blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
e06edc9ef4206d01ba268cd77e82b51af3988588
00f3468d8917ac0c1b4df8b4dc50e82c0d9be3fa
/seqsfromfasta.py
f7aa0be287db92eee1959c13a03c700c3416c9e7
[]
no_license
berkeleyphylogenomics/BPG_utilities
4e332bb401b8c057502a1a0a1d532396bfff9542
bbf5df137a0a459598c3f9073d80f0086e5f7550
refs/heads/master
2021-01-01T19:21:13.740575
2014-11-05T18:40:31
2014-11-05T18:40:31
24,867,074
1
0
null
null
null
null
UTF-8
Python
false
false
572
py
#!/usr/bin/env python from Bio import SeqIO def seqpull(h, *args): #should use 'any' in py > 2.3 return ''.join([seq.format('fasta') for seq in SeqIO.parse(h,'fasta') \ if sum([seq.id.count(arg) for arg in args])]) if __name__ == '__main__': import sys if len(sys.argv) < 3: print "%s: get sequences from a fasta file by substring in defline" \ % sys.argv[0] print "USAGE: %s <multiple fasta file> [keywords]" % sys.argv[0] else: h = open(sys.argv[1]) print seqpull(h,*sys.argv[2:]) h.close()
0de765120183e963c96ef35cf7a5098d79f772b4
21e5825959a886787a3915ff0d3efa86d9cd3702
/combat/finishers/impale.py
7b32166eb2c800a2409971f38f6bb0c6ea4ef7f5
[ "MIT" ]
permissive
ChrisLR/Python-Roguelike-Template
e0df37752907377e606197f2469fda61202129d5
9b63742b0111c7e9456fb98a96a3cd28d41a1e10
refs/heads/master
2021-06-26T07:48:39.215338
2017-09-14T21:46:08
2017-09-14T21:46:08
69,761,175
0
0
null
2017-09-14T21:46:09
2016-10-01T20:09:24
Python
UTF-8
Python
false
false
2,188
py
from combat.enums import DamageType from combat.finishers.base import Finisher from echo import functions from util import gridhelpers class Impale(Finisher): name = "Impale" description = "Impale your enemy with a slashing or piercing weapon." attacker_message = "You impale {defender}'s {defender_bodypart} with your {attacker_weapon}" observer_message = "{attacker} impales {defender} {defender_bodypart} with {attacker_his} {attacker_weapon}" @classmethod def evaluate(cls, attack_result): if attack_result.context.distance_to <= 1: attacker_weapon = attack_result.context.attacker_weapon if attacker_weapon and hasattr(attacker_weapon, 'weapon'): weapon_component = attacker_weapon.weapon if weapon_component: if weapon_component.melee_damage_type in (DamageType.Pierce, DamageType.Slash): return True return False @classmethod def execute(cls, attack_result): return cls.get_message(attack_result) @classmethod def get_message(cls, attack_result): attacker = attack_result.context.attacker defender = attack_result.context.defender attacker_weapon = attack_result.context.attacker_weapon if attacker.is_player: message = cls.attacker_message.format( defender=defender.name, defender_bodypart=attack_result.body_part_hit.name, attacker_weapon=attacker_weapon.name, ) else: message = cls.observer_message.format( attacker=functions.get_name_or_string(attacker), defender=functions.names_or_your(defender), defender_bodypart=attack_result.body_part_hit.name, attacker_his=functions.his_her_it(attacker), attacker_weapon=attacker_weapon.name ) if defender.body.blood: message += " splashing {blood} behind {defender_him}!!\n".format( blood=defender.body.blood.name, defender_him=functions.him_her_it(defender) ) return message
145ae6eef5a9c9e0b2b158275aa8d8b2b504fd31
58df224689ab08c99359b1a6077d2fba3728dc61
/lamda-ocr/merge-files/borb/pdf/canvas/font/simple_font/true_type_font.py
c0b6112c2b259f0d2c80c3ef2231a518f87ed377
[]
no_license
LIT-Midas/LITHackathon
2b286728c156d79d3f426f6d19b160a2a04690db
7b990483dd48b91cf3ec3452b78ab67770da71af
refs/heads/main
2023-08-13T05:22:59.373965
2021-08-16T01:09:49
2021-08-16T01:09:49
395,024,729
0
1
null
null
null
null
UTF-8
Python
false
false
13,861
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ The TrueType font format was developed by Apple Computer, Inc., and has been adopted as a standard font format for the Microsoft Windows operating system. Specifications for the TrueType font file format are available in Apple’s TrueType Reference Manual and Microsoft’s TrueType 1.0 Font Files Technical Specification (see Bibliography). """ import typing import zlib from decimal import Decimal from pathlib import Path from borb.io.read.types import Decimal as pDecimal from borb.io.read.types import Dictionary, List, Name, Stream, String from borb.pdf.canvas.font.composite_font.cid_font_type_2 import CIDType2Font from borb.pdf.canvas.font.composite_font.font_type_0 import Type0Font from borb.pdf.canvas.font.simple_font.font_type_1 import Type1Font from fontTools.agl import toUnicode # type: ignore [import] from fontTools.pens.boundsPen import BoundsPen # type: ignore [import] from fontTools.ttLib import TTFont # type: ignore [import] class TrueTypeFont(Type1Font): """ A TrueType font dictionary may contain the same entries as a Type 1 font dictionary (see Table 111), with these differences: • The value of Subtype shall be TrueType. • The value of Encoding is subject to limitations that are described in 9.6.6, "Character Encoding". • The value of BaseFont is derived differently. The PostScript name for the value of BaseFont may be determined in one of two ways: • If the TrueType font program's “name” table contains a PostScript name, it shall be used. • In the absence of such an entry in the “name” table, a PostScript name shall be derived from the name by which the font is known in the host operating system. On a Windows system, the name shall be based on the lfFaceName field in a LOGFONT structure; in the Mac OS, it shall be based on the name of the FOND resource. If the name contains any SPACEs, the SPACEs shall be removed. """ @staticmethod def true_type_font_from_file( path_to_font_file: Path, ) -> typing.Union["TrueTypeFont", "Type0Font"]: """ This function returns the PDF TrueTypeFont object for a given TTF file """ assert path_to_font_file.exists() assert path_to_font_file.name.endswith(".ttf") font_file_bytes: typing.Optional[bytes] = None with open(path_to_font_file, "rb") as ffh: font_file_bytes = ffh.read() assert font_file_bytes # read file ttf_font_file: TTFont = TTFont(path_to_font_file) # read cmap cmap: typing.Optional[typing.Dict[int, str]] = ttf_font_file.getBestCmap() assert cmap is not None cmap_reverse: typing.Dict[str, int] = {} for k, v in cmap.items(): if v in cmap_reverse: cmap_reverse[v] = min(cmap_reverse[v], k) else: cmap_reverse[v] = k glyph_order: typing.List[str] = [ x for x in ttf_font_file.glyphOrder if x in cmap_reverse ] # if there are more than 256 glyphs, we need to switch to a Type0Font if len(glyph_order) >= 256: # fmt: off type_0_font: Type0Font = TrueTypeFont._type_0_font_from_file(ttf_font_file) type_0_font["DescendantFonts"][0]["FontDescriptor"][Name("FontFile2")] = TrueTypeFont._get_font_file_stream(font_file_bytes) return type_0_font # fmt: on # build font font: TrueTypeFont = TrueTypeFont() font_name: str = TrueTypeFont._get_base_font(ttf_font_file) font[Name("Name")] = Name(font_name) font[Name("BaseFont")] = Name(font_name) # build widths units_per_em: pDecimal = pDecimal(ttf_font_file["head"].unitsPerEm) if cmap is not None: font[Name("FirstChar")] = pDecimal(0) font[Name("LastChar")] = pDecimal(len(glyph_order)) font[Name("Widths")] = List() for glyph_name in glyph_order: w: typing.Union[pDecimal, Decimal] = ( pDecimal(ttf_font_file.getGlyphSet()[glyph_name].width) / units_per_em ) * Decimal(1000) w = pDecimal(round(w, 2)) font["Widths"].append(w) assert font[Name("FirstChar")] >= 0 assert ( font[Name("LastChar")] < 256 ), "TrueType fonts with more than 256 glyphs are currently not supported." font[Name("FontDescriptor")] = TrueTypeFont._get_font_descriptor(ttf_font_file) font[Name("Encoding")] = Dictionary() font["Encoding"][Name("BaseEncoding")] = Name("WinAnsiEncoding") font["Encoding"][Name("Differences")] = List() for i in range(0, len(glyph_order)): font["Encoding"]["Differences"].append(pDecimal(i)) font["Encoding"]["Differences"].append(Name(glyph_order[i])) # embed font file font["FontDescriptor"][Name("FontFile2")] = TrueTypeFont._get_font_file_stream( font_file_bytes ) # return return font @staticmethod def _get_font_file_stream(font_file_bytes: bytes) -> Stream: font_stream: Stream = Stream() font_stream[Name("Type")] = Name("Font") font_stream[Name("Subtype")] = Name("TrueType") font_stream[Name("Length")] = pDecimal(len(font_file_bytes)) font_stream[Name("Length1")] = pDecimal(len(font_file_bytes)) font_stream[Name("Filter")] = Name("FlateDecode") font_stream[Name("DecodedBytes")] = font_file_bytes font_stream[Name("Bytes")] = zlib.compress(font_file_bytes, 9) return font_stream @staticmethod def _get_font_descriptor(ttf_font_file: TTFont) -> Dictionary: # fmt: off font_descriptor: Dictionary = Dictionary() font_descriptor[Name("Type")] = Name("FontDescriptor") font_descriptor[Name("FontName")] = String(TrueTypeFont._get_base_font(ttf_font_file)) font_descriptor[Name("FontStretch")] = Name("Normal") # TODO font_descriptor[Name("FontWeight")] = pDecimal(400) # TODO font_descriptor[Name("Flags")] = pDecimal(4) # TODO # fmt: on # determine FontBBox, CapHeight units_per_em: float = ttf_font_file["head"].unitsPerEm min_x: float = 1000 min_y: float = 1000 max_x: float = 0 max_y: float = 0 cap_height: typing.Optional[pDecimal] = None glyph_set = ttf_font_file.getGlyphSet() for glyph_name in ttf_font_file.glyphOrder: pen = BoundsPen(glyph_set) glyph_set[glyph_name].draw(pen) if pen.bounds is None: continue # determine CapHeight if glyph_name in "EFHIJLMNTZ" and cap_height is None: cap_height = pDecimal(pen.bounds[3]) min_x = min(min_x, pen.bounds[0] / units_per_em * 1000) min_y = min(min_y, pen.bounds[1] / units_per_em * 1000) max_x = max(max_x, pen.bounds[2] / units_per_em * 1000) max_y = max(max_y, pen.bounds[3] / units_per_em * 1000) if cap_height is None: cap_height = pDecimal(840) font_descriptor[Name("FontBBox")] = List().set_can_be_referenced(False) # type: ignore[attr-defined] font_descriptor["FontBBox"].append(pDecimal(min_x)) font_descriptor["FontBBox"].append(pDecimal(min_y)) font_descriptor["FontBBox"].append(pDecimal(max_x)) font_descriptor["FontBBox"].append(pDecimal(max_y)) # fmt: off font_descriptor[Name("ItalicAngle")] = pDecimal(ttf_font_file["post"].italicAngle) font_descriptor[Name("Ascent")] = pDecimal(ttf_font_file["hhea"].ascent / units_per_em * 1000) font_descriptor[Name("Descent")] = pDecimal(ttf_font_file["hhea"].descent / units_per_em * 1000) font_descriptor[Name("CapHeight")] = cap_height font_descriptor[Name("StemV")] = pDecimal(297) # TODO # fmt: on return font_descriptor @staticmethod def _get_base_font(ttf_font_file: TTFont) -> str: font_name: str = str( [ x for x in ttf_font_file["name"].names if x.platformID == 3 and x.platEncID == 1 and x.nameID == 6 ][0].string, "latin1", ) font_name = "".join( [x for x in font_name if x.lower() in "abcdefghijklmnopqrstuvwxyz-"] ) return font_name @staticmethod def _build_custom_cmap(ttf_font_file: TTFont) -> Stream: cmap_prefix: str = """ /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> def /CMapName /Adobe-Identity-UCS def /CMapType 2 def 1 begincodespacerange <0000> <FFFF> endcodespacerange """ # 1 beginbfchar # <0000> <0000> # endbfchar pairs: typing.List[typing.Tuple[str, str]] = [] for i, g in enumerate(ttf_font_file.glyphOrder): g_unicode: str = toUnicode(g) if len(g_unicode) == 0: continue g_hex: str = "" if len(g_unicode) == 1: g_hex = hex(ord(g_unicode))[2:] if len(g_unicode) == 2: g_hex = hex(ord(g_unicode[0]))[2:] + hex(ord(g_unicode[1]))[2:] while len(g_hex) < 4: g_hex = "0" + g_hex i_hex: str = hex(i)[2:] while len(i_hex) < 4: i_hex = "0" + i_hex pairs.append((i_hex, g_hex)) cmap_content: str = "" for i in range(0, len(pairs), 100): start_index: int = i end_index: int = min(start_index + 100, len(pairs)) n: int = end_index - start_index cmap_content += "%d beginbfchar\n" % n for j in range(start_index, end_index): cmap_content += "<%s> <%s>\n" % (pairs[j][0], pairs[j][1]) cmap_content += "endbfchar\n" cmap_suffix: str = """ endcmap CMapName currentdict /CMap defineresource pop end end """ bts: bytes = (cmap_prefix + cmap_content + cmap_suffix).encode("latin1") to_unicode_stream = Stream() to_unicode_stream[Name("DecodedBytes")] = bts to_unicode_stream[Name("Bytes")] = zlib.compress(bts, 9) to_unicode_stream[Name("Filter")] = Name("FlateDecode") to_unicode_stream[Name("Length")] = pDecimal(len(bts)) return to_unicode_stream @staticmethod def _type_0_font_from_file(ttf_font_file: TTFont) -> "Type0Font": type_0_font: Type0Font = Type0Font() # build BaseFont font_name: str = TrueTypeFont._get_base_font(ttf_font_file) type_0_font[Name("BaseFont")] = Name(font_name) # set Encoding type_0_font[Name("Encoding")] = Name("Identity-H") # set ToUnicode type_0_font[Name("ToUnicode")] = TrueTypeFont._build_custom_cmap(ttf_font_file) # build DescendantFont descendant_font: CIDType2Font = CIDType2Font() descendant_font[Name("Type")] = Name("Font") descendant_font[Name("Subtype")] = Name("CIDFontType2") descendant_font[Name("BaseFont")] = Name(font_name) descendant_font[Name("FontDescriptor")] = TrueTypeFont._get_font_descriptor( ttf_font_file ) descendant_font[Name("DW")] = pDecimal(250) # build W array cmap = ttf_font_file["cmap"].getcmap(3, 1).cmap glyph_set = ttf_font_file.getGlyphSet() widths_array: List = List() for cid, g in enumerate(ttf_font_file.glyphOrder): glyph_width: float = 0 try: glyph_width = glyph_set[cmap[ord(toUnicode(g))]].width except: glyph_width = pDecimal(0) # set DW based on the width of a space character if toUnicode(g) == " ": descendant_font[Name("DW")] = pDecimal(glyph_width) widths_array.append(pDecimal(cid)) widths_array.append(List()) widths_array[-1].append(pDecimal(glyph_width)) descendant_font[Name("W")] = widths_array descendant_font[Name("CIDToGIDMap")] = Name("Identity") # build CIDSystemInfo # fmt: off descendant_font[Name("CIDSystemInfo")] = Dictionary() descendant_font[Name("CIDSystemInfo")][Name("Registry")] = String("Adobe") descendant_font[Name("CIDSystemInfo")][Name("Ordering")] = String("Identity") descendant_font[Name("CIDSystemInfo")][Name("Supplement")] = pDecimal(0) # fmt: on # add to DescendantFonts type_0_font[Name("DescendantFonts")] = List() type_0_font[Name("DescendantFonts")].append(descendant_font) # return return type_0_font def __init__(self): super(TrueTypeFont, self).__init__() self[Name("Subtype")] = Name("TrueType") def _empty_copy(self) -> "Font": # type: ignore [name-defined] return TrueTypeFont() def __deepcopy__(self, memodict={}): # fmt: off f_out: TrueTypeFont = super(TrueTypeFont, self).__deepcopy__(memodict) f_out[Name("Subtype")] = Name("TrueType") f_out._character_identifier_to_unicode_lookup: typing.Dict[int, str] = {k: v for k, v in self._character_identifier_to_unicode_lookup.items()} f_out._unicode_lookup_to_character_identifier: typing.Dict[str, int] = {k: v for k, v in self._unicode_lookup_to_character_identifier.items()} return f_out # fmt: on
0fd9070e7532c771b9766a91098a73150dfb5d01
d308fffe3db53b034132fb1ea6242a509f966630
/pirates/leveleditor/worldData/shipUndeadInterceptor3.py
acc6d9d173dd1413dd886408aaa47773ffbce77e
[ "BSD-3-Clause" ]
permissive
rasheelprogrammer/pirates
83caac204965b77a1b9c630426588faa01a13391
6ca1e7d571c670b0d976f65e608235707b5737e3
refs/heads/master
2020-03-18T20:03:28.687123
2018-05-28T18:05:25
2018-05-28T18:05:25
135,193,362
3
2
null
null
null
null
UTF-8
Python
false
false
3,664
py
# uncompyle6 version 3.2.0 # Python bytecode 2.4 (62061) # Decompiled from: Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:19:30) [MSC v.1500 32 bit (Intel)] # Embedded file name: pirates.leveleditor.worldData.shipUndeadInterceptor3 from pandac.PandaModules import Point3, VBase3, Vec4, Vec3 objectStruct = {'Objects': {'1189043800.81gjeon': {'Type': 'Ship Part', 'Name': 'shipNavyInterceptor3', 'Category': '38: Phantom', 'File': '', 'Flagship': True, 'LogoOverride': '-1: Default', 'Objects': {'1255998720.0jubutler': {'Type': 'Spawn Node', 'AnimSet': 'default', 'AuraFX': 'None', 'Hpr': Point3(0.0, 0.0, 0.0), 'Min Population': '1', 'Patrol Radius': '12.0000', 'Pause Chance': '100', 'Pause Duration': '30', 'Pos': Point3(1.543, -17.163, 22.11), 'PoseAnim': '', 'PoseFrame': '', 'PropFXLeft': 'None', 'PropFXRight': 'None', 'PropLeft': 'None', 'PropRight': 'None', 'Scale': VBase3(1.0, 1.0, 1.0), 'Spawnables': 'Area', 'Start State': 'Patrol', 'StartFrame': '0', 'Team': 'default', 'TrailFX': 'None', 'TrailLeft': 'None', 'TrailRight': 'None', 'VisSize': '', 'Visual': {'Color': (0, 0, 0.65, 1), 'Model': 'models/misc/smiley'}, 'spawnTimeBegin': 0.0, 'spawnTimeEnd': 0.0}, '1255998848.0jubutler': {'Type': 'Movement Node', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pause Chance': '100', 'Pause Duration': '30', 'Pos': Point3(18.012, 9.63, 23.531), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (0.65, 0, 0, 1), 'Model': 'models/misc/smiley'}}, '1255998848.0jubutler0': {'Type': 'Movement Node', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pause Chance': '100', 'Pause Duration': '30', 'Pos': Point3(-14.636, 3.658, 23.536), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (0.65, 0, 0, 1), 'Model': 'models/misc/smiley'}}, '1255998848.0jubutler1': {'Type': 'Movement Node', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pause Chance': '100', 'Pause Duration': '30', 'Pos': Point3(-12.938, -34.07, 22.156), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (0.65, 0, 0, 1), 'Model': 'models/misc/smiley'}}, '1255998848.0jubutler2': {'Type': 'Movement Node', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pause Chance': '100', 'Pause Duration': '30', 'Pos': Point3(14.147, -35.882, 22.071), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (0.65, 0, 0, 1), 'Model': 'models/misc/smiley'}}}, 'Respawns': True, 'StyleOverride': '-1: Default', 'Team': 'EvilNavy', 'Visual': {'Model': ['models/shipparts/interceptorL3-geometry_High', 'models/shipparts/interceptorL3-collisions']}}}, 'Node Links': [['1255998720.0jubutler', '1255998848.0jubutler0', 'Bi-directional'], ['1255998720.0jubutler', '1255998848.0jubutler', 'Bi-directional'], ['1255998848.0jubutler', '1255998848.0jubutler0', 'Bi-directional'], ['1255998848.0jubutler0', '1255998848.0jubutler1', 'Bi-directional'], ['1255998848.0jubutler', '1255998848.0jubutler2', 'Bi-directional'], ['1255998848.0jubutler1', '1255998848.0jubutler2', 'Bi-directional']], 'Layers': {}, 'ObjectIds': {'1189043800.81gjeon': '["Objects"]["1189043800.81gjeon"]', '1255998720.0jubutler': '["Objects"]["1189043800.81gjeon"]["Objects"]["1255998720.0jubutler"]', '1255998848.0jubutler': '["Objects"]["1189043800.81gjeon"]["Objects"]["1255998848.0jubutler"]', '1255998848.0jubutler0': '["Objects"]["1189043800.81gjeon"]["Objects"]["1255998848.0jubutler0"]', '1255998848.0jubutler1': '["Objects"]["1189043800.81gjeon"]["Objects"]["1255998848.0jubutler1"]', '1255998848.0jubutler2': '["Objects"]["1189043800.81gjeon"]["Objects"]["1255998848.0jubutler2"]'}} extraInfo = {'camPos': Point3(-173.398, -66.2502, 103.662), 'camHpr': VBase3(-74.1058, -20.5578, 0), 'focalLength': 1.39999997616, 'skyState': 2, 'fog': 0}
106b49f1d09d2c07ec615d4ff6eada48156bac0f
ed3c924c42baa3ab825a482efc15f85a32c06eaa
/boj16649.py
471eee9a27c32f61b4009e52d88b52912bb2b19c
[]
no_license
JoinNova/baekjoon
95e94a7ccae51103925e515d765ebda7b6fffeed
33b900696ecf2a42b8e452fdeae6ee482143e37e
refs/heads/master
2020-04-16T22:25:31.577968
2019-04-28T04:25:24
2019-04-28T04:25:24
165,966,949
2
0
null
null
null
null
UTF-8
Python
false
false
469
py
#boj16649 Building a Stair def stair(cube): cnt=cube row=(cube+1)//2 print(row+1) pic='.'*(row+1)+'\n' for i in range(row): for j in range(row): if j==0 or i==row-1: pic+='o';cnt-=1 elif cube%2==0 and i==row-2 and j==1: pic+='o';cnt-=1; else: pic+='.' pic+='.\n' print(pic.strip()) #print(cnt) n=int(input()) if n==2:print(-1) else:stair(n)
3f861b0b4904d9b72b34ade2c2fae8f9932ec493
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/testData/inspections/GoogleDocStringRemoveKeywordVararg.py
2ff1604bc7d53ec8b7c1992b258b97e54edb35a8
[ "Apache-2.0" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
57
py
def f(): """ Args: **kwar<caret>gs: """
65e9e8ebbf9a9682f5fb9acfd790fad23e123824
99e44f844d78de330391f2b17bbf2e293bf24b1b
/pytorch/caffe2/quantization/server/group_norm_dnnlowp_op_test.py
b6acc900437ce89c4bd5c4ea17a400c9b8d47839
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "Apache-2.0", "BSD-2-Clause", "MIT" ]
permissive
raghavnauhria/whatmt
be10d57bcd6134dd5714d0c4058abd56a1b35a13
c20483a437c82936cb0fb8080925e37b9c4bba87
refs/heads/master
2022-12-04T05:39:24.601698
2019-07-22T09:43:30
2019-07-22T09:43:30
193,026,689
0
1
MIT
2022-11-28T17:50:19
2019-06-21T03:48:20
C++
UTF-8
Python
false
false
4,517
py
from __future__ import absolute_import, division, print_function, unicode_literals import collections import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np from caffe2.python import core, dyndep, utils, workspace from caffe2.quantization.server import utils as dnnlowp_utils from dnnlowp_test_utils import check_quantized_results_close from hypothesis import given dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops") workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"]) class DNNLowPOpGroupNormTest(hu.HypothesisTestCase): @given( N=st.integers(1, 4), G=st.integers(2, 4), K=st.integers(2, 12), H=st.integers(4, 16), W=st.integers(4, 16), order=st.sampled_from(["NCHW", "NHWC"]), in_quantized=st.booleans(), out_quantized=st.booleans(), weight_quantized=st.booleans(), **hu.gcs_cpu_only ) def test_dnnlowp_group_norm( self, N, G, K, H, W, order, in_quantized, out_quantized, weight_quantized, gc, dc, ): C = G * K X = np.random.rand(N, C, H, W).astype(np.float32) * 5.0 - 1.0 if order == "NHWC": X = utils.NCHW2NHWC(X) gamma = np.random.rand(C).astype(np.float32) * 2.0 - 1.0 beta = np.random.randn(C).astype(np.float32) - 0.5 Output = collections.namedtuple("Output", ["Y", "op_type", "engine"]) outputs = [] op_engine_list = [ ("GroupNorm", ""), ("GroupNorm", "DNNLOWP"), ("Int8GroupNorm", "DNNLOWP"), ] for op_type, engine in op_engine_list: net = core.Net("test_net") do_quantize = "DNNLOWP" in engine and in_quantized do_dequantize = "DNNLOWP" in engine and out_quantized do_quantize_weight = ( engine == "DNNLOWP" and weight_quantized and len(outputs) > 0 ) if do_quantize: quantize = core.CreateOperator( "Quantize", ["X"], ["X_q"], engine=engine, device_option=gc ) net.Proto().op.extend([quantize]) if do_quantize_weight: int8_given_tensor_fill, gamma_q_param = dnnlowp_utils.create_int8_given_tensor_fill( gamma, "gamma_q" ) net.Proto().op.extend([int8_given_tensor_fill]) X_q_param = dnnlowp_utils.choose_quantization_params(X.min(), X.max()) int8_bias_tensor_fill = dnnlowp_utils.create_int8_bias_tensor_fill( beta, "beta_q", X_q_param, gamma_q_param ) net.Proto().op.extend([int8_bias_tensor_fill]) group_norm = core.CreateOperator( op_type, [ "X_q" if do_quantize else "X", "gamma_q" if do_quantize_weight else "gamma", "beta_q" if do_quantize_weight else "beta", ], ["Y_q" if do_dequantize else "Y"], dequantize_output=0 if do_dequantize else 1, group=G, order=order, is_test=True, engine=engine, device_option=gc, ) if do_quantize_weight: # When quantized weight is provided, we can't rescale the # output dynamically by looking at the range of output of each # batch, so here we provide the range of output observed from # fp32 reference implementation dnnlowp_utils.add_quantization_param_args(group_norm, outputs[0][0]) net.Proto().op.extend([group_norm]) if do_dequantize: dequantize = core.CreateOperator( "Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc ) net.Proto().op.extend([dequantize]) self.ws.create_blob("X").feed(X, device_option=gc) self.ws.create_blob("gamma").feed(gamma, device_option=gc) self.ws.create_blob("beta").feed(beta, device_option=gc) self.ws.run(net) outputs.append( Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine) ) check_quantized_results_close(outputs, atol_scale=2.0)
2095829a72d1af19ee231c7ec670bf65766c274d
fd625e2ea155455c96261c8656a51be22fe420c8
/Python/euler035.py
4400059a3e93b485f3924881b3fe16cd51c435bb
[ "MIT" ]
permissive
AnuragAnalog/project_euler
9b84a6aa0061ad4582c8d0059c3c1eaddd844fd2
8babbefbd5b7008ad24509f24a9d5f50ba208f45
refs/heads/master
2021-12-12T12:07:29.338791
2021-11-01T04:26:44
2021-11-01T04:26:44
210,749,964
6
16
MIT
2021-11-01T04:26:45
2019-09-25T03:44:37
Python
UTF-8
Python
false
false
1,240
py
#!/usr/bin/python3 """ The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime. There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97. How many circular primes are there below one million? """ import numpy as np def isprime(num: int) -> bool: for i in range(2, int(np.sqrt(num))+1): if num%i == 0: return False return True def rotate(num: int) -> set: rot = {num} length = len(str(num)) k = 0 while k < length: tmp = list(str(num)) dig = tmp[0] tmp[:] = tmp[1:] tmp.append(dig) num = ''.join(tmp) rot.add(int(num)) k = k + 1 return rot def euler35() -> int: tot = 0 c_primes = [2] flag = False for i in range(3, 10**6, 2): if isprime(i): flag = True tmp = set() cps = rotate(i) for x in cps: if isprime(x): tmp.add(x) else: flag = False break if flag: c_primes.extend(list(tmp)) return len(set(c_primes)) tot = euler35() print(tot)
1cb72016f9c456c6294bdc18ee3bb15e889e96e0
fcb7030ae6da44d6f36a9a166a614952a66937db
/11 user's functions/03 - max 2.py
b7b20317783541603811f5a4b06304305483c54f
[]
no_license
Immaculated/educational_basic
4b931bb515343a67bf2132a9b97c029c8b8e7e4c
8ef0de14f0acc12ac172dcaf0ece8bd81b6ade83
refs/heads/main
2023-04-22T01:22:54.999075
2021-05-02T05:38:26
2021-05-02T05:38:26
320,326,316
2
0
null
null
null
null
UTF-8
Python
false
false
68
py
def max_two(a,b): return a if a > b else b print(max_two(3,5))
a7114ae73b29642ae1b3b76a8eca40595de9439d
df7f13ec34591fe1ce2d9aeebd5fd183e012711a
/hata/discord/embed/embed/tests/test__parse_author.py
fb71e365acb11fa7c73817ca0ef5c02ff77884b6
[ "LicenseRef-scancode-warranty-disclaimer" ]
permissive
HuyaneMatsu/hata
63e2f6a2d7a7539fd8f18498852d9d3fe5c41d2e
53f24fdb38459dc5a4fd04f11bdbfee8295b76a4
refs/heads/master
2023-08-20T15:58:09.343044
2023-08-20T13:09:03
2023-08-20T13:09:03
163,677,173
3
3
Apache-2.0
2019-12-18T03:46:12
2018-12-31T14:59:47
Python
UTF-8
Python
false
false
481
py
import vampytest from ...embed_author import EmbedAuthor from ..fields import parse_author def test__parse_author(): """ Tests whether ``parse_author`` works as intended. """ author = EmbedAuthor(name = 'hell') for input_data, expected_output in ( ({}, None), ({'author': None}, None), ({'author': author.to_data()}, author), ): output = parse_author(input_data) vampytest.assert_eq(output, expected_output)
df22c26d03c9eb5404718fa0aee45e5b9bfd5116
9b422078f4ae22fe16610f2ebc54b8c7d905ccad
/xlsxwriter/test/comparison/test_image01.py
81559d51c09a291a0dd6ef1c9b9f4f8d5f70ee88
[ "BSD-2-Clause-Views" ]
permissive
projectsmahendra/XlsxWriter
73d8c73ea648a911deea63cb46b9069fb4116b60
9b9d6fb283c89af8b6c89ad20f72b8208c2aeb45
refs/heads/master
2023-07-21T19:40:41.103336
2023-07-08T16:54:37
2023-07-08T16:54:37
353,636,960
0
0
NOASSERTION
2021-04-01T08:57:21
2021-04-01T08:57:20
null
UTF-8
Python
false
false
1,149
py
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2021, John McNamara, [email protected] # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('image01.xlsx') def test_create_file(self): """Test the creation of a simple XlsxWriter file with image(s).""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.insert_image('E9', self.image_dir + 'red.png') workbook.close() self.assertExcelEqual() def test_create_file_in_memory(self): """Test the creation of a simple XlsxWriter file with image(s).""" workbook = Workbook(self.got_filename, {'in_memory': True}) worksheet = workbook.add_worksheet() worksheet.insert_image('E9', self.image_dir + 'red.png') workbook.close() self.assertExcelEqual()
d3553bdebfba88789aa4678fd67bb97396e9767d
79fa6f3a9c0c07b2768b5c67d48cd2d3ada921c7
/kikimr/public/api/protos/draft/persqueue_error_codes_pb2.py
97b818110b3a6a275934558ce54cac8287566409
[ "Apache-2.0" ]
permissive
clumpytuna/ydb-python-sdk
8dd951a532045587fcba1d541b3fb8798c358318
f09d8db19f62032738ed77dabb3672c3e0f86cc3
refs/heads/master
2023-06-09T22:38:29.747969
2021-06-30T08:09:14
2021-06-30T08:09:14
319,103,389
0
0
NOASSERTION
2020-12-06T18:32:35
2020-12-06T18:32:34
null
UTF-8
Python
false
true
6,378
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: kikimr/public/api/protos/draft/persqueue_error_codes.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='kikimr/public/api/protos/draft/persqueue_error_codes.proto', package='NPersQueue.NErrorCode', syntax='proto3', serialized_pb=_b('\n:kikimr/public/api/protos/draft/persqueue_error_codes.proto\x12\x15NPersQueue.NErrorCode*\xd9\x04\n\nEErrorCode\x12\x06\n\x02OK\x10\x00\x12\x10\n\x0cINITIALIZING\x10\x01\x12\x0c\n\x08OVERLOAD\x10\x02\x12\x0f\n\x0b\x42\x41\x44_REQUEST\x10\x03\x12\x10\n\x0cWRONG_COOKIE\x10\x04\x12!\n\x1dWRITE_ERROR_PARTITION_IS_FULL\x10\x05\x12\x1c\n\x18WRITE_ERROR_DISK_IS_FULL\x10\x0f\x12\x1a\n\x16WRITE_ERROR_BAD_OFFSET\x10\x13\x12!\n\x1d\x43REATE_SESSION_ALREADY_LOCKED\x10\x06\x12\x1d\n\x19\x44\x45LETE_SESSION_NO_SESSION\x10\x07\x12\x1a\n\x16READ_ERROR_IN_PROGRESS\x10\x08\x12\x19\n\x15READ_ERROR_NO_SESSION\x10\t\x12\x10\n\x0cREAD_TIMEOUT\x10\n\x12\x1f\n\x1bREAD_ERROR_TOO_SMALL_OFFSET\x10\x0b\x12\x1d\n\x19READ_ERROR_TOO_BIG_OFFSET\x10\x0c\x12%\n!SET_OFFSET_ERROR_COMMIT_TO_FUTURE\x10\r\x12\x15\n\x11TABLET_IS_DROPPED\x10\x0e\x12\x11\n\rREAD_NOT_DONE\x10\x10\x12\x11\n\rUNKNOWN_TOPIC\x10\x11\x12\x11\n\rACCESS_DENIED\x10\x12\x12\x14\n\x10\x43LUSTER_DISABLED\x10\x14\x12\x1a\n\x16WRONG_PARTITION_NUMBER\x10\x15\x12\x12\n\x0e\x43REATE_TIMEOUT\x10\x16\x12\x10\n\x0cIDLE_TIMEOUT\x10\x17\x12\t\n\x05\x45RROR\x10\x64\x42\x1a\n\x18\x63om.yandex.ydb.persqueueb\x06proto3') ) _EERRORCODE = _descriptor.EnumDescriptor( name='EErrorCode', full_name='NPersQueue.NErrorCode.EErrorCode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='OK', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='INITIALIZING', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='OVERLOAD', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='BAD_REQUEST', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='WRONG_COOKIE', index=4, number=4, options=None, type=None), _descriptor.EnumValueDescriptor( name='WRITE_ERROR_PARTITION_IS_FULL', index=5, number=5, options=None, type=None), _descriptor.EnumValueDescriptor( name='WRITE_ERROR_DISK_IS_FULL', index=6, number=15, options=None, type=None), _descriptor.EnumValueDescriptor( name='WRITE_ERROR_BAD_OFFSET', index=7, number=19, options=None, type=None), _descriptor.EnumValueDescriptor( name='CREATE_SESSION_ALREADY_LOCKED', index=8, number=6, options=None, type=None), _descriptor.EnumValueDescriptor( name='DELETE_SESSION_NO_SESSION', index=9, number=7, options=None, type=None), _descriptor.EnumValueDescriptor( name='READ_ERROR_IN_PROGRESS', index=10, number=8, options=None, type=None), _descriptor.EnumValueDescriptor( name='READ_ERROR_NO_SESSION', index=11, number=9, options=None, type=None), _descriptor.EnumValueDescriptor( name='READ_TIMEOUT', index=12, number=10, options=None, type=None), _descriptor.EnumValueDescriptor( name='READ_ERROR_TOO_SMALL_OFFSET', index=13, number=11, options=None, type=None), _descriptor.EnumValueDescriptor( name='READ_ERROR_TOO_BIG_OFFSET', index=14, number=12, options=None, type=None), _descriptor.EnumValueDescriptor( name='SET_OFFSET_ERROR_COMMIT_TO_FUTURE', index=15, number=13, options=None, type=None), _descriptor.EnumValueDescriptor( name='TABLET_IS_DROPPED', index=16, number=14, options=None, type=None), _descriptor.EnumValueDescriptor( name='READ_NOT_DONE', index=17, number=16, options=None, type=None), _descriptor.EnumValueDescriptor( name='UNKNOWN_TOPIC', index=18, number=17, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACCESS_DENIED', index=19, number=18, options=None, type=None), _descriptor.EnumValueDescriptor( name='CLUSTER_DISABLED', index=20, number=20, options=None, type=None), _descriptor.EnumValueDescriptor( name='WRONG_PARTITION_NUMBER', index=21, number=21, options=None, type=None), _descriptor.EnumValueDescriptor( name='CREATE_TIMEOUT', index=22, number=22, options=None, type=None), _descriptor.EnumValueDescriptor( name='IDLE_TIMEOUT', index=23, number=23, options=None, type=None), _descriptor.EnumValueDescriptor( name='ERROR', index=24, number=100, options=None, type=None), ], containing_type=None, options=None, serialized_start=86, serialized_end=687, ) _sym_db.RegisterEnumDescriptor(_EERRORCODE) EErrorCode = enum_type_wrapper.EnumTypeWrapper(_EERRORCODE) OK = 0 INITIALIZING = 1 OVERLOAD = 2 BAD_REQUEST = 3 WRONG_COOKIE = 4 WRITE_ERROR_PARTITION_IS_FULL = 5 WRITE_ERROR_DISK_IS_FULL = 15 WRITE_ERROR_BAD_OFFSET = 19 CREATE_SESSION_ALREADY_LOCKED = 6 DELETE_SESSION_NO_SESSION = 7 READ_ERROR_IN_PROGRESS = 8 READ_ERROR_NO_SESSION = 9 READ_TIMEOUT = 10 READ_ERROR_TOO_SMALL_OFFSET = 11 READ_ERROR_TOO_BIG_OFFSET = 12 SET_OFFSET_ERROR_COMMIT_TO_FUTURE = 13 TABLET_IS_DROPPED = 14 READ_NOT_DONE = 16 UNKNOWN_TOPIC = 17 ACCESS_DENIED = 18 CLUSTER_DISABLED = 20 WRONG_PARTITION_NUMBER = 21 CREATE_TIMEOUT = 22 IDLE_TIMEOUT = 23 ERROR = 100 DESCRIPTOR.enum_types_by_name['EErrorCode'] = _EERRORCODE _sym_db.RegisterFileDescriptor(DESCRIPTOR) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\030com.yandex.ydb.persqueue')) # @@protoc_insertion_point(module_scope)
002efcfadbaaadc2cad01fb292a4a4ad65565a90
ca3a1b6386e44f8222b0f9d93dcb382027d26018
/choix/ep.py
a457f2efc0712505ba7e9b6db3a815a10f126aac
[ "MIT" ]
permissive
pkrouth/choix
80ef6fceaffbbc618fb6496217f4e077b3d8e6d4
05a57a10bb707338113a9d91601ca528ead7a881
refs/heads/master
2020-04-27T15:34:29.404796
2018-08-08T13:17:01
2018-08-08T13:17:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,314
py
import functools import numpy as np import numpy.random as nprand from numpy.linalg import norm from math import exp, log, pi, sqrt # Faster than numpy equivalents. from scipy.misc import logsumexp from .utils import normal_cdf, inv_posdef, SQRT2, SQRT2PI # EP-related settings. THRESHOLD = 1e-4 MAT_ONE = np.array([[1.0, -1.0], [-1.0, 1.0]]) MAT_ONE_FLAT = MAT_ONE.ravel() # Some magic constants for a stable computation of _log_phi(z). CS = [ 0.00048204, -0.00142906, 0.0013200243174, 0.0009461589032, -0.0045563339802, 0.00556964649138, 0.00125993961762116, -0.01621575378835404, 0.02629651521057465, -0.001829764677455021, 2*(1-pi/3), (4-pi)/3, 1, 1,] RS = [ 1.2753666447299659525, 5.019049726784267463450, 6.1602098531096305441, 7.409740605964741794425, 2.9788656263939928886,] QS = [ 2.260528520767326969592, 9.3960340162350541504, 12.048951927855129036034, 17.081440747466004316, 9.608965327192787870698, 3.3690752069827527677,] def ep_pairwise(n_items, data, alpha, model="logit", max_iter=100, initial_state=None): """Compute a distribution of model parameters using the EP algorithm. This function computes an approximate Bayesian posterior probability distribution over model parameters, given pairwise-comparison data (see :ref:`data-pairwise`). It uses the expectation propagation algorithm, as presented, e.g., in [CG05]_. The prior distribution is assumed to be isotropic Gaussian with variance ``1 / alpha``. The posterior is approximated by a a general multivariate Gaussian distribution, described by a mean vector and a covariance matrix. Two different observation models are available. ``logit`` (default) assumes that pairwise-comparison outcomes follow from a Bradley-Terry model. ``probit`` assumes that the outcomes follow from Thurstone's model. Parameters ---------- n_items : int Number of distinct items. data : list of lists Pairwise-comparison data. alpha : float Inverse variance of the (isotropic) prior. model : str, optional Observation model. Either "logit" or "probit". max_iter : int, optional Maximum number of iterations allowed. initial_state : tuple of array_like, optional Natural parameters used to initialize the EP algorithm. Returns ------- mean : numpy.ndarray The mean vector of the approximate Gaussian posterior. cov : numpy.ndarray The covariance matrix of the approximate Gaussian posterior. Raises ------ ValueError If the observation model is not "logit" or "probit". """ if model == "logit": match_moments = _match_moments_logit elif model == "probit": match_moments = _match_moments_probit else: raise ValueError("unknown model '{}'".format(model)) return _ep_pairwise( n_items, data, alpha, match_moments, max_iter, initial_state) def _ep_pairwise( n_items, comparisons, alpha, match_moments, max_iter, initial_state): """Compute a distribution of model parameters using the EP algorithm. Raises ------ RuntimeError If the algorithm does not converge after ``max_iter`` iterations. """ # Static variable that allows to check the # of iterations after the call. _ep_pairwise.iterations = 0 m = len(comparisons) prior_inv = alpha * np.eye(n_items) if initial_state is None: # Initially, mean and covariance come from the prior. mean = np.zeros(n_items) cov = (1 / alpha) * np.eye(n_items) # Initialize the natural params in the function space. tau = np.zeros(m) nu = np.zeros(m) # Initialize the natural params in the space of thetas. prec = np.zeros((n_items, n_items)) xs = np.zeros(n_items) else: tau, nu = initial_state mean, cov, xs, prec = _init_ws( n_items, comparisons, prior_inv, tau, nu) for _ in range(max_iter): _ep_pairwise.iterations += 1 # Keep a copy of the old parameters for convergence testing. tau_old = np.array(tau, copy=True) nu_old = np.array(nu, copy=True) for i in nprand.permutation(m): a, b = comparisons[i] # Update mean and variance in function space. f_var = cov[a,a] + cov[b,b] - 2 * cov[a,b] f_mean = mean[a] - mean[b] # Cavity distribution. tau_tot = 1.0 / f_var nu_tot = tau_tot * f_mean tau_cav = tau_tot - tau[i] nu_cav = nu_tot - nu[i] cov_cav = 1.0 / tau_cav mean_cav = cov_cav * nu_cav # Moment matching. logpart, dlogpart, d2logpart = match_moments(mean_cav, cov_cav) # Update factor params in the function space. tau[i] = -d2logpart / (1 + d2logpart / tau_cav) delta_tau = tau[i] - tau_old[i] nu[i] = ((dlogpart - (nu_cav / tau_cav) * d2logpart) / (1 + d2logpart / tau_cav)) delta_nu = nu[i] - nu_old[i] # Update factor params in the weight space. prec[(a, a, b, b), (a, b, a, b)] += delta_tau * MAT_ONE_FLAT xs[a] += delta_nu xs[b] -= delta_nu # Update mean and covariance. if abs(delta_tau) > 0: phi = -1.0 / ((1.0 / delta_tau) + f_var) * MAT_ONE upd_mat = cov.take([a, b], axis=0) cov = cov + upd_mat.T.dot(phi).dot(upd_mat) mean = cov.dot(xs) # Recompute the global parameters for stability. cov = inv_posdef(prior_inv + prec) mean = cov.dot(xs) if _converged((tau, nu), (tau_old, nu_old)): return mean, cov raise RuntimeError( "EP did not converge after {} iterations".format(max_iter)) def _log_phi(z): """Stable computation of the log of the Normal CDF and its derivative.""" # Adapted from the GPML function `logphi.m`. if z * z < 0.0492: # First case: z close to zero. coef = -z / SQRT2PI val = functools.reduce(lambda acc, c: coef * (c + acc), CS, 0) res = -2 * val - log(2) dres = exp(-(z * z) / 2 - res) / SQRT2PI elif z < -11.3137: # Second case: z very small. num = functools.reduce( lambda acc, r: -z * acc / SQRT2 + r, RS, 0.5641895835477550741) den = functools.reduce(lambda acc, q: -z * acc / SQRT2 + q, QS, 1.0) res = log(num / (2 * den)) - (z * z) / 2 dres = abs(den / num) * sqrt(2.0 / pi) else: res = log(normal_cdf(z)) dres = exp(-(z * z) / 2 - res) / SQRT2PI return res, dres def _match_moments_logit(mean_cav, cov_cav): # Adapted from the GPML function `likLogistic.m`. # First use a scale mixture. lambdas = sqrt(2) * np.array([0.44, 0.41, 0.40, 0.39, 0.36]); cs = np.array([ 1.146480988574439e+02, -1.508871030070582e+03, 2.676085036831241e+03, -1.356294962039222e+03, 7.543285642111850e+01 ]) arr1, arr2, arr3 = np.zeros(5), np.zeros(5), np.zeros(5) for i, x in enumerate(lambdas): arr1[i], arr2[i], arr3[i] = _match_moments_probit( x * mean_cav, x * x * cov_cav) logpart1 = logsumexp(arr1, b=cs) dlogpart1 = (np.dot(np.exp(arr1) * arr2, cs * lambdas) / np.dot(np.exp(arr1), cs)) d2logpart1 = (np.dot(np.exp(arr1) * (arr2 * arr2 + arr3), cs * lambdas * lambdas) / np.dot(np.exp(arr1), cs)) - (dlogpart1 * dlogpart1) # Tail decays linearly in the log domain (and not quadratically). exponent = -10.0 * (abs(mean_cav) - (196.0 / 200.0) * cov_cav - 4.0) if exponent < 500: lambd = 1.0 / (1.0 + exp(exponent)) logpart2 = min(cov_cav / 2.0 - abs(mean_cav), -0.1) dlogpart2 = 1.0 if mean_cav > 0: logpart2 = log(1 - exp(logpart2)) dlogpart2 = 0.0 d2logpart2 = 0.0 else: lambd, logpart2, dlogpart2, d2logpart2 = 0.0, 0.0, 0.0, 0.0 logpart = (1 - lambd) * logpart1 + lambd * logpart2 dlogpart = (1 - lambd) * dlogpart1 + lambd * dlogpart2 d2logpart = (1 - lambd) * d2logpart1 + lambd * d2logpart2 return logpart, dlogpart, d2logpart def _match_moments_probit(mean_cav, cov_cav): # Adapted from the GPML function `likErf.m`. z = mean_cav / sqrt(1 + cov_cav) logpart, val = _log_phi(z) dlogpart = val / sqrt(1 + cov_cav) # 1st derivative w.r.t. mean. d2logpart = -val * (z + val) / (1 + cov_cav) return logpart, dlogpart, d2logpart def _init_ws(n_items, comparisons, prior_inv, tau, nu): """Initialize parameters in the weight space.""" prec = np.zeros((n_items, n_items)) xs = np.zeros(n_items) for i, (a, b) in enumerate(comparisons): prec[(a, a, b, b), (a, b, a, b)] += tau[i] * MAT_ONE_FLAT xs[a] += nu[i] xs[b] -= nu[i] cov = inv_posdef(prior_inv + prec) mean = cov.dot(xs) return mean, cov, xs , prec def _converged(new, old, threshold=THRESHOLD): for param_new, param_old in zip(new, old): if norm(param_new - param_old, ord=np.inf) > threshold: return False return True
82e5f74cb9e4d564e4c9db40175c77111f664934
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5630113748090880_1/Python/Hichamdz38/b.py
ec503006a405070048db8b02218200889a3eaef9
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
309
py
import numpy as np for i in xrange(1,input()+1): N=input() z=np.array(N**2*2-N) SS=[] for j in xrange(N*2-1): S=map(int,raw_input().split()) SS.extend(S) f=[] for j in SS: if SS.count(j)%2!=0: if j not in f: f.append(j) f.sort() print "Case #{}:".format(i), for j in f: print j, print
4570d38cc342698b9f5e6bcaaca77a8459c0408c
b385fc2f18bbb43ec1bca1606b62ae83f33dcb2d
/Programming-Basics/While Loop/Sequence 2k+1/Sequence 2k+1.py
d1b977f06e673eb316811f75cd6f44e4799f9e5f
[]
no_license
rishinkaku/Software-University---Software-Engineering
d9bee36de12affc9aed7fcc0b8b6616768340e51
b798a0c6927ef461491c8327451dd00561d836e4
refs/heads/master
2023-06-10T19:52:51.016630
2021-07-08T00:45:06
2021-07-08T00:45:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
n = int(input()) i = 1 while True: print(i) i = 2 * i + 1 if i > n: break
9f2797f7ec61e1beba2df83d4671a275d44af30c
a0c53168a4bdcfb0aa917d6d2c602f0999443a10
/projexui/widgets/xcalendarwidget/xcalendarscene.py
6f9462a72e6858bc49065498b0206a2d26eb0e3a
[]
no_license
kanooshka/DPS_PIPELINE
8067154c59ca5c8c9c09740969bb6e8537021903
df2fcdecda5bce98e4235ffddde1e99f334562cc
refs/heads/master
2021-05-24T04:32:03.457648
2018-09-07T13:25:11
2018-09-07T13:25:11
29,938,064
3
2
null
2020-07-23T23:06:37
2015-01-27T22:26:01
Python
UTF-8
Python
false
false
19,573
py
#!/usr/bin/python """ Defines a calendar widget similar to the ones found in outlook or ical. """ # define authorship information __authors__ = ['Eric Hulser'] __author__ = ','.join(__authors__) __credits__ = [] __copyright__ = 'Copyright (c) 2011, Projex Software' __license__ = 'LGPL' # maintanence information __maintainer__ = 'Projex Software' __email__ = '[email protected]' #------------------------------------------------------------------------------ from PyQt4.QtCore import Qt,\ QDate, \ QLine,\ QRectF,\ QDateTime,\ QTime from PyQt4.QtGui import QGraphicsScene,\ QPalette,\ QCursor from projex.enum import enum from projexui.widgets.xcalendarwidget.xcalendaritem import XCalendarItem from projexui.widgets.xpopupwidget import XPopupWidget class XCalendarScene(QGraphicsScene): Mode = enum('Day', 'Week', 'Month', 'Agenda') TimelineScale = enum('Day', 'Week', 'Month', 'Year') def __init__( self, parent = None ): super(XCalendarScene, self).__init__( parent ) # define custom properties self._currentDate = QDate.currentDate() self._currentMode = XCalendarScene.Mode.Month self._timelineScale = XCalendarScene.TimelineScale.Week self._minimumDate = QDate() self._maximumDate = QDate() self._dateGrid = {} self._dateTimeGrid = {} self._buildData = {} self._rebuildRequired = False # set default properties # create connections def addCalendarItem( self ): """ Adds a new calendar item to the scene. :return <XCalendarItem> """ item = XCalendarItem() self.addItem(item) return item def addItem( self, item ): """ Adds the item to the scene and redraws the item. :param item | <QGraphicsItem> """ result = super(XCalendarScene, self).addItem(item) if ( isinstance(item, XCalendarItem) ): item.rebuild() return result def currentDate( self ): """ Returns the current date displayed with this calendar widget. :return <QDate> """ return self._currentDate def currentMode( self ): """ Returns what calendar mode this calendar is currently displaying. :return <XCalendarScene.Mode> """ return self._currentMode def dateAt( self, point ): """ Returns the date at the given point. :param point | <QPoint> """ for date, data in self._dateGrid.items(): if ( data[1].contains(point) ): return QDate.fromJulianDay(date) return QDate() def dateTimeAt( self, point ): """ Returns the date time at the inputed point. :param point | <QPoint> """ for dtime, data in self._dateTimeGrid.items(): if ( data[1].contains(point) ): return QDateTime.fromTime_t(dtime) return QDateTime() def dateRect( self, date ): """ Returns the rect that is defined by the inputed date. :return <QRectF> """ data = self._dateGrid.get(date.toJulianDay()) if ( data ): return QRectF(data[1]) return QRectF() def dateTimeRect( self, dateTime ): """ Returns the rect that is defined by the inputed date time. :return <QRectF> """ data = self._dateTimeGrid.get(dateTime.toTime_t()) if ( data ): return QRectF(data[1]) return QRectF() def drawBackground( self, painter, rect ): """ Draws the background of the scene using painter. :param painter | <QPainter> rect | <QRectF> """ if ( self._rebuildRequired ): self.rebuild() super(XCalendarScene, self).drawBackground(painter, rect) palette = self.palette() # draw custom options if ( 'curr_date' in self._buildData ): clr = palette.color(QPalette.Highlight) clr.setAlpha(40) painter.setBrush(clr) painter.setPen(Qt.NoPen) painter.drawRect(self._buildData['curr_date']) painter.setBrush(Qt.NoBrush) if ( 'today' in self._buildData ): painter.setPen(Qt.NoPen) clr = palette.color(QPalette.AlternateBase) clr.setAlpha(120) painter.setBrush(clr) painter.drawRect(self._buildData['today']) painter.setBrush(Qt.NoBrush) # draw the grid painter.setPen(palette.color(QPalette.Mid)) painter.drawLines(self._buildData.get('grid', [])) # draw text fields painter.setPen(palette.color(QPalette.Text)) for data in self._buildData.get('regular_text', []): painter.drawText(*data) # draw mid text fields painter.setPen(palette.color(QPalette.Mid)) for data in self._buildData.get('mid_text', []): painter.drawText(*data) def helpEvent( self, event ): """ Displays a tool tip for the given help event. :param event | <QHelpEvent> """ item = self.itemAt(event.scenePos()) if ( item and item and item.toolTip() ): parent = self.parent() rect = item.path().boundingRect() point = event.scenePos() point.setY(item.pos().y() + rect.bottom()) point = parent.mapFromScene(point) point = parent.mapToGlobal(point) XPopupWidget.showToolTip(item.toolTip(), point = point, parent = parent) event.accept() else: super(XCalendarScene, self).helpEvent(event) def markForRebuild( self, state = True ): """ Marks this scene as needing to be rebuild. :param state | <bool> """ self._rebuildRequired = state self.invalidate() def maximumDate( self ): """ Returns the maximum date for this widget. This value will be used \ when in timeline mode to determine the end for the date range to \ search for. :return <QDate> """ return self._maximumDate def mousePressEvent( self, event ): """ Changes the current date to the clicked on date. :param event | <QMousePressEvent> """ XPopupWidget.hideToolTip() # update the current date self.setCurrentDate(self.dateAt(event.scenePos())) super(XCalendarScene, self).mousePressEvent(event) def minimumDate( self ): """ Returns the minimum date for this widget. This value will be used \ when in timeline mode to determine the start for the date range to \ search for. :return <QDate> """ return self._minimumDate def rebuild( self ): """ Rebuilds the information for this scene. """ self._buildData.clear() self._dateGrid.clear() self._dateTimeGrid.clear() curr_min = self._minimumDate curr_max = self._maximumDate self._maximumDate = QDate() self._minimumDate = QDate() self.markForRebuild(False) # rebuilds the month view if ( self.currentMode() == XCalendarScene.Mode.Month ): self.rebuildMonth() elif ( self.currentMode() in (XCalendarScene.Mode.Week, XCalendarScene.Mode.Day)): self.rebuildDays() # rebuild the items in the scene items = sorted(self.items()) for item in items: item.setPos(0, 0) item.hide() for item in items: if ( isinstance(item, XCalendarItem) ): item.rebuild() if ( curr_min != self._minimumDate or curr_max != self._maximumDate ): parent = self.parent() if ( parent and not parent.signalsBlocked() ): parent.dateRangeChanged.emit(self._minimumDate, self._maximumDate) def rebuildMonth( self ): """ Rebuilds the month for this scene. """ # make sure we start at 0 for sunday vs. 7 for sunday day_map = dict([(i+1, i+1) for i in range(7)]) day_map[7] = 0 today = QDate.currentDate() curr = self.currentDate() first = QDate(curr.year(), curr.month(), 1) last = QDate(curr.year(), curr.month(), curr.daysInMonth()) first = first.addDays(-day_map[first.dayOfWeek()]) last = last.addDays(6-day_map[last.dayOfWeek()]) cols = 7 rows = (first.daysTo(last) + 1) / cols hlines = [] vlines = [] padx = 6 pady = 6 header = 24 w = self.width() - (2 * padx) h = self.height() - (2 * pady) dw = (w / cols) - 1 dh = ((h - header) / rows) - 1 x0 = padx y0 = pady + header x = x0 y = y0 for row in range(rows + 1): hlines.append(QLine(x0, y, w, y)) y += dh for col in range(cols + 1): vlines.append(QLine(x, y0, x, h)) x += dw self._buildData['grid'] = hlines + vlines # draw the date fields date = first row = 0 col = 0 # draw the headers x = x0 y = pady regular_text = [] mid_text = [] self._buildData['regular_text'] = regular_text self._buildData['mid_text'] = mid_text for day in ('Sun', 'Mon','Tue','Wed','Thu','Fri','Sat'): regular_text.append((x + 5, y, dw, y0, Qt.AlignLeft | Qt.AlignVCenter, day)) x += dw for i in range(first.daysTo(last) + 1): top = (y0 + (row * dh)) left = (x0 + (col * dw)) rect = QRectF(left - 1, top, dw, dh) # mark the current date on the calendar if ( date == curr ): self._buildData['curr_date'] = rect # mark today's date on the calendar elif ( date == today ): self._buildData['today'] = rect # determine how to draw the calendar format = 'd' if ( date.day() == 1 ): format = 'MMM d' # determine the color to draw the text if ( date.month() == curr.month() ): text = regular_text else: text = mid_text # draw the text text.append((left + 2, top + 2, dw - 4, dh - 4, Qt.AlignTop | Qt.AlignLeft, date.toString(format))) # update the limits if ( not i ): self._minimumDate = date self._maximumDate = date self._dateGrid[date.toJulianDay()] = ((row, col), rect) if ( col == (cols - 1) ): row += 1 col = 0 else: col += 1 date = date.addDays(1) def rebuildDays( self ): """ Rebuilds the interface as a week display. """ time = QTime(0, 0, 0) hour = True x = 6 y = 6 + 24 w = self.width() - 12 - 25 dh = 48 indent = 58 text_data = [] vlines = [] hlines = [QLine(x, y, w, y)] time_grids = [] for i in range(48): if ( hour ): hlines.append(QLine(x, y, w, y)) text_data.append((x, y + 6, indent - 6, dh, Qt.AlignRight | Qt.AlignTop, time.toString('hap'))) else: hlines.append(QLine(x + indent, y, w, y)) time_grids.append((time, y, dh / 2)) # move onto the next line hour = not hour time = time.addSecs(30 * 60) y += dh / 2 hlines.append(QLine(x, y, w, y)) h = y y = 6 + 24 # load the grid vlines.append(QLine(x, y, x, h)) vlines.append(QLine(x + indent, y, x + indent, h)) vlines.append(QLine(w, y, w, h)) today = QDate.currentDate() curr_date = self.currentDate() # load the days if ( self.currentMode() == XCalendarScene.Mode.Week ): date = self.currentDate() day_of_week = date.dayOfWeek() if ( day_of_week == 7 ): day_of_week = 0 min_date = date.addDays(-day_of_week) max_date = date.addDays(6-day_of_week) self._minimumDate = min_date self._maximumDate = max_date dw = (w - (x + indent)) / 7.0 vx = x + indent date = min_date for i in range(7): vlines.append(QLine(vx, y, vx, h)) text_data.append((vx + 6, 6, dw, 24, Qt.AlignCenter, date.toString('ddd MM/dd'))) self._dateGrid[date.toJulianDay()] = ((0, i), QRectF(vx, y, dw, h - y)) # create the date grid for date time options for r, data in enumerate(time_grids): time, ty, th = data dtime = QDateTime(date, time) key = dtime.toTime_t() self._dateTimeGrid[key] = ((r, i), QRectF(vx, ty, dw, th)) if ( date == curr_date ): self._buildData['curr_date'] = QRectF(vx, y, dw, h - 29) elif ( date == today ): self._buildData['today'] = QRectF(vx, y, dw, h - 29) date = date.addDays(1) vx += dw # load a single day else: date = self.currentDate() self._maximumDate = date self._minimumDate = date text_data.append((x + indent, 6, w, 24, Qt.AlignCenter, date.toString('ddd MM/dd'))) self._dateGrid[date.toJulianDay()] = ((0, 0), QRectF(x, y, w - x, h - y)) # create the date grid for date time options for r, data in enumerate(time_grids): time, ty, th = data dtime = QDateTime(date, time) key = dtime.toTime_t() rect = QRectF(x + indent, ty, w - (x + indent), th) self._dateTimeGrid[key] = ((r, 0), rect) self._buildData['grid'] = hlines + vlines self._buildData['regular_text'] = text_data rect = self.sceneRect() rect.setHeight(h + 6) super(XCalendarScene, self).setSceneRect(rect) def setCurrentDate( self, date ): """ Sets the current date displayed by this calendar widget. :return <QDate> """ if ( date == self._currentDate or not date.isValid() ): return self._currentDate = date self.markForRebuild() parent = self.parent() if ( not parent.signalsBlocked() ): parent.currentDateChanged.emit(date) parent.titleChanged.emit(self.title()) def setCurrentMode( self, mode ): """ Sets the current mode that this calendar will be displayed in. :param mode | <XCalendarScene.Mode> """ self._currentMode = mode self.markForRebuild() def setSceneRect( self, *args ): """ Updates the scene rect for this item. :param *args """ h = self.height() super(XCalendarScene, self).setSceneRect(*args) if ( self.currentMode() != XCalendarScene.Mode.Month ): rect = self.sceneRect() rect.setHeight(h) super(XCalendarScene, self).setSceneRect(rect) self.markForRebuild() def setTimelineScale( self, timelineScale ): """ Sets the timeline scale that will be used when rendering a calendar in \ timeline mode. :param timelineScale | <XCalendarScene.TimelineScale> """ self._timelineScale = timelineScale def title( self ): """ Returns the title for this scene based on its information. :return <str> """ if ( self.currentMode() == XCalendarScene.Mode.Day ): return self.currentDate().toString('dddd, MMMM dd, yyyy') elif ( self.currentMode() == XCalendarScene.Mode.Week ): title = str(self.minimumDate().toString('dddd, MMMM dd')) title += ' - ' title += str(self.maximumDate().toString('dddd, MMMM dd, yyyy')) return title elif ( self.currentMode() == XCalendarScene.Mode.Month ): return self.currentDate().toString('MMMM yyyy') else: return '' def timelineScale( self ): """ Returns the timeline scale that will be used when rendering a calendar \ in timeline mode. :return <XCalendarScene.TimelineScale> """ return self._timelineScale
b9be26523a79e0ed4ebc0819a2cf4003d2b1ee59
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02838/s053367568.py
d3c49f223dc225bd9cca1700aa01ef3296ab9707
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,631
py
# coding: utf-8 import sys #from operator import itemgetter sysread = sys.stdin.buffer.readline read = sys.stdin.buffer.read #from heapq import heappop, heappush #from collections import defaultdict sys.setrecursionlimit(10**7) #import math #from itertools import product, accumulate, combinations, product #import bisect #import numpy as np #from copy import deepcopy #from collections import deque #from decimal import Decimal #from numba import jit INF = 1 << 50 EPS = 1e-8 mod = 10 ** 9 + 7 def mapline(t = int): return map(t, sysread().split()) def mapread(t = int): return map(t, read().split()) def generate_inv(n,mod): """ 逆元行列 n >= 2 Note: mod must bwe a prime number """ ret = [0, 1] for i in range(2,n+1): next = -ret[mod%i] * (mod // i) next %= mod ret.append(next) return ret def run(): N, *A = mapread() maxA = max(A) L = maxA.bit_length() subs = [0] * L for k in range(L): sum = 0 for a in A: if (a >> k) & 1: sum += 1 << k sum %= mod subs[k] = sum sumA = 0 for a in A: sumA += a sumA %= mod ret = 0 ret += (sumA * N) % mod ret += (sumA * N) % mod sub_sum = 0 for a in A: sums = 0 for k in range(L): if (a >> k) & 1: sums += subs[k] * 2 sums %= mod sub_sum += sums sub_sum %= mod ret -= sub_sum ret %= mod inv = generate_inv(2, mod) ret *= inv[2] ret %= mod print(ret) if __name__ == "__main__": run()
4fd3ad15ddd33c92cdffecb72052595b15ddd601
4beabdb5089e3284251dcaf046366c35d3afe02f
/rectangles.py
06768e5dd0cb13903384183826b1e5920a411701
[]
no_license
AndrewFendrich/Mandelbrot
c3fa2b1463d6e01b91ac0a3c53ef88c8e1716641
074ebd9028c13a9f840c2436ab2c8c3d2275dbf6
refs/heads/master
2021-01-13T00:52:24.060863
2017-05-08T14:30:02
2017-05-08T14:30:02
50,623,517
1
0
null
null
null
null
UTF-8
Python
false
false
212
py
# -*- coding: utf-8 -*- """ Created on Fri Nov 27 23:25:48 2015 @author: User """ import pygame pygame.init() rectangle = pygame.Rect(50,50,100,100) print(rectangle) rectangle.inflate_ip(2,2) print(rectangle)
80a1c18f8e69671ebde216c7d4f3665ff8b2181b
b281dd9e711d737579745914c6611d8cfaddb07d
/phones_media_files_demo/phones_media_files_demo/phones/migrations/0001_initial.py
c64a49f588e99ab5a1c3d237694ae76464f853d7
[ "MIT" ]
permissive
Beshkov/Python-web-fundamentals
daf76f3765cb56e02bdaba8ea7df675990dd3885
6b0e9cc9725ea80a33c2ebde6e29f2ab585ab8d9
refs/heads/main
2023-08-03T07:04:22.238320
2021-09-12T18:57:36
2021-09-12T18:57:36
392,644,888
0
0
null
null
null
null
UTF-8
Python
false
false
633
py
# Generated by Django 3.2.6 on 2021-08-06 20:25 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Phone', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('manufacturer', models.CharField(max_length=30)), ('model', models.CharField(max_length=15)), ('image', models.ImageField(blank=True, upload_to='phones')), ], ), ]
54b5f81c202a4a9d48f25271d4ba743e2e4d049f
4015e9d9cc72889b3494ae8b58e81dc507ae8d31
/venv/Lib/site-packages/celery/bin/beat.py
faddd256a6bad3001f11a3074518b1a34db1463b
[]
no_license
Unlimit78/Test_For_DevelopsToday
675676d3a477f590485722019bc1b1e1412b3926
dc4e4ae887edf243adaca3a03c5fd3209ee60300
refs/heads/master
2022-12-17T18:41:33.511674
2020-09-15T18:13:53
2020-09-15T18:13:53
295,706,782
0
0
null
null
null
null
UTF-8
Python
false
false
3,625
py
# -*- coding: utf-8 -*- """The :program:`celery beat` command. .. program:: celery beat .. seealso:: See :ref:`preload-options` and :ref:`daemon-options`. .. cmdoption:: --detach Detach and run in the background as a daemon. .. cmdoption:: -s, --schedule Path to the schedule database. Defaults to `celerybeat-schedule`. The extension '.db' may be appended to the filename. Default is {default}. .. cmdoption:: -S, --scheduler Scheduler class to use. Default is :class:`{default}`. .. cmdoption:: --max-interval Max seconds to sleep between schedule iterations. .. cmdoption:: -f, --logfile Path to log file. If no logfile is specified, `stderr` is used. .. cmdoption:: -l, --loglevel Logging level, choose between `DEBUG`, `INFO`, `WARNING`, `ERROR`, `CRITICAL`, or `FATAL`. .. cmdoption:: --pidfile File used to store the process pid. Defaults to `celerybeat.pid`. The program won't start if this file already exists and the pid is still alive. .. cmdoption:: --uid User id, or user name of the user to run as after detaching. .. cmdoption:: --gid Group id, or group name of the main group to change to after detaching. .. cmdoption:: --umask Effective umask (in octal) of the process after detaching. Inherits the umask of the parent process by default. .. cmdoption:: --workdir Optional directory to change to after detaching. .. cmdoption:: --executable Executable to use for the detached process. """ from __future__ import absolute_import, unicode_literals from functools import partial from celery.bin.base import Command, daemon_options from celery.platforms import detached, maybe_drop_privileges __all__ = ("beat",) HELP = __doc__ class beat(Command): """Start the beat periodic task scheduler. Examples: .. code-block:: console $ celery beat -l info $ celery beat -s /var/run/celery/beat-schedule --detach $ celery beat -S django The last example requires the :pypi:`django-celery-beat` extension package found on PyPI. """ doc = HELP enable_config_from_cmdline = True supports_args = False def run( self, detach=False, logfile=None, pidfile=None, uid=None, gid=None, umask=None, workdir=None, **kwargs ): if not detach: maybe_drop_privileges(uid=uid, gid=gid) kwargs.pop("app", None) beat = partial(self.app.Beat, logfile=logfile, pidfile=pidfile, **kwargs) if detach: with detached(logfile, pidfile, uid, gid, umask, workdir): return beat().run() else: return beat().run() def add_arguments(self, parser): c = self.app.conf bopts = parser.add_argument_group("Beat Options") bopts.add_argument("--detach", action="store_true", default=False) bopts.add_argument("-s", "--schedule", default=c.beat_schedule_filename) bopts.add_argument("--max-interval", type=float) bopts.add_argument("-S", "--scheduler", default=c.beat_scheduler) bopts.add_argument("-l", "--loglevel", default="WARN") daemon_options(parser, default_pidfile="celerybeat.pid") user_options = self.app.user_options["beat"] if user_options: uopts = parser.add_argument_group("User Options") self.add_compat_options(uopts, user_options) def main(app=None): beat(app=app).execute_from_commandline() if __name__ == "__main__": # pragma: no cover main()
936b7b10e86cdeeaefe0e6f870ba20839b804f3d
04a0614b8c2a893dab29bc4ffb0aaf82364fdf3f
/53. Maximum Subarray.py
2fd8f5e141461dfc091e452ab1ffef6fc179a75e
[]
no_license
sharmaji27/Leetcode-Problems
716bcb4a36b9e4f45274c4d551967e15c40ddbd2
0f878933b17df170c18f0b67b7200cec76c276e0
refs/heads/master
2021-10-20T17:35:35.175757
2021-10-20T05:33:17
2021-10-20T05:33:17
218,299,755
1
1
null
null
null
null
UTF-8
Python
false
false
367
py
class Solution: def maxSubArray(self, nums: List[int]) -> int: if len(nums)==1: print(nums[0]) global_max = nums[0] current_sum = nums[0] for i in range(1,len(nums)): current_sum = max(current_sum+nums[i],nums[i]) global_max = max(current_sum,global_max) return global_max
21d3e4137877c5c962c0a372bcf51516c5d5cab3
32233acff831abdd290f4168a982b694f9f95393
/src/util.py
5aa9b1fda0b49ea8cf671313917c63a379a0a966
[]
no_license
CarsonScott/onlinestats
e2dfa7ceca21e99b828eb1fd0149fc34e2b9c2ce
48a8024a4c5c0f8ddbc7ec4f1b1eef3485ae95e7
refs/heads/master
2020-04-26T22:36:06.471611
2019-03-06T22:02:45
2019-03-06T22:02:45
173,877,356
7
0
null
null
null
null
UTF-8
Python
false
false
103
py
import math from copy import copy def iterable(X): return isinstance(X, list) or isinstance(X, tuple)
fcfdfb2bf143fbabd9e7882777ff096eaec7745c
eeee18e2769766c550fb5e0948977a016b48e15a
/Creational/abstract-factory.py
72d108161a2fa85440dac2ece3f9d6bf79735986
[]
no_license
MoeinGhbh/DesignPattern
19aff7bd09f4161d11af2662b1be7962fb692989
b543a5c4eaf9da1341f95e9c777310d4f25ddeaf
refs/heads/master
2022-11-18T17:49:56.101880
2020-07-22T07:54:23
2020-07-22T07:54:23
266,117,271
0
0
null
null
null
null
UTF-8
Python
false
false
1,740
py
""" Abstract Factory Car => Benz, Bmw => Suv, Coupe benz suv => gla, glc bmw suv => x1, x2 benz coupe => cls, E-class bmw coupe => m2, m4 """ from abc import ABC,abstractclassmethod class Car(ABC): @abstractclassmethod def call_suv(self): pass @abstractclassmethod def call_coupe(self): pass #--------------------------------------------- class Benz(Car): def call_suv(self): return Gla() def call_coupe(self): return Cls() #--------------------------------------------- class Bmw(Car): def call_suv(self): return X1() def call_coupe(self): return M2() #--------------------------------------------- class SUV(ABC): @abstractclassmethod def create_suv(self): pass class Coupe(ABC): @abstractclassmethod def create_coupe(self): pass #------------------------------------------------ # Benz class Gla(SUV): def create_suv(self): print("this is your Gla SUV Benz...") class Cls(Coupe): def create_coupe(self): print("this is your cls coupe Benz...") #--------------------------------------------------- # BMW class X1(SUV): def create_suv(self): print("this is your X1 SUV BMW .... ") class M2(Coupe): def create_coupe(self): print("this is your me coupe BMW ....") #------------------------------------------------------ def client_suv_order(order): suv = order.call_suv() suv.create_suv() def client_coupe_order(order): coupe= order.call_coupe() coupe.create_coupe() #---------------------------------------------------------- client_coupe_order(Benz()) client_coupe_order(Bmw()) client_suv_order(Benz()) client_suv_order(Bmw())
[ "=" ]
=
99a2478cea3c8d541d34c24dfcb9bc4ca59b0605
73b8aba05ee1424f38a8598a9f1305185588075f
/0x04-python-more_data_structures/9-multiply_by_2.py
6a475a580fe3f50723c6e049968a98f01637a6dd
[]
no_license
nicolasportela/holbertonschool-higher_level_programming
0d176c0e56f4f703c1e9a98b430fc6120f22f675
e1537b81f21118456e5cfa0e4ed89520b232adb6
refs/heads/master
2023-04-20T21:30:22.693434
2021-05-13T01:47:30
2021-05-13T01:47:30
319,397,633
1
0
null
null
null
null
UTF-8
Python
false
false
153
py
#!/usr/bin/python3 def multiply_by_2(a_dictionary): new_dic = {} for k, v in a_dictionary.items(): new_dic[k] = v * 2 return new_dic
aa2ad8ba0ff14340d3d7d30cd9b8fb24c00f071c
6820e74ec72ed67f6b84a071cef9cfbc9830ad74
/plans/tasks.py
22acd6cb6cb911b7571adefb4585bd699ce306c6
[ "MIT" ]
permissive
AppforallHQ/f5
96c15eaac3d7acc64e48d6741f26d78c9ef0d8cd
0a85a5516e15d278ce30d1f7f339398831974154
refs/heads/master
2020-06-30T17:00:46.646867
2016-11-21T11:41:59
2016-11-21T11:41:59
74,357,925
0
0
null
null
null
null
UTF-8
Python
false
false
3,047
py
from celery import task from django.utils import timezone from datetime import timedelta import requests import json class EndpointNotAvailabe(Exception): pass def call_external_endpoint_to_update_status(the_task, action, subscription): payload = {"uuid": subscription.uuid, "plan": subscription.plan.pk, "activate": (action == "activate"), } response = requests.put( subscription.plan.interaction_endpoint_url % payload, data=json.dumps(payload)) if response.status_code != 200: e = EndpointNotAvailabe() raise the_task \ .retry(args=[subscription], exc=e) else: return True @task def send_invoice_notification(invoice, email_type, **kwargs): return import requests payload = { "invoice_payment_url": invoice.payment_url, "email_type": email_type, "uuid": invoice.subscription.uuid, "plan": invoice.subscription.plan.pk, } mail_body_response = requests.post( invoice.subscription.plan.mail_endpoint_url % payload, data=json.dumps(payload)) params = json.loads(mail_body_response.text) from .actions import send_mail send_mail(invoice, params, email_type) @task(default_retry_delay=3*60) def activate_subscription(subscription, **kwargs): pass#return call_external_endpoint_to_update_status(activate_subscription, "activate", subscription) @task(default_retry_delay=3*60) def deactivate_subscription(subscription, **kwargs): return call_external_endpoint_to_update_status(deactivate_subscription, "deactivate", subscription) @task def send_preinvoice(): from plans.models import Subscription # FIXME for subscription in Subscription.objects.filter(): if subscription.due_date < timezone.now() + timedelta(days=subscription.plan.preinvoice_length) \ and subscription.status == Subscription.ACTIVE: subscription.status = Subscription.PREINVOICE subscription.full_clean() subscription.save() @task def mark_subscriptions_as_overdue(): from plans.models import Subscription # FIXME for subscription in Subscription.objects.filter(): if subscription.due_date < timezone.now() and subscription.status == Subscription.PREINVOICE: subscription.status = Subscription.OVERDUE subscription.full_clean() subscription.save() @task def end_gracetime_for_fucking_users(): from plans.models import Subscription # FIXME for subscription in Subscription.objects.filter(): if subscription.due_date + timedelta(days=subscription.plan.overdue_length) < timezone.now(): subscription.status = Subscription.DEACTIVE subscription.full_clean() subscription.save() @task def invalidate_invoices(): from plans.models import Invoice # FIXME for invoice in Invoice.objects.filter(): if invoice.expires_at < timezone.now(): invoice.mark_as_invalid()
753271955f78deae3afbada6c0d93276ade8e340
03bca281c8bb3ba69c3a01252cc7c9e35cd675bd
/django/DCC/dccApp/migrations/0001_initial.py
63c611642310e159928a36aac3c2066355be6090
[]
no_license
satish15625/pythonwork
380fef04170064aef8aeb919a4e30f65db9a097f
12d776152689a84f1560d08f35987f8ca4ea3fb0
refs/heads/master
2023-07-07T15:12:48.355226
2021-08-13T06:33:13
2021-08-13T06:33:13
374,058,740
0
0
null
null
null
null
UTF-8
Python
false
false
562
py
# Generated by Django 3.0.7 on 2020-12-15 12:25 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='UploadImages', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('image_Img', models.ImageField(upload_to='images/')), ], ), ]
4eec63edb5849bedfb3c1094f0944238a960f578
a81d84fdb57e1b90812fc5b5b523685ba5b663c0
/python/2021_04/Question0769.py
648c3a58f644d02e661df59e3decc996ad812c3d
[]
no_license
KujouNozom/LeetCode
1919081001126924daa7549493a0823702631a37
4de1e601274de1336d669e41f732a8cb056880b9
refs/heads/master
2023-07-17T12:17:45.156451
2021-09-04T11:57:40
2021-09-04T11:57:40
268,075,373
3
0
null
null
null
null
UTF-8
Python
false
false
516
py
# 769. 最多能完成排序的块 [双指针] from typing import List class Solution: def maxChunksToSorted(self, arr: List[int]) -> int: min_value, max_value, start = 10, -1, 0 ans = 0 for index in range(len(arr)): min_value = min(min_value, arr[index]) max_value = max(max_value, arr[index]) if min_value == start and max_value == index: ans += 1 min_value, max_value, start = 10, -1, index + 1 return ans
8e902e4e628a8d138844e6ee81c87d0dc785a0b1
4674b8088ffdf55905d44995f08a0792a3e4cd5c
/tests/hwsim/test_monitor_interface.py
bfc9a1562ff2e5c9fb7ee4dc4b08dfa12334195f
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
vanhoefm/krackattacks-scripts
41daca791638a92aa4cfa68a582e46119037560e
4b78669686f74efe664c6543b1b5b1616b22f902
refs/heads/research
2022-10-29T20:21:11.512335
2022-10-16T18:44:41
2022-10-16T18:44:41
107,408,514
2,184
577
NOASSERTION
2021-07-06T12:43:49
2017-10-18T12:58:08
C
UTF-8
Python
false
false
3,271
py
# AP mode using the older monitor interface design # Copyright (c) 2013, Jouni Malinen <[email protected]> # # This software may be distributed under the terms of the BSD license. # See README for more details. from remotehost import remote_compatible import logging logger = logging.getLogger() import time import hwsim_utils import hostapd from wpasupplicant import WpaSupplicant def test_monitor_iface_open(dev, apdev): """Open connection using cfg80211 monitor interface on AP""" wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add("wlan5", drv_params="use_monitor=1") id = wpas.add_network() wpas.set_network(id, "mode", "2") wpas.set_network_quoted(id, "ssid", "monitor-iface") wpas.set_network(id, "key_mgmt", "NONE") wpas.set_network(id, "frequency", "2412") wpas.connect_network(id) dev[0].connect("monitor-iface", key_mgmt="NONE", scan_freq="2412") def test_monitor_iface_wpa2_psk(dev, apdev): """WPA2-PSK connection using cfg80211 monitor interface on AP""" wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add("wlan5", drv_params="use_monitor=1") id = wpas.add_network() wpas.set_network(id, "mode", "2") wpas.set_network_quoted(id, "ssid", "monitor-iface-wpa2") wpas.set_network(id, "proto", "WPA2") wpas.set_network(id, "key_mgmt", "WPA-PSK") wpas.set_network_quoted(id, "psk", "12345678") wpas.set_network(id, "pairwise", "CCMP") wpas.set_network(id, "group", "CCMP") wpas.set_network(id, "frequency", "2412") wpas.connect_network(id) dev[0].connect("monitor-iface-wpa2", psk="12345678", scan_freq="2412") def test_monitor_iface_multi_bss(dev, apdev): """AP mode mmonitor interface with hostapd multi-BSS setup""" params = { "ssid": "monitor-iface", "driver_params": "use_monitor=1" } hapd = hostapd.add_ap(apdev[0], params) hostapd.add_bss(apdev[0], apdev[0]['ifname'] + '-2', 'bss-2.conf') dev[0].connect("monitor-iface", key_mgmt="NONE", scan_freq="2412") dev[1].connect("bss-2", key_mgmt="NONE", scan_freq="2412") @remote_compatible def test_monitor_iface_unknown_sta(dev, apdev): """AP mode monitor interface and Data frame from unknown STA""" ssid = "monitor-iface-pmf" passphrase = "12345678" params = hostapd.wpa2_params(ssid=ssid, passphrase=passphrase) params["wpa_key_mgmt"] = "WPA-PSK-SHA256" params["ieee80211w"] = "2" params['driver_params'] = "use_monitor=1" hapd = hostapd.add_ap(apdev[0], params) bssid = apdev[0]['bssid'] addr = dev[0].p2p_interface_addr() dev[0].connect(ssid, psk=passphrase, ieee80211w="2", key_mgmt="WPA-PSK-SHA256", proto="WPA2", scan_freq="2412") dev[0].request("DROP_SA") # This protected Deauth will be ignored by the STA hapd.request("DEAUTHENTICATE " + addr) # But the unprotected Deauth from TX frame-from-unassoc-STA will now be # processed dev[0].request("DATA_TEST_CONFIG 1") dev[0].request("DATA_TEST_TX " + bssid + " " + addr + " 0") dev[0].request("DATA_TEST_CONFIG 0") ev = dev[0].wait_event(["CTRL-EVENT-DISCONNECTED"], timeout=5) if ev is None: raise Exception("No disconnection") dev[0].request("DISCONNECT")
efc0ff16e064e56e714719076065e0481806106e
951e433b25a25afeea4d9b45994a57e0a6044144
/LeetCode/Q187_HM_findRepeatedDnaSequences.py
4be93e56f1f5ce25527e7b244bc6bc2c45797d72
[]
no_license
EricaEmmm/CodePython
7c401073e0a9b7cd15f9f4a553f0aa3db1a951a3
d52aa2a0bf71b5e7934ee7bff70d593a41b7e644
refs/heads/master
2020-05-31T14:00:34.266117
2019-09-22T09:48:23
2019-09-22T09:48:23
190,318,878
0
0
null
null
null
null
UTF-8
Python
false
false
1,045
py
# 重复的DNA序列 # 所有 DNA 由一系列缩写为 A,C,G 和 T 的核苷酸组成,例如:“ACGAATTCCG”。在研究 DNA 时,识别 DNA 中的重复序列有时会对研究非常有帮助 # 编写一个函数来查找 DNA 分子中所有出现超多一次的10个字母长的序列(子串)。 # # 示例: # 输入: s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT" # 输出: ["AAAAACCCCC", "CCCCCAAAAA"] class Solution(object): def findRepeatedDnaSequences(self, s): """ :type s: str :rtype: List[str] """ res = dict() if len(s) < 10: return res for i in range(len(s)-9): tmp = s[i:i+10] res[tmp] = res.get(tmp,0) + 1 # 返回指定键的值,如果值不在字典中返回default值 return list([i for i in res.keys() if res[i] > 1]) if __name__ == '__main__': s = Solution() tmp = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT" print(s.findRepeatedDnaSequences(tmp)) # st = "abc" # t = [1,2,3] # print(st[0:3])
6c172d1d135b205d3134c570b5fea04025c05ba2
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02578/s304732693.py
fd8ac3cded43971a72e3cf659d1486c121afa2f5
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
234
py
n = int(input()) input_line = input().split() member = [int(input_line[i]) for i in range(n)] stands = 0 for i in range(1,n): stand = member[i-1] - member[i] if stand > 0: stands += stand member[i] += stand print(stands)
b594ea5d9c012feedfb6dd74228118ce0300906b
8d9318a33afc2c3b5ca8ac99fce0d8544478c94a
/Books/Casandra DB/opscenter-5.1.0/lib/py/html5lib/treebuilders/__init__.py
50c8deeb08c187d8b51fcfdcb742e414c6ee52ab
[]
no_license
tushar239/git-large-repo
e30aa7b1894454bf00546312a3fb595f6dad0ed6
9ee51112596e5fc3a7ab2ea97a86ec6adc677162
refs/heads/master
2021-01-12T13:48:43.280111
2016-11-01T22:14:51
2016-11-01T22:14:51
69,609,373
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:b2a0b8030b4449b4e227ef389f48544f1136f27d0fc657128ee58812e529f7d3 size 4478
dda213c37af2f9c9c79342b1e51e552411080ec5
49ab501632b0a8336058406e7daa3afce6be6e93
/python_server/run_keras_server.py
14a25f5c8f258346bcedf3cf308c98eb4e1fbf53
[]
no_license
CharlesFauman/meme_server
3ab73e9788b9fea26f6ea270563381515d4b0d47
75b0d6fc041c1e2b04e260e9eecbff160225a0f6
refs/heads/master
2020-03-25T08:58:32.780593
2018-08-05T19:24:58
2018-08-05T19:24:58
143,640,946
0
0
null
null
null
null
UTF-8
Python
false
false
4,029
py
# USAGE # Start the server: # python run_keras_server.py # Submit a request via cURL: # curl -X POST -F [email protected] 'http://localhost:5000/predict' # Submita a request via Python: # python simple_request.py # import the necessary packages import numpy as np from threading import Thread import flask import redis import uuid import time import json import sys import io # initialize constants used for server queuing PROCESSING_QUEUE = "processing_queue" BATCH_SIZE = 32 SERVER_SLEEP = 0.25 CLIENT_SLEEP = 0.25 # initialize our Flask application, Redis server, and Keras model app = flask.Flask(__name__) db = redis.StrictRedis(host="localhost", port=6379, db=0) db.flushdb() print("* Loading model...") import meme_model as model print("* Model loaded") def classify_process(): # continually pool for new inputs to classify while True: # attempt to grab a batch of inputs from the database, then # initialize the input IDs and batch of inputs themselves queue = db.lrange(PROCESSING_QUEUE, 0, BATCH_SIZE - 1) inputIDs = [] batch = None # loop over the queue for q in queue: # deserialize the object and obtain the input q = json.loads(q) input_ = model.preprocess_deserialize(q["input"]) # check to see if the batch list is None if batch is None: batch = input_ # otherwise, stack the data else: batch = np.vstack([batch, input_]) # update the list of input IDs inputIDs.append(q["id"]) # check to see if we need to process the batch if len(inputIDs) > 0: # classify the batch print("* Batch size: {}".format(batch.shape)) preds = model.process(batch) preds = model.postprocess_serialize(preds) # loop over the image IDs and their corresponding set of # results from our model for (inputID, result) in zip(inputIDs, preds): db.set(inputID, json.dumps(result)) # remove the set of images from our queue db.ltrim(PROCESSING_QUEUE, len(inputIDs), -1) # sleep for a small amount time.sleep(SERVER_SLEEP) @app.route("/predict", methods=["POST"]) def predict(): # initialize the data dictionary that will be returned from the # view data = {"success": False} print("predicting!") # ensure an input was properly uploaded to our endpoint if flask.request.method == "POST": print("was post!") input_form = None input_files = None if(flask.request.form.get("input")): input_form = flask.request.form.get("input") if(flask.request.files.get("input")): input_files = flask.request.files.get("input").read() if input_form or input_files: input_ = model.preprocess_serialize(input_form, input_files) # generate an ID for the classification then add the # classification ID + input to the queue k = str(uuid.uuid4()) d = {"id": k, "input": input_} db.rpush(PROCESSING_QUEUE, json.dumps(d)) # keep looping until our model server returns the output # predictions while True: # attempt to grab the output predictions output = db.get(k) # check to see if our model has classified the input if output is not None: # add the output predictions to our data # dictionary so we can return it to the client data["predictions"] = json.loads(output) # delete the result from the database and break # from the polling loop db.delete(k) break # sleep for a small amount to give the model a chance # to classify the input time.sleep(CLIENT_SLEEP) # indicate that the request was a success data["success"] = True # return the data dictionary as a JSON response return flask.jsonify(data) # if this is the main thread of execution first load the model and # then start the server if __name__ == "__main__": # load the function used to classify input images in a *separate* # thread than the one used for main classification print("* Starting model service...") t = Thread(target=classify_process, args=()) t.daemon = True t.start() # start the web server print("* Starting web service...") app.run()
8f9536c2451f1c553693aed0b4015a05647789bf
4b95aeb2533f0a582cea2fb26d6177e94aabb21f
/2020/src/lobby_layout.py
3bba605d05757a8dc9695996a0304392f18ef81b
[]
no_license
MarcoBurgos/advent_of_code
0d9984e0fa47f68e52ef0f5cdf7681e23767bd16
81ac54bfe200cc348efbe860bd95aae4270f03b7
refs/heads/main
2023-02-09T14:40:38.204271
2020-12-26T00:09:36
2020-12-26T00:09:36
317,739,393
0
0
null
null
null
null
UTF-8
Python
false
false
1,687
py
import sys from utils import read_and_load_input VECTORS = { 'w' : (-4, 0), 'e' : ( 4, 0), 'nw': (-2, -3), 'ne': ( 2, -3), 'sw': (-2, 3), 'se': ( 2, 3), } def parse(line): result = [] while line: stepLength = 1 if line[0] in ('e', 'w') else 2 result.append(line[:stepLength]) line = line[stepLength:] return result def walk(path): x, y = 0, 0 for step in path: dx, dy = VECTORS[step] x += dx y += dy return x, y def lobby_layout_1(): result = set() for path in tiles: tile = walk(path) if tile in result: result.remove(tile) else: result.add(tile) return result def neighbors(tile): yield from ((tile[0] + dx, tile[1] + dy) for dx, dy in VECTORS.values()) def lobby_layout_2(blackTiles): for day in range(100): newTiles = set() affectedTiles = blackTiles.copy() for tile in blackTiles: affectedTiles.update(neighbors(tile)) for tile in affectedTiles: numNeighbors = sum(n in blackTiles for n in neighbors(tile)) if tile in blackTiles: if numNeighbors in (1, 2): newTiles.add(tile) else: if numNeighbors == 2: newTiles.add(tile) blackTiles = newTiles return len(blackTiles) if __name__ == '__main__': input_data = read_and_load_input("Day24") tiles = [parse(line.rstrip()) for line in input_data] blackTiles = lobby_layout_1() print(f"Solution 1: {len(blackTiles)}") print(f"Solution 2: {lobby_layout_2(blackTiles)}")
7ce9f25d9e4a88e41687b206e6a0bd9b74daa432
d89a482aaf3001bbc4515f39af9ba474e1ae6062
/trex/trex_output.py
f0d835f8b948280acec5897964ce1cb142978ed3
[]
no_license
hongtao510/u_tool
2925e3694aba81714cf83018c3f8520a7b503228
98c962cfb1f53c4971fb2b9ae22c882c0fae6497
refs/heads/master
2021-01-10T20:40:24.793531
2014-03-14T22:57:37
2014-03-14T22:57:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,924
py
# -*- coding: utf-8 -*- # TREX import os os.environ['DJANGO_SETTINGS_MODULE']='settings' #from trex import trex_input import webapp2 as webapp from google.appengine.ext.webapp.util import run_wsgi_app from google.appengine.ext.webapp import template import numpy as np import cgi import cgitb cgitb.enable() from trex import trex_model from uber import uber_lib class TRexOutputPage(webapp.RequestHandler): def post(self): form = cgi.FieldStorage() chem_name = form.getvalue('chemical_name') use = form.getvalue('Use') formu_name = form.getvalue('Formulated_product_name') a_i = form.getvalue('percent_ai') a_i = float(a_i)/100 Application_type = form.getvalue('Application_type') p_i = form.getvalue('percent_incorporated') p_i = float(p_i)/100 a_r = form.getvalue('application_rate') a_r = float(a_r) a_r_l = form.getvalue('application_rate_l') a_r_l=float(a_r_l) seed_treatment_formulation_name = form.getvalue('seed_treatment_formulation_name') den = form.getvalue('density_of_product') den = float(den) m_s_r_p = form.getvalue('maximum_seedling_rate_per_use') m_s_r_p = float(m_s_r_p) a_r_p = form.getvalue('application_rate_per_use') a_r_p = float(a_r_p) r_s = form.getvalue('row_sp') r_s=float(r_s) b_w = form.getvalue('bandwidth') #convert to ft b_w = float(b_w)/12 n_a = form.getvalue('number_of_applications') a_t = form.getvalue('Application_target') if a_t=='Short grass': para=240 #coefficient used to estimate initial conc. elif a_t=='Tall grass': para=110 elif a_t=='Broad-leafed plants/small insects': para=135 elif a_t=='Fruits/pods/seeds/large insects': para=15 i_a = form.getvalue('interval_between_applications') h_l = form.getvalue('Foliar_dissipation_half_life') ld50_bird = form.getvalue('avian_ld50') lc50_bird = form.getvalue('avian_lc50') NOAEC_bird = form.getvalue('avian_NOAEC') NOAEC_bird = float(NOAEC_bird) NOAEL_bird = form.getvalue('avian_NOAEL') NOAEL_bird = float(NOAEL_bird) # bird_type = form.getvalue('Bird_type') aw_bird = form.getvalue('body_weight_of_the_assessed_bird') aw_bird = float(aw_bird) tw_bird = form.getvalue('body_weight_of_the_tested_bird') tw_bird = float(tw_bird) x = form.getvalue('mineau_scaling_factor') ld50_mamm = form.getvalue('mammalian_ld50') lc50_mamm = form.getvalue('mammalian_lc50') lc50_mamm=float(lc50_mamm) NOAEC_mamm = form.getvalue('mammalian_NOAEC') NOAEC_mamm = float(NOAEC_mamm) NOAEL_mamm = form.getvalue('mammalian_NOAEL') # mammal_type = form.getvalue('Mammal_type') # if mammal_type =='Herbivores and insectivores': # mf_w_mamm=0.8 #coefficient used to estimate initial conc. # elif mammal_type=='Granivores': # mf_w_mamm=0.1 # if bird_type =='Herbivores and insectivores': # mf_w_bird=0.8 #coefficient used to estimate initial conc. # elif bird_type=='Granivores': # mf_w_bird=0.1 aw_mamm = form.getvalue('body_weight_of_the_assessed_mammal') aw_mamm = float(aw_mamm) tw_mamm = form.getvalue('body_weight_of_the_tested_mammal') tw_mamm = float(tw_mamm) #mf_w_mamm = form.getvalue('mass_fraction_of_water_in_the_mammal_food') #mf_w_bird = form.getvalue('mass_fraction_of_water_in_the_bird_food') text_file = open('trex/trex_description.txt','r') x1 = text_file.read() templatepath = os.path.dirname(__file__) + '/../templates/' ChkCookie = self.request.cookies.get("ubercookie") html = uber_lib.SkinChk(ChkCookie, "TREX Output") html = html + template.render(templatepath + '02uberintroblock_wmodellinks.html', {'model':'trex','page':'output'}) html = html + template.render (templatepath + '03ubertext_links_left.html', {}) html = html + template.render(templatepath + '04uberoutput_start.html', { 'model':'trex', 'model_attributes':'T-Rex Output'}) html = html + """<table width="600" border="1" class="out_1"> <tr> <th scope="col">Inputs</div></th> <th scope="col">Value</div></th> <th scope="col">Inputs</div></th> <th scope="col">Value</div></th> </tr> <tr> <td>Chemical name</td> <td>%s</td> <td>Use</td> <td>%s</td> </tr> <tr> <td>Formulated procuct name</td> <td>%s</td> <td>Percentage active ingredient</td> <td>%s%%</td> </tr> <tr> <td>Application type</td> <td>%s</td> <td>Percentage incorporated</td> <td>%s%%</td> </tr> <tr> <td>Application rate (lbs a.i./A)</td> <td>%s</td> <td>Liquid application rate (fl oz/A)</td> <td>%s</td> </tr> <tr> <td>Seed treatment formulation name</td> <td>%s</td> <td>Density of product (lbs/gal)</td> <td>%s</td> </tr> <tr> <td>Maximum seeding rate per use (lbs/A)</td> <td>%s</td> <td>Application rate per use (fl oz/cwt)</td> <td>%s</td> </tr> <tr> <td>Row spacing (inch)</td> <td>%s</td> <td>Bandwidth (inch)</td> <td>%s</td> </tr> <tr> <td>Number of applications</td> <td>%s</td> <td>Application target</td> <td>%s</td> </tr> <tr> <td>Interval between applications (days)</td> <td>%s</td> <td>Foliar dissipation half-life (days)</td> <td>%s</td> </tr> <tr> <td>Avian LD50 (mg/kg-bw)</td> <td>%s</td> <td>Avian LC50 (mg/kg-diet)</td> <td>%s</td> </tr> <tr> <td>Avian NOAEC (mg/kg-diet)</td> <td>%s</td> <td>Avian NOAEL (mg/kg-bw)</td> <td>%s</td> </tr> <tr> <td>Body weight of assessed bird (g)</td> <td>%s</td> <td>Body weight of tested bird (g)</td> <td>%s</td> </tr> <tr> <td>Mineau scaling factor</td> <td>%s</td> <td>Mammalian LD50 (mg/kg-bw)</td> <td>%s</td> </tr> <tr> <td>Mammalian LC50 (mg/kg-diet)</td> <td>%s</td> <td>Mammalian NOAEC (mg/kg-diet)</td> <td>%s</td> </tr> <tr> <td>Mammalian NOAEL (mg/kg-bw)</td> <td>%s</td> <td>Body weight of assessed mammal (g)</td> <td>%s</td> </tr> <tr> <td>Body weight of tested mammal (g)</td> <td>%s</td> <td>&nbsp;</td> <td>&nbsp;</td> </tr> </table> <p>&nbsp;</p> """%(chem_name, use, formu_name, 100*a_i, Application_type, 100*p_i, a_r, a_r_l, seed_treatment_formulation_name, den, m_s_r_p, a_r_p, r_s, b_w, n_a, a_t, i_a, h_l, ld50_bird, lc50_bird, NOAEC_bird, NOAEL_bird, aw_bird, tw_bird, x, ld50_mamm, lc50_mamm, NOAEC_mamm, NOAEL_mamm, aw_mamm, tw_mamm) html = html + """<table width="600" border="1" class="out_2"> <tr> <th scope="col">Outputs</div></th> <th scope="col">Value</div></th> </tr> <tr> <td>Dietary-based EECs for %s</td> <td>%0.2E</td> </tr> <tr> <td>Avian dose-based acute EECs for %s (Herbivores and insectivores)</td> <td>%0.2E</td> </tr> <tr> <td>Avian dose-based acute EECs (Granivores)</td> <td>%0.2E</td> </tr> <tr> <td>Avian dose-based acute RQs for %s (Herbivores and insectivores)</td> <td>%0.2E</td> </tr> <tr> <td>Avian dose-based acute RQs (Granivores)</td> <td>%0.2E</td> </tr> <tr> <td>Avian diet-based acute RQs for %s (Herbivores and insectivores)</td> <td>%0.2E</td> </tr> <tr> <td>Avian diet-based chronic RQs for %s (Herbivores and insectivores)</td> <td>%0.2E</td> </tr> <tr> <td>Mammalian dose-based acute EECs for %s (Herbivores and insectivores)</td> <td>%0.2E</td> </tr> <tr> <td>Mammalian dose-based acute EECs (Granivores)</td> <td>%0.2E</td> </tr> <tr> <td>Mammalian dose-based acute RQs for %s (Herbivores and insectivores)</td> <td>%0.2E</td> </tr> <tr> <td>Mammalian dose-based acute RQs (Granivores)</td> <td>%0.2E</td> </tr> <tr> <td>Mammalian dose-based chronic RQs for %s (Herbivores and insectivores)</td> <td>%0.2E</td> </tr> <tr> <td>Mammalian dose-based chronic RQs (Granivores)</td> <td>%0.2E</td> </tr> <tr> <td>Mammalian diet-based acute RQs for %s (Herbivores and insectivores)</td> <td>%0.2E</td> </tr> <tr> <td>Mammalian diet-based chronic RQs for %s (Herbivores and insectivores)</td> <td>%0.2E</td> </tr> <tr> <td>Avian LD50<sup>-2</sup> for row/band/in-furrow granular application</td> <td>%0.2E</td> </tr> <tr> <td>Avian LD50<sup>-2</sup> for row/band/in-furrow liquid application</td> <td>%0.2E</td> </tr> <tr> <td>Avian LD50<sup>-2</sup> for broadcast granular application</td> <td>%0.2E</td> </tr> <tr> <td>Avian LD50<sup>-2</sup> for broadcast liquid application</td> <td>%0.2E</td> </tr> <tr> <td>Mammalian LD50<sup>-2</sup> for row/band/in-furrow granular application</td> <td>%0.2E</td> </tr> <tr> <td>Mammalian LD50<sup>-2</sup> for row/band/in-furrow liquid application</td> <td>%0.2E</td> </tr> <tr> <td>Mammalian LD50<sup>-2</sup> for broadcast granular application</td> <td>%0.2E</td> </tr> <tr> <td>Mammalian LD50<sup>-2</sup> for broadcast liquid application</td> <td>%0.2E</td> </tr> <tr> <td>Seed treatment avian acute RQs (method 1)</td> <td>%0.2E</td> </tr> <tr> <td>Seed treatment avian acute RQs (method 2)</td> <td>%0.2E</td> </tr> <tr> <td>Seed treatment avian chronic RQs</td> <td>%0.2E</td> </tr> <tr> <td>Seed treatment mammalian acute RQs (method 1)</td> <td>%0.2E</td> </tr> <tr> <td>Seed treatment mammalian acute RQs (method 2)</td> <td>%0.2E</td> </tr> <tr> <td>Seed treatment mammalian chronic RQs</td> <td>%0.2E</td> </tr> </table>""" %(a_t, trex_model.EEC_diet(trex_model.C_0, n_a, i_a, a_r, a_i, para, h_l), a_t, trex_model.EEC_dose_bird(trex_model.EEC_diet, aw_bird, trex_model.fi_bird, 0.8, trex_model.C_0, n_a, i_a, a_r, a_i, para, h_l), trex_model.EEC_dose_bird_g(trex_model.EEC_diet, aw_bird, trex_model.fi_bird, 0.1, trex_model.C_0, n_a, i_a, a_r, a_i, para, h_l), a_t, trex_model.ARQ_dose_bird(trex_model.EEC_dose_bird, trex_model.EEC_diet, aw_bird, trex_model.fi_bird, trex_model.at_bird, ld50_bird, tw_bird, x, 0.8, trex_model.C_0, n_a, i_a, a_r, a_i, para, h_l), trex_model.ARQ_dose_bird_g(trex_model.EEC_dose_bird, trex_model.EEC_diet, aw_bird, trex_model.fi_bird, trex_model.at_bird, ld50_bird, tw_bird, x, 0.1, trex_model.C_0, n_a, i_a, a_r, a_i, para, h_l), a_t, trex_model.ARQ_diet_bird(trex_model.EEC_diet, lc50_bird, trex_model.C_0, n_a, i_a, a_r, a_i, para, h_l), a_t, trex_model.CRQ_diet_bird(trex_model.EEC_diet, NOAEC_bird, trex_model.C_0, n_a, i_a, a_r, a_i, para, h_l), a_t, trex_model.EEC_dose_mamm(trex_model.EEC_diet, aw_mamm, trex_model.fi_mamm, 0.8, trex_model.C_0, n_a, i_a, a_r, a_i, para, h_l), trex_model.EEC_dose_mamm_g(trex_model.EEC_diet, aw_mamm, trex_model.fi_mamm, 0.1, trex_model.C_0, n_a, i_a, a_r, a_i, para, h_l), a_t, trex_model.ARQ_dose_mamm(trex_model.EEC_dose_mamm, trex_model.at_mamm, aw_mamm, ld50_mamm, tw_mamm, 0.8, trex_model.C_0, n_a, i_a, a_r, a_i, para, h_l), trex_model.ARQ_dose_mamm_g(trex_model.EEC_dose_mamm, trex_model.at_mamm, aw_mamm, ld50_mamm, tw_mamm, 0.1, trex_model.C_0, n_a, i_a, a_r, a_i, para, h_l), a_t, trex_model.CRQ_dose_mamm(trex_model.EEC_diet, trex_model.EEC_dose_mamm, trex_model.ANOAEL_mamm, NOAEL_mamm, aw_mamm, tw_mamm, 0.8, n_a, i_a, a_r, a_i, para, h_l), trex_model.CRQ_dose_mamm_g(trex_model.EEC_diet, trex_model.EEC_dose_mamm, trex_model.ANOAEL_mamm, NOAEL_mamm, aw_mamm, tw_mamm, 0.1, n_a, i_a, a_r, a_i, para, h_l), a_t, trex_model.ARQ_diet_mamm(trex_model.EEC_diet, lc50_mamm, trex_model.C_0, n_a, i_a, a_r, a_i, para, h_l), a_t, trex_model.CRQ_diet_mamm(trex_model.EEC_diet, NOAEC_mamm, trex_model.C_0, n_a, i_a, a_r, a_i, para, h_l), trex_model.LD50_rg_bird(Application_type, a_r, a_i, p_i, r_s, b_w, aw_bird, trex_model.at_bird, ld50_bird, tw_bird, x), trex_model.LD50_rl_bird(Application_type, a_r_l, a_i, p_i, b_w, aw_bird, trex_model.at_bird, ld50_bird, tw_bird, x), trex_model.LD50_bg_bird(Application_type, a_r, a_i, p_i, b_w, aw_bird, trex_model.at_bird, ld50_bird, tw_bird,x),trex_model.LD50_bl_bird(Application_type, a_r_l, a_i, p_i, b_w, aw_bird, trex_model.at_bird, ld50_bird, tw_bird,x), trex_model.LD50_rg_mamm(Application_type, a_r, a_i, p_i, r_s, b_w, aw_mamm, trex_model.at_mamm, ld50_mamm, tw_mamm), trex_model.LD50_rl_mamm(Application_type, a_r_l, a_i, p_i, b_w, aw_mamm, trex_model.at_mamm, ld50_mamm, tw_mamm), trex_model.LD50_bg_mamm(Application_type, a_r, a_i, p_i, b_w, aw_mamm, trex_model.at_mamm, ld50_mamm, tw_mamm),trex_model.LD50_bl_mamm(Application_type, a_r_l, a_i, p_i, b_w, aw_mamm, trex_model.at_mamm, ld50_mamm, tw_mamm), trex_model.sa_bird_1(a_r_p, a_i, den, trex_model.at_bird,trex_model.fi_bird, ld50_bird, aw_bird, tw_bird, x),trex_model.sa_bird_2(a_r_p, a_i, den, m_s_r_p, trex_model.at_bird, ld50_bird, aw_bird, tw_bird, x), trex_model.sc_bird(a_r_p, a_i, den, NOAEC_bird),trex_model.sa_mamm_1(a_r_p, a_i, den, trex_model.at_mamm, trex_model.fi_mamm, ld50_mamm, aw_mamm, tw_mamm), trex_model.sa_mamm_2(a_r_p, a_i, den, m_s_r_p, trex_model.at_mamm, ld50_mamm, aw_mamm, tw_mamm),trex_model.sc_mamm(a_r_p, a_i, den, NOAEC_mamm)) html = html + template.render(templatepath + 'export.html', {}) html = html + template.render(templatepath + '04uberoutput_end.html', {'sub_title': ''}) html = html + template.render(templatepath + '06uberfooter.html', {'links': ''}) self.response.out.write(html) app = webapp.WSGIApplication([('/.*', TRexOutputPage)], debug=True) def main(): run_wsgi_app(app) if __name__ == '__main__': main()
04c0a9aa06b8567653908c8159d470bb3be89b2d
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_200/5468.py
063e5c8d196c9bfcca7a5d638432897002ca1793
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
290
py
dirt=[] k=1 t=input() for j in range(t): n=input();w=n while(w): c=0;g=n%10 n=w;q=(n)%10;m=-2 while(n): d=n%10 if c>=1: if q<d: break q=d;n/=10; c+=1;g=d if n==0: dirt.append(w) break w=w-1 for i in dirt: print "Case #{0}: {1}".format(k,i) k+=1
a5ddd507e15815aaad86ceaaa47e2a295133f13d
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
/sdk/python/pulumi_azure_native/devices/v20160203/list_iot_hub_resource_keys.py
42ce719ca651ad316e0363197087b52eff4ffe47
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bpkgoud/pulumi-azure-native
0817502630062efbc35134410c4a784b61a4736d
a3215fe1b87fba69294f248017b1591767c2b96c
refs/heads/master
2023-08-29T22:39:49.984212
2021-11-15T12:43:41
2021-11-15T12:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,383
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'ListIotHubResourceKeysResult', 'AwaitableListIotHubResourceKeysResult', 'list_iot_hub_resource_keys', 'list_iot_hub_resource_keys_output', ] @pulumi.output_type class ListIotHubResourceKeysResult: """ The list of shared access policies with a next link. """ def __init__(__self__, next_link=None, value=None): if next_link and not isinstance(next_link, str): raise TypeError("Expected argument 'next_link' to be a str") pulumi.set(__self__, "next_link", next_link) if value and not isinstance(value, list): raise TypeError("Expected argument 'value' to be a list") pulumi.set(__self__, "value", value) @property @pulumi.getter(name="nextLink") def next_link(self) -> str: """ The next link. """ return pulumi.get(self, "next_link") @property @pulumi.getter def value(self) -> Optional[Sequence['outputs.SharedAccessSignatureAuthorizationRuleResponse']]: """ The list of shared access policies. """ return pulumi.get(self, "value") class AwaitableListIotHubResourceKeysResult(ListIotHubResourceKeysResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ListIotHubResourceKeysResult( next_link=self.next_link, value=self.value) def list_iot_hub_resource_keys(resource_group_name: Optional[str] = None, resource_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListIotHubResourceKeysResult: """ The list of shared access policies with a next link. :param str resource_group_name: The name of the resource group that contains the IoT hub. :param str resource_name: The name of the IoT hub. """ __args__ = dict() __args__['resourceGroupName'] = resource_group_name __args__['resourceName'] = resource_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:devices/v20160203:listIotHubResourceKeys', __args__, opts=opts, typ=ListIotHubResourceKeysResult).value return AwaitableListIotHubResourceKeysResult( next_link=__ret__.next_link, value=__ret__.value) @_utilities.lift_output_func(list_iot_hub_resource_keys) def list_iot_hub_resource_keys_output(resource_group_name: Optional[pulumi.Input[str]] = None, resource_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[ListIotHubResourceKeysResult]: """ The list of shared access policies with a next link. :param str resource_group_name: The name of the resource group that contains the IoT hub. :param str resource_name: The name of the IoT hub. """ ...
e7f28841c3cab7b1b034f5d0de68744734459162
f8c35a47c7199aed0747e91e5c36ec97e7543de1
/custom/icds_reports/management/commands/generate_migration_tables.py
868e4fe59a2acf305643ee8eed39d62f19f82f18
[]
no_license
dr-aryone/commcare-hq
13a3f2a39382e3f6fe1f19d6c08bb61b808c146d
3e7e09247fc8d1246ccfc77c1fff8603c9f65228
refs/heads/master
2020-05-27T14:29:48.923458
2019-05-26T00:01:33
2019-05-26T00:01:33
188,650,727
2
1
null
2019-05-26T07:03:18
2019-05-26T07:03:18
null
UTF-8
Python
false
false
6,056
py
from __future__ import absolute_import, print_function from __future__ import unicode_literals import logging import re import sqlite3 from django.core.management import CommandError from django.core.management.base import BaseCommand from sqlalchemy import inspect as sqlinspect from corehq.apps.userreports.models import StaticDataSourceConfiguration from corehq.apps.userreports.util import get_indicator_adapter, UCR_TABLE_PREFIX from corehq.sql_db.connections import connection_manager from custom.icds_reports.const import DASHBOARD_DOMAIN from custom.icds_reports.management.commands.create_citus_child_tables import keep_child_tables, plain_tables, \ drop_child_tables, get_parent_child_mapping from custom.icds_reports.models import AggregateSQLProfile logger = logging.getLogger(__name__) IGNORE_TABLES = { 'django_migrations', AggregateSQLProfile._meta.db_table, 'ucr_table_name_mapping', } CREATE_TABLE = """ CREATE TABLE IF NOT EXISTS tables ( id integer PRIMARY KEY, source_table text NOT NULL, date text, target_table text, migrated integer ); """ def get_all_tables(connection): res = connection.execute("select tablename from pg_tables where schemaname = 'public'") return {row.tablename for row in res} class Command(BaseCommand): def add_arguments(self, parser): parser.add_argument('output_database') parser.add_argument( '--source-engine-id', default='icds-ucr', help='Django alias for source database' ) def handle(self, output_database, source_engine_id, **options): with connection_manager.get_engine(source_engine_id).begin() as conn: self.parent_child_mapping = get_parent_child_mapping(conn) self.child_parent_mapping = { child: parent for parent, children in self.parent_child_mapping.items() for child in children } self.table_count = 0 self.db = sqlite3.connect(output_database) try: self.setup_sqlite_db() self.generate_dump_script(source_engine_id) self.stdout.write("\n{} tables processed\n".format(self.table_count)) finally: self.db.close() def setup_sqlite_db(self): with self.db: self.db.execute(CREATE_TABLE) res = self.db.execute('select count(*) from tables') if res.fetchone()[0] > 0: raise CommandError('Database already has records. Delete it and re-run command.') def insert_row(self, row): self.table_count += 1 with self.db: self.db.execute('INSERT INTO tables(source_table, date, target_table) values (?,?,?)', row) def generate_dump_script(self, source_engine_id): self.seen_tables = set() source_engine = connection_manager.get_engine(source_engine_id) # direct dump and load from parent + child tables with source_engine.begin() as source_conn: insp = sqlinspect(source_conn) for table in keep_child_tables + plain_tables: for line in self.get_table_date_target(insp, table): self.insert_row(line) # direct dump and load from parent # dump from all child tables into parent table for table in drop_child_tables: for line in self.get_table_date_target(insp, table, all_in_parent=True): self.insert_row(line) for datasource in StaticDataSourceConfiguration.by_domain(DASHBOARD_DOMAIN): if source_engine_id == datasource.engine_id or source_engine_id in datasource.mirrored_engine_ids: adapter = get_indicator_adapter(datasource) table_name = adapter.get_table().name # direct dump and load from parent # dump from all child tables into parent table # - if table is distrubuted, citus will distribute the data # - if table is partitioned the triggers on the parent will distribute the data for line in self.get_table_date_target(insp, table_name, all_in_parent=True): self.insert_row(line) all_tables = get_all_tables(source_conn) remaining_tables = all_tables - self.seen_tables - IGNORE_TABLES icds_ucr_prefix = '{}{}_'.format(UCR_TABLE_PREFIX, DASHBOARD_DOMAIN) def keep_table(table): root_table = self.child_parent_mapping.get(table, table) return not root_table.startswith(UCR_TABLE_PREFIX) or root_table.startswith(icds_ucr_prefix) remaining_tables = list(filter(keep_table, remaining_tables)) if remaining_tables: self.stderr.write("Some tables not seen:") for t in remaining_tables: parent = self.child_parent_mapping.get(t) if parent: self.stderr.write("\t{} (parent: {})".format(t, parent)) else: self.stderr.write("\t{}".format(t)) def get_table_date_target(self, sql_insepctor, table, all_in_parent=False): yield table, None, None self.seen_tables.add(table) for child in self.parent_child_mapping[table]: self.seen_tables.add(child) yield child, get_table_date(sql_insepctor, child), table if all_in_parent else None def get_table_date(sql_insepctor, table): def _get_date(string): match = re.match(r'.*(\d{4}-\d{2}-\d{2}).*', string) if match: return match.groups()[0] date = _get_date(table) if not date: constraints = [ constraint for constraint in sql_insepctor.get_check_constraints(table) if constraint['name'].startswith(table) ] if constraints: date = _get_date(constraints[0]['sqltext']) return date
19aab88df7aec32b7971ae1f9f4d9863c192e9e8
965fe92b03b37d2e6fa700281c4ef383fb104ada
/sciencebeam_trainer_delft/sequence_labelling/debug.py
53a1befadf92215d50210611fddba0ded0508508
[ "MIT" ]
permissive
elifesciences/sciencebeam-trainer-delft
1591bebb7f5b9ed178329f4e9e02a9d893ab228d
2413fe7f0801869208741e4ab6c4096db8d53b5e
refs/heads/develop
2022-05-20T21:55:13.210432
2022-03-28T17:32:31
2022-03-28T17:32:31
192,557,708
5
1
MIT
2022-03-28T17:33:14
2019-06-18T14:34:50
Python
UTF-8
Python
false
false
3,133
py
import os import logging import time from contextlib import contextmanager from pathlib import Path from typing import IO, Iterator, Optional import numpy as np from sciencebeam_trainer_delft.sequence_labelling.tag_formatter import ( TagOutputFormats, format_tag_result ) LOGGER = logging.getLogger(__name__) SCIENCEBEAM_DELFT_TAGGING_DEBUG_OUT = "SCIENCEBEAM_DELFT_TAGGING_DEBUG_OUT" @contextmanager def exclusive_prefixed_file(prefix: str, suffix: str = '') -> Iterator[IO]: for index in range(1, 10000): filename = '%s-%d%s' % (prefix, index, suffix) try: with open(filename, mode='x', encoding='utf-8') as fileobj: yield fileobj return except FileExistsError: continue raise FileExistsError('could not create any prefixed file: %s, suffix: %s' % (prefix, suffix)) class TagDebugReporter: def __init__(self, output_directory: str): self.output_directory = output_directory def get_base_output_name(self, model_name: str) -> str: return os.path.join(self.output_directory, 'sciencebeam-delft-%s-%s' % ( round(time.time()), model_name )) def report_tag_results( self, texts: np.array, features: np.array, annotations, model_name: str): base_filename_prefix = self.get_base_output_name(model_name=model_name) with exclusive_prefixed_file(base_filename_prefix, '.json') as json_fp: output_file = json_fp.name filename_prefix = os.path.splitext(output_file)[0] LOGGER.info('tagger, output_file: %s', output_file) format_tag_result_kwargs = dict( tag_result=annotations, texts=texts, features=features, model_name=model_name ) formatted_text = format_tag_result( output_format=TagOutputFormats.TEXT, **format_tag_result_kwargs ) Path(filename_prefix + '.txt').write_text(formatted_text, encoding='utf-8') formatted_json = format_tag_result( output_format=TagOutputFormats.JSON, **format_tag_result_kwargs ) json_fp.write(formatted_json) formatted_xml = format_tag_result( output_format=TagOutputFormats.XML, **format_tag_result_kwargs ) Path(filename_prefix + '.xml').write_text(formatted_xml, encoding='utf-8') if features is not None: formatted_data = format_tag_result( output_format=TagOutputFormats.DATA, **format_tag_result_kwargs ) Path(filename_prefix + '.data').write_text(formatted_data, encoding='utf-8') def get_tag_debug_reporter_if_enabled() -> Optional[TagDebugReporter]: output_directory = os.environ.get(SCIENCEBEAM_DELFT_TAGGING_DEBUG_OUT) if not output_directory: return None return TagDebugReporter(output_directory)
d4ee6961649aca8865294008a94b35181bbe50bc
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/CodeJamData/14/03/5.py
44713545f4a1f6d56fb33b4f7f95aaa4764dea56
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
1,620
py
def trans(a): return map(lambda x: ''.join(list(x)), zip(*a)) def can(r, c, m): if r > c: r, c = c, r safe = r * c - m if r == 1 or safe == 1: return True elif r == 2: return safe % 2 == 0 and safe >= 4 else: return not safe in [2, 3, 5, 7] def solve(r, c, m): if not can(r, c, m): print 'Impossible' return swapped = False if r > c: r, c, swapped = c, r, True ans, safe = [['.'] * c for _ in xrange(r)], r * c - m if r == 1: for i in xrange(safe, c): ans[0][i] = '*' elif r == 2: for i in xrange(safe // 2, c): ans[0][i] = ans[1][i] = '*' elif m <= (r - 2) * (c - 2): for i in xrange(m): ans[r - i % (r - 2) - 1][c - i // (r - 2) - 1] = '*' else: ans = [['*'] * c for _ in xrange(r)] if safe <= 6: for i in xrange(safe // 2): ans[i][0] = ans[i][1] = '.' else: for i in xrange(8): ans[i % 3][i // 3] = '.' safe -= 8 if safe % 2 == 1: ans[2][2] = '.' safe -= 1 a = min(r - 3, safe // 2) for i in xrange(a): ans[3 + i][0] = ans[3 + i][1] = '.' safe -= 2 * a for i in xrange(safe // 2): ans[0][3 + i] = ans[1][3 + i] = '.' ans[0][0] = 'c' if swapped: ans = trans(ans) for row in ans: print ''.join(row) T = input() for i in xrange(T): [r, c, m] = map(int, raw_input().split()) print 'Case #%d:' % (i + 1) solve(r, c, m)
b6176db9cf906b94b069180306ba7dc935c84b19
4061f9f2a7dc2acde4c4c630fbe10ac8f5913f5d
/user/views.py
6059ac2806bf2a9c4bcdc72bc67893bae2b34d3b
[]
no_license
eibrahimarisoy/tasty_dishes
8b9db3129c4d670f71a9e64025b25f51646c9e36
ddfa3286bca06e153fbbd1e1a0d914c9f31d008e
refs/heads/master
2022-12-04T00:45:55.607207
2020-04-03T09:42:31
2020-04-03T09:42:31
252,424,641
0
0
null
2022-11-22T05:27:25
2020-04-02T10:29:54
JavaScript
UTF-8
Python
false
false
4,511
py
from django.contrib import messages from django.contrib.auth import authenticate, login, logout, update_session_auth_hash from django.contrib.auth.decorators import login_required from django.contrib.auth.forms import PasswordChangeForm from django.contrib.auth.models import User from django.shortcuts import get_object_or_404, redirect, render from user.forms import RegisterForm, LoginForm, UserUpdateForm from recipe.models import Recipe STATUS = "published" def user_register(request): context = dict() form = RegisterForm(request.POST or None) if form.is_valid(): # get new user information from form username = form.clean_username() first_name = form.clean_first_name() last_name = form.clean_last_name() email = form.clean_email() password = form.clean_password() # create new user and set_password and set active new_user = User(username=username, last_name=last_name, first_name=first_name, email=email) new_user.set_password(password) new_user.is_active = True new_user.save() # login new user login(request, new_user) messages.success(request, "You have successfully registered.") return redirect("index") context["register_form"] = form return render(request, "user/register.html", context) def user_login(request): context = dict() form = LoginForm(request.POST or None) context["form"] = form if form.is_valid(): email = form.cleaned_data.get("email") password = form.cleaned_data.get("password") # if username is not exists throw and error to user try: username = User.objects.get(email=email).username except User.DoesNotExist: messages.info(request, "Username is wrong.") return render(request, "user/login.html", context) # check username and password are correct user = authenticate(request, username=username, password=password) if user is None: messages.info(request, "Username or password is wrong") return render(request, "user/login.html", context) else: messages.success(request, "You have successfully logged in.") # start new session for user login(request, user) return redirect("index") return render(request, "user/login.html", context) @login_required() def user_logout(request): logout(request) messages.success(request, "You have successfully logged out.") return redirect("index") @login_required() def user_like_recipe_list(request): # to send user's favorite recipes to template context = dict() user = request.user recipes = Recipe.objects.filter(likes=user) context['recipes'] = recipes return render(request, "user/like_recipe_list.html", context) @login_required() def user_recipe_list(request): # to show the user their own recipes context = dict() user = request.user recipes = Recipe.objects.filter( owner=user, status=STATUS, ) context['recipes'] = recipes return render(request, "user/recipe_list.html", context) @login_required() def user_profile(request): context = dict() user = get_object_or_404(User, pk=request.user.pk) context['user'] = user return render(request, "user/profile.html", context) @login_required() def update_user_profile(request): context = dict() form = UserUpdateForm(request.POST or None, instance=request.user) context['form'] = form if request.method == "POST": if form.is_valid(): form.save() messages.success(request, "Your profile updated successfully.") return redirect("user_profile") return render(request, "user/update_profile.html", context) @login_required() def change_password(request): context = dict() if request.method == 'POST': form = PasswordChangeForm(request.user, request.POST) if form.is_valid(): user = form.save() update_session_auth_hash(request, user) messages.success(request, 'Your password has been successfully changed!') return redirect('user_profile') else: messages.error(request, 'You have logged in incorrectly!') else: form = PasswordChangeForm(request.user) context['form'] = form return render(request, 'user/change_password.html', context)
fa3f5466ad8bcab2dadb823615e08fc9e14db94a
c0795000de54a26956efe1a87afba507bb328b81
/docs/conf.py
ccd96e7307cb1b7e20bed096c7eb0dfae85de6c9
[ "MIT" ]
permissive
steinitzu/beets
ff6c24d9e072b3d86f889e2b9af66a6ca2374d09
1fbbe6154698ce50f1a7e8d32af9a6376e2c7ede
refs/heads/master
2021-01-16T20:26:07.732280
2013-02-28T18:43:02
2013-02-28T18:43:02
7,949,551
1
0
null
null
null
null
UTF-8
Python
false
false
972
py
AUTHOR = u'Adrian Sampson' # -- General configuration ----------------------------------------------------- extensions = [] #templates_path = ['_templates'] exclude_patterns = ['_build'] source_suffix = '.rst' master_doc = 'index' project = u'beets' copyright = u'2012, Adrian Sampson' version = '1.1' release = '1.1b3' pygments_style = 'sphinx' # -- Options for HTML output --------------------------------------------------- html_theme = 'default' #html_static_path = ['_static'] htmlhelp_basename = 'beetsdoc' # -- Options for LaTeX output -------------------------------------------------- latex_documents = [ ('index', 'beets.tex', u'beets Documentation', AUTHOR, 'manual'), ] # -- Options for manual page output -------------------------------------------- man_pages = [ ('reference/cli', 'beet', u'music tagger and library organizer', [AUTHOR], 1), ('reference/config', 'beetsconfig', u'beets configuration file', [AUTHOR], 5), ]
2ea747e7a97063f59f0d0d4584ff5c12e534398b
90deb98bd63bdc0f08d80954d3edb3a277e63cd1
/arq/jobs.py
1d4c756caae0842df1a7973d086f698534b73085
[ "MIT" ]
permissive
filmor/arq
93a97852eb2aa554ce2c6d548fcfa7dac35b74b4
f0b4b8b4db2df0c950069f98d5d62c104912e48d
refs/heads/master
2020-03-13T21:08:36.514480
2018-01-10T15:36:23
2018-01-10T15:36:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,365
py
""" :mod:`jobs` =========== Defines the ``Job`` class and descendants which deal with encoding and decoding job data. """ import base64 import os from datetime import datetime import msgpack from .utils import DEFAULT_CURTAIL, from_unix_ms, timestamp, to_unix_ms_tz, truncate __all__ = ['JobSerialisationError', 'Job', 'DatetimeJob'] class ArqError(Exception): pass class JobSerialisationError(ArqError): pass def gen_random(): """ generate a lowercase alpha-numeric random string of length 24. Should have more randomness for its size thank uuid """ return base64.b32encode(os.urandom(10))[:16].decode().lower() # "device control one" should be fairly unique as a dict key and only one byte DEVICE_CONTROL_ONE = '\x11' class Job: """ Main Job class responsible for encoding and decoding jobs as they go into and come out of redis. """ __slots__ = 'id', 'queue', 'queued_at', 'class_name', 'func_name', 'args', 'kwargs', 'raw_queue', 'raw_data' def __init__(self, raw_data: bytes, *, queue_name: str=None, raw_queue: bytes=None) -> None: """ Create a job instance be decoding a job definition eg. from redis. :param raw_data: data to decode, as created by :meth:`arq.jobs.Job.encode` :param raw_queue: raw name of the queue the job was taken from :param queue_name: name of the queue the job was dequeued from """ self.raw_data = raw_data if queue_name is None and raw_queue is None: raise ArqError('either queue_name or raw_queue are required') self.queue = queue_name or raw_queue.decode() self.raw_queue = raw_queue or queue_name.encode() self.queued_at, self.class_name, self.func_name, self.args, self.kwargs, self.id = self.decode_raw(raw_data) self.queued_at /= 1000 @classmethod def encode(cls, *, job_id: str=None, queued_at: int=None, class_name: str, func_name: str, args: tuple, kwargs: dict) -> bytes: """ Create a byte string suitable for pushing into redis which contains all required information about a job to be performed. :param job_id: id to use for the job, leave blank to generate a uuid :param queued_at: time in ms unix time when the job was queue, if None now is used :param class_name: name (see :attr:`arq.main.Actor.name`) of the actor class where the job is defined :param func_name: name of the function be called :param args: arguments to pass to the function :param kwargs: key word arguments to pass to the function """ queued_at = queued_at or int(timestamp() * 1000) try: return cls.encode_raw([queued_at, class_name, func_name, args, kwargs, cls.generate_id(job_id)]) except TypeError as e: raise JobSerialisationError(str(e)) from e @classmethod def generate_id(cls, given_id): return given_id or gen_random() @classmethod def msgpack_encoder(cls, obj): """ The default msgpack encoder, adds support for encoding sets. """ if isinstance(obj, set): return {DEVICE_CONTROL_ONE: list(obj)} else: return obj @classmethod def msgpack_object_hook(cls, obj): if len(obj) == 1 and DEVICE_CONTROL_ONE in obj: return set(obj[DEVICE_CONTROL_ONE]) return obj @classmethod def encode_raw(cls, data) -> bytes: return msgpack.packb(data, default=cls.msgpack_encoder, use_bin_type=True) @classmethod def decode_raw(cls, data: bytes): return msgpack.unpackb(data, object_hook=cls.msgpack_object_hook, encoding='utf8') def to_string(self, args_curtail=DEFAULT_CURTAIL): arguments = '' if self.args: arguments = ', '.join(map(str, self.args)) if self.kwargs: if arguments: arguments += ', ' arguments += ', '.join(f'{k}={v!r}' for k, v in sorted(self.kwargs.items())) return '{s.id:.6} {s.class_name}.{s.func_name}({args})'.format(s=self, args=truncate(arguments, args_curtail)) def short_ref(self): return '{s.id:.6} {s.class_name}.{s.func_name}'.format(s=self) def __str__(self): return self.to_string() def __repr__(self): return f'<Job {self} on {self.queue}>' DEVICE_CONTROL_TWO = '\x12' TIMEZONE = 'O' class DatetimeJob(Job): """ Alternative Job which copes with datetimes. None timezone naïve dates are supported but the returned datetimes will use a :mod:`datetime.timezone` class to define the timezone regardless of the timezone class originally used on the datetime object (eg. ``pytz``). """ @classmethod def msgpack_encoder(cls, obj): if isinstance(obj, datetime): ts, tz = to_unix_ms_tz(obj) result = {DEVICE_CONTROL_TWO: ts} if tz is not None: result[TIMEZONE] = tz return result else: return super().msgpack_encoder(obj) @classmethod def msgpack_object_hook(cls, obj): if len(obj) <= 2 and DEVICE_CONTROL_TWO in obj: return from_unix_ms(obj[DEVICE_CONTROL_TWO], utcoffset=obj.get(TIMEZONE)) else: return super().msgpack_object_hook(obj)
f7b3033abbffc59bb77ce0801784a595aa9821d1
4be5c172c84e04c35677f5a327ab0ba592849676
/python/leetcode/unique_paths_ii/unique_paths_ii.py
3cdf92f1c359c3b7d2a6b32488d8026d34b9638a
[]
no_license
niranjan-nagaraju/Development
3a16b547b030182867b7a44ac96a878c14058016
d193ae12863971ac48a5ec9c0b35bfdf53b473b5
refs/heads/master
2023-04-06T20:42:57.882882
2023-03-31T18:38:40
2023-03-31T18:38:40
889,620
9
2
null
2019-05-27T17:00:29
2010-09-05T15:58:46
Python
UTF-8
Python
false
false
3,955
py
''' https://leetcode.com/problems/unique-paths-ii/ 63. Unique Paths II A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below). Now consider if some obstacles are added to the grids. How many unique paths would there be? An obstacle and empty space is marked as 1 and 0 respectively in the grid. Note: m and n will be at most 100. Example 1: Input: [ [0,0,0], [0,1,0], [0,0,0] ] Output: 2 Explanation: There is one obstacle in the middle of the 3x3 grid above. There are two ways to reach the bottom-right corner: 1. Right -> Right -> Down -> Down 2. Down -> Down -> Right -> Right ''' ''' Solution Outline: 0. Allowed directions are R, D 1. Consider moving to cell x,y from 0,0 If there were no obstacles, it would be (num_paths_to(x-1,y) + num_paths_to(x,y-1)) with num_paths_to(x,0) == 1, (only direction allowed is down) and num_paths_to(0,y) == 1 (only direction allowed is right) {for any 0<=x<m,0<=y<n} 2. With obstacles, if x,0 is an obstacle, then the column looks like (x=2 in the example) [[0 [0 [1 [0 [0 0 . . . num_paths_to(0,0) = 1 num_paths_to(1,0) = 1 num_paths_to(2,0) = 0 (blockade) num_paths_to(3,0) = 0 (can' get past blockade moving only D) num_paths_to(4,0) = 0 Similarly, if (0,y) is an obstacle, then the first row looks like (y=1 in the example) [[0 1 0 0 0 0] num_paths_to(0,0) = 1 num_paths_to(0,1) = 0 (blockade) num_paths_to(0,y) = 0 (for all y > 1) (can't get past blockade moving only R) For any random(x,y), if x,y is an obstacle, then num_paths_to(x,y) = 0 otherwise, num_paths_to(x,y) = sum(num_paths_to(x-1,y), num_paths_to(x,y-1)) Sample run 1: A= [ [0,0,0], [0,1,0], [0,0,0] ] DP: [ [0,0,0], [0,0,0], [0,0,0] ] Fill DP row 0, DP: [ [1,1,1], [0,0,0], [0,0,0] ] Fill DP col 0, DP: [ [1,1,1], [1,0,0], [1,0,0] ] (x,y): (1,1) is a blockade DP: [ [1,1,1], [1,0,0], [1,0,0] ] (x,y): (1,2) == sum(left, up) == sum(DP[1,1], DP[0,2]) == 1 DP: [ [1,1,1], [1,0,1], [1,0,0] ] (x,y): (2,1) == sum(left,up) == sum(DP[2,0], DP[1,1]) == 1 DP: [ [1,1,1], [1,0,1], [1,1,0] ] (x,y): (2,2) == sum(left,up) == sum(DP[2,1], DP[1,2]) == 2 DP: [ [1,1,1], [1,0,1], [1,1,2] ] ''' class Solution(object): def uniquePathsWithObstacles(self, obstacleGrid): """ :type obstacleGrid: List[List[int]] :rtype: int """ if not obstacleGrid: return 0 m = len(obstacleGrid) n = len(obstacleGrid[0]) # End cell is blocked if obstacleGrid[-1][-1] == 1: return 0 DP = [[0 for _ in xrange(n)] for _ in xrange(m)] # first row for j in xrange(n): if obstacleGrid[0][j] == 1: break DP[0][j] = 1 # first column for i in xrange(m): if obstacleGrid[i][0] == 1: break DP[i][0] = 1 for i in xrange(1, m): for j in xrange(1, n): if obstacleGrid[i][j] == 0: DP[i][j] = DP[i-1][j] + DP[i][j-1] # if A[i][j] is an obstacle, DP[i][j] remains 0 return DP[-1][-1] if __name__ == '__main__': s = Solution() assert s.uniquePathsWithObstacles(\ [ [0,0,0], [0,1,0], [0,0,0] ]) == 2 assert s.uniquePathsWithObstacles(\ [ [0,0,0], [0,1,0], [0,0,1] ]) == 0 assert s.uniquePathsWithObstacles(\ [ [0,0,1,0], [0,1,0,0], [0,0,0,0], [1,0,0,0] ]) == 3 assert s.uniquePathsWithObstacles(\ [ [0,0,1,0], [0,1,0,0], [0,0,0,0], [0,0,0,0], [1,0,0,0] ]) == 9
9cf5ec04d45c55aa2d077d17107a6832fd095729
f8166c72c0514f39ff4fc6bbb3d56ac2d8089fb0
/whileInput.py
46d75a3531d93d86855555c132488e21d76b1ddc
[]
no_license
KahlilMonteiro-lpsr/class-samples
5f2a1dd68971b0c5ad342c709454493275f6138a
6ed5e8fa37ca2bda53f4bc387a829a97d20b8f2c
refs/heads/master
2021-01-18T22:08:13.251542
2016-06-08T22:07:53
2016-06-08T22:07:53
48,007,815
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
# purposely an infinite loop myInput = "LPS" while myInput != "leave": myInput = raw_input() print("You said: " + myInput)
[ "lps@lps-1011PX.(none)" ]
lps@lps-1011PX.(none)
9c916129fe72fbdc76aaf2997d9bbdfa460fd235
de54e5ddf4d350176d70c2bb1501b878285a18b8
/fpn.py
04a74603728490c73565dff2f7b4854aee3e9411
[]
no_license
lizhe960118/find-star
e1d73b78b29087ca2e83990354b96b7406eaedf4
e233dca4fe9a5faf6df9b6a4e0b2f29a7eb096b0
refs/heads/master
2020-05-18T10:55:52.008399
2019-05-01T03:49:32
2019-05-01T03:49:32
184,363,943
1
0
null
null
null
null
UTF-8
Python
false
false
6,390
py
'''RetinaFPN in PyTorch.''' import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion*planes) self.downsample = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.downsample = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.downsample(x) out = F.relu(out) return out # 基础残差块 class ResNetBasicBlock(nn.Module): expansion = 1 def __init__(self, in_channel, out_channel, stride=1, downsample=None): super(ResNetBasicBlock, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=1), nn.BatchNorm2d(out_channel)) self.relu = nn.ReLU(inplace=True) self.layer2 = nn.Sequential( nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(out_channel)) self.downsample = downsample self.stride = stride def forward(self,x): residual = x out = self.layer1(x) out = self.relu(out) out = self.layer2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class FPN(nn.Module): def __init__(self, block, num_blocks): super(FPN, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) # 3*3 s1 self.bn1 = nn.BatchNorm2d(64) self.conv2 = nn.Conv2d(64, 64, kernel_size=1, stride=1, bias=False) # 1*1 s1 self.bn2 = nn.BatchNorm2d(64) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) # 3*3 s2 self.bn3 = nn.BatchNorm2d(64) # Bottom-up layers self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.conv5 = nn.Conv2d(1024, 256, kernel_size=3, stride=2, padding=1) # self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) # self.conv6 = nn.Conv2d(2048, 256, kernel_size=3, stride=2, padding=1) # self.conv7 = nn.Conv2d( 256, 256, kernel_size=3, stride=2, padding=1) # Lateral layers # self.latlayer1 = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0) # self.latlayer2 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0) # self.latlayer3 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0) self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0) self.latlayer2 = nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0) self.latlayer3 = nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0) # Top-down layers self.toplayer1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.toplayer2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def _upsample_add(self, x, y): '''Upsample and add two feature maps. Args: x: (Variable) top feature map to be upsampled. y: (Variable) lateral feature map. Returns: (Variable) added feature map. Note in PyTorch, when input size is odd, the upsampled feature map with `F.upsample(..., scale_factor=2, mode='nearest')` maybe not equal to the lateral feature map size. e.g. original input size: [N,_,15,15] -> conv2d feature map size: [N,_,8,8] -> upsampled feature map size: [N,_,16,16] So we choose bilinear upsample which supports arbitrary output sizes. ''' _,_,H,W = y.size() return F.upsample(x, size=(H,W), mode='bilinear') + y def forward(self, x): # Bottom-up c1 = F.relu(self.bn1(self.conv1(x))) c1 = F.relu(self.bn2(self.conv2(c1))) c1 = F.relu(self.bn3(self.conv3(c1))) # c1 = F.max_pool2d(c1, kernel_size=3, stride=2, padding=1) c2 = self.layer1(c1) # 300 * 300 c3 = self.layer2(c2) c4 = self.layer3(c3) p5 = self.conv5(c4) # c5 = self.layer4(c4) # p6 = self.conv6(c5) # p7 = self.conv7(F.relu(p6)) # Top-down p4 = self.latlayer1(c4) p3 = self._upsample_add(p4, self.latlayer2(c3)) p3 = self.toplayer1(p3) p2 = self._upsample_add(p3, self.latlayer3(c2)) p2 = self.toplayer2(p2) # p5 = self.latlayer1(c5) # p4 = self._upsample_add(p5, self.latlayer2(c4)) # p4 = self.toplayer1(p4) # p3 = self._upsample_add(p4, self.latlayer3(c3)) # p3 = self.toplayer2(p3) return p2, p3, p4, p5 def FPN50(): # return FPN(Bottleneck, [3,4,6,3]) return FPN(Bottleneck, [3, 4, 6]) def FPN101(): return FPN(Bottleneck, [2,4,23,3]) def test(): net = FPN50() # fms = net(Variable(torch.randn(1,3,600,300))) fms = net(Variable(torch.randn(1, 3, 832, 832))) for fm in fms: print(fm.size()) # test()
b96bfac9435a26fb0dac083564d3a9020962e566
e4d4149a717d08979953983fa78fea46df63d13d
/Week8/Day1/projects/animals_project/manage.py
a880c80321ea81b2c1b015e806c82f0971f83302
[]
no_license
fayblash/DI_Bootcamp
72fd75497a2484d19c779775c49e4306e602d10f
a4e8f62e338df5d5671fd088afa575ea2e290837
refs/heads/main
2023-05-05T20:55:31.513558
2021-05-27T06:48:40
2021-05-27T06:48:40
354,818,813
0
0
null
null
null
null
UTF-8
Python
false
false
671
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'animals_project.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
95ad4fd20d715d2b592087416dd9db29358e23b9
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02407/s580407099.py
11041f9012ef0a39f8fbc696d88e6c36fe254b03
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
n = int(input()) a = list(map(int,input().split())) a.reverse() for i,elem in enumerate(a): if i != 0: print (" ", end='') print (elem, end='') print ('')
37416ae207a95ca269005d08f020dd3f0e703430
14de7abd1267122ad128c130f45ff86a087ed5cd
/nlp/match_blocks.py
7e4efbe57c5b3b8a5ce86ca674e74a43cecd808f
[ "MIT" ]
permissive
saurabhXcode/tf-attentive-conv
64124c470acdb26125680d903cc97ae1cc68a4b9
8dcc403575392c8e5c6c287432272a781410c49c
refs/heads/master
2020-04-12T12:21:35.091291
2018-08-11T00:26:44
2018-08-11T00:26:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,308
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Han Xiao <[email protected]> <https://hanxiao.github.io> import tensorflow as tf from nlp.encode_blocks import CNN_encode from nlp.nn import linear_logit, dropout_res_layernorm def AttentiveCNN_match(context, query, context_mask, query_mask, scope='AttentiveCNN_Block', reuse=None, **kwargs): with tf.variable_scope(scope, reuse=reuse): cnn_wo_att = CNN_encode(context, filter_size=3, direction='none', act_fn=None) att_context, _ = Attentive_match(context, query, context_mask, query_mask) cnn_att = CNN_encode(att_context, filter_size=1, direction='none', act_fn=None) output = tf.nn.tanh(cnn_wo_att + cnn_att) return dropout_res_layernorm(context, output, **kwargs) def Attentive_match(context, query, context_mask, query_mask, score_func='dot', causality=False, scope='attention_match_block', reuse=None, **kwargs): with tf.variable_scope(scope, reuse=reuse): batch_size, context_length, num_units = context.get_shape().as_list() _, query_length, _ = query.get_shape().as_list() if score_func == 'dot': score = tf.matmul(context, query, transpose_b=True) elif score_func == 'bilinear': score = tf.matmul(linear_logit(context, num_units, scope='context_x_We'), query, transpose_b=True) elif score_func == 'scaled': score = tf.matmul(linear_logit(context, num_units, scope='context_x_We'), query, transpose_b=True) / \ (num_units ** 0.5) elif score_func == 'additive': score = tf.squeeze(linear_logit( tf.tanh(tf.tile(tf.expand_dims(linear_logit(context, num_units, scope='context_x_We'), axis=2), [1, 1, query_length, 1]) + tf.tile(tf.expand_dims(linear_logit(query, num_units, scope='query_x_We'), axis=1), [1, context_length, 1, 1])), 1, scope='x_ve'), axis=3) else: raise NotImplementedError mask = tf.matmul(tf.expand_dims(context_mask, -1), tf.expand_dims(query_mask, -1), transpose_b=True) paddings = tf.ones_like(mask) * (-2 ** 32 + 1) masked_score = tf.where(tf.equal(mask, 0), paddings, score) # B, Lc, Lq # Causality = Future blinding if causality: diag_vals = tf.ones_like(masked_score[0, :, :]) # (Lc, Lq) tril = tf.contrib.linalg.LinearOperatorLowerTriangular(diag_vals).to_dense() # (Lc, Lq) masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(masked_score)[0], 1, 1]) # B, Lc, Lq paddings = tf.ones_like(masks) * (-2 ** 32 + 1) masked_score = tf.where(tf.equal(masks, 0), paddings, masked_score) # B, Lc, Lq query2context_score = tf.nn.softmax(masked_score, axis=2) * mask # B, Lc, Lq query2context_attention = tf.matmul(query2context_score, query) # B, Lc, D context2query_score = tf.nn.softmax(masked_score, axis=1) * mask # B, Lc, Lq context2query_attention = tf.matmul(context2query_score, context, transpose_a=True) # B, Lq, D return (query2context_attention, # B, Lc, D context2query_attention) # B, Lq, D
827370360a0c207ac6273117c06be4bf6b0b163e
882be627c49870ae6f2f81963a3cfc9b719c0011
/wscript
601c17dd013a3c54bc088dbbc86fb37531affd98
[]
no_license
brettviren/cogs
794142a04c87ce148e939f8ded852dfa1f6df9bc
681d1ed7e12cd2e7469a5ba3fd7261dc4f8f4c26
refs/heads/master
2022-11-30T12:26:19.624956
2020-08-10T12:34:44
2020-08-10T12:34:44
273,746,410
0
1
null
2020-08-10T12:34:45
2020-06-20T16:40:57
JavaScript
UTF-8
Python
false
false
2,954
#!/usr/bin/env waf VERSION='0.0.0' APPNAME='cogs' import os.path as osp def options(opt): opt.load('compiler_cxx') opt.load('waf_unit_test') opt.add_option('--quell-tests', action='store_true', default=False, help='Compile but do not run the tests (default=%default)') opt.add_option('--with-ers', default=None, help='Set to ERS install area') opt.add_option('--with-nljs', default=None, help='Point nlohmann json install area') opt.add_option('--with-boost', default=None, help='Set to BOOST install area (needed by ERS)') def configure(cfg): cfg.load('compiler_cxx') cfg.load('waf_unit_test') cfg.env.CXXFLAGS += ['-std=c++17', '-ggdb3', '-Wall', '-Werror'] ## nlohmann::json nljs = getattr(cfg.options, 'with_nljs', None) if nljs: print("using " + nljs) setattr(cfg.env, 'INCLUDES_NLJS', [osp.join(nljs, "include")]) cfg.check(features='cxx cxxprogram', define_name='HAVE_NLJS', header_name='nlohmann/json.hpp', use='NLJS', uselib_store='NLJS', mandatory=True) ## ERS ers = getattr(cfg.options, 'with_ers',None) if ers: setattr(cfg.env, 'RPATH_ERS', [osp.join(ers, 'lib')]); setattr(cfg.env, 'LIBPATH_ERS', [osp.join(ers, 'lib')]); setattr(cfg.env, 'INCLUDES_ERS', [osp.join(ers, 'include')]); cfg.check(features='cxx cxxprogram', define_name='HAVE_ERS', header='ers/ers.h', lib=['ers','ErsBaseStreams'], use='ERS', uselib_store='ERS', mandatory=True) ## Boost is not needed directly by cogs but ERS needs it. boost = getattr(cfg.options, 'with_boost', None) if boost: setattr(cfg.env, 'RPATH_BOOST', [osp.join(boost, 'lib')]); setattr(cfg.env, 'LIBPATH_BOOST', [osp.join(boost, 'lib')]); setattr(cfg.env, 'INCLUDES_BOOST', [osp.join(boost, 'include')]); cfg.check(features='cxx cxxprogram', define_name='HAVE_BOOST', header=['boost/filesystem/filesystem.hpp', 'boost/preprocessor/preprocessor.hpp'], lib=['boost_filesystem'], use='BOOST', uselib_store='BOOST', mandatory=True) cfg.write_config_header('config.hpp') def build(bld): bld.recurse("test") use=['ERS','BOOST','NLJS'] sources = bld.path.ant_glob('src/*.cpp'); bld.shlib(features='cxx', includes='inc', source = sources, target='cogs', uselib_store='COGS', use=use) bld.install_files('${PREFIX}/include/cogs', bld.path.ant_glob("inc/cogs/**/*.hpp"), cwd=bld.path.find_dir('inc/cogs'), install_path=bld.env.PREFIX + '/lib', relative_trick=True) from waflib.Tools import waf_unit_test bld.add_post_fun(waf_unit_test.summary) bld.recurse("demo")
cdc237084299675f5c218544154e89c2be810335
980434e03e722eaf3a5ff4ab4f1971c8d1cde4c5
/宝石与石头.py
a2ae90f7262a28b814a440bfe3b1d2cf7a48bc01
[]
no_license
arry-lee/arryleetcode
c9c548b0defc9771e4e488b3e760809364456c99
b4b9b971ec81a921cca606dfa46ea4109d975dfb
refs/heads/master
2020-07-26T14:11:27.645307
2019-09-15T23:31:09
2019-09-15T23:31:09
208,670,826
1
0
null
null
null
null
WINDOWS-1252
Python
false
false
172
py
#±¦Ê¯Óëʯͷ #2019-08-17 06:20:13 class Solution: def numJewelsInStones(self, J: str, S: str) -> int: return len([stone for stone in S if stone in J])
d21ab71fd92fd043000de53f2cc733961ddbb79f
2e2843ead0186fca5f124743395cf1f65f8e579f
/father/urls.py
5cec4ad8f2d3b6e146074d7c02489928bf232b00
[]
no_license
django-spain/django-father-rest-framework
5ce003569d3bdc3d7873de791c25e4a98b6ae57c
0dd1cd61dd1a624f0baa27320fc99388ca7ca620
refs/heads/master
2022-02-21T23:02:23.972257
2019-08-27T00:45:11
2019-08-27T00:45:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
802
py
"""father URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('api/v1.0/', include('book.urls')), ]
ced152ee74e1836bdeb08bcfe32e146b988939d7
556db265723b0cc30ad2917442ed6dad92fd9044
/tensorflow/python/training/experimental/mixed_precision_global_state.py
6f0a179db65b1ebb31c2cbc1265eaf71b2a09fd6
[ "MIT", "Apache-2.0", "BSD-2-Clause" ]
permissive
graphcore/tensorflow
c1669b489be0e045b3ec856b311b3139858de196
085b20a4b6287eff8c0b792425d52422ab8cbab3
refs/heads/r2.6/sdk-release-3.2
2023-07-06T06:23:53.857743
2023-03-14T13:04:04
2023-03-14T13:48:43
162,717,602
84
17
Apache-2.0
2023-03-25T01:13:37
2018-12-21T13:30:38
C++
UTF-8
Python
false
false
2,635
py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains global variables related to mixed precision. This is not part of mixed_precision.py to avoid a circular dependency. mixed_precision.py depends on Session, and Session depends on this file. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.util.tf_export import tf_export # Whether the mixed precision graph rewrite has been enabled or not with # `enable_mixed_precision_graph_rewrite`. Used to turn on auto_mixed_precision # in ConfigProtos passed to Sessions. _mixed_precision_graph_rewrite_is_enabled = False # True if a Session has been created without the mixed precision graph rewrite # being enabled. Used to give a warning if mixed precision is enabled after a # Session has already been created. _non_mixed_precision_session_created = False # Whether the global tf.keras.mixed_precision.Policy uses mixed precision. Used # to raise an error message if both a mixed Policy and the graph rewrite are # used at the same time. _using_mixed_precision_policy = False @tf_export('__internal__.train.is_mixed_precision_graph_rewrite_enabled', v1=[]) def is_mixed_precision_graph_rewrite_enabled(): return _mixed_precision_graph_rewrite_is_enabled def set_mixed_precision_graph_rewrite_enabled(enabled): global _mixed_precision_graph_rewrite_is_enabled _mixed_precision_graph_rewrite_is_enabled = enabled def non_mixed_precision_session_created(): return _non_mixed_precision_session_created def set_non_mixed_precision_session_created(created): global _non_mixed_precision_session_created _non_mixed_precision_session_created = created def is_using_mixed_precision_policy(): return _using_mixed_precision_policy @tf_export('__internal__.train.set_using_mixed_precision_policy', v1=[]) def set_using_mixed_precision_policy(is_using): global _using_mixed_precision_policy _using_mixed_precision_policy = is_using
09018e0be0d1189db97fad7103f982719fe99170
e25b917f2f0ce28f6d046afaa9c0faddf0aeae34
/Tutorials/split_and_merging.py
0e4d372a63ff7e204d74bc9d502e062c6df0682b
[]
no_license
pmusau17/ComputerVision
d9344c22ed1fe1bf8a8c6166a060c307c08529a5
2fcdce0a967567c15232fe3c9f02982ca95e5796
refs/heads/master
2020-12-11T00:30:20.292943
2020-06-03T21:54:36
2020-06-03T21:54:36
233,751,710
0
0
null
null
null
null
UTF-8
Python
false
false
786
py
import numpy as np import argparse import cv2 #create argument parser ap=argparse.ArgumentParser() ap.add_argument('-i','--image', required=True) args=vars(ap.parse_args()) #load the image image=cv2.imread(args['image']) (B,G,R)=cv2.split(image) #this will display each of the channels as grayscale cv2.imshow("Red",R) cv2.imshow("Green",G) cv2.imshow("Blue",B) cv2.waitKey(0) #this is what I want because I want zeros in the other channels and I hope it gets the #correct predition zeros = np.zeros(image.shape[:2],dtype='uint8') cv2.imshow("Red",cv2.merge([zeros,zeros,R])) cv2.imshow("Green",cv2.merge([zeros,G,zeros])) cv2.imshow("Blue",cv2.merge([B,zeros,zeros])) cv2.waitKey(0) merged=cv2.merge([B,G,R]) cv2.imshow("Merged",merged) cv2.waitKey(0) cv2.destroyAllWindows()
17237a95039c4b7a5d68f70a91b7049b857dfa02
52b5773617a1b972a905de4d692540d26ff74926
/.history/kmp_20200716201539.py
c0ccf11ea7faea0cd681296187ca576428e15267
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
785
py
''' Given a text txt[0..n-1] and a pattern pat[0..m-1], write a function search(char pat[], char txt[]) that prints all occurrences of pat[] in txt[]. You may assume that n > m. ''' def pattern(txt,pat): # Catepillar algorithm # we have a left and right pointer # then the length of the search string # when searching for the string when they don't match move the right pointer # to increase the window size # if the match return poisition of left, store it in an array # when the len(sub) > substring move the left pointer if pat in txt: left = 0 right = 1 while right < len(txt) and left < len(txt): if txt[left:right] == pat print('index',txt.index(pat)) pattern("AABAACAADAABAABA","AABA")
d6db78cbc8e88ec12c049d25fffbbe429655373c
c22b9c7c4a854ed985e777bcbecd18870439b334
/byteofpy/file.py
b2c51954e6226494b8066a0e68daaff28ff6f548
[ "BSD-3-Clause" ]
permissive
pezy/python_test
ceb35a8a63ca8ebe26ffa5c72ace664718c7b328
b019a0d9f267b5071c37fc85c9acaf27e9146625
refs/heads/master
2021-01-19T01:09:20.820202
2016-07-30T08:35:15
2016-07-30T08:35:15
18,096,404
0
2
null
null
null
null
UTF-8
Python
false
false
415
py
poem = '''\ Programming is fun When the work is done if you wanna make your work also fun: use Python! ''' # Open for writing f = open('poem.txt', 'w') # Write text to file f.write(poem) f.close() # If no mode is specified # Read mode is assumed by default f = open('poem.txt') while True: line = f.readline() # Zero length indicates EOF if len(line) == 0: break print line, f.close()
6809085f9885e6f57126dab2ff54953c84d4801d
77aa8c9213cfb5c44c2d62579b7e92f64a479800
/player9.py
d5a6ef4b0c069ffa2b1b79aeed242fbdf9e6d372
[]
no_license
aiswarya98/programs
9761f0ab0cb5c7b93e34f7ed534af012a9bfffdb
96ffb4c3b0c32ea54bd769bfa4c728ac9710bb5a
refs/heads/master
2020-06-13T23:58:37.756727
2019-08-14T05:03:51
2019-08-14T05:03:51
194,829,076
0
3
null
null
null
null
UTF-8
Python
false
false
114
py
x,y=map(str,input().split()) a=x.lower() b=y.lower() z=a[0].upper()+a[1:] q=b[0].upper()+b[1:] print(z,q,end=' ')
2d5ee23a8cba0fea02e4f205bafc24f5c98fc027
375e5bca82843647941068bd7634cf7adf2015ca
/tests/test_transforms_resize_modulo_pad_crop.py
f72a33b918735569e106f2221c7a10a6e1392d92
[ "MIT" ]
permissive
civodlu/trw
cd57e7bded7fdb0a9d623ed9cd50645fab96583b
11c59dea0072d940b036166be22b392bb9e3b066
refs/heads/master
2023-02-08T09:56:39.203340
2023-02-07T14:22:16
2023-02-07T14:22:16
195,147,670
12
2
MIT
2020-10-19T15:24:11
2019-07-04T01:19:31
Python
UTF-8
Python
false
false
1,864
py
import unittest import trw import torch import numpy as np class TestTransformsResizeModuloPadCrop(unittest.TestCase): def test_crop_mode_torch(self): batch = { 'images': torch.rand([2, 3, 64, 64], dtype=torch.float32) } tfm = trw.transforms.TransformResizeModuloCropPad(60) transformed = tfm(batch) assert transformed['images'].shape == (2, 3, 60, 60) def test_crop_mode_torch_multiples(self): # test with multiple of `multiples_of` shape batch = { 'images': torch.rand([2, 3, 64, 64], dtype=torch.float32) } tfm = trw.transforms.TransformResizeModuloCropPad(10) transformed = tfm(batch) assert transformed['images'].shape == (2, 3, 60, 60) def test_crop_mode_torch_different_shape(self): batch = { 'images': torch.rand([2, 3, 64, 64], dtype=torch.float32), 'images2': torch.rand([2, 1, 64, 64], dtype=torch.float32) } batch['images'][0, 0, 32, 32] = 42.0 batch['images2'][0, 0, 32, 32] = 42.0 tfm = trw.transforms.TransformResizeModuloCropPad(60) transformed = tfm(batch) # make sure we can handle different shapes of the same dimension assert transformed['images'].shape == (2, 3, 60, 60) assert transformed['images2'].shape == (2, 1, 60, 60) # make sure the crop/pad are the same for the different images indices = np.where(batch['images'].numpy() == 42) assert (batch['images2'][indices] == 42.0).all() def test_pad_mode_torch(self): batch = { 'images': torch.rand([2, 3, 65, 65], dtype=torch.float32) } tfm = trw.transforms.TransformResizeModuloCropPad(32, mode='pad') transformed = tfm(batch) assert transformed['images'].shape == (2, 3, 96, 96)
a6159c8300fb0b87abae3a18443aa2a0f5289589
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02909/s153186210.py
30d874e36f07b14826fef70e4615890c76d5b77a
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
s=input() if s=="Sunny": a="Cloudy" elif s=="Cloudy": a="Rainy" else: a="Sunny" print(a)
03a3ca057562ab99e7a7f7fa9b400e945b6c94f8
2293c76c3d18e2fcd44ded90bd40113d26285663
/pyeccodes/defs/grib2/tables/14/4_2_0_1_table.py
f018e05360c37820a130d303e43efa4aad77138d
[ "Apache-2.0" ]
permissive
ecmwf/pyeccodes
b1f121dbddf68d176a03805ed5144ba0b37ac211
dce2c72d3adcc0cb801731366be53327ce13a00b
refs/heads/master
2022-04-23T10:37:40.524078
2020-04-18T06:30:29
2020-04-18T06:30:29
255,554,540
9
3
null
null
null
null
UTF-8
Python
false
false
11,096
py
def load(h): return ({'abbr': 0, 'code': 0, 'title': 'Specific humidity', 'units': 'kg/kg'}, {'abbr': 1, 'code': 1, 'title': 'Relative humidity', 'units': '%'}, {'abbr': 2, 'code': 2, 'title': 'Humidity mixing ratio', 'units': 'kg/kg'}, {'abbr': 3, 'code': 3, 'title': 'Precipitable water', 'units': 'kg m-2'}, {'abbr': 4, 'code': 4, 'title': 'Vapour pressure', 'units': 'Pa'}, {'abbr': 5, 'code': 5, 'title': 'Saturation deficit', 'units': 'Pa'}, {'abbr': 6, 'code': 6, 'title': 'Evaporation', 'units': 'kg m-2'}, {'abbr': 7, 'code': 7, 'title': 'Precipitation rate', 'units': 'kg m-2 s-1'}, {'abbr': 8, 'code': 8, 'title': 'Total precipitation', 'units': 'kg m-2'}, {'abbr': 9, 'code': 9, 'title': 'Large-scale precipitation (non-convective)', 'units': 'kg m-2'}, {'abbr': 10, 'code': 10, 'title': 'Convective precipitation', 'units': 'kg m-2'}, {'abbr': 11, 'code': 11, 'title': 'Snow depth', 'units': 'm'}, {'abbr': 12, 'code': 12, 'title': 'Snowfall rate water equivalent', 'units': 'kg m-2 s-1'}, {'abbr': 13, 'code': 13, 'title': 'Water equivalent of accumulated snow depth', 'units': 'kg m-2'}, {'abbr': 14, 'code': 14, 'title': 'Convective snow', 'units': 'kg m-2'}, {'abbr': 15, 'code': 15, 'title': 'Large-scale snow', 'units': 'kg m-2'}, {'abbr': 16, 'code': 16, 'title': 'Snow melt', 'units': 'kg m-2'}, {'abbr': 17, 'code': 17, 'title': 'Snow age', 'units': 'd'}, {'abbr': 18, 'code': 18, 'title': 'Absolute humidity', 'units': 'kg m-3'}, {'abbr': 19, 'code': 19, 'title': 'Precipitation type', 'units': 'Code table 4.201'}, {'abbr': 20, 'code': 20, 'title': 'Integrated liquid water', 'units': 'kg m-2'}, {'abbr': 21, 'code': 21, 'title': 'Condensate', 'units': 'kg/kg'}, {'abbr': 22, 'code': 22, 'title': 'Cloud mixing ratio', 'units': 'kg/kg'}, {'abbr': 23, 'code': 23, 'title': 'Ice water mixing ratio', 'units': 'kg/kg'}, {'abbr': 24, 'code': 24, 'title': 'Rain mixing ratio', 'units': 'kg/kg'}, {'abbr': 25, 'code': 25, 'title': 'Snow mixing ratio', 'units': 'kg/kg'}, {'abbr': 26, 'code': 26, 'title': 'Horizontal moisture convergence', 'units': 'kg kg-1 s-1'}, {'abbr': 27, 'code': 27, 'title': 'Maximum relative humidity', 'units': '%'}, {'abbr': 28, 'code': 28, 'title': 'Maximum absolute humidity', 'units': 'kg m-3'}, {'abbr': 29, 'code': 29, 'title': 'Total snowfall', 'units': 'm'}, {'abbr': 30, 'code': 30, 'title': 'Precipitable water category', 'units': 'Code table 4.202'}, {'abbr': 31, 'code': 31, 'title': 'Hail', 'units': 'm'}, {'abbr': 32, 'code': 32, 'title': 'Graupel (snow pellets)', 'units': 'kg/kg'}, {'abbr': 33, 'code': 33, 'title': 'Categorical rain', 'units': 'Code table 4.222'}, {'abbr': 34, 'code': 34, 'title': 'Categorical freezing rain', 'units': 'Code table 4.222'}, {'abbr': 35, 'code': 35, 'title': 'Categorical ice pellets', 'units': 'Code table 4.222'}, {'abbr': 36, 'code': 36, 'title': 'Categorical snow', 'units': 'Code table 4.222'}, {'abbr': 37, 'code': 37, 'title': 'Convective precipitation rate', 'units': 'kg m-2 s-1'}, {'abbr': 38, 'code': 38, 'title': 'Horizontal moisture divergence', 'units': 'kg kg-1 s-1'}, {'abbr': 39, 'code': 39, 'title': 'Per cent frozen precipitation', 'units': '%'}, {'abbr': 40, 'code': 40, 'title': 'Potential evaporation', 'units': 'kg m-2'}, {'abbr': 41, 'code': 41, 'title': 'Potential evaporation rate', 'units': 'W m-2'}, {'abbr': 42, 'code': 42, 'title': 'Snow cover', 'units': '%'}, {'abbr': 43, 'code': 43, 'title': 'Rain fraction of total cloud water', 'units': 'Proportion'}, {'abbr': 44, 'code': 44, 'title': 'Rime factor', 'units': 'Numeric'}, {'abbr': 45, 'code': 45, 'title': 'Total column integrated rain', 'units': 'kg m-2'}, {'abbr': 46, 'code': 46, 'title': 'Total column integrated snow', 'units': 'kg m-2'}, {'abbr': 47, 'code': 47, 'title': 'Large scale water precipitation (non-convective)', 'units': 'kg m-2'}, {'abbr': 48, 'code': 48, 'title': 'Convective water precipitation', 'units': 'kg m-2'}, {'abbr': 49, 'code': 49, 'title': 'Total water precipitation', 'units': 'kg m-2'}, {'abbr': 50, 'code': 50, 'title': 'Total snow precipitation', 'units': 'kg m-2'}, {'abbr': 51, 'code': 51, 'title': 'Total column water (Vertically integrated total water (vapour + ' 'cloud water/ice))', 'units': 'kg m-2'}, {'abbr': 52, 'code': 52, 'title': 'Total precipitation rate', 'units': 'kg m-2 s-1'}, {'abbr': 53, 'code': 53, 'title': 'Total snowfall rate water equivalent', 'units': 'kg m-2 s-1'}, {'abbr': 54, 'code': 54, 'title': 'Large scale precipitation rate', 'units': 'kg m-2 s-1'}, {'abbr': 55, 'code': 55, 'title': 'Convective snowfall rate water equivalent', 'units': 'kg m-2 s-1'}, {'abbr': 56, 'code': 56, 'title': 'Large scale snowfall rate water equivalent', 'units': 'kg m-2 s-1'}, {'abbr': 57, 'code': 57, 'title': 'Total snowfall rate', 'units': 'm/s'}, {'abbr': 58, 'code': 58, 'title': 'Convective snowfall rate', 'units': 'm/s'}, {'abbr': 59, 'code': 59, 'title': 'Large scale snowfall rate', 'units': 'm/s'}, {'abbr': 60, 'code': 60, 'title': 'Snow depth water equivalent', 'units': 'kg m-2'}, {'abbr': 61, 'code': 61, 'title': 'Snow density', 'units': 'kg m-3'}, {'abbr': 62, 'code': 62, 'title': 'Snow evaporation', 'units': 'kg m-2'}, {'abbr': 63, 'code': 63, 'title': 'Reserved'}, {'abbr': 64, 'code': 64, 'title': 'Total column integrated water vapour', 'units': 'kg m-2'}, {'abbr': 65, 'code': 65, 'title': 'Rain precipitation rate', 'units': 'kg m-2 s-1'}, {'abbr': 66, 'code': 66, 'title': 'Snow precipitation rate', 'units': 'kg m-2 s-1'}, {'abbr': 67, 'code': 67, 'title': 'Freezing rain precipitation rate', 'units': 'kg m-2 s-1'}, {'abbr': 68, 'code': 68, 'title': 'Ice pellets precipitation rate', 'units': 'kg m-2 s-1'}, {'abbr': 69, 'code': 69, 'title': 'Total column integrated cloud water', 'units': 'kg m-2'}, {'abbr': 70, 'code': 70, 'title': 'Total column integrated cloud ice', 'units': 'kg m-2'}, {'abbr': 71, 'code': 71, 'title': 'Hail mixing ratio', 'units': 'kg/kg'}, {'abbr': 72, 'code': 72, 'title': 'Total column integrated hail', 'units': 'kg m-2'}, {'abbr': 73, 'code': 73, 'title': 'Hail precipitation rate', 'units': 'kg m-2 s-1'}, {'abbr': 74, 'code': 74, 'title': 'Total column integrated graupel', 'units': 'kg m-2'}, {'abbr': 75, 'code': 75, 'title': 'Graupel (snow pellets) precipitation rate', 'units': 'kg m-2 s-1'}, {'abbr': 76, 'code': 76, 'title': 'Convective rain rate', 'units': 'kg m-2 s-1'}, {'abbr': 77, 'code': 77, 'title': 'Large scale rain rate', 'units': 'kg m-2 s-1'}, {'abbr': 78, 'code': 78, 'title': 'Total column integrated water (all components including ' 'precipitation)', 'units': 'kg m-2'}, {'abbr': 79, 'code': 79, 'title': 'Evaporation rate', 'units': 'kg m-2 s-1'}, {'abbr': 80, 'code': 80, 'title': 'Total condensate', 'units': 'kg/kg'}, {'abbr': 81, 'code': 81, 'title': 'Total column-integrated condensate', 'units': 'kg m-2'}, {'abbr': 82, 'code': 82, 'title': 'Cloud ice mixing-ratio', 'units': 'kg/kg'}, {'abbr': 83, 'code': 83, 'title': 'Specific cloud liquid water content', 'units': 'kg/kg'}, {'abbr': 84, 'code': 84, 'title': 'Specific cloud ice water content', 'units': 'kg/kg'}, {'abbr': 85, 'code': 85, 'title': 'Specific rainwater content', 'units': 'kg/kg'}, {'abbr': 86, 'code': 86, 'title': 'Specific snow water content', 'units': 'kg/kg'}, {'abbr': 90, 'code': 90, 'title': 'Total kinematic moisture flux', 'units': 'kg kg-1 m s-1'}, {'abbr': 91, 'code': 91, 'title': 'u-component (zonal) kinematic moisture flux', 'units': 'kg kg-1 m s-1'}, {'abbr': 92, 'code': 92, 'title': 'v-component (meridional) kinematic moisture flux', 'units': 'kg kg-1 m s-1'}, {'abbr': 93, 'code': 93, 'title': 'Relative humidity with respect to water', 'units': '%'}, {'abbr': 94, 'code': 94, 'title': 'Relative humidity with respect to ice', 'units': '%'}, {'abbr': None, 'code': 255, 'title': 'Missing'})
2ebcefcec2c64fbf9f76368c9e52f2c4f6031297
1a80c38ea020a8b18bb2c61b55caff8a38f553b9
/SWEA/sol/5356.py
ad8db3bcc47a8c35ae33aab7759fffd9c7fb8cff
[]
no_license
jiwookseo/problem-solving
775a47825dc73f8a29616ef7011e8ee7be346f80
eefbefb21608ae0a2b3c75c010ae14995b7fc646
refs/heads/master
2020-04-19T03:11:02.659816
2019-08-14T08:59:06
2019-08-14T08:59:06
167,926,883
1
0
null
null
null
null
UTF-8
Python
false
false
275
py
for tc in range(1, int(input())+1): s = [input() for _ in range(5)] l = [len(i) for i in s] ml = max(l) temp = "" for c in range(ml): for r in range(5): if l[r] > c: temp += s[r][c] print("#{} {}".format(tc, temp))
952f0ccca47807b4540c47e2a8a72c32c763961a
a8a5772674e62beaa4f5b1f115d280103fd03749
/persistence.py
00a776c4f7564a2e7aae6994a1f3c1b497b94024
[]
no_license
tahentx/pv_workbook
c6fb3309d9acde5302dd3ea06a34ad2aee0de4b7
08912b0ef36a5226d23fa0430216a3f277aca33b
refs/heads/master
2022-12-12T20:39:35.688510
2021-03-30T03:20:54
2021-03-30T03:20:54
172,827,250
0
1
null
2022-12-08T16:47:39
2019-02-27T02:25:24
Python
UTF-8
Python
false
false
188
py
n = 38941 value = [int(x) for x in str(n)] persist = value[0] * value[1] next_value = [int(x) for x in str(persist)] persist_again = next_value[0] * next_value[1] print(str(persist_again)
05f6da044977d12f49574500ccb24d84c43ab32d
88ae8695987ada722184307301e221e1ba3cc2fa
/third_party/webdriver/pylib/selenium/webdriver/common/desired_capabilities.py
0f97e7273aeda07105d9a8c34258dad8554e9e60
[ "BSD-3-Clause", "Apache-2.0", "LGPL-2.0-or-later", "MIT", "GPL-1.0-or-later" ]
permissive
iridium-browser/iridium-browser
71d9c5ff76e014e6900b825f67389ab0ccd01329
5ee297f53dc7f8e70183031cff62f37b0f19d25f
refs/heads/master
2023-08-03T16:44:16.844552
2023-07-20T15:17:00
2023-07-23T16:09:30
220,016,632
341
40
BSD-3-Clause
2021-08-13T13:54:45
2019-11-06T14:32:31
null
UTF-8
Python
false
false
2,994
py
# Licensed to the Software Freedom Conservancy (SFC) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The SFC licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ The Desired Capabilities implementation. """ class DesiredCapabilities(object): """ Set of default supported desired capabilities. Use this as a starting point for creating a desired capabilities object for requesting remote webdrivers for connecting to selenium server or selenium grid. Usage Example:: from selenium import webdriver selenium_grid_url = "http://198.0.0.1:4444/wd/hub" # Create a desired capabilities object as a starting point. capabilities = DesiredCapabilities.FIREFOX.copy() capabilities['platform'] = "WINDOWS" capabilities['version'] = "10" # Instantiate an instance of Remote WebDriver with the desired capabilities. driver = webdriver.Remote(desired_capabilities=capabilities, command_executor=selenium_grid_url) Note: Always use '.copy()' on the DesiredCapabilities object to avoid the side effects of altering the Global class instance. """ FIREFOX = { "browserName": "firefox", "acceptInsecureCerts": True, "moz:debuggerAddress": True, } INTERNETEXPLORER = { "browserName": "internet explorer", "platformName": "windows", } EDGE = { "browserName": "MicrosoftEdge", } CHROME = { "browserName": "chrome", } OPERA = { "browserName": "opera", } SAFARI = { "browserName": "safari", "platformName": "mac", } HTMLUNIT = { "browserName": "htmlunit", "version": "", "platform": "ANY", } HTMLUNITWITHJS = { "browserName": "htmlunit", "version": "firefox", "platform": "ANY", "javascriptEnabled": True, } IPHONE = { "browserName": "iPhone", "version": "", "platform": "mac", } IPAD = { "browserName": "iPad", "version": "", "platform": "mac", } WEBKITGTK = { "browserName": "MiniBrowser", "version": "", "platform": "ANY", } WPEWEBKIT = { "browserName": "MiniBrowser", "version": "", "platform": "ANY", }
7d4aaa5e2ea4a2279deba143f873f693f7394bc4
c5148bc364dac753c0872bd5676027a30b260486
/biosteam/_facility.py
be6ea781f47ebbbb09b743864d6630a54816bf2b
[ "MIT", "NCSA", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Ecoent/biosteam
86f47c713a2cae5d6261b6c2c7734ccf7a90fb4e
f1371386d089df3aa8ce041175f210c0318c1fe0
refs/heads/master
2021-02-24T14:10:23.158984
2020-03-05T03:43:17
2020-03-05T03:43:17
245,433,768
1
0
NOASSERTION
2020-03-06T13:59:27
2020-03-06T13:59:26
null
UTF-8
Python
false
false
270
py
# -*- coding: utf-8 -*- """ Created on Sat Jul 13 02:24:35 2019 @author: yoelr """ from ._unit import Unit __all__ = ('Facility',) class Facility(Unit, isabstract=True, new_graphics=False): @property def system(self): return self._system
6d031f1f4dcbd9c766182a6e3f257ba19b599a3e
562d4bf000dbb66cd7109844c972bfc00ea7224c
/addons-clarico/clarico_product/model/__init__.py
ab1cc71c7f627b65c753c486e16b42d63d131315
[]
no_license
Mohamed33/odoo-efact-11-pos
e9da1d17b38ddfe5b2d0901b3dbadf7a76bd2059
de38355aea74cdc643a347f7d52e1d287c208ff8
refs/heads/master
2023-03-10T15:24:44.052883
2021-03-06T13:25:58
2021-03-06T13:25:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
79
py
from . import product_template from . import website from . import res_config
ef4ace6d77e93557af3874532ced9981d737fdd6
a5a4cee972e487512275c34f308251e6cc38c2fa
/examples/Ni__eam__born_exp_fs__postprocessing/CCA_param_clusters_in_qoi_space/configuration/configure_qoi_pca_transform.py
7c3b9ff7b710945bd9e4fc499cce2f5621fb418b
[ "MIT" ]
permissive
eragasa/pypospack
4f54983b33dcd2dce5b602bc243ea8ef22fee86b
21cdecaf3b05c87acc532d992be2c04d85bfbc22
refs/heads/master
2021-06-16T09:24:11.633693
2019-12-06T16:54:02
2019-12-06T16:54:02
99,282,824
4
1
null
null
null
null
UTF-8
Python
false
false
2,110
py
from collections import OrderedDict from pypospack.pyposmat.data.pipeline import PyposmatPipeline pipeline_configuration = OrderedDict() # define first segment (normalization) pipeline_configuration[0] = OrderedDict() # int keys indicate step number pipeline_configuration[0]['segment_type'] = 'preprocess' pipeline_configuration[0]['function_calls'] = OrderedDict() pipeline_configuration[0]['function_calls'][0]= OrderedDict() # int keys allow multiple calls to same function pipeline_configuration[0]['function_calls'][0]['function'] = 'normalize_standard_scaler' pipeline_configuration[0]['function_calls'][0]['args'] = OrderedDict() pipeline_configuration[0]['function_calls'][0]['args']['cols'] = ['qoi'] pipeline_configuration[0]['function_calls'][0]['args']['clusters'] = None pipeline_configuration[0]['function_calls'][0]['args']['kwargs'] = OrderedDict() pipeline_configuration[0]['function_calls'][0]['args']['kwargs']['standard_scaler'] = OrderedDict() pipeline_configuration[0]['function_calls'][0]['args']['kwargs']['standard_scaler']['with_mean'] = True pipeline_configuration[0]['function_calls'][0]['args']['kwargs']['standard_scaler']['with_std'] = True # define second segment (CCA transformation) pipeline_configuration[1] = OrderedDict() pipeline_configuration[1]['segment_type'] = 'pca' pipeline_configuration[1]['function_calls'] = OrderedDict() pipeline_configuration[1]['function_calls'][0]= OrderedDict() pipeline_configuration[1]['function_calls'][0]['function'] = 'transform_cca' pipeline_configuration[1]['function_calls'][0]['args'] = OrderedDict() pipeline_configuration[1]['function_calls'][0]['args']['cols'] = ['n_qoi'] pipeline_configuration[1]['function_calls'][0]['args']['clusters'] = None pipeline_configuration[1]['function_calls'][0]['args']['kwargs'] = OrderedDict() pipeline_configuration[1]['function_calls'][0]['args']['kwargs']['cca'] = OrderedDict() if __name__ == "__main__": pipeline = PyposmatPipeline() fn = __file__.replace('.py', '.in') pipeline.write_configuration(filename=fn, d=pipeline_configuration)
777b2f147135a023870de3cce3193786a5c9b525
55f60b7ec448eb48b75118b01b3878c8345242bb
/tests/scripts/waf-tools/f_guidelines/__init__.py
de2b6d8f5507598e6072beabb216d9c336060fc1
[ "BSD-3-Clause", "CC-BY-4.0" ]
permissive
dd-rrc-ps/foxbms-2
cd8d272afa24187c85c6fa747226bebed4cefc5e
555704a9c4af3dd1c2213e6f0be9860f34e2b1b3
refs/heads/master
2023-08-18T13:49:42.503755
2021-10-21T12:15:09
2021-10-21T12:15:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,136
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (c) 2010 - 2021, Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # We kindly request you to use one or more of the following phrases to refer to # foxBMS in your hardware, software, documentation or advertising materials: # # - "This product uses parts of foxBMS®" # - "This product includes parts of foxBMS®" # - "This product is derived from foxBMS®" # f_guidelines is not a proper python module name, but this is OK since we need # it just for the unit test discovery # pylint: disable-all
2ae2ad897bb8822cbdc7b5ce0e30b526761062cd
00cb5907750926f1a9b0fde97301f10d01f49645
/tf_quant_finance/experimental/local_stochastic_volatility/local_stochastic_volatility_model.py
0502cc8f587b533bfd4c7c39c011e4add8ee24ea
[ "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-generic-cla" ]
permissive
dannyb2018/tf-quant-finance
63761e4a39b615da6a5258e48030d2b12a142b26
668b4fb0f91b1f60c9015cef087b3e879ee2a4f7
refs/heads/master
2023-07-07T20:00:59.529305
2021-08-18T13:05:11
2021-08-18T13:05:51
284,707,826
0
0
Apache-2.0
2020-08-03T13:29:15
2020-08-03T13:29:14
null
UTF-8
Python
false
false
33,519
py
# Lint as: python3 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Local Stochastic Volatility process.""" import functools import numpy as np import tensorflow.compat.v2 as tf from tf_quant_finance import datetime as dates from tf_quant_finance import math from tf_quant_finance.experimental import local_volatility as lvm from tf_quant_finance.experimental.pricing_platform.framework.market_data import utils from tf_quant_finance.math import pde from tf_quant_finance.math.interpolation import linear from tf_quant_finance.models import generic_ito_process class LocalStochasticVolatilityModel(generic_ito_process.GenericItoProcess): r"""Local stochastic volatility model. Local stochastic volatility (LSV) models assume that the spot price of an asset follows the following stochastic differential equation under the risk neutral measure [1]: ```None dS(t) / S(t) = (r - d) dt + sqrt(v(t)) * L(t, S(t)) * dW_s(t) dv(t) = a(v(t)) dt + b(v(t)) dW_v(t) E[dW_s(t)dW_v(t)] = rho dt ``` where `r` and `d` denote the risk free interest rate and dividend yield respectively. `S(t)` is the spot price, `v(t)` denotes the stochastic variance and the function `L(t, S(t))` is the leverage function which is calibrated using the volatility smile data. The functions `a(v(t))` and `b(v(t))` denote the drift and volitility of the stochastic process for the variance and `rho` denotes the instantabeous correlation between the spot and the variance process. LSV models thus combine the local volatility dynamics with stochastic volatility. Using the relationship between the local volatility and the expectation of future instantaneous variance, leverage function can be computed as follows [2]: ``` sigma(T,K)^2 = L(T,K)^2 * E[v(T)|S(T)=K] ``` where the local volatility function `sigma(T,K)` can be computed using the Dupire's formula. The `LocalStochasticVolatilityModel` class contains a generic implementation of the LSV model with the flexibility to specify an arbitrary variance process. The default variance process is a Heston type process with mean-reverting variance (as in Ref. [1]): ``` dv(t) = k(m - v(t)) dt + alpha*sqrt(v(t)) dW_v(t) ``` #### References: [1]: Iain J. Clark. Foreign exchange option pricing - A Practitioner's guide. Chapter 5. 2011. [2]: I. Gyongy. Mimicking the one-dimensional marginal distributions of processes having an ito differential. Probability Theory and Related Fields, 71, 1986. """ def __init__(self, leverage_fn, variance_process, risk_free_rate=None, dividend_yield=None, rho=None, dtype=None, name=None): """Initializes the Local stochastic volatility model. Args: leverage_fn: A Python callable which returns the Leverage function `L(t, S(t))` as a function of state and time. The function must accept a scalar `Tensor` corresponding to time 't' and a real `Tensor` of shape `[num_samples, 1]` corresponding to the underlying price (S) as inputs and return a real `Tensor` containing the leverage function computed at (S,t). variance_process: An instance of `ItoProcess` specifying the dynamics of the variance process of the LSV model. The `variance_process` should implement a one-factor stochastic process. For the common version of Heston like variance model use `LSVVarianceModel`. risk_free_rate: An optional scalar real `Tensor` specifying the (continuously compounded) risk free interest rate. If the underlying is an FX rate, then use this input to specify the domestic interest rate. Note that the current implementation supports constant interest rates and dividend yield. Default value: `None` in which case the input is set to zero. dividend_yield: An optional real scalar `Tensor` specifying the (continuosly compounded) dividend yield. If the underlying is an FX rate, then use this input to specify the foreign interest rate. Note that the currect implementation supports constant interest rates and dividend yield. Default value: `None` in which case the input is set to zero. rho: A real scalar `Tensor` specifying the correlation between the underlying spot price and the variance process. Default value: `None` in which case cross correlations are assumed to be zero. dtype: The default dtype to use when converting values to `Tensor`s. Default value: `None` which means that default dtypes inferred by TensorFlow are used. name: Python string. The name to give to the ops created by this class. Default value: `None` which maps to the default name `local_stochastic_volatility_model`. """ self._name = name or "local_stochastic_volatility_model" with tf.name_scope(self._name): if risk_free_rate is None: risk_free_rate = 0.0 if dividend_yield is None: dividend_yield = 0.0 self._risk_free_rate = tf.convert_to_tensor(risk_free_rate, dtype=dtype) self._dtype = dtype or self._domestic_rate.dtype self._dividend_yield = tf.convert_to_tensor(dividend_yield, dtype=dtype) self._leverage_fn = leverage_fn self._variance_process = variance_process dim = 1 + variance_process.dim() rho = rho or 0.0 self._rho = _create_corr_matrix(rho, self._dtype) self._sqrt_rho = tf.linalg.cholesky(self._rho) def _vol_fn(t, state): """Volatility function of LSV model.""" num_samples = state.shape.as_list()[0] broadcasted_t = tf.broadcast_to(t, [1, num_samples]) spot_prices = state[:, 0] variance = state[:, 1:] level_fun = self._leverage_fn( broadcasted_t, tf.expand_dims(spot_prices, axis=0)) spot_diffusion = tf.expand_dims( level_fun[0, :], axis=-1) * tf.expand_dims( spot_prices, axis=-1) * tf.math.sqrt(variance) variance_diffusion = self._variance_process.volatility_fn()( t, variance) diffusion = tf.concat([spot_diffusion, variance_diffusion], axis=1) diffusion = tf.expand_dims(diffusion, axis=-2) return diffusion * self._sqrt_rho # Drift function def _drift_fn(t, state): """Drift function of LSV model.""" spot_drift = ( self._risk_free_rate - self._dividend_yield) * state[:, :1] variance_drift = self._variance_process.drift_fn()(t, state[:, 1:]) return tf.concat([spot_drift, variance_drift], axis=1) super(LocalStochasticVolatilityModel, self).__init__(dim, _drift_fn, _vol_fn, self._dtype, self._name) @classmethod def from_market_data(cls, valuation_date, expiry_dates, strikes, implied_volatilities, variance_process, initial_spot, initial_variance, rho=None, risk_free_rate=None, dividend_yield=None, time_step=None, num_grid_points=None, grid_minimums=None, grid_maximums=None, dtype=None): """Creates a `LocalStochasticVolatilityModel` from market data. This function computes the leverage function for the LSV model by first computing the joint probability density function `p(t, X(t), v(t))` where `X(t)` is the log of the spot price and `v(t)` is the variance at time `t`. The joint probablity density is computed using the Fokker-Planck equation of the LSV model (see 6.8.2 in Ref [1]): ```None dp/dt = 1/2 d^2 [v L(t,X)^2 p]/dX^2 + 1/2 d^2 [b(v)^2 p]/dv^2 + rho d^2 [sqrt(v)L(t,X)b(v) p]/dXdv - d[(r - d - 1/2 v L(t,X)^2)p]/dX - d[a(v) p]/dv ``` where `a(v)` and `b(v)` are the drift and diffusion functions for the variance process. Defining ```None I_n(k,t) = int v^n p(t, k, v) dv ``` we can calculate the leverage function as follows: ```None L(k, t) = sigma(exp(k), t) sqrt(I_0(k, t)/I_1(k, t)). ``` Note that the computation of `I_0` and `I_1` require the knowledge of leverage function and hence the computation of the leverage function is implicit in nature. Args: valuation_date: A scalar `DateTensor` specifying the valuation (or settlement) date for the market data. expiry_dates: A `DateTensor` of shape `(num_expiries,)` containing the expiry dates on which the implied volatilities are specified. strikes: A `Tensor` of real dtype and shape `(num_expiries, num_strikes)` specifying the strike prices at which implied volatilities are specified. implied_volatilities: A `Tensor` of real dtype and shape `(num_expiries, num_strikes)` specifying the implied volatilities. variance_process: An instance of `LSVVarianceModel` or `ItoProcess` specifying the dynamics of the variance process of the LSV model. initial_spot: A real scalar `Tensor` specifying the underlying spot price on the valuation date. initial_variance: A real scalar `Tensor` specifying the initial variance on the valuation date. rho: A real scalar `Tensor` specifying the correlation between spot price and the stochastic variance. risk_free_rate: A real scalar `Tensor` specifying the (continuosly compounded) risk free interest rate. If the underlying is an FX rate, then use this input to specify the domestic interest rate. Default value: `None` in which case the input is set to zero. dividend_yield: A real scalar `Tensor` specifying the (continuosly compounded) divident yield. If the underlying is an FX rate, then use this input to specify the foreign interest rate. Default value: `None` in which case the input is set to zero. time_step: A real scalar `Tensor` specifying the time step during the numerical solution of the Fokker-Planck PDE. Default value: None, in which case `time_step` corresponding to 100 time steps is used. num_grid_points: A scalar integer `Tensor` specifying the number of discretization points for each spatial dimension. Default value: None, in which case number of grid points is set to 100. grid_minimums: An optional `Tensor` of size 2 containing the minimum grid points for PDE spatial discretization. `grid_minimums[0]` correspond to the minimum spot price in the spatial grid and `grid_minimums[1]` correspond to the minimum variance value. grid_maximums: An optional `Tensor` of size 2 containing the maximum grid points for PDE spatial discretization. `grid_maximums[0]` correspond to the maximum spot price in the spatial grid and `grid_maximums[1]` correspond to the maximum variance value. dtype: The default dtype to use when converting values to `Tensor`s. Default value: `None` which means that default dtypes inferred by TensorFlow are used. Returns: An instance of `LocalStochasticVolatilityModel` constructed using the input data. """ if risk_free_rate is None: discount_factor_fn = lambda t: tf.ones_like(t, dtype=dtype) else: r = tf.convert_to_tensor(risk_free_rate, dtype=dtype) discount_factor_fn = lambda t: tf.math.exp(-r * t) lv_model = lvm.LocalVolatilityModel.from_market_data( dim=1, valuation_date=valuation_date, expiry_dates=expiry_dates, strikes=strikes, implied_volatilities=implied_volatilities, spot=initial_spot, discount_factor_fn=discount_factor_fn, dividend_yield=dividend_yield, dtype=dtype) dtype = dtype or lv_model.dtype() max_time = tf.math.reduce_max( dates.daycount_actual_365_fixed( start_date=valuation_date, end_date=expiry_dates, dtype=dtype)) if time_step is None: time_step = max_time / 100.0 rho = rho or 0.0 num_grid_points = num_grid_points or 100 leverage_fn = _leverage_function_using_pde( risk_free_rate=risk_free_rate, dividend_yield=dividend_yield, lv_model=lv_model, variance_model=variance_process, rho=[rho], initial_spot=initial_spot, initial_variance=initial_variance, time_step=time_step, max_time=max_time, num_grid_points=num_grid_points, grid_minimums=grid_minimums, grid_maximums=grid_maximums, dtype=dtype) return LocalStochasticVolatilityModel( leverage_fn, variance_process, risk_free_rate=risk_free_rate, dividend_yield=dividend_yield, rho=rho, dtype=dtype) @classmethod def from_volatility_surface(cls, implied_volatility_surface, variance_process, initial_spot, initial_variance, rho=None, risk_free_rate=None, dividend_yield=None, time_step=None, num_grid_points=None, grid_minimums=None, grid_maximums=None, dtype=None): """Creates a `LocalStochasticVolatilityModel` from volatility surface. This function computes the leverage function for the LSV model by first computing the joint probablity density function `p(t, X(t), v(t))` where `X(t)` is the log of the spot price and `v(t)` is the variance at time `t`. The joint probablity density is computed using the Fokker-Planck equation of the LSV model (see 6.8.2 in Ref [1]): ```None dp/dt = 1/2 d^2 [v L(t,X)^2 p]/dX^2 + 1/2 d^2 [b(v)^2 p]/dv^2 + rho d^2 [sqrt(v)L(t,X)b(v) p]/dXdv - d[(r - d - 1/2 v L(t,X)^2)p]/dX - d[a(v) p]/dv ``` where `a(v)` and `b(v)` are the drift and diffusion functions for the variance process. Defining ```None I_n(k,t) = int v^n p(t, k, v) dv ``` we can calculate the leverage function as follows: ```None L(k, t) = sigma(exp(k), t) sqrt(I_0(k, t)/I_1(k, t)). ``` Args: implied_volatility_surface: Either an instance of `processed_market_data.VolatilitySurface` or a Python object containing the implied volatility market data. If the input is a Python object, then the object must implement a function `volatility(strike, expiry_times)` which takes real `Tensor`s corresponding to option strikes and time to expiry and returns a real `Tensor` containing the correspoding market implied volatility. variance_process: An instance of `LSVVarianceModel` or `ItoProcess`specifying the dynamics of the variance process of the LSV model. initial_spot: A real scalar `Tensor` specifying the underlying spot price on the valuation date. initial_variance: A real scalar `Tensor` specifying the initial variance on the valuation date. rho: A real scalar `Tensor` specifying the correlation between spot price and the stochastic variance. risk_free_rate: A real scalar `Tensor` specifying the (continuosly compounded) risk free interest rate. If the underlying is an FX rate, then use this input to specify the domestic interest rate. Default value: `None` in which case the input is set to zero. dividend_yield: A real scalar `Tensor` specifying the (continuosly compounded) divident yield. If the underlying is an FX rate, then use this input to specify the foreign interest rate. Default value: `None` in which case the input is set to zero. time_step: An optional real scalar `Tensor` specifying the time step during the numerical solution of the Fokker-Planck PDE. Default value: None, in which case `time_step` corresponding to 100 time steps is used. num_grid_points: A scalar integer `Tensor` specifying the number of discretization points for each spatial dimension. Default value: None, in which case number of grid points is set to 100. grid_minimums: An optional `Tensor` of size 2 containing the minimum grid points for PDE spatial discretization. `grid_minimums[0]` correspond to the minimum spot price in the spatial grid and `grid_minimums[1]` correspond to the minimum variance value. grid_maximums: An optional `Tensor` of size 2 containing the maximum grid points for PDE spatial discretization. `grid_maximums[0]` correspond to the maximum spot price in the spatial grid and `grid_maximums[1]` correspond to the maximum variance value. dtype: The default dtype to use when converting values to `Tensor`s. Default value: `None` which means that default dtypes inferred by TensorFlow are used. Returns: An instance of `LocalStochasticVolatilityModel` constructed using the input data. """ if risk_free_rate is None: discount_factor_fn = lambda t: tf.ones_like(t, dtype=dtype) else: r = tf.convert_to_tensor(risk_free_rate, dtype=dtype) discount_factor_fn = lambda t: tf.math.exp(-r * t) lv_model = lvm.LocalVolatilityModel.from_volatility_surface( dim=1, spot=initial_spot, implied_volatility_surface=implied_volatility_surface, discount_factor_fn=discount_factor_fn, dividend_yield=dividend_yield, dtype=dtype) dtype = dtype or lv_model.dtype() day_count_fn = utils.get_daycount_fn( implied_volatility_surface.daycount_convention) max_time = tf.math.reduce_max( day_count_fn( start_date=implied_volatility_surface.settlement_date(), end_date=implied_volatility_surface.node_expiries())) if time_step is None: time_step = max_time / 100.0 rho = rho or 0.0 num_grid_points = num_grid_points or 100 leverage_fn = _leverage_function_using_pde( risk_free_rate=risk_free_rate, dividend_yield=dividend_yield, lv_model=lv_model, variance_model=variance_process, rho=[rho], initial_spot=initial_spot, initial_variance=initial_variance, time_step=time_step, max_time=max_time, num_grid_points=num_grid_points, grid_minimums=grid_minimums, grid_maximums=grid_maximums, dtype=dtype) return LocalStochasticVolatilityModel( leverage_fn, variance_process, risk_free_rate=risk_free_rate, dividend_yield=dividend_yield, rho=rho, dtype=dtype) def _create_corr_matrix(rho, dtype): """Create correlation matrix with scalar `rho`.""" one = tf.constant(1.0, dtype=dtype) m1 = tf.concat([one, rho], axis=0) m2 = tf.concat([rho, one], axis=0) return tf.stack([m1, m2]) def _machine_eps(dtype): """Returns the machine epsilon for the supplied dtype.""" dtype = tf.as_dtype(dtype).as_numpy_dtype eps = 1e-6 if dtype == np.float32 else 1e-10 return eps def _two_d_integration(grid, value_grid): """Perform 2-D integration numerically.""" log_spot_grid, variance_grid = tf.meshgrid(*grid) delta_v = variance_grid[1:, :] - variance_grid[:-1, :] delta_s = log_spot_grid[:, 1:] - log_spot_grid[:, :-1] integral = tf.math.reduce_sum(value_grid[0, :-1, :] * delta_v, axis=0) integral = tf.math.reduce_sum(integral[:-1] * delta_s[0, :]) return integral # TODO(b/175023506): Move to `grids` module def _tavella_randell_nonuniform_grid(x_min, x_max, x_star, num_grid_points, alpha, dtype): """Creates non-uniform grid clustered around a specified point. Args: x_min: A real `Tensor` of shape `(dim,)` specifying the lower limit of the grid. x_max: A real `Tensor` of same shape and dtype as `x_min` specifying the upper limit of the grid. x_star: A real `Tensor` of same shape and dtype as `x_min` specifying the location on the grid around which higher grid density is desired. num_grid_points: A scalar integer `Tensor` specifying the number of points on the grid. alpha: A scalar parameter which controls the degree of non-uniformity of the grid. The smaller values of `alpha` correspond to greater degree of clustering around `x_star`. dtype: The default dtype to use when converting values to `Tensor`s. Returns: A real `Tensor` of shape `(dim, num_grid_points+1)` containing the non-uniform grid. """ c1 = tf.math.asinh((x_min - x_star) / alpha) c2 = tf.math.asinh((x_max - x_star) / alpha) i = tf.expand_dims(tf.range(0, num_grid_points + 1, 1, dtype=dtype), axis=-1) grid = x_star + alpha * tf.math.sinh(c2 * i / num_grid_points + c1 * (1 - i / num_grid_points)) # reshape from (num_grid_points+1, dim) to (dim, num_grid_points+1) return tf.transpose(grid) def _conditional_expected_variance_from_pde_solution(grid, value_grid, dtype): """Computes E[variance|log_spot=k].""" # value_grid.shape = [1, num_x, num_y] log_spot_grid, variance_grid = tf.meshgrid(*grid) delta_s = variance_grid[1:, :] - variance_grid[:-1, :] # Calculate I(0) integral_0 = tf.math.reduce_sum(value_grid[0, :-1, :] * delta_s, axis=0) # Calculate I(1) integral_1 = tf.math.reduce_sum( variance_grid[:-1, :] * value_grid[0, :-1, :] * delta_s, axis=0) variance_given_logspot = tf.math.divide_no_nan(integral_1, integral_0) return functools.partial( linear.interpolate, x_data=log_spot_grid[0, :], y_data=variance_given_logspot, dtype=dtype) def _leverage_function_using_pde(*, risk_free_rate, dividend_yield, lv_model, variance_model, rho, initial_spot, initial_variance, max_time, time_step, num_grid_points, grid_minimums, grid_maximums, dtype): """Computes Leverage function using Fokker-Planck PDE for joint density. This function computes the leverage function for the LSV model by first computing the joint probablity density function `p(t, X(t), v(t))` where `X(t)` is the log of the spot price and `v(t)` is the variance at time `t`. The joint probablity density is computed using the Fokker-Planck equation of the LSV model (see 6.8.2 in Ref [1]): ```None dp/dt = 1/2 d^2 [v L(t,X)^2 p]/dX^2 + 1/2 d^2 [b(v)^2 p]/dv^2 + rho d^2 [sqrt(v)L(t,X)b(v) p]/dXdv - d[(r - d - 1/2 v L(t,X)^2)p]/dX - d[a(v) p]/dv ``` where `a(v)` and `b(v)` are the drift and diffusion functions for the variance process. Defining ```None I_n(k,t) = int v^n p(t, k, v) dv ``` we can calculate the leverage function as follows: ```None L(k, t) = sigma(exp(k), t) sqrt(I_0(k, t)/I_1(k, t)). ``` Args: risk_free_rate: A scalar real `Tensor` specifying the (continuosly compounded) risk free interest rate. If the underlying is an FX rate, then use this input to specify the domestic interest rate. dividend_yield: A real scalar `Tensor` specifying the (continuosly compounded) dividend yield. If the underlying is an FX rate, then use this input to specify the foreign interest rate. lv_model: An instance of `LocalVolatilityModel` specifying the local volatility for the spot price. variance_model: An instance of `LSVVarianceModel` specifying the dynamics of the variance process of the LSV model. rho: A real scalar `Tensor` specifying the correlation between spot price and the stochastic variance. initial_spot: A real scalar `Tensor` specifying the underlying spot price on the valuation date. initial_variance: A real scalar `Tensor` specifying the initial variance on the valuation date. max_time: A real scalar `Tensor` specifying the maximum time to which the Fokker-Planck PDE is evolved. time_step: A real scalar `Tensor` specifying the time step during the numerical solution of the Fokker-Planck PDE. num_grid_points: A scalar integer `Tensor` specifying the number of discretization points for each spatial dimension. grid_minimums: An optional `Tensor` of size 2 containing the minimum grid points for PDE spatial discretization. `grid_minimums[0]` correspond to the minimum spot price in the spatial grid and `grid_minimums[1]` correspond to the minimum variance value. grid_maximums: An optional `Tensor` of size 2 containing the maximum grid points for PDE spatial discretization. `grid_maximums[0]` correspond to the maximum spot price in the spatial grid and `grid_maximums[1]` correspond to the maximum variance value. dtype: The default dtype to use when converting values to `Tensor`s. Returns: A Python callable which computes the Leverage function `L(t, S(t))`. The function accepts a scalar `Tensor` corresponding to time 't' and a real `Tensor` of shape `[num_samples, 1]` corresponding to the spot price (S) as inputs and return a real `Tensor` corresponding to the leverage function computed at (S,t). """ if variance_model.dim() > 1: raise ValueError("The default model of Leverage function doesn\'t support " "the variance process with more than 1 factor.") pde_grid_tol = _machine_eps(dtype) rho = tf.convert_to_tensor(rho, dtype=dtype) initial_spot = tf.convert_to_tensor(initial_spot, dtype=dtype) initial_log_spot = tf.math.log( tf.convert_to_tensor(initial_spot, dtype=dtype)) initial_variance = tf.convert_to_tensor(initial_variance, dtype=dtype) risk_free_rate = tf.convert_to_tensor(risk_free_rate, dtype=dtype) dividend_yield = tf.convert_to_tensor(dividend_yield, dtype=dtype) rho = tf.convert_to_tensor(rho, dtype=dtype) x_scale = initial_log_spot y_scale = initial_variance # scaled log spot = log(spot/initial_spot) # scaled variance = variance / initial_variance scaled_initial_point = tf.convert_to_tensor([0.0, 1.0], dtype=dtype) # These are minimums and maximums for scaled log spot and scaled variance if grid_minimums is None: grid_minimums = [0.01, 0.0001] else: grid_minimums = tf.convert_to_tensor(grid_minimums, dtype=dtype) grid_minimums = [grid_minimums[0] / initial_spot, grid_minimums[1] / initial_variance] if grid_maximums is None: grid_maximums = [10.0, 5.0] else: grid_maximums = tf.convert_to_tensor(grid_maximums, dtype=dtype) grid_maximums = [grid_maximums[0] / initial_spot, grid_maximums[1] / initial_variance] log_spot_min = tf.math.log( tf.convert_to_tensor([grid_minimums[0]], dtype=dtype)) log_spot_max = tf.math.log( tf.convert_to_tensor([grid_maximums[0]], dtype=dtype)) variance_min = tf.convert_to_tensor([grid_minimums[1]], dtype=dtype) variance_max = tf.convert_to_tensor([grid_maximums[1]], dtype=dtype) grid_minimums = tf.concat([log_spot_min, variance_min], axis=0) grid_maximums = tf.concat([log_spot_max, variance_max], axis=0) grid = _tavella_randell_nonuniform_grid(grid_minimums, grid_maximums, scaled_initial_point, num_grid_points, 0.3, dtype) grid = [tf.expand_dims(grid[0], axis=0), tf.expand_dims(grid[1], axis=0)] delta_x = tf.math.reduce_min(grid[0][0, 1:] - grid[0][0, :-1]) delta_y = tf.math.reduce_min(grid[1][0, 1:] - grid[1][0, :-1]) # Initialize leverage function L(t=0, S) = 1 leverage_fn = functools.partial( linear.interpolate, x_data=[[0.0, 1.0]], y_data=[[1.0, 1.0]], dtype=dtype) def _initial_value(): """Computes initial value as a delta function delta(log_spot(t), var(0)).""" log_spot, variance = tf.meshgrid(*grid) init_value = tf.where( tf.math.logical_and( tf.math.abs(log_spot - scaled_initial_point[0]) < delta_x + pde_grid_tol, tf.math.abs(variance - scaled_initial_point[1]) < delta_y + pde_grid_tol), 1.0 / (delta_x * delta_y * 4), 0.0) # initial_value.shape = (1, num_grid_x, num_grid_y) return tf.expand_dims(init_value, axis=0) def _second_order_coeff_fn(t, grid): log_spot = grid[0] + x_scale variance = grid[1] * y_scale leverage_fn_t_x = leverage_fn(log_spot) val_xx = 0.5 * variance * leverage_fn_t_x**2 val_xy = 0.5 * (rho * tf.math.sqrt(variance) * leverage_fn_t_x * variance_model.volatility_fn()(t, variance)) / y_scale val_yx = val_xy val_yy = 0.5 * variance_model.volatility_fn()(t, variance)**2 / y_scale**2 # return list of shape = (2,2). Each element has shape = grid.shape return [[-val_yy, -val_yx], [-val_xy, -val_xx]] def _first_order_coeff_fn(t, grid): log_spot = grid[0] + x_scale variance = grid[1] * y_scale leverage_fn_t_x = leverage_fn(log_spot) val_x = (risk_free_rate - dividend_yield - 0.5 * variance * leverage_fn_t_x**2) val_y = variance_model.drift_fn()(t, variance) # return list of shape = (2,). Each element has shape = grid.shape return [val_y / y_scale, val_x] def _compute_leverage_fn(t, coord_grid, value_grid): log_spot = tf.expand_dims(coord_grid[0], axis=-1) + x_scale local_volatility_values = lv_model.local_volatility_fn()( t, tf.math.exp(log_spot)) # TODO(b/176826650): Large values represent instability. Eventually this # should be addressed inside local vol model. local_volatility_values = tf.where( tf.math.abs(local_volatility_values) > 1e4, 0.0, local_volatility_values) # variance_given_logspot.shape = (num_grid_x, 1) variance_given_logspot = _conditional_expected_variance_from_pde_solution( [coord_grid[0] + x_scale, coord_grid[1] * y_scale], value_grid, dtype)( log_spot) leverage_fn_values = tf.math.divide_no_nan( local_volatility_values, tf.math.sqrt(variance_given_logspot)) leverage_fn = functools.partial( linear.interpolate, x_data=grid[0] + x_scale, y_data=tf.transpose(leverage_fn_values), dtype=dtype) return leverage_fn @pde.boundary_conditions.neumann def _trivial_neumann_boundary(t, location_grid): del t, location_grid return 0.0 leverage_fn_values = [] leverage_fn_values.append(leverage_fn(grid[0][0])[0]) # joint_density.shape = (1, num_grid_x, num_grid_y) joint_density = _initial_value() for tstart in np.arange(0.0, max_time, time_step): joint_density, coord_grid, _, _ = pde.fd_solvers.solve_forward( tstart, tstart + time_step, coord_grid=[grid[0][0], grid[1][0]], values_grid=joint_density, time_step=time_step / 10.0, values_transform_fn=None, inner_second_order_coeff_fn=_second_order_coeff_fn, inner_first_order_coeff_fn=_first_order_coeff_fn, zeroth_order_coeff_fn=None, boundary_conditions=[[ _trivial_neumann_boundary, _trivial_neumann_boundary ], [_trivial_neumann_boundary, _trivial_neumann_boundary]], dtype=dtype) joint_density = tf.math.maximum(joint_density, 0.0) area_under_joint_density = _two_d_integration( [grid[0][0, :], grid[1][0, :]], joint_density) joint_density = joint_density / area_under_joint_density # TODO(b/176826743): Perform fixed point iteration instead of one step # update leverage_fn = _compute_leverage_fn( tf.convert_to_tensor(tstart + time_step), coord_grid, joint_density) leverage_fn_values.append(leverage_fn(grid[0][0, :] + x_scale)[0, :]) # leverage_fn_values.shape = (num_pde_timesteps, num_grid_x,) leverage_fn_values = tf.convert_to_tensor(leverage_fn_values, dtype=dtype) times = tf.range(0.0, max_time + time_step, time_step, dtype=dtype) def _return_fn(t, spot): leverage_fn_interpolator = ( math.interpolation.interpolation_2d.Interpolation2D( x_data=[times], y_data=tf.expand_dims( tf.repeat(grid[0] + x_scale, times.shape[0], axis=0), axis=0), z_data=tf.expand_dims(leverage_fn_values, axis=0), dtype=dtype)) return leverage_fn_interpolator.interpolate(t, tf.math.log(spot)) return _return_fn
fe6aaab1a8339dd6dc8d16d83021eb02079bdd3c
cc352b04dc8eb5033399a8925274f23be51ae3bf
/leonardo/__init__.py
778f36dfa838719fd5e13576cde4c652cb4a8cd6
[ "BSD-2-Clause" ]
permissive
lukaszle/django-leonardo
1dcb16f0155495d4ef0e52f667450ee53f2b58be
a54dd0822c3d8fbf4a52547d0ad3ae17c04b88b7
refs/heads/master
2021-01-18T09:36:08.203184
2016-02-01T20:25:37
2016-02-01T20:25:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
520
py
default_app_config = 'leonardo.apps.LeonardoConfig' __import__('pkg_resources').declare_namespace(__name__) try: from leonardo.base import leonardo # noqa except ImportError: import warnings def simple_warn(message, category, filename, lineno, file=None, line=None): return '%s: %s' % (category.__name__, message) msg = ("Could not import Leonardo dependencies. " "This is normal during installation.\n") warnings.formatwarning = simple_warn warnings.warn(msg, Warning)
2d6fced001982c85bda4c3008e1f9051ce24ffda
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_14387.py
1a3c8e77f0bda5b6a8b9a9699422269adf3d924c
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
83
py
# Python Celery Task.update_state potentially blocks forever BROKER_POOL_LIMIT=100
c86b19c4c30e2fabbe0d81972a65af9e5be88efe
de6dc75873bd8615d22dd25c51f2fe3bc82cd7f8
/069.猜数字游戏.py
07de0ac470912f9fd6bb2e924865ff59a1419c0a
[]
no_license
cuimin07/LeetCode-test
b9e87b4e353b09dfa84f62c24c2950d57656fff2
8f02b78dcbdefa154bb52c14a271998361e92a86
refs/heads/master
2020-08-14T13:37:27.799071
2020-01-13T03:11:40
2020-01-13T03:11:40
215,178,295
0
0
null
null
null
null
UTF-8
Python
false
false
1,670
py
''' 你正在和你的朋友玩 猜数字(Bulls and Cows)游戏:你写下一个数字让你的朋友猜。 每次他猜测后,你给他一个提示,告诉他有多少位数字和确切位置都猜对了(称为“Bulls”, 公牛), 有多少位数字猜对了但是位置不对(称为“Cows”, 奶牛)。你的朋友将会根据提示继续猜,直到猜出秘密数字。 请写出一个根据秘密数字和朋友的猜测数返回提示的函数,用 A 表示公牛,用 B 表示奶牛。 请注意秘密数字和朋友的猜测数都可能含有重复数字。 示例 1: 输入: secret = "1807", guess = "7810" 输出: "1A3B" 解释: 1 公牛和 3 奶牛。公牛是 8,奶牛是 0, 1 和 7。 示例 2: 输入: secret = "1123", guess = "0111" 输出: "1A1B" 解释: 朋友猜测数中的第一个 1 是公牛,第二个或第三个 1 可被视为奶牛。 说明: 你可以假设秘密数字和朋友的猜测数都只包含数字,并且它们的长度永远相等。 ''' #答: class Solution: def getHint(self, secret: str, guess: str) -> str: A,B=0,0 dic1,dic2={},{} siz=len(secret) for i in range(siz): if secret[i]==guess[i]: A+=1 else: if secret[i] not in dic1: dic1[secret[i]]=1 else: dic1[secret[i]]+=1 if guess[i] not in dic2: dic2[guess[i]]=1 else: dic2[guess[i]]+=1 for x in dic1: if x in dic2: B+=min(dic1[x],dic2[x]) return str(A)+'A'+str(B)+'B'
e686b01403ab17049ad212cde428b766ca9b55f6
973b40c806bfcfdfbe4258b3decd9e52f8d4b574
/vmware_exporter/helpers.py
e6df9262e3710f638050d836a6405a66c56421ae
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
gitter-badger/vmware_exporter
467507e83551134f2e89b7fb3125bccb949113d4
d805dde7ff768d55e96719fcd727a6f4b5e81dc7
refs/heads/master
2020-04-13T17:06:59.370635
2018-12-24T05:19:48
2018-12-24T05:19:48
163,339,090
0
0
null
2018-12-27T21:53:31
2018-12-27T21:53:31
null
UTF-8
Python
false
false
1,375
py
from pyVmomi import vmodl def batch_fetch_properties(content, obj_type, properties): view_ref = content.viewManager.CreateContainerView( container=content.rootFolder, type=[obj_type], recursive=True ) PropertyCollector = vmodl.query.PropertyCollector # Describe the list of properties we want to fetch for obj_type property_spec = PropertyCollector.PropertySpec() property_spec.type = obj_type property_spec.pathSet = properties # Describe where we want to look for obj_type traversal_spec = PropertyCollector.TraversalSpec() traversal_spec.name = 'traverseEntities' traversal_spec.path = 'view' traversal_spec.skip = False traversal_spec.type = view_ref.__class__ obj_spec = PropertyCollector.ObjectSpec() obj_spec.obj = view_ref obj_spec.skip = True obj_spec.selectSet = [traversal_spec] filter_spec = PropertyCollector.FilterSpec() filter_spec.objectSet = [obj_spec] filter_spec.propSet = [property_spec] props = content.propertyCollector.RetrieveContents([filter_spec]) results = {} for obj in props: properties = {} properties['obj'] = obj.obj properties['id'] = obj.obj._moId for prop in obj.propSet: properties[prop.name] = prop.val results[obj.obj._moId] = properties return results
7fe4ba0f5ad62a80601a216373746ad51ac9e09f
2e00398c4b77ab6e1996dbbefa167e13a8ad40a9
/products/urls.py
fab0250699fb90757ba44b5592f3d12ac5e94b7e
[]
no_license
cleliofavoccia/PurBeurre
d754b83ed28b1240447243f149080058a60ccdfb
e2b5a51fbd91412e68ddb1c3c785713c7988cc41
refs/heads/main
2023-03-20T11:06:32.466520
2021-03-12T16:02:22
2021-03-12T16:02:22
331,650,830
0
2
null
null
null
null
UTF-8
Python
false
false
266
py
"""URLS of products app""" from django.urls import path from . import views app_name = 'products' urlpatterns = [ path('<int:pk>/', views.ProductDetailView.as_view(), name='product'), path('results/', views.ResultsListView.as_view(), name='results') ]
d7347ded155d726c1280eaa8b4a1b75779976483
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_169/ch167_2020_06_19_15_17_32_858494.py
a7645291dc1cbd46804f0758f0845bbdbddb6e65
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
436
py
def bairro_mais_custoso(dicionario): dicionario2={} lista=[] dicionario3={} for i in dicionario: dicionario2[i]=0 for e in dicionario[i][6:]: dicionario2[i]+=e for k in dicionario2: lista.append(dicionario2[k]) dicionario3[dicionario2[k]]=k for e in lista: if e == dicionario3[dicionario2[k]]: return k return k
5b04d15420f559f7c75a1cf772a31cb8aa898403
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2566/60627/239561.py
e69aa50e41e94e98b56e97cd11efa5bf495bf257
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
441
py
# 20 n = int(input()) s = '[' for i in range(n): inp = input() s += ('[' + inp + '],') s = s[:-1] + ']' from ast import literal_eval num = literal_eval(s) l = [] def f(num,i,j,t): lis = range(len(num)) global l t += num[i][j] if i==len(num) - 1 and j==len(num) - 1: l.append(t) return if i+1 in lis: f(num,i+1,j,t) if j+1 in lis: f(num,i,j+1,t) f(num,0,0,0) print(min(l))
c1da5d4f2e2d43b82c977f498ea155098ae2e99d
c77a40408bc40dc88c466c99ab0f3522e6897b6a
/Programming_basics/Exercise_1/VacationBooksList.py
3ce9b5265267af70f22eb065be20cff43206264f
[]
no_license
vbukovska/SoftUni
3fe566d8e9959d390a61a4845381831929f7d6a3
9efd0101ae496290313a7d3b9773fd5111c5c9df
refs/heads/main
2023-03-09T17:47:20.642393
2020-12-12T22:14:27
2021-02-16T22:14:37
328,805,705
0
0
null
null
null
null
UTF-8
Python
false
false
171
py
book_pages = int(input()) reading_speed = int(input()) time_limit = int(input()) tot_hours = book_pages / reading_speed per_day = tot_hours / time_limit print(per_day)
1189ee43148ae71e4e63174d6f48d775698a66d8
235c4b3aa630737b379050a420923efadd432da8
/1stRound/Easy/599 Minimum Index Sum of Two Lists/Heap.py
509359ed759a98a80c7b55d98f9e9ee6e90ae456
[ "MIT" ]
permissive
ericchen12377/Leetcode-Algorithm-Python
4e5dc20062280ef46194da5480600b2459fd89f8
eb58cd4f01d9b8006b7d1a725fc48910aad7f192
refs/heads/master
2023-02-22T22:43:55.612650
2021-01-28T04:00:20
2021-01-28T04:00:20
258,058,468
2
0
null
null
null
null
UTF-8
Python
false
false
971
py
import heapq class Solution: def findRestaurant(self, list1, list2): """ :type list1: List[str] :type list2: List[str] :rtype: List[str] """ interest = dict() for i, l in enumerate(list1): interest[l] = [i, 100000] for j, l in enumerate(list2): if l in interest: interest[l][1] = j heap = [(sum(v), l) for l, v in interest.items()] heapq.heapify(heap) res = [] smallest = -1 while heap: cursum, curl = heapq.heappop(heap) if smallest == -1: smallest = cursum if smallest == cursum: res.append(curl) else: break return res list1 = ["Shogun", "Tapioca Express", "Burger King", "KFC"] list2 = ["Piatti", "The Grill at Torrey Pines", "Hungry Hunter Steakhouse", "Shogun"] p = Solution() print(p.findRestaurant(list1,list2))
6d36d7e25b88308e58d0b8062d820079f9529fc8
8f8ac99fd3ed9ceb36778b404f6fdd0b6899d3f4
/pyobjc-framework-Metal/PyObjCTest/test_mtlaccelerationstructuretypes.py
c3bd2771327be119bf00faa1fd5e34797066345f
[ "MIT" ]
permissive
strogo/pyobjc
ac4201c7742eb75348328eeecb7eedf4e3458de3
2579c5eaf44b0c5af77ee195c417d2c65e72dfda
refs/heads/master
2023-07-13T00:41:56.448005
2021-08-24T06:42:53
2021-08-24T06:42:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,162
py
import Metal from PyObjCTools.TestSupport import TestCase class TestMTLAccelerationStructureTypes(TestCase): def test_structs(self): self.assertNotHasAttr(Metal, "MTLPackedFloat3") self.assertNotHasAttr(Metal, "MTLPackedFloat4x3") self.assertNotHasAttr(Metal, "MTLAccelerationStructureInstanceDescriptor") # v = Metal.MTLPackedFloat3() # self.assertIsInstance(v.x, float) # self.assertIsInstance(v.y, float) # self.assertIsInstance(v.z, float) # self.asssertNotHasattr(v, "elements") # v = Metal.MTLPackedFloat4x3() # self.assertHasattr(v, "columns") # v = Metal.MTLAccelerationStructureInstanceDescriptor() # self.assertIsInstance(v.transformationMatrix, Metal.MTLPackedFloat4x3) # self.assertIsInstance(v.flags, int) # self.assertIsInstance(v.mask, int) # self.assertIsInstance(v.intersectionFunctionTableOffset, int) # self.assertIsInstance(v.accelerationStructureIndex, int) def test_functions(self): # MTLPackedFloat3 is not available (See above) self.assertNotHasAttr(Metal, "MTLPackedFloat3Make")
04e5c29fd3536e5ffc4f03ada2434ad4101b1362
e9d7689655887232b652ef369c7eaf3a1ef06955
/old/ePhy/in vivo multi/convert v3.py
30b7047a231015b6843c8b5de6d3593611be8041
[]
no_license
Gilles-D/main
81ac13cdb1614eb0c82afb3d0e847a30b78cad30
f3714d2cbe4aae22ab36f4f94c94067159270820
refs/heads/master
2023-08-31T06:20:48.554237
2023-08-30T20:33:27
2023-08-30T20:33:27
222,518,250
0
0
null
null
null
null
UTF-8
Python
false
false
3,954
py
# -*- coding: utf-8 -*- """ Created on Thu Mar 28 11:57:30 2019 @author: lspaeth (modified by flareno) Created on Mon Nov 12 14:14:18 2018 This class loads HdF5 recordings from MCS acquisition system as matrices of shape ((channel,data)) Allows to load Raw signals + associated time vectors + associated sampling rates All in Volts and Seconds Hope it will work Then all you have to do is to load HdF5IO from eletroPy package; init class with smthg = HdF5IO(filepath) After that u can load every instance with associated function, they are all described bellow. """ import matplotlib.pyplot as plt import numpy as np class HdF5IO: def __init__(self,filepath): import h5py as h5 file_ = h5.File(filepath,'r') self.file = file_['Data'] #Loads first node #----------RAW RECORDINGS--------------------------------------------------------------------------------------------- def raw_record(self): #Gets Raw Records as matrix ((channel,data)) raw = self.file['Recording_0']['AnalogStream']['Stream_0']['ChannelData'] import numpy as np raw_record = np.zeros((raw.shape[0],raw.shape[1])) raw_conv = float(self.file['Recording_0']['AnalogStream']['Stream_0']['InfoChannel'][0][10]) #Scaling Factor for i in range(raw.shape[0]): #Stores data in new matrix raw_record[i,:] = raw[i,:]/raw_conv #From pV to V return raw_record def raw_time(self): #Gets time vector for raw records import numpy as np raw_tick = int(self.file['Recording_0']['AnalogStream']['Stream_0']['InfoChannel'][0][9])/1000000.0 #exp6 to pass from us to s raw_length = len(self.file['Recording_0']['AnalogStream']['Stream_0']['ChannelData'][0]) raw_time = np.arange(0,raw_length*raw_tick,raw_tick) return raw_time def raw_sampling_rate(self): #Gets sampling rate raw_tick = float(self.file['Recording_0']['AnalogStream']['Stream_0']['InfoChannel'][0][9])/1000000.0 return 1.0/raw_tick #In Hz #---------CONVERT H5 to RAW BINARY----------------------------------------------------------------------------------- def convert_folder(folderpath, newpath, data_type='raw'): import os, re import numpy as np list_dir = os.listdir(folderpath) # folderpath = folderpath # newpath = newpath concatenated_file=[] for file in list_dir: if file.endswith('.h5'): print ('Converting ' + file + '...') new_path = '%s/%s'%(folderpath,file) data = HdF5IO(new_path) traces = data.raw_record() concatenated_file.append(traces) print ('Conversion DONE') else: print (file + ' is not an h5 file, will not be converted') return concatenated_file # new_path = '%s/'%(folderpath) data = HdF5IO(new_path) traces = data.raw_record() # sampling_rate = int(data.raw_sampling_rate()) # name = re.sub('\.h5$', '', "concatenated") # file_save = '%s/%s_%sHz.rbf'%(newpath,name,sampling_rate) # with open(file_save, mode='wb') as file : # traces.tofile(file,sep='') # print ('Whole directory has been converted successfully') if __name__ == '__main__': folderpath = r'C:/Users/Gilles.DELBECQ/Desktop/In vivo Février 2022/H5/15-02' newpath = r'C:\Users\Gilles.DELBECQ\Desktop\In vivo Février 2022\RBF/15-02' a = convert_folder(folderpath, newpath) array_final = np.array([]) array_final = np.concatenate(a,axis=0) file_save = 'C:/Users/Gilles.DELBECQ/Desktop/In vivo Février 2022/H5/15-02/concatenated.rbf' with open(file_save, mode='wb') as file : array_final.tofile(file,sep='')
2c8834ff912fd0b52c11a67b58347b14e20a59c2
18310e7bb4e7c46d7d3fd51046a5bd92ca5f9c48
/gaping/parameters.py
6509d009f0bbb6100dfbd4420f7302283a6bba73
[]
no_license
shawwn/gaping
c91b6b4b2e2ef2ab6b868403f02e0e237b7b2761
41d477c79814b37f8a09715433c0c489a56c92d2
refs/heads/master
2023-03-15T05:42:37.086420
2021-03-16T21:21:01
2021-03-16T21:21:01
323,994,300
11
1
null
null
null
null
UTF-8
Python
false
false
163
py
import gin import gin.tf.external_configurables import tensorflow as tf from .util import EasyDict @gin.configurable def options(**kws): return EasyDict(kws)
48c663aa2a5710c161b3eb746a960ff8252ec051
709b1549033c9a547c67ee507fdc10b7e5d234ad
/test/test_worker_pools_api.py
a9689158dab784197bf9245cf0d64ca7dd1eb230
[ "Apache-2.0" ]
permissive
cvent/octopus-deploy-api-client
d622417286b348c0be29678a86005a809c77c005
0e03e842e1beb29b132776aee077df570b88366a
refs/heads/master
2020-12-05T14:17:46.229979
2020-01-07T05:06:58
2020-01-07T05:06:58
232,135,963
0
1
null
null
null
null
UTF-8
Python
false
false
5,971
py
# coding: utf-8 """ Octopus Server API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 2019.6.7+Branch.tags-2019.6.7.Sha.aa18dc6809953218c66f57eff7d26481d9b23d6a Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import octopus_deploy_swagger_client from octopus_deploy_client.worker_pools_api import WorkerPoolsApi # noqa: E501 from octopus_deploy_swagger_client.rest import ApiException class TestWorkerPoolsApi(unittest.TestCase): """WorkerPoolsApi unit test stubs""" def setUp(self): self.api = octopus_deploy_client.worker_pools_api.WorkerPoolsApi() # noqa: E501 def tearDown(self): pass def test_create_response_descriptor_worker_pools_worker_pool_worker_pool_resource(self): """Test case for create_response_descriptor_worker_pools_worker_pool_worker_pool_resource Create a WorkerPoolResource # noqa: E501 """ pass def test_create_response_descriptor_worker_pools_worker_pool_worker_pool_resource_spaces(self): """Test case for create_response_descriptor_worker_pools_worker_pool_worker_pool_resource_spaces Create a WorkerPoolResource # noqa: E501 """ pass def test_custom_action_response_descriptor_octopus_server_web_api_actions_sort_worker_pools_responder(self): """Test case for custom_action_response_descriptor_octopus_server_web_api_actions_sort_worker_pools_responder """ pass def test_custom_action_response_descriptor_octopus_server_web_api_actions_sort_worker_pools_responder_spaces(self): """Test case for custom_action_response_descriptor_octopus_server_web_api_actions_sort_worker_pools_responder_spaces """ pass def test_custom_query_response_descriptor_octopus_server_web_api_actions_infrastructure_summary_worker_pools_summary_responder(self): """Test case for custom_query_response_descriptor_octopus_server_web_api_actions_infrastructure_summary_worker_pools_summary_responder """ pass def test_custom_query_response_descriptor_octopus_server_web_api_actions_infrastructure_summary_worker_pools_summary_responder_spaces(self): """Test case for custom_query_response_descriptor_octopus_server_web_api_actions_infrastructure_summary_worker_pools_summary_responder_spaces """ pass def test_custom_query_response_descriptor_octopus_server_web_api_actions_worker_pools_workers_responder(self): """Test case for custom_query_response_descriptor_octopus_server_web_api_actions_worker_pools_workers_responder """ pass def test_custom_query_response_descriptor_octopus_server_web_api_actions_worker_pools_workers_responder_spaces(self): """Test case for custom_query_response_descriptor_octopus_server_web_api_actions_worker_pools_workers_responder_spaces """ pass def test_delete_on_background_response_descriptor_worker_pools_worker_pool_worker_pool_resource(self): """Test case for delete_on_background_response_descriptor_worker_pools_worker_pool_worker_pool_resource Delete a WorkerPoolResource by ID # noqa: E501 """ pass def test_delete_on_background_response_descriptor_worker_pools_worker_pool_worker_pool_resource_spaces(self): """Test case for delete_on_background_response_descriptor_worker_pools_worker_pool_worker_pool_resource_spaces Delete a WorkerPoolResource by ID # noqa: E501 """ pass def test_index_response_descriptor_worker_pools_worker_pool_worker_pool_resource(self): """Test case for index_response_descriptor_worker_pools_worker_pool_worker_pool_resource Get a list of WorkerPoolResources # noqa: E501 """ pass def test_index_response_descriptor_worker_pools_worker_pool_worker_pool_resource_spaces(self): """Test case for index_response_descriptor_worker_pools_worker_pool_worker_pool_resource_spaces Get a list of WorkerPoolResources # noqa: E501 """ pass def test_list_all_response_descriptor_worker_pools_worker_pool_worker_pool_resource(self): """Test case for list_all_response_descriptor_worker_pools_worker_pool_worker_pool_resource Get a list of WorkerPoolResources # noqa: E501 """ pass def test_list_all_response_descriptor_worker_pools_worker_pool_worker_pool_resource_spaces(self): """Test case for list_all_response_descriptor_worker_pools_worker_pool_worker_pool_resource_spaces Get a list of WorkerPoolResources # noqa: E501 """ pass def test_load_response_descriptor_worker_pools_worker_pool_worker_pool_resource(self): """Test case for load_response_descriptor_worker_pools_worker_pool_worker_pool_resource Get a WorkerPoolResource by ID # noqa: E501 """ pass def test_load_response_descriptor_worker_pools_worker_pool_worker_pool_resource_spaces(self): """Test case for load_response_descriptor_worker_pools_worker_pool_worker_pool_resource_spaces Get a WorkerPoolResource by ID # noqa: E501 """ pass def test_modify_response_descriptor_worker_pools_worker_pool_worker_pool_resource(self): """Test case for modify_response_descriptor_worker_pools_worker_pool_worker_pool_resource Modify a WorkerPoolResource by ID # noqa: E501 """ pass def test_modify_response_descriptor_worker_pools_worker_pool_worker_pool_resource_spaces(self): """Test case for modify_response_descriptor_worker_pools_worker_pool_worker_pool_resource_spaces Modify a WorkerPoolResource by ID # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
dd65e49ac4e5d72ad391c44fe86fbec7470da58a
754f71f70dfd6a22944d8d872c6d2f1d6983ac14
/sensirion_shdlc_driver/device.py
26dc53bb4e13555ba24e995327b14f5e2a84b6c7
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
Sensirion/python-shdlc-driver
052685da8db5629fa5929da65000210db82358e7
31e9683c27004ee05edf89996d656bc50f5bdb3a
refs/heads/master
2021-06-10T10:35:47.299481
2021-03-19T08:47:12
2021-03-19T08:47:12
144,961,065
6
1
null
null
null
null
UTF-8
Python
false
false
12,213
py
# -*- coding: utf-8 -*- # (c) Copyright 2019 Sensirion AG, Switzerland from __future__ import absolute_import, division, print_function from .device_base import ShdlcDeviceBase from .commands.device_info import ShdlcCmdGetProductType, \ ShdlcCmdGetProductName, ShdlcCmdGetArticleCode, ShdlcCmdGetSerialNumber, \ ShdlcCmdGetProductSubType from .commands.device_version import ShdlcCmdGetVersion from .commands.error_state import ShdlcCmdGetErrorState from .commands.device_reset import ShdlcCmdDeviceReset from .commands.slave_address import ShdlcCmdGetSlaveAddress, \ ShdlcCmdSetSlaveAddress from .commands.baudrate import ShdlcCmdGetBaudrate, ShdlcCmdSetBaudrate from .commands.reply_delay import ShdlcCmdGetReplyDelay, ShdlcCmdSetReplyDelay from .commands.system_up_time import ShdlcCmdGetSystemUpTime from .commands.factory_reset import ShdlcCmdFactoryReset import logging log = logging.getLogger(__name__) class ShdlcDevice(ShdlcDeviceBase): """ Generic SHDLC device, providing only common SHDLC commands. This class is intended only to communicate with devices which do not provide a corresponding device driver (yet). With this class you can for example read the serial number of a device even if no device specific driver exists. But if there exists a device specific driver, you should always use it instead of this driver. This is a low-level driver which just provides all SHDLC commands as Python methods. Typically, calling a method sends one SHDLC request to the device and interprets its response. There is no higher level functionality available, please look for other drivers if you need a higher level interface. There is no (or very few) caching functionality in this driver. For example if you call :py:meth:`~sensirion_shdlc_driver.device.ShdlcDevice.get_serial_number()` 100 times, it will send the command 100 times over the SHDLC interface to the device. This makes the driver (nearly) stateless. """ def __init__(self, connection, slave_address): """ Create an SHDLC device instance on an SHDLC connection. .. note:: This constructor does not communicate with the device, so it's possible to instantiate an object even if the device is not connected or powered yet. :param ~sensirion_shdlc_driver.connection.ShdlcConnection connection: The connection used for the communication. :param byte slave_address: The address of the device. """ super(ShdlcDevice, self).__init__(connection, slave_address) def get_product_type(self, as_int=False): """ Get the product type. The product type (sometimes also called "device type") can be used to detect what kind of SHDLC product is connected. :param bool as_int: If ``True``, the product type is returned as an integer, otherwise as a string of hexadecimal digits (default). :return: The product type as an integer or string of hexadecimal digits. :rtype: string/int """ product_type = self.execute(ShdlcCmdGetProductType()) if as_int: product_type = int(product_type, 16) return product_type def get_product_subtype(self): """ Get the product subtype. Some product types exist in multiple slightly different variants, this command allows to determine the exact variant of the connected device. Sometimes this is called "device subtype". .. note:: This command is not supported by every product type. :return: The product subtype as a byte (the interpretation depends on the connected product type). :rtype: byte """ return self.execute(ShdlcCmdGetProductSubType()) def get_product_name(self): """ Get the product name of the device. .. note:: This command is not supported by every product type. :return: The product name as an ASCII string. :rtype: string """ return self.execute(ShdlcCmdGetProductName()) def get_article_code(self): """ Get the article code of the device. .. note:: This command is not supported by every product type. :return: The article code as an ASCII string. :rtype: string """ return self.execute(ShdlcCmdGetArticleCode()) def get_serial_number(self): """ Get the serial number of the device. :return: The serial number as an ASCII string. :rtype: string """ return self.execute(ShdlcCmdGetSerialNumber()) def get_version(self): """ Get the version of the device firmware, hardware and SHDLC protocol. :return: The device version as a Version object. :rtype: Version """ return self.execute(ShdlcCmdGetVersion()) def get_error_state(self, clear=True, as_exception=False): """ Get and optionally clear the device error state and the last error. The state and error code interpretation depends on the connected device type. :param bool clear: If ``True``, the error state on the device gets cleared. :param bool as_exception: If ``True``, the error state is returned as an :py:class:`~sensirion_shdlc_driver.errors.ShdlcDeviceError` object instead of a byte. :return: The device state as a 32-bit unsigned integer containing all error flags, and the last error which occurred on the device. If ``as_exception`` is ``True``, it's returned as an :py:class:`~sensirion_shdlc_driver.errors.ShdlcDeviceError` object or ``None``, otherwise as a byte. :rtype: int, byte/ShdlcDeviceError/None """ state, error = self.execute(ShdlcCmdGetErrorState(clear=clear)) if as_exception: error = self._get_device_error(error) return state, error def get_slave_address(self): """ Get the SHDLC slave address of the device. .. note:: See also the property :py:attr:`~sensirion_shdlc_driver.device.ShdlcDevice.slave_address` which returns the device's slave address without sending a command. This method really sends a command to the device, even though the slave address is actually already known by this object. :return: The slave address of the device. :rtype: byte """ return self.execute(ShdlcCmdGetSlaveAddress()) def set_slave_address(self, slave_address, update_driver=True): """ Set the SHDLC slave address of the device. .. note:: The slave address is stored in non-volatile memory of the device and thus persists after a device reset. So the next time connecting to the device, you have to use the new address. .. warning:: When changing the address of a slave, make sure there isn't already a slave with that address on the same bus! In that case you would get communication issues which can only be fixed by disconnecting one of the slaves. :param byte slave_address: The new slave address [0..254]. The address 255 is reserved for broadcasts. :param bool update_driver: If ``True``, the property :py:attr:`~sensirion_shdlc_driver.device.ShdlcDevice.slave_address` of this object is also updated with the new address. This is needed to allow further communication with the device, as its address has changed. """ self.execute(ShdlcCmdSetSlaveAddress(slave_address)) if update_driver: self._slave_address = slave_address def get_baudrate(self): """ Get the SHDLC baudrate of the device. .. note:: This method really sends a command to the device, even though the baudrate is already known by the used :py:class:`~sensirion_shdlc_driver.port.ShdlcPort` object. :return: The baudrate of the device [bit/s]. :rtype: int """ return self.execute(ShdlcCmdGetBaudrate()) def set_baudrate(self, baudrate, update_driver=True): """ Set the SHDLC baudrate of the device. .. note:: The baudrate is stored in non-volatile memory of the device and thus persists after a device reset. So the next time connecting to the device, you have to use the new baudrate. .. warning:: If you pass ``True`` to the argument ``update_driver``, the baudrate of the underlaying :py:class:`~sensirion_shdlc_driver.port.ShdlcPort` object is changed. As the baudrate applies to the whole bus (with all its slaves), you might no longer be able to communicate with other slaves. Generally you should change the baudrate of all slaves consecutively, and only set ``update_driver`` to ``True`` the last time. :param int baudrate: The new baudrate. See device documentation for a list of supported baudrates. Many devices support the baudrates 9600, 19200 and 115200. :param bool update_driver: If true, the baudrate of the :py:class:`~sensirion_shdlc_driver.port.ShdlcPort` object is also updated with the baudrate. This is needed to allow further communication with the device, as its baudrate has changed. """ self.execute(ShdlcCmdSetBaudrate(baudrate)) if update_driver: self._connection.port.bitrate = baudrate def get_reply_delay(self): """ Get the SHDLC reply delay of the device. See :py:meth:`~sensirion_shdlc_driver.device.ShdlcDevice.set_reply_delay()` for details. :return: The reply delay of the device [μs]. :rtype: byte """ return self.execute(ShdlcCmdGetReplyDelay()) def set_reply_delay(self, reply_delay): """ Set the SHDLC reply delay of the device. The reply delay allows to increase the minimum response time of the slave to a given value in Microseconds. This is needed for RS485 masters which require some time to switch from sending to receiving. If the slave starts sending the response while the master is still driving the bus lines, a conflict on the bus occurs and communication fails. If you use such a slow RS485 master, you can increase the reply delay of all slaves to avoid this issue. :param byte reply_delay: The new reply delay [μs]. """ self.execute(ShdlcCmdSetReplyDelay(reply_delay)) def get_system_up_time(self): """ Get the system up time of the device. :return: The time since the last power-on or device reset [s]. :rtype: int """ return self.execute(ShdlcCmdGetSystemUpTime()) def device_reset(self): """ Execute a device reset (reboot firmware, similar to power cycle). """ self.execute(ShdlcCmdDeviceReset()) def factory_reset(self): """ Perform a factory reset (restore the off-the-shelf factory configuration). .. warning:: This resets any configuration done after leaving the factory! Keep in mind that this command might also change communication parameters (i.e. baudrate and slave address) and thus you might have to adjust the driver's parameters to allow further communication with the device. """ self.execute(ShdlcCmdFactoryReset())
cfb080d14c05e5ba70f3611fba5c7802c11373c9
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02882/s256412363.py
88b565ca18c9c84c582fb7237d25bd5927bd6b85
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
166
py
from math import atan,pi a,b,x=map(int,input().split()) if b-x/a**2 <= x/a**2:print(atan((b-x/a**2)/(a/2))*(180/pi)) else: y = x/a*2/b print(atan(b/y)*(180/pi))
e99a386905b70424a8de735bdb86b29c0631b254
d4e573e8eae32db155fe5931b3e2dcd3aa48969b
/indigo/lib/python2.7/dist-packages/rocon_std_msgs/srv/_GetPlatformInfo.py
9632cf90da8b4370fa3f61a096c961f655bcb6dd
[]
no_license
javierdiazp/myros
ee52b0a7c972d559a1a377f8de4eb37878b8a99b
7571febdfa881872cae6378bf7266deca7901529
refs/heads/master
2022-11-09T09:24:47.708988
2016-11-10T16:56:28
2016-11-10T16:56:28
73,733,895
0
1
null
2022-10-25T05:16:35
2016-11-14T18:19:06
C++
UTF-8
Python
false
false
13,022
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from rocon_std_msgs/GetPlatformInfoRequest.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class GetPlatformInfoRequest(genpy.Message): _md5sum = "d41d8cd98f00b204e9800998ecf8427e" _type = "rocon_std_msgs/GetPlatformInfoRequest" _has_header = False #flag to mark the presence of a Header object _full_text = """""" __slots__ = [] _slot_types = [] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(GetPlatformInfoRequest, self).__init__(*args, **kwds) def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: pass except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: pass except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I # This Python file uses the following encoding: utf-8 """autogenerated by genpy from rocon_std_msgs/GetPlatformInfoResponse.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import rocon_std_msgs.msg class GetPlatformInfoResponse(genpy.Message): _md5sum = "b7b34c89d857c757ff89bd8e49fa695f" _type = "rocon_std_msgs/GetPlatformInfoResponse" _has_header = False #flag to mark the presence of a Header object _full_text = """PlatformInfo platform_info ================================================================================ MSG: rocon_std_msgs/PlatformInfo # Provides platform details for robots, software or human # interactive devices. ########################### Variables ########################### # rocon universal resource identifier string uri # rocon version compatibility identifier (used when connecting to concerts) string version Icon icon ================================================================================ MSG: rocon_std_msgs/Icon # Used to idenfity the original package/filename resource this icon was/is to be loaded from # This typically doesn't have to be set, but can be very useful when loading icons from yaml definitions. string resource_name # Image data format. "jpeg" or "png" string format # Image data. uint8[] data""" __slots__ = ['platform_info'] _slot_types = ['rocon_std_msgs/PlatformInfo'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: platform_info :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(GetPlatformInfoResponse, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.platform_info is None: self.platform_info = rocon_std_msgs.msg.PlatformInfo() else: self.platform_info = rocon_std_msgs.msg.PlatformInfo() def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self.platform_info.uri length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.platform_info.version length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.platform_info.icon.resource_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.platform_info.icon.format length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.platform_info.icon.data length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.platform_info is None: self.platform_info = rocon_std_msgs.msg.PlatformInfo() end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.platform_info.uri = str[start:end].decode('utf-8') else: self.platform_info.uri = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.platform_info.version = str[start:end].decode('utf-8') else: self.platform_info.version = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.platform_info.icon.resource_name = str[start:end].decode('utf-8') else: self.platform_info.icon.resource_name = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.platform_info.icon.format = str[start:end].decode('utf-8') else: self.platform_info.icon.format = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.platform_info.icon.data = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self.platform_info.uri length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.platform_info.version length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.platform_info.icon.resource_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.platform_info.icon.format length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.platform_info.icon.data length = len(_x) # - if encoded as a list instead, serialize as bytes instead of string if type(_x) in [list, tuple]: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.platform_info is None: self.platform_info = rocon_std_msgs.msg.PlatformInfo() end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.platform_info.uri = str[start:end].decode('utf-8') else: self.platform_info.uri = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.platform_info.version = str[start:end].decode('utf-8') else: self.platform_info.version = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.platform_info.icon.resource_name = str[start:end].decode('utf-8') else: self.platform_info.icon.resource_name = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.platform_info.icon.format = str[start:end].decode('utf-8') else: self.platform_info.icon.format = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length self.platform_info.icon.data = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I class GetPlatformInfo(object): _type = 'rocon_std_msgs/GetPlatformInfo' _md5sum = 'b7b34c89d857c757ff89bd8e49fa695f' _request_class = GetPlatformInfoRequest _response_class = GetPlatformInfoResponse
14de914eafa10449b77e6e446ba593c4617271a1
12d007b50d20030c4a0d8ecceaeb532b3de4f966
/setup.py
1ccbc3c4e37c98f182e6b3eedb9ea81800bdaf3a
[ "MIT" ]
permissive
Tygs/ayo
8be03cf1854d122b763272ba256e3fa87135e776
27b2225770581e19f3abdb8db0721776f0cfb195
refs/heads/master
2021-11-08T02:09:37.979755
2021-11-01T10:44:35
2021-11-01T10:44:35
136,607,852
32
2
null
null
null
null
UTF-8
Python
false
false
203
py
""" Install: python setup.py install Dev mode: python setup.py develop Test: pip install pytest && pytest tests All the config is in setup.cfg """ import setuptools setuptools.setup()
a9b33f6c6c2f40ad46017f0a75775c17579f1e0a
0b98732dcd3dd94a97555a8f3e8dd3524bb8ec86
/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x.py
a6b720332cf33263295dcfeeae0d85b793e5166d
[ "Apache-2.0" ]
permissive
hasanirtiza/Pedestron
e89fea2ec676f150a7266f6b65963dd6c4ec35c9
8ab23ec38982cfaf0ae82c77c30f10b2fff62d12
refs/heads/master
2023-08-06T02:53:06.368937
2023-04-06T13:46:27
2023-04-06T13:46:27
247,410,025
723
161
Apache-2.0
2022-10-02T10:17:44
2020-03-15T05:52:52
Python
UTF-8
Python
false
false
5,628
py
# model settings model = dict( type='MaskScoringRCNN', pretrained='open-mmlab://resnext101_64x4d', backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_scales=[8], anchor_ratios=[0.5, 1.0, 2.0], anchor_strides=[4, 8, 16, 32, 64], target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0], loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=81, target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2], reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=dict( type='FCNMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=81, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), mask_iou_head=dict( type='MaskIoUHead', num_convs=4, num_fcs=2, roi_feat_size=14, in_channels=256, conv_out_channels=256, fc_out_channels=1024, num_classes=81)) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=2000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, mask_thr_binary=0.5, debug=False)) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100, mask_thr_binary=0.5)) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) data = dict( imgs_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', img_scale=(1333, 800), img_norm_cfg=img_norm_cfg, size_divisor=32, flip_ratio=0.5, with_mask=True, with_crowd=True, with_label=True), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', img_scale=(1333, 800), img_norm_cfg=img_norm_cfg, size_divisor=32, flip_ratio=0, with_mask=True, with_crowd=True, with_label=True), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', img_scale=(1333, 800), img_norm_cfg=img_norm_cfg, size_divisor=32, flip_ratio=0, with_mask=False, with_label=False, test_mode=True)) # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[8, 11]) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 12 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/ms_rcnn_x101_64x4d_fpn_1x' load_from = None resume_from = None workflow = [('train', 1)]
52dc6364b0481881b567046e1443faf02235b238
75491989e021c515461ae94dd9e069c0e3cebd48
/Etc/CodeUp_basic/1079.py
795c6ba6a8bfcf45ba6538395c8b796605650995
[]
no_license
Girin7716/PythonCoding
c60db97d269aa4a90159ae83f40c332244af6b41
7ac4f942aed727b5290f18ce252c5f99ad657c72
refs/heads/master
2023-04-20T23:33:36.077633
2021-05-07T11:51:16
2021-05-07T11:51:16
291,244,802
1
0
null
null
null
null
UTF-8
Python
false
false
102
py
chars = input().split() for i in chars: if i == 'q': print(i) break; print(i)
2b09af06835e7474ad61e8d98f0c2a72f6f3ed6b
dc37f36199b107933e33486761125cef2f492ae2
/export_contacts.py
9eb70ffd28bd589f83971c6a335fa94871265327
[]
no_license
spookylukey/christchurch_django
ca3acd67df1695a1cd7cb462b729ad72a37e43b7
d489e400b201b8ac56ee4065b3d6bc0f861f92f2
refs/heads/master
2022-12-20T03:27:26.081809
2015-10-15T18:36:20
2015-10-15T18:36:20
300,521,884
0
0
null
null
null
null
UTF-8
Python
false
false
1,339
py
#!/usr/bin/env python from __future__ import unicode_literals import os os.environ['DJANGO_SETTINGS_MODULE'] = 'christchurch.settings' import csv writer = csv.writer(open("contact-list.csv", "w")) writer.writerow(["First Name", "Last Name", "Gender (M/F)", "Student (Y/N)", "Address", "Email Address", "Phone Number", "Mobile", "Photo File Name", "Home Group", "Username", "Password", "Admin User (Y/N)", "Church member", "Include on email lists"]) from django.contrib.auth.models import User from contacts.models import Contact admins = {u.email: u for u in User.objects.all().filter(is_staff=True)} for contact in Contact.objects.all(): try: first_name, last_name = contact.name.split(' ', 2) except ValueError: first_name, last_name = contact.name, "" writer.writerow([ first_name, last_name, "", "N", contact.address.strip() + "\n" + contact.post_code, contact.email, contact.phone_number, contact.mobile_number, "", contact.home_group.name if contact.home_group else "", admins[contact.email].username if contact.email in admins else "", "", "Y" if contact.email in admins else "N", "Y" if contact.church_member else "N", "Y" if contact.include_on_email_lists else "N", ])
77af41358982c08950c144fac88c03820ae1a378
bb33e6be8316f35decbb2b81badf2b6dcf7df515
/source/res/scripts/client/gui/battle_control/controllers/feedback_events.py
745d8091451fb08bc693fbe8f33885b44f3694f5
[]
no_license
StranikS-Scan/WorldOfTanks-Decompiled
999c9567de38c32c760ab72c21c00ea7bc20990c
d2fe9c195825ececc728e87a02983908b7ea9199
refs/heads/1.18
2023-08-25T17:39:27.718097
2022-09-22T06:49:44
2022-09-22T06:49:44
148,696,315
103
39
null
2022-09-14T17:50:03
2018-09-13T20:49:11
Python
UTF-8
Python
false
false
16,113
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/gui/battle_control/controllers/feedback_events.py import logging from BattleFeedbackCommon import BATTLE_EVENT_TYPE as _BET, NONE_SHELL_TYPE from gui.battle_control.battle_constants import FEEDBACK_EVENT_ID as _FET from constants import ATTACK_REASON, ATTACK_REASONS, BATTLE_LOG_SHELL_TYPES, ROLE_TYPE, ROLE_TYPE_TO_LABEL _logger = logging.getLogger(__name__) def _unpackInteger(packedData): return packedData def _unpackDamage(packedData): return _DamageExtra(*_BET.unpackDamage(packedData)) def _unpackCrits(packedData): return _CritsExtra(*_BET.unpackCrits(packedData)) def _unpackVisibility(packedData): return _VisibilityExtra(*_BET.unpackVisibility(packedData)) def _unpackMultiStun(packedData): return _MultiStunExtra(packedData, True) _BATTLE_EVENT_TO_PLAYER_FEEDBACK_EVENT = {_BET.KILL: _FET.PLAYER_KILLED_ENEMY, _BET.DAMAGE: _FET.PLAYER_DAMAGED_HP_ENEMY, _BET.CRIT: _FET.PLAYER_DAMAGED_DEVICE_ENEMY, _BET.SPOTTED: _FET.PLAYER_SPOTTED_ENEMY, _BET.RADIO_ASSIST: _FET.PLAYER_ASSIST_TO_KILL_ENEMY, _BET.TRACK_ASSIST: _FET.PLAYER_ASSIST_TO_KILL_ENEMY, _BET.STUN_ASSIST: _FET.PLAYER_ASSIST_TO_STUN_ENEMY, _BET.BASE_CAPTURE_POINTS: _FET.PLAYER_CAPTURED_BASE, _BET.BASE_CAPTURE_DROPPED: _FET.PLAYER_DROPPED_CAPTURE, _BET.BASE_CAPTURE_BLOCKED: _FET.PLAYER_BLOCKED_CAPTURE, _BET.TANKING: _FET.PLAYER_USED_ARMOR, _BET.RECEIVED_DAMAGE: _FET.ENEMY_DAMAGED_HP_PLAYER, _BET.RECEIVED_CRIT: _FET.ENEMY_DAMAGED_DEVICE_PLAYER, _BET.TARGET_VISIBILITY: _FET.VEHICLE_VISIBILITY_CHANGED, _BET.DETECTED: _FET.VEHICLE_DETECTED, _BET.ENEMY_SECTOR_CAPTURED: _FET.ENEMY_SECTOR_CAPTURED, _BET.DESTRUCTIBLE_DAMAGED: _FET.DESTRUCTIBLE_DAMAGED, _BET.DESTRUCTIBLE_DESTROYED: _FET.DESTRUCTIBLE_DESTROYED, _BET.DESTRUCTIBLES_DEFENDED: _FET.DESTRUCTIBLES_DEFENDED, _BET.DEFENDER_BONUS: _FET.DEFENDER_BONUS, _BET.SMOKE_ASSIST: _FET.SMOKE_ASSIST, _BET.INSPIRE_ASSIST: _FET.INSPIRE_ASSIST, _BET.MULTI_STUN: _FET.PLAYER_STUN_ENEMIES, _BET.EQUIPMENT_TIMER_EXPIRED: _FET.EQUIPMENT_TIMER_EXPIRED} _PLAYER_FEEDBACK_EXTRA_DATA_CONVERTERS = {_FET.PLAYER_DAMAGED_HP_ENEMY: _unpackDamage, _FET.PLAYER_ASSIST_TO_KILL_ENEMY: _unpackDamage, _FET.PLAYER_CAPTURED_BASE: _unpackInteger, _FET.PLAYER_DROPPED_CAPTURE: _unpackInteger, _FET.PLAYER_BLOCKED_CAPTURE: _unpackInteger, _FET.PLAYER_USED_ARMOR: _unpackDamage, _FET.PLAYER_DAMAGED_DEVICE_ENEMY: _unpackCrits, _FET.ENEMY_DAMAGED_HP_PLAYER: _unpackDamage, _FET.ENEMY_DAMAGED_DEVICE_PLAYER: _unpackCrits, _FET.PLAYER_ASSIST_TO_STUN_ENEMY: _unpackDamage, _FET.VEHICLE_VISIBILITY_CHANGED: _unpackVisibility, _FET.VEHICLE_DETECTED: _unpackVisibility, _FET.DESTRUCTIBLE_DAMAGED: _unpackInteger, _FET.DESTRUCTIBLES_DEFENDED: _unpackInteger, _FET.SMOKE_ASSIST: _unpackDamage, _FET.INSPIRE_ASSIST: _unpackDamage, _FET.PLAYER_SPOTTED_ENEMY: _unpackVisibility, _FET.PLAYER_STUN_ENEMIES: _unpackMultiStun} def _getShellType(shellTypeID): return None if shellTypeID == NONE_SHELL_TYPE else BATTLE_LOG_SHELL_TYPES(shellTypeID) class _DamageExtra(object): __slots__ = ('__damage', '__attackReasonID', '__isBurst', '__shellType', '__isShellGold', '__secondaryAttackReasonID', '__isRoleAction') def __init__(self, damage=0, attackReasonID=0, isBurst=False, shellTypeID=NONE_SHELL_TYPE, shellIsGold=False, secondaryAttackReasonID=0, isRoleAction=False): super(_DamageExtra, self).__init__() self.__damage = damage self.__attackReasonID = attackReasonID self.__isBurst = bool(isBurst) self.__shellType = _getShellType(shellTypeID) self.__isShellGold = bool(shellIsGold) self.__secondaryAttackReasonID = secondaryAttackReasonID self.__isRoleAction = bool(isRoleAction) _logger.debug('_DamageExtra isRoleAction = %s', isRoleAction) def getDamage(self): return self.__damage def getAttackReasonID(self): return self.__attackReasonID def getSecondaryAttackReasonID(self): return self.__secondaryAttackReasonID def getShellType(self): return self.__shellType def isNone(self): return self.isAttackReason(ATTACK_REASON.NONE) def isBurst(self): return self.__isBurst def isShellGold(self): return self.__isShellGold def isFire(self): return self.isAttackReason(ATTACK_REASON.FIRE) def isBerserker(self): return self.isAttackReason(ATTACK_REASON.BERSERKER) def isMinefield(self): return self.isAttackReason(ATTACK_REASON.MINEFIELD_EQ) def isRam(self): return self.isAttackReason(ATTACK_REASON.RAM) def isShot(self): return self.isAttackReason(ATTACK_REASON.SHOT) def isWorldCollision(self): return self.isAttackReason(ATTACK_REASON.WORLD_COLLISION) def isDeathZone(self): return self.isAttackReason(ATTACK_REASON.DEATH_ZONE) def isProtectionZone(self, primary=True): return self.isAttackReason(ATTACK_REASON.ARTILLERY_PROTECTION) or self.isAttackReason(ATTACK_REASON.ARTILLERY_SECTOR) if primary else self.isSecondaryAttackReason(ATTACK_REASON.ARTILLERY_PROTECTION) or self.isSecondaryAttackReason(ATTACK_REASON.ARTILLERY_SECTOR) def isArtilleryEq(self, primary=True): return self.isAttackReason(ATTACK_REASON.ARTILLERY_EQ) if primary else self.isSecondaryAttackReason(ATTACK_REASON.ARTILLERY_EQ) def isFortArtilleryEq(self, primary=True): return self.isAttackReason(ATTACK_REASON.FORT_ARTILLERY_EQ) if primary else self.isSecondaryAttackReason(ATTACK_REASON.FORT_ARTILLERY_EQ) def isBomberEq(self, primary=True): return self.isAttackReason(ATTACK_REASON.BOMBER_EQ) if primary else self.isSecondaryAttackReason(ATTACK_REASON.BOMBER_EQ) def isBombers(self, primary=True): return self.isAttackReason(ATTACK_REASON.BOMBERS) if primary else self.isSecondaryAttackReason(ATTACK_REASON.BOMBERS) def isMineField(self, primary=True): return self.isAttackReason(ATTACK_REASON.MINEFIELD_EQ) if primary else self.isSecondaryAttackReason(ATTACK_REASON.MINEFIELD_EQ) def isDamagingSmoke(self, primary=True): return self.isAttackReason(ATTACK_REASON.SMOKE) if primary else self.isSecondaryAttackReason(ATTACK_REASON.SMOKE) def isCorrodingShot(self, primary=True): return self.isAttackReason(ATTACK_REASON.CORRODING_SHOT) if primary else self.isSecondaryAttackReason(ATTACK_REASON.CORRODING_SHOT) def isFireCircle(self, primary=True): return self.isAttackReason(ATTACK_REASON.FIRE_CIRCLE) if primary else self.isSecondaryAttackReason(ATTACK_REASON.FIRE_CIRCLE) def isThunderStrike(self, primary=True): return self.isAttackReason(ATTACK_REASON.THUNDER_STRIKE) if primary else self.isSecondaryAttackReason(ATTACK_REASON.THUNDER_STRIKE) def isAttackReason(self, attackReason): return ATTACK_REASONS[self.__attackReasonID] == attackReason def isSecondaryAttackReason(self, attackReason): return ATTACK_REASONS[self.__secondaryAttackReasonID] == attackReason def isRoleAction(self): return self.__isRoleAction def isSpawnedBotExplosion(self, primary=True): return self.isAttackReason(ATTACK_REASON.SPAWNED_BOT_EXPLOSION) if primary else self.isSecondaryAttackReason(ATTACK_REASON.SPAWNED_BOT_EXPLOSION) def isSpawnedBotRam(self, primary=True): return self.isAttackReason(ATTACK_REASON.BRANDER_RAM) if primary else self.isSecondaryAttackReason(ATTACK_REASON.BRANDER_RAM) def isClingBrander(self): isShot = self.isAttackReason(ATTACK_REASON.SHOT) isClingBrander = self.isSecondaryAttackReason(ATTACK_REASON.CLING_BRANDER) return isShot and isClingBrander def isClingBranderRam(self): return self.isAttackReason(ATTACK_REASON.CLING_BRANDER_RAM) class _VisibilityExtra(object): __slots__ = ('__isVisible', '__isDirect', '__isRoleAction') def __init__(self, isVisible, isDirect, isRoleAction): super(_VisibilityExtra, self).__init__() self.__isVisible = isVisible self.__isDirect = isDirect self.__isRoleAction = bool(isRoleAction) _logger.debug('_VisibilityExtra isRoleAction = %s', isRoleAction) def isVisible(self): return self.__isVisible def isDirect(self): return self.__isDirect def isRoleAction(self): return self.__isRoleAction class _MultiStunExtra(object): __slots__ = ('__targetsAmount', '__isRoleAction') def __init__(self, targetsAmount, isRoleAction): super(_MultiStunExtra, self).__init__() self.__targetsAmount = targetsAmount self.__isRoleAction = bool(isRoleAction) _logger.debug('_StunExtra isRoleAction = %s', isRoleAction) def getTargetsAmount(self): return self.__targetsAmount def isRoleAction(self): return self.__isRoleAction class _CritsExtra(object): __slots__ = ('__critsCount', '__shellType', '__isShellGold', '__attackReasonID', '__secondaryAttackReasonID') def __init__(self, critsCount=0, attackReasonID=0, shellTypeID=NONE_SHELL_TYPE, shellIsGold=False, secondaryAttackReasonID=0): super(_CritsExtra, self).__init__() self.__critsCount = critsCount self.__attackReasonID = attackReasonID self.__shellType = _getShellType(shellTypeID) self.__isShellGold = bool(shellIsGold) self.__secondaryAttackReasonID = secondaryAttackReasonID def getCritsCount(self): return self.__critsCount def getShellType(self): return self.__shellType def isShellGold(self): return self.__isShellGold def isFire(self): return self.isAttackReason(ATTACK_REASON.FIRE) def isBerserker(self): return self.isAttackReason(ATTACK_REASON.BERSERKER) def isMinefield(self): return self.isAttackReason(ATTACK_REASON.MINEFIELD_EQ) def isDamagingSmoke(self): return self.isAttackReason(ATTACK_REASON.SMOKE) def isCorrodingShot(self): return self.isAttackReason(ATTACK_REASON.CORRODING_SHOT) def isFireCircle(self): return self.isAttackReason(ATTACK_REASON.FIRE_CIRCLE) def isThunderStrike(self): return self.isAttackReason(ATTACK_REASON.THUNDER_STRIKE) def isRam(self): return self.isAttackReason(ATTACK_REASON.RAM) def isShot(self): return self.isAttackReason(ATTACK_REASON.SHOT) def isWorldCollision(self): return self.isAttackReason(ATTACK_REASON.WORLD_COLLISION) def isDeathZone(self): return self.isAttackReason(ATTACK_REASON.DEATH_ZONE) def isProtectionZone(self, primary=True): return self.isAttackReason(ATTACK_REASON.ARTILLERY_PROTECTION) or self.isAttackReason(ATTACK_REASON.ARTILLERY_SECTOR) if primary else self.isSecondaryAttackReason(ATTACK_REASON.ARTILLERY_PROTECTION) or self.isSecondaryAttackReason(ATTACK_REASON.ARTILLERY_SECTOR) def isArtilleryEq(self, primary=True): return self.isAttackReason(ATTACK_REASON.ARTILLERY_EQ) if primary else self.isSecondaryAttackReason(ATTACK_REASON.ARTILLERY_EQ) def isFortArtilleryEq(self, primary=True): return self.isAttackReason(ATTACK_REASON.FORT_ARTILLERY_EQ) if primary else self.isSecondaryAttackReason(ATTACK_REASON.FORT_ARTILLERY_EQ) def isBomberEq(self, primary=True): return self.isAttackReason(ATTACK_REASON.BOMBER_EQ) if primary else self.isSecondaryAttackReason(ATTACK_REASON.BOMBER_EQ) def isBombers(self, primary=True): return self.isAttackReason(ATTACK_REASON.BOMBERS) if primary else self.isSecondaryAttackReason(ATTACK_REASON.BOMBERS) def isSecondaryAttackReason(self, attackReason): return ATTACK_REASONS[self.__secondaryAttackReasonID] == attackReason def isAttackReason(self, attackReason): return ATTACK_REASONS[self.__attackReasonID] == attackReason def isClingBrander(self): isShot = self.isAttackReason(ATTACK_REASON.SHOT) isClingBrander = self.isSecondaryAttackReason(ATTACK_REASON.CLING_BRANDER) return isShot and isClingBrander def isClingBranderRam(self): return self.isAttackReason(ATTACK_REASON.CLING_BRANDER_RAM) class _FeedbackEvent(object): __slots__ = ('__eventType',) def __init__(self, feedbackEventType): super(_FeedbackEvent, self).__init__() self.__eventType = feedbackEventType def getType(self): return self.__eventType @staticmethod def fromDict(summaryData, additionalData=None): raise NotImplementedError class PlayerFeedbackEvent(_FeedbackEvent): __slots__ = ('__battleEventType', '__targetID', '__count', '__extra', '__attackReasonID', '__isBurst', '__role') def __init__(self, feedbackEventType, eventType, targetID, count, role, extra): super(PlayerFeedbackEvent, self).__init__(feedbackEventType) self.__battleEventType = eventType self.__targetID = targetID self.__count = count self.__role = role self.__extra = extra @staticmethod def fromDict(battleEventData, additionalData=None): battleEventType = battleEventData['eventType'] if battleEventType in _BATTLE_EVENT_TO_PLAYER_FEEDBACK_EVENT: feedbackEventType = _BATTLE_EVENT_TO_PLAYER_FEEDBACK_EVENT[battleEventType] if feedbackEventType in _PLAYER_FEEDBACK_EXTRA_DATA_CONVERTERS: converter = _PLAYER_FEEDBACK_EXTRA_DATA_CONVERTERS[feedbackEventType] extra = converter(battleEventData['details']) else: extra = None role = ROLE_TYPE_TO_LABEL[ROLE_TYPE.NOT_DEFINED] if additionalData is not None: role = ROLE_TYPE_TO_LABEL[additionalData.get('role') or ROLE_TYPE.NOT_DEFINED] return PlayerFeedbackEvent(feedbackEventType, battleEventData['eventType'], battleEventData['targetID'], battleEventData['count'], role, extra) else: return def getBattleEventType(self): return self.__battleEventType def getTargetID(self): return self.__targetID def getExtra(self): return self.__extra def getCount(self): return self.__count def getRole(self): return self.__role class BattleSummaryFeedbackEvent(_FeedbackEvent): __slots__ = ('__damage', '__trackAssistDamage', '__radioAssistDamage', '__blockedDamage', '__stunAssist') def __init__(self, damage, trackAssist, radioAssist, tankings, stunAssist): super(BattleSummaryFeedbackEvent, self).__init__(_FET.DAMAGE_LOG_SUMMARY) self.__damage = damage self.__trackAssistDamage = trackAssist self.__radioAssistDamage = radioAssist self.__blockedDamage = tankings self.__stunAssist = stunAssist @staticmethod def fromDict(summaryData, additionalData=None): return BattleSummaryFeedbackEvent(damage=summaryData['damage'], trackAssist=summaryData['trackAssist'], radioAssist=summaryData['radioAssist'], tankings=summaryData['tankings'], stunAssist=summaryData['stunAssist']) def getTotalDamage(self): return self.__damage def getTotalAssistDamage(self): return self.__trackAssistDamage + self.__radioAssistDamage def getTotalBlockedDamage(self): return self.__blockedDamage def getTotalStunDamage(self): return self.__stunAssist class PostmortemSummaryEvent(_FeedbackEvent): __slots__ = ('__killerID', '__deathReasonID') def __init__(self, lastKillerID, lastDeathReasonID): super(PostmortemSummaryEvent, self).__init__(_FET.POSTMORTEM_SUMMARY) self.__killerID = lastKillerID self.__deathReasonID = lastDeathReasonID @staticmethod def fromDict(summaryData, additionalData=None): return PostmortemSummaryEvent(lastKillerID=summaryData['lastKillerID'], lastDeathReasonID=summaryData['lastDeathReasonID']) def getKillerID(self): return self.__killerID def getDeathReasonID(self): return self.__deathReasonID
6a5d15682bbaa458fe83a7acb7339950b92acdcb
795caca6c497891e2fcd2b0253a209500744c56d
/src/models/continuous_encoder_decoder_models/encoder_decoder_variants/enc_dec_out.py
fe36585660ddbd55eae5ad88b1e6f06abb913378
[]
no_license
RitaRamo/remote-sensing-images-caption
29c0e0a6b5352b9b3d62c7315cd4d7ac6b0b7076
426d97b5d3688f6c52c51ef6e33872554d55751a
refs/heads/master
2021-11-24T03:02:00.238003
2021-11-04T09:23:20
2021-11-04T09:23:20
244,619,672
3
2
null
null
null
null
UTF-8
Python
false
false
6,534
py
import torchvision from torch import nn import torch from torch.nn.utils.rnn import pack_padded_sequence from models.basic_encoder_decoder_models.encoder_decoder import Encoder, Decoder from models.abtract_model import AbstractEncoderDecoderModel import torch.nn.functional as F from embeddings.embeddings import get_embedding_layer from sklearn.metrics.pairwise import cosine_similarity import numpy as np from data_preprocessing.preprocess_tokens import OOV_TOKEN from embeddings.embeddings import EmbeddingsType from models.continuous_encoder_decoder_models.encoder_decoder import ContinuousEncoderDecoderModel from embeddings.embeddings import EmbeddingsType class VocabAttention(nn.Module): """ Attention Network. """ def __init__(self, vocab_dim, decoder_dim, embedding_vocab): """ :param encoder_dim: feature size of encoded images :param decoder_dim: size of decoder's RNN :param attention_dim: size of the attention network """ super(VocabAttention, self).__init__() # linear layer to transform decoder's output self.decoder_att = nn.Linear(decoder_dim, vocab_dim) self.full_att = nn.Linear(vocab_dim, 1) self.relu = nn.ReLU() self.softmax = nn.Softmax(dim=1) # softmax layer to calculate weights self.embedding_vocab = embedding_vocab def forward(self, decoder_hidden): """ Forward propagation. :param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim) :param decoder_hidden: previous decoder output, a tensor of dimension (batch_size, decoder_dim) :return: attention weighted encoding, weights """ # (batch_size, l_regions (512), regions_dim (300)) vocab = self.embedding_vocab.repeat(decoder_hidden.size()[0], 1, 1) query = self.decoder_att(decoder_hidden) # (batch_size, 1, encoder_dim) att2 = self.decoder_att(decoder_hidden) # (batch_size, attention_dim) # (batch_size, num_pixels,1) -> com squeeze(2) fica (batch_size, l_regions) att = self.full_att(self.relu(vocab + query.unsqueeze(1))).squeeze(2) alpha = self.softmax(att) # (batch_size, l_regions) attention_weighted_encoding = ( vocab * alpha.unsqueeze(2)).sum(dim=1) # (batch_size, encoder_dim) return attention_weighted_encoding, alpha class ContinuousDecoderWithOut(Decoder): def __init__(self, decoder_dim, embed_dim, embedding_type, vocab_size, token_to_id, post_processing, device, encoder_dim=2048, dropout=0.5): super(ContinuousDecoderWithOut, self).__init__(decoder_dim, embed_dim, embedding_type, vocab_size, token_to_id, post_processing, encoder_dim, dropout) # replace softmax with a embedding layer self.fc = nn.Linear(decoder_dim, embed_dim) list_wordid = list(range(vocab_size)) # ignore first 4 special tokens : "start,end, unknow, padding" vocab = torch.transpose(torch.tensor(list_wordid).unsqueeze(-1), 0, 1) embedding_vocab = self.embedding(vocab).to(device) self.attention_out = VocabAttention(embed_dim, decoder_dim, embedding_vocab) # attention network def forward(self, word, encoder_out, decoder_hidden_state, decoder_cell_state): embeddings = self.embedding(word) decoder_hidden_state, decoder_cell_state = self.decode_step( embeddings, (decoder_hidden_state, decoder_cell_state) ) scores, alpha_out = self.attention_out(self.dropout(decoder_hidden_state)) return scores, decoder_hidden_state, decoder_cell_state, alpha_out class ContinuousEncoderDecoderOutModel(ContinuousEncoderDecoderModel): def __init__(self, args, vocab_size, token_to_id, id_to_token, max_len, device ): super().__init__(args, vocab_size, token_to_id, id_to_token, max_len, device) def _initialize_encoder_and_decoder(self): if (self.args.embedding_type not in [embedding.value for embedding in EmbeddingsType]): raise ValueError( "Continuous model should use pretrained embeddings...") self.encoder = Encoder(self.args.image_model_type, enable_fine_tuning=self.args.fine_tune_encoder) self.decoder = ContinuousDecoderWithOut( encoder_dim=self.encoder.encoder_dim, decoder_dim=self.args.decoder_dim, embedding_type=self.args.embedding_type, embed_dim=self.args.embed_dim, vocab_size=self.vocab_size, token_to_id=self.token_to_id, post_processing=self.args.post_processing, device=self.device, dropout=self.args.dropout ) self.decoder.normalize_embeddings(self.args.no_normalization) self.encoder = self.encoder.to(self.device) self.decoder = self.decoder.to(self.device) def _predict(self, encoder_out, caps, caption_lengths): batch_size = encoder_out.size(0) num_pixels = encoder_out.size(1) # Create tensors to hold word predicion scores and alphas all_predictions = torch.zeros(batch_size, max( caption_lengths), self.decoder.embed_dim).to(self.device) all_alphas_out = torch.zeros(batch_size, max( caption_lengths), self.vocab_size).to(self.device) h, c = self.decoder.init_hidden_state(encoder_out) # Predict for t in range(max( caption_lengths)): # batchsizes of current time_step are the ones with lenght bigger than time-step (i.e have not fineshed yet) batch_size_t = sum([l > t for l in caption_lengths]) predictions, h, c, alpha_out = self.decoder( caps[:batch_size_t, t], encoder_out[:batch_size_t], h[:batch_size_t], c[:batch_size_t]) all_predictions[:batch_size_t, t, :] = predictions all_alphas_out[:batch_size_t, t, :] = alpha_out return {"predictions": all_predictions, "alpha_out": all_alphas_out} def generate_output_index(self, input_word, encoder_out, h, c): predictions, h, c, _ = self.decoder( input_word, encoder_out, h, c) current_output_index = self._convert_prediction_to_output(predictions) return current_output_index, h, c
4a2fb9f16742d3718a5490b53140ab00b8c65f5a
f6ed7bc808f5536bc77166fe5c3571e5c028f308
/neptune/internal/common/utils/files.py
c694ca7a2144941196bdd9a68e8df828c7b73206
[ "Apache-2.0" ]
permissive
jiji-online/neptune-cli
d086bb59725b7545f3e0f80bd89e8f99ff3851a0
50cf680a80d141497f9331ab7cdaee49fcb90b0c
refs/heads/main
2023-07-18T17:56:10.671562
2021-09-14T07:54:13
2021-09-14T07:54:13
406,275,162
0
0
null
null
null
null
UTF-8
Python
false
false
858
py
# # Copyright (c) 2016, deepsense.io # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import errno import os import io def create_empty_file(path): io.open(path, 'w').close() def create_dir_if_nonexistent(dir_path): try: os.makedirs(dir_path) except OSError as exception: if exception.errno != errno.EEXIST: raise
3034b0e2dc2f6fae511f9a14f1f4e669ce99bf43
b8e6b9ac7d92941e3b8ee2f97952ff8048d9fed6
/django_app/config/celery.py
5f2ee85922eaca996254f9a6b2d7da3b932d1cf8
[]
no_license
LeeHanYeong/Elasticbeanstalk-Celery-Redis-Elasticache
00e571d90141ecf987ed5d86a90797f3de7ccae1
63c0b8f519a2c90f82d796affa884d3b1a440732
refs/heads/master
2020-06-26T10:00:30.498364
2017-11-16T19:59:16
2017-11-16T19:59:16
97,014,281
1
0
null
null
null
null
UTF-8
Python
false
false
319
py
import os from celery import Celery os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'config.settings.debug') app = Celery('config') app.config_from_object('django.conf:settings', namespace='CELERY') app.autodiscover_tasks() @app.task(bind=True) def debug_task(self): print('Request: {0!r}'.format(self.request))
21bc6ecaca89a962b6c47a14a1809fc53cb6ae5e
ed90fcbfd1112545fa742e07131159bb3a68246a
/smry/server-auth/ls/google-cloud-sdk/lib/googlecloudsdk/compute/subcommands/firewall_rules/list.py
8d62e0bafc6eecf56466830a10565be1b2193749
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
wemanuel/smry
2588f2a2a7b7639ebb6f60b9dc2833f1b4dee563
b7f676ab7bd494d71dbb5bda1d6a9094dfaedc0a
refs/heads/master
2021-01-10T21:56:55.226753
2015-08-01T13:37:06
2015-08-01T13:37:06
40,047,329
0
1
Apache-2.0
2020-07-24T18:32:40
2015-08-01T13:26:17
Python
UTF-8
Python
false
false
441
py
# Copyright 2014 Google Inc. All Rights Reserved. """Command for listing firewall rules.""" from googlecloudsdk.compute.lib import base_classes class List(base_classes.GlobalLister): """List Google Compute Engine firewall rules.""" @property def service(self): return self.compute.firewalls @property def resource_type(self): return 'firewalls' List.detailed_help = base_classes.GetGlobalListerHelp('firewall rules')
ef8050413a53ba46fbf7838ae42ee7b94417348b
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03304/s635103583.py
df29bcaa3b5769da632eaa3ea1863d89e01068ee
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
851
py
import sys import math import copy from heapq import heappush, heappop, heapify from functools import cmp_to_key from bisect import bisect_left, bisect_right from collections import defaultdict, deque, Counter # sys.setrecursionlimit(1000000) # input aliases input = sys.stdin.readline getS = lambda: input().strip() getN = lambda: int(input()) getList = lambda: list(map(int, input().split())) getZList = lambda: [int(x) - 1 for x in input().split()] INF = float("inf") MOD = 10**9 + 7 divide = lambda x: pow(x, MOD-2, MOD) def solve(): n, m, d = getList() if d == 0: each = n else: each = (n - d) * 2 # igai = pow(n, m-2) all = each * (m-1) / (n * n) ans = all print(ans) def main(): n = getN() for _ in range(n): solve() return if __name__ == "__main__": # main() solve()
6470e5104a790f16c984bcde668a934317ac2e95
1e8142725aa06844713d18fa38c6779aff8f8171
/tndata_backend/notifications/migrations/0018_gcmmessage_queue_id.py
64dd06bd40b6ed39edc8bd2ae0a208bec73ed197
[ "MIT" ]
permissive
tndatacommons/tndata_backend
8f4db3e5cf5272901c9087a85e21d7560240bb3b
3d22179c581ab3da18900483930d5ecc0a5fca73
refs/heads/master
2020-12-03T07:53:17.339769
2017-03-27T06:18:58
2017-03-27T06:18:58
68,407,220
1
2
null
2017-03-27T06:18:59
2016-09-16T18:59:16
Python
UTF-8
Python
false
false
437
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('notifications', '0017_auto_20151217_2000'), ] operations = [ migrations.AddField( model_name='gcmmessage', name='queue_id', field=models.CharField(max_length=128, default='', blank=True), ), ]
7b122931a2d1665b2d483991ac0a54efe644b77e
612325535126eaddebc230d8c27af095c8e5cc2f
/src/net/log/stitch_net_log_files.py
aea6d7b0f58ca282bcb4daf53c9837ae3b963544
[ "BSD-3-Clause" ]
permissive
TrellixVulnTeam/proto-quic_1V94
1a3a03ac7a08a494b3d4e9857b24bb8f2c2cd673
feee14d96ee95313f236e0f0e3ff7719246c84f7
refs/heads/master
2023-04-01T14:36:53.888576
2019-10-17T02:23:04
2019-10-17T02:23:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,998
py
#!/usr/bin/env python # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. ''' This script stitches the NetLog files in a specified directory. The complete NetLog will be written to net-internals-log.json in the directory passed as argument to --path. ''' import argparse, os def main(): parser = argparse.ArgumentParser() parser.add_argument('--path', action='store', help="Specifies the complete filepath of the directory where the log " "files are located.") # TODO(dconnol): Automatically pull all event files matching the format # event_file_<num>.json and remove the num_files argument. parser.add_argument('--num_files', action='store', help="Specifies the number of event files (not including the constants " "file or the end_netlog file) that need need to be stitched together. " "The number of event files passed to the script must not be greater " "than the number of event files in the directory.") args = parser.parse_args() num_files = int(args.num_files) filepath = args.path if filepath[-1:] != "/": filepath += "/" os.chdir(filepath) with open("net-internals-log.json", "w") as stitched_file: try: file = open("constants.json") with file: for line in file: stitched_file.write(line) except IOError: os.remove("net-internals-log.json") print "File \"constants.json\" not found." return events_written = False; for i in range(num_files): try: file = open("event_file_%d.json" % i) with file: if not events_written: line = file.readline(); events_written = True for next_line in file: if next_line.strip() == "": line += next_line else: stitched_file.write(line) line = next_line except IOError: os.remove("net-internals-log.json") print "File \"event_file_%d.json\" not found." % i return # Remove hanging comma from last event # TODO(dconnol): Check if the last line is a valid JSON object. If not, # do not write the line to file. This handles incomplete logs. line = line.strip() if line[-1:] == ",": stitched_file.write(line[:-1]) elif line: raise ValueError('Last event is not properly formed') try: file = open("end_netlog.json") with file: for line in file: stitched_file.write(line) except IOError: os.remove("net-internals-log.json") print "File \"end_netlog\" not found." return # Delete old NetLog files for i in range (num_files): os.remove("event_file_%d.json" % i) os.remove("constants.json") os.remove("end_netlog.json") if __name__ == "__main__": main()
c279470529493caf6dca7d09df9d96753ca09dc2
d4280eca1a9badb0a4ad2aa22598616eedece373
/Automate The Boring Stuff With Python/03/04-sameName.py
c723f7c075712db216aaaf5d638a7face06363b8
[]
no_license
Little-Captain/py
77ec12bb2aaafe9f709a70831266335b03f63663
74ba3c3449e7b234a77500a17433e141e68169f7
refs/heads/master
2021-06-09T11:33:23.205388
2019-11-22T01:17:44
2019-11-22T01:17:44
131,844,918
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
#!/usr/bin/env python def spam(): eggs = 'spam local' print(eggs) def bacon(): eggs = 'bacon local' print(eggs) spam() print(eggs) eggs = 'global' bacon() print(eggs)
1bbc11411983c07e73a6f0ab5f9eff30995621b0
a6f8aae8f552a06b82fe018246e8dcd65c27e632
/pr089/__init__.py
159be3c3aebc785921f28b14145490cf183d1d97
[]
no_license
P4SSER8Y/ProjectEuler
2339ee7676f15866ceb38cad35e21ead0dad57e9
15d1b681e22133fc562a08b4e8e41e582ca8e625
refs/heads/master
2021-06-01T09:22:11.165235
2016-05-06T14:02:40
2016-05-06T14:02:40
46,722,844
1
0
null
null
null
null
UTF-8
Python
false
false
57
py
from .pr089 import run as pyRun run = pyRun #run = cRun
269e0ffaa05096b410f812324e38587094ee38df
24a52b2b363417a8bdfeb8f669ee53b7ee19f4d6
/playa/conf.py
7579c8aef6242a240ea812a489b5517cb84d0ca7
[ "Apache-2.0" ]
permissive
isabella232/playa
e203997e2660babe333d4915f294530cde57ccb0
a93335e592aa596645a60497a7c030a36ae7fec2
refs/heads/master
2023-03-18T23:51:35.577746
2011-07-15T01:07:53
2011-07-15T01:07:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
588
py
""" playa.conf ~~~~~~~~~~ Represents the default values for all settings. :copyright: (c) 2011 DISQUS. :license: Apache License 2.0, see LICENSE for more details. """ import os import os.path class PlayaConfig(object): ROOT = os.path.normpath(os.path.dirname(__file__)) DEBUG = True AUDIO_PATHS = [] WEB_HOST = '0.0.0.0' WEB_PORT = 9000 WEB_LOG_FILE = os.path.join(ROOT, 'playa.log') WEB_PID_FILE = os.path.join(ROOT, 'playa.pid') DATA_PATH = os.path.join(ROOT, 'data') SECRET_KEY = '_#(wkvb#@%%!x-dd!xt&i-1g5rylz4q&t6%m5u@3&7hyuqd437'
2013df2811af303bf28b622389c22251a0e40bff
99cd943ad5deed305608a516c0596cf3e1b552e5
/src/py/VendingMachine/vending_machine1.py
c9767d0aef06e0102daeaf59a770b9d458689ecd
[]
no_license
koukyo1994/algorithms
da8beebafe95768890a88babdba5951b01a3f975
6cb3350f89ddbc244071c1bc3e1a10ec9e0760ed
refs/heads/master
2021-06-23T19:04:22.618607
2021-04-24T08:33:01
2021-04-24T08:33:01
200,551,709
0
0
null
null
null
null
UTF-8
Python
false
false
639
py
import sys if __name__ == "__main__": insert_price = input("insert: ") if not insert_price.isdecimal(): print("整数を入力してください") sys.exit() product_price = input("product: ") if not product_price.isdecimal(): print("整数を入力してください") sys.exit() change = int(insert_price) - int(product_price) if change < 0: print("金額が不足しています") sys.exit() coins = [5000, 1000, 500, 100, 50, 10, 5, 1] for coin in coins: n_coin = change // coin change = change % coin print(f"{coin}: {n_coin}")
9492454662d9baa6149dbe4c257a23c9a281b4af
4fc6fdad6c0f52ff0f15186e411b106b7500fd4d
/osipkd/views/tu_ppkd/ap_advist.py
18a3f920b7295924590b5854cd16890da12ceafd
[]
no_license
aagusti/osipkd-pdpt
03e01e327d7df26da4f4dcdd82a35ba8cfa1ce40
130abc77292f2f3023da6f8b785fb7ccf337a374
refs/heads/master
2021-01-10T14:44:35.409216
2015-06-01T08:19:34
2015-06-01T08:19:34
36,646,345
0
0
null
null
null
null
UTF-8
Python
false
false
9,868
py
import os import uuid from osipkd.tools import row2dict, xls_reader from datetime import datetime,date from sqlalchemy import not_, func from pyramid.view import (view_config,) from pyramid.httpexceptions import ( HTTPFound, ) import colander from deform import (Form, widget, ValidationFailure, ) from osipkd.models import DBSession from osipkd.models.apbd_anggaran import Kegiatan, KegiatanSub, KegiatanItem from osipkd.models.pemda_model import Unit from osipkd.models.apbd_tu import Sp2d, Advist from datatables import ColumnDT, DataTables from osipkd.views.base_view import BaseViews SESS_ADD_FAILED = 'Tambah ap-advist gagal' SESS_EDIT_FAILED = 'Edit ap-advist gagal' class view_ap_advist_ppkd(BaseViews): @view_config(route_name="ap-advist", renderer="templates/ap-advist/list.pt") def view_list(self): ses = self.request.session req = self.request params = req.params url_dict = req.matchdict return dict(project='EIS', ) ########## # Action # ########## @view_config(route_name='ap-advist-act', renderer='json', permission='read') def view_act(self): ses = self.request.session req = self.request params = req.params url_dict = req.matchdict if url_dict['act']=='grid': pk_id = 'id' in params and params['id'] and int(params['id']) or 0 if url_dict['act']=='grid': columns = [] columns.append(ColumnDT('id')) columns.append(ColumnDT('kode')) columns.append(ColumnDT('tanggal', filter=self._DTstrftime)) columns.append(ColumnDT('nama')) columns.append(ColumnDT('nominal')) query = DBSession.query(Advist ).filter(Advist.tahun_id==ses['tahun'], Advist.unit_id==ses['unit_id'] , ).order_by(Advist.kode.asc()) rowTable = DataTables(req, Advist, query, columns) return rowTable.output_result() ####### # Add # ####### def form_validator(self, form, value): def err_kegiatan(): raise colander.Invalid(form, 'Kegiatan dengan no urut tersebut sudah ada') def get_form(self, class_form): schema = class_form(validator=self.form_validator) schema.request = self.request return Form(schema, buttons=('simpan','batal')) def save(self, values, row=None): if not row: row = Advist() row.created = datetime.now() row.create_uid = self.request.user.id row.from_dict(values) row.updated = datetime.now() row.update_uid = self.request.user.id row.posted=0 row.disabled = 'disabled' in values and 1 or 0 if not row.kode: tahun = self.session['tahun'] unit_kd = self.session['unit_kd'] unit_id = self.session['unit_id'] no_urut = Advist.get_norut(tahun, unit_id)+1 no = "0000%d" % no_urut nomor = no[-5:] row.kode = "%d" % tahun + "-%s" % unit_kd + "-BUD-%s" % nomor DBSession.add(row) DBSession.flush() return row def save_request(self, values, row=None): if 'id' in self.request.matchdict: values['id'] = self.request.matchdict['id'] values["nominal"]=values["nominal"].replace('.','') row = self.save(values, row) self.request.session.flash('Advist sudah disimpan.') return row def route_list(self): return HTTPFound(location=self.request.route_url('ap-advist')) def session_failed(request, session_name): r = dict(form=request.session[session_name]) del request.session[session_name] return r @view_config(route_name='ap-advist-add', renderer='templates/ap-advist/add.pt', permission='add') def view_add(self): request=self.request form = self.get_form(AddSchema) if request.POST: if 'simpan' in request.POST: controls = request.POST.items() controls_dicted = dict(controls) #Cek Kode Sama ato tidak if not controls_dicted['kode']=='': a = form.validate(controls) b = a['kode'] c = "%s" % b cek = DBSession.query(Advist).filter(Advist.kode==c).first() if cek : self.request.session.flash('Kode advist sudah ada.', 'error') return HTTPFound(location=self.request.route_url('ap-advist-add')) try: c = form.validate(controls) except ValidationFailure, e: return dict(form=form) row = self.save_request(controls_dicted) return HTTPFound(location=request.route_url('ap-advist-edit',id=row.id)) return self.route_list() elif SESS_ADD_FAILED in request.session: del request.session[SESS_ADD_FAILED] return dict(form=form) ######## # Edit # ######## def query_id(self): return DBSession.query(Advist).filter(Advist.id==self.request.matchdict['id']) def id_not_found(request): msg = 'User ID %s not found.' % request.matchdict['id'] request.session.flash(msg, 'error') return self.route_list() @view_config(route_name='ap-advist-edit', renderer='templates/ap-advist/add.pt', permission='edit') def view_edit(self): request = self.request row = self.query_id().first() uid = row.id kode = row.kode if not row: return id_not_found(request) form = self.get_form(EditSchema) if request.POST: if 'simpan' in request.POST: controls = request.POST.items() #Cek Kode Sama ato tidak a = form.validate(controls) b = a['kode'] c = "%s" % b cek = DBSession.query(Advist).filter(Advist.kode==c).first() if cek: kode1 = DBSession.query(Advist).filter(Advist.id==uid).first() d = kode1.kode if d!=c: self.request.session.flash('Kode advist sudah ada', 'error') return HTTPFound(location=request.route_url('ap-advist-edit',id=row.id)) try: c = form.validate(controls) except ValidationFailure, e: return dict(form=form) self.save_request(dict(controls), row) return self.route_list() elif SESS_EDIT_FAILED in request.session: del request.session[SESS_EDIT_FAILED] return dict(form=form) values = row.to_dict() form.set_appstruct(values) return dict(form=form) ########## # Delete # ########## @view_config(route_name='ap-advist-delete', renderer='templates/ap-advist/delete.pt', permission='delete') def view_delete(self): q = self.query_id() row = q.first() request=self.request if not row: return id_not_found(request) if row.nominal: request.session.flash('Data tidak dapat dihapus, karena masih memiliki items', 'error') return self.route_list() form = Form(colander.Schema(), buttons=('hapus','cancel')) values= {} if request.POST: if 'hapus' in request.POST: msg = '%s dengan kode %s telah berhasil.' % (request.title, row.kode) DBSession.query(Advist).filter(Advist.id==request.matchdict['id']).delete() DBSession.flush() request.session.flash(msg) return self.route_list() return dict(row=row, form=form.render()) class AddSchema(colander.Schema): unit_id = colander.SchemaNode( colander.String(), oid = "unit_id") tahun_id = colander.SchemaNode( colander.Integer(), title="Tahun", oid = "tahun_id") kode = colander.SchemaNode( colander.String(), missing=colander.drop, title="No. Advist") nama = colander.SchemaNode( colander.String(), title = "Bank/Tujuan" ) tanggal = colander.SchemaNode( colander.Date(), title = "Tanggal" ) nominal = colander.SchemaNode( colander.String(), missing=colander.drop, oid="jml_total", title="Nominal" ) class EditSchema(AddSchema): id = colander.SchemaNode( colander.Integer(), oid="id")