_tensor_list[0]: conv2d_1_1_0, conv2d_1_1_1 are applied to zero padding. add_func_idx_base = 0 cur_tensor = ( self._add_funcs[add_func_idx_base] .add( self._add_funcs[add_func_idx_base + 1].add( self._conv2d_2(x[:, :, 0]), self._conv2d_3(x[:, :, 1]) ), self._conv2d_4(x[:, :, 2]), ) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) add_func_idx_base += 2 # out_tensor_list[1]: conv2d_1_1_0 is applied to zero padding. cur_tensor = ( self._add_funcs[add_func_idx_base] .add( self._add_funcs[add_func_idx_base + 1].add( self._add_funcs[add_func_idx_base + 2].add( self._conv2d_1(x[:, :, 0]), self._conv2d_2(x[:, :, 1]), ), self._conv2d_3(x[:, :, 2]), ), self._conv2d_4(x[:, :, 3]), ) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) add_func_idx_base += 3 # out_tensor_list[2:-2]: zero padding has no effect. for idx in range(4, t): cur_tensor = ( self._add_funcs[add_func_idx_base] .add( self._add_funcs[add_func_idx_base + 1].add( self._add_funcs[add_func_idx_base + 2].add( self._add_funcs[add_func_idx_base + 3].add( self._conv2d_0(x[:, :, idx - 4]), self._conv2d_1(x[:, :, idx - 3]), ), self._conv2d_2(x[:, :, idx - 2]), ), self._conv2d_3(x[:, :, idx - 1]), ), self._conv2d_4(x[:, :, idx]), ) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) add_func_idx_base += 4 # out_tensor_list[-2]: conv2d_1_1_4 is applied to zero padding. cur_tensor = ( self._add_funcs[add_func_idx_base] .add( self._add_funcs[add_func_idx_base + 1].add( self._add_funcs[add_func_idx_base + 2].add( self._conv2d_0(x[:, :, -4]), self._conv2d_1(x[:, :, -3]), ), self._conv2d_2(x[:, :, -2]), ), self._conv2d_3(x[:, :, -1]), ) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) add_func_idx_base += 3 # out_tensor_list[-1]: conv2d_1_1_3, conv2d_1_1_4 are applied to zero padding. cur_tensor = ( self._add_funcs[add_func_idx_base] .add( self._add_funcs[add_func_idx_base + 1].add( self._conv2d_0(x[:, :, -3]), self._conv2d_1(x[:, :, -2]), ), self._conv2d_2(x[:, :, -1]), ) .unsqueeze(2) ) out_tensor_list.append(cur_tensor) return self._cat_func.cat(out_tensor_list, 2) class _Conv3dTemporalKernel1Decomposed(nn.Module): """ Helper class for decomposing conv3d with temporal kernel of 1 into conv2d on multiple temporal planes. In conv3d with temporal kernel 1 and input I, for output temporal index of t (O[:,:,t,:,:]), the conv can be expressed as: O[:,:,t,:,:] = conv3d(I[:,:,t,:,:]) = conv2d(I[:,:,t,:,:]) The full output can be obtained by concat O[:,:,t,:,:] for t in 0...T, where T is the length of I in temporal dimension. """ def __init__( self, conv3d_eq: nn.Conv3d, input_THW_tuple: Tuple, ): """ Args: conv3d_eq (nn.Module): input nn.Conv3d module to be converted into equivalent conv2d. input_THW_tuple (tuple): input THW size for conv3d_eq during forward. """ super().__init__() # create equivalent conv2d module in_channels = conv3d_eq.in_channels out_channels = conv3d_eq.out_channels bias_flag = conv3d_eq.bias is not None self.conv2d_eq = nn.Conv2d( in_channels, out_channels, kernel_size=(conv3d_eq.kernel_size[1], conv3d_eq.kernel_size[2]), stride=(conv3d_eq.stride[1], conv3d_eq.stride[2]), groups=conv3d_eq.groups, bias=bias_flag, padding=(conv3d_eq.padding[1], conv3d_eq.padding[2]), dilation=(conv3d_eq.dilation[1], conv3d_eq.dilation[2]), ) state_dict = conv3d_eq.state_dict() state_dict["weight"] = state_dict["weight"].squeeze(2) self.conv2d_eq.load_state_dict(state_dict) self.input_THW_tuple = input_THW_tuple def forward(self, x): out_tensor_list = [] for idx in range(self.input_THW_tuple[0]): cur_tensor = self.conv2d_eq(x[:, :, idx]).unsqueeze(2) out_tensor_list.append(cur_tensor) return torch.cat(out_tensor_list, 2)
3f45a0ead1cf4666a92a4e6dc6450c3ac923cd4a
e5efada3529d94875455c4230c8dabe27fb72a89
/apps/api/migrations/0015_auto_20230210_1801.py
aa364ba5d0abda9b62dcdf65fd85023772bbf6fc
[]
no_license
alexmon1989/uma
d8c321fb0ec9b1a9039b1c83aeaaff774f657416
5dea579d634eeb1c8103c21157299b33ca5590f0
refs/heads/master
2023-08-03T04:31:13.598577
2023-07-22T18:17:13
2023-07-22T18:17:13
154,835,498
0
0
null
2023-03-02T11:20:54
2018-10-26T13:02:12
Nunjucks
UTF-8
Python
false
false
411
py
# Generated by Django 3.2.12 on 2023-02-10 18:01 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0014_auto_20211213_1900'), ] operations = [ migrations.AddField( model_name='opendata', name='files_path', field=models.CharField(blank=True, max_length=500, null=True), ), ]
a220aea2b5c78023a22076d9c19a6dd6523da5d2
30d1902232eb9ddb84fdf5404a3a1dfd6232406a
/wxpython/project/panels/WorkExperience.py
17bf63ac737356239469250d54b41bd0999928ea
[]
no_license
sxnys/mypython
c3a768b054077ed97ff1e2fac31cb93f0765deb3
de48cd883ad2de3320cb0c6b46b451ebb2311ac7
refs/heads/master
2022-11-07T15:11:48.936412
2019-04-14T12:04:30
2019-04-14T12:04:30
119,686,106
0
1
null
2022-10-31T05:13:00
2018-01-31T12:46:06
Python
UTF-8
Python
false
false
791
py
# -*- coding: utf-8 __author__ = 'Sxn' __date__ = '2017/5/22 19:09' from . import StudyExperience from extra import JsonIO class TabPanel(StudyExperience.TabPanel): def __init__(self, parent): StudyExperience.TabPanel.__init__(self, parent, tabName=u'工作经历', instructText=u'含学术兼职情况', numLimit=10, editInfo=[u'起止年月', u'工作单位', u'职务/职称'], colSize=[250, 250, 250], childOrder=2) def addToJsonDict(self): JsonIO.working_exp = [] for i in xrange(self.gridRow): tmp = {} tmp['start_end_date'] = self.infoGrid.GetCellValue(i, 0) tmp['working_dep'] = self.infoGrid.GetCellValue(i, 1) tmp['job'] = self.infoGrid.GetCellValue(i, 2) JsonIO.working_exp.append(tmp)
5e65254844f16b658ad6828501d1c3536c170e7f
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/63/usersdata/230/28042/submittedfiles/swamee.py
88094a850a0912518cfb951ac45f0e9faca901c7
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
493
py
# -*- coding: utf-8 -*- import math #COMECE SEU CÓDIGO AQUI f = float(input('Digite o valor de f: ')) L = float(input('Digite o valor de L: ')) Q = float(input('Digite o valor de Q: ')) DeltaH = float(input('Digite o valor de DeltaH: ')) v = float(input('Digite o valor de v: ')) g = 9.81 E = 0.000002 D = ((8*f*L*(Q**2))/((math.pi**2)*g*DeltaH))**0.2 Rey = (4*Q)/(math.pi*D*v) k = (0.25)/(math.log10((E/3.7*D))+(5.74/(Rey**0.9)))**2 print ('%.4f' % D) print ('%.4f' % Rey) print ('%.4f' % k)
2d1ff66d90a2adb3e0779f18b5a50d2212b45545
13f5984be7be77852e4de29ab98d5494a7fc6767
/LeetCode/binary_serach_tree.py
ac894fb9c1a5994df4054cf4407beae85859a72b
[]
no_license
YuanXianguo/Python-Interview-Master
4252514763fc3f563d9b94e751aa873de1719f91
2f73786e8c51dbd248341559de171e18f67f9bf2
refs/heads/master
2020-11-26T18:14:50.190812
2019-12-20T02:18:03
2019-12-20T02:18:03
229,169,825
0
0
null
null
null
null
UTF-8
Python
false
false
3,513
py
from tree import Tree class Node(object): """结点""" def __init__(self, val=None): self.val = val self.left = None self.right = None class BinarySearchTree(Tree): """二叉搜索树""" def __init__(self, node=None): super().__init__(node) def insert(self, val): """二叉搜索树插入""" node = Node(val) if not self.root: self.root = node else: if val < self.root.val: self.root.left = BinarySearchTree( self.root.left).insert(val) elif val > self.root.val: self.root.right = BinarySearchTree( self.root.right).insert(val) return self.root def find(self, val): """递归查找值""" if not self.root: return "查找失败" if val < self.root.val: return BinarySearchTree(self.root.left).find(val) elif val > self.root.val: return BinarySearchTree(self.root.right).find(val) else: # 找到了 return self.root def find2(self, val): """非递归查找""" root = self.root while root: if val < root.val: root = root.left elif val > root.val: root = root.right else: return root return "查找失败" def find_min(self): """递归查找最小值,一定是在树的最左分支的端结点上""" if not self.root: return "查找失败" if not self.root.left: return self.root # 最小值没有左子树 else: return BinarySearchTree(self.root.left).find_min() def find_max(self): """迭代查找最大值,一定是在树的最右分支的端结点上""" root = self.root if not root: return "查找失败" while root.right: root = root.right return root def delete(self, val): """每次递归删除都把删除后的子树返回""" if not self.root: return "删除失败" elif val < self.root.val: self.root.left = BinarySearchTree( self.root.left).delete(val) elif val > self.root.val: self.root.right = BinarySearchTree( self.root.right).delete(val) else: # 该结点为要删除结点 # 如果左右子树都不为空 if self.root.left and self.root.right: # 找到右子树最小值或左子树最大值 right_min = BinarySearchTree(self.root.right).find_min() # 将找到的右子树最小值填充要删除的根结点 self.root.val = right_min.val # 删除右子树最小值 self.root.right = BinarySearchTree( self.root.right).delete(right_min) else: # 被删除结点有一个或无子树 if not self.root.left: self.root = self.root.right elif not self.root.right: self.root = self.root.left return self.root if __name__ == '__main__': bt = BinarySearchTree() for i in range(10): bt.insert(i) print(bt.find_min().val) print(bt.find_max().val) print(bt.find(10)) bt.postorder() print("") bt.delete(9) print(bt.find_max().val) bt.inorder()
05f2f300257d5ca6375765b26379c1ae5bcd4984
3ec9d3aa7e59475683dba30a87ca68242a7ec181
/cn/edgedetection/03Sample.py
843592f93fc567466fb142220d9454d1c28724ac
[ "Apache-2.0" ]
permissive
Jasonandy/Python-X
58bf36499572cdfb7d7bf80c6a3cd0c818f62c1e
2f02b9a17bd5495dd1f8746b191f11ec2d7bccbe
refs/heads/master
2021-06-16T17:07:29.277404
2021-03-07T14:17:05
2021-03-07T14:17:05
175,353,402
0
2
null
null
null
null
UTF-8
Python
false
false
2,419
py
""" 边缘检测示列 https://blog.csdn.net/HuangZhang_123/article/details/80511270 """ import cv2 import numpy as np def show_image(image_path): """ show_image 展示 :param image_path: :return: """ img = cv2.pyrDown(cv2.imread(image_path, cv2.IMREAD_UNCHANGED)) # threshold 函数对图像进行二化值处理,由于处理后图像对原图像有所变化,因此img.copy()生成新的图像,cv2.THRESH_BINARY是二化值 ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY) # findContours函数查找图像里的图形轮廓 # 函数参数thresh是图像对象 # 层次类型,参数cv2.RETR_EXTERNAL是获取最外层轮廓,cv2.RETR_TREE是获取轮廓的整体结构 # 轮廓逼近方法 # 输出的返回值,image是原图像、contours是图像的轮廓、hier是层次类型 contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for c in contours: # 轮廓绘制方法一 # boundingRect函数计算边框值,x,y是坐标值,w,h是矩形的宽和高 x, y, w, h = cv2.boundingRect(c) # 在img图像画出矩形,(x, y), (x + w, y + h)是矩形坐标,(0, 255, 0)设置通道颜色,2是设置线条粗度 cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) # 轮廓绘制方法二 # 查找最小区域 rect = cv2.minAreaRect(c) # 计算最小面积矩形的坐标 box = cv2.boxPoints(rect) # 将坐标规范化为整数 box = np.int0(box) # 绘制矩形 cv2.drawContours(img, [box], 0, (0, 0, 255), 3) # 轮廓绘制方法三 # 圆心坐标和半径的计算 (x, y), radius = cv2.minEnclosingCircle(c) # 规范化为整数 center = (int(x), int(y)) radius = int(radius) # 勾画圆形区域 img = cv2.circle(img, center, radius, (0, 255, 0), 2) # # 轮廓绘制方法四 # 围绕图形勾画蓝色线条 cv2.drawContours(img, contours, -1, (255, 0, 0), 2) # 显示图像 cv2.imshow("contours", img) cv2.waitKey() cv2.destroyAllWindows() def run(): # image_path = "media/13.jpg" # image_path = "media/lena/lena.jpg" image_path = "media/sample/sample.png" show_image(image_path) if __name__ == '__main__': run()
c9c1b551a250613ffb85b581a47121c5e9319dc2
855c7f84876f66fe48fa3cfebcb2d96cb809ccce
/manage.py
642ca99f5fc4b37a16fb35199b75f179159c8063
[]
no_license
chifeng111/Appointment
1a9fd11755a03112fa995ef4736761d9ee4c4b93
233c65a51fe4b346ddd2e4dc22adb7d233bd0faf
refs/heads/master
2020-06-20T00:08:56.139597
2016-12-06T15:30:44
2016-12-06T15:30:44
74,894,926
2
1
null
null
null
null
UTF-8
Python
false
false
809
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "Appointment.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
13e9b3fafe2f0f5e0947fec71bd1d9c4f1fd6730
2a171178942a19afe9891c2425dce208ae04348b
/kubernetes/client/models/v1_job_list.py
4c27f86f781c5f929aaeab8ca1386fdec70302fc
[ "Apache-2.0" ]
permissive
ouccema/client-python
ac3f1dee1c5ad8d82f15aeecb87a2f5f219ca4f4
d7f33ec53e302e66674df581904a3c5b1fcf3945
refs/heads/master
2021-01-12T03:17:54.274888
2017-01-03T22:13:14
2017-01-03T22:13:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,395
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.5.0-snapshot Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from pprint import pformat from six import iteritems import re class V1JobList(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, items=None, metadata=None): """ V1JobList - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'items': 'list[V1Job]', 'metadata': 'UnversionedListMeta' } self.attribute_map = { 'items': 'items', 'metadata': 'metadata' } self._items = items self._metadata = metadata @property def items(self): """ Gets the items of this V1JobList. Items is the list of Job. :return: The items of this V1JobList. :rtype: list[V1Job] """ return self._items @items.setter def items(self, items): """ Sets the items of this V1JobList. Items is the list of Job. :param items: The items of this V1JobList. :type: list[V1Job] """ if items is None: raise ValueError("Invalid value for `items`, must not be `None`") self._items = items @property def metadata(self): """ Gets the metadata of this V1JobList. Standard list metadata More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#metadata :return: The metadata of this V1JobList. :rtype: UnversionedListMeta """ return self._metadata @metadata.setter def metadata(self, metadata): """ Sets the metadata of this V1JobList. Standard list metadata More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#metadata :param metadata: The metadata of this V1JobList. :type: UnversionedListMeta """ self._metadata = metadata def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
51e410a7583b82d254106376c125b43aa5f99007
ed7e61c8eef7fb2213adeb67557d605470c17fb3
/ML/confusion-matrix/split_two.py
b3bc65d93e39225a414ead9d46ec4d8d6b6fd697
[]
no_license
MartinThoma/algorithms
535840224323822f2ea6b7dd6f82a0fdd22a0ff9
a251e9599b685dbf89c891f02d20fefd8538ead5
refs/heads/master
2023-02-23T17:58:10.913634
2023-02-21T05:58:59
2023-02-21T05:58:59
4,939,076
241
126
null
2023-02-16T05:16:23
2012-07-07T16:07:23
Python
UTF-8
Python
false
false
6,693
py
#!/usr/bin/env python """Split the classes into two equal-sized groups to maximize accuracy.""" import json import os import random import numpy as np random.seed(0) import logging import sys from visualize import apply_permutation, plot_cm, read_symbols, swap, swap_1d logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.DEBUG, stream=sys.stdout) def calculate_split_accuracy(cm): """ Calculate the accuracy of the adjusted classifier. The adjusted classifier is built by joining the first n/2 classes into one group and the rest into another group. """ n = len(cm) first = int(n / 2) cm_small = np.zeros((2, 2)) for i in range(n): class_i = int(i < first) for j in range(n): class_j = int(j < first) cm_small[class_i][class_j] += cm[i][j] return (float(cm_small[0][0] + cm_small[1][1]) / cm_small.sum()) def calculate_split_error(cm): """Calculate the error of 2 group split.""" return 1.0 - calculate_split_accuracy(cm) def simulated_annealing(current_cm, current_perm=None, score=calculate_split_error, steps=2 * 10**5, temp=100.0, cooling_factor=0.99, deterministic=False): """ Optimize current_cm by randomly swapping elements. Parameters ---------- current_cm : numpy array current_perm : None or iterable, optional (default: None) steps : int, optional (default: 2 * 10**4) temp : float > 0.0, optional (default: 100.0) Temperature cooling_factor: float in (0, 1), optional (default: 0.99) """ assert temp > 0 assert cooling_factor > 0 assert cooling_factor < 1 n = len(current_cm) if current_perm is None: current_perm = list(range(n)) current_perm = np.array(current_perm) # Debugging code perm_exp = np.zeros((n, n), dtype=np.int) for i in range(n): for j in range(n): perm_exp[i][j] = j current_cm = apply_permutation(current_cm, current_perm) perm_exp_current = apply_permutation(perm_exp, current_perm) logging.debug(perm_exp_current[0]) print("apply permutation %s" % str(current_perm)) current_score = score(current_cm) best_perm = current_perm best_cm = current_cm best_score = current_score print("## Starting Score: {:0.2f}%".format(current_score * 100)) for step in range(steps): tmp = np.array(current_cm, copy=True) split_part = int(n / 2) - 1 i = random.randint(0, split_part) j = random.randint(split_part + 1, n - 1) perm = swap_1d(current_perm.copy(), i, j) tmp = swap(tmp, i, j) # tmp = apply_permutation(tmp, perm) tmp_score = score(tmp) if deterministic: chance = 1.0 else: chance = random.random() temp *= 0.99 hot_prob = min(1, np.exp(-(tmp_score - current_score) / temp)) if chance <= hot_prob: if best_score > tmp_score: # Minimize the score best_perm = perm best_cm = tmp best_score = tmp_score current_score = tmp_score perm_exp_current = swap(perm_exp_current, i, j) print(list(perm_exp_current[0])) current_cm = tmp logging.info(("Current: %0.2f%% (best: %0.2f%%, hot_prob=%0.2f%%, " "step=%i)"), (current_score * 100), (best_score * 100), (hot_prob * 100), step) return {'cm': best_cm, 'perm': list(perm_exp_current[0])} def main(cm_file, perm_file, steps, labels_file): """Orchestrate.""" # Load confusion matrix with open(cm_file) as f: cm = json.load(f) cm = np.array(cm) # Load permutation if os.path.isfile(perm_file): print("loaded %s" % perm_file) with open(perm_file) as data_file: perm = json.load(data_file) else: perm = random.shuffle(list(range(len(cm)))) print("Score without perm: {:0.2f}%".format(calculate_split_error(cm) * 100)) result = simulated_annealing(cm, perm, score=calculate_split_error, deterministic=True, steps=steps) # First recursive step # split_i = int(len(cm) / 2) # cm = result['cm'][:split_i, :split_i] # perm = list(range(split_i)) # result = simulated_annealing(cm, perm, # score=calculate_split_error, # deterministic=True, # steps=steps) print("Score: {}".format(calculate_split_error(result['cm']))) print("Perm: {}".format(list(result['perm']))) # Load labels if os.path.isfile(labels_file): with open(labels_file) as f: symbols = json.load(f) else: symbols = read_symbols() print("Symbols: {}".format([symbols[i] for i in result['perm']])) plot_cm(result['cm'], zero_diagonal=True) def get_parser(): """Get parser object for script xy.py.""" from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser parser = ArgumentParser(description=__doc__, formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("--cm", dest="cm_file", help=("path of a json file with a confusion matrix"), metavar="cm.json", default='confusion-matrix.json') parser.add_argument("--perm", dest="perm_file", help=("path of a json file with a permutation to " "start with"), metavar="perm.json", default="") parser.add_argument("--labels", dest="labels_file", help=("path of a json file with a list of label " "names"), metavar="labels.json", default="") parser.add_argument("-n", dest="n", default=4 * 10**5, type=int, help="number of steps to iterate") return parser if __name__ == "__main__": args = get_parser().parse_args() main(args.cm_file, args.perm_file, args.n, args.labels_file)
f5435f602b8973519150389a75dd7328fe65e570
c0f808504dd3d7fd27c39f1503fbc14c1d37bf9f
/sources/scipy-scipy-414c1ab/scipy/sparse/linalg/dsolve/umfpack/tests/try_umfpack.py
6f7cd7acdb421fa1497d93d5b68da26ef2943b61
[]
no_license
georgiee/lip-sync-lpc
7662102d4715e4985c693b316a02d11026ffb117
e931cc14fe4e741edabd12471713bf84d53a4250
refs/heads/master
2018-09-16T08:47:26.368491
2018-06-05T17:01:08
2018-06-05T17:01:08
5,779,592
17
4
null
null
null
null
UTF-8
Python
false
false
6,310
py
#!/usr/bin/env python # Created by: Robert Cimrman, 05.12.2005 """Benchamrks for umfpack module""" from optparse import OptionParser import time import urllib import gzip import numpy as np import scipy.sparse as sp import scipy.sparse.linalg.dsolve.umfpack as um import scipy.linalg as nla defaultURL = 'http://www.cise.ufl.edu/research/sparse/HBformat/' usage = """%%prog [options] <matrix file name> [<matrix file name>, ...] <matrix file name> can be a local or distant (gzipped) file default url is: %s supported formats are: triplet .. [nRow, nCol, nItem] followed by 'nItem' * [ir, ic, value] hb .. Harwell-Boeing format N/A """ % defaultURL ## # 05.12.2005, c def read_triplet( fd ): nRow, nCol = map( int, fd.readline().split() ) nItem = int( fd.readline() ) ij = np.zeros( (nItem,2), np.int32 ) val = np.zeros( (nItem,), np.float64 ) for ii, row in enumerate( fd.readlines() ): aux = row.split() ij[ii] = int( aux[0] ), int( aux[1] ) val[ii] = float( aux[2] ) mtx = sp.csc_matrix( (val, ij), dims = (nRow, nCol), nzmax = nItem ) return mtx ## # 06.12.2005, c def read_triplet2( fd ): nRow, nCol = map( int, fd.readline().split() ) nItem = int( fd.readline() ) ij, val = io.read_array( fd, columns = [(0,1), (2,)], atype = (np.int32, np.float64), rowsize = nItem ) mtx = sp.csc_matrix( (val, ij), dims = (nRow, nCol), nzmax = nItem ) return mtx formatMap = {'triplet' : read_triplet} ## # 05.12.2005, c def readMatrix( matrixName, options ): if options.default_url: matrixName = defaultURL + matrixName print 'url:', matrixName if matrixName[:7] == 'http://': fileName, status = urllib.urlretrieve( matrixName ) ## print status else: fileName = matrixName print 'file:', fileName try: readMatrix = formatMap[options.format] except: raise ValueError('unsupported format: %s' % options.format) print 'format:', options.format print 'reading...' if fileName.endswith('.gz'): fd = gzip.open( fileName ) else: fd = open( fileName ) mtx = readMatrix( fd ) fd.close() print 'ok' return mtx ## # 05.12.2005, c def main(): parser = OptionParser( usage = usage ) parser.add_option( "-c", "--compare", action = "store_true", dest = "compare", default = False, help = "compare with default scipy.sparse solver [default: %default]" ) parser.add_option( "-p", "--plot", action = "store_true", dest = "plot", default = False, help = "plot time statistics [default: %default]" ) parser.add_option( "-d", "--default-url", action = "store_true", dest = "default_url", default = False, help = "use default url [default: %default]" ) parser.add_option( "-f", "--format", type = type( '' ), dest = "format", default = 'triplet', help = "matrix format [default: %default]" ) (options, args) = parser.parse_args() if (len( args ) >= 1): matrixNames = args; else: parser.print_help(), return sizes, nnzs, times, errors = [], [], [], [] legends = ['umfpack', 'sparse.solve'] for ii, matrixName in enumerate( matrixNames ): print '*' * 50 mtx = readMatrix( matrixName, options ) sizes.append( mtx.shape ) nnzs.append( mtx.nnz ) tts = np.zeros( (2,), dtype = np.double ) times.append( tts ) err = np.zeros( (2,2), dtype = np.double ) errors.append( err ) print 'size : %s (%d nnz)' % (mtx.shape, mtx.nnz) sol0 = np.ones( (mtx.shape[0],), dtype = np.double ) rhs = mtx * sol0 umfpack = um.UmfpackContext() tt = time.clock() sol = umfpack( um.UMFPACK_A, mtx, rhs, autoTranspose = True ) tts[0] = time.clock() - tt print "umfpack : %.2f s" % tts[0] error = mtx * sol - rhs err[0,0] = nla.norm( error ) print '||Ax-b|| :', err[0,0] error = sol0 - sol err[0,1] = nla.norm( error ) print '||x - x_{exact}|| :', err[0,1] if options.compare: tt = time.clock() sol = sp.solve( mtx, rhs ) tts[1] = time.clock() - tt print "sparse.solve : %.2f s" % tts[1] error = mtx * sol - rhs err[1,0] = nla.norm( error ) print '||Ax-b|| :', err[1,0] error = sol0 - sol err[1,1] = nla.norm( error ) print '||x - x_{exact}|| :', err[1,1] if options.plot: try: import pylab except ImportError: raise ImportError("could not import pylab") times = np.array( times ) print times pylab.plot( times[:,0], 'b-o' ) if options.compare: pylab.plot( times[:,1], 'r-s' ) else: del legends[1] print legends ax = pylab.axis() y2 = 0.5 * (ax[3] - ax[2]) xrng = range( len( nnzs ) ) for ii in xrng: yy = y2 + 0.4 * (ax[3] - ax[2])\ * np.sin( ii * 2 * np.pi / (len( xrng ) - 1) ) if options.compare: pylab.text( ii+0.02, yy, '%s\n%.2e err_umf\n%.2e err_sp' % (sizes[ii], np.sum( errors[ii][0,:] ), np.sum( errors[ii][1,:] )) ) else: pylab.text( ii+0.02, yy, '%s\n%.2e err_umf' % (sizes[ii], np.sum( errors[ii][0,:] )) ) pylab.plot( [ii, ii], [ax[2], ax[3]], 'k:' ) pylab.xticks( xrng, ['%d' % (nnzs[ii] ) for ii in xrng] ) pylab.xlabel( 'nnz' ) pylab.ylabel( 'time [s]' ) pylab.legend( legends ) pylab.axis( [ax[0] - 0.05, ax[1] + 1, ax[2], ax[3]] ) pylab.show() if __name__ == '__main__': main()
fc25356354bc680cf49d82450ed1864df13bc7cb
18ccaa1160f49f0d91f1d9dc376f860aed8a9c2a
/tracpro/groups/tests/test_middleware.py
170e207ec77587705841395a880fa174d72a1d05
[ "BSD-3-Clause" ]
permissive
caktus/tracpro
bb6033b170b7a77cf9ac76b1be2779b71afa80e0
368f43e666d3c718843dffe934ba35ca859ebaf7
refs/heads/develop
2020-12-24T22:06:21.341755
2016-01-22T13:16:29
2016-01-22T13:16:29
50,186,576
0
0
null
2016-01-22T14:38:29
2016-01-22T14:38:28
null
UTF-8
Python
false
false
8,083
py
from django.contrib.auth.models import AnonymousUser from django.test import RequestFactory from tracpro.test import factories from tracpro.test.cases import TracProTest from ..middleware import UserRegionsMiddleware from ..models import Region class TestUserRegionsMiddleware(TracProTest): def setUp(self): super(TestUserRegionsMiddleware, self).setUp() self.middleware = UserRegionsMiddleware() self.org = factories.Org() self.user = factories.User() def get_request(self, **kwargs): request_kwargs = {'HTTP_HOST': "{}.testserver".format(self.org.subdomain)} request = RequestFactory().get("/", **request_kwargs) for key, value in kwargs.items(): setattr(request, key, value) return request def make_regions(self): """Create a collection of nested regions.""" self.region_uganda = factories.Region( org=self.org, name="Uganda") self.region_kampala = factories.Region( org=self.org, name="Kampala", parent=self.region_uganda) self.region_makerere = factories.Region( org=self.org, name="Makerere", parent=self.region_kampala) self.region_entebbe = factories.Region( org=self.org, name="Entebbe", parent=self.region_uganda) self.region_kenya = factories.Region( org=self.org, name="Kenya") self.region_nairobi = factories.Region( org=self.org, name="Nairobi", parent=self.region_kenya) self.region_mombasa = factories.Region( org=self.org, name="Mombasa", parent=self.region_kenya) self.region_inactive = factories.Region( org=self.org, name="Inactive", parent=self.region_nairobi, is_active=False) return Region.get_all(self.org) def test_variables_set(self): """Middleware should set several commonly-used region variables.""" request = self.get_request(user=self.user, org=self.org, session={}) self.middleware.process_request(request) self.assertTrue(hasattr(request, 'region')) self.assertTrue(hasattr(request, 'include_subregions')) self.assertTrue(hasattr(request, 'user_regions')) self.assertTrue(hasattr(request, 'data_regions')) def test_user_regions__unauthenticated(self): """User regions should be set to null for unauthenticated users.""" request = self.get_request(user=AnonymousUser(), org=self.org) self.middleware.set_user_regions(request) self.assertIsNone(request.user_regions) def test_user_regions__no_org(self): """User regions should be set to null for non-org views.""" request = self.get_request(user=self.user, org=None) self.middleware.set_user_regions(request) self.assertIsNone(request.user_regions) def test_user_regions(self): """User regions should be set to the value of get_all_regions.""" self.make_regions() self.region_kenya.users.add(self.user) request = self.get_request(user=self.user, org=self.org) self.middleware.set_user_regions(request) self.assertEqual( set(request.user_regions), set([self.region_kenya, self.region_nairobi, self.region_mombasa])) def test_include_subregions__default(self): """If key is not in the session, should default to True.""" request = self.get_request(session={}) self.middleware.set_include_subregions(request) self.assertTrue(request.include_subregions) def test_include_subregions__yes(self): """include_subregions should be retrieved from the session.""" request = self.get_request(session={'include_subregions': True}) self.middleware.set_include_subregions(request) self.assertTrue(request.include_subregions) def test_include_subregions__no(self): """include_subregions should be retrieved from the session.""" request = self.get_request(session={'include_subregions': False}) self.middleware.set_include_subregions(request) self.assertFalse(request.include_subregions) def test_data_regions__no_region(self): """If there is no current region, data_regions should be None.""" request = self.get_request(user=self.user, region=None) self.middleware.set_data_regions(request) self.assertIsNone(request.data_regions) def test_data_regions__include_subregions(self): """Include all subregions user has access to if include_subregions is True.""" self.make_regions() user_regions = Region.objects.filter(pk__in=( self.region_uganda.pk, self.region_kenya.pk, self.region_nairobi.pk)) request = self.get_request( user=self.user, region=self.region_kenya, include_subregions=True, user_regions=user_regions) self.middleware.set_data_regions(request) self.assertEqual( set(request.data_regions), set([self.region_kenya, self.region_nairobi])) def test_data_regions__exclude_subregions(self): """Include only the current region if include_subregions is False.""" self.make_regions() user_regions = Region.objects.filter(pk__in=( self.region_uganda.pk, self.region_kenya.pk, self.region_nairobi.pk)) request = self.get_request( user=self.user, region=self.region_kenya, include_subregions=False, user_regions=user_regions) self.middleware.set_data_regions(request) self.assertEqual( set(request.data_regions), set([self.region_kenya])) def test_region__unauthenticated(self): """Current region should be None for an unauthenticated user.""" request = self.get_request(user=AnonymousUser(), org=self.org) self.middleware.set_region(request) self.assertIsNone(request.region) def test_region__no_org(self): """Current region should be None if there is no current org.""" request = self.get_request(user=self.user, org=None) self.middleware.set_region(request) self.assertIsNone(request.region) def test_region__not_set__admin(self): """If region_id is not in the session, admin will see All Regions.""" self.make_regions() self.org.administrators.add(self.user) user_regions = Region.objects.filter(pk__in=( self.region_uganda.pk, self.region_kenya.pk, self.region_nairobi.pk)) request = self.get_request( user=self.user, org=self.org, session={}, user_regions=user_regions) self.middleware.set_region(request) self.assertIsNone(request.region) def test_region__not_set(self): """If region_id is not in the session, user will see first of their regions.""" self.make_regions() user_regions = Region.objects.filter(pk=self.region_kenya.pk) request = self.get_request( user=self.user, org=self.org, session={}, user_regions=user_regions) self.middleware.set_region(request) self.assertEqual(request.region, self.region_kenya) def test_region__not_in_user_regions(self): """If region is not in user regions, return the first of the user's regions.""" self.make_regions() user_regions = Region.objects.filter(pk=self.region_kenya.pk) request = self.get_request( user=self.user, org=self.org, session={'region_id': self.region_nairobi.pk}, user_regions=user_regions) self.middleware.set_region(request) self.assertEqual(request.region, self.region_kenya) def test_region(self): self.make_regions() user_regions = Region.objects.filter(pk=self.region_kenya.pk) request = self.get_request( user=self.user, org=self.org, session={'region_id': self.region_kenya.pk}, user_regions=user_regions) self.middleware.set_region(request) self.assertEqual(request.region, self.region_kenya)
7e60a4df9930178e0ae0a8e732141a2219d3acd4
a0cbbc57dd1b583ab66ce37ad8c6970e74a600ba
/raylab/policy/modules/model/stochastic/single.py
0aa460ac8354ed4246fca21f0ef0ac8245a399ee
[ "MIT" ]
permissive
GapData/raylab
ccf6c39ea20d5568561207d92a4b9097657fb909
c5e862334dc1f29a09b42286ddcc40e72c6eb3a2
refs/heads/master
2022-12-19T07:09:45.799180
2020-09-29T17:09:54
2020-09-29T17:09:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,157
py
"""NN modules for stochastic dynamics estimation.""" from dataclasses import dataclass from typing import List from typing import Tuple import torch import torch.nn as nn from gym.spaces import Box from torch import Tensor import raylab.torch.nn as nnx import raylab.torch.nn.distributions as ptd from raylab.policy.modules.networks.mlp import StateActionMLP from raylab.utils.types import TensorDict SampleLogp = Tuple[Tensor, Tensor] class StochasticModel(nn.Module): """Represents a stochastic model as a conditional distribution module.""" def __init__( self, params_module: nn.Module, dist_module: ptd.ConditionalDistribution ): super().__init__() self.params = params_module self.dist = dist_module def forward(self, obs, action) -> TensorDict: # pylint:disable=arguments-differ return self.params(obs, action) @torch.jit.export def sample(self, params: TensorDict, sample_shape: List[int] = ()) -> SampleLogp: """ Generates a sample_shape shaped sample or sample_shape shaped batch of samples if the distribution parameters are batched. Returns a (sample, log_prob) pair. """ return self.dist.sample(params, sample_shape) @torch.jit.export def rsample(self, params: TensorDict, sample_shape: List[int] = ()) -> SampleLogp: """ Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched. Returns a (rsample, log_prob) pair. """ return self.dist.rsample(params, sample_shape) @torch.jit.export def log_prob(self, next_obs: Tensor, params: TensorDict) -> Tensor: """ Returns the log probability density/mass function evaluated at `next_obs`. """ return self.dist.log_prob(next_obs, params) @torch.jit.export def cdf(self, next_obs: Tensor, params: TensorDict) -> Tensor: """Returns the cumulative density/mass function evaluated at `next_obs`.""" return self.dist.cdf(next_obs, params) @torch.jit.export def icdf(self, prob, params: TensorDict) -> Tensor: """Returns the inverse cumulative density/mass function evaluated at `prob`.""" return self.dist.icdf(prob, params) @torch.jit.export def entropy(self, params: TensorDict) -> Tensor: """Returns entropy of distribution.""" return self.dist.entropy(params) @torch.jit.export def perplexity(self, params: TensorDict) -> Tensor: """Returns perplexity of distribution.""" return self.dist.perplexity(params) @torch.jit.export def reproduce(self, next_obs, params: TensorDict) -> SampleLogp: """Produce a reparametrized sample with the same value as `next_obs`.""" return self.dist.reproduce(next_obs, params) @torch.jit.export def deterministic(self, params: TensorDict) -> SampleLogp: """ Generates a deterministic sample or batch of samples if the distribution parameters are batched. Returns a (rsample, log_prob) pair. """ return self.dist.deterministic(params) class ResidualMixin: """Overrides StochasticModel interface to model state transition residuals.""" # pylint:disable=missing-function-docstring,not-callable def forward(self, obs: Tensor, action: Tensor) -> TensorDict: params = self.params(obs, action) params["obs"] = obs return params @torch.jit.export def sample(self, params: TensorDict, sample_shape: List[int] = ()) -> SampleLogp: res, log_prob = self.dist.sample(params, sample_shape) return params["obs"] + res, log_prob @torch.jit.export def rsample(self, params: TensorDict, sample_shape: List[int] = ()) -> SampleLogp: res, log_prob = self.dist.rsample(params, sample_shape) return params["obs"] + res, log_prob @torch.jit.export def log_prob(self, next_obs: Tensor, params: TensorDict) -> Tensor: return self.dist.log_prob(next_obs - params["obs"], params) @torch.jit.export def cdf(self, next_obs: Tensor, params: TensorDict) -> Tensor: return self.dist.cdf(next_obs - params["obs"], params) @torch.jit.export def icdf(self, prob, params: TensorDict) -> Tensor: residual = self.dist.icdf(prob, params) return params["obs"] + residual @torch.jit.export def reproduce(self, next_obs, params: TensorDict) -> SampleLogp: sample_, log_prob_ = self.dist.reproduce(next_obs - params["obs"], params) return params["obs"] + sample_, log_prob_ @torch.jit.export def deterministic(self, params: TensorDict) -> SampleLogp: sample, log_prob = self.dist.deterministic(params) return params["obs"] + sample, log_prob class DynamicsParams(nn.Module): """Neural network mapping state-action pairs to distribution parameters. Args: encoder: Module mapping state-action pairs to 1D features params: Module mapping 1D features to distribution parameters """ def __init__(self, encoder: nn.Module, params: nn.Module): super().__init__() self.encoder = encoder self.params = params def forward(self, obs, actions): # pylint:disable=arguments-differ return self.params(self.encoder(obs, actions)) @dataclass class MLPModelSpec(StateActionMLP.spec_cls): """Specifications for stochastic mlp model network. Inherits parameters from `StateActionMLP.spec_cls`. Args: units: Number of units in each hidden layer activation: Nonlinearity following each linear layer delay_action: Whether to apply an initial preprocessing layer on the observation before concatenating the action to the input. standard_scaler: Whether to transform the inputs of the NN using a standard scaling procedure (subtract mean and divide by stddev). The transformation mean and stddev should be fitted during training and used for both training and evaluation. fix_logvar_bounds: Whether to use fixed or dynamically adjusted bounds for the log-scale outputs of the network. input_dependent_scale: Whether to parameterize the Gaussian standard deviation as a function of the state and action """ fix_logvar_bounds: bool = True input_dependent_scale: bool = True class MLPModel(StochasticModel): """Stochastic model with multilayer perceptron state-action encoder. Attributes: params: NN module mapping obs-act pairs to obs dist params dist: NN module implementing the distribution API encoder: NN module used in `params` to map obs-act pairs to vector embeddings """ spec_cls = MLPModelSpec def __init__(self, obs_space: Box, action_space: Box, spec: MLPModelSpec): encoder = StateActionMLP(obs_space, action_space, spec) params = nnx.NormalParams( encoder.out_features, obs_space.shape[0], input_dependent_scale=spec.input_dependent_scale, bound_parameters=not spec.fix_logvar_bounds, ) if spec.fix_logvar_bounds: params.max_logvar.fill_(2) params.min_logvar.fill_(-20) params = DynamicsParams(encoder, params) dist = ptd.Independent(ptd.Normal(), reinterpreted_batch_ndims=1) super().__init__(params, dist) # Can only assign modules and parameters after calling nn.Module.__init__ self.encoder = encoder def initialize_parameters(self, initializer_spec: dict): """Initialize all encoder parameters. Args: initializer_spec: Dictionary with mandatory `name` key corresponding to the initializer function name in `torch.nn.init` and optional keyword arguments. """ self.encoder.initialize_parameters(initializer_spec) class ResidualMLPModel(ResidualMixin, MLPModel): """Residual stochastic multilayer perceptron model."""
59128387488db0592ddb5fef863061a8952d1da3
929cdbe211fbf254e1ec8122f9b48fa32520232c
/analysisflow.py
0f35da16f85c1ab0b53e1d567b3def8ec7103f46
[]
no_license
arizzi/nail
c8edec306628cecd269ad9d4241100afdbf6a7fc
a5ba9aed1bcc266cd9d9a36167ce66e51d851e8f
refs/heads/master
2023-05-11T15:55:34.038861
2023-05-05T12:56:42
2023-05-05T12:56:42
162,547,201
3
1
null
2023-02-22T15:40:31
2018-12-20T08:09:10
Python
UTF-8
Python
false
false
3,501
py
from .nail import * flow.SetAlias("n(.*)", "\\1.size()", defaultPersitency=True) flow.SetAlias( "(.*)_p4", "{TLorentzVector ret; ret.SetPtEtaPhiM(\\1_pt,\\1_eta,\\1_phi,\\1_mass); return ret;}", defaultPersistency=False) # SubCikkectuib actuib" flow.SetAlias("SelectedMuon_(.*)([\.*\])", "Muon_\1[SelectedMuon[\2]]") flow = SampleProcessing("") # cuts value should not be hardcoded below but rather being declared here so that scans and optimizations are possible flow.DefaultConfig(muIsoCut=0.13, muIdCut=3, muPtCut=25) # Higgs to mumu reconstruction # Maps to plain RDF VecOps flow.DefineCollAttr("Muon_id", "Muon_tightId*3+Muon_looseId") # this should generate some kind of wrapper/ref that can be used as the parent collection flow.SubCollection("SelectedMuon", "Muon", sel="Muon_iso < muIsoCut && Muon_id > muIdCut && Muon_pt > muPtCut") flow.Filter("twoOppositeSignMuons", "nSelectedMuon==2 && SelectedMuon_charge[0]*SelectedMuon_charge[1] < 0") # p4 should be handled somehow ... any syntax is ok such as p4(SelectedMuon[0]) or _p4 or .p4 etc.. flow.Define("Higgs", "p4at(SelectedMuon,0)+p4at(SelectedMuon,1)", requires=["twoOppositeSignMuons"]) # the following could work # define p4at(x,y) ROOT::Math::PtEtaPhiMVector(x##_pt[y] , x##_eta[y], x##_phi[y], x##_mass[y]) # define p4(x) ROOT::Math::PtEtaPhiMVector(x##_pt , x##_eta, x##_phi, x##_mass) # VBF Jets kinematics flow.DefaultConfig(jetPtCut=25) flow.SubCollection("SelectedJet", "Jet", "Jet_pt > jetPtCut && (Jet_muonIdx1 == -1 || Muon_iso[Jet_muonIdx1] > muIsoCut || Muon_id[Jet_muonIdx1] > 0") flow.Filter("twoJets", "nSelectedJet>=2") flow.Define("Qjet1", "SelectedJet[0].p4()", requires=["twoJets"]) flow.Define("Qjet2", "SelectedJet[1].p4()", requires=["twoJets"]) flow.Define("qq", "Qjet1+Qjet2") flow.Define("Mqq", "qq.M()") flow.Define("qq_pt", "qq.Pt()") flow.Define("qqDeltaEta", "TMath::Abs(Qjet1.Eta()-Qjet2.Eta())") flow.Define("qqDeltaPhi", "TMath::Abs(Qjet1.DeltaPhi(Qjet2))") # QQ vs ll kinematic flow.Define( "ll_ystar", "Higgs.Rapidity() - (Qjet1.Rapidity() + Qjet2.Rapidity())") flow.Define( "ll_zstar", " TMath::Abs( ll_ystar/ (Qjet1.Rapidity()-Qjet2.Rapidity() )) ") flow.Define("DeltaEtaQQSum", "TMath::Abs(Qjet1.Eta()) + TMath::Abs(Qjet2.Eta())") flow.Define("PhiZQ1", "TMath::Abs(Higgs.DeltaPhi(Qjet1))") flow.Define("PhiZQ2", "TMath::Abs(Higgs.DeltaPhi(Qjet2))") flow.Define("EtaHQ1", "TMath::Abs(Higgs.Eta() - Qjet1.Eta())") flow.Define("EtaHQ2", "TMath::Abs(Higgs.Eta() - Qjet2.Eta())") flow.Define("DeltaRelQQ", "(Qjet1+Qjet2).Pt()/( Qjet1.Pt()+Qjet2.Pt())") flow.Define( "Rpt", "(Qjet1+Qjet2+ Higgs).Pt()/( Qjet1.Pt()+Qjet2.Pt() + Higgs.Pt())") flow.DefaultConfig(higgsMassWindowWidth=15, mQQcut=400, nominalHMass=125.03) flow.Filter("MassWindow", "abs(Higgs_m-nominalHMass)<higgsMassWindowWidth") flow.Filter("SideBand", "! MassWindow") flow.Filter("VBFRegion", "Mqq > mQQcut") flow.Filter("SignalRegion", "VBFRegion && MassWindow") # flow.Trainable("SBClassifier","evalMVA",["Higgs_pt","Higgs_m","Mqq","Rpt","DeltaRelQQ"],splitMode="TripleMVA",requires="VBFRegion") print((flow.NeededInputs())) # flow.AddSystematic("MuScaleUp","Muon_pt","Muon_pt*1.01") #name, target, replacement # flow.AddSystematic("HMassUncertainityUp","nominalHMass","125.1") #name, target, replacement # flow.OptimizationScan("MuPtCutScan","muPtCut","30") #name, target, replacement #from samples import background,signal,data
aeacb4306279e72cab7c8fd20e25ca480c58c205
4d0266a4554a93bba316f70548c2f4916834b1a8
/partitioned code/dhrec/autohistoryinfer.py
8a9be06ba94e2dcf00b756ec20eed03174e536cf
[]
no_license
seferlab/DHREC
864c2c2d4076f8de85697b097a90e2ce549db1cd
b8a9f5274321e14ecc486f4cad02417dbc5658ce
refs/heads/master
2022-12-27T16:14:54.145795
2020-09-29T12:25:27
2020-09-29T12:25:27
299,609,232
0
0
null
2020-09-29T12:23:25
2020-09-29T12:23:24
null
UTF-8
Python
false
false
21,522
py
import networkx as nx import sys sys.path.append("./lib") import os import gzip import cPickle import random import myutilities as myutil import itertools from InputOutput import InputOutput from Trace import Trace from Pbs import Pbs import HistoryInferRunner import HistOtherAlgos def genOtherConfigFile(configfile,graphfile,algo,algoparams,snapshotfile,resultfile,smodel,trunfolder,inter): """generates config file for other algos Args: configfile: config parameters: """ with gzip.open(configfile,"wb") as file: cPickle.dump(graphfile,file) cPickle.dump(algo,file) cPickle.dump(algoparams,file) cPickle.dump(snapshotfile,file) cPickle.dump(resultfile,file) cPickle.dump(smodel,file) cPickle.dump(trunfolder,file) cPickle.dump(inter,file) def genHistoryConfigFile(configfile,vararr): """generates history config file Args: configfile: vararr: """ with open(configfile,"w") as file: for var in vararr.keys(): if var == "dists": for key in vararr[var].keys(): if key in [Trace.S2I, Trace.I2R, Trace.E2I, Trace.I2S, Trace.S2E]: paramstr = " ".join([str(item) for item in vararr[var][key][1]]) file.write("{0}: {1} {2}\n".format(key,vararr[var][key][0],paramstr)) elif key == Trace.SPROB: file.write("{0}: {1}\n".format(key,vararr[var][key])) else: file.write("{0}: {1}\n".format(var,vararr[var])) def getAlgoBlocks(prob,inter,infermode,smodel): if prob == "dis" and inter == "bound": if infermode == "Spreader": algoblocks = [("MatroidSub",{"method":"search","ensemble":False}),("MatroidSub",{"method":"search","ensemble":True,"enscount":2}),("MatroidSub",{"method":"search","ensemble":True,"enscount":5})] algoblocks = [("second-logconcave-internal",{"ensemble":False,"approx":"reliability"}),("second-arbitrary-internal",{"ensemble":False,"method":"greedy"})] algoblocks = [("second-arbitrary-internal",{"ensemble":False,"method":"pipage"})] algoblocks.extend(algoblocks2) otheralgos = [("RumorCentrality",{})] algoblocks.extend(otheralgos) elif infermode == "History": algoblocks = [("MatroidSub",{"method":"search","ensemble":False})] #algoblocks = [("second-logconcave",{"ensemble":False,"approx":"reliability"}),("second-arbitrary",{"ensemble":False,"method":"greedy"})] #algoblocks = [("second-arbitrary",{"ensemble":False,"method":"pipage"})] #algoblocks = [("MatroidSub",{"method":"search","ensemble":False})] #algoblocks = [("Qsapmin",{"ensemble":False,"approx":"reliability"})] #algoblocks = [("Qsapmax",{"ensemble":False,"method":"pipage"})] #algoblocks.extend(algoblocks2) #indeblocks = [("Independent",{"ensemble":False})] #algoblocks.extend(indeblocks) elif prob == "dis" and inter == None: if infermode == "Spreader": algoblocks = [("GreedySubCoverSingle",{"iter":None,"objmethod":"log","ensemble":False}),("GreedySubCoverSingle",{"iter":None, "objmethod":"log","ensemble":True,"enscount":2})] #,("GreedySubCoverSingle",{"iter":None, "objmethod":"log","ensemble":True,"enscount":3}) #algoblocks = [("FracCover",{"iter":None, "objmethod":"log","ensemble":False,"roundmethod":"random"})] #algoblocks = [] if smodel in ["si","sir"]: appralgos = [("Pcdsvc",{"ensemble":False}),("Pcdsvc",{"ensemble":True,"enscount":2})] appralgos2 = [("Pcvc",{"ensemble":False}),("Pcvc",{"ensemble":True,"enscount":2})] algoblocks.extend(appralgos) algoblocks.extend(appralgos2) elif smodel == "seir": appralgos = [("MinCut",{"ensemble":False}),("MinCut",{"ensemble":True,"enscount":2})] algoblocks.extend(appralgos) #algoblocks = [] #otheralgos = [("NetSleuth",{}),("RumorCentrality",{}),("KEffectors",{})] #otheralgos = [("NetSleuth",{})] otheralgos = [("RumorCentrality",{})] algoblocks.extend(otheralgos) elif infermode == "History": algoblocks = [("GreedySubCoverSingle",{"iter":None, "objmethod":"log","ensemble":False})] if smodel in ["si","sir"]: appralgos = [("Pcdsvc",{"ensemble":False}),("Pcvc",{"ensemble":False})] elif smodel == "seir": appralgos = [("MinCut",{"ensemble":False})] algoblocks.extend(appralgos) indeblocks = [("GreedyForward",{"ensemble":False})] algoblocks.extend(indeblocks) elif prob == "cont" and inter == "bound": algoblocks = [("greedy",{})] elif prob == "cont" and inter == None: algoblocks = [("greedy",{})] return algoblocks def returnAlgoStr(algo,algoparams): return "-".join([algo] + [str(item) for item in algoparams.values()]) def genMainFolders(graphtraceinput,runresultinput,configinput,sideinput): (graphfolderpref,tracepref,tracefolderpref,newtracepref,newtracefolderpref) = graphtraceinput (runpref,runfolderpref,resultpref,resultfolderpref) = runresultinput (configpref,configfolderpref,pbsfolder) = configinput (smodel,prob,evol,realdata,inter) = sideinput graphfolder = "{0}/{1}_{2}_{3}".format(graphfolderpref,realdata,evol,"graphs") tracefolder = "{0}/{1}_{2}_{3}_{4}_{5}_{6}".format(tracefolderpref,tracepref,realdata,evol,smodel,"edge",prob) newtracefolder = "{0}/{1}_{2}_{3}_{4}_{5}_{6}".format(newtracefolderpref,newtracepref,realdata,evol,smodel,prob,inter) configfolder = "{0}/{1}_{2}_{3}_{4}_{5}_{6}".format(configfolderpref,configpref,realdata,evol,smodel,prob,inter) resultfolder = "{0}/{1}_{2}_{3}_{4}_{5}_{6}".format(resultfolderpref,resultpref,realdata,evol,smodel,prob,inter) runfolder = "{0}/{1}_{2}_{3}_{4}_{5}_{6}".format(runfolderpref,runpref,realdata,evol,smodel,prob,inter) [os.makedirs(folder) for folder in [pbsfolder,configfolder,resultfolder,runfolder] if not os.path.exists(folder)] return graphfolder,tracefolder,newtracefolder,configfolder,resultfolder,runfolder def returnPathInfo(graphinput,traceinput): """returns path info Args: graphinput: traceinput: Returns: path2info: """ (graphfolder,realdata,evol,prob,smodel,filesamplecount,inter) = graphinput (tracefolder,fraccons,samplenoisestr,startcount) = traceinput path2info={} if realdata == "real" and evol == "static": for filename in myutil.listfiles(graphfolder): if filename.split("-")[0:2] != [prob,smodel]: continue filepath ="{0}/{1}".format(graphfolder,filename) if inter == None and (filename.find("weibull") != -1 or filename.find("rayleigh") != -1 or filename.find("powerlaw") != -1): continue #if filename.find("sn") != -1: # if filename.find("sn1") == -1: # continue #if filename.find("grid") != -1: # continue filetracefolder = "{0}/{1}/{2}/{3}".format(tracefolder,filename,samplenoisestr,startcount) assert os.path.exists(filetracefolder) G = InputOutput.readGraphAndParams(filepath) minicount = int(round(G.number_of_nodes() * fraccons[Trace.INFECTED]["min"])) maxicount = int(round(G.number_of_nodes() * fraccons[Trace.INFECTED]["max"])) sentfraccons = {Trace.INFECTED: {"min":minicount, "max":maxicount}} while True: filem = Trace.getRandomTraceFile(filetracefolder,sentfraccons) if filem not in ["0.plain","1.plain"]: continue tracefile = "{0}/{1}".format(filetracefolder,filem) break #tracefile = "{0}/{1}".format(filetracefolder,Trace.getRandomTraceFile(filetracefolder,sentfraccons)) path2info[filepath] = (filename,tracefile) elif realdata == "syn" and evol == "static": for filename in myutil.listfiles(graphfolder): filepath = "{0}/{1}".format(graphfolder,filename) if filename.split("-")[0:2] != [prob,smodel]: continue if inter == None and (filename.find("weibull") != -1 or filename.find("rayleigh") != -1 or filename.find("powerlaw") != -1): continue innum = int(filename.split("_")[-1].replace(".edgelist","")) if innum > 1: continue if smodel == "si": if filename.find("sprob_1.0_1.0") != -1 and (filename.find("expo_0.2_1.0") != -1 or filename.find("expo_0.5_0.5") != -1 or filename.find("expo_0.1_0.5") != -1): pass else: continue elif smodel == "sir": if filename.find("sprob_1.0_1.0") != -1 and filename.find("s2i_expo_0.2_1.0") != -1 and filename.find("i2r_expo_0.8_1.0") != -1: pass else: continue elif smodel == "seir": if filename.find("sprob_1.0_1.0") != -1 and filename.find("s2e_expo_0.5_2.0") != -1 and filename.find("e2i_expo_0.5_2.0") != -1 and filename.find("i2r_expo_0.5_2.0") != -1: pass else: continue filetracefolder = "{0}/{1}/{2}/{3}".format(tracefolder,filename,samplenoisestr,startcount) assert os.path.exists(filetracefolder) G = InputOutput.readGraphAndParams(filepath) minicount = int(round(G.number_of_nodes() * fraccons[Trace.INFECTED]["min"])) maxicount = int(round(G.number_of_nodes() * fraccons[Trace.INFECTED]["max"])) sentfraccons = {Trace.INFECTED: {"min":minicount, "max":maxicount}} while True: filem = Trace.getRandomTraceFile(filetracefolder,sentfraccons) if filem not in ["0.plain","1.plain"]: continue tracefile = "{0}/{1}".format(filetracefolder,filem) break #tracefile = "{0}/{1}".format(filetracefolder,Trace.getRandomTraceFile(filetracefolder,sentfraccons)) path2info[filepath] = (filename,tracefile) return path2info def runOtherAlgos(algofields,tracefields,otherfields): """runs other algos Args: algofields: tracefields: otherfields: Returns: """ return algo,algoparams,runfolder = algofields noise,noisetype,timefrac,timecount,realdata,tracefile,tracestr,newtracefolder,tracefolder = tracefields complete,completeupto,path,graphfolder,configfolder,resultfolder = otherfields algostr = returnAlgoStr(algo,algoparams) parameterstr = "frac{0}-count{1}".format(timefrac,timecount) extensionstr = "-".join(path.replace("./","").split("/")[1:]) tresultfolder = "{0}/{1}/{2}/{3}/{4}/{5}".format(resultfolder,extensionstr,tracestr,parameterstr,infermode,algostr) if not os.path.exists(tresultfolder): os.makedirs(tresultfolder) indices = set([-1] + [int(myfile.replace(".hist","")) for myfile in myutil.listfiles(tresultfolder)]) if complete and len(indices) >= completeupto + 1: return resultfile = "{0}/{1}.hist".format(tresultfolder,max(indices)+1) trunfolder = "{0}/{1}/{2}/{3}/{4}/{5}/{6}".format(runfolder,extensionstr,tracestr,parameterstr,infermode,algostr,max(indices)+1) if not os.path.exists(trunfolder): os.makedirs(trunfolder) tnewtracefolder = "{0}/{1}/{2}/{3}/{4}/{5}/{6}".format(newtracefolder,extensionstr,tracestr,parameterstr,infermode,algostr,max(indices)+1) if not os.path.exists(tnewtracefolder): os.makedirs(tnewtracefolder) snapshotfile = "{0}/infer.snapshot".format(tnewtracefolder) G = InputOutput.readGraphAndParams(path) assert timecount == 1 if infermode == "History": fracpoints = [(timefrac*index)/timecount for index in xrange(1,timecount+1)] elif infermode == "Spreader": fracpoints = [timefrac] for index in xrange(1,timecount): interval = (1.0-timefrac)/(timecount-1) fracpoints.append(timefrac+(index*interval)) assert max(fracpoints) <= 1.00000001 trace = InputOutput.readPlainTrace(tracefile,prob) maxtime = Trace.getMaxTraceTime(trace) obstimes = sorted(list(set([int(round(frac*maxtime)) for frac in fracpoints]))) if 0 in obstimes: obstimes.remove(0) if len(obstimes) == 0: return curstates = [Trace.trace2Snapshot(trace,obstime,smodel,G) for obstime in obstimes] InputOutput.writeSnapshot(curstates,infermode,inter,smodel,obstimes,snapshotfile) configpath = "{0}/config_{1}_{2}_{3}_{4}_{5}-{6}.config".format(configfolder,extensionstr,infermode,algostr,parameterstr,tracestr,max(indices)+1) genOtherConfigFile(configpath,path,algo,algoparams,snapshotfile,resultfile,smodel,trunfolder,inter) code = "python HistOtherAlgos.py {0}".format(configpath) #os.system(code) #return if random.random() <= 0.5: pool = "pool2" else: pool = "pool2" pbsfilename = "{0}-{1}-{2}-{3}-{4}-{5}-{6}-{7}-{8}-{9}-{10}.pbs".format(realdata,evol,smodel,prob,inter,extensionstr,infermode,algostr,parameterstr,tracestr,max(indices)+1) Pbs.submitPbs(code,pbsfolder,pbsfilename,pool) def runMyAlgos(algofields,tracefields,otherfields): """runs my algos Args: algofields: tracefields: otherfields: Returns: """ algo,algoparams,infermode,inter,runfolder = algofields noise,noisetype,timefrac,timecount,prob,smodel,evol,realdata,tracefile,tracestr,newtracefolder,tracefolder = tracefields complete,completeupto,path,printscore,graphfolder,configfolder,resultfolder = otherfields algostr = returnAlgoStr(algo,algoparams) parameterstr = "frac{0}-count{1}".format(timefrac,timecount) extensionstr = "-".join(path.replace("./","").split("/")[1:]) tresultfolder = "{0}/{1}/{2}/{3}/{4}/{5}".format(resultfolder,extensionstr,tracestr,parameterstr,infermode,algostr) if not os.path.exists(tresultfolder): os.makedirs(tresultfolder) indices = set([-1] + [int(myfile.replace(".hist","")) for myfile in myutil.listfiles(tresultfolder)]) if complete and len(indices) >= completeupto + 1: return resultfile = "{0}/{1}.hist".format(tresultfolder,max(indices)+1) trunfolder = "{0}/{1}/{2}/{3}/{4}/{5}/{6}".format(runfolder,extensionstr,tracestr,parameterstr,infermode,algostr,max(indices)+1) if not os.path.exists(trunfolder): os.makedirs(trunfolder) tnewtracefolder = "{0}/{1}/{2}/{3}/{4}/{5}/{6}".format(newtracefolder,extensionstr,tracestr,parameterstr,infermode,algostr,max(indices)+1) if not os.path.exists(tnewtracefolder): os.makedirs(tnewtracefolder) snapshotfile = "{0}/infer.snapshot".format(tnewtracefolder) G = InputOutput.readGraphAndParams(path) if infermode == "History": fracpoints = [(timefrac*index)/timecount for index in xrange(1,timecount+1)] elif infermode == "Spreader": fracpoints = [timefrac] for index in xrange(1,timecount): interval = (1.0-timefrac)/(timecount-1) fracpoints.append(timefrac+(index*interval)) assert max(fracpoints) <= 1.00000001 trace = InputOutput.readPlainTrace(tracefile,prob) maxtime = Trace.getMaxTraceTime(trace) obstimes = sorted(list(set([int(round(frac*maxtime)) for frac in fracpoints]))) if 0 in obstimes: obstimes.remove(0) if len(obstimes) == 0: return print "observed times" print obstimes #if max(obstimes) < 3: # return curstates = [Trace.trace2Snapshot(trace,obstime,smodel,G) for obstime in obstimes] InputOutput.writeSnapshot(curstates,infermode,inter,smodel,obstimes,snapshotfile) vararr = {"graphfile": path, "dist": prob, "runfolder":trunfolder} if inter == None: vararr["scoretimes"] = " ".join([str(time) for time in obstimes]) for item in ["snapshotfile","noise","noisetype","smodel","algo","inter","infermode","evol","printscore","resultfile","tracefile"]: exec('vararr["{0}"] = {0}'.format(item)) in locals(),globals() for param in algoparams.keys(): vararr[param] = algoparams[param] configpath = "{0}/config_{1}_{2}_{3}_{4}_{5}-{6}.config".format(configfolder,extensionstr,infermode,algostr,parameterstr,tracestr,max(indices)+1) genHistoryConfigFile(configpath,vararr) code = "python HistoryInfer.py {0}".format(configpath) os.system(code) return if random.random() <= 0.5: pool = "pool2" else: pool = "pool2" pbsfilename = "{0}-{1}-{2}-{3}-{4}-{5}-{6}-{7}-{8}-{9}-{10}.pbs".format(realdata,evol,smodel,prob,inter,extensionstr,infermode,algostr,parameterstr,tracestr,max(indices)+1) Pbs.submitPbs(code,pbsfolder,pbsfilename,pool) def assignParams(): """assign params Args: Returns: paramdict: """ paramdict = {} paramdict["newtracepref"] = "tracesnapshots" paramdict["tracepref"] = "traces" paramdict["configpref"] = "histconfig" paramdict["runpref"] = "run" paramdict["resultpref"] = "result" paramdict["resultfolderpref"] = "." paramdict["runfolderpref"] = "." paramdict["tracefolderpref"] = "." paramdict["newtracefolderpref"] = "." paramdict["graphfolderpref"] = "." paramdict["configfolderpref"] = "." paramdict["pbsfolder"] = "pbsfolder" paramdict["realdata"] = "syn" paramdict["evol"] = "static" paramdict["infermode"] = "History" #"History" #"Spreader" paramdict["smodel"] = "si" #"seir","sir","sis", "samd", "mamd" paramdict["prob"] = "dis" #"dis" paramdict["inter"] = None #"bound" paramdict["startcounts"] = [1,2,3,5,7,10] #[1,2,3,4,5,6,7,8,9,10] #[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] paramdict["maxtimefracs"] = [0.15,0.26,0.34,0.4,0.51,0.6,0.76,0.9] paramdict["mintimefracs"] = [0.1,0.15,0.2,0.26,0.34,0.4,0.45,0.51,0.55,0.6,0.65,0.7,0.76,0.8,0.85,0.9,0.95] paramdict["timecounts"] = [3,5] #[1,2,3,4,5,6,7] #[1,2,3,4,5,10] #[1,2,3,4,5] #[1,2,3,4,5,10] #[1,2,3,4,5] #[1,2,3,4,5,6,7,10] paramdict["noises"] = [0.0] #[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] paramdict["noisetype"] = "StateChange" #Normal noise paramdict["filesamplecount"] = 10 #for syndPlainTrace(tracefile,prob) paramdict["complete"] = True paramdict["completeupto"] = 2 paramdict["fraccons"] = {Trace.INFECTED: {"min":0.00001, "max":1.01}} paramdict["printscore"] = None #"KenTauCorrelation" #"Graph,rand" #"KenTauCorrelation" #"KenTauCorrelation" #"Hausdorff" return paramdict if __name__ == "__main__": paramdict = assignParams() for var in paramdict.keys(): if type(paramdict[var]) == type(""): exec('{0}="{1}"'.format(var,paramdict[var])) else: exec('{0}={1}'.format(var,paramdict[var])) graphtraceinput = [graphfolderpref,tracepref,tracefolderpref,newtracepref,newtracefolderpref] runresultinput = [runpref,runfolderpref,resultpref,resultfolderpref] configinput = [configpref,configfolderpref,pbsfolder] sideinput = [smodel,prob,evol,realdata,inter] (graphfolder,tracefolder,newtracefolder,configfolder,resultfolder,runfolder) = genMainFolders(graphtraceinput,runresultinput,configinput,sideinput) mainparamlist = list(itertools.product(startcounts,noises)) random.shuffle(mainparamlist) for startcount,noise in mainparamlist: samplenoisestr = "{0}-{1}-{2}".format(noisetype,noise,0) graphinput = [graphfolder,realdata,evol,prob,smodel,filesamplecount,inter] traceinput = [tracefolder,fraccons,samplenoisestr,startcount] path2info = returnPathInfo(graphinput,traceinput) algoblocks = getAlgoBlocks(prob,inter,infermode,smodel) if infermode == "Spreader": paramlist = list(itertools.product(algoblocks,mintimefracs,timecounts)) elif infermode == "History": paramlist = list(itertools.product(algoblocks,maxtimefracs,timecounts)) for path in path2info.keys(): Gname,tracefile = path2info[path] tracestr = "-".join(tracefile.split("/")[-3:]) for algoblock,timefrac,timecount in paramlist: algo,algoparams = algoblock if algo in ["NetSleuth","RumorCentrality","KEffectors"]: assert infermode == "Spreader" and prob == "dis" if timecount > 1: continue algofields = [algo,algoparams,runfolder] tracefields = [noise,noisetype,timefrac,timecount,realdata,tracefile,tracestr,newtracefolder,tracefolder] otherfields = [complete,completeupto,path,graphfolder,configfolder,resultfolder] runOtherAlgos(algofields,tracefields,otherfields) else: algofields = [algo,algoparams,infermode,inter,runfolder] tracefields = [noise,noisetype,timefrac,timecount,prob,smodel,evol,realdata,tracefile,tracestr,newtracefolder,tracefolder] otherfields = [complete,completeupto,path,printscore,graphfolder,configfolder,resultfolder] runMyAlgos(algofields,tracefields,otherfields)
c43f3fc077de3a17d699c5cb4c8416a0f23c88d5
315450354c6ddeda9269ffa4c96750783963d629
/CMSSW_7_0_4/src/TotemDQMLite/GUI/scripts/.svn/text-base/reco_template_T1_cfg.py.svn-base
f60ffa0be9c54729e058dea21046f4747c66c5f4
[]
no_license
elizamelo/CMSTOTEMSim
e5928d49edb32cbfeae0aedfcf7bd3131211627e
b415e0ff0dad101be5e5de1def59c5894d7ca3e8
refs/heads/master
2021-05-01T01:31:38.139992
2017-09-12T17:07:12
2017-09-12T17:07:12
76,041,270
0
2
null
null
null
null
UTF-8
Python
false
false
2,233
import FWCore.ParameterSet.Config as cms process = cms.Process("recoT1") # Specify the maximum events to simulate process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(100) ) # Configure if you want to detail or simple log information. # LoggerMax -- detail log info output including: errors.log, warnings.log, infos.log, debugs.log # LoggerMin -- simple log info output to the standard output (e.g. screen) process.load("Configuration.TotemCommon.LoggerMin_cfi") # RawDataSource process.load('TotemRawData.Readers.RawDataSource_cfi') #process.source.fileNames.append('/project/gruppo1/totem/IP5_2015/Data/run_EVB-wn10_9261.000.vmeb') process.source.fileNames.append('$input_file') # Raw to digi conversion process.load('TotemCondFormats.DAQInformation.DAQMappingSourceXML_cfi') process.DAQMappingSourceXML.mappingFileNames.append('TotemCondFormats/DAQInformation/data/t1_all_run2.xml') process.DAQMappingSourceXML.maskFileNames.append('TotemCondFormats/DAQInformation/test/T1DeadChannelsList_9255_onlyStrips.xml') # Random number generator service process.load("Configuration.TotemCommon.RandomNumbers_cfi") ################## STEP 1process.Raw2DigiProducer*process.TriggerBits process.load('TotemRawData.RawToDigi.Raw2DigiProducer_cfi') process.load("RecoTotemT1T2.T1MakeCluster.T1MakeCluster_cfi") process.t1cluster.T1DigiVfatCollectionLabel = cms.InputTag("Raw2DigiProducer", "t1DataOutput") process.t1cluster.ActivateDeadChannels = cms.bool(True) process.load("RecoTotemT1T2.T1RecHit.T1RecHit_cfi") process.t1rechit.T1DigiWireCollectionLabel = cms.InputTag("Raw2DigiProducer", "t1DataOutput") process.load("RecoTotemT1T2.T1RoadProducer.T1RoadProducer_cfi") process.t1roads.Alignment = cms.bool(True) process.load("RecoTotemT1T2.T1TrackProducer2.T1TrackProducer2_cfi") # Configure the output module (save the result in a file) process.output = cms.OutputModule("PoolOutputModule", fileName = cms.untracked.string('$output_file'), outputCommands = cms.untracked.vstring('keep *') ) process.path = cms.Path( process.Raw2DigiProducer *process.t1cluster *process.t1rechit # *process.t1roads # *process.t1tracks2 ) process.outpath = cms.EndPath(process.output)
b4e990d93bfd4a2916201a75c53557884579150a
f62fd455e593a7ad203a5c268e23129473d968b6
/python-watcherclient-1.0.0/watcherclient/osc/plugin.py
5885de3b4873319fa9e70d64baded41315c15e6c
[ "Apache-2.0" ]
permissive
MinbinGong/OpenStack-Ocata
5d17bcd47a46d48ff9e71e2055f667836174242f
8b7650128cfd2fdf5d6c8bc4613ac2e396fb2fb3
refs/heads/master
2021-06-23T05:24:37.799927
2017-08-14T04:33:05
2017-08-14T04:33:05
99,709,985
0
2
null
2020-07-22T22:06:22
2017-08-08T15:48:44
Python
UTF-8
Python
false
false
1,854
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging from osc_lib import utils LOG = logging.getLogger(__name__) DEFAULT_API_VERSION = '1' API_VERSION_OPTION = 'os_infra_optim_api_version' API_NAME = 'infra-optim' API_VERSIONS = { '1': 'watcherclient.v1.client.Client', } def make_client(instance): """Returns an infra-optim service client.""" infraoptim_client_class = utils.get_client_class( API_NAME, instance._api_version[API_NAME], API_VERSIONS) LOG.debug('Instantiating infraoptim client: %s', infraoptim_client_class) client = infraoptim_client_class( os_watcher_api_version=instance._api_version[API_NAME], session=instance.session, region_name=instance._region_name, ) return client def build_option_parser(parser): """Hook to add global options.""" parser.add_argument('--os-infra-optim-api-version', metavar='<infra-optim-api-version>', default=utils.env( 'OS_INFRA_OPTIM_API_VERSION', default=DEFAULT_API_VERSION), help=('Watcher API version, default=' + DEFAULT_API_VERSION + ' (Env: OS_INFRA_OPTIM_API_VERSION)')) return parser
b13aec275da4151009697accac9711e4949a705d
76f549c062600a0c713315a9a7361ebb111178f8
/Taller/Preguntas/PrimeraPregunta.py
329f447c04d5a3317beecceb811b7df4bb35473d
[]
no_license
jorszs/AI
f612f26537fc3563dd2837c8f67801f091f7e3a0
05a839e6e115e7c6c9378e84d5ac7f50afe2870d
refs/heads/master
2020-03-11T17:57:32.555978
2018-06-07T01:48:36
2018-06-07T01:48:36
130,162,558
0
1
null
null
null
null
UTF-8
Python
false
false
1,335
py
import urllib3 def getNameNodes(): i = 0 res = {} archivo = open('links.csv', 'rt') for linea in archivo: k = linea.replace(' ', '') k = k.replace('\n', '') if i > 0: j = k.split('.') if j[0] in res: res[j[0]].append(k) else: res[j[0]] = [k] i+=1 archivo.close() return res def getDataWeb(url): http = urllib3.PoolManager() r = http.request('GET', url) r.status return r.data def makeArchivos(archivos): base = 'elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/' for k,v in archivos.items(): for e in v: data = str(getDataWeb(base + e)) a =data.replace('\\n', ',') #b =a.replace('\\', '') j = a.split(',') if len(e.split('.')) > 2: #captura el optimo f = open ('archivos/'+ k + '.opt'+'.txt','w') for elem in j: f.write(elem + '\n') f.close() else: f = open ('archivos/'+ k +'.txt','w') for elem in j: f.write(elem + '\n') f.close() if __name__ == "__main__": archivos = getNameNodes() #print(archivos) makeArchivos(archivos)
f514f0c972565ebfc8022902b1abcc0fa242ca14
9d07335de5a17453bf8ae290d70993d7b20dddcd
/.history/dice_20210223203524.py
a9e39059915547dad83aa8fbce4c3cc0fedfd011
[]
no_license
wh-debug/Matplotlib
8d12291cd4135b3b42c185e6700f22c627ddb046
b4f5bf63d977620f799d953c67b262c75344a1cb
refs/heads/master
2023-03-14T10:09:33.602492
2021-02-23T13:51:21
2021-02-23T13:51:21
340,374,612
0
0
null
null
null
null
UTF-8
Python
false
false
672
py
''' Author: your name Date: 2021-02-23 20:07:30 LastEditTime: 2021-02-23 20:35:24 LastEditors: Please set LastEditors Description: In User Settings Edit FilePath: \Matplotlib\dice.py ''' from make_plotly import Die import matplotlib.pyplot as plt x_values = [1, 2, 3, 4, 5, 6] y_values = [] die = Die() #todo 创建一个空列表结果存储在空列表中 results = [] for roll_num in range(1000): result = die.roll() results.append(result) frequencies = [] for value in range(1, die.num_sides+1): frequency = results.count(value) #todo value是数字几,就会统计列表中相应数字个数 frequencies.append(frequency) print(frequencies)
3b9283807f9a633e9ca03ea36b3db90607bb9388
5063587053951fc1dc558c657d06e0b99187baf5
/electrumx/server/controller.py
6c449b6927f07497c4a7bd4b643a57b2177d5729
[ "MIT" ]
permissive
Japangeek/electrumx
04cbd7f793afe9fa2dff8adad8e7900f4a80b279
a4ea34c6fb9bc887afb19779bde107d97006d8b7
refs/heads/master
2020-05-15T11:46:52.339001
2019-04-18T13:29:37
2019-04-18T13:29:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,092
py
# Copyright (c) 2016-2018, Neil Booth # # All rights reserved. # # See the file "LICENCE" for information about the copyright # and warranty status of this software. from asyncio import Event from aiorpcx import _version as aiorpcx_version, TaskGroup import electrumx from electrumx.lib.server_base import ServerBase from electrumx.lib.util import version_string from electrumx.server.db import DB from electrumx.server.mempool import MemPool, MemPoolAPI from electrumx.server.session import SessionManager class Notifications(object): # hashX notifications come from two sources: new blocks and # mempool refreshes. # # A user with a pending transaction is notified after the block it # gets in is processed. Block processing can take an extended # time, and the prefetcher might poll the daemon after the mempool # code in any case. In such cases the transaction will not be in # the mempool after the mempool refresh. We want to avoid # notifying clients twice - for the mempool refresh and when the # block is done. This object handles that logic by deferring # notifications appropriately. def __init__(self): self._touched_mp = {} self._touched_bp = {} self._highest_block = -1 async def _maybe_notify(self): tmp, tbp = self._touched_mp, self._touched_bp common = set(tmp).intersection(tbp) if common: height = max(common) elif tmp and max(tmp) == self._highest_block: height = self._highest_block else: # Either we are processing a block and waiting for it to # come in, or we have not yet had a mempool update for the # new block height return touched = tmp.pop(height) for old in [h for h in tmp if h <= height]: del tmp[old] for old in [h for h in tbp if h <= height]: touched.update(tbp.pop(old)) await self.notify(height, touched) async def notify(self, height, touched): pass async def start(self, height, notify_func): self._highest_block = height self.notify = notify_func await self.notify(height, set()) async def on_mempool(self, touched, height): self._touched_mp[height] = touched await self._maybe_notify() async def on_block(self, touched, height): self._touched_bp[height] = touched self._highest_block = height await self._maybe_notify() class Controller(ServerBase): '''Manages server initialisation and stutdown. Servers are started once the mempool is synced after the block processor first catches up with the daemon. ''' async def serve(self, shutdown_event): '''Start the RPC server and wait for the mempool to synchronize. Then start serving external clients. ''' if not (0, 15, 0) <= aiorpcx_version < (0, 16): raise RuntimeError('aiorpcX version 0.15.x is required') env = self.env min_str, max_str = env.coin.SESSIONCLS.protocol_min_max_strings() self.logger.info(f'software version: {electrumx.version}') self.logger.info(f'aiorpcX version: {version_string(aiorpcx_version)}') self.logger.info(f'supported protocol versions: {min_str}-{max_str}') self.logger.info(f'event loop policy: {env.loop_policy}') self.logger.info(f'reorg limit is {env.reorg_limit:,d} blocks') notifications = Notifications() Daemon = env.coin.DAEMON BlockProcessor = env.coin.BLOCK_PROCESSOR daemon = Daemon(env.coin, env.daemon_url) db = DB(env) bp = BlockProcessor(env, db, daemon, notifications) # Set notifications up to implement the MemPoolAPI def get_db_height(): return db.db_height notifications.height = daemon.height notifications.db_height = get_db_height notifications.cached_height = daemon.cached_height notifications.mempool_hashes = daemon.mempool_hashes notifications.raw_transactions = daemon.getrawtransactions notifications.lookup_utxos = db.lookup_utxos MemPoolAPI.register(Notifications) mempool = MemPool(env.coin, notifications) session_mgr = SessionManager(env, db, bp, daemon, mempool, shutdown_event) # Test daemon authentication, and also ensure it has a cached # height. Do this before entering the task group. await daemon.height() caught_up_event = Event() mempool_event = Event() async def wait_for_catchup(): await caught_up_event.wait() await group.spawn(db.populate_header_merkle_cache()) await group.spawn(mempool.keep_synchronized(mempool_event)) async with TaskGroup() as group: await group.spawn(session_mgr.serve(notifications, mempool_event)) await group.spawn(bp.fetch_and_process_blocks(caught_up_event)) await group.spawn(wait_for_catchup())
6c201191527104f2d328b58b2ba84caec9c846d3
a5ea93395d8d762caefd129648b2e954754afb00
/examples/6_p_scale_test_Yokoo_Pt.py
fc618a74a4e14089082439c5476fe6df9f86e0e2
[ "Apache-2.0" ]
permissive
SHDShim/pytheos
4295e233dd089d0c9c66218a127d3f099f1d36df
bb86e0ff345efcffb04f08182c09b06b3c54930e
refs/heads/master
2023-03-16T23:23:56.840071
2023-03-11T03:13:23
2023-03-11T03:13:23
93,273,486
7
6
Apache-2.0
2019-11-18T13:11:46
2017-06-03T20:54:46
Python
UTF-8
Python
false
false
1,369
py
# coding: utf-8 # In[1]: get_ipython().run_line_magic('cat', '0Source_Citation.txt') # In[2]: get_ipython().run_line_magic('matplotlib', 'inline') # %matplotlib notebook # for interactive # For high dpi displays. # In[3]: get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'") # # 0. General note # This example compares pressure calculated from `pytheos` and original publication for the platinum scale by Yokoo 2009. # # 1. Global setup # In[4]: import matplotlib.pyplot as plt import numpy as np from uncertainties import unumpy as unp import pytheos as eos # # 3. Compare # In[5]: eta = np.linspace(1., 0.60, 21) print(eta) # In[6]: yokoo_pt = eos.platinum.Yokoo2009() # In[7]: yokoo_pt.print_equations() # In[8]: yokoo_pt.print_equations() # In[9]: yokoo_pt.print_parameters() # In[10]: v0 = 60.37930856339099 # In[11]: yokoo_pt.three_r # In[12]: v = v0 * (eta) temp = 3000. # In[13]: p = yokoo_pt.cal_p(v, temp * np.ones_like(v)) # <img src='./tables/Yokoo_Pt.png'> # In[14]: print('for T = ', temp) for eta_i, p_i in zip(eta, p): print("{0: .3f} {1: .2f}".format(eta_i, p_i)) # It is alarming that even 300 K isotherm does not match with table value. The difference is 1%. # In[15]: v = yokoo_pt.cal_v(p, temp * np.ones_like(p), min_strain=0.6) print(1.-(v/v0))
8aad654f743a97284e6607a741abc184b41bf200
25ebc03b92df764ff0a6c70c14c2848a49fe1b0b
/daily/20181014/example_pycomment/pycomment.py
4604d5e1df1248b710f77c3ea0471b933a54d818
[]
no_license
podhmo/individual-sandbox
18db414fafd061568d0d5e993b8f8069867dfcfb
cafee43b4cf51a321f4e2c3f9949ac53eece4b15
refs/heads/master
2023-07-23T07:06:57.944539
2023-07-09T11:45:53
2023-07-09T11:45:53
61,940,197
6
0
null
2022-10-19T05:01:17
2016-06-25T11:27:04
Python
UTF-8
Python
false
false
6,165
py
import sys import contextlib from io import StringIO from lib2to3 import pytree from lib2to3 import pygram from lib2to3.pgen2 import driver from lib2to3.pgen2 import token from lib2to3.pgen2.parse import ParseError from lib2to3.fixer_util import Assign, Name, Newline # utf8 's PUA(https://en.wikipedia.org/wiki/Private_Use_Areas) SEP = "\U000F0000" SEP_MARKER = "ZZ{}ZZ".format(SEP) COMMENT_MARKER = "# =>" STDOUT_HEADER_MARKER = "# -- stdout --------------------" default_driver = driver.Driver(pygram.python_grammar_no_print_statement, convert=pytree.convert) def parse_string(code, parser_driver=default_driver, *, debug=True): return parser_driver.parse_string(code, debug=debug) def parse_file(filename, parser_driver=default_driver, *, debug=True): try: return parser_driver.parse_file(filename, debug=debug) except ParseError as e: if "bad input:" not in repr(e): # work around raise with open(filename) as rf: body = rf.read() return parse_string(body + "\n", parser_driver=parser_driver, debug=debug) def node_name(node): # Nodes with values < 256 are tokens. Values >= 256 are grammar symbols. if node.type < 256: return token.tok_name[node.type] else: return pygram.python_grammar.number2symbol[node.type] type_repr = pytree.type_repr class PyTreeVisitor: def visit(self, node): method = 'visit_{0}'.format(node_name(node)) if hasattr(self, method): # Found a specific visitor for this node if getattr(self, method)(node): return elif hasattr(node, "value"): # Leaf self.default_leaf_visit(node) else: self.default_node_visit(node) def default_node_visit(self, node): for child in node.children: self.visit(child) def default_leaf_visit(self, leaf): pass def transform_string(source: str): t = parse_string(source) return transform(t) def transform_file(fname: str): with open(fname) as rf: return transform_string(rf.read()) def transform(node): t = Transformer() t.transform(node) return node class Transformer(PyTreeVisitor): marker = COMMENT_MARKER def visit_NEWLINE(self, node): if node.prefix.lstrip().startswith(self.marker): # MEMO: <expr> -> _ = <expr> target = node while True: parent = target.parent if parent is None: return if type_repr(target.parent.type) == "simple_stmt": break target = parent eol = target # target is Leaf("\n]") target = eol.prev_sibling cloned = target.clone() cloned.parent = None assigned = Assign(Name("_"), cloned) assigned.prefix = target.prefix target.replace(assigned) # MEMO: adding print(SEP_MARKER, _, SEP_MARKER, sep="\n") this_stmt = eol.parent print_stmt = this_stmt.clone() print_stmt.children = [] print_stmt.append_child( Name( "print({ms!r}, repr(_), {me!r}, sep='')".format( ms="{}{}:".format(SEP_MARKER, node.get_lineno()), me=SEP_MARKER ) ) ) print_stmt.prefix = assigned.prefix # xxx: for first line if not print_stmt.prefix: prev_line = assigned.parent.prev_sibling if prev_line.type == token.INDENT: print_stmt.prefix = prev_line.value print_stmt.append_child(Newline()) for i, stmt in enumerate(this_stmt.parent.children): if stmt == this_stmt: this_stmt.parent.insert_child(i + 1, print_stmt) break transform = PyTreeVisitor.visit def run(sourcefile, out=sys.stdout): o = StringIO() with contextlib.redirect_stdout(o): exec(str(transform_file(sourcefile))) result_map = {} stdout_outputs = [] for line in o.getvalue().splitlines(): if line.startswith(SEP_MARKER) and line.endswith(SEP_MARKER): line = line.strip(SEP_MARKER) lineno, line = line.split(":", 2) result_map[lineno] = line else: stdout_outputs.append(line) i = 0 with open(sourcefile) as rf: import re rx = re.compile(COMMENT_MARKER + ".*$") for lineno, line in enumerate(rf, 1): if line.rstrip() == STDOUT_HEADER_MARKER: break m = rx.search(line) k = str(lineno) if m is None or k not in result_map: print(line, end="", file=out) else: print(line[:m.start()] + COMMENT_MARKER, result_map[k], file=out) i += 1 if stdout_outputs: print(STDOUT_HEADER_MARKER, file=out) for line in stdout_outputs: print("# >>", line, file=out) def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument("sourcefile") parser.add_argument("--inplace", action="store_true") parser.add_argument("--show-only", action="store_true") args = parser.parse_args() if args.show_only: print(str(transform_file(args.sourcefile))) from prestring.python.parse import dump_tree dump_tree(transform_file(args.sourcefile)) elif not args.inplace: run(args.sourcefile) else: import tempfile import os import shutil name = None try: with tempfile.NamedTemporaryFile("w", delete=False) as wf: name = wf.name run(args.sourcefile, out=wf) print("replace: {} -> {}".format(name, args.sourcefile), file=sys.stderr) shutil.move(name, args.sourcefile) except Exception: if os.path.exists(name): os.unlink(name) raise if __name__ == "__main__": main()
221ab1ad77324845627959d14968b0eed0e8e187
f66016b962e105898ea14982e229bd44f66f32a2
/settings.py
c142f11377dc1d70c39b3451e46f9a4f2ab30a36
[ "MIT" ]
permissive
DerThorsten/pc
d3ceace388dd3460c0133e97b7fba0fde8d1e811
41d7474ceff8de7b95be5d4fbc42a40e89799e34
refs/heads/master
2021-01-12T10:41:47.797694
2016-11-10T21:59:35
2016-11-10T21:59:35
72,621,794
0
0
null
null
null
null
UTF-8
Python
false
false
4,216
py
from collections import OrderedDict import h5py from features import registerdFeatureOperators class Settings(object): def __init__(self, settingsDict, predictionSettingsDict=None): self.settingsDict = settingsDict self.featureBlockShape = tuple(self.settingsDict["setup"]["blockShape"]) if predictionSettingsDict is not None: self.featureBlockShape = tuple(predictionSettingsDict['setup']["blockShape"]) self.numberOfClasses = self.settingsDict["setup"]["nClasses"] self.predictionSettingsDict = predictionSettingsDict print(self.settingsDict['setup']) self.useBlockF = self.settingsDict['setup'].get("useBlock", None) #self.useBlockF = self.settingsDict['setup']['useBlock'] assert self.useBlockF is not None def useTrainingBlock(self, blockIndex, blockBegin, blockEnd): if self.useBlockF is not None: return self.useBlockF(blockIndex=blockIndex, blockBegin=blockBegin, blockEnd=blockBegin) else: return True def trainingInstancesNames(self): setup = self.settingsDict["setup"] return setup['trainingDataNames'] def predictionInstancesNames(self): return self.predictionSettingsDict['predictionInput'].keys() def trainignInstancesDataDicts(self): setup = self.settingsDict["setup"] trainingDataNames = setup['trainingDataNames'] trainingInstancesSettings = [ ] for trainingDataName in trainingDataNames: s = self.settingsDict["trainingData"][trainingDataName] s['name'] = trainingDataName trainingInstancesSettings.append(s) return trainingInstancesSettings def predictionInstancesDataDicts(self): assert self.predictionSettingsDict is not None d = self.predictionSettingsDict['predictionInput'] dicts = [] for key in d.keys(): ddict = d[key] ddict['name'] = key dicts.append(ddict) return dicts def featureSetttingsList(self): return self.settingsDict["setup"]["featureSettings"] def getLabelsH5Path(self, instanceName): trainingInstanceDataDict = self.settingsDict["trainingData"][instanceName] f,d = trainingInstanceDataDict['labels'] return f,d def getDataH5Dsets(self, instanceDataDict, openH5Files): dataH5Dsets = OrderedDict() for featureSettings in self.featureSetttingsList(): inputFileName = featureSettings['name'] print(" ","inputFile:",inputFileName) # get the h5filename dataDict = instanceDataDict['data'] f,d = dataDict[inputFileName]['file'] h5File = h5py.File(f,'r') dset = h5File[d] # dsets dataH5Dsets[inputFileName] = dset # remeber all files opend openH5Files.append(h5File) return dataH5Dsets, openH5Files def getFeatureOperators(self): dataH5Dsets = OrderedDict() outerList = [] maxHaloList = [] #print("fs0",self.featureSetttingsList()[0]) #print("fs1",self.featureSetttingsList()[0]) for featureSettings in self.featureSetttingsList(): inputFileName = featureSettings['name'] #print("features for",inputFileName) featureOperatorsSettingsList = featureSettings["features"] innerList = [] maxHalo = (0,0,0) for featureOperatorSettings in featureOperatorsSettingsList: #print(featureOperatorSettings) fOpName = featureOperatorSettings['type'] fOpKwargs = featureOperatorSettings['kwargs'] fOpCls = registerdFeatureOperators[fOpName] fOp = fOpCls(**fOpKwargs) halo = fOp.halo() maxHalo = map(lambda aa,bb: max(aa,bb), halo, maxHalo) innerList.append(fOp) outerList.append(innerList) maxHaloList.append(maxHalo) return outerList,maxHaloList
c31a0e73d6e975d7fadf3b697bac94aa6dd6b066
3c06dc187183b5f78dbe24d38f7a3556b7cc9975
/Python/LC51_NQueens.py
24f5ce90b79b47c78b3abc2259af3dc85e7f029c
[]
no_license
wondershow/CodingTraining
071812ffd34850ce0417b95a91ac39a983fca92d
0250c3764b6e68dfe339afe8ee047e16c45db4e0
refs/heads/master
2021-07-02T22:18:46.774286
2021-06-30T14:08:54
2021-06-30T14:08:54
77,458,117
0
1
null
null
null
null
UTF-8
Python
false
false
1,110
py
class Solution: def solveNQueens(self, n: int) -> List[List[str]]: def generate_board(pos, n): res = [] for i in range(n): line = ["."] * n line[pos[i]] = "Q" res.append("".join(line)) return res cols, diagnoal, anti_diagnoal = set(), set(), set() def dfs(res, row, n, cur): nonlocal cols, diagnoal, anti_diagnoal if row == n: res.append(generate_board(cur, n)) return for col in range(n): if col in cols or (row + col) in anti_diagnoal or (row - col) in diagnoal: continue cols.add(col) anti_diagnoal.add(row + col) diagnoal.add(row - col) cur.append(col) dfs(res, row + 1, n, cur) cur.pop() cols.remove(col) anti_diagnoal.remove(row + col) diagnoal.remove(row - col) res = [] dfs(res, 0, n, []) return res
a726fded486bd2431700f554247ec143c4470120
947fa6a4a6155ffce0038b11f4d743603418ad68
/.c9/metadata/environment/fb_post_learning/fb_post_v2/tests/storages/test_is_reply.py
6f54509d512ad6b525aa649971f404875a96935a
[]
no_license
bharathi151/bharathi_diyyala
bd75e10639d7d22b332d5ce677e7799402dc4984
99f8657d010c790a0e4e4c9d6b57f81814784eb0
refs/heads/master
2022-11-21T12:43:48.401239
2020-07-23T09:05:52
2020-07-23T09:05:52
281,903,260
0
0
null
null
null
null
UTF-8
Python
false
false
27,064
py
{"changed":true,"filter":false,"title":"test_is_reply.py","tooltip":"/fb_post_learning/fb_post_v2/tests/storages/test_is_reply.py","value":"import pytest\nfrom fb_post_v2.storages.comment_storage_implementation import StorageImplementation\n\n\[email protected]_db\ndef test_is_reply_given_invalid_details_returns_flase(\n create_users,\n create_post,\n create_comments\n):\n comment_id = 1\n invalid = False\n sql_storage = StorageImplementation()\n\n result = sql_storage.is_reply(comment_id=comment_id)\n\n assert result == invalid\n\n\[email protected]_db\ndef test_is_reply_given_valid_details_returns_true(create_comments,\n create_users,\n create_replies,\n create_post):\n comment_id = 3\n valid = True\n sql_storage = StorageImplementation()\n\n result = sql_storage.is_reply(comment_id=comment_id)\n\n assert result == valid","undoManager":{"mark":88,"position":92,"stack":[[{"start":{"row":1,"column":33},"end":{"row":1,"column":34},"action":"remove","lines":["t"],"id":2},{"start":{"row":1,"column":32},"end":{"row":1,"column":33},"action":"remove","lines":["s"]},{"start":{"row":1,"column":31},"end":{"row":1,"column":32},"action":"remove","lines":["o"]},{"start":{"row":1,"column":30},"end":{"row":1,"column":31},"action":"remove","lines":["P"]},{"start":{"row":1,"column":29},"end":{"row":1,"column":30},"action":"remove","lines":[" "]},{"start":{"row":1,"column":28},"end":{"row":1,"column":29},"action":"remove","lines":["t"]},{"start":{"row":1,"column":27},"end":{"row":1,"column":28},"action":"remove","lines":["r"]},{"start":{"row":1,"column":26},"end":{"row":1,"column":27},"action":"remove","lines":["o"]},{"start":{"row":1,"column":25},"end":{"row":1,"column":26},"action":"remove","lines":["p"]},{"start":{"row":1,"column":24},"end":{"row":1,"column":25},"action":"remove","lines":["m"]},{"start":{"row":1,"column":23},"end":{"row":1,"column":24},"action":"remove","lines":["i"]},{"start":{"row":1,"column":22},"end":{"row":1,"column":23},"action":"remove","lines":[" "]},{"start":{"row":1,"column":21},"end":{"row":1,"column":22},"action":"remove","lines":["s"]},{"start":{"row":1,"column":20},"end":{"row":1,"column":21},"action":"remove","lines":["l"]},{"start":{"row":1,"column":19},"end":{"row":1,"column":20},"action":"remove","lines":["e"]},{"start":{"row":1,"column":18},"end":{"row":1,"column":19},"action":"remove","lines":["d"]},{"start":{"row":1,"column":17},"end":{"row":1,"column":18},"action":"remove","lines":["o"]}],[{"start":{"row":1,"column":16},"end":{"row":1,"column":17},"action":"remove","lines":["m"],"id":5},{"start":{"row":1,"column":15},"end":{"row":1,"column":16},"action":"remove","lines":["."]},{"start":{"row":1,"column":14},"end":{"row":1,"column":15},"action":"remove","lines":["2"]},{"start":{"row":1,"column":13},"end":{"row":1,"column":14},"action":"remove","lines":["v"]},{"start":{"row":1,"column":12},"end":{"row":1,"column":13},"action":"remove","lines":["_"]},{"start":{"row":1,"column":11},"end":{"row":1,"column":12},"action":"remove","lines":["t"]},{"start":{"row":1,"column":10},"end":{"row":1,"column":11},"action":"remove","lines":["s"]},{"start":{"row":1,"column":9},"end":{"row":1,"column":10},"action":"remove","lines":["o"]},{"start":{"row":1,"column":8},"end":{"row":1,"column":9},"action":"remove","lines":["p"]},{"start":{"row":1,"column":7},"end":{"row":1,"column":8},"action":"remove","lines":["_"]},{"start":{"row":1,"column":6},"end":{"row":1,"column":7},"action":"remove","lines":["b"]},{"start":{"row":1,"column":5},"end":{"row":1,"column":6},"action":"remove","lines":["f"]},{"start":{"row":1,"column":4},"end":{"row":1,"column":5},"action":"remove","lines":[" "]},{"start":{"row":1,"column":3},"end":{"row":1,"column":4},"action":"remove","lines":["m"]},{"start":{"row":1,"column":2},"end":{"row":1,"column":3},"action":"remove","lines":["o"]},{"start":{"row":1,"column":1},"end":{"row":1,"column":2},"action":"remove","lines":["r"]}],[{"start":{"row":1,"column":0},"end":{"row":1,"column":1},"action":"remove","lines":["f"],"id":6},{"start":{"row":0,"column":13},"end":{"row":1,"column":0},"action":"remove","lines":["",""]}],[{"start":{"row":5,"column":24},"end":{"row":5,"column":25},"action":"remove","lines":["d"],"id":7},{"start":{"row":5,"column":23},"end":{"row":5,"column":24},"action":"remove","lines":["i"]},{"start":{"row":5,"column":22},"end":{"row":5,"column":23},"action":"remove","lines":["_"]},{"start":{"row":5,"column":21},"end":{"row":5,"column":22},"action":"remove","lines":["t"]},{"start":{"row":5,"column":20},"end":{"row":5,"column":21},"action":"remove","lines":["s"]},{"start":{"row":5,"column":19},"end":{"row":5,"column":20},"action":"remove","lines":["o"]},{"start":{"row":5,"column":18},"end":{"row":5,"column":19},"action":"remove","lines":["p"]},{"start":{"row":5,"column":17},"end":{"row":5,"column":18},"action":"remove","lines":["_"]},{"start":{"row":5,"column":16},"end":{"row":5,"column":17},"action":"remove","lines":["d"]},{"start":{"row":5,"column":15},"end":{"row":5,"column":16},"action":"remove","lines":["i"]},{"start":{"row":5,"column":14},"end":{"row":5,"column":15},"action":"remove","lines":["l"]},{"start":{"row":5,"column":13},"end":{"row":5,"column":14},"action":"remove","lines":["a"]}],[{"start":{"row":5,"column":12},"end":{"row":5,"column":13},"action":"remove","lines":["v"],"id":8}],[{"start":{"row":5,"column":12},"end":{"row":5,"column":13},"action":"insert","lines":["r"],"id":9},{"start":{"row":5,"column":13},"end":{"row":5,"column":14},"action":"insert","lines":["e"]},{"start":{"row":5,"column":14},"end":{"row":5,"column":15},"action":"insert","lines":["p"]},{"start":{"row":5,"column":15},"end":{"row":5,"column":16},"action":"insert","lines":["l"]},{"start":{"row":5,"column":16},"end":{"row":5,"column":17},"action":"insert","lines":["y"]}],[{"start":{"row":16,"column":24},"end":{"row":16,"column":25},"action":"remove","lines":["d"],"id":10},{"start":{"row":16,"column":23},"end":{"row":16,"column":24},"action":"remove","lines":["i"]},{"start":{"row":16,"column":22},"end":{"row":16,"column":23},"action":"remove","lines":["_"]},{"start":{"row":16,"column":21},"end":{"row":16,"column":22},"action":"remove","lines":["t"]},{"start":{"row":16,"column":20},"end":{"row":16,"column":21},"action":"remove","lines":["s"]},{"start":{"row":16,"column":19},"end":{"row":16,"column":20},"action":"remove","lines":["o"]},{"start":{"row":16,"column":18},"end":{"row":16,"column":19},"action":"remove","lines":["p"]},{"start":{"row":16,"column":17},"end":{"row":16,"column":18},"action":"remove","lines":["_"]},{"start":{"row":16,"column":16},"end":{"row":16,"column":17},"action":"remove","lines":["d"]},{"start":{"row":16,"column":15},"end":{"row":16,"column":16},"action":"remove","lines":["i"]},{"start":{"row":16,"column":14},"end":{"row":16,"column":15},"action":"remove","lines":["l"]},{"start":{"row":16,"column":13},"end":{"row":16,"column":14},"action":"remove","lines":["a"]},{"start":{"row":16,"column":12},"end":{"row":16,"column":13},"action":"remove","lines":["v"]}],[{"start":{"row":16,"column":12},"end":{"row":16,"column":13},"action":"insert","lines":["r"],"id":11},{"start":{"row":16,"column":13},"end":{"row":16,"column":14},"action":"insert","lines":["e"]},{"start":{"row":16,"column":14},"end":{"row":16,"column":15},"action":"insert","lines":["p"]},{"start":{"row":16,"column":15},"end":{"row":16,"column":16},"action":"insert","lines":["l"]},{"start":{"row":16,"column":16},"end":{"row":16,"column":17},"action":"insert","lines":["l"]},{"start":{"row":16,"column":17},"end":{"row":16,"column":18},"action":"insert","lines":["y"]}],[{"start":{"row":16,"column":67},"end":{"row":16,"column":68},"action":"insert","lines":[","],"id":12}],[{"start":{"row":5,"column":54},"end":{"row":5,"column":55},"action":"insert","lines":["r"],"id":13}],[{"start":{"row":5,"column":54},"end":{"row":5,"column":55},"action":"remove","lines":["r"],"id":14}],[{"start":{"row":5,"column":54},"end":{"row":5,"column":55},"action":"insert","lines":["c"],"id":15},{"start":{"row":5,"column":55},"end":{"row":5,"column":56},"action":"insert","lines":["o"]},{"start":{"row":5,"column":56},"end":{"row":5,"column":57},"action":"insert","lines":["m"]},{"start":{"row":5,"column":57},"end":{"row":5,"column":58},"action":"insert","lines":["m"]}],[{"start":{"row":5,"column":57},"end":{"row":5,"column":58},"action":"remove","lines":["m"],"id":16},{"start":{"row":5,"column":56},"end":{"row":5,"column":57},"action":"remove","lines":["m"]},{"start":{"row":5,"column":55},"end":{"row":5,"column":56},"action":"remove","lines":["o"]}],[{"start":{"row":5,"column":55},"end":{"row":5,"column":56},"action":"insert","lines":["r"],"id":17},{"start":{"row":5,"column":56},"end":{"row":5,"column":57},"action":"insert","lines":["e"]},{"start":{"row":5,"column":57},"end":{"row":5,"column":58},"action":"insert","lines":["a"]},{"start":{"row":5,"column":58},"end":{"row":5,"column":59},"action":"insert","lines":["t"]},{"start":{"row":5,"column":59},"end":{"row":5,"column":60},"action":"insert","lines":["e"]}],[{"start":{"row":5,"column":60},"end":{"row":5,"column":61},"action":"insert","lines":["_"],"id":18}],[{"start":{"row":5,"column":54},"end":{"row":5,"column":61},"action":"remove","lines":["create_"],"id":19},{"start":{"row":5,"column":54},"end":{"row":5,"column":71},"action":"insert","lines":["create_comments()"]}],[{"start":{"row":5,"column":69},"end":{"row":5,"column":71},"action":"remove","lines":["()"],"id":20}],[{"start":{"row":16,"column":68},"end":{"row":16,"column":69},"action":"insert","lines":["c"],"id":21},{"start":{"row":16,"column":69},"end":{"row":16,"column":70},"action":"insert","lines":["r"]}],[{"start":{"row":16,"column":69},"end":{"row":16,"column":70},"action":"remove","lines":["r"],"id":22},{"start":{"row":16,"column":68},"end":{"row":16,"column":69},"action":"remove","lines":["c"]}],[{"start":{"row":16,"column":68},"end":{"row":16,"column":69},"action":"insert","lines":[" "],"id":23},{"start":{"row":16,"column":69},"end":{"row":16,"column":70},"action":"insert","lines":["c"]},{"start":{"row":16,"column":70},"end":{"row":16,"column":71},"action":"insert","lines":["r"]},{"start":{"row":16,"column":71},"end":{"row":16,"column":72},"action":"insert","lines":["e"]},{"start":{"row":16,"column":72},"end":{"row":16,"column":73},"action":"insert","lines":["a"]}],[{"start":{"row":16,"column":73},"end":{"row":16,"column":74},"action":"insert","lines":["t"],"id":24},{"start":{"row":16,"column":74},"end":{"row":16,"column":75},"action":"insert","lines":["e"]},{"start":{"row":16,"column":75},"end":{"row":16,"column":76},"action":"insert","lines":["_"]}],[{"start":{"row":16,"column":76},"end":{"row":16,"column":77},"action":"insert","lines":["r"],"id":25},{"start":{"row":16,"column":77},"end":{"row":16,"column":78},"action":"insert","lines":["e"]}],[{"start":{"row":16,"column":69},"end":{"row":16,"column":78},"action":"remove","lines":["create_re"],"id":26},{"start":{"row":16,"column":69},"end":{"row":16,"column":85},"action":"insert","lines":["create_replies()"]}],[{"start":{"row":16,"column":83},"end":{"row":16,"column":85},"action":"remove","lines":["()"],"id":27}],[{"start":{"row":16,"column":68},"end":{"row":16,"column":69},"action":"remove","lines":[" "],"id":28}],[{"start":{"row":16,"column":68},"end":{"row":17,"column":0},"action":"insert","lines":["",""],"id":29}],[{"start":{"row":17,"column":0},"end":{"row":17,"column":4},"action":"insert","lines":[" "],"id":30}],[{"start":{"row":17,"column":4},"end":{"row":17,"column":8},"action":"insert","lines":[" "],"id":31}],[{"start":{"row":17,"column":8},"end":{"row":17,"column":12},"action":"insert","lines":[" "],"id":32}],[{"start":{"row":17,"column":12},"end":{"row":17,"column":16},"action":"insert","lines":[" "],"id":33}],[{"start":{"row":17,"column":16},"end":{"row":17,"column":20},"action":"insert","lines":[" "],"id":34}],[{"start":{"row":17,"column":20},"end":{"row":17,"column":24},"action":"insert","lines":[" "],"id":35}],[{"start":{"row":17,"column":24},"end":{"row":17,"column":28},"action":"insert","lines":[" "],"id":36}],[{"start":{"row":17,"column":28},"end":{"row":17,"column":32},"action":"insert","lines":[" "],"id":37}],[{"start":{"row":17,"column":32},"end":{"row":17,"column":36},"action":"insert","lines":[" "],"id":38}],[{"start":{"row":17,"column":36},"end":{"row":17,"column":40},"action":"insert","lines":[" "],"id":39}],[{"start":{"row":17,"column":40},"end":{"row":17,"column":44},"action":"insert","lines":[" "],"id":40}],[{"start":{"row":17,"column":44},"end":{"row":17,"column":48},"action":"insert","lines":[" "],"id":41}],[{"start":{"row":17,"column":48},"end":{"row":17,"column":52},"action":"insert","lines":[" "],"id":42}],[{"start":{"row":22,"column":25},"end":{"row":22,"column":44},"action":"remove","lines":["is_valid_comment_id"],"id":43}],[{"start":{"row":22,"column":25},"end":{"row":22,"column":26},"action":"insert","lines":["i"],"id":44},{"start":{"row":22,"column":26},"end":{"row":22,"column":27},"action":"insert","lines":["s"]},{"start":{"row":22,"column":27},"end":{"row":22,"column":28},"action":"insert","lines":["_"]},{"start":{"row":22,"column":28},"end":{"row":22,"column":29},"action":"insert","lines":["r"]},{"start":{"row":22,"column":29},"end":{"row":22,"column":30},"action":"insert","lines":["e"]}],[{"start":{"row":22,"column":30},"end":{"row":22,"column":31},"action":"insert","lines":["p"],"id":45},{"start":{"row":22,"column":31},"end":{"row":22,"column":32},"action":"insert","lines":["l"]},{"start":{"row":22,"column":32},"end":{"row":22,"column":33},"action":"insert","lines":["y"]}],[{"start":{"row":10,"column":25},"end":{"row":10,"column":44},"action":"remove","lines":["is_valid_comment_id"],"id":46}],[{"start":{"row":10,"column":25},"end":{"row":10,"column":26},"action":"insert","lines":["i"],"id":47},{"start":{"row":10,"column":26},"end":{"row":10,"column":27},"action":"insert","lines":["s"]}],[{"start":{"row":10,"column":25},"end":{"row":10,"column":27},"action":"remove","lines":["is"],"id":48},{"start":{"row":10,"column":25},"end":{"row":10,"column":33},"action":"insert","lines":["is_reply"]}],[{"start":{"row":16,"column":16},"end":{"row":16,"column":17},"action":"remove","lines":["l"],"id":49}],[{"start":{"row":17,"column":48},"end":{"row":17,"column":52},"action":"remove","lines":[" "],"id":50}],[{"start":{"row":17,"column":48},"end":{"row":17,"column":49},"action":"insert","lines":[" "],"id":51},{"start":{"row":17,"column":49},"end":{"row":17,"column":50},"action":"insert","lines":[" "]},{"start":{"row":17,"column":50},"end":{"row":17,"column":51},"action":"insert","lines":[" "]}],[{"start":{"row":17,"column":65},"end":{"row":17,"column":66},"action":"insert","lines":[","],"id":52}],[{"start":{"row":17,"column":66},"end":{"row":18,"column":0},"action":"insert","lines":["",""],"id":53},{"start":{"row":18,"column":0},"end":{"row":18,"column":51},"action":"insert","lines":[" "]},{"start":{"row":18,"column":51},"end":{"row":18,"column":52},"action":"insert","lines":["c"]},{"start":{"row":18,"column":52},"end":{"row":18,"column":53},"action":"insert","lines":["r"]},{"start":{"row":18,"column":53},"end":{"row":18,"column":54},"action":"insert","lines":["e"]}],[{"start":{"row":18,"column":51},"end":{"row":18,"column":54},"action":"remove","lines":["cre"],"id":54},{"start":{"row":18,"column":51},"end":{"row":18,"column":67},"action":"insert","lines":["create_comment()"]}],[{"start":{"row":18,"column":65},"end":{"row":18,"column":67},"action":"remove","lines":["()"],"id":55},{"start":{"row":18,"column":64},"end":{"row":18,"column":65},"action":"remove","lines":["t"]},{"start":{"row":18,"column":63},"end":{"row":18,"column":64},"action":"remove","lines":["n"]},{"start":{"row":18,"column":62},"end":{"row":18,"column":63},"action":"remove","lines":["e"]},{"start":{"row":18,"column":61},"end":{"row":18,"column":62},"action":"remove","lines":["m"]},{"start":{"row":18,"column":60},"end":{"row":18,"column":61},"action":"remove","lines":["m"]},{"start":{"row":18,"column":59},"end":{"row":18,"column":60},"action":"remove","lines":["o"]},{"start":{"row":18,"column":58},"end":{"row":18,"column":59},"action":"remove","lines":["c"]}],[{"start":{"row":18,"column":58},"end":{"row":18,"column":59},"action":"insert","lines":["p"],"id":56},{"start":{"row":18,"column":59},"end":{"row":18,"column":60},"action":"insert","lines":["o"]},{"start":{"row":18,"column":60},"end":{"row":18,"column":61},"action":"insert","lines":["s"]},{"start":{"row":18,"column":61},"end":{"row":18,"column":62},"action":"insert","lines":["t"]}],[{"start":{"row":19,"column":17},"end":{"row":19,"column":18},"action":"remove","lines":["1"],"id":57}],[{"start":{"row":19,"column":17},"end":{"row":19,"column":18},"action":"insert","lines":["3"],"id":58}],[{"start":{"row":5,"column":54},"end":{"row":6,"column":0},"action":"insert","lines":["",""],"id":59},{"start":{"row":6,"column":0},"end":{"row":6,"column":4},"action":"insert","lines":[" "]}],[{"start":{"row":6,"column":19},"end":{"row":7,"column":0},"action":"insert","lines":["",""],"id":60},{"start":{"row":7,"column":0},"end":{"row":7,"column":4},"action":"insert","lines":[" "]},{"start":{"row":7,"column":4},"end":{"row":8,"column":0},"action":"insert","lines":["",""]},{"start":{"row":8,"column":0},"end":{"row":8,"column":4},"action":"insert","lines":[" "]}],[{"start":{"row":8,"column":0},"end":{"row":8,"column":4},"action":"remove","lines":[" "],"id":61},{"start":{"row":7,"column":4},"end":{"row":8,"column":0},"action":"remove","lines":["",""]},{"start":{"row":7,"column":0},"end":{"row":7,"column":4},"action":"remove","lines":[" "]}],[{"start":{"row":5,"column":54},"end":{"row":6,"column":0},"action":"insert","lines":["",""],"id":62},{"start":{"row":6,"column":0},"end":{"row":6,"column":4},"action":"insert","lines":[" "]},{"start":{"row":6,"column":4},"end":{"row":6,"column":5},"action":"insert","lines":["c"]},{"start":{"row":6,"column":5},"end":{"row":6,"column":6},"action":"insert","lines":["r"]},{"start":{"row":6,"column":6},"end":{"row":6,"column":7},"action":"insert","lines":["e"]}],[{"start":{"row":6,"column":7},"end":{"row":6,"column":8},"action":"insert","lines":["a"],"id":63}],[{"start":{"row":6,"column":4},"end":{"row":6,"column":8},"action":"remove","lines":["crea"],"id":64},{"start":{"row":6,"column":4},"end":{"row":6,"column":19},"action":"insert","lines":["create_comments"]}],[{"start":{"row":6,"column":18},"end":{"row":6,"column":19},"action":"remove","lines":["s"],"id":65},{"start":{"row":6,"column":17},"end":{"row":6,"column":18},"action":"remove","lines":["t"]},{"start":{"row":6,"column":16},"end":{"row":6,"column":17},"action":"remove","lines":["n"]},{"start":{"row":6,"column":15},"end":{"row":6,"column":16},"action":"remove","lines":["e"]},{"start":{"row":6,"column":14},"end":{"row":6,"column":15},"action":"remove","lines":["m"]},{"start":{"row":6,"column":13},"end":{"row":6,"column":14},"action":"remove","lines":["m"]},{"start":{"row":6,"column":12},"end":{"row":6,"column":13},"action":"remove","lines":["o"]},{"start":{"row":6,"column":11},"end":{"row":6,"column":12},"action":"remove","lines":["c"]}],[{"start":{"row":6,"column":11},"end":{"row":6,"column":12},"action":"insert","lines":["u"],"id":66},{"start":{"row":6,"column":12},"end":{"row":6,"column":13},"action":"insert","lines":["s"]},{"start":{"row":6,"column":13},"end":{"row":6,"column":14},"action":"insert","lines":["e"]},{"start":{"row":6,"column":14},"end":{"row":6,"column":15},"action":"insert","lines":["r"]},{"start":{"row":6,"column":15},"end":{"row":6,"column":16},"action":"insert","lines":["s"]},{"start":{"row":6,"column":16},"end":{"row":6,"column":17},"action":"insert","lines":[","]}],[{"start":{"row":6,"column":17},"end":{"row":7,"column":0},"action":"insert","lines":["",""],"id":67},{"start":{"row":7,"column":0},"end":{"row":7,"column":4},"action":"insert","lines":[" "]},{"start":{"row":7,"column":4},"end":{"row":7,"column":5},"action":"insert","lines":["c"]},{"start":{"row":7,"column":5},"end":{"row":7,"column":6},"action":"insert","lines":["r"]},{"start":{"row":7,"column":6},"end":{"row":7,"column":7},"action":"insert","lines":["e"]}],[{"start":{"row":7,"column":7},"end":{"row":7,"column":8},"action":"insert","lines":["a"],"id":68}],[{"start":{"row":7,"column":4},"end":{"row":7,"column":8},"action":"remove","lines":["crea"],"id":69},{"start":{"row":7,"column":4},"end":{"row":7,"column":16},"action":"insert","lines":["create_users"]}],[{"start":{"row":7,"column":15},"end":{"row":7,"column":16},"action":"remove","lines":["s"],"id":70},{"start":{"row":7,"column":14},"end":{"row":7,"column":15},"action":"remove","lines":["r"]},{"start":{"row":7,"column":13},"end":{"row":7,"column":14},"action":"remove","lines":["e"]},{"start":{"row":7,"column":12},"end":{"row":7,"column":13},"action":"remove","lines":["s"]},{"start":{"row":7,"column":11},"end":{"row":7,"column":12},"action":"remove","lines":["u"]}],[{"start":{"row":7,"column":11},"end":{"row":7,"column":12},"action":"insert","lines":["p"],"id":71},{"start":{"row":7,"column":12},"end":{"row":7,"column":13},"action":"insert","lines":["o"]},{"start":{"row":7,"column":13},"end":{"row":7,"column":14},"action":"insert","lines":["s"]},{"start":{"row":7,"column":14},"end":{"row":7,"column":15},"action":"insert","lines":["t"]},{"start":{"row":7,"column":15},"end":{"row":7,"column":16},"action":"insert","lines":[","]}],[{"start":{"row":20,"column":67},"end":{"row":21,"column":0},"action":"insert","lines":["",""],"id":72}],[{"start":{"row":21,"column":0},"end":{"row":21,"column":4},"action":"insert","lines":[" "],"id":73}],[{"start":{"row":21,"column":4},"end":{"row":21,"column":8},"action":"insert","lines":[" "],"id":74}],[{"start":{"row":21,"column":8},"end":{"row":21,"column":12},"action":"insert","lines":[" "],"id":75}],[{"start":{"row":21,"column":12},"end":{"row":21,"column":16},"action":"insert","lines":[" "],"id":76}],[{"start":{"row":21,"column":16},"end":{"row":21,"column":20},"action":"insert","lines":[" "],"id":77}],[{"start":{"row":21,"column":20},"end":{"row":21,"column":24},"action":"insert","lines":[" "],"id":78}],[{"start":{"row":21,"column":24},"end":{"row":21,"column":28},"action":"insert","lines":[" "],"id":79}],[{"start":{"row":21,"column":28},"end":{"row":21,"column":32},"action":"insert","lines":[" "],"id":80}],[{"start":{"row":21,"column":32},"end":{"row":21,"column":36},"action":"insert","lines":[" "],"id":81}],[{"start":{"row":21,"column":36},"end":{"row":21,"column":40},"action":"insert","lines":[" "],"id":82}],[{"start":{"row":21,"column":40},"end":{"row":21,"column":44},"action":"insert","lines":[" "],"id":83}],[{"start":{"row":21,"column":44},"end":{"row":21,"column":48},"action":"insert","lines":[" "],"id":84}],[{"start":{"row":21,"column":48},"end":{"row":21,"column":52},"action":"insert","lines":[" "],"id":85}],[{"start":{"row":21,"column":48},"end":{"row":21,"column":52},"action":"remove","lines":[" "],"id":86}],[{"start":{"row":21,"column":48},"end":{"row":21,"column":49},"action":"insert","lines":[" "],"id":87},{"start":{"row":21,"column":49},"end":{"row":21,"column":50},"action":"insert","lines":[" "]},{"start":{"row":21,"column":50},"end":{"row":21,"column":51},"action":"insert","lines":[" "]},{"start":{"row":21,"column":51},"end":{"row":21,"column":52},"action":"insert","lines":["c"]},{"start":{"row":21,"column":52},"end":{"row":21,"column":53},"action":"insert","lines":["r"]}],[{"start":{"row":21,"column":53},"end":{"row":21,"column":54},"action":"insert","lines":["e"],"id":88},{"start":{"row":21,"column":54},"end":{"row":21,"column":55},"action":"insert","lines":["a"]}],[{"start":{"row":21,"column":51},"end":{"row":21,"column":55},"action":"remove","lines":["crea"],"id":89},{"start":{"row":21,"column":51},"end":{"row":21,"column":66},"action":"insert","lines":["create_comments"]}],[{"start":{"row":21,"column":65},"end":{"row":21,"column":66},"action":"remove","lines":["s"],"id":90},{"start":{"row":21,"column":64},"end":{"row":21,"column":65},"action":"remove","lines":["t"]},{"start":{"row":21,"column":63},"end":{"row":21,"column":64},"action":"remove","lines":["n"]},{"start":{"row":21,"column":62},"end":{"row":21,"column":63},"action":"remove","lines":["e"]},{"start":{"row":21,"column":61},"end":{"row":21,"column":62},"action":"remove","lines":["m"]},{"start":{"row":21,"column":60},"end":{"row":21,"column":61},"action":"remove","lines":["m"]},{"start":{"row":21,"column":59},"end":{"row":21,"column":60},"action":"remove","lines":["o"]},{"start":{"row":21,"column":58},"end":{"row":21,"column":59},"action":"remove","lines":["c"]}],[{"start":{"row":21,"column":58},"end":{"row":21,"column":59},"action":"insert","lines":["u"],"id":91},{"start":{"row":21,"column":59},"end":{"row":21,"column":60},"action":"insert","lines":["s"]},{"start":{"row":21,"column":60},"end":{"row":21,"column":61},"action":"insert","lines":["e"]},{"start":{"row":21,"column":61},"end":{"row":21,"column":62},"action":"insert","lines":["r"]},{"start":{"row":21,"column":62},"end":{"row":21,"column":63},"action":"insert","lines":["s"]}],[{"start":{"row":21,"column":63},"end":{"row":21,"column":64},"action":"insert","lines":[","],"id":92}],[{"start":{"row":1,"column":28},"end":{"row":1,"column":29},"action":"remove","lines":["t"],"id":93},{"start":{"row":1,"column":27},"end":{"row":1,"column":28},"action":"remove","lines":["s"]},{"start":{"row":1,"column":26},"end":{"row":1,"column":27},"action":"remove","lines":["o"]},{"start":{"row":1,"column":25},"end":{"row":1,"column":26},"action":"remove","lines":["p"]}],[{"start":{"row":1,"column":25},"end":{"row":1,"column":26},"action":"insert","lines":["c"],"id":94},{"start":{"row":1,"column":26},"end":{"row":1,"column":27},"action":"insert","lines":["o"]},{"start":{"row":1,"column":27},"end":{"row":1,"column":28},"action":"insert","lines":["m"]},{"start":{"row":1,"column":28},"end":{"row":1,"column":29},"action":"insert","lines":["e"]}],[{"start":{"row":1,"column":28},"end":{"row":1,"column":29},"action":"remove","lines":["e"],"id":95}],[{"start":{"row":1,"column":28},"end":{"row":1,"column":29},"action":"insert","lines":["m"],"id":96},{"start":{"row":1,"column":29},"end":{"row":1,"column":30},"action":"insert","lines":["e"]},{"start":{"row":1,"column":30},"end":{"row":1,"column":31},"action":"insert","lines":["n"]},{"start":{"row":1,"column":31},"end":{"row":1,"column":32},"action":"insert","lines":["t"]}]]},"ace":{"folds":[],"scrolltop":0,"scrollleft":0,"selection":{"start":{"row":6,"column":17},"end":{"row":6,"column":17},"isBackwards":false},"options":{"guessTabSize":true,"useWrapMode":false,"wrapToView":true},"firstLineState":0},"timestamp":1590061738237}
87f86ee5f18ff897da50586e96692fc1a9d89d64
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03371/s901597766.py
123ae25fb816ba52b35bc7528454231feb8593bf
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
532
py
A, B, C, X, Y = map(int, input().split()) cntA = 0 cntB = 0 cntC = 0 value = 0 if 2*C<=A+B: #Cで買いそろえた方が安いので #(max(X, Y)-abs(X-Y))*2枚は買うことになる Cmaisu = (max(X, Y)-abs(X-Y))*2 value += C * Cmaisu if (2*C<=A and X>Y) or (2*C<=B and X<Y): #abs(X-Y)枚についても2Cが安けりゃCで買う value += C * abs(X-Y) * 2 else: if X>Y: value += A*(X-Y) else: value += B*(Y-X) else: value += A*X+B*Y print(value)
f6b658b1ddac70cd71d916a2ed089c862e530a4e
f8666599b83d34c861651861cc7db5b3c434fc87
/plotly/validators/scatterpolargl/marker/colorbar/tickformatstop/_templateitemname.py
3aca0890a4cb67b0ff4f477575d146dfbe41dbf8
[ "MIT" ]
permissive
mode/plotly.py
8b66806e88c9f1820d478bab726f0bea81884432
c5a9ac386a40df2816e6c13264dadf14299401e4
refs/heads/master
2022-08-26T00:07:35.376636
2018-09-26T19:08:54
2018-09-26T19:19:31
60,372,968
1
1
MIT
2019-11-13T23:03:22
2016-06-03T19:34:55
Python
UTF-8
Python
false
false
545
py
import _plotly_utils.basevalidators class TemplateitemnameValidator(_plotly_utils.basevalidators.StringValidator): def __init__( self, plotly_name='templateitemname', parent_name='scatterpolargl.marker.colorbar.tickformatstop', **kwargs ): super(TemplateitemnameValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'calc'), role=kwargs.pop('role', 'info'), **kwargs )
bf825d15878d7b99d77904e32eb9daf305bfa790
4eaa1b9b08914e0a2cc9276363e489ccef19d3a2
/ch3/guest_list.py
3a09e97b39d325d4f92b191d3cabd2777d74e4f8
[]
no_license
melihcanyardi/Python-Crash-Course-2e-Part-I
69b3b5b3f63cdbd7be6fabd6d4f2ddfd9a3434a3
0c9b250f512985c04b2c0397f3afaa8bf3a57f17
refs/heads/main
2023-03-12T21:43:14.012537
2021-03-03T19:23:41
2021-03-03T19:23:41
344,236,741
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
guest_list = ['Ali', 'Ayşe', 'Mehmet', 'Ahmet'] message = f"Hey {guest_list[0]}, would you like to join me for the dinner?" print(message) message = f"Hey {guest_list[1]}, would you like to join me for the dinner?" print(message) message = f"Hey {guest_list[2]}, would you like to join me for the dinner?" print(message) message = f"Hey {guest_list[3]}, would you like to join me for the dinner?" print(message)
4696d4803fcbd9b7f1fa002caeed6d15ed478d7e
4d0f3e2d7455f80caea978e4e70621d50c6c7561
/Threading/Lock.py
efce0601f22fa1de07581c3637eba0dc6384a431
[]
no_license
mhdr/PythonSamples
66940ee2353872d2947c459e3865be42140329c6
1a9dccc05962033ea02b081a39cd67c1e7b29d0c
refs/heads/master
2020-04-14T01:10:13.033940
2016-05-28T15:33:52
2016-05-28T15:33:52
30,691,539
1
0
null
null
null
null
UTF-8
Python
false
false
164
py
import threading from threading import Lock def print_multi(): lock=Lock() lock.acquire() print("Hello World") lock.release() print_multi()
4733bae1eb944dc330c20c4483dd7b1171de45b2
99833651e4a6a0bc1221d577d9fc43b8568abedd
/nltk_contrib/hadoop/tf_idf/tf_map.py
25f49052f7b5472b8a00478c177aac8e3dd514cd
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
nltk/nltk_contrib
689e2683aa01b120c7473b9a4fc50bc49f014390
95d1806e2f4e89e960b76a685b1fba2eaa7d5142
refs/heads/master
2023-07-31T13:32:47.358897
2022-11-21T18:49:33
2022-11-21T18:49:33
2,530,774
145
127
NOASSERTION
2022-11-21T18:49:34
2011-10-07T05:59:13
Python
UTF-8
Python
false
false
692
py
from hadooplib.mapper import MapperBase class TFMapper(MapperBase): """ get the filename (one filename per line), open the file and count the term frequency. """ def map(self, key, value): """ output (word filename, 1) for every word in files @param key: None @param value: filename """ filename = value.strip() if len(filename) == 0: return file = open(filename, 'r') for line in file: words = line.strip().split() for word in words: self.outputcollector.collect(word + " " + filename, 1) if __name__ == "__main__": TFMapper().call_map()
d68dd9aee38f272a57637402ae90918c73bc1986
641df38bb75077cd8da28b69e38b84af293b5db7
/docassemble_base/setup.py
73a6d2bf9b44a96183a19d6f23282978224b061d
[ "MIT" ]
permissive
bgordo3/docassemble
f19e01f2daf41eb05e2c19b5d4278bdc0d6d3ea5
3ce22e22e818598badc2242038f4e4abc4ee9fde
refs/heads/master
2020-12-26T01:03:14.840009
2016-05-15T13:50:35
2016-05-15T13:50:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,809
py
#!/usr/bin/env python import os import sys from setuptools import setup, find_packages from fnmatch import fnmatchcase from distutils.util import convert_path standard_exclude = ('*.py', '*.pyc', '*~', '.*', '*.bak', '*.swp*') standard_exclude_directories = ('.*', 'CVS', '_darcs', './build', './dist', 'EGG-INFO', '*.egg-info') def find_package_data(where='.', package='', exclude=standard_exclude, exclude_directories=standard_exclude_directories): out = {} stack = [(convert_path(where), '', package)] while stack: where, prefix, package = stack.pop(0) for name in os.listdir(where): fn = os.path.join(where, name) if os.path.isdir(fn): bad_name = False for pattern in exclude_directories: if (fnmatchcase(name, pattern) or fn.lower() == pattern.lower()): bad_name = True break if bad_name: continue if os.path.isfile(os.path.join(fn, '__init__.py')): if not package: new_package = name else: new_package = package + '.' + name stack.append((fn, '', new_package)) else: stack.append((fn, prefix + name + '/', package)) else: bad_name = False for pattern in exclude: if (fnmatchcase(name, pattern) or fn.lower() == pattern.lower()): bad_name = True break if bad_name: continue out.setdefault(package, []).append(prefix+name) return out setup(name='docassemble.base', version='0.1', description=('A python module for assembling documents from templates while automatically querying a user for necessary information.'), author='Jonathan Pyle', author_email='[email protected]', license='MIT', url='http://docassemble.org', namespace_packages = ['docassemble'], install_requires = ['docassemble', '3to2', 'babel', 'bcrypt', 'blinker', 'cffi', 'fdfgen', 'guess-language-spirit', 'html2text', 'httplib2', 'itsdangerous', 'jellyfish', 'jinja2', 'lxml', 'mako', 'markdown', 'markupsafe', 'mdx-smartypants', 'namedentities==1.5.2', 'passlib', 'pdfminer', 'pillow', 'pip', 'pycparser', 'pycrypto', 'geopy', 'pygments', 'pyjwt', 'pypdf', 'PyPDF2', 'pyrtf-ng', 'python-dateutil', 'pytz', 'pyyaml', 'qrcode', 'six', 'titlecase', 'us', 'wheel'], packages=find_packages(), zip_safe = False, package_data=find_package_data(where='docassemble/base/', package='docassemble.base'), )
47821cfbba0dbe4c3efe3982af6bf0e12bc36614
8e7a2b9efbc0d25111f01f4cddb781961032685a
/python-1025/python/a_socket/3_ssh/cli.py
a8eb9d81fb94a0cd363d5f6691ffd91955caf960
[]
no_license
Dituohgasirre/python
e044aa2e1fb2233b6ccd59701b834ab01e4e24c2
05f036d2723f75cd89e4412aaed7ee0ba5d3a502
refs/heads/master
2023-06-03T13:50:18.641433
2021-06-17T10:23:40
2021-06-17T10:23:40
366,942,423
0
0
null
null
null
null
UTF-8
Python
false
false
834
py
#!/usr/bin/env python3 import socket from pargs import parse from net import Packet if __name__ == "__main__": def main(): args, opt = parse(['s|srv|1', 'p|port|1']) srvIp = opt['srv'] if 'srv' in opt else "3.3.3.3" port = int(opt['port']) if 'port' in opt else 9000 sd = socket.socket(type=socket.SOCK_DGRAM) addr = (srvIp, port) packet = Packet(sd) while True: cmd = input("<自己的网络SHELL>: ") packet.send(cmd, addr, Packet.DATA) if cmd == "exit": break out = "" while True: data, addr = packet.recv() if data['type'] == Packet.QUIT: break out += data['data'] print(out) sd.close() main()
51e0e2a1659f95d3b8414243848b7426d1ff7812
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/p3BR/R1/benchmark/startCirq58.py
a2b36467a64bf7e0413c3647fae2acfbe412bd39
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
1,870
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=3 # total number=12 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.rx(-0.09738937226128368).on(input_qubit[2])) # number=2 c.append(cirq.H.on(input_qubit[1])) # number=3 c.append(cirq.H.on(input_qubit[0])) # number=9 c.append(cirq.CZ.on(input_qubit[1],input_qubit[0])) # number=10 c.append(cirq.H.on(input_qubit[0])) # number=11 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=5 c.append(cirq.X.on(input_qubit[1])) # number=6 c.append(cirq.Z.on(input_qubit[1])) # number=8 c.append(cirq.X.on(input_qubit[1])) # number=7 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq58.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
aa886a213c5f135a412aba43490ad62764c40613
33836016ea99776d31f7ad8f2140c39f7b43b5fe
/fip_collab/2017_02_24_HCF_pearson/get_linkage_alt.py
81760c80d5b2307eb97b7f5b1d063001511737ce
[]
no_license
earthexploration/MKS-Experimentation
92a2aea83e041bfe741048d662d28ff593077551
9b9ff3b468767b235e7c4884b0ed56c127328a5f
refs/heads/master
2023-03-17T23:11:11.313693
2017-04-24T19:24:35
2017-04-24T19:24:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,035
py
import numpy as np import functions as rr import reg_functions as rf from constants import const from scipy.stats import pearsonr import h5py import time from sklearn.preprocessing import PolynomialFeatures def analysis(X, response_tot, groups, iscal): RpredCV = rf.cv(X[iscal, :], response_tot[iscal], groups[iscal]) coef = rf.regression(X[iscal, :], response_tot[iscal]) Rpred = rf.prediction(X, coef) return coef, RpredCV, Rpred def pearson_eval(X, y): Nfeat = X.shape[1] pvec = np.zeros((Nfeat,)) # pvec[0] = 1 # for the constant term for ii in xrange(Nfeat): """ pearsonr returns tuples with the pearson correlation and the P-value (chance of observing the data if the null hypothesis is true). I'm going to throw away the p-value""" if np.all(X[:, ii] == 1): pvec[ii] = 1 else: pvec[ii] = pearsonr(X[:, ii], y)[0] return pvec def optimal_set(X, y, names): C = const() Nfeat = X.shape[1] """obtain pearson correlation scores against the response variable""" pvec = pearson_eval(X, y) indxv_ = np.argsort(np.abs(pvec))[::-1] pvec_f = np.zeros((C['fmax'],)) names_f = np.zeros((C['fmax'],), dtype="S20") support = np.zeros((Nfeat,), dtype='bool') indxv = np.zeros((C['fmax']), dtype='int32') """start by adding zero vector""" pvec_f[0] = pvec[indxv_[0]] names_f[0] = names[indxv_[0]] indxv[0] = indxv_[0] """add vector with highest pearson correlation besides the zero vector""" pvec_f[1] = pvec[indxv_[1]] names_f[1] = str(names[indxv_[1]]) support[indxv_[1]] = True indxv[1] = indxv_[1] c = 1 for ii in xrange(2, C['fmax']): pvecA = np.ones((ii,)) while True: c += 1 pvecT = pearson_eval(X[:, support], X[:, indxv_[c]]) pvecA = np.abs(pvecT) # if pvecA.max() < 0.6: if pvecA.max() < 1.6: break # print str(c) + ', ' + str(np.argmax(pvecA)) + ', ' + str(pvecA.max()) pvec_f[ii] = pvec[indxv_[c]] names_f[ii] = names[indxv_[c]] support[indxv_[c]] = True indxv[ii] = indxv_[c] """we add support for the vector of ones at the end to not screw up the calculation""" support[indxv_[0]] = True return pvec_f, names_f, support, indxv def preanalysis(loc_tot, cov_tot): npc = loc_tot.shape[1] ns = loc_tot.shape[0] """extract names from mean loc info""" mean_only_names = [] for ii in xrange(npc): mean_only_names += ['m%s' % str(ii+1)] """extract variance info from covariance matrix""" var_only = np.zeros((ns, npc)) var_only_names = [] for ii in xrange(npc): var_only[:, ii] = cov_tot[:, ii, ii] var_only_names += ['c%s_%s' % (str(ii+1), str(ii+1))] """extract unique, off-diagonal co-variance info from covariance matrix""" nc = (npc**2-npc)/2 cov_only = np.zeros((ns, nc)) cov_only_names = [] c = 0 for ii in xrange(npc): for jj in xrange(ii+1, npc): cov_only[:, c] = cov_tot[:, ii, jj] cov_only_names += ['c%s_%s' % (str(ii+1), str(jj+1))] c += 1 return loc_tot, var_only, cov_only, \ mean_only_names, var_only_names, cov_only_names def get_poly(X_pre, names_pre): C = const() """get the polynomial features""" poly = PolynomialFeatures(C['deg_max']) poly.fit(X_pre) X = poly.transform(X_pre) """get the names of the polynomial features""" names = poly.get_feature_names(names_pre) return X, names def prepare(par): np.random.seed(0) C = const() p = C['n_sc'] f_link = h5py.File("sample_L%s.hdf5" % C['H'], 'r') """gather the calibration data""" n_tot = len(C['sid']) ns_tot = n_tot*p groups = np.zeros(ns_tot, dtype='int16') response_tot = np.zeros(ns_tot, dtype='float64') loc_tot = np.zeros((ns_tot, C['n_pc_max']), dtype='float64') cov_tot = np.zeros((ns_tot, C['n_pc_max'], C['n_pc_max']), dtype='float64') iscal = np.zeros((ns_tot,), dtype='bool') c = 0 for ii in xrange(n_tot): c_ = c + p sid = C['sid'][ii] """flag elements of the calibration set""" if sid in C['sid_cal']: iscal[c:c_] = True groups[c:c_] = 2*ii+np.round(np.random.random((p,))) dset_name = "%s_%s" % (par, sid) response_tot[c:c_] = f_link.get(dset_name)[...] tmp = f_link.get('samp_%s' % sid)[:, :, :C['n_pc_max']] loc_tot[c:c_, :] = np.mean(tmp, 1) for jj in xrange(p): cov_tot[c+jj, ...] = np.cov(tmp[jj, ...], rowvar=False) c = c_ f_link.close() return groups, response_tot, loc_tot, cov_tot, iscal def linkage(par): st = time.time() C = const() p = C['n_sc'] n_tot = len(C['sid']) ns_tot = n_tot*p """create arrays required for linkage creation""" precursors = prepare(par) groups = precursors[0] response_tot = precursors[1] loc_tot = precursors[2] cov_tot = precursors[3] iscal = precursors[4] f_reg = h5py.File("regression_results_L%s.hdf5" % C['H'], 'a') f_reg.create_dataset('Rsim_%s' % par, data=response_tot) f_reg.create_dataset('iscal_%s' % par, data=iscal) coef_set = f_reg.create_dataset('coef_%s' % par, (C['fmax'], C['fmax']), dtype='float64') Rpred_set = f_reg.create_dataset('Rpred_%s' % par, (C['fmax'], ns_tot), dtype='float64') RpredCV_set = f_reg.create_dataset('RpredCV_%s' % par, (C['fmax'], p*len(C['sid_cal'])), dtype='float64') """get the polynomial features""" tmp = preanalysis(loc_tot, cov_tot) var_only = tmp[1] cov_only = tmp[2] mean_only_names = tmp[3] var_only_names = tmp[4] cov_only_names = tmp[5] # X_pre = np.concatenate((loc_tot, var_only, cov_only), axis=1) # names_pre = mean_only_names + var_only_names + cov_only_names # X_pre = np.concatenate((loc_tot, var_only), axis=1) # names_pre = mean_only_names + var_only_names X_pre = loc_tot names_pre = mean_only_names f_reg.create_dataset('featurenames_%s' % par, data=names_pre) X, names = get_poly(X_pre, names_pre) print "# deg1 features: " + str(len(names_pre)) print "# higher deg features: " + str(len(names)) """perform the pearson correlation""" pvec, names_f, support, indxv = optimal_set(X[iscal, :], response_tot[iscal], names) f_reg.create_dataset('scores_%s' % par, data=pvec) f_reg.create_dataset('indxsel_%s' % par, data=indxv) """select the most highly correlated features""" Xp = X[:, indxv] # import matplotlib.pyplot as plt # plt.plot(np.arange(pvec.size), np.abs(pvec)) # plt.show() msg = "\ntop 20 scoring features" rr.WP(msg, C['wrt_file']) for ii in xrange(20): msg = "%s: %s" % (names_f[ii], pvec[ii]) rr.WP(msg, C['wrt_file']) """create and evaluate the final linkages""" meanc = np.abs(response_tot[iscal]).mean() for ii in xrange(C['fmax']): coef, RpredCV, Rpred = analysis(Xp[:, :(ii+1)], response_tot, groups, iscal) coef_set[ii, :] = 0 coef_set[ii, :(ii+1)] = coef RpredCV_set[ii, :] = RpredCV Rpred_set[ii, :] = Rpred err = np.mean(np.abs(RpredCV - response_tot[iscal]))/meanc msg = "%s features: cv.mean(): %s" % (str(ii+1), str(err)) rr.WP(msg, C['wrt_file']) f_reg.close() timeE = np.round(time.time()-st, 1) msg = "regressions and cross-validations completed: %s s" % timeE rr.WP(msg, C['wrt_file']) if __name__ == '__main__': par = 'mu' linkage(par)
cfcf4c4c948d02a6254d41f9f56773077bb97583
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/59/usersdata/201/47100/submittedfiles/testes.py
ffc9bae8827fb40a5106a1cf09f62f630d98ad23
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
288
py
# -*- coding: utf-8 -*- #COMECE AQUI ABAIXO r=float(input('Quanto ganha por hora:')) h=float(input('Horas trabalhadas no mês:')) t=r*t print('%.2f' %t) inss=0.08: i=inss*t print('Desconto do INSS:' '%.2f' %i) sind=0.05: j=sind*t print('Desconto do sindicato:' '%.2f' %j)
c2db9fed8d3d7953430514b58aa47a57e52a59f2
6acea1c5206052393beb5cba132f40e55b637c11
/doc_curation/scraping/misc_sites/iitk.py
6df37d4e6779f4afcd0c5073d46022a249314662
[ "MIT" ]
permissive
sanskrit-coders/doc_curation
a44afacf68d1711bcebd02c97b30a42b6d82bccc
db330393d3df052c008811f4b442421900e5fa84
refs/heads/master
2023-08-27T09:41:22.784001
2023-08-11T05:40:46
2023-08-11T05:40:46
157,027,340
8
4
MIT
2022-12-08T08:26:49
2018-11-10T22:32:26
Python
UTF-8
Python
false
false
880
py
import logging import regex from doc_curation.scraping.html_scraper import souper from indic_transliteration import sanscript def dump_item(item_url, outfile_path, title_maker): logging.info(item_url) def html_fixer(soup): souper.tag_replacer(soup=soup, css_selector="table", tag_name="div") souper.element_remover(soup=soup, css_selector="div.view-filters") def md_fixer(md): md = md.replace("।।", " ॥ ") # md = md.replace(".", " - ") md = md.replace(":", "ः") md = md.replace("\n \n", "\n\n") md = regex.sub("\n{3, 13}", "\n\n", md) md = sanscript.transliterate(md, sanscript.IAST, sanscript.DEVANAGARI) return md souper.dump_text_from_element(url=item_url, outfile_path=outfile_path, text_css_selector="div.content", title_maker=title_maker, title_prefix="", html_fixer=html_fixer, md_fixer=md_fixer, dry_run=False)
ccaa8331ba45c7e092821f902d34302c3be64a4b
af4abf0a22db1cebae466c56b45da2f36f02f323
/storage/team10/lib/Hash.py
c028a52b082c52b9030bc406caef42c3faf20994
[ "MIT" ]
permissive
joorgej/tytus
0c29408c09a021781bd3087f419420a62194d726
004efe1d73b58b4b8168f32e01b17d7d8a333a69
refs/heads/main
2023-02-17T14:00:00.571200
2021-01-09T00:48:47
2021-01-09T00:48:47
322,429,634
3
0
MIT
2021-01-09T00:40:50
2020-12-17T22:40:05
Python
UTF-8
Python
false
false
12,784
py
from Node import Node from graphviz import Digraph class TablaHash: def __init__(self, size, name, nCols): self.id = 0 self.Size = size-1 self.name = name self.contadorNodo = 0 self.nCols = nCols self.genericId = -1 self.pk = None self.values = [None]*self.Size self.inrehashing = False def getName(self): return self.name def setName(self, name): self.name = name def getSize(self): return self.Size def setSize(self, n): self.Size = n def getNodo(self): return self.values #dato sera de tipo nodo def setNodo(self, nodo): self.values = nodo def alterAddPK(self, indices): for i in indices: try: int(i) except: return 1 if i not in range(0, self.nCols): return 5 if len(indices) <= self.nCols: if not self.pk: return self.recalculateKey(self.pk, indices) # return 0 else: # print("No se puede poner otra PK") return 4 else: return 5 def toASCII(self, cadena): result = "" aux = 0 comma = 0 for char in cadena: if char != ",": result += str(ord(char)) else: comma += int(ord(char)) aux = int(result) + comma result = str(aux) return int(result) def funcionHash(self, dato, flag = False): if isinstance(dato, list): lenDato = 0 res = "" if flag: for key in self.pk: res += str(dato[key]) + "," else: for key in dato: res += str(key) + "," lenDato = self.toASCII(res) return (int(lenDato % self.Size),lenDato) #cambie aqui para poder obtener la posicion en el arreglo (posicion hash, posicion en arreglo) def insertIntoArray(self, dato, posicion_hash, key): bandera = self.verificarDato(key, posicion_hash) if self.values[posicion_hash] is not None: if bandera: nuevo_dato = self.values[posicion_hash] nuevo_dato.insert(dato, key) self.contadorNodo +=1 return 0 else: return 4 else: nuevo_dato = Node() if self.pk: nuevo_dato.pk = self.pk else: nuevo_dato.pk = self.genericId nuevo_dato.isGeneric = True nuevo_dato.insert(dato,key) nuevo_dato.key = posicion_hash self.values[posicion_hash] = nuevo_dato self.contadorNodo +=1 return 0 def insert(self, dato): if not self.inrehashing: self.rehashing() if isinstance(dato, list): if len(dato) == self.nCols: if self.pk: # Recorre las anteriores buscando su llave primaria # for node in self.values: # if node is not None and node.isGeneric: # self.recalculateKey(node) # node.isGeneric = False posicion_hash = self.funcionHash(dato, True) return self.insertIntoArray(dato, posicion_hash[0], posicion_hash[1]) #aqui manda las dos llaves else: posicion_hash = int(self.genericId % self.Size) self.genericId += 1 return self.insertIntoArrayCSV(dato, posicion_hash, self.genericId) else: return 5 else: return 1 def insertCSV(self, dato): if self.inrehashing: self.rehashing() if self.pk: posicion_hash = self.funcionHash(dato, True) return self.insertIntoArrayCSV(dato, posicion_hash[0], posicion_hash[1]) #aqui manda las dos llaves else: posicion_hash = int(self.genericId % self.Size) self.genericId += 1 return self.insertIntoArrayCSV(dato, posicion_hash, self.genericId) def insertIntoArrayCSV(self, dato, posicion_hash, key): bandera = self.verificarDato(key, posicion_hash) if self.values[posicion_hash] is not None: if bandera: nuevo_dato = self.values[posicion_hash] nuevo_dato.insert(dato, key) self.contadorNodo +=1 return 0 else: return 4 else: nuevo_dato = Node() if self.pk: nuevo_dato.pk = self.pk else: nuevo_dato.pk = self.genericId nuevo_dato.isGeneric = True nuevo_dato.insert(dato,key) nuevo_dato.key = posicion_hash self.values[posicion_hash] = nuevo_dato self.contadorNodo +=1 return 0 def recalculateKey(self, newPk, indices): listCol = [] data = [] ids = [] for node in self.values: if node is not None: for n in node.array: d = n[1] data.append(d) key = "" # ids = n[1][0] # for i in n[1]: for j in indices: ids = n[1][j] key += str(ids) listCol.append(key) if listCol.count(key) > 1: return 1 else: continue # lista = self.values.copy() self.values.clear() self.values = [None]*self.Size self.pk = indices for d in data: self.insert(d) def truncate(self): try: self.values.clear() return 0 except: return 1 def editar(self, columna, modificacion, key): posicion_hash = self.funcionHash(key) nodo = self.values[posicion_hash[0]] if nodo: if columna not in self.pk: respuesta = nodo.modificar(columna,modificacion,posicion_hash[1]) else: return 4 if respuesta == 0: return 0 elif respuesta == 4: return 4 else: return 1 else: return 4 def ElementosEn_tbl(self): auxiliar = 0 for nodo in self.values: if nodo is not None: auxiliar +=1 return auxiliar def rehashing(self): factorAgregado = int(self.Size * 0.75) if self.contadorNodo >= factorAgregado: estoy_en_rehashing = True self.setSize( int(self.Size*4)) self.inrehashing =True arrayAuxiliar = self.values[:] self.values.clear() self.values = [None]*self.Size lista = [tupla for nodo in arrayAuxiliar if nodo is not None for tupla in nodo.array] for j in lista: self.insert(j[1]) arrayAuxiliar.clear() self.inrehashing = False def verificarDato(self, key, position): aux_bol = False if self.values[position] is not None: if not self.values[position].buscarDato_binary(key): aux_bol = True return aux_bol def eliminarDato(self, dato): posicion_hash = self.funcionHash(dato) nodo_hash = self.values[posicion_hash[0]] if nodo_hash: if nodo_hash.eliminar(posicion_hash[1]): return 0 elif nodo_hash.eliminar(posicion_hash[1]) == 0: return 0 self.values[posicion_hash] = None else: return 1 else: return 4 def printTbl(self): if self.values: for i in self.values: if i and (len(i.array) > 0): print(str(i.key) + " | " + str(i.array) + "\n") else: return "vacio" def buscar(self, dato): posicion_hash = self.funcionHash(dato) nodo = self.values[posicion_hash[0]] if nodo is not None: return nodo.busquedaB(posicion_hash[1]) else: return [] def printlistTbl(self): listTbl=[] if self.values: for i in self.values: if i : new = str(i.key) + " | " + str(i.array).replace('[','') new2 = new.replace(']','') listTbl.append(new2) else: print("vacio") return listTbl def imp1(self,columnNumber,lower,upper): ##Modificando este metodo listCol=[] for nodo in self.values: if nodo is not None: #print(nodo.array) if len(nodo.array)>1: for subnodo in nodo.array: val = nodo.imp_column(subnodo[1],columnNumber,lower,upper) ## if val != None: listCol.append(val) else: val = nodo.imp_column2(columnNumber,lower,upper) ## if val != None: listCol.append(val) return listCol # agrega la nueva columna y asigna el valor def alterAddColumn(self, dato): if dato == []: return 1 else: self.nCols += 1 for i in self.values: if i : i.alterAddColumn(dato) return 0 #19/12/2020 def getNumeroColumnas(self): return self.nCols def alterDropColumn(self, columnNumber): if columnNumber in range(0, self.nCols): if columnNumber <= self.nCols: flag = False if self.pk: for key in self.pk: if columnNumber == key: return 4 pass for i in self.values: if i and len(i.array) > 1: for j in i.array: flag = True j[1].pop(columnNumber) pass pass if flag: newKeys = [] if self.pk: for key in self.pk: if (key > columnNumber) and (key != 0): key -= 1 newKeys.append(key) self.nCols -= 1 self.pk = None self.alterAddPK(newKeys) return 0 else: return 4 else: return 4 else: return 5 def alterDropPK(self): if not self.pk: return 4 else: self.pk = None for i in self.values: if i: i.isGeneric = True return 0 #output_size = [ 4024,4024] def genGraph(self, name): f = Digraph("structs" , filename = name+".gv" , format = "svg", node_attr={'shape' : 'record', } ) f.attr(rankdir='LR') f.graph_attr['overlap']= 'false' f.graph_attr['splines']= 'true' hashTB = '' contador = 0 for i in self.values: if i: hashTB += '<f' + str(contador) +'>' + str(i.key)+ '|' contador +=1 hashTB = hashTB[0: len(hashTB)-1] f.node('hash', hashTB,**{'height':str(50)}) datos = "{<n>" for j in self.values: count = 0 if j: for i in j.array: for k in i[1]: datos += str(k) +"|" datos+="<p>}" with f.subgraph(name=str(j.key)+","+str(count) ) as a: a.node("node" +str(j.key)+str(count),datos) datos="{<n>" count +=1 n = 0 for j in self.values: m = 0 if j: f.edges([("hash:f"+str(n), "node" +str(j.key)+str(0)+":n")]) for i in j.array: if m+1 < len(j.array): f.edges([("node" +str(j.key)+str(m)+":p", ("node"+str(j.key)+str(m+1)+":n" ))]) m+=1 n+=1 f.view()
f72b255f1a70060f3fae7db94812b435d5bb8b2d
818e5e78f84596a7c086b218fd4aa9e8ea912afe
/hackatons/materials/algo/source/T5_LinearStructure/P2_Queue/counter_game_deq.py
d78087eb4b0f2a733e40cb405b86b2885f5e47e4
[]
no_license
davendiy/forpythonanywhere
44fbc63651309598b58391667f0fead40e8fad91
1b9292ca33b06b17cd516e4e9913479edb6d35cd
refs/heads/master
2020-08-10T04:24:02.665635
2019-10-25T07:05:46
2019-10-25T07:05:46
214,255,096
0
0
null
null
null
null
UTF-8
Python
false
false
1,193
py
#Лічилка з використанням деку from source.T5_LinearStructure.P2_Queue.counter_game import Player from source.T5_LinearStructure.P2_Queue.Deque import Deque def count_counter(): """ Функція розв'язує задачу "лічилка" """ d = Deque() # створити дек d n = int(input('Кількість гравців: ')) m = int(input('Кількість слів: ')) for i in range(n): pl = Player(i+1) # створити гравця з номером на 1 більше i d.append(pl) # додати гравця у кінець деку print('\nПослідовність номерів, що вибувають') while not d.empty(): for i in range(m-1): # m-1 раз перекласти гравця з початку до кінця деку d.append(d.popleft()) pl = d.popleft() # узяти m-го гравця з початку деку print(pl) # та показати його номер count_counter()
8333137c128e54828c5eee264b4aee1b358fa310
f0a1a85e8cae69144ce304d4c91b53b8f8cf5116
/mysite/blog/models.py
6bc8deb3e116bb18d028e1c31219e4e91c1c6bb9
[ "MIT" ]
permissive
ohduran-attempts/by-example
0a96b59cf41e3c955e8e744b0604c909168fd998
a56385c169d426090970f3f481d15fec50a9c603
refs/heads/master
2020-04-22T16:41:53.512719
2019-02-15T07:32:51
2019-02-15T07:32:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,995
py
from common.models import TimeStamped from django.conf import settings from django.db import models from django.urls import reverse_lazy from django.utils import timezone from taggit.managers import TaggableManager class PublishedManager(models.Manager): def get_queryset(self): return super().get_queryset().filter(status='published') class Post(TimeStamped, models.Model): STATUS_CHOICES_TPL = ( ('draft', 'Draft'), ('published', 'Published'), ) objects = models.Manager() published = PublishedManager() tags = TaggableManager() title = models.CharField(max_length=250) slug = models.SlugField(max_length=250, unique_for_date='publish') author = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='blog_posts') body = models.TextField() publish = models.DateTimeField(default=timezone.now) status = models.CharField(max_length=10, choices=STATUS_CHOICES_TPL, default='draft') class Meta: ordering = ('-publish',) def __str__(self): return self.title def get_absolute_url(self): return reverse_lazy('blog:post_detail', args=[self.publish.year, self.publish.month, self.publish.day, self.slug]) class Comment(TimeStamped, models.Model): post = models.ForeignKey(Post, on_delete=models.CASCADE, related_name='comments') name = models.CharField(max_length=80) email = models.EmailField() body = models.TextField() active = models.BooleanField(default=True) class Meta: ordering = ('created',) def __str__(self): return f"Comment by {self.name} on {self.post}"
a25581851ebc08774e92788b3f4f132d9410d65a
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/built-in/cv/detection/SSD_for_PyTorch/configs/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco.py
21f9a34973365b59715f06155431771e0ff8f61e
[ "Apache-2.0", "GPL-1.0-or-later", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
1,112
py
# Copyright 2022 Huawei Technologies Co., Ltd. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. _base_ = './mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py' model = dict( backbone=dict( type='RegNet', arch='regnetx_8.0gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_8.0gf')), neck=dict( type='FPN', in_channels=[80, 240, 720, 1920], out_channels=256, num_outs=5))
bffe3775877350a0d53f049549cc6499bd1d2cee
36901e58fbdeabc7380ae2c0278010b2c51fe54d
/gatheros_subscription/urls/me.py
4823370a6d4c79d1b4002d326f190346c0136ed1
[]
no_license
hugoseabra/congressy
e7c43408cea86ce56e3138d8ee9231d838228959
ac1e9b941f1fac8b7a13dee8a41982716095d3db
refs/heads/master
2023-07-07T04:44:26.424590
2021-08-11T15:47:02
2021-08-11T15:47:02
395,027,819
0
0
null
null
null
null
UTF-8
Python
false
false
269
py
from django.conf.urls import include, url from gatheros_subscription import views urls = [ url( r'^subscriptions/$', views.MySubscriptionsListView.as_view(), name='my-subscriptions' ), ] urlpatterns_me = [url(r'^me/', include(urls))]
070fc92166fd5c5e64836d1cf9676f441f1cdd5c
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_6404600001200128_1/Python/ihadanny/r1_p1.py
f67fc6f333dd5df96ae47855e77a0df26307669e
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
412
py
from sys import stdin import re import operator import bisect import sys import random cases = int(stdin.next().strip()) for case in range(1, cases+1): N = int(stdin.next().strip()) M = map(int, stdin.next().split()) drops = [max(i-j,0) for i, j in zip(M[:-1], M[1:])] max_eaten = [min(max(drops), x) for x in M[:-1]] print 'Case #%d: %d %d' % (case, sum(drops), sum(max_eaten))
81370fb27ca8ee771d8333b297381817241fd383
9193e2743434893c76e45b85a6a2ebcef71e8e2d
/ch03/ans27.py
7e4795a48c12edf941443c284fa07ea89d030dc3
[]
no_license
kyodocn/nlp100v2020
d4f06a0eb089d7f056aa00817f79199fb4edfed2
99c66511352092a0f4c5028b1f440e09d6401331
refs/heads/master
2022-04-15T02:43:12.003780
2020-04-13T18:41:15
2020-04-13T18:41:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
741
py
import re import pandas as pd df = pd.read_json('ch03/jawiki-country.json.gz', lines=True) ukText = df.query('title=="イギリス"')['text'].values ls, fg = [], False template = '基礎情報' p1 = re.compile('\{\{' + template) p2 = re.compile('\}\}') p3 = re.compile('\|') p4 = re.compile('<ref(\s|>).+?(</ref>|$)') for l in ukText[0].split('\n'): if fg: ml = [p2.match(l), p3.match(l)] if ml[0]: break if ml[1]: ls.append(p4.sub('', l.strip())) if p1.match(l): fg = True p = re.compile('\|(.+?)\s=\s(.+)') ans = {m.group(1): m.group(2) for m in [p.match(c) for c in ls]} r = re.compile('\[\[(.+\||)(.+?)\]\]') ans = {k: r.sub(r'\2', v) for k, v in ans.items()} print(ans)
a2111854ac54c26359b72bf65a3d4e34aa50b31e
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/EYojuPCtvSzF2chkZ_1.py
d247c0967894694c7c4e84c2701804484f99a9dd
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
576
py
""" Create a function that returns the selected **filename** from a path. Include the **extension** in your answer. ### Examples get_filename("C:/Projects/pil_tests/ascii/edabit.txt") ➞ "edabit.txt" get_filename("C:/Users/johnsmith/Music/Beethoven_5.mp3") ➞ "Beethoven_5.mp3" get_filename("ffprobe.exe") ➞ "ffprobe.exe" ### Notes * Tests will include both absolute and relative paths. * For simplicity, all paths will include forward slashes. """ from pathlib import PurePath ​ def get_filename(path): return PurePath(path).name
fde97c8249d30b9f96310f9a0f91c45db0dcdc11
4fe971fdd0fb1d87b2bfaa5fe4b249b121501836
/vignewton/managers/admin/images.py
a76a68be13c22e69ecf041c2f50c32321f7ec221
[ "Unlicense" ]
permissive
umeboshi2/vignewton
709c3395b74951385d1d3f9a932e4e6a6c1e0350
bf55f90a25ae616e003ff0f71643dbe5084e924f
refs/heads/master
2021-01-20T13:47:26.052679
2013-10-25T18:36:29
2013-10-25T18:36:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,186
py
from cStringIO import StringIO from datetime import datetime import transaction from PIL import Image from vignewton.models.sitecontent import SiteImage class ImageManager(object): def __init__(self, session): self.session = session self.thumbnail_size = 128, 128 def images_query(self): return self.session.query(SiteImage) def make_thumbnail(self, content): imgfile = StringIO(content) img = Image.open(imgfile) img.thumbnail(self.thumbnail_size, Image.ANTIALIAS) outfile = StringIO() img.save(outfile, 'JPEG') outfile.seek(0) thumbnail_content = outfile.read() return thumbnail_content def add_image(self, name, fileobj): content = fileobj.read() with transaction.manager: image = SiteImage(name, content) image.thumbnail = self.make_thumbnail(content) self.session.add(image) return self.session.merge(image) def delete_image(self, id): with transaction.manager: image = self.session.query(SiteImage).get(id) self.session.delete(image)
9f77e916c511b53114f58ea7fa8a56b79e0034a7
7a8bb4c1de15f987e3231590eae74c051bf33726
/SJVA_Scanner_KoreaTV_Download.py
6a40cfa985904b82d46ef3644e0cc39210ea8b19
[]
no_license
sunyruru/SJVA-Scanners
cbe6efa56be4c74a96059a91b32b60ff2ba4f3b6
5028c8c4aa58d4514f77ab46f3155f288c64b6f5
refs/heads/master
2020-04-21T13:40:04.306951
2019-01-28T08:21:35
2019-01-28T08:21:35
169,606,889
2
0
null
2019-02-07T16:53:39
2019-02-07T16:53:39
null
UTF-8
Python
false
false
3,916
py
# -*- coding: UTF-8 -*- import sys reload(sys) sys.setdefaultencoding('utf-8') import re, os, os.path import Media, VideoFiles, Stack, Utils import time, json, traceback, io episode_regexps = [ r'(?P<show>.*?)[\s\.]E?(?P<ep>\d{1,2})[\-\~]E?\d{1,2}', #합본 걸리게 r'(?P<show>.*?)[eE](?P<ep>[0-9]{1,4})' ] date_regexps = [ r'(?P<show>.*?)[^0-9a-zA-Z](?P<year>[0-9]{2})(?P<month>[0-9]{2})(?P<day>[0-9]{2})[^0-9a-zA-Z]', # 6자리 ] try: import logging import logging.handlers logger = logging.getLogger('sjva_scanner') logger.setLevel(logging.ERROR) formatter = logging.Formatter(u'[%(asctime)s|%(lineno)s]:%(message)s') #file_max_bytes = 10 * 1024 * 1024 filename = os.path.join(os.path.dirname( os.path.abspath( __file__ ) ), '../../', 'Logs', 'sjva.scanner.korea.tv.download.log') fileHandler = logging.FileHandler(filename, encoding='utf8') #fileHandler = logging.handlers.RotatingFileHandler(filename=filename), maxBytes=file_max_bytes, backupCount=5, encoding='euc-kr') fileHandler.setFormatter(formatter) logger.addHandler(fileHandler) except: pass def Scan(path, files, mediaList, subdirs, language=None, root=None): VideoFiles.Scan(path, files, mediaList, subdirs, root) paths = Utils.SplitPath(path) shouldStack = True logger.debug('=====================================================') logger.debug('- path:%s' % path) logger.debug('- files count:%s' % len(files)) logger.debug('- subdir count:%s' % len(subdirs)) for _ in subdirs: logger.debug(' * %s' % _) if len(paths) != 0: logger.debug('- paths[0] : %s' % paths[0]) logger.debug('- files count : %s', len(files)) for i in files: tempDone = False try: file = os.path.basename(i) logger.debug(' * FILE : %s' % file) #for idx, rx in enumerate(episode_regexps): for rx in episode_regexps: match = re.search(rx, file, re.IGNORECASE) if match: show = match.group('show').replace('.', '') if match.groupdict().has_key('show') else '' season = 1 episode = int(match.group('ep')) name, year = VideoFiles.CleanName(show) name = re.sub(r'((.*?기획)|(미니시리즈)|(.*?드라마)|(.*?특집))', '', name).strip() logger.debug(' - MATCH show:[%s] name:[%s] episode:[%s] year:[%s]', show, name, episode, year) if len(name) > 0: tv_show = Media.Episode(name, season, episode, '', year) tv_show.display_offset = 0 tv_show.parts.append(i) mediaList.append(tv_show) logger.debug(' - APPEND by episode: %s' % tv_show) tempDone = True break if tempDone == False: for rx in date_regexps: match = re.search(rx, file) if match: year = int(match.group('year')) + 2000 month = int(match.group('month')) day = int(match.group('day')) show = match.group('show') tv_show = Media.Episode(show, year, None, None, None) tv_show.released_at = '%d-%02d-%02d' % (year, month, day) tv_show.parts.append(i) mediaList.append(tv_show) logger.debug(' - APPEND by date: %s' % tv_show) tempDone = True break if tempDone == False: logger.error(' NOT APPEND!!') except Exception, e: logger.error(e) if shouldStack: Stack.Scan(path, files, mediaList, subdirs)
9e0ed93c65839146d4639537314916ed89f2de42
cdd5c3238ba9feba53f95a04c247a846b15ecd09
/code/client/munkilib/updatecheck/unused_software.py
6c770cb491ffacf602e09ea131244321d63ffc2c
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
munki/munki
13d786513f8fd5dba6f533bfbea76d28c4836d8e
d3c9eb4ffccd280fe3e4bbce9544171cb6c2cc80
refs/heads/main
2023-08-27T23:19:04.095339
2023-08-01T23:44:10
2023-08-01T23:44:10
24,219,473
2,890
474
NOASSERTION
2023-08-22T15:15:44
2014-09-19T06:51:32
Python
UTF-8
Python
false
false
5,577
py
# encoding: utf-8 # # Copyright 2017-2023 Greg Neagle. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ updatecheck.unused_software Created by Greg Neagle on 2017-02-18. Functions for removing unused optional install items """ from __future__ import absolute_import, print_function # Apple frameworks via PyObjC # PyLint cannot properly find names inside Cocoa libraries, so issues bogus # No name 'Foo' in module 'Bar' warnings. Disable them. # pylint: disable=E0611 from AppKit import NSWorkspace # pylint: enable=E0611 # our libs from .. import app_usage from .. import display def bundleid_is_running(app_bundleid): '''Returns a boolean indicating if the application with the given bundleid is currently running.''' workspace = NSWorkspace.sharedWorkspace() running_apps = workspace.runningApplications() for app in running_apps: if app.bundleIdentifier() == app_bundleid: return True return False def bundleids_from_installs_list(pkginfo_pl): '''Extracts a list of application bundle_ids from the installs list of a pkginfo item''' installs_list = pkginfo_pl.get('installs', []) bundle_ids = [item.get('CFBundleIdentifier') for item in installs_list if (item.get('CFBundleIdentifier') and item.get('type') == 'application' or (item.get('type') == 'bundle' and item.get('path', '').endswith('.app')))] return bundle_ids def should_be_removed(item_pl): """Determines if an optional install item should be removed due to lack of use. Returns a boolean.""" name = item_pl['name'] removal_info = item_pl.get('unused_software_removal_info') # do we have unused_software_removal_info? if not removal_info: return False display.display_debug1( '\tChecking to see if %s should be removed due to lack of use...', name) try: removal_days = int(removal_info.get('removal_days', 0)) if removal_days < 1: raise ValueError except ValueError: display.display_warning('Invalid removal_days: %s for item %s' % (removal_info.get('removal_days'), name)) return False display.display_debug1( '\t\tNumber of days until removal is %s', removal_days) usage = app_usage.ApplicationUsageQuery() usage_data_days = usage.days_of_data() if usage_data_days is None or usage_data_days < removal_days: # we don't have usage data old enough to judge display.display_debug1( '\t\tApplication usage data covers fewer than %s days.', removal_days) return False # check to see if we have an install request within the removal_days days_since_install_request = usage.days_since_last_install_event( 'install', name) if (days_since_install_request is not None and days_since_install_request != -1 and days_since_install_request <= removal_days): display.display_debug1('\t\t%s had an install request %s days ago.', name, days_since_install_request) return False # get list of application bundle_ids to check if 'bundle_ids' in removal_info: bundle_ids = removal_info['bundle_ids'] else: # get application bundle_ids from installs list bundle_ids = bundleids_from_installs_list(item_pl) if not bundle_ids: display.display_debug1('\\tNo application bundle_ids to check.') return False # now check each bundleid to see if it's currently running or has been # activated in the past removal_days days display.display_debug1('\t\tChecking bundle_ids: %s', bundle_ids) for bundle_id in bundle_ids: if bundleid_is_running(bundle_id): display.display_debug1( '\t\tApplication %s is currently running.' % bundle_id) return False days_since_last_activation = usage.days_since_last_usage_event( 'activate', bundle_id) if days_since_last_activation == -1: display.display_debug1( '\t\t%s has not been activated in more than %s days...', bundle_id, usage.days_of_data()) elif days_since_last_activation <= removal_days: display.display_debug1('\t\t%s was last activated %s days ago', bundle_id, days_since_last_activation) return False else: display.display_debug1('\t\t%s was last activated %s days ago', bundle_id, days_since_last_activation) # if we get this far we must not have found any apps used in the past # removal_days days, so we should set up a removal display.display_info('Will add %s to the removal list since it has been ' 'unused for at least %s days...', name, removal_days) return True if __name__ == '__main__': print('This is a library of support tools for the Munki Suite.')
7942255ce3e00ae3769a7cdbbb8edc73fc986e87
6b1cac18b81a4704c310fb30a30e2906c6137511
/onepanman_api/views/api/notice.py
26a0a1f3a0327c3e7ae9f34146fc170cb14d8ea3
[ "MIT" ]
permissive
Capstone-onepanman/api-server
973c73a4472637e5863d65ae90ec53db83aeedf7
1a5174fbc441d2718f3963863590f634ba2014e1
refs/heads/master
2022-12-09T22:43:23.720837
2020-03-20T00:43:21
2020-03-20T00:43:21
234,227,137
0
0
MIT
2022-12-08T02:37:19
2020-01-16T03:29:36
Python
UTF-8
Python
false
false
247
py
from rest_framework import viewsets from onepanman_api.models import Notice from onepanman_api.serializers.notice import NoticeSerializer class NoticeViewSet(viewsets.ModelViewSet): queryset = Notice serializer_class = NoticeSerializer
87be5e5ab69a0137437df7340bd28ac0c71105e1
88994e2e840a70ec702cee09e1a13813aa6f800c
/cg/constants/backup.py
16d3c41653d24f57dbede48641c08572ba634d6f
[]
no_license
Clinical-Genomics/cg
1e9eb0852f742d555a48e8696914ebe177f7d436
d2ec6d25b577dd6938bbf92317aeff1d6b3c5b08
refs/heads/master
2023-09-01T02:04:04.229120
2023-08-31T13:50:31
2023-08-31T13:50:31
82,567,026
19
8
null
2023-09-14T15:24:13
2017-02-20T14:29:43
Python
UTF-8
Python
false
false
35
py
MAX_PROCESSING_FLOW_CELLS: int = 1
dd17276b517f0934344b4de656f26eca45e56c03
df9b342f71cee4306c52ee5e29d105f8712d7439
/BOJ/하노이탑/다른사람.py
b447ae5dea94644e425cae796590c5652794ad21
[]
no_license
qkreltms/problem-solvings
a3fbd93d5664830761c70ef6a476e94ada399af0
cade3fc738c0b7b40ae4bf0385fdd552313ad5a1
refs/heads/master
2023-07-19T08:17:48.580833
2021-08-31T08:45:57
2021-08-31T08:45:57
136,621,853
2
0
null
null
null
null
UTF-8
Python
false
false
187
py
def f(n, a, b, c): if(n == 1): print(a, c, sep = " ") else: f(n-1, a, c, b) f(1, a, b, c) f(n-1, b, a, c) n = int(input()) print(2**n-1) if(n <= 20): f(n, 1, 2, 3)