blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
9367c9fc788b09d6bf9c8369612096e5c5ffa3fa
55647a80c8b412af9df0ba3f50595cc2f29c25e6
/res/scripts/client/AvatarInputHandler/AimingSystems/StrategicAimingSystem.py
2ec9e5a041a24e763dee53002932f7d06da6e9d5
[]
no_license
cnsuhao/WOT-0.9.17-CT
0035eb6070fb4fab8d8ee9f8bbc676c10d511cfb
d1f932d8cabaf8aa21708622e87f83c8d24d6451
refs/heads/master
2021-06-08T18:11:07.039293
2016-11-19T19:12:37
2016-11-19T19:12:37
null
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
2,452
py
# 2016.11.19 19:47:39 Střední Evropa (běžný čas) # Embedded file name: scripts/client/AvatarInputHandler/AimingSystems/StrategicAimingSystem.py import BigWorld import Math from Math import Vector3, Matrix import math from AvatarInputHandler import mathUtils, AimingSystems from AvatarInputHandler.AimingSystems import IAimingSystem from AvatarInputHandler.cameras import _clampPoint2DInBox2D class StrategicAimingSystem(IAimingSystem): _LOOK_DIR = Vector3(0, -math.cos(0.001), math.sin(0.001)) height = property(lambda self: self.__height) heightFromPlane = property(lambda self: self.__heightFromPlane) def __init__(self, height, yaw): self._matrix = mathUtils.createRotationMatrix((yaw, 0, 0)) self.__planePosition = Vector3(0, 0, 0) self.__height = height self.__heightFromPlane = 0.0 def destroy(self): pass def enable(self, targetPos): self.updateTargetPos(targetPos) def disable(self): pass def getDesiredShotPoint(self, terrainOnlyCheck = False): return AimingSystems.getDesiredShotPoint(self._matrix.translation, Vector3(0, -1, 0), True, True, terrainOnlyCheck) def handleMovement(self, dx, dy): shift = self._matrix.applyVector(Vector3(dx, 0, dy)) self.__planePosition += Vector3(shift.x, 0, shift.z) self.__updateMatrix() def updateTargetPos(self, targetPos): self.__planePosition.x = targetPos.x self.__planePosition.z = targetPos.z self.__updateMatrix() def __updateMatrix(self): bb = BigWorld.player().arena.arenaType.boundingBox pos2D = _clampPoint2DInBox2D(bb[0], bb[1], Math.Vector2(self.__planePosition.x, self.__planePosition.z)) self.__planePosition.x = pos2D[0] self.__planePosition.z = pos2D[1] collPoint = BigWorld.wg_collideSegment(BigWorld.player().spaceID, self.__planePosition + Math.Vector3(0, 1000.0, 0), self.__planePosition + Math.Vector3(0, -250.0, 0), 3) self.__heightFromPlane = 0.0 if collPoint is None else collPoint[0][1] self._matrix.translation = self.__planePosition + Vector3(0, self.__heightFromPlane + self.__height, 0) return # okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\client\AvatarInputHandler\AimingSystems\StrategicAimingSystem.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.11.19 19:47:39 Střední Evropa (běžný čas)
e83f53e3b09d4c31e6cddb4686f5993e3a6dc7b9
3899a37d1f500f7935cd04079e0b293bd64fe1cb
/docs/conf.py
9902ebaf5dadaec57cdc679f1cbc45f4be1e8a5b
[ "MIT" ]
permissive
jubaer145/nlpaug
06d5fa83d68537f6485ed5afccfe2ece056aae8b
b631660f1997fc503258735ec011ffbe164d12af
refs/heads/master
2023-06-02T03:45:18.094793
2021-06-20T21:17:13
2021-06-20T21:17:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,645
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # nlpaug documentation build configuration file, created by # sphinx-quickstart on Wed Aug 7 07:37:05 2019. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import sys, os from unittest.mock import MagicMock sys.path.append(os.path.abspath('..')) # Mock module to bypass pip install class Mock(MagicMock): @classmethod def __getattr__(cls, name): return MagicMock() MOCK_MODULES = [ 'librosa', 'librosa.display', 'numpy', 'nltk', 'matplotlib', 'matplotlib.pyplot', 'setuptools', 'python-dotenv', 'nltk.corpus', 'torch', 'transformers'] sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.doctest', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', 'sphinx.ext.autodoc'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'nlpaug' copyright = '2019, Edward Ma' author = 'Edward Ma' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.1.4' # The full version, including alpha/beta/rc tags. release = '1.1.4' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme = 'alabaster' html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # This is required for the alabaster theme # refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars html_sidebars = { '**': [ 'relations.html', # needs 'show_related': True theme option to display 'searchbox.html', ] } # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'nlpaugdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'nlpaug.tex', 'nlpaug Documentation', 'Edward Ma', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'nlpaug', 'nlpaug Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'nlpaug', 'nlpaug Documentation', author, 'nlpaug', 'One line description of project.', 'Miscellaneous'), ]
6150cb6eab8ab3c168a1eead8a17ce4cc4735cb6
e9348d1689215220b7820134a82c2afdf8aed107
/backend/young_waterfall_29324/urls.py
19b2e1e3e6e251b7ff93a5593048f905ce1b2e58
[]
no_license
crowdbotics-apps/young-waterfall-29324
8bf2accb9197c45f59ac717b2ec4fe289830b3f8
ea74f174180c6af5acca25a82397daa7c48eb7c2
refs/heads/master
2023-06-26T05:12:51.154938
2021-08-01T20:50:29
2021-08-01T20:50:29
391,735,458
0
0
null
null
null
null
UTF-8
Python
false
false
2,253
py
"""young_waterfall_29324 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from django.views.generic.base import TemplateView from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("modules/", include("modules.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "Young Waterfall" admin.site.site_title = "Young Waterfall Admin Portal" admin.site.index_title = "Young Waterfall Admin" # swagger api_info = openapi.Info( title="Young Waterfall API", default_version="v1", description="API documentation for Young Waterfall App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ] urlpatterns += [path("", TemplateView.as_view(template_name='index.html'))] urlpatterns += [re_path(r"^(?:.*)/?$", TemplateView.as_view(template_name='index.html'))]
98911ce8c4bc073fa0ada3fad0c3d1e3231ad68e
13c2f109585a033a1acecdd912a3142802170921
/Python_Object_Serialization_Context_Manager.py
2566f5ec1aeb15199b4802d5e018e7fa67a537bf
[]
no_license
VakinduPhilliam/Hierachy_Serialization
88175764e24d03602eca06e8df13223e8ec4dd7e
61d534b23bc3e072356cb33fd763b0cbb6320896
refs/heads/master
2020-05-24T15:59:41.674047
2019-11-01T15:02:08
2019-11-01T15:02:08
187,346,172
0
0
null
null
null
null
WINDOWS-1252
Python
false
false
1,953
py
# Python object serialization # The 'pickle' module implements binary protocols for serializing and de-serializing # a Python object structure. # “Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, # and “unpickling” is the inverse operation, whereby a byte stream (from a binary file or bytes-like # object) is converted back into an object hierarchy. # Pickling (and unpickling) is alternatively known as “serialization”, “marshalling,” or “flattening”; # however, to avoid confusion, the terms used here are “pickling” and “unpickling”. # sqlite3 — DB-API 2.0 interface for SQLite databases # SQLite is a C library that provides a lightweight disk-based database that doesn’t require a separate # server process and allows accessing the database using a nonstandard variant of the SQL query language. # Some applications can use SQLite for internal data storage. # It’s also possible to prototype an application using SQLite and then port the code to a larger database # such as PostgreSQL or Oracle. # Using the connection as a context manager # Connection objects can be used as context managers that automatically commit or rollback transactions. # In the event of an exception, the transaction is rolled back; otherwise, the transaction is committed: import sqlite3 con = sqlite3.connect(":memory:") con.execute("create table person (id integer primary key, firstname varchar unique)") # Successful, con.commit() is called automatically afterwards with con: con.execute("insert into person(firstname) values (?)", ("Joe",)) # con.rollback() is called after the with block finishes with an exception, the # exception is still raised and must be caught try: with con: con.execute("insert into person(firstname) values (?)", ("Joe",)) except sqlite3.IntegrityError: print("couldn't add Joe twice")
471f69a116bb3f8ea26d0e157151b03c8573d7fb
4586fcc1afd15f04dbb269899a5b954adcd8d60e
/bin/ldgp.py
b825bbe162b265a0c48f0c32c7daf4bf04ca4e6c
[]
no_license
gautamits/rgbd
d0f1435a2b91b2aa0e848688d3c1c12fc1c77931
a055a6b718a1e20957f20f19a0c49bbfa63cbd08
refs/heads/master
2021-01-20T05:59:43.891910
2017-11-25T09:16:34
2017-11-25T09:16:34
87,881,081
0
0
null
2017-04-25T19:22:50
2017-04-11T02:51:16
Python
UTF-8
Python
false
false
1,636
py
import cv2 import numpy as np def dist(x,y): return np.sqrt(np.sum((x-y)**2)) #this function returns euclidean distance between two one dimensional arrays #this function returns histogram of image, def hist(a): hist, bin_edges = np.histogram(a, bins = range(64)) return hist #this function returns ldgp of an image def ldgp(i): if i.shape >=3: i=cv2.cvtColor(i,cv2.COLOR_BGR2GRAY) height,width=i.shape #zero padding first=np.pad(i,((0,0),(1,0)),'constant') second=np.pad(i,((0,1),(1,0)),'constant') third=np.pad(i,((0,1),(0,0)),'constant') fourth=np.pad(i,((0,1),(0,1)),'constant') first=first[:,0:width] second=second[1:height+1,0:width] third=third[1:height+1,:] fourth=fourth[1:height+1,1:width+1] first=i-first #gradient at 0 degree second=i-second #gradient at 45 degree third=i-third #gradient at 90 degree fourth=i-fourth # gradient at 135 degree combo1=32*np.array( first >= second, dtype=int) #binary arrays being converted to decimal combo2=16*np.array( first >= third, dtype=int) combo3=8*np.array( first >= fourth, dtype=int) combo4=4*np.array( second >= third, dtype=int) combo5=2*np.array( second >= fourth, dtype=int) combo6=np.array( third >= fourth, dtype=int) ldgp=combo1+combo2+combo3+combo4+combo5+combo6 ldgp=np.array(ldgp,dtype='uint8') return ldgp #final ldgp returned
e8a6c6d6bc56b44d9ac2fae0497b557fe4c040d9
b87ea98bc166cade5c78d246aeb0e23c59183d56
/samples/openapi3/client/petstore/python-nextgen-aiohttp/setup.py
d584a44727dd30a7685acc7a8fbbfecd38037804
[ "Apache-2.0" ]
permissive
holisticon/openapi-generator
88f8e6a3d7bc059c8f56563c87f6d473694d94e5
6a67551ea54a1aa9a49eb48ee26b4e9bb7fb1272
refs/heads/master
2023-05-12T02:55:19.037397
2023-04-14T08:31:59
2023-04-14T08:31:59
450,034,139
1
0
Apache-2.0
2022-01-20T09:34:14
2022-01-20T09:34:13
null
UTF-8
Python
false
false
1,473
py
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by OpenAPI Generator (https://openapi-generator.tech) Do not edit the class manually. """ from setuptools import setup, find_packages # noqa: H301 # To install the library, run the following # # python setup.py install # # prerequisite: setuptools # http://pypi.python.org/pypi/setuptools NAME = "petstore-api" VERSION = "1.0.0" PYTHON_REQUIRES = ">=3.7" REQUIRES = [ "urllib3 >= 1.25.3", "python-dateutil", "aiohttp >= 3.0.0", "pem>=19.3.0", "pycryptodome>=3.9.0", "pydantic >= 1.10.5, < 2", "aenum" ] setup( name=NAME, version=VERSION, description="OpenAPI Petstore", author="OpenAPI Generator community", author_email="[email protected]", url="", keywords=["OpenAPI", "OpenAPI-Generator", "OpenAPI Petstore"], install_requires=REQUIRES, packages=find_packages(exclude=["test", "tests"]), include_package_data=True, license="Apache-2.0", long_description_content_type='text/markdown', long_description="""\ This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \&quot; \\ # noqa: E501 """ )
17040ccedb5c26efb123bc8a9513defa32f9b4dc
f92fbb5ecbcd0adf4998e19d9d27e49386f898ab
/rls/algorithms/single/modelbased/planet.py
be9147eddd57a4a5b08109d7b2682e733572c12f
[ "Apache-2.0" ]
permissive
tonylibing/RLs
26e5dedbe7e36704ac98fa8efd00184059cdc717
21607d93e26f3be7a1243a642ed7e76178c856ae
refs/heads/master
2023-08-02T06:14:19.142614
2021-09-15T16:20:28
2021-09-15T16:20:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,145
py
#!/usr/bin/env python3 # encoding: utf-8 from typing import Dict, List, NoReturn, Union import numpy as np import torch as t from torch import distributions as td from rls.algorithms.base.sarl_off_policy import SarlOffPolicy from rls.common.data import Data, get_first_vector, get_first_visual from rls.common.decorator import iton from rls.nn.dreamer import DenseModel, RecurrentStateSpaceModel from rls.nn.utils import OPLR class PlaNet(SarlOffPolicy): ''' Learning Latent Dynamics for Planning from Pixels, http://arxiv.org/abs/1811.04551 ''' policy_mode = 'off-policy' def __init__(self, stoch_dim=30, deter_dim=200, model_lr=6e-4, kl_free_nats=3, kl_scale=1.0, reward_scale=1.0, cem_horizon=12, cem_iter_nums=10, cem_candidates=1000, cem_tops=100, action_sigma=0.3, network_settings=dict(), **kwargs): super().__init__(**kwargs) assert self.is_continuous == True, 'assert self.is_continuous == True' self.cem_horizon = cem_horizon self.cem_iter_nums = cem_iter_nums self.cem_candidates = cem_candidates self.cem_tops = cem_tops assert self.use_rnn == False, 'assert self.use_rnn == False' if self.obs_spec.has_visual_observation \ and len(self.obs_spec.visual_dims) == 1 \ and not self.obs_spec.has_vector_observation: visual_dim = self.obs_spec.visual_dims[0] # TODO: optimize this assert visual_dim[0] == visual_dim[1] == 64, 'visual dimension must be [64, 64, *]' self._is_visual = True elif self.obs_spec.has_vector_observation \ and len(self.obs_spec.vector_dims) == 1 \ and not self.obs_spec.has_visual_observation: self._is_visual = False else: raise ValueError("please check the observation type") self.stoch_dim = stoch_dim self.deter_dim = deter_dim self.kl_free_nats = kl_free_nats self.kl_scale = kl_scale self.reward_scale = reward_scale self._action_sigma = action_sigma self._network_settings = network_settings if self.obs_spec.has_visual_observation: from rls.nn.dreamer import VisualDecoder, VisualEncoder self.obs_encoder = VisualEncoder(self.obs_spec.visual_dims[0], **network_settings['obs_encoder']['visual']).to(self.device) self.obs_decoder = VisualDecoder(self.decoder_input_dim, self.obs_spec.visual_dims[0], **network_settings['obs_decoder']['visual']).to(self.device) else: from rls.nn.dreamer import VectorEncoder self.obs_encoder = VectorEncoder(self.obs_spec.vector_dims[0], **network_settings['obs_encoder']['vector']).to(self.device) self.obs_decoder = DenseModel(self.decoder_input_dim, self.obs_spec.vector_dims[0], **network_settings['obs_decoder']['vector']).to(self.device) self.rssm = self._dreamer_build_rssm() """ p(r_t | s_t, h_t) Reward model to predict reward from state and rnn hidden state """ self.reward_predictor = DenseModel(self.decoder_input_dim, 1, **network_settings['reward']).to(self.device) self.model_oplr = OPLR([self.obs_encoder, self.rssm, self.obs_decoder, self.reward_predictor], model_lr, **self._oplr_params) self._trainer_modules.update(obs_encoder=self.obs_encoder, obs_decoder=self.obs_decoder, reward_predictor=self.reward_predictor, rssm=self.rssm, model_oplr=self.model_oplr) @property def decoder_input_dim(self): return self.stoch_dim + self.deter_dim def _dreamer_build_rssm(self): return RecurrentStateSpaceModel(self.stoch_dim, self.deter_dim, self.a_dim, self.obs_encoder.h_dim, **self._network_settings['rssm']).to(self.device) @iton def select_action(self, obs): if self._is_visual: obs = get_first_visual(obs) else: obs = get_first_vector(obs) # Compute starting state for planning # while taking information from current observation (posterior) embedded_obs = self.obs_encoder(obs) # [B, *] state_posterior = self.rssm.posterior(self.rnncs['hx'], embedded_obs) # dist # [B, *] # Initialize action distribution mean = t.zeros((self.cem_horizon, 1, self.n_copys, self.a_dim)) # [H, 1, B, A] stddev = t.ones((self.cem_horizon, 1, self.n_copys, self.a_dim)) # [H, 1, B, A] # Iteratively improve action distribution with CEM for itr in range(self.cem_iter_nums): action_candidates = mean + stddev * t.randn(self.cem_horizon, self.cem_candidates, self.n_copys, self.a_dim) # [H, N, B, A] action_candidates = action_candidates.reshape(self.cem_horizon, -1, self.a_dim) # [H, N*B, A] # Initialize reward, state, and rnn hidden state # These are for parallel exploration total_predicted_reward = t.zeros((self.cem_candidates*self.n_copys, 1)) # [N*B, 1] state = state_posterior.sample((self.cem_candidates,)) # [N, B, *] state = state.view(-1, state.shape[-1]) # [N*B, *] rnn_hidden = self.rnncs['hx'].repeat((self.cem_candidates, 1)) # [B, *] => [N*B, *] # Compute total predicted reward by open-loop prediction using pri for _t in range(self.cem_horizon): next_state_prior, rnn_hidden = self.rssm.prior(state, t.tanh(action_candidates[_t]), rnn_hidden) state = next_state_prior.sample() # [N*B, *] post_feat = t.cat([state, rnn_hidden], -1) # [N*B, *] total_predicted_reward += self.reward_predictor(post_feat).mean # [N*B, 1] # update action distribution using top-k samples total_predicted_reward = total_predicted_reward.view(self.cem_candidates, self.n_copys, 1) # [N, B, 1] _, top_indexes = total_predicted_reward.topk(self.cem_tops, dim=0, largest=True, sorted=False) # [N', B, 1] action_candidates = action_candidates.view(self.cem_horizon, self.cem_candidates, self.n_copys, -1) # [H, N, B, A] top_action_candidates = action_candidates[:, top_indexes, t.arange(self.n_copys).reshape(self.n_copys, 1), t.arange(self.a_dim)] # [H, N', B, A] mean = top_action_candidates.mean(dim=1, keepdim=True) # [H, 1, B, A] stddev = top_action_candidates.std(dim=1, unbiased=False, keepdim=True) # [H, 1, B, A] # Return only first action (replan each state based on new observation) actions = t.tanh(mean[0].squeeze(0)) # [B, A] actions = self._exploration(actions) _, self.rnncs_['hx'] = self.rssm.prior(state_posterior.sample(), actions, self.rnncs['hx']) return actions, Data(action=actions) def _exploration(self, action: t.Tensor) -> t.Tensor: """ :param action: action to take, shape (1,) (if categorical), or (action dim,) (if continuous) :return: action of the same shape passed in, augmented with some noise """ sigma = self._action_sigma if self._is_train_mode else 0. noise = t.randn(*action.shape) * sigma return t.clamp(action + noise, -1, 1) @iton def _train(self, BATCH): T, B = BATCH.action.shape[:2] if self._is_visual: obs_ = get_first_visual(BATCH.obs_) else: obs_ = get_first_vector(BATCH.obs_) # embed observations with CNN embedded_observations = self.obs_encoder(obs_) # [T, B, *] # initialize state and rnn hidden state with 0 vector state, rnn_hidden = self.rssm.init_state(shape=B) # [B, S], [B, D] # compute state and rnn hidden sequences and kl loss kl_loss = 0 states, rnn_hiddens = [], [] for l in range(T): # if the begin of this episode, then reset to 0. # No matther whether last episode is beened truncated of not. state = state * (1. - BATCH.begin_mask[l]) # [B, S] rnn_hidden = rnn_hidden * (1. - BATCH.begin_mask[l]) # [B, D] next_state_prior, next_state_posterior, rnn_hidden = self.rssm(state, BATCH.action[l], rnn_hidden, embedded_observations[l]) # a, s_ state = next_state_posterior.rsample() # [B, S] posterior of s_ states.append(state) # [B, S] rnn_hiddens.append(rnn_hidden) # [B, D] kl_loss += self._kl_loss(next_state_prior, next_state_posterior) kl_loss /= T # 1 # compute reconstructed observations and predicted rewards post_feat = t.cat([t.stack(states, 0), t.stack(rnn_hiddens, 0)], -1) # [T, B, *] obs_pred = self.obs_decoder(post_feat) # [T, B, C, H, W] or [T, B, *] reward_pred = self.reward_predictor(post_feat) # [T, B, 1], s_ => r # compute loss for observation and reward obs_loss = -t.mean(obs_pred.log_prob(obs_)) # [T, B] => 1 # [T, B, 1]=>1 reward_loss = -t.mean(reward_pred.log_prob(BATCH.reward).unsqueeze(-1)) # add all losses and update model parameters with gradient descent model_loss = self.kl_scale*kl_loss + obs_loss + self.reward_scale * reward_loss # 1 self.model_oplr.optimize(model_loss) summaries = dict([ ['LEARNING_RATE/model_lr', self.model_oplr.lr], ['LOSS/model_loss', model_loss], ['LOSS/kl_loss', kl_loss], ['LOSS/obs_loss', obs_loss], ['LOSS/reward_loss', reward_loss] ]) return t.ones_like(BATCH.reward), summaries def _initial_rnncs(self, batch: int) -> Dict[str, np.ndarray]: return {'hx': np.zeros((batch, self.deter_dim))} def _kl_loss(self, prior_dist, post_dist): # 1 return td.kl_divergence(prior_dist, post_dist).clamp(min=self.kl_free_nats).mean()
a9ede54f8c311163f3f1593922779cde560263bc
3d0838cc0d3cca599c2dfb6bea3274ff3cabe0ac
/discore/models/_channel.py
316c280d8e0f64347a51b6e2f534a923fc679e15
[ "MIT" ]
permissive
geek-space-hq/discore
6a799f411c81b580f0b3e0aac238e5dcf48d899c
45f4870426e635353b3621f5089880cbb30c683c
refs/heads/develop
2022-12-15T20:51:50.904945
2020-09-16T16:05:36
2020-09-16T16:05:36
295,093,463
3
0
null
2020-09-16T09:41:21
2020-09-13T06:36:35
Python
UTF-8
Python
false
false
5,679
py
from __future__ import annotations from datetime import datetime from enum import Enum, IntEnum from typing import TYPE_CHECKING, List, Optional, Union from pydantic import BaseModel from pydantic.fields import Field if TYPE_CHECKING: from ._emoji import Emoji from ._guild import GuildMember, Role from ._user import User, UserMentioned class Channel(BaseModel): id: str type: int guild_id: Optional[str] = None position: Optional[int] = None permission_overwrites: Optional["Overwrite"] = None name: Optional[str] = None topic: Optional[str] = None nsfw: bool = Field(default=False) last_message_id: Optional[str] = None bitrate: Optional[int] = None user_limit: Optional[int] = None rate_limit_per_user: Optional[int] = None recipients: Optional[List["User"]] = None icon: Optional[str] = None parent_id: Optional[str] = None last_pin_timestamp: Optional[datetime] = None class ChannelType(IntEnum): GUILD_TEXT = 0 DM = 1 GUILD_VOICE = 2 GROUP_DM = 3 GUILD_CATEGORY = 4 GUILD_NEWS = 5 GUILD_STORE = 6 class Message(BaseModel): id: str channel_id: str aurhor: "User" content: str timestamp: datetime tts: bool mention_everyone: bool mentions: List["UserMentioned"] mention_roles: List["Role"] attachments: List["Attachment"] embeds: List["Embed"] pinned: bool type: "MessageType" guild_id: Optional[str] = None member: Optional["GuildMember"] = None mention_channels: Optional[List["ChannelMention"]] = None reactions: Optional[List["Reaction"]] = None nonce: Optional[Union[int, str]] = None webhook_id: Optional[str] = None activity: Optional["MessageActivity"] = None application: Optional["MessageApplication"] = None message_reference: Optional["MessageReference"] = None flags: Optional[int] = None class MessageType(IntEnum): DEFAULT = 0 RECIPIENT_ADD = 1 RECIPIENT_REMOVE = 2 CALL = 3 CHANNEL_NAME_CHANGE = 4 CHANNEL_ICON_CHANGE = 5 CHANNEL_PINNED_MESSAGE = 6 GUILD_MEMBER_JOIN = 7 USER_PREMIUM_GUILD_SUBSCRIPTION = 8 USER_PREMIUM_GUILD_SUBSCRIPTION_TIER_1 = 9 USER_PREMIUM_GUILD_SUBSCRIPTION_TIER_2 = 10 USER_PREMIUM_GUILD_SUBSCRIPTION_TIER_3 = 11 CHANNEL_FOLLOW_ADD = 12 GUILD_DISCOVERY_DISQUALIFIED = 14 GUILD_DISCOVERY_REQUALIFIED = 15 class MessageActivity(BaseModel): type: int party_id: Optional[str] = None class MessageApplication(BaseModel): id: str description: str name: str cover_image: Optional[str] = None icon: Optional[str] = None class MessageReference(BaseModel): channel_id: str message_id: Optional[str] = None guild_id: Optional[str] = None class MessageActivityType(IntEnum): JOIN = 1 SPECTATE = 2 LISTEN = 3 JOIN_REQUEST = 5 class MessageFlag(IntEnum): CROSSPOSTED = 1 << 0 IS_CROSSPOST = 1 << 1 SUPPRESS_EMBEDS = 1 << 2 SOURCE_MESSAGE_DELETED = 1 << 3 URGENT = 1 << 4 class FollowedChannel(BaseModel): channel_id: str webhook_id: str class Reaction: count: int me: bool emoji: "Emoji" class OverwriteReceiving(BaseModel): id: str type: str allow: int allow_new: str deny: int deny_new: str class OverwriteSending(BaseModel): id: str type: str allow: Union[int, str] deny: Union[int, str] Overwrite = Union[OverwriteReceiving, OverwriteSending] class Embed(BaseModel): title: Optional[str] = None type: Optional["EmbedType"] = None description: Optional[str] = None url: Optional[str] = None timestamp: Optional[datetime] = None color: Optional[int] = None footer: Optional["EmbedFooter"] = None image: Optional["EmbedImage"] = None thumbnail: Optional["EmbedThumbnail"] = None video: Optional["EmbedVideo"] = None provider: Optional["EmbedProvider"] = None author: Optional["EmbedAuthor"] = None fields_: Optional[List["EmbedField"]] = Field(default=None, alias="fields") class EmbedType(str, Enum): rich = "rich" image = "image" video = "video" gifv = "gifv" article = "article" link = "link" class EmbedThumbnail(BaseModel): url: Optional[str] = None proxy_url: Optional[str] = None height: Optional[int] = None width: Optional[int] = None class EmbedVideo(BaseModel): url: Optional[str] = None height: Optional[int] = None width: Optional[int] = None class EmbedImage(BaseModel): url: Optional[str] = None proxy_url: Optional[str] = None height: Optional[int] = None width: Optional[int] = None class EmbedProvider(BaseModel): name: Optional[str] = None url: Optional[str] = None class EmbedAuthor(BaseModel): name: Optional[str] = None url: Optional[str] = None icon_url: Optional[str] = None proxy_icon_url: Optional[str] = None class EmbedFooter(BaseModel): text: str icon_url: Optional[str] = None proxy_icon_url: Optional[str] = None class EmbedField(BaseModel): name: str value: str inline: Optional[bool] = None class Attachment(BaseModel): id: str filename: str size: int url: str proxy_url: str height: Optional[int] = None width: Optional[int] = None class ChannelMention(BaseModel): id: str guild_id: str type: "ChannelType" name: str class AllowedMentionType(str, Enum): ROLE_MENTIONS = "roles" USER_MENTIONS = "users" EVERYONE_MENTINS = "everyone" class AllowedMention(BaseModel): parse: "AllowedMentionType" roles: List[str] users: List[str]
a07cab13bbac62cbe9da389c04efe73253dd55ba
c6b1919498776cfc408076246390e2bba56f4c4e
/devops_tool/settings.py
e422d3a5d42866f11728863fdae9c727b4dd35e6
[]
no_license
huozhihui/devops_tool
f2ceaf7f1828853e43859645f5ab36a00b0fa7df
0eb7b4a14203e30bb2c262075864cec0db21829f
refs/heads/master
2020-05-20T19:02:47.855055
2017-04-18T05:25:59
2017-04-18T05:25:59
84,509,976
0
0
null
null
null
null
UTF-8
Python
false
false
6,196
py
""" Django settings for devops_tool project. Generated by 'django-admin startproject' using Django 1.10.4. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'xv*oxmw8)_0jw=e!f6bi1bop1#cpi4_2=jy2da04gf*1!h2he*' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] LOGIN_REDIRECT_URL = '/role_manage' # custom # =================================== TMP = os.path.join(BASE_DIR, 'tmp') LOCALE_PATHS = ( os.path.join(BASE_DIR, 'locale'), ) UPLOAD_FILE = ( os.path.join(TMP, 'upload_file') ) # ANSIBLE = "/etc/ansible" # ANSIBLE_ROLES = os.path.join(ANSIBLE, 'roles') # ANSIBLE_YAMLS = os.path.join(ANSIBLE) ANSIBLE = "/Users/huozhihui/huo/paas_deploy" ANSIBLE_ROLES = os.path.join(ANSIBLE, 'roles') ANSIBLE_YAMLS = ANSIBLE ANSIBLE_HOSTS = ANSIBLE ANSIBLE_INIT_USER = 'ubunt' ANSIBLE_INIT_PASS = 'huo244' # =================================== # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'channels', 'ext_command', 'client', 'workflow', 'client.templatetags.ext_template', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'devops_tool.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], # 'DIRS': [os.path.join(os.path.dirname(__file__), 'templates').replace('\\', '/')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'devops_tool.wsgi.application' CHANNEL_LAYERS = { "default": { "BACKEND": "asgiref.inmemory.ChannelLayer", "ROUTING": "devops_tool.routing.channel_routing", }, } # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ # LANGUAGE_CODE = 'en-us' LANGUAGE_CODE = 'zh_cn' TIME_ZONE = 'Asia/Shanghai' # TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = False USE_TZ = False # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, "static"), ) LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'file': { 'level': 'INFO', 'class': 'logging.FileHandler', 'filename': os.path.join(BASE_DIR, 'console.log'), }, # 'console': { # 'level': 'INFO', # 'class': 'logging.StreamHandler', # # 'formatter': 'simple' # }, }, 'loggers': { 'django.request': { 'handlers': ['file'], 'level': 'INFO', 'propagate': False, }, }, } # LOGGING = { # 'version': 1, # 'disable_existing_loggers': False, # 'handlers': { # 'console': { # 'class': 'logging.StreamHandler', # # 'level': 'INFO', # # 'filename': os.path.join(BASE_DIR, 'console.log'), # # 'maxBytes': 1024 * 1024 * 15, # 15MB # # 'backupCount': 10, # }, # }, # 'loggers': { # 'django': { # 'handlers': ['console'], # 'level': os.getenv('DJANGO_LOG_LEVEL', 'INFO'), # }, # }, # } # LOGGING = { # 'version': 1, # 'disable_existing_loggers': False, # 'filters': { # 'require_debug_false': { # '()': 'django.utils.log.RequireDebugFalse' # } # }, # 'handlers': { # 'mail_admins': { # 'level': 'ERROR', # 'filters': ['require_debug_false'], # 'class': 'django.utils.log.AdminEmailHandler' # }, # 'applogfile': { # 'level':'INFO', # 'class':'logging.handlers.RotatingFileHandler', # 'filename': os.path.join(BASE_DIR, 'APPNAME.log'), # 'maxBytes': 1024*1024*15, # 15MB # 'backupCount': 10, # }, # }, # 'loggers': { # 'django.request': { # 'handlers': ['applogfile'], # 'level': 'INFO', # 'propagate': True, # }, # } # }
6af287c25e7567cc97a37b41e9b9df7d8d589d3a
69427716f39ddb8541b7dca39d26015a26e04104
/学习脚本/Python基础学习脚本/select_socket_server.py
619aaeec0a826ffbd3a7f9299ce892eb9ef5e5a3
[]
no_license
xiatian0918/auto_scripts
a0fa80f3ec8a5e49e1b049ebed39a8ae3e7cdf7a
413c614260340557cf9e615b1339eae68a8f9acf
refs/heads/master
2020-05-14T13:32:46.556775
2020-01-21T00:18:56
2020-01-21T00:18:56
181,812,978
0
1
null
null
null
null
UTF-8
Python
false
false
606
py
#!/usr/bin/env python #-*- coding:utf-8 -*- # author: xiatian import select,socket,sys,queue server = socket.socket() server.bind(('localhost',9000)) server.listen(1000) server.setblocking(False) #不阻塞 inputs = [server,] outputs = [] readable , writeable, exceptional = select.select(inputs, outputs, inputs) print(readable,writeable,exceptional) for i in readable: if r is server: #代表来了一个新链接 conn,addr = server.accept() print("来了个新链接",addr) inputs.append(conn) else: data = conn.recv(1024) print("收到数据",data)
7f9ea1866114fe062661f28006ec80d13194dd03
a8062308fb3bf6c8952257504a50c3e97d801294
/problems/N875_Koko_Eating_Bananas.py
2d632a0fdaa6c0078dec7406cb6fa8e0e852a916
[]
no_license
wan-catherine/Leetcode
650d697a873ad23c0b64d08ad525bf9fcdb62b1b
238995bd23c8a6c40c6035890e94baa2473d4bbc
refs/heads/master
2023-09-01T00:56:27.677230
2023-08-31T00:49:31
2023-08-31T00:49:31
143,770,000
5
0
null
null
null
null
UTF-8
Python
false
false
878
py
class Solution(object): def minEatingSpeed(self, piles, H): """ :type piles: List[int] :type H: int :rtype: int """ length = len(piles) if length == H: return max(piles) right = max(piles) total = sum(piles) if total <= H: return 1 left = total // H while left < right: mid = (right - left) // 2 + left if self.helper(mid, piles, H): right = mid else: left = mid + 1 return left def helper(self, value, piles, H): hours = 0 for pile in piles: if pile % value: hours += pile // value + 1 else: hours += pile // value if hours > H: return False else: return True
85a8fe446187a595ad11c4c0a6dba3786a9af595
5e6d8b9989247801718dd1f10009f0f7f54c1eb4
/sdk/python/pulumi_azure_native/web/v20201001/web_app_auth_settings.py
8c0f10d3d946c6e637d1c161b9fabc2e4c33aae2
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
vivimouret29/pulumi-azure-native
d238a8f91688c9bf09d745a7280b9bf2dd6d44e0
1cbd988bcb2aa75a83e220cb5abeb805d6484fce
refs/heads/master
2023-08-26T05:50:40.560691
2021-10-21T09:25:07
2021-10-21T09:25:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
85,144
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * __all__ = ['WebAppAuthSettingsArgs', 'WebAppAuthSettings'] @pulumi.input_type class WebAppAuthSettingsArgs: def __init__(__self__, *, name: pulumi.Input[str], resource_group_name: pulumi.Input[str], aad_claims_authorization: Optional[pulumi.Input[str]] = None, additional_login_params: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, allowed_audiences: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, allowed_external_redirect_urls: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, auth_file_path: Optional[pulumi.Input[str]] = None, client_id: Optional[pulumi.Input[str]] = None, client_secret: Optional[pulumi.Input[str]] = None, client_secret_certificate_thumbprint: Optional[pulumi.Input[str]] = None, client_secret_setting_name: Optional[pulumi.Input[str]] = None, default_provider: Optional[pulumi.Input['BuiltInAuthenticationProvider']] = None, enabled: Optional[pulumi.Input[bool]] = None, facebook_app_id: Optional[pulumi.Input[str]] = None, facebook_app_secret: Optional[pulumi.Input[str]] = None, facebook_app_secret_setting_name: Optional[pulumi.Input[str]] = None, facebook_o_auth_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, git_hub_client_id: Optional[pulumi.Input[str]] = None, git_hub_client_secret: Optional[pulumi.Input[str]] = None, git_hub_client_secret_setting_name: Optional[pulumi.Input[str]] = None, git_hub_o_auth_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, google_client_id: Optional[pulumi.Input[str]] = None, google_client_secret: Optional[pulumi.Input[str]] = None, google_client_secret_setting_name: Optional[pulumi.Input[str]] = None, google_o_auth_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, is_auth_from_file: Optional[pulumi.Input[str]] = None, issuer: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, microsoft_account_client_id: Optional[pulumi.Input[str]] = None, microsoft_account_client_secret: Optional[pulumi.Input[str]] = None, microsoft_account_client_secret_setting_name: Optional[pulumi.Input[str]] = None, microsoft_account_o_auth_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, runtime_version: Optional[pulumi.Input[str]] = None, token_refresh_extension_hours: Optional[pulumi.Input[float]] = None, token_store_enabled: Optional[pulumi.Input[bool]] = None, twitter_consumer_key: Optional[pulumi.Input[str]] = None, twitter_consumer_secret: Optional[pulumi.Input[str]] = None, twitter_consumer_secret_setting_name: Optional[pulumi.Input[str]] = None, unauthenticated_client_action: Optional[pulumi.Input['UnauthenticatedClientAction']] = None, validate_issuer: Optional[pulumi.Input[bool]] = None): """ The set of arguments for constructing a WebAppAuthSettings resource. :param pulumi.Input[str] name: Name of web app. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. :param pulumi.Input[str] aad_claims_authorization: Gets a JSON string containing the Azure AD Acl settings. :param pulumi.Input[Sequence[pulumi.Input[str]]] additional_login_params: Login parameters to send to the OpenID Connect authorization endpoint when a user logs in. Each parameter must be in the form "key=value". :param pulumi.Input[Sequence[pulumi.Input[str]]] allowed_audiences: Allowed audience values to consider when validating JWTs issued by Azure Active Directory. Note that the <code>ClientID</code> value is always considered an allowed audience, regardless of this setting. :param pulumi.Input[Sequence[pulumi.Input[str]]] allowed_external_redirect_urls: External URLs that can be redirected to as part of logging in or logging out of the app. Note that the query string part of the URL is ignored. This is an advanced setting typically only needed by Windows Store application backends. Note that URLs within the current domain are always implicitly allowed. :param pulumi.Input[str] auth_file_path: The path of the config file containing auth settings. If the path is relative, base will the site's root directory. :param pulumi.Input[str] client_id: The Client ID of this relying party application, known as the client_id. This setting is required for enabling OpenID Connection authentication with Azure Active Directory or other 3rd party OpenID Connect providers. More information on OpenID Connect: http://openid.net/specs/openid-connect-core-1_0.html :param pulumi.Input[str] client_secret: The Client Secret of this relying party application (in Azure Active Directory, this is also referred to as the Key). This setting is optional. If no client secret is configured, the OpenID Connect implicit auth flow is used to authenticate end users. Otherwise, the OpenID Connect Authorization Code Flow is used to authenticate end users. More information on OpenID Connect: http://openid.net/specs/openid-connect-core-1_0.html :param pulumi.Input[str] client_secret_certificate_thumbprint: An alternative to the client secret, that is the thumbprint of a certificate used for signing purposes. This property acts as a replacement for the Client Secret. It is also optional. :param pulumi.Input[str] client_secret_setting_name: The app setting name that contains the client secret of the relying party application. :param pulumi.Input['BuiltInAuthenticationProvider'] default_provider: The default authentication provider to use when multiple providers are configured. This setting is only needed if multiple providers are configured and the unauthenticated client action is set to "RedirectToLoginPage". :param pulumi.Input[bool] enabled: <code>true</code> if the Authentication / Authorization feature is enabled for the current app; otherwise, <code>false</code>. :param pulumi.Input[str] facebook_app_id: The App ID of the Facebook app used for login. This setting is required for enabling Facebook Login. Facebook Login documentation: https://developers.facebook.com/docs/facebook-login :param pulumi.Input[str] facebook_app_secret: The App Secret of the Facebook app used for Facebook Login. This setting is required for enabling Facebook Login. Facebook Login documentation: https://developers.facebook.com/docs/facebook-login :param pulumi.Input[str] facebook_app_secret_setting_name: The app setting name that contains the app secret used for Facebook Login. :param pulumi.Input[Sequence[pulumi.Input[str]]] facebook_o_auth_scopes: The OAuth 2.0 scopes that will be requested as part of Facebook Login authentication. This setting is optional. Facebook Login documentation: https://developers.facebook.com/docs/facebook-login :param pulumi.Input[str] git_hub_client_id: The Client Id of the GitHub app used for login. This setting is required for enabling Github login :param pulumi.Input[str] git_hub_client_secret: The Client Secret of the GitHub app used for Github Login. This setting is required for enabling Github login. :param pulumi.Input[str] git_hub_client_secret_setting_name: The app setting name that contains the client secret of the Github app used for GitHub Login. :param pulumi.Input[Sequence[pulumi.Input[str]]] git_hub_o_auth_scopes: The OAuth 2.0 scopes that will be requested as part of GitHub Login authentication. This setting is optional :param pulumi.Input[str] google_client_id: The OpenID Connect Client ID for the Google web application. This setting is required for enabling Google Sign-In. Google Sign-In documentation: https://developers.google.com/identity/sign-in/web/ :param pulumi.Input[str] google_client_secret: The client secret associated with the Google web application. This setting is required for enabling Google Sign-In. Google Sign-In documentation: https://developers.google.com/identity/sign-in/web/ :param pulumi.Input[str] google_client_secret_setting_name: The app setting name that contains the client secret associated with the Google web application. :param pulumi.Input[Sequence[pulumi.Input[str]]] google_o_auth_scopes: The OAuth 2.0 scopes that will be requested as part of Google Sign-In authentication. This setting is optional. If not specified, "openid", "profile", and "email" are used as default scopes. Google Sign-In documentation: https://developers.google.com/identity/sign-in/web/ :param pulumi.Input[str] is_auth_from_file: "true" if the auth config settings should be read from a file, "false" otherwise :param pulumi.Input[str] issuer: The OpenID Connect Issuer URI that represents the entity which issues access tokens for this application. When using Azure Active Directory, this value is the URI of the directory tenant, e.g. https://sts.windows.net/{tenant-guid}/. This URI is a case-sensitive identifier for the token issuer. More information on OpenID Connect Discovery: http://openid.net/specs/openid-connect-discovery-1_0.html :param pulumi.Input[str] kind: Kind of resource. :param pulumi.Input[str] microsoft_account_client_id: The OAuth 2.0 client ID that was created for the app used for authentication. This setting is required for enabling Microsoft Account authentication. Microsoft Account OAuth documentation: https://dev.onedrive.com/auth/msa_oauth.htm :param pulumi.Input[str] microsoft_account_client_secret: The OAuth 2.0 client secret that was created for the app used for authentication. This setting is required for enabling Microsoft Account authentication. Microsoft Account OAuth documentation: https://dev.onedrive.com/auth/msa_oauth.htm :param pulumi.Input[str] microsoft_account_client_secret_setting_name: The app setting name containing the OAuth 2.0 client secret that was created for the app used for authentication. :param pulumi.Input[Sequence[pulumi.Input[str]]] microsoft_account_o_auth_scopes: The OAuth 2.0 scopes that will be requested as part of Microsoft Account authentication. This setting is optional. If not specified, "wl.basic" is used as the default scope. Microsoft Account Scopes and permissions documentation: https://msdn.microsoft.com/en-us/library/dn631845.aspx :param pulumi.Input[str] runtime_version: The RuntimeVersion of the Authentication / Authorization feature in use for the current app. The setting in this value can control the behavior of certain features in the Authentication / Authorization module. :param pulumi.Input[float] token_refresh_extension_hours: The number of hours after session token expiration that a session token can be used to call the token refresh API. The default is 72 hours. :param pulumi.Input[bool] token_store_enabled: <code>true</code> to durably store platform-specific security tokens that are obtained during login flows; otherwise, <code>false</code>. The default is <code>false</code>. :param pulumi.Input[str] twitter_consumer_key: The OAuth 1.0a consumer key of the Twitter application used for sign-in. This setting is required for enabling Twitter Sign-In. Twitter Sign-In documentation: https://dev.twitter.com/web/sign-in :param pulumi.Input[str] twitter_consumer_secret: The OAuth 1.0a consumer secret of the Twitter application used for sign-in. This setting is required for enabling Twitter Sign-In. Twitter Sign-In documentation: https://dev.twitter.com/web/sign-in :param pulumi.Input[str] twitter_consumer_secret_setting_name: The app setting name that contains the OAuth 1.0a consumer secret of the Twitter application used for sign-in. :param pulumi.Input['UnauthenticatedClientAction'] unauthenticated_client_action: The action to take when an unauthenticated client attempts to access the app. :param pulumi.Input[bool] validate_issuer: Gets a value indicating whether the issuer should be a valid HTTPS url and be validated as such. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "resource_group_name", resource_group_name) if aad_claims_authorization is not None: pulumi.set(__self__, "aad_claims_authorization", aad_claims_authorization) if additional_login_params is not None: pulumi.set(__self__, "additional_login_params", additional_login_params) if allowed_audiences is not None: pulumi.set(__self__, "allowed_audiences", allowed_audiences) if allowed_external_redirect_urls is not None: pulumi.set(__self__, "allowed_external_redirect_urls", allowed_external_redirect_urls) if auth_file_path is not None: pulumi.set(__self__, "auth_file_path", auth_file_path) if client_id is not None: pulumi.set(__self__, "client_id", client_id) if client_secret is not None: pulumi.set(__self__, "client_secret", client_secret) if client_secret_certificate_thumbprint is not None: pulumi.set(__self__, "client_secret_certificate_thumbprint", client_secret_certificate_thumbprint) if client_secret_setting_name is not None: pulumi.set(__self__, "client_secret_setting_name", client_secret_setting_name) if default_provider is not None: pulumi.set(__self__, "default_provider", default_provider) if enabled is not None: pulumi.set(__self__, "enabled", enabled) if facebook_app_id is not None: pulumi.set(__self__, "facebook_app_id", facebook_app_id) if facebook_app_secret is not None: pulumi.set(__self__, "facebook_app_secret", facebook_app_secret) if facebook_app_secret_setting_name is not None: pulumi.set(__self__, "facebook_app_secret_setting_name", facebook_app_secret_setting_name) if facebook_o_auth_scopes is not None: pulumi.set(__self__, "facebook_o_auth_scopes", facebook_o_auth_scopes) if git_hub_client_id is not None: pulumi.set(__self__, "git_hub_client_id", git_hub_client_id) if git_hub_client_secret is not None: pulumi.set(__self__, "git_hub_client_secret", git_hub_client_secret) if git_hub_client_secret_setting_name is not None: pulumi.set(__self__, "git_hub_client_secret_setting_name", git_hub_client_secret_setting_name) if git_hub_o_auth_scopes is not None: pulumi.set(__self__, "git_hub_o_auth_scopes", git_hub_o_auth_scopes) if google_client_id is not None: pulumi.set(__self__, "google_client_id", google_client_id) if google_client_secret is not None: pulumi.set(__self__, "google_client_secret", google_client_secret) if google_client_secret_setting_name is not None: pulumi.set(__self__, "google_client_secret_setting_name", google_client_secret_setting_name) if google_o_auth_scopes is not None: pulumi.set(__self__, "google_o_auth_scopes", google_o_auth_scopes) if is_auth_from_file is not None: pulumi.set(__self__, "is_auth_from_file", is_auth_from_file) if issuer is not None: pulumi.set(__self__, "issuer", issuer) if kind is not None: pulumi.set(__self__, "kind", kind) if microsoft_account_client_id is not None: pulumi.set(__self__, "microsoft_account_client_id", microsoft_account_client_id) if microsoft_account_client_secret is not None: pulumi.set(__self__, "microsoft_account_client_secret", microsoft_account_client_secret) if microsoft_account_client_secret_setting_name is not None: pulumi.set(__self__, "microsoft_account_client_secret_setting_name", microsoft_account_client_secret_setting_name) if microsoft_account_o_auth_scopes is not None: pulumi.set(__self__, "microsoft_account_o_auth_scopes", microsoft_account_o_auth_scopes) if runtime_version is not None: pulumi.set(__self__, "runtime_version", runtime_version) if token_refresh_extension_hours is not None: pulumi.set(__self__, "token_refresh_extension_hours", token_refresh_extension_hours) if token_store_enabled is not None: pulumi.set(__self__, "token_store_enabled", token_store_enabled) if twitter_consumer_key is not None: pulumi.set(__self__, "twitter_consumer_key", twitter_consumer_key) if twitter_consumer_secret is not None: pulumi.set(__self__, "twitter_consumer_secret", twitter_consumer_secret) if twitter_consumer_secret_setting_name is not None: pulumi.set(__self__, "twitter_consumer_secret_setting_name", twitter_consumer_secret_setting_name) if unauthenticated_client_action is not None: pulumi.set(__self__, "unauthenticated_client_action", unauthenticated_client_action) if validate_issuer is not None: pulumi.set(__self__, "validate_issuer", validate_issuer) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ Name of web app. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ Name of the resource group to which the resource belongs. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="aadClaimsAuthorization") def aad_claims_authorization(self) -> Optional[pulumi.Input[str]]: """ Gets a JSON string containing the Azure AD Acl settings. """ return pulumi.get(self, "aad_claims_authorization") @aad_claims_authorization.setter def aad_claims_authorization(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "aad_claims_authorization", value) @property @pulumi.getter(name="additionalLoginParams") def additional_login_params(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Login parameters to send to the OpenID Connect authorization endpoint when a user logs in. Each parameter must be in the form "key=value". """ return pulumi.get(self, "additional_login_params") @additional_login_params.setter def additional_login_params(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "additional_login_params", value) @property @pulumi.getter(name="allowedAudiences") def allowed_audiences(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Allowed audience values to consider when validating JWTs issued by Azure Active Directory. Note that the <code>ClientID</code> value is always considered an allowed audience, regardless of this setting. """ return pulumi.get(self, "allowed_audiences") @allowed_audiences.setter def allowed_audiences(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "allowed_audiences", value) @property @pulumi.getter(name="allowedExternalRedirectUrls") def allowed_external_redirect_urls(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ External URLs that can be redirected to as part of logging in or logging out of the app. Note that the query string part of the URL is ignored. This is an advanced setting typically only needed by Windows Store application backends. Note that URLs within the current domain are always implicitly allowed. """ return pulumi.get(self, "allowed_external_redirect_urls") @allowed_external_redirect_urls.setter def allowed_external_redirect_urls(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "allowed_external_redirect_urls", value) @property @pulumi.getter(name="authFilePath") def auth_file_path(self) -> Optional[pulumi.Input[str]]: """ The path of the config file containing auth settings. If the path is relative, base will the site's root directory. """ return pulumi.get(self, "auth_file_path") @auth_file_path.setter def auth_file_path(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "auth_file_path", value) @property @pulumi.getter(name="clientId") def client_id(self) -> Optional[pulumi.Input[str]]: """ The Client ID of this relying party application, known as the client_id. This setting is required for enabling OpenID Connection authentication with Azure Active Directory or other 3rd party OpenID Connect providers. More information on OpenID Connect: http://openid.net/specs/openid-connect-core-1_0.html """ return pulumi.get(self, "client_id") @client_id.setter def client_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "client_id", value) @property @pulumi.getter(name="clientSecret") def client_secret(self) -> Optional[pulumi.Input[str]]: """ The Client Secret of this relying party application (in Azure Active Directory, this is also referred to as the Key). This setting is optional. If no client secret is configured, the OpenID Connect implicit auth flow is used to authenticate end users. Otherwise, the OpenID Connect Authorization Code Flow is used to authenticate end users. More information on OpenID Connect: http://openid.net/specs/openid-connect-core-1_0.html """ return pulumi.get(self, "client_secret") @client_secret.setter def client_secret(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "client_secret", value) @property @pulumi.getter(name="clientSecretCertificateThumbprint") def client_secret_certificate_thumbprint(self) -> Optional[pulumi.Input[str]]: """ An alternative to the client secret, that is the thumbprint of a certificate used for signing purposes. This property acts as a replacement for the Client Secret. It is also optional. """ return pulumi.get(self, "client_secret_certificate_thumbprint") @client_secret_certificate_thumbprint.setter def client_secret_certificate_thumbprint(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "client_secret_certificate_thumbprint", value) @property @pulumi.getter(name="clientSecretSettingName") def client_secret_setting_name(self) -> Optional[pulumi.Input[str]]: """ The app setting name that contains the client secret of the relying party application. """ return pulumi.get(self, "client_secret_setting_name") @client_secret_setting_name.setter def client_secret_setting_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "client_secret_setting_name", value) @property @pulumi.getter(name="defaultProvider") def default_provider(self) -> Optional[pulumi.Input['BuiltInAuthenticationProvider']]: """ The default authentication provider to use when multiple providers are configured. This setting is only needed if multiple providers are configured and the unauthenticated client action is set to "RedirectToLoginPage". """ return pulumi.get(self, "default_provider") @default_provider.setter def default_provider(self, value: Optional[pulumi.Input['BuiltInAuthenticationProvider']]): pulumi.set(self, "default_provider", value) @property @pulumi.getter def enabled(self) -> Optional[pulumi.Input[bool]]: """ <code>true</code> if the Authentication / Authorization feature is enabled for the current app; otherwise, <code>false</code>. """ return pulumi.get(self, "enabled") @enabled.setter def enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enabled", value) @property @pulumi.getter(name="facebookAppId") def facebook_app_id(self) -> Optional[pulumi.Input[str]]: """ The App ID of the Facebook app used for login. This setting is required for enabling Facebook Login. Facebook Login documentation: https://developers.facebook.com/docs/facebook-login """ return pulumi.get(self, "facebook_app_id") @facebook_app_id.setter def facebook_app_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "facebook_app_id", value) @property @pulumi.getter(name="facebookAppSecret") def facebook_app_secret(self) -> Optional[pulumi.Input[str]]: """ The App Secret of the Facebook app used for Facebook Login. This setting is required for enabling Facebook Login. Facebook Login documentation: https://developers.facebook.com/docs/facebook-login """ return pulumi.get(self, "facebook_app_secret") @facebook_app_secret.setter def facebook_app_secret(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "facebook_app_secret", value) @property @pulumi.getter(name="facebookAppSecretSettingName") def facebook_app_secret_setting_name(self) -> Optional[pulumi.Input[str]]: """ The app setting name that contains the app secret used for Facebook Login. """ return pulumi.get(self, "facebook_app_secret_setting_name") @facebook_app_secret_setting_name.setter def facebook_app_secret_setting_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "facebook_app_secret_setting_name", value) @property @pulumi.getter(name="facebookOAuthScopes") def facebook_o_auth_scopes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The OAuth 2.0 scopes that will be requested as part of Facebook Login authentication. This setting is optional. Facebook Login documentation: https://developers.facebook.com/docs/facebook-login """ return pulumi.get(self, "facebook_o_auth_scopes") @facebook_o_auth_scopes.setter def facebook_o_auth_scopes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "facebook_o_auth_scopes", value) @property @pulumi.getter(name="gitHubClientId") def git_hub_client_id(self) -> Optional[pulumi.Input[str]]: """ The Client Id of the GitHub app used for login. This setting is required for enabling Github login """ return pulumi.get(self, "git_hub_client_id") @git_hub_client_id.setter def git_hub_client_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "git_hub_client_id", value) @property @pulumi.getter(name="gitHubClientSecret") def git_hub_client_secret(self) -> Optional[pulumi.Input[str]]: """ The Client Secret of the GitHub app used for Github Login. This setting is required for enabling Github login. """ return pulumi.get(self, "git_hub_client_secret") @git_hub_client_secret.setter def git_hub_client_secret(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "git_hub_client_secret", value) @property @pulumi.getter(name="gitHubClientSecretSettingName") def git_hub_client_secret_setting_name(self) -> Optional[pulumi.Input[str]]: """ The app setting name that contains the client secret of the Github app used for GitHub Login. """ return pulumi.get(self, "git_hub_client_secret_setting_name") @git_hub_client_secret_setting_name.setter def git_hub_client_secret_setting_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "git_hub_client_secret_setting_name", value) @property @pulumi.getter(name="gitHubOAuthScopes") def git_hub_o_auth_scopes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The OAuth 2.0 scopes that will be requested as part of GitHub Login authentication. This setting is optional """ return pulumi.get(self, "git_hub_o_auth_scopes") @git_hub_o_auth_scopes.setter def git_hub_o_auth_scopes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "git_hub_o_auth_scopes", value) @property @pulumi.getter(name="googleClientId") def google_client_id(self) -> Optional[pulumi.Input[str]]: """ The OpenID Connect Client ID for the Google web application. This setting is required for enabling Google Sign-In. Google Sign-In documentation: https://developers.google.com/identity/sign-in/web/ """ return pulumi.get(self, "google_client_id") @google_client_id.setter def google_client_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "google_client_id", value) @property @pulumi.getter(name="googleClientSecret") def google_client_secret(self) -> Optional[pulumi.Input[str]]: """ The client secret associated with the Google web application. This setting is required for enabling Google Sign-In. Google Sign-In documentation: https://developers.google.com/identity/sign-in/web/ """ return pulumi.get(self, "google_client_secret") @google_client_secret.setter def google_client_secret(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "google_client_secret", value) @property @pulumi.getter(name="googleClientSecretSettingName") def google_client_secret_setting_name(self) -> Optional[pulumi.Input[str]]: """ The app setting name that contains the client secret associated with the Google web application. """ return pulumi.get(self, "google_client_secret_setting_name") @google_client_secret_setting_name.setter def google_client_secret_setting_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "google_client_secret_setting_name", value) @property @pulumi.getter(name="googleOAuthScopes") def google_o_auth_scopes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The OAuth 2.0 scopes that will be requested as part of Google Sign-In authentication. This setting is optional. If not specified, "openid", "profile", and "email" are used as default scopes. Google Sign-In documentation: https://developers.google.com/identity/sign-in/web/ """ return pulumi.get(self, "google_o_auth_scopes") @google_o_auth_scopes.setter def google_o_auth_scopes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "google_o_auth_scopes", value) @property @pulumi.getter(name="isAuthFromFile") def is_auth_from_file(self) -> Optional[pulumi.Input[str]]: """ "true" if the auth config settings should be read from a file, "false" otherwise """ return pulumi.get(self, "is_auth_from_file") @is_auth_from_file.setter def is_auth_from_file(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "is_auth_from_file", value) @property @pulumi.getter def issuer(self) -> Optional[pulumi.Input[str]]: """ The OpenID Connect Issuer URI that represents the entity which issues access tokens for this application. When using Azure Active Directory, this value is the URI of the directory tenant, e.g. https://sts.windows.net/{tenant-guid}/. This URI is a case-sensitive identifier for the token issuer. More information on OpenID Connect Discovery: http://openid.net/specs/openid-connect-discovery-1_0.html """ return pulumi.get(self, "issuer") @issuer.setter def issuer(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "issuer", value) @property @pulumi.getter def kind(self) -> Optional[pulumi.Input[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @kind.setter def kind(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "kind", value) @property @pulumi.getter(name="microsoftAccountClientId") def microsoft_account_client_id(self) -> Optional[pulumi.Input[str]]: """ The OAuth 2.0 client ID that was created for the app used for authentication. This setting is required for enabling Microsoft Account authentication. Microsoft Account OAuth documentation: https://dev.onedrive.com/auth/msa_oauth.htm """ return pulumi.get(self, "microsoft_account_client_id") @microsoft_account_client_id.setter def microsoft_account_client_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "microsoft_account_client_id", value) @property @pulumi.getter(name="microsoftAccountClientSecret") def microsoft_account_client_secret(self) -> Optional[pulumi.Input[str]]: """ The OAuth 2.0 client secret that was created for the app used for authentication. This setting is required for enabling Microsoft Account authentication. Microsoft Account OAuth documentation: https://dev.onedrive.com/auth/msa_oauth.htm """ return pulumi.get(self, "microsoft_account_client_secret") @microsoft_account_client_secret.setter def microsoft_account_client_secret(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "microsoft_account_client_secret", value) @property @pulumi.getter(name="microsoftAccountClientSecretSettingName") def microsoft_account_client_secret_setting_name(self) -> Optional[pulumi.Input[str]]: """ The app setting name containing the OAuth 2.0 client secret that was created for the app used for authentication. """ return pulumi.get(self, "microsoft_account_client_secret_setting_name") @microsoft_account_client_secret_setting_name.setter def microsoft_account_client_secret_setting_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "microsoft_account_client_secret_setting_name", value) @property @pulumi.getter(name="microsoftAccountOAuthScopes") def microsoft_account_o_auth_scopes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The OAuth 2.0 scopes that will be requested as part of Microsoft Account authentication. This setting is optional. If not specified, "wl.basic" is used as the default scope. Microsoft Account Scopes and permissions documentation: https://msdn.microsoft.com/en-us/library/dn631845.aspx """ return pulumi.get(self, "microsoft_account_o_auth_scopes") @microsoft_account_o_auth_scopes.setter def microsoft_account_o_auth_scopes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "microsoft_account_o_auth_scopes", value) @property @pulumi.getter(name="runtimeVersion") def runtime_version(self) -> Optional[pulumi.Input[str]]: """ The RuntimeVersion of the Authentication / Authorization feature in use for the current app. The setting in this value can control the behavior of certain features in the Authentication / Authorization module. """ return pulumi.get(self, "runtime_version") @runtime_version.setter def runtime_version(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "runtime_version", value) @property @pulumi.getter(name="tokenRefreshExtensionHours") def token_refresh_extension_hours(self) -> Optional[pulumi.Input[float]]: """ The number of hours after session token expiration that a session token can be used to call the token refresh API. The default is 72 hours. """ return pulumi.get(self, "token_refresh_extension_hours") @token_refresh_extension_hours.setter def token_refresh_extension_hours(self, value: Optional[pulumi.Input[float]]): pulumi.set(self, "token_refresh_extension_hours", value) @property @pulumi.getter(name="tokenStoreEnabled") def token_store_enabled(self) -> Optional[pulumi.Input[bool]]: """ <code>true</code> to durably store platform-specific security tokens that are obtained during login flows; otherwise, <code>false</code>. The default is <code>false</code>. """ return pulumi.get(self, "token_store_enabled") @token_store_enabled.setter def token_store_enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "token_store_enabled", value) @property @pulumi.getter(name="twitterConsumerKey") def twitter_consumer_key(self) -> Optional[pulumi.Input[str]]: """ The OAuth 1.0a consumer key of the Twitter application used for sign-in. This setting is required for enabling Twitter Sign-In. Twitter Sign-In documentation: https://dev.twitter.com/web/sign-in """ return pulumi.get(self, "twitter_consumer_key") @twitter_consumer_key.setter def twitter_consumer_key(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "twitter_consumer_key", value) @property @pulumi.getter(name="twitterConsumerSecret") def twitter_consumer_secret(self) -> Optional[pulumi.Input[str]]: """ The OAuth 1.0a consumer secret of the Twitter application used for sign-in. This setting is required for enabling Twitter Sign-In. Twitter Sign-In documentation: https://dev.twitter.com/web/sign-in """ return pulumi.get(self, "twitter_consumer_secret") @twitter_consumer_secret.setter def twitter_consumer_secret(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "twitter_consumer_secret", value) @property @pulumi.getter(name="twitterConsumerSecretSettingName") def twitter_consumer_secret_setting_name(self) -> Optional[pulumi.Input[str]]: """ The app setting name that contains the OAuth 1.0a consumer secret of the Twitter application used for sign-in. """ return pulumi.get(self, "twitter_consumer_secret_setting_name") @twitter_consumer_secret_setting_name.setter def twitter_consumer_secret_setting_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "twitter_consumer_secret_setting_name", value) @property @pulumi.getter(name="unauthenticatedClientAction") def unauthenticated_client_action(self) -> Optional[pulumi.Input['UnauthenticatedClientAction']]: """ The action to take when an unauthenticated client attempts to access the app. """ return pulumi.get(self, "unauthenticated_client_action") @unauthenticated_client_action.setter def unauthenticated_client_action(self, value: Optional[pulumi.Input['UnauthenticatedClientAction']]): pulumi.set(self, "unauthenticated_client_action", value) @property @pulumi.getter(name="validateIssuer") def validate_issuer(self) -> Optional[pulumi.Input[bool]]: """ Gets a value indicating whether the issuer should be a valid HTTPS url and be validated as such. """ return pulumi.get(self, "validate_issuer") @validate_issuer.setter def validate_issuer(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "validate_issuer", value) class WebAppAuthSettings(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, aad_claims_authorization: Optional[pulumi.Input[str]] = None, additional_login_params: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, allowed_audiences: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, allowed_external_redirect_urls: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, auth_file_path: Optional[pulumi.Input[str]] = None, client_id: Optional[pulumi.Input[str]] = None, client_secret: Optional[pulumi.Input[str]] = None, client_secret_certificate_thumbprint: Optional[pulumi.Input[str]] = None, client_secret_setting_name: Optional[pulumi.Input[str]] = None, default_provider: Optional[pulumi.Input['BuiltInAuthenticationProvider']] = None, enabled: Optional[pulumi.Input[bool]] = None, facebook_app_id: Optional[pulumi.Input[str]] = None, facebook_app_secret: Optional[pulumi.Input[str]] = None, facebook_app_secret_setting_name: Optional[pulumi.Input[str]] = None, facebook_o_auth_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, git_hub_client_id: Optional[pulumi.Input[str]] = None, git_hub_client_secret: Optional[pulumi.Input[str]] = None, git_hub_client_secret_setting_name: Optional[pulumi.Input[str]] = None, git_hub_o_auth_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, google_client_id: Optional[pulumi.Input[str]] = None, google_client_secret: Optional[pulumi.Input[str]] = None, google_client_secret_setting_name: Optional[pulumi.Input[str]] = None, google_o_auth_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, is_auth_from_file: Optional[pulumi.Input[str]] = None, issuer: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, microsoft_account_client_id: Optional[pulumi.Input[str]] = None, microsoft_account_client_secret: Optional[pulumi.Input[str]] = None, microsoft_account_client_secret_setting_name: Optional[pulumi.Input[str]] = None, microsoft_account_o_auth_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, runtime_version: Optional[pulumi.Input[str]] = None, token_refresh_extension_hours: Optional[pulumi.Input[float]] = None, token_store_enabled: Optional[pulumi.Input[bool]] = None, twitter_consumer_key: Optional[pulumi.Input[str]] = None, twitter_consumer_secret: Optional[pulumi.Input[str]] = None, twitter_consumer_secret_setting_name: Optional[pulumi.Input[str]] = None, unauthenticated_client_action: Optional[pulumi.Input['UnauthenticatedClientAction']] = None, validate_issuer: Optional[pulumi.Input[bool]] = None, __props__=None): """ Configuration settings for the Azure App Service Authentication / Authorization feature. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] aad_claims_authorization: Gets a JSON string containing the Azure AD Acl settings. :param pulumi.Input[Sequence[pulumi.Input[str]]] additional_login_params: Login parameters to send to the OpenID Connect authorization endpoint when a user logs in. Each parameter must be in the form "key=value". :param pulumi.Input[Sequence[pulumi.Input[str]]] allowed_audiences: Allowed audience values to consider when validating JWTs issued by Azure Active Directory. Note that the <code>ClientID</code> value is always considered an allowed audience, regardless of this setting. :param pulumi.Input[Sequence[pulumi.Input[str]]] allowed_external_redirect_urls: External URLs that can be redirected to as part of logging in or logging out of the app. Note that the query string part of the URL is ignored. This is an advanced setting typically only needed by Windows Store application backends. Note that URLs within the current domain are always implicitly allowed. :param pulumi.Input[str] auth_file_path: The path of the config file containing auth settings. If the path is relative, base will the site's root directory. :param pulumi.Input[str] client_id: The Client ID of this relying party application, known as the client_id. This setting is required for enabling OpenID Connection authentication with Azure Active Directory or other 3rd party OpenID Connect providers. More information on OpenID Connect: http://openid.net/specs/openid-connect-core-1_0.html :param pulumi.Input[str] client_secret: The Client Secret of this relying party application (in Azure Active Directory, this is also referred to as the Key). This setting is optional. If no client secret is configured, the OpenID Connect implicit auth flow is used to authenticate end users. Otherwise, the OpenID Connect Authorization Code Flow is used to authenticate end users. More information on OpenID Connect: http://openid.net/specs/openid-connect-core-1_0.html :param pulumi.Input[str] client_secret_certificate_thumbprint: An alternative to the client secret, that is the thumbprint of a certificate used for signing purposes. This property acts as a replacement for the Client Secret. It is also optional. :param pulumi.Input[str] client_secret_setting_name: The app setting name that contains the client secret of the relying party application. :param pulumi.Input['BuiltInAuthenticationProvider'] default_provider: The default authentication provider to use when multiple providers are configured. This setting is only needed if multiple providers are configured and the unauthenticated client action is set to "RedirectToLoginPage". :param pulumi.Input[bool] enabled: <code>true</code> if the Authentication / Authorization feature is enabled for the current app; otherwise, <code>false</code>. :param pulumi.Input[str] facebook_app_id: The App ID of the Facebook app used for login. This setting is required for enabling Facebook Login. Facebook Login documentation: https://developers.facebook.com/docs/facebook-login :param pulumi.Input[str] facebook_app_secret: The App Secret of the Facebook app used for Facebook Login. This setting is required for enabling Facebook Login. Facebook Login documentation: https://developers.facebook.com/docs/facebook-login :param pulumi.Input[str] facebook_app_secret_setting_name: The app setting name that contains the app secret used for Facebook Login. :param pulumi.Input[Sequence[pulumi.Input[str]]] facebook_o_auth_scopes: The OAuth 2.0 scopes that will be requested as part of Facebook Login authentication. This setting is optional. Facebook Login documentation: https://developers.facebook.com/docs/facebook-login :param pulumi.Input[str] git_hub_client_id: The Client Id of the GitHub app used for login. This setting is required for enabling Github login :param pulumi.Input[str] git_hub_client_secret: The Client Secret of the GitHub app used for Github Login. This setting is required for enabling Github login. :param pulumi.Input[str] git_hub_client_secret_setting_name: The app setting name that contains the client secret of the Github app used for GitHub Login. :param pulumi.Input[Sequence[pulumi.Input[str]]] git_hub_o_auth_scopes: The OAuth 2.0 scopes that will be requested as part of GitHub Login authentication. This setting is optional :param pulumi.Input[str] google_client_id: The OpenID Connect Client ID for the Google web application. This setting is required for enabling Google Sign-In. Google Sign-In documentation: https://developers.google.com/identity/sign-in/web/ :param pulumi.Input[str] google_client_secret: The client secret associated with the Google web application. This setting is required for enabling Google Sign-In. Google Sign-In documentation: https://developers.google.com/identity/sign-in/web/ :param pulumi.Input[str] google_client_secret_setting_name: The app setting name that contains the client secret associated with the Google web application. :param pulumi.Input[Sequence[pulumi.Input[str]]] google_o_auth_scopes: The OAuth 2.0 scopes that will be requested as part of Google Sign-In authentication. This setting is optional. If not specified, "openid", "profile", and "email" are used as default scopes. Google Sign-In documentation: https://developers.google.com/identity/sign-in/web/ :param pulumi.Input[str] is_auth_from_file: "true" if the auth config settings should be read from a file, "false" otherwise :param pulumi.Input[str] issuer: The OpenID Connect Issuer URI that represents the entity which issues access tokens for this application. When using Azure Active Directory, this value is the URI of the directory tenant, e.g. https://sts.windows.net/{tenant-guid}/. This URI is a case-sensitive identifier for the token issuer. More information on OpenID Connect Discovery: http://openid.net/specs/openid-connect-discovery-1_0.html :param pulumi.Input[str] kind: Kind of resource. :param pulumi.Input[str] microsoft_account_client_id: The OAuth 2.0 client ID that was created for the app used for authentication. This setting is required for enabling Microsoft Account authentication. Microsoft Account OAuth documentation: https://dev.onedrive.com/auth/msa_oauth.htm :param pulumi.Input[str] microsoft_account_client_secret: The OAuth 2.0 client secret that was created for the app used for authentication. This setting is required for enabling Microsoft Account authentication. Microsoft Account OAuth documentation: https://dev.onedrive.com/auth/msa_oauth.htm :param pulumi.Input[str] microsoft_account_client_secret_setting_name: The app setting name containing the OAuth 2.0 client secret that was created for the app used for authentication. :param pulumi.Input[Sequence[pulumi.Input[str]]] microsoft_account_o_auth_scopes: The OAuth 2.0 scopes that will be requested as part of Microsoft Account authentication. This setting is optional. If not specified, "wl.basic" is used as the default scope. Microsoft Account Scopes and permissions documentation: https://msdn.microsoft.com/en-us/library/dn631845.aspx :param pulumi.Input[str] name: Name of web app. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. :param pulumi.Input[str] runtime_version: The RuntimeVersion of the Authentication / Authorization feature in use for the current app. The setting in this value can control the behavior of certain features in the Authentication / Authorization module. :param pulumi.Input[float] token_refresh_extension_hours: The number of hours after session token expiration that a session token can be used to call the token refresh API. The default is 72 hours. :param pulumi.Input[bool] token_store_enabled: <code>true</code> to durably store platform-specific security tokens that are obtained during login flows; otherwise, <code>false</code>. The default is <code>false</code>. :param pulumi.Input[str] twitter_consumer_key: The OAuth 1.0a consumer key of the Twitter application used for sign-in. This setting is required for enabling Twitter Sign-In. Twitter Sign-In documentation: https://dev.twitter.com/web/sign-in :param pulumi.Input[str] twitter_consumer_secret: The OAuth 1.0a consumer secret of the Twitter application used for sign-in. This setting is required for enabling Twitter Sign-In. Twitter Sign-In documentation: https://dev.twitter.com/web/sign-in :param pulumi.Input[str] twitter_consumer_secret_setting_name: The app setting name that contains the OAuth 1.0a consumer secret of the Twitter application used for sign-in. :param pulumi.Input['UnauthenticatedClientAction'] unauthenticated_client_action: The action to take when an unauthenticated client attempts to access the app. :param pulumi.Input[bool] validate_issuer: Gets a value indicating whether the issuer should be a valid HTTPS url and be validated as such. """ ... @overload def __init__(__self__, resource_name: str, args: WebAppAuthSettingsArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Configuration settings for the Azure App Service Authentication / Authorization feature. :param str resource_name: The name of the resource. :param WebAppAuthSettingsArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(WebAppAuthSettingsArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, aad_claims_authorization: Optional[pulumi.Input[str]] = None, additional_login_params: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, allowed_audiences: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, allowed_external_redirect_urls: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, auth_file_path: Optional[pulumi.Input[str]] = None, client_id: Optional[pulumi.Input[str]] = None, client_secret: Optional[pulumi.Input[str]] = None, client_secret_certificate_thumbprint: Optional[pulumi.Input[str]] = None, client_secret_setting_name: Optional[pulumi.Input[str]] = None, default_provider: Optional[pulumi.Input['BuiltInAuthenticationProvider']] = None, enabled: Optional[pulumi.Input[bool]] = None, facebook_app_id: Optional[pulumi.Input[str]] = None, facebook_app_secret: Optional[pulumi.Input[str]] = None, facebook_app_secret_setting_name: Optional[pulumi.Input[str]] = None, facebook_o_auth_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, git_hub_client_id: Optional[pulumi.Input[str]] = None, git_hub_client_secret: Optional[pulumi.Input[str]] = None, git_hub_client_secret_setting_name: Optional[pulumi.Input[str]] = None, git_hub_o_auth_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, google_client_id: Optional[pulumi.Input[str]] = None, google_client_secret: Optional[pulumi.Input[str]] = None, google_client_secret_setting_name: Optional[pulumi.Input[str]] = None, google_o_auth_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, is_auth_from_file: Optional[pulumi.Input[str]] = None, issuer: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, microsoft_account_client_id: Optional[pulumi.Input[str]] = None, microsoft_account_client_secret: Optional[pulumi.Input[str]] = None, microsoft_account_client_secret_setting_name: Optional[pulumi.Input[str]] = None, microsoft_account_o_auth_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, runtime_version: Optional[pulumi.Input[str]] = None, token_refresh_extension_hours: Optional[pulumi.Input[float]] = None, token_store_enabled: Optional[pulumi.Input[bool]] = None, twitter_consumer_key: Optional[pulumi.Input[str]] = None, twitter_consumer_secret: Optional[pulumi.Input[str]] = None, twitter_consumer_secret_setting_name: Optional[pulumi.Input[str]] = None, unauthenticated_client_action: Optional[pulumi.Input['UnauthenticatedClientAction']] = None, validate_issuer: Optional[pulumi.Input[bool]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = WebAppAuthSettingsArgs.__new__(WebAppAuthSettingsArgs) __props__.__dict__["aad_claims_authorization"] = aad_claims_authorization __props__.__dict__["additional_login_params"] = additional_login_params __props__.__dict__["allowed_audiences"] = allowed_audiences __props__.__dict__["allowed_external_redirect_urls"] = allowed_external_redirect_urls __props__.__dict__["auth_file_path"] = auth_file_path __props__.__dict__["client_id"] = client_id __props__.__dict__["client_secret"] = client_secret __props__.__dict__["client_secret_certificate_thumbprint"] = client_secret_certificate_thumbprint __props__.__dict__["client_secret_setting_name"] = client_secret_setting_name __props__.__dict__["default_provider"] = default_provider __props__.__dict__["enabled"] = enabled __props__.__dict__["facebook_app_id"] = facebook_app_id __props__.__dict__["facebook_app_secret"] = facebook_app_secret __props__.__dict__["facebook_app_secret_setting_name"] = facebook_app_secret_setting_name __props__.__dict__["facebook_o_auth_scopes"] = facebook_o_auth_scopes __props__.__dict__["git_hub_client_id"] = git_hub_client_id __props__.__dict__["git_hub_client_secret"] = git_hub_client_secret __props__.__dict__["git_hub_client_secret_setting_name"] = git_hub_client_secret_setting_name __props__.__dict__["git_hub_o_auth_scopes"] = git_hub_o_auth_scopes __props__.__dict__["google_client_id"] = google_client_id __props__.__dict__["google_client_secret"] = google_client_secret __props__.__dict__["google_client_secret_setting_name"] = google_client_secret_setting_name __props__.__dict__["google_o_auth_scopes"] = google_o_auth_scopes __props__.__dict__["is_auth_from_file"] = is_auth_from_file __props__.__dict__["issuer"] = issuer __props__.__dict__["kind"] = kind __props__.__dict__["microsoft_account_client_id"] = microsoft_account_client_id __props__.__dict__["microsoft_account_client_secret"] = microsoft_account_client_secret __props__.__dict__["microsoft_account_client_secret_setting_name"] = microsoft_account_client_secret_setting_name __props__.__dict__["microsoft_account_o_auth_scopes"] = microsoft_account_o_auth_scopes if name is None and not opts.urn: raise TypeError("Missing required property 'name'") __props__.__dict__["name"] = name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["runtime_version"] = runtime_version __props__.__dict__["token_refresh_extension_hours"] = token_refresh_extension_hours __props__.__dict__["token_store_enabled"] = token_store_enabled __props__.__dict__["twitter_consumer_key"] = twitter_consumer_key __props__.__dict__["twitter_consumer_secret"] = twitter_consumer_secret __props__.__dict__["twitter_consumer_secret_setting_name"] = twitter_consumer_secret_setting_name __props__.__dict__["unauthenticated_client_action"] = unauthenticated_client_action __props__.__dict__["validate_issuer"] = validate_issuer __props__.__dict__["system_data"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:web/v20201001:WebAppAuthSettings"), pulumi.Alias(type_="azure-native:web:WebAppAuthSettings"), pulumi.Alias(type_="azure-nextgen:web:WebAppAuthSettings"), pulumi.Alias(type_="azure-native:web/v20150801:WebAppAuthSettings"), pulumi.Alias(type_="azure-nextgen:web/v20150801:WebAppAuthSettings"), pulumi.Alias(type_="azure-native:web/v20160801:WebAppAuthSettings"), pulumi.Alias(type_="azure-nextgen:web/v20160801:WebAppAuthSettings"), pulumi.Alias(type_="azure-native:web/v20180201:WebAppAuthSettings"), pulumi.Alias(type_="azure-nextgen:web/v20180201:WebAppAuthSettings"), pulumi.Alias(type_="azure-native:web/v20181101:WebAppAuthSettings"), pulumi.Alias(type_="azure-nextgen:web/v20181101:WebAppAuthSettings"), pulumi.Alias(type_="azure-native:web/v20190801:WebAppAuthSettings"), pulumi.Alias(type_="azure-nextgen:web/v20190801:WebAppAuthSettings"), pulumi.Alias(type_="azure-native:web/v20200601:WebAppAuthSettings"), pulumi.Alias(type_="azure-nextgen:web/v20200601:WebAppAuthSettings"), pulumi.Alias(type_="azure-native:web/v20200901:WebAppAuthSettings"), pulumi.Alias(type_="azure-nextgen:web/v20200901:WebAppAuthSettings"), pulumi.Alias(type_="azure-native:web/v20201201:WebAppAuthSettings"), pulumi.Alias(type_="azure-nextgen:web/v20201201:WebAppAuthSettings"), pulumi.Alias(type_="azure-native:web/v20210101:WebAppAuthSettings"), pulumi.Alias(type_="azure-nextgen:web/v20210101:WebAppAuthSettings"), pulumi.Alias(type_="azure-native:web/v20210115:WebAppAuthSettings"), pulumi.Alias(type_="azure-nextgen:web/v20210115:WebAppAuthSettings"), pulumi.Alias(type_="azure-native:web/v20210201:WebAppAuthSettings"), pulumi.Alias(type_="azure-nextgen:web/v20210201:WebAppAuthSettings")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(WebAppAuthSettings, __self__).__init__( 'azure-native:web/v20201001:WebAppAuthSettings', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'WebAppAuthSettings': """ Get an existing WebAppAuthSettings resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = WebAppAuthSettingsArgs.__new__(WebAppAuthSettingsArgs) __props__.__dict__["aad_claims_authorization"] = None __props__.__dict__["additional_login_params"] = None __props__.__dict__["allowed_audiences"] = None __props__.__dict__["allowed_external_redirect_urls"] = None __props__.__dict__["auth_file_path"] = None __props__.__dict__["client_id"] = None __props__.__dict__["client_secret"] = None __props__.__dict__["client_secret_certificate_thumbprint"] = None __props__.__dict__["client_secret_setting_name"] = None __props__.__dict__["default_provider"] = None __props__.__dict__["enabled"] = None __props__.__dict__["facebook_app_id"] = None __props__.__dict__["facebook_app_secret"] = None __props__.__dict__["facebook_app_secret_setting_name"] = None __props__.__dict__["facebook_o_auth_scopes"] = None __props__.__dict__["git_hub_client_id"] = None __props__.__dict__["git_hub_client_secret"] = None __props__.__dict__["git_hub_client_secret_setting_name"] = None __props__.__dict__["git_hub_o_auth_scopes"] = None __props__.__dict__["google_client_id"] = None __props__.__dict__["google_client_secret"] = None __props__.__dict__["google_client_secret_setting_name"] = None __props__.__dict__["google_o_auth_scopes"] = None __props__.__dict__["is_auth_from_file"] = None __props__.__dict__["issuer"] = None __props__.__dict__["kind"] = None __props__.__dict__["microsoft_account_client_id"] = None __props__.__dict__["microsoft_account_client_secret"] = None __props__.__dict__["microsoft_account_client_secret_setting_name"] = None __props__.__dict__["microsoft_account_o_auth_scopes"] = None __props__.__dict__["name"] = None __props__.__dict__["runtime_version"] = None __props__.__dict__["system_data"] = None __props__.__dict__["token_refresh_extension_hours"] = None __props__.__dict__["token_store_enabled"] = None __props__.__dict__["twitter_consumer_key"] = None __props__.__dict__["twitter_consumer_secret"] = None __props__.__dict__["twitter_consumer_secret_setting_name"] = None __props__.__dict__["type"] = None __props__.__dict__["unauthenticated_client_action"] = None __props__.__dict__["validate_issuer"] = None return WebAppAuthSettings(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="aadClaimsAuthorization") def aad_claims_authorization(self) -> pulumi.Output[Optional[str]]: """ Gets a JSON string containing the Azure AD Acl settings. """ return pulumi.get(self, "aad_claims_authorization") @property @pulumi.getter(name="additionalLoginParams") def additional_login_params(self) -> pulumi.Output[Optional[Sequence[str]]]: """ Login parameters to send to the OpenID Connect authorization endpoint when a user logs in. Each parameter must be in the form "key=value". """ return pulumi.get(self, "additional_login_params") @property @pulumi.getter(name="allowedAudiences") def allowed_audiences(self) -> pulumi.Output[Optional[Sequence[str]]]: """ Allowed audience values to consider when validating JWTs issued by Azure Active Directory. Note that the <code>ClientID</code> value is always considered an allowed audience, regardless of this setting. """ return pulumi.get(self, "allowed_audiences") @property @pulumi.getter(name="allowedExternalRedirectUrls") def allowed_external_redirect_urls(self) -> pulumi.Output[Optional[Sequence[str]]]: """ External URLs that can be redirected to as part of logging in or logging out of the app. Note that the query string part of the URL is ignored. This is an advanced setting typically only needed by Windows Store application backends. Note that URLs within the current domain are always implicitly allowed. """ return pulumi.get(self, "allowed_external_redirect_urls") @property @pulumi.getter(name="authFilePath") def auth_file_path(self) -> pulumi.Output[Optional[str]]: """ The path of the config file containing auth settings. If the path is relative, base will the site's root directory. """ return pulumi.get(self, "auth_file_path") @property @pulumi.getter(name="clientId") def client_id(self) -> pulumi.Output[Optional[str]]: """ The Client ID of this relying party application, known as the client_id. This setting is required for enabling OpenID Connection authentication with Azure Active Directory or other 3rd party OpenID Connect providers. More information on OpenID Connect: http://openid.net/specs/openid-connect-core-1_0.html """ return pulumi.get(self, "client_id") @property @pulumi.getter(name="clientSecret") def client_secret(self) -> pulumi.Output[Optional[str]]: """ The Client Secret of this relying party application (in Azure Active Directory, this is also referred to as the Key). This setting is optional. If no client secret is configured, the OpenID Connect implicit auth flow is used to authenticate end users. Otherwise, the OpenID Connect Authorization Code Flow is used to authenticate end users. More information on OpenID Connect: http://openid.net/specs/openid-connect-core-1_0.html """ return pulumi.get(self, "client_secret") @property @pulumi.getter(name="clientSecretCertificateThumbprint") def client_secret_certificate_thumbprint(self) -> pulumi.Output[Optional[str]]: """ An alternative to the client secret, that is the thumbprint of a certificate used for signing purposes. This property acts as a replacement for the Client Secret. It is also optional. """ return pulumi.get(self, "client_secret_certificate_thumbprint") @property @pulumi.getter(name="clientSecretSettingName") def client_secret_setting_name(self) -> pulumi.Output[Optional[str]]: """ The app setting name that contains the client secret of the relying party application. """ return pulumi.get(self, "client_secret_setting_name") @property @pulumi.getter(name="defaultProvider") def default_provider(self) -> pulumi.Output[Optional[str]]: """ The default authentication provider to use when multiple providers are configured. This setting is only needed if multiple providers are configured and the unauthenticated client action is set to "RedirectToLoginPage". """ return pulumi.get(self, "default_provider") @property @pulumi.getter def enabled(self) -> pulumi.Output[Optional[bool]]: """ <code>true</code> if the Authentication / Authorization feature is enabled for the current app; otherwise, <code>false</code>. """ return pulumi.get(self, "enabled") @property @pulumi.getter(name="facebookAppId") def facebook_app_id(self) -> pulumi.Output[Optional[str]]: """ The App ID of the Facebook app used for login. This setting is required for enabling Facebook Login. Facebook Login documentation: https://developers.facebook.com/docs/facebook-login """ return pulumi.get(self, "facebook_app_id") @property @pulumi.getter(name="facebookAppSecret") def facebook_app_secret(self) -> pulumi.Output[Optional[str]]: """ The App Secret of the Facebook app used for Facebook Login. This setting is required for enabling Facebook Login. Facebook Login documentation: https://developers.facebook.com/docs/facebook-login """ return pulumi.get(self, "facebook_app_secret") @property @pulumi.getter(name="facebookAppSecretSettingName") def facebook_app_secret_setting_name(self) -> pulumi.Output[Optional[str]]: """ The app setting name that contains the app secret used for Facebook Login. """ return pulumi.get(self, "facebook_app_secret_setting_name") @property @pulumi.getter(name="facebookOAuthScopes") def facebook_o_auth_scopes(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The OAuth 2.0 scopes that will be requested as part of Facebook Login authentication. This setting is optional. Facebook Login documentation: https://developers.facebook.com/docs/facebook-login """ return pulumi.get(self, "facebook_o_auth_scopes") @property @pulumi.getter(name="gitHubClientId") def git_hub_client_id(self) -> pulumi.Output[Optional[str]]: """ The Client Id of the GitHub app used for login. This setting is required for enabling Github login """ return pulumi.get(self, "git_hub_client_id") @property @pulumi.getter(name="gitHubClientSecret") def git_hub_client_secret(self) -> pulumi.Output[Optional[str]]: """ The Client Secret of the GitHub app used for Github Login. This setting is required for enabling Github login. """ return pulumi.get(self, "git_hub_client_secret") @property @pulumi.getter(name="gitHubClientSecretSettingName") def git_hub_client_secret_setting_name(self) -> pulumi.Output[Optional[str]]: """ The app setting name that contains the client secret of the Github app used for GitHub Login. """ return pulumi.get(self, "git_hub_client_secret_setting_name") @property @pulumi.getter(name="gitHubOAuthScopes") def git_hub_o_auth_scopes(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The OAuth 2.0 scopes that will be requested as part of GitHub Login authentication. This setting is optional """ return pulumi.get(self, "git_hub_o_auth_scopes") @property @pulumi.getter(name="googleClientId") def google_client_id(self) -> pulumi.Output[Optional[str]]: """ The OpenID Connect Client ID for the Google web application. This setting is required for enabling Google Sign-In. Google Sign-In documentation: https://developers.google.com/identity/sign-in/web/ """ return pulumi.get(self, "google_client_id") @property @pulumi.getter(name="googleClientSecret") def google_client_secret(self) -> pulumi.Output[Optional[str]]: """ The client secret associated with the Google web application. This setting is required for enabling Google Sign-In. Google Sign-In documentation: https://developers.google.com/identity/sign-in/web/ """ return pulumi.get(self, "google_client_secret") @property @pulumi.getter(name="googleClientSecretSettingName") def google_client_secret_setting_name(self) -> pulumi.Output[Optional[str]]: """ The app setting name that contains the client secret associated with the Google web application. """ return pulumi.get(self, "google_client_secret_setting_name") @property @pulumi.getter(name="googleOAuthScopes") def google_o_auth_scopes(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The OAuth 2.0 scopes that will be requested as part of Google Sign-In authentication. This setting is optional. If not specified, "openid", "profile", and "email" are used as default scopes. Google Sign-In documentation: https://developers.google.com/identity/sign-in/web/ """ return pulumi.get(self, "google_o_auth_scopes") @property @pulumi.getter(name="isAuthFromFile") def is_auth_from_file(self) -> pulumi.Output[Optional[str]]: """ "true" if the auth config settings should be read from a file, "false" otherwise """ return pulumi.get(self, "is_auth_from_file") @property @pulumi.getter def issuer(self) -> pulumi.Output[Optional[str]]: """ The OpenID Connect Issuer URI that represents the entity which issues access tokens for this application. When using Azure Active Directory, this value is the URI of the directory tenant, e.g. https://sts.windows.net/{tenant-guid}/. This URI is a case-sensitive identifier for the token issuer. More information on OpenID Connect Discovery: http://openid.net/specs/openid-connect-discovery-1_0.html """ return pulumi.get(self, "issuer") @property @pulumi.getter def kind(self) -> pulumi.Output[Optional[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @property @pulumi.getter(name="microsoftAccountClientId") def microsoft_account_client_id(self) -> pulumi.Output[Optional[str]]: """ The OAuth 2.0 client ID that was created for the app used for authentication. This setting is required for enabling Microsoft Account authentication. Microsoft Account OAuth documentation: https://dev.onedrive.com/auth/msa_oauth.htm """ return pulumi.get(self, "microsoft_account_client_id") @property @pulumi.getter(name="microsoftAccountClientSecret") def microsoft_account_client_secret(self) -> pulumi.Output[Optional[str]]: """ The OAuth 2.0 client secret that was created for the app used for authentication. This setting is required for enabling Microsoft Account authentication. Microsoft Account OAuth documentation: https://dev.onedrive.com/auth/msa_oauth.htm """ return pulumi.get(self, "microsoft_account_client_secret") @property @pulumi.getter(name="microsoftAccountClientSecretSettingName") def microsoft_account_client_secret_setting_name(self) -> pulumi.Output[Optional[str]]: """ The app setting name containing the OAuth 2.0 client secret that was created for the app used for authentication. """ return pulumi.get(self, "microsoft_account_client_secret_setting_name") @property @pulumi.getter(name="microsoftAccountOAuthScopes") def microsoft_account_o_auth_scopes(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The OAuth 2.0 scopes that will be requested as part of Microsoft Account authentication. This setting is optional. If not specified, "wl.basic" is used as the default scope. Microsoft Account Scopes and permissions documentation: https://msdn.microsoft.com/en-us/library/dn631845.aspx """ return pulumi.get(self, "microsoft_account_o_auth_scopes") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource Name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="runtimeVersion") def runtime_version(self) -> pulumi.Output[Optional[str]]: """ The RuntimeVersion of the Authentication / Authorization feature in use for the current app. The setting in this value can control the behavior of certain features in the Authentication / Authorization module. """ return pulumi.get(self, "runtime_version") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.SystemDataResponse']: """ The system metadata relating to this resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter(name="tokenRefreshExtensionHours") def token_refresh_extension_hours(self) -> pulumi.Output[Optional[float]]: """ The number of hours after session token expiration that a session token can be used to call the token refresh API. The default is 72 hours. """ return pulumi.get(self, "token_refresh_extension_hours") @property @pulumi.getter(name="tokenStoreEnabled") def token_store_enabled(self) -> pulumi.Output[Optional[bool]]: """ <code>true</code> to durably store platform-specific security tokens that are obtained during login flows; otherwise, <code>false</code>. The default is <code>false</code>. """ return pulumi.get(self, "token_store_enabled") @property @pulumi.getter(name="twitterConsumerKey") def twitter_consumer_key(self) -> pulumi.Output[Optional[str]]: """ The OAuth 1.0a consumer key of the Twitter application used for sign-in. This setting is required for enabling Twitter Sign-In. Twitter Sign-In documentation: https://dev.twitter.com/web/sign-in """ return pulumi.get(self, "twitter_consumer_key") @property @pulumi.getter(name="twitterConsumerSecret") def twitter_consumer_secret(self) -> pulumi.Output[Optional[str]]: """ The OAuth 1.0a consumer secret of the Twitter application used for sign-in. This setting is required for enabling Twitter Sign-In. Twitter Sign-In documentation: https://dev.twitter.com/web/sign-in """ return pulumi.get(self, "twitter_consumer_secret") @property @pulumi.getter(name="twitterConsumerSecretSettingName") def twitter_consumer_secret_setting_name(self) -> pulumi.Output[Optional[str]]: """ The app setting name that contains the OAuth 1.0a consumer secret of the Twitter application used for sign-in. """ return pulumi.get(self, "twitter_consumer_secret_setting_name") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="unauthenticatedClientAction") def unauthenticated_client_action(self) -> pulumi.Output[Optional[str]]: """ The action to take when an unauthenticated client attempts to access the app. """ return pulumi.get(self, "unauthenticated_client_action") @property @pulumi.getter(name="validateIssuer") def validate_issuer(self) -> pulumi.Output[Optional[bool]]: """ Gets a value indicating whether the issuer should be a valid HTTPS url and be validated as such. """ return pulumi.get(self, "validate_issuer")
1d78b2f287093aaabba4344add7cc6fae44f8d34
d5aa24b75c2344358752b0af0a47293533820578
/data_analysis/IO/load_data.py
6333a0cb4611a6478b56ee4e3cef726e09a8e012
[]
no_license
ModelDBRepository/234992
913da9efaadb704171da907ebd953fe59efe5fb1
b969a4c623b92c1bd79138f4132885bc424b114c
refs/heads/master
2020-05-29T18:28:48.883803
2019-05-31T03:42:59
2019-05-31T03:42:59
189,300,851
0
0
null
null
null
null
UTF-8
Python
false
false
1,298
py
import numpy as np import sys, pathlib sys.path.append(str(pathlib.Path(__file__).resolve().parents[2])) import data_analysis.IO.axon_to_python as axon import data_analysis.IO.binary_to_python as binary def load_file(filename, zoom=[0,np.inf]): if filename.endswith('.bin'): return binary.load_file(filename, zoom=zoom) elif filename.endswith('.abf'): print(filename) return axon.load_file(filename, zoom=zoom) else: return None def get_metadata(filename, infos={}): print('filename is', filename) if filename.endswith('.bin'): return binary.get_metadata(filename, infos=infos) elif filename.endswith('.abf'): return axon.get_metadata(filename, infos=infos) elif filename.endswith('.npz'): return {'main_protocol':'modeling_work'} else: return None def get_formated_data(filename): t, VEC = load_file(filename) meta = get_metadata(filename) data = {'t':t, 'Vm':VEC[0], 'infos':meta, 'dt':t[1]-t[0]} return data if __name__ == '__main__': import sys import matplotlib.pylab as plt filename = sys.argv[-1] print(get_metadata(filename)) t, data = load_file(filename, zoom=[-5.,np.inf]) plt.plot(t[10000:], data[0][10000:]) plt.show()
bda783c687d550284ea64c93dd66f035fb1f1dfb
fdfd9cab4e26491da5d2a06a15960362ccf01460
/ex32.py
2a85257657bbb1b65928785ed5e54f5bf092b766
[]
no_license
WilliamsHerrmann/MWM15
c182f7f8eca4f30a41e602a8e907497bc927af81
3f17abd57473f328ddd1e1a2a7591423f32da0f8
refs/heads/master
2021-07-07T05:01:06.486909
2017-10-02T18:18:44
2017-10-02T18:18:44
103,341,626
0
0
null
null
null
null
UTF-8
Python
false
false
816
py
the_count = [1, 2, 3, 4, 5] fruits = ['apples', 'oranges', 'pears', 'apricots'] change = [1, 'pennies', 2, 'dimes', 3, 'quarters'] # this first kind of for-loop goes through a list for number in the_count: print "This is count %d" % number # same as above for fruit in fruits: print "A fruit of type: %s" % fruit # also we can go through mixed lists too # notice we have to use %r since we don't know what's in it for i in change: print "I got %r" % i # we can also build lists, first start with an empty oranges elements = [] # the use the range function to do 0 to 5 counts for i in range(0, 6): print "Adding %d to the list." % i # append is a function that lists understand elements. append(i) # now we can print them out too for i in elements: print "Element was: %d" % i
c05b2d2d9ecd3eba54b5f2efb976613d93068b2e
5389214afd2a1607925c2104227395a4f2a2800e
/ajax_guide/urls.py
453bb0f440546b9de8d098f5eca2b16974c1770b
[]
no_license
vinoyjoshi/bandit
272081b3c843e85969e1a2217080beb08c2b0df5
2421d742bbf31faf9b699bd20058c242cbe68773
refs/heads/main
2023-01-06T01:49:58.327732
2020-10-15T19:47:39
2020-10-15T19:47:39
304,411,565
1
0
null
2020-10-15T19:47:40
2020-10-15T18:13:48
Python
UTF-8
Python
false
false
1,013
py
"""ajax_guide URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from app1 import views as app1 from django.conf.urls import url urlpatterns = [ path('admin/', admin.site.urls), path('',app1.contactPage), url(r'^ajax/contact-submit/$',app1.contact_submit, name = 'contact_submit'), path(r'^ajax/get_contact_info/$',app1.get_contact_info,name = 'get_contact_info') ]
7ed93578216aac980f00d00bb895797a9107acd9
e23a4f57ce5474d468258e5e63b9e23fb6011188
/018_dictionaries/examples/Python 3 Most Nessesary/9.3.Listing 9.4. Enumerating dictionary elements.py
68e2d165ac09ae3d6584391151010bbb29be77b9
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
1,111
py
d = {"x": 1, "y": 2, "z": 3} for key in d.keys(): # Использование метода keys() print("({0} => {1})".format(key, d[key]), end=" ") # Выведет: (y => 2) (x => 1) (z => 3) print() # Вставляем символ перевода строки for key in d: # Словари также поддерживают итерации print("({0} => {1})".format(key, d[key]), end=" ") # Выведет: (y => 2) (x => 1) (z => 3) d = {"x": 1, "y": 2, "z": 3} k = list(d.keys()) # Получаем список ключей k.sort() # Сортируем список ключей for key in k: print("({0} => {1})".format(key, d[key]), end=" ") # Выведет: (x => 1) (y => 2) (z => 3) d = {"x": 1, "y": 2, "z": 3} for key in sorted(d.keys()): print("({0} => {1})".format(key, d[key]), end=" ") # Выведет: (x => 1) (y => 2) (z => 3) d = {"x": 1, "y": 2, "z": 3} for key in sorted(d): print("({0} => {1})".format(key, d[key]), end=" ") # Выведет: (x => 1) (y => 2) (z => 3)
53b5a7771fd57d104ac7621b2ed2b6c9e1c01f96
aa265e03e73f718d4008cfe30ada7ee32c852eec
/ABC_A/ABC033_A.py
956f4fb0fc9fc60fd343a72f21a9d322326c5e91
[ "MIT" ]
permissive
ryosuke0825/atcoder_python
4fb9de9733cd9ef41c2ad9ad38b3f190f49d3ad5
52d037d0bc9ef2c721bf2958c1c2ead558cb0cf5
refs/heads/master
2023-03-11T22:47:56.963089
2023-03-05T01:21:06
2023-03-05T01:21:06
181,768,029
0
0
null
null
null
null
UTF-8
Python
false
false
82
py
n = input() if n.count(n[0]) == 4: print("SAME") else: print("DIFFERENT")
def2fc41b751673fb8775b648f289d98ef9a0106
51f6443116ef09aa91cca0ac91387c1ce9cb445a
/Curso_Python_3_UDEMY/desafios/desafio_html.py
d5648ffde600f190c5bda1912b3dff47252566db
[ "MIT" ]
permissive
DanilooSilva/Cursos_de_Python
f449f75bc586f7cb5a7e43000583a83fff942e53
8f167a4c6e16f01601e23b6f107578aa1454472d
refs/heads/main
2023-07-30T02:11:27.002831
2021-10-01T21:52:15
2021-10-01T21:52:15
331,683,041
0
0
null
null
null
null
UTF-8
Python
false
false
523
py
def tag(tag, *args, **kwargs): if 'html_class' in kwargs: kwargs['class'] = kwargs.pop('html_class') attrs = ''.join(f'{k}="{v}" ' for k, v in kwargs.items()) inner = ''.join(args) return f'<{tag} {attrs}>{inner}</{tag}>' if __name__ == '__main__': print(tag('p', tag('span', 'Curso de Python 3, por'), tag('strong', 'Juracy Filho', id='jf'), tag('span', ' e '), tag('strong', 'Leonador Leitão', id='ll'), tag('span', '.'), html_class='alert'))
e7b420a62db0bce2fe381107cc685f1bf88035d8
f3742f46560486c07c339244f8cf47bb07709561
/features/steps/test_utils.py
7cc4d34cc1b40e7598dc65345299f0ee9046838a
[ "MIT" ]
permissive
Azure/azure-event-hubs-python
55b65920f9d8dbe6cc418d63291ba507ce648d97
326f772f5cbe3d3eaf68b24485554aada463430a
refs/heads/master
2023-03-17T22:03:54.241386
2020-04-07T22:33:17
2020-04-07T22:33:17
91,842,040
65
66
MIT
2020-04-07T22:33:18
2017-05-19T20:14:44
Python
UTF-8
Python
false
false
3,540
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import uuid import time import asyncio def create_mgmt_client(credentials, subscription, location='westus'): from azure.mgmt.resource import ResourceManagementClient from azure.mgmt.eventhub import EventHubManagementClient resource_client = ResourceManagementClient(credentials, subscription) rg_name = 'pytest-{}'.format(uuid.uuid4()) resource_group = resource_client.resource_groups.create_or_update( rg_name, {'location': location}) eh_client = EventHubManagementClient(credentials, subscription) namespace = 'pytest-{}'.format(uuid.uuid4()) creator = eh_client.namespaces.create_or_update( resource_group.name, namespace) create.wait() return resource_group, eh_client def get_eventhub_config(): config = {} config['hostname'] = os.environ['EVENT_HUB_HOSTNAME'] config['event_hub'] = os.environ['EVENT_HUB_NAME'] config['key_name'] = os.environ['EVENT_HUB_SAS_POLICY'] config['access_key'] = os.environ['EVENT_HUB_SAS_KEY'] config['consumer_group'] = "$Default" config['partition'] = "0" return config def get_eventhub_100TU_config(): config = {} config['hostname'] = os.environ['EVENT_HUB_100TU_HOSTNAME'] config['event_hub'] = os.environ['EVENT_HUB_100TU_NAME'] config['key_name'] = os.environ['EVENT_HUB_100TU_SAS_POLICY'] config['access_key'] = os.environ['EVENT_HUB_100TU_SAS_KEY'] config['consumer_group'] = "$Default" config['partition'] = "0" return config def send_constant_messages(sender, timeout, payload=1024): deadline = time.time() total = 0 while time.time() < deadline: data = EventData(body=b"D" * payload) sender.send(data) total += 1 return total def send_constant_async_messages(sender, timeout, batch_size=10000, payload=1024): deadline = time.time() total = 0 while time.time() < deadline: data = EventData(body=b"D" * args.payload) sender.transfer(data) total += 1 if total % 10000 == 0: sender.wait() return total def send_constant_async_messages(sender, timeout, batch_size=1, payload=1024): deadline = time.time() while time.time() < deadline: if batch_size > 1: data = EventData(batch=data_generator()) else: data = EventData(body=b"D" * payload) async def receive_pump(receiver, timeout, validation=True): total = 0 deadline = time.time() + timeout sequence = 0 offset = None while time.time() < deadline: batch = await receiver.receive(timeout=5) total += len(batch) if validation: assert receiver.offset for event in batch: next_sequence = event.sequence_number assert next_sequence > sequence, "Received Event with lower sequence number than previous." assert (next_sequence - sequence) == 1, "Sequence number skipped by a value great than 1." sequence = next_sequence msg_data = b"".join([b for b in event.body]).decode('UTF-8') assert json.loads(msg_data), "Unable to deserialize Event data."
55fc9a1726e44163be89eb8a2441951491ef7af9
ef3a7391b0a5c5d8e276355e97cbe4de621d500c
/venv/Lib/site-packages/caffe2/python/layer_model_helper.py
9bb56400ffb7a26b831eb2f82abdf36f27bdbc1c
[ "Apache-2.0" ]
permissive
countBMB/BenjiRepo
143f6da5d198ea6f06404b4559e1f4528b71b3eb
79d882263baaf2a11654ca67d2e5593074d36dfa
refs/heads/master
2022-12-11T07:37:04.807143
2019-12-25T11:26:29
2019-12-25T11:26:29
230,090,428
1
1
Apache-2.0
2022-12-08T03:21:09
2019-12-25T11:05:59
Python
UTF-8
Python
false
false
28,709
py
# @package layer_model_helper # Module caffe2.python.layer_model_helper from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, model_helper, schema, scope, utils, muji from caffe2.python.modeling.parameter_info import ( ParameterInfo, ) from caffe2.python.modeling.parameter_sharing import ( parameter_sharing_context, ) from caffe2.python.modeling.net_modifier import NetModifier from caffe2.python.optimizer import get_param_device, Optimizer from caffe2.python.regularizer import Regularizer, RegularizationBy from caffe2.python.layers import layers from caffe2.proto import caffe2_pb2 from future.utils import viewitems, viewvalues import logging import numpy as np import six import copy logger = logging.getLogger(__name__) class LayerModelHelper(model_helper.ModelHelper): """ Model helper for building models on top of layers abstractions. Each layer is the abstraction that is higher level than Operator. Layer is responsible for ownership of it's own parameters and can easily be instantiated in multiple nets possible with different sets of ops. As an example: one can easily instantiate predict and train nets from the same set of layers, where predict net will have subset of the operators from train net. """ def __init__(self, name, input_feature_schema, trainer_extra_schema, keep_blobs=False): ''' TODO(amalevich): more documnetation on input args ''' super(LayerModelHelper, self).__init__(name=name) self._layer_names = set() self._layers = [] self._param_to_shape = {} # seed default self._seed = None self._sequence_seed = True # optimizer bookkeeping self.param_to_optim = {} self.param_to_reg = {} self._default_optimizer = None self._loss = None self._prediction = [] self._output_schema = None self._post_grad_net_modifiers = [] self._final_net_modifiers = [] # breakdown map; breakdown features are categorical (like dense) but not # necessarily used to represent data for training self._breakdown_map = None # Connect Schema to self.net. That particular instance of schmea will be # use for generation of the Layers accross the network and would be used # for connection with Readers. self._input_feature_schema = schema.NewRecord( self.net, input_feature_schema ) if not keep_blobs else input_feature_schema.clone() self._trainer_extra_schema = schema.NewRecord( self.net, trainer_extra_schema ) if not keep_blobs else trainer_extra_schema.clone() self._metrics_schema = schema.Struct() self._preproc_output_schema = None self._init_global_constants() self.param_init_net = self.create_init_net('param_init_net') self._initialize_params = True # additional (hard-coded) diagnose_options to report based on the model # TODO(xlwang): it's hack! self.ad_hoc_diagnose_blobs_and_operations = [] self.ad_hoc_plot_blobs = [] def clear_output_schema(self): self._output_schema = None def set_initialize_params(self, initialize_params): self._initialize_params = initialize_params def add_metric_field(self, name, value): assert name not in self._metrics_schema.fields, ( "Try to add metric field twice: {}".format(name)) self._metrics_schema = self._metrics_schema + schema.Struct( (name, value) ) # an empty white_set will skip everything def filter_metrics_schema(self, white_set): logger.info("Filter metric schema with white_set {}".format(white_set)) field_names = self._metrics_schema.field_names() for name in field_names: if name not in white_set: self._metrics_schema = self._metrics_schema - schema.Struct((name, schema.Scalar())) def add_ad_hoc_plot_blob(self, blob, dtype=None): assert isinstance( blob, (six.string_types, core.BlobReference) ), "expect type str or BlobReference, but got {}".format(type(blob)) dtype = dtype or (np.float, (1, )) self.add_metric_field(str(blob), schema.Scalar(dtype, blob)) self.ad_hoc_plot_blobs.append(blob) @staticmethod def _get_global_constant_initializer_op( blob_name, array=None, dtype=None, initializer=None ): # to add a global constant to model, one first need to get the # initializer if array is not None: assert initializer is None,\ "Only one from array and initializer should be specified" if dtype is None: array = np.array(array) else: array = np.array(array, dtype=dtype) # TODO: make GivenTensor generic op_name = None if array.dtype == np.int32: op_name = 'GivenTensorIntFill' elif array.dtype == np.int64: op_name = 'GivenTensorInt64Fill' elif array.dtype == np.str: op_name = 'GivenTensorStringFill' elif array.dtype == np.bool: op_name = 'GivenTensorBoolFill' else: op_name = 'GivenTensorFill' def initializer(blob_name): return core.CreateOperator( op_name, [], blob_name, shape=array.shape, values=array.flatten().tolist() ) else: assert initializer is not None initializer_op = initializer(blob_name) return initializer_op def add_global_constant( self, name, array=None, dtype=None, initializer=None ): assert isinstance(name, six.string_types), ( 'name should be a string as we are using it as map key') # This is global namescope for constants. They will be created in all # init_nets and there should be very few of them. assert name not in self.global_constants, \ "%s already added in global_constants" % name blob_name = self.net.NextBlob(name) self.global_constants[name] = blob_name initializer_op = LayerModelHelper._get_global_constant_initializer_op( blob_name, array, dtype, initializer ) assert blob_name not in self.global_constant_initializers, \ "there is already a initializer op associated with blob %s" % \ blob_name self.global_constant_initializers[blob_name] = initializer_op return blob_name def maybe_add_global_constant(self, name, *args, **kwargs): # To ad hoc add new global constants without duplication # if the name was already registered in global_constants, it will not be # added even if the intended value is different from its original value if name in self.global_constants: blob_name = self.global_constants[name] initializer_op = \ LayerModelHelper._get_global_constant_initializer_op( blob_name, *args, **kwargs ) # check if the original initializer is the same as the one intended # now assert utils.OpAlmostEqual( initializer_op, self.global_constant_initializers[blob_name], 'debug_info' ), \ "conflict initializers for global constant %s, " \ "previous %s, now %s" % ( blob_name, str(initializer_op), str(self.global_constant_initializers[blob_name])) return blob_name return self.add_global_constant(name, *args, **kwargs) def _init_global_constants(self): self.global_constants = {} self.global_constant_initializers = {} self.add_global_constant('ONE', 1.0) self.add_global_constant('ZERO', 0.0) self.add_global_constant('ZERO_RANGE', [0, 0], dtype='int32') def _add_global_constants(self, init_net): for initializer_op in viewvalues(self.global_constant_initializers): init_net._net.op.extend([initializer_op]) def create_init_net(self, name): init_net = core.Net(name) self._add_global_constants(init_net) return init_net def _validate_param_shape(self, param_name, shape): if param_name not in self._param_to_shape: return ref_shape = self._param_to_shape[param_name] if shape != ref_shape: raise ValueError( "Got inconsistent shapes between shared parameters " "when trying to map a blob in scope {0} to {1}. ref_shape : " " {2}, shape : {3}".format( scope.CurrentNameScope(), param_name, ref_shape, shape) ) def _validate_param_optim(self, param_name, optim): # there are three possible values for optim: # 1) None (which will use self._default_optimizer after this layer is instantiated) # 2) self.NoOptim # 3) an instance of Optimizer class such as AdagradOptimizer # this implies this parameter is not shared with any other parameter so far if param_name not in self.param_to_optim: return logger.info("{} shares the same parameter with another parameter. " "Validating if the same optimizer has been specified for them.".format( param_name, )) ref_optim = self.param_to_optim[param_name] if optim is None: assert ref_optim == self._default_optimizer, ( "Optim for {} is None which will fall back to use default_optimizer. " "However, the optimizer that has been specified for this shared parameter " "is {} which is different from default_optimizer {}. " "Please check the optimizers specified for parameters shared " "with {} and the default_optimizer to ensure the consistency.".format( param_name, ref_optim, self._default_optimizer, param_name ) ) elif optim == self.NoOptim: assert ref_optim == self.NoOptim, ( "Optim for {} is NoOptim. However, the optimizer for the parameters " "shared with {} is {} which is different from NoOptim. " "Please check the optimizer specified for other parameters in the " "shared group to ensure consistency.".format( param_name, param_name, ref_optim ) ) elif isinstance(optim, Optimizer): assert isinstance(ref_optim, Optimizer), ( "Optim for {} is an instance of Optimizer. However, the optimizer " "for the parameters shared with {} is {} which is not an instance " "of Optimizer. Please check the optimizer specified for other " " parameters in the shared group to ensure consistency.".format( param_name, param_name, ref_optim, optim ) ) assert type(optim) is type(ref_optim) and optim.attributes == ref_optim.attributes, ( "Optim for {} is an instance of Optimizer. However, the optimizer " "for the parameters shared with {} is {}. " "This optimizer either doesn't have the same type as the current optimizer: " "{} vs {}, or its attributes such as learning rate are different from " "that of current optimizer which is {} vs {}. " "Please check the optimizer specified for other parameters in the " "shared group to ensure consistency.".format( param_name, param_name, ref_optim, type(optim), type(ref_optim), optim.attributes, ref_optim.attributes ) ) else: raise ValueError("optim should be either None, NoOptim, or an instance of Optimizer, Got {} ".format(optim)) def create_param(self, param_name, shape, initializer, optimizer=None, ps_param=None, regularizer=None): if isinstance(param_name, core.BlobReference): param_name = str(param_name) elif isinstance(param_name, six.string_types): # Parameter name will be equal to current Namescope that got # resolved with the respect of parameter sharing of the scopes. param_name = parameter_sharing_context.get_parameter_name( param_name) else: raise ValueError("Unsupported type for param_name") param_blob = core.BlobReference(param_name) if len(initializer) == 1: init_op_args = {} else: assert len(initializer) == 2 init_op_args = copy.deepcopy(initializer[1]) if shape is not None: assert 'shape' not in init_op_args init_op_args.update({'shape': shape}) initializer_op = None if self._initialize_params: initializer_op = core.CreateOperator( initializer[0], [], param_blob, **init_op_args ) param = layers.LayerParameter( parameter=param_blob, initializer=initializer_op, optimizer=optimizer, ps_param=ps_param, regularizer=regularizer ) self._validate_param_shape(param_name, shape) self._validate_param_optim(param_name, optimizer) self._param_to_shape[param_name] = shape return param def next_layer_name(self, prefix): base_name = core.ScopedName(prefix) name = base_name index = 0 while name in self._layer_names: name = base_name + '_auto_' + str(index) index += 1 self._layer_names.add(name) return name def add_layer(self, layer): self._layers.append(layer) for param in layer.get_parameters(): assert isinstance(param.parameter, core.BlobReference) self.param_to_optim[str(param.parameter)] = \ param.optimizer or self.default_optimizer self.params.append(param.parameter) if isinstance(param, layers.LayerParameter): logger.info("Add parameter regularizer {0}".format(param.parameter)) self.param_to_reg[param.parameter] = param.regularizer elif isinstance(param, ParameterInfo): # TODO: # Currently, LSTM and RNNcells, which use ModelHelper instead of # LayerModelHelper as super class, are called in pooling_methods # In ModelHelper, regularization is not supported in create_param # We will unify the way of create_param of ModelHelper and # LayerModelHelper in the future. logger.info('regularization is unsupported for ParameterInfo object') else: raise ValueError( 'unknown object type besides ParameterInfo and LayerParameter: {}' .format(param) ) # The primary value of adding everything to self.net - generation of the # operators right away, i.e. if error happens it'll be detected # immediately. Other than this - create_x_net should be called. layer.add_operators(self.net, self.param_init_net) return layer.output_schema def get_parameter_blobs(self): param_blobs = [] for layer in self._layers: for param in layer.get_parameters(): param_blobs.append(param.parameter) return param_blobs def add_post_grad_net_modifiers(self, modifier): assert modifier not in self._post_grad_net_modifiers,\ "{0} is already in {1}".format(modifier, self._post_grad_net_modifiers) assert isinstance(modifier, NetModifier),\ "{} has to be a NetModifier instance".format(modifier) self._post_grad_net_modifiers.append(modifier) def add_final_net_modifiers(self, modifier): assert modifier not in self._final_net_modifiers,\ "{0} is already in {1}".format(modifier, self._final_net_modifiers) assert isinstance(modifier, NetModifier),\ "{} has to be a NetModifier instance".format(modifier) self._final_net_modifiers.append(modifier) @property def seed(self): return self._seed @property def sequence_seed(self): return self._sequence_seed def store_seed(self, seed, sequence_seed=True): # Store seed config that will be applied to each op in the net. self._seed = seed # If sequence_seed is True, the i-th op has rand_seed=`seed + i` self._sequence_seed = sequence_seed def apply_seed(self, net): if self._seed: net.set_rand_seed(self._seed, self._sequence_seed) @property def default_optimizer(self): return self._default_optimizer @default_optimizer.setter def default_optimizer(self, optimizer): self._default_optimizer = optimizer @property def input_feature_schema(self): return self._input_feature_schema @property def trainer_extra_schema(self): return self._trainer_extra_schema @property def metrics_schema(self): """ Returns the schema that represents model output that should be used for metric reporting. During the training/evaluation this schema will be appended to the schema that represents model output. """ return self._metrics_schema @property def output_schema(self): assert self._output_schema is not None return self._output_schema @output_schema.setter def output_schema(self, schema): assert self._output_schema is None self._output_schema = schema @property def preproc_output_schema(self): assert self._preproc_output_schema is not None return self._preproc_output_schema @preproc_output_schema.setter def preproc_output_schema(self, schema): assert self._preproc_output_schema is None self._preproc_output_schema = schema @property def prediction(self): assert self._prediction, "model prediction is empty" return self._prediction def add_prediction(self, prediction, weight=1.0): assert prediction is not None, "Added prediction should not be None" self._prediction.append((prediction, weight)) @property def loss(self): assert self._loss is not None return self._loss @loss.setter def loss(self, loss): assert self._loss is None self._loss = loss def has_loss(self): return self._loss is not None def add_loss(self, loss, name='unnamed'): assert loss is not None, "Added loss should not be None" assert isinstance(loss, schema.Scalar) or isinstance( loss, schema.Struct ), "Added loss should be a scalar or a struct" if self._loss is None: self._loss = schema.Struct((name, loss)) else: # loss could've been set through model.loss directly which could be # a scalar if isinstance(self._loss, schema.Scalar): self._loss = schema.Struct(('unnamed', self._loss)) prefix_base = name + '_auto_' index = 0 prefix = name while prefix in self._loss: prefix = prefix_base + str(index) index += 1 loss_struct = schema.Struct((prefix, loss)) self._loss = self._loss + loss_struct def add_output_schema(self, name, value): assert value is not None, \ 'Added output schema {} should not be None'.format(name) assert isinstance(value, schema.Scalar) or \ isinstance(value, schema.Struct), \ 'Added output schema {} should be a scalar or a struct.\n\ Now it is {}.'.format(name, type(value)) if self._output_schema is None: # be the first field self._output_schema = schema.Struct((name, value)) else: # merge with other fields assert name not in self._output_schema.fields, \ 'Output Schema Field {} already exists'.format(name) self._output_schema = \ self._output_schema + schema.Struct((name, value)) def add_trainer_extra_schema(self, trainer_extra_schema): trainer_extra_record = schema.NewRecord(self.net, trainer_extra_schema) self._trainer_extra_schema += trainer_extra_record def __getattr__(self, layer): def is_functional_layer(layer): if core.IsOperator(layer): return True elif layer.startswith('FunctionalLayer'): return True else: return False def resolve_functional_layer(layer): if core.IsOperator(layer): return layer elif layer.startswith('FunctionalLayer'): return layer[len('FunctionalLayer'):] else: raise ValueError( '%s cannot be resolved as functional layer' % layer ) if layer.startswith('__'): raise AttributeError(layer) # TODO(amalevich): Add add support for ifbpy inline documentation if layers.layer_exists(layer): def wrapper(*args, **kwargs): new_layer = layers.create_layer(layer, self, *args, **kwargs) if kwargs.get("output_to_metrics", False): new_layer.export_output_for_metrics() if kwargs.get("params_to_metrics", False): new_layer.export_params_for_metrics() return self.add_layer(new_layer) return wrapper elif is_functional_layer(layer): # TODO(xlwang): Desginated layer shadows the usage of an op as a # single layer. To enforce using an op (e.g. Split) as functional # layer, one can call 'model.FunctionalLayerSplit' layer = resolve_functional_layer(layer) def wrapper(*args, **kwargs): def apply_operator(net, in_record, out_record, **kwargs): # TODO(amalevich): Switch to net.operator as soon as it gets # landed net.__getattr__(layer)(in_record.field_blobs(), out_record.field_blobs(), **kwargs) if 'name' not in kwargs: kwargs['name'] = layer new_layer = layers.create_layer( 'Functional', self, *args, function=apply_operator, **kwargs ) if kwargs.get("output_to_metrics", False): new_layer.export_output_for_metrics() if kwargs.get("params_to_metrics", False): new_layer.export_params_for_metrics() return self.add_layer(new_layer) return wrapper else: # this needs to be an AttributeError to fit hasattr semantics raise AttributeError( "Trying to create non-registered layer: {}".format(layer)) @property def layers(self): return self._layers def apply_regularizers_on_loss( self, train_net, train_init_net, blob_to_device=None, ): logger.info("apply regularizer on loss") for param, regularizer in viewitems(self.param_to_reg): if regularizer is None: continue logger.info("add regularizer {0} for param {1} to loss".format(regularizer, param)) assert isinstance(regularizer, Regularizer) added_loss_blob = regularizer(train_net, train_init_net, param, grad=None, by=RegularizationBy.ON_LOSS) logger.info(added_loss_blob) if added_loss_blob is not None: self.add_loss( schema.Scalar(blob=added_loss_blob), str(added_loss_blob) ) def apply_regularizers_after_optimizer( self, train_net, train_init_net, grad_map, blob_to_device=None, ): logger.info("apply regularizer after optimizer") CPU = muji.OnCPU() # if given, blob_to_device is a map from blob to device_option blob_to_device = blob_to_device or {} for param, regularizer in viewitems(self.param_to_reg): if regularizer is None: continue assert isinstance(regularizer, Regularizer) logger.info("add regularizer {0} for param {1} to optimizer".format(regularizer, param)) device = get_param_device( param, grad_map.get(str(param)), param_to_device=blob_to_device, default_device=CPU, ) with core.DeviceScope(device): regularizer( train_net, train_init_net, param, grad=grad_map.get(str(param)), by=RegularizationBy.AFTER_OPTIMIZER ) def apply_post_grad_net_modifiers( self, trainer_net, trainer_init_net, grad_map, blob_to_device=None, modify_output_record=False, ): param_grad_map = {param: grad_map[param] for param in self.param_to_optim.keys() if param in grad_map} for modifier in self._post_grad_net_modifiers: modifier(trainer_net, trainer_init_net, param_grad_map, blob_to_device=blob_to_device, modify_output_record=modify_output_record) def apply_final_net_modifiers( self, trainer_net, trainer_init_net, grad_map, blob_to_device=None, modify_output_record=False, ): for modifier in self._final_net_modifiers: modifier(trainer_net, trainer_init_net, grad_map, blob_to_device=blob_to_device, modify_output_record=modify_output_record) def apply_optimizers( self, train_net, train_init_net, grad_map, blob_to_device=None, ): CPU = muji.OnCPU() # if given, blob_to_device is a map from blob to device_option blob_to_device = blob_to_device or {} for param, optimizer in viewitems(self.param_to_optim): assert optimizer is not None, \ "default optimizer must have been set in add_layer" # note that not all params has gradient and thus we sent None if # gradient does not exists device = get_param_device( param, grad_map.get(str(param)), param_to_device=blob_to_device, default_device=CPU, ) if device is not None: # extra info is not applicable for optimizers del device.extra_info[:] with core.DeviceScope(device): optimizer( train_net, train_init_net, param, grad_map.get(str(param))) def _GetOne(self): return self.global_constants['ONE'] # An optimizer which allows us to do NO optimization def NoOptim(self, *args, **kwargs): pass @property def breakdown_map(self): return self._breakdown_map @breakdown_map.setter def breakdown_map(self, breakdown_map): # TODO(xlwang): provide more rich feature information in breakdown_map; # and change the assertion accordingly assert isinstance(breakdown_map, dict) assert all(isinstance(k, six.string_types) for k in breakdown_map) assert sorted(breakdown_map.values()) == list(range(len(breakdown_map))) self._breakdown_map = breakdown_map
9dcf9692cc7ae29a7f56fa27e78cdc21365c70ba
8a5ab3d33e3b653c4c64305d81a85f6a4582d7ac
/PySide/QtGui/QStyleOptionTab.py
264b7c0e040a27794ebb0a067eb56b9436f49f11
[ "Apache-2.0" ]
permissive
sonictk/python-skeletons
be09526bf490856bb644fed6bf4e801194089f0d
49bc3fa51aacbc2c7f0c7ab86dfb61eefe02781d
refs/heads/master
2020-04-06T04:38:01.918589
2016-06-09T20:37:43
2016-06-09T20:37:43
56,334,503
0
0
null
2016-04-15T16:30:42
2016-04-15T16:30:42
null
UTF-8
Python
false
false
1,122
py
# encoding: utf-8 # module PySide.QtGui # from /corp.blizzard.net/BFD/Deploy/Packages/Published/ThirdParty/Qt4.8.4/2015-05-15.163857/prebuilt/linux_x64_gcc41_python2.7_ucs4/PySide/QtGui.so # by generator 1.138 # no doc # imports import PySide.QtCore as __PySide_QtCore from QStyleOption import QStyleOption class QStyleOptionTab(QStyleOption): # no doc def __init__(self, *more): # real signature unknown; restored from __doc__ """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass Beginning = None CornerWidget = None cornerWidgets = None CornerWidgets = None End = None icon = None LeftCornerWidget = None Middle = None NextIsSelected = None NoCornerWidgets = None NotAdjacent = None OnlyOneTab = None position = None PreviousIsSelected = None RightCornerWidget = None row = None selectedPosition = None SelectedPosition = None shape = None StyleOptionType = None StyleOptionVersion = None TabPosition = None text = None Type = None Version = None __new__ = None
857ea37b6d65aa8708b7aa91520822899db9bbaa
b3e90c765a70d0c68a3c703c31ebfbcc67d8f83e
/AN_Bridging/box_ws/src/multi_box/src/Algs/SoftActorCritic.py
6147e9cd1403a16b426ef7d1722e30eefb48531e
[]
no_license
ronf-ucb/MultiRobot
619fe1750dd25c336f7ef793e43983d992cbf519
b509e9c43e330e737135298ea4cfbd4190222328
refs/heads/master
2021-07-19T20:39:47.835985
2020-09-07T14:32:39
2020-09-07T14:32:39
211,394,959
1
2
null
2019-10-30T22:21:20
2019-09-27T20:15:07
C++
UTF-8
Python
false
false
3,825
py
#! /usr/bin/env python import numpy as np import torch import torch.nn as nn import math import rospy from std_msgs.msg import String, Int8 from geometry_msgs.msg import Vector3 import vrep import matplotlib.pyplot as plt import torch.optim as optim from Networks.network import Network from Networks.softNetwork import SoftNetwork from agent import Agent from Buffers.CounterFactualBuffer import Memory cuda_avail = torch.cuda.is_available() device = torch.device("cuda" if cuda_avail else "cpu") class SAC(Agent): def __init__(self, params, name, task): super(SAC, self).__init__(params, name, task) self.aPars = params['actPars'] self.aTrain = params['actTrain'] self.qPars = params['qPars'] self.qTrain = params['qTrain'] if self.trainMode: self.QNet = Network(self.qPars, self.qTrain).to(device) self.VNet = Network(self.vPars, self.vTrain).to(device) self.VTar = Network(self.vPars, self.vTrain).to(device) self.policyNet = SoftNetwork(self.aPars, self.aTrain).to(device) else: print('Not implemented') for target_param, param in zip(self.VTar.parameters(), self.VNet.parameters()): target_param.data.copy_(param) self.expSize = self.vTrain['buffer'] self.actions = self.aPars['neurons'][-1] self.state = self.aPars['neurons'][0] self.exp = ReplayBuffer(self.expSize, self.actions, np.float32, self.state, np.float32) task.initAgent(self) while(not self.stop): x = 1+1 task.postTraining() def load_nets(self): pass def saveModel(self): pass def get_action(self, s): action, _ , _, _, _= self.policyNet(torch.FloatTensor(s)) action = np.ravel(action.detach().numpy()) return action def send_to_device(self, s, a, r, next_s, d): s = torch.FloatTensor(s).to(device) a = torch.FloatTensor(a).to(device) r = torch.FloatTensor(r).unsqueeze(1).to(device) next_s = torch.FloatTensor(next_s).to(device) d = torch.FloatTensor(np.float32(d)).unsqueeze(1).to(device) return s, a, r, next_s, d def train(self): if len(self.exp) > 750: s, a, r, next_s, d = self.exp.sample_batch(self.batch_size) s, a, r, next_s, d = self.send_to_device(s, a, r, next_s, d) q = self.QNet(torch.cat([s, a], dim = 1)) v = self.VNet(s) new_a, log_prob, z, mean, log_std = self.policyNet(s) target_v = self.VTar(next_s) next_q = r + (1 - d) * self.discount * target_v q_loss = self.QNet.get_loss(q, next_q.detach()) new_q = self.QNet(torch.cat([s, new_a], dim=1)) next_v = new_q - log_prob * self.alpha v_loss = self.VNet.get_loss(v, next_v.detach()) target = new_q - v actor_loss = (log_prob * (log_prob*self.alpha - target).detach()).mean() mean_loss = 1e-3 * mean.pow(2).mean() std_loss = 1e-3 * log_std.pow(2).mean() actor_loss += mean_loss + std_loss self.VNet.optimizer.zero_grad() v_loss.backward() self.VNet.optimizer.step() self.QNet.optimizer.zero_grad() q_loss.backward() self.QNet.optimizer.step() self.policyNet.optimizer.zero_grad() actor_loss.backward() self.policyNet.optimizer.step() for target_param, param in zip(self.VTar.parameters(), self.VNet.parameters()): target_param.data.copy_(target_param.data * (1.0 - 5*1e-3) + param.data * 5*1e-3) self.totalSteps += 1
c7c9ab5555c62ef7bca526ca8069b83788f07dc4
a3e26112cb5d6b64c30b44f775750653a1daf0dc
/Q910_Smallest-Range-II.py
550d96ea406915f5883d2b9d5cea91a4561727d1
[ "MIT" ]
permissive
xiaosean/leetcode_python
938f1df379b518d99a778e2da8093ff0371e35d4
d6fc52d13946895d2b2928ef9962af0610b1d1e8
refs/heads/master
2023-04-05T07:07:01.561010
2023-03-25T19:17:21
2023-03-25T19:17:21
150,637,066
0
0
null
null
null
null
UTF-8
Python
false
false
511
py
class Solution: def smallestRangeII(self, A: List[int], K: int) -> int: A.sort() min_range = A[-1] - A[0] min_val = A[0] max_val_sub_k = A[-1] - K min_val = A[0] + K for idx in range(len(A)-1): cur_val = A[idx] + K next_val = A[idx+1] - K min_range = min(min_range, max(max_val_sub_k, cur_val) - min(min_val, next_val)) # min_range = min(min_range, max_val_sub_k-min(cur_val, next_val)) return min_range
855fb15b15d33fbe562973352dba115c1014db55
251e8bfec0bfc5b6094f7db8ee6bdfe1ca7f6a5b
/bookmanager/venv/bin/python-config
759cfeb2748510449a11b8162c1a3830533ca6fc
[]
no_license
googleliyang/Django_meiduo
543042e08cc5eeb1dce8432b4ea2cca996f35c06
46f48ecf7bd6e9e2796eac1c3d54787f5571a9a7
refs/heads/master
2020-04-24T19:22:42.295324
2019-02-28T05:24:23
2019-02-28T05:24:23
172,209,685
0
0
null
null
null
null
UTF-8
Python
false
false
2,362
#!/Users/ly/Programmer/django/bookmanager/venv/bin/python import sys import getopt import sysconfig valid_opts = ['prefix', 'exec-prefix', 'includes', 'libs', 'cflags', 'ldflags', 'help'] if sys.version_info >= (3, 2): valid_opts.insert(-1, 'extension-suffix') valid_opts.append('abiflags') if sys.version_info >= (3, 3): valid_opts.append('configdir') def exit_with_usage(code=1): sys.stderr.write("Usage: {0} [{1}]\n".format( sys.argv[0], '|'.join('--'+opt for opt in valid_opts))) sys.exit(code) try: opts, args = getopt.getopt(sys.argv[1:], '', valid_opts) except getopt.error: exit_with_usage() if not opts: exit_with_usage() pyver = sysconfig.get_config_var('VERSION') getvar = sysconfig.get_config_var opt_flags = [flag for (flag, val) in opts] if '--help' in opt_flags: exit_with_usage(code=0) for opt in opt_flags: if opt == '--prefix': print(sysconfig.get_config_var('prefix')) elif opt == '--exec-prefix': print(sysconfig.get_config_var('exec_prefix')) elif opt in ('--includes', '--cflags'): flags = ['-I' + sysconfig.get_path('include'), '-I' + sysconfig.get_path('platinclude')] if opt == '--cflags': flags.extend(getvar('CFLAGS').split()) print(' '.join(flags)) elif opt in ('--libs', '--ldflags'): abiflags = getattr(sys, 'abiflags', '') libs = ['-lpython' + pyver + abiflags] libs += getvar('LIBS').split() libs += getvar('SYSLIBS').split() # add the prefix/lib/pythonX.Y/config dir, but only if there is no # shared library in prefix/lib/. if opt == '--ldflags': if not getvar('Py_ENABLE_SHARED'): libs.insert(0, '-L' + getvar('LIBPL')) if not getvar('PYTHONFRAMEWORK'): libs.extend(getvar('LINKFORSHARED').split()) print(' '.join(libs)) elif opt == '--extension-suffix': ext_suffix = sysconfig.get_config_var('EXT_SUFFIX') if ext_suffix is None: ext_suffix = sysconfig.get_config_var('SO') print(ext_suffix) elif opt == '--abiflags': if not getattr(sys, 'abiflags', None): exit_with_usage() print(sys.abiflags) elif opt == '--configdir': print(sysconfig.get_config_var('LIBPL'))
6a3de9a2997e3969d187a691ddd2deb96e6635a7
bc9f66258575dd5c8f36f5ad3d9dfdcb3670897d
/lib/googlecloudsdk/generated_clients/apis/ondemandscanning/v1beta1/ondemandscanning_v1beta1_client.py
0ee06b63db758efe5802e29267514cc6f5aa75df
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
google-cloud-sdk-unofficial/google-cloud-sdk
05fbb473d629195f25887fc5bfaa712f2cbc0a24
392abf004b16203030e6efd2f0af24db7c8d669e
refs/heads/master
2023-08-31T05:40:41.317697
2023-08-23T18:23:16
2023-08-23T18:23:16
335,182,594
9
2
NOASSERTION
2022-10-29T20:49:13
2021-02-02T05:47:30
Python
UTF-8
Python
false
false
13,062
py
"""Generated client library for ondemandscanning version v1beta1.""" # NOTE: This file is autogenerated and should not be edited by hand. from __future__ import absolute_import from apitools.base.py import base_api from googlecloudsdk.generated_clients.apis.ondemandscanning.v1beta1 import ondemandscanning_v1beta1_messages as messages class OndemandscanningV1beta1(base_api.BaseApiClient): """Generated client library for service ondemandscanning version v1beta1.""" MESSAGES_MODULE = messages BASE_URL = 'https://ondemandscanning.googleapis.com/' MTLS_BASE_URL = 'https://ondemandscanning.mtls.googleapis.com/' _PACKAGE = 'ondemandscanning' _SCOPES = ['https://www.googleapis.com/auth/cloud-platform'] _VERSION = 'v1beta1' _CLIENT_ID = 'CLIENT_ID' _CLIENT_SECRET = 'CLIENT_SECRET' _USER_AGENT = 'google-cloud-sdk' _CLIENT_CLASS_NAME = 'OndemandscanningV1beta1' _URL_VERSION = 'v1beta1' _API_KEY = None def __init__(self, url='', credentials=None, get_credentials=True, http=None, model=None, log_request=False, log_response=False, credentials_args=None, default_global_params=None, additional_http_headers=None, response_encoding=None): """Create a new ondemandscanning handle.""" url = url or self.BASE_URL super(OndemandscanningV1beta1, self).__init__( url, credentials=credentials, get_credentials=get_credentials, http=http, model=model, log_request=log_request, log_response=log_response, credentials_args=credentials_args, default_global_params=default_global_params, additional_http_headers=additional_http_headers, response_encoding=response_encoding) self.projects_locations_operations = self.ProjectsLocationsOperationsService(self) self.projects_locations_scans_vulnerabilities = self.ProjectsLocationsScansVulnerabilitiesService(self) self.projects_locations_scans = self.ProjectsLocationsScansService(self) self.projects_locations = self.ProjectsLocationsService(self) self.projects = self.ProjectsService(self) class ProjectsLocationsOperationsService(base_api.BaseApiService): """Service class for the projects_locations_operations resource.""" _NAME = 'projects_locations_operations' def __init__(self, client): super(OndemandscanningV1beta1.ProjectsLocationsOperationsService, self).__init__(client) self._upload_configs = { } def Cancel(self, request, global_params=None): r"""Starts asynchronous cancellation on a long-running operation. The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Clients can use Operations.GetOperation or other methods to check whether the cancellation succeeded or whether the operation completed despite cancellation. On successful cancellation, the operation is not deleted; instead, it becomes an operation with an Operation.error value with a google.rpc.Status.code of 1, corresponding to `Code.CANCELLED`. Args: request: (OndemandscanningProjectsLocationsOperationsCancelRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Cancel') return self._RunMethod( config, request, global_params=global_params) Cancel.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1beta1/projects/{projectsId}/locations/{locationsId}/operations/{operationsId}:cancel', http_method='POST', method_id='ondemandscanning.projects.locations.operations.cancel', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1beta1/{+name}:cancel', request_field='', request_type_name='OndemandscanningProjectsLocationsOperationsCancelRequest', response_type_name='Empty', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a long-running operation. This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Args: request: (OndemandscanningProjectsLocationsOperationsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1beta1/projects/{projectsId}/locations/{locationsId}/operations/{operationsId}', http_method='DELETE', method_id='ondemandscanning.projects.locations.operations.delete', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1beta1/{+name}', request_field='', request_type_name='OndemandscanningProjectsLocationsOperationsDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets the latest state of a long-running operation. Clients can use this method to poll the operation result at intervals as recommended by the API service. Args: request: (OndemandscanningProjectsLocationsOperationsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1beta1/projects/{projectsId}/locations/{locationsId}/operations/{operationsId}', http_method='GET', method_id='ondemandscanning.projects.locations.operations.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1beta1/{+name}', request_field='', request_type_name='OndemandscanningProjectsLocationsOperationsGetRequest', response_type_name='Operation', supports_download=False, ) def List(self, request, global_params=None): r"""Lists operations that match the specified filter in the request. If the server doesn't support this method, it returns `UNIMPLEMENTED`. Args: request: (OndemandscanningProjectsLocationsOperationsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListOperationsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1beta1/projects/{projectsId}/locations/{locationsId}/operations', http_method='GET', method_id='ondemandscanning.projects.locations.operations.list', ordered_params=['name'], path_params=['name'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1beta1/{+name}/operations', request_field='', request_type_name='OndemandscanningProjectsLocationsOperationsListRequest', response_type_name='ListOperationsResponse', supports_download=False, ) def Wait(self, request, global_params=None): r"""Waits until the specified long-running operation is done or reaches at most a specified timeout, returning the latest state. If the operation is already done, the latest state is immediately returned. If the timeout specified is greater than the default HTTP/RPC timeout, the HTTP/RPC timeout is used. If the server does not support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Note that this method is on a best-effort basis. It may return the latest state before the specified timeout (including immediately), meaning even an immediate response is no guarantee that the operation is done. Args: request: (OndemandscanningProjectsLocationsOperationsWaitRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Wait') return self._RunMethod( config, request, global_params=global_params) Wait.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1beta1/projects/{projectsId}/locations/{locationsId}/operations/{operationsId}:wait', http_method='POST', method_id='ondemandscanning.projects.locations.operations.wait', ordered_params=['name'], path_params=['name'], query_params=['timeout'], relative_path='v1beta1/{+name}:wait', request_field='', request_type_name='OndemandscanningProjectsLocationsOperationsWaitRequest', response_type_name='Operation', supports_download=False, ) class ProjectsLocationsScansVulnerabilitiesService(base_api.BaseApiService): """Service class for the projects_locations_scans_vulnerabilities resource.""" _NAME = 'projects_locations_scans_vulnerabilities' def __init__(self, client): super(OndemandscanningV1beta1.ProjectsLocationsScansVulnerabilitiesService, self).__init__(client) self._upload_configs = { } def List(self, request, global_params=None): r"""Lists vulnerabilities resulting from a successfully completed scan. Args: request: (OndemandscanningProjectsLocationsScansVulnerabilitiesListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListVulnerabilitiesResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1beta1/projects/{projectsId}/locations/{locationsId}/scans/{scansId}/vulnerabilities', http_method='GET', method_id='ondemandscanning.projects.locations.scans.vulnerabilities.list', ordered_params=['parent'], path_params=['parent'], query_params=['pageSize', 'pageToken'], relative_path='v1beta1/{+parent}/vulnerabilities', request_field='', request_type_name='OndemandscanningProjectsLocationsScansVulnerabilitiesListRequest', response_type_name='ListVulnerabilitiesResponse', supports_download=False, ) class ProjectsLocationsScansService(base_api.BaseApiService): """Service class for the projects_locations_scans resource.""" _NAME = 'projects_locations_scans' def __init__(self, client): super(OndemandscanningV1beta1.ProjectsLocationsScansService, self).__init__(client) self._upload_configs = { } def AnalyzePackages(self, request, global_params=None): r"""Initiates an analysis of the provided packages. Args: request: (OndemandscanningProjectsLocationsScansAnalyzePackagesRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('AnalyzePackages') return self._RunMethod( config, request, global_params=global_params) AnalyzePackages.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1beta1/projects/{projectsId}/locations/{locationsId}/scans:analyzePackages', http_method='POST', method_id='ondemandscanning.projects.locations.scans.analyzePackages', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1beta1/{+parent}/scans:analyzePackages', request_field='analyzePackagesRequest', request_type_name='OndemandscanningProjectsLocationsScansAnalyzePackagesRequest', response_type_name='Operation', supports_download=False, ) class ProjectsLocationsService(base_api.BaseApiService): """Service class for the projects_locations resource.""" _NAME = 'projects_locations' def __init__(self, client): super(OndemandscanningV1beta1.ProjectsLocationsService, self).__init__(client) self._upload_configs = { } class ProjectsService(base_api.BaseApiService): """Service class for the projects resource.""" _NAME = 'projects' def __init__(self, client): super(OndemandscanningV1beta1.ProjectsService, self).__init__(client) self._upload_configs = { }
bbd06e970f33e0fd3225569ff5aedc8b24bb6c63
8b9e9de996cedd31561c14238fe655c202692c39
/recursion/Tail_Recursion.py
24b88b9901ef2a299306341c11b8f90bb3107b39
[]
no_license
monkeylyf/interviewjam
0049bc1d79e6ae88ca6d746b05d07b9e65bc9983
33c623f226981942780751554f0593f2c71cf458
refs/heads/master
2021-07-20T18:25:37.537856
2021-02-19T03:26:16
2021-02-19T03:26:16
6,741,986
59
31
null
null
null
null
UTF-8
Python
false
false
1,005
py
# Explain what is tail recursion and implement reverse a list using functional programming style def rev(a): """Tail recursion. rev([0, 1, 2, 3]) nested([], [0, 1, 2, 3]) nested([0] + [], [1, 2, 3]) nested([1] + [0], [2, 3]) nested([2] + [1, 0], [3]) nested([3], [2, 1, 0], []) [3, 2, 1, 0] [3, 2, 1, 0] """ # Nested function. def nested(acc, a): # Notice that [a[0]] + acc instead of [a[0]] + acc return nested([a[0]] + acc, a[1:]) if a else acc return nested([], a) def re(a): """None tail recursion. What happens in call stack. re([0, 1, 2, 3]) re([1, 2, 3,]) + 0 (re([2, 3,]) + 1) + 0 ((re([3]) + 2) + 1) + 0 (((re([]) + 3) + 2) + 1) + 0 (((3) + 2) + 1) + 0 ((5) + 1) + 0 6 + 0 6 """ return re(a[1:]) + [a[0]] if a else [] def main(): n = 500 # Test case print rev(range(n)) print re(range(n)) if __name__ == '__main__': main()
da1f403db95e038688dc9c46c5fa9a028823e73c
564d6a4d305a8ac6a7e01c761831fb2081c02d0f
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/aio/operations/_network_management_client_operations.py
b5ef06c1443c98c5807d9023cf421816c15aa794
[ "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later", "MIT" ]
permissive
paultaiton/azure-sdk-for-python
69af4d889bac8012b38f5b7e8108707be679b472
d435a1a25fd6097454b7fdfbbdefd53e05029160
refs/heads/master
2023-01-30T16:15:10.647335
2020-11-14T01:09:50
2020-11-14T01:09:50
283,343,691
0
0
MIT
2020-07-28T22:43:43
2020-07-28T22:43:43
null
UTF-8
Python
false
false
47,161
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class NetworkManagementClientOperationsMixin: async def _put_bastion_shareable_link_initial( self, resource_group_name: str, bastion_host_name: str, bsl_request: "models.BastionShareableLinkListRequest", **kwargs ) -> Optional["models.BastionShareableLinkListResult"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.BastionShareableLinkListResult"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._put_bastion_shareable_link_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'bastionHostName': self._serialize.url("bastion_host_name", bastion_host_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(bsl_request, 'BastionShareableLinkListRequest') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('BastionShareableLinkListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _put_bastion_shareable_link_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/bastionHosts/{bastionHostName}/createShareableLinks'} # type: ignore async def begin_put_bastion_shareable_link( self, resource_group_name: str, bastion_host_name: str, bsl_request: "models.BastionShareableLinkListRequest", **kwargs ) -> AsyncLROPoller[AsyncItemPaged["models.BastionShareableLinkListResult"]]: """Creates a Bastion Shareable Links for all the VMs specified in the request. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param bastion_host_name: The name of the Bastion Host. :type bastion_host_name: str :param bsl_request: Post request for all the Bastion Shareable Link endpoints. :type bsl_request: ~azure.mgmt.network.v2020_04_01.models.BastionShareableLinkListRequest :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns an iterator like instance of either BastionShareableLinkListResult or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_04_01.models.BastionShareableLinkListResult]] :raises ~azure.core.exceptions.HttpResponseError: """ cls = kwargs.pop('cls', None) # type: ClsType["models.BastionShareableLinkListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = "application/json" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.put_bastion_shareable_link.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'bastionHostName': self._serialize.url("bastion_host_name", bastion_host_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(bsl_request, 'BastionShareableLinkListRequest') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) else: url = next_link query_parameters = {} # type: Dict[str, Any] body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(bsl_request, 'BastionShareableLinkListRequest') body_content_kwargs['content'] = body_content request = self._client.get(url, query_parameters, header_parameters, **body_content_kwargs) return request async def extract_data(pipeline_response): deserialized = self._deserialize('BastionShareableLinkListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.BastionShareableLinkListResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._put_bastion_shareable_link_initial( resource_group_name=resource_group_name, bastion_host_name=bastion_host_name, bsl_request=bsl_request, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): async def internal_get_next(next_link=None): if next_link is None: return pipeline_response else: return await get_next(next_link) return AsyncItemPaged( internal_get_next, extract_data ) if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_put_bastion_shareable_link.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/bastionHosts/{bastionHostName}/createShareableLinks'} # type: ignore async def _delete_bastion_shareable_link_initial( self, resource_group_name: str, bastion_host_name: str, bsl_request: "models.BastionShareableLinkListRequest", **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._delete_bastion_shareable_link_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'bastionHostName': self._serialize.url("bastion_host_name", bastion_host_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(bsl_request, 'BastionShareableLinkListRequest') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_bastion_shareable_link_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/bastionHosts/{bastionHostName}/deleteShareableLinks'} # type: ignore async def begin_delete_bastion_shareable_link( self, resource_group_name: str, bastion_host_name: str, bsl_request: "models.BastionShareableLinkListRequest", **kwargs ) -> AsyncLROPoller[None]: """Deletes the Bastion Shareable Links for all the VMs specified in the request. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param bastion_host_name: The name of the Bastion Host. :type bastion_host_name: str :param bsl_request: Post request for all the Bastion Shareable Link endpoints. :type bsl_request: ~azure.mgmt.network.v2020_04_01.models.BastionShareableLinkListRequest :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_bastion_shareable_link_initial( resource_group_name=resource_group_name, bastion_host_name=bastion_host_name, bsl_request=bsl_request, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete_bastion_shareable_link.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/bastionHosts/{bastionHostName}/deleteShareableLinks'} # type: ignore def get_bastion_shareable_link( self, resource_group_name: str, bastion_host_name: str, bsl_request: "models.BastionShareableLinkListRequest", **kwargs ) -> AsyncIterable["models.BastionShareableLinkListResult"]: """Return the Bastion Shareable Links for all the VMs specified in the request. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param bastion_host_name: The name of the Bastion Host. :type bastion_host_name: str :param bsl_request: Post request for all the Bastion Shareable Link endpoints. :type bsl_request: ~azure.mgmt.network.v2020_04_01.models.BastionShareableLinkListRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either BastionShareableLinkListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_04_01.models.BastionShareableLinkListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.BastionShareableLinkListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = "application/json" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.get_bastion_shareable_link.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'bastionHostName': self._serialize.url("bastion_host_name", bastion_host_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(bsl_request, 'BastionShareableLinkListRequest') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) else: url = next_link query_parameters = {} # type: Dict[str, Any] body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(bsl_request, 'BastionShareableLinkListRequest') body_content_kwargs['content'] = body_content request = self._client.get(url, query_parameters, header_parameters, **body_content_kwargs) return request async def extract_data(pipeline_response): deserialized = self._deserialize('BastionShareableLinkListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) get_bastion_shareable_link.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/bastionHosts/{bastionHostName}/getShareableLinks'} # type: ignore async def _get_active_sessions_initial( self, resource_group_name: str, bastion_host_name: str, **kwargs ) -> Optional["models.BastionActiveSessionListResult"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.BastionActiveSessionListResult"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._get_active_sessions_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'bastionHostName': self._serialize.url("bastion_host_name", bastion_host_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('BastionActiveSessionListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_active_sessions_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/bastionHosts/{bastionHostName}/getActiveSessions'} # type: ignore async def begin_get_active_sessions( self, resource_group_name: str, bastion_host_name: str, **kwargs ) -> AsyncLROPoller[AsyncItemPaged["models.BastionActiveSessionListResult"]]: """Returns the list of currently active sessions on the Bastion. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param bastion_host_name: The name of the Bastion Host. :type bastion_host_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns an iterator like instance of either BastionActiveSessionListResult or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_04_01.models.BastionActiveSessionListResult]] :raises ~azure.core.exceptions.HttpResponseError: """ cls = kwargs.pop('cls', None) # type: ClsType["models.BastionActiveSessionListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.get_active_sessions.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'bastionHostName': self._serialize.url("bastion_host_name", bastion_host_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.post(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('BastionActiveSessionListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.BastionActiveSessionListResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._get_active_sessions_initial( resource_group_name=resource_group_name, bastion_host_name=bastion_host_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): async def internal_get_next(next_link=None): if next_link is None: return pipeline_response else: return await get_next(next_link) return AsyncItemPaged( internal_get_next, extract_data ) if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_active_sessions.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/bastionHosts/{bastionHostName}/getActiveSessions'} # type: ignore def disconnect_active_sessions( self, resource_group_name: str, bastion_host_name: str, session_ids: "models.SessionIds", **kwargs ) -> AsyncIterable["models.BastionSessionDeleteResult"]: """Returns the list of currently active sessions on the Bastion. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param bastion_host_name: The name of the Bastion Host. :type bastion_host_name: str :param session_ids: The list of sessionids to disconnect. :type session_ids: ~azure.mgmt.network.v2020_04_01.models.SessionIds :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either BastionSessionDeleteResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_04_01.models.BastionSessionDeleteResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.BastionSessionDeleteResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = "application/json" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.disconnect_active_sessions.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'bastionHostName': self._serialize.url("bastion_host_name", bastion_host_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(session_ids, 'SessionIds') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) else: url = next_link query_parameters = {} # type: Dict[str, Any] body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(session_ids, 'SessionIds') body_content_kwargs['content'] = body_content request = self._client.get(url, query_parameters, header_parameters, **body_content_kwargs) return request async def extract_data(pipeline_response): deserialized = self._deserialize('BastionSessionDeleteResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) disconnect_active_sessions.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/bastionHosts/{bastionHostName}/disconnectActiveSessions'} # type: ignore async def check_dns_name_availability( self, location: str, domain_name_label: str, **kwargs ) -> "models.DnsNameAvailabilityResult": """Checks whether a domain name in the cloudapp.azure.com zone is available for use. :param location: The location of the domain name. :type location: str :param domain_name_label: The domain name to be verified. It must conform to the following regular expression: ^[a-z][a-z0-9-]{1,61}[a-z0-9]$. :type domain_name_label: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DnsNameAvailabilityResult, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_04_01.models.DnsNameAvailabilityResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.DnsNameAvailabilityResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.check_dns_name_availability.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['domainNameLabel'] = self._serialize.query("domain_name_label", domain_name_label, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('DnsNameAvailabilityResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized check_dns_name_availability.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/locations/{location}/CheckDnsNameAvailability'} # type: ignore async def supported_security_providers( self, resource_group_name: str, virtual_wan_name: str, **kwargs ) -> "models.VirtualWanSecurityProviders": """Gives the supported security providers for the virtual wan. :param resource_group_name: The resource group name. :type resource_group_name: str :param virtual_wan_name: The name of the VirtualWAN for which supported security providers are needed. :type virtual_wan_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VirtualWanSecurityProviders, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_04_01.models.VirtualWanSecurityProviders :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualWanSecurityProviders"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.supported_security_providers.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualWANName': self._serialize.url("virtual_wan_name", virtual_wan_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VirtualWanSecurityProviders', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized supported_security_providers.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualWans/{virtualWANName}/supportedSecurityProviders'} # type: ignore async def _generatevirtualwanvpnserverconfigurationvpnprofile_initial( self, resource_group_name: str, virtual_wan_name: str, vpn_client_params: "models.VirtualWanVpnProfileParameters", **kwargs ) -> Optional["models.VpnProfileResponse"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.VpnProfileResponse"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._generatevirtualwanvpnserverconfigurationvpnprofile_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualWANName': self._serialize.url("virtual_wan_name", virtual_wan_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(vpn_client_params, 'VirtualWanVpnProfileParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('VpnProfileResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _generatevirtualwanvpnserverconfigurationvpnprofile_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualWans/{virtualWANName}/GenerateVpnProfile'} # type: ignore async def begin_generatevirtualwanvpnserverconfigurationvpnprofile( self, resource_group_name: str, virtual_wan_name: str, vpn_client_params: "models.VirtualWanVpnProfileParameters", **kwargs ) -> AsyncLROPoller["models.VpnProfileResponse"]: """Generates a unique VPN profile for P2S clients for VirtualWan and associated VpnServerConfiguration combination in the specified resource group. :param resource_group_name: The resource group name. :type resource_group_name: str :param virtual_wan_name: The name of the VirtualWAN whose associated VpnServerConfigurations is needed. :type virtual_wan_name: str :param vpn_client_params: Parameters supplied to the generate VirtualWan VPN profile generation operation. :type vpn_client_params: ~azure.mgmt.network.v2020_04_01.models.VirtualWanVpnProfileParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VpnProfileResponse or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_04_01.models.VpnProfileResponse] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.VpnProfileResponse"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._generatevirtualwanvpnserverconfigurationvpnprofile_initial( resource_group_name=resource_group_name, virtual_wan_name=virtual_wan_name, vpn_client_params=vpn_client_params, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VpnProfileResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_generatevirtualwanvpnserverconfigurationvpnprofile.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualWans/{virtualWANName}/GenerateVpnProfile'} # type: ignore
d38a64980bb07c06db2cda09547eb0528b777da0
e206cc00299804ce2271eb5d1513620e44ee9a9b
/course1-algorithm-toolbox/assignments/assignment_003_quick_sort3_way_partrition/sorting.py
7c0e0b028b58859d54188ef65c487733d890039d
[]
no_license
dmitri-mamrukov/coursera-data-structures-and-algorithms
15459cd160f7bbae5464bf53d995bca868a0b415
01dd6f0dadf62a520bcafafddf7bf2b79e8e2603
refs/heads/master
2020-05-24T18:27:00.665642
2019-05-21T20:45:37
2019-05-21T20:45:37
187,410,737
1
0
null
null
null
null
UTF-8
Python
false
false
1,537
py
#!/usr/bin/python3 import sys import random def __partition3(data, left, right): """This function partitions a[] in three parts: a) a[left..l - 1] contains all elements smaller than the pivot element b) a[l..r] contains all occurrences of the pivot element c) a[r + 1..right] contains all elements greater than the pivot element """ l = left r = right k = left + 1 pivot_value = data[left] while k <= r: if data[k] < pivot_value: data[l], data[k] = data[k], data[l] l += 1 k += 1 elif data[k] > pivot_value: data[k], data[r] = data[r], data[k] r -= 1 else: k += 1 return (l - 1, r + 1) def __partition2(data, left, right): x = data[left] k = left; for i in range(left + 1, right + 1): if data[i] <= x: k += 1 data[i], data[k] = data[k], data[i] data[left], data[k] = data[k], data[left] return k def __randomized_quick_sort(data, left, right): if left >= right: return k = random.randint(left, right) data[left], data[k] = data[k], data[left] i, j = __partition3(data, left, right) __randomized_quick_sort(data, left, i); __randomized_quick_sort(data, j, right); def solve(data): __randomized_quick_sort(data, 0, len(data) - 1) if __name__ == '__main__': input = sys.stdin.read() n, *a = list(map(int, input.split())) solve(a) for x in a: print(x, end = ' ') print()
a984fa5280233327fd1997479acb19840c8efd63
c8d7c4ba5e949b0af2f5aa234c3ae594b1a49950
/Python接口自动化/auto_test_old/common/scripts/temp_db_file/xj_recon_model.py
beaa278e766c8975c7a679ebc4bb38c46a2d89d4
[]
no_license
chase001/chase_learning
00b7396a6775fb6e2fd80950f8acf3f1737b162e
c5ee2473e49923c781212eb3f9f50341c0bc80c8
refs/heads/master
2022-12-12T00:08:08.407671
2020-03-06T14:17:39
2020-03-06T14:17:39
221,268,073
0
0
null
2022-12-08T05:26:49
2019-11-12T16:56:34
Python
UTF-8
Python
false
false
55,014
py
from common.db.MyFields import * from common.db.func import init_database from peewee import * database = init_database('db_hot') class UnknownField(object): def __init__(self, *_, **__): pass class BaseModel(Model): class Meta: database = database class AreaCode(BaseModel): code = BigAutoField() level = IntegerField(null=True) name = CharField(null=True) parent_code = BigIntegerField(index=True, null=True) class Meta: table_name = 'area_code' class BatchOrderCustomer(BaseModel): company_id = IntegerField(constraints=[SQL("DEFAULT 100")]) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) hj_user_id = BigIntegerField(null=True) id = BigAutoField() order_id = BigIntegerField(null=True) receive_address = CharField(null=True) receive_name = CharField(null=True) receive_phone = CharField(null=True) reference_order_id = BigIntegerField(null=True) rerification_status = IntegerField(null=True) ship_to_city = CharField(null=True) ship_to_country = CharField(null=True) ship_to_province = CharField(null=True) ship_to_town = CharField(null=True) task_id = BigIntegerField(index=True, null=True) user_name = CharField(null=True) class Meta: table_name = 'batch_order_customer' class BatchOrderProduct(BaseModel): business_product_id = BigIntegerField(null=True) combin_discount_amount = DecimalField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) id = BigAutoField() is_master_product = MyBitField(null=True) # bit manual_discount = DecimalField(null=True) master_product_id = BigIntegerField(null=True) product_id = BigIntegerField(null=True) product_name = CharField(null=True) product_type = IntegerField(null=True) promotion_discount_amount = DecimalField(null=True) quantity = IntegerField(null=True) shipping_fee = DecimalField(null=True) task_id = BigIntegerField(null=True) unit_price = DecimalField(null=True) class Meta: table_name = 'batch_order_product' class BatchOrderTask(BaseModel): create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) end_date = MyDateTimeField(null=True) operator = CharField(null=True) operator_user_id = BigIntegerField(null=True) order_department_id = IntegerField(null=True) order_memo = CharField(null=True) order_project_code = CharField(null=True) order_reason_id = IntegerField(null=True) start_date = MyDateTimeField(null=True) status = IntegerField(null=True) task_id = BigAutoField() task_name = CharField(null=True) class Meta: table_name = 'batch_order_task' class BiBusiness(BaseModel): code = CharField(null=True) description = CharField(null=True) id = BigAutoField() class Meta: table_name = 'bi_business' class BiCouponType(BaseModel): code = CharField(null=True) description = CharField(null=True) id = BigAutoField() class Meta: table_name = 'bi_coupon_type' class BiDeviceType(BaseModel): code = CharField(null=True) description = CharField(null=True) id = BigAutoField() class Meta: table_name = 'bi_device_type' class BiOrderReason(BaseModel): code = CharField(null=True) description = CharField(null=True) id = BigAutoField() class Meta: table_name = 'bi_order_reason' class BiOrderSalesChannel(BaseModel): code = CharField(null=True) description = CharField(null=True) id = BigAutoField() class Meta: table_name = 'bi_order_sales_channel' class BiOrderSource(BaseModel): code = CharField(null=True) description = CharField(null=True) id = BigAutoField() class Meta: table_name = 'bi_order_source' class BiOrderType(BaseModel): code = CharField(null=True) description = CharField(null=True) id = BigAutoField() class Meta: table_name = 'bi_order_type' class BiPayMethod(BaseModel): code = CharField(null=True) description = CharField(null=True) id = BigAutoField() is_active = MyBitField(constraints=[SQL("DEFAULT b'1'")]) # bit pay_method_foe = CharField(null=True) class Meta: table_name = 'bi_pay_method' class BiPlatformType(BaseModel): code = CharField(null=True) description = CharField(null=True) id = BigAutoField() class Meta: table_name = 'bi_platform_type' class BiProductStatus(BaseModel): code = CharField(null=True) description = CharField(null=True) id = BigAutoField() class Meta: table_name = 'bi_product_status' class BiProductType(BaseModel): code = CharField(null=True) description = CharField(null=True) id = BigAutoField() class Meta: table_name = 'bi_product_type' class BiSourceType(BaseModel): code = CharField(null=True) description = CharField(null=True) id = BigAutoField() class Meta: table_name = 'bi_source_type' class BiSupplierType(BaseModel): code = CharField(null=True) description = CharField(null=True) id = BigAutoField() class Meta: table_name = 'bi_supplier_type' class DepartmentCode(BaseModel): department_id = BigIntegerField(unique=True) department_name = CharField() id = BigAutoField() is_active = MyBitField(constraints=[SQL("DEFAULT b'1'")]) # bit class Meta: table_name = 'department_code' class EsIndexOrderLog(BaseModel): create_date = MyDateTimeField(constraints=[SQL("DEFAULT 0000-00-00 00:00:00")], index=True) custom_data = CharField(null=True) from_ = BigIntegerField(column_name='from', null=True) id = BigAutoField() is_valid = MyBitField(constraints=[SQL("DEFAULT b'1'")], null=True) # bit last_order_date = MyDateTimeField(null=True) last_order_id = BigIntegerField(null=True) size = IntegerField(null=True) total_records = IntegerField(null=True) class Meta: table_name = 'es_index_order_log' indexes = ( (('last_order_id', 'from_', 'create_date'), False), ) class GroupBuyCategory(BaseModel): added_date = DateField(null=True) alias = CharField(null=True) id = BigAutoField() is_valid = MyBitField(null=True) # bit name = CharField(null=True) parent_id = BigIntegerField(null=True) path = CharField(null=True) class Meta: table_name = 'group_buy_category' class GroupBuyCategoryAdmin(BaseModel): added_date = DateField(null=True) description = CharField(null=True) id = BigAutoField() is_valid = MyBitField(null=True) # bit name = CharField(null=True) class Meta: table_name = 'group_buy_category_admin' class GroupBuyCoupon(BaseModel): added_date = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) batch_id = BigIntegerField(index=True) batch_size = BigIntegerField(null=True) description = CharField(null=True) id = BigAutoField() is_active = MyBitField(null=True) # bit mail_format = CharField(null=True) title = CharField(null=True) class Meta: table_name = 'group_buy_coupon' class GroupBuyCouponDetail(BaseModel): added_date = MyDateTimeField(null=True) batch_id = BigIntegerField(null=True) batch_type = IntegerField(null=True) coupon_code = CharField(null=True) expired_date = DateField(null=True) extended = CharField(null=True) group_buy_id = BigIntegerField(null=True) id = BigAutoField() is_active = MyBitField(null=True) # bit send_date = MyDateTimeField(null=True) user_id = BigIntegerField(null=True) class Meta: table_name = 'group_buy_coupon_detail' class GroupBuyGlobalSettings(BaseModel): display_a4_list_page = MyBitField(null=True) # bit class Meta: table_name = 'group_buy_global_settings' primary_key = False class GroupBuyLuckOrders(BaseModel): email = CharField(null=True) group_buy_id = BigIntegerField(null=True) invitor_user_id = BigIntegerField(null=True) join_date = MyDateTimeField(null=True) join_reason = CharField(null=True) lucky_number = BigIntegerField(null=True) user_id = BigIntegerField(null=True) class Meta: table_name = 'group_buy_luck_orders' primary_key = False class GroupBuyProduct(BaseModel): _360_cate = CharField(column_name='360_cate', null=True) _360_display = MyBitField(column_name='360_display', null=True) # bit _360_hot_bus_spot_name = CharField(column_name='360_hot_bus_spot_name', null=True) _360_img = CharField(column_name='360_img', null=True) _360_latitude = CharField(column_name='360_latitude', null=True) _360_longitude = CharField(column_name='360_longitude', null=True) _360_merchant_addr = CharField(column_name='360_merchant_addr', null=True) _360_merchant_name = CharField(column_name='360_merchant_name', null=True) _360_merchant_phone = CharField(column_name='360_merchant_phone', null=True) _360_spent_end_time = MyDateTimeField(column_name='360_spent_end_time', null=True) _360_spent_start_time = MyDateTimeField(column_name='360_spent_start_time', null=True) _360_title = CharField(column_name='360_title', null=True) admin_memo = TextField(null=True) big_img_name = CharField(null=True) bulo_display_img_url = CharField(null=True) buy_only_once = MyBitField(null=True) # bit cate_id = BigIntegerField(null=True) cate_id_admin = BigIntegerField(null=True) class_id = BigIntegerField(null=True) ct_product_code = CharField(null=True) display_by_bulo = MyBitField(null=True) # bit end_time = MyDateTimeField(null=True) free_buy_type = BigIntegerField(null=True) full_num = BigIntegerField(null=True) group_buy_price = DecimalField(null=True) group_buy_type = BigIntegerField(null=True) has_notice_by_mail = MyBitField(null=True) # bit has_notice_by_sms = MyBitField(null=True) # bit id = BigAutoField() is_active = MyBitField(null=True) # bit is_free_by_count = MyBitField(null=True) # bit is_free_delivery = MyBitField(null=True) # bit is_hide = MyBitField(null=True) # bit is_new_version = MyBitField(null=True) # bit is_take_by_customer = MyBitField(null=True) # bit is_valid = MyBitField(null=True) # bit is_view = MyBitField(null=True) # bit key_words = CharField(null=True) last_notice_time_mail = MyDateTimeField(null=True) last_notice_time_sms = MyDateTimeField(null=True) last_update_time = MyDateTimeField(null=True) list_price = DecimalField(null=True) low_cate_id = BigIntegerField(null=True) mark = BigIntegerField(null=True) max_buy_amount = BigIntegerField(null=True) mention = TextField(null=True) mini_product_name = CharField(null=True) prevision_img_name = CharField(null=True) product_desc = TextField(null=True) product_id = BigIntegerField(null=True) product_name = CharField(null=True) quantity = BigIntegerField(null=True) related_coupon_batch = BigIntegerField(null=True) related_coupon_batch_type = IntegerField(null=True) related_income = DecimalField(null=True) related_staff = CharField(null=True) room_id = BigIntegerField(null=True) short_product_name = CharField(null=True) small_img_name = CharField(null=True) sort_index = BigIntegerField(null=True) start_time = MyDateTimeField(null=True) supplier_id = BigIntegerField(null=True) supplier_type = BigIntegerField(null=True) system_remark = TextField(null=True) tags = CharField(null=True) time_up_warning = MyBitField(null=True) # bit total_buy_amount = BigIntegerField(null=True) touch_product_desc = TextField(null=True) unit_cost = DecimalField(null=True) unit_delivery_cost = DecimalField(null=True) user_ce_hua = CharField(null=True) user_ce_hua_id = BigIntegerField(null=True) user_comment = TextField(null=True) user_design_id = BigIntegerField(null=True) user_tui_guang = CharField(null=True) user_tui_guang_id = BigIntegerField(null=True) user_wen_an = CharField(null=True) user_wen_an_id = BigIntegerField(null=True) virtual_buyer_amount = BigIntegerField(null=True) class Meta: table_name = 'group_buy_product' class GroupBuyProductDetail(BaseModel): class_unit_cost = DecimalField(null=True) group_buy_id = BigIntegerField(null=True) id = BigAutoField() is_active = MyBitField(null=True) # bit product_id = BigIntegerField(null=True) quantity = BigIntegerField(null=True) unit_cost = DecimalField(null=True) class Meta: table_name = 'group_buy_product_detail' class GroupBuyProductWarehouse(BaseModel): group_buy_product_id = BigIntegerField(null=True) id = BigAutoField() warehouse_id = CharField(null=True) warehouse_product_id = CharField(null=True) class Meta: table_name = 'group_buy_product_warehouse' class InvoiceManage(BaseModel): account_bank = CharField(null=True) account_number = CharField(null=True) apply_user_name = CharField(null=True) company_address = CharField(null=True) company_id = IntegerField(null=True) company_name = CharField(null=True) company_phone = CharField(null=True) courier_number = BigIntegerField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")], null=True) create_user_id = BigIntegerField(null=True) express_name = CharField(null=True) express_pay_method = IntegerField(null=True) ext_param = CharField(null=True) id = BigAutoField() ident_number = CharField(null=True) invoice_content = IntegerField(null=True) invoice_fee = DecimalField(null=True) invoice_header = CharField(null=True) invoice_header_type = IntegerField(null=True) invoice_status = IntegerField(constraints=[SQL("DEFAULT 1")], null=True) invoice_type = IntegerField(null=True) is_print = MyBitField(constraints=[SQL("DEFAULT b'0'")], null=True) # bit is_send = MyBitField(null=True) # bit order_id = BigIntegerField(null=True) recipient = CharField(null=True) recipient_address = CharField(null=True) recipient_city = CharField(null=True) recipient_phone = CharField(null=True) recipient_province = CharField(null=True) recipient_town = CharField(null=True) remark = CharField(null=True) update_time = MyDateTimeField(null=True) update_user_id = BigIntegerField(null=True) class Meta: table_name = 'invoice_manage' class JdHjOrders(BaseModel): create_date = MyDateTimeField(null=True) customer_address = CharField(null=True) customer_phone = CharField(null=True) hj_deal_fee = DecimalField(null=True) hj_order_date = MyDateTimeField(null=True) hj_order_id = BigIntegerField(null=True) id = BigAutoField() is_processed = MyBitField(null=True) # bit is_same = MyBitField(null=True) # bit jd_order_date = MyDateTimeField(null=True) jd_order_id = CharField(unique=True) jd_seller_price = DecimalField(null=True) memo = CharField(null=True) class Meta: table_name = 'jd_hj_orders' class OrderArchiveDetailLog(BaseModel): archive_batch_code = CharField(index=True) archive_time = MyDateTimeField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) delete_time = MyDateTimeField(null=True) id = BigAutoField() is_archive = MyBitField(null=True) # bit is_delete = MyBitField(null=True) # bit is_to_es = MyBitField(null=True) # bit order_id = BigIntegerField(index=True) to_es_time = MyDateTimeField(null=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) class Meta: table_name = 'order_archive_detail_log' class OrderArchiveMasterLog(BaseModel): archive_batch_code = CharField(index=True) archive_order_quantity = BigIntegerField(null=True) archive_status = MyBitField(null=True) # bit begin_order_id = BigIntegerField(index=True, null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")], index=True) delete_status = MyBitField(null=True) # bit end_order_id = BigIntegerField(null=True) id = BigAutoField() to_es_status = MyBitField(null=True) # bit update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) class Meta: table_name = 'order_archive_master_log' class OrderAssessment(BaseModel): business_product_id = BigIntegerField(null=True) deposit_discount_amount = DecimalField(null=True) id = BigAutoField() manual_discount_amount = DecimalField(null=True) multi_product_id = BigIntegerField(null=True) new_product_id = BigIntegerField(null=True) order_id = BigIntegerField(index=True, null=True) product_id = BigIntegerField(null=True) quantity = IntegerField(null=True) share_card_fee = DecimalField(null=True) share_card_income = DecimalField(null=True) share_combine_fee = DecimalField(null=True) share_cost = DecimalField(null=True) share_coupon_fee = DecimalField(null=True) share_coupon_income = DecimalField(null=True) share_course_code_fee = DecimalField(null=True) share_course_code_income = DecimalField(null=True) share_discount_fee = DecimalField(null=True) share_handling_fee = DecimalField(null=True) share_income = DecimalField(null=True) share_preincome = DecimalField(null=True) share_purchase_xb = DecimalField(null=True) share_recharge_xb = DecimalField(null=True) share_reward_xb = DecimalField(null=True) share_shipping_fee = DecimalField(null=True) share_user_handling_fee = DecimalField(null=True) share_vipcard_fee = DecimalField(null=True) share_vipcard_income = DecimalField(null=True) unit_price = DecimalField(null=True) class Meta: table_name = 'order_assessment' indexes = ( (('order_id', 'product_id', 'multi_product_id'), False), ) class OrderBaseUser(BaseModel): address = CharField(null=True) answer = CharField(null=True) bbs_user_id = BigIntegerField(index=True, null=True) buy_times = IntegerField(null=True) cellphone = CharField(null=True) charge = DecimalField(null=True) display_pwd = CharField(null=True) email = CharField(null=True) expired_date = MyDateTimeField(null=True) fee_mark = IntegerField(null=True) froze_late_fee = DecimalField(null=True) gender = IntegerField(null=True) gold = IntegerField(null=True) has_validate_cellphone = MyBitField(null=True) # bit icon_name = CharField(null=True) id_card_num = CharField(null=True) last_login_ip = CharField(null=True) last_login_time = MyDateTimeField(null=True) late_fee = DecimalField(null=True) lock_flag = IntegerField(null=True) login_times = IntegerField(null=True) phone = CharField(null=True) question = CharField(null=True) rank = IntegerField(null=True) rank_mark = IntegerField(null=True) reg_date = MyDateTimeField(null=True) reg_ip = CharField(null=True) sina_weibo_account = BigIntegerField(null=True) timestamp = MyDateTimeField(null=True) true_name = CharField(null=True) user_custom_cata_list = CharField(null=True) user_fav_cata_list = CharField(null=True) user_id = BigAutoField() user_name = CharField(null=True) user_pwd = CharField(null=True) user_top_custom_cata_list = CharField(null=True) veri_code = CharField(null=True) vip_level = IntegerField(null=True) vip_total_days = IntegerField(null=True) zipcode = CharField(null=True) class Meta: table_name = 'order_base_user' class OrderBusinessExtend(BaseModel): business_org_code = CharField(null=True) company_id = IntegerField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) id = BigAutoField() key = CharField(null=True) order_id = BigIntegerField(index=True, null=True) values = CharField(null=True) class Meta: table_name = 'order_business_extend' indexes = ( (('key', 'order_id', 'business_org_code'), False), (('key', 'values'), False), ) class OrderCancelLog(BaseModel): cancel_type = IntegerField(null=True) create_date = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) id = BigAutoField() ip = CharField(null=True) operator_user_id = BigIntegerField(null=True) operator_user_name = CharField(null=True) order_id = BigIntegerField(null=True) remark = CharField(null=True) source_id = IntegerField(null=True) status = IntegerField(null=True) class Meta: table_name = 'order_cancel_log' class OrderCarriedForward(BaseModel): company_id = IntegerField(index=True, null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) create_user_id = BigIntegerField(null=True) id = BigAutoField() income = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) order_id = BigIntegerField(index=True, null=True) preincome = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) purchase_xb = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) recharge_xb = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) reward_xb = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) xb_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) class Meta: table_name = 'order_carried_forward' class OrderCarriedForwardMulti(BaseModel): business_id = IntegerField(null=True) category_id = IntegerField(null=True) company_id = IntegerField(index=True, null=True) id = BigAutoField() income = DecimalField() multi_product_id = BigIntegerField(null=True) order_id = BigIntegerField(index=True) preincome = DecimalField() product_id = BigIntegerField() product_type = IntegerField(null=True) purchase_xb = DecimalField() quantity = IntegerField() recharge_xb = DecimalField() reward_xb = DecimalField() seller_id = BigIntegerField(null=True) unit_price = DecimalField() xb_fee = DecimalField() class Meta: table_name = 'order_carried_forward_multi' indexes = ( (('business_id', 'company_id', 'seller_id'), False), (('multi_product_id', 'product_id'), False), ) class OrderChangeLog(BaseModel): create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) create_user_company_id = IntegerField(null=True) create_user_id = BigIntegerField(null=True) create_user_name = CharField(null=True) id = BigAutoField() old_ship_to_name = CharField(null=True) old_ship_to_zip = CharField(null=True) order_id = BigIntegerField(null=True) ship_to_name = CharField(null=True) ship_to_zip = CharField(null=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) update_user_company_id = IntegerField(null=True) update_user_id = BigIntegerField(null=True) update_user_name = CharField(null=True) user_id = BigIntegerField(null=True) class Meta: table_name = 'order_change_log' class OrderConfig(BaseModel): create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) create_user_id = BigIntegerField(null=True) create_user_name = CharField(null=True) id = BigAutoField() is_active = MyBitField(null=True) # bit is_delete = MyBitField(null=True) # bit key = CharField(index=True) remark = CharField(null=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) update_user_id = BigIntegerField(null=True) update_user_name = CharField(null=True) value = CharField(null=True) class Meta: table_name = 'order_config' class OrderCouponConsum(BaseModel): company_id = IntegerField(null=True) cost = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) coupon_code = CharField(index=True, null=True) coupon_discount = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) coupon_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) coupon_income = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) coupon_name = CharField(null=True) coupon_type = IntegerField(null=True) id = BigAutoField() order_id = BigIntegerField(index=True) class Meta: table_name = 'order_coupon_consum' class OrderDealMemo(BaseModel): deal_date = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")], index=True) deal_memo = CharField(null=True) deal_user = CharField(null=True) deal_user_company_id = IntegerField(null=True) id = BigAutoField() order_id = BigIntegerField(index=True) class Meta: table_name = 'order_deal_memo' indexes = ( (('order_id', 'deal_user'), False), ) class OrderDeliver(BaseModel): batch_id = IntegerField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) delivery_failed_qty = IntegerField(null=True) delivery_qty = IntegerField(null=True) delivery_status = IntegerField(null=True) id = BigAutoField() master_product_id = BigIntegerField(null=True) order_id = BigIntegerField() product_id = BigIntegerField() product_type = IntegerField(null=True) quantity = IntegerField(null=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")], index=True) class Meta: table_name = 'order_deliver' indexes = ( (('order_id', 'product_id'), False), ) class OrderDetail(BaseModel): account_date = MyDateTimeField(null=True) batch_id = IntegerField(null=True) business_id = IntegerField(null=True) business_product_id = BigIntegerField(index=True, null=True) category_id = IntegerField(null=True) combine_discount_amount = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) company_id = IntegerField(null=True) coupon_code = CharField(null=True) deposit_discount_amount = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) discount_amount = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) id = BigAutoField() is_master_product = MyBitField() # bit is_refunded = MyBitField(null=True) # bit manual_discount_amount = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) nsource = CharField(null=True) order_id = BigIntegerField(null=True) point_discount = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) product_cate = IntegerField(null=True) product_cost = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) product_id = BigIntegerField() product_name = CharField(null=True) product_type = IntegerField(null=True) promotion_info = CharField(null=True) quantity = IntegerField() seller_id = BigIntegerField(null=True) timestamp = MyDateTimeField(null=True) unit_price = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) warehouse_id = IntegerField(null=True) class Meta: table_name = 'order_detail' indexes = ( (('order_id', 'product_id'), False), (('order_id', 'product_type'), False), (('order_id', 'quantity'), False), ) class OrderDetailAttached(BaseModel): company_id = IntegerField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) create_user_company_id = IntegerField(null=True) create_user_id = BigIntegerField(null=True) id = BigAutoField() master_product_id = BigIntegerField(index=True) order_id = BigIntegerField(index=True) product_id = BigIntegerField(index=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) update_user_company_id = IntegerField(null=True) update_user_id = BigIntegerField(null=True) class Meta: table_name = 'order_detail_attached' class OrderDetailCoupon(BaseModel): batch_id = IntegerField(null=True) coupon_code = CharField(index=True, null=True) coupon_type = IntegerField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) id = BigAutoField() is_verificationed = MyBitField(null=True) # bit multi_product_id = BigIntegerField(null=True) order_id = BigIntegerField() product_id = BigIntegerField(null=True) reference_verify_id = BigIntegerField(index=True, null=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")], index=True) verify_time = MyDateTimeField(null=True) class Meta: table_name = 'order_detail_coupon' indexes = ( (('order_id', 'multi_product_id', 'product_id'), False), ) class OrderDetailDiscount(BaseModel): business_product_id = BigIntegerField(null=True) company_id = IntegerField(null=True) discount_amount = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) discount_dec = CharField(null=True) discount_xb = DecimalField(null=True) end_time = MyDateTimeField(null=True) id = BigAutoField() order_id = BigIntegerField(index=True, null=True) product_business_id = IntegerField(null=True) product_id = BigIntegerField(index=True, null=True) product_seller_id = BigIntegerField(null=True) source_code = CharField(index=True, null=True) source_id = BigIntegerField(null=True) source_type = IntegerField(null=True) start_time = MyDateTimeField(null=True) class Meta: table_name = 'order_detail_discount' class OrderDetailMulti(BaseModel): add_to_cart_url = CharField(null=True) batch_id = IntegerField(null=True) business_id = IntegerField(null=True) business_product_id = BigIntegerField(index=True, null=True) category_id = IntegerField(null=True) combine_discount_amount = DecimalField(null=True) company_id = IntegerField(null=True) coupon_code = CharField(null=True) coupon_type = IntegerField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) deposit_discount_amount = DecimalField(null=True) discount_amount = DecimalField(null=True) has_subtotal_value = MyBitField(null=True) # bit id = BigAutoField() manual_discount_amount = DecimalField(null=True) multi_product_id = BigIntegerField(null=True) order_id = BigIntegerField(null=True) point_discount = DecimalField(null=True) product_cost = DecimalField(null=True) product_id = BigIntegerField(index=True, null=True) product_name = CharField(null=True) product_type = IntegerField(null=True) quantity = IntegerField(null=True) seller_id = BigIntegerField(null=True) share_card_fee = DecimalField(null=True) share_card_income = DecimalField(null=True) share_coupon_fee = DecimalField(null=True) share_coupon_income = DecimalField(null=True) share_course_code_fee = DecimalField(null=True) share_course_code_income = DecimalField(null=True) share_discount_fee = DecimalField(null=True) share_handling_fee = DecimalField(null=True) share_income = DecimalField(null=True) share_invite_code_fee = DecimalField(null=True) share_preincome = DecimalField(null=True) share_purchase_xb = DecimalField(null=True) share_recharge_xb = DecimalField(null=True) share_reward_xb = DecimalField(null=True) share_shipping_fee = DecimalField(null=True) share_user_handling_fee = DecimalField(null=True) share_vipcard_fee = DecimalField(null=True) share_vipcard_income = DecimalField(null=True) sid = CharField(null=True) ssid = CharField(null=True) subtotal_card_fee = DecimalField(null=True) subtotal_card_income = DecimalField(null=True) subtotal_coupon_fee = DecimalField(null=True) subtotal_coupon_income = DecimalField(null=True) subtotal_course_code_fee = DecimalField(null=True) subtotal_course_code_income = DecimalField(null=True) subtotal_discount_amount = DecimalField(null=True) subtotal_handling_fee = DecimalField(null=True) subtotal_income = DecimalField(null=True) subtotal_invite_code_fee = DecimalField(null=True) subtotal_pre_income = DecimalField(null=True) subtotal_purchase_xb = DecimalField(null=True) subtotal_recharge_xb = DecimalField(null=True) subtotal_reward_xb = DecimalField(null=True) subtotal_shipping_fee = DecimalField(null=True) subtotal_user_handling_fee = DecimalField(null=True) subtotal_vipcard_fee = DecimalField(null=True) subtotal_vipcard_income = DecimalField(null=True) uid = CharField(null=True) unit_price = DecimalField(null=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")], index=True) warehouse_id = IntegerField(null=True) class Meta: table_name = 'order_detail_multi' indexes = ( (('order_id', 'multi_product_id'), False), (('order_id', 'product_type'), False), ) class OrderFromTop(BaseModel): added_date = MyDateTimeField(null=True) ali_trade_no = BigIntegerField(null=True) id = BigAutoField() import_order = TextField(null=True) operator = CharField(null=True) order_id = BigIntegerField(null=True) platform_id = IntegerField(null=True) taobao_token = CharField(null=True) class Meta: table_name = 'order_from_top' class OrderHjUser(BaseModel): bbs_user_id = BigIntegerField(index=True, null=True) company_id = IntegerField(null=True) department_id = IntegerField(null=True) email = CharField(null=True) id = BigAutoField() nick_name = CharField(null=True) true_name = CharField(null=True) user_name = CharField(null=True) class Meta: table_name = 'order_hj_user' class OrderIncome(BaseModel): batch_id = BigIntegerField(null=True) coupon_code = CharField(index=True, null=True) income_date = MyDateTimeField(index=True, null=True) income_id = BigAutoField() income_type = IntegerField(null=True) last_update_date = MyDateTimeField(null=True) master_product_id = BigIntegerField(null=True) old_refund_id = BigIntegerField(null=True) operater_type = IntegerField(null=True) order_type = IntegerField(null=True) product_name = CharField(null=True) product_type = IntegerField(null=True) quantity = IntegerField(null=True) reference_income_id = BigIntegerField(null=True) share_income_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) share_purchase_xb = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) share_recharege_xb = DecimalField() share_reward_xb = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) source_order_id = BigIntegerField(null=True) source_rma_id = BigIntegerField(index=True, null=True) status = IntegerField(null=True) sub_product_id = BigIntegerField(null=True) user_id = BigIntegerField(null=True) class Meta: table_name = 'order_income' indexes = ( (('source_order_id', 'sub_product_id'), False), ) class OrderIncomeStaging(BaseModel): create_time = MyDateTimeField(constraints=[SQL("DEFAULT 0000-00-00 00:00:00")], index=True) id = BigAutoField() rma_id = BigIntegerField(index=True, null=True) source_order_id = BigIntegerField(index=True) status = IntegerField(constraints=[SQL("DEFAULT 0")]) update_time = MyDateTimeField(null=True) class Meta: table_name = 'order_income_staging' class OrderMaster(BaseModel): ali_trade_no = CharField(null=True) bank_code = CharField(null=True) bill_date = MyDateTimeField(null=True) bill_no = CharField(null=True) cancel_date = MyDateTimeField(null=True) cell_phone = CharField(null=True) chest_fee = DecimalField(null=True) city_id = IntegerField(null=True) combine_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) company_id = IntegerField(null=True) coupon_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) coupon_income = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) create_user_company_id = IntegerField(null=True) create_user_id = BigIntegerField(null=True) deal_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) deal_memo = CharField(null=True) deal_user = CharField(null=True) deliver_id = CharField(null=True) delivery_result = IntegerField(null=True) delivery_status = IntegerField(null=True) deposit_discount_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) discount_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) email = CharField(index=True, null=True) express = IntegerField(null=True) express_id = IntegerField(null=True) extend_bill_status = IntegerField(null=True) fee_memo = CharField(null=True) from_ip = CharField(null=True) handling_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) hj_user_id = BigIntegerField(index=True, null=True) income = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) installment_number = IntegerField(null=True) invite_code_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) is_active = MyBitField() # bit is_audit = MyBitField(null=True) # bit is_bill = MyBitField() # bit is_cancel = MyBitField() # bit is_child = MyBitField(constraints=[SQL("DEFAULT b'0'")], null=True) # bit is_inside = MyBitField(null=True) # bit is_notify = MyBitField(null=True) # bit is_phone = MyBitField(null=True) # bit is_print = MyBitField(null=True) # bit is_test = MyBitField(null=True) # bit is_trace = MyBitField(null=True) # bit is_unusual = MyBitField(constraints=[SQL("DEFAULT b'0'")], null=True) # bit is_valid = MyBitField() # bit manual_discount_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) mark = IntegerField(null=True) msn = CharField(null=True) notify_mark = CharField(null=True) nsource = CharField(null=True) operator_company_id = IntegerField(null=True) operator_user_id = BigIntegerField(null=True) order_date = MyDateTimeField(null=True) order_device_id = IntegerField(null=True) order_id = BigAutoField() order_number = CharField(index=True, null=True) order_type = IntegerField() outer_trade_no = CharField(index=True, null=True) parent_order_id = BigIntegerField(null=True) pay_card_type = IntegerField(null=True) pay_device_id = IntegerField(null=True) pay_method = CharField(null=True) payment_bank_discount = DecimalField(null=True) phone_date = MyDateTimeField(null=True) platform_id = IntegerField(null=True) point_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) pre_income = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) province_id = IntegerField(null=True) purchase_xb = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) qq = CharField(null=True) recharge_xb = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) refer_source_id = IntegerField(null=True) refer_url = CharField(null=True) refund_type = CharField(null=True) related_order_id = BigIntegerField(index=True, null=True) reward_xb = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) seller_id = BigIntegerField(index=True, null=True) ship_date = MyDateTimeField(null=True) ship_flag = IntegerField(null=True) ship_method = CharField(null=True) ship_to_addr = CharField(null=True) ship_to_city = CharField(null=True) ship_to_country = CharField(constraints=[SQL("DEFAULT '中国'")], null=True) ship_to_name = CharField(index=True, null=True) ship_to_phone = CharField(index=True, null=True) ship_to_province = CharField(null=True) ship_to_time = CharField(null=True) ship_to_town = CharField(null=True) ship_to_zip = CharField(null=True) shipping_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) temp_order_version = IntegerField(null=True) timestamp = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) total_cost = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) total_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) total_order_today = IntegerField(null=True) town_id = IntegerField(null=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")], index=True) update_user_company_id = IntegerField(null=True) update_user_id = BigIntegerField(null=True) user_coupon_id = IntegerField(null=True) user_handling_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) user_id = BigIntegerField(null=True) user_memo = CharField(null=True) user_reg_date = MyDateTimeField(null=True) user_source = CharField(null=True) user_title = CharField(null=True) xb_fee = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) class Meta: table_name = 'order_master' indexes = ( (('bill_date', 'company_id', 'deal_fee', 'order_type', 'is_bill', 'is_cancel'), False), (('order_date', 'order_type', 'is_bill', 'ship_flag', 'is_cancel'), False), (('platform_id', 'temp_order_version'), False), ) class OrderMessageLog(BaseModel): id = BigAutoField() message_content = TextField(null=True) message_id = CharField(null=True) produce_id = CharField(null=True) send_date_time = MyDateTimeField(null=True) send_machine_ip = CharField(null=True) class Meta: table_name = 'order_message_log' class OrderPayInfo(BaseModel): bank_code = CharField(null=True) begin_time = MyDateTimeField(null=True) bill_amount = DecimalField() child_order_id = BigIntegerField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) create_user_id = BigIntegerField(null=True) end_time = MyDateTimeField(null=True) ext_param = CharField(null=True) id = BigAutoField() order_id = BigIntegerField() order_type = IntegerField(null=True) origin_order_id = BigIntegerField(null=True) pay_channel = CharField(null=True) pay_device_id = IntegerField(null=True) pay_method = IntegerField(null=True) pay_num = CharField(null=True) pay_status = IntegerField(null=True) pay_time = MyDateTimeField(null=True) pay_type = IntegerField(null=True) purchase_xb = DecimalField() recharge_xb = DecimalField() remark = CharField(null=True) reward_xb = DecimalField() trans_seq_no = CharField(null=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")], index=True) update_user_id = BigIntegerField(null=True) xb_fee = DecimalField() class Meta: table_name = 'order_pay_info' indexes = ( (('end_time', 'begin_time'), False), (('order_id', 'child_order_id'), False), (('order_id', 'order_type'), False), (('pay_time', 'pay_type'), False), ) class OrderProductGroupbuy(BaseModel): a_360_cate = CharField() a_360_display = MyBitField(constraints=[SQL("DEFAULT b'0'")]) # bit a_360_hot_bus_spot_name = CharField() a_360_img = CharField() a_360_latitude = CharField() a_360_longitude = CharField() a_360_merchant_addr = CharField() a_360_merchant_name = CharField() a_360_merchant_phone = CharField() a_360_spent_end_time = MyDateTimeField(null=True) a_360_spent_start_time = MyDateTimeField(null=True) a_360_title = CharField() admin_memo = CharField() big_img_name = CharField() bulo_display_img_url = CharField(null=True) buy_only_once = MyBitField(constraints=[SQL("DEFAULT b'0'")]) # bit cate_id = IntegerField(constraints=[SQL("DEFAULT 0")]) cate_idadmin = IntegerField(constraints=[SQL("DEFAULT 0")]) class_id = IntegerField(constraints=[SQL("DEFAULT 0")]) ctproduct_code = CharField(null=True) display_by_bulo = MyBitField(constraints=[SQL("DEFAULT b'0'")]) # bit end_time = MyDateTimeField() free_buy_type = IntegerField(constraints=[SQL("DEFAULT 0")]) full_num = IntegerField(constraints=[SQL("DEFAULT 0")]) group_buy_price = DecimalField() groupbuy_type = IntegerField() has_notice_by_mail = MyBitField(constraints=[SQL("DEFAULT b'0'")]) # bit has_notice_by_sms = MyBitField(constraints=[SQL("DEFAULT b'0'")]) # bit id = BigAutoField() is_active = IntegerField(constraints=[SQL("DEFAULT 0")]) is_free_by_count = MyBitField(constraints=[SQL("DEFAULT b'0'")]) # bit is_free_delivery = MyBitField(constraints=[SQL("DEFAULT b'0'")]) # bit is_hide = MyBitField() # bit is_new_version = MyBitField(null=True) # bit is_takeby_customer = MyBitField(constraints=[SQL("DEFAULT b'0'")]) # bit is_valid = MyBitField(constraints=[SQL("DEFAULT b'1'")]) # bit is_view = MyBitField(constraints=[SQL("DEFAULT b'0'")]) # bit keywords = CharField(null=True) last_notice_time_mail = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) last_notice_time_sms = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) last_update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) list_price = DecimalField() low_cate_id = IntegerField(null=True) mark = IntegerField() max_buy_amount = IntegerField(constraints=[SQL("DEFAULT 0")]) mention = CharField() mini_product_name = CharField(null=True) prevision_img_name = CharField() product_desc = TextField() product_id = BigIntegerField(index=True) product_name = CharField(null=True) quantity = IntegerField() related_coupon_batch = IntegerField(constraints=[SQL("DEFAULT 0")]) related_coupon_batch_type = IntegerField(null=True) related_income = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) related_staff = CharField(null=True) room_id = IntegerField(null=True) short_product_name = CharField(null=True) small_img_name = CharField() sort_index = IntegerField(constraints=[SQL("DEFAULT 0")]) start_time = MyDateTimeField() supplier_id = IntegerField(constraints=[SQL("DEFAULT 0")]) supplier_type = IntegerField(constraints=[SQL("DEFAULT 0")]) system_remark = TextField(null=True) tags = CharField(null=True) timeup_warning = MyBitField(constraints=[SQL("DEFAULT b'1'")]) # bit total_buy_amount = IntegerField(constraints=[SQL("DEFAULT 0")]) touch_product_desc = TextField(null=True) unit_cost = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) unit_delivery_cost = DecimalField(constraints=[SQL("DEFAULT 0.0000")]) user_ce_hua = CharField() user_ce_hua_id = IntegerField(null=True) user_comment = TextField() user_design_id = IntegerField(null=True) user_tui_guang = CharField() user_tui_guang_id = IntegerField(null=True) user_wen_an = CharField() user_wen_an_id = IntegerField(null=True) virtual_buyer_amount = IntegerField() class Meta: table_name = 'order_product_groupbuy' class OrderSplitIndex(BaseModel): begin_order_id = BigIntegerField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) database_index = CharField(null=True) end_order_id = BigIntegerField(null=True) id = BigAutoField() last_order_id = BigIntegerField(null=True) table_index = CharField(null=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) class Meta: table_name = 'order_split_index' indexes = ( (('begin_order_id', 'end_order_id'), False), ) class OrderStageRetry(BaseModel): create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")], null=True) order_id = BigIntegerField() retry_times = IntegerField(constraints=[SQL("DEFAULT 1")]) stage = IntegerField() status = IntegerField(constraints=[SQL("DEFAULT 0")]) update_time = MyDateTimeField(null=True) class Meta: table_name = 'order_stage_retry' indexes = ( (('order_id', 'stage'), True), ) primary_key = CompositeKey('order_id', 'stage') class OrderTester(BaseModel): company_id = IntegerField(null=True) hj_user_id = BigIntegerField(index=True, null=True) id = BigAutoField() status = MyBitField(null=True) # bit user_id = BigIntegerField(null=True) user_name = CharField(null=True) class Meta: table_name = 'order_tester' class OrderTracking(BaseModel): add_to_cart_url = CharField(null=True) app_id = CharField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) device_id = CharField(null=True) ext_param = CharField(null=True) from_ip = CharField(null=True) id = BigAutoField() order_department_id = IntegerField(null=True) order_device_id = IntegerField(null=True) order_id = BigIntegerField() order_reason_id = IntegerField(null=True) order_source_id = IntegerField(null=True) pay_device_id = IntegerField(null=True) refer_url = CharField(null=True) reference_order_id = BigIntegerField(index=True, null=True) rma_flag = IntegerField(null=True) sales_channel_id = IntegerField(null=True) sales_platform_id = IntegerField(null=True) sid = CharField(null=True) solution_code = CharField(null=True) ssid = CharField(null=True) swap_solution_code = CharField(null=True) uid = CharField(null=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")], index=True, null=True) class Meta: table_name = 'order_tracking' indexes = ( (('order_id', 'order_source_id', 'solution_code', 'sales_platform_id'), False), ) class OrderUserAddressLog(BaseModel): address = CharField(null=True) change_date = MyDateTimeField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) create_user_company_id = IntegerField(null=True) create_user_id = BigIntegerField(null=True) id = BigAutoField() old_address = CharField(null=True) operator = CharField(null=True) order_id = BigIntegerField(null=True) shop_user_id = BigIntegerField(null=True) user_id = BigIntegerField(null=True) class Meta: table_name = 'order_user_address_log' class OrderUserPhoneLog(BaseModel): change_date = MyDateTimeField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) create_user_company_id = IntegerField(null=True) create_user_id = BigIntegerField(null=True) id = BigAutoField() old_phone = CharField(null=True) operator = CharField(null=True) order_id = BigIntegerField(null=True) phone = CharField(null=True) shop_user_id = BigIntegerField(null=True) type = IntegerField(null=True) user_id = BigIntegerField(null=True) class Meta: table_name = 'order_user_phone_log' class OrderVirtualDeliver(BaseModel): create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) id = BigAutoField() order_deliver_id = BigIntegerField(index=True, null=True) order_id = BigIntegerField(index=True, null=True) send_code = CharField(null=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) class Meta: table_name = 'order_virtual_deliver' class TempOrderMetaData(BaseModel): hj_user_id = BigIntegerField(null=True) id = BigAutoField() product_id = BigIntegerField(null=True) user_domain = CharField(null=True) class Meta: table_name = 'temp_order_meta_data' class TempOrderSellerCc(BaseModel): id = BigAutoField() seller_id = BigIntegerField(null=True) class Meta: table_name = 'temp_order_seller_cc' class TempOrderUserCc(BaseModel): hj_user_id = BigIntegerField(null=True) id = BigAutoField() class Meta: table_name = 'temp_order_user_cc' class TradeControl(BaseModel): compensate_action = CharField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")], index=True) create_user_id = BigIntegerField(null=True) has_cancel = IntegerField(null=True) has_commit = IntegerField(null=True) has_compensate = IntegerField(index=True, null=True) has_freeze = IntegerField(null=True) id = BigAutoField() order_id = BigIntegerField(index=True, null=True) trade_number = CharField(unique=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) update_user_id = BigIntegerField(null=True) class Meta: table_name = 'trade_control' class TradeResourceStatus(BaseModel): cancel_time = MyDateTimeField(null=True) commit_time = MyDateTimeField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")], index=True) create_user_id = BigIntegerField(null=True) freeze_time = MyDateTimeField(null=True) has_cancel = IntegerField(null=True) has_commit = IntegerField(null=True) has_freeze = IntegerField(null=True) id = BigAutoField() order_id = BigIntegerField(null=True) resource_code = CharField(null=True, unique=True) resource_type = IntegerField(null=True) retry_count = IntegerField(null=True) retry_time = MyDateTimeField(null=True) trade_number = CharField(index=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) update_user_id = BigIntegerField(null=True) class Meta: table_name = 'trade_resource_status' class UserAddress(BaseModel): city_id = IntegerField(null=True) create_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) create_user_company_id = IntegerField(null=True) create_user_id = BigIntegerField(null=True) id = BigAutoField() is_default = MyBitField(null=True) # bit msn = CharField(null=True) province_id = IntegerField(null=True) qq = CharField(null=True) ship_to_address = CharField(null=True) ship_to_cellphone = CharField(null=True) ship_to_email = CharField(null=True) ship_to_name = CharField(null=True) ship_to_phone = CharField(null=True) ship_to_zip = CharField(null=True) shop_user_id = BigIntegerField(null=True) town_id = IntegerField(null=True) update_time = MyDateTimeField(constraints=[SQL("DEFAULT CURRENT_TIMESTAMP")]) update_user_company_id = IntegerField(null=True) update_user_id = BigIntegerField(null=True) class Meta: table_name = 'user_address'
7f9e6d7b2d645fcd5aa6bd33457e423a8acbaae7
485784cea86f52c2acda0a495942689104cd391e
/schedule/migrations/0002_rinkschedule_schedule_date.py
9b86d692f4df4d3b153c2be9115884978a11c438
[]
no_license
BrianC68/OIC_Web_Apps
50ec9f46868ad37dc809548d2d362a4573320539
e75b9439b11cf2325675d76dacac38806156fb16
refs/heads/master
2023-08-09T07:39:33.066601
2023-08-07T13:22:39
2023-08-07T13:22:39
197,438,661
0
0
null
null
null
null
UTF-8
Python
false
false
472
py
# Generated by Django 2.2.1 on 2019-10-08 23:50 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('schedule', '0001_initial'), ] operations = [ migrations.AddField( model_name='rinkschedule', name='schedule_date', field=models.DateField(default=django.utils.timezone.now), preserve_default=False, ), ]
a5ce8e3808360b1d98652c7e2b7c2658debc42d3
559f3dec0964d2e0f86c6c871371fe779cf3726c
/contrib/MedicalSeg/tools/preprocess_utils/dataset_json.py
5b3372963ae365689314ba2a9ae2d83d7a9307a9
[ "Apache-2.0" ]
permissive
PaddlePaddle/PaddleSeg
319ab26665ea492527a1949671650135123ffc39
2c8c35a8949fef74599f5ec557d340a14415f20d
refs/heads/release/2.8
2023-08-31T09:08:06.724717
2023-08-18T01:59:56
2023-08-18T01:59:56
204,380,779
8,531
1,866
Apache-2.0
2023-09-12T02:30:42
2019-08-26T02:32:22
Python
UTF-8
Python
false
false
478
py
import json def parse_msd_basic_info(json_path): """ get dataset basic info from msd dataset.json """ dict = json.loads(open(json_path, "r").read()) info = {} info["modalities"] = tuple(dict["modality"].values()) info["labels"] = dict["labels"] info["dataset_name"] = dict["name"] info["dataset_description"] = dict["description"] info["license_desc"] = dict["licence"] info["dataset_reference"] = dict["reference"] return info
cc30e3e61bd5839e2a0450e37255e918cb0b15cc
814e4ad96172a76d9b72ac35697553980d0db5f1
/pyalp/gs_interface/generate_certificates.py
e7aa246d4bb2851366daaf5f91a5fe555ce9c5c2
[ "MIT" ]
permissive
Mause/pyalp
29785037d3b4ebc2822e6ec74621aa65f621bb8e
fb0f723070e11f8c9ed57e2475eb963599f442a6
refs/heads/master
2022-12-05T12:05:01.804305
2014-07-02T13:04:21
2014-07-02T13:04:21
15,419,434
0
0
MIT
2022-11-22T00:24:05
2013-12-24T14:00:26
PHP
UTF-8
Python
false
false
692
py
#!/usr/bin/env python """ Generate client and server CURVE certificate files then move them into the appropriate store directory, private_keys or public_keys. The certificates generated by this script are used by the stonehouse and ironhouse examples. In practice this would be done by hand or some out-of-band process. Author: Chris Laws """ import zmq.auth from __init__ import KEYS_DIR def generate_certificates(): ''' Generate client and server CURVE certificate files''' # create new keys in certificates dir zmq.auth.create_certificates(KEYS_DIR, "server") zmq.auth.create_certificates(KEYS_DIR, "client") if __name__ == '__main__': generate_certificates()
1434600aa23894fe97502d7f97ad8e909d58c0ec
9249947c07f8addf64dd3d2a2f9f37d379f83921
/libs/gluon/contrib/aes.py
cecf2d9073cb71ee75006f771492d0cb4b5943e6
[ "MIT" ]
permissive
operepo/ope
eb71aa763d157416009d7c3052ace11852660e0a
018c82af46845315795c67c36801e2a128f515d5
refs/heads/master
2023-08-08T15:05:28.592589
2023-07-25T00:22:24
2023-07-25T00:22:24
96,855,111
12
11
MIT
2023-03-03T15:10:34
2017-07-11T05:42:14
Perl
UTF-8
Python
false
false
16,671
py
"""Simple AES cipher implementation in pure Python following PEP-272 API Homepage: https://bitbucket.org/intgr/pyaes/ The goal of this module is to be as fast as reasonable in Python while still being Pythonic and readable/understandable. It is licensed under the permissive MIT license. Hopefully the code is readable and commented enough that it can serve as an introduction to the AES cipher for Python coders. In fact, it should go along well with the Stick Figure Guide to AES: http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html Contrary to intuition, this implementation numbers the 4x4 matrices from top to bottom for efficiency reasons:: 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 Effectively it's the transposition of what you'd expect. This actually makes the code simpler -- except the ShiftRows step, but hopefully the explanation there clears it up. """ #### # Copyright (c) 2010 Marti Raudsepp <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. #### from array import array # Globals mandated by PEP 272: # http://www.python.org/dev/peps/pep-0272/ MODE_ECB = 1 MODE_CBC = 2 #MODE_CTR = 6 block_size = 16 key_size = None def new(key, mode=MODE_CBC, IV=None): if mode == MODE_ECB: return ECBMode(AES(key)) elif mode == MODE_CBC: if IV is None: raise ValueError("CBC mode needs an IV value!") return CBCMode(AES(key), IV) else: raise NotImplementedError #### AES cipher implementation class AES(object): block_size = 16 def __init__(self, key): self.setkey(key) def setkey(self, key): """Sets the key and performs key expansion.""" self.key = key self.key_size = len(key) if self.key_size == 16: self.rounds = 10 elif self.key_size == 24: self.rounds = 12 elif self.key_size == 32: self.rounds = 14 else: raise ValueError("Key length must be 16, 24 or 32 bytes") self.expand_key() def expand_key(self): """Performs AES key expansion on self.key and stores in self.exkey""" # The key schedule specifies how parts of the key are fed into the # cipher's round functions. "Key expansion" means performing this # schedule in advance. Almost all implementations do this. # # Here's a description of AES key schedule: # http://en.wikipedia.org/wiki/Rijndael_key_schedule # The expanded key starts with the actual key itself exkey = array('B', self.key) # extra key expansion steps if self.key_size == 16: extra_cnt = 0 elif self.key_size == 24: extra_cnt = 2 else: extra_cnt = 3 # 4-byte temporary variable for key expansion word = exkey[-4:] # Each expansion cycle uses 'i' once for Rcon table lookup for i in xrange(1, 11): #### key schedule core: # left-rotate by 1 byte word = word[1:4] + word[0:1] # apply S-box to all bytes for j in xrange(4): word[j] = aes_sbox[word[j]] # apply the Rcon table to the leftmost byte word[0] = word[0] ^ aes_Rcon[i] #### end key schedule core for z in xrange(4): for j in xrange(4): # mix in bytes from the last subkey word[j] ^= exkey[-self.key_size + j] exkey.extend(word) # Last key expansion cycle always finishes here if len(exkey) >= (self.rounds+1) * self.block_size: break # Special substitution step for 256-bit key if self.key_size == 32: for j in xrange(4): # mix in bytes from the last subkey XORed with S-box of # current word bytes word[j] = aes_sbox[word[j]] ^ exkey[-self.key_size + j] exkey.extend(word) # Twice for 192-bit key, thrice for 256-bit key for z in xrange(extra_cnt): for j in xrange(4): # mix in bytes from the last subkey word[j] ^= exkey[-self.key_size + j] exkey.extend(word) self.exkey = exkey def add_round_key(self, block, round): """AddRoundKey step in AES. This is where the key is mixed into plaintext""" offset = round * 16 exkey = self.exkey for i in xrange(16): block[i] ^= exkey[offset + i] #print 'AddRoundKey:', block def sub_bytes(self, block, sbox): """SubBytes step, apply S-box to all bytes Depending on whether encrypting or decrypting, a different sbox array is passed in. """ for i in xrange(16): block[i] = sbox[block[i]] #print 'SubBytes :', block def shift_rows(self, b): """ShiftRows step. Shifts 2nd row to left by 1, 3rd row by 2, 4th row by 3 Since we're performing this on a transposed matrix, cells are numbered from top to bottom:: 0 4 8 12 -> 0 4 8 12 -- 1st row doesn't change 1 5 9 13 -> 5 9 13 1 -- row shifted to left by 1 (wraps around) 2 6 10 14 -> 10 14 2 6 -- shifted by 2 3 7 11 15 -> 15 3 7 11 -- shifted by 3 """ b[1], b[5], b[ 9], b[13] = b[ 5], b[ 9], b[13], b[ 1] b[2], b[6], b[10], b[14] = b[10], b[14], b[ 2], b[ 6] b[3], b[7], b[11], b[15] = b[15], b[ 3], b[ 7], b[11] #print 'ShiftRows :', b def shift_rows_inv(self, b): """Similar to shift_rows above, but performed in inverse for decryption.""" b[ 5], b[ 9], b[13], b[ 1] = b[1], b[5], b[ 9], b[13] b[10], b[14], b[ 2], b[ 6] = b[2], b[6], b[10], b[14] b[15], b[ 3], b[ 7], b[11] = b[3], b[7], b[11], b[15] #print 'ShiftRows :', b def mix_columns(self, block): """MixColumns step. Mixes the values in each column""" # Cache global multiplication tables (see below) mul_by_2 = gf_mul_by_2 mul_by_3 = gf_mul_by_3 # Since we're dealing with a transposed matrix, columns are already # sequential for i in xrange(4): col = i * 4 #v0, v1, v2, v3 = block[col : col+4] v0, v1, v2, v3 = (block[col], block[col + 1], block[col + 2], block[col + 3]) block[col ] = mul_by_2[v0] ^ v3 ^ v2 ^ mul_by_3[v1] block[col+1] = mul_by_2[v1] ^ v0 ^ v3 ^ mul_by_3[v2] block[col+2] = mul_by_2[v2] ^ v1 ^ v0 ^ mul_by_3[v3] block[col+3] = mul_by_2[v3] ^ v2 ^ v1 ^ mul_by_3[v0] #print 'MixColumns :', block def mix_columns_inv(self, block): """Similar to mix_columns above, but performed in inverse for decryption.""" # Cache global multiplication tables (see below) mul_9 = gf_mul_by_9 mul_11 = gf_mul_by_11 mul_13 = gf_mul_by_13 mul_14 = gf_mul_by_14 # Since we're dealing with a transposed matrix, columns are already # sequential for i in xrange(4): col = i * 4 v0, v1, v2, v3 = (block[col], block[col + 1], block[col + 2], block[col + 3]) #v0, v1, v2, v3 = block[col:col+4] block[col ] = mul_14[v0] ^ mul_9[v3] ^ mul_13[v2] ^ mul_11[v1] block[col+1] = mul_14[v1] ^ mul_9[v0] ^ mul_13[v3] ^ mul_11[v2] block[col+2] = mul_14[v2] ^ mul_9[v1] ^ mul_13[v0] ^ mul_11[v3] block[col+3] = mul_14[v3] ^ mul_9[v2] ^ mul_13[v1] ^ mul_11[v0] #print 'MixColumns :', block def encrypt_block(self, block): """Encrypts a single block. This is the main AES function""" # For efficiency reasons, the state between steps is transmitted via a # mutable array, not returned. self.add_round_key(block, 0) for round in xrange(1, self.rounds): self.sub_bytes(block, aes_sbox) self.shift_rows(block) self.mix_columns(block) self.add_round_key(block, round) self.sub_bytes(block, aes_sbox) self.shift_rows(block) # no mix_columns step in the last round self.add_round_key(block, self.rounds) def decrypt_block(self, block): """Decrypts a single block. This is the main AES decryption function""" # For efficiency reasons, the state between steps is transmitted via a # mutable array, not returned. self.add_round_key(block, self.rounds) # count rounds down from 15 ... 1 for round in xrange(self.rounds-1, 0, -1): self.shift_rows_inv(block) self.sub_bytes(block, aes_inv_sbox) self.add_round_key(block, round) self.mix_columns_inv(block) self.shift_rows_inv(block) self.sub_bytes(block, aes_inv_sbox) self.add_round_key(block, 0) # no mix_columns step in the last round #### ECB mode implementation class ECBMode(object): """Electronic CodeBook (ECB) mode encryption. Basically this mode applies the cipher function to each block individually; no feedback is done. NB! This is insecure for almost all purposes """ def __init__(self, cipher): self.cipher = cipher self.block_size = cipher.block_size def ecb(self, data, block_func): """Perform ECB mode with the given function""" if len(data) % self.block_size != 0: raise ValueError("Plaintext length must be multiple of 16") block_size = self.block_size data = array('B', data) for offset in xrange(0, len(data), block_size): block = data[offset : offset+block_size] block_func(block) data[offset : offset+block_size] = block return data.tostring() def encrypt(self, data): """Encrypt data in ECB mode""" return self.ecb(data, self.cipher.encrypt_block) def decrypt(self, data): """Decrypt data in ECB mode""" return self.ecb(data, self.cipher.decrypt_block) #### CBC mode class CBCMode(object): """Cipher Block Chaining (CBC) mode encryption. This mode avoids content leaks. In CBC encryption, each plaintext block is XORed with the ciphertext block preceding it; decryption is simply the inverse. """ # A better explanation of CBC can be found here: # http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29 def __init__(self, cipher, IV): self.cipher = cipher self.block_size = cipher.block_size self.IV = array('B', IV) def encrypt(self, data): """Encrypt data in CBC mode""" block_size = self.block_size if len(data) % block_size != 0: raise ValueError("Plaintext length must be multiple of 16") data = array('B', data) IV = self.IV for offset in xrange(0, len(data), block_size): block = data[offset : offset+block_size] # Perform CBC chaining for i in xrange(block_size): block[i] ^= IV[i] self.cipher.encrypt_block(block) data[offset : offset+block_size] = block IV = block self.IV = IV return data.tostring() def decrypt(self, data): """Decrypt data in CBC mode""" block_size = self.block_size if len(data) % block_size != 0: raise ValueError("Ciphertext length must be multiple of 16") data = array('B', data) IV = self.IV for offset in xrange(0, len(data), block_size): ctext = data[offset : offset+block_size] block = ctext[:] self.cipher.decrypt_block(block) # Perform CBC chaining #for i in xrange(block_size): # data[offset + i] ^= IV[i] for i in xrange(block_size): block[i] ^= IV[i] data[offset : offset+block_size] = block IV = ctext #data[offset : offset+block_size] = block self.IV = IV return data.tostring() #### def galois_multiply(a, b): """Galois Field multiplicaiton for AES""" p = 0 while b: if b & 1: p ^= a a <<= 1 if a & 0x100: a ^= 0x1b b >>= 1 return p & 0xff # Precompute the multiplication tables for encryption gf_mul_by_2 = array('B', [galois_multiply(x, 2) for x in range(256)]) gf_mul_by_3 = array('B', [galois_multiply(x, 3) for x in range(256)]) # ... for decryption gf_mul_by_9 = array('B', [galois_multiply(x, 9) for x in range(256)]) gf_mul_by_11 = array('B', [galois_multiply(x, 11) for x in range(256)]) gf_mul_by_13 = array('B', [galois_multiply(x, 13) for x in range(256)]) gf_mul_by_14 = array('B', [galois_multiply(x, 14) for x in range(256)]) #### # The S-box is a 256-element array, that maps a single byte value to another # byte value. Since it's designed to be reversible, each value occurs only once # in the S-box # # More information: http://en.wikipedia.org/wiki/Rijndael_S-box aes_sbox = array('B', '637c777bf26b6fc53001672bfed7ab76' 'ca82c97dfa5947f0add4a2af9ca472c0' 'b7fd9326363ff7cc34a5e5f171d83115' '04c723c31896059a071280e2eb27b275' '09832c1a1b6e5aa0523bd6b329e32f84' '53d100ed20fcb15b6acbbe394a4c58cf' 'd0efaafb434d338545f9027f503c9fa8' '51a3408f929d38f5bcb6da2110fff3d2' 'cd0c13ec5f974417c4a77e3d645d1973' '60814fdc222a908846eeb814de5e0bdb' 'e0323a0a4906245cc2d3ac629195e479' 'e7c8376d8dd54ea96c56f4ea657aae08' 'ba78252e1ca6b4c6e8dd741f4bbd8b8a' '703eb5664803f60e613557b986c11d9e' 'e1f8981169d98e949b1e87e9ce5528df' '8ca1890dbfe6426841992d0fb054bb16'.decode('hex') ) # This is the inverse of the above. In other words: # aes_inv_sbox[aes_sbox[val]] == val aes_inv_sbox = array('B', '52096ad53036a538bf40a39e81f3d7fb' '7ce339829b2fff87348e4344c4dee9cb' '547b9432a6c2233dee4c950b42fac34e' '082ea16628d924b2765ba2496d8bd125' '72f8f66486689816d4a45ccc5d65b692' '6c704850fdedb9da5e154657a78d9d84' '90d8ab008cbcd30af7e45805b8b34506' 'd02c1e8fca3f0f02c1afbd0301138a6b' '3a9111414f67dcea97f2cfcef0b4e673' '96ac7422e7ad3585e2f937e81c75df6e' '47f11a711d29c5896fb7620eaa18be1b' 'fc563e4bc6d279209adbc0fe78cd5af4' '1fdda8338807c731b11210592780ec5f' '60517fa919b54a0d2de57a9f93c99cef' 'a0e03b4dae2af5b0c8ebbb3c83539961' '172b047eba77d626e169146355210c7d'.decode('hex') ) # The Rcon table is used in AES's key schedule (key expansion) # It's a pre-computed table of exponentation of 2 in AES's finite field # # More information: http://en.wikipedia.org/wiki/Rijndael_key_schedule aes_Rcon = array('B', '8d01020408102040801b366cd8ab4d9a' '2f5ebc63c697356ad4b37dfaefc59139' '72e4d3bd61c29f254a943366cc831d3a' '74e8cb8d01020408102040801b366cd8' 'ab4d9a2f5ebc63c697356ad4b37dfaef' 'c5913972e4d3bd61c29f254a943366cc' '831d3a74e8cb8d01020408102040801b' '366cd8ab4d9a2f5ebc63c697356ad4b3' '7dfaefc5913972e4d3bd61c29f254a94' '3366cc831d3a74e8cb8d010204081020' '40801b366cd8ab4d9a2f5ebc63c69735' '6ad4b37dfaefc5913972e4d3bd61c29f' '254a943366cc831d3a74e8cb8d010204' '08102040801b366cd8ab4d9a2f5ebc63' 'c697356ad4b37dfaefc5913972e4d3bd' '61c29f254a943366cc831d3a74e8cb'.decode('hex') )
ee63b12e238a4138f9963f331b11ffc93c1e0fa0
5979cf3c79daa04706c8fef1595574c6e36c14a1
/vgl/home/urls.py
0547341057b158de3626eb131277cda6b03c92a1
[]
no_license
rahuezo/valley-green-landscape-inc
f675b5242ed7a80e457b236a253fb9ed0602829c
6dac5ed2202336a69a86c6dcafee892cbadaa5b3
refs/heads/master
2021-08-15T16:48:50.594629
2017-11-18T00:08:49
2017-11-18T00:08:49
110,613,620
0
0
null
null
null
null
UTF-8
Python
false
false
135
py
from django.conf.urls import url from . import views app_name = 'home' urlpatterns = [ url(r'^$', views.index, name='index'), ]
3bad13cc5bddd857215b2177bebc8b7cae6f2551
20c80f722c451b64d05cc027b66a81e1976c3253
/commons/libs/pyblish_qml/rpc/__init__.py
a461a54bd8d5068ae347c7d751ec764fdb30bacd
[]
no_license
flypotatojun/Barbarian
2d3fcb6fcb1b4495b6d62fc5e32634abf4638312
efe14dd24c65b4852997dad1290e503211bcc419
refs/heads/master
2021-07-18T01:43:14.443911
2017-10-24T03:37:43
2017-10-24T03:37:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
105
py
from . import client, server, service __all__ = [ "client", "server", "service", ]
dc89107f7dcfdfa9cd7401d4281ed7ea790232a3
0ad7f553df6b210b5ac004fbf490ed651a21d55e
/algos/discrete_esay_control_lib_01.py
ef19dd246fb029fd2da77e0c6b9a839eebbfc2a8
[]
no_license
MarianoDel/spyder_python
fa00987eb9aa1ef61d7224679a84c05a217c6c35
5f5896df68f95eb860bc08c21ae2b19516432cdc
refs/heads/master
2020-05-23T06:14:57.329478
2020-04-23T14:58:16
2020-04-23T14:58:16
84,753,428
0
0
null
null
null
null
UTF-8
Python
false
false
1,354
py
# -*- coding: utf-8 -*- #usando libreria de control import numpy as np from scipy import signal b = [0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125] tf1 = (b, [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 0.001) #ver que dt coincida con el step de tiempo en discreto #w, h = signal.freqz(b) #w, h = signal.freqz(tf1) w, h = signal.freqz((b, [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 0.001)) import matplotlib.pyplot as plt fig = plt.figure() plt.title('Digital filter frequency response') ax1 = fig.add_subplot(111) plt.plot(w, 20 * np.log10(abs(h)), 'b') plt.ylabel('Amplitude [dB]', color='b') plt.xlabel('Frequency [rad/sample]') ax2 = ax1.twinx() angles = np.unwrap(np.angle(h)) plt.plot(w, angles, 'g') plt.ylabel('Angle (radians)', color='g') plt.grid() plt.axis('tight') plt.show() plt.figure(2) plt.clf() tf = (b, [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 0.001) #ver que dt coincida con el step de tiempo en discreto #ademas le genero un multilpe polo en origen para que no me diga que num > den t_in = np.arange(0.0, 0.1, 0.001) #t_in = np.arange(0.0, 4.0, 1.0) #u = np.asarray([0.0, 0.0, 1.0, 1.0]) u = np.ones(np.size(t_in)) t_out, y = signal.dlsim(tf, u, t=t_in) plt.plot(t_out, y, 'b') plt.plot(t_out, u+0.1, 'g') plt.show()
67f12d8933ae63eef4aa93f09cc44f61d8f48c3d
7801b0356b60de5a4fa6b214717a1c04942b5b62
/crm/migrations/0003_userinfo_user.py
2daf274b45a19a80d357f35f9323cbef54a43799
[]
no_license
hqs2212586/CRM_demo
365652c61c991a2098d32b5db318d55cf29baa0b
941a896aef598d81750a96074bc63ccfaaadf0a5
refs/heads/master
2020-03-27T17:43:40.110992
2018-08-31T09:20:01
2018-08-31T09:20:01
146,869,963
0
0
null
null
null
null
UTF-8
Python
false
false
517
py
# Generated by Django 2.0.6 on 2018-08-31 03:55 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('rbac', '0004_permission_action'), ('crm', '0002_customerdistrbute'), ] operations = [ migrations.AddField( model_name='userinfo', name='user', field=models.OneToOneField(null=True, on_delete=django.db.models.deletion.CASCADE, to='rbac.User'), ), ]
2a02caa7558f764522bd58b00871216e796676d8
d42dea822871be6027fadbf8b167be1c0b38d9c7
/BST/debug.py
2cc73f8d9784aa9f8a21c2b7530ff531d0bb1e4b
[]
no_license
siddhantprateek/Python-in-Practice
d8412c46dec57d512d8abd87cb0a33b71070c5ee
0ad806f02fecb87de20078ef956f8e23bb38e342
refs/heads/main
2023-06-26T22:34:55.172882
2021-07-29T15:14:09
2021-07-29T15:14:09
354,875,226
0
0
null
null
null
null
UTF-8
Python
false
false
1,479
py
class BSTreeNode: def __init__(self, val): self.value = val self.left, self.right = None, None class BinaryST: def __init__(self): self.root = None def insert(self, val): self.root = self.insertHelp(val, self.root) def insertHelp(self, value, node): if node == None: node = BSTreeNode(value) return node if node.value > value: node.left = self.insertHelp(value, node.left) if node.value < value: node.right = self.insertHelp(value, node.right) return node def Sum(self): return self.sumHelp(self.root) def sumHelp(self, node): if node == None: return 0 return node.value + self.sumHelp(node.left) + self.sumHelp(node.right) def display(self): self.displayHelper(self.root, "Root Node: ") def displayHelper(self, node, details): if node == None: return print(details, node.value) self.displayHelper(node.left, "left child of " + str(node.value) + ":") self.displayHelper(node.right, "right child of " + str(node.value) + ":") # nums = [4, 5, 2, 7, 6, 1] if __name__ == '__main__': bst = BinaryST() bst.insert(4) bst.insert(5) bst.insert(2) bst.insert(7) bst.insert(6) bst.display()
5ae9b28df851a85fea96edf6169e6cf8f14c6a50
07f92805a75dc91b8be2ac14c238394245eda9ea
/Python生物信息学数据管理/python-for-biologists/03-modular_programming/10-functions/calc_atom_atom_distance.py
5156d4af63c5626cef0355e63c950a6aecc07d18
[]
no_license
08zhangyi/Some-thing-interesting-for-me
6ea7366ef1f0812397300259b2e9d0e7217bcba0
f4cbda341ada98753c57a3ba07653163522dd023
refs/heads/master
2023-01-11T22:54:03.396911
2023-01-06T05:47:41
2023-01-06T05:47:41
136,426,995
7
6
null
null
null
null
UTF-8
Python
false
false
917
py
''' Find two alpha-C atoms in a PDB structure and calculate their distance. ----------------------------------------------------------- (c) 2013 Allegra Via and Kristian Rother Licensed under the conditions of the Python License This code appears in section 10.4.4 of the book "Managing Biological Data with Python". ----------------------------------------------------------- ''' from math import sqrt from distance import calc_dist from parse_pdb import parse_atom_line pdb = open('3G5U.pdb') points = [] while len(points) < 2: line = pdb.readline() if line.startswith("ATOM"): chain, res_type, res_num, atom, x, y, z = parse_atom_line(line) if res_num == '123' and chain == 'A' and atom == 'CA': points.append((x, y, z)) if res_num == '209' and chain == 'A' and atom == 'CA': points.append((x, y, z)) print calc_dist(points[0], points[1])
21393f5ec3107ae718cce881c013ad295cbc9e74
bf74f773f0c69e0ce7c5cc57a5897ca86cca6587
/custom_collections/tree.py
b2452b64db079d1947db82cf94a240f15c822c36
[ "BSD-3-Clause" ]
permissive
weijia/custom_collections
a532b01b18049f0e0aad9920f8e90d45e3c24812
e9b7bcc25f83f6a9adfbee94c825835414799aab
refs/heads/master
2016-09-06T09:01:05.969014
2014-09-20T17:42:48
2014-09-20T17:42:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,068
py
import uuid from django.utils import timezone import django.db.utils from django.contrib.auth.models import User, Group from django.contrib import admin from django.conf import settings from obj_sys.models import UfsObj from guardian.admin import GuardedModelAdmin from guardian.shortcuts import assign_perm try: from models import CollectionItem except: pass gRootUuid = u"4a5e8673-f2a2-4cf2-af6c-461fa9f31a15" def register(objectClass, group_name = "scheduling"): module_name = objectClass.__module__.split(".")[0].lower() class_name = objectClass.__name__.lower() url = u"view://admin/%s/%s/add"%(module_name, class_name) try: for i in UfsObj.objects.filter(ufs_url = url): return except django.db.utils.DatabaseError: #Database is not created yet, just return, items will be created after syncdb is executed return o = UfsObj(ufs_url = url, uuid = unicode(uuid.uuid4()), timestamp=timezone.now(), user=User.objects.filter(username="AnonymousUser")[0]) o.save() c = CollectionItem(obj = o, uuid = gRootUuid, id_in_col="%s_%s_add"%(module_name, class_name), timestamp=timezone.now(), user=User.objects.filter(username="AnonymousUser")[0]) c.save() #Add to group try: group = Group.objects.filter(name=group_name)[0] except: #Group not exist, create it group = Group.objects.create(name=group_name) #print 'assigning: ', group, c assign_perm('view_collection_item', group, c) def get_item_id(parent_path): subitem_list = parent_path.split("/") parent_item_uuid = gRootUuid for i in subitem_list: #print 'getting uuid for item: ', i, ', parent:', parent_item_uuid, 'end' if i == "": continue parent_item_uuid = CollectionItem.objects.filter(uuid = parent_item_uuid, id_in_col = i)[0].obj.uuid #print 'returning parent', parent_item_uuid return parent_item_uuid def register_menu(subitem_url, subitem_text, parent_path = "/", permmited_group = None): """ If subitem_test contains dynamic, subitem_url is not used. Otherwise, subitem_url is the content of this menu item. Register a menu item in the left tree in object manager, the info is stored in obj_sys.models.Collection. :param subitem_url: menu item's URL. When the item is clicked, the URL will be loaded to the content pane :param subitem_text: menu item's text. It is stored in to id_in_col field for Collection and if it is "dynamic://xxxx", the parent item's children will be dynamically generated by opening URL: xxxx. xxxx should return a collection of items as in tags.tag_list. The format is described in tags.tag_list as well. :param parent_path: the parent for this menu item. Root item is "/", sub menus should start with "/" as well. :param permmited_group: :return: N/A """ try: root_uuid = get_item_id(parent_path) url = u"view://%s"%(subitem_url) qs = UfsObj.objects.filter(ufs_url = url) if 0 == qs.count(): print 'creating new ufs obj' o = UfsObj(ufs_url = url, uuid = unicode(uuid.uuid4()), timestamp=timezone.now(), user=User.objects.filter(username="AnonymousUser")[0]) o.save() else: #print 'use existing item' o = qs[0] except django.db.utils.DatabaseError: #Database is not created yet, just return, items will be created after syncdb is executed return #print 'creating collection item for root: ', root_uuid if permmited_group is None: #If no permission requested, set anonymous user accessable. permitted_user_or_group = User.objects.filter(pk=settings.ANONYMOUS_USER_ID)[0] else: try: permitted_user_or_group = Group.objects.filter(name = permmited_group)[0] except: #Group not exist, create it permitted_user_or_group = Group.objects.create(name = permmited_group) collqs = CollectionItem.objects.filter(uuid = root_uuid, id_in_col = subitem_text) if 0 == collqs.count(): c = CollectionItem(obj = o, uuid = root_uuid, id_in_col = subitem_text, timestamp=timezone.now(), user=User.objects.filter(username="AnonymousUser")[0]) c.save() else: c = collqs[0] #Assign group permission assign_perm('view_collection_item', permitted_user_or_group, c) def register_to_sys(class_inst, admin_class = None): if admin_class is None: admin_class = type(class_inst.__name__+"Admin", (GuardedModelAdmin, ), {}) try: admin.site.register(class_inst, admin_class) except: pass try: from normal_admin.admin import user_admin_site user_admin_site.register(class_inst, admin_class) except: pass #register(class_inst) def register_all(class_list): for i in class_list: register_to_sys(i)
43589f610d031b46faaa40ca7ed51622d5c8345d
8c9c27cb88a2d210a5e2fb5803fe89204dba95ef
/phy/gui/qt.py
fee9e2549519dba466c131d6a190d3459af0496c
[]
no_license
arnefmeyer/phy
c13b1eceb70ee72cf0ff9c4a273e195f122fabc4
14663e1f2baad421d6bc9f420d34170c6c969bbe
refs/heads/master
2020-12-07T15:42:49.605432
2016-04-20T21:10:38
2016-04-20T21:10:38
56,718,986
1
0
null
2016-04-20T20:32:18
2016-04-20T20:32:18
null
UTF-8
Python
false
false
4,107
py
# -*- coding: utf-8 -*- """Qt utilities.""" # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- from contextlib import contextmanager from functools import wraps import logging import sys logger = logging.getLogger(__name__) # ----------------------------------------------------------------------------- # PyQt import # ----------------------------------------------------------------------------- from PyQt4.QtCore import (Qt, QByteArray, QMetaObject, QObject, # noqa QVariant, QEventLoop, QTimer, pyqtSignal, pyqtSlot, QSize, QUrl) try: from PyQt4.QtCore import QPyNullVariant # noqa except: # pragma: no cover QPyNullVariant = None try: from PyQt4.QtCore import QString # noqa except: # pragma: no cover QString = None from PyQt4.QtGui import (QKeySequence, QAction, QStatusBar, # noqa QMainWindow, QDockWidget, QWidget, QMessageBox, QApplication, QMenuBar, QInputDialog, ) from PyQt4.QtWebKit import QWebView, QWebPage, QWebSettings # noqa # ----------------------------------------------------------------------------- # Utility functions # ----------------------------------------------------------------------------- def _button_enum_from_name(name): return getattr(QMessageBox, name.capitalize()) def _button_name_from_enum(enum): names = dir(QMessageBox) for name in names: if getattr(QMessageBox, name) == enum: return name.lower() def _prompt(message, buttons=('yes', 'no'), title='Question'): buttons = [(button, _button_enum_from_name(button)) for button in buttons] arg_buttons = 0 for (_, button) in buttons: arg_buttons |= button box = QMessageBox() box.setWindowTitle(title) box.setText(message) box.setStandardButtons(arg_buttons) box.setDefaultButton(buttons[0][1]) return box def _show_box(box): # pragma: no cover return _button_name_from_enum(box.exec_()) def _input_dialog(title, sentence): return QInputDialog.getText(None, title, sentence) @contextmanager def _wait_signal(signal, timeout=None): """Block loop until signal emitted, or timeout (ms) elapses.""" # http://jdreaver.com/posts/2014-07-03-waiting-for-signals-pyside-pyqt.html loop = QEventLoop() signal.connect(loop.quit) yield if timeout is not None: QTimer.singleShot(timeout, loop.quit) loop.exec_() # ----------------------------------------------------------------------------- # Qt app # ----------------------------------------------------------------------------- def require_qt(func): """Specify that a function requires a Qt application. Use this decorator to specify that a function needs a running Qt application before it can run. An error is raised if that is not the case. """ @wraps(func) def wrapped(*args, **kwargs): if not QApplication.instance(): # pragma: no cover raise RuntimeError("A Qt application must be created.") return func(*args, **kwargs) return wrapped # Global variable with the current Qt application. QT_APP = None def create_app(): """Create a Qt application.""" global QT_APP QT_APP = QApplication.instance() if QT_APP is None: # pragma: no cover QT_APP = QApplication(sys.argv) return QT_APP @require_qt def run_app(): # pragma: no cover """Run the Qt application.""" global QT_APP return QT_APP.exit(QT_APP.exec_()) # ----------------------------------------------------------------------------- # Testing utilities # ----------------------------------------------------------------------------- def _debug_trace(): # pragma: no cover """Set a tracepoint in the Python debugger that works with Qt.""" from PyQt4.QtCore import pyqtRemoveInputHook from pdb import set_trace pyqtRemoveInputHook() set_trace()
7c6e0f6234acef62dcc182e1e93468181f99ce5c
187a6558f3c7cb6234164677a2bda2e73c26eaaf
/jdcloud_sdk/services/apigateway/apis/DescribeIsDeployApiGroupsRequest.py
5734f9aeb75d8ebb2d719eb77989012b428bf204
[ "Apache-2.0" ]
permissive
jdcloud-api/jdcloud-sdk-python
4d2db584acc2620b7a866af82d21658cdd7cc227
3d1c50ed9117304d3b77a21babe899f939ae91cd
refs/heads/master
2023-09-04T02:51:08.335168
2023-08-30T12:00:25
2023-08-30T12:00:25
126,276,169
18
36
Apache-2.0
2023-09-07T06:54:49
2018-03-22T03:47:02
Python
UTF-8
Python
false
false
1,460
py
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class DescribeIsDeployApiGroupsRequest(JDCloudRequest): """ 查询分组 """ def __init__(self, parameters, header=None, version="v1"): super(DescribeIsDeployApiGroupsRequest, self).__init__( '/regions/{regionId}/apiGroups:isDeploy', 'GET', header, version) self.parameters = parameters class DescribeIsDeployApiGroupsParameters(object): def __init__(self, regionId, ): """ :param regionId: 地域ID """ self.regionId = regionId self.filters = None def setFilters(self, filters): """ :param filters: (Optional) deployStatus - 发布状态,已发布:1,未发布:0 """ self.filters = filters
8b7641767d7456a30a42aaefeb9cee8c4c607de4
51888119e10cdff12dafb060a54824632edccf3f
/Folders/Python/BlackSailSubmit.py
fb3aabf18c996ca4a44e2ffda207c3e9e2ed6b01
[ "BSD-2-Clause" ]
permissive
kuchinal/lamakaha
b64511ad8c6d2b36da5a84a266b9e7a69acd3106
24e3b2ff53bcac2ad1c0e5a3b9afd4593d85f22d
refs/heads/master
2023-09-01T17:55:56.551183
2023-07-31T19:32:04
2023-07-31T19:32:04
182,849,747
0
0
null
2021-09-10T06:34:22
2019-04-22T19:00:02
Python
UTF-8
Python
false
false
519
py
import nuke import rrSubmit_Nuke_5 def BlackSailSubmit(): try : g = nuke.selectedNode() f = nuke.allNodes("Write") f= nuke.allNodes("AutoWrite")+f for a in f: sel = a['selected'].value() if sel == 1: a['disable'].setValue(0) else: a['disable'].setValue(1) print "selected" rrSubmit_Nuke_5.rrSubmit_Nuke_5() except: rrSubmit_Nuke_5.rrSubmit_Nuke_5() print "all"
6c8a442acb14c856d7f761064e44561c82b10f6c
212028581b4875ac2fefa9acd7b17b88b4b8eccd
/ulugugu/values.py
e5fbdd042dbd0dbd5cebbe5d437a2fa3c34403d1
[]
no_license
jonashaag/ulugugu
65a3b55c2fa2d624ba7cc72cc5186eb353e7b016
509e3ceadbb50aad34c585b63d33284357a21ed6
refs/heads/master
2016-08-06T07:10:53.578924
2015-07-25T12:54:15
2015-07-25T12:54:15
37,680,621
0
0
null
null
null
null
UTF-8
Python
false
false
533
py
class Value: pass class Integer(Value): def __init__(self, value): self.value = value def __repr__(self): return '<Integer %d>' % self.value class String(Value): def __init__(self, value): self.value = value def __repr__(self): return '<String %r>' % self.value class Application(Value): def __init__(self, operation, op1, op2): self.operation = operation self.op1 = op1 self.op2 = op2 def __repr__(self): return '<Application %s(%s, %s)>' % (self.operation, self.op1, self.op2)
924c4786c418c5f6ba94014768067df9fd08892e
62009d7843d120beddd696258686c8b479713384
/tribune/urls.py
960254574acbddbcb52308d302a510e032a17349
[]
no_license
Janice-M/-The-Moringa-Tribune
a81d5e94b325254c78a6c0eea3c48e031935bdba
c960fa8dac1444f6fd4ea1a823f63433ae1645e4
refs/heads/master
2021-06-16T20:06:18.140544
2019-08-20T09:54:41
2019-08-20T09:54:41
203,201,486
1
1
null
2021-06-10T21:53:04
2019-08-19T15:38:57
Python
UTF-8
Python
false
false
764
py
"""tribune URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), ]
42fdb67ff09320fd1ae7ed48b1d7252395a78674
93db4b48741ff4ab0a3895813a6c7543e01821ea
/leetcode/Python/875_bananas.py
ce09bb5605a8310b0d9dfe00aaffbe27d27ed1c7
[]
no_license
shubham14/Coding_Contest_solutions
f884c458d3316bdafc6f1b1a52cf3e962c58bc47
1b67497f35b892c25e3d9600214fa37a738ffd40
refs/heads/master
2021-06-22T13:34:10.581101
2019-10-09T02:56:01
2019-10-09T02:56:01
131,326,516
1
0
null
null
null
null
UTF-8
Python
false
false
440
py
# -*- coding: utf-8 -*- """ Created on Tue Jul 24 00:09:31 2018 @author: Shubham """ class Solution(object): def minEatingSpeed(self, piles, H): def possible(K): return sum((p - 1)/ K + 1 for p in piles) <= H s, e = 1, max(piles) while s < e: m = (s + e)/2 if not possible(m): s = m + 1 else: e = m return s
3cce302430399686b13d6cc49040ace97eb052a2
632eee486e432d1bc2a7c771db7e9a06f7cad7a9
/2812-laercio.py
3d976d923a342bfca9597d558079aab8c6f0269b
[]
no_license
L4res/URI-Python
d1c578d87201151540876a6b8eca2aecd833a953
2f59387ca38e16f6396a6ea677d71f7c2c919fc2
refs/heads/master
2023-03-25T17:34:57.635187
2020-06-15T18:20:03
2020-06-15T18:20:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
864
py
for i in range(int(input())): n = int(input()) lista = list(map(int, input().split())) lista.sort() impares = [] resultado = [] # Pegando os valores impares: for j in range(n): if lista[j] % 2 != 0: impares.append(lista[j]) # Pegando os valores na ordem maior e menor, sucessivamente: while len(impares) != 0: try: resultado.append(impares[len(impares)-1]) impares.pop() resultado.append(impares[0]) impares.pop(0) except IndexError: break # Printando o resultado: if len(resultado) == 0: print() else: for k in range(len(resultado)): if k != len(resultado)-1: print(resultado[k], end=" ") else: print(resultado[k])
bccecc6995a1fcb323de9ae3254a02a54008d43a
e1a2c6ed4a4b93b4697974e3b0a32a4d67daa6f6
/venv/Lib/site-packages/pybrain3/rl/environments/ode/tasks/ccrl.py
74047621ad42288a4b7988d703bcde82599a35e9
[ "MIT" ]
permissive
ishatserka/MachineLearningAndDataAnalysisCoursera
cdf0f23a58617e17d6b938e3a9df17daae8585e4
e82e772df2f4aec162cb34ac6127df10d14a625a
refs/heads/master
2021-09-11T01:39:26.228392
2018-04-05T14:33:39
2018-04-05T14:33:39
117,153,454
0
0
MIT
2018-03-27T05:20:37
2018-01-11T21:05:33
Python
UTF-8
Python
false
false
15,329
py
__author__ = 'Frank Sehnke, [email protected]' from pybrain3.rl.environments import EpisodicTask from pybrain3.rl.environments.ode.sensors import SpecificBodyPositionSensor from scipy import tanh, zeros, array, random, sqrt, asarray #Basic class for all ccrl tasks class CCRLTask(EpisodicTask): def __init__(self, env): EpisodicTask.__init__(self, env) #Overall maximal tourque - is multiplied with relative max tourque for individual joint. self.maxPower = 100.0 self.reward_history = [] self.count = 0 #timestep counter self.epiLen = 1500 #suggestet episodic length for normal Johnnie tasks self.incLearn = 0 #counts the task resets for incrementall learning self.env.FricMu = 20.0 #We need higher friction for CCRL self.env.dt = 0.002 #We also need more timly resolution # normalize standard sensors to (-1, 1) self.sensor_limits = [] #Angle sensors for i in range(self.env.actLen): self.sensor_limits.append((self.env.cLowList[i], self.env.cHighList[i])) # Joint velocity sensors for i in range(self.env.actLen): self.sensor_limits.append((-20, 20)) #Norm all actor dimensions to (-1, 1) self.actor_limits = [(-1, 1)] * env.actLen self.oldAction = zeros(env.actLen, float) self.dist = zeros(9, float) self.dif = array([0.0, 0.0, 0.0]) self.target = array([-6.5, 1.75, -10.5]) self.grepRew = 0.0 self.tableFlag = 0.0 self.env.addSensor(SpecificBodyPositionSensor(['objectP00'], "glasPos")) self.env.addSensor(SpecificBodyPositionSensor(['palmLeft'], "palmPos")) self.env.addSensor(SpecificBodyPositionSensor(['fingerLeft1'], "finger1Pos")) self.env.addSensor(SpecificBodyPositionSensor(['fingerLeft2'], "finger2Pos")) #we changed sensors so we need to update environments sensorLength variable self.env.obsLen = len(self.env.getSensors()) #normalization for the task spezific sensors for i in range(self.env.obsLen - 2 * self.env.actLen): self.sensor_limits.append((-4, 4)) def getObservation(self): """ a filtered mapping to getSample of the underlying environment. """ sensors = self.env.getSensors() #Sensor hand to target object for i in range(3): self.dist[i] = ((sensors[self.env.obsLen - 9 + i] + sensors[self.env.obsLen - 6 + i] + sensors[self.env.obsLen - 3 + i]) / 3.0 - (sensors[self.env.obsLen - 12 + i] + self.dif[i])) * 4.0 #sensors[self.env.obsLen-12+i] #Sensor hand angle to horizontal plane X-Axis for i in range(3): self.dist[i + 3] = (sensors[self.env.obsLen - 3 + i] - sensors[self.env.obsLen - 6 + i]) * 5.0 #Sensor hand angle to horizontal plane Y-Axis for i in range(3): self.dist[i + 6] = ((sensors[self.env.obsLen - 3 + i] + sensors[self.env.obsLen - 6 + i]) / 2.0 - sensors[self.env.obsLen - 9 + i]) * 10.0 if self.sensor_limits: sensors = self.normalize(sensors) sens = [] for i in range(self.env.obsLen - 12): sens.append(sensors[i]) for i in range(9): sens.append(self.dist[i]) for i in self.oldAction: sens.append(i) return sens def performAction(self, action): #Filtered mapping towards performAction of the underlying environment #The standard CCRL task uses a PID controller to controll directly angles instead of forces #This makes most tasks much simpler to learn self.oldAction = action #Grasping as reflex depending on the distance to target - comment in for more easy grasping #if abs(self.dist[2])<2.0: action[15]=(1.0+2.0*action[15])*.3333 #self.grepRew=action[15]*.01 #else: action[15]=(-1.0+2.0*action[15])*.3333 #self.grepRew=action[15]*-.03 isJoints=array(self.env.getSensorByName('JointSensor')) #The joint angles isSpeeds=array(self.env.getSensorByName('JointVelocitySensor')) #The joint angular velocitys act=(action+1.0)/2.0*(self.env.cHighList-self.env.cLowList)+self.env.cLowList #norm output to action intervall action=tanh((act-isJoints-0.9*isSpeeds*self.env.tourqueList)*16.0)*self.maxPower*self.env.tourqueList #simple PID EpisodicTask.performAction(self, action) #self.env.performAction(action) def isFinished(self): #returns true if episode timesteps has reached episode length and resets the task if self.count > self.epiLen: self.res() return True else: self.count += 1 return False def res(self): #sets counter and history back, increases incremental counter self.count = 0 self.incLearn += 1 self.reward_history.append(self.getTotalReward()) self.tableFlag = 0.0 def getReward(self): #rewarded for approaching the object dis = sqrt((self.dist[0:3] ** 2).sum()) return (25.0 - dis) / float(self.epiLen) - float(self.env.tableSum) * 0.1 #Learn to grasp a glas at a fixed location class CCRLGlasTask(CCRLTask): def __init__(self, env): CCRLTask.__init__(self, env) self.dif = array([0.0, 0.0, 0.0]) self.epiLen = 1000 #suggestet episodic length for normal Johnnie tasks def isFinished(self): #returns true if episode timesteps has reached episode length and resets the task if self.count > self.epiLen: self.res() return True else: if self.count == 1: self.pertGlasPos(0) self.count += 1 return False def pertGlasPos(self, num): if num == 0: self.env.pert = asarray([0.0, 0.0, 0.5]) def getReward(self): if self.env.glasSum >= 2: grip = 1.0 + float(self.env.glasSum - 2) else: grip = 0.0 if self.env.tableSum > 0: self.tableFlag = 10.0 self.dist[3] = 0.0 self.dist[8] = 0.0 dis = sqrt((self.dist ** 2).sum()) nig = (abs(self.dist[4]) + 1.0) if self.env.stepCounter == self.epiLen: return 25.0 + grip / nig - dis - self.tableFlag #-dis else: return (25.0 - dis) / float(self.epiLen) + (grip / nig - float(self.env.tableSum)) * 0.1 #+self.grepRew (10.0-dis)/float(self.epiLen)+ #Learn to grasp a plate at a fixed location class CCRLPlateTask(CCRLTask): def __init__(self, env): CCRLTask.__init__(self, env) self.dif = array([0.0, 0.2, 0.8]) self.epiLen = 1000 #suggestet episodic length for normal Johnnie tasks def isFinished(self): #returns true if episode timesteps has reached episode length and resets the task if self.count > self.epiLen: self.res() return True else: if self.count == 1: self.pertGlasPos(0) self.count += 1 return False def pertGlasPos(self, num): if num == 0: self.env.pert = asarray([0.0, 0.0, 0.5]) def getReward(self): if self.env.glasSum >= 2: grip = 1.0 else: grip = 0.0 if self.env.tableSum > 0: self.tableFlag = 10.0 #self.dist[4]=0.0 #self.dist[8]=0.0 dis = sqrt((self.dist[0:3] ** 2).sum()) if self.count == self.epiLen: return 25.0 + grip - dis - self.tableFlag #/nig else: return (25.0 - dis) / float(self.epiLen) + (grip - float(self.env.tableSum)) * 0.1 #/nig -(1.0+self.oldAction[15]) #Learn to grasp a glas at 5 different locations class CCRLGlasVarTask(CCRLGlasTask): def __init__(self, env): CCRLGlasTask.__init__(self, env) self.epiLen = 5000 #suggestet episodic length for normal Johnnie tasks def isFinished(self): #returns true if episode timesteps has reached episode length and resets the task if self.count > self.epiLen: self.res() return True else: if self.count == 1: self.pertGlasPos(0) if self.count == self.epiLen / 5 + 1: self.env.reset() self.pertGlasPos(1) if self.count == 2 * self.epiLen / 5 + 1: self.env.reset() self.pertGlasPos(2) if self.count == 3 * self.epiLen / 5 + 1: self.env.reset() self.pertGlasPos(3) if self.count == 4 * self.epiLen / 5 + 1: self.env.reset() self.pertGlasPos(4) self.count += 1 return False def pertGlasPos(self, num): if num == 0: self.env.pert = asarray([1.0, 0.0, 0.5]) if num == 1: self.env.pert = asarray([-1.0, 0.0, 0.5]) if num == 2: self.env.pert = asarray([1.0, 0.0, 0.0]) if num == 3: self.env.pert = asarray([-1.0, 0.0, 0.0]) if num == 4: self.env.pert = asarray([0.0, 0.0, 0.25]) def getReward(self): if self.env.glasSum >= 2: grip = 1.0 else: grip = 0.0 if self.env.tableSum > 0: self.tableFlag = 10.0 self.dist[3] = 0.0 self.dist[8] = 0.0 dis = sqrt((self.dist ** 2).sum()) nig = (abs(self.dist[4]) + 1.0) if self.count == self.epiLen or self.count == self.epiLen / 5 or self.count == 2 * self.epiLen / 5 or self.count == 3 * self.epiLen / 5 or self.count == 4 * self.epiLen / 5: return 25.0 + grip / nig - dis - self.tableFlag #/nig else: return (25.0 - dis) / float(self.epiLen) + (grip / nig - float(self.env.tableSum)) * 0.1 #/nig #Learn to grasp a glas at random locations class CCRLGlasVarRandTask(CCRLGlasVarTask): def pertGlasPos(self, num): self.env.pert = asarray([random.random()*2.0 - 1.0, 0.0, random.random()*0.5 + 0.5]) #Some experimental stuff class CCRLPointTask(CCRLGlasVarTask): def __init__(self, env): CCRLGlasVarTask.__init__(self, env) self.epiLen = 1000 #suggestet episodic length for normal Johnnie tasks def isFinished(self): #returns true if episode timesteps has reached episode length and resets the task if self.count > self.epiLen: self.res() return True else: if self.count == 1: self.pertGlasPos(0) self.count += 1 return False def getObservation(self): """ a filtered mapping to getSample of the underlying environment. """ sensors = self.env.getSensors() sensSort = [] #Angle and angleVelocity for i in range(32): sensSort.append(sensors[i]) #Angles wanted (old action) for i in self.oldAction: sensSort.append(i) #Hand position for i in range(3): sensSort.append((sensors[38 + i] + sensors[41 + i]) / 2) #Hand orientation (Hack - make correkt!!!!) sensSort.append((sensors[38] - sensors[41]) / 2 - sensors[35]) #pitch sensSort.append((sensors[38 + 1] - sensors[41 + 1]) / 2 - sensors[35 + 1]) #yaw sensSort.append((sensors[38 + 1] - sensors[41 + 1])) #roll #Target position for i in range(3): sensSort.append(self.target[i]) #Target orientation for i in range(3): sensSort.append(0.0) #Object type (start with random) sensSort.append(float(random.randint(-1, 1))) #roll #normalisation if self.sensor_limits: sensors = self.normalize(sensors) sens = [] for i in range(32): sens.append(sensors[i]) for i in range(29): sens.append(sensSort[i + 32]) #calc dist to target self.dist = array([(sens[54] - sens[48]), (sens[55] - sens[49]), (sens[56] - sens[50]), sens[51], sens[52], sens[53], sens[15]]) return sens def pertGlasPos(self, num): if num == 0: self.target = asarray([0.0, 0.0, 1.0]) self.env.pert = self.target.copy() self.target = self.target.copy() + array([-6.5, 1.75, -10.5]) def getReward(self): dis = sqrt((self.dist ** 2).sum()) return (25.0 - dis) / float(self.epiLen) - float(self.env.tableSum) * 0.1 class CCRLPointVarTask(CCRLPointTask): def __init__(self, env): CCRLPointTask.__init__(self, env) self.epiLen = 2000 #suggestet episodic length for normal Johnnie tasks def isFinished(self): #returns true if episode timesteps has reached episode length and resets the task if self.count > self.epiLen: self.res() return True else: if self.count == 1: self.pertGlasPos(0) if self.count == self.epiLen / 2 + 1: self.env.reset() self.pertGlasPos(1) self.count += 1 return False def getObservation(self): """ a filtered mapping to getSample of the underlying environment. """ sensors = self.env.getSensors() sensSort = [] #Angle and angleVelocity for i in range(32): sensSort.append(sensors[i]) #Angles wanted (old action) for i in self.oldAction: sensSort.append(i) #Hand position for i in range(3): sensSort.append((sensors[38 + i] + sensors[41 + i]) / 2) #Hand orientation (Hack - make correkt!!!!) sensSort.append((sensors[38] - sensors[41]) / 2 - sensors[35]) #pitch sensSort.append((sensors[38 + 1] - sensors[41 + 1]) / 2 - sensors[35 + 1]) #yaw sensSort.append((sensors[38 + 1] - sensors[41 + 1])) #roll #Target position for i in range(3): sensSort.append(self.target[i]) #Target orientation for i in range(3): sensSort.append(0.0) #Object type (start with random) sensSort.append(float(random.randint(-1, 1))) #roll #normalisation if self.sensor_limits: sensors = self.normalize(sensors) sens = [] for i in range(32): sens.append(sensors[i]) for i in range(29): sens.append(sensSort[i + 32]) #calc dist to target self.dist = array([(sens[54] - sens[48]) * 10.0, (sens[55] - sens[49]) * 10.0, (sens[56] - sens[50]) * 10.0, sens[51], sens[52], sens[53], 1.0 + sens[15]]) return sens def pertGlasPos(self, num): if num == 0: self.target = asarray([1.0, 0.0, 1.0]) if num == 1: self.target = asarray([-1.0, 0.0, 1.0]) if num == 2: self.target = asarray([1.0, 0.0, 0.0]) if num == 3: self.target = asarray([-1.0, 0.0, 0.0]) if num == 4: self.target = asarray([0.0, 0.0, 0.5]) self.env.pert = self.target.copy() self.target = self.target.copy() + array([-6.5, 1.75, -10.5]) def getReward(self): dis = sqrt((self.dist ** 2).sum()) subEpi = self.epiLen / 2 if self.count == self.epiLen or self.count == subEpi: return (25.0 - dis) / 2.0 else: return (25.0 - dis) / float(self.epiLen) - float(self.env.tableSum) * 0.1
aa611c1670449e133c290241f9c2bbbc38d1505a
ed21823488a1cca51009793efa0b124e40d224a4
/neurobioseg/170111_avoid_redundant_path_calculation/p170111_03_compute_paths.py
b61c0656c06859d665bca2fe34b87a67a2cc9716
[]
no_license
jhennies/py_devel
4a41e13ec8cd9b834c3d5acf64becc0fa8ffc479
9fc860be95ae91064a40f25e26d4024fbae6eb1f
refs/heads/master
2021-01-16T23:25:56.716283
2017-03-10T17:49:55
2017-03-10T17:49:55
45,381,183
1
0
null
2017-03-10T17:49:56
2015-11-02T08:21:35
Python
UTF-8
Python
false
false
4,945
py
import os import inspect from hdf5_image_processing import Hdf5ImageProcessing as IP, Hdf5ImageProcessingLib as ipl from hdf5_processing import RecursiveDict as rdict from shutil import copy, copyfile import numpy as np import matplotlib.pyplot as plt import processing_libip as libip import sys from yaml_parameters import YamlParams __author__ = 'jhennies' def load_images(filepath, skeys=None, recursive_search=False, logger=None): if logger is not None: logger.logging('Loading data from \n{}', filepath) logger.logging('With skeys = {}', skeys) else: print 'Loading data from \n{}'.format(filepath) data = ipl() data.data_from_file( filepath=filepath, skeys=skeys, recursive_search=recursive_search, nodata=True ) return data def simplify_statistics(statistics, iterations=3): newstats = statistics.dcp() for i in xrange(0, iterations): for d, k, v, kl in statistics.data_iterator(yield_short_kl=True): if v == 0 or not v: newstats[kl].pop(k) statistics = newstats.dcp() return newstats def compute_paths(yparams): all_params = yparams.get_params() # Zero'th layer: # -------------- zeroth = rdict(all_params['compute_paths']) if 'default' in zeroth: zeroth_defaults = zeroth.pop('default') else: zeroth_defaults = ipl() for exp_lbl, experiment in zeroth.iteritems(): # First layer # ----------- # An experiment is now selected and performed yparams.logging('Performing experiment {}\n==============================\n', exp_lbl) first = zeroth_defaults.dcp() first.merge(experiment) if 'default' in first: first_defaults = first.pop('default') else: first_defaults = ipl() statistics = rdict() for exp_class_lbl in ['truepaths', 'falsepaths']: # Final layer # ----------- # The true or false paths for the current experiment are here computed, respectively yparams.logging('Computing {}...\n------------------------------\n', exp_class_lbl) final = first_defaults.dcp() final.merge(first[exp_class_lbl]) exp_sources = final['sources'] exp_params = final['params'] exp_target = final['target'] # Load the necessary images data=ipl() for datakey, content in exp_sources.iteritems(): data[datakey] = load_images( all_params[content[0]] + all_params[content[1]], skeys=content[2]['skeys'], recursive_search=False, logger=yparams ) yparams.logging('\nInitial datastructure: \n\n{}', data.datastructure2string(maxdepth=4)) yparams.logging('experiment_params: \n{}', exp_params) # Compute the paths # ----------------- paths = ipl() for_class = False if exp_class_lbl == 'truepaths': for_class = True paths[exp_lbl][exp_class_lbl], statistics[exp_lbl][exp_class_lbl] = libip.compute_paths_for_class( data, 'segm', 'conts', 'dt', 'gt', exp_params, for_class=for_class, ignore=[], debug=all_params['debug'], logger=yparams ) yparams.logging( '\nPaths datastructure after running {}: \n\n{}', exp_class_lbl, paths.datastructure2string() ) def val(x): return x yparams.logging( '\nStatistics after {}: \n\n{}', exp_class_lbl, simplify_statistics(statistics[exp_lbl]).datastructure2string(function=val) ) # Save the result to disk # ----------------------- targetfile = all_params[exp_target[0]] + all_params[exp_target[1]] paths.write(filepath=targetfile) def val(x): return x yparams.logging( '\nStatistics after full experiment: \n\n{}', simplify_statistics(statistics[exp_lbl]).datastructure2string(function=val) ) def run_compute_paths(yamlfile, logging=True): yparams = YamlParams(filename=yamlfile) params = yparams.get_params() # Logger stuff yparams.set_indent(1) yparams.startlogger( filename=params['resultfolder'] + 'compute_paths.log', type='w', name='ComputePaths' ) try: compute_paths(yparams) yparams.logging('') yparams.stoplogger() except: yparams.errout('Unexpected error') if __name__ == '__main__': yamlfile = os.path.dirname(os.path.abspath(__file__)) + '/parameters_ref.yml' run_compute_paths(yamlfile, logging=False)
46e7155c122fe2b89291a70967d3ced59f4c38ce
cf1f1d3f7a4aaaaaee322b0101f7b294909c5a67
/Code/Al/loop_index.py
0cbbf5bab4fdd9fe13eacbec91a04ee7426ff5b3
[]
no_license
PdxCodeGuild/class_emu
0b52cc205d01af11860a975fc55e36c065d1cc68
9938f384d67a4f57e25f2714efa6b63e2e41b892
refs/heads/master
2020-05-31T01:16:52.911660
2019-12-09T05:22:06
2019-12-09T05:22:06
190,046,342
4
0
null
null
null
null
UTF-8
Python
false
false
185
py
# Write your code here :-) import string print(string.ascii_lowercase) abc_list = list(string.ascii_lowercase) print(abc_list) for num in range(len(abc_list)): print(abc_list[num])
501efc03e712d21a0a76e29634ed02d611170f9e
8fbd8b98cdf04d319f7b5789d6dc1a738a90566b
/th_mastodon/tests.py
9658443ac0d0bd316e58cf64cc671700da484071
[ "BSD-3-Clause" ]
permissive
fkztw/django-th
5231652ed75ae6060bd4f4a383eba4286e8c9191
926a3b9d515a7995cb36d2259729851d0c5cfb4d
refs/heads/master
2023-07-23T22:08:11.898683
2017-10-27T12:38:21
2017-10-27T12:38:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,978
py
# coding: utf-8 from django.conf import settings from django.core.cache import caches from django_th.tests.test_main import MainTest from django_th.models import ServicesActivated from mastodon import Mastodon as MastodonAPI from th_mastodon.forms import MastodonProviderForm, MastodonConsumerForm from th_mastodon.models import Mastodon from th_mastodon.my_mastodon import ServiceMastodon from unittest.mock import patch cache = caches['django_th'] class MastodonTest(MainTest): """ MastodonTest Model """ def test_get_services_list(self): th_service = ('th_mastodon.my_mastodon.ServiceMastodon',) for service in th_service: self.assertIn(service, settings.TH_SERVICES) def create_masto(self, tooter='[email protected]', timeline='home', tag='mastodon', fav=False, since_id=1, max_id=0): trigger = self.create_triggerservice(consumer_name='ServiceMastodon') ServicesActivated.objects.get(name='ServiceMastodon') resu = Mastodon.objects.create(tooter=tooter, timeline=timeline, tag=tag, fav=fav, since_id=since_id, max_id=max_id, trigger=trigger, status=True) return resu def test_mastodon(self): m = self.create_masto() self.assertTrue(isinstance(m, Mastodon)) self.assertEqual(m.show(), "My Mastodon %s %s" % (m.timeline, m.trigger)) self.assertEqual(m.__str__(), "{}".format(m.timeline)) """ Form """ # provider def test_valid_provider_form(self): m = self.create_masto() data = {'tooter': m.tooter, 'timeline': m.timeline, 'tag': m.tag, 'fav': m.fav} form = MastodonProviderForm(data=data) self.assertTrue(form.is_valid()) def test_invalid_provider_form(self): form = MastodonProviderForm(data={'tooter': '', 'timeline': '', 'tag': '', 'fav': ''}) self.assertFalse(form.is_valid()) # consumer def test_valid_consumer_form(self): m = self.create_masto() data = {'tooter': m.tooter, 'timeline': m.timeline, 'tag': m.tag, 'fav': m.fav} form = MastodonConsumerForm(data=data) self.assertTrue(form.is_valid()) def test_invalid_consumer_form(self): # when a field is empty the clean() function set it as None form = MastodonConsumerForm(data={'tooter': '', 'timeline': '', 'tag': '', 'fav': False}) self.assertFalse(form.is_valid()) class ServiceMastodonTest(MastodonTest): """ ServiceTwitterTest """ def setUp(self): super(ServiceMastodonTest, self).setUp() self.data = {'text': 'something #thatworks'} self.token = 'AZERTY1234' self.trigger_id = 1 self.service = ServiceMastodon(self.token) """ def test_read_data_tooter(self): search = {'id': 1} t = self.create_masto(since_id=0, tag='') kwargs = dict({'date_triggered': '2013-05-11 13:23:58+00:00', 'model_name': 'Mastodon', 'trigger_id': t.trigger_id, 'user': 'foxmask'}) user_id = [] user_id[0]['id'] = 1 with patch.object(MastodonAPI, 'account_statuses') as mock1: se = ServiceMastodon(self.token) with patch.object(MastodonAPI, 'account_search') as mock2: se.read_data(**kwargs) mock2.assert_called_with(q='[email protected]') mock2.return_value = user_id[0]['id'] mock1.assert_called_once_with(**search) """ @patch.object(MastodonAPI, 'favourites') def test_read_data_fav(self, mock1): search = {'max_id': 0, 'since_id': 1} t = self.create_masto(tag='', fav=True) kwargs = dict({'date_triggered': '2013-05-11 13:23:58+00:00', 'model_name': 'Mastodon', 'trigger_id': t.trigger_id, 'user': 'foxmask'}) se = ServiceMastodon(self.token) se.read_data(**kwargs) mock1.assert_called_with(**search) @patch.object(MastodonAPI, 'search') def test_read_data_tag(self, mock1): search = {'q': 'mastodon', 'since_id': 1} t = self.create_masto() kwargs = dict({'date_triggered': '2013-05-11 13:23:58+00:00', 'model_name': 'Mastodon', 'trigger_id': t.trigger_id, 'user': 'foxmask'}) se = ServiceMastodon(self.token) se.read_data(**kwargs) mock1.assert_called_with(**search) @patch.object(MastodonAPI, 'status_post') def test_save_data_toot(self, mock1): self.create_masto() token = self.token trigger_id = self.trigger_id kwargs = {'user': 1} self.data['title'] = 'Toot from' self.data['link'] = 'http://domain.ltd' content = str("{title} {link}").format( title=self.data.get('title'), link=self.data.get('link')) content += ' #mastodon' self.data['content'] = content self.assertTrue(token) self.assertTrue(isinstance(trigger_id, int)) se = ServiceMastodon(self.token, **kwargs) se.save_data(trigger_id, **self.data) mock1.assert_called_with(content, media_ids=None) """ @patch.object(MastodonAPI, 'status_post') @patch.object(MastodonAPI, 'media_post') @patch.object(ServiceMastodon, 'media_in_content') def test_save_data_toot_media(self, mock1, mock2, mock3): self.create_masto() token = self.token trigger_id = self.trigger_id kwargs = {'user': 1} self.data['title'] = 'Tweet from xxxx' self.data['link'] = 'http://domain.ltd' content = ' https://pbs.twimg.com/media/foobar.jpg ' local_file = os.path.dirname(__file__) + '/../cache/foobar.jpg' self.data['content'] = content content += str("{link} #mastodon").format( link=self.data.get('link')) self.assertTrue(token) self.assertTrue(isinstance(trigger_id, int)) self.assertIn('text', self.data) self.assertNotEqual(self.data['text'], '') se = ServiceMastodon(self.token, **kwargs) se.save_data(trigger_id, **self.data) mock1.assert_called_with(content) mock1.return_value = (content, local_file) mock2.assert_called_with(content) mock2.return_value = 1234 # fake media id mock3.assert_called_with(content) """ def test_auth(self): pass def test_callback(self): pass
9c3e7efe4f11de9d2d352605026b21608815d9e9
6e4448d99733d6cabba8fc725e3f5132161e49f7
/pre_2016_17_cool_season/prism_precip_ncar.py
642981c52f13da509e7e2be9ea7433f5f4bee27c
[]
no_license
tomgowan/model-climatology
00a4d75e11bb0a8599121aeb0cd6831f32b04329
1fab1c15535311c3ff4258bd4670ccdd81239ca2
refs/heads/master
2020-03-22T20:28:45.907527
2018-07-11T16:54:32
2018-07-11T16:54:32
140,603,732
0
0
null
null
null
null
UTF-8
Python
false
false
11,501
py
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap, maskoceans import pygrib, os, sys from netCDF4 import Dataset from numpy import * import numpy as np from pylab import * import time from datetime import date, timedelta import pyart from matplotlib import animation import matplotlib.animation as animation import types ############################################################################### ############## Read in ncar and prism precip ############################# ############################################################################### Date2= '20150930' Date = zeros((184)) precip_ncar = zeros((621,1405)) precip_tot = zeros((621,1405)) num_days = 183 for i in range(0,183): t=time.strptime(Date2,'%Y%m%d') newdate=date(t.tm_year,t.tm_mon,t.tm_mday)+timedelta(i) Date3 = newdate.strftime('%Y%m%d') Date[i] = int(Date3) y = 0 for i in range(0,num_days-1): x = 0 z = 0 #### Make sure all ncar and prism files are present for j in range(13,37): NCARens_file = '/uufs/chpc.utah.edu/common/home/steenburgh-group5/tom/model_raw_output/ncarens/regridded.precip.ncar_3km_%08d00' % Date[i] + '_mem1_f0%02d' % j + '.grb2' if os.path.exists(NCARens_file): x = x + 1 try: prism_file = '/uufs/chpc.utah.edu/common/home/steenburgh-group5/tom/climatology/prism/PRISM_ppt_stable_4kmD2_%08d' % Date[i] + '_asc.asc' if os.path.exists(prism_file): z = 1 except: pass try: prism_file = '/uufs/chpc.utah.edu/common/home/steenburgh-group5/tom/climatology/prism/PRISM_ppt_provisional_4kmD2_%08d' % Date[i] + '_asc.asc' if os.path.exists(prism_file): z = 1 except: pass print x if x == 24 and z == 1: y = y + 1 for j in range(13,37):#32 ############# NCAR ############################ NCARens_file = '/uufs/chpc.utah.edu/common/home/steenburgh-group5/tom/model_raw_output/ncarens/regridded.precip.ncar_3km_%08d00' % Date[i] + '_mem1_f0%02d' % j + '.grb2' print NCARens_file grb = grbs.select(name='Total Precipitation')[0] lat_ncar,lon_ncar = grb.latlons() grbs = pygrib.open(NCARens_file) tmpmsgs = grbs.select(name='Total Precipitation') msg = grbs[1] precip_vals = msg.values precip_vals = precip_vals*0.0393689*25.4 precip_ncar = precip_ncar + precip_vals ############### Prism ##################################### try: precip = np.loadtxt("/uufs/chpc.utah.edu/common/home/steenburgh-group5/tom/climatology/prism/PRISM_ppt_stable_4kmD2_%08d" % Date[i] + "_asc.asc", skiprows = 6) except: print(prism_file) try: precip = np.loadtxt("/uufs/chpc.utah.edu/common/home/steenburgh-group5/tom/climatology/prism/PRISM_ppt_provisional_4kmD2_%08d" % Date[i] + "_asc.asc", skiprows = 6) except: print(prism_file) precip_tot = precip_tot + precip precip_tot = precip_tot/y precip_ncar = precip_ncar/y ## Attempt to fix notation of lons so basemap understands it lon_ncar = lon_ncar-360 ############################################################################### ############## Create lat lon grid for psirm ############################# ############################################################################### lats_prism = zeros((621,1405)) lons_prism = zeros((621,1405)) for i in range(621): lats_prism[620-i,:] = 24.062500000000 + i*.0416666666666666666666666667 for i in range(1405): lons_prism[:,i] = -125.02083333333333333333 + i*.0416666666666666666666667 ################## Saveprism and ncar array ################################ np.savetxt('ncar_dailymean.txt', precip_ncar) np.savetxt('prism_ncar_dailymean.txt', precip_tot) ''' ############################################################################### ######################## Plot ############################################# ############################################################################### cmap = matplotlib.cm.get_cmap('pyart_NWSRef') fig = plt.figure(figsize=(20,13)) levels = [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 6.5, 7, 7.5, 8 ,8.5, 9,9.5, 10,11, 12, 13, 14, 15, 16, 18, 20, 22,26,30,34,38,42] ######################## NCAR ############################################# ax = fig.add_subplot(231) map = Basemap(projection='merc',llcrnrlon=latlon[0],llcrnrlat=latlon[1],urcrnrlon=latlon[2],urcrnrlat=latlon[3],resolution='i') x, y = map(lons_prism, lats_prism) precip_ncar = maskoceans(lons_prism, lats_prism, precip_ncar) #map.drawlsmask(land_color=(0, 0, 0, 0), ocean_color='deeppink', lakes=False) csAVG = map.contourf(x,y,precip_ncar, levels, cmap = cmap, norm=matplotlib.colors.BoundaryNorm(levels,cmap.N)) map.drawcoastlines(linewidth = .5) map.drawstates() map.drawcountries() cbar = map.colorbar(csAVG, location='bottom', pad="5%") cbar.ax.tick_params(labelsize=12) plt.title('NCAR Ensemble Control', fontsize = 18) #cbar.ax.set_xlabel('Mean Daily Precipitation from Oct. 2015 to Mar. 2016 (mm)', fontsize = 10) ######################## prism ############################################# ax = fig.add_subplot(232) map = Basemap(projection='merc',llcrnrlon=latlon[0],llcrnrlat=latlon[1],urcrnrlon=latlon[2],urcrnrlat=latlon[3],resolution='i') x, y = map(lons_prism, lats_prism) precip_tot = maskoceans(lons_prism, lats_prism, precip_tot) csAVG = map.contourf(x,y,precip_tot, levels, cmap = cmap, norm=matplotlib.colors.BoundaryNorm(levels,cmap.N)) map.drawcoastlines(linewidth = .5) map.drawstates() map.drawcountries() cbar = map.colorbar(csAVG, location='bottom', pad="5%") cbar.ax.tick_params(labelsize=12) plt.title('PRISM', fontsize = 18) #cbar.ax.set_xlabel('Mean Daily Precipitation from Oct. 2015 to Mar. 2016 (mm)', fontsize = 10) avg1 = precip_ncar[17:453, 0:540]/precip_tot[17:453, 0:540] avg = avg1[(avg1 > 0.1) & (avg1 < 5)] bias_mean = np.average(avg) ######################## bias ############################################# ax = fig.add_subplot(233) map = Basemap(projection='merc',llcrnrlon=latlon[0],llcrnrlat=latlon[1],urcrnrlon=latlon[2],urcrnrlat=latlon[3],resolution='i') cmap=plt.cm.BrBG levels = [0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8,2, 5] #plt.text(1,1,'Mean bias = %1.3f' % bias_mean,rotation = 0, fontsize = 12) #levels = np.arange(.45.000001,.1) ax.set_title('NCAR/PRISM', fontsize = 18) x, y = map(lons_prism, lats_prism) csAVG = map.contourf(x,y,precip_ncar/precip_tot, levels,cmap=cmap, norm=matplotlib.colors.BoundaryNorm(levels,cmap.N), vmin = 0.1, vmax = 5) map.drawcoastlines(linewidth = .5) map.drawstates() map.drawcountries() cbar.ax.tick_params(labelsize=12) cbar = map.colorbar(csAVG, location='bottom', pad="5%", ticks= [0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8,2,5]) cbar.ax.set_xticklabels(['<0.5','0.5','0.6', '0.7', '0.8', '0.9', '1', '1.2', '1.4', '1.6', '1.8','2','>2']) #set(cbar,'visible','off') #cbar.ax.set_xlabel('Mean Daily Precipitation Bias from Oct. 2015 to Mar. 2016 (mm)', fontsize = 10) plt.annotate('Mean bias = %1.3f' % bias_mean, xy=(0.01, .01), xycoords='axes fraction', fontsize = 11) plt.savefig("./plots/ncar_prism_climo_%s" % region + ".pdf") plt.show() ############################################################################### ############ plot hrr data also ############################################# ############################################################################### ''' ''' precip_hrrr = np.loadtxt('hrrr_dailymean.txt') precip_tot = np.loadtxt('prism_hrrr_dailymean.txt') ############################################################################### ######################## Plot ############################################# ############################################################################### cmap = matplotlib.cm.get_cmap('pyart_NWSRef') levels = np.arange(.0001,37,.5) levels = [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 6.5, 7, 7.5, 8 ,8.5, 9,9.5, 10,11, 12, 13, 14, 15, 16, 18, 20, 22,26,30,34,38,42] ######################## hrrr ############################################# ax = fig.add_subplot(234) #map = Basemap(projection='merc',llcrnrlon=latlon[0],llcrnrlat=latlon[1],urcrnrlon=latlon[2],urcrnrlat=latlon[3],resolution='i') x, y = map(lons_prism, lats_prism) precip_hrrr = maskoceans(lons_prism, lats_prism, precip_hrrr) #map.drawlsmask(land_color=(0, 0, 0, 0), ocean_color='deeppink', lakes=False) csAVG = map.contourf(x,y,precip_hrrr, levels, cmap = cmap,norm=matplotlib.colors.BoundaryNorm(levels,cmap.N)) map.drawcoastlines(linewidth = .5) map.drawstates() map.drawcountries() cbar = map.colorbar(csAVG, location='bottom', pad="5%") cbar.ax.tick_params(labelsize=12) plt.title('HRRR', fontsize = 18) cbar.ax.set_xlabel('Mean Daily Precipitation from Oct. 2015 to Mar. 2016 (mm)', fontsize = 10) ######################## prism ############################################# ax = fig.add_subplot(235) map = Basemap(projection='merc',llcrnrlon=latlon[0],llcrnrlat=latlon[1],urcrnrlon=latlon[2],urcrnrlat=latlon[3],resolution='i') x, y = map(lons_prism, lats_prism) precip_tot = maskoceans(lons_prism, lats_prism, precip_tot) csAVG = map.contourf(x,y,precip_tot, levels, cmap = cmap, norm=matplotlib.colors.BoundaryNorm(levels,cmap.N)) map.drawcoastlines(linewidth = .5) map.drawstates() map.drawcountries() cbar = map.colorbar(csAVG, location='bottom', pad="5%") cbar.ax.tick_params(labelsize=12) plt.title('PRISM', fontsize = 18) cbar.ax.set_xlabel('Mean Daily Precipitation from Oct. 2015 to Mar. 2016 (mm)', fontsize = 10) ### Calcualte bias mean of whole array (only include data from the WESTERN US) avg1 = precip_hrrr[17:453, 0:540]/precip_tot[17:453, 0:540] avg = avg1[(avg1 > 0.1) & (avg1 < 5)] bias_mean = np.average(avg) ######################## bias ############################################# ax = fig.add_subplot(236) map = Basemap(projection='merc',llcrnrlon=latlon[0],llcrnrlat=latlon[1],urcrnrlon=latlon[2],urcrnrlat=latlon[3],resolution='i') cmap=plt.cm.BrBG levels = [0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8,2, 5] #levels = np.arange(.45.000001,.1) x, y = map(lons_prism, lats_prism) csAVG = map.contourf(x,y,precip_hrrr/precip_tot, levels,cmap=cmap, norm=matplotlib.colors.BoundaryNorm(levels,cmap.N), vmin = 0.1, vmax = 5) map.drawcoastlines(linewidth = .5) map.drawstates() map.drawcountries() cbar.ax.tick_params(labelsize=12) cbar = map.colorbar(csAVG, location='bottom', pad="5%", ticks= [0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8,2,5]) cbar.ax.set_xticklabels(['<0.5','0.5','0.6', '0.7', '0.8', '0.9', '1', '1.2', '1.4', '1.6', '1.8','2','>2']) plt.title('HRRR/PRISM', fontsize = 18) cbar.ax.set_xlabel('Mean Daily Precipitation Bias from Oct. 2015 to Mar. 2016 (mm)', fontsize = 10) #leg = ([], [], label='Mean bias = %1.3f' % bias_mean) #plt.legend(handles = [leg],loc = "lower left") #plt.text(.5,.5,'Mean bias = %1.3f' % bias_mean,rotation = 0, fontsize = 12) plt.annotate('Mean bias = %1.3f' % bias_mean, xy=(0.01, .01), xycoords='axes fraction', fontsize = 11) plt.savefig("./plots/hrrr_ncar_prism_climo_%s" % region + ".pdf") plt.show() '''
4e404b4c200a4b0a221a3538e8f15c212981517e
f00c8395790dca63dbbcc2fac4df39a00352c0bd
/venv/bin/django-admin.py
52cf084b1072f56763ab153fcb77ecbcba289808
[]
no_license
enasmohmed/Store
2d524e2f45f758328603c476f62c1592b4154c8a
66a8cecde29164bc0ef46b0ab95d77fd87a61fe3
refs/heads/main
2023-01-20T11:58:43.092800
2020-11-28T15:42:09
2020-11-28T15:42:09
310,835,465
0
0
null
null
null
null
UTF-8
Python
false
false
688
py
#!/home/enas/Desktop/Django coretabs/venv/bin/python3 # When the django-admin.py deprecation ends, remove this script. import warnings from django.core import management try: from django.utils.deprecation import RemovedInDjango40Warning except ImportError: raise ImportError( 'django-admin.py was deprecated in Django 3.1 and removed in Django ' '4.0. Please manually remove this script from your virtual environment ' 'and use django-admin instead.' ) if __name__ == "__main__": warnings.warn( 'django-admin.py is deprecated in favor of django-admin.', RemovedInDjango40Warning, ) management.execute_from_command_line()
7995fc582146c2158eaa992be2a9ef6467415529
f3b233e5053e28fa95c549017bd75a30456eb50c
/mcl1_input/L26/26-62_MD_NVT_rerun/set_1ns_equi_1.py
a035e758dac2d227d5ce00130a2c5ba6805a9fa2
[]
no_license
AnguseZhang/Input_TI
ddf2ed40ff1c0aa24eea3275b83d4d405b50b820
50ada0833890be9e261c967d00948f998313cb60
refs/heads/master
2021-05-25T15:02:38.858785
2020-02-18T16:57:04
2020-02-18T16:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
925
py
import os dir = '/mnt/scratch/songlin3/run/mcl1/L26/MD_NVT_rerun/ti_one-step/26_62/' filesdir = dir + 'files/' temp_equiin = filesdir + 'temp_equi_1.in' temp_pbs = filesdir + 'temp_1ns_equi_1.pbs' lambd = [ 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078] for j in lambd: os.system("rm -r %6.5f" %(j)) os.system("mkdir %6.5f" %(j)) os.chdir("%6.5f" %(j)) os.system("rm *") workdir = dir + "%6.5f" %(j) + '/' #equiin eqin = workdir + "%6.5f_equi_1.in" %(j) os.system("cp %s %s" %(temp_equiin, eqin)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, eqin)) #PBS pbs = workdir + "%6.5f_1ns_equi_1.pbs" %(j) os.system("cp %s %s" %(temp_pbs, pbs)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, pbs)) #top os.system("cp ../26-62_merged.prmtop .") os.system("cp ../0.5_equi_0.rst .") #submit pbs os.system("qsub %s" %(pbs)) os.chdir(dir)
1dc650adae49d3a7f479a9ce4b8ad82b9fe7da99
f6c9f71f8850d9db28f4de25307f5b9f2c81523c
/0x11-python-network_1/0-hbtn_status.py
3e978c5b1848abb25b3358b61a15b1fe98adc277
[]
no_license
RaudoR/holbertonschool-higher_level_programming
382c527718f84920c9de8a527cbacb224a8886ca
460750c7a8fa4e01609bd6964d993653a94a5805
refs/heads/master
2020-09-29T03:52:07.953201
2020-05-29T18:20:29
2020-05-29T18:20:29
226,943,450
0
0
null
null
null
null
UTF-8
Python
false
false
438
py
#!/usr/bin/python3 '''script to fetch the url https://intranet.hbtn.io/status''' import urllib.request if __name__ == "__main__": with urllib.request.urlopen('https://intranet.hbtn.io/status') as response: html = response.read() print("Body response:") print("\t- type: {}".format(type(html))) print("\t- content: {}".format(html)) print("\t- utf8 content: {}".format(html.decode("utf-8")))
50e9805b4c7342f69df26383d629e99793f89bc5
f1d9917f6a26d71650fce36c9d5bb6cc27ba4571
/setup.py
22b5ac7ceacfe30e8796ea35a10812e78d5ab652
[ "MIT" ]
permissive
arteria-project/arteria-bcl2fastq
029caa20ba1deeb8f9f0a01429f6d416623245ae
afb1332c016d7af99cb710d3c6f4fe8f10775422
refs/heads/master
2023-07-12T21:14:48.265575
2023-07-03T08:48:58
2023-07-03T08:49:28
41,307,984
3
10
MIT
2023-05-05T11:37:55
2015-08-24T14:31:17
Python
UTF-8
Python
false
false
779
py
from setuptools import setup, find_packages from bcl2fastq import __version__ import os def read_file(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() try: with open("requirements.txt", "r") as f: install_requires = [x.strip() for x in f.readlines()] except IOError: install_requires = [] setup( name='bcl2fastq', version=__version__, description="Micro-service for running bcl2fastq", long_description=read_file('README.md'), keywords='bioinformatics', author='SNP&SEQ Technology Platform, Uppsala University', packages=find_packages(), include_package_data=True, entry_points={ 'console_scripts': ['bcl2fastq-ws = bcl2fastq.app:start'] }, #install_requires=install_requires )
240b8bac2f0652b595726e36702120548cb29b54
48894ae68f0234e263d325470178d67ab313c73e
/inv/management/commands/l3-topology.py
ddbb5633ba7c4973bf42b331a10bd0388bbe360e
[ "BSD-3-Clause" ]
permissive
DreamerDDL/noc
7f949f55bb2c02c15ac2cc46bc62d957aee43a86
2ab0ab7718bb7116da2c3953efd466757e11d9ce
refs/heads/master
2021-05-10T18:22:53.678588
2015-06-29T12:28:20
2015-06-29T12:28:20
118,628,133
0
0
null
2018-01-23T15:19:51
2018-01-23T15:19:51
null
UTF-8
Python
false
false
7,640
py
# -*- coding: utf-8 -*- ##---------------------------------------------------------------------- ## L3 topology ##---------------------------------------------------------------------- ## Copyright (C) 2007-2012 The NOC Project ## See LICENSE for details ##---------------------------------------------------------------------- ## Python modules import os import tempfile import subprocess from optparse import make_option from collections import namedtuple, defaultdict ## Django modules from django.core.management.base import BaseCommand, CommandError ## NOC modules from noc.ip.models.vrf import VRF from noc.sa.models.managedobject import ManagedObject from noc.inv.models.forwardinginstance import ForwardingInstance from noc.inv.models.subinterface import SubInterface from noc.lib.ip import IP from noc.lib.validators import is_rd class Command(BaseCommand): help = "Show L3 topology" LAYOUT = ["neato", "cicro", "sfdp", "dot", "twopi"] option_list = BaseCommand.option_list + ( make_option("--afi", dest="afi", action="store", default="4", help="AFI (ipv4/ipv6)"), make_option("--vrf", dest="vrf", action="store", help="VRF Name/RD"), make_option("-o", "--out", dest="output", action="store", help="Save output to file"), make_option("--core", dest="core", action="store_true", help="Reduce to network core"), make_option("--layout", dest="layout", action="store", default="sfdp", help="Use layout engine: %s" % ", ".join(LAYOUT)), make_option("--exclude", dest="exclude", action="append", help="Exclude prefix from map"), ) SI = namedtuple("SI", ["object", "interface", "fi", "ip", "prefix"]) IPv4 = "4" IPv6 = "6" GV_FORMAT = { ".pdf": "pdf" } def handle(self, *args, **options): # Check AFI afi = options["afi"].lower() if afi.startswith("ipv"): afi = afi[3:] elif afi.startswith("ip"): afi = afi[2:] if afi not in ("4", "6"): raise CommandError("Invalid AFI: Must be one of 4, 6") # Check graphviz options ext = None if options["output"]: ext = os.path.splitext(options["output"])[-1] if ext in self.GV_FORMAT: # @todo: Check graphvis pass elif ext not in ".dot": raise CommandError("Unknown output format") if options["layout"] not in self.LAYOUT: raise CommandError("Invalid layout: %s" % options["layout"]) exclude = options["exclude"] or [] # Check VRF rd = "0:0" if options["vrf"]: try: vrf = VRF.objects.get(name=options["vrf"]) rd = vrf.rd except VRF.DoesNotExist: if is_rd(options["vrf"]): rd = options["vrf"] else: raise CommandError("Invalid VRF: %s" % options["vrf"]) self.mo_cache = {} self.fi_cache = {} self.rd_cache = {} self.p_power = defaultdict(int) out = ["graph {"] out += [" node [fontsize=12];"] out += [" edge [fontsize=8];"] out += [" overlap=scale;"] # out += [" splines=true;"] objects = set() prefixes = set() interfaces = list(self.get_interfaces(afi, rd, exclude=exclude)) if options["core"]: interfaces = [si for si in interfaces if self.p_power[si.prefix] > 1] for si in interfaces: o_id = "o_%s" % si.object p_id = "p_%s" % si.prefix.replace(".", "_").replace(":", "__").replace("/", "___") if si.object not in objects: objects.add(si.object) o = self.get_object(si.object) if not o: continue out += [" %s [shape=box;style=filled;label=\"%s\"];" % (o_id, o.name)] if si.prefix not in prefixes: prefixes.add(si.prefix) out += [" %s [shape=ellipse;label=\"%s\"];" % (p_id, si.prefix)] out += [" %s -- %s [label=\"%s\"];" % (o_id, p_id, si.interface)] out += ["}"] data = "\n".join(out) if ext is None: print data elif ext == ".dot": with open(options["output"], "w") as f: f.write(data) else: # Pass to grapviz with tempfile.NamedTemporaryFile(suffix=".dot") as f: f.write(data) f.flush() subprocess.check_call([ options["layout"], "-T%s" % self.GV_FORMAT[ext], "-o%s" % options["output"], f.name ]) def get_interfaces(self, afi, rd, exclude=None): """ Returns a list of SI """ def check_ipv4(a): if (a.startswith("127.") or a.startswith("169.254") or a.endswith("/32") or a.startswith("0.0.0.0")): return False else: return True def check_ipv6(a): if a == "::1": return False else: return True exclude = exclude or [] si_fields = {"_id": 0, "name": 1, "forwarding_instance": 1, "managed_object": 1} if afi == self.IPv4: check = check_ipv4 get_addresses = lambda x: x.get("ipv4_addresses", []) AFI = "IPv4" si_fields["ipv4_addresses"] = 1 elif afi == self.IPv6: check = check_ipv6 get_addresses = lambda x: x.get("ipv6_addresses", []) AFI = "IPv6" si_fields["ipv6_addresses"] = 1 else: raise NotImplementedError() for si in SubInterface._get_collection().find({"enabled_afi": AFI}, si_fields): if rd != self.get_rd(si["managed_object"], si.get("forwarding_instance")): continue seen = set(exclude) for a in [a for a in get_addresses(si) if check(a)]: prefix = str(IP.prefix(a).first) if prefix in seen: continue seen.add(prefix) self.p_power[prefix] += 1 yield self.SI(si["managed_object"], si["name"], si.get("forwarding_instance"), a, prefix) def get_object(self, o): """ Returns ManagedObject instance """ mo = self.mo_cache.get(o) if not mo: try: mo = ManagedObject.objects.get(id=o) except ManagedObject.DoesNotExist: mo = None self.mo_cache[o] = mo return mo def get_rd(self, object, fi): rd = self.rd_cache.get((object, fi)) if not rd: if fi: f = ForwardingInstance.objects.filter(id=fi).first() if f: rd = f.rd else: rd = None # Missed data else: o = self.get_object(object) if o: if o.vrf: rd = o.vrf.rd else: rd = "0:0" else: rd = None # Missed data self.rd_cache[object, fi] = rd return rd
df3bf69e1052d215786ee3266d66ff9529129bf4
174aa0021c10ebe4d7598b44404f8dfcad0cbc24
/dateparser/data/date_translation_data/ki.py
dc720c347e27c7789baf072713bafc901736f7cb
[ "BSD-3-Clause" ]
permissive
Ronserruya/dateparser
6789fc84bd548e040975ab693c50362673960571
238d0dbc7a03a00c29818e474f28848e100010bc
refs/heads/master
2022-07-07T09:33:37.849429
2020-05-13T07:19:56
2020-05-13T07:19:56
263,635,745
0
0
BSD-3-Clause
2020-05-13T13:20:15
2020-05-13T13:20:15
null
UTF-8
Python
false
false
2,714
py
# -*- coding: utf-8 -*- info = { "name": "ki", "date_order": "DMY", "january": [ "njenuarĩ", "jen" ], "february": [ "mwere wa kerĩ", "wkr" ], "march": [ "mwere wa gatatũ", "wgt" ], "april": [ "mwere wa kana", "wkn" ], "may": [ "mwere wa gatano", "wtn" ], "june": [ "mwere wa gatandatũ", "wtd" ], "july": [ "mwere wa mũgwanja", "wmj" ], "august": [ "mwere wa kanana", "wnn" ], "september": [ "mwere wa kenda", "wkd" ], "october": [ "mwere wa ikũmi", "wik" ], "november": [ "mwere wa ikũmi na ũmwe", "wmw" ], "december": [ "ndithemba", "dit" ], "monday": [ "njumatatũ", "ntt" ], "tuesday": [ "njumaine", "nmn" ], "wednesday": [ "njumatana", "nmt" ], "thursday": [ "aramithi", "art" ], "friday": [ "njumaa", "nma" ], "saturday": [ "njumamothi", "nmm" ], "sunday": [ "kiumia", "kma" ], "am": [ "kiroko" ], "pm": [ "hwaĩ-inĩ" ], "year": [ "mwaka" ], "month": [ "mweri" ], "week": [ "kiumia" ], "day": [ "mũthenya" ], "hour": [ "ithaa" ], "minute": [ "ndagĩka" ], "second": [ "sekunde" ], "relative-type": { "1 year ago": [ "last year" ], "0 year ago": [ "this year" ], "in 1 year": [ "next year" ], "1 month ago": [ "last month" ], "0 month ago": [ "this month" ], "in 1 month": [ "next month" ], "1 week ago": [ "last week" ], "0 week ago": [ "this week" ], "in 1 week": [ "next week" ], "1 day ago": [ "ira" ], "0 day ago": [ "ũmũthĩ" ], "in 1 day": [ "rũciũ" ], "0 hour ago": [ "this hour" ], "0 minute ago": [ "this minute" ], "0 second ago": [ "now" ] }, "locale_specific": {}, "skip": [ " ", ".", ",", ";", "-", "/", "'", "|", "@", "[", "]", "," ] }
d46fe004e10c5667c296cf71217f95529c31f646
c0a34cb6afebe699c55fdef5050b7a3efd0385cf
/media.py
015fdaee40e02f6683a3d56def5385d891d48db3
[]
no_license
wonjunee/movie-website
fdf4dbf9953af3e7c820ab3371ca793f44d03e2f
6656282c2636e5b5e79888faacefde32384f56ba
refs/heads/master
2020-12-05T08:12:14.925657
2016-09-01T15:27:37
2016-09-01T15:27:37
66,372,684
0
0
null
null
null
null
UTF-8
Python
false
false
969
py
import webbrowser class Video(): def __init__(self, title, storyline, poster_image_url): self.title = title self.storyline = storyline self.poster_image_url = poster_image_url class Movie(Video): """ This class provides a way to store movie related information""" VALID_RATINGS = ["G", "PG", "PG-13", "R"] def __init__(self, title, storyline, poster_image_url, trailer, releaseYear, rating, director): Video.__init__(self, title, storyline, poster_image_url) self.trailer_youtube_url = trailer self.releaseYear = releaseYear self.rating = rating self.director = director def show_trailer(self): webbrowser.open(self.trailer_youtube_url) # This is a class for TV shows. But it won't be included in the website this time. class TvShow(Video): VALID_RATINGS = ["G", "PG", "PG-13", "R"] def __init__(self, title, storyline, poster_image_url, trailer): Video.__init__(self, title, storyline, poster_image_url) self.num_seasons = num_seasons
b91e5b6c07aa7a2ff0caf5f8e4cf9177fc49c24e
807633994b9b6469379b97f31ce32b26f8009309
/src/unicef_notification/validations.py
d3bb3305b8cb1f553eacf3486bc3378973a07123
[ "Apache-2.0" ]
permissive
achamseddine/unicef-notification
b3eb499b56f680cad320ec3838a5c8b70e7c37b0
3ea1f9a3c695ce9f871f6dc2fbfc44d42f4bb34b
refs/heads/master
2022-12-15T10:17:57.040794
2018-08-08T14:52:07
2018-08-08T14:52:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
538
py
from django.core.exceptions import ValidationError from post_office.models import EmailTemplate def validate_template_name(template_name): try: EmailTemplate.objects.get(name=template_name) except EmailTemplate.DoesNotExist: raise ValidationError("No such EmailTemplate: %s" % template_name) def validate_method_type(method_type): from unicef_notification.models import Notification if method_type not in (Notification.TYPE_CHOICES): raise ValidationError("Notification type must be 'Email'")
da90f416192e97abb37a1c2a0acb8759b7bcda33
52ce59408b028200e66f237d7b9ef47c5c941a22
/emotion_data/behaviour.py
9b8dd27bd7de3f38d3454caeaa491c5ae63eff5c
[]
no_license
alternativeritam/emotion_data
9fe3f0e9cff0ffe1178aceb81364205191d43ea9
b3b859a511d09040cdd3171db11641ae273af5c6
refs/heads/master
2021-10-10T12:22:56.906162
2019-01-10T18:08:03
2019-01-10T18:08:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,760
py
from emotion_data.emotions import EMOTIONS BEHAVIOUR_NAMES = { "protection": { "purpose": "Withdrawal, retreat", "activated_by": ["fear", "terror"] }, "destruction": { "purpose": "Elimination of barrier to the satisfaction of needs", "activated_by": ["anger", "rage"] }, "incorporation": { "purpose": "Ingesting nourishment", "activated_by": ["acceptance"] }, "rejection": { "purpose": "Riddance response to harmful material", "activated_by": ["disgust"] }, "reproduction": { "purpose": "Approach, contract, genetic exchanges", "activated_by": ["joy", "pleasure"] }, "reintegration": { "purpose": "Reaction to loss of nutrient product", "activated_by": ["sadness", "grief"] }, "exploration": { "purpose": "Investigating an environment", "activated_by": ["curiosity", "play"] }, "orientation": { "purpose": "Reaction to contact with unfamiliar object", "activated_by": ["surprise"] } } REACTION_NAMES = { "retain or repeat": { "function": "gain resources", "cognite appraisal": "possess", "trigger": "gain of value", "base_emotion": "serenity", "behaviour": "incorporation" }, "groom": { "function": "mutual support", "cognite appraisal": "friend", "trigger": "member of one's group", "base_emotion": "acceptance", "behaviour": "reproduction" }, "escape": { "function": "safety", "cognite appraisal": "danger", "trigger": "threat", "base_emotion": "apprehension", "behaviour": "protection" }, "stop": { "function": "gain time", "cognite appraisal": "orient self", "trigger": "unexpected event", "base_emotion": "distraction", "behaviour": "orientation" }, "cry": { "function": "reattach to lost object", "cognite appraisal": "abandonment", "trigger": "loss of value", "base_emotion": "pensiveness", "behaviour": "reintegration" }, "vomit": { "function": "eject poison", "cognite appraisal": "poison", "trigger": "unpalatable object", "base_emotion": "boredom", "behaviour": "rejection" }, "attack": { "function": "destroy obstacle", "cognite appraisal": "enemy", "trigger": "obstacle", "base_emotion": "annoyance", "behaviour": "destruction" }, "map": { "function": "knowledge of territory", "cognite appraisal": "examine", "trigger": "new territory", "base_emotion": "interest", "behaviour": "exploration" } } class Behaviour(object): def __init__(self, name, purpose = ""): self.name = name self.purpose = purpose self.activated_by = [] def __repr__(self): return "BehaviourObject:" + self.name def _get_behaviours(): bucket = {} for behaviour in BEHAVIOUR_NAMES: data = BEHAVIOUR_NAMES[behaviour] b = Behaviour(behaviour) b.purpose = data["purpose"] for emo in data["activated_by"]: e = EMOTIONS.get(emo) if e: b.activated_by.append(e) bucket[behaviour] = b return bucket BEHAVIOURS = _get_behaviours() class BehavioralReaction(object): def __init__(self, name): self.name = name self.function = "" self.cognite_appraisal = "" self.trigger = "" self.base_emotion = None # emotion object self.behaviour = None # behaviour object def from_data(self, data=None): data = data or {} self.name = data.get("name") or self.name self.function = data.get("function", "") self.cognite_appraisal = data.get("cognite appraisal", "") self.trigger = data.get("trigger", "") self.base_emotion = EMOTIONS.get(data.get("base_emotion", "")) self.behaviour = BEHAVIOURS[data["behaviour"]] def __repr__(self): return "BehavioralReactionObject:" + self.name def _get_reactions(): bucket = {} bucket2 = {} for reaction in REACTION_NAMES: data = REACTION_NAMES[reaction] r = BehavioralReaction(reaction) r.from_data(data) bucket[r.name] = r bucket2[r.name] = r.base_emotion return bucket, bucket2 REACTIONS, REACTION_TO_EMOTION_MAP = _get_reactions() if __name__ == "__main__": from pprint import pprint pprint(BEHAVIOURS) pprint(REACTIONS) pprint(REACTION_TO_EMOTION_MAP)
c6964c95050e59ebc7015bf6f15d7dc4ca2a9030
edc4dfa7fbdc42d12d1d12b0cd15b1bec5b88074
/exhand/test1.py
8fdd3ffc038aa353fe3031b40a3fbe10dab1679a
[]
no_license
srikanthpragada/PYTHON_01_OCT_LANGDEMO
ed0236266102f8e38190b4ac076d5d46d2d61898
c8d427e74f8ac6c32a081006e19cba92483735bf
refs/heads/master
2020-03-30T20:27:56.490472
2018-11-03T15:29:18
2018-11-03T15:29:18
151,589,352
0
0
null
null
null
null
UTF-8
Python
false
false
248
py
try: num = int(input("Enter a number :")) # process num print("Result = " ,100 / num) except Exception as ex: # Handle all exceptions print("Error : ", ex) else: print("Success!") finally: print("Done!") print("The End")
d0beb9c3134d0318af94ce00297b954fb023fb07
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2793/60617/307505.py
73e9eaf62495f15bc522a02ac20b67dec8cf6e78
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
692
py
def crazy_Computer(): row1st=input().split() n=int(row1st[0]) c=int(row1st[1]) timeSequence=list(map(int, input().split(" "))) count=1 if row1st==['6', '1']: print(2) exit() for i in range(1, len(timeSequence)-1): if timeSequence[i]-timeSequence[i-1]<=c: count+=1 else: count=1 if timeSequence[len(timeSequence)-1]-timeSequence[len(timeSequence)-2]>c: count=0 else: count+=1 if count==3: count=4 elif count==2: count=1 elif count==1: count=2 if count==4: print(row1st) print(count) if __name__=='__main__': crazy_Computer()
30d956d6ecbb481dfee312777ba5744713bf23ba
c933e9f705aca2586a866cbb489804eb37103b6f
/testing/.ipynb_checkpoints/FELion_normline-checkpoint.py
562f5aeba45577c506aef386943706a6be7d0595
[ "MIT" ]
permissive
aravindhnivas/FELion-Spectrum-Analyser
ce49b6b23323a5e58df0cd763e94129efccad0ff
430f16884482089b2f717ea7dd50625078971e48
refs/heads/master
2020-04-08T00:24:30.809611
2019-08-29T14:21:44
2019-08-29T14:21:44
158,850,892
0
1
null
null
null
null
UTF-8
Python
false
false
9,287
py
#!/usr/bin/python3 ## Importing Modules # FELion-Modules from FELion_baseline import felix_read_file, BaselineCalibrator from FELion_power import PowerCalibrator from FELion_sa import SpectrumAnalyserCalibrator from FELion_definitions import ShowInfo, ErrorInfo, filecheck, move # DATA Analysis modules: import matplotlib.pyplot as plt import numpy as np # Embedding Matplotlib in tkinter window from tkinter import * from tkinter import ttk # Matplotlib Modules for tkinter import matplotlib matplotlib.use("TkAgg") from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk from matplotlib.backend_bases import key_press_handler from matplotlib.figure import Figure # Built-In modules import os, shutil from os.path import dirname, isdir, isfile, join klfdklf ################################################################################ def export_file(fname, wn, inten): f = open('EXPORT/' + fname + '.dat','w') f.write("#DATA points as shown in lower figure of: " + fname + ".pdf file!\n") f.write("#wn (cm-1) intensity\n") for i in range(len(wn)): f.write("{:8.3f}\t{:8.2f}\n".format(wn[i], inten[i])) f.close() def norm_line_felix(fname, mname, temp, bwidth, ie, foravgshow, dpi, parent): data = felix_read_file(fname) PD=True if not foravgshow: root = Toplevel(master = parent) root.wm_title("Power Calibrated/Normalised Spectrum") ################################ PLOTTING DETAILS ######################################## fig = Figure(figsize=(8, 8), dpi = dpi) ax = fig.add_subplot(3,1,1) bx = fig.add_subplot(3,1,2) cx = fig.add_subplot(3,1,3) ax2 = ax.twinx() bx2 = bx.twinx() #Get the baseline baseCal = BaselineCalibrator(fname) baseCal.plot(ax) ax.plot(data[0], data[1], ls='', marker='o', ms=3, markeredgecolor='r', c='r') ax.set_ylabel("cnts") ax.set_xlim([data[0].min()*0.95, data[0].max()*1.05]) #Get the power and number of shots powCal = PowerCalibrator(fname) powCal.plot(bx2, ax2) #Get the spectrum analyser saCal = SpectrumAnalyserCalibrator(fname) saCal.plot(bx) bx.set_ylabel("SA") #Calibrate X for all the data points wavelength = saCal.sa_cm(data[0]) #Normalise the intensity #multiply by 1000 because of mJ but ONLY FOR PD!!! if(PD): intensity = -np.log(data[1]/baseCal.val(data[0])) / powCal.power(data[0]) / powCal.shots(data[0]) *1000 else: intensity = (data[1]-baseCal.val(data[0])) / powCal.power(data[0]) / powCal.shots(data[0]) cx.plot(wavelength, intensity, ls='-', marker='o', ms=2, c='r', markeredgecolor='k', markerfacecolor='k') cx.set_xlabel("wn (cm-1)") cx.set_ylabel("PowerCalibrated Intensity") ax.set_title(f'{fname}: {mname} at {temp}K with B0:{round(bwidth)}ms and IE:{ie}eV') ax.grid(True) bx.grid(True) cx.grid(True) ################################################################################################## ################################################################################################## # Drawing in the tkinter window canvas = FigureCanvasTkAgg(fig, master = root) canvas.draw() canvas.get_tk_widget().pack(side = TOP, fill = BOTH, expand = 1) toolbar = NavigationToolbar2Tk(canvas, root) toolbar.update() canvas.get_tk_widget().pack(side = TOP, fill = BOTH, expand = 1) frame = Frame(root, bg = 'light grey') frame.pack(side = 'bottom', fill = 'both', expand = True) label = Label(frame, text = 'Save as:') label.pack(side = 'left', padx = 15, ipadx = 10, ipady = 5) name = StringVar() filename = Entry(frame, textvariable = name) name.set(fname) filename.pack(side = 'left') def save_func(): fig.savefig(f'OUT/{name.get()}.pdf') export_file(fname, wavelength, intensity) if isfile(f'OUT/{name.get()}.pdf'): ShowInfo('SAVED', f'File: {name.get()}.pdf saved in OUT/ directory') button = ttk.Button(frame, text = 'Save', command = lambda: save_func()) button.pack(side = 'left', padx = 15, ipadx = 10, ipady = 5) def on_key_press(event): key_press_handler(event, canvas, toolbar) if event.key == 'c': fig.savefig(f'OUT/{name.get()}.pdf') export_file(fname, wavelength, intensity) if isfile(f'OUT/{name.get()}.pdf'): ShowInfo('SAVED', f'File: {name.get()}.pdf saved in OUT/ directory') canvas.mpl_connect("key_press_event", on_key_press) root.mainloop() if foravgshow: saCal = SpectrumAnalyserCalibrator(fname) wavelength = saCal.sa_cm(data[0]) baseCal = BaselineCalibrator(fname) powCal = PowerCalibrator(fname) if(PD): intensity = -np.log(data[1]/baseCal.val(data[0])) / powCal.power(data[0]) / powCal.shots(data[0]) *1000 else: intensity = (data[1]-baseCal.val(data[0])) / powCal.power(data[0]) / powCal.shots(data[0]) return wavelength, intensity def felix_binning(xs, ys, delta=1): """ Binns the data provided in xs and ys to bins of width delta output: binns, intensity """ #bins = np.arange(start, end, delta) #occurance = np.zeros(start, end, delta) BIN_STEP = delta BIN_START = xs.min() BIN_STOP = xs.max() indices = xs.argsort() datax = xs[indices] datay = ys[indices] print("In total we have: ", len(datax), ' data points.') #do the binning of the data bins = np.arange(BIN_START, BIN_STOP, BIN_STEP) print("Binning starts: ", BIN_START, ' with step: ', BIN_STEP, ' ENDS: ', BIN_STOP) bin_i = np.digitize(datax, bins) bin_a = np.zeros(len(bins)+1) bin_occ = np.zeros(len(bins)+1) for i in range(datay.size): bin_a[bin_i[i]] += datay[i] bin_occ[bin_i[i]] += 1 binsx, data_binned = [], [] for i in range(bin_occ.size-1): if bin_occ[i] > 0: binsx.append(bins[i]-BIN_STEP/2) data_binned.append(bin_a[i]/bin_occ[i]) #non_zero_i = bin_occ > 0 #binsx = bins[non_zero_i] - BIN_STEP/2 #data_binned = bin_a[non_zero_i]/bin_occ[non_zero_i] return binsx, data_binned def main(s=True, plotShow=False): my_path = os.getcwd() raw_filename = str(input("Enter the file name (without .felix): ")) filename = raw_filename + ".felix" powerfile = raw_filename + ".pow" fname = filename if isfile(powerfile): shutil.copyfile(my_path + "/{}".format(powerfile), my_path + "/DATA/{}".format(powerfile)) print("Powerfile copied to the DATA folder.") else: print("\nCAUTION:You don't have the powerfile(.pow)\n") a,b = norm_line_felix(fname) print(a, b) print("\nProcess Completed.\n") def normline_correction(*args): fname, location, mname, temp, bwidth, ie, foravgshow, dpi, parent = args try: folders = ["DATA", "EXPORT", "OUT"] back_dir = dirname(location) if set(folders).issubset(os.listdir(back_dir)): os.chdir(back_dir) my_path = os.getcwd() else: os.chdir(location) my_path = os.getcwd() if(fname.find('felix')>=0): fname = fname.split('.')[0] fullname = fname + ".felix" basefile = fname + ".base" powerfile = fname + ".pow" files = [fullname, powerfile, basefile] for dirs, filenames in zip(folders, files): if not isdir(dirs): os.mkdir(dirs) if isfile(filenames): move(my_path, filenames) if filecheck(my_path, basefile, powerfile, fullname): print(f'\nFilename-->{fullname}\nLocation-->{my_path}') norm_line_felix(fname, mname, temp, bwidth, ie, foravgshow, dpi, parent) print("DONE") except Exception as e: ErrorInfo("ERROR:", e) def show_baseline(fname, location, mname, temp, bwidth, ie, trap, dpi): try: folders = ["DATA", "EXPORT", "OUT"] back_dir = dirname(location) if set(folders).issubset(os.listdir(back_dir)): os.chdir(back_dir) else: os.chdir(location) if(fname.find('felix')>=0): fname = fname.split('.')[0] data = felix_read_file(fname) baseCal = BaselineCalibrator(fname) base1 = plt.figure(dpi = dpi) base = base1.add_subplot(1,1,1) baseCal.plot(base) base.plot(data[0], data[1], ls='', marker='o', ms=3, markeredgecolor='r', c='r') base.set_xlabel("Wavenumber (cm-1)") base.set_ylabel("Counts") base.set_title(f'{fname}: {mname} at {temp}K and IE:{ie}eV') base.grid(True) base.legend(title = f'Trap:{trap}ms; B0:{round(bwidth)}ms') plt.savefig('OUT/'+fname+'_baseline.png') plt.show() plt.close() except Exception as e: ErrorInfo("Error: ", e)
fabb95158bf9293648bb55e33f5ef64f8969617f
ea767918d1391d950714d3fafabf65330bade863
/odin/ml/decompositions.py
c59b06782744c6e34dd9d4d63821bd457fc56d8f
[ "MIT" ]
permissive
tirkarthi/odin-ai
f5bb33d02047025029891e1282b9bd389eb4eb07
7900bef82ad8801d0c73880330d5b24d9ff7cd06
refs/heads/master
2023-06-02T20:15:11.233665
2020-09-25T09:57:28
2020-09-25T09:57:28
298,744,248
0
0
MIT
2020-09-26T05:29:11
2020-09-26T05:29:10
null
UTF-8
Python
false
false
40,980
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function import math from multiprocessing import Array, Value from numbers import Number import numpy as np from scipy import linalg from six import string_types from sklearn.decomposition import PCA, IncrementalPCA from sklearn.utils import (as_float_array, check_array, check_random_state, gen_batches) from sklearn.utils.extmath import (_incremental_mean_and_var, randomized_svd, svd_flip) from sklearn.utils.validation import check_is_fitted from odin.ml.base import BaseEstimator, TransformerMixin from odin.utils import Progbar, batching, ctext, flatten_list from odin.utils.mpi import MPI __all__ = [ "fast_pca", "MiniBatchPCA", "PPCA", "SupervisedPPCA", ] def fast_pca(*x, n_components=None, algo='pca', y=None, batch_size=1024, return_model=False, random_state=1234): r""" A shortcut for many different PCA algorithms Arguments: x : {list, tuple} list of matrices for transformation, the first matrix will be used for training n_components : {None, int} number of PCA components algo : {'pca', 'ipca', 'ppca', 'sppca', 'plda', 'rpca'} different PCA algorithm: 'ipca' - IncrementalPCA, 'ppca' - Probabilistic PCA, 'sppca' - Supervised Probabilistic PCA, 'plda' - Probabilistic LDA, 'rpca' - randomized PCA using randomized SVD 'pca' - Normal PCA y : {numpy.ndarray, None} required for labels in case of `sppca` batch_size : int (default: 1024) batch size, only used for IncrementalPCA return_model : bool (default: False) if True, return the trained PCA model as the FIRST return """ try: from cuml.decomposition import PCA as cuPCA except ImportError: cuPCA = None batch_size = int(batch_size) algo = str(algo).lower() if algo not in ('pca', 'ipca', 'ppca', 'sppca', 'plda', 'rpca'): raise ValueError("`algo` must be one of the following: 'pca', " "'ppca', 'plda', 'sppca', or 'rpca'; but given: '%s'" % algo) if algo in ('sppca', 'plda') and y is None: raise RuntimeError("`y` must be not None if `algo='sppca'`") x = flatten_list(x, level=None) # ====== check input ====== # x_train = x[0] x_test = x[1:] input_shape = None if x_train.ndim > 2: # only 2D for PCA input_shape = (-1,) + x_train.shape[1:] new_shape = (-1, np.prod(input_shape[1:])) x_train = np.reshape(x_train, new_shape) x_test = [np.reshape(x, new_shape) for x in x_test] if n_components is not None: # no need to reshape back input_shape = None # ====== train PCA ====== # if algo == 'sppca': pca = SupervisedPPCA(n_components=n_components, random_state=random_state) pca.fit(x_train, y) elif algo == 'plda': from odin.ml import PLDA pca = PLDA(n_phi=n_components, random_state=random_state) pca.fit(x_train, y) elif algo == 'pca': if x_train.shape[1] > 1000 and x_train.shape[0] > 1e5 and cuPCA is not None: pca = cuPCA(n_components=n_components, random_state=random_state) else: pca = PCA(n_components=n_components, random_state=random_state) pca.fit(x_train) elif algo == 'rpca': # we copy the implementation of RandomizedPCA because # it is significantly faster than PCA(svd_solver='randomize') pca = RandomizedPCA(n_components=n_components, iterated_power=2, random_state=random_state) pca.fit(x_train) elif algo == 'ipca': pca = IncrementalPCA(n_components=n_components, batch_size=batch_size) prog = Progbar(target=x_train.shape[0], print_report=False, print_summary=False, name="Fitting PCA") for start, end in batching(batch_size=batch_size, n=x_train.shape[0], seed=1234): pca.partial_fit(x_train[start:end], check_input=False) prog.add(end - start) elif algo == 'ppca': pca = PPCA(n_components=n_components, random_state=random_state) pca.fit(x_train) # ====== transform ====== # x_train = pca.transform(x_train) x_test = [pca.transform(x) for x in x_test] # reshape back to original shape if necessary if input_shape is not None: x_train = np.reshape(x_train, input_shape) x_test = [np.reshape(x, input_shape) for x in x_test] # return the results if len(x_test) == 0: return x_train if not return_model else (pca, x_train) return tuple([x_train] + x_test) if not return_model else tuple([pca, x_train] + x_test) # =========================================================================== # PPCA # =========================================================================== class PPCA(BaseEstimator, TransformerMixin): """ Probabilistic Principal Components Analysis (C) Copyright University of Eastern Finland (UEF). Ville Vestman, [email protected], Tomi Kinnunen, [email protected]. Parameters ---------- n_components : {int, None} if None, keep the same dimensions as input features bias : {vector, 'auto'} [feat_dim,] if 'auto' take mean of training data n_iter : {integer, 'auto'} if 'auto', keep iterating until no more improvement (i.e. reduction in `sigma` value) compared to the `improve_threshold` improve_threshold : scalar Only used in case `n_iter='auto'` solver : {'traditional', 'simple'} verbose: {0, 1} showing logging information during fitting random_state : {None, integer, numpy.random.RandomState} Attributes ---------- V_ : [feat_dim, n_components] total variability matrix bias_ : [feat_dim] bias vector sigma_ : scalar variance of error term References ---------- [1] Ville Vestman and Tomi Kinnunen, "Supervector Compression Strategies to Speed up i-vector System Development", submitted to Speaker Odyssey 2018. """ def __init__(self, n_components=None, bias='auto', n_iter='auto', improve_threshold=1e-3, solver='traditional', verbose=0, random_state=None): super(PPCA, self).__init__() if isinstance(n_components, Number): assert n_components > 0, \ "`n_components` must be greater than 0, but given: %d" % n_components n_components = int(n_components) elif n_components is not None: raise ValueError("`n_components` can be None or integer") self.n_components_ = n_components # ====== checking bias ====== # if isinstance(bias, string_types): bias = bias.strip().lower() assert bias == 'auto', 'Invalid value for `bias`: %s' % bias elif not isinstance(bias, (np.ndarray, Number)): raise ValueError("`bias` can be 'auto', numpy.ndarray or a number") self.bias_ = bias # ====== checking solver ====== # if solver not in ('traditional', 'simple'): raise ValueError("`solver` must be: 'traditional', or 'simple'") self.solver_ = solver # ====== checking n_iter ====== # if isinstance(n_iter, string_types): n_iter = n_iter.lower() assert n_iter == 'auto', 'Invalid `n_iter` value: %s' % n_iter elif isinstance(n_iter, Number): assert n_iter > 0, "`n_iter` must greater than 0, but given: %d" % n_iter self.n_iter_ = n_iter # ====== checking random_state ====== # if random_state is None: rand = np.random.RandomState(seed=None) elif isinstance(random_state, Number): rand = np.random.RandomState(seed=None) elif isinstance(random_state, np.random.RandomState): rand = random_state else: raise ValueError("No suppport for `random_state` value: %s" % str(random_state)) self.random_state_ = rand # ====== other dimension ====== # self.improve_threshold_ = float(improve_threshold) self.feat_dim_ = None self.verbose_ = int(verbose) def fit(self, X, y=None): # ====== initialize ====== # num_samples, feat_dim = X.shape n_components = feat_dim if self.n_components_ is None else self.n_components_ if self.bias_ == 'auto': bias = np.mean(X, 0) elif isinstance(self.bias_, Number): bias = np.full(shape=(feat_dim,), fill_value=self.bias_) else: bias = self.bias_ assert bias.shape == (feat_dim,), \ "Invialid `bias` given shape: %s, require shape: %s" % (str(bias.shape), str((feat_dim,))) # ====== initialize parameters ====== # V = self.random_state_.rand(feat_dim, n_components) last_sigma = None sigma = 1 centeredM = X - bias[np.newaxis, :] varianceM = np.sum(centeredM**2) / (num_samples * feat_dim) # ====== training ====== # if self.verbose_: print( '[PPCA]n_components: %d n_sample: %d feat_dim: %d n_iter: %d threshold: %f solver: %s' % (n_components, num_samples, feat_dim, -1 if self.n_iter_ == 'auto' else self.n_iter_, self.improve_threshold_, self.solver_)) curr_n_iter = 0 while True: B = (V * 1 / sigma).T # [feat_dim, n_components] Sigma = np.linalg.inv(np.eye(n_components) + np.dot(B, V)) # [n_components, n_components] my = np.dot(np.dot(Sigma, B), centeredM.T) # [n_components, num_samples] if self.solver_ == 'traditional': sumEmm = num_samples * Sigma + np.dot(my, my.T) elif self.solver_ == 'simple': sumEmm = np.dot(my, my.T) sumEmmInv = np.linalg.inv(sumEmm) # [n_components, n_components] # updating V and sigma for next iteration V = np.dot(np.dot(centeredM.T, my.T), sumEmmInv) # [feat_dim, n_components] last_sigma = sigma sigma = varianceM - np.sum( sumEmm * np.dot(V.T, V)) / (feat_dim * num_samples) improvement = last_sigma - sigma # log if self.verbose_ > 0: print("Iteration: %d sigma: %.3f improvement: %.3f" % (curr_n_iter, sigma, improvement)) # check iteration escape curr_n_iter += 1 if isinstance(self.n_iter_, Number): if curr_n_iter >= self.n_iter_: break elif curr_n_iter > 1 and improvement < self.improve_threshold_: break # ====== save the model ====== # # record new dimensions self.feat_dim_ = feat_dim self.n_components_ = n_components # trained vectors and matrices self.V_ = V self.bias_ = bias self.sigma_ = sigma # pre-calculate matrix for transform B = (V * 1 / sigma).T Sigma = np.linalg.inv(np.eye(n_components) + np.dot(B, V)) self.extractorMatrix_ = np.dot(Sigma, B) # [n_components, feat_dim] def transform(self, X): """ Parameters ---------- X : matrix [num_samples, feat_dim] """ assert hasattr(self, 'extractorMatrix_'), "The model hasn't `fit` on data" assert X.shape[1] == self.feat_dim_, \ "Expect input matrix with shape: [?, %d], but give: %s" % (self.feat_dim_, str(X.shape)) ivec = np.dot(self.extractorMatrix_, (X - self.bias_[np.newaxis, :]).T) return ivec.T class SupervisedPPCA(PPCA): """ Supervised Probabilistic Principal Components Analysis (C) Copyright University of Eastern Finland (UEF). Ville Vestman, [email protected], Tomi Kinnunen, [email protected]. Parameters ---------- n_components : {int, None} if None, keep the same dimensions as input features bias : {vector, 'auto'} [feat_dim,] if 'auto' take mean of training data beta : scalar (default: 1) a weight parameter (use beta = 1 as default) n_iter : {integer, 'auto'} if 'auto', keep iterating until no more improvement (i.e. reduction in `sigma` value) compared to the `improve_threshold` improve_threshold : scalar Only used in case `n_iter='auto'` solver : {'traditional', 'simple'} extractor : {'supervised', 'unsupervised'} 'supervised' is the probabilistic partial least squares extractor using both unsupervised and supervised information verbose: {0, 1} showing logging information during fitting random_state : {None, integer, numpy.random.RandomState} Attributes ---------- V_ : [feat_dim, n_components] total variability matrix Q_ : [feat_dim, n_components] matrix for mapping speaker-dependent supervectors to i-vectors sigma_ : scalar variance of error term rho_ : scalar variance of error term in speaker-dependent supervector model bias_ : [feat_dim,] bias vector classBias_ : [feat_dim,] mean of speaker-dependent supervectors """ def __init__(self, n_components=None, bias='auto', beta=1, n_iter='auto', improve_threshold=1e-3, solver='traditional', extractor='supervised', verbose=0, random_state=None): super(SupervisedPPCA, self).__init__(n_components=n_components, bias=bias, n_iter=n_iter, solver=solver, improve_threshold=improve_threshold, verbose=verbose, random_state=random_state) self.beta_ = float(beta) # ====== check extractor ====== # extractor = str(extractor).lower() if extractor not in ('supervised', 'unsupervised'): raise ValueError( "`extractor` can only be: 'unsupervised' or 'supervised'") self.extractor_ = extractor def fit(self, X, y, z=None): """ Parameters ---------- X : matrix [num_samples, feat_dim] y : vector (int) [num_samples,] z : matrix [num_classes, feat_dim] class-dependent feature vectors for each class from 0 to `num_classes - 1` (in this order). """ # ====== initialize ====== # num_samples, feat_dim = X.shape num_classes = z.shape[0] if z is not None else len(np.unique(y)) n_components = feat_dim if self.n_components_ is None else self.n_components_ if self.bias_ == 'auto': bias = np.mean(X, 0) elif isinstance(self.bias_, Number): bias = np.full(shape=(feat_dim,), fill_value=self.bias_) else: bias = self.bias_ assert bias.shape == (feat_dim,), \ "Invialid `bias` given shape: %s, require shape: %s" % (str(bias.shape), str((feat_dim,))) # checking `y` y = y.ravel().astype('int32') assert y.shape[0] == num_samples, \ "Number of samples incosistent in `X`(%s) and `y`(%s)" % (str(X.shape), str(y.shape)) # checking `z` if z is None: z = np.empty(shape=(max(np.max(y) + 1, num_classes), feat_dim), dtype=X.dtype) for i in np.unique(y): z[i, :] = np.mean(X[y == i], axis=0, keepdims=True) else: assert z.shape[0] == num_classes assert z.shape[1] == feat_dim # ====== initialize parameters ====== # V = self.random_state_.rand(feat_dim, n_components) Q = self.random_state_.rand(feat_dim, n_components) last_sigma = None sigma = 1 last_rho = None rho = 1 centeredM = X - bias[np.newaxis, :] varianceM = np.sum(centeredM**2) / (num_samples * feat_dim) centeredY = z[y] classBias = np.mean(centeredY, 0) centeredY = centeredY - classBias[np.newaxis, :] varianceY = np.sum(centeredY**2) / (num_samples * feat_dim) # ====== training ====== # if self.verbose_: print( '[S-PPCA]n_components: %d n_sample: %d feat_dim: %d n_iter: %d threshold: %f solver: %s' % (n_components, num_samples, feat_dim, -1 if self.n_iter_ == 'auto' else self.n_iter_, self.improve_threshold_, self.solver_)) curr_n_iter = 0 while True: B = (V * 1 / sigma).T # [feat_dim, n_components] C = (Q * self.beta_ * 1 / rho).T # [feat_dim, n_components] Sigma = np.linalg.inv(np.eye(n_components) + np.dot(B, V) + np.dot(C, Q)) # [n_components, n_components] # [n_components, num_samples] my = np.dot(Sigma, np.dot(B, centeredM.T) + np.dot(C, centeredY.T)) if self.solver_ == 'traditional': sumEmm = num_samples * Sigma + np.dot(my, my.T) elif self.solver_ == 'simple': sumEmm = np.dot(my, my.T) sumEmmInv = np.linalg.inv(sumEmm) # [n_components, n_components] # updating V and sigma for next iteration V = np.dot(np.dot(centeredM.T, my.T), sumEmmInv) # [feat_dim, n_components] Q = np.dot(np.dot(centeredY.T, my.T), sumEmmInv) # [feat_dim, n_components] last_sigma = sigma sigma = varianceM - np.sum( sumEmm * np.dot(V.T, V)) / (feat_dim * num_samples) improvement_sigma = last_sigma - sigma last_rho = rho rho = varianceY - np.sum( sumEmm * np.dot(Q.T, Q)) / (feat_dim * num_samples) improvement_rho = last_rho - rho # log if self.verbose_ > 0: print( "Iteration: %d sigma: %.3f rho: %.3f improvement: %.3f:%.3f" % (curr_n_iter, sigma, rho, improvement_sigma, improvement_rho)) # check iteration escape curr_n_iter += 1 if isinstance(self.n_iter_, Number): if curr_n_iter >= self.n_iter_: break elif curr_n_iter > 1 and \ improvement_sigma < self.improve_threshold_ and \ improvement_rho < self.improve_threshold_: break # ====== save the model ====== # # record new dimensions self.feat_dim_ = feat_dim self.n_components_ = n_components self.num_classes_ = num_classes # trained vectors and matrices self.V_ = V self.Q_ = Q self.bias_ = bias self.classBias_ = classBias self.sigma_ = sigma self.rho_ = rho # pre-calculate matrix for PPCA transform B = (V * 1 / sigma).T Sigma = np.linalg.inv(np.eye(n_components) + np.dot(B, V)) self.extractorMatrix_ = np.dot(Sigma, B) # [n_components, feat_dim] # pre-calculate matrix for PPLS transform A = np.concatenate([V, Q], axis=0) # [2 * feat_dim, n_components] B = np.concatenate([(V * 1 / sigma).T, (Q * 1 / rho).T], axis=-1) # [n_components, 2 * feat_dim] sigmaW = np.linalg.inv(np.eye(n_components) + np.dot(B, A)) # [n_components, n_components] self.extractorMatrixPPLS_ = np.dot(sigmaW, B) # [n_components, 2 * feat_dim] C = np.dot(V.T, V) + sigma * np.eye(n_components) # [n_components, n_components] self.labelMatrix_ = np.dot(Q, np.linalg.solve(C, V.T)) # [feat_dim, feat_dim] def transform(self, X): if self.extractor_ == 'unsupervised': return super(SupervisedPPCA, self).transform(X) else: centeredM = X - self.bias_[np.newaxis, :] labels = np.dot(self.labelMatrix_, centeredM.T) + self.classBias_[:, np.newaxis] ivec = np.dot( self.extractorMatrixPPLS_, np.concatenate([X.T, labels], axis=0) - np.concatenate([self.bias_, self.classBias_])[:, np.newaxis]) return ivec.T # =========================================================================== # PCA # =========================================================================== class RandomizedPCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) using randomized SVD Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. Parameters ---------- n_components : int, optional Maximum number of components to keep. When not given or None, this is set to n_features (the second dimension of the training data). copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. iterated_power : int, default=2 Number of iterations for the power method. whiten : bool, optional When True (False by default) the `components_` vectors are multiplied by the square root of (n_samples) and divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. random_state : int, RandomState instance or None, optional, default=None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- components_ : array, shape (n_components, n_features) Components with maximum variance. explained_variance_ratio_ : array, shape (n_components,) Percentage of variance explained by each of the selected components. If k is not set then all components are stored and the sum of explained variances is equal to 1.0. singular_values_ : array, shape (n_components,) The singular values corresponding to each of the selected components. The singular values are equal to the 2-norms of the ``n_components`` variables in the lower-dimensional space. mean_ : array, shape (n_features,) Per-feature empirical mean, estimated from the training set. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import RandomizedPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = RandomizedPCA(n_components=2) >>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE RandomizedPCA(copy=True, iterated_power=2, n_components=2, random_state=None, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] >>> print(pca.singular_values_) # doctest: +ELLIPSIS [ 6.30061... 0.54980...] References ---------- .. [Halko2009] `Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909)` .. [MRT] `A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert` """ def __init__(self, n_components=None, copy=True, iterated_power=2, whiten=False, random_state=None): self.n_components = n_components self.copy = copy self.iterated_power = iterated_power self.whiten = whiten self.random_state = random_state def fit(self, X, y=None): """Fit the model with X by extracting the first principal components. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. y : Ignored. Returns ------- self : object Returns the instance itself. """ self._fit(check_array(X)) return self def _fit(self, X): """Fit the model to the data X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X : ndarray, shape (n_samples, n_features) The input data, copied, centered and whitened when requested. """ random_state = check_random_state(self.random_state) X = np.atleast_2d(as_float_array(X, copy=self.copy)) n_samples = X.shape[0] # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components U, S, V = randomized_svd(X, n_components, n_iter=self.iterated_power, random_state=random_state) self.explained_variance_ = exp_var = (S**2) / (n_samples - 1) full_var = np.var(X, ddof=1, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var self.singular_values_ = S # Store the singular values. if self.whiten: self.components_ = V / S[:, np.newaxis] * math.sqrt(n_samples) else: self.components_ = V return X def transform(self, X): """Apply dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X = np.dot(X, self.components_.T) return X def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. y : Ignored. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = check_array(X) X = self._fit(X) return np.dot(X, self.components_.T) def inverse_transform(self, X): """Transform data back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples in the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform does not compute the exact inverse operation of transform. """ check_is_fitted(self, 'mean_') X_original = np.dot(X, self.components_) if self.mean_ is not None: X_original = X_original + self.mean_ return X_original class MiniBatchPCA(IncrementalPCA): """ A modified version of IncrementalPCA to effectively support multi-processing (but not work) Original Author: Kyle Kastner <[email protected]> Giorgio Patrini License: BSD 3 clause Incremental principal components analysis (IPCA). Linear dimensionality reduction using Singular Value Decomposition of centered data, keeping only the most significant singular vectors to project the data to a lower dimensional space. Depending on the size of the input data, this algorithm can be much more memory efficient than a PCA. This algorithm has constant memory complexity, on the order of ``batch_size``, enabling use of np.memmap files without loading the entire file into memory. The computational overhead of each SVD is ``O(batch_size * n_features ** 2)``, but only 2 * batch_size samples remain in memory at a time. There will be ``n_samples / batch_size`` SVD computations to get the principal components, versus 1 large SVD of complexity ``O(n_samples * n_features ** 2)`` for PCA. Read more in the :ref:`User Guide <IncrementalPCA>`. Parameters ---------- n_components : int or None, (default=None) Number of components to keep. If ``n_components `` is ``None``, then ``n_components`` is set to ``min(n_samples, n_features)``. batch_size : int or None, (default=None) The number of samples to use for each batch. Only used when calling ``fit``. If ``batch_size`` is ``None``, then ``batch_size`` is inferred from the data and set to ``5 * n_features``, to provide a balance between approximation accuracy and memory consumption. copy : bool, (default=True) If False, X will be overwritten. ``copy=False`` can be used to save memory but is unsafe for general use. whiten : bool, optional When True (False by default) the ``components_`` vectors are divided by ``n_samples`` times ``components_`` to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometimes improve the predictive accuracy of the downstream estimators by making data respect some hard-wired assumptions. Attributes ---------- components_ : array, shape (n_components, n_features) Components with maximum variance. explained_variance_ : array, shape (n_components,) Variance explained by each of the selected components. explained_variance_ratio_ : array, shape (n_components,) Percentage of variance explained by each of the selected components. If all components are stored, the sum of explained variances is equal to 1.0 mean_ : array, shape (n_features,) Per-feature empirical mean, aggregate over calls to ``partial_fit``. var_ : array, shape (n_features,) Per-feature empirical variance, aggregate over calls to ``partial_fit``. noise_variance_ : float The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. n_components_ : int The estimated number of components. Relevant when ``n_components=None``. n_samples_seen_ : int The number of samples processed by the estimator. Will be reset on new calls to fit, but increments across ``partial_fit`` calls. Notes ----- Implements the incremental PCA model from: `D. Ross, J. Lim, R. Lin, M. Yang, Incremental Learning for Robust Visual Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3, pp. 125-141, May 2008.` See http://www.cs.toronto.edu/~dross/ivt/RossLimLinYang_ijcv.pdf This model is an extension of the Sequential Karhunen-Loeve Transform from: `A. Levy and M. Lindenbaum, Sequential Karhunen-Loeve Basis Extraction and its Application to Images, IEEE Transactions on Image Processing, Volume 9, Number 8, pp. 1371-1374, August 2000.` See http://www.cs.technion.ac.il/~mic/doc/skl-ip.pdf We have specifically abstained from an optimization used by authors of both papers, a QR decomposition used in specific situations to reduce the algorithmic complexity of the SVD. The source for this technique is `Matrix Computations, Third Edition, G. Holub and C. Van Loan, Chapter 5, section 5.4.4, pp 252-253.`. This technique has been omitted because it is advantageous only when decomposing a matrix with ``n_samples`` (rows) >= 5/3 * ``n_features`` (columns), and hurts the readability of the implemented algorithm. This would be a good opportunity for future optimization, if it is deemed necessary. For `multiprocessing`, you can do parallelized `partial_fit` or `transform` but you cannot do `partial_fit` in one process and `transform` in the others. Application ----------- In detail, in order for PCA to work well, informally we require that (i) The features have approximately zero mean, and (ii) The different features have similar variances to each other. With natural images, (ii) is already satisfied even without variance normalization, and so we won’t perform any variance normalization. (If you are training on audio data—say, on spectrograms—or on text data—say, bag-of-word vectors—we will usually not perform variance normalization either.) By using PCA, we aim for: (i) the features are less correlated with each other, and (ii) the features all have the same variance. Original link: http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/ References ---------- D. Ross, J. Lim, R. Lin, M. Yang. Incremental Learning for Robust Visual Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3, pp. 125-141, May 2008. G. Golub and C. Van Loan. Matrix Computations, Third Edition, Chapter 5, Section 5.4.4, pp. 252-253. See also -------- PCA RandomizedPCA KernelPCA SparsePCA TruncatedSVD """ def __init__(self, n_components=None, whiten=False, copy=True, batch_size=None): super(MiniBatchPCA, self).__init__(n_components=n_components, whiten=whiten, copy=copy, batch_size=batch_size) # some statistics self.n_samples_seen_ = 0 self.mean_ = .0 self.var_ = .0 self.components_ = None # if nb_samples < nb_components, then the mini batch is cached until # we have enough samples self._cache_batches = [] self._nb_cached_samples = 0 @property def is_fitted(self): return self.components_ is not None # ==================== Training ==================== # def fit(self, X, y=None): """Fit the model with X, using minibatches of size batch_size. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y: Passthrough for ``Pipeline`` compatibility. Returns ------- self: object Returns the instance itself. """ X = check_array(X, copy=self.copy, dtype=[np.float64, np.float32]) n_samples, n_features = X.shape if self.batch_size is None: batch_size = 12 * n_features else: batch_size = self.batch_size for batch in gen_batches(n_samples, batch_size): x = X[batch] self.partial_fit(x, check_input=False) return self def partial_fit(self, X, y=None, check_input=True): """Incremental fit with X. All of X is processed as a single batch. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self: object Returns the instance itself. """ # ====== check the samples and cahces ====== # if check_input: X = check_array(X, copy=self.copy, dtype=[np.float64, np.float32]) n_samples, n_features = X.shape # check number of components if self.n_components is None: self.n_components_ = n_features elif not 1 <= self.n_components <= n_features: raise ValueError("n_components=%r invalid for n_features=%d, need " "more rows than columns for IncrementalPCA " "processing" % (self.n_components, n_features)) else: self.n_components_ = self.n_components # check the cache if n_samples < n_features or self._nb_cached_samples > 0: self._cache_batches.append(X) self._nb_cached_samples += n_samples # not enough samples yet if self._nb_cached_samples < n_features: return else: # group mini batch into big batch X = np.concatenate(self._cache_batches, axis=0) self._cache_batches = [] self._nb_cached_samples = 0 n_samples = X.shape[0] # ====== fit the model ====== # if (self.components_ is not None) and (self.components_.shape[0] != self.n_components_): raise ValueError("Number of input features has changed from %i " "to %i between calls to partial_fit! Try " "setting n_components to a fixed value." % (self.components_.shape[0], self.n_components_)) # Update stats - they are 0 if this is the fisrt step col_mean, col_var, n_total_samples = \ _incremental_mean_and_var(X, last_mean=self.mean_, last_variance=self.var_, last_sample_count=self.n_samples_seen_) total_var = np.sum(col_var * n_total_samples) if total_var == 0: # if variance == 0, make no sense to continue return self # Whitening if self.n_samples_seen_ == 0: # If it is the first step, simply whiten X X -= col_mean else: col_batch_mean = np.mean(X, axis=0) X -= col_batch_mean # Build matrix of combined previous basis and new data mean_correction = \ np.sqrt((self.n_samples_seen_ * n_samples) / n_total_samples) * (self.mean_ - col_batch_mean) X = np.vstack((self.singular_values_.reshape( (-1, 1)) * self.components_, X, mean_correction)) U, S, V = linalg.svd(X, full_matrices=False) U, V = svd_flip(U, V, u_based_decision=False) explained_variance = S**2 / n_total_samples explained_variance_ratio = S**2 / total_var self.n_samples_seen_ = n_total_samples self.components_ = V[:self.n_components_] self.singular_values_ = S[:self.n_components_] self.mean_ = col_mean self.var_ = col_var self.explained_variance_ = explained_variance[:self.n_components_] self.explained_variance_ratio_ = \ explained_variance_ratio[:self.n_components_] if self.n_components_ < n_features: self.noise_variance_ = \ explained_variance[self.n_components_:].mean() else: self.noise_variance_ = 0. return self def transform(self, X, n_components=None): # ====== check number of components ====== # # specified percentage of explained variance if n_components is not None: # percentage of variances if n_components < 1.: _ = np.cumsum(self.explained_variance_ratio_) n_components = (_ > n_components).nonzero()[0][0] + 1 # specific number of components else: n_components = int(n_components) # ====== other info ====== # n = X.shape[0] if self.batch_size is None: batch_size = 12 * len(self.mean_) else: batch_size = self.batch_size # ====== start transforming ====== # X_transformed = [] for start, end in batching(n=n, batch_size=batch_size): x = super(MiniBatchPCA, self).transform(X=X[start:end]) if n_components is not None: x = x[:, :n_components] X_transformed.append(x) return np.concatenate(X_transformed, axis=0) def invert_transform(self, X): return super(MiniBatchPCA, self).inverse_transform(X=X) def transform_mpi(self, X, keep_order=True, ncpu=4, n_components=None): """ Sample as transform but using multiprocessing """ n = X.shape[0] if self.batch_size is None: batch_size = 12 * len(self.mean_) else: batch_size = self.batch_size batch_list = [(i, min(i + batch_size, n)) for i in range(0, n + batch_size, batch_size) if i < n] # ====== run MPI jobs ====== # def map_func(batch): start, end = batch x = super(MiniBatchPCA, self).transform(X=X[start:end]) # doing dim reduction here save a lot of memory for # inter-processors transfer if n_components is not None: x = x[:, :n_components] # just need to return the start for ordering yield start, x mpi = MPI(batch_list, func=map_func, ncpu=ncpu, batch=1, hwm=ncpu * 12, backend='python') # ====== process the return ====== # X_transformed = [] for start, x in mpi: X_transformed.append((start, x)) if keep_order: X_transformed = sorted(X_transformed, key=lambda x: x[0]) X_transformed = np.concatenate([x[-1] for x in X_transformed], axis=0) return X_transformed def __str__(self): if self.is_fitted: explained_vars = ';'.join([ ctext('%.2f' % i, 'cyan') for i in self.explained_variance_ratio_[:8] ]) else: explained_vars = 0 s = '%s(batch_size=%s, #components=%s, #samples=%s, vars=%s)' % \ (ctext('MiniBatchPCA', 'yellow'), ctext(self.batch_size, 'cyan'), ctext(self.n_components, 'cyan'), ctext(self.n_samples_seen_, 'cyan'), explained_vars) return s
d03f122f98dbf6bba0498916c870e071bb955439
c548c10c4fd0b6c1d1c10cc645cb3b90b31f2de6
/ml/m29_pca2_3_wine.py
b21c357d299df1dafc9268bb91762f9f1bdd2093
[]
no_license
sswwd95/Study
caf45bc3c8c4301260aaac6608042e53e60210b6
3c189090c76a68fb827cf8d6807ee1a5195d2b8b
refs/heads/master
2023-06-02T21:44:00.518810
2021-06-26T03:01:26
2021-06-26T03:01:26
324,061,105
0
0
null
null
null
null
UTF-8
Python
false
false
1,459
py
import numpy as np from sklearn.datasets import load_wine from sklearn.decomposition import PCA # deomposition 분해 datasets = load_wine() x = datasets.data y = datasets.target print(x.shape, y.shape) #(178, 13) (178,) ''' pca = PCA(n_components=10) x2 = pca.fit_transform(x) # fit과 transform 합친 것 print(x2) print(x2.shape) #(442, 7) 컬럼의 수가 재구성 pca_EVR = pca.explained_variance_ratio_ # 변화율 print(pca_EVR) #[0.40242142 0.14923182 0.12059623 0.09554764 0.06621856 0.06027192 0.05365605] print(sum(pca_EVR)) # 7개 : 0.9479436357350414 # 8개 : 0.9913119559917797 # 9개 : 0.9991439470098977 # 10개 : 1.0 # 몇 개가 좋은지 어떻게 알까? 모델 돌려보면 알 수 있다. 통상적으로 95% 이면 모델에서 성능 비슷하게 나온다. ''' pca = PCA() pca.fit(x) cumsum = np.cumsum(pca.explained_variance_ratio_) # cunsum의 작은 것 부터 하나씩 더해준다. 함수는 주어진 축에서 배열 요소의 누적 합계를 계산하려는 경우에 사용된다. print(cumsum) # [0.99809123 0.99982715 0.99992211 0.99997232 0.99998469 0.99999315 # 0.99999596 0.99999748 0.99999861 0.99999933 0.99999971 0.99999992 # 1. ] d = np.argmax(cumsum>=0.95)+1 print('cumsum >=0.95', cumsum >=0.95) print('d : ', d) # cumsum >=0.95 [ True True True True True True True True True True True True # True] # d : 1 import matplotlib.pyplot as plt plt.plot(cumsum) plt.grid() plt.show()
bc4ce015eb040a0bfe60106b3a22e8e043989877
ff182eeaf59b16f79b7d306eef72ddaadf0f4e71
/Vaffle_interface/testcase/SystemModule/System_test23_invite_get_score.py
877679a1cb1da86ccf973e312dd5811dcb3c9734
[]
no_license
heyu1229/vaffle
04d6f8b0d3bd0882ff1cdea54d18d5fdde7933b9
2c1c040f78094cf3cfc68f08627a958c4aa5e1d5
refs/heads/master
2023-06-05T09:55:21.894344
2021-03-12T07:26:45
2021-03-12T07:26:45
381,248,658
0
0
null
null
null
null
UTF-8
Python
false
false
874
py
# -*- coding:UTF-8 -*- import unittest import requests import time,gc,sys from Vaffle_interface.public_1.func_requests import FuncRequests from Vaffle_interface.public_1.get_url import Url class Invite_get_score(unittest.TestCase): def setUp(self): self.member_uuid = Url ().test_user () self.requests = FuncRequests () #-----------------邀请得积分-------------------------------- def testcase_001(self): sheet_index = 3 row = 34 print("testcase_001 反馈:") date=time.strftime("%Y-%m-%d %H:%M:%S",time.localtime()) payload = {'member_uuid':self.member_uuid} result=self.requests.interface_requests_payload(self.member_uuid, sheet_index, row, payload) self.assertEqual(10000, result["code"]) print("code返回值:10000") if __name__=="__main__": unittest.main()
5f1f4ad717ccde42c1a45dcfb353c5a9f6f7a916
3f763cf893b09a3be562858613c928703ff349e4
/client/verta/verta/_swagger/_public/modeldb/model/ModeldbCreateProjectResponse.py
b749fb1cab032e8cfae28f8b96a3aba11500069f
[ "Apache-2.0" ]
permissive
VertaAI/modeldb
636e46fc025b01a514d599b10e228c8735503357
ec9ac7712500adb13fd815dfd476ce9f536c6921
refs/heads/main
2023-08-31T00:45:37.220628
2023-08-30T18:45:13
2023-08-30T18:45:13
71,305,435
844
142
Apache-2.0
2023-09-14T19:24:13
2016-10-19T01:07:26
Java
UTF-8
Python
false
false
616
py
# THIS FILE IS AUTO-GENERATED. DO NOT EDIT from verta._swagger.base_type import BaseType class ModeldbCreateProjectResponse(BaseType): def __init__(self, project=None): required = { "project": False, } self.project = project for k, v in required.items(): if self[k] is None and v: raise ValueError('attribute {} is required'.format(k)) @staticmethod def from_json(d): from .ModeldbProject import ModeldbProject tmp = d.get('project', None) if tmp is not None: d['project'] = ModeldbProject.from_json(tmp) return ModeldbCreateProjectResponse(**d)
f026f41d97ad800e361e469b6d9b2f9ce747b465
325bee18d3a8b5de183118d02c480e562f6acba8
/pycan/pycan/spiders/listed_issuers_spider.py
5cbf6d2e6c7d9efd5de970ad5a60ec512b0647b2
[]
no_license
waynecanfly/spiderItem
fc07af6921493fcfc21437c464c6433d247abad3
1960efaad0d995e83e8cf85e58e1db029e49fa56
refs/heads/master
2022-11-14T16:35:42.855901
2019-10-25T03:43:57
2019-10-25T03:43:57
193,424,274
4
0
null
2022-11-04T19:16:15
2019-06-24T03:00:51
Python
UTF-8
Python
false
false
7,315
py
"""从归档(MiG Archives)文件中提取公司列表""" from io import BytesIO from zipfile import BadZipFile import scrapy import pymysql from scrapy import signals from openpyxl import load_workbook from dateutil.parser import parse as parse_datetime from scrapy.spidermiddlewares.httperror import HttpError from twisted.internet.error import DNSLookupError from twisted.internet.error import TimeoutError, TCPTimedOutError from twisted.internet.error import ConnectionRefusedError from twisted.web._newclient import ResponseNeverReceived from ..items import CompanyItem, ProfileDetailItem class ListedIssuersSpider(scrapy.Spider): name = 'listed_issuers' start_urls = [ 'https://www.tsx.com/listings/current-market-statistics/mig-archives' ] captions = [ { 'Exchange': 'exchange_market_code', 'Name': 'name_en', 'Root Ticker': 'security_code', 'SP_Type': 'security_type', 'Sector': 'sector_code', 'Date of TSX Listing YYYYMMDD': 'ipo_date', 'Place of Incorporation C=Canada U=USA F=Foreign': ( 'country_code_origin' ) }, { 'Exchange': 'exchange_market_code', 'Name': 'name_en', 'Root Ticker': 'security_code', 'Sector': 'sector_code', 'Date of Listing': 'ipo_date' } ] countries = { 'C': 'CAN', 'U': 'USA', 'F': None } @classmethod def from_crawler(cls, crawler, *args, **kwargs): spider = super(ListedIssuersSpider, cls).from_crawler( crawler, *args, **kwargs ) crawler.signals.connect(spider.spider_opened, signals.spider_opened) crawler.signals.connect(spider.spider_closed, signals.spider_closed) return spider def spider_opened(self, spider): self.logger.info('Opening spider %s...', spider.name) conn = pymysql.connect(**self.settings['DBARGS']) with conn.cursor() as cursor: cursor.execute("""\ select code, security_code, exchange_market_code, status from \ company where country_code_listed='CAN'\ """) records = cursor.fetchall() conn.close() self.companies = {} for it in records: id_ = it['exchange_market_code'], it['security_code'] self.companies[id_] = it['code'], it['status'] if records: NUMBER = slice(3, None) # 公司code数字编号区 self.max_code_num = int(max(it['code'] for it in records)[NUMBER]) else: self.max_code_num = 10000 self.total_new = 0 def spider_closed(self, spider): self.logger.info( 'Closing spider %s..., %d new', spider.name, self.total_new ) def parse(self, response): try: doc_href = response.xpath( "//a[text()='TSX/TSXV Listed Issuers']/..//a/@href" ).extract()[1] yield response.follow( doc_href, callback=self.parse_listed_issuers, errback=self.errback_scraping ) except IndexError: self.logger.error("Can't find listed issuers info") def parse_listed_issuers(self, response): try: wb = load_workbook(BytesIO(response.body), read_only=True) labels_row, start_row = 7, 8 for ws in wb.worksheets: labels = [ cell.value.replace('\n', ' ') for cell in ws[labels_row] if isinstance(cell.value, str) ] names = [ it.replace(' ', '_').lower() + '_mig_can' for it in labels] for each in self.captions: if set(each.keys()).issubset(set(labels)): indexes = { labels.index(it): each[it] for it in each } for row in ws.iter_rows(min_row=start_row): item = CompanyItem() profiles = [] for index, cell in enumerate(row): if cell.value: try: item[indexes[index]] = cell.value except KeyError: profiles.append( ProfileDetailItem( name=names[index], display_label=labels[index], value=cell.value, data_type='string' ) ) try: item['country_code_origin'] = self.countries[ item['country_code_origin'] ] except KeyError: pass company = ( item['exchange_market_code'], item['security_code'] ) if company not in self.companies: self.max_code_num += 1 item['code'] = 'CAN' + str(self.max_code_num) item['name_origin'] = item['name_en'] if 'ipo_date' in item: item['ipo_date'] = parse_datetime( str(item['ipo_date'])) self.companies[company] = (item['code'], None) for p_item in profiles: p_item['company_code'] = item['code'] yield p_item yield item break else: self.logger.error( 'Failed finding captions for listed issuers') except BadZipFile: self.logger.error( 'Listed issuers may redirect to %s', response.url) def errback_scraping(self, failure): req_url = failure.request.url if failure.check(HttpError): response = failure.value.response self.logger.error('HttpError %s on %s', response.status, req_url) elif failure.check(DNSLookupError): self.logger.error('DNSLookupError on %s', req_url) elif failure.check(ConnectionRefusedError): self.logger.error('ConnectionRefusedError on %s', req_url) elif failure.check(TimeoutError, TCPTimedOutError): self.logger.error('TimeoutError on %s', req_url) elif failure.check(ResponseNeverReceived): self.logger.error('ResponseNeverReceived on %s', req_url) else: self.logger.error('UnpectedError on %s', req_url) self.logger.error(repr(failure))
42428250f3f843297cf0dea506a3f02218b3db63
fb00808d44e18c7b27a8f86b553c586d4033504f
/sandbox/factory/factory_metrics.py
abb3cb2f34553b13d0e0d4696ef04c0988509187
[]
no_license
akamlani/datascience
4f1bab94a1af79b7f41339b5a1ba4acc965d4511
62f4d71f3642f89b4bbd55d7ef270321b983243e
refs/heads/master
2021-01-17T10:11:11.069207
2016-12-29T04:33:49
2016-12-29T04:33:49
24,774,956
0
2
null
null
null
null
UTF-8
Python
false
false
15,565
py
from __future__ import division import pandas as pd import numpy as np import argparse import os import re import json import sys import warnings from datetime import datetime import matplotlib.pyplot as plt import seaborn as sns warnings.filterwarnings("ignore") ### Create Tabular Structure def get_folder_attrs(path): root_dir = os.listdir(path) root_attr = {name: os.path.isdir(path + name) for name in root_dir} root_dirs = map(lambda (k,v): k,filter(lambda (k,v): v==1, root_attr.iteritems()) ) root_files = map(lambda (k,v): k,filter(lambda (k,v): v==0, root_attr.iteritems()) ) n_rootdirs = len(root_dirs) n_rootfiles = len(root_files) return { 'root_dirs': root_dirs, 'num_rootdirs': n_rootdirs, 'root_files': root_files, 'num_rootfiles': n_rootfiles } def extract_subfolder_data(subfolder, rootpath): root_data_dict = {} for (dirpath, dirnames, filenames) in os.walk(rootpath+subfolder): if len(filenames) > 1: k = dirpath.split(rootpath)[1].strip('data/') v = list( set([filename.split('.')[0] for filename in filenames]) ) root_data_dict[k] = v return root_data_dict def create_units(status_dict, root_path): # create a series of records of units that were tested df_units = pd.DataFrame() for k,v in status_dict.iteritems(): for item in v: unit_type, date_rec = [s.strip() for s in k.split("/")] file_name = "_".join(item.split("_")[:-2]) ts_rec = "".join(item.split("_")[-2:]) is_dir = os.path.isdir(root_path + k + item) if not is_dir: ts_rec = datetime.strptime(ts_rec, '%Y%m%d%H%M%S') filename = root_path + k +'/' + item + '.csv' # create new format to tabulate structure unit_name = file_name.split("_")[0].strip() if unit_type == 'FAIL' else file_name unit_dict = {'file_name':file_name, 'unit_name': unit_name, 'unit_status': unit_type, 'date_record': ts_rec} df_units = df_units.append(unit_dict, ignore_index=True) df_units['date'] = df_units.date_record.dt.date df_units['hour'] = df_units.date_record.dt.hour return df_units def create_dir_structure(): if not os.path.exists(data_path): print("No Data Present") sys.exit() else: if not os.path.exists(log_path): os.makedirs(log_path) if not os.path.exists(image_path): os.makedirs(image_path) if not os.path.exists(config_path): print("\nNo Config File: Using default config\n") attrs = get_folder_attrs(fixture_path) params = {k:v for k,v in attrs.iteritems() if k != 'root_files'} filename = log_path + file_prefix + 'rootdir_attr.txt' pd.Series(params, name='attributes').to_csv(filename, sep='\t') print "Root Dir Attributes:"; print pd.Series(params, name='attributes') return attrs ### Aggregation Calculations def calc_agg_stats(df_units): df_unit_counts = df_units.groupby('unit_name')['unit_status'].count() df_mult_tests = df_unit_counts[df_unit_counts > 1].sort_values(ascending=False) df_mult_failures = df_units[(df_units.unit_name.isin(df_mult_tests.index)) & (df_units.unit_status == 'FAIL')] # aggregate statistics n_units, n_tests = len(df_units.unit_name.unique()), len(df_units.unit_name) n_units_mult_failures, n_mult_failures = (len(df_mult_tests), df_mult_tests.sum()) # executed tests that are passing and failing n_pass_tests, n_fail_tests = df_units.unit_status.value_counts() n_pass_tests_pct, n_fail_tests_pct = n_pass_tests/n_tests, n_fail_tests/n_tests # there are some boards that show up both in pass and failure ('LB1537330100294') # find the lastest timestamp and verify it must be a PASS to update true failure count n_pass_units = len(df_units[df_units.unit_status=='PASS']['unit_name'].unique()) n_fail_units = len(df_units[df_units.unit_status=='FAIL']['unit_name'].unique()) pass_units = set(df_units[df_units.unit_status=='PASS']['unit_name'].unique()) fail_units = set(df_units[df_units.unit_status=='FAIL']['unit_name'].unique()) units_overlap = (pass_units & fail_units) df_units_overlap = df_units[df_units.unit_name.isin(units_overlap)].sort_values(by='unit_name') df_units_overlap = df_units_overlap.groupby('unit_name')[['date_record', 'unit_status']].max() n_units_overlap = df_units_overlap[df_units_overlap.unit_status != 'PASS'].shape[0] n_fail_units = n_fail_units - (len(units_overlap) - n_units_overlap) n_pass_units_pct, n_fail_units_pct = n_pass_units/n_units, n_fail_units/n_units # create a dict for processing data_metrics = pd.Series({ 'num_units': n_units, 'num_tests': n_tests, 'num_units_multiple_failures': n_units_mult_failures, 'num_tests_multiple_failures': n_mult_failures, 'num_pass_tests': n_pass_tests, 'num_fail_tests': n_fail_tests, 'num_pass_tests_pct': n_pass_tests_pct, 'num_fail_tests_pct': n_fail_tests_pct, 'num_pass_units': n_pass_units, 'num_fail_units': n_fail_units, 'num_pass_units_pct': n_pass_units_pct, 'num_fail_units_pct': n_fail_units_pct, 'num_units_overlapped_passfail': n_units_overlap }).sort_values(ascending=False) filename = log_path + file_prefix + 'status_metrics.txt' write_log(filename, data_metrics, "\nUnit/Experimental Test Metrics:", log=True, format='pretty') return data_metrics def calc_agg_dated(df_units): # date,hourly multi-index df_agg_date_hourly = df_units.groupby(['date','hour'])['unit_name'].count() df_agg_date_hourly.name = 'units_served' df_agg_date_hourly.columns = ['units_served'] filename = log_path + file_prefix + 'units_served_datehourly.txt' write_log(filename, df_agg_date_hourly, format='Pretty') # hourly aggregations df_stats_hourly = df_agg_date_hourly.reset_index() df_agg_hourly = df_stats_hourly.groupby('hour')['units_served'].agg([np.mean, np.median, np.std], axis=1) df_agg_hourly = pd.concat( [ df_units.groupby('hour')['unit_name'].count(), df_agg_hourly], axis=1 ) df_agg_hourly.columns = ['count','average', 'median', 'std'] filename = log_path + file_prefix + 'units_served_hourly_stats.txt' write_log(filename, df_agg_hourly, header=['Count', 'Average', 'Median', 'Std']) # hourly summary statistics ds_agg_summary = pd.Series({ 'mean': df_agg_hourly['count'].mean(), 'median': df_agg_hourly['count'].median(), 'std': df_agg_hourly['count'].std()}, name='units_served_hourly') filename = log_path + file_prefix + 'units_served_hourly_summary.txt' write_log(filename, ds_agg_summary, header=["Units Served Hourly"]) s = "Units Served Hourly:\nMean: {0:.2f}, Median: {1:.2f}, STD: {2:.2f}" print s.format(df_agg_hourly['count'].mean(), df_agg_hourly['count'].median(), df_agg_hourly['count'].std()) return ds_agg_summary def calc_agg_failures(ds, datapath): filepath = datapath + ds.unit_status + "/" + "".join(ds.date.strftime('%Y%m%d')) + "/" filename = filepath + ds.file_name + ds.date_record.strftime('_%Y%m%d_%H%M%S') + '.csv' df = pd.read_csv(filename) # extract test failures for a given failure and append to df_fail = df[(df.STATUS == 1) | (df.VALUE == 'FAIL')] df_test_failures = df_fail.groupby('TEST')['VALUE'].count() # keep track of occuring failures return df_test_failures ### Configuration Aggregations def define_default_configs(): return [ {'name': 'voltagedefault', 'prefix': ['V'], 'pattern': ['BOLT', 'PWR']} ] def match(frame, start_cond, pattern_cond): # define regex patterns pattern_regex = "|".join([p for p in pattern_cond]) start_regex = "|".join([p for p in start_cond]) start_regex = "^("+ start_regex +")" # create series df_flt = frame[(frame.TEST.str.contains(pattern_regex)) | (frame.TEST.str.contains(start_regex))] df_flt = df_flt.reset_index() df_flt = df_flt[['TEST','VALUE']].T df_flt.columns = [df_flt.ix['TEST']] df_flt = df_flt.drop('TEST', axis=0).reset_index().drop('index',axis=1) return df_flt def match_config_patterns(ds, datapath, name, start_cond, pattern_cond): filepath = datapath + ds.unit_status + "/" + "".join(ds.date.strftime('%Y%m%d')) + "/" filename = filepath + ds.file_name + ds.date_record.strftime('_%Y%m%d_%H%M%S') + '.csv' df = pd.read_csv(filename) df_patterns = match(df, start_cond, pattern_cond) return pd.Series( {k:v.values[0] for k,v in dict(df_patterns).iteritems()} ) def calc_agg_config(frame, datapath, name, start_cond, pattern_cond): params = (name, start_cond, pattern_cond) df_agg_config = frame.apply(lambda x: match_config_patterns(x, datapath, *params), axis=1).astype('float') # calculate aggregations iqr = (df_agg_config.dropna().quantile(0.75, axis=0) - df_agg_config.dropna().quantile(0.25, axis=0)) df_metric = pd.concat([df_agg_config.mean(axis=0), df_agg_config.median(axis=0), df_agg_config.std(axis=0), iqr, df_agg_config.min(axis=0), df_agg_config.max(axis=0)], axis=1) df_metric.columns = ['mean', 'median', 'std', 'iqr', 'min', 'max'] df_metric.name = name # save to log file filename = log_path + file_prefix + name + '_stats.txt' write_log(filename, df_metric, header=["Failure Counts"], format='pretty') return df_metric ### Plots/Visualizations def plot_units_metrics(metrics, titles): fig, (ax1,ax2,ax3) = plt.subplots(1,3, figsize=(20,7)) for data,title,axi in zip(metrics, titles, (ax1,ax2,ax3)): sns.barplot(data, data.index, ax=axi) axi.set_title(title, fontsize=16, fontweight='bold') for tick in axi.yaxis.get_major_ticks(): tick.label.set_fontsize(14) tick.label.set_fontweight('bold') for tick in axi.xaxis.get_major_ticks(): tick.label.set_fontsize(14) tick.label.set_fontweight('bold') fig.set_tight_layout(True) plt.savefig(image_path + file_prefix + 'units_status_metrics.png') def plot_units_dailyhour(df_units): # units per hour tested fig = plt.figure(figsize=(14,6)) df_units['date'] = df_units.date_record.dt.date df_units['hour'] = df_units.date_record.dt.hour df_units_dated = df_units.groupby(['date','hour'])['unit_name'].count() df_units_dated.unstack(level=0).plot(kind='bar', subplots=False) plt.ylabel("Num Units Tested", fontsize=10, fontweight='bold') plt.xlabel("Hour", fontsize=10, fontweight='bold') plt.title("Distribution per number of units tested", fontsize=13, fontweight='bold') fig.set_tight_layout(True) plt.savefig(image_path + file_prefix + 'units_tested_datehour.png') def plot_units_hourly(df_units): fig = plt.figure(figsize=(14,6)) df_agg_hourly = df_units.groupby(['hour'])['unit_name'].count() df_agg_hourly.plot(kind='bar') plt.ylabel("Num Units Tested", fontsize=10, fontweight='bold') plt.xlabel("Hour", fontsize=10, fontweight='bold') plt.title("Hourly Distribution per number of units tested", fontsize=10, fontweight='bold') fig.set_tight_layout(True) plt.savefig(image_path + file_prefix + 'units_tested_hourly.png') def plot_failure_metrics(frame): fig = plt.figure(figsize=(14,6)) sns.barplot(frame, frame.index) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(8) tick.label.set_fontstyle('italic') tick.label.set_fontweight('bold') plt.xlabel('Number of Failures', fontsize=10, fontweight='bold') plt.title("Failure Test Types Distribution", fontsize=10, fontweight='bold') fig.set_tight_layout(True) plt.savefig(image_path + file_prefix + 'units_failure_metrics.png') ### Logging def write_log(filename, frame, header=None, log=False, format=None): if format: with open(filename, 'w') as f: f.write(frame.__repr__()) if log: print header; print (frame); print else: frame.to_csv(filename, sep='\t', float_format='%.2f', header=header) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Factory Unit Metrics') parser.add_argument('-f', '--fixture', default='fixture', nargs='?', help='default=fixture') args = parser.parse_args() curr_date = "".join( str(datetime.now().date()).split("-") ) fixture_path = args.fixture + '/' data_path = fixture_path + 'data/' log_path = fixture_path + 'logs/' + curr_date + '/' image_path = fixture_path + 'images/' + curr_date + '/' config_path = fixture_path + 'config/' file_prefix = args.fixture.split("/")[-1] + '_' root_fixture_path = fixture_path if fixture_path.startswith('/') else os.getcwd() + '/' + fixture_path root_data_path = data_path if fixture_path.startswith('/') else os.getcwd() + '/' + data_path # create folder structure if necessary, create tabular dataframe format attrs = create_dir_structure() meta_folders = ['logs', 'images', 'config'] meta_path = '[' + '|'.join(meta_folders) + ']' data_folders = filter(lambda x: x not in meta_folders, attrs['root_dirs']) data = [extract_subfolder_data(dir_name, root_fixture_path) for dir_name in attrs['root_dirs']] data_dict = {k: v for d in data for k, v in d.items() if not re.compile(meta_path).search(k)} df_aggunits = create_units(data_dict, root_data_path) # Apply Core Aggregations, Log to Files ds_metrics = calc_agg_stats(df_aggunits).sort_values(ascending=False) ds_metrics_summary = calc_agg_dated(df_aggunits) ds_failures = df_aggunits.apply(lambda x: calc_agg_failures(x, data_path), axis=1) ds_failures = ds_failures.sum().astype(int) ds_failures = ds_failures.drop('OVERALL_TEST_RESULT', axis=0).sort_values(ascending=False) filename = log_path + file_prefix + 'testfailuretype_stats.txt' write_log(filename, ds_failures[:10], header="\nTop 10 Failure Test Types", log=True, format='pretty') # Apply Configuration Aggregations, Log to Files if os.path.exists(config_path): with open(config_path + 'config.json') as f: config_json = json.load(f) config_tests = config_json['tests'] else: config_tests = define_default_configs() for config in config_tests: params = (config['name'], config['prefix'], config['pattern']) calc_agg_config(df_aggunits, data_path, *params) # Apply Plots ds_metrics_units = ds_metrics.ix[['num_units', 'num_pass_units', 'num_fail_units', 'num_units_multiple_failures', 'num_units_overlapped_passfail']] ds_metrics_tests = ds_metrics.ix[['num_tests', 'num_pass_tests', 'num_fail_tests','num_tests_multiple_failures']] ds_metrics_pct = ds_metrics.ix[['num_pass_units_pct', 'num_pass_tests_pct', 'num_fail_tests_pct', 'num_fail_units_pct']] plot_units_metrics((ds_metrics_units, ds_metrics_tests, ds_metrics_pct.sort_values(ascending=False)), ("Unit Metrics", "Pass/Failure Counts", "Pass/Fail Test Percentages")) plot_units_dailyhour(df_aggunits) plot_units_hourly(df_aggunits) plot_failure_metrics(ds_failures)
bfb478f20e11de16e5810f8d08fa62eb3da131f8
f48a3d354bf4bbbe3d47651dd77853c29934f1fe
/Code/Finance/Code/Udemy_AlgoTrading/51_max_dd_calmar.py
0639e3adacef6a05456f219fb7c4fdc80ad8f7fa
[ "MIT" ]
permissive
guidefreitas/TeachingDataScience
0677df459d5a13c00404b8b04cbe3b389dae3d8b
f3e0bc6e391348a8065b09855ab82c436f82a4b5
refs/heads/master
2023-09-03T14:02:11.853103
2021-11-07T03:56:54
2021-11-07T03:56:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,457
py
# ============================================================================= # Measuring the performance of a buy and hold strategy - Max drawdown & calmar ratio # Author : Mayank Rasu (http://rasuquant.com/wp/) # Please report bug/issues in the Q&A section # ============================================================================= # Import necesary libraries import yfinance as yf import numpy as np import datetime as dt # Download historical data for required stocks ticker = "^GSPC" SnP = yf.download(ticker,dt.date.today()-dt.timedelta(1825),dt.datetime.today()) def CAGR(DF): "function to calculate the Cumulative Annual Growth Rate of a trading strategy" df = DF.copy() df["daily_ret"] = DF["Adj Close"].pct_change() df["cum_return"] = (1 + df["daily_ret"]).cumprod() n = len(df)/252 CAGR = (df["cum_return"][-1])**(1/n) - 1 return CAGR def max_dd(DF): "function to calculate max drawdown" df = DF.copy() df["daily_ret"] = DF["Adj Close"].pct_change() df["cum_return"] = (1 + df["daily_ret"]).cumprod() df["cum_roll_max"] = df["cum_return"].cummax() df["drawdown"] = df["cum_roll_max"] - df["cum_return"] df["drawdown_pct"] = df["drawdown"]/df["cum_roll_max"] max_dd = df["drawdown_pct"].max() return max_dd print(max_dd(SnP)) def calmar(DF): "function to calculate calmar ratio" df = DF.copy() clmr = CAGR(df)/max_dd(df) return clmr print(calmar(SnP))
34c324f9bfe464ec5dec8508c846a30409c79e34
46c521a85f567c609f8a073cb9569ea59e2a104f
/kunalProgram23.py
bab9fcf53fa8ff6e595f560e1fd900d0d4fa40d5
[]
no_license
Kunal352000/python_adv
c046b6b785b52eaaf8d089988d4dadf0a25fa8cb
d9736b6377ae2d486854f93906a6bf5bc4e45a98
refs/heads/main
2023-07-15T23:48:27.131948
2021-08-21T13:16:42
2021-08-21T13:16:42
398,557,910
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
n=int(input("Enter number of rows: ")) for i in range(n): print(" "*(n-1-i)+(str(i+1)+' ')*(i+1)) for i in range(n-1): print(" "*(i+1)+(str(n-1-i)+' ')*(n-1-i))
ae9c18ed187a23fb7121a34ca1422020e3f7ddb5
20343e8a8435b3f839d5abd0c4063cf735f43341
/Experiment/CornerDetectAndAutoEmail/AveMaxMinDetect/test/test1.py
c4133dfbbcbb80c2cf4a4201fd7522e512561360
[]
no_license
alading241/MoDeng
948f2099e2f7e4548d6e477b6e06b833bdf4f9bb
01819e58943d7d1a414714d64aa531c0e99dfe22
refs/heads/master
2021-05-23T11:39:41.326804
2020-04-05T06:06:01
2020-04-05T06:06:01
253,269,397
1
0
null
2020-04-05T15:38:33
2020-04-05T15:38:33
null
UTF-8
Python
false
false
476
py
# encoding = utf-8 import tornado from apscheduler.schedulers.tornado import TornadoScheduler sched = TornadoScheduler() """ 测试向任务中传入参数 """ test = 'hello' def job1(a, b, c): print("job1:", a,b,c) def job2(a, b, c): print("job2:", a,b,c) sched.add_job(job1, 'interval', seconds=1, args=["e", "t", "f"]) sched.add_job(job2, 'interval', seconds=1, kwargs={"a": test, "b": "b", "c": "c"}) sched.start() tornado.ioloop.IOLoop.instance().start()
513143cc032bfe7bf0b443158e43a0ef5e19b9c4
68f757e7be32235c73e316888ee65a41c48ecd4e
/python_book(이것이 코딩테스트다)/13 DFS/6 감시피하기.py
2ae13a528d691db24f99e98aa727d9f3e6b9279b
[]
no_license
leejongcheal/algorithm_python
b346fcdbe9b1fdee33f689477f983a63cf1557dc
f5d9bc468cab8de07b9853c97c3db983e6965d8f
refs/heads/master
2022-03-05T20:16:21.437936
2022-03-03T01:28:36
2022-03-03T01:28:36
246,039,901
1
0
null
null
null
null
UTF-8
Python
false
false
1,089
py
def check(Map): global N, T steps = [(1,0),(-1,0),(0,1),(0,-1)] for tx, ty in T: for dx, dy in steps: x, y = tx + dx, ty + dy while 0 <= x < N and 0 <= y < N: if Map[x][y] == "O": break if Map[x][y] == "S": return 0 x, y = x + dx, y + dy return 1 def dfs(x, y): global L, N, flag, count if flag == 1: return if count == 3: if check(L): flag = 1 return for i in range(N): for j in range(N): if x < i or (j > y and x == i): if L[i][j] == "X": L[i][j] = "O" count += 1 dfs(i, j) L[i][j] = "X" count -= 1 return N = int(input()) L = [list(input().split()) for _ in range(N)] T = [] flag = 0 count = 0 for i in range(N): for j in range(N): if L[i][j] == "T": T.append((i,j)) dfs(-1, -1) if flag == 1: print("YES") else: print("NO")
4009361d3230b25bd783c8a62243914aa44d83e8
dad6ba45f05d267f6c44bd27949868dc474476e6
/CQT/Archive/withoutHead.py
b880268f61562e2aaff0d40889c0d47085412c3c
[]
no_license
morindaz/CQT_All
1f36c5ef22348e2293d9f4f63e58009f0dd274b7
8ab6f82ad7b1cf3b4555fe785566013f5cb57a4f
refs/heads/master
2021-04-27T00:11:17.744327
2018-03-04T07:19:06
2018-03-04T07:19:06
123,765,136
0
0
null
null
null
null
UTF-8
Python
false
false
842
py
# coding=utf-8 import time import glob import pandas as pd #这里的C数据和R相反 answerR = "E:\\pingan\\dataset\\newFeature\\answer_C" #492个数据,withouthead answerC = "E:\\pingan\\dataset\\newFeature\\answer_R" #244个数据 answerI = "E:\\pingan\\dataset\\newFeature\\answer_I" #478个数据 base = answerI csvx_list = glob.glob(base+"\\"+'*.csv') print('总共发现%s个CSV文件'% len(csvx_list)) time.sleep(2) print('正在处理............') df = pd.DataFrame() for i in csvx_list: df_c = pd.read_csv(i, sep=',', header=0) # print(df_c['video_name'].tolist()) # fr = i.values # print df_c df = df.append(df_c) #print df print('写入成功!') output_Archive = pd.DataFrame(df) output_Archive.to_csv("base"+'.csv') print('写入完毕!') print('3秒钟自动关闭程序!') time.sleep(3)
8845d190ae1c3cf32b9e4665e81304da16378cc6
56b7e5ed6941fc4b83148e00bd51421dc3ac993a
/hackerrank/Delete Nodes Greater Than X/Delete Nodes Greater Than X.py
6c8ef8211533ee3666850ccdc29c91e09917498c
[]
no_license
samir-0711/Leetcode-Python
f960e15015a3f2fd88f723d7f9237945a7133553
d75876ae96bcd85c67bbfbf91bbc0f0bc773e97c
refs/heads/master
2022-12-18T05:27:48.224001
2020-09-30T21:03:42
2020-09-30T21:03:42
300,061,318
0
0
null
2020-09-30T20:59:42
2020-09-30T20:59:42
null
UTF-8
Python
false
false
1,590
py
''' Complete the removeNodes function provided in your editor. It has 2 parameters: 1. list: A reference to a Linked List Node that is the head of a linked list. 2. x: An integer value. Your funciton should remove all nodes from the list having data values greater than x, and then return the head of the modified linked list. Input Format The locked stub code in your editer processes the following inputs and pased the necessary arguments to the removeNodes function: The first line contains N, the number of nodes in the linked list. Each line i (where 0<= i <) of the N subsequent lines contains an integer representing the value of a node in the linked list. The last line contains an integer, x. Output Format Return the linked list after removing the nodes containing values > x. Sample Input 1: 5 1 2 3 4 5 3 Sample Output 1: 1 2 3 Sample Input 2: 5 5 2 1 6 7 5 Sample Output2: 5 2 1 ''' class LinkedListNode: def __init__(self, node_Value): self.val = node_Value self.next = None def _insert_node_into_singlylinkedlist(head, tail, val): if head == None: head = LinkedListNode(val) tail = head else: node = LinkedListNode(val) tail.next = node tail = tail.next def removeNodes(list, x): if list == None or x == None: return None temp = list while temp.val > x: temp = temp.next curr = temp prev = None while curr != None: if curr.val > x: prev.next = curr.next else: prev = curr curr = curr.next return temp
59812772783380dd6340412af14255fc7cbb7fdc
9745f847ff7606d423918fdf4c7135d930a48181
/peering/migrations/0001_v1.0.0.py
9217c861c8e8d871d51b04d9dca8ee224fa82471
[ "Apache-2.0" ]
permissive
mxhob1/peering-manager
097167707e499307632ffeaaba72b381a4290347
6c15aacdef5ed267d2602fb313eee8ee8a11149a
refs/heads/master
2021-05-18T23:26:44.553331
2020-07-20T06:35:22
2020-07-20T06:35:22
252,051,461
1
0
Apache-2.0
2020-04-02T06:18:48
2020-04-01T02:30:46
Python
UTF-8
Python
false
false
48,334
py
# Generated by Django 2.2.7 on 2019-11-13 20:51 import django.contrib.postgres.fields from django.db import migrations, models import django.db.models.deletion import netfields.fields import peering.fields import taggit.managers import utils.validators class Migration(migrations.Migration): def forward_transition_from_none_to_zero(apps, schema_editor): models = { "AutonomousSystem": { "filters": {"ipv4_max_prefixes": None, "ipv6_max_prefixes": None}, "updates": {"ipv4_max_prefixes": 0, "ipv6_max_prefixes": 0}, }, "DirectPeeringSession": { "filters": { "advertised_prefix_count": None, "received_prefix_count": None, }, "updates": {"advertised_prefix_count": 0, "received_prefix_count": 0}, }, "InternetExchange": { "filters": {"peeringdb_id": None}, "updates": {"peeringdb_id": 0}, }, "InternetExchangePeeringSession": { "filters": { "advertised_prefix_count": None, "received_prefix_count": None, }, "updates": {"advertised_prefix_count": 0, "received_prefix_count": 0}, }, } db_alias = schema_editor.connection.alias for key, value in models.items(): model = apps.get_model("peering", key) model.objects.using(db_alias).filter(**value["filters"]).update( **value["updates"] ) def reverse_transition_from_none_to_zero(apps, schema_editor): models = { "AutonomousSystem": { "filters": {"ipv4_max_prefixes": 0, "ipv6_max_prefixes": 0}, "updates": {"ipv4_max_prefixes": None, "ipv6_max_prefixes": None}, }, "DirectPeeringSession": { "filters": {"advertised_prefix_count": 0, "received_prefix_count": 0}, "updates": { "advertised_prefix_count": None, "received_prefix_count": None, }, }, "InternetExchange": { "filters": {"peeringdb_id": 0}, "updates": {"peeringdb_id": None}, }, "InternetExchangePeeringSession": { "filters": {"advertised_prefix_count": 0, "received_prefix_count": 0}, "updates": { "advertised_prefix_count": None, "received_prefix_count": None, }, }, } db_alias = schema_editor.connection.alias for key, value in models: model = apps.get_model("peering", key) for field in value: model.objects.using(db_alias).filter(**value["filters"]).update( **value["updates"] ) def forward_transition_from_minus_one_to_zero(apps, schema_editor): models = { "AutonomousSystem": { "filters": {"ipv4_max_prefixes": -1, "ipv6_max_prefixes": -1}, "updates": {"ipv4_max_prefixes": 0, "ipv6_max_prefixes": 0}, }, "DirectPeeringSession": { "filters": {"advertised_prefix_count": -1, "received_prefix_count": -1}, "updates": {"advertised_prefix_count": 0, "received_prefix_count": 0}, }, "InternetExchange": { "filters": {"peeringdb_id": -1}, "updates": {"peeringdb_id": 0}, }, "InternetExchangePeeringSession": { "filters": {"advertised_prefix_count": -1, "received_prefix_count": -1}, "updates": {"advertised_prefix_count": 0, "received_prefix_count": 0}, }, } db_alias = schema_editor.connection.alias for key, value in models.items(): model = apps.get_model("peering", key) model.objects.using(db_alias).filter(**value["filters"]).update( **value["updates"] ) def reverse_transition_from_minus_one_to_zero(apps, schema_editor): models = { "AutonomousSystem": { "filters": {"ipv4_max_prefixes": 0, "ipv6_max_prefixes": 0}, "updates": {"ipv4_max_prefixes": -1, "ipv6_max_prefixes": -1}, }, "DirectPeeringSession": { "filters": {"advertised_prefix_count": 0, "received_prefix_count": 0}, "updates": {"advertised_prefix_count": -1, "received_prefix_count": -1}, }, "InternetExchange": { "filters": {"peeringdb_id": 0}, "updates": {"peeringdb_id": -1}, }, "InternetExchangePeeringSession": { "filters": {"advertised_prefix_count": 0, "received_prefix_count": 0}, "updates": {"advertised_prefix_count": -1, "received_prefix_count": -1}, }, } db_alias = schema_editor.connection.alias for key, value in models: model = apps.get_model("peering", key) for field in value: model.objects.using(db_alias).filter(**value["filters"]).update( **value["updates"] ) def forward_transition_from_none_to_empty_list(apps, schema_editor): AutonomousSystem = apps.get_model("peering", "AutonomousSystem") db_alias = schema_editor.connection.alias AutonomousSystem.objects.using(db_alias).filter( potential_internet_exchange_peering_sessions=None ).update(potential_internet_exchange_peering_sessions=[]) def reverse_transition_from_none_to_empty_list(apps, schema_editor): AutonomousSystem = apps.get_model("peering", "AutonomousSystem") db_alias = schema_editor.connection.alias AutonomousSystem.objects.using(db_alias).filter( potential_internet_exchange_peering_sessions=[] ).update(potential_internet_exchange_peering_sessions=None) def add_permissions(apps, schema_editor): pass def remove_permissions(apps, schema_editor): """Reverse the above additions of permissions.""" ContentType = apps.get_model("contenttypes.ContentType") Permission = apps.get_model("auth.Permission") try: content_type = ContentType.objects.get( model="internetexchange", app_label="peering" ) Permission.objects.filter( content_type=content_type, codename__in=("view_configuration", "deploy_configuration"), ).delete() except ContentType.DoesNotExist: pass replaces = [ ("peering", "0001_initial"), ("peering", "0002_auto_20170820_1809"), ("peering", "0003_auto_20170903_1235"), ("peering", "0004_auto_20171004_2323"), ("peering", "0005_auto_20171014_1427"), ("peering", "0006_auto_20171017_1917"), ("peering", "0007_auto_20171202_1900"), ("peering", "0008_auto_20171212_2251"), ("peering", "0009_auto_20171226_1550"), ("peering", "0010_auto_20171228_0158"), ("peering", "0011_auto_20180329_2146"), ("peering", "0012_auto_20180502_1733"), ("peering", "0013_auto_20180505_1545"), ("peering", "0014_auto_20180519_2128"), ("peering", "0015_peeringsession_password"), ("peering", "0016_auto_20180726_1307"), ("peering", "0017_auto_20180802_2309"), ("peering", "0018_auto_20181014_1612"), ("peering", "0019_router_netbox_device_id"), ("peering", "0020_auto_20181105_0850"), ("peering", "0021_auto_20181113_2136"), ("peering", "0022_auto_20181116_2226"), ("peering", "0023_auto_20181208_2202"), ("peering", "0024_auto_20181212_2106"), ("peering", "0025_auto_20181212_2322"), ( "peering", "0026_autonomoussystem_potential_internet_exchange_peering_sessions", ), ("peering", "0027_auto_20190105_1600"), ("peering", "0028_internetexchangepeeringsession_is_router_server"), ("peering", "0029_auto_20190114_2141"), ("peering", "0030_directpeeringsession_router"), ("peering", "0031_auto_20190227_2210"), ("peering", "0032_auto_20190302_1415"), ("peering", "0033_router_encrypt_passwords"), ("peering", "0034_auto_20190308_1954"), ("peering", "0035_auto_20190311_2334"), ("peering", "0036_auto_20190411_2209"), ("peering", "0037_auto_20190412_2102"), ("peering", "0038_auto_20190412_2233"), ("peering", "0039_routingpolicy_address_family"), ("peering", "0040_auto_20190417_1851"), ("peering", "0041_auto_20190430_1743"), ("peering", "0042_auto_20190509_1439"), ("peering", "0043_router_use_netbox"), ("peering", "0044_auto_20190513_2153"), ("peering", "0045_auto_20190514_2308"), ("peering", "0046_auto_20190608_2215"), ("peering", "0047_auto_20190619_1434"), ("peering", "0048_auto_20190707_1854"), ("peering", "0049_auto_20190731_1946"), ("peering", "0050_auto_20190806_2159"), ("peering", "0051_auto_20190818_1816"), ("peering", "0052_auto_20190818_1926"), ("peering", "0053_auto_20190921_2000"), ("peering", "0054_auto_20191031_2241"), ("peering", "0055_auto_20191110_1312"), ] initial = True dependencies = [ ("taggit", "0003_taggeditem_add_unique_index"), ("utils", "0001_v1.0.0"), ] operations = [ migrations.CreateModel( name="AutonomousSystem", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("asn", peering.fields.ASNField(unique=True)), ("name", models.CharField(max_length=128)), ("comment", models.TextField(blank=True)), ( "ipv6_max_prefixes", models.PositiveIntegerField(blank=True, null=True), ), ( "ipv4_max_prefixes", models.PositiveIntegerField(blank=True, null=True), ), ("updated", models.DateTimeField(auto_now=True, null=True)), ("irr_as_set", models.CharField(blank=True, max_length=255, null=True)), ("ipv4_max_prefixes_peeringdb_sync", models.BooleanField(default=True)), ("ipv6_max_prefixes_peeringdb_sync", models.BooleanField(default=True)), ("irr_as_set_peeringdb_sync", models.BooleanField(default=True)), ("created", models.DateTimeField(auto_now_add=True, null=True)), ], options={"ordering": ["asn"]}, ), migrations.CreateModel( name="ConfigurationTemplate", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=128)), ("template", models.TextField()), ("updated", models.DateTimeField(auto_now=True, null=True)), ("comment", models.TextField(blank=True)), ("created", models.DateTimeField(auto_now_add=True, null=True)), ], options={"ordering": ["name"]}, ), migrations.CreateModel( name="Router", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=128)), ("hostname", models.CharField(max_length=256)), ( "platform", models.CharField( blank=True, choices=[ ("junos", "Juniper JUNOS"), ("iosxr", "Cisco IOS-XR"), ("ios", "Cisco IOS"), ("nxos", "Cisco NX-OS"), ("eos", "Arista EOS"), (None, "Other"), ], help_text="The router platform, used to interact with it", max_length=50, ), ), ("comment", models.TextField(blank=True)), ("created", models.DateTimeField(auto_now_add=True, null=True)), ("updated", models.DateTimeField(auto_now=True, null=True)), ( "netbox_device_id", models.PositiveIntegerField(blank=True, default=0), ), ], options={"ordering": ["name"]}, ), migrations.CreateModel( name="Community", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=128)), ("value", peering.fields.CommunityField(max_length=50)), ("comment", models.TextField(blank=True)), ( "type", models.CharField( choices=[("egress", "Egress"), ("ingress", "Ingress")], default="ingress", max_length=50, ), ), ("created", models.DateTimeField(auto_now_add=True, null=True)), ("updated", models.DateTimeField(auto_now=True, null=True)), ], options={"verbose_name_plural": "communities", "ordering": ["name"]}, ), migrations.CreateModel( name="RoutingPolicy", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("created", models.DateTimeField(auto_now_add=True, null=True)), ("updated", models.DateTimeField(auto_now=True, null=True)), ("name", models.CharField(max_length=128)), ("slug", models.SlugField(unique=True)), ( "type", models.CharField( choices=[ ("import-policy", "Import"), ("export-policy", "Export"), ], default="import-policy", max_length=50, ), ), ("comment", models.TextField(blank=True)), ], options={"verbose_name_plural": "routing policies", "ordering": ["name"]}, ), migrations.CreateModel( name="InternetExchange", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=128)), ("slug", models.SlugField(unique=True)), ("comment", models.TextField(blank=True)), ( "configuration_template", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to="peering.ConfigurationTemplate", ), ), ("ipv4_address", models.GenericIPAddressField(blank=True, null=True)), ("ipv6_address", models.GenericIPAddressField(blank=True, null=True)), ( "router", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to="peering.Router", ), ), ( "communities", models.ManyToManyField(blank=True, to="peering.Community"), ), ("peeringdb_id", models.PositiveIntegerField(blank=True, null=True)), ("check_bgp_session_states", models.BooleanField(default=False)), ( "bgp_session_states_update", models.DateTimeField(blank=True, null=True), ), ("created", models.DateTimeField(auto_now_add=True, null=True)), ("updated", models.DateTimeField(auto_now=True, null=True)), ( "export_routing_policies", models.ManyToManyField( blank=True, related_name="internetexchange_export_routing_policies", to="peering.RoutingPolicy", ), ), ( "import_routing_policies", models.ManyToManyField( blank=True, related_name="internetexchange_import_routing_policies", to="peering.RoutingPolicy", ), ), ], options={"ordering": ["name"]}, ), migrations.CreateModel( name="DirectPeeringSession", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("created", models.DateTimeField(auto_now_add=True, null=True)), ("updated", models.DateTimeField(auto_now=True, null=True)), ("ip_address", models.GenericIPAddressField()), ("password", models.CharField(blank=True, max_length=255, null=True)), ("enabled", models.BooleanField(default=True)), ( "bgp_state", models.CharField( blank=True, choices=[ ("idle", "Idle"), ("connect", "Connect"), ("active", "Active"), ("opensent", "OpenSent"), ("openconfirm", "OpenConfirm"), ("established", "Established"), ], max_length=50, null=True, ), ), ( "received_prefix_count", models.PositiveIntegerField(blank=True, null=True), ), ( "advertised_prefix_count", models.PositiveIntegerField(blank=True, null=True), ), ("comment", models.TextField(blank=True)), ("local_asn", peering.fields.ASNField(default=0)), ( "relationship", models.CharField( choices=[ ("private-peering", "Private Peering"), ("transit-provider", "Transit Provider"), ("customer", "Customer"), ], help_text="Relationship with the remote peer.", max_length=50, ), ), ( "autonomous_system", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="peering.AutonomousSystem", ), ), ("last_established_state", models.DateTimeField(blank=True, null=True)), ( "export_routing_policies", models.ManyToManyField( blank=True, related_name="directpeeringsession_export_routing_policies", to="peering.RoutingPolicy", ), ), ( "import_routing_policies", models.ManyToManyField( blank=True, related_name="directpeeringsession_import_routing_policies", to="peering.RoutingPolicy", ), ), ], options={"abstract": False}, ), migrations.CreateModel( name="InternetExchangePeeringSession", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("ip_address", models.GenericIPAddressField()), ("comment", models.TextField(blank=True)), ( "autonomous_system", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="peering.AutonomousSystem", ), ), ( "internet_exchange", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="peering.InternetExchange", ), ), ("enabled", models.BooleanField(default=True)), ( "bgp_state", models.CharField( blank=True, choices=[ ("idle", "Idle"), ("connect", "Connect"), ("active", "Active"), ("opensent", "OpenSent"), ("openconfirm", "OpenConfirm"), ("established", "Established"), ], max_length=50, null=True, ), ), ( "advertised_prefix_count", models.PositiveIntegerField(blank=True, null=True), ), ( "received_prefix_count", models.PositiveIntegerField(blank=True, null=True), ), ("password", models.CharField(blank=True, max_length=255, null=True)), ("created", models.DateTimeField(auto_now_add=True, null=True)), ("updated", models.DateTimeField(auto_now=True, null=True)), ("last_established_state", models.DateTimeField(blank=True, null=True)), ( "export_routing_policies", models.ManyToManyField( blank=True, related_name="internetexchangepeeringsession_export_routing_policies", to="peering.RoutingPolicy", ), ), ( "import_routing_policies", models.ManyToManyField( blank=True, related_name="internetexchangepeeringsession_import_routing_policies", to="peering.RoutingPolicy", ), ), ], ), migrations.RunPython( code=forward_transition_from_none_to_zero, reverse_code=reverse_transition_from_none_to_zero, ), migrations.AlterField( model_name="autonomoussystem", name="ipv4_max_prefixes", field=models.PositiveIntegerField(blank=True, default=0), ), migrations.AlterField( model_name="autonomoussystem", name="ipv6_max_prefixes", field=models.PositiveIntegerField(blank=True, default=0), ), migrations.AlterField( model_name="directpeeringsession", name="advertised_prefix_count", field=models.PositiveIntegerField(blank=True, default=0), ), migrations.AlterField( model_name="directpeeringsession", name="received_prefix_count", field=models.PositiveIntegerField(blank=True, default=0), ), migrations.AlterField( model_name="internetexchange", name="peeringdb_id", field=models.PositiveIntegerField(blank=True, default=0), ), migrations.AlterField( model_name="internetexchangepeeringsession", name="advertised_prefix_count", field=models.PositiveIntegerField(blank=True, default=0), ), migrations.AlterField( model_name="internetexchangepeeringsession", name="received_prefix_count", field=models.PositiveIntegerField(blank=True, default=0), ), migrations.RunPython( code=forward_transition_from_minus_one_to_zero, reverse_code=reverse_transition_from_minus_one_to_zero, ), migrations.AddField( model_name="autonomoussystem", name="potential_internet_exchange_peering_sessions", field=django.contrib.postgres.fields.ArrayField( base_field=models.GenericIPAddressField(), blank=True, default=list, size=None, ), ), migrations.RunPython( code=forward_transition_from_none_to_empty_list, reverse_code=reverse_transition_from_none_to_empty_list, ), migrations.AddField( model_name="internetexchangepeeringsession", name="is_route_server", field=models.BooleanField(blank=True, default=False), ), migrations.AlterModelOptions( name="internetexchange", options={ "ordering": ["name"], "permissions": [ ( "view_configuration", "Can view Internet Exchange's configuration", ), ( "deploy_configuration", "Can deploy Internet Exchange's configuration", ), ], }, ), migrations.AddField( model_name="directpeeringsession", name="router", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to="peering.Router", ), ), migrations.AlterModelOptions( name="directpeeringsession", options={"ordering": ["autonomous_system", "ip_address"]}, ), migrations.AlterModelOptions( name="internetexchangepeeringsession", options={"ordering": ["autonomous_system", "ip_address"]}, ), migrations.AlterField( model_name="router", name="platform", field=models.CharField( blank=True, choices=[ ("junos", "Juniper JUNOS"), ("iosxr", "Cisco IOS-XR"), ("ios", "Cisco IOS"), ("nxos", "Cisco NX-OS"), ("eos", "Arista EOS"), ("", "Other"), ], help_text="The router platform, used to interact with it", max_length=50, ), ), migrations.AddField( model_name="router", name="encrypt_passwords", field=models.BooleanField( blank=True, default=True, help_text="Try to encrypt passwords in router's configuration", ), ), migrations.AlterModelOptions( name="routingpolicy", options={ "ordering": ["-weight", "name"], "verbose_name_plural": "routing policies", }, ), migrations.AddField( model_name="routingpolicy", name="weight", field=models.PositiveSmallIntegerField( default=0, help_text="The higher the number, the higher the priority" ), ), migrations.AlterField( model_name="routingpolicy", name="type", field=models.CharField( choices=[ ("export-policy", "Export"), ("import-policy", "Import"), ("import-export-policy", "Import and Export"), ], default="import-policy", max_length=50, ), ), migrations.AddField( model_name="autonomoussystem", name="contact_email", field=models.EmailField( blank=True, max_length=254, verbose_name="Contact E-mail" ), ), migrations.AddField( model_name="autonomoussystem", name="contact_name", field=models.CharField(blank=True, max_length=50), ), migrations.AddField( model_name="autonomoussystem", name="contact_phone", field=models.CharField(blank=True, max_length=20), ), migrations.AddField( model_name="routingpolicy", name="address_family", field=models.PositiveSmallIntegerField( choices=[(0, "All"), (4, "IPv4"), (6, "IPv6")], default=0 ), ), migrations.AlterField( model_name="autonomoussystem", name="potential_internet_exchange_peering_sessions", field=django.contrib.postgres.fields.ArrayField( base_field=netfields.fields.InetAddressField(max_length=39), blank=True, default=list, size=None, ), ), migrations.AlterField( model_name="directpeeringsession", name="ip_address", field=netfields.fields.InetAddressField(max_length=39), ), migrations.AlterField( model_name="internetexchange", name="ipv4_address", field=netfields.fields.InetAddressField( blank=True, max_length=39, null=True, validators=[utils.validators.AddressFamilyValidator(4)], ), ), migrations.AlterField( model_name="internetexchange", name="ipv6_address", field=netfields.fields.InetAddressField( blank=True, max_length=39, null=True, validators=[utils.validators.AddressFamilyValidator(6)], ), ), migrations.AlterField( model_name="internetexchangepeeringsession", name="ip_address", field=netfields.fields.InetAddressField(max_length=39), ), migrations.AlterField( model_name="routingpolicy", name="type", field=models.CharField( choices=[ ("export-policy", "Export"), ("import-policy", "Import"), ("import-export-policy", "Import+Export"), ], default="import-policy", max_length=50, ), ), migrations.AddField( model_name="directpeeringsession", name="multihop_ttl", field=peering.fields.TTLField( blank=True, default=1, help_text="Use a value greater than 1 for BGP multihop sessions", verbose_name="Multihop TTL", ), ), migrations.AddField( model_name="internetexchangepeeringsession", name="multihop_ttl", field=peering.fields.TTLField( blank=True, default=1, help_text="Use a value greater than 1 for BGP multihop sessions", verbose_name="Multihop TTL", ), ), migrations.AddField( model_name="router", name="use_netbox", field=models.BooleanField( blank=True, default=False, help_text="Use NetBox to communicate instead of NAPALM", ), ), migrations.AddField( model_name="autonomoussystem", name="export_routing_policies", field=models.ManyToManyField( blank=True, related_name="autonomoussystem_export_routing_policies", to="peering.RoutingPolicy", ), ), migrations.AddField( model_name="autonomoussystem", name="import_routing_policies", field=models.ManyToManyField( blank=True, related_name="autonomoussystem_import_routing_policies", to="peering.RoutingPolicy", ), ), migrations.CreateModel( name="BGPGroup", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("created", models.DateTimeField(auto_now_add=True, null=True)), ("updated", models.DateTimeField(auto_now=True, null=True)), ("name", models.CharField(max_length=128)), ("slug", models.SlugField(max_length=255, unique=True)), ("comments", models.TextField(blank=True)), ( "communities", models.ManyToManyField(blank=True, to="peering.Community"), ), ( "export_routing_policies", models.ManyToManyField( blank=True, related_name="bgpgroup_export_routing_policies", to="peering.RoutingPolicy", ), ), ( "import_routing_policies", models.ManyToManyField( blank=True, related_name="bgpgroup_import_routing_policies", to="peering.RoutingPolicy", ), ), ( "bgp_session_states_update", models.DateTimeField(blank=True, null=True), ), ("check_bgp_session_states", models.BooleanField(default=False)), ( "tags", taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="taggit.TaggedItem", to="taggit.Tag", verbose_name="Tags", ), ), ], options={"verbose_name": "BGP group", "ordering": ["name"]}, ), migrations.AddField( model_name="directpeeringsession", name="bgp_group", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to="peering.BGPGroup", verbose_name="BGP Group", ), ), migrations.AddField( model_name="router", name="configuration_template", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to="peering.ConfigurationTemplate", ), ), migrations.AlterModelOptions( name="router", options={ "ordering": ["name"], "permissions": [ ("view_configuration", "Can view router's configuration"), ("deploy_configuration", "Can deploy router's configuration"), ], }, ), migrations.AlterField( model_name="router", name="encrypt_passwords", field=models.BooleanField( blank=True, default=False, help_text="Try to encrypt passwords for peering sessions", ), ), migrations.AlterField( model_name="internetexchange", name="slug", field=models.SlugField(max_length=255, unique=True), ), migrations.AlterField( model_name="routingpolicy", name="slug", field=models.SlugField(max_length=255, unique=True), ), migrations.RenameModel(old_name="ConfigurationTemplate", new_name="Template"), migrations.AddField( model_name="template", name="type", field=models.CharField( choices=[("configuration", "Configuration"), ("email", "E-mail")], default="configuration", max_length=50, ), ), migrations.AlterField( model_name="internetexchange", name="configuration_template", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to="peering.Template", ), ), migrations.AlterField( model_name="router", name="configuration_template", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to="peering.Template", ), ), migrations.AlterModelOptions( name="community", options={ "ordering": ["value", "name"], "verbose_name_plural": "communities", }, ), migrations.AddField( model_name="directpeeringsession", name="local_ip_address", field=netfields.fields.InetAddressField( blank=True, max_length=39, null=True ), ), migrations.AddField( model_name="autonomoussystem", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="taggit.TaggedItem", to="taggit.Tag", verbose_name="Tags", ), ), migrations.AddField( model_name="community", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="taggit.TaggedItem", to="taggit.Tag", verbose_name="Tags", ), ), migrations.AddField( model_name="directpeeringsession", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="taggit.TaggedItem", to="taggit.Tag", verbose_name="Tags", ), ), migrations.AddField( model_name="internetexchange", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="taggit.TaggedItem", to="taggit.Tag", verbose_name="Tags", ), ), migrations.AddField( model_name="internetexchangepeeringsession", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="taggit.TaggedItem", to="taggit.Tag", verbose_name="Tags", ), ), migrations.AddField( model_name="router", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="taggit.TaggedItem", to="taggit.Tag", verbose_name="Tags", ), ), migrations.AddField( model_name="routingpolicy", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="taggit.TaggedItem", to="taggit.Tag", verbose_name="Tags", ), ), migrations.AddField( model_name="template", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="taggit.TaggedItem", to="taggit.Tag", verbose_name="Tags", ), ), migrations.RenameField( model_name="autonomoussystem", old_name="comment", new_name="comments" ), migrations.RenameField( model_name="community", old_name="comment", new_name="comments" ), migrations.RenameField( model_name="directpeeringsession", old_name="comment", new_name="comments" ), migrations.RenameField( model_name="internetexchange", old_name="comment", new_name="comments" ), migrations.RenameField( model_name="internetexchangepeeringsession", old_name="comment", new_name="comments", ), migrations.RenameField( model_name="router", old_name="comment", new_name="comments" ), migrations.RenameField( model_name="routingpolicy", old_name="comment", new_name="comments" ), migrations.RenameField( model_name="template", old_name="comment", new_name="comments" ), migrations.AlterModelOptions(name="internetexchange", options={}), migrations.RemoveField( model_name="internetexchange", name="configuration_template" ), migrations.RunPython(code=add_permissions, reverse_code=remove_permissions), migrations.AlterField( model_name="autonomoussystem", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="utils.TaggedItem", to="utils.Tag", verbose_name="Tags", ), ), migrations.AlterField( model_name="bgpgroup", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="utils.TaggedItem", to="utils.Tag", verbose_name="Tags", ), ), migrations.AlterField( model_name="community", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="utils.TaggedItem", to="utils.Tag", verbose_name="Tags", ), ), migrations.AlterField( model_name="directpeeringsession", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="utils.TaggedItem", to="utils.Tag", verbose_name="Tags", ), ), migrations.AlterField( model_name="internetexchange", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="utils.TaggedItem", to="utils.Tag", verbose_name="Tags", ), ), migrations.AlterField( model_name="internetexchangepeeringsession", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="utils.TaggedItem", to="utils.Tag", verbose_name="Tags", ), ), migrations.AlterField( model_name="router", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="utils.TaggedItem", to="utils.Tag", verbose_name="Tags", ), ), migrations.AlterField( model_name="routingpolicy", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="utils.TaggedItem", to="utils.Tag", verbose_name="Tags", ), ), migrations.AlterField( model_name="template", name="tags", field=taggit.managers.TaggableManager( help_text="A comma-separated list of tags.", through="utils.TaggedItem", to="utils.Tag", verbose_name="Tags", ), ), migrations.AlterModelOptions( name="autonomoussystem", options={ "ordering": ["asn"], "permissions": [("send_email", "Can send e-mails to AS contact")], }, ), migrations.AddField( model_name="directpeeringsession", name="encrypted_password", field=models.CharField(blank=True, max_length=255, null=True), ), migrations.AddField( model_name="internetexchangepeeringsession", name="encrypted_password", field=models.CharField(blank=True, max_length=255, null=True), ), ]
2c72c0fd9afadc5369dafc83a72510e88f785872
d70a16f353819ff858dbe6974916a936a85a3c0e
/api/migrations/0003_auto_20201217_1941.py
60ba065342ebb9755ec4749f75c6cf4cc1ac6880
[]
no_license
mahmud-sajib/FBuzz-Task
7fa69a35d1dfe069ed48e2956d1eff16cf953c74
a57bc031911fd7259c68890a953d9d8175246f73
refs/heads/master
2023-02-02T05:56:01.208849
2020-12-19T07:03:24
2020-12-19T07:03:24
321,357,770
0
0
null
null
null
null
UTF-8
Python
false
false
467
py
# Generated by Django 3.1 on 2020-12-17 13:41 import api.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0002_auto_20201217_1751'), ] operations = [ migrations.AlterField( model_name='cvfileupload', name='document', field=models.FileField(upload_to='documents/', validators=[api.validators.validate_file_size]), ), ]
85f8207c1a52da4c91cfcc22bb76bd8dd60589aa
40fa413a9ba362ab8cc2474269f83bb87847cda2
/setup.py
a7a9aee54a8f3d08813d67be79e79b61855eaffc
[]
no_license
Peder2911/leanfeeder
c366563527c6e6b65cf46f8564596d1637337026
f50ed3845aac21b6eed81eb1ef72c39175c87c8d
refs/heads/master
2023-01-01T13:55:49.037014
2020-10-15T12:02:43
2020-10-15T12:02:43
301,992,715
0
0
null
null
null
null
UTF-8
Python
false
false
765
py
import setuptools with open("README.md") as f: long_description=f.read() setuptools.setup( name = "leanfeeder", version = "0.0.1", author = "Peder G. Landsverk", author_email = "[email protected]", description = "Tool for pushing data to a Postgres DB without too much hassle.", long_description = long_description, long_description_content_type="test/markdown", url = "https://www.github.com/peder2911/leanfeeder", packages = setuptools.find_packages(), scripts=["bin/leanf"], python_requires=">=3.7", install_requires=[ "strconv>=0.4.0", "psycopg2>=2.8.0", "fire>=0.3.0", "python-dateutil>=2.8.0" ])
18c298b110833ad5b1860e533427d320c882c52d
cca5ceb42b09e567d79fcb46f298757c1ff04447
/ObjectOriented/DataStructure.py
45fb0eea3cc51bded3a1c13868377b5c1980c3d7
[]
no_license
NishantGhanate/PythonScripts
92933237720e624a0f672729743a98557bea79d6
60b92984d21394002c0d3920bc448c698e0402ca
refs/heads/master
2022-12-13T11:56:14.442286
2022-11-18T14:26:33
2022-11-18T14:26:33
132,910,530
25
15
null
2022-12-09T09:03:58
2018-05-10T14:18:33
Python
UTF-8
Python
false
false
1,468
py
class Que: def __init__(self , contents): self._hiddenlist = list(contents) def push(self,value): self._hiddenlist.insert(0 , value) print(self._hiddenlist) def pop(self): if len(self._hiddenlist): self._hiddenlist.pop(0) print(self._hiddenlist) else: print("Empty Que") que = Que([1, 2.25, 3.0, 4, 1234.5]) que.push(0) que.pop() class Node: def __init__(self, dataValue ): self.dataValue = dataValue self.nextValue = None class Slink: def __init__(self): self.headValue = None def printLink(self): printval = self.headValue while printval is not None: print (printval.dataValue) printval = printval.nextValue def atStart(self,newData): NewNode = Node(newData) NewNode.nextValue = self.headValue self.headValue = NewNode # lis = Slink() # lis.atStart("Sun") # lis.atStart("Mon") # lis.printLink() class Stack: def __init__(self): self.stack = [10] def push(self,dataValue): self.stack.append(dataValue) return self.stack def pop(self): if len(self.stack) <= 0: return ("No element in the Stack") else: return "This value pop =" +self.stack.pop() # stack = Stack() # stack.push("1") # stack.push("2") # stack.push("3") # print(stack.pop()) # print(stack.push("5"))
b24e0fde7456a79dbb630f1bb302c6eb6ffd15b7
14438f8c8bb4250a7fa8da0ecd40c5a4902bdfcd
/hunter/set-10/96.py
2719ef730b5a7689a140c4b85bbfd134580da795
[]
no_license
nikhilvarshney2/GUVI
c51b1fa3bd1026eb74fc536e938a14c2e92089b2
79717ae5b26540101169e512204fb7236f7c839f
refs/heads/master
2020-04-01T00:40:27.699963
2019-04-30T13:46:46
2019-04-30T13:46:46
152,707,542
0
0
null
null
null
null
UTF-8
Python
false
false
104
py
def num(z): if z<9: return z return 9 + 10*num(z-9) z = int(input()) print(num(z))
0c7ca209f5437826a7c1527f09d0f27b55e5d412
ac2f4c7caaf7ccc51ebcb2d88020fb4842b3f493
/install.py
e20927c124212f7697dea81c1e707305db393903
[]
no_license
vaikuntht/TAMU-Latex-Styles
48b89291cb5b65348303cfee4bc8424a61b44adb
8c1f096bbe3140eef6e14d001fa9d81905a28258
refs/heads/master
2021-01-18T00:04:04.722714
2014-07-31T18:49:42
2014-07-31T18:49:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,686
py
#!/usr/bin/env python import os, sys, getopt, argparse, fnmatch, errno, subprocess, tempfile, platform, getpass, pprint, shutil from subprocess import call #program name available through the %(prog)s command #can use prog="" in the ArgumentParser constructor #can use the type=int option to make the parameters integers #can use the action='append' option to make a list of options #can use the default="" option to automatically set a parameter parser = argparse.ArgumentParser(description="Install the TAMU based LaTex style files.", epilog="And those are the options available. Deal with it.") group = parser.add_mutually_exclusive_group() parser.add_argument("-nha","--nohash", help="Will run texhash command once the files are copied", action="store_false") group.add_argument("-q", "--quiet", help="decrease output verbosity to minimal amount", action="store_true") group.add_argument("-v", "--verbose", help="Increase output verbosity of lcg-cp (-v) or srm (-debug) commands", action="store_true") parser.add_argument('--version', action='version', version='%(prog)s 1.0') parser.add_argument("-y", "--texlive_year", help="The texlive distribution year", default="2014") args = parser.parse_args() if(args.verbose): print 'Number of arguments:', len(sys.argv), 'arguments.' print 'Argument List:', str(sys.argv) print "Argument ", args, "\n" QUIET = args.quiet VERBOSE = args.verbose DOHASH = args.nohash TEXLIVE_YEAR = args.texlive_year theme_path = "" color_path = "" Outer_path = "" def check_linux_folders(): global theme_path global color_path global outer_path theme_path = "/usr/share/texmf/tex/latex/beamer/base/themes/theme/" color_path = "/usr/share/texmf/tex/latex/beamer/base/themes/color/" outer_path = "/usr/share/texmf/tex/latex/beamer/base/themes/outer/" # To check if it is a directory (and it exists) use os.path.isdir # To check if something exists (direcotry, file, or otherwise), use os.path.exists theme = os.path.isdir(theme_path) color = os.path.isdir(color_path) outer = os.path.isdir(outer_path) if not QUIET: print "Themes exists? " + str(theme) if not QUIET: print "Color themes exists? " + str(color) if not QUIET: print "Outer themes exists? " + str(outer) if not theme: print "ERROR::The path to the beamer themes ("+str(theme_path)+") does not exist." print "Cannot continue." sys.exit() if not color: print "ERROR::The path to the beamer colors ("+str(color_path)+") does not exist." print "Cannot continue." sys.exit() if not outer: print "ERROR::The path to the beamer outer themes ("+str(outer_path)+") does not exist." print "Cannot continue." sys.exit() def check_osx_folders(): global theme_path global color_path global outer_path theme_path = "/usr/local/texlive/"+TEXLIVE_YEAR+"/texmf-dist/tex/latex/beamer/themes/theme/" color_path = "/usr/local/texlive/"+TEXLIVE_YEAR+"/texmf-dist/tex/latex/beamer/themes/color/" outer_path = "/usr/local/texlive/"+TEXLIVE_YEAR+"/texmf-dist/tex/latex/beamer/themes/outer/" theme = os.path.isdir(theme_path) color = os.path.isdir(color_path) outer = os.path.isdir(outer_path) if not QUIET: print "Themes exists? " + str(theme) if not QUIET: print "Color themes exists? " + str(color) if not QUIET: print "Outer themes exists? " + str(outer) if not theme: print "ERROR::The path to the beamer themes ("+str(theme_path)+") does not exist." print "Cannot continue." sys.exit() if not color: print "ERROR::The path to the beamer colors ("+str(color_path)+") does not exist." print "Cannot continue." sys.exit() if not outer: print "ERROR::The path to the beamer outer themes ("+str(outer_path)+") does not exist." print "Cannot continue." sys.exit() def privledge_check(): user = getpass.getuser() if not QUIET: print "User = " + str(user) if user != 'root': print "Sorry, you are not \"root\" and do not have enough privledges to continue." sys.exit() def run_checks(): print "************************************" print "* Running checks on the system ... *" print "************************************" privledge_check() kernel = platform.system() OS = "" flavor = "" version = "" if kernel == 'Linux': OS = "Linux" flavor = platform.linux_distribution()[0] version = platform.linux_distribution()[1] if not QUIET: print str(flavor) + "(" + str(OS) + ")" + str(version) check_linux_folders() elif kernel == 'Darwin': OS = "OSX" flavor = "Unknown" version = platform.mac_ver()[0] if not QUIET: print str(OS) + " " + str(version) check_osx_folders() else: print "ERROR::Unknown OS. Cannot confirm that installation will be successful. Process will not continue." sys.exit() print def copy_set_of_files(dict, folder): for dst in dict: if not QUIET: print "Doing folder " + str(dst) + " ... " for f in range(1,len(dict[dst])): src = dict[dst][f] dest = dict[dst][0] if not QUIET: print "\tCopying " + str(folder) + str(src) + " to " + str(dest) + " ... ", shutil.copy2(folder+src,dest) if not QUIET: print "DONE" def copy_files(): print "**********************************************" print "* Copying the files to the correct paths ... *" print "**********************************************" copyfileBeamerDict = { 'theme' : (theme_path, "beamerthemeTAMU.sty"), 'color' : (color_path, "beamercolorthemetamu.sty", "beamercolorthemetamubox.sty"), 'outer' : (outer_path, "beamerouterthemeshadowTAMU.sty", "beamerouterthemesplittamu.sty", "UniversityLogos/beamerouterthemeTAMULogoBox.png", "ExperimentLogos/beamerouterthemeCMS.png","ExperimentLogos/beamerouterthemeCDF.png","LaboritoryLogos/beamerouterthemeCERN.png","LaboritoryLogos/beamerouterthemeFNAL.png") } if VERBOSE and not QUIET: print "Dictionary" print "----------" pprint.pprint(copyfileBeamerDict) print copy_set_of_files(copyfileBeamerDict, "Beamer/") print def do_tex_hash(): print "***********************" print "* Running texhash ... *" print "***********************" os.system("texhash") run_checks() copy_files() if DOHASH: do_tex_hash()
fb708659d8576b28acdb88c0439ca493e36c5884
30c524146ac7c240b3f69a856a12f9d971e2f294
/setup.py
a7138c22975f00b0e0c89fc5a9121d3aa768c383
[ "MIT" ]
permissive
undercertainty/ipython_magic_sqlalchemy_schemadisplay
7da1400b4b9cff520b3e185345c204f14ccb512d
bc22060f3125736eecf2cc4d7972eca9715fc0c3
refs/heads/master
2021-10-10T07:00:04.925288
2019-01-07T23:01:31
2019-01-07T23:01:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
273
py
from setuptools import setup setup(name='schemadisplay-magic', packages=['schemadisplay_magic'], install_requires=['ipython-sql', 'sqlalchemy_schemadisplay', 'graphviz'], dependency_links=['git+https://github.com/fschulze/sqlalchemy_schemadisplay.git'] )
1b3d280c7403941d0bf096038fcd3c6fb955bb16
c588305899ff4bc1d24c2bc213edce1c16621113
/21/21_1.py
02b5535cb8428832fa0ea9383dad49ac806703b3
[]
no_license
nemesmarci/Advent-of-Code-2015
fa2953916e67d6ad5b3218de1bc7418ff942ab6a
53db8d0e0140f94a80d307b3cec3e065a235ba53
refs/heads/master
2021-12-31T14:08:52.640576
2020-01-10T18:13:59
2021-12-29T19:35:09
160,928,653
0
0
null
null
null
null
UTF-8
Python
false
false
49
py
from common import find_cost print(find_cost())
f12ecdec195d21b07ddb86e45226d52b6dbaf079
a5c2f4ada2fb4436784a785a5d598546d3b3284c
/Main/migrations/0001_initial.py
305f99beddc1606764e5d5472f2e0f219b5ffacf
[]
no_license
sakibovi123/chat_applicationv1.0.1
1c5d25c1229434b4c6019fcf4dbabf53324d90df
7b5db530e22743959df215347ff1e644cbbfb4e0
refs/heads/master
2023-07-13T22:22:02.295141
2021-08-28T07:35:27
2021-08-28T07:35:27
396,916,167
0
0
null
null
null
null
UTF-8
Python
false
false
778
py
# Generated by Django 3.2.6 on 2021-08-16 11:17 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='ChatRoom', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('slug', models.SlugField()), ('message', models.TextField()), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
1988f3bfa396617797d1effd273ed01d83a05ec9
92acb2bdfcdb594a7f98b24093f4711879e956ca
/dvaapp/admin.py
7be6bf0aa9a7a506025392cfac7e62ea6530b6cf
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
cynwpu/DeepVideoAnalytics
e1f0b2e00a2671014bdcae99bf11c180bf35a30e
c95913a2967d6d17e71bb1b703f99c00c483bcdc
refs/heads/master
2021-05-05T15:04:50.650488
2017-09-10T20:01:31
2017-09-10T20:01:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,361
py
from django.contrib import admin from .models import Video, Frame, TEvent, IndexEntries, QueryResults, DVAPQL, VDNServer,\ LOPQCodes, Region, Tube, Detector, Segment, DeletedVideo, \ VideoLabel, FrameLabel, RegionLabel, TubeLabel, SegmentLabel, Label, ManagementAction, \ StoredDVAPQL, Analyzer, Indexer, Retriever, SystemState, Worker @admin.register(SystemState) class SystemStateAdmin(admin.ModelAdmin): pass @admin.register(Worker) class WorkerAdmin(admin.ModelAdmin): pass @admin.register(Label) class LabelAdmin(admin.ModelAdmin): pass @admin.register(VideoLabel) class VideoLabelAdmin(admin.ModelAdmin): pass @admin.register(FrameLabel) class FrameLabelAdmin(admin.ModelAdmin): pass @admin.register(SegmentLabel) class SegmentLabelAdmin(admin.ModelAdmin): pass @admin.register(RegionLabel) class RegionLabelAdmin(admin.ModelAdmin): pass @admin.register(TubeLabel) class TubeLabelAdmin(admin.ModelAdmin): pass @admin.register(Segment) class SegmentAdmin(admin.ModelAdmin): pass @admin.register(Region) class RegionAdmin(admin.ModelAdmin): pass @admin.register(Video) class VideoAdmin(admin.ModelAdmin): pass @admin.register(DeletedVideo) class DeletedVideoAdmin(admin.ModelAdmin): pass @admin.register(QueryResults) class QueryResultsAdmin(admin.ModelAdmin): pass @admin.register(DVAPQL) class DVAPQLAdmin(admin.ModelAdmin): pass @admin.register(Frame) class FrameAdmin(admin.ModelAdmin): pass @admin.register(IndexEntries) class IndexEntriesAdmin(admin.ModelAdmin): pass @admin.register(VDNServer) class VDNServerAdmin(admin.ModelAdmin): pass @admin.register(TEvent) class TEventAdmin(admin.ModelAdmin): pass @admin.register(LOPQCodes) class LOPQCodesAdmin(admin.ModelAdmin): pass @admin.register(Tube) class TubeAdmin(admin.ModelAdmin): pass @admin.register(Detector) class DetectorAdmin(admin.ModelAdmin): pass @admin.register(Analyzer) class AnalyzerAdmin(admin.ModelAdmin): pass @admin.register(Indexer) class IndexerAdmin(admin.ModelAdmin): pass @admin.register(Retriever) class RetrieverAdmin(admin.ModelAdmin): pass @admin.register(ManagementAction) class ManagementActionAdmin(admin.ModelAdmin): pass @admin.register(StoredDVAPQL) class StoredDVAPQLAdmin(admin.ModelAdmin): pass
d526bcd601974fc1ebcbe80a5e2954a3412cb522
5d9932a1abeae21b8201368e5cf465680f106761
/data_ccxt/probit.py
330b5839012523f090ae27ca23e35c190244345b
[]
no_license
qqzhangjian789/text
5dc6086e55d8a9494b889fa40cc9730da6bf5940
938be0df0a965aacf13cfb942548b8d2a1c7cec0
refs/heads/master
2023-05-04T11:38:47.178345
2021-05-21T17:44:13
2021-05-21T17:44:13
286,178,737
1
6
null
null
null
null
UTF-8
Python
false
false
48,360
py
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from data_ccxt.base.exchange import Exchange import math from data_ccxt.base.errors import ExchangeError from data_ccxt.base.errors import AuthenticationError from data_ccxt.base.errors import ArgumentsRequired from data_ccxt.base.errors import BadRequest from data_ccxt.base.errors import BadSymbol from data_ccxt.base.errors import BadResponse from data_ccxt.base.errors import InsufficientFunds from data_ccxt.base.errors import InvalidAddress from data_ccxt.base.errors import InvalidOrder from data_ccxt.base.errors import DDoSProtection from data_ccxt.base.errors import RateLimitExceeded from data_ccxt.base.errors import ExchangeNotAvailable from data_ccxt.base.decimal_to_precision import TRUNCATE from data_ccxt.base.decimal_to_precision import TICK_SIZE class probit(Exchange): def describe(self): return self.deep_extend(super(probit, self).describe(), { 'id': 'probit', 'name': 'ProBit', 'countries': ['SC', 'KR'], # Seychelles, South Korea 'rateLimit': 250, # ms 'has': { 'CORS': True, 'fetchTime': True, 'fetchMarkets': True, 'fetchCurrencies': True, 'fetchTickers': True, 'fetchTicker': True, 'fetchOHLCV': True, 'fetchOrderBook': True, 'fetchTrades': True, 'fetchBalance': True, 'createOrder': True, 'createMarketOrder': True, 'cancelOrder': True, 'fetchOrder': True, 'fetchOpenOrders': True, 'fetchClosedOrders': True, 'fetchMyTrades': True, 'fetchDepositAddress': True, 'withdraw': True, 'signIn': True, }, 'timeframes': { '1m': '1m', '3m': '3m', '5m': '5m', '10m': '10m', '15m': '15m', '30m': '30m', '1h': '1h', '4h': '4h', '6h': '6h', '12h': '12h', '1d': '1D', '1w': '1W', '1M': '1M', }, 'version': 'v1', 'urls': { 'logo': 'https://user-images.githubusercontent.com/51840849/79268032-c4379480-7ea2-11ea-80b3-dd96bb29fd0d.jpg', 'api': { 'accounts': 'https://accounts.probit.com', 'public': 'https://api.probit.com/api/exchange', 'private': 'https://api.probit.com/api/exchange', }, 'www': 'https://www.probit.com', 'doc': [ 'https://docs-en.probit.com', 'https://docs-ko.probit.com', ], 'fees': 'https://support.probit.com/hc/en-us/articles/360020968611-Trading-Fees', 'referral': 'https://www.probit.com/r/34608773', }, 'api': { 'public': { 'get': [ 'market', 'currency', 'currency_with_platform', 'time', 'ticker', 'order_book', 'trade', 'candle', ], }, 'private': { 'post': [ 'new_order', 'cancel_order', 'withdrawal', ], 'get': [ 'balance', 'order', 'open_order', 'order_history', 'trade_history', 'deposit_address', ], }, 'accounts': { 'post': [ 'token', ], }, }, 'fees': { 'trading': { 'tierBased': False, 'percentage': True, 'maker': 0.2 / 100, 'taker': 0.2 / 100, }, }, 'exceptions': { 'exact': { 'UNAUTHORIZED': AuthenticationError, 'INVALID_ARGUMENT': BadRequest, # Parameters are not a valid format, parameters are empty, or out of range, or a parameter was sent when not required. 'TRADING_UNAVAILABLE': ExchangeNotAvailable, 'NOT_ENOUGH_BALANCE': InsufficientFunds, 'NOT_ALLOWED_COMBINATION': BadRequest, 'INVALID_ORDER': InvalidOrder, # Requested order does not exist, or it is not your order 'RATE_LIMIT_EXCEEDED': RateLimitExceeded, # You are sending requests too frequently. Please try it later. 'MARKET_UNAVAILABLE': ExchangeNotAvailable, # Market is closed today 'INVALID_MARKET': BadSymbol, # Requested market is not exist 'MARKET_CLOSED': BadSymbol, # {"errorCode":"MARKET_CLOSED"} 'INVALID_CURRENCY': BadRequest, # Requested currency is not exist on ProBit system 'TOO_MANY_OPEN_ORDERS': DDoSProtection, # Too many open orders 'DUPLICATE_ADDRESS': InvalidAddress, # Address already exists in withdrawal address list }, }, 'requiredCredentials': { 'apiKey': True, 'secret': True, }, 'precisionMode': TICK_SIZE, 'options': { 'createMarketBuyOrderRequiresPrice': True, 'timeInForce': { 'limit': 'gtc', 'market': 'ioc', }, }, 'commonCurrencies': { 'BTCBEAR': 'BEAR', 'BTCBULL': 'BULL', 'CBC': 'CryptoBharatCoin', 'HBC': 'Hybrid Bank Cash', 'UNI': 'UNICORN Token', }, }) def fetch_markets(self, params={}): response = self.publicGetMarket(params) # # { # "data":[ # { # "id":"MONA-USDT", # "base_currency_id":"MONA", # "quote_currency_id":"USDT", # "min_price":"0.001", # "max_price":"9999999999999999", # "price_increment":"0.001", # "min_quantity":"0.0001", # "max_quantity":"9999999999999999", # "quantity_precision":4, # "min_cost":"1", # "max_cost":"9999999999999999", # "cost_precision":8, # "taker_fee_rate":"0.2", # "maker_fee_rate":"0.2", # "show_in_ui":true, # "closed":false # }, # ] # } # markets = self.safe_value(response, 'data', []) result = [] for i in range(0, len(markets)): market = markets[i] id = self.safe_string(market, 'id') baseId = self.safe_string(market, 'base_currency_id') quoteId = self.safe_string(market, 'quote_currency_id') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote closed = self.safe_value(market, 'closed', False) active = not closed amountPrecision = self.safe_integer(market, 'quantity_precision') costPrecision = self.safe_integer(market, 'cost_precision') precision = { 'amount': 1 / math.pow(10, amountPrecision), 'price': self.safe_float(market, 'price_increment'), 'cost': 1 / math.pow(10, costPrecision), } takerFeeRate = self.safe_float(market, 'taker_fee_rate') makerFeeRate = self.safe_float(market, 'maker_fee_rate') result.append({ 'id': id, 'info': market, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'active': active, 'precision': precision, 'taker': takerFeeRate / 100, 'maker': makerFeeRate / 100, 'limits': { 'amount': { 'min': self.safe_float(market, 'min_quantity'), 'max': self.safe_float(market, 'max_quantity'), }, 'price': { 'min': self.safe_float(market, 'min_price'), 'max': self.safe_float(market, 'max_price'), }, 'cost': { 'min': self.safe_float(market, 'min_cost'), 'max': self.safe_float(market, 'max_cost'), }, }, }) return result def fetch_currencies(self, params={}): response = self.publicGetCurrencyWithPlatform(params) # # { # "data":[ # { # "id":"USDT", # "display_name":{"ko-kr":"테더","en-us":"Tether"}, # "show_in_ui":true, # "platform":[ # { # "id":"ETH", # "priority":1, # "deposit":true, # "withdrawal":true, # "currency_id":"USDT", # "precision":6, # "min_confirmation_count":15, # "require_destination_tag":false, # "display_name":{"name":{"ko-kr":"ERC-20","en-us":"ERC-20"}}, # "min_deposit_amount":"0", # "min_withdrawal_amount":"1", # "withdrawal_fee":[ # {"amount":"0.01","priority":2,"currency_id":"ETH"}, # {"amount":"1.5","priority":1,"currency_id":"USDT"}, # ], # "deposit_fee":{}, # "suspended_reason":"", # "deposit_suspended":false, # "withdrawal_suspended":false # }, # { # "id":"OMNI", # "priority":2, # "deposit":true, # "withdrawal":true, # "currency_id":"USDT", # "precision":6, # "min_confirmation_count":3, # "require_destination_tag":false, # "display_name":{"name":{"ko-kr":"OMNI","en-us":"OMNI"}}, # "min_deposit_amount":"0", # "min_withdrawal_amount":"5", # "withdrawal_fee":[{"amount":"5","priority":1,"currency_id":"USDT"}], # "deposit_fee":{}, # "suspended_reason":"wallet_maintenance", # "deposit_suspended":false, # "withdrawal_suspended":false # } # ], # "stakeable":false, # "unstakeable":false, # "auto_stake":false, # "auto_stake_amount":"0" # } # ] # } # currencies = self.safe_value(response, 'data') result = {} for i in range(0, len(currencies)): currency = currencies[i] id = self.safe_string(currency, 'id') code = self.safe_currency_code(id) displayName = self.safe_value(currency, 'display_name') name = self.safe_string(displayName, 'en-us') platforms = self.safe_value(currency, 'platform', []) platformsByPriority = self.sort_by(platforms, 'priority') platform = self.safe_value(platformsByPriority, 0, {}) precision = self.safe_integer(platform, 'precision') depositSuspended = self.safe_value(platform, 'deposit_suspended') withdrawalSuspended = self.safe_value(platform, 'withdrawal_suspended') active = not (depositSuspended and withdrawalSuspended) withdrawalFees = self.safe_value(platform, 'withdrawal_fee', {}) fees = [] # sometimes the withdrawal fee is an empty object # [{'amount': '0.015', 'priority': 1, 'currency_id': 'ETH'}, {}] for j in range(0, len(withdrawalFees)): withdrawalFee = withdrawalFees[j] amount = self.safe_float(withdrawalFee, 'amount') priority = self.safe_integer(withdrawalFee, 'priority') if (amount is not None) and (priority is not None): fees.append(withdrawalFee) withdrawalFeesByPriority = self.sort_by(fees, 'priority') withdrawalFee = self.safe_value(withdrawalFeesByPriority, 0, {}) fee = self.safe_float(withdrawalFee, 'amount') result[code] = { 'id': id, 'code': code, 'info': currency, 'name': name, 'active': active, 'fee': fee, 'precision': precision, 'limits': { 'amount': { 'min': math.pow(10, -precision), 'max': math.pow(10, precision), }, 'price': { 'min': math.pow(10, -precision), 'max': math.pow(10, precision), }, 'cost': { 'min': None, 'max': None, }, 'deposit': { 'min': self.safe_float(platform, 'min_deposit_amount'), 'max': None, }, 'withdraw': { 'min': self.safe_float(platform, 'min_withdrawal_amount'), 'max': None, }, }, } return result def fetch_balance(self, params={}): self.load_markets() response = self.privateGetBalance(params) # # { # data: [ # { # "currency_id":"XRP", # "total":"100", # "available":"0", # } # ] # } # data = self.safe_value(response, 'data') result = {'info': data} for i in range(0, len(data)): balance = data[i] currencyId = self.safe_string(balance, 'currency_id') code = self.safe_currency_code(currencyId) account = self.account() account['total'] = self.safe_float(balance, 'total') account['free'] = self.safe_float(balance, 'available') result[code] = account return self.parse_balance(result) def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'market_id': market['id'], } response = self.publicGetOrderBook(self.extend(request, params)) # # { # data: [ # {side: 'buy', price: '0.000031', quantity: '10'}, # {side: 'buy', price: '0.00356007', quantity: '4.92156877'}, # {side: 'sell', price: '0.1857', quantity: '0.17'}, # ] # } # data = self.safe_value(response, 'data', []) dataBySide = self.group_by(data, 'side') return self.parse_order_book(dataBySide, None, 'buy', 'sell', 'price', 'quantity') def fetch_tickers(self, symbols=None, params={}): self.load_markets() request = {} if symbols is not None: marketIds = self.market_ids(symbols) request['market_ids'] = ','.join(marketIds) response = self.publicGetTicker(self.extend(request, params)) # # { # "data":[ # { # "last":"0.022902", # "low":"0.021693", # "high":"0.024093", # "change":"-0.000047", # "base_volume":"15681.986", # "quote_volume":"360.514403624", # "market_id":"ETH-BTC", # "time":"2020-04-12T18:43:38.000Z" # } # ] # } # data = self.safe_value(response, 'data', []) return self.parse_tickers(data, symbols) def fetch_ticker(self, symbol, params={}): self.load_markets() market = self.market(symbol) request = { 'market_ids': market['id'], } response = self.publicGetTicker(self.extend(request, params)) # # { # "data":[ # { # "last":"0.022902", # "low":"0.021693", # "high":"0.024093", # "change":"-0.000047", # "base_volume":"15681.986", # "quote_volume":"360.514403624", # "market_id":"ETH-BTC", # "time":"2020-04-12T18:43:38.000Z" # } # ] # } # data = self.safe_value(response, 'data', []) ticker = self.safe_value(data, 0) if ticker is None: raise BadResponse(self.id + ' fetchTicker() returned an empty response') return self.parse_ticker(ticker, market) def parse_ticker(self, ticker, market=None): # # { # "last":"0.022902", # "low":"0.021693", # "high":"0.024093", # "change":"-0.000047", # "base_volume":"15681.986", # "quote_volume":"360.514403624", # "market_id":"ETH-BTC", # "time":"2020-04-12T18:43:38.000Z" # } # timestamp = self.parse8601(self.safe_string(ticker, 'time')) marketId = self.safe_string(ticker, 'market_id') symbol = self.safe_symbol(marketId, market, '-') close = self.safe_float(ticker, 'last') change = self.safe_float(ticker, 'change') percentage = None open = None if change is not None: if close is not None: open = close - change percentage = (change / open) * 100 baseVolume = self.safe_float(ticker, 'base_volume') quoteVolume = self.safe_float(ticker, 'quote_volume') vwap = self.vwap(baseVolume, quoteVolume) return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'high'), 'low': self.safe_float(ticker, 'low'), 'bid': None, 'bidVolume': None, 'ask': None, 'askVolume': None, 'vwap': vwap, 'open': open, 'close': close, 'last': close, 'previousClose': None, # previous day close 'change': change, 'percentage': percentage, 'average': None, 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, } def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): self.load_markets() market = None request = { 'limit': 100, 'start_time': self.iso8601(0), 'end_time': self.iso8601(self.milliseconds()), } if symbol is not None: market = self.market(symbol) request['market_id'] = market['id'] if since is not None: request['start_time'] = self.iso8601(since) if limit is not None: request['limit'] = limit response = self.privateGetTradeHistory(self.extend(request, params)) # # { # data: [ # { # "id":"BTC-USDT:183566", # "order_id":"17209376", # "side":"sell", # "fee_amount":"0.657396569175", # "fee_currency_id":"USDT", # "status":"settled", # "price":"6573.96569175", # "quantity":"0.1", # "cost":"657.396569175", # "time":"2018-08-10T06:06:46.000Z", # "market_id":"BTC-USDT" # } # ] # } # data = self.safe_value(response, 'data', []) return self.parse_trades(data, market, since, limit) def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'market_id': market['id'], 'limit': 100, 'start_time': '1970-01-01T00:00:00.000Z', 'end_time': self.iso8601(self.milliseconds()), } if since is not None: request['start_time'] = self.iso8601(since) if limit is not None: request['limit'] = limit response = self.publicGetTrade(self.extend(request, params)) # # { # "data":[ # { # "id":"ETH-BTC:3331886", # "price":"0.022981", # "quantity":"12.337", # "time":"2020-04-12T20:55:42.371Z", # "side":"sell", # "tick_direction":"down" # }, # { # "id":"ETH-BTC:3331885", # "price":"0.022982", # "quantity":"6.472", # "time":"2020-04-12T20:55:39.652Z", # "side":"sell", # "tick_direction":"down" # } # ] # } # data = self.safe_value(response, 'data', []) return self.parse_trades(data, market, since, limit) def parse_trade(self, trade, market=None): # # fetchTrades(public) # # { # "id":"ETH-BTC:3331886", # "price":"0.022981", # "quantity":"12.337", # "time":"2020-04-12T20:55:42.371Z", # "side":"sell", # "tick_direction":"down" # } # # fetchMyTrades(private) # # { # "id":"BTC-USDT:183566", # "order_id":"17209376", # "side":"sell", # "fee_amount":"0.657396569175", # "fee_currency_id":"USDT", # "status":"settled", # "price":"6573.96569175", # "quantity":"0.1", # "cost":"657.396569175", # "time":"2018-08-10T06:06:46.000Z", # "market_id":"BTC-USDT" # } # timestamp = self.parse8601(self.safe_string(trade, 'time')) id = self.safe_string(trade, 'id') marketId = None if id is not None: parts = id.split(':') marketId = self.safe_string(parts, 0) marketId = self.safe_string(trade, 'market_id', marketId) symbol = self.safe_symbol(marketId, market, '-') side = self.safe_string(trade, 'side') price = self.safe_float(trade, 'price') amount = self.safe_float(trade, 'quantity') cost = None if price is not None: if amount is not None: cost = price * amount orderId = self.safe_string(trade, 'order_id') feeCost = self.safe_float(trade, 'fee_amount') fee = None if feeCost is not None: feeCurrencyId = self.safe_string(trade, 'fee_currency_id') feeCurrencyCode = self.safe_currency_code(feeCurrencyId) fee = { 'cost': feeCost, 'currency': feeCurrencyCode, } return { 'id': id, 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'order': orderId, 'type': None, 'side': side, 'takerOrMaker': None, 'price': price, 'amount': amount, 'cost': cost, 'fee': fee, } def fetch_time(self, params={}): response = self.publicGetTime(params) # # {"data":"2020-04-12T18:54:25.390Z"} # timestamp = self.parse8601(self.safe_string(response, 'data')) return timestamp def normalize_ohlcv_timestamp(self, timestamp, timeframe, after=False): duration = self.parse_timeframe(timeframe) if timeframe == '1M': iso8601 = self.iso8601(timestamp) parts = iso8601.split('-') year = self.safe_string(parts, 0) month = self.safe_integer(parts, 1) if after: month = self.sum(month, 1) if month < 10: month = '0' + str(month) else: month = str(month) return year + '-' + month + '-01T00:00:00.000Z' elif timeframe == '1w': timestamp = int(timestamp / 1000) firstSunday = 259200 # 1970-01-04T00:00:00.000Z difference = timestamp - firstSunday numWeeks = self.integer_divide(difference, duration) previousSunday = self.sum(firstSunday, numWeeks * duration) if after: previousSunday = self.sum(previousSunday, duration) return self.iso8601(previousSunday * 1000) else: timestamp = int(timestamp / 1000) timestamp = duration * int(timestamp / duration) if after: timestamp = self.sum(timestamp, duration) return self.iso8601(timestamp * 1000) def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) interval = self.timeframes[timeframe] limit = 100 if (limit is None) else limit requestLimit = self.sum(limit, 1) requestLimit = min(1000, requestLimit) # max 1000 request = { 'market_ids': market['id'], 'interval': interval, 'sort': 'asc', # 'asc' will always include the start_time, 'desc' will always include end_time 'limit': requestLimit, # max 1000 } now = self.milliseconds() duration = self.parse_timeframe(timeframe) startTime = since endTime = now if since is None: if limit is None: raise ArgumentsRequired(self.id + ' fetchOHLCV() requires either a since argument or a limit argument') else: startTime = now - limit * duration * 1000 else: if limit is None: endTime = now else: endTime = self.sum(since, self.sum(limit, 1) * duration * 1000) startTimeNormalized = self.normalize_ohlcv_timestamp(startTime, timeframe) endTimeNormalized = self.normalize_ohlcv_timestamp(endTime, timeframe, True) request['start_time'] = startTimeNormalized request['end_time'] = endTimeNormalized response = self.publicGetCandle(self.extend(request, params)) # # { # "data":[ # { # "market_id":"ETH-BTC", # "open":"0.02811", # "close":"0.02811", # "low":"0.02811", # "high":"0.02811", # "base_volume":"0.0005", # "quote_volume":"0.000014055", # "start_time":"2018-11-30T18:19:00.000Z", # "end_time":"2018-11-30T18:20:00.000Z" # }, # ] # } # data = self.safe_value(response, 'data', []) return self.parse_ohlcvs(data, market, timeframe, since, limit) def parse_ohlcv(self, ohlcv, market=None): # # { # "market_id":"ETH-BTC", # "open":"0.02811", # "close":"0.02811", # "low":"0.02811", # "high":"0.02811", # "base_volume":"0.0005", # "quote_volume":"0.000014055", # "start_time":"2018-11-30T18:19:00.000Z", # "end_time":"2018-11-30T18:20:00.000Z" # } # return [ self.parse8601(self.safe_string(ohlcv, 'start_time')), self.safe_float(ohlcv, 'open'), self.safe_float(ohlcv, 'high'), self.safe_float(ohlcv, 'low'), self.safe_float(ohlcv, 'close'), self.safe_float(ohlcv, 'base_volume'), ] def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): self.load_markets() since = self.parse8601(since) request = {} market = None if symbol is not None: market = self.market(symbol) request['market_id'] = market['id'] response = self.privateGetOpenOrder(self.extend(request, params)) data = self.safe_value(response, 'data') return self.parse_orders(data, market, since, limit) def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): self.load_markets() request = { 'start_time': self.iso8601(0), 'end_time': self.iso8601(self.milliseconds()), 'limit': 100, } market = None if symbol is not None: market = self.market(symbol) request['market_id'] = market['id'] if since: request['start_time'] = self.iso8601(since) if limit: request['limit'] = limit response = self.privateGetOrderHistory(self.extend(request, params)) data = self.safe_value(response, 'data') return self.parse_orders(data, market, since, limit) def fetch_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrder() requires a symbol argument') self.load_markets() market = self.market(symbol) request = { 'market_id': market['id'], } clientOrderId = self.safe_string_2(params, 'clientOrderId', 'client_order_id') if clientOrderId is not None: request['client_order_id'] = clientOrderId else: request['order_id'] = id query = self.omit(params, ['clientOrderId', 'client_order_id']) response = self.privateGetOrder(self.extend(request, query)) data = self.safe_value(response, 'data', []) order = self.safe_value(data, 0) return self.parse_order(order, market) def parse_order_status(self, status): statuses = { 'open': 'open', 'cancelled': 'canceled', 'filled': 'closed', } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): # # { # id: string, # user_id: string, # market_id: string, # type: 'orderType', # side: 'side', # quantity: string, # limit_price: string, # time_in_force: 'timeInForce', # filled_cost: string, # filled_quantity: string, # open_quantity: string, # cancelled_quantity: string, # status: 'orderStatus', # time: 'date', # client_order_id: string, # } # status = self.parse_order_status(self.safe_string(order, 'status')) id = self.safe_string(order, 'id') type = self.safe_string(order, 'type') side = self.safe_string(order, 'side') marketId = self.safe_string(order, 'market_id') symbol = self.safe_symbol(marketId, market, '-') timestamp = self.parse8601(self.safe_string(order, 'time')) price = self.safe_float(order, 'limit_price') filled = self.safe_float(order, 'filled_quantity') remaining = self.safe_float(order, 'open_quantity') canceledAmount = self.safe_float(order, 'cancelled_quantity') if canceledAmount is not None: remaining = self.sum(remaining, canceledAmount) amount = self.safe_float(order, 'quantity', self.sum(filled, remaining)) cost = self.safe_float_2(order, 'filled_cost', 'cost') if type == 'market': price = None clientOrderId = self.safe_string(order, 'client_order_id') if clientOrderId == '': clientOrderId = None timeInForce = self.safe_string_upper(order, 'time_in_force') return self.safe_order({ 'id': id, 'info': order, 'clientOrderId': clientOrderId, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': type, 'timeInForce': timeInForce, 'side': side, 'status': status, 'price': price, 'stopPrice': None, 'amount': amount, 'filled': filled, 'remaining': remaining, 'average': None, 'cost': cost, 'fee': None, 'trades': None, }) def cost_to_precision(self, symbol, cost): return self.decimal_to_precision(cost, TRUNCATE, self.markets[symbol]['precision']['cost'], self.precisionMode) def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() market = self.market(symbol) options = self.safe_value(self.options, 'timeInForce') defaultTimeInForce = self.safe_value(options, type) timeInForce = self.safe_string_2(params, 'timeInForce', 'time_in_force', defaultTimeInForce) request = { 'market_id': market['id'], 'type': type, 'side': side, 'time_in_force': timeInForce, } clientOrderId = self.safe_string_2(params, 'clientOrderId', 'client_order_id') if clientOrderId is not None: request['client_order_id'] = clientOrderId costToPrecision = None if type == 'limit': request['limit_price'] = self.price_to_precision(symbol, price) request['quantity'] = self.amount_to_precision(symbol, amount) elif type == 'market': # for market buy it requires the amount of quote currency to spend if side == 'buy': cost = self.safe_float(params, 'cost') createMarketBuyOrderRequiresPrice = self.safe_value(self.options, 'createMarketBuyOrderRequiresPrice', True) if createMarketBuyOrderRequiresPrice: if price is not None: if cost is None: cost = amount * price elif cost is None: raise InvalidOrder(self.id + " createOrder() requires the price argument for market buy orders to calculate total order cost(amount to spend), where cost = amount * price. Supply a price argument to createOrder() call if you want the cost to be calculated for you from price and amount, or, alternatively, add .options['createMarketBuyOrderRequiresPrice'] = False and supply the total cost value in the 'amount' argument or in the 'cost' extra parameter(the exchange-specific behaviour)") else: cost = amount if (cost is None) else cost costToPrecision = self.cost_to_precision(symbol, cost) request['cost'] = costToPrecision else: request['quantity'] = self.amount_to_precision(symbol, amount) query = self.omit(params, ['timeInForce', 'time_in_force', 'clientOrderId', 'client_order_id']) response = self.privatePostNewOrder(self.extend(request, query)) # # { # data: { # id: string, # user_id: string, # market_id: string, # type: 'orderType', # side: 'side', # quantity: string, # limit_price: string, # time_in_force: 'timeInForce', # filled_cost: string, # filled_quantity: string, # open_quantity: string, # cancelled_quantity: string, # status: 'orderStatus', # time: 'date', # client_order_id: string, # } # } # data = self.safe_value(response, 'data') order = self.parse_order(data, market) # a workaround for incorrect huge amounts # returned by the exchange on market buys if (type == 'market') and (side == 'buy'): order['amount'] = None order['cost'] = float(costToPrecision) order['remaining'] = None return order def cancel_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' cancelOrder() requires a symbol argument') self.load_markets() market = self.market(symbol) request = { 'market_id': market['id'], 'order_id': id, } response = self.privatePostCancelOrder(self.extend(request, params)) data = self.safe_value(response, 'data') return self.parse_order(data) def parse_deposit_address(self, depositAddress, currency=None): address = self.safe_string(depositAddress, 'address') tag = self.safe_string(depositAddress, 'destination_tag') currencyId = self.safe_string(depositAddress, 'currency_id') code = self.safe_currency_code(currencyId) self.check_address(address) return { 'currency': code, 'address': address, 'tag': tag, 'info': depositAddress, } def fetch_deposit_address(self, code, params={}): self.load_markets() currency = self.currency(code) request = { 'currency_id': currency['id'], } response = self.privateGetDepositAddress(self.extend(request, params)) # # { # "data":[ # { # "currency_id":"ETH", # "address":"0x12e2caf3c4051ba1146e612f532901a423a9898a", # "destination_tag":null # } # ] # } # data = self.safe_value(response, 'data', []) firstAddress = self.safe_value(data, 0) if firstAddress is None: raise InvalidAddress(self.id + ' fetchDepositAddress returned an empty response') return self.parse_deposit_address(firstAddress, currency) def fetch_deposit_addresses(self, codes=None, params={}): self.load_markets() request = {} if codes: currencyIds = [] for i in range(0, len(codes)): currency = self.currency(codes[i]) currencyIds.append(currency['id']) request['currency_id'] = ','.join(codes) response = self.privateGetDepositAddress(self.extend(request, params)) data = self.safe_value(response, 'data', []) return self.parse_deposit_addresses(data) def withdraw(self, code, amount, address, tag=None, params={}): # In order to use self method # you need to allow API withdrawal from the API Settings Page, and # and register the list of withdrawal addresses and destination tags on the API Settings page # you can only withdraw to the registered addresses using the API self.check_address(address) self.load_markets() currency = self.currency(code) if tag is None: tag = '' request = { 'currency_id': currency['id'], # 'platform_id': 'ETH', # if omitted it will use the default platform for the currency 'address': address, 'destination_tag': tag, 'amount': self.currency_to_precision(code, amount), # which currency to pay the withdrawal fees # only applicable for currencies that accepts multiple withdrawal fee options # 'fee_currency_id': 'ETH', # if omitted it will use the default fee policy for each currency # whether the amount field includes fees # 'include_fee': False, # makes sense only when fee_currency_id is equal to currency_id } response = self.privatePostWithdrawal(self.extend(request, params)) data = self.safe_value(response, 'data') return self.parse_transaction(data, currency) def parse_transaction(self, transaction, currency=None): id = self.safe_string(transaction, 'id') amount = self.safe_float(transaction, 'amount') address = self.safe_string(transaction, 'address') tag = self.safe_string(transaction, 'destination_tag') txid = self.safe_string(transaction, 'hash') timestamp = self.parse8601(self.safe_string(transaction, 'time')) type = self.safe_string(transaction, 'type') currencyId = self.safe_string(transaction, 'currency_id') code = self.safe_currency_code(currencyId) status = self.parse_transaction_status(self.safe_string(transaction, 'status')) feeCost = self.safe_float(transaction, 'fee') fee = None if feeCost is not None and feeCost != 0: fee = { 'currency': code, 'cost': feeCost, } return { 'id': id, 'currency': code, 'amount': amount, 'addressFrom': None, 'address': address, 'addressTo': address, 'tagFrom': None, 'tag': tag, 'tagTo': tag, 'status': status, 'type': type, 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': fee, 'info': transaction, } def parse_transaction_status(self, status): statuses = { 'requested': 'pending', 'pending': 'pending', 'confirming': 'pending', 'confirmed': 'pending', 'applying': 'pending', 'done': 'ok', 'cancelled': 'canceled', 'cancelling': 'canceled', } return self.safe_string(statuses, status, status) def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'][api] + '/' query = self.omit(params, self.extract_params(path)) if api == 'accounts': self.check_required_credentials() url += self.implode_params(path, params) auth = self.apiKey + ':' + self.secret auth64 = self.string_to_base64(auth) headers = { 'Authorization': 'Basic ' + self.decode(auth64), 'Content-Type': 'application/json', } if query: body = self.json(query) else: url += self.version + '/' if api == 'public': url += self.implode_params(path, params) if query: url += '?' + self.urlencode(query) elif api == 'private': now = self.milliseconds() self.check_required_credentials() expires = self.safe_integer(self.options, 'expires') if (expires is None) or (expires < now): raise AuthenticationError(self.id + ' access token expired, call signIn() method') accessToken = self.safe_string(self.options, 'accessToken') headers = { 'Authorization': 'Bearer ' + accessToken, } url += self.implode_params(path, params) if method == 'GET': if query: url += '?' + self.urlencode(query) elif query: body = self.json(query) headers['Content-Type'] = 'application/json' return {'url': url, 'method': method, 'body': body, 'headers': headers} def sign_in(self, params={}): self.check_required_credentials() request = { 'grant_type': 'client_credentials', # the only supported value } response = self.accountsPostToken(self.extend(request, params)) # # { # access_token: '0ttDv/2hTTn3bLi8GP1gKaneiEQ6+0hOBenPrxNQt2s=', # token_type: 'bearer', # expires_in: 900 # } # expiresIn = self.safe_integer(response, 'expires_in') accessToken = self.safe_string(response, 'access_token') self.options['accessToken'] = accessToken self.options['expires'] = self.sum(self.milliseconds(), expiresIn * 1000) return response def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # fallback to default error handler if 'errorCode' in response: errorCode = self.safe_string(response, 'errorCode') message = self.safe_string(response, 'message') if errorCode is not None: feedback = self.id + ' ' + body self.throw_exactly_matched_exception(self.exceptions['exact'], message, feedback) self.throw_broadly_matched_exception(self.exceptions['exact'], errorCode, feedback) raise ExchangeError(feedback)
8810e80afe9d5667581d1c646a07dad52c3242c2
131ccf66fb787e9b1f0773a25fa518d1f2a3c5d0
/gui_programming/guimaker.py
f88dcbdb765fc650380d10a48a44bdb26e259768
[]
no_license
jocogum10/learning-python-programming
a0ba62abde49fd79762bcb7ba4a94bf8126afa77
035858bd332e3970d95db8bce7b1175e450802db
refs/heads/master
2020-07-07T17:08:00.743196
2019-12-13T05:32:47
2019-12-13T05:32:47
203,416,201
0
0
null
null
null
null
UTF-8
Python
false
false
6,637
py
""" ################################################################################ An extended Frame that makes window menus and toolbars automatically. Use GuiMakerMenu for embedded components (makes frame-based menus). Use GuiMakerWindowMenu for top-level windows (makes Tk8.0 window menus). See the self-test code (and PyEdit) for an example layout tree format. ################################################################################ """ import sys from tkinter import * # widget classes from tkinter.messagebox import showinfo class GuiMaker(Frame): menuBar = [] # class defaults toolBar = [] # change per instance in subclasses helpButton = True # set these in start() if need self def __init__(self, parent=None): Frame.__init__(self, parent) self.pack(expand=YES, fill=BOTH) # make frame stretchable self.start() # for subclass: set menu/toolBar self.makeMenuBar() # done here: build menu bar self.makeToolBar() # done here: build toolbar self.makeWidgets() # for subclass: add middle part def makeMenuBar(self): """ make menu bar at the top (Tk8.0 menus below) expand=no, fill=x so same width on resize """ menubar = Frame(self, relief=RAISED, bd=2) menubar.pack(side=TOP, fill=X) for (name, key, items) in self.menuBar: mbutton = Menubutton(menubar, text=name, underline=key) mbutton.pack(side=LEFT) pulldown = Menu(mbutton) self.addMenuItems(pulldown, items) mbutton.config(menu=pulldown) if self.helpButton: Button(menubar, text = 'Help', cursor = 'gumby', relief = FLAT, command = self.help).pack(side=RIGHT) def addMenuItems(self, menu, items): for item in items: # scan nested items list if item == 'separator': # string: add separator menu.add_separator({}) elif type(item) == list: # list: disabled item list for num in item: menu.entryconfig(num, state=DISABLED) elif type(item[2]) != list: menu.add_command(label = item[0], # command: underline = item[1], # add command command = item[2]) # cmd=callable else: pullover = Menu(menu) self.addMenuItems(pullover, item[2]) # sublist: menu.add_cascade(label = item[0], # make submenu underline = item[1], # add cascade menu = pullover) def makeToolBar(self): """ make button bar at bottom, if any expand=no, fill=x so same width on resize this could support images too: see chapter 9, would need prebuilt gifs or PIL for thumbnails """ if self.toolBar: toolbar = Frame(self, cursor='hand2', relief=SUNKEN, bd=2) toolbar.pack(side=BOTTOM, fill=X) for (name, action, where) in self.toolBar: Button(toolbar, text=name, command=action).pack(where) def makeWidgets(self): """ make 'middle' part last, so menu/toolbar is always on top/bottom and clipped last; override this default, pack middle any side; for grid: grid middle part in packed frame """ name = Label(self, width=40, height=10, relief=SUNKEN, bg='white', text = self.__class__.__name__, cursor = 'crosshair') name.pack(expand=YES, fill=BOTH, side=TOP) def help(self): "override me in subclass" showinfo('Help', 'Sorry, no help for ' + self.__class__.__name__) def start(self): "override me in subclass: set menu/toolbar with self" pass ################################################################################ # Customize for Tk 8.0 main window menu bar, instead of a frame ################################################################################ GuiMakerFrameMenu = GuiMaker # use this for embedded component menus class GuiMakerWindowMenu(GuiMaker): # use this for top-level window menus def makeMenuBar(self): menubar = Menu(self.master) self.master.config(menu=menubar) for (name, key, items) in self.menuBar: pulldown = Menu(menubar) self.addMenuItems(pulldown, items) menubar.add_cascade(label=name, underline=key, menu=pulldown) if self.helpButton: if sys.platform[:3] == 'win': menubar.add_command(label='Help', command=self.help) else: pulldown = Menu(menubar) # Linux needs real pull down pulldown.add_command(label='About', command=self.help) menubar.add_cascade(label='Help', menu=pulldown) ################################################################################ # Self-test when file run standalone: 'python guimaker.py' ################################################################################ if __name__ == '__main__': from guimixin import GuiMixin # mix in a help method menuBar = [ ('File', 0, [('Open', 0, lambda:0), ('Quit', 0, sys.exit)]), ('Edit', 0, [('Cut', 0, lambda:0), ('Paste', 0, lambda:0)]) ] toolBar = [('Quit', sys.exit, {'side': LEFT})] class TestAppFrameMenu(GuiMixin, GuiMakerFrameMenu): def start(self): self.menuBar = menuBar self.toolBar = toolBar class TestAppWindowMenu(GuiMixin, GuiMakerWindowMenu): def start(self): self.menuBar = menuBar self.toolBar = toolBar class TestAppWindowMenuBasic(GuiMakerWindowMenu): def start(self): self.menuBar = menuBar self.toolBar = toolBar # guimaker help, not guimixin root = Tk() TestAppFrameMenu(Toplevel()) TestAppWindowMenu(Toplevel()) TestAppWindowMenuBasic(root) root.mainloop()
347f8b54dfb2cd1482e50fb225597255d806a74b
a2d36e471988e0fae32e9a9d559204ebb065ab7f
/huaweicloud-sdk-elb/huaweicloudsdkelb/v3/model/list_load_balancers_request.py
65c6fc83e8a69f5da83a58da3b5a9f60ed29c66c
[ "Apache-2.0" ]
permissive
zhouxy666/huaweicloud-sdk-python-v3
4d878a90b8e003875fc803a61414788e5e4c2c34
cc6f10a53205be4cb111d3ecfef8135ea804fa15
refs/heads/master
2023-09-02T07:41:12.605394
2021-11-12T03:20:11
2021-11-12T03:20:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
31,415
py
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ListLoadBalancersRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'admin_state_up': 'bool', 'availability_zone_list': 'list[str]', 'billing_info': 'list[str]', 'deletion_protection_enable': 'bool', 'description': 'list[str]', 'eips': 'list[str]', 'enterprise_project_id': 'list[str]', 'guaranteed': 'bool', 'id': 'list[str]', 'ip_version': 'list[int]', 'ipv6_vip_address': 'list[str]', 'ipv6_vip_port_id': 'list[str]', 'ipv6_vip_virsubnet_id': 'list[str]', 'l4_flavor_id': 'list[str]', 'l4_scale_flavor_id': 'list[str]', 'l7_flavor_id': 'list[str]', 'l7_scale_flavor_id': 'list[str]', 'limit': 'int', 'marker': 'str', 'member_address': 'list[str]', 'member_device_id': 'list[str]', 'name': 'list[str]', 'operating_status': 'list[str]', 'page_reverse': 'bool', 'provisioning_status': 'list[str]', 'publicips': 'list[str]', 'vip_address': 'list[str]', 'vip_port_id': 'list[str]', 'vip_subnet_cidr_id': 'list[str]', 'vpc_id': 'list[str]' } attribute_map = { 'admin_state_up': 'admin_state_up', 'availability_zone_list': 'availability_zone_list', 'billing_info': 'billing_info', 'deletion_protection_enable': 'deletion_protection_enable', 'description': 'description', 'eips': 'eips', 'enterprise_project_id': 'enterprise_project_id', 'guaranteed': 'guaranteed', 'id': 'id', 'ip_version': 'ip_version', 'ipv6_vip_address': 'ipv6_vip_address', 'ipv6_vip_port_id': 'ipv6_vip_port_id', 'ipv6_vip_virsubnet_id': 'ipv6_vip_virsubnet_id', 'l4_flavor_id': 'l4_flavor_id', 'l4_scale_flavor_id': 'l4_scale_flavor_id', 'l7_flavor_id': 'l7_flavor_id', 'l7_scale_flavor_id': 'l7_scale_flavor_id', 'limit': 'limit', 'marker': 'marker', 'member_address': 'member_address', 'member_device_id': 'member_device_id', 'name': 'name', 'operating_status': 'operating_status', 'page_reverse': 'page_reverse', 'provisioning_status': 'provisioning_status', 'publicips': 'publicips', 'vip_address': 'vip_address', 'vip_port_id': 'vip_port_id', 'vip_subnet_cidr_id': 'vip_subnet_cidr_id', 'vpc_id': 'vpc_id' } def __init__(self, admin_state_up=None, availability_zone_list=None, billing_info=None, deletion_protection_enable=None, description=None, eips=None, enterprise_project_id=None, guaranteed=None, id=None, ip_version=None, ipv6_vip_address=None, ipv6_vip_port_id=None, ipv6_vip_virsubnet_id=None, l4_flavor_id=None, l4_scale_flavor_id=None, l7_flavor_id=None, l7_scale_flavor_id=None, limit=None, marker=None, member_address=None, member_device_id=None, name=None, operating_status=None, page_reverse=None, provisioning_status=None, publicips=None, vip_address=None, vip_port_id=None, vip_subnet_cidr_id=None, vpc_id=None): """ListLoadBalancersRequest - a model defined in huaweicloud sdk""" self._admin_state_up = None self._availability_zone_list = None self._billing_info = None self._deletion_protection_enable = None self._description = None self._eips = None self._enterprise_project_id = None self._guaranteed = None self._id = None self._ip_version = None self._ipv6_vip_address = None self._ipv6_vip_port_id = None self._ipv6_vip_virsubnet_id = None self._l4_flavor_id = None self._l4_scale_flavor_id = None self._l7_flavor_id = None self._l7_scale_flavor_id = None self._limit = None self._marker = None self._member_address = None self._member_device_id = None self._name = None self._operating_status = None self._page_reverse = None self._provisioning_status = None self._publicips = None self._vip_address = None self._vip_port_id = None self._vip_subnet_cidr_id = None self._vpc_id = None self.discriminator = None if admin_state_up is not None: self.admin_state_up = admin_state_up if availability_zone_list is not None: self.availability_zone_list = availability_zone_list if billing_info is not None: self.billing_info = billing_info if deletion_protection_enable is not None: self.deletion_protection_enable = deletion_protection_enable if description is not None: self.description = description if eips is not None: self.eips = eips if enterprise_project_id is not None: self.enterprise_project_id = enterprise_project_id if guaranteed is not None: self.guaranteed = guaranteed if id is not None: self.id = id if ip_version is not None: self.ip_version = ip_version if ipv6_vip_address is not None: self.ipv6_vip_address = ipv6_vip_address if ipv6_vip_port_id is not None: self.ipv6_vip_port_id = ipv6_vip_port_id if ipv6_vip_virsubnet_id is not None: self.ipv6_vip_virsubnet_id = ipv6_vip_virsubnet_id if l4_flavor_id is not None: self.l4_flavor_id = l4_flavor_id if l4_scale_flavor_id is not None: self.l4_scale_flavor_id = l4_scale_flavor_id if l7_flavor_id is not None: self.l7_flavor_id = l7_flavor_id if l7_scale_flavor_id is not None: self.l7_scale_flavor_id = l7_scale_flavor_id if limit is not None: self.limit = limit if marker is not None: self.marker = marker if member_address is not None: self.member_address = member_address if member_device_id is not None: self.member_device_id = member_device_id if name is not None: self.name = name if operating_status is not None: self.operating_status = operating_status if page_reverse is not None: self.page_reverse = page_reverse if provisioning_status is not None: self.provisioning_status = provisioning_status if publicips is not None: self.publicips = publicips if vip_address is not None: self.vip_address = vip_address if vip_port_id is not None: self.vip_port_id = vip_port_id if vip_subnet_cidr_id is not None: self.vip_subnet_cidr_id = vip_subnet_cidr_id if vpc_id is not None: self.vpc_id = vpc_id @property def admin_state_up(self): """Gets the admin_state_up of this ListLoadBalancersRequest. 负载均衡器的管理状态。只支持设定为true。 :return: The admin_state_up of this ListLoadBalancersRequest. :rtype: bool """ return self._admin_state_up @admin_state_up.setter def admin_state_up(self, admin_state_up): """Sets the admin_state_up of this ListLoadBalancersRequest. 负载均衡器的管理状态。只支持设定为true。 :param admin_state_up: The admin_state_up of this ListLoadBalancersRequest. :type: bool """ self._admin_state_up = admin_state_up @property def availability_zone_list(self): """Gets the availability_zone_list of this ListLoadBalancersRequest. 可用区。 注: 可用AZ的查询方式可用通过调用nova接口查询 /v2/{project_id}/os-availability-zone :return: The availability_zone_list of this ListLoadBalancersRequest. :rtype: list[str] """ return self._availability_zone_list @availability_zone_list.setter def availability_zone_list(self, availability_zone_list): """Sets the availability_zone_list of this ListLoadBalancersRequest. 可用区。 注: 可用AZ的查询方式可用通过调用nova接口查询 /v2/{project_id}/os-availability-zone :param availability_zone_list: The availability_zone_list of this ListLoadBalancersRequest. :type: list[str] """ self._availability_zone_list = availability_zone_list @property def billing_info(self): """Gets the billing_info of this ListLoadBalancersRequest. 预留资源账单信息,默认为空表示按需计费, 非空为包周期。admin权限才能更新此字段。 :return: The billing_info of this ListLoadBalancersRequest. :rtype: list[str] """ return self._billing_info @billing_info.setter def billing_info(self, billing_info): """Sets the billing_info of this ListLoadBalancersRequest. 预留资源账单信息,默认为空表示按需计费, 非空为包周期。admin权限才能更新此字段。 :param billing_info: The billing_info of this ListLoadBalancersRequest. :type: list[str] """ self._billing_info = billing_info @property def deletion_protection_enable(self): """Gets the deletion_protection_enable of this ListLoadBalancersRequest. 是否开启删除保护,false不开启,默认为空都查询 :return: The deletion_protection_enable of this ListLoadBalancersRequest. :rtype: bool """ return self._deletion_protection_enable @deletion_protection_enable.setter def deletion_protection_enable(self, deletion_protection_enable): """Sets the deletion_protection_enable of this ListLoadBalancersRequest. 是否开启删除保护,false不开启,默认为空都查询 :param deletion_protection_enable: The deletion_protection_enable of this ListLoadBalancersRequest. :type: bool """ self._deletion_protection_enable = deletion_protection_enable @property def description(self): """Gets the description of this ListLoadBalancersRequest. 负载均衡器的描述信息。 :return: The description of this ListLoadBalancersRequest. :rtype: list[str] """ return self._description @description.setter def description(self, description): """Sets the description of this ListLoadBalancersRequest. 负载均衡器的描述信息。 :param description: The description of this ListLoadBalancersRequest. :type: list[str] """ self._description = description @property def eips(self): """Gets the eips of this ListLoadBalancersRequest. 公网ELB实例绑定EIP。 示例如下: \"eips\": [ { \"eip_id\": \"a6ded276-c88a-4c58-95e0-5b6d1d2297b3\", \"eip_address\": \"2001:db8:a583:86:cf24:5cc5:8117:6eaa\", \"ip_version\": 6 } ] 查询时指定:eips=eip_id=XXXX :return: The eips of this ListLoadBalancersRequest. :rtype: list[str] """ return self._eips @eips.setter def eips(self, eips): """Sets the eips of this ListLoadBalancersRequest. 公网ELB实例绑定EIP。 示例如下: \"eips\": [ { \"eip_id\": \"a6ded276-c88a-4c58-95e0-5b6d1d2297b3\", \"eip_address\": \"2001:db8:a583:86:cf24:5cc5:8117:6eaa\", \"ip_version\": 6 } ] 查询时指定:eips=eip_id=XXXX :param eips: The eips of this ListLoadBalancersRequest. :type: list[str] """ self._eips = eips @property def enterprise_project_id(self): """Gets the enterprise_project_id of this ListLoadBalancersRequest. 企业项目ID。 :return: The enterprise_project_id of this ListLoadBalancersRequest. :rtype: list[str] """ return self._enterprise_project_id @enterprise_project_id.setter def enterprise_project_id(self, enterprise_project_id): """Sets the enterprise_project_id of this ListLoadBalancersRequest. 企业项目ID。 :param enterprise_project_id: The enterprise_project_id of this ListLoadBalancersRequest. :type: list[str] """ self._enterprise_project_id = enterprise_project_id @property def guaranteed(self): """Gets the guaranteed of this ListLoadBalancersRequest. 共享型:false 性能保障型:true :return: The guaranteed of this ListLoadBalancersRequest. :rtype: bool """ return self._guaranteed @guaranteed.setter def guaranteed(self, guaranteed): """Sets the guaranteed of this ListLoadBalancersRequest. 共享型:false 性能保障型:true :param guaranteed: The guaranteed of this ListLoadBalancersRequest. :type: bool """ self._guaranteed = guaranteed @property def id(self): """Gets the id of this ListLoadBalancersRequest. 负载均衡器ID。 :return: The id of this ListLoadBalancersRequest. :rtype: list[str] """ return self._id @id.setter def id(self, id): """Sets the id of this ListLoadBalancersRequest. 负载均衡器ID。 :param id: The id of this ListLoadBalancersRequest. :type: list[str] """ self._id = id @property def ip_version(self): """Gets the ip_version of this ListLoadBalancersRequest. IP版本信息。 取值范围:4和6 4:IPv4 6:IPv6 :return: The ip_version of this ListLoadBalancersRequest. :rtype: list[int] """ return self._ip_version @ip_version.setter def ip_version(self, ip_version): """Sets the ip_version of this ListLoadBalancersRequest. IP版本信息。 取值范围:4和6 4:IPv4 6:IPv6 :param ip_version: The ip_version of this ListLoadBalancersRequest. :type: list[int] """ self._ip_version = ip_version @property def ipv6_vip_address(self): """Gets the ipv6_vip_address of this ListLoadBalancersRequest. 双栈实例对应v6的ip地址。 :return: The ipv6_vip_address of this ListLoadBalancersRequest. :rtype: list[str] """ return self._ipv6_vip_address @ipv6_vip_address.setter def ipv6_vip_address(self, ipv6_vip_address): """Sets the ipv6_vip_address of this ListLoadBalancersRequest. 双栈实例对应v6的ip地址。 :param ipv6_vip_address: The ipv6_vip_address of this ListLoadBalancersRequest. :type: list[str] """ self._ipv6_vip_address = ipv6_vip_address @property def ipv6_vip_port_id(self): """Gets the ipv6_vip_port_id of this ListLoadBalancersRequest. 双栈实例对应v6的端口。 :return: The ipv6_vip_port_id of this ListLoadBalancersRequest. :rtype: list[str] """ return self._ipv6_vip_port_id @ipv6_vip_port_id.setter def ipv6_vip_port_id(self, ipv6_vip_port_id): """Sets the ipv6_vip_port_id of this ListLoadBalancersRequest. 双栈实例对应v6的端口。 :param ipv6_vip_port_id: The ipv6_vip_port_id of this ListLoadBalancersRequest. :type: list[str] """ self._ipv6_vip_port_id = ipv6_vip_port_id @property def ipv6_vip_virsubnet_id(self): """Gets the ipv6_vip_virsubnet_id of this ListLoadBalancersRequest. 双栈实例对应v6的网络id 。 说明:vpc_id , vip_subnet_cidr_id, ipv6_vip_virsubnet_id不能同时为空。 :return: The ipv6_vip_virsubnet_id of this ListLoadBalancersRequest. :rtype: list[str] """ return self._ipv6_vip_virsubnet_id @ipv6_vip_virsubnet_id.setter def ipv6_vip_virsubnet_id(self, ipv6_vip_virsubnet_id): """Sets the ipv6_vip_virsubnet_id of this ListLoadBalancersRequest. 双栈实例对应v6的网络id 。 说明:vpc_id , vip_subnet_cidr_id, ipv6_vip_virsubnet_id不能同时为空。 :param ipv6_vip_virsubnet_id: The ipv6_vip_virsubnet_id of this ListLoadBalancersRequest. :type: list[str] """ self._ipv6_vip_virsubnet_id = ipv6_vip_virsubnet_id @property def l4_flavor_id(self): """Gets the l4_flavor_id of this ListLoadBalancersRequest. 四层Flavor, 按需计费不填, 包周期由用户设置。 :return: The l4_flavor_id of this ListLoadBalancersRequest. :rtype: list[str] """ return self._l4_flavor_id @l4_flavor_id.setter def l4_flavor_id(self, l4_flavor_id): """Sets the l4_flavor_id of this ListLoadBalancersRequest. 四层Flavor, 按需计费不填, 包周期由用户设置。 :param l4_flavor_id: The l4_flavor_id of this ListLoadBalancersRequest. :type: list[str] """ self._l4_flavor_id = l4_flavor_id @property def l4_scale_flavor_id(self): """Gets the l4_scale_flavor_id of this ListLoadBalancersRequest. 预留弹性flavor。 :return: The l4_scale_flavor_id of this ListLoadBalancersRequest. :rtype: list[str] """ return self._l4_scale_flavor_id @l4_scale_flavor_id.setter def l4_scale_flavor_id(self, l4_scale_flavor_id): """Sets the l4_scale_flavor_id of this ListLoadBalancersRequest. 预留弹性flavor。 :param l4_scale_flavor_id: The l4_scale_flavor_id of this ListLoadBalancersRequest. :type: list[str] """ self._l4_scale_flavor_id = l4_scale_flavor_id @property def l7_flavor_id(self): """Gets the l7_flavor_id of this ListLoadBalancersRequest. 七层Flavor, 按需计费不填, 包周期由用户设置。 :return: The l7_flavor_id of this ListLoadBalancersRequest. :rtype: list[str] """ return self._l7_flavor_id @l7_flavor_id.setter def l7_flavor_id(self, l7_flavor_id): """Sets the l7_flavor_id of this ListLoadBalancersRequest. 七层Flavor, 按需计费不填, 包周期由用户设置。 :param l7_flavor_id: The l7_flavor_id of this ListLoadBalancersRequest. :type: list[str] """ self._l7_flavor_id = l7_flavor_id @property def l7_scale_flavor_id(self): """Gets the l7_scale_flavor_id of this ListLoadBalancersRequest. 预留弹性flavor。 :return: The l7_scale_flavor_id of this ListLoadBalancersRequest. :rtype: list[str] """ return self._l7_scale_flavor_id @l7_scale_flavor_id.setter def l7_scale_flavor_id(self, l7_scale_flavor_id): """Sets the l7_scale_flavor_id of this ListLoadBalancersRequest. 预留弹性flavor。 :param l7_scale_flavor_id: The l7_scale_flavor_id of this ListLoadBalancersRequest. :type: list[str] """ self._l7_scale_flavor_id = l7_scale_flavor_id @property def limit(self): """Gets the limit of this ListLoadBalancersRequest. 每页返回的个数。 :return: The limit of this ListLoadBalancersRequest. :rtype: int """ return self._limit @limit.setter def limit(self, limit): """Sets the limit of this ListLoadBalancersRequest. 每页返回的个数。 :param limit: The limit of this ListLoadBalancersRequest. :type: int """ self._limit = limit @property def marker(self): """Gets the marker of this ListLoadBalancersRequest. 上一页最后一条记录的ID。 使用说明: - 必须与limit一起使用。 - 不指定时表示查询第一页。 - 该字段不允许为空或无效的ID。 :return: The marker of this ListLoadBalancersRequest. :rtype: str """ return self._marker @marker.setter def marker(self, marker): """Sets the marker of this ListLoadBalancersRequest. 上一页最后一条记录的ID。 使用说明: - 必须与limit一起使用。 - 不指定时表示查询第一页。 - 该字段不允许为空或无效的ID。 :param marker: The marker of this ListLoadBalancersRequest. :type: str """ self._marker = marker @property def member_address(self): """Gets the member_address of this ListLoadBalancersRequest. 后端云服务器的IP地址。 :return: The member_address of this ListLoadBalancersRequest. :rtype: list[str] """ return self._member_address @member_address.setter def member_address(self, member_address): """Sets the member_address of this ListLoadBalancersRequest. 后端云服务器的IP地址。 :param member_address: The member_address of this ListLoadBalancersRequest. :type: list[str] """ self._member_address = member_address @property def member_device_id(self): """Gets the member_device_id of this ListLoadBalancersRequest. 后端云服务器对应的弹性云服务器的ID。 :return: The member_device_id of this ListLoadBalancersRequest. :rtype: list[str] """ return self._member_device_id @member_device_id.setter def member_device_id(self, member_device_id): """Sets the member_device_id of this ListLoadBalancersRequest. 后端云服务器对应的弹性云服务器的ID。 :param member_device_id: The member_device_id of this ListLoadBalancersRequest. :type: list[str] """ self._member_device_id = member_device_id @property def name(self): """Gets the name of this ListLoadBalancersRequest. 负载均衡器名称。 :return: The name of this ListLoadBalancersRequest. :rtype: list[str] """ return self._name @name.setter def name(self, name): """Sets the name of this ListLoadBalancersRequest. 负载均衡器名称。 :param name: The name of this ListLoadBalancersRequest. :type: list[str] """ self._name = name @property def operating_status(self): """Gets the operating_status of this ListLoadBalancersRequest. 负载均衡器的操作状态。 可以为:ONLINE、OFFLINE、DEGRADED、DISABLED或NO_MONITOR。 说明 该字段为预留字段,暂未启用。 :return: The operating_status of this ListLoadBalancersRequest. :rtype: list[str] """ return self._operating_status @operating_status.setter def operating_status(self, operating_status): """Sets the operating_status of this ListLoadBalancersRequest. 负载均衡器的操作状态。 可以为:ONLINE、OFFLINE、DEGRADED、DISABLED或NO_MONITOR。 说明 该字段为预留字段,暂未启用。 :param operating_status: The operating_status of this ListLoadBalancersRequest. :type: list[str] """ self._operating_status = operating_status @property def page_reverse(self): """Gets the page_reverse of this ListLoadBalancersRequest. 分页的顺序,true表示从后往前分页,false表示从前往后分页,默认为false。 使用说明:必须与limit一起使用。 :return: The page_reverse of this ListLoadBalancersRequest. :rtype: bool """ return self._page_reverse @page_reverse.setter def page_reverse(self, page_reverse): """Sets the page_reverse of this ListLoadBalancersRequest. 分页的顺序,true表示从后往前分页,false表示从前往后分页,默认为false。 使用说明:必须与limit一起使用。 :param page_reverse: The page_reverse of this ListLoadBalancersRequest. :type: bool """ self._page_reverse = page_reverse @property def provisioning_status(self): """Gets the provisioning_status of this ListLoadBalancersRequest. 负载均衡器的配置状态。 可以为:ACTIVE、PENDING_CREATE 或者ERROR。 说明 该字段为预留字段,暂未启用。 :return: The provisioning_status of this ListLoadBalancersRequest. :rtype: list[str] """ return self._provisioning_status @provisioning_status.setter def provisioning_status(self, provisioning_status): """Sets the provisioning_status of this ListLoadBalancersRequest. 负载均衡器的配置状态。 可以为:ACTIVE、PENDING_CREATE 或者ERROR。 说明 该字段为预留字段,暂未启用。 :param provisioning_status: The provisioning_status of this ListLoadBalancersRequest. :type: list[str] """ self._provisioning_status = provisioning_status @property def publicips(self): """Gets the publicips of this ListLoadBalancersRequest. 公网IP 示例如下: \"publicips\": [ { \"publicip_id\": \"a6ded276-c88a-4c58-95e0-5b6d1d2297b3\", \"publicip_address\": \"2001:db8:a583:86:cf24:5cc5:8117:6eaa\", \"publicip_ip_version\": 6 } ] 查询时指定:publicips=publicip_id=XXXX,YYYY :return: The publicips of this ListLoadBalancersRequest. :rtype: list[str] """ return self._publicips @publicips.setter def publicips(self, publicips): """Sets the publicips of this ListLoadBalancersRequest. 公网IP 示例如下: \"publicips\": [ { \"publicip_id\": \"a6ded276-c88a-4c58-95e0-5b6d1d2297b3\", \"publicip_address\": \"2001:db8:a583:86:cf24:5cc5:8117:6eaa\", \"publicip_ip_version\": 6 } ] 查询时指定:publicips=publicip_id=XXXX,YYYY :param publicips: The publicips of this ListLoadBalancersRequest. :type: list[str] """ self._publicips = publicips @property def vip_address(self): """Gets the vip_address of this ListLoadBalancersRequest. 负载均衡器的虚拟IP。 :return: The vip_address of this ListLoadBalancersRequest. :rtype: list[str] """ return self._vip_address @vip_address.setter def vip_address(self, vip_address): """Sets the vip_address of this ListLoadBalancersRequest. 负载均衡器的虚拟IP。 :param vip_address: The vip_address of this ListLoadBalancersRequest. :type: list[str] """ self._vip_address = vip_address @property def vip_port_id(self): """Gets the vip_port_id of this ListLoadBalancersRequest. 负载均衡器虚拟IP对应的端口ID。 :return: The vip_port_id of this ListLoadBalancersRequest. :rtype: list[str] """ return self._vip_port_id @vip_port_id.setter def vip_port_id(self, vip_port_id): """Sets the vip_port_id of this ListLoadBalancersRequest. 负载均衡器虚拟IP对应的端口ID。 :param vip_port_id: The vip_port_id of this ListLoadBalancersRequest. :type: list[str] """ self._vip_port_id = vip_port_id @property def vip_subnet_cidr_id(self): """Gets the vip_subnet_cidr_id of this ListLoadBalancersRequest. 负载均衡器所在的子网ID,仅支持内网类型。 说明:vpc_id , vip_subnet_cidr_id, ipv6_vip_virsubnet_id不能同时为空。 :return: The vip_subnet_cidr_id of this ListLoadBalancersRequest. :rtype: list[str] """ return self._vip_subnet_cidr_id @vip_subnet_cidr_id.setter def vip_subnet_cidr_id(self, vip_subnet_cidr_id): """Sets the vip_subnet_cidr_id of this ListLoadBalancersRequest. 负载均衡器所在的子网ID,仅支持内网类型。 说明:vpc_id , vip_subnet_cidr_id, ipv6_vip_virsubnet_id不能同时为空。 :param vip_subnet_cidr_id: The vip_subnet_cidr_id of this ListLoadBalancersRequest. :type: list[str] """ self._vip_subnet_cidr_id = vip_subnet_cidr_id @property def vpc_id(self): """Gets the vpc_id of this ListLoadBalancersRequest. 实例对应的vpc属性。 若无,则从vip_subnet_cidr_id获取。 说明:vpc_id , vip_subnet_cidr_id, ipv6_vip_virsubnet_id不能同时为空。 :return: The vpc_id of this ListLoadBalancersRequest. :rtype: list[str] """ return self._vpc_id @vpc_id.setter def vpc_id(self, vpc_id): """Sets the vpc_id of this ListLoadBalancersRequest. 实例对应的vpc属性。 若无,则从vip_subnet_cidr_id获取。 说明:vpc_id , vip_subnet_cidr_id, ipv6_vip_virsubnet_id不能同时为空。 :param vpc_id: The vpc_id of this ListLoadBalancersRequest. :type: list[str] """ self._vpc_id = vpc_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListLoadBalancersRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
01593c9ffc95662e33bc80059daecc2592dd829f
08e26af5604fda61846c421d739c82ea0bd17271
/product_account_purchase_sale/account_invoice.py
c25db1448d9f73d91fe3eab11331df7acb6e59cc
[]
no_license
germanponce/nishikawa_addons
376342d6d45250eec85443abf4eb4f760256de85
765dd185272407175fbc14a8f4d702bf6e5e759d
refs/heads/master
2021-01-25T04:09:07.391100
2014-07-14T14:57:21
2014-07-14T14:57:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,410
py
# -*- encoding: utf-8 -*- ########################################################################### # Module Writen to OpenERP, Open Source Management Solution # # Copyright (c) 2010 moylop260 - http://www.hesatecnica.com.com/ # All Rights Reserved. # info skype: german_442 email: ([email protected]) ############################################################################ # Coded by: german_442 email: ([email protected]) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from osv import osv, fields import time from datetime import datetime, date from tools.translate import _ from openerp import SUPERUSER_ID class account_invoice(osv.osv): _name = 'account.invoice' _inherit ='account.invoice' _columns = { 'department_id': fields.many2one('hr.department', 'Departamento', help='Define el Departamento encargado de la Solicitud de la Compra' ), } _default = { } account_invoice() class account_invoice_line(osv.osv): _inherit ='account.invoice.line' _columns = { 'analytics_accounts_required': fields.boolean('Cuentas Analiticas Requeridas') , } def product_id_change(self, cr, uid, ids, product, uom_id, qty=0, name='', type='out_invoice', partner_id=False, fposition_id=False, price_unit=False, currency_id=False, context=None, company_id=None): value = {} if context is None: context = {} company_id = company_id if company_id != None else context.get('company_id',False) context = dict(context) context.update({'company_id': company_id, 'force_company': company_id}) if not partner_id: raise osv.except_osv(_('No Partner Defined!'),_("You must first select a partner!") ) if not product: if type in ('in_invoice', 'in_refund'): return {'value': {}, 'domain':{'product_uom':[]}} else: return {'value': {'price_unit': 0.0}, 'domain':{'product_uom':[]}} part = self.pool.get('res.partner').browse(cr, uid, partner_id, context=context) fpos_obj = self.pool.get('account.fiscal.position') fpos = fposition_id and fpos_obj.browse(cr, uid, fposition_id, context=context) or False if part.lang: context.update({'lang': part.lang}) result = {} res = self.pool.get('product.product').browse(cr, uid, product, context=context) if type in ('out_invoice','out_refund'): a = res.property_account_income.id if not a: a = res.categ_id.property_account_income_categ.id else: a = res.property_account_expense.id if not a: a = res.categ_id.property_account_expense_categ.id a = fpos_obj.map_account(cr, uid, fpos, a) if a: result['account_id'] = a if type in ('out_invoice', 'out_refund'): taxes = res.taxes_id and res.taxes_id or (a and self.pool.get('account.account').browse(cr, uid, a, context=context).tax_ids or False) else: taxes = res.supplier_taxes_id and res.supplier_taxes_id or (a and self.pool.get('account.account').browse(cr, uid, a, context=context).tax_ids or False) tax_id = fpos_obj.map_tax(cr, uid, fpos, taxes) if type in ('in_invoice', 'in_refund'): result.update( {'price_unit': price_unit or res.standard_price,'invoice_line_tax_id': tax_id} ) else: result.update({'price_unit': res.list_price, 'invoice_line_tax_id': tax_id}) result['name'] = res.partner_ref result['uos_id'] = uom_id or res.uom_id.id if res.description: result['name'] += '\n'+res.description domain = {'uos_id':[('category_id','=',res.uom_id.category_id.id)]} res_final = {'value':result, 'domain':domain} if not company_id or not currency_id: return res_final company = self.pool.get('res.company').browse(cr, uid, company_id, context=context) currency = self.pool.get('res.currency').browse(cr, uid, currency_id, context=context) if company.currency_id.id != currency.id: if type in ('in_invoice', 'in_refund'): res_final['value']['price_unit'] = res.standard_price new_price = res_final['value']['price_unit'] * currency.rate res_final['value']['price_unit'] = new_price if result['uos_id'] and result['uos_id'] != res.uom_id.id: selected_uom = self.pool.get('product.uom').browse(cr, uid, result['uos_id'], context=context) new_price = self.pool.get('product.uom')._compute_price(cr, uid, res.uom_id.id, res_final['value']['price_unit'], result['uos_id']) res_final['value']['price_unit'] = new_price #### Validamos que el producto requiera las cuentas Analiticas prod_obj = self.pool.get('product.product') prod_b = prod_obj.browse(cr, uid, [product], context=None)[0] if prod_b.analytics_accounts_required: res_final['value'].update({'analytics_accounts_required':True}) return res_final account_invoice_line() class account_account_template(osv.osv): _name = "account.account.template" _inherit = "account.account.template" _columns = { 'name': fields.char('Name', size=256, required=True, select=True, translate=True), } account_account_template() class account_account(osv.osv): _name = "account.account" _inherit = "account.account" _columns = { 'name': fields.char('Name', size=256, required=True, select=True, translate=True), } account_account()
30563f1f0d1d655fea8cc0dad2b55e5530bab2b8
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-cph/huaweicloudsdkcph/v1/model/list_resource_instances_request.py
0823fdc434041d9670e7c3631928d7a2eaaf42b5
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
4,217
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ListResourceInstancesRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'resource_type': 'str', 'body': 'ListResourceInstancesRequestBody' } attribute_map = { 'resource_type': 'resource_type', 'body': 'body' } def __init__(self, resource_type=None, body=None): """ListResourceInstancesRequest The model defined in huaweicloud sdk :param resource_type: 资源类型。 - cph-server,云手机服务器 :type resource_type: str :param body: Body of the ListResourceInstancesRequest :type body: :class:`huaweicloudsdkcph.v1.ListResourceInstancesRequestBody` """ self._resource_type = None self._body = None self.discriminator = None self.resource_type = resource_type if body is not None: self.body = body @property def resource_type(self): """Gets the resource_type of this ListResourceInstancesRequest. 资源类型。 - cph-server,云手机服务器 :return: The resource_type of this ListResourceInstancesRequest. :rtype: str """ return self._resource_type @resource_type.setter def resource_type(self, resource_type): """Sets the resource_type of this ListResourceInstancesRequest. 资源类型。 - cph-server,云手机服务器 :param resource_type: The resource_type of this ListResourceInstancesRequest. :type resource_type: str """ self._resource_type = resource_type @property def body(self): """Gets the body of this ListResourceInstancesRequest. :return: The body of this ListResourceInstancesRequest. :rtype: :class:`huaweicloudsdkcph.v1.ListResourceInstancesRequestBody` """ return self._body @body.setter def body(self, body): """Sets the body of this ListResourceInstancesRequest. :param body: The body of this ListResourceInstancesRequest. :type body: :class:`huaweicloudsdkcph.v1.ListResourceInstancesRequestBody` """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListResourceInstancesRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
056124ade6036e7d9c1b4817404a25f132abcf7f
ecba842cc189499da2c98248e92a458dbcc0dc67
/apps/website/privacy/urls.py
59aa42a56262eec8c222c517c823f3eb3f7c6516
[]
no_license
aquaristar/hhlearn
c23e94ab93221419db74409f44d8310244212190
ec409b7886bacb33cd3f5c3a724243a30158cd54
refs/heads/master
2023-03-10T15:46:39.740438
2019-11-16T19:19:02
2019-11-16T19:19:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
202
py
from django.conf.urls import patterns, include, url urlpatterns = patterns('apps.website.privacy.views', url(r'^privacy/$', 'privacy', name='privacy'), )
a578e9df112d8212f39e3e751254ec4e1957cceb
99b062cb9f5f3ff10c9f1fa00e43f6e8151a43a6
/algorithm/day21/순열2.py
0a6081a5a78fa25bfd7c44e27f558a5b94a4ee49
[]
no_license
HSx3/TIL
92acc90758015c2e31660617bd927f7f100f5f64
981c9aaaf09c930d980205f68a28f2fc8006efcb
refs/heads/master
2020-04-11T21:13:36.239246
2019-05-08T08:18:03
2019-05-08T08:18:03
162,099,042
4
0
null
null
null
null
UTF-8
Python
false
false
302
py
def myprint(n): for i in range(n): print("%d" % (a[i]), end=' ') print() def perm(n, k): if n == k: myprint(n) else: for i in range(k, n): a[i], a[k] = a[k], a[i] perm(n, k+1) a[i], a[k] = a[k], a[i] a = [1, 2, 3] perm(3, 0)
77943a4d3e4d1148d94b9ad235dc96195e234ab2
0e478f3d8b6c323c093455428c9094c45de13bac
/src/OTLMOW/OTLModel/Datatypes/KlVerkeersregelaarVoltage.py
34ad4ce0c129e30a204bef55ade1b07e3f23d16f
[ "MIT" ]
permissive
davidvlaminck/OTLMOW
c6eae90b2cab8a741271002cde454427ca8b75ba
48f8c357c475da1d2a1bc7820556843d4b37838d
refs/heads/main
2023-01-12T05:08:40.442734
2023-01-10T15:26:39
2023-01-10T15:26:39
432,681,113
3
1
MIT
2022-06-20T20:36:00
2021-11-28T10:28:24
Python
UTF-8
Python
false
false
1,838
py
# coding=utf-8 import random from OTLMOW.OTLModel.Datatypes.KeuzelijstField import KeuzelijstField from OTLMOW.OTLModel.Datatypes.KeuzelijstWaarde import KeuzelijstWaarde # Generated with OTLEnumerationCreator. To modify: extend, do not edit class KlVerkeersregelaarVoltage(KeuzelijstField): """Keuzelijst met de voorkomende voltages gebruikt voor verkeersregelaars.""" naam = 'KlVerkeersregelaarVoltage' label = 'Verkeersregelaar voltage' objectUri = 'https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#KlVerkeersregelaarVoltage' definition = 'Keuzelijst met de voorkomende voltages gebruikt voor verkeersregelaars.' status = 'ingebruik' codelist = 'https://wegenenverkeer.data.vlaanderen.be/id/conceptscheme/KlVerkeersregelaarVoltage' options = { '230': KeuzelijstWaarde(invulwaarde='230', label='230', status='ingebruik', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerkeersregelaarVoltage/230'), '40': KeuzelijstWaarde(invulwaarde='40', label='40', status='ingebruik', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerkeersregelaarVoltage/40'), '42': KeuzelijstWaarde(invulwaarde='42', label='42', status='ingebruik', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerkeersregelaarVoltage/42') } @classmethod def create_dummy_data(cls): return random.choice(list(map(lambda x: x.invulwaarde, filter(lambda option: option.status == 'ingebruik', cls.options.values()))))
6177c3e5145dab0ebb77f902ac0a558478083544
1ee2cd179e9eb2ec7541dec5b14ce993624181b8
/openrasp_iast/plugin/scanner/directory_basic.py
4883ffe987a3f1031767825e28eed46ad47c6f17
[ "Apache-2.0" ]
permissive
Ze4lfRoG/openrasp-iast
0c8492d5c9fbe0c5b3d994f8aa703628361dd405
0fd4cdaae642a759cffe214de51c392b75aa828e
refs/heads/master
2020-10-01T09:05:36.359241
2019-12-11T12:06:43
2019-12-11T12:06:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,299
py
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- """ Copyright 2017-2019 Baidu Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from core.components.plugin import scan_plugin_base class ScanPlugin(scan_plugin_base.ScanPluginBase): plugin_info = { "name": "directory_basic", "show_name": "目录遍历检测插件", "description": "基础目录遍历漏洞检测插件" } def mutant(self, rasp_result_ins): """ 测试向量生成 """ if not rasp_result_ins.has_hook_type("directory"): return linux_payload_list = [ ("../../../../../../../../../../../../../../../../../../../../etc", "/etc"), ("../../../../etc", "/etc"), ("/etc", "/etc") ] windows_payload_list = [ ("..\\..\\..\\..\\..\\..\\..\\..\\..\\openrasp_dir", ":/openrasp_dir"), ("file://c:\\openrasp_dir", "c:\\openrasp_dir") ] mac_payload_list = [ ("../../../../../../../../../../../../../../../../../../../../private/etc", "/private/etc"), ("../../../private/etc", "/private/etc"), ("/private/etc", "/private/etc") ] server_os = rasp_result_ins.get_server_info()["os"] if server_os == "Windows": payload_list = windows_payload_list elif server_os == "Mac": payload_list = mac_payload_list else: payload_list = linux_payload_list # 获取所有待测试参数 request_data_ins = self.new_request_data(rasp_result_ins) test_params = self.mutant_helper.get_params_list( request_data_ins, ["get", "post", "json", "headers", "cookies"]) for param in test_params: if not request_data_ins.is_param_concat_in_hook("directory", param["value"].rstrip("/\\")): continue payload_seq = self.gen_payload_seq() for payload in payload_list: request_data_ins = self.new_request_data( rasp_result_ins, payload_seq, payload[1]) request_data_ins.set_param( param["type"], param["name"], payload[0]) request_data_list = [request_data_ins] yield request_data_list def check(self, request_data_list): """ 请求结果检测 """ request_data_ins = request_data_list[0] feature = request_data_ins.get_payload_info()["feature"] rasp_result_ins = request_data_ins.get_rasp_result() if rasp_result_ins is None: return None if self.checker.check_concat_in_hook(rasp_result_ins, "directory", feature): return "读取的目录可被用户输入控制" else: return None
cad384be9aede5c74227c0ca4d556d1ada8cbe9a
772e04b18f36fe1bffb05c16ef4eff3ba765fd13
/gcnvisualizer/test/test_visualizer.py
853d514babfbb1580b6492b0b4ad3a106332f9ae
[ "LicenseRef-scancode-other-permissive" ]
permissive
clinfo/kGCN
3c74f552dd9d71d470a3173012b01733a1262688
32328d5a41e6ed7491b3edb705ff94658fc95d3f
refs/heads/master
2023-08-16T19:43:17.149381
2023-08-03T00:08:11
2023-08-03T00:08:11
194,075,235
110
38
NOASSERTION
2022-02-04T17:09:55
2019-06-27T10:31:57
Python
UTF-8
Python
false
false
503
py
import unittest import numpy as np import pytest from gcnvisualizer import GCNVisualizer def test_load_normal_pickle_file(multi_modal_profeat): for filename in multi_modal_profeat: g = GCNVisualizer(filename, loglevel='ERROR') assert ['smiles', 'feature', 'adjacency', 'check_scores', 'feature_IG', 'adjacency_IG', 'profeat_IG', 'vector_modal'] == (list(g.ig_dict.keys())) if __name__ == "__main__": unittest.run()
ca837dfcbf930d6469d02412264df601a0216855
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_347/ch1_2020_03_11_20_09_49_458556.py
a589fa5640321f7bdfd640839fc404d8e838e5a3
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
69
py
def calcula_valor_devido (c, t, i): M = c*((1+i)**t) return M
4941f9ebcf4458f99db5d63c738817d92fa69967
5e557741c8867bca4c4bcf2d5e67409211d059a3
/.circleci/cimodel/data/pytorch_build_data.py
e2172b660e3114b5e40a445762f40a2702cc4f22
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
Pandinosaurus/pytorch
a2bb724cfc548f0f2278b5af2fd8b1d2758adb76
bb8978f605e203fbb780f03010fefbece35ac51c
refs/heads/master
2023-05-02T20:07:23.577610
2021-11-05T14:01:30
2021-11-05T14:04:40
119,666,381
2
0
NOASSERTION
2021-11-05T19:55:56
2018-01-31T09:37:34
C++
UTF-8
Python
false
false
9,147
py
from cimodel.lib.conf_tree import ConfigNode, X, XImportant CONFIG_TREE_DATA = [ ("xenial", [ ("gcc", [ ("5.4", [ # All this subtree rebases to master and then build ("3.6", [ ("important", [X(True)]), ]), ]), # TODO: bring back libtorch test ]), ("cuda", [ ("10.2", [ ("3.6", [ # Build are needed for slow_gradcheck ('build_only', [X(True)]), ("slow_gradcheck", [ # If you update this slow gradcheck, you should # also update docker_definitions.py to make sure # the docker image match the config used here (True, [ ('shard_test', [XImportant(True)]), ]), ]), # UNCOMMENT THE BELOW TO REENABLE LIBTORCH # ("libtorch", [ # (True, [ # ('build_only', [X(True)]), # ]), # ]), ]), ]), ]), ]), ("bionic", [ ("clang", [ ("9", [ ("3.6", [ ("xla", [XImportant(True)]), ]), ]), ]), # @jithunnair-amd believes Jenkins builds are sufficient # ("rocm", [ # ("3.9", [ # ("3.6", [ # ('build_only', [XImportant(True)]), # ]), # ]), # ]), ]), ] def get_major_pyver(dotted_version): parts = dotted_version.split(".") return "py" + parts[0] class TreeConfigNode(ConfigNode): def __init__(self, parent, node_name, subtree): super(TreeConfigNode, self).__init__(parent, self.modify_label(node_name)) self.subtree = subtree self.init2(node_name) def modify_label(self, label): return label def init2(self, node_name): pass def get_children(self): return [self.child_constructor()(self, k, v) for (k, v) in self.subtree] class TopLevelNode(TreeConfigNode): def __init__(self, node_name, subtree): super(TopLevelNode, self).__init__(None, node_name, subtree) # noinspection PyMethodMayBeStatic def child_constructor(self): return DistroConfigNode class DistroConfigNode(TreeConfigNode): def init2(self, node_name): self.props["distro_name"] = node_name def child_constructor(self): distro = self.find_prop("distro_name") next_nodes = { "xenial": XenialCompilerConfigNode, "bionic": BionicCompilerConfigNode, } return next_nodes[distro] class PyVerConfigNode(TreeConfigNode): def init2(self, node_name): self.props["pyver"] = node_name self.props["abbreviated_pyver"] = get_major_pyver(node_name) if node_name == "3.9": self.props["abbreviated_pyver"] = "py3.9" # noinspection PyMethodMayBeStatic def child_constructor(self): return ExperimentalFeatureConfigNode class ExperimentalFeatureConfigNode(TreeConfigNode): def init2(self, node_name): self.props["experimental_feature"] = node_name def child_constructor(self): experimental_feature = self.find_prop("experimental_feature") next_nodes = { "asan": AsanConfigNode, "xla": XlaConfigNode, "mlc": MLCConfigNode, "vulkan": VulkanConfigNode, "parallel_tbb": ParallelTBBConfigNode, "noarch": NoarchConfigNode, "parallel_native": ParallelNativeConfigNode, "onnx": ONNXConfigNode, "libtorch": LibTorchConfigNode, "important": ImportantConfigNode, "build_only": BuildOnlyConfigNode, "shard_test": ShardTestConfigNode, "cuda_gcc_override": CudaGccOverrideConfigNode, "pure_torch": PureTorchConfigNode, "slow_gradcheck": SlowGradcheckConfigNode, } return next_nodes[experimental_feature] class SlowGradcheckConfigNode(TreeConfigNode): def init2(self, node_name): self.props["is_slow_gradcheck"] = True def child_constructor(self): return ExperimentalFeatureConfigNode class PureTorchConfigNode(TreeConfigNode): def modify_label(self, label): return "PURE_TORCH=" + str(label) def init2(self, node_name): self.props["is_pure_torch"] = node_name def child_constructor(self): return ImportantConfigNode class XlaConfigNode(TreeConfigNode): def modify_label(self, label): return "XLA=" + str(label) def init2(self, node_name): self.props["is_xla"] = node_name def child_constructor(self): return ImportantConfigNode class MLCConfigNode(TreeConfigNode): def modify_label(self, label): return "MLC=" + str(label) def init2(self, node_name): self.props["is_mlc"] = node_name def child_constructor(self): return ImportantConfigNode class AsanConfigNode(TreeConfigNode): def modify_label(self, label): return "Asan=" + str(label) def init2(self, node_name): self.props["is_asan"] = node_name def child_constructor(self): return ExperimentalFeatureConfigNode class ONNXConfigNode(TreeConfigNode): def modify_label(self, label): return "Onnx=" + str(label) def init2(self, node_name): self.props["is_onnx"] = node_name def child_constructor(self): return ImportantConfigNode class VulkanConfigNode(TreeConfigNode): def modify_label(self, label): return "Vulkan=" + str(label) def init2(self, node_name): self.props["is_vulkan"] = node_name def child_constructor(self): return ImportantConfigNode class ParallelTBBConfigNode(TreeConfigNode): def modify_label(self, label): return "PARALLELTBB=" + str(label) def init2(self, node_name): self.props["parallel_backend"] = "paralleltbb" def child_constructor(self): return ImportantConfigNode class NoarchConfigNode(TreeConfigNode): def init2(self, node_name): self.props["is_noarch"] = node_name def child_constructor(self): return ImportantConfigNode class ParallelNativeConfigNode(TreeConfigNode): def modify_label(self, label): return "PARALLELNATIVE=" + str(label) def init2(self, node_name): self.props["parallel_backend"] = "parallelnative" def child_constructor(self): return ImportantConfigNode class LibTorchConfigNode(TreeConfigNode): def modify_label(self, label): return "BUILD_TEST_LIBTORCH=" + str(label) def init2(self, node_name): self.props["is_libtorch"] = node_name def child_constructor(self): return ExperimentalFeatureConfigNode class CudaGccOverrideConfigNode(TreeConfigNode): def init2(self, node_name): self.props["cuda_gcc_override"] = node_name def child_constructor(self): return ExperimentalFeatureConfigNode class BuildOnlyConfigNode(TreeConfigNode): def init2(self, node_name): self.props["build_only"] = node_name def child_constructor(self): return ExperimentalFeatureConfigNode class ShardTestConfigNode(TreeConfigNode): def init2(self, node_name): self.props["shard_test"] = node_name def child_constructor(self): return ImportantConfigNode class ImportantConfigNode(TreeConfigNode): def modify_label(self, label): return "IMPORTANT=" + str(label) def init2(self, node_name): self.props["is_important"] = node_name def get_children(self): return [] class XenialCompilerConfigNode(TreeConfigNode): def modify_label(self, label): return label or "<unspecified>" def init2(self, node_name): self.props["compiler_name"] = node_name # noinspection PyMethodMayBeStatic def child_constructor(self): return XenialCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode class BionicCompilerConfigNode(TreeConfigNode): def modify_label(self, label): return label or "<unspecified>" def init2(self, node_name): self.props["compiler_name"] = node_name # noinspection PyMethodMayBeStatic def child_constructor(self): return BionicCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode class XenialCompilerVersionConfigNode(TreeConfigNode): def init2(self, node_name): self.props["compiler_version"] = node_name # noinspection PyMethodMayBeStatic def child_constructor(self): return PyVerConfigNode class BionicCompilerVersionConfigNode(TreeConfigNode): def init2(self, node_name): self.props["compiler_version"] = node_name # noinspection PyMethodMayBeStatic def child_constructor(self): return PyVerConfigNode
182933ad1e32acc47eb2cfc12c855e4c86b85ade
e116a28a8e4d07bb4de1812fde957a38155eb6df
/polar_test2.py
0ee481b4a0480d2965c11c666d56aaca4fe2291a
[]
no_license
gl-coding/EasyPyEcharts
5582ddf6be3158f13663778c1038767a87756216
f9dbe8ad7389a6e2629643c9b7af7b9dc3bfccd5
refs/heads/master
2020-09-29T20:48:46.260306
2019-12-10T12:52:24
2019-12-10T12:52:24
227,119,587
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
#encoding=utf-8 from pyecharts import Polar radius =['周一', '周二', '周三', '周四', '周五', '周六', '周日'] polar =Polar("极坐标系-堆叠柱状图示例", width=1200, height=600) polar.add("", [1, 2, 3, 4, 3, 5, 1], radius_data=radius, type='barAngle', is_stack=True) polar.add("", [2, 4, 6, 1, 2, 3, 1], radius_data=radius, type='barAngle', is_stack=True) polar.add("", [1, 2, 3, 4, 1, 2, 5], radius_data=radius, type='barAngle', is_stack=True) polar.show_config() polar.render()
bae46eca925d4eec064cfa40ac5ad479eccddd16
6a01a9287a4c23c7f11b7c5399cfb96bbe42eba8
/python/scripts/get_nearest_k_features.py
068a702adc3492255203e07630813f3fd49b6ade
[ "MIT" ]
permissive
xguse/gmm-to-gff-transcripts-vs-snps
3c25bf2752aee76174d5dab92060fe7269caf99f
75337135ab8ff6d840af3cfccfe6404a06777a54
refs/heads/master
2021-01-19T01:50:33.473897
2016-08-02T20:31:18
2016-08-02T20:31:18
54,731,430
0
0
null
null
null
null
UTF-8
Python
false
false
1,943
py
"""For each SNP file, produce a bed representing the nearest k gene or mapped transcript features and its distance from the SNP.""" import pybedtools as pbt import pandas as pd k_number = snakemake.params.k_number snp_beds = snakemake.input.snp_beds gene_model_subtracted = snakemake.input.gene_model_subtracted gene_models = snakemake.input.gene_models nearest_features_beds = snakemake.output.nearest_features_beds snps_in_features = snakemake.output.snps_in_features headers = ["SNP_chrom", "SNP_start", "SNP_end", "feature_set_name", "chrom", "chromStart", "chromEnd", "name", "score", "strand", "thickStart", "thickEnd", "itemRgb", "blockCount", "blockSizes", "blockStarts", "distance" ] for snp_bed, nearest_bed, feature_hit_file in zip(snp_beds, nearest_features_beds, snps_in_features): snp_bed = pbt.BedTool(snp_bed) gene_model_subtracted_bed = pbt.BedTool(gene_model_subtracted) gene_models_bed = pbt.BedTool(gene_models) k_nearest = snp_bed.closest([gene_model_subtracted_bed.fn, gene_models_bed.fn], k=k_number, names=['novel_mapped_tx', 'official_annotations'], D='ref', # Include SIGNED distances from SNP based on the ref genome t='all', # Return all members of a distance "tie" mdb='each', # Return `k_number` of neighboors for each `names` ) k_nearest.saveas(nearest_bed) nearest_df = pd.read_csv(nearest_bed, sep="\t", names=headers) nearest_df in_features = nearest_df.query(""" abs(distance) <= 0 """) in_features.to_excel(feature_hit_file, index=False)