blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
ffcb5dfd61b8ea8406307f4d49316125cb08366c
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/agc006/B/4249708.py
c209881efba18f1680c0d7282393670ecf313f49
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
685
py
N,x = map(int,input().split()) if x in (1, 2 * N - 1): print('No') exit() print('Yes') if N == 2 and x == 2: l = [1, 2, 3] print(*l, sep='\n') elif x == 2: l = [4, 1, 2, 3] rest = list(range(5, 2 * N)) m = len(rest) // 2 l = rest[:m] + l + rest[m:] print(*l, sep='\n') elif x == 2 * N - 2: l = [x - 2, x + 1, x, x - 1] rest = list(range(1, 2 * N - 4)) m = len(rest) // 2 l = rest[:m] + l + rest[m:] print(*l, sep='\n') else: l = [x + 2, x - 1, x, x + 1, x - 2] rest = list(range(1, x - 2)) + list(range(x + 3, 2 * N)) m = len(rest) // 2 l = rest[:m] + l + rest[m:] print(*l, sep='\n')
4be4119618f24eb4a854b957e68ff64726717d61
c27a95964b2740e1ec681b7068f52fb573d90321
/aliyun-python-sdk-cms/aliyunsdkcms/request/v20180308/QueryMetricListRequest.py
56216712133c7d35673a04cf20349e748613f843
[ "Apache-2.0" ]
permissive
mysshget/aliyun-openapi-python-sdk
5cf0a0277cce9823966e93b875c23231d8b32c8a
333cdd97c894fea6570983e97d2f6236841bc7d3
refs/heads/master
2020-03-17T23:07:02.942583
2018-05-17T09:50:53
2018-05-17T09:50:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,912
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class QueryMetricListRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Cms', '2018-03-08', 'QueryMetricList','cms') def get_Cursor(self): return self.get_query_params().get('Cursor') def set_Cursor(self,Cursor): self.add_query_param('Cursor',Cursor) def get_callby_cms_owner(self): return self.get_query_params().get('callby_cms_owner') def set_callby_cms_owner(self,callby_cms_owner): self.add_query_param('callby_cms_owner',callby_cms_owner) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_Period(self): return self.get_query_params().get('Period') def set_Period(self,Period): self.add_query_param('Period',Period) def get_Length(self): return self.get_query_params().get('Length') def set_Length(self,Length): self.add_query_param('Length',Length) def get_Project(self): return self.get_query_params().get('Project') def set_Project(self,Project): self.add_query_param('Project',Project) def get_EndTime(self): return self.get_query_params().get('EndTime') def set_EndTime(self,EndTime): self.add_query_param('EndTime',EndTime) def get_Express(self): return self.get_query_params().get('Express') def set_Express(self,Express): self.add_query_param('Express',Express) def get_StartTime(self): return self.get_query_params().get('StartTime') def set_StartTime(self,StartTime): self.add_query_param('StartTime',StartTime) def get_Metric(self): return self.get_query_params().get('Metric') def set_Metric(self,Metric): self.add_query_param('Metric',Metric) def get_Page(self): return self.get_query_params().get('Page') def set_Page(self,Page): self.add_query_param('Page',Page) def get_Dimensions(self): return self.get_query_params().get('Dimensions') def set_Dimensions(self,Dimensions): self.add_query_param('Dimensions',Dimensions)
5b3a2e285dac25d8fbaf09b7b6ce6bb8623be7d1
6b9084d234c87d7597f97ec95808e13f599bf9a1
/training/old/detr/eval_step.py
14c769d423b9428725a45145e5fecae4336afb35
[]
no_license
LitingLin/ubiquitous-happiness
4b46234ce0cb29c4d27b00ec5a60d3eeb52c26fc
aae2d764e136ca4a36c054212b361dd7e8b22cba
refs/heads/main
2023-07-13T19:51:32.227633
2021-08-03T16:02:03
2021-08-03T16:02:03
316,664,903
1
0
null
null
null
null
UTF-8
Python
false
false
2,953
py
import torch import Utils.detr_misc as utils from evaluation.evaluator.coco import CocoEvaluator @torch.no_grad() def evaluate(model, criterion, postprocessors, data_loader, base_ds, device, output_dir): model.eval() criterion.eval() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}')) header = 'Test:' iou_types = tuple(k for k in ('segm', 'bbox') if k in postprocessors.keys()) coco_evaluator = CocoEvaluator(base_ds, iou_types) # coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75] for samples, targets in metric_logger.log_every(data_loader, 10, header): samples = samples.to(device) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] outputs = model(samples) loss_dict = criterion(outputs, targets) weight_dict = criterion.weight_dict # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict} loss_dict_reduced_unscaled = {f'{k}_unscaled': v for k, v in loss_dict_reduced.items()} metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()), **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled) metric_logger.update(class_error=loss_dict_reduced['class_error']) orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0) results = postprocessors['bbox'](outputs, orig_target_sizes) if 'segm' in postprocessors.keys(): target_sizes = torch.stack([t["size"] for t in targets], dim=0) results = postprocessors['segm'](results, outputs, orig_target_sizes, target_sizes) res = {target['image_id'].item(): output for target, output in zip(targets, results)} if coco_evaluator is not None: coco_evaluator.update(res) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) if coco_evaluator is not None: coco_evaluator.synchronize_between_processes() # accumulate predictions from all images if coco_evaluator is not None: coco_evaluator.accumulate() coco_evaluator.summarize() stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()} if coco_evaluator is not None: if 'bbox' in postprocessors.keys(): stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist() if 'segm' in postprocessors.keys(): stats['coco_eval_masks'] = coco_evaluator.coco_eval['segm'].stats.tolist() return stats, coco_evaluator
5337ceda808da03a25bf931d536938d1881c73a9
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/paloaltonetworks/azure-mgmt-paloaltonetworksngfw/azure/mgmt/paloaltonetworksngfw/aio/operations/_firewalls_operations.py
8cc8d9e5ce7f000a913bdbed272f44375a317198
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
50,367
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from io import IOBase from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload import urllib.parse from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models from ..._vendor import _convert_request from ...operations._firewalls_operations import ( build_create_or_update_request, build_delete_request, build_get_global_rulestack_request, build_get_log_profile_request, build_get_request, build_get_support_info_request, build_list_by_resource_group_request, build_list_by_subscription_request, build_save_log_profile_request, build_update_request, ) T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class FirewallsOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.paloaltonetworksngfw.aio.PaloAltoNetworksNgfwMgmtClient`'s :attr:`firewalls` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list_by_subscription(self, **kwargs: Any) -> AsyncIterable["_models.FirewallResource"]: """List FirewallResource resources by subscription ID. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either FirewallResource or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.paloaltonetworksngfw.models.FirewallResource] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.FirewallResourceListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_by_subscription_request( subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list_by_subscription.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("FirewallResourceListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list_by_subscription.metadata = { "url": "/subscriptions/{subscriptionId}/providers/PaloAltoNetworks.Cloudngfw/firewalls" } @distributed_trace def list_by_resource_group( self, resource_group_name: str, **kwargs: Any ) -> AsyncIterable["_models.FirewallResource"]: """List FirewallResource resources by resource group. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either FirewallResource or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.paloaltonetworksngfw.models.FirewallResource] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.FirewallResourceListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_by_resource_group_request( resource_group_name=resource_group_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list_by_resource_group.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("FirewallResourceListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list_by_resource_group.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/PaloAltoNetworks.Cloudngfw/firewalls" } @distributed_trace_async async def get(self, resource_group_name: str, firewall_name: str, **kwargs: Any) -> _models.FirewallResource: """Get a FirewallResource. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FirewallResource or the result of cls(response) :rtype: ~azure.mgmt.paloaltonetworksngfw.models.FirewallResource :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.FirewallResource] = kwargs.pop("cls", None) request = build_get_request( resource_group_name=resource_group_name, firewall_name=firewall_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("FirewallResource", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/PaloAltoNetworks.Cloudngfw/firewalls/{firewallName}" } async def _create_or_update_initial( self, resource_group_name: str, firewall_name: str, resource: Union[_models.FirewallResource, IO], **kwargs: Any ) -> _models.FirewallResource: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.FirewallResource] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(resource, (IOBase, bytes)): _content = resource else: _json = self._serialize.body(resource, "FirewallResource") request = build_create_or_update_request( resource_group_name=resource_group_name, firewall_name=firewall_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self._create_or_update_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize("FirewallResource", pipeline_response) if response.status_code == 201: deserialized = self._deserialize("FirewallResource", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) # type: ignore return deserialized # type: ignore _create_or_update_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/PaloAltoNetworks.Cloudngfw/firewalls/{firewallName}" } @overload async def begin_create_or_update( self, resource_group_name: str, firewall_name: str, resource: _models.FirewallResource, *, content_type: str = "application/json", **kwargs: Any ) -> AsyncLROPoller[_models.FirewallResource]: """Create a FirewallResource. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :param resource: Resource create parameters. Required. :type resource: ~azure.mgmt.paloaltonetworksngfw.models.FirewallResource :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either FirewallResource or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.paloaltonetworksngfw.models.FirewallResource] :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def begin_create_or_update( self, resource_group_name: str, firewall_name: str, resource: IO, *, content_type: str = "application/json", **kwargs: Any ) -> AsyncLROPoller[_models.FirewallResource]: """Create a FirewallResource. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :param resource: Resource create parameters. Required. :type resource: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either FirewallResource or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.paloaltonetworksngfw.models.FirewallResource] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def begin_create_or_update( self, resource_group_name: str, firewall_name: str, resource: Union[_models.FirewallResource, IO], **kwargs: Any ) -> AsyncLROPoller[_models.FirewallResource]: """Create a FirewallResource. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :param resource: Resource create parameters. Is either a FirewallResource type or a IO type. Required. :type resource: ~azure.mgmt.paloaltonetworksngfw.models.FirewallResource or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either FirewallResource or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.paloaltonetworksngfw.models.FirewallResource] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.FirewallResource] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, firewall_name=firewall_name, resource=resource, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): deserialized = self._deserialize("FirewallResource", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method: AsyncPollingMethod = cast( AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "azure-async-operation"}, **kwargs), ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_create_or_update.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/PaloAltoNetworks.Cloudngfw/firewalls/{firewallName}" } @overload async def update( self, resource_group_name: str, firewall_name: str, properties: _models.FirewallResourceUpdate, *, content_type: str = "application/json", **kwargs: Any ) -> _models.FirewallResource: """Update a FirewallResource. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :param properties: The resource properties to be updated. Required. :type properties: ~azure.mgmt.paloaltonetworksngfw.models.FirewallResourceUpdate :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FirewallResource or the result of cls(response) :rtype: ~azure.mgmt.paloaltonetworksngfw.models.FirewallResource :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def update( self, resource_group_name: str, firewall_name: str, properties: IO, *, content_type: str = "application/json", **kwargs: Any ) -> _models.FirewallResource: """Update a FirewallResource. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :param properties: The resource properties to be updated. Required. :type properties: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FirewallResource or the result of cls(response) :rtype: ~azure.mgmt.paloaltonetworksngfw.models.FirewallResource :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def update( self, resource_group_name: str, firewall_name: str, properties: Union[_models.FirewallResourceUpdate, IO], **kwargs: Any ) -> _models.FirewallResource: """Update a FirewallResource. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :param properties: The resource properties to be updated. Is either a FirewallResourceUpdate type or a IO type. Required. :type properties: ~azure.mgmt.paloaltonetworksngfw.models.FirewallResourceUpdate or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FirewallResource or the result of cls(response) :rtype: ~azure.mgmt.paloaltonetworksngfw.models.FirewallResource :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.FirewallResource] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(properties, (IOBase, bytes)): _content = properties else: _json = self._serialize.body(properties, "FirewallResourceUpdate") request = build_update_request( resource_group_name=resource_group_name, firewall_name=firewall_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self.update.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("FirewallResource", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/PaloAltoNetworks.Cloudngfw/firewalls/{firewallName}" } async def _delete_initial( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, firewall_name: str, **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( resource_group_name=resource_group_name, firewall_name=firewall_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self._delete_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/PaloAltoNetworks.Cloudngfw/firewalls/{firewallName}" } @distributed_trace_async async def begin_delete(self, resource_group_name: str, firewall_name: str, **kwargs: Any) -> AsyncLROPoller[None]: """Delete a FirewallResource. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = await self._delete_initial( # type: ignore resource_group_name=resource_group_name, firewall_name=firewall_name, api_version=api_version, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method: AsyncPollingMethod = cast( AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "azure-async-operation"}, **kwargs), ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_delete.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/PaloAltoNetworks.Cloudngfw/firewalls/{firewallName}" } @distributed_trace_async async def get_global_rulestack( self, resource_group_name: str, firewall_name: str, **kwargs: Any ) -> _models.GlobalRulestackInfo: """Get Global Rulestack associated with the Firewall. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: GlobalRulestackInfo or the result of cls(response) :rtype: ~azure.mgmt.paloaltonetworksngfw.models.GlobalRulestackInfo :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.GlobalRulestackInfo] = kwargs.pop("cls", None) request = build_get_global_rulestack_request( resource_group_name=resource_group_name, firewall_name=firewall_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get_global_rulestack.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("GlobalRulestackInfo", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_global_rulestack.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/PaloAltoNetworks.Cloudngfw/firewalls/{firewallName}/getGlobalRulestack" } @distributed_trace_async async def get_log_profile(self, resource_group_name: str, firewall_name: str, **kwargs: Any) -> _models.LogSettings: """Log Profile for Firewall. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: LogSettings or the result of cls(response) :rtype: ~azure.mgmt.paloaltonetworksngfw.models.LogSettings :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.LogSettings] = kwargs.pop("cls", None) request = build_get_log_profile_request( resource_group_name=resource_group_name, firewall_name=firewall_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get_log_profile.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("LogSettings", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_log_profile.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/PaloAltoNetworks.Cloudngfw/firewalls/{firewallName}/getLogProfile" } @distributed_trace_async async def get_support_info( self, resource_group_name: str, firewall_name: str, email: Optional[str] = None, **kwargs: Any ) -> _models.SupportInfo: """support info for firewall. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :param email: email address on behalf of which this API called. Default value is None. :type email: str :keyword callable cls: A custom type or function that will be passed the direct response :return: SupportInfo or the result of cls(response) :rtype: ~azure.mgmt.paloaltonetworksngfw.models.SupportInfo :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.SupportInfo] = kwargs.pop("cls", None) request = build_get_support_info_request( resource_group_name=resource_group_name, firewall_name=firewall_name, subscription_id=self._config.subscription_id, email=email, api_version=api_version, template_url=self.get_support_info.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("SupportInfo", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_support_info.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/PaloAltoNetworks.Cloudngfw/firewalls/{firewallName}/getSupportInfo" } @overload async def save_log_profile( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, firewall_name: str, log_settings: Optional[_models.LogSettings] = None, *, content_type: str = "application/json", **kwargs: Any ) -> None: """Log Profile for Firewall. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :param log_settings: Default value is None. :type log_settings: ~azure.mgmt.paloaltonetworksngfw.models.LogSettings :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def save_log_profile( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, firewall_name: str, log_settings: Optional[IO] = None, *, content_type: str = "application/json", **kwargs: Any ) -> None: """Log Profile for Firewall. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :param log_settings: Default value is None. :type log_settings: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def save_log_profile( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, firewall_name: str, log_settings: Optional[Union[_models.LogSettings, IO]] = None, **kwargs: Any ) -> None: """Log Profile for Firewall. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param firewall_name: Firewall resource name. Required. :type firewall_name: str :param log_settings: Is either a LogSettings type or a IO type. Default value is None. :type log_settings: ~azure.mgmt.paloaltonetworksngfw.models.LogSettings or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[None] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(log_settings, (IOBase, bytes)): _content = log_settings else: if log_settings is not None: _json = self._serialize.body(log_settings, "LogSettings") else: _json = None request = build_save_log_profile_request( resource_group_name=resource_group_name, firewall_name=firewall_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self.save_log_profile.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) save_log_profile.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/PaloAltoNetworks.Cloudngfw/firewalls/{firewallName}/saveLogProfile" }
4fee8226361947afb1ef025ada908dc3ad5f97a7
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2526/48083/309473.py
a8d534b2af549d2506c477c229047c81420f23b7
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
1,340
py
from typing import List class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def getAllElements(self, root1: TreeNode, root2: TreeNode) -> List[int]: res = [] def inOrder(root): if root: inOrder(root.left) res.append(root.val) inOrder(root.right) inOrder(root1) inOrder(root2) res = filter(None, res) # return sorted(map(int,res)) def str2arr(self,t): t = t[1:-1] t = t.split(',') return t def creatTree(self,arr): nodes = [] for a in arr: node = TreeNode(a) nodes.append(node) parentNum = len(arr) // 2 - 1 for i in range(parentNum+1): leftIndex = 2 * i + 1 rightIndex = 2 * i + 2 if nodes[leftIndex].val!='null': nodes[i].left = nodes[leftIndex] if rightIndex < len(arr) and nodes[rightIndex].val!='null': nodes[i].right = nodes[rightIndex] return nodes[0] s = Solution() t1 = input() t2 = input() t1 = s.str2arr(t1) t2 = s.str2arr(t2) root1 = s.creatTree(t1) root2 = s.creatTree(t2) res = s.getAllElements(root1, root2) print(res)
6fb6e1524af5bc5732e4bc123217c972f05010a3
cf9b83d667433a5f912f8981357483197624983d
/editors/content/admin.py
75694e4aaca1e16700897e8f2668a55b4381efb9
[ "Apache-2.0" ]
permissive
LeaseMagnetsTeam/editors.art
08d13e58a17c9930efe78f99d4dc4e25898612f3
778ca76439da798f3b7ffbac5b83f3e85b4f4fca
refs/heads/main
2023-06-26T17:17:52.336540
2021-07-26T00:09:30
2021-07-26T00:09:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
from django.contrib import admin from editors.content.models import Edit admin.site.register(Edit)
beb51d68a2bfda9d9043f37aca7dfab32345ec5d
0c66e605e6e4129b09ea14dbb6aa353d18aaa027
/diventi/blog/migrations/0011_auto_20200502_1924.py
cafdf11a5790066124e2ac11c41e6c0b8e07572d
[ "Apache-2.0" ]
permissive
flavoi/diventi
58fbc8c947f387cbcc1ce607878a59a6f2b72313
c0b1efe2baa3ff816d6ee9a8e86623f297973ded
refs/heads/master
2023-07-20T09:32:35.897661
2023-07-11T19:44:26
2023-07-11T19:44:26
102,959,477
2
1
Apache-2.0
2023-02-08T01:03:17
2017-09-09T14:10:51
Python
UTF-8
Python
false
false
612
py
# Generated by Django 2.2.12 on 2020-05-02 17:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0010_auto_20200229_1600'), ] operations = [ migrations.AlterField( model_name='blogcover', name='color', field=models.CharField(blank=True, choices=[('info', 'Blue'), ('primary', 'Rose'), ('danger', 'Red'), ('warning', 'Yellow'), ('success', 'Green'), ('default', 'Gray'), ('dark', 'Black'), ('light', 'White')], default='warning', max_length=30, verbose_name='color'), ), ]
2c8b29f4777567834b9d0affa686caba95f48ef3
d1c29c9f06d56644ca2fb11fcff8c25703aced79
/MMCG/make_plots.py
891af441059f2c0d34f6177672eb9d172bde2fe6
[]
no_license
jjhelmus/arm_vap_scripts
4a3d7bbe9e277972312484fe46a35c92dae1c71c
1d49d0e2f8affea11aabc000f74d8d1c4be75ef5
refs/heads/master
2021-01-22T05:24:35.935447
2013-04-12T14:38:31
2013-04-12T14:38:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
861
py
#!/usr/bin/env python import matplotlib.pyplot as plt import netCDF4 import pyart # MMCG figure dataset = netCDF4.Dataset('sgpcsaprmmcgi7.c0.20110520.110100.nc') refl = dataset.variables['reflectivity_horizontal'] fig = plt.figure() ax = fig.add_subplot(111) ax.imshow(refl[0,4], origin='lower') fig.savefig('mapped_figure.png') # Test dataset = netCDF4.Dataset('foo.dir/sgpcsaprmmcgI7.c0.20110520.110100.nc') refl = dataset.variables['reflectivity_horizontal'] fig = plt.figure() ax = fig.add_subplot(111) ax.imshow(refl[0,4], origin='lower') fig.savefig('exp_figure.png') # Radial coords """ radar = pyart.io.read_netcdf('sgpcsaprsurcmacI7.c0.20110520.110100.nc') display = pyart.graph.RadarDisplay(radar) fig = plt.figure() ax = fig.add_subplot(111) display.plot_ppi('reflectivity_horizontal', 0, vmin=-16, vmax=48) fig.savefig('radial_figure.png') """
0396eb254b1de5fa42497fb6a7b869393ca51085
29c58b3bec6ac0fcdb3070efc118600ee92004da
/test/test_unread_count.py
42aeede4b08156288cd84090b1b6d8c211d1374e
[ "MIT" ]
permissive
mailslurp/mailslurp-client-python
a2b5a0545206714bd4462ae517f242852b52aaf9
5c9a7cfdd5ea8bf671928023e7263847353d92c4
refs/heads/master
2023-06-23T00:41:36.257212
2023-06-14T10:10:14
2023-06-14T10:10:14
204,662,133
8
0
null
null
null
null
UTF-8
Python
false
false
1,807
py
# coding: utf-8 """ MailSlurp API MailSlurp is an API for sending and receiving emails from dynamically allocated email addresses. It's designed for developers and QA teams to test applications, process inbound emails, send templated notifications, attachments, and more. ## Resources - [Homepage](https://www.mailslurp.com) - Get an [API KEY](https://app.mailslurp.com/sign-up/) - Generated [SDK Clients](https://docs.mailslurp.com/) - [Examples](https://github.com/mailslurp/examples) repository # noqa: E501 The version of the OpenAPI document: 6.5.2 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import mailslurp_client from mailslurp_client.models.unread_count import UnreadCount # noqa: E501 from mailslurp_client.rest import ApiException class TestUnreadCount(unittest.TestCase): """UnreadCount unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test UnreadCount include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = mailslurp_client.models.unread_count.UnreadCount() # noqa: E501 if include_optional : return UnreadCount( count = 56 ) else : return UnreadCount( count = 56, ) def testUnreadCount(self): """Test UnreadCount""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
8979b51513153b74eb4a26efe75e95c67319ebef
40b42ccf2b6959d6fce74509201781be96f04475
/mmocr/models/textdet/necks/fpem_ffm.py
c98b43f1fc2642db598a0f9094b88e4851cc9e75
[ "Apache-2.0" ]
permissive
xdxie/WordArt
2f1414d8e4edaa89333353d0b28e5096e1f87263
89bf8a218881b250d0ead7a0287526c69586c92a
refs/heads/main
2023-05-23T02:04:22.185386
2023-03-06T11:51:43
2023-03-06T11:51:43
515,485,694
106
12
null
null
null
null
UTF-8
Python
false
false
5,999
py
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn.functional as F from mmcv.runner import BaseModule, ModuleList from torch import nn from mmocr.models.builder import NECKS class FPEM(BaseModule): """FPN-like feature fusion module in PANet. Args: in_channels (int): Number of input channels. init_cfg (dict or list[dict], optional): Initialization configs. """ def __init__(self, in_channels=128, init_cfg=None): super().__init__(init_cfg=init_cfg) self.up_add1 = SeparableConv2d(in_channels, in_channels, 1) self.up_add2 = SeparableConv2d(in_channels, in_channels, 1) self.up_add3 = SeparableConv2d(in_channels, in_channels, 1) self.down_add1 = SeparableConv2d(in_channels, in_channels, 2) self.down_add2 = SeparableConv2d(in_channels, in_channels, 2) self.down_add3 = SeparableConv2d(in_channels, in_channels, 2) def forward(self, c2, c3, c4, c5): """ Args: c2, c3, c4, c5 (Tensor): Each has the shape of :math:`(N, C_i, H_i, W_i)`. Returns: list[Tensor]: A list of 4 tensors of the same shape as input. """ # upsample c4 = self.up_add1(self._upsample_add(c5, c4)) # c4 shape c3 = self.up_add2(self._upsample_add(c4, c3)) c2 = self.up_add3(self._upsample_add(c3, c2)) # downsample c3 = self.down_add1(self._upsample_add(c3, c2)) c4 = self.down_add2(self._upsample_add(c4, c3)) c5 = self.down_add3(self._upsample_add(c5, c4)) # c4 / 2 return c2, c3, c4, c5 def _upsample_add(self, x, y): return F.interpolate(x, size=y.size()[2:]) + y class SeparableConv2d(BaseModule): def __init__(self, in_channels, out_channels, stride=1, init_cfg=None): super().__init__(init_cfg=init_cfg) self.depthwise_conv = nn.Conv2d( in_channels=in_channels, out_channels=in_channels, kernel_size=3, padding=1, stride=stride, groups=in_channels) self.pointwise_conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=1) self.bn = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() def forward(self, x): x = self.depthwise_conv(x) x = self.pointwise_conv(x) x = self.bn(x) x = self.relu(x) return x @NECKS.register_module() class FPEM_FFM(BaseModule): """This code is from https://github.com/WenmuZhou/PAN.pytorch. Args: in_channels (list[int]): A list of 4 numbers of input channels. conv_out (int): Number of output channels. fpem_repeat (int): Number of FPEM layers before FFM operations. align_corners (bool): The interpolation behaviour in FFM operation, used in :func:`torch.nn.functional.interpolate`. init_cfg (dict or list[dict], optional): Initialization configs. """ def __init__(self, in_channels, conv_out=128, fpem_repeat=2, align_corners=False, init_cfg=dict( type='Xavier', layer='Conv2d', distribution='uniform')): super().__init__(init_cfg=init_cfg) # reduce layers self.reduce_conv_c2 = nn.Sequential( nn.Conv2d( in_channels=in_channels[0], out_channels=conv_out, kernel_size=1), nn.BatchNorm2d(conv_out), nn.ReLU()) self.reduce_conv_c3 = nn.Sequential( nn.Conv2d( in_channels=in_channels[1], out_channels=conv_out, kernel_size=1), nn.BatchNorm2d(conv_out), nn.ReLU()) self.reduce_conv_c4 = nn.Sequential( nn.Conv2d( in_channels=in_channels[2], out_channels=conv_out, kernel_size=1), nn.BatchNorm2d(conv_out), nn.ReLU()) self.reduce_conv_c5 = nn.Sequential( nn.Conv2d( in_channels=in_channels[3], out_channels=conv_out, kernel_size=1), nn.BatchNorm2d(conv_out), nn.ReLU()) self.align_corners = align_corners self.fpems = ModuleList() for _ in range(fpem_repeat): self.fpems.append(FPEM(conv_out)) def forward(self, x): """ Args: x (list[Tensor]): A list of four tensors of shape :math:`(N, C_i, H_i, W_i)`, representing C2, C3, C4, C5 features respectively. :math:`C_i` should matches the number in ``in_channels``. Returns: list[Tensor]: Four tensors of shape :math:`(N, C_{out}, H_0, W_0)` where :math:`C_{out}` is ``conv_out``. """ c2, c3, c4, c5 = x # reduce channel c2 = self.reduce_conv_c2(c2) c3 = self.reduce_conv_c3(c3) c4 = self.reduce_conv_c4(c4) c5 = self.reduce_conv_c5(c5) # FPEM for i, fpem in enumerate(self.fpems): c2, c3, c4, c5 = fpem(c2, c3, c4, c5) if i == 0: c2_ffm = c2 c3_ffm = c3 c4_ffm = c4 c5_ffm = c5 else: c2_ffm = c2_ffm + c2 c3_ffm = c3_ffm + c3 c4_ffm = c4_ffm + c4 c5_ffm = c5_ffm + c5 # FFM c5 = F.interpolate( c5_ffm, c2_ffm.size()[-2:], mode='bilinear', align_corners=self.align_corners) c4 = F.interpolate( c4_ffm, c2_ffm.size()[-2:], mode='bilinear', align_corners=self.align_corners) c3 = F.interpolate( c3_ffm, c2_ffm.size()[-2:], mode='bilinear', align_corners=self.align_corners) outs = [c2_ffm, c3, c4, c5] return tuple(outs)
3652511f4a3c2e9b77748a3cf8132b152949bf44
ffe4c155e228f1d3bcb3ff35265bb727c684ec1a
/Codes/Quiz/number_of_factors.py
68ce727aa40589c018b92480a89b9de9e4e47ed7
[]
no_license
yuuee-www/Python-Learning
848407aba39970e7e0058a4adb09dd35818c1d54
2964c9144844aed576ea527acedf1a465e9a8664
refs/heads/master
2023-03-12T00:55:06.034328
2021-02-28T13:43:14
2021-02-28T13:43:14
339,406,816
0
0
null
2021-02-28T11:27:40
2021-02-16T13:26:46
Jupyter Notebook
UTF-8
Python
false
false
269
py
def numberOfFactors(num): ans = 1 x = 2 while x * x <= num: cnt = 1 while num % x == 0: cnt += 1 num /= x ans = cnt x += 1 return ans * (1 + (num > 1)) n = int(input()) print(numberOfFactors(n))
0b8609103dd7f8a320e1b62047793f8513669fc7
0d247fea57ee40717166b1ff753fd626092e9e78
/tests/test_completer.py
279b880925ed77714e3e343298ac7a331f4a7706
[]
no_license
sean-heller/dockercli
362ff0310992b2257ed20077b76245729ca2a227
ab9ca8f13d01a5d8c5d3f58743c476836b06d186
refs/heads/master
2021-05-29T07:27:33.954752
2015-07-20T16:21:09
2015-07-20T16:21:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,645
py
from __future__ import unicode_literals import pytest from prompt_toolkit.completion import Completion from prompt_toolkit.document import Document from dockercli.options import all_options from dockercli.options import COMMAND_NAMES @pytest.fixture def completer(): import dockercli.completer as cmp return cmp.DockerCompleter() @pytest.fixture def complete_event(): from mock import Mock return Mock() cs1 = ['newton', 'tesla', 'einstein', 'edison'] rs1 = ['einstein', 'edison'] im1 = ['ubuntu', 'hello-world', 'postgres', 'nginx'] cs2 = ['desperate_hodgkin', 'desperate_torvalds', 'silly_fermat', 'some-percona'] def test_empty_string_completion(completer, complete_event): """ In the beginning of the line, all available commands are suggested. """ text = '' position = 0 result = set(completer.get_completions( Document(text=text, cursor_position=position), complete_event)) assert result == set(map(Completion, COMMAND_NAMES)) def test_build_path_completion_absolute(completer, complete_event): """ Suggest build paths from filesystem root. """ command = 'build /' position = len(command) result = set(completer.get_completions( Document(text=command, cursor_position=position), complete_event)) expected = ['etc', 'home', 'tmp', 'usr', 'var'] expected = set(map(lambda t: Completion(t, 0), expected)) assert expected.issubset(result) def test_build_path_completion_user(completer, complete_event): """ Suggest build paths from user home directory. """ command = 'build ~' position = len(command) result = set(completer.get_completions( Document(text=command, cursor_position=position), complete_event)) expected = ['~/Documents', '~/Downloads'] expected = set(map(lambda t: Completion(t, -1), expected)) assert expected.issubset(result) def test_build_path_completion_user_dir(completer, complete_event): """ Suggest build paths from user home directory. """ command = 'build ~/s' position = len(command) result = set(completer.get_completions( Document(text=command, cursor_position=position), complete_event)) expected = ['src'] expected = set(map(lambda t: Completion(t, -1), expected)) assert expected.issubset(result) @pytest.mark.parametrize("command, expected", [ ("h", ['help']), ("he", ['help']), ("hel", ['help']), ("help", ['help']), ('run -d ubuntu:14.04 /bin/sh -c "w', []) # not complete in quoted string ]) def test_command_completion(command, expected): """ Test command suggestions. :param command: string: text that user started typing :param expected: list: expected completions """ c = completer() e = complete_event() position = len(command) result = set(c.get_completions( Document(text=command, cursor_position=position), e)) expected = set(map(lambda t: Completion(t, -len(command)), expected)) assert result == expected @pytest.mark.parametrize("command, expected", [ ("h", ['help', 'shell', 'push', 'attach', 'search']), ("he", ['help', 'shell']), ("hel", ['help', 'shell']), ("help", ['help']), ('run -d ubuntu:14.04 /bin/sh -c "w', []) # not complete in quoted string ]) def test_command_completion_fuzzy(command, expected): """ Test command suggestions. :param command: string: text that user started typing :param expected: list: expected completions """ c = completer() e = complete_event() c.set_fuzzy_match(True) position = len(command) result = list(c.get_completions( Document(text=command, cursor_position=position), e)) expected = list(map(lambda t: Completion(t, -len(command)), expected)) assert result == expected pso = list(filter(lambda x: x.name.startswith('-'), all_options('ps'))) @pytest.mark.parametrize("command, expected, expected_pos", [ ("ps ", pso, 0), ("ps --", list(filter( lambda x: x.long_name and x.long_name.startswith('--'), pso)), -2), ("ps --h", list(filter( lambda x: x.long_name and x.long_name.startswith('--h'), pso)), -3), ("ps --all ", list(filter( lambda x: x.long_name not in ['--all'], pso)), 0), ("ps --all --quiet ", list(filter( lambda x: x.long_name not in ['--all', '--quiet'], pso)), 0), ]) def test_options_completion_long(command, expected, expected_pos): """ Test command options suggestions. :param command: string: text that user started typing :param expected: list: expected completions """ c = completer() e = complete_event() position = len(command) result = set(c.get_completions( Document(text=command, cursor_position=position), e)) expected = set(map(lambda t: Completion( t.get_name(is_long=True), expected_pos, t.display), expected)) assert result == expected def option_map(cmd, is_long): return { x.get_name(is_long): x.display for x in all_options(cmd) if x.name.startswith('-') } psm = option_map('ps', True) @pytest.mark.parametrize("command, expected, expected_pos", [ ("ps ", sorted(psm.keys()), 0), ("ps h", ['--help'], -1), ("ps i", ['--since', '--size', '--quiet'], -1), ("ps ze", ['--size'], -2), ]) def test_options_completion_long_fuzzy(command, expected, expected_pos): """ Test command options suggestions. :param command: string: text that user started typing :param expected: list: expected completions """ c = completer() e = complete_event() c.set_fuzzy_match(True) position = len(command) result = list(c.get_completions( Document(text=command, cursor_position=position), e)) expected = list(map(lambda t: Completion( t, expected_pos, psm[t]), expected)) assert result == expected @pytest.mark.parametrize("command, expected, expected_pos", [ ("ps ", pso, 0), ("ps -", filter( lambda x: x.name.startswith('-'), pso), -1), ("ps -h", filter( lambda x: x.short_name and x.short_name.startswith('-h'), pso), -2), ]) def test_options_completion_short(command, expected, expected_pos): """ Test command options suggestions. :param command: string: text that user started typing :param expected: list: expected completions """ c = completer() e = complete_event() c.set_long_options(False) position = len(command) result = set(c.get_completions( Document(text=command, cursor_position=position), e)) expected = set(map(lambda t: Completion( t.get_name( is_long=c.get_long_options()), expected_pos, t.display), expected)) assert result == expected @pytest.mark.parametrize("command, expected, expected_pos", [ ("ps --before ", cs1, 0), ("ps --before e", filter(lambda x: x.startswith('e'), cs1), -1), ("ps --before ei", filter(lambda x: x.startswith('ei'), cs1), -2), ]) def test_options_container_completion(command, expected, expected_pos): """ Suggest container names in relevant options (ps --before) """ c = completer() e = complete_event() c.set_containers(cs1) position = len(command) result = set(c.get_completions( Document(text=command, cursor_position=position), e)) expected = set(map(lambda t: Completion(t, expected_pos), expected)) assert result == expected @pytest.mark.parametrize("command, expected, expected_pos", [ ("top ", list(map( lambda x: (x, x), rs1)) + [('--help', '-h/--help')], 0), ("top e", map( lambda x: (x, x), filter(lambda x: x.startswith('e'), rs1)), -1), ]) def test_options_container_running_completion(command, expected, expected_pos): """ Suggest running container names (top [container]) """ c = completer() e = complete_event() c.set_containers(cs1) c.set_running(rs1) position = len(command) result = set(c.get_completions( Document(text=command, cursor_position=position), e)) expected_completions = set() for text, display in expected: if display: expected_completions.add(Completion(text, expected_pos, display)) else: expected_completions.add(Completion(text, expected_pos)) assert result == expected_completions @pytest.mark.parametrize("command, expected, expected_pos", [ ("rm ", ['--all-stopped', ('--help', '-h/--help')] + cs2, 0), ("rm spe", ['--all-stopped', 'desperate_hodgkin', 'desperate_torvalds', 'some-percona'], -3), ]) def test_options_container_completion_fuzzy(command, expected, expected_pos): """ Suggest running container names (top [container]) """ c = completer() e = complete_event() c.set_containers(cs2) c.set_fuzzy_match(True) position = len(command) result = list(c.get_completions( Document(text=command, cursor_position=position), e)) expected_completions = [] for x in expected: if isinstance(x, tuple): expected_completions.append(Completion(x[0], expected_pos, x[1])) else: expected_completions.append(Completion(x, expected_pos)) assert result == expected_completions def test_options_image_completion(completer, complete_event): """ Suggest image names in relevant options (images --filter) """ command = 'images --filter ' expected = ['ubuntu', 'hello-world', 'postgres', 'nginx'] expected_pos = 0 completer.set_images(expected) position = len(command) result = set(completer.get_completions( Document(text=command, cursor_position=position), complete_event)) expected = set(map(lambda t: Completion(t, expected_pos), expected)) assert result == expected @pytest.mark.parametrize("command, expected, expected_pos", [ ('images --filter ', ['hello-world', 'nginx', 'postgres', 'ubuntu'], 0), ('images --filter n', ['nginx', 'ubuntu'], -1), ('images --filter g', ['nginx', 'postgres'], -1), ('images --filter u', ['ubuntu'], -1), ]) def test_options_image_completion_fuzzy(command, expected, expected_pos): """ Suggest image names in relevant options (images --filter) """ c = completer() e = complete_event() c.set_images(im1) c.set_fuzzy_match(True) position = len(command) result = list(c.get_completions( Document(text=command, cursor_position=position), e)) expected = list(map(lambda t: Completion(t, expected_pos), expected)) assert result == expected
876d42eca7d958444943cfd5e550208f8781fe15
43c24c890221d6c98e4a45cd63dba4f1aa859f55
/test/cpython/test_copy_reg.py
2f49eb711e1c3c92f0d6818c85ca52b10e5eb43c
[ "Python-2.0", "Apache-2.0", "BSD-2-Clause" ]
permissive
jmgc/pyston
c8e4df03c33c6b81d20b7d51a781d9e10148238e
9f672c1bbb75710ac17dd3d9107da05c8e9e8e8f
refs/heads/master
2020-12-11T07:51:58.968440
2020-09-11T14:38:38
2020-09-11T14:38:38
39,242,644
0
0
NOASSERTION
2020-09-11T14:38:39
2015-07-17T08:09:31
Python
UTF-8
Python
false
false
44
py
../../from_cpython/Lib/test/test_copy_reg.py
23b8ea48b8dcdfd520fd983a55990ac4992ded00
4017add8fa767cf2eca9163791aa65ee77c67a07
/code/gradient_descent/first.py
2a722d65bc85c82cd02c686f9e1e382f1907852a
[]
no_license
ducksfrogs/numpy_data_ana
00c0928f2ddc7a8ad0ea9ecdefa3815a8d880969
9d89bc377a3015c19c74f6b5aa500f2f2f08cdb1
refs/heads/master
2022-10-19T22:37:10.314453
2020-06-09T00:05:23
2020-06-09T00:05:23
268,383,582
0
0
null
null
null
null
UTF-8
Python
false
false
1,939
py
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_boston dataset = load_boston() samples, label, feature_names = dataset.data, dataset.target, dataset.feature_names bostondf = pd.DataFrame(dataset.data) bostondf.columns = dataset.feature_names bostondf['Target price'] = dataset.target bostondf.head() bostondf.plot(x='RM', y='Target price', style='o') def prediction(X, coefficient, intercept): return X*coefficient + intercept def cost_function(X, Y, coefficient, intercept): MSE = 0.0 for i in range(len(X)): MSE += (Y[i] -(coefficient*X[i] + intercept))**2 return MSE / len(X) def update_weights(X, Y, coefficient, intercept, learning_rate): coefficient_derivative = 0 intercept_derivative = 0 for i in range(len(X)): coefficient_derivative += -2*X[i] *(Y[i] -(coefficient * X[i] + intercept)) intercept_derivative += -2*(Y[i] - (coefficient* X[i] + intercept)) coefficient -= (coefficient_derivative / len(X)) * learning_rate intercept -= (intercept_derivative / len(X)) * learning_rate return coefficient, intercept def train(X, Y, coefficient, intercept, learning_rate, iteration): cost_hist = [] for i in range(iteration): coefficient, intercept = update_weights(X, Y, coefficient, intercept, learning_rate) cost = cost_function(X, Y, coefficient, intercept) cost_hist.append(cost) return coefficient, intercept, cost_hist learning_rate = 0.01 iteration = 10001 coefficient = 0.3 intercept = 2 X = bostondf.iloc[:, 5:6].values Y = bostondf.iloc[:, 13:14].values # coefficient, intercept, cost_history = train(X, Y, coefficient, intercept, learning_rate, iteration) coefficient, intercept, cost_history = train(X, Y, coefficient, intercept=2, learning_rate=0.01, iteration=10001) y_hat = X*coefficient + intercept plt.plot(X, Y, 'bo') plt.plot(X, y_hat) plt.show()
c79e23af4259ba1c22d26c8aa3efba74db913669
3fb24e6505ffdc3a3961c467bc54ba7c0b526454
/gravityRK4_resized.py
bb4decb7fef61bfc5574688ebcdd950f6745dc2a
[ "MIT" ]
permissive
martinohanlon/minecraft-planets
8d76018cb1dc4154becf9ec836f1e00488673b9e
c7017eb9be6260c8c664891a77063305ac97ae57
refs/heads/master
2020-06-02T07:50:33.539646
2013-03-07T21:19:43
2013-03-07T21:19:43
8,636,766
2
1
null
null
null
null
UTF-8
Python
false
false
10,722
py
#!/usr/bin/env python """ An improved version of my Python-based gravity simulator, using Runge-Kutta 4th order solution of the differential equations - coded during Xmas 2012. Happy holidays, everyone! I've always been fascinated by space - ever since I read 'The Family of the Sun', when I was young. And I always wanted to simulate what I've read about Newton's gravity law, and see what happens in... a universe of my own making :-) So: The following code 'sprays' some 'planets' randomly, around a sun, inside a 900x600 window (the values are below, change them at will). Afterwards, it applies a very simple set of laws: - Gravity, inversely proportional to the square of the distance, and linearly proportional to the product of the two masses - Elastic collissions of two objects if they are close enough to touch: a merged object is then created, that maintains the momentum (mass*velocity) and the mass of the two merged ones. - This updated version of the code is using the RK4 solution of the velocity/ acceleration differential equation, and is in fact based on the excellent blog of Glenn Fiedler (http://gafferongames.com) Use the numeric keypad's +/- to zoom in/out, and press SPACE to toggle showing/hiding the orbits trace. Blog post at: http://users.softlab.ntua.gr/~ttsiod/gravity.html http://ttsiodras.github.com/gravity.html Thanassis Tsiodras [email protected] """ import sys import math import pygame import random from collections import defaultdict # The window size WIDTH, HEIGHT = 50, 50 WIDTHD2, HEIGHTD2 = WIDTH/2., HEIGHT/2. # The number of simulated planets PLANETS = 30 # The density of the planets - used to calculate their mass # from their volume (i.e. via their radius) DENSITY = 0.001 # The gravity coefficient - it's my universe, I can pick whatever I want :-) GRAVITYSTRENGTH = 1.e4 # The global list of planets g_listOfPlanets = [] class State: """Class representing position and velocity.""" def __init__(self, x, y, vx, vy): self._x, self._y, self._vx, self._vy = x, y, vx, vy def __repr__(self): return 'x:{x} y:{y} vx:{vx} vy:{vy}'.format( x=self._x, y=self._y, vx=self._vx, vy=self._vy) class Derivative: """Class representing velocity and acceleration.""" def __init__(self, dx, dy, dvx, dvy): self._dx, self._dy, self._dvx, self._dvy = dx, dy, dvx, dvy def __repr__(self): return 'dx:{dx} dy:{dy} dvx:{dvx} dvy:{dvy}'.format( dx=self._dx, dy=self._dy, dvx=self._dvx, dvy=self._dvy) class Planet: """Class representing a planet. The "_st" member is an instance of "State", carrying the planet's position and velocity - while the "_m" and "_r" members represents the planet's mass and radius.""" def __init__(self, initialState=None): #if PLANETS == 1: if initialState != None: # A nice example of a planet orbiting around our sun :-) #self._st = State(15, 25, 0, 0.2) self._st = initialState else: # otherwise pick a random position and velocity self._st = State( float(random.randint(0, WIDTH)), float(random.randint(0, HEIGHT)), float(random.randint(0, 40)/100.)-0.2, float(random.randint(0, 40)/100.)-0.2) self._r = 0.55 self.setMassFromRadius() self._merged = False def __repr__(self): return repr(self._st) def acceleration(self, state, unused_t): """Calculate acceleration caused by other planets on this one.""" ax = 0.0 ay = 0.0 for p in g_listOfPlanets: if p is self or p._merged: continue # ignore ourselves and merged planets dx = p._st._x - state._x dy = p._st._y - state._y dsq = dx*dx + dy*dy # distance squared dr = math.sqrt(dsq) # distance force = GRAVITYSTRENGTH*self._m*p._m/dsq if dsq>1e-10 else 0. # Accumulate acceleration... ax += force*dx/dr ay += force*dy/dr return (ax, ay) def initialDerivative(self, state, t): """Part of Runge-Kutta method.""" ax, ay = self.acceleration(state, t) return Derivative(state._vx, state._vy, ax, ay) def nextDerivative(self, initialState, derivative, t, dt): """Part of Runge-Kutta method.""" state = State(0., 0., 0., 0.) state._x = initialState._x + derivative._dx*dt state._y = initialState._y + derivative._dy*dt state._vx = initialState._vx + derivative._dvx*dt state._vy = initialState._vy + derivative._dvy*dt ax, ay = self.acceleration(state, t+dt) return Derivative(state._vx, state._vy, ax, ay) def updatePlanet(self, t, dt): """Runge-Kutta 4th order solution to update planet's pos/vel.""" a = self.initialDerivative(self._st, t) b = self.nextDerivative(self._st, a, t, dt*0.5) c = self.nextDerivative(self._st, b, t, dt*0.5) d = self.nextDerivative(self._st, c, t, dt) dxdt = 1.0/6.0 * (a._dx + 2.0*(b._dx + c._dx) + d._dx) dydt = 1.0/6.0 * (a._dy + 2.0*(b._dy + c._dy) + d._dy) dvxdt = 1.0/6.0 * (a._dvx + 2.0*(b._dvx + c._dvx) + d._dvx) dvydt = 1.0/6.0 * (a._dvy + 2.0*(b._dvy + c._dvy) + d._dvy) self._st._x += dxdt*dt self._st._y += dydt*dt self._st._vx += dvxdt*dt self._st._vy += dvydt*dt def setMassFromRadius(self): """From _r, set _m: The volume is (4/3)*Pi*(r^3)...""" self._m = DENSITY*4.*math.pi*(self._r**3.)/3. def setRadiusFromMass(self): """Reversing the setMassFromRadius formula, to calculate radius from mass (used after merging of two planets - mass is added, and new radius is calculated from this)""" self._r = (3.*self._m/(DENSITY*4.*math.pi))**(0.3333) def main(): pygame.init() win=pygame.display.set_mode((WIDTH, HEIGHT)) keysPressed = defaultdict(bool) def ScanKeyboard(): while True: # Update the keysPressed state: evt = pygame.event.poll() if evt.type == pygame.NOEVENT: break elif evt.type in [pygame.KEYDOWN, pygame.KEYUP]: keysPressed[evt.key] = evt.type == pygame.KEYDOWN global g_listOfPlanets, PLANETS if len(sys.argv) == 2: PLANETS = int(sys.argv[1]) # And God said: Let there be lights in the firmament of the heavens... g_listOfPlanets = [] #for i in xrange(0, PLANETS): #g_listOfPlanets.append(Planet()) g_listOfPlanets.append(Planet(State(15, 25, 0, 0.2))) g_listOfPlanets.append(Planet(State(35, 25, 0, -0.2))) g_listOfPlanets.append(Planet(State(5, 25, 0, 0.15))) g_listOfPlanets.append(Planet(State(37, 37, 0, -0.15))) #g_listOfPlanets.append(Planet()) def planetsTouch(p1, p2): dx = p1._st._x - p2._st._x dy = p1._st._y - p2._st._y dsq = dx*dx + dy*dy dr = math.sqrt(dsq) return dr<=(p1._r + p2._r) sun = Planet() sun._st._x, sun._st._y = WIDTHD2, HEIGHTD2 sun._st._vx = sun._st._vy = 0. sun._m *= 100 sun.setRadiusFromMass() g_listOfPlanets.append(sun) for p in g_listOfPlanets: if p is sun: continue if planetsTouch(p, sun): p._merged = True # ignore planets inside the sun # Zoom factor, changed at runtime via the '+' and '-' numeric keypad keys zoom = 1.0 # t and dt are unused in this simulation, but are in general, # parameters of engine (acceleration may depend on them) t, dt = 0., 1. bClearScreen = True pygame.display.set_caption('Gravity simulation (SPACE: show orbits, ' 'keypad +/- : zoom in/out)') while True: t += dt pygame.display.flip() if bClearScreen: # Show orbits or not? win.fill((0, 0, 0)) win.lock() for p in g_listOfPlanets: if not p._merged: # for planets that have not been merged, draw a # circle based on their radius, but take zoom factor into account pygame.draw.circle(win, (255, 255, 255), (int(WIDTHD2+zoom*WIDTHD2*(p._st._x-WIDTHD2)/WIDTHD2), int(HEIGHTD2+zoom*HEIGHTD2*(p._st._y-HEIGHTD2)/HEIGHTD2)), int(p._r*zoom), 0) win.unlock() ScanKeyboard() # Update all planets' positions and speeds (should normally double # buffer the list of planet data, but turns out this is good enough :-) for p in g_listOfPlanets: if p._merged or p is sun: continue # Calculate the contributions of all the others to its acceleration # (via the gravity force) and update its position and velocity p.updatePlanet(t, dt) # See if we should merge the ones that are close enough to touch, # using elastic collisions (conservation of total momentum) for p1 in g_listOfPlanets: if p1._merged: continue for p2 in g_listOfPlanets: if p1 is p2 or p2._merged: continue if planetsTouch(p1, p2): if p1._m < p2._m: p1, p2 = p2, p1 # p1 is the biggest one (mass-wise) p2._merged = True if p1 is sun: continue # No-one can move the sun :-) newvx = (p1._st._vx*p1._m+p2._st._vx*p2._m)/(p1._m+p2._m) newvy = (p1._st._vy*p1._m+p2._st._vy*p2._m)/(p1._m+p2._m) p1._m += p2._m # maintain the mass (just add them) p1.setRadiusFromMass() # new mass --> new radius p1._st._vx, p1._st._vy = newvx, newvy # update zoom factor (numeric keypad +/- keys) if keysPressed[pygame.K_KP_PLUS]: zoom /= 0.99 if keysPressed[pygame.K_KP_MINUS]: zoom /= 1.01 if keysPressed[pygame.K_ESCAPE]: break if keysPressed[pygame.K_SPACE]: while keysPressed[pygame.K_SPACE]: ScanKeyboard() bClearScreen = not bClearScreen verb = "show" if bClearScreen else "hide" pygame.display.set_caption( 'Gravity simulation (SPACE: ' '%s orbits, keypad +/- : zoom in/out)' % verb) if __name__ == "__main__": try: import psyco psyco.profile() except: print 'Psyco not found, ignoring it' main()
8526d76d462eb31cb9b6edae46331fdb9552850a
7a5b729a660a35d0d80c9836202025a719f026fb
/general codes/mod10_10.py
8c80260bc5a7216f6b44eceaaa9cf816b84db9ad
[]
no_license
Harshit2009/My-Programs-
7a05eb3369b98010805752a0234867b726c4ac0e
1ac60faeb0ba514f2c35bcb82be43654b5cef785
refs/heads/master
2023-01-13T18:58:26.088714
2020-11-19T08:31:43
2020-11-19T08:31:43
269,538,702
1
0
null
null
null
null
UTF-8
Python
false
false
35
py
import mod10 mod10.mod10(0,1,10)
fda009d969b4c11b4518f554302e60e88490b46b
0f09759025db447fe63b3af0af80c3e31e2a887f
/scripts/cell/taskScripts/Bangzhushenmiren.py
06b8d8ab06630b18f47c4ebd930e3d56d5de5726
[]
no_license
jevonhuang/huanhuoserver
d7db1cd4c67d8be2da4dc9ec84ef8f23e891c537
caa8a87cd303b4d0368a0a6397fc1d47685c3bc3
refs/heads/master
2020-12-07T16:47:40.668507
2018-04-02T10:12:01
2018-04-02T10:12:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
741
py
# -*- coding: utf-8 -*- import KBEngine from KBEDebug import * class Bangzhushenmiren(object): def __init__(self, owner, selfIndex, npcName, npcTaskIndex): DEBUG_MSG("Bangzhushenmiren:__init__") self.owner = owner self.selfIndex = selfIndex self.npcName = npcName self.npcTaskIndex = npcTaskIndex self.owner.setAttr("Bangzhushenmiren_TaskCounter", 1) self.oldTaskCounter = self.owner.getAttr("Bangzhushenmiren_TaskCounter") def detectTaskCompleteness(self): self.owner.setAttr("Bangzhushenmiren_TaskCounter", 0) if self.owner.getAttr("Bangzhushenmiren_TaskCounter") == 0: self.owner.setTaskFinish(self.npcName, self.npcTaskIndex, self.selfIndex)
1c725c18b3b21a31f7fe5dc8cf9f9f4b63fdd24b
fd6747673bad3628eba33d3892b63180db5fb044
/tensorflow/compiler/xla/python/xla_extension/__init__.pyi
61d1e478c9013a9376efd36b851a37e6b8793772
[ "Apache-2.0", "LicenseRef-scancode-generic-cla", "BSD-2-Clause" ]
permissive
gautam1858/tensorflow
2cbdc251a470eefd27ce31fd4e6fe31253e9d07a
bd56b0b3a00432896cffbb412bedbb13579ec598
refs/heads/master
2022-06-04T22:09:41.533559
2022-05-10T15:51:20
2022-05-10T15:51:20
59,177,861
2
0
Apache-2.0
2022-03-17T14:48:17
2016-05-19T05:56:42
C++
UTF-8
Python
false
false
16,725
pyi
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import enum import inspect import types import typing from typing import Any, Callable, ClassVar, Dict, List, Optional, Sequence, Tuple, Type, TypeVar, Union, overload import numpy as np from . import ops from . import jax_jit from . import mlir from . import outfeed_receiver from . import pmap_lib from . import profiler from . import pytree from . import transfer_guard_lib _LiteralSlice = Any _Status = Any _Dtype = Any _XlaOpMetadata = Any _T = TypeVar("_T") class XlaRuntimeError(RuntimeError): pass class PrimitiveType(enum.IntEnum): PRIMITIVE_TYPE_INVALID: PrimitiveType PRED: PrimitiveType S8: PrimitiveType S16: PrimitiveType S32: PrimitiveType S64: PrimitiveType U8: PrimitiveType U16: PrimitiveType U32: PrimitiveType U64: PrimitiveType BF16: PrimitiveType F16: PrimitiveType F32: PrimitiveType F64: PrimitiveType C64: PrimitiveType C128: PrimitiveType TUPLE: PrimitiveType OPAQUE_TYPE: PrimitiveType TOKEN: PrimitiveType def bfloat16_dtype() -> Type[Any]: ... # === BEGIN xla_compiler.cc class Shape: def __init__(self, s: str): ... @staticmethod def tuple_shape(shapes: Sequence[Shape]) -> Shape: ... @staticmethod def array_shape( type: Union[np.dtype, PrimitiveType], dims_seq: Any = ..., layout_seq: Any = ..., dynamic_dimensions: Optional[List[bool]] = ...) -> Shape: ... @staticmethod def token_shape() -> Shape: ... @staticmethod def scalar_shape(type: Union[np.dtype, PrimitiveType]) -> Shape: ... def dimensions(self) -> Tuple[int, ...]: ... def xla_element_type(self) -> PrimitiveType: ... def element_type(self) -> np.dtype: ... def numpy_dtype(self) -> np.dtype: ... def is_tuple(self) -> bool: ... def is_array(self) -> bool: ... def is_token(self) -> bool: ... def is_static(self) -> bool: ... def is_dynamic(self) -> bool: ... def is_dynamic_dimension(self, dimension: int) -> bool: ... def set_dynamic_dimension(self, dimension: int, is_dynamic: bool) -> None: ... def rank(self) -> int: ... def to_serialized_proto(self) -> bytes: ... def tuple_shapes(self) -> List[Shape]: ... def leaf_count(self) -> int: ... def with_major_to_minor_layout_if_absent(self) -> Shape: ... def __eq__(self, other: Shape) -> bool: ... def __ne__(self, other: Shape) -> bool: ... def __hash__(self) -> int: ... def __repr__(self) -> str: ... class Layout: def minor_to_major(self) -> Tuple[int, ...]: ... def to_string(self) -> str: ... def __eq__(self, other: Layout) -> bool: ... def __ne__(self, other: Layout) -> bool: ... def __hash__(self) -> int: ... class ProgramShape: def __init__(self, params: Sequence[Shape], result: Shape) -> None: ... def parameter_shapes(self) -> List[Shape]: ... def result_shape(self) -> Shape: ... def __repr__(self) -> str: ... class ShapeIndex: def __init__(self, indices: List[int]) -> ShapeIndex: ... def __eq__(self, other: Shape) -> bool: ... def __ne__(self, other: Shape) -> bool: ... def __hash__(self) -> int: ... def __repr__(self) -> str: ... class Literal: def __repr__(self) -> str: ... class XlaComputation: def __init__(self, serialized_hlo_module_proto: bytes) -> None: ... def get_hlo_module(self) -> HloModule: ... def program_shape(self) -> ProgramShape: ... def as_serialized_hlo_module_proto(self) -> bytes: ... def as_hlo_text(self, print_large_constants: bool=False) -> str: ... def as_hlo_dot_graph(self) -> str: ... def hash(self) -> int: ... def as_hlo_module(self) -> HloModule: ... class HloPrintOptions: def __init__(self) -> None: ... @staticmethod def short_parsable() -> HloPrintOptions: ... @staticmethod def canonical() -> HloPrintOptions: ... @staticmethod def fingerprint() -> HloPrintOptions: ... print_large_constants: bool print_metadata: bool print_backend_config: bool print_result_shape: bool print_operand_shape: bool print_operand_names: bool print_ids: bool print_extra_attributes: bool print_program_shape: bool print_percent: bool print_control_dependencies: bool compact_operands: bool include_layout_in_shapes: bool canonicalize_instruction_names: bool canonicalize_computations: bool indent_amount: int is_in_nested_computation: bool class HloModule: spmd_output_sharding: Optional[OpSharding] spmd_parameters_shardings: Optional[List[OpSharding]] @property def name(self) -> str: ... def to_string(self, options: HloPrintOptions = ...) -> str: ... def as_serialized_hlo_module_proto(self)-> bytes: ... @staticmethod def from_serialized_hlo_module_proto( serialized_hlo_module_proto: bytes) -> HloModule: ... def hlo_module_to_dot_graph(hlo_module: HloModule) -> str: ... def hlo_module_cost_analysis( client: Client, module: HloModule) -> Dict[str, float]: ... class XlaOp: ... class XlaBuilder: def __init__(self, name: str) -> None: ... def Build(self, root: Optional[XlaOp] = ...) -> XlaComputation: ... def GetShape(self, __op: XlaOp) -> Shape: ... build = Build def clear_op_metadata(self) -> None: ... get_shape = GetShape def get_program_shape(self, root: Optional[XlaOp] = ...) -> ProgramShape: ... def is_constant(self, __op: XlaOp) -> bool: ... def set_op_metadata(self, metadata: _XlaOpMetadata) -> None: ... def set_sharding(self, sharding: OpSharding_Type) -> None: ... def clear_sharding(self) -> None: ... def setup_alias( self, __output_index: Sequence[int], __param_number: int, __param_index: Sequence[int]) -> None: ... class DeviceAssignment: @staticmethod def create(array: np.ndarray) -> DeviceAssignment: ... def replica_count(self) -> int: ... def computation_count(self) -> int: ... def __repr__(self) -> str: ... def serialize(self) -> bytes: ... class CompileOptions: def __init__(self) -> None: ... argument_layouts: Optional[List[Shape]] parameter_is_tupled_arguments: bool executable_build_options: ExecutableBuildOptions tuple_arguments: bool num_replicas: int num_partitions: int device_assignment: Optional[DeviceAssignment] def register_custom_call_target(fn_name: str, capsule: Any, platform: str) -> _Status: ... class DebugOptions: def __repr__(self) -> str: ... xla_cpu_enable_fast_math: bool xla_cpu_fast_math_honor_infs: bool xla_cpu_fast_math_honor_nans: bool xla_cpu_fast_math_honor_division: bool xla_cpu_fast_math_honor_functions: bool xla_gpu_enable_fast_min_max: bool xla_backend_optimization_level: int xla_cpu_enable_xprof_traceme: bool xla_llvm_disable_expensive_passes: bool xla_test_all_input_layouts: bool class CompiledMemoryStats: generated_code_size_in_bytes: int argument_size_in_bytes: int output_size_in_bytes: int alias_size_in_bytes: int temp_size_in_bytes: int def __str__(self) -> str: ... class ExecutableBuildOptions: def __init__(self) -> None: ... def __repr__(self) -> str: ... result_layout: Optional[Shape] num_replicas: int num_partitions: int debug_options: DebugOptions device_assignment: Optional[DeviceAssignment] use_spmd_partitioning: bool use_auto_spmd_partitioning: bool auto_spmd_partitioning_mesh_shape: List[int] auto_spmd_partitioning_mesh_ids: List[int] class PrecisionConfig_Precision(enum.IntEnum): DEFAULT: int HIGH: int HIGHEST: int class OpSharding_Type(enum.IntEnum): REPLICATED: int MAXIMAL: int TUPLE: int OTHER: int MANUAL: int class OpSharding: Type: typing.Type[OpSharding_Type] type: OpSharding_Type replicate_on_last_tile_dim: bool last_tile_dims: Sequence[Type] tile_assignment_dimensions: Sequence[int] tile_assignment_devices: Sequence[int] tuple_shardings: Sequence[OpSharding] def SerializeToString(self) -> bytes: ... class ChannelHandle_ChannelType(enum.IntEnum): CHANNEL_TYPE_INVALID: int DEVICE_TO_DEVICE: int DEVICE_TO_HOST: int HOST_TO_DEVICE: int class ChannelHandle: type: ChannelHandle_ChannelType handle: int def __repr__(self) -> str: ... class FftType(enum.IntEnum): FFT: int IFFT: int RFFT: int IRFFT: int # === END xla_compiler.cc class Device: id: int host_id: int process_index: int platform: str device_kind: str client: Client def __repr__(self) -> str: ... def __str__(self) -> str: ... def transfer_to_infeed(self, literal: _LiteralSlice): ... def transfer_from_outfeed(self, shape: Shape): ... def live_buffers(self) -> List[Buffer]: ... def __getattr__(self, name: str) -> Any: ... class GpuDevice(Device): pass class TpuDevice(Device): pass class _GpuAllocatorKind(enum.IntEnum): DEFAULT: int PLATFORM: int BFC: int CUDA_ASYNC: int class GpuAllocatorConfig: # TODO(b/194673104): Remove once pytype correctly resolves a nested enum. Kind = _GpuAllocatorKind def __init__( self, kind: _GpuAllocatorKind = ..., memory_fraction: float = ..., preallocate: bool = ...) -> None: ... class HostBufferSemantics(enum.IntEnum): IMMUTABLE_ONLY_DURING_CALL: HostBufferSemantics IMMUTABLE_UNTIL_TRANSFER_COMPLETES: HostBufferSemantics ZERO_COPY: HostBufferSemantics class Client: platform: str platform_version: str runtime_type: str def device_count(self) -> int: ... def local_device_count(self) -> int: ... def devices(self) -> List[Device]: ... def local_devices(self) -> List[Device]: ... def live_buffers(self) -> List[Buffer]: ... def live_executables(self) -> List[Executable]: ... def host_id(self) -> int: ... def process_index(self) -> int: ... @overload def get_default_device_assignment( self, num_replicas: int, num_partitions: int) -> List[List[Device]]: ... @overload def get_default_device_assignment( self, num_replicas: int) -> List[Device]: ... def create_channel_handle(self) -> ChannelHandle: ... def create_device_to_host_channel_handle(self) -> ChannelHandle: ... def create_host_to_device_channel_handle(self) -> ChannelHandle: ... def buffer_from_pyval( self, argument: Any, device: Device = ..., force_copy: bool = ..., host_buffer_semantics: HostBufferSemantics = ...) -> Buffer: ... def make_cross_host_receive_buffers( self, shapes: Sequence[Shape], device: Device) -> List[Tuple[Buffer, bytes]]: ... def compile( self, computation: XlaComputation, compile_options: CompileOptions = ...) -> Executable: ... def serialize_executable(self, executable: Executable) -> bytes: ... def deserialize_executable( self, serialized: bytes, options: CompileOptions) -> Executable: ... # TODO(skyewm): remove when jax stop providing hlo_module def deserialize_executable( self, serialized: bytes, hlo_module: HloModule, options: CompileOptions) -> Executable: ... def heap_profile(self) -> bytes: ... def defragment(self) -> _Status: ... def get_emit_python_callback_descriptor( self, callable: Callable, operand_shapes: Sequence[XlaOp], results_shapes: Sequence[Shape]) -> Tuple[Any, Any]: ... def emit_python_callback( self, callable: Callable, builder: XlaBuilder, operands: Sequence[XlaOp], results_shapes: Sequence[Shape], operand_layouts: Optional[Sequence[Shape]] = ..., has_side_effects: bool = ...) -> Tuple[XlaOp, Any]: ... def get_cpu_client(asynchronous: bool = ...) -> Client: ... def get_tfrt_cpu_client(asynchronous: bool = ...) -> Client: ... def get_interpreter_client() -> Client: ... def get_gpu_client( asynchronous: bool = ..., allocator_config: GpuAllocatorConfig = ..., distributed_client: Optional[DistributedRuntimeClient] = ..., node_id: int = ..., allowed_devices: Optional[Any] = ..., platform_name: Optional[str] = ...) -> Client:... def get_tpu_client(max_inflight_computations: int = ...) -> Client: ... class DeviceArrayBase: ... class DeviceArray(DeviceArrayBase): __array_priority__: int _device: Optional[Device] aval: Any weak_type: Optional[bool] @property def device_buffer(self: _T) -> _T: ... shape: Tuple[int, ...] dtype: np.dtype size: int ndim: int _value: np.ndarray def copy_to_device(self, dst_device: Device) -> DeviceArray: ... def copy_to_remote_device(self, descriptor: bytes) -> Tuple[_Status, bool]: ... def on_device_size_in_bytes(self) -> int: ... def delete(self) -> None: ... def is_ready(self) -> bool: ... def is_known_ready(self) -> bool: ... def block_until_ready(self) -> DeviceArray: ... def copy_to_host_async(self) -> _Status: ... def to_py(self) -> np.ndarray: ... def xla_shape(self) -> Shape: ... def xla_dynamic_shape(self) -> Shape: ... client: Client def device(self) -> Device: ... def platform(self) -> str: ... def is_deleted(self) -> bool: ... def unsafe_buffer_pointer(self) -> Any: ... __cuda_array_interface__: Dict[str, Any] traceback: Traceback def clone(self) -> DeviceArray: ... PyLocalBuffer = DeviceArray Buffer = DeviceArray class Executable: client: Client def local_logical_device_ids(self) -> List[Tuple[int, int]]: ... def local_devices(self) -> List[Device]: ... def size_of_generated_code_in_bytes(self) -> int: ... def delete(self) -> None: ... def execute(self, arguments: Sequence[DeviceArray]) -> List[DeviceArray]: ... def execute_sharded_on_local_devices( self, arguments: Sequence[List[DeviceArray]]) -> List[List[DeviceArray]]: ... def hlo_modules(self) -> List[HloModule]: ... def keep_alive(self) -> None: ... traceback: Traceback fingerprint: Optional[bytes] def buffer_to_dlpack_managed_tensor( buffer: Buffer, take_ownership: bool = ...) -> Any: ... def dlpack_managed_tensor_to_buffer( tensor: Any, cpu_backend: Optional[Client] = ..., gpu_backend: Optional[Client] = ...) -> Buffer: ... # === BEGIN py_traceback.cc class Frame: file_name: str function_name: str function_line_start: int line_num: int def __repr__(self) -> str: ... class Traceback: enabled: ClassVar[bool] @staticmethod def get_traceback() -> Traceback: ... frames: Sequence[Frame] def __str__(self) -> str: ... def as_python_traceback(self) -> Any: ... def raw_frames(self) -> Tuple[List[types.CodeType], List[int]]: ... @staticmethod def code_addr2line(code: types.CodeType, lasti: int) -> int: ... def replace_thread_exc_traceback(traceback: Any): ... # === END py_traceback.cc class DistributedRuntimeService: def shutdown(self) -> None: ... class DistributedRuntimeClient: def connect(self) -> _Status: ... def shutdown(self) -> _Status: ... def get_distributed_runtime_service( address: str, num_nodes: int, heartbeat_interval: Optional[int] = ..., max_missing_heartbeats: Optional[int] = ..., enumerate_devices_timeout: Optional[int] = ..., shutdown_timeout: Optional[int] = ...) -> DistributedRuntimeService: ... def get_distributed_runtime_client( address: str, node_id: int, rpc_timeout: Optional[int] = ..., init_timeout: Optional[int] = ..., shutdown_timeout: Optional[int] = ..., heartbeat_interval: Optional[int] = ..., max_missing_heartbeats: Optional[int] = ..., missed_heartbeat_callback: Optional[Any] = ..., shutdown_on_destruction: Optional[bool] = ...) -> DistributedRuntimeClient: ... def collect_garbage() -> None: ... def is_optimized_build() -> bool: ... def json_to_pprof_profile(json: str) -> bytes: ... def pprof_profile_to_json(proto: bytes) -> str: ... class CompiledFunction: def __call__(self, *args, **kwargs) -> Any: ... def __getstate__(self) -> Any: ... def __setstate__(self, Any): ... __signature__: inspect.Signature def _cache_size(self) -> int: ... def _clear_cache(self) -> None: ... class PmapFunction: def __call__(self, *args, **kwargs) -> Any: ... def __getstate__(self) -> Any: ... def __setstate__(self, Any): ... __signature__: inspect.Signature def _cache_size(self) -> int: ... def _clear_cache(self) -> None: ...
22a0efd61428ca996199ba140cb48190c54006e0
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/0/bfi.py
e4c0d8a77b1235838847b5ced1684c62c97867da
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'bfI': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
2947dd334a9962628fbd6ad140d2c25e8e572f97
ba54b70f93fe7f9d114623d76b1ad3f88309d66f
/main/views/public.py
2b2679a267e16f85bdc1a067bb156f7ebb7f755b
[]
no_license
loobinsk/newprj
9769b2f26092ce7dd8612fce37adebb307b01b8b
c6aa6a46973fb46375f4b05a86fe76207a8ae16d
refs/heads/master
2023-05-07T00:28:44.242163
2021-05-25T08:22:05
2021-05-25T08:22:05
370,617,690
0
0
null
null
null
null
UTF-8
Python
false
false
14,630
py
#-*- coding: utf-8 -*- from registration.backends.default.views import RegistrationView from main.form import RegisterForm, AuthForm, FeedbackForm, ReclameForm from django.views.generic import View, TemplateView, FormView from django.contrib.auth.views import login, logout from main.models import Company, Advert, Tariff, Town from uprofile.models import User from django.contrib.auth import authenticate, login as auth_login, logout as auth_logout from django.utils.decorators import method_decorator from annoying.decorators import ajax_request from django.views.decorators.csrf import csrf_exempt from sorl.thumbnail import get_thumbnail from gutils.views import BreadcrumbMixin, AjaxableResponseMixin from django.core.urlresolvers import reverse from django.shortcuts import get_object_or_404 from mail_templated import send_mail_admins, send_mail from django.conf import settings from django.contrib.auth.signals import user_logged_in from datetime import datetime, timedelta from ucomment.signals import comment_create import re from django.db.models import Count from cache_utils.decorators import cached from django.contrib.sites.models import Site def user_check_sessions(sender, user, request, **kwargs): """ Проверка сессий пользователя и закрытие остальных сессий """ from user_sessions.models import Session Session.objects.filter(user=user).exclude(session_key=request.session.session_key).delete() user_logged_in.connect(user_check_sessions) def comment_send_notice(sender, user, **kwargs): """ Отправка уведомления о комментарии """ m = re.search('^company_(\d+)$', sender.key) if m: company_list = Company.objects.filter(id=m.group(1)) if company_list: if company_list[0].owner: if company_list[0].owner != user: send_mail('main/email/comment-notice.html', context={ 'subject': 'У вашего агентства появился новый отзыв', 'comment': sender, 'company': company_list[0] }, recipient_list=[company_list[0].owner.email], fail_silently=True) if settings.SITE_ID == 1: comment_create.connect(comment_send_notice) class RegisterView(AjaxableResponseMixin, BreadcrumbMixin, RegistrationView): def __init__(self, *argc, **kwargs): super(RegisterView, self).__init__(*argc, **kwargs) self.form_class = RegisterForm def get_initial(self, request=None): initial = super(RegisterView, self).get_initial(request) initial['company_town'] = self.request.current_town.id return initial def form_valid(self, request, form): response = super(AjaxableResponseMixin, self).form_valid(request, form) if self.request.is_ajax(): data = { 'id': self.object.pk if hasattr(self, 'object') else None, 'object': self.get_model_dict(), } return self.render_to_json_response(data) else: return response def register(self, request, form): form.cleaned_data['email'] = form.cleaned_data['username'] new_user = super(RegisterView, self).register(request, form) if form.cleaned_data['agent_status'] == RegisterForm.REGISTER_STATUS_COMPANY: town = get_object_or_404(Town, id=form.cleaned_data['company_town']) company = Company( owner=new_user, title=form.cleaned_data['company_name'], tel=form.cleaned_data['company_tel'], email=form.cleaned_data['username'], address=form.cleaned_data['company_address'], fact_address=form.cleaned_data['company_fact_address'], ogrn=form.cleaned_data['company_ogrn'], inn=form.cleaned_data['company_inn'], person=form.cleaned_data['company_person'], town=town ) company.save() new_user.company = company new_user.tel =form.cleaned_data['company_tel'] new_user.gen_access_code() new_user.save() send_mail('main/email/reg-notice.html', {'company': company, 'subject': u'Поступила новая заявка на регистрацию от %s' % company.title}, recipient_list=settings.NOTICE_REGISTER_EMAIL) elif form.cleaned_data['agent_status'] == RegisterForm.REGISTER_STATUS_AGENT: if form.cleaned_data['company_town'] == '1': company = Company.objects.get(id=form.cleaned_data['agent_company_msk']) elif form.cleaned_data['company_town'] == '2': company = Company.objects.get(id=form.cleaned_data['agent_company_spb']) if not company.is_real: company.is_real = True company.status = Company.STATUS_MODERATE # company.owner = new_user if not company.tel: company.tel = form.cleaned_data['company_tel'] if not company.email: company.email = new_user.email if not company.owner: company.owner = new_user company.save() new_user.company = company new_user.tel = form.cleaned_data['company_tel'] new_user.first_name = form.cleaned_data['agent_name'] new_user.gen_access_code() new_user.status = User.STATUS_MODERATE new_user.save() exist_users = company.user_set.filter(agent_email=new_user.email) if exist_users: new_user.extnum = exist_users[0].extnum new_user.save() exist_users[0].advert_set.all().update(user=new_user) exist_users[0].delete() send_mail('main/email/reg-agent-notice.html', { 'user': new_user, 'subject': u'Поступила новая заявка на регистрацию от агента %s' % new_user.username }, recipient_list=settings.NOTICE_REGISTER_EMAIL) request.session['registration_email'] = form.cleaned_data['username'] request.session.modified = True return new_user def get_breadcrumbs(self): return [('Агентствам недвижимости', reverse('registration_register'))] def get_model_dict(self): return { 'message': u'Регистрация завершена', 'url': reverse('registration_complete') } class RegisterCompleteView(TemplateView): template_name='registration/registration_complete.html' def get_context_data(self, **kwargs): context = super(RegisterCompleteView, self).get_context_data(**kwargs) mail_servers = [ ("mail.ru","Почта Mail.Ru","https://e.mail.ru/"), ("bk.ru","Почта Mail.Ru (bk.ru)","https://e.mail.ru/"), ("list.ru","Почта Mail.Ru (list.ru)","https://e.mail.ru/"), ("inbox.ru","Почта Mail.Ru (inbox.ru)","https://e.mail.ru/"), ("yandex.ru","Яндекс.Почта","https://mail.yandex.ru/"), ("ya.ru","Яндекс.Почта","https://mail.yandex.ru/"), ("yandex.ua","Яндекс.Почта","https://mail.yandex.ua/"), ("yandex.by","Яндекс.Почта","https://mail.yandex.by/"), ("yandex.kz","Яндекс.Почта","https://mail.yandex.kz/"), ("yandex.com","Yandex.Mail","https://mail.yandex.com/"), ("gmail.com","Почта Gmail","https://mail.google.com/"), ("googlemail.com","Почта Gmail","https://mail.google.com/"), ("outlook.com","Почта Outlook.com","https://mail.live.com/"), ("hotmail.com","Почта Outlook.com (Hotmail)","https://mail.live.com/"), ("live.ru","Почта Outlook.com (live.ru)","https://mail.live.com/"), ("live.com","Почта Outlook.com (live.com)","https://mail.live.com/"), ("me.com","Почта iCloud Mail","https://www.icloud.com/"), ("icloud.com","Почта iCloud Mail","https://www.icloud.com/"), ("rambler.ru","Рамблер-Почта","https://mail.rambler.ru/"), ("yahoo.com","Почта Yahoo! Mail","https://mail.yahoo.com/"), ("ukr.net","Почта ukr.net","https://mail.ukr.net/"), ("i.ua","Почта I.UA","http://mail.i.ua/"), ("bigmir.net","Почта Bigmir.net","http://mail.bigmir.net/"), ("tut.by","Почта tut.by","https://mail.tut.by/"), ("inbox.lv","Inbox.lv","https://www.inbox.lv/"), ("mail.kz","Почта mail.kz","http://mail.kz/"), ] email = self.request.session.get('registration_email') if email: for server in mail_servers: if server[0].lower() in email.lower(): context['mail_server'] = server return context class LoginView(View): def get(self, *args, **kwargs): return login(self.request, authentication_form=AuthForm) def post(self, *args, **kwargs): return login(self.request, authentication_form=AuthForm) class LoginView_Moder(LoginView): def get(self, *args, **kwargs): return login(self.request, authentication_form=AuthForm, template_name='registration/moder/login.html') def post(self, *args, **kwargs): return login(self.request, authentication_form=AuthForm, template_name='registration/moder/login.html') class AjaxLoginView(View): @method_decorator(csrf_exempt) def dispatch(self, request, *args, **kwargs): return super(AjaxLoginView, self).dispatch(request, *args, **kwargs) @method_decorator(ajax_request) def post(self, *args, **kwargs): context = {} form = AuthForm(self.request, data=self.request.POST) if form.is_valid(): user = authenticate(username=form.cleaned_data['username'], password=form.cleaned_data['password']) if user is not None: if user.is_active: auth_login(self.request, user) context['success'] = True context['message'] = 'Добро пожаловать' context['username'] = user.get_full_name() if user.image: try: thumb = get_thumbnail(user.image, '100x100', crop='center', quality=99) context['image'] = thumb.url except: context['image'] = '' else: context['image'] = '' company = user.company if company: context['activated'] = company.status == Company.STATUS_ACTIVE context['company'] = company.title else: context['activated'] = True context['company'] = '' else: context['success'] = False context['message'] = 'Аккаунт заблокирован' else: # Return an 'invalid login' error message. context['success'] = False context['message'] = 'Неправильные имя пользователя или пароль' else: context['success'] = False a = [] for error in form.errors: for e in form.errors[error]: a.append(e) context['message'] = '<br>'.join(a) return context class LogoutView_Moder(LoginView): def get(self, *args, **kwargs): return logout(self.request, next_page='/', template_name='registration/moder/login.html') def post(self, *args, **kwargs): return logout(self.request, next_page='/', template_name='registration/moder/login.html') class HomeView(TemplateView): template_name = 'main/home.html' def get_context_data(self, **kwargs): context = super(HomeView, self).get_context_data(**kwargs) town = self.request.current_town # статистика context['count_adverts'] = self.get_count_adverts() context['count_companies'] = self.get_count_companies() # последние объявления context['vip_list'] = Advert.objects.filter(company=None, town=town, need=Advert.NEED_SALE, status=Advert.STATUS_VIEW, date__gte=datetime.now() - timedelta(days=30))\ .filter(Advert.ARCHIVE_NO_QUERY)\ .annotate(image_count=Count('images'))\ .exclude(image_count=0)\ .order_by('?')[:5] context['last_advert_list'] = Advert.objects.filter(town=town, need=Advert.NEED_SALE, status=Advert.STATUS_VIEW).order_by('-date')[:5] context['arenda_advert_list'] = Advert.objects\ .filter(adtype=Advert.TYPE_LEASE, town=town, need=Advert.NEED_SALE)\ .filter(estate=Advert.ESTATE_LIVE, status=Advert.STATUS_VIEW)\ .order_by('-date')[:4] context['sale_advert_list'] = Advert.objects \ .filter(adtype=Advert.TYPE_SALE, town=town, need=Advert.NEED_SALE) \ .filter(estate=Advert.ESTATE_LIVE, status=Advert.STATUS_VIEW) \ .order_by('-date')[:4] return context @cached(3600) def get_count_adverts(self): return Advert.objects.filter(status=Advert.STATUS_VIEW).count() @cached(3600) def get_count_companies(self): return Company.objects.all().count() def page_not_found(request, template_name='404.html'): from django.views.defaults import page_not_found return page_not_found(request, template_name) def page_not_found_moder(request, template_name='404.html'): from django.views.defaults import page_not_found return page_not_found(request, template_name='404-moder.html')
f434d074c2a942412002f5c9efc9a15c033dacc0
5472a3f913e1a6698b9dab902545f0ba02e7a02e
/pbay_url.py
30c40f18b360964362158d06ed0107620e90d399
[]
no_license
Arrowheadahp/piratebay-search-and-download
bf38956588ce6da8caf25cec653bec76409cfd79
0fe8db913215e4a0b00a9153e7085728e7d3ecf7
refs/heads/master
2020-05-31T05:56:18.592671
2019-07-20T06:15:26
2019-07-20T06:15:26
190,131,141
0
0
null
null
null
null
UTF-8
Python
false
false
566
py
from bs4 import BeautifulSoup from urllib.request import Request, urlopen import webbrowser def soupcreate(url): req = Request(url, headers={'User-Agent': 'Mozilla/5.0'}) webpage = urlopen(req).read() #print ('url page read') return(BeautifulSoup(webpage,features="lxml")) def geturl(): proxylist=soupcreate('https://piratebay-proxylist.se/') proxy=proxylist.find('td',{'class':'url'}) proxyurl=proxy.get('data-href') return (proxyurl) if __name__=='__main__': print (geturl()) webbrowser.open(geturl())
8d704be2ad0bccea7611b5a9eac75d47a7e74899
f448b9635d076d88a4439e937eec7dd050cc316a
/xx.py
6a1bcaeeb2767fb3a0468cbdf1fb2786afa1066f
[]
no_license
udaytejam/practicesamples
c7e6ba2e30f52138b3b22414c57ddc1f9e94162a
acda24dfe5c3aff60b688c9b434b83a3132b0af1
refs/heads/master
2021-01-10T02:03:51.456102
2015-10-05T11:23:42
2015-10-05T11:23:42
43,500,701
0
0
null
null
null
null
UTF-8
Python
false
false
168
py
globvar = 10 def read1(): print(globvar) def write1(): global globvar globvar = 5 def write2(): globvar = 15 read1() write1() read1() write2() read1()
5253d398213d1c154ea2dffba964210fbf476c74
e33ecdb112045327344dce2ae8b0612848938f24
/cotidia/socialshare/conf.py
1e7d660917e60fb666ce61f86598c24b02e1edef
[ "BSD-3-Clause" ]
permissive
guillaumepiot/cotidia-social-share
939125b97474bb34e8a94cd0fa6d6919026c029c
9c926bb86e7f158f2b59eaddcf09eba459c009b6
refs/heads/master
2020-04-21T07:28:24.520846
2019-03-26T14:00:00
2019-03-26T14:00:00
169,393,675
0
0
null
null
null
null
UTF-8
Python
false
false
187
py
from django.conf import settings from appconf import AppConf class SocialShareConf(AppConf): FACEBOOK_APP_ID = "[Not implemented]" class Meta: prefix = 'socialshare'
072d371ce95370c4977fcc64b3a3e77c06ca6c30
5f07c38899e350b0b776510fd7d7831d44cf1404
/drfmixins/drfmixins/settings.py
d599783f7b76ad7f17b66c1c6fd0e90c0991e475
[]
no_license
shubham454/Django-Rest
b733f1d47ada9df452e912dcd8acad48a7ec4c75
3d94f57cab3537c51caa68807d5fcdf8883d2d2c
refs/heads/master
2022-12-14T20:37:11.835794
2020-08-13T18:43:26
2020-08-13T18:43:26
287,354,715
0
0
null
null
null
null
UTF-8
Python
false
false
3,133
py
""" Django settings for drfmixins project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'z&7-uzdyn7cex&u5yzfw&wh$j8_v71pu@!4rc9lu@c#8y(!_^(' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'testapp' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'drfmixins.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'drfmixins.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
9f25d416bd468bb65eb3923ab99d32b912f60ca7
3e85618c79a1a934fec543e1327e772ca081a5b9
/N1949.py
2c0945dcd3d845154cc7480e681a4eb6834ef180
[]
no_license
ghdus4185/SWEXPERT
72d79aa4a668452327a676a644b952bab191c79b
4dc74ad74df7837450de4ce55526dac7760ce738
refs/heads/master
2020-07-16T18:31:22.153239
2019-12-20T04:18:30
2019-12-20T04:18:30
205,843,190
0
0
null
null
null
null
UTF-8
Python
false
false
2,019
py
import sys sys.stdin = open('sample_input.txt', 'r') # 가장 높은 봉우리를 찾아야한다 # 내 주변을 선택할 때 나보다 낮은 얘들을 선택하거나 한번 깎아서 선택할 수 있다. # 이후에 깎는게 더 유리할 수 있으므로 # 1) 낮은 칸으로 이동해보기 # 2) 높거나 같은 칸에 대해서 2가지 선택 깍는다 or 깍지않는다. # 3) 깍아서 지나갈 수 있는 상황이라면 굳이 많이 깍지 않고 딱 나보다 작은 정도만 # 깍는다. def f(i, j, c, e): # c : 깍는 횟수, e : 이동거리 di = [0, 1, 0, -1] dj = [1, 0, -1, 0] global N, K, maxV, visited, arr if maxV < e: maxV = e visited[i][j] = 1 # 등산로에 포함되었음을 표시 #주변탐색 for k in range(4): ni = i + di[k] nj = j + dj[k] if ni >= 0 and ni < N and nj >= 0 and nj< N: # 유효좌표인지 확인 if arr[i][j] > arr[ni][nj]: f(ni, nj, c, e+1) # 주변의 낮은 점으로 이동 elif visited[ni][nj] == 0 and c > 0 and arr[i][j] > arr[ni][nj]-K: # 주변 점을 깍아서 이동 org = arr[ni][nj] # 원래 높이 저장 arr[ni][nj] = arr[i][j] -1 # 주변 점을 깍아서 이동 f(ni, nj, 0, e+1) arr[ni][nj] = org # 높이 원상 복구 # 돌아왔을 때를 생각해서 깍기 전 높이를 저장해둔다 visited[i][j] = 0 # 다른 경로의 등산로에 포함될 수 있으므로 return T = int(input()) for tc in range(T): N, K = map(int, input().split()) arr = [list(map(int, input().split())) for _ in range(N)] visited = [[0]*N for _ in range(N)] h = 0 for i in range(N): for j in range(N): if h < arr[i][j]: h = arr[i][j] maxV = 0 for i in range(N): for j in range(N): if arr[i][j] == h: f(i, j, 1, 1) print('#{} {}'.format(tc+1, maxV))
b1532dca490f5b992fcd2d4448901b761f3b2807
025dc1fa797b0de25b556365d23bddb848ab8ce0
/colossus/apps/lists/mixins.py
ec6726113587e1a0aef7d4b9d7aedb437406729a
[ "MIT" ]
permissive
ramanaditya/colossus
eab49ec33031b8542b07e3aaebc36467a97786d6
11b34a216b2021a5da79cd6e347aef842f7b0c72
refs/heads/master
2023-03-30T12:39:12.948490
2021-03-25T17:11:32
2021-03-25T17:11:32
340,977,981
1
0
MIT
2021-03-25T16:34:54
2021-02-21T18:51:05
Python
UTF-8
Python
false
false
1,295
py
from django.http import Http404 from django.shortcuts import get_object_or_404 from django.views.generic.base import ContextMixin from colossus.apps.subscribers.constants import TemplateKeys from colossus.apps.subscribers.models import SubscriptionFormTemplate from .models import MailingList class MailingListMixin(ContextMixin): __mailing_list = None @property def mailing_list(self): if self.__mailing_list is None: self.__mailing_list = get_object_or_404(MailingList, pk=self.kwargs.get('pk')) return self.__mailing_list def get_context_data(self, **kwargs): if 'menu' not in kwargs: kwargs['menu'] = 'lists' if 'mailing_list' not in kwargs: kwargs['mailing_list'] = self.mailing_list return super().get_context_data(**kwargs) class FormTemplateMixin: def get_object(self): mailing_list_id = self.kwargs.get('pk') key = self.kwargs.get('form_key') if key not in TemplateKeys.LABELS.keys(): raise Http404 form_template, created = SubscriptionFormTemplate.objects.get_or_create( key=key, mailing_list_id=mailing_list_id ) if created: form_template.load_defaults() return form_template
2d25948fc47ae05e17ec0c8404dc6012cc0a51f0
f9c7969c8649c484f2460fb245a3d5bd6870fa5a
/ch07/exercises/exercise 35.py
85def5a86980f358fd4a9a1b39f5216c13556056
[]
no_license
Pshypher/tpocup
78cf97d51259bfea944dc205b9644bb1ae4ab367
b05b05728713637b1976a8203c2c97dbbfbb6a94
refs/heads/master
2022-05-18T13:11:31.417205
2020-01-07T13:50:06
2020-01-07T13:50:06
260,133,112
0
0
null
null
null
null
UTF-8
Python
false
false
373
py
# Unless stated otherwise, variables are assumed to be of the str data type def reverse_string(S): """Return the string S in reverse order using a for loop.""" S_reverse = "" for ch in S: S_reverse = ch + S_reverse return S_reverse # Prompt user for a string chars = input("Enter a sequence of alphanumeric chars: ") print(reverse_string(chars))
2ca7726a97e24168ecf4147fb619ac3d3540182e
d1808d8cc5138489667b7845466f9c573591d372
/notebooks/Reproducible Papers/Syngine_2016/figure_2_source_width.py
7eb1deaeb1cbee060358396def82df02fcfa286e
[]
no_license
krischer/seismo_live
e140777900f6246a677bc28b6e68f0a168ec41ab
fcc615aee965bc297e8d53da5692abb2ecd6fd0c
refs/heads/master
2021-10-20T22:17:42.276096
2019-11-27T23:21:16
2019-11-28T10:44:21
44,953,995
69
59
null
2020-05-22T11:00:52
2015-10-26T08:00:42
Python
UTF-8
Python
false
false
5,880
py
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.2.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + {"deletable": true, "editable": true, "cell_type": "markdown"} # <div style='background-image: url("../../share/images/header.svg") ; padding: 0px ; background-size: cover ; border-radius: 5px ; height: 250px'> # <div style="float: right ; margin: 50px ; padding: 20px ; background: rgba(255 , 255 , 255 , 0.7) ; width: 50% ; height: 150px"> # <div style="position: relative ; top: 50% ; transform: translatey(-50%)"> # <div style="font-size: xx-large ; font-weight: 900 ; color: rgba(0 , 0 , 0 , 0.8) ; line-height: 100%">Computational Seismology</div> # <div style="font-size: large ; padding-top: 20px ; color: rgba(0 , 0 , 0 , 0.5)">Reproducible Papers - Syngine Paper</div> # </div> # </div> # </div> # + {"deletable": true, "editable": true, "cell_type": "markdown"} # --- # # # Figure 2: Source Width Parameter # # This notebook is part of the supplementary materials for the Syngine paper and reproduces figure 2. # # Requires matplotlib >= 1.5 and an ObsPy version with the syngine client (>= 1.0) as well as instaseis. # # ##### Authors: # * Lion Krischer ([@krischer](https://github.com/krischer)) # + {"deletable": true, "editable": true} # %matplotlib inline import obspy import matplotlib.pyplot as plt import numpy as np plt.style.use("seaborn-whitegrid") import copy import io import instaseis import json import requests # + {"deletable": true, "editable": true} SYNGINE_URL = "http://service.iris.edu/irisws/syngine/1/query" # + {"deletable": true, "editable": true} network = "IU" station = "ANMO" # Get station information from the IRIS FDSN service. from obspy.clients.fdsn import Client c = Client("IRIS") print(c.get_stations(network=network, station=station, format="text")[0][0]) # + {"deletable": true, "editable": true} # The param file is only used to extract the source parameters. This is # thus consistent with the other figures but can of course also be done # differently. filename = "chile_param.txt" # Parse the finite source wiht instaseis. finite_source = instaseis.FiniteSource.from_usgs_param_file(filename) # Compute the centroid of it. finite_source.compute_centroid() # src is now the centroid of the finite source. src = finite_source.CMT # Common query parametersh su params_common = { # IU.ANMO "receiverlatitude": 34.95, "receiverlongitude": -106.46, "dt": 0.1, "origintime": src.origin_time, "components": "Z", "model": "ak135f_2s", "format": "miniseed", "units": "velocity"} # Parameters only needed for the point source. params_ps = copy.deepcopy(params_common) params_ps["sourcelatitude"] = src.latitude params_ps["sourcelongitude"] = src.longitude params_ps["sourcedepthinmeters"] = src.depth_in_m params_ps["sourcemomenttensor"] = ",".join( str(getattr(src, _i)) for _i in ("m_rr", "m_tt", "m_pp", "m_rt", "m_rp", "m_tp")) print(finite_source) print(finite_source.CMT) # + {"deletable": true, "editable": true} import copy import collections seis = collections.OrderedDict() source_widths = [2.5, 5, 10, 25, 50, 100] # Request one seismogram for each source with. for sw in source_widths: p = copy.deepcopy(params_ps) # The sourcewidth parameter steers the width of the STF. p["sourcewidth"] = sw # Send it alongside. r = requests.get(url=SYNGINE_URL, params=p) assert r.ok, str(r.reason) # Get the data and parse it as an ObsPy object. with io.BytesIO(r.content) as f: tr = obspy.read(f)[0] seis[sw] = tr # Plot only some phases. tr.slice(tr.stats.starttime + 1000, tr.stats.starttime + 1500).plot() # + {"deletable": true, "editable": true} import matplotlib.gridspec as gridspec # Plotting setup. fig = plt.figure(figsize=(10, 3)) gs1 = gridspec.GridSpec(1, 1, wspace=0, hspace=0, left=0.05, right=0.62, bottom=0.14, top=0.99) ax1 = fig.add_subplot(gs1[0]) gs2 = gridspec.GridSpec(1, 1, wspace=0, hspace=0, left=0.65, right=0.94, bottom=0.14, top=0.99) ax2 = fig.add_subplot(gs2[0]) plt.sca(ax1) # Now plot all the seismograms. for _i, (sw, tr) in enumerate(seis.items()): tr.normalize() plt.plot(tr.times(), 2.0 * tr.data - _i * 3, color="0.1") plt.legend() plt.xlim(0, 2000) plt.yticks([0, -3, -6, -9, -12, -15], [str(_i) for _i in source_widths]) plt.ylim(-17, 2) plt.xlabel("Time since event origin [sec]") plt.ylabel("Source width [sec]") plt.sca(ax2) # Use an internal instaseis function to get the used STF. from instaseis.server.util import get_gaussian_source_time_function dt = 0.01 # Plot all the source time functions. for _i, sw in enumerate(source_widths): sr = get_gaussian_source_time_function(sw, dt)[1] #sr = np.concatenate([sr2, np.zeros(1000)]) alpha = 0.4 - _i * 0.4 / len(source_widths) plt.fill_between(np.arange(len(sr)) * dt - sw, sr, color="0.0", alpha=alpha, linewidth=0) if sw == 25: plt.plot(np.arange(len(sr)) * dt - sw, sr, color="0.0", lw=2) ax2.annotate('25 sec', xy=(5, 0.07), xytext=(8, 0.10), arrowprops=dict(facecolor='black', shrink=0.05)) plt.grid(True) plt.xlim(-20, 20) plt.ylim(-0.0005, 0.16) plt.xticks([-10, 0, 10]) plt.yticks([0, 0.04, 0.08, 0.12]) plt.xlabel("Time [sec]") plt.ylabel("Slip rate [m/sec]") ax2.yaxis.tick_right() ax2.yaxis.set_label_position("right") ax2.yaxis.set_tick_params(length=2) ax2.yaxis.set_tick_params(pad=4) ax2.xaxis.set_tick_params(length=2) ax2.xaxis.set_tick_params(pad=4) ax2.xaxis.set_tick_params(color="#CCCCCC") ax2.yaxis.set_tick_params(color="#CCCCCC") plt.savefig("source_width.pdf")
6905fda86703d56d27ced0178a27ebf687bb1da0
d18df0ec22dc766496d4b0c2dcdcc933bdf332d8
/utils.py
f15c3122cd9f699a4a7cf4c18cdcaea62d5eff1b
[]
no_license
thanhlt998/tktdtt
edc6610a28e09482f0746db258eed5323636abaa
64f32e62fb3b2d5d6ef6c2a0e74294bdff4b2057
refs/heads/master
2022-03-21T07:24:59.104986
2019-12-17T02:32:25
2019-12-17T02:32:25
208,956,173
0
0
null
null
null
null
UTF-8
Python
false
false
1,151
py
from pyvi.ViTokenizer import ViTokenizer import re from dateutil.parser import parse import json def tokenize(terms): terms = ViTokenizer.tokenize(terms) terms = [f"\"{re.sub(r'_', ' ', term)}\"" for term in re.findall(r'\S+', terms)] return ' '.join(terms) def time_str2iso_format(time_str, is_24h_format=True): time = re.search(fr'\d[\d/:,\- ]+[\d{"AMP" if is_24h_format else ""}]+', time_str)[0] time = parse(time) return time.strftime('%Y-%m-%dT%H:%M:%SZ') def read_jsonl_file(fn): docs = [] with open(fn, mode='r', encoding='utf8') as f: for line in f: docs.append(json.loads(line)) f.close() return docs def read_json_file(fn): with open(fn, mode='r', encoding='utf8') as f: docs = json.load(f) f.close() return docs def dump_jsonl_file(fn, docs): with open(fn, mode='w', encoding='utf8') as f: for doc in docs: f.write(json.dumps(doc, ensure_ascii=False)) f.close() if __name__ == '__main__': # docs = read_json_file('data/data_baomoi.json') docs = read_jsonl_file('data/24h.jsonl') print(docs[:2])
3abcc4770b5d3213f9bbe698c4fd2bd2e30bc2df
015ce35e6344d1726173594ae509dfc1ca6f856d
/3-OOP and DSA/4-Recursion/Study/5-fibonichi.py
cd8fcc970c153783d338b2223d11fd4aeb930ddb
[]
no_license
ayman-elkassas/Python-Notebooks
4af80df75c15a6ac3049450b3920d500fef0e581
26a8265f458c40ac22965d55722f32a650851683
refs/heads/master
2023-04-03T19:12:17.707673
2021-04-10T21:32:37
2021-04-10T21:32:37
356,699,690
0
0
null
null
null
null
UTF-8
Python
false
false
223
py
# Fn # = F # n−2 + Fn−1 for n > 1. # import gzip # gzip.GzipFile.readline(r"C:\Users\Ayman Elkassas\Desktop\dump.txt",) def fib(n): if n<=1: return n else: return fib(n-1)+fib(n-2) print(fib(5))
7e5363f7bc158f952ae5fcf883d622a0fa2cd660
83ed8b754703a1c9e661c90f0763bfebbc0f2606
/数据处理/计财Excel/excel_jicai.py
35dffa6e8fac69b1cf98e1de6347fdde61ce573e
[]
no_license
zbh123/hobby
4ce267a20e1af7f2accd2bde8d39af269efa319b
2215c406fe7700bf150fd536dd56823a2e4733d1
refs/heads/master
2021-08-02T10:31:34.683391
2021-07-26T07:26:16
2021-07-26T07:26:16
150,555,879
4
0
null
2021-07-27T07:34:28
2018-09-27T08:41:44
Python
UTF-8
Python
false
false
11,085
py
#!python3 # -*- coding:utf-8 -*- import re from datetime import datetime, date import xlrd, xlwt import time import os, sys from xlutils.copy import copy """ 股票质押明细表操作, 1,选取自有资金。 2,批注及备注中包含本月 3,提取字段 """ def open_excel(excel_file): """ 读取excel函数 args:excel_file(excel文件,目录在py文件同目录) returns:book """ try: book = xlrd.open_workbook(excel_file) # 文件名,把文件与py文件放在同一目录下 return book except: print("open excel file failed!") def filter_sheet(excel_file, target_folder, now_month): """ 过滤excel文件的sheet :param excel_file: :return: """ book = open_excel(excel_file) # 打开excel文件 sheets = book.sheet_names() # 获取所有sheet表名 # 如果sheet包含待赎回交易(汇总),返回sheet的索引 for sheet in sheets: if sheet != '待购回交易(汇总)': continue # 处理当前sheet的excel handle_excel(book, sheet, target_folder, now_month) break def handle_excel(book, sheet, target_folder, now_month): """ 处理表 :param book: :param sheet: :return: """ # 创建新表 workbook = xlwt.Workbook(encoding='utf-8') worksheet = workbook.add_sheet('待赎回交易(处理后)') # 读取原表行 sh = book.sheet_by_name(sheet) row_num = sh.nrows # 把头部写入新的excel row_data = sh.row_values(0) for i, content in enumerate(row_data): worksheet.write(0, i, content) # 处理每一行 r = 1 for row in range(1, row_num): row_data = sh.row_values(row) # 出资方 investor = row_data[1] if investor != '自有资金': continue dateFormat = xlwt.XFStyle() # 把这一行写入新的excel for i, content in enumerate(row_data): # 时间格式特殊处理下 if i == 0 or i == 26: date_value = xlrd.xldate_as_tuple(content, 0) date_value = date(*date_value[:3]).strftime('%Y/%m/%d') date_value = time_format(date_value) dateFormat.num_format_str = 'yyyy/m/d' worksheet.write(r, i, date_value, dateFormat) else: worksheet.write(r, i, content) # 行数+1 r = r + 1 workbook.save(target_folder + '/自有资金-待赎回交易.xlsx') def handle_comment(target_file, now_month): """ 处理批注 :return: """ # 读取修改后的文件 book = open_excel(target_file) sh = book.sheet_by_index(0) row_num = sh.nrows colx_num = sh.ncols # 设置修改文件 workbook = copy(book) worksheet = workbook.get_sheet(0) # worksheet.write(0, colx_num, '批注') for row in range(1, row_num): row_data = sh.row_values(row) comment = row_data[23] # 先把批注写到最后一列 # worksheet.write(row, colx_num, comment) # 处理批注(分成数组,如果数组有月份和数字,把月份和数字向后写) com = comment.split(';') index_row = 0 # 用一个变量控制每一行行的最大列 for c in com: print(c) if not (now_month + '/' in c): continue # 提取数组里面的日期和金额 date_reg_exp = re.compile('\d{4}[-/]\d{1,2}[-/]\d{1,2}') matches_list = date_reg_exp.findall(c) print(matches_list) # 金额(把万或者元前面的数字提取) for matches in matches_list: c_no_date = c.replace(matches, '') print(c_no_date) c_num_unit = re.findall(r'\d+(?:\.\d+)?万', c_no_date) print(c_num_unit) c_num2_unit = re.findall(r'\d+(?:\.\d+)?元', c_no_date) print(c_num2_unit) # 写入excel index_date = 0 # 标志本月日期的增行数 index_money_w = 0 # 控制万的增行数 index_money_y = 0 # 控制元的增行数 for index, date in enumerate(matches_list): if now_month + '/' in date: worksheet.write(row, colx_num + index_date + index_row, date) index_date = index_date + 1 for index2, c_num in enumerate(c_num_unit): c_num = re.findall(r'\d+(?:\.\d+)?', c_num) worksheet.write(row, colx_num + index_date + index2 + index_row, int(c_num[0]) * 10000) index_money_w = index2 + 1 for index3, c_num2 in enumerate(c_num2_unit): c_num2 = re.findall(r'\d+(?:\.\d+)?', c_num2) worksheet.write(row, colx_num + index_date + index_money_w + index3 + index_row, c_num2[0]) index_money_y = index3 + 1 index_row = index_date + index_money_w + index_money_y + index_row workbook.save(target_file) def handle_remarks(target_file, now_month): """ 处理备注 :return: """ # 读取修改后的文件 book = open_excel(target_file) sh = book.sheet_by_index(0) row_num = sh.nrows colx_num = sh.ncols # 设置修改文件 workbook = copy(book) worksheet = workbook.get_sheet(0) # worksheet.write(0, colx_num, '备注') for row in range(1, row_num): row_data = sh.row_values(row) remarks = row_data[27] # 先把备注写到最后一列 # worksheet.write(row, colx_num, remarks) # 处理备注(分成数组,如果数组有月份和数字,把月份和数字向后写) com = remarks.split(';') index_row = 0 for c in com: # print(c) if not (now_month + '/' in c): continue if not ('变更' in c): continue # 提取数组里面的日期 date_reg_exp = re.compile('\d{4}[-/]\d{1,2}[-/]\d{1,2}') matches_list = date_reg_exp.findall(c) # 把延期日期去掉 for matches in matches_list: c = c.replace('延期' + matches, '') c = c.replace('延期到' + matches, '') print('----' + c) # 拿到变更前后的日期和金额,默认分成两个,可能存在多个变更的情况 array = c.split('变更') for index, str in enumerate(array): if index == len(array) - 1: break date_reg_exp = re.compile(r'\d{4}[-/]\d{1,2}[-/]\d{1,2}') matches_date_list = date_reg_exp.findall(str) print(matches_date_list) per_reg_exp = re.compile(r"\d+\.\d*%|\d*%") matches_per_list = per_reg_exp.findall(array[index + 1]) print(matches_per_list) # 如果包含分之,并且数据的前面无日期或者数据日期为当月日期,取出 date_fenshu = '' fenshu = '' if array[index + 1].find("分之") != -1: index_temp = array[index + 1].find("分之") c_bef = array[index + 1][0:index_temp - 1] d_reg_exp = re.compile(r'\d{4}[-/]\d{1,2}[-/]\d{1,2}') m_date_list = d_reg_exp.findall(c_bef) if len(m_date_list) == 0: fenshu = array[index + 1][int(index_temp) - 1: int(index_temp) + 3] elif now_month + '/' in m_date_list[len(m_date_list) - 1]: date_fenshu = m_date_list[len(m_date_list) - 1] fenshu = array[index + 1][int(index_temp) - 1: int(index_temp) + 3] print(date_fenshu) print(fenshu) date = matches_date_list[len(matches_date_list) - 1] per = matches_per_list[0] if now_month + '/' in date: worksheet.write(row, colx_num + index_row, date) worksheet.write(row, colx_num + 1 + index_row, per) # 如果只有百分数 if fenshu != '' and date_fenshu == '': worksheet.write(row, colx_num + 2 + index_row, fenshu) index_row = index_row + 1 + 2 # 如果有百分数,有日期 elif fenshu != '' and date_fenshu != '': worksheet.write(row, colx_num + 2 + index_row, date_fenshu) worksheet.write(row, colx_num + 3 + index_row, fenshu) index_row = index_row + 1 + 3 else: index_row = index_row + 1 + 1 if now_month + '/' in date_fenshu: if fenshu != '' and date_fenshu != '': worksheet.write(row, colx_num + index_row, date_fenshu) worksheet.write(row, colx_num + 1 + index_row, fenshu) index_row = index_row + 2 workbook.save(target_file) def time_format(date_value): """ 时间格式化 去掉月份,日期前面的0 :param date_value: :return: """ dates = date_value.split('/') if len(dates) == 3: month = dates[1].lstrip('0') day = dates[2].lstrip('0') return dates[0] + '/' + month + '/' + day elif len(dates) == 2: month = dates[1].lstrip('0') return dates[0] + '/' + month else: return date_value if __name__ == '__main__': source_file = r'D:\0RPA\计划财务部\财务rpa\魏丽Excel\科目余额表.xls' # source_file = r'C:\Users\LiGuangxi\Desktop\RPA需求\计财\股票质押明细表(仅供参考,请核对).xlsx' target_file = r'D:\0RPA\计划财务部\财务rpa\魏丽Excel' now_time = time.strftime("%Y%m%d", time.localtime(time.time())) # 如果没有源文件,则报错退出 if not os.path.exists(source_file): print("查询不到源文件") sys.exit(1) # 如果没有目标文件夹,则创建 target_folder = target_file + '/' + now_time if not os.path.exists(target_folder): os.makedirs(target_folder) # 当前月 now_month = time.strftime("%Y/%m", time.localtime(time.time())) # ---------------------start:下面可以修改为您处理的任何月份--------------------------------------------------------------------------------------------- # now_month = '2020/12' # ---------------------end:上面可以修改为您处理的任何月份----------------------------------------------------------------------------------------------- # 过滤 filter_sheet(source_file, target_folder, now_month) # 加工 handle_comment(target_folder + '/自有资金-待赎回交易.xlsx', now_month) handle_remarks(target_folder + '/自有资金-待赎回交易.xlsx', now_month)
6fc250290cd0b7389544fbe3a86bdc07265dc7d7
8eccc4cab7ba7292c932468163c711d4058e3b90
/app/inheritance/abstract/migrations/0003_auto_20191223_0612.py
5f9ce7809d3b1fe08e15168d3691200f35a33369
[]
no_license
zehye/django-document-wps12
97b1aa4be5a56b949ba59ac92e8d0c5cb3e22f73
086fdc581ba3f2db7bc39a6eb906fd97cc61c415
refs/heads/master
2022-09-08T12:46:19.110011
2019-12-26T09:07:15
2019-12-26T09:07:15
228,784,564
0
0
null
2022-08-23T17:59:03
2019-12-18T07:37:14
Python
UTF-8
Python
false
false
737
py
# Generated by Django 3.0 on 2019-12-23 06:12 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('abstract', '0002_auto_20191223_0539'), ] operations = [ migrations.AlterField( model_name='childa', name='m2m', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='abstract_childa', to='abstract.Student'), ), migrations.AlterField( model_name='childb', name='m2m', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='abstract_childb', to='abstract.Student'), ), ]
08b1a08138cf2a9f104b5f00cfba5cf8fb7aaa24
de6f57fa8391d447a50b1fe2f394cc2fc0488bfa
/BookMyShow/urls.py
7470e069be75c7a4371b1370572efd74c250c991
[]
no_license
himdhiman/BMS-2
ce8db13d88dacd27b45757f5d30b78717041d0f8
440886028006211a1995f9d28d21fde9caf7fb0a
refs/heads/master
2021-09-27T17:25:10.187898
2021-01-21T15:40:19
2021-01-21T15:40:19
205,708,449
1
0
null
2021-09-22T17:58:58
2019-09-01T17:16:10
JavaScript
UTF-8
Python
false
false
1,031
py
"""BookMyShow URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from movies.views import SearchView urlpatterns = [ path('admin/', admin.site.urls), path('accounts/', include('auth.urls')), path('', include('movies.urls')), path('cinema/', include('cinema.urls')), path('tickets/', include('tickets.urls')), path('search/', SearchView.as_view(), name = 'search') ]
10a6013dcc36183777720bbc2952c93d81e122df
0f60e5a4bffa7372f6461aba4f0e58de4e3508bb
/Pandas/panda21.py
00ddfd6fe203e441b705dfd802516e4eaf340740
[]
no_license
akshatrastogi25/Python
519130d6671438d20b0e6928e597e2b9c5bf722f
a3e8a1cbc96d09e4f8a6674c23c74074bfb65a9a
refs/heads/master
2023-03-26T02:14:14.092925
2021-03-25T12:10:31
2021-03-25T12:10:31
286,788,623
0
0
null
null
null
null
UTF-8
Python
false
false
436
py
import pandas as pd one = pd.DataFrame({ 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5'], 'Marks_scored':[98,90,87,69,78]}, index=[1,2,3,4,5]) two = pd.DataFrame({ 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5'], 'Marks_scored':[89,80,79,97,88]}, index=[1,2,3,4,5]) print pd.concat([one,two],axis=1)
b8c70af9726a94eba9ac6a43188c0994be97dfcb
cdc9a8bc051be72de5bace23fd0637701d699da3
/preprocess/create_stanford_labels.py
880bf6d76e11854488987df9b35ea38a1836deac
[ "Apache-2.0" ]
permissive
marshuang80/pe-slice-finder
4a51a8f7ef90f836d3cd5935f89a3e7f13c1fd63
2426a55c404e8eb694110351d604d6bdd613e5ae
refs/heads/master
2022-12-29T02:20:42.135931
2020-10-13T04:16:47
2020-10-13T04:16:47
296,091,898
1
0
null
null
null
null
UTF-8
Python
false
false
1,236
py
import os import sys sys.path.append(os.getcwd()) import h5py import pickle import argparse import pandas as pd from constants import * from tqdm import tqdm from collections import defaultdict def main(args): # create hdf5 file hdf5_fh = h5py.File(args.hdf5_file, 'a') slice_labels = pickle.load(open(args.pickle_file, 'rb')) results = defaultdict(list) for series in hdf5_fh.keys(): # skip if no labelss if series not in slice_labels.keys(): continue for slice_idx in range(hdf5_fh[series].shape[0]): label = 1 if slice_idx in slice_labels[series] else 0 results['series'].append(series) results['slice_idx'].append(slice_idx) results['label'].append(label) # save as csv df = pd.DataFrame.from_dict(results) df.to_csv('slice_labels.csv') # clean up hdf5_fh.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--hdf5_file', type=str, default='/data4/PE_stanford/Stanford_data/data.hdf5') parser.add_argument('--pickle_file', type=str, default='/data4/PE_stanford/Stanford_data/slice_labels.pkl') args = parser.parse_args() main(args)
2dd331830c8da0eca6ca46d05d214d1443501f2f
4ede275efc8bc9f9ef121dc37215d2f0d8453e36
/primer1.py
20a96af89513d28f097429ac8bc17040ee3ff8f6
[]
no_license
shanthivimalanataraajan01/code
bfa8a441b0c360aebd02248ad4433cc21889c3d2
ea467ae1eefd68a5dceaa53aab7149d31bd5faf6
refs/heads/master
2020-04-15T05:01:03.625422
2019-05-17T09:35:45
2019-05-17T09:35:45
164,405,963
0
2
null
null
null
null
UTF-8
Python
false
false
177
py
#vimala #hi m,n=map(int,input().split()) x=' ' for n in range(m+1,n): if n>0: for i in range(2,n): if n%i==0: break else: x=x+str(n)+' ' print(x.strip())
670a9c4656b1ed4889e4390c5fe424466c8af425
e7d65f8773a8c736fc9e41e843d7da6da5cc2e0b
/py3plex/algorithms/network_classification/PPR.py
0339b2da13f9375d038028962e9f8485a7392e37
[ "BSD-3-Clause" ]
permissive
hanbei969/Py3plex
768e86b16ca00044fcb4188e01edf32c332c8a2a
1ef3e0e6d468d24bd6e6aec3bd68f20b9d9686bb
refs/heads/master
2021-01-03T18:19:24.049457
2020-02-12T16:51:14
2020-02-12T16:51:14
240,188,307
1
0
BSD-3-Clause
2020-02-13T05:57:16
2020-02-13T05:57:16
null
UTF-8
Python
false
false
4,584
py
## set of routines for validation of the PPR-based classification from ..node_ranking import * from ..general.benchmark_classification import * import pandas as pd from sklearn.svm import SVC from sklearn.metrics import f1_score import time import numpy as np import multiprocessing as mp from sklearn.model_selection import StratifiedKFold,StratifiedShuffleSplit from sklearn import preprocessing def construct_PPR_matrix(graph_matrix,parallel=False): """ PPR matrix is the matrix of features used for classification --- this is the spatially intense version of the classifier """ ## initialize the vectors n = graph_matrix.shape[1] vectors = np.zeros((n, n)) results = run_PPR(graph_matrix,parallel=parallel) ## get the results in batches for result in results: if result != None: ## individual batches if isinstance(result, list): for ppr in result: vectors[ppr[0],:] = ppr[1] else: ppr = result vectors[ppr[0],:] = ppr[1] return vectors def construct_PPR_matrix_targets(graph_matrix,targets,parallel=False): n = graph_matrix.shape[1] vectors = np.empty((len(targets), n)) tar_map = dict(zip(targets,range(len(targets)))) results = run_PPR(graph_matrix,targets=targets,parallel=parallel) for result in results: vectors[tar_map[result[0]],:] = vectors[1] return vectors ## deal with that now.. def validate_ppr(core_network,labels,dataset_name="test",repetitions=5,random_seed=123,multiclass_classifier=None,target_nodes=None,parallel=False): """ The main validation class --- use this to obtain CV results! """ if multiclass_classifier is None: multiclass_classifier = SVC(kernel = 'linear', C = 1,probability=True) df = pd.DataFrame() for k in range(repetitions): ## this is relevant for supra-adjacency-based tasks.. if target_nodes is not None: print("Subnetwork ranking in progress..") vectors = construct_PPR_matrix_targets(core_network,target_nodes,parallel=parallel) labels = labels[target_nodes] else: vectors = construct_PPR_matrix(core_network,parallel=parallel) ## remove single instance-single target! nz = np.count_nonzero(labels,axis=0) wnz = np.argwhere(nz>2).T[0] labels = labels[:,wnz] for j in np.arange(0.1,0.5,0.1): ## run the training.. print("Train size:{}, method {}".format(j,"PPR")) print(vectors.shape,labels.shape) rs = StratifiedShuffleSplit(n_splits=10, test_size=0.5, random_state=random_seed) micros = [] macros = [] times = [] new_train_y = [] for y in labels: new_train_y.append(list(y).index(1)) onedim_labels = np.array(new_train_y) for X_train, X_test in rs.split(vectors,new_train_y): start = time.time() train_x = vectors[X_train] test_x = vectors[X_test] train_labels = labels[X_train] test_labels = labels[X_test] train_labels_first = onedim_labels[X_train] test_labels_second = onedim_labels[X_test] clf = multiclass_classifier clf.fit(train_x, train_labels_first) preds = clf.predict(test_x) mi = f1_score(test_labels_second, preds, average='micro') ma = f1_score(test_labels_second, preds, average='macro') # being_predicted = np.unique(train_labels_first) # tmp_lab = test_labels[:,being_predicted] # mi,ma = evaluate_oracle_F1(probs,tmp_lab) ## train the model end = time.time() elapsed = end - start micros.append(mi) macros.append(ma) times.append(elapsed) outarray = {"percent_train": np.round(1-j,1), "micro_F":np.mean(micros),"macro_F":np.mean(macros) ,"setting": "PPR" ,"dataset": dataset_name,"time":np.mean(times)} df = df.append(outarray,ignore_index=True) df = df.reset_index() return df
fbcf2f345a377b236e4d5dd331708ae9b0e6cc03
392a4f5c76414fcbed17dd5dccaf2f64096659a2
/app_frame/page/market.py
0630ce30172d3d8b20da2105324e02b39ca1bd86
[]
no_license
Allison001/homework
3bd5794c8bdd944f827f3e8008eea1831f90644b
1ab910d21ad4348a212b226758cfa8244ea03bfc
refs/heads/master
2023-04-08T22:48:56.667737
2021-04-15T03:38:56
2021-04-15T03:38:56
324,184,733
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
import yaml from selenium.webdriver.common.by import By from app_frame.basepage import BasePage from app_frame.page.search import Search class Market(BasePage): def goto_search(self): self.run_step('../page/market.yaml','goto_search') # self.find_and_click((By.XPATH,"//*[@resource-id='com.xueqiu.android:id/action_search']")) return Search(self.driver)
c7d2e24957a8f5d7a7276553f6d133a9933b2d8a
385e00e3d48446baf20cb3d0fbf9db0344cd95da
/test/visualization/test_utils.py
9e8a593f52ffbe911da59c3806471afc61755eca
[ "Apache-2.0" ]
permissive
oliverdial/qiskit-experiments
d670f9151116e2e7d9a67f304a23313aa31fc30f
a387675a3fe817cef05b968bbf3e05799a09aaae
refs/heads/main
2023-06-24T08:07:19.505243
2023-06-09T21:01:59
2023-06-09T21:01:59
362,153,676
0
0
Apache-2.0
2021-04-27T15:03:52
2021-04-27T15:03:51
null
UTF-8
Python
false
false
4,818
py
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test visualization utilities. """ import itertools as it from test.base import QiskitExperimentsTestCase from typing import List, Tuple import numpy as np from ddt import data, ddt from qiskit.exceptions import QiskitError from qiskit_experiments.visualization.utils import DataExtentCalculator from qiskit_experiments.framework.package_deps import numpy_version @ddt class TestDataExtentCalculator(QiskitExperimentsTestCase): """Test DataExtentCalculator""" @classmethod def _dummy_data( cls, extent: Tuple[float, float, float, float] = (-1, 1, -5, 0), n_data: int = 5, n_points: int = 16, ) -> List[np.ndarray]: # Create a list of bin edges by which to divide the target extent bin_edges = [ np.histogram_bin_edges(extent[0:2], bins=n_data).tolist(), np.histogram_bin_edges(extent[2:], bins=n_data).tolist(), ] # Iterate over pairs of adjacent bin edges, which define the maximum and minimum for the region. # This is done by generating sliding windows of bin_edges as follows: # [[a], [b], [c], [d], [e], [f]], g] # [a, [[b], [c], [d], [e], [f], [g]] # The result is a list of pairs representing a moving window of size 2. # TODO: remove the old code once numpy is above 1.20. dummy_data = [] if numpy_version() >= (1, 20): for (x_min, x_max), (y_min, y_max) in it.product( *np.lib.stride_tricks.sliding_window_view(bin_edges, 2, 1) ): _dummy_data = np.asarray( [ np.linspace(x_min, x_max, n_points), np.linspace(y_min, y_max, n_points), ] ) dummy_data.append(_dummy_data.swapaxes(-1, -2)) else: for (x_min, x_max), (y_min, y_max) in it.product( *tuple(list(zip(b[0:-1], b[1:])) for b in bin_edges) ): _dummy_data = np.asarray( [ np.linspace(x_min, x_max, n_points), np.linspace(y_min, y_max, n_points), ] ) dummy_data.append(_dummy_data.swapaxes(-1, -2)) return dummy_data @data(*list(it.product([1.0, 1.1, 2.0], [None, 1.0, np.sqrt(2)]))) def test_end_to_end(self, args): """Test end-to-end functionality. Results that are asserted include the range of the final extent tuple and its midpoint. """ # Test args multiplier, aspect_ratio = args[0], args[1] # Problem inputs extent = (-1, 1, -5, 1) n_data = 6 dummy_data = self._dummy_data(extent, n_data=n_data) ext_calc = DataExtentCalculator(multiplier=multiplier, aspect_ratio=aspect_ratio) # Add data as 2D and 1D arrays to test both methods for d in dummy_data[0 : int(n_data / 2)]: ext_calc.register_data(d) for d in dummy_data[int(n_data / 2) :]: for i_dim in range(2): ext_calc.register_data(d[:, i_dim], dim=i_dim) # Check extent actual_extent = ext_calc.extent() # Check that range was scaled. Given we also have an aspect ratio, we may have a range that is # larger than the original scaled by the multiplier. At the minimum, the range should be exactly # equal to the original scaled by the multiplier expected_range = multiplier * np.diff(np.asarray(extent).reshape((2, 2)), axis=1).flatten() actual_range = np.diff(np.reshape(actual_extent, (2, 2)), axis=1).flatten() for act, exp in zip(actual_range, expected_range): self.assertTrue(act >= exp) # Check that the midpoints are the same. expected_midpoint = np.mean(np.reshape(extent, (2, 2)), axis=1).flatten() actual_midpoint = np.mean(np.reshape(actual_extent, (2, 2)), axis=1).flatten() np.testing.assert_almost_equal( actual_midpoint, expected_midpoint, ) def test_no_data_error(self): """Test that a QiskitError is raised if no data was set.""" ext_calc = DataExtentCalculator() with self.assertRaises(QiskitError): ext_calc.extent()
7736ed51fe1a1691133e354fb1c1d6372fd47acf
4a238068e29a1f6871cc049a0486b20b27e781de
/Habana/benchmarks/resnet/implementations/resnet-tf-sys-420gh-tngr/TensorFlow/computer_vision/Resnets/utils/optimizers/keras/lars_optimizer.py
4c64f2a9dc780522a575d18bc7c554999bcaf59b
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Pixelz-Inc/training_results_v1.0
61b4555ad482b189d1966be3edd127858addd628
c507130c4e04c1f274a9ae8b7284aac79f26325a
refs/heads/master
2023-08-18T22:46:13.316503
2021-10-22T04:01:57
2021-10-22T04:01:57
399,047,712
0
0
NOASSERTION
2021-08-23T09:37:25
2021-08-23T09:37:25
null
UTF-8
Python
false
false
9,194
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Layer-wise Adaptive Rate Scaling optimizer for large-batch training.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.framework import ops from tensorflow.python.keras import backend_config from tensorflow.python.keras.optimizer_v2 import optimizer_v2 from tensorflow.python.ops import array_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.training import training_ops from tensorflow.python.ops import state_ops class LARSOptimizer(optimizer_v2.OptimizerV2): """Layer-wise Adaptive Rate Scaling for large batch training. Introduced by "Large Batch Training of Convolutional Networks" by Y. You, I. Gitman, and B. Ginsburg. (https://arxiv.org/abs/1708.03888) Implements the LARS learning rate scheme presented in the paper above. This optimizer is useful when scaling the batch size to up to 32K without significant performance degradation. It is recommended to use the optimizer in conjunction with: - Gradual learning rate warm-up - Linear learning rate scaling - Poly rule learning rate decay Note, LARS scaling is currently only enabled for dense tensors. Sparse tensors use the default momentum optimizer. """ def __init__( self, learning_rate, momentum=0.9, weight_decay=0.0001, # The LARS coefficient is a hyperparameter eeta=0.001, epsilon=0.0, name="LARSOptimizer", # Enable skipping variables from LARS scaling. # TODO(sameerkm): Enable a direct mechanism to pass a # subset of variables to the optimizer. skip_list=None, use_nesterov=False, **kwargs): """Construct a new LARS Optimizer. Args: learning_rate: A `Tensor`, floating point value, or a schedule that is a `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable that takes no arguments and returns the actual value to use. The learning rate. momentum: A floating point value. Momentum hyperparameter. weight_decay: A floating point value. Weight decay hyperparameter. eeta: LARS coefficient as used in the paper. Dfault set to LARS coefficient from the paper. (eeta / weight_decay) determines the highest scaling factor in LARS. epsilon: Optional epsilon parameter to be set in models that have very small gradients. Default set to 0.0. name: Optional name prefix for variables and ops created by LARSOptimizer. skip_list: List of strings to enable skipping variables from LARS scaling. If any of the strings in skip_list is a subset of var.name, variable 'var' is skipped from LARS scaling. For a typical classification model with batch normalization, the skip_list is ['batch_normalization', 'bias'] use_nesterov: when set to True, nesterov momentum will be enabled **kwargs: keyword arguments. Raises: ValueError: If a hyperparameter is set to a non-sensical value. """ if momentum < 0.0: raise ValueError("momentum should be positive: %s" % momentum) if weight_decay < 0.0: raise ValueError("weight_decay should be positive: %s" % weight_decay) super(LARSOptimizer, self).__init__(name=name, **kwargs) self._set_hyper("learning_rate", learning_rate) # When directly using class members, instead of # _set_hyper and _get_hyper (such as learning_rate above), # the values are fixed after __init(), and not being # updated during the training process. # This provides better performance but less flexibility. self.momentum = momentum self.weight_decay = weight_decay self.eeta = eeta self.epsilon = epsilon or backend_config.epsilon() self._skip_list = skip_list self.use_nesterov = use_nesterov def _prepare_local(self, var_device, var_dtype, apply_state): lr_t = self._get_hyper("learning_rate", var_dtype) local_step = math_ops.cast(self.iterations, var_dtype) lr_t = math_ops.cast(lr_t(local_step), var_dtype) learning_rate_t = array_ops.identity(lr_t) apply_state[(var_device, var_dtype)].update( dict( learning_rate=learning_rate_t, )) def _create_slots(self, var_list): for v in var_list: self.add_slot(v, "momentum") def compute_lr(self, grad, var, coefficients): scaled_lr = coefficients["learning_rate"] if self._skip_list is None or not any(v in var.name for v in self._skip_list): w_norm = linalg_ops.norm(var, ord=2) g_norm = linalg_ops.norm(grad, ord=2) trust_ratio = array_ops.where( math_ops.greater(w_norm, 0), array_ops.where( math_ops.greater(g_norm, 0), (self.eeta * w_norm / (g_norm + self.weight_decay * w_norm + self.epsilon)), 1.0), 1.0) scaled_lr = coefficients["learning_rate"] * trust_ratio # Add the weight regularization gradient grad = grad + self.weight_decay * var return scaled_lr, grad def _apply_dense(self, grad, var, apply_state=None): var_device, var_dtype = var.device, var.dtype.base_dtype coefficients = ((apply_state or {}).get((var_device, var_dtype)) or self._fallback_apply_state(var_device, var_dtype)) scaled_lr, grad = self.compute_lr(grad, var, coefficients) mom = self.get_slot(var, "momentum") return training_ops.apply_momentum( var, mom, math_ops.cast(1.0, var.dtype.base_dtype), grad * scaled_lr, self.momentum, use_locking=False, use_nesterov=self.use_nesterov) def _resource_apply_dense(self, grad, var, apply_state=None): var_device, var_dtype = var.device, var.dtype.base_dtype coefficients = ((apply_state or {}).get((var_device, var_dtype)) or self._fallback_apply_state(var_device, var_dtype)) scaled_lr, grad = self.compute_lr(grad, var, coefficients) mom = self.get_slot(var, "momentum") # ============================================================ return training_ops.resource_apply_keras_momentum( var.handle, mom.handle, scaled_lr, grad, self.momentum, use_locking=False, use_nesterov=self.use_nesterov) # ============================================================ # ============================================================ # mom_t = mom * self.momentum - grad * scaled_lr # mom_t = state_ops.assign(mom, mom_t, use_locking=False) # if self.use_nesterov: # var_t = var + mom_t * self.momentum - grad * scaled_lr # else: # var_t = var + mom_t # return state_ops.assign(var, var_t, use_locking=False).op # ============================================================ # Fallback to momentum optimizer for sparse tensors def _apply_sparse(self, grad, var, apply_state=None): var_device, var_dtype = var.device, var.dtype.base_dtype coefficients = ((apply_state or {}).get((var_device, var_dtype)) or self._fallback_apply_state(var_device, var_dtype)) mom = self.get_slot(var, "momentum") return training_ops.sparse_apply_momentum( var, mom, coefficients["learning_rate"], grad.values, grad.indices, self.momentum, use_locking=False, use_nesterov=self.use_nesterov) def _resource_apply_sparse(self, grad, var, indices, apply_state=None): var_device, var_dtype = var.device, var.dtype.base_dtype coefficients = ((apply_state or {}).get((var_device, var_dtype)) or self._fallback_apply_state(var_device, var_dtype)) mom = self.get_slot(var, "momentum") return training_ops.resource_sparse_apply_keras_momentum( var.handle, mom.handle, coefficients["learning_rate"], grad, indices, self.momentum, use_locking=False, use_nesterov=self.use_nesterov) def get_config(self): config = super(LARSOptimizer, self).get_config() config.update({ "learning_rate": self._serialize_hyperparameter("learning_rate"), "momentum": self.momentum, "weight_decay": self.weight_decay, "eeta": self.eeta, "epsilon": self.epsilon, "use_nesterov": self.use_nesterov, }) return config
4f0d3727a003f65b28d97e95316cdc9eefd284eb
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_196/ch80_2020_04_13_18_23_05_143280.py
f6edda895b2e0e2bcd29788dd3078b902f425c3f
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
151
py
def interseccao_chaves(dic1,dic2): lista = [] for a in dic1.keys() and in dic2.keys(): lista.append(a,b) return lista
b7935778e4af05b4794433f47991deced92fb943
d9a469bc9cff39d89e7cb04e4fc537763aee9aca
/binance_chain/exceptions.py
957d3ed87c3cd1eb28ab1f816979271c6ed5ca5f
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
sammchardy/python-binance-chain
d017c0f1e6bd84d28017f87e2d229b21a2ee8b8a
19d7d639cc912a27ec86831338c2a2dc96289d50
refs/heads/master
2023-05-11T19:15:44.912507
2021-06-01T03:14:25
2021-06-01T03:14:25
172,324,144
310
111
MIT
2022-06-30T10:55:19
2019-02-24T10:29:29
Python
UTF-8
Python
false
false
1,626
py
import ujson as json class BinanceChainAPIException(Exception): def __init__(self, response, status_code): self.code = 0 try: json_res = json.loads(response.content) except ValueError: if not response.content: self.message = status_code else: self.message = 'Invalid JSON error message from Binance Chain: {}'.format(response.text) else: self.code = json_res.get('code', None) self.message = json_res['message'] self.status_code = status_code self.response = response self.request = getattr(response, 'request', None) def __str__(self): # pragma: no cover return f'APIError(code={self.code}): {self.message}' class BinanceChainRequestException(Exception): pass class BinanceChainBroadcastException(Exception): pass class BinanceChainSigningAuthenticationException(Exception): pass class BinanceChainRPCException(Exception): def __init__(self, response): self.code = 0 try: json_res = json.loads(response.content) except ValueError: self.message = 'Invalid JSON error message from Binance Chain: {}'.format(response.text) else: self.code = json_res['error']['code'] self.message = json_res['error']['message'] self.status_code = response.status_code self.response = response self.request = getattr(response, 'request', None) def __str__(self): # pragma: no cover return f'RPCError(code={self.code}): {self.message}'
05cdd6e0b5aadfcd1453901287e445578f2b8e29
6ba38fe94e7ea5146c633f56f59c0c3278d695a7
/build/build_for_ios
d6425614eecc82e40f167b7e162c91cecd846058
[ "MIT" ]
permissive
mworks/mworks
b49b721c2c5c0471180516892649fe3bd753a326
abf78fc91a44b99a97cf0eafb29e68ca3b7a08c7
refs/heads/master
2023-09-05T20:04:58.434227
2023-08-30T01:08:09
2023-08-30T01:08:09
2,356,013
14
11
null
2012-10-03T17:48:45
2011-09-09T14:55:57
C++
UTF-8
Python
false
false
941
#!/usr/bin/env python3 import argparse from subprocess import check_call def main(): parser = argparse.ArgumentParser() parser.add_argument('--archive', action='store_true', help='create an archive for distribution') parser.add_argument('version', nargs='?', help='version number') args = parser.parse_args() cmd = [ '/usr/bin/xcrun', 'xcodebuild', '-workspace', 'MWorks-iOS.xcworkspace', '-scheme', 'MWorks', '-destination', 'generic/platform=iOS', ] if args.archive: cmd.append('archive') else: cmd.extend(['clean', 'build']) cmd.extend(['GCC_TREAT_WARNINGS_AS_ERRORS=YES', 'MTL_TREAT_WARNINGS_AS_ERRORS=YES', 'SWIFT_TREAT_WARNINGS_AS_ERRORS=YES']) if args.version: cmd.append('MW_VERSION=' + args.version) check_call(cmd) if __name__ == '__main__': main()
441e60c7846fde6cca41e6cbb3845b685e4f8672
09e5cfe06e437989a2ccf2aeecb9c73eb998a36c
/modules/cctbx_project/cctbx/symmetry_search/boost_python/SConscript
be2824dfaa2fdc51694642b708bafd590f93bda6
[ "BSD-3-Clause-LBNL", "BSD-3-Clause" ]
permissive
jorgediazjr/dials-dev20191018
b81b19653624cee39207b7cefb8dfcb2e99b79eb
77d66c719b5746f37af51ad593e2941ed6fbba17
refs/heads/master
2020-08-21T02:48:54.719532
2020-01-25T01:41:37
2020-01-25T01:41:37
216,089,955
0
1
BSD-3-Clause
2020-01-25T01:41:39
2019-10-18T19:03:17
Python
UTF-8
Python
false
false
216
Import("env_cctbx_boost_python_ext") env = env_cctbx_boost_python_ext.Clone() env.Prepend(LIBS=["cctbx", "omptbx"]) env.SharedLibrary(target="#lib/cctbx_symmetry_search_ext", source=[ "symmetry_search_ext.cpp", ])
4f1ec457cdb2aff59d8558ed5d090e890e081fa7
80a689cecd96315e55e6452d201e6531868bdc99
/management/commands/pdk_nudge_ios_devices_boto.py
c82c6760ca2673b2252cf9062343fe8914127764
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
kamau-edwin/PassiveDataKit-Django
d36fad6b366fef32c96941b10455b054abd44f7c
95db5701f88c74328b0611124149fdffa079e7b8
refs/heads/master
2021-01-06T17:25:50.471370
2020-02-26T21:17:32
2020-02-26T21:17:32
241,416,694
0
0
Apache-2.0
2020-02-18T16:56:09
2020-02-18T16:56:07
null
UTF-8
Python
false
false
5,828
py
# pylint: disable=no-member,line-too-long import json import re import boto import boto.exception import boto.sns from django.conf import settings from django.core.management.base import BaseCommand from ...decorators import handle_lock, log_scheduled_event from ...models import DataPoint class Command(BaseCommand): help = 'Send silent notifications to iOS devices to nudge power management systems for transmission using Boto and Amazon Simple Notification Service.' def add_arguments(self, parser): pass @handle_lock @log_scheduled_event def handle(self, *args, **options): # pylint: disable=too-many-locals, too-many-branches, too-many-statements tokens = {} for point in DataPoint.objects.filter(generator_identifier='pdk-app-event', secondary_identifier='pdk-ios-device-token').order_by('created'): properties = point.fetch_properties() tokens[point.source] = properties['event_details']['token'] region = [r for r in boto.sns.regions() if r.name == settings.PDK_BOTO_REGION][0] notification = {'aps': {'content-available' : 1}} message = {'APNS': json.dumps(notification), 'default': 'nil'} sns = boto.sns.SNSConnection( aws_access_key_id=settings.PDK_BOTO_ACCESS_KEY, aws_secret_access_key=settings.PDK_BOTO_ACCESS_SECRET, region=region, ) for source, token in tokens.iteritems(): # pylint: disable=unused-variable try: endpoint_response = sns.create_platform_endpoint( platform_application_arn=settings.PDK_BOTO_SNS_ARN, token=token, ) endpoint_arn = endpoint_response['CreatePlatformEndpointResponse']['CreatePlatformEndpointResult']['EndpointArn'] except boto.exception.BotoServerError, err: print 'ERR 1: ' + err.message # Yes, this is actually the official way: # http://stackoverflow.com/questions/22227262/aws-boto-sns-get-endpoint-arn-by-device-token result_re = re.compile(r'Endpoint(.*)already', re.IGNORECASE) result = result_re.search(err.message) if result: endpoint_arn = result.group(0).replace('Endpoint ', '').replace(' already', '') else: raise try: sns.publish(target_arn=endpoint_arn, message_structure='json', message=json.dumps(message)) except boto.exception.BotoServerError, err: print 'FAILED SENDING TO ' + token print 'ERR: ' + err.message result_re = re.compile(r'Endpoint(.*)disabled', re.IGNORECASE) result = result_re.search(err.message) if result: for point in DataPoint.objects.filter(source=source, generator_identifier='pdk-app-event', secondary_identifier='pdk-ios-device-token').order_by('created'): properties = point.fetch_properties() if token == properties['event_details']['token']: print 'RENAMING: ' + token point.secondary_identifier = 'pdk-ios-device-token-sandbox' point.save() else: raise tokens = {} for point in DataPoint.objects.filter(generator_identifier='pdk-app-event', secondary_identifier='pdk-ios-device-token-sandbox').order_by('created'): properties = point.fetch_properties() tokens[point.source] = properties['event_details']['token'] message = {'APNS_SANDBOX': json.dumps(notification), 'default': 'nil'} for source, token in tokens.iteritems(): # pylint: disable=unused-variable try: endpoint_response = sns.create_platform_endpoint( platform_application_arn=settings.PDK_BOTO_SNS_ARN_SANDBOX, token=token, ) endpoint_arn = endpoint_response['CreatePlatformEndpointResponse']['CreatePlatformEndpointResult']['EndpointArn'] except boto.exception.BotoServerError, err: print 'ERR 2: ' + err.message # Yes, this is actually the official way: # http://stackoverflow.com/questions/22227262/aws-boto-sns-get-endpoint-arn-by-device-token result_re = re.compile(r'Endpoint(.*)already', re.IGNORECASE) result = result_re.search(err.message) if result: endpoint_arn = result.group(0).replace('Endpoint ', '').replace(' already', '') else: raise try: sns.publish(target_arn=endpoint_arn, message_structure='json', message=json.dumps(message)) # print('PUBLISHED DEV: ' + token) except boto.exception.BotoServerError, err: print 'FAILED SENDING 2 TO ' + token print 'ERR: ' + err.message result_re = re.compile(r'Endpoint(.*)disabled', re.IGNORECASE) result = result_re.search(err.message) if result: for point in DataPoint.objects.filter(source=source, generator_identifier='pdk-app-event', secondary_identifier='pdk-ios-device-token-sandbox').order_by('created'): properties = point.fetch_properties() if token == properties['event_details']['token']: print 'RENAMING 2: ' + token point.secondary_identifier = 'pdk-ios-device-token-disabled' point.save() else: raise
cebcfbab3351bb97acf855a4e8a6a0e12ecff3e0
d88f9acfe09d79f06cf251b8cbbb012b55d99f39
/Scraping/test_scraping/create_sqlite_db.py
95e1b304f3fc724c65ddf601e4224bbe7e44b3ed
[]
no_license
Twishar/DataAnalysis
535beb795e30b8ac07767a61f1ebfbc60546271f
e5d5ba9ba0b9a51031e8f1f4225bc35d848159dd
refs/heads/master
2022-03-04T19:02:30.917729
2019-11-15T14:18:53
2019-11-15T14:18:53
98,515,695
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
import sqlite3 conn = sqlite3.connect('allo_db.sqlite') c = conn.cursor() c.execute('''CREATE TABLE allo_parse (search_param text, results text);''') conn.commit() conn.close()
3f39b4c11c3aa082d210897c4b788bb31b2e0551
8fcc27160f8700be46296568260fa0017a0b3004
/client/carbonui/control/windowDropDownMenu.py
6c26d7806b20cec4ebb3158345c97b472461b7f6
[]
no_license
connoryang/dec-eve-serenity
5d867f4eedfa896a4ef60f92556356cafd632c96
b670aec7c8b4514fc47cd52e186d7ccf3aabb69e
refs/heads/master
2021-01-22T06:33:16.303760
2016-03-16T15:15:32
2016-03-16T15:15:32
56,389,750
1
0
null
2016-04-16T15:05:24
2016-04-16T15:05:24
null
UTF-8
Python
false
false
1,453
py
#Embedded file name: e:\jenkins\workspace\client_SERENITY\branches\release\SERENITY\packages\carbonui\control\windowDropDownMenu.py import carbonui.const as uiconst from carbonui.primitives.container import Container from carbonui.primitives.fill import Fill from carbonui.primitives.line import Line from carbonui.control.label import LabelOverride as Label class WindowDropDownMenuCore(Container): __guid__ = 'uicls.WindowDropDownMenuCore' default_height = 10 default_align = uiconst.TOLEFT default_state = uiconst.UI_NORMAL def Setup(self, name, GetMenu): self.name = name self.expandOnLeft = 1 self.PrepareLayout() self.GetMenu = GetMenu def PrepareLayout(self): Line(parent=self, align=uiconst.TORIGHT) self.label = Label(text=self.name, parent=self, align=uiconst.CENTER, fontsize=9, letterspace=1, top=1, state=uiconst.UI_DISABLED, uppercase=1) self.hilite = Fill(parent=self, state=uiconst.UI_HIDDEN, padding=1) self.width = self.label.width + 10 self.cursor = uiconst.UICURSOR_SELECT def OnMouseEnter(self): self.hilite.state = uiconst.UI_DISABLED def OnMouseExit(self): self.hilite.state = uiconst.UI_HIDDEN def GetMenuPosition(self, *args): return (self.absoluteLeft, self.absoluteBottom + 2) class WindowDropDownMenuCoreOverride(WindowDropDownMenuCore): pass
bc9fb2afed22a652d7a229f920fb725987c8015a
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/7DrvnMeY2Ebzk2mfH_8.py
cdf4c6f5d8fb4f7a25817718499599ad9938b579
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
import re ​ body_insert = '(?<=<body>\n)' body_append = '(?=\n</body>)' body_rewrite = '(?<=<body>\n)(?:\n|.)+(?=\n</body>)'
812988adf18876c0cce0bafb504a64050e1ff7f7
ddcf878cca43d49f73fd673279a97e82ced521e8
/peyotl/nexson_proxy.py
0695ac59e11bb24cc41859e401f46be707764742
[ "BSD-2-Clause", "Python-2.0" ]
permissive
OpenTreeOfLife/peyotl
ca5fcbc4f1754c3da7a25c93d89cfeaaad17057f
b50f7217966c18195c9b52be42454513ffa3e7f3
refs/heads/master
2023-08-03T14:35:46.793662
2023-07-26T20:30:08
2023-07-26T20:30:08
16,637,087
6
4
BSD-2-Clause
2023-07-24T20:02:30
2014-02-08T05:52:12
Jupyter Notebook
UTF-8
Python
false
false
13,589
py
#!/usr/bin/env python """Provides high level wrappers around a Nexson data model blob to let it be treated as if it were a list of OTUs and a list of trees Accessors return either references to part of the NexSON or wrappers around those entities (not copies!) Weakrefs are used, so the more inclusive containers must be kept in scope while you are accessing constituents. Currently converts any NexSON blob to HBF v1.2 data model! """ from peyotl.nexson_syntax import (BY_ID_HONEY_BADGERFISH, convert_nexson_format, detect_nexson_version, get_nexml_el, read_as_json) from peyotl.utility.str_util import is_str_type from peyotl.utility import get_logger import weakref _LOG = get_logger(__name__) def otu_iter_nexson_proxy(nexson_proxy, otu_sort=None): """otu_sort can be None (not sorted or stable), True (sorted by ID lexigraphically) or a key function for a sort function on list of otuIDs Note that if there are multiple OTU groups, the NexSON specifies the order of sorting of the groups (so the sort argument here only refers to the sorting of OTUs within a group) """ nexml_el = nexson_proxy._nexml_el og_order = nexml_el['^ot:otusElementOrder'] ogd = nexml_el['otusById'] for og_id in og_order: og = ogd[og_id] if otu_sort is None: for k, v in og: yield nexson_proxy._create_otu_proxy(k, v) else: key_list = list(og.keys()) if otu_sort is True: key_list.sort() else: key_list.sort(key=otu_sort) for k in key_list: v = og[k] yield nexson_proxy._create_otu_proxy(k, v) def tree_iter_nexson_proxy(nexson_proxy): """Iterates over NexsonTreeProxy objects in order determined by the nexson blob""" nexml_el = nexson_proxy._nexml_el tg_order = nexml_el['^ot:treesElementOrder'] tgd = nexml_el['treesById'] for tg_id in tg_order: tg = tgd[tg_id] tree_order = tg['^ot:treeElementOrder'] tbid = tg['treeById'] otus = tg['@otus'] for k in tree_order: v = tbid[k] yield nexson_proxy._create_tree_proxy(tree_id=k, tree=v, otus=otus) def reverse_edge_by_source_dict(ebs, root_id): d = {} for edge_by_id in ebs.values(): for edge_id, edge in edge_by_id.items(): t = edge['@target'] assert t not in d d[t] = (edge_id, edge) assert root_id in ebs assert root_id not in d d[root_id] = (None, None) return d class NexsonProxy(object): class NexsonOTUProxy(object): def __init__(self, nexson_proxy, otu_id, otu): self._nexson_proxy = nexson_proxy self._otu_id = otu_id self._otu = otu def __getitem__(self, key): return self.otu[key] def __setitem__(self, key, value): self.otu[key] = value @property def ott_id(self): return self._otu.get('^ot:ottId') @property def otu(self): return self._otu @property def _id(self): return self._otu_id def get(self, key, default=None): return self._otu.get(key, default) def keys(self, key, default=None): return self._otu.get(key, default) def __init__(self, filepath='', nexson=None): self.filepath = filepath if nexson is None: if not filepath: raise ValueError('Either a filepath or nexson argument must be provided') self._nexson = read_as_json(self.filepath) else: self._nexson = nexson v = detect_nexson_version(self._nexson) if v != BY_ID_HONEY_BADGERFISH: _LOG.debug('NexsonProxy converting to hbf1.2') convert_nexson_format(self._nexson, BY_ID_HONEY_BADGERFISH) self._nexml_el = get_nexml_el(self._nexson) self._otu_cache = {} self._tree_cache = {} self._wr = None def otu_iter(self): return iter(otu_iter_nexson_proxy(self)) def tree_iter(self): return iter(tree_iter_nexson_proxy(self)) def _create_otu_proxy(self, otu_id, otu): np = self._otu_cache.get(otu_id) if np is None: if self._wr is None: self._wr = weakref.proxy(self) np = NexsonProxy.NexsonOTUProxy(self._wr, otu_id, otu) self._otu_cache[otu_id] = np return np def _create_tree_proxy(self, tree_id, tree, otus): np = self._tree_cache.get(tree_id) if np is None: if self._wr is None: self._wr = weakref.proxy(self) np = NexsonTreeProxy(tree_id=tree_id, tree=tree, otus=otus, nexson_proxy=self._wr) self._tree_cache[tree_id] = np return np def get_tree(self, tree_id): np = self._tree_cache.get(tree_id) if np is not None: return np tgd = self._nexml_el['treesById'] for tg in tgd.values(): tbid = tg['treeById'] if tree_id in tbid: otus = tg['@otus'] tree = tbid[tree_id] return self._create_tree_proxy(tree_id=tree_id, tree=tree, otus=otus) return None def get_otu(self, otu_id): np = self._otu_cache.get(otu_id) if np is not None: return np ogd = self._nexml_el['otusById'] for og in ogd.values(): o = og['otuById'].get(otu_id) if o is not None: return self._create_otu_proxy(otu_id=otu_id, otu=o) return None class NexsonTreeProxy(object): """Provide more natural operations by wrapping a NexSON 1.2 tree blob and its otus""" class NexsonNodeProxy(object): def __init__(self, tree, edge_id, edge, node_id=None, node=None): self._tree = tree self._node_id = node_id self._node = node self._edge_id = edge_id self._edge = edge self._otu = None def get(self, key, default=None): return self.node.get(key, default) def __getitem__(self, key): return self.node[key] def __setitem__(self, key, value): self.node[key] = value def keys(self): return self.node.keys() @property def is_leaf(self): return self._tree.is_leaf(self.node_id) def child_iter(self): return self._tree.child_iter(self.node_id) @property def ott_id(self): return self._tree.get_ott_id(self.node) @property def edge_id(self): return self._edge_id @property def edge(self): return self._edge @property def _id(self): return self.node_id @property def parent(self): if self._edge_id is None: return None par_node_id = self.edge['@source'] par_edge_id, par_edge = self._tree._find_edge_from_child(par_node_id) return self._tree._create_node_proxy_from_edge(edge_id=par_edge_id, edge=par_edge, node_id=par_node_id) @property def node_id(self): if self._node_id is None: self._node_id = self._edge['@target'] return self._node_id @property def otu(self): if self._otu is None: otu_id, otu = self._tree._raw_otu_for_node(self.node) self._otu = self._tree._nexson_proxy._create_otu_proxy(otu_id=otu_id, otu=otu) return self._otu @property def node(self): if self._node is None: self._node = self._tree.get_nexson_node(self.node_id) return self._node def __iter__(self): return iter(nexson_tree_preorder_iter(self._tree, node=self.node, node_id=self.node_id, edge_id=self.edge_id, edge=self.edge)) def preorder_iter(self): return iter(nexson_tree_preorder_iter(self)) def __init__(self, tree, tree_id=None, otus=None, nexson_proxy=None): self._nexson_proxy = nexson_proxy self._nexson_tree = tree self._edge_by_source_id = tree['edgeBySourceId'] self._node_by_source_id = tree['nodeById'] if is_str_type(otus): self._otus_group_id = otus self._otus = nexson_proxy._nexml_el['otusById'][otus]['otuById'] else: self._otus = otus self._tree_id = tree_id # not part of nexson, filled on demand. will be dict of node_id -> (edge_id, edge) pair self._edge_by_target = None self._wr = None self._node_cache = {} def get_nexson_node(self, node_id): return self._node_by_source_id[node_id] def get_node(self, node_id): np = self._node_cache.get(node_id) if np is not None: return np edge_id, edge = self._find_edge_from_child(node_id) node = self._node_by_source_id[node_id] return self._create_node_proxy_from_edge(edge_id, edge, node_id, node) def get(self, key, default=None): return self._nexson_tree.get(key, default) def __getitem__(self, key): return self._nexson_tree[key] def __setitem__(self, key, value): self._nexson_tree[key] = value @property def edge_by_target(self): """Returns a reference to the dict of target node id to (edge_id, edge)""" if self._edge_by_target is None: self._edge_by_target = reverse_edge_by_source_dict(self._edge_by_source_id, self._nexson_tree['^ot:rootNodeId']) return self._edge_by_target def _find_edge_from_child(self, node_id): """Returns (edge_id, edge)""" return self.edge_by_target[node_id] def _create_node_proxy_from_edge(self, edge_id, edge, node_id=None, node=None): np = self._node_cache.get(edge_id) if np is None: if self._wr is None: self._wr = weakref.proxy(self) np = NexsonTreeProxy.NexsonNodeProxy(self._wr, edge_id=edge_id, edge=edge, node_id=node_id, node=node) self._node_cache[edge_id] = np if node_id is not None: self._node_cache[node_id] = np return np def child_iter(self, node_id): return nexson_child_iter(self._edge_by_source_id.get(node_id, {}), self) def is_leaf(self, node_id): return node_id not in self._edge_by_source_id def get_ott_id(self, node): return self._raw_otu_for_node(node)[1].get('^ot:ottId') def _raw_otu_for_node(self, node): otu_id = node['@otu'] # _LOG.debug('otu_id = {}'.format(otu_id)) return otu_id, self._otus[otu_id] def annotate(self, obj, key, value): obj[key] = value def __iter__(self): return iter(nexson_tree_preorder_iter(self)) def preorder_iter(self): return iter(nexson_tree_preorder_iter(self)) def nodes(self): return [i for i in iter(self)] def nexson_child_iter(edict, nexson_tree_proxy): for edge_id, edge in edict.items(): yield nexson_tree_proxy._create_node_proxy_from_edge(edge_id, edge) def nexson_tree_preorder_iter(tree_proxy, node_id=None, node=None, edge_id=None, edge=None): """Takes a tree in "By ID" NexSON (v1.2). provides and iterator over: NexsonNodeProxy object where the edge of the object is the edge connectin the node to the parent. The first node will be the root and will have None as it's edge """ tree = tree_proxy._nexson_tree ebsid = tree['edgeBySourceId'] nbid = tree['nodeById'] if edge_id is not None: assert edge is not None if node_id is None: node_id = edge['@target'] else: assert node_id == edge['@target'] if node is None: node = nbid[node_id] else: assert node == nbid[node_id] yield tree_proxy._create_node_proxy_from_edge(edge_id, edge, node_id=node_id, node=node) root_id = node_id elif node_id is not None: if node is None: node = nbid[node_id] else: assert node == nbid[node_id] yield tree_proxy._create_node_proxy_from_edge(None, None, node_id=node_id, node=node) root_id = node_id else: root_id = tree['^ot:rootNodeId'] root = nbid[root_id] yield tree_proxy._create_node_proxy_from_edge(None, None, node_id=root_id, node=root) stack = [] new_stack = [(i['@target'], edge_id, i) for edge_id, i in ebsid[root_id].items()] stack.extend(new_stack) while stack: target_node_id, edge_id, edge = stack.pop() node = nbid[target_node_id] yield tree_proxy._create_node_proxy_from_edge(edge_id=edge_id, edge=edge, node_id=target_node_id) daughter_edges = ebsid.get(target_node_id) if daughter_edges is not None: new_stack = [(i['@target'], edge_id, i) for edge_id, i in daughter_edges.items()] stack.extend(new_stack)
a317a9e4f4f5d6e738556b77ccdf5ca54c22337f
d8ef155d2b931642e448263d43fbf856b3a466c0
/certificates/__main__.py
ac85092b9df679740502289f380cc93e8e0a251c
[ "Apache-2.0" ]
permissive
diemesleno/certificates
a34632bc97a175fd739cdaa6d78f880316176a3c
7aedf80903304216c6d9a8c99efd4df5aa7f8049
refs/heads/master
2022-02-15T17:44:43.132433
2019-08-16T05:44:26
2019-08-16T05:44:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
610
py
import argparse from .certificates import make_certificates def main(): parser = argparse.ArgumentParser() parser.add_argument( "participants", help="csv filaname containing participants" ) parser.add_argument( "template", help="certificate template in svg format used to build" ) parser.add_argument( "--output", "-o", default="./output", help="destination of the generated certificates", ) args = parser.parse_args() make_certificates(args.participants, args.template, args.output) if __name__ == "__main__": main()
eee490dcf526ffb10b67a1324f01736b974f8ce9
89f8a2e609c2b2a7e4ca10be3830200c7e8e438e
/ftp_homework/ftp_1/bin/start_server.py
e0741d5f538a88369aa9ea5194dab97ea4334bde
[]
no_license
boundshunter/s5-study
b8265ccc0d09f19624002b5919c5fb6104bf65d3
528eda7435a14a2a79c88af02695efec13972f25
refs/heads/master
2018-09-27T17:40:28.352951
2018-06-11T15:38:13
2018-06-11T15:38:13
111,669,896
0
0
null
null
null
null
UTF-8
Python
false
false
268
py
#!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'jfsu' import sys import os BaseDir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(BaseDir) from core import ftpserver if __name__ == '__main__': sv = ftpserver.FtpServer()
27a9e101cd4a7f253db5f5c89fb3068918340ead
34745a8d54fa7e3d9e4237415eb52e507508ad79
/Python Fundamentals/03 Lists Basics/Exercises/07_Easter_Gifts.py
172ea7853a18b1443adb30323f730642b61c1f6b
[]
no_license
DilyanTsenkov/SoftUni-Software-Engineering
50476af0dc88b267d72c56fa87eeb88d841164b2
fe446e3a50a00bb2e48d71ab8f783e0a4a406094
refs/heads/main
2023-08-12T18:18:42.144210
2021-09-25T11:10:38
2021-09-25T11:10:38
317,235,419
1
2
null
null
null
null
UTF-8
Python
false
false
870
py
gifts_names = input().split(" ") command = input() while command != "No Money": command_list = command.split(" ") if command_list[0] == "OutOfStock": if command_list[1] in gifts_names: for i in range(len(gifts_names)): if gifts_names[i] == command_list[1]: gifts_names[i] = "None" elif command_list[0] == "Required" and int(command_list[2]) > 0 and int(command_list[2]) <= int( len(gifts_names)) - 1: gifts_names[int(command_list[2])] = command_list[1] elif command_list[0] == "JustInCase": gifts_names[int(len(gifts_names)) - 1] = command_list[1] command = input() for n in range(len(gifts_names)): if "None" in gifts_names: gifts_names.remove("None") gifts_names_print = " ".join(gifts_names) print(gifts_names_print)
92f0088358bab1fa58c2c52e016d253b12bfc28d
7246faf9a222269ce2612613f58dc5ff19091f10
/baekjoon/3000~5999/4948_베르트랑공준.py
f2adb647d3f69804cccea3dfb61db9c7a6ded31a
[]
no_license
gusdn3477/Algorithm_Study
87a2eb72a8488d9263a86db70dadc7944434d41d
3fefe1dcb40122157845ffc542f41cb097711cc8
refs/heads/main
2023-08-30T12:18:21.412945
2021-09-28T13:00:11
2021-09-28T13:00:11
308,364,230
0
1
null
null
null
null
UTF-8
Python
false
false
380
py
from math import sqrt arr = [i for i in range(250000)] arr[0] = 0 arr[1] = 0 for i in range(2, int(sqrt(250000)) + 1): for j in range(i + i, 250000, i): if arr[j] != 0: arr[j] = 0 while True: N = int(input()) ct = 0 if N == 0: break for i in range(N + 1, N * 2 + 1): if arr[i] != 0: ct += 1 print(ct)
fd6c788ba6b8318466159be137309f8ff4ea1a29
9f109d4d4fa2eb4ecec2415a21e45945a35cd58a
/xshop/users/tests/test_models.py
81150f9ff1be611e68b2606f5f69d464e95e5b0d
[]
no_license
denokenya/xshop-web
4be66a39272075b778ed7dd8de996fec90b5fab8
262665ec4c2cb91490b219a086b8994d6eceb805
refs/heads/master
2023-06-07T02:54:57.068430
2020-09-13T11:24:32
2020-09-13T11:24:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,009
py
from django.test import TestCase from model_bakery import baker from ..models import User class UserTests(TestCase): def setUp(self) -> None: self.user = baker.make( User, mobile="01010092181", name="Ahmed Loay Shahwan", email="[email protected]", ) self.user1 = baker.make(User, mobile="01010092182") def test_get_short_name(self): self.assertEqual(self.user.get_short_name(), "Ahmed") def test_get_full_name(self): self.assertEqual(self.user.get_full_name(), "Ahmed Loay Shahwan") def test_str(self): self.assertEqual(str(self.user), "01010092181") def test_repr(self): # user with name self.assertEqual( self.user.__repr__(), f"<User {self.user.id}: {str(self.user)} - {self.user.name}>", ) # user without name self.assertEqual( self.user1.__repr__(), f"<User {self.user1.id}: {str(self.user1)}>", )
4558b73f4309e412016f5c1d22d3652908e71d01
c2c84c98f2247f2a9fe280e41f3a4dc74fd4de1a
/online/analyses.py
73a0d03dbb5a0da0b17ff4129ab1c019baf63cab
[ "MIT" ]
permissive
mrware91/tmolv29
153ded42ee190287442330943a2a9c51d8e55243
823321f2505b684e9fd1de1c01f4e46997f1e307
refs/heads/main
2023-04-06T13:55:09.926010
2021-04-14T14:26:05
2021-04-14T14:26:05
347,172,169
0
0
null
null
null
null
UTF-8
Python
false
false
4,299
py
# Contributors: Matt Ware import numpy as np class analyses: def __init__(self, analysis, totalEvents,printMode='verbose'): self.analysis = analysis self.totalEvents = totalEvents self.events = 0 self.printMode = printMode self.data = {} self.dataTypesFound = False self.outTypes = {} self.initialize() def initialize(self): self.events = 0 self.data = {} for key in self.analysis: self.outTypes[key] = None self.analysis[key]['type'] = None self.analysis[key]['size'] = None self.data[key] = np.zeros(self.totalEvents)*np.nan self.setdefault(self.analysis[key], 'function', '%s: No analysis function provided. Defaulting to return raw data.'%key, lambda x: x) self.setdefault(self.analysis[key], 'analyzeEvery', '%s: No modulo provided. Will analyze every shot.'%key, 1) def update(self, detectors): self.dataTypesFound = True for key in self.analysis: analyzeEvery = self.analysis[key]['analyzeEvery'] if not ( self.events%analyzeEvery == 0): continue function = self.analysis[key]['function'] detectorKey = self.analysis[key]['detectorKey'] shotData = detectors[detectorKey]['shotData'] if (shotData is None) & (self.analysis[key]['type'] is None): self.dataTypesFound = False continue elif (shotData is None) & (self.analysis[key]['type'] is not None): self.data[key][self.events,] = self.data[key][self.events,]*np.nan continue result = function(shotData) if result is not None: if self.analysis[key]['type'] is None: self.analysis[key]['type'] = type(result) self.analysis[key]['size'] = np.size(result) dims = np.shape(result) self.data[key] = np.zeros((self.totalEvents,*dims))*np.nan self.data[key][self.events,] = result if self.outTypes[key] is None: self.outTypes[key] = {} self.outTypes[key]['type'] = type(self.data[key][self.events,]) self.outTypes[key]['size'] = np.size( self.data[key][self.events,] ) elif (result is None) & (self.analysis[key]['type'] is None): self.dataTypesFound = False self.events += 1 if self.events >= self.totalEvents: self.cprint('Read events exceeds total expected. Resetting event count.') self.events = 0 def setdefault(self, adict, key, response, default): try: adict[key] except KeyError as ke: allowedErrorStr = '\'%s\'' % key if allowedErrorStr == str(ke): self.cprint(response) adict[key] = default else: raise ke # def cprint(self,aString): # print(aString) def cprint(self, aString): if self.printMode in 'verbose': print(aString) elif self.printMode in 'quiet': pass else: print('printMode is %s. Should be verbose or quiet. Defaulting to verbose.'%self.printMode) self.printMode = 'verbose' self.cprint(aString) def H5out(self): if self.dataTypesFound: outDict = {} for key in self.data: try: outDict[key] = np.copy(self.data[key][0,:]) except IndexError as ie: if ('1-dimensional' in str(ie)): # print(f'dimension of {key} is {self.data[key].shape}') outDict[key] = np.copy(self.data[key][:]) else: raise ie return outDict else: return None
2a5762a03705f381381e6c124790e7ce1ab5d662
93a7db386dfa0ac0dc369cc7f4b974224c801d8d
/scripts/ngram_io.py
33d3856f68312a40f09259482de1803a86d567b5
[]
no_license
lingxiao/good-great-combo
e051f20c89b7317a14ca5cee357bda7b095ce174
4d2691866bc21e2c542354ad3aae6f369eb86c87
refs/heads/master
2021-01-19T19:30:43.391759
2017-04-09T12:35:15
2017-04-09T12:35:15
83,699,772
0
0
null
null
null
null
UTF-8
Python
false
false
1,764
py
############################################################ # Module : Open Ngram and read linguistic pattern # Date : April 3rd, 2017 # Author : Xiao Ling, merle ############################################################ import os ############################################################ ''' @Use : Open all ngrams in ngram_dir and stream output as tuple of (ngram, count) @Input : - ngram_dir :: String - debug :: Bool, if true then only output parts of stream @Output: Iterator output ngrams of form: (ngram, count) :: Iterator (String, String) Throw: NameError if path does not exists ''' def with_ngram(ngram_dir, debug = False): if not os.path.exists(ngram_dir): raise NameError('Path not found at ' + ngram_dir) else: ngram_paths = [os.path.join(ngram_dir, p) for \ p in os.listdir(ngram_dir) if '.txt' in p] if not ngram_paths: raise NameError('Directory Empty at ' + ngram_dir) if debug: ngram_paths = [ngram_paths[0]] for path in ngram_paths: with open(path, 'rb') as h: for line in h: xsn = line.split('\t') if len(xsn) == 2: xs,n = xsn n,_ = n.split('\n') yield (xs,n) ############################################################ ''' @Use: Given path to linguistic pattern, output pattern ''' def read_pattern(pattern_path): if os.path.exists(pattern_path): strong_weak, weak_strong = open(pattern_path,'rb').read().split('=== weak-strong') strong_weak = [p for p in strong_weak.split('\n') if p][1:] weak_strong = [p for p in weak_strong.split('\n') if p][:-1] return {'strong-weak': strong_weak, 'weak-strong': weak_strong} else: raise NameError('Cannot find pattern at path ' + pattern_path)
8e0fdec3518e0ed5c1d564e69641dbdf3e33a918
9b617d281d83880d385a57809c4cafd55024d516
/manage.py
ca0d6f3d331fffa4ace90b822a09041b6d37c7af
[]
no_license
crowdbotics-users/wwickey-crowdbotics-164
3df5074f39dc34de2def1bde928f523391942689
909b185e528f60b9258b317f7c26b35e791d8685
refs/heads/master
2020-03-16T12:02:27.614606
2018-05-08T20:01:05
2018-05-08T20:01:05
132,658,449
0
0
null
null
null
null
UTF-8
Python
false
false
821
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "wwickey_crowdbotics_164.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
c4d693a018899753b9d47f6da7643ece8efb4bfe
10fbe5526e5f0b8588b65f70f088cd86b6e9afbe
/irmtbds/migrations/0002_auto_20150218_1621.py
3c05b27f5b6c037590a673b577c9744a196e934f
[]
no_license
MarkusH/django-migrations-benchmark
eb4b2312bb30a5a5d2abf25e95eca8f714162056
e2bd24755389668b34b87d254ec8ac63725dc56e
refs/heads/master
2016-09-05T15:36:45.250134
2015-03-31T23:44:28
2015-03-31T23:44:28
31,168,231
3
1
null
null
null
null
UTF-8
Python
false
false
502
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('irmtbds', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='rqzheruyb', name='xknvpfy', ), migrations.AddField( model_name='rqzheruyb', name='kplrvqptcm', field=models.IntegerField(default=0), ), ]
d605544bb5bd4b5f2f891b75f75930b2d21e7fe4
048df2b4dc5ad153a36afad33831017800b9b9c7
/atcoder/agc008/agc008_c.py
01428e6976f334cebf389e5e84a0a5f947a48943
[]
no_license
fluffyowl/past-submissions
a73e8f5157c647634668c200cd977f4428c6ac7d
24706da1f79e5595b2f9f2583c736135ea055eb7
refs/heads/master
2022-02-21T06:32:43.156817
2019-09-16T00:17:50
2019-09-16T00:17:50
71,639,325
0
0
null
null
null
null
UTF-8
Python
false
false
276
py
a, b, c, d, e, f, g = map(int, raw_input().split()) if a > 0 and d > 0 and e > 0: ans1 = b + a / 2 * 2 + d / 2 * 2 + e / 2 * 2 ans2 = b + 3 + (a-1) / 2 * 2 + (d-1) / 2 * 2 + (e-1) / 2 * 2 print max(ans1, ans2) else: print b + a / 2 * 2 + d / 2 * 2 + e / 2 * 2
64801be0735e6c4264e2fcac275da94b245371ca
2ed6ad4a736879a47d192159da45ca56610c089a
/tests/test_db.py
22393c254cb71d6912d534a4a6399d1eabd15537
[ "MIT" ]
permissive
poonyisaTH/gsheets-db-api
a82bd35984766697757cc96aa74a1281d948f019
f023b32986d4da9a501fca8d435f2b6edc153353
refs/heads/master
2023-05-29T15:01:10.604324
2021-02-17T20:59:41
2021-02-17T20:59:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,045
py
# -*- coding: utf-8 -*- from collections import namedtuple import unittest import requests_mock from .context import ( apply_parameters, Connection, connect, exceptions, ) class DBTestSuite(unittest.TestCase): header_payload = { 'table': { 'cols': [ {'id': 'A', 'label': 'country', 'type': 'string'}, { 'id': 'B', 'label': 'cnt', 'type': 'number', 'pattern': 'General', }, ], }, } query_payload = { 'status': 'ok', 'table': { 'cols': [ {'id': 'A', 'label': 'country', 'type': 'string'}, { 'id': 'B', 'label': 'cnt', 'type': 'number', 'pattern': 'General', }, ], 'rows': [ {'c': [{'v': 'BR'}, {'v': 1.0, 'f': '1'}]}, {'c': [{'v': 'IN'}, {'v': 2.0, 'f': '2'}]}, ], }, } def test_connection(self): conn = connect() self.assertFalse(conn.closed) self.assertEqual(conn.cursors, []) def test_check_closed(self): conn = connect() conn.close() with self.assertRaises(exceptions.Error): conn.close() def test_close_cursors(self): conn = connect() cursor1 = conn.cursor() cursor2 = conn.cursor() cursor2.close() conn.close() self.assertTrue(cursor1.closed) self.assertTrue(cursor2.closed) def test_commit(self): conn = connect() conn.commit() # no-op @requests_mock.Mocker() def test_connection_execute(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) with Connection() as conn: result = conn.execute( 'SELECT * FROM "http://docs.google.com/"').fetchall() Row = namedtuple('Row', 'country cnt') expected = [Row(country=u'BR', cnt=1.0), Row(country=u'IN', cnt=2.0)] self.assertEqual(result, expected) @requests_mock.Mocker() def test_cursor_execute(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) with Connection() as conn: cursor = conn.cursor() result = cursor.execute( 'SELECT * FROM "http://docs.google.com/"').fetchall() Row = namedtuple('Row', 'country cnt') expected = [Row(country=u'BR', cnt=1.0), Row(country=u'IN', cnt=2.0)] self.assertEqual(result, expected) def test_cursor_executemany(self): conn = Connection() cursor = conn.cursor() with self.assertRaises(exceptions.NotSupportedError): cursor.executemany('SELECT * FROM "http://docs.google.com/"') @requests_mock.Mocker() def test_cursor(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) conn = Connection() cursor = conn.cursor() cursor.setinputsizes(0) # no-op cursor.setoutputsizes(0) # no-op @requests_mock.Mocker() def test_cursor_rowcount(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) conn = Connection() cursor = conn.cursor() with self.assertRaises(exceptions.Error): cursor.rowcount() cursor.execute('SELECT * FROM "http://docs.google.com/"') self.assertEqual(cursor.rowcount, 2) @requests_mock.Mocker() def test_cursor_fetchone(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) conn = Connection() cursor = conn.cursor() cursor.execute('SELECT * FROM "http://docs.google.com/"') Row = namedtuple('Row', 'country cnt') self.assertEqual(cursor.fetchone(), Row(country=u'BR', cnt=1.0)) self.assertEqual(cursor.fetchone(), Row(country=u'IN', cnt=2.0)) self.assertIsNone(cursor.fetchone()) @requests_mock.Mocker() def test_cursor_fetchall(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) conn = Connection() cursor = conn.cursor() cursor.execute('SELECT * FROM "http://docs.google.com/"') Row = namedtuple('Row', 'country cnt') self.assertEqual(cursor.fetchone(), Row(country=u'BR', cnt=1.0)) self.assertEqual(cursor.fetchall(), [Row(country=u'IN', cnt=2.0)]) @requests_mock.Mocker() def test_cursor_fetchmany(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) conn = Connection() cursor = conn.cursor() cursor.execute('SELECT * FROM "http://docs.google.com/"') Row = namedtuple('Row', 'country cnt') self.assertEqual(cursor.fetchmany(1), [Row(country=u'BR', cnt=1.0)]) self.assertEqual(cursor.fetchmany(10), [Row(country=u'IN', cnt=2.0)]) self.assertEqual(cursor.fetchmany(100), []) @requests_mock.Mocker() def test_cursor_iter(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) conn = Connection() cursor = conn.cursor() cursor.execute('SELECT * FROM "http://docs.google.com/"') Row = namedtuple('Row', 'country cnt') self.assertEqual( list(cursor), [Row(country=u'BR', cnt=1.0), Row(country=u'IN', cnt=2.0)], ) def test_apply_parameters(self): query = 'SELECT * FROM table WHERE name=%(name)s' parameters = {'name': 'Alice'} result = apply_parameters(query, parameters) expected = "SELECT * FROM table WHERE name='Alice'" self.assertEqual(result, expected) def test_apply_parameters_escape(self): query = 'SELECT * FROM table WHERE name=%(name)s' parameters = {'name': "O'Malley's"} result = apply_parameters(query, parameters) expected = "SELECT * FROM table WHERE name='O''Malley''s'" self.assertEqual(result, expected) def test_apply_parameters_float(self): query = 'SELECT * FROM table WHERE age=%(age)s' parameters = {'age': 50} result = apply_parameters(query, parameters) expected = "SELECT * FROM table WHERE age=50" self.assertEqual(result, expected) def test_apply_parameters_bool(self): query = 'SELECT * FROM table WHERE active=%(active)s' parameters = {'active': True} result = apply_parameters(query, parameters) expected = "SELECT * FROM table WHERE active=TRUE" self.assertEqual(result, expected) def test_apply_parameters_list(self): query = ( 'SELECT * FROM table ' 'WHERE id IN %(allowed)s ' 'AND id NOT IN %(prohibited)s' ) parameters = {'allowed': [1, 2], 'prohibited': (2, 3)} result = apply_parameters(query, parameters) expected = ( 'SELECT * FROM table ' 'WHERE id IN (1, 2) ' 'AND id NOT IN (2, 3)' ) self.assertEqual(result, expected) def test_apply_parameters_star(self): query = 'SELECT %(column)s FROM table' parameters = {'column': '*'} result = apply_parameters(query, parameters) expected = "SELECT * FROM table" self.assertEqual(result, expected)
b4d01dd3705d74d25a15957865fcbc913580986c
36afa271f080459adf1014cd23f4be9f954dfee6
/Crawler/Course/第八章:scrapy框架/sunPro/sunPro/spiders/sun.py
35ab678e80afc0bf5d06d12f11a75a5455738471
[]
no_license
King-Of-Game/Python
b69186a7574ce1c0b7097207cfe9a2eb38a90bc0
643b9fd22efd78f6679735f23432943a57b5f5bb
refs/heads/master
2023-05-25T05:35:14.473114
2021-10-24T12:52:21
2021-10-24T12:52:21
151,251,434
3
0
null
2023-05-01T20:51:50
2018-10-02T12:34:04
HTML
UTF-8
Python
false
false
2,909
py
# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from sunPro.items import SunproItem from sunPro.items import DetailItem # 需求:爬取小说分类、名称、人气、简介 class SunSpider(CrawlSpider): name = 'sun' # allowed_domains = ['www.xxx.com'] start_urls = ['https://www.69shu.org/fenlei/1_1/'] # 链接提取器:根据指定规则(allow="正则")进行链接的提取 link_extractor = LinkExtractor(allow=r'fenlei/1_(?!16|\d{3,})') link_detail_extractor = LinkExtractor(allow=r'/book/\d+/(?!\d+\.html)') # /book/\d+/(?!\d+\.html) rules = ( # 规则解析器:将链接提取器提取到的链接进行指定规则(callback)的解析操作 # follow=True:可以将链接提取器继续作用到,链接提取器提取的链接,对应的页面中 Rule(link_extractor, callback='parse_novel_name', follow=False), Rule(link_detail_extractor, callback='parse_novel_detail', follow=False), ) ''' 以下两个解析方法没有手动发起请求,是不可以实现请求传参的: 也就是说不能通过yield scrapy.Request() 回调其它函数 无法将两个解析方法解析的数据存储到同一个item中,可以依次存储到两个item中 ''' # 解析小说类别、名称、作者 def parse_novel_name(self, response): # item = {} # #item['domain_id'] = response.xpath('//input[@id="sid"]/@value').get() # #item['name'] = response.xpath('//div[su@id="name"]').get() # #item['description'] = response.xpath('//div[@id="description"]').get() # return item print('\n', response) # 注意:xpath表达式中不可以出现tbody标签 li_list = response.xpath('/html/body/div[3]/div/div/div[2]/div[1]/div[2]/ul/li') for li in li_list: novel_category = li.xpath('./span[1]/text()').extract_first() novel_name = li.xpath('./span[2]/a/text()').extract_first() novel_author = li.xpath('./span[4]/text()').extract_first() # print(novel_category, novel_name, novel_author) item = SunproItem() item['novel_category'] = novel_category item['novel_name'] = novel_name item['novel_author'] = novel_author yield item # 解析小说人气和简介 def parse_novel_detail(self, response): # print(response) novel_popularity = response.xpath('//*[@id="info"]/p/span/text()').extract_first() novel_synopsis = response.xpath('//*[@id="info"]/div[3]//text()').extract() novel_synopsis = ''.join(novel_synopsis) # print(novel_popularity) item = DetailItem() item['novel_popularity'] = novel_popularity item['novel_synopsis'] = novel_synopsis yield item
15255dffd47f10b3f99409f7b5dea95315005ab9
fb8cbebdf034b2f478943752d5443afc82c6eef5
/tuirer/users/models.py
a3a6f2b88a946f2a8ca0ab80decd3e78a3924509
[]
no_license
fariasjr/CitiTuirer
f64e0ec93ef088f8140bb0961d2ad4ed3b59448a
deb3f7a9c2d45b8a7f54639037f097b99abdac11
refs/heads/master
2020-03-24T05:10:36.261050
2018-08-01T20:24:30
2018-08-01T20:24:30
142,477,521
0
0
null
null
null
null
UTF-8
Python
false
false
246
py
from django.contrib.auth.models import AbstractUser from django.db import models class User(AbstractUser): picture = models.ImageField('Fotode perfil', default='/img/blank-pic.png') following = models.ManyToManyField('self', blank=True)
ea9e7a8b99cd02b1f71e0f5c2c419a055b084728
fe0bca3fcf363ebc465fcc370e77b55df1cfaaa7
/src/route/work_viewer.py
f79466d814c37cc4151ac1ca0217dbe9d45950dc
[]
no_license
sihcpro/todo-list
66847aece556fe45223b98ecc44f04bbaaf17b55
1db48a63e9f4d309d57baeca691f6e85c36866a6
refs/heads/master
2022-11-17T14:34:20.316901
2020-07-14T10:16:18
2020-07-14T10:16:18
279,233,154
0
0
null
null
null
null
UTF-8
Python
false
false
3,661
py
import calendar from datetime import timedelta from sqlalchemy import Date, and_, cast, or_ from .data_define import ShowWorkData from .resource import WorkResource def configWorkViewer(Domain): session = Domain.session def getValidatedDate(param): date_data = ShowWorkData( from_date=param["from_date"][0], to_date=param["to_date"][0], ) if date_data.from_date > date_data.to_date: raise ValueError("from_date must smaller than to_date") return date_data def getWorkInAPerius(from_date, to_date): record = {"from_date": str(from_date), "to_date": str(to_date)} if from_date == to_date: works = ( session.query(WorkResource) .filter( or_( cast(WorkResource.starting_date, Date) == to_date, cast(WorkResource.ending_date, Date) == to_date, and_( cast(WorkResource.starting_date, Date) < to_date, cast(WorkResource.ending_date, Date) > to_date, ), ) ) .all() ) else: works = ( session.query(WorkResource) .filter( or_( and_( WorkResource.starting_date >= from_date, WorkResource.starting_date < to_date, ), and_( WorkResource.ending_date >= from_date, WorkResource.ending_date < to_date, ), and_( WorkResource.starting_date <= from_date, WorkResource.ending_date >= to_date, ), ) ) .all() ) record["works"] = [work.asDict() for work in works] return record @Domain.registerQuery("show-work-by-date") def showWorkByDate(data, identifier, param): date_data = getValidatedDate(param) date = date_data.from_date results = [] while date <= date_data.to_date: results.append(getWorkInAPerius(date, date)) date += timedelta(days=1) return results @Domain.registerQuery("show-work-by-week") def showWorkByWeek(data, identifier, param): date_data = getValidatedDate(param) date = date_data.from_date date = date - timedelta(days=date.weekday()) results = [] while date <= date_data.to_date: start_date = date end_date = date + timedelta(weeks=1) - timedelta(microseconds=1) results.append(getWorkInAPerius(start_date, end_date)) date += timedelta(weeks=1) return results @Domain.registerQuery("show-work-by-month") def showWorkByMonth(data, identifier, param): date_data = getValidatedDate(param) date = date_data.from_date date = date - timedelta(days=date.day - 1) results = [] while date <= date_data.to_date: days_in_month = calendar.monthrange(date.year, date.month)[1] start_date = date end_date = ( date + timedelta(days=days_in_month) - timedelta(microseconds=1) ) results.append(getWorkInAPerius(start_date, end_date)) date += timedelta(days=days_in_month) return results
77d3ccb4fbb606e29dc100993d9286af9143d806
f00767fdeed6bfa8b12f6900b9f9bd5c70786895
/models/base_db.py
b9ec16abf725b932e97446cf9463b303db180b0b
[]
no_license
guoyu07/domain_whois_query
de22cb5d83db2441ba512935fd7f3ed5c158997a
c70b52f2b9306e4b9ead273de279cd149052623f
refs/heads/master
2020-12-07T06:24:57.907042
2015-11-29T00:53:31
2015-11-29T00:53:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
313
py
# encoding:utf-8 """ 操作数据库基础类 """ import torndb class BaseDb(object): def __init__(self): self.db = torndb.Connection( host="172.26.253.3", database="DomainWhois", user="root", password="platform", charset="utf8" )
75750e2d778d9088cc0aa9d4e0a9b23d245d0029
7041c85dffb757c3e7063118730363f32ebb9b8a
/프로젝트/20190111/open_api.py
af937d2499eb4c1f56272d6930b3d2c64641b4f6
[]
no_license
woonji913/til
efae551baff56f3ca16169b93185a65f4d81cd7a
a05efc68f88f535c26cb4d4a396a1e9cd6bf0248
refs/heads/master
2021-06-06T23:17:54.504620
2019-06-19T04:29:18
2019-06-19T04:29:18
163,778,844
1
0
null
2021-05-08T16:27:17
2019-01-02T01:08:19
HTML
UTF-8
Python
false
false
1,240
py
import requests from bs4 import BeautifulSoup import csv, datetime, os date = datetime.date(2019, 1, 13) weeks = datetime.timedelta(7) movies = [] check = set() key = os.environ['KEY'] for i in range(10): current = date - weeks * i url = f'http://www.kobis.or.kr/kobisopenapi/webservice/rest/boxoffice/searchWeeklyBoxOfficeList.json?key={key}&weekGb=0&targetDt=' url += str(current.strftime('%Y%m%d')) res_json = requests.get(url).json() for j in res_json['boxOfficeResult']['weeklyBoxOfficeList']: code = j['movieCd'] name = j['movieNm'] total_aud = j['audiAcc'] if code not in check: print(name) movies.append({'movie_code': code, 'title': name, 'audience': total_aud, 'recorded_at': current}) check.add(code) # movieIDDF = pd.DataFrame() # movieIDDF = movieIDDF.append({"movieCd":" ", "movieNM": " ", "audiCnt": " ", "openDt": " "}, ignore_index = True) # # pprint(movieIDDF) with open('boxoffice.csv', 'w', encoding='utf-8', newline='') as f: fieldnames = ('movie_code', 'title', 'audience', 'recorded_at') writer = csv.DictWriter(f, fieldnames=fieldnames) writer.writeheader() for movie in movies: writer.writerow(movie)
d1597ffd8c87152ec49b9949a7de3ec827c5d1d4
1d928c3f90d4a0a9a3919a804597aa0a4aab19a3
/python/matplotlib/2017/12/setupext.py
2868fd76aee773dc4d8d576d9dfe80e8c6cca6b4
[]
no_license
rosoareslv/SED99
d8b2ff5811e7f0ffc59be066a5a0349a92cbb845
a062c118f12b93172e31e8ca115ce3f871b64461
refs/heads/main
2023-02-22T21:59:02.703005
2021-01-28T19:40:51
2021-01-28T19:40:51
306,497,459
1
1
null
2020-11-24T20:56:18
2020-10-23T01:18:07
null
UTF-8
Python
false
false
68,786
py
from __future__ import print_function, absolute_import from importlib import import_module from distutils import sysconfig from distutils import version from distutils.core import Extension import distutils.command.build_ext import glob import multiprocessing import os import platform import re import subprocess from subprocess import check_output import sys import warnings from textwrap import fill import shutil import versioneer PY3min = (sys.version_info[0] >= 3) def _get_home(): """Find user's home directory if possible. Otherwise, returns None. :see: http://mail.python.org/pipermail/python-list/2005-February/325395.html """ try: if not PY3min and sys.platform == 'win32': path = os.path.expanduser(b"~").decode(sys.getfilesystemencoding()) else: path = os.path.expanduser("~") except ImportError: # This happens on Google App Engine (pwd module is not present). pass else: if os.path.isdir(path): return path for evar in ('HOME', 'USERPROFILE', 'TMP'): path = os.environ.get(evar) if path is not None and os.path.isdir(path): return path return None def _get_xdg_cache_dir(): """ Returns the XDG cache directory, according to the `XDG base directory spec <http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html>`_. """ path = os.environ.get('XDG_CACHE_HOME') if path is None: path = _get_home() if path is not None: path = os.path.join(path, '.cache', 'matplotlib') return path # SHA256 hashes of the FreeType tarballs _freetype_hashes = { '2.6.1': '0a3c7dfbda6da1e8fce29232e8e96d987ababbbf71ebc8c75659e4132c367014', '2.6.2': '8da42fc4904e600be4b692555ae1dcbf532897da9c5b9fb5ebd3758c77e5c2d4', '2.6.3': '7942096c40ee6fea882bd4207667ad3f24bff568b96b10fd3885e11a7baad9a3', '2.6.4': '27f0e38347a1850ad57f84fc4dfed68ba0bc30c96a6fa6138ef84d485dd9a8d7', '2.6.5': '3bb24add9b9ec53636a63ea8e867ed978c4f8fdd8f1fa5ccfd41171163d4249a', '2.7': '7b657d5f872b0ab56461f3bd310bd1c5ec64619bd15f0d8e08282d494d9cfea4', '2.7.1': '162ef25aa64480b1189cdb261228e6c5c44f212aac4b4621e28cf2157efb59f5', '2.8': '33a28fabac471891d0523033e99c0005b95e5618dc8ffa7fa47f9dadcacb1c9b', '2.8.1': '876711d064a6a1bd74beb18dd37f219af26100f72daaebd2d86cb493d7cd7ec6', } # This is the version of FreeType to use when building a local # version. It must match the value in # lib/matplotlib.__init__.py and also needs to be changed below in the # embedded windows build script (grep for "REMINDER" in this file) LOCAL_FREETYPE_VERSION = '2.6.1' LOCAL_FREETYPE_HASH = _freetype_hashes.get(LOCAL_FREETYPE_VERSION, 'unknown') if sys.platform != 'win32': if not PY3min: from commands import getstatusoutput else: from subprocess import getstatusoutput if PY3min: import configparser else: import ConfigParser as configparser # matplotlib build options, which can be altered using setup.cfg options = { 'display_status': True, 'verbose': False, 'backend': None, 'basedirlist': None } setup_cfg = os.environ.get('MPLSETUPCFG', 'setup.cfg') if os.path.exists(setup_cfg): if PY3min: config = configparser.ConfigParser() else: config = configparser.SafeConfigParser() config.read(setup_cfg) if config.has_option('status', 'suppress'): options['display_status'] = not config.getboolean("status", "suppress") if config.has_option('rc_options', 'backend'): options['backend'] = config.get("rc_options", "backend") if config.has_option('directories', 'basedirlist'): options['basedirlist'] = [ x.strip() for x in config.get("directories", "basedirlist").split(',')] if config.has_option('test', 'local_freetype'): options['local_freetype'] = config.getboolean("test", "local_freetype") else: config = None lft = bool(os.environ.get('MPLLOCALFREETYPE', False)) options['local_freetype'] = lft or options.get('local_freetype', False) def get_win32_compiler(): """ Determine the compiler being used on win32. """ # Used to determine mingw32 or msvc # This is pretty bad logic, someone know a better way? for v in sys.argv: if 'mingw32' in v: return 'mingw32' return 'msvc' win32_compiler = get_win32_compiler() def extract_versions(): """ Extracts version values from the main matplotlib __init__.py and returns them as a dictionary. """ with open('lib/matplotlib/__init__.py') as fd: for line in fd.readlines(): if (line.startswith('__version__numpy__')): exec(line.strip()) return locals() def has_include_file(include_dirs, filename): """ Returns `True` if `filename` can be found in one of the directories in `include_dirs`. """ if sys.platform == 'win32': include_dirs = list(include_dirs) # copy before modify include_dirs += os.environ.get('INCLUDE', '.').split(os.pathsep) for dir in include_dirs: if os.path.exists(os.path.join(dir, filename)): return True return False def check_include_file(include_dirs, filename, package): """ Raises an exception if the given include file can not be found. """ if not has_include_file(include_dirs, filename): raise CheckFailed( "The C/C++ header for %s (%s) could not be found. You " "may need to install the development package." % (package, filename)) def get_base_dirs(): """ Returns a list of standard base directories on this platform. """ if options['basedirlist']: return options['basedirlist'] if os.environ.get('MPLBASEDIRLIST'): return os.environ.get('MPLBASEDIRLIST').split(os.pathsep) win_bases = ['win32_static', ] # on conda windows, we also add the <conda_env_dir>\Library, # as conda installs libs/includes there # env var names mess: https://github.com/conda/conda/issues/2312 conda_env_path = os.getenv('CONDA_PREFIX') # conda >= 4.1 if not conda_env_path: conda_env_path = os.getenv('CONDA_DEFAULT_ENV') # conda < 4.1 if conda_env_path and os.path.isdir(conda_env_path): win_bases.append(os.path.join(conda_env_path, "Library")) basedir_map = { 'win32': win_bases, 'darwin': ['/usr/local/', '/usr', '/usr/X11', '/opt/X11', '/opt/local'], 'sunos5': [os.getenv('MPLIB_BASE') or '/usr/local', ], 'gnu0': ['/usr'], 'aix5': ['/usr/local'], } return basedir_map.get(sys.platform, ['/usr/local', '/usr']) def get_include_dirs(): """ Returns a list of standard include directories on this platform. """ include_dirs = [os.path.join(d, 'include') for d in get_base_dirs()] if sys.platform != 'win32': # gcc includes this dir automatically, so also look for headers in # these dirs include_dirs.extend( os.environ.get('CPLUS_INCLUDE_PATH', '').split(os.pathsep)) return include_dirs def is_min_version(found, minversion): """ Returns `True` if `found` is at least as high a version as `minversion`. """ expected_version = version.LooseVersion(minversion) found_version = version.LooseVersion(found) return found_version >= expected_version # Define the display functions only if display_status is True. if options['display_status']: def print_line(char='='): print(char * 76) def print_status(package, status): initial_indent = "%22s: " % package indent = ' ' * 24 print(fill(str(status), width=76, initial_indent=initial_indent, subsequent_indent=indent)) def print_message(message): indent = ' ' * 24 + "* " print(fill(str(message), width=76, initial_indent=indent, subsequent_indent=indent)) def print_raw(section): print(section) else: def print_line(*args, **kwargs): pass print_status = print_message = print_raw = print_line # Remove the -Wstrict-prototypes option, is it's not valid for C++ customize_compiler = distutils.command.build_ext.customize_compiler def my_customize_compiler(compiler): retval = customize_compiler(compiler) try: compiler.compiler_so.remove('-Wstrict-prototypes') except (ValueError, AttributeError): pass return retval distutils.command.build_ext.customize_compiler = my_customize_compiler def make_extension(name, files, *args, **kwargs): """ Make a new extension. Automatically sets include_dirs and library_dirs to the base directories appropriate for this platform. `name` is the name of the extension. `files` is a list of source files. Any additional arguments are passed to the `distutils.core.Extension` constructor. """ ext = DelayedExtension(name, files, *args, **kwargs) for dir in get_base_dirs(): include_dir = os.path.join(dir, 'include') if os.path.exists(include_dir): ext.include_dirs.append(include_dir) for lib in ('lib', 'lib64'): lib_dir = os.path.join(dir, lib) if os.path.exists(lib_dir): ext.library_dirs.append(lib_dir) ext.include_dirs.append('.') return ext def get_file_hash(filename): """ Get the SHA256 hash of a given filename. """ import hashlib BLOCKSIZE = 1 << 16 hasher = hashlib.sha256() with open(filename, 'rb') as fd: buf = fd.read(BLOCKSIZE) while len(buf) > 0: hasher.update(buf) buf = fd.read(BLOCKSIZE) return hasher.hexdigest() class PkgConfig(object): """ This is a class for communicating with pkg-config. """ def __init__(self): """ Determines whether pkg-config exists on this machine. """ if sys.platform == 'win32': self.has_pkgconfig = False else: try: self.pkg_config = os.environ['PKG_CONFIG'] except KeyError: self.pkg_config = 'pkg-config' self.set_pkgconfig_path() status, output = getstatusoutput(self.pkg_config + " --help") self.has_pkgconfig = (status == 0) if not self.has_pkgconfig: print("IMPORTANT WARNING:") print( " pkg-config is not installed.\n" " matplotlib may not be able to find some of its dependencies") def set_pkgconfig_path(self): pkgconfig_path = sysconfig.get_config_var('LIBDIR') if pkgconfig_path is None: return pkgconfig_path = os.path.join(pkgconfig_path, 'pkgconfig') if not os.path.isdir(pkgconfig_path): return try: os.environ['PKG_CONFIG_PATH'] += ':' + pkgconfig_path except KeyError: os.environ['PKG_CONFIG_PATH'] = pkgconfig_path def setup_extension(self, ext, package, default_include_dirs=[], default_library_dirs=[], default_libraries=[], alt_exec=None): """ Add parameters to the given `ext` for the given `package`. """ flag_map = { '-I': 'include_dirs', '-L': 'library_dirs', '-l': 'libraries'} executable = alt_exec if self.has_pkgconfig: executable = (self.pkg_config + ' {0}').format(package) use_defaults = True if executable is not None: command = "{0} --libs --cflags ".format(executable) try: output = check_output(command, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError: pass else: output = output.decode(sys.getfilesystemencoding()) use_defaults = False for token in output.split(): attr = flag_map.get(token[:2]) if attr is not None: getattr(ext, attr).insert(0, token[2:]) if use_defaults: basedirs = get_base_dirs() for base in basedirs: for include in default_include_dirs: dir = os.path.join(base, include) if os.path.exists(dir): ext.include_dirs.append(dir) for lib in default_library_dirs: dir = os.path.join(base, lib) if os.path.exists(dir): ext.library_dirs.append(dir) ext.libraries.extend(default_libraries) return True return False def get_version(self, package): """ Get the version of the package from pkg-config. """ if not self.has_pkgconfig: return None status, output = getstatusoutput( self.pkg_config + " %s --modversion" % (package)) if status == 0: return output return None # The PkgConfig class should be used through this singleton pkg_config = PkgConfig() class CheckFailed(Exception): """ Exception thrown when a `SetupPackage.check` method fails. """ pass class SetupPackage(object): optional = False pkg_names = { "apt-get": None, "yum": None, "dnf": None, "brew": None, "port": None, "windows_url": None } def check(self): """ Checks whether the build dependencies are met. Should raise a `CheckFailed` exception if the dependency could not be met, otherwise return a string indicating a version number or some other message indicating what was found. """ pass def runtime_check(self): """ True if the runtime dependencies of the backend are met. Assumes that the build-time dependencies are met. """ return True def get_packages(self): """ Get a list of package names to add to the configuration. These are added to the `packages` list passed to `distutils.setup`. """ return [] def get_namespace_packages(self): """ Get a list of namespace package names to add to the configuration. These are added to the `namespace_packages` list passed to `distutils.setup`. """ return [] def get_py_modules(self): """ Get a list of top-level modules to add to the configuration. These are added to the `py_modules` list passed to `distutils.setup`. """ return [] def get_package_data(self): """ Get a package data dictionary to add to the configuration. These are merged into to the `package_data` list passed to `distutils.setup`. """ return {} def get_extension(self): """ Get a list of C extensions (`distutils.core.Extension` objects) to add to the configuration. These are added to the `extensions` list passed to `distutils.setup`. """ return None def get_install_requires(self): """ Get a list of Python packages that we require. pip/easy_install will attempt to download and install this package if it is not installed. """ return [] def get_setup_requires(self): """ Get a list of Python packages that we require at build time. pip/easy_install will attempt to download and install this package if it is not installed. """ return [] def _check_for_pkg_config(self, package, include_file, min_version=None, version=None): """ A convenience function for writing checks for a pkg_config-defined dependency. `package` is the pkg_config package name. `include_file` is a top-level include file we expect to find. `min_version` is the minimum version required. `version` will override the found version if this package requires an alternate method for that. Set version='unknown' if the version is not known but you still want to disabled pkg_config version check. """ if version is None: version = pkg_config.get_version(package) if version is None: raise CheckFailed( "pkg-config information for '%s' could not be found." % package) if min_version == 'PATCH': raise CheckFailed( "Requires patches that have not been merged upstream.") if min_version and version != 'unknown': if (not is_min_version(version, min_version)): raise CheckFailed( "Requires %s %s or later. Found %s." % (package, min_version, version)) ext = self.get_extension() if ext is None: ext = make_extension('test', []) pkg_config.setup_extension(ext, package) check_include_file( ext.include_dirs + get_include_dirs(), include_file, package) return 'version %s' % version def do_custom_build(self): """ If a package needs to do extra custom things, such as building a third-party library, before building an extension, it should override this method. """ pass def install_help_msg(self): """ Do not override this method ! Generate the help message to show if the package is not installed. To use this in subclasses, simply add the dictionary `pkg_names` as a class variable: pkg_names = { "apt-get": <Name of the apt-get package>, "yum": <Name of the yum package>, "dnf": <Name of the dnf package>, "brew": <Name of the brew package>, "port": <Name of the port package>, "windows_url": <The url which has installation instructions> } All the dictionary keys are optional. If a key is not present or has the value `None` no message is provided for that platform. """ def _try_managers(*managers): for manager in managers: pkg_name = self.pkg_names.get(manager, None) if pkg_name: try: # `shutil.which()` can be used when Python 2.7 support # is dropped. It is available in Python 3.3+ _ = check_output(["which", manager], stderr=subprocess.STDOUT) if manager == 'port': pkgconfig = 'pkgconfig' else: pkgconfig = 'pkg-config' return ('Try installing {0} with `{1} install {2}` ' 'and pkg-config with `{1} install {3}`' .format(self.name, manager, pkg_name, pkgconfig)) except subprocess.CalledProcessError: pass message = None if sys.platform == "win32": url = self.pkg_names.get("windows_url", None) if url: message = ('Please check {0} for instructions to install {1}' .format(url, self.name)) elif sys.platform == "darwin": message = _try_managers("brew", "port") elif sys.platform.startswith("linux"): release = platform.linux_distribution()[0].lower() if release in ('debian', 'ubuntu'): message = _try_managers('apt-get') elif release in ('centos', 'redhat', 'fedora'): message = _try_managers('dnf', 'yum') return message class OptionalPackage(SetupPackage): optional = True force = False config_category = "packages" default_config = "auto" @classmethod def get_config(cls): """ Look at `setup.cfg` and return one of ["auto", True, False] indicating if the package is at default state ("auto"), forced by the user (case insensitively defined as 1, true, yes, on for True) or opted-out (case insensitively defined as 0, false, no, off for False). """ conf = cls.default_config if config is not None and config.has_option(cls.config_category, cls.name): try: conf = config.getboolean(cls.config_category, cls.name) except ValueError: conf = config.get(cls.config_category, cls.name) return conf def check(self): """ Do not override this method! For custom dependency checks override self.check_requirements(). Two things are checked: Configuration file and requirements. """ # Check configuration file conf = self.get_config() # Default "auto" state or install forced by user if conf in [True, 'auto']: message = "installing" # Set non-optional if user sets `True` in config if conf is True: self.optional = False # Configuration opt-out by user else: # Some backend extensions (e.g. Agg) need to be built for certain # other GUI backends (e.g. TkAgg) even when manually disabled if self.force is True: message = "installing forced (config override)" else: raise CheckFailed("skipping due to configuration") # Check requirements and add extra information (if any) to message. # If requirements are not met a CheckFailed should be raised in there. additional_info = self.check_requirements() if additional_info: message += ", " + additional_info # No CheckFailed raised until now, return install message. return message def check_requirements(self): """ Override this method to do custom dependency checks. - Raise CheckFailed() if requirements are not met. - Return message with additional information, or an empty string (or None) for no additional information. """ return "" class OptionalBackendPackage(OptionalPackage): config_category = "gui_support" class Platform(SetupPackage): name = "platform" def check(self): return sys.platform class Python(SetupPackage): name = "python" def check(self): major, minor1, minor2, s, tmp = sys.version_info if major < 2: raise CheckFailed( "Requires Python 2.7 or later") elif major == 2 and minor1 < 7: raise CheckFailed( "Requires Python 2.7 or later (in the 2.x series)") elif major == 3 and minor1 < 4: raise CheckFailed( "Requires Python 3.4 or later (in the 3.x series)") return sys.version class Matplotlib(SetupPackage): name = "matplotlib" def check(self): return versioneer.get_version() def get_packages(self): return [ 'matplotlib', 'matplotlib.backends', 'matplotlib.backends.qt_editor', 'matplotlib.compat', 'matplotlib.projections', 'matplotlib.axes', 'matplotlib.sphinxext', 'matplotlib.style', 'matplotlib.testing', 'matplotlib.testing._nose', 'matplotlib.testing._nose.plugins', 'matplotlib.testing.jpl_units', 'matplotlib.tri', 'matplotlib.cbook' ] def get_py_modules(self): return ['pylab'] def get_package_data(self): return { 'matplotlib': [ 'mpl-data/fonts/afm/*.afm', 'mpl-data/fonts/pdfcorefonts/*.afm', 'mpl-data/fonts/pdfcorefonts/*.txt', 'mpl-data/fonts/ttf/*.ttf', 'mpl-data/fonts/ttf/LICENSE_STIX', 'mpl-data/fonts/ttf/COPYRIGHT.TXT', 'mpl-data/fonts/ttf/README.TXT', 'mpl-data/fonts/ttf/RELEASENOTES.TXT', 'mpl-data/images/*.xpm', 'mpl-data/images/*.svg', 'mpl-data/images/*.gif', 'mpl-data/images/*.pdf', 'mpl-data/images/*.png', 'mpl-data/images/*.ppm', 'mpl-data/example/*.npy', 'mpl-data/matplotlibrc', 'backends/web_backend/*.*', 'backends/web_backend/js/*.*', 'backends/web_backend/jquery/js/*.min.js', 'backends/web_backend/jquery/css/themes/base/*.min.css', 'backends/web_backend/jquery/css/themes/base/images/*', 'backends/web_backend/css/*.*', 'backends/Matplotlib.nib/*', 'mpl-data/stylelib/*.mplstyle', ]} class SampleData(OptionalPackage): """ This handles the sample data that ships with matplotlib. It is technically optional, though most often will be desired. """ name = "sample_data" def get_package_data(self): return { 'matplotlib': [ 'mpl-data/sample_data/*.*', 'mpl-data/sample_data/axes_grid/*.*', ]} class Toolkits(OptionalPackage): name = "toolkits" def get_packages(self): return [ 'mpl_toolkits', 'mpl_toolkits.mplot3d', 'mpl_toolkits.axes_grid', 'mpl_toolkits.axes_grid1', 'mpl_toolkits.axisartist', ] def get_namespace_packages(self): return ['mpl_toolkits'] class Tests(OptionalPackage): name = "tests" pytest_min_version = '3.0.0' default_config = False def check(self): super(Tests, self).check() msgs = [] msg_template = ('{package} is required to run the Matplotlib test ' 'suite. Please install it with pip or your preferred ' 'tool to run the test suite') bad_pytest = msg_template.format( package='pytest %s or later' % self.pytest_min_version ) try: import pytest if is_min_version(pytest.__version__, self.pytest_min_version): msgs += ['using pytest version %s' % pytest.__version__] else: msgs += [bad_pytest] except ImportError: msgs += [bad_pytest] if PY3min: msgs += ['using unittest.mock'] else: try: import mock msgs += ['using mock %s' % mock.__version__] except ImportError: msgs += [msg_template.format(package='mock')] return ' / '.join(msgs) def get_packages(self): return [ 'matplotlib.tests', 'matplotlib.sphinxext.tests', ] def get_package_data(self): baseline_images = [ 'tests/baseline_images/%s/*' % x for x in os.listdir('lib/matplotlib/tests/baseline_images')] return { 'matplotlib': baseline_images + [ 'tests/cmr10.pfb', 'tests/mpltest.ttf', 'tests/test_rcparams.rc', 'tests/test_utf32_be_rcparams.rc', 'sphinxext/tests/tinypages/*.rst', 'sphinxext/tests/tinypages/*.py', 'sphinxext/tests/tinypages/_static/*', ]} class Toolkits_Tests(Tests): name = "toolkits_tests" def check_requirements(self): conf = self.get_config() toolkits_conf = Toolkits.get_config() tests_conf = Tests.get_config() if conf is True: Tests.force = True Toolkits.force = True elif conf == "auto" and not (toolkits_conf and tests_conf): # Only auto-install if both toolkits and tests are set # to be installed raise CheckFailed("toolkits_tests needs 'toolkits' and 'tests'") return "" def get_packages(self): return [ 'mpl_toolkits.tests', ] def get_package_data(self): baseline_images = [ 'tests/baseline_images/%s/*' % x for x in os.listdir('lib/mpl_toolkits/tests/baseline_images')] return {'mpl_toolkits': baseline_images} def get_namespace_packages(self): return ['mpl_toolkits'] class DelayedExtension(Extension, object): """ A distutils Extension subclass where some of its members may have delayed computation until reaching the build phase. This is so we can, for example, get the Numpy include dirs after pip has installed Numpy for us if it wasn't already on the system. """ def __init__(self, *args, **kwargs): super(DelayedExtension, self).__init__(*args, **kwargs) self._finalized = False self._hooks = {} def add_hook(self, member, func): """ Add a hook to dynamically compute a member. Parameters ---------- member : string The name of the member func : callable The function to call to get dynamically-computed values for the member. """ self._hooks[member] = func def finalize(self): self._finalized = True class DelayedMember(property): def __init__(self, name): self._name = name def __get__(self, obj, objtype=None): result = getattr(obj, '_' + self._name, []) if obj._finalized: if self._name in obj._hooks: result = obj._hooks[self._name]() + result return result def __set__(self, obj, value): setattr(obj, '_' + self._name, value) include_dirs = DelayedMember('include_dirs') class Numpy(SetupPackage): name = "numpy" @staticmethod def include_dirs_hook(): if PY3min: import builtins if hasattr(builtins, '__NUMPY_SETUP__'): del builtins.__NUMPY_SETUP__ import imp import numpy imp.reload(numpy) else: import __builtin__ if hasattr(__builtin__, '__NUMPY_SETUP__'): del __builtin__.__NUMPY_SETUP__ import numpy reload(numpy) ext = Extension('test', []) ext.include_dirs.append(numpy.get_include()) if not has_include_file( ext.include_dirs, os.path.join("numpy", "arrayobject.h")): warnings.warn( "The C headers for numpy could not be found. " "You may need to install the development package") return [numpy.get_include()] def check(self): min_version = extract_versions()['__version__numpy__'] try: import numpy except ImportError: return 'not found. pip may install it below.' if not is_min_version(numpy.__version__, min_version): raise SystemExit( "Requires numpy %s or later to build. (Found %s)" % (min_version, numpy.__version__)) return 'version %s' % numpy.__version__ def add_flags(self, ext): # Ensure that PY_ARRAY_UNIQUE_SYMBOL is uniquely defined for # each extension array_api_name = 'MPL_' + ext.name.replace('.', '_') + '_ARRAY_API' ext.define_macros.append(('PY_ARRAY_UNIQUE_SYMBOL', array_api_name)) ext.add_hook('include_dirs', self.include_dirs_hook) ext.define_macros.append(('NPY_NO_DEPRECATED_API', 'NPY_1_7_API_VERSION')) # Allow NumPy's printf format specifiers in C++. ext.define_macros.append(('__STDC_FORMAT_MACROS', 1)) def get_setup_requires(self): return ['numpy>=1.7.1'] def get_install_requires(self): return ['numpy>=1.7.1'] class LibAgg(SetupPackage): name = 'libagg' def check(self): self.__class__.found_external = True try: return self._check_for_pkg_config( 'libagg', 'agg2/agg_basics.h', min_version='PATCH') except CheckFailed as e: self.__class__.found_external = False return str(e) + ' Using local copy.' def add_flags(self, ext, add_sources=True): if self.found_external: pkg_config.setup_extension(ext, 'libagg') else: ext.include_dirs.insert(0, 'extern/agg24-svn/include') if add_sources: agg_sources = [ 'agg_bezier_arc.cpp', 'agg_curves.cpp', 'agg_image_filters.cpp', 'agg_trans_affine.cpp', 'agg_vcgen_contour.cpp', 'agg_vcgen_dash.cpp', 'agg_vcgen_stroke.cpp', 'agg_vpgen_segmentator.cpp' ] ext.sources.extend( os.path.join('extern', 'agg24-svn', 'src', x) for x in agg_sources) class FreeType(SetupPackage): name = "freetype" pkg_names = { "apt-get": "libfreetype6-dev", "yum": "freetype-devel", "dnf": "freetype-devel", "brew": "freetype", "port": "freetype", "windows_url": "http://gnuwin32.sourceforge.net/packages/freetype.htm" } def check(self): if options.get('local_freetype'): return "Using local version for testing" if sys.platform == 'win32': try: check_include_file(get_include_dirs(), 'ft2build.h', 'freetype') except CheckFailed: check_include_file(get_include_dirs(), 'freetype2\\ft2build.h', 'freetype') return 'Using unknown version found on system.' status, output = getstatusoutput("freetype-config --ftversion") if status == 0: version = output else: version = None # Early versions of freetype grep badly inside freetype-config, # so catch those cases. (tested with 2.5.3). if version is None or 'No such file or directory\ngrep:' in version: version = self.version_from_header() # pkg_config returns the libtool version rather than the # freetype version so we need to explicitly pass the version # to _check_for_pkg_config return self._check_for_pkg_config( 'freetype2', 'ft2build.h', min_version='2.3', version=version) def version_from_header(self): version = 'unknown' ext = self.get_extension() if ext is None: return version # Return the first version found in the include dirs. for include_dir in ext.include_dirs: header_fname = os.path.join(include_dir, 'freetype.h') if os.path.exists(header_fname): major, minor, patch = 0, 0, 0 with open(header_fname, 'r') as fh: for line in fh: if line.startswith('#define FREETYPE_'): value = line.rsplit(' ', 1)[1].strip() if 'MAJOR' in line: major = value elif 'MINOR' in line: minor = value else: patch = value return '.'.join([major, minor, patch]) def add_flags(self, ext): if options.get('local_freetype'): src_path = os.path.join( 'build', 'freetype-{0}'.format(LOCAL_FREETYPE_VERSION)) # Statically link to the locally-built freetype. # This is certainly broken on Windows. ext.include_dirs.insert(0, os.path.join(src_path, 'include')) if sys.platform == 'win32': libfreetype = 'libfreetype.lib' else: libfreetype = 'libfreetype.a' ext.extra_objects.insert( 0, os.path.join(src_path, 'objs', '.libs', libfreetype)) ext.define_macros.append(('FREETYPE_BUILD_TYPE', 'local')) else: pkg_config.setup_extension( ext, 'freetype2', default_include_dirs=[ 'include/freetype2', 'freetype2', 'lib/freetype2/include', 'lib/freetype2/include/freetype2'], default_library_dirs=[ 'freetype2/lib'], default_libraries=['freetype', 'z']) ext.define_macros.append(('FREETYPE_BUILD_TYPE', 'system')) def do_custom_build(self): # We're using a system freetype if not options.get('local_freetype'): return src_path = os.path.join( 'build', 'freetype-{0}'.format(LOCAL_FREETYPE_VERSION)) # We've already built freetype if sys.platform == 'win32': libfreetype = 'libfreetype.lib' else: libfreetype = 'libfreetype.a' if os.path.isfile(os.path.join(src_path, 'objs', '.libs', libfreetype)): return tarball = 'freetype-{0}.tar.gz'.format(LOCAL_FREETYPE_VERSION) tarball_path = os.path.join('build', tarball) try: tarball_cache_dir = _get_xdg_cache_dir() tarball_cache_path = os.path.join(tarball_cache_dir, tarball) except: # again, do not really care if this fails tarball_cache_dir = None tarball_cache_path = None if not os.path.isfile(tarball_path): if (tarball_cache_path is not None and os.path.isfile(tarball_cache_path)): if get_file_hash(tarball_cache_path) == LOCAL_FREETYPE_HASH: try: os.makedirs('build') except OSError: # Don't care if it exists. pass try: shutil.copy(tarball_cache_path, tarball_path) print('Using cached tarball: {}' .format(tarball_cache_path)) except OSError: # If this fails, oh well just re-download pass if not os.path.isfile(tarball_path): if PY3min: from urllib.request import urlretrieve else: from urllib import urlretrieve if not os.path.exists('build'): os.makedirs('build') url_fmts = [ 'https://downloads.sourceforge.net/project/freetype' '/freetype2/{version}/{tarball}', 'https://download.savannah.gnu.org/releases/freetype' '/{tarball}' ] for url_fmt in url_fmts: tarball_url = url_fmt.format( version=LOCAL_FREETYPE_VERSION, tarball=tarball) print("Downloading {0}".format(tarball_url)) try: urlretrieve(tarball_url, tarball_path) except IOError: # URLError (a subclass) on Py3. print("Failed to download {0}".format(tarball_url)) else: if get_file_hash(tarball_path) != LOCAL_FREETYPE_HASH: print("Invalid hash.") else: break else: raise IOError("Failed to download freetype. " "You can download the file by " "alternative means and copy it " " to '{0}'".format(tarball_path)) try: os.makedirs(tarball_cache_dir) except OSError: # Don't care if it exists. pass try: shutil.copy(tarball_path, tarball_cache_path) print('Cached tarball at: {}'.format(tarball_cache_path)) except OSError: # If this fails, we can always re-download. pass if get_file_hash(tarball_path) != LOCAL_FREETYPE_HASH: raise IOError( "{0} does not match expected hash.".format(tarball)) print("Building {0}".format(tarball)) if sys.platform != 'win32': # compilation on all other platforms than windows cflags = 'CFLAGS="{0} -fPIC" '.format(os.environ.get('CFLAGS', '')) subprocess.check_call( ['tar', 'zxf', tarball], cwd='build') subprocess.check_call( [cflags + './configure --with-zlib=no --with-bzip2=no ' '--with-png=no --with-harfbuzz=no'], shell=True, cwd=src_path) subprocess.check_call( [cflags + 'make'], shell=True, cwd=src_path) else: # compilation on windows FREETYPE_BUILD_CMD = """\ call "%ProgramFiles%\\Microsoft SDKs\\Windows\\v7.0\\Bin\\SetEnv.Cmd" /Release /{xXX} /xp call "{vcvarsall}" {xXX} set MSBUILD=C:\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\MSBuild.exe rd /S /Q %FREETYPE%\\objs %MSBUILD% %FREETYPE%\\builds\\windows\\{vc20xx}\\freetype.sln /t:Clean;Build /p:Configuration="{config}";Platform={WinXX} echo Build completed, moving result" :: move to the "normal" path for the unix builds... mkdir %FREETYPE%\\objs\\.libs :: REMINDER: fix when changing the version copy %FREETYPE%\\objs\\{vc20xx}\\{xXX}\\freetype261.lib %FREETYPE%\\objs\\.libs\\libfreetype.lib if errorlevel 1 ( rem This is a py27 version, which has a different location for the lib file :-/ copy %FREETYPE%\\objs\\win32\\{vc20xx}\\freetype261.lib %FREETYPE%\\objs\\.libs\\libfreetype.lib ) """ from setup_external_compile import fixproj, prepare_build_cmd, VS2010, X64, tar_extract # Note: freetype has no build profile for 2014, so we don't bother... vc = 'vc2010' if VS2010 else 'vc2008' WinXX = 'x64' if X64 else 'Win32' tar_extract(tarball_path, "build") # This is only false for py2.7, even on py3.5... if not VS2010: fixproj(os.path.join(src_path, 'builds', 'windows', vc, 'freetype.sln'), WinXX) fixproj(os.path.join(src_path, 'builds', 'windows', vc, 'freetype.vcproj'), WinXX) cmdfile = os.path.join("build", 'build_freetype.cmd') with open(cmdfile, 'w') as cmd: cmd.write(prepare_build_cmd(FREETYPE_BUILD_CMD, vc20xx=vc, WinXX=WinXX, config='Release' if VS2010 else 'LIB Release')) os.environ['FREETYPE'] = src_path subprocess.check_call([cmdfile], shell=True) class FT2Font(SetupPackage): name = 'ft2font' def get_extension(self): sources = [ 'src/ft2font.cpp', 'src/ft2font_wrapper.cpp', 'src/mplutils.cpp' ] ext = make_extension('matplotlib.ft2font', sources) FreeType().add_flags(ext) Numpy().add_flags(ext) return ext class Png(SetupPackage): name = "png" pkg_names = { "apt-get": "libpng12-dev", "yum": "libpng-devel", "dnf": "libpng-devel", "brew": "libpng", "port": "libpng", "windows_url": "http://gnuwin32.sourceforge.net/packages/libpng.htm" } def check(self): if sys.platform == 'win32': check_include_file(get_include_dirs(), 'png.h', 'png') return 'Using unknown version found on system.' status, output = getstatusoutput("libpng-config --version") if status == 0: version = output else: version = None try: return self._check_for_pkg_config( 'libpng', 'png.h', min_version='1.2', version=version) except CheckFailed as e: if has_include_file(get_include_dirs(), 'png.h'): return str(e) + ' Using unknown version found on system.' raise def get_extension(self): sources = [ 'src/_png.cpp', 'src/mplutils.cpp' ] ext = make_extension('matplotlib._png', sources) pkg_config.setup_extension( ext, 'libpng', default_libraries=['png', 'z'], alt_exec='libpng-config --ldflags') Numpy().add_flags(ext) return ext class Qhull(SetupPackage): name = "qhull" def check(self): self.__class__.found_external = True try: return self._check_for_pkg_config( 'libqhull', 'libqhull/qhull_a.h', min_version='2015.2') except CheckFailed as e: self.__class__.found_pkgconfig = False self.__class__.found_external = False return str(e) + ' Using local copy.' def add_flags(self, ext): if self.found_external: pkg_config.setup_extension(ext, 'qhull', default_libraries=['qhull']) else: ext.include_dirs.insert(0, 'extern') ext.sources.extend(sorted(glob.glob('extern/libqhull/*.c'))) class TTConv(SetupPackage): name = "ttconv" def get_extension(self): sources = [ 'src/_ttconv.cpp', 'extern/ttconv/pprdrv_tt.cpp', 'extern/ttconv/pprdrv_tt2.cpp', 'extern/ttconv/ttutil.cpp' ] ext = make_extension('matplotlib.ttconv', sources) Numpy().add_flags(ext) ext.include_dirs.insert(0, 'extern') return ext class Path(SetupPackage): name = "path" def get_extension(self): sources = [ 'src/py_converters.cpp', 'src/_path_wrapper.cpp' ] ext = make_extension('matplotlib._path', sources) Numpy().add_flags(ext) LibAgg().add_flags(ext) return ext class Image(SetupPackage): name = "image" def get_extension(self): sources = [ 'src/_image.cpp', 'src/mplutils.cpp', 'src/_image_wrapper.cpp', 'src/py_converters.cpp' ] ext = make_extension('matplotlib._image', sources) Numpy().add_flags(ext) LibAgg().add_flags(ext) return ext class Contour(SetupPackage): name = "contour" def get_extension(self): sources = [ "src/_contour.cpp", "src/_contour_wrapper.cpp", ] ext = make_extension('matplotlib._contour', sources) Numpy().add_flags(ext) return ext class QhullWrap(SetupPackage): name = "qhull_wrap" def get_extension(self): sources = ['src/qhull_wrap.c'] ext = make_extension('matplotlib._qhull', sources, define_macros=[('MPL_DEVNULL', os.devnull)]) Numpy().add_flags(ext) Qhull().add_flags(ext) return ext class Tri(SetupPackage): name = "tri" def get_extension(self): sources = [ "lib/matplotlib/tri/_tri.cpp", "lib/matplotlib/tri/_tri_wrapper.cpp", "src/mplutils.cpp" ] ext = make_extension('matplotlib._tri', sources) Numpy().add_flags(ext) return ext class InstallRequires(SetupPackage): name = "install_requires" def check(self): return "handled by setuptools" def get_install_requires(self): install_requires = [ "cycler>=0.10", "pyparsing>=2.0.1,!=2.0.4,!=2.1.2,!=2.1.6", "python-dateutil>=2.0", "pytz", "six>=1.10", ] if sys.version_info < (3,): install_requires += ["backports.functools_lru_cache"] if sys.version_info < (3,) and os.name == "posix": install_requires += ["subprocess32"] return install_requires class BackendAgg(OptionalBackendPackage): name = "agg" force = True def get_extension(self): sources = [ "src/mplutils.cpp", "src/py_converters.cpp", "src/_backend_agg.cpp", "src/_backend_agg_wrapper.cpp" ] ext = make_extension('matplotlib.backends._backend_agg', sources) Numpy().add_flags(ext) LibAgg().add_flags(ext) FreeType().add_flags(ext) return ext class BackendTkAgg(OptionalBackendPackage): name = "tkagg" force = True def check(self): return "installing; run-time loading from Python Tcl / Tk" def runtime_check(self): """ Checks whether TkAgg runtime dependencies are met """ pkg_name = 'tkinter' if PY3min else 'Tkinter' try: import_module(pkg_name) except ImportError: return False return True def get_extension(self): sources = [ 'src/py_converters.cpp', 'src/_tkagg.cpp' ] ext = make_extension('matplotlib.backends._tkagg', sources) self.add_flags(ext) Numpy().add_flags(ext) LibAgg().add_flags(ext, add_sources=False) return ext def add_flags(self, ext): ext.include_dirs.insert(0, 'src') if sys.platform == 'win32': # PSAPI library needed for finding Tcl / Tk at run time ext.libraries.extend(['psapi']) class BackendGtk(OptionalBackendPackage): name = "gtk" def check_requirements(self): try: import gtk except ImportError: raise CheckFailed("Requires pygtk") except RuntimeError: raise CheckFailed('pygtk present, but import failed.') else: version = (2, 2, 0) if gtk.pygtk_version < version: raise CheckFailed( "Requires pygtk %d.%d.%d or later. " "Found %d.%d.%d" % (version + gtk.pygtk_version)) ext = self.get_extension() self.add_flags(ext) check_include_file(ext.include_dirs, os.path.join("gtk", "gtk.h"), 'gtk') check_include_file(ext.include_dirs, os.path.join("pygtk", "pygtk.h"), 'pygtk') return 'Gtk: %s pygtk: %s' % ( ".".join(str(x) for x in gtk.gtk_version), ".".join(str(x) for x in gtk.pygtk_version)) def get_package_data(self): return {'matplotlib': ['mpl-data/*.glade']} def get_extension(self): sources = [ 'src/_backend_gdk.c' ] ext = make_extension('matplotlib.backends._backend_gdk', sources) self.add_flags(ext) Numpy().add_flags(ext) return ext def add_flags(self, ext): if sys.platform == 'win32': def getoutput(s): ret = os.popen(s).read().strip() return ret if 'PKG_CONFIG_PATH' not in os.environ: # If Gtk+ is installed, pkg-config is required to be installed os.environ['PKG_CONFIG_PATH'] = 'C:\\GTK\\lib\\pkgconfig' # popen broken on my win32 plaform so I can't use pkgconfig ext.library_dirs.extend( ['C:/GTK/bin', 'C:/GTK/lib']) ext.include_dirs.extend( ['win32_static/include/pygtk-2.0', 'C:/GTK/include', 'C:/GTK/include/gobject', 'C:/GTK/include/gext', 'C:/GTK/include/glib', 'C:/GTK/include/pango', 'C:/GTK/include/atk', 'C:/GTK/include/X11', 'C:/GTK/include/cairo', 'C:/GTK/include/gdk', 'C:/GTK/include/gdk-pixbuf', 'C:/GTK/include/gtk', ]) pygtkIncludes = getoutput( 'pkg-config --cflags-only-I pygtk-2.0').split() gtkIncludes = getoutput( 'pkg-config --cflags-only-I gtk+-2.0').split() includes = pygtkIncludes + gtkIncludes ext.include_dirs.extend([include[2:] for include in includes]) pygtkLinker = getoutput('pkg-config --libs pygtk-2.0').split() gtkLinker = getoutput('pkg-config --libs gtk+-2.0').split() linkerFlags = pygtkLinker + gtkLinker ext.libraries.extend( [flag[2:] for flag in linkerFlags if flag.startswith('-l')]) ext.library_dirs.extend( [flag[2:] for flag in linkerFlags if flag.startswith('-L')]) ext.extra_link_args.extend( [flag for flag in linkerFlags if not (flag.startswith('-l') or flag.startswith('-L'))]) # visual studio doesn't need the math library if (sys.platform == 'win32' and win32_compiler == 'msvc' and 'm' in ext.libraries): ext.libraries.remove('m') elif sys.platform != 'win32': pkg_config.setup_extension(ext, 'pygtk-2.0') pkg_config.setup_extension(ext, 'gtk+-2.0') class BackendGtkAgg(BackendGtk): name = "gtkagg" def get_package_data(self): return {'matplotlib': ['mpl-data/*.glade']} def get_extension(self): sources = [ 'src/py_converters.cpp', 'src/_gtkagg.cpp', 'src/mplutils.cpp' ] ext = make_extension('matplotlib.backends._gtkagg', sources) self.add_flags(ext) LibAgg().add_flags(ext) Numpy().add_flags(ext) return ext def backend_gtk3agg_internal_check(x): try: import gi except ImportError: return (False, "Requires pygobject to be installed.") try: gi.require_version("Gtk", "3.0") except ValueError: return (False, "Requires gtk3 development files to be installed.") except AttributeError: return (False, "pygobject version too old.") try: from gi.repository import Gtk, Gdk, GObject except (ImportError, RuntimeError): return (False, "Requires pygobject to be installed.") return (True, "version %s.%s.%s" % ( Gtk.get_major_version(), Gtk.get_micro_version(), Gtk.get_minor_version())) class BackendGtk3Agg(OptionalBackendPackage): name = "gtk3agg" def check_requirements(self): if 'TRAVIS' in os.environ: raise CheckFailed("Can't build with Travis") # This check needs to be performed out-of-process, because # importing gi and then importing regular old pygtk afterward # segfaults the interpreter. try: p = multiprocessing.Pool() except: return "unknown (can not use multiprocessing to determine)" try: res = p.map_async(backend_gtk3agg_internal_check, [0]) success, msg = res.get(timeout=10)[0] except multiprocessing.TimeoutError: p.terminate() # No result returned. Probaly hanging, terminate the process. success = False raise CheckFailed("Check timed out") except: p.close() # Some other error. success = False msg = "Could not determine" raise else: p.close() finally: p.join() if success: return msg else: raise CheckFailed(msg) def get_package_data(self): return {'matplotlib': ['mpl-data/*.glade']} def backend_gtk3cairo_internal_check(x): try: import cairocffi except ImportError: try: import cairo except ImportError: return (False, "Requires cairocffi or pycairo to be installed.") try: import gi except ImportError: return (False, "Requires pygobject to be installed.") try: gi.require_version("Gtk", "3.0") except ValueError: return (False, "Requires gtk3 development files to be installed.") except AttributeError: return (False, "pygobject version too old.") try: from gi.repository import Gtk, Gdk, GObject except (RuntimeError, ImportError): return (False, "Requires pygobject to be installed.") return (True, "version %s.%s.%s" % ( Gtk.get_major_version(), Gtk.get_micro_version(), Gtk.get_minor_version())) class BackendGtk3Cairo(OptionalBackendPackage): name = "gtk3cairo" def check_requirements(self): if 'TRAVIS' in os.environ: raise CheckFailed("Can't build with Travis") # This check needs to be performed out-of-process, because # importing gi and then importing regular old pygtk afterward # segfaults the interpreter. try: p = multiprocessing.Pool() except: return "unknown (can not use multiprocessing to determine)" try: res = p.map_async(backend_gtk3cairo_internal_check, [0]) success, msg = res.get(timeout=10)[0] except multiprocessing.TimeoutError: p.terminate() # No result returned. Probaly hanging, terminate the process. success = False raise CheckFailed("Check timed out") except: p.close() success = False raise else: p.close() finally: p.join() if success: return msg else: raise CheckFailed(msg) def get_package_data(self): return {'matplotlib': ['mpl-data/*.glade']} class BackendWxAgg(OptionalBackendPackage): name = "wxagg" def check_requirements(self): wxversioninstalled = True try: import wxversion except ImportError: wxversioninstalled = False if wxversioninstalled: try: _wx_ensure_failed = wxversion.AlreadyImportedError except AttributeError: _wx_ensure_failed = wxversion.VersionError try: wxversion.ensureMinimal('2.9') except _wx_ensure_failed: pass try: import wx backend_version = wx.VERSION_STRING except ImportError: raise CheckFailed("requires wxPython") if not is_min_version(backend_version, "2.9"): raise CheckFailed( "Requires wxPython 2.9, found %s" % backend_version) return "version %s" % backend_version class BackendMacOSX(OptionalBackendPackage): name = 'macosx' def check_requirements(self): if sys.platform != 'darwin': raise CheckFailed("Mac OS-X only") return 'darwin' def get_extension(self): sources = [ 'src/_macosx.m' ] ext = make_extension('matplotlib.backends._macosx', sources) ext.extra_link_args.extend(['-framework', 'Cocoa']) return ext class Windowing(OptionalBackendPackage): """ Builds the windowing extension. """ name = "windowing" def check_requirements(self): if sys.platform != 'win32': raise CheckFailed("Microsoft Windows only") config = self.get_config() if config is False: raise CheckFailed("skipping due to configuration") return "" def get_extension(self): sources = [ "src/_windowing.cpp" ] ext = make_extension('matplotlib._windowing', sources) ext.include_dirs.extend(['C:/include']) ext.libraries.extend(['user32']) ext.library_dirs.extend(['C:/lib']) ext.extra_link_args.append("-mwindows") return ext class BackendQtBase(OptionalBackendPackage): def convert_qt_version(self, version): version = '%x' % version temp = [] while len(version) > 0: version, chunk = version[:-2], version[-2:] temp.insert(0, str(int(chunk, 16))) return '.'.join(temp) def check_requirements(self): ''' If PyQt4/PyQt5 is already imported, importing PyQt5/PyQt4 will fail so we need to test in a subprocess (as for Gtk3). ''' try: p = multiprocessing.Pool() except: # Can't do multiprocessing, fall back to normal approach # (this will fail if importing both PyQt4 and PyQt5). try: # Try in-process msg = self.callback(self) except RuntimeError: raise CheckFailed( "Could not import: are PyQt4 & PyQt5 both installed?") else: # Multiprocessing OK try: res = p.map_async(self.callback, [self]) msg = res.get(timeout=10)[0] except multiprocessing.TimeoutError: p.terminate() # No result returned. Probaly hanging, terminate the process. raise CheckFailed("Check timed out") except: # Some other error. p.close() raise else: # Clean exit p.close() finally: # Tidy up multiprocessing p.join() return msg def backend_pyside_internal_check(self): try: from PySide import __version__ from PySide import QtCore except ImportError: raise CheckFailed("PySide not found") else: return ("Qt: %s, PySide: %s" % (QtCore.__version__, __version__)) def backend_pyqt4_internal_check(self): try: from PyQt4 import QtCore except ImportError: raise CheckFailed("PyQt4 not found") try: qt_version = QtCore.QT_VERSION pyqt_version_str = QtCore.PYQT_VERSION_STR except AttributeError: raise CheckFailed('PyQt4 not correctly imported') else: return ("Qt: %s, PyQt: %s" % (self.convert_qt_version(qt_version), pyqt_version_str)) def backend_qt4_internal_check(self): successes = [] failures = [] try: successes.append(backend_pyside_internal_check(self)) except CheckFailed as e: failures.append(str(e)) try: successes.append(backend_pyqt4_internal_check(self)) except CheckFailed as e: failures.append(str(e)) if len(successes) == 0: raise CheckFailed('; '.join(failures)) return '; '.join(successes + failures) class BackendQt4(BackendQtBase): name = "qt4agg" def __init__(self, *args, **kwargs): BackendQtBase.__init__(self, *args, **kwargs) self.callback = backend_qt4_internal_check def backend_pyside2_internal_check(self): try: from PySide2 import __version__ from PySide2 import QtCore except ImportError: raise CheckFailed("PySide2 not found") else: return ("Qt: %s, PySide2: %s" % (QtCore.__version__, __version__)) def backend_pyqt5_internal_check(self): try: from PyQt5 import QtCore except ImportError: raise CheckFailed("PyQt5 not found") try: qt_version = QtCore.QT_VERSION pyqt_version_str = QtCore.PYQT_VERSION_STR except AttributeError: raise CheckFailed('PyQt5 not correctly imported') else: return ("Qt: %s, PyQt: %s" % (self.convert_qt_version(qt_version), pyqt_version_str)) def backend_qt5_internal_check(self): successes = [] failures = [] try: successes.append(backend_pyside2_internal_check(self)) except CheckFailed as e: failures.append(str(e)) try: successes.append(backend_pyqt5_internal_check(self)) except CheckFailed as e: failures.append(str(e)) if len(successes) == 0: raise CheckFailed('; '.join(failures)) return '; '.join(successes + failures) class BackendQt5(BackendQtBase): name = "qt5agg" def __init__(self, *args, **kwargs): BackendQtBase.__init__(self, *args, **kwargs) self.callback = backend_qt5_internal_check class BackendCairo(OptionalBackendPackage): name = "cairo" def check_requirements(self): try: import cairocffi except ImportError: try: import cairo except ImportError: raise CheckFailed("cairocffi or pycairo not found") else: return "pycairo version %s" % cairo.version else: return "cairocffi version %s" % cairocffi.version class DviPng(SetupPackage): name = "dvipng" optional = True def check(self): try: output = check_output('dvipng -version', shell=True, stderr=subprocess.STDOUT) return "version %s" % output.splitlines()[1].decode().split()[-1] except (IndexError, ValueError, subprocess.CalledProcessError): raise CheckFailed() class Ghostscript(SetupPackage): name = "ghostscript" optional = True def check(self): if sys.platform == 'win32': # mgs is the name in miktex gs_execs = ['gswin32c', 'gswin64c', 'mgs', 'gs'] else: gs_execs = ['gs'] for gs_exec in gs_execs: try: command = gs_exec + ' --version' output = check_output(command, shell=True, stderr=subprocess.STDOUT) return "version %s" % output.decode()[:-1] except (IndexError, ValueError, subprocess.CalledProcessError): pass raise CheckFailed() class LaTeX(SetupPackage): name = "latex" optional = True def check(self): try: output = check_output('latex -version', shell=True, stderr=subprocess.STDOUT) line = output.splitlines()[0].decode() pattern = '(3\.1\d+)|(MiKTeX \d+.\d+)' match = re.search(pattern, line) return "version %s" % match.group(0) except (IndexError, ValueError, AttributeError, subprocess.CalledProcessError): raise CheckFailed() class PdfToPs(SetupPackage): name = "pdftops" optional = True def check(self): try: output = check_output('pdftops -v', shell=True, stderr=subprocess.STDOUT) for line in output.splitlines(): line = line.decode() if 'version' in line: return "version %s" % line.split()[2] except (IndexError, ValueError, subprocess.CalledProcessError): pass raise CheckFailed() class OptionalPackageData(OptionalPackage): config_category = "package_data" class Dlls(OptionalPackageData): """ On Windows, this packages any DLL files that can be found in the lib/matplotlib/* directories. """ name = "dlls" def check_requirements(self): if sys.platform != 'win32': raise CheckFailed("Microsoft Windows only") def get_package_data(self): return {'': ['*.dll']} @classmethod def get_config(cls): """ Look at `setup.cfg` and return one of ["auto", True, False] indicating if the package is at default state ("auto"), forced by the user (True) or opted-out (False). """ try: return config.getboolean(cls.config_category, cls.name) except: return False # <-- default
7d31fe18877c6078bd75cf9d7badeddd503d0e55
0466559817d3a1be9409da2c83db99c4db3bacfe
/hubcheck/shell/container_manager.py
0d0d575c450a0cd9d608a7c9e7729ac697b061c0
[ "MIT" ]
permissive
ken2190/hubcheck
955cf9b75a1ee77e28256dfd3a780cfbc17de961
2ff506eb56ba00f035300862f8848e4168452a17
refs/heads/master
2023-03-20T15:17:12.949715
2015-09-29T16:11:18
2015-09-29T16:11:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,451
py
from .toolsession import ToolSession from hubcheck.exceptions import ConnectionClosedError from hubcheck.exceptions import SessionCreateError import logging import pprint import re import hubcheck.conf class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] class ContainerManager(object): __metaclass__ = Singleton def __init__(self): self.logger = logging.getLogger(__name__) self._lookup = { # Example: # host : { # username : { # 'sessionobj' : sessionObj, # 'sessions' : [ {'number' : sessionNum, 'toolname' : toolname}, # {'number' : sessionNum, 'toolname' : toolname}, # ... ], # } # } } def __repr__(self): return "ContainerManager(%s)" % (pprint.pformat(self._lookup)) # def __del__(self): # # self.stop_all() def _find_session_number_for(self,host,username,toolname=None): self.logger.debug( 'cm looking for session number for %s on %s with toolname %s' \ % (username,host,toolname)) self.logger.debug( 'session dictionary:\n%s' \ % (pprint.pformat(self._lookup))) session_obj = None session_number = None session = None # check if the host,user combination exists try: sessions = self._lookup[host][username]['sessions'] session_obj = self._lookup[host][username]['sessionobj'] except KeyError: return session_obj,session_number if len(sessions) == 0: session_number = None return session_obj,session_number if toolname is None: # return the first available session session_number = sessions[0]['number'] return session_obj,session_number # find a session that matches the toolname for session in sessions: if session['toolname'] == toolname: session_number = session['number'] break return session_obj,session_number def _create_session_number_record(self,host,username,session_number, session_obj,toolname): if host not in self._lookup: self._lookup[host] = {} session_number = int(session_number) if username not in self._lookup[host]: # add a new record self.logger.debug( 'adding cm record for %s:%s -> %s,%s' \ % (host,username,session_number,toolname)) self._lookup[host][username] = { 'sessionobj' : session_obj, 'sessions' : [{'number':session_number,'toolname':toolname}], } else: # update an existing record self.logger.debug( 'updating cm record for %s:%s -> %s,%s' \ % (host,username,session_number,toolname)) self._lookup[host][username]['sessions'].append( {'number':session_number,'toolname':toolname}) self.logger.info( "cm user sessions: host='%s' username='%s' sessions='%s'" \ % (host,username,self._lookup[host][username]['sessions'])) def _delete_session_number_record(self,host,username,session_number): session_number = int(session_number) self.logger.debug( "removing cm session record for %s:%s -> %s" \ % (host,username,session_number)) # update an existing record for i in xrange(0,len(self._lookup[host][username]['sessions'])): session = self._lookup[host][username]['sessions'][i] if session['number'] == int(session_number): del self._lookup[host][username]['sessions'][i] break self.logger.info( "cm user sessions: host='%s' username='%s' sessions='%s'" \ % (host,username,self._lookup[host][username]['sessions'])) def create(self,host,username,password,session=None,title=None,toolname=None): self.logger.info("cm creating new session") if session is None: session = ToolSession(host=host, username=username, password=password) # read the configuration to find the name of the default workspace if toolname is None: toolname = hubcheck.conf.settings.default_workspace_toolname # create the session i,o,e = session.create(title,toolname) output = o.read(1024) try: session_number = int(re.search('(\d+)',output).group(0)) except: msg = "Failed to locate session number: %s" % (output) raise SessionCreateError(msg) # enter the session ws = session.access(session_number=session_number) # store the session number self._create_session_number_record(host,username,session_number,session,toolname) return ws def access(self,host,username,password,toolname=None): ws = None # FIXME: # we should probably grab all of the open sessions # and loop through them, trying to connect. if we # get to the end, then we open a new session. session,session_number = self._find_session_number_for(host,username,toolname=toolname) if session_number is not None: # an open session was returned # open a shell in that session self.logger.info("cm accessing session %s" % (session_number)) try: ws = session.access(session_number=session_number) except ConnectionClosedError as e: self.logger.exception(e) self.logger.debug("session access failed, trying to recover...") self.logger.debug("checking if closed") # accessing the session failed # check if the session is closed d = session.get_open_session_detail() for k,v in d.items(): if int(v['session_number']) == session_number: # session is still listed in table # probably something wrong trying to connect to it. self.logger.debug("session %d appears open" % (session_number)) raise # session was not in the table, it is probably closed # force a fall through to the next if clause self.logger.debug("session appears closed, open a new one") self._delete_session_number_record(host,username,session_number) session_number = None if session_number is None: # no stored open sessions for the user on this host # create a new session and store it ws = self.create(host,username,password,session,toolname=toolname) return ws def sync_open_sessions(self,host=None,username=None): self.logger.info("sync'ing open sessions: host = %s, username = %s" % (host,username)) for key_host in self._lookup.keys(): if (host is not None) and (key_host != host): continue for key_user in self._lookup[key_host].keys(): if (username is not None) and (key_user != username): continue # get the list of open session from the "session list" command session = self._lookup[key_host][key_user]['sessionobj'] open_sessions_dict = session.get_open_session_detail() open_sessions = [] open_session_data = {} for k,v in open_sessions_dict.items(): open_sessions.append(int(v['session_number'])) toolname = re.sub('_r\d+$','',v['name']) open_session_data[int(v['session_number'])] = toolname # figure out which sessions cm has listed as open, # verses the sessions listed as open by "session list" # closed_sessions = set(userd['sessions']) - set(open_sessions) stored_session_data = self._lookup[key_host][key_user]['sessions'] stored_sessions = [] for session in stored_session_data: stored_sessions.append(session['number']) self.logger.debug("stored open sessions: %s" % (stored_sessions)) self.logger.debug("session list results: %s" % (open_sessions)) new_open_sessions = set(stored_sessions) & set(open_sessions) # rebuild the container manager's open session data self._lookup[key_host][key_user]['sessions'] = [] for session_number in new_open_sessions: self._lookup[key_host][key_user]['sessions'].append( {'number':session_number, 'toolname':open_session_data[session_number]} ) self.logger.debug("new open sessions: %s" % (self._lookup[key_host][key_user]['sessions'])) def stop(self,host,username,session_number): """ stop a session container """ self.logger.info("cm stopping session %s" % (session_number)) session = self._lookup[host][username]['sessionobj'] # check if the session is open is_session_open = False open_sessions_dict = session.get_open_session_detail() for k,v in open_sessions_dict.items(): if int(v['session_number']) == int(session_number): is_session_open = True break if is_session_open is False: self.logger.info("session %s is not listed as open" % (session_number)) try: self._delete_session_number_record(host,username,session_number) except: pass return i,o,e = session.stop(session_number=session_number) output = o.read(1024) self.logger.debug("session stop output: %s" % (output)) #FIXME: # should probably read the output to make sure # there were no errors self._delete_session_number_record(host,username,session_number) def stop_all(self): for host in self._lookup.keys(): for user in self._lookup[host].keys(): sessions = list(self._lookup[host][user]['sessions']) self.logger.debug('closing %s:%s\'s open sessions: %s' % (host,user,sessions)) # stop each session for s in sessions: self.stop(host,user,s['number']) # kill the session object del self._lookup[host][user]['sessionobj'] self._lookup[host][user]['sessionobj'] = None # delete the user record del self._lookup[host][user] self.clear() def clear(self): self._lookup = {}
694553df0c0aa0de72c6cd3372d907b36a37b9fa
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_3_neat/16_0_3_RTN8_solve.py
7578551770778fbca70157c20919e407da47b880
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
2,357
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- import math def optimal(from_, to_): if from_ % 2 == 0: yield from_ from_ += 1 for divider_candidate in range(from_, to_, 2): yield divider_candidate def get_divider(x, from_, to_): for divider_candidate in optimal(from_, min(to_, int(math.sqrt(x)) + 1)): if x % divider_candidate == 0: return divider_candidate def solve(n_and_j): n, j = n_and_j.split(' ') n, j = int(n), int(j) results_candidates = [] results = [] def generate_jamcoin_candidate(): for bin_number in range(0, 2 ** (n - 1)): yield ('1{:0%sb}1' % (n - 2)).format(bin_number) jamcoin_candidate_generator = generate_jamcoin_candidate() def get_jamcoin_candidate(i): if i >= len(results_candidates): jamcoin_candidate = next(jamcoin_candidate_generator) results_candidates.append(( jamcoin_candidate, {'nums': [int(jamcoin_candidate, b) for b in range(2, 11)], 'step': 2, 'results': [None] * 9})) return results_candidates[i] jamcoin_candidate_i = 0 max_divider = 4 max_jamcoin_i = 2 max_bin_number = 2 ** (n - 1) while True: jamcoin_candidate, stats = get_jamcoin_candidate(jamcoin_candidate_i) all_done = True for i, num in enumerate(stats['nums']): if stats['results'][i]: continue divider = get_divider(num, stats['step'], max_divider) if divider: stats['results'][i] = divider else: all_done = False if all_done: results.append(jamcoin_candidate + ' ' + ' '.join(map(str, stats['results']))) results_candidates.pop(jamcoin_candidate_i) if len(results) == j: return '\n'.join(results) else: jamcoin_candidate_i += 1 if jamcoin_candidate_i >= max_jamcoin_i: max_divider += 2 jamcoin_candidate_i = 0 max_jamcoin_i = min(max_bin_number, max_jamcoin_i * 2) if __name__ == '__main__': cases_number = int(input()) for case_number in range(1, cases_number + 1): input_args = input() print('Case #%s:\n%s' % (case_number, solve(input_args)))
3c851c00f3168cf06f90684e89022ab2bc3965e0
c9697437c292df7fefd68559fdd9636066bdb2f1
/dev/animations/quick_sph_harm_anim.py
70d6bba7b23d2c08505d1efe4f8e75ea2ef961bf
[]
no_license
JoshKarpel/ionization
ebdb387483a9bc3fdb52818ab8e897e562ffcc67
3056df523ee90147d262b0e8bfaaef6f2678ea11
refs/heads/master
2021-03-24T13:03:57.469388
2020-04-06T03:37:04
2020-04-06T03:37:04
62,348,115
0
0
null
null
null
null
UTF-8
Python
false
false
5,491
py
import logging import os from copy import deepcopy import simulacra as si from simulacra.units import * import ionization as ion import matplotlib.pyplot as plt FILE_NAME = os.path.splitext(os.path.basename(__file__))[0] OUT_DIR = os.path.join(os.getcwd(), "out", FILE_NAME) if __name__ == "__main__": with si.utils.LogManager( "simulacra", "ionization", stdout_logs=True, stdout_level=logging.DEBUG ) as logger: anim_kwargs = dict(length=10, target_dir=OUT_DIR) epot_axman = animation.animators.ElectricPotentialPlotAxis( show_electric_field=True, show_vector_potential=False, show_y_label=False, show_ticks_right=True, ) test_state_axman = animation.animators.TestStateStackplotAxis( states=tuple( ion.HydrogenBoundState(n, l) for n in range(5) for l in range(n) )[:8] ) wavefunction_axman = animation.animators.WavefunctionStackplotAxis( states=( ion.HydrogenBoundState(1, 0), ion.HydrogenBoundState(2, 0), ion.HydrogenBoundState(3, 1), ) ) animators = [ animation.animators.PolarAnimator( postfix="g2", axman_wavefunction=animation.animators.SphericalHarmonicPhiSliceMeshAxis( shading="flat" ), axman_lower_right=deepcopy(epot_axman), axman_upper_right=deepcopy(test_state_axman), axman_colorbar=animation.animators.ColorBarAxis(), **anim_kwargs, ), animation.animators.PolarAnimator( postfix="g", axman_wavefunction=animation.animators.SphericalHarmonicPhiSliceMeshAxis( which="g", colormap=plt.get_cmap("richardson"), norm=si.vis.RichardsonNormalization(), shading="flat", ), axman_lower_right=deepcopy(epot_axman), axman_upper_right=deepcopy(test_state_axman), axman_colorbar=None, **anim_kwargs, ), animation.animators.PolarAnimator( postfix="g_angmom", axman_wavefunction=animation.animators.SphericalHarmonicPhiSliceMeshAxis( which="g", colormap=plt.get_cmap("richardson"), norm=si.vis.RichardsonNormalization(), shading="flat", ), axman_lower_right=deepcopy(epot_axman), axman_upper_right=animation.animators.AngularMomentumDecompositionAxis( maximum_l=10 ), axman_colorbar=None, **anim_kwargs, ), animation.animators.PolarAnimator( postfix="g_wavefunction", axman_wavefunction=animation.animators.SphericalHarmonicPhiSliceMeshAxis( which="g", colormap=plt.get_cmap("richardson"), norm=si.vis.RichardsonNormalization(), shading="flat", ), axman_lower_right=deepcopy(epot_axman), axman_upper_right=deepcopy(wavefunction_axman), axman_colorbar=None, **anim_kwargs, ), animation.animators.PolarAnimator( postfix="g_wavefunction_again", axman_wavefunction=animation.animators.SphericalHarmonicPhiSliceMeshAxis( which="g", colormap=plt.get_cmap("richardson"), norm=si.vis.RichardsonNormalization(), shading="flat", ), axman_lower_right=deepcopy(epot_axman), axman_upper_right=deepcopy(wavefunction_axman), axman_colorbar=None, **anim_kwargs, ), animation.animators.PolarAnimator( postfix="g_wavefunction_again_hires", axman_wavefunction=animation.animators.SphericalHarmonicPhiSliceMeshAxis( which="g", colormap=plt.get_cmap("richardson"), norm=si.vis.RichardsonNormalization(), shading="flat", ), axman_lower_right=deepcopy(epot_axman), axman_upper_right=deepcopy(wavefunction_axman), axman_colorbar=None, fig_dpi_scale=2, **anim_kwargs, ), ] sim = ion.SphericalHarmonicSpecification( "sph_harm", time_initial=0 * asec, time_final=100 * asec, r_bound=50 * bohr_radius, l_bound=20, r_points=200, electric_potential=ion.potentials.Rectangle( start_time=25 * asec, end_time=75 * asec, amplitude=1 * atomic_electric_field, ), # test_states = (ion.HydrogenBoundState(n, l) for n in range(5) for l in range(n)), use_numeric_eigenstates=True, numeric_eigenstate_max_energy=10 * eV, numeric_eigenstate_max_angular_momentum=5, animators=animators, ).to_sim() sim.info().log() sim.run() sim.info().log()
1c68371a7e2d8eaddb197d4d63eff1c8935ef143
5c8346597e3690eec3939f56f233eb5fafd336bc
/varsom_regobs_client/models/snow_temp_view_model.py
761a19ec81381882d6deee0093d85ef0c634d216
[]
no_license
NVE/python-varsom-regobs-client
be44befd04ca07058f8b46ec69bf1659d3ee422b
8bb7fc06d2f6da36a5fa4a475d4f036ebe3cfd72
refs/heads/master
2022-12-27T19:09:54.761318
2020-06-24T08:56:15
2020-06-24T08:56:15
274,619,205
0
0
null
null
null
null
UTF-8
Python
false
false
4,254
py
# coding: utf-8 """ RegObs API ## Introduction RegObs is a tool for collecting observations and events related to natural hazards. It is currently used by the Norwegian flood, landslide and avalanche warning service in Norway, but the data is openly available for anyone through this API. Regobs has been developed by the Norwegian Water resources and Energy Directorate (NVE), in collaboration with the Norwegian Meteorological Institute (MET) and the Norwegian Public Roads Administration (NPRA). You can check out our representation of the data at [regobs.no](http://regobs.no). ## Authentication Some endpoints require an api key. You can get an API key by sending an email to [[email protected]](mailto:[email protected]?subject=RegObs%20API%20Key). To use the api key with the swagger ui, fill in the api\\_key input above. It should then be included with every request in the `regObs_apptoken` header. ## Getting started Get the last 10 observations using python: ```python import requests r = requests.post('https://api.regobs.no/v4/Search', data={'NumberOfRecords': 10}, headers={'Content-Type': 'application/json'} ) data = r.json() print(len(data)) # 10 ``` # noqa: E501 OpenAPI spec version: v4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class SnowTempViewModel(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'layers': 'list[SnowTempObsViewModel]' } attribute_map = { 'layers': 'Layers' } def __init__(self, layers=None): # noqa: E501 """SnowTempViewModel - a model defined in Swagger""" # noqa: E501 self._layers = None self.discriminator = None if layers is not None: self.layers = layers @property def layers(self): """Gets the layers of this SnowTempViewModel. # noqa: E501 :return: The layers of this SnowTempViewModel. # noqa: E501 :rtype: list[SnowTempObsViewModel] """ return self._layers @layers.setter def layers(self, layers): """Sets the layers of this SnowTempViewModel. :param layers: The layers of this SnowTempViewModel. # noqa: E501 :type: list[SnowTempObsViewModel] """ self._layers = layers def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(SnowTempViewModel, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SnowTempViewModel): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
72dff18867a5ecc45e8a6feb50567cf3be592ed6
6c951ca04d6c0db92b05972d651d370302d98a2c
/tests/test_sensitivity_analyzer.py
35a1db44b33b09a91687ae8644cb8603a1c9727c
[ "MIT" ]
permissive
nickderobertis/sensitivity
9309bba0aadbac6e8dba09e7c7b1477d063a6d6d
8f0d0e676213772bdb8cbc8c6fc08fdba6dc6b53
refs/heads/master
2023-02-23T20:33:45.118907
2022-10-09T01:17:01
2022-10-09T01:17:01
239,607,375
12
0
MIT
2023-02-11T02:07:41
2020-02-10T20:33:30
Jupyter Notebook
UTF-8
Python
false
false
2,995
py
import uuid from pandas.testing import assert_frame_equal from sensitivity import SensitivityAnalyzer from tests.base import EXPECT_DF_TWO_VALUE, SENSITIVITY_VALUES_TWO_VALUE, add_5_to_values, RESULT_NAME, \ SENSITIVITY_VALUES_THREE_VALUE, add_10_to_values, EXPECT_DF_THREE_VALUE, assert_styled_matches, \ DF_STYLED_NUM_FMT_PATH, assert_graph_matches, PLOT_THREE_PATH, PLOT_OPTIONS_PATH, TWO_VALUE_LABELS, DF_LABELED_PATH class TestSensitivityAnalyzer: def create_sa(self, **kwargs) -> SensitivityAnalyzer: sa_config = dict( sensitivity_values=SENSITIVITY_VALUES_TWO_VALUE, func=add_5_to_values, result_name=RESULT_NAME ) sa_config.update(**kwargs) sa = SensitivityAnalyzer(**sa_config) return sa def test_create(self): sa = self.create_sa() def test_create_df(self): sa = self.create_sa() assert_frame_equal(sa.df, EXPECT_DF_TWO_VALUE, check_dtype=False) def test_create_df_three_values(self): sa = self.create_sa( sensitivity_values=SENSITIVITY_VALUES_THREE_VALUE, func=add_10_to_values, ) assert_frame_equal(sa.df, EXPECT_DF_THREE_VALUE, check_dtype=False) def test_create_styled_dfs(self): sa = self.create_sa() result = sa.styled_dfs() assert_styled_matches(result) def test_create_styled_dfs_with_num_fmt(self): sa = self.create_sa(num_fmt='${:,.0f}') result = sa.styled_dfs() sa2 = self.create_sa() result2 = sa2.styled_dfs(num_fmt='${:,.0f}') assert_styled_matches(result, DF_STYLED_NUM_FMT_PATH) assert_styled_matches(result2, DF_STYLED_NUM_FMT_PATH) def test_create_styled_dfs_with_labels(self): sa = self.create_sa(labels=TWO_VALUE_LABELS) result = sa.styled_dfs() assert_styled_matches(result, DF_LABELED_PATH) def test_create_styled_dfs_three_values(self): sa = self.create_sa( sensitivity_values=SENSITIVITY_VALUES_THREE_VALUE, func=add_10_to_values, ) result = sa.styled_dfs() def test_create_plot(self): sa = self.create_sa() result = sa.plot() assert_graph_matches(result) def test_create_plot_three_values(self): sa = self.create_sa( sensitivity_values=SENSITIVITY_VALUES_THREE_VALUE, func=add_10_to_values, ) result = sa.plot() assert_graph_matches(result, file_path=PLOT_THREE_PATH) def test_create_plot_with_options(self): options = dict( grid_size=2, color_map='viridis', reverse_colors=True ) sa = self.create_sa(labels=TWO_VALUE_LABELS, **options) result = sa.plot() assert_graph_matches(result, file_path=PLOT_OPTIONS_PATH) sa = self.create_sa(labels=TWO_VALUE_LABELS) result = sa.plot(**options) assert_graph_matches(result, file_path=PLOT_OPTIONS_PATH)
0497e0262a8ee739513125f73d20dec716f79060
52b5773617a1b972a905de4d692540d26ff74926
/.history/cylicRot_20200714234806.py
755b17fab1acf221b7f045ba530fc306bc41432f
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
536
py
# given an array rotate it k times to the right def rotate(arr,k): # first I'd rotate the array once # so how do we rotate the array # we move the last element to the firs place and # the rest follow suit # [1,2,3,4] # [4,2,3,1] # [4,1,3,2] # [4,1,2,3] # [4,1,2,3] # all we are doing is swapping the elements newArr = [] for i in range(len(arr)): k = len(arr) - 1 print('k',k,'i',i) arr[i],arr[k] = arr[k],arr[i] print(arr) rotate([1,2,3,4],4)
e615006a23c81dc60b0a5cdc99d864b0a4c4a7d4
c724fad90be2e221cb0f5c0005ebcfbdfdb35d27
/backend/fitsii_19945/wsgi.py
cfa9f31b691c6399a7797d950bc243dc2bb70ac9
[]
no_license
crowdbotics-apps/fitsii-19945
d461349a510febd39f4edcaeb2b8b722664e3bf0
040621b4053e58b9c323ef7222a6a36465c4806e
refs/heads/master
2022-12-07T18:18:50.580128
2020-09-02T16:56:11
2020-09-02T16:56:11
292,342,025
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" WSGI config for fitsii_19945 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'fitsii_19945.settings') application = get_wsgi_application()
c5968b91f1e8556b70007f764784c56df35cfef6
2c89037666a3c3c9be55b53055c73aa9fcbde2b7
/webrobot/app/main/service/user_service.py
1aa181ef641092046126c96166d66c61d9b54523
[ "MIT" ]
permissive
kakawaa/Auto-Test-System
844284de1eb5fac8fa8c5318371c99991caff62d
76b0690e4e49769ec5d6e65ab6c499396880c0bd
refs/heads/master
2020-06-17T11:42:38.121124
2019-07-05T03:32:39
2019-07-05T03:32:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,451
py
# import uuid import datetime import os from pathlib import Path from app.main import db from app.main.model.database import User, Organization from task_runner.runner import start_threads from ..config import get_config from ..util.errors import * from ..util.identicon import * USERS_ROOT = Path(get_config().USERS_ROOT) def save_new_user(data, admin=None): user = User.objects(email=data['email']).first() if not user: new_user = User( # public_id=str(uuid.uuid4()), email=data['email'], name=data.get('username', ''), registered_on=datetime.datetime.utcnow(), roles=data.get('roles', ['admin']), avatar=data.get('avatar', ''), introduction=data.get('introduction', '') ) new_user.password = data['password'] try: new_user.save() except Exception as e: print(e) return error_message(EINVAL, 'Field validating for User failed'), 401 user_root = USERS_ROOT / data['email'] try: os.mkdir(user_root) except FileExistsError as e: return error_message(EEXIST), 401 try: os.mkdir(user_root / 'test_results') except FileExistsError as e: return error_message(EEXIST), 401 if new_user.avatar == '': img = render_identicon(hash(data['email']), 27) img.save(user_root / ('%s.png' % new_user.id)) new_user.avatar = '%s.png' % new_user.id if new_user.name == '': new_user.name = new_user.email.split('@')[0] if not admin: organization = Organization(name='Personal') organization.owner = new_user organization.path = new_user.email organization.save() new_user.organizations = [organization] new_user.save() start_threads(new_user) return generate_token(new_user) else: return error_message(USER_ALREADY_EXIST), 409 def get_all_users(): return User.objects() def get_a_user(user_id): return User.objects(pk=user_id).first() def generate_token(user): try: # generate the auth token auth_token = User.encode_auth_token(str(user.id)) return error_message(SUCCESS, token=auth_token.decode()), 201 except Exception as e: print(e) return error_message(UNKNOWN_ERROR), 401
56a9016f9048bf93ced9d3230e3e07125c5674b2
01bd00e6498190aac53210689c111d72018956fa
/companies/migrations/0047_auto_20190917_1011.py
a0c9fdef406a96c4ea5f7cbf5a40000ea2755162
[]
no_license
dchaplinsky/edrdr
0494b31fe3a0ce54d0cf087fb11ef709cb002810
e9fd5295f8c7ca7db81fce2427456e779ff6637e
refs/heads/master
2022-06-01T07:01:59.049162
2020-10-12T08:04:42
2020-10-12T08:04:42
122,268,695
0
1
null
2022-04-22T20:52:45
2018-02-20T23:14:48
CSS
UTF-8
Python
false
false
571
py
# Generated by Django 2.2.3 on 2019-09-17 10:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('companies', '0046_pepowner_person_type'), ] operations = [ migrations.AddField( model_name='companyrecord', name='charter_capital', field=models.FloatField(default=None, null=True), ), migrations.AddField( model_name='companyrecord', name='reg_date', field=models.DateField(null=True), ), ]
62468571196349acaac805658ec61d5532fcb955
dc4a42ad81013a1fdaa0c6be0559504e17bacb7e
/products/admin.py
a845d9021b184ff03ccdeed387467a77c73d2d28
[]
no_license
deone/eqsupply
15afbda692779431357d2c69475da8503c4728b1
3af726b65c1658d364c6485ad36ef98d5c6e7fc3
refs/heads/master
2020-04-20T05:29:53.020966
2010-05-13T09:16:18
2010-05-13T09:16:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
from django.contrib import admin from eqsupply.products.models import * admin.site.register(Division) admin.site.register(Category) admin.site.register(Product) admin.site.register(Accessory) admin.site.register(ProductVariant)
07fed4cb0ac0a9c9fe7cf77a4577b118c598fd1f
6147d3da9c7f31a658f13892de457ed5a9314b22
/multithreading/without_threading.py
4f637839a61975629dea515f930117251368c52c
[]
no_license
ashish-bisht/must_do_geeks_for_geeks
17ba77608eb2d24cf4adb217c8e5a65980e85609
7ee5711c4438660db78916cf876c831259109ecc
refs/heads/master
2023-02-11T22:37:03.302401
2021-01-03T05:53:03
2021-01-03T05:53:03
320,353,079
0
1
null
null
null
null
UTF-8
Python
false
false
285
py
import threading import time start = time.perf_counter() def working_on_something(): print("Sleeping for a sec") time.sleep(1) print("Woke up") working_on_something() working_on_something() finish = time.perf_counter() print("total time taken is ", finish - start)
9ab7745e8b4d48edd0fe67af3de20eca60454dcc
f59a3641f488dd40b0af4c0024a252170ab59998
/chap4/p35.py
d89dca31848be92a9ad88a15209c75b1fe2ad076
[]
no_license
ujiuji1259/NLP100
478a5276514d2f21ac5ee5ec9b50f00dcba67d1a
c19f9ba00eec108dbc93d4cb7d33e86f539d3397
refs/heads/master
2023-04-01T23:05:14.376652
2021-04-13T05:21:37
2021-04-13T05:21:37
255,311,319
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
# mecab neko.txt > neko.txt.mecab from p30 import load_mecab_output import collections if __name__ == '__main__': lines = load_mecab_output('neko.txt.mecab') lines = [l['surface'] for line in lines for l in line] counter = collections.Counter(lines) print(counter.most_common())
f0ec9069cd636274166bcd07ca0cebc104ee447b
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03598/s680963277.py
c8861d19ff2e2ce27d5b6a660a4fb273c93d87c7
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
N = int(input()) K = int(input()) x = list(map(int, input().split())) A=[] B=[] for i in range(len(x)): a = min(2*(x[i]), 2*abs(K-x[i])) A.append(a) print(sum(A))
0d843d4556bf97c40beacc40c239357fa08e4b8a
05263538c3ad0f577cdbbdb9bac87dcf450230ce
/alexa/ask-sdk/ask_sdk_dynamodb/__version__.py
5cfdf120d47b16330d48f329ae8c0e26ce048100
[]
no_license
blairharper/ISS-GoogleMap-project
cea027324fc675a9a309b5277de99fc0265dcb80
3df119036b454a0bb219af2d703195f4154a2471
refs/heads/master
2020-03-21T16:47:21.046174
2018-10-24T08:05:57
2018-10-24T08:05:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,140
py
# # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights # Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS # OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the # License. # __pip_package_name__ = 'ask-sdk-dynamodb-persistence-adapter' __description__ = ( 'The ASK SDK DynamoDB Persistence Adapter package provides DynamoDB ' 'Adapter, that can be used with ASK SDK Core, for persistence management') __url__ = 'http://developer.amazon.com/ask' __version__ = '0.1' __author__ = 'Alexa Skills Kit' __author_email__ = '[email protected]' __license__ = 'Apache 2.0' __keywords__ = ['ASK SDK', 'Alexa Skills Kit', 'Alexa', 'ASK SDK Core', 'Persistence', 'DynamoDB'] __install_requires__ = ["boto3", "ask-sdk-core"]
d07d964851d7ea84722cc1c566fdb976f5049c0a
10d98fecb882d4c84595364f715f4e8b8309a66f
/non_semantic_speech_benchmark/distillation/train_keras_test.py
58293b999787e89c984afb7ffed56dbb033ecc48
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
afcarl/google-research
51c7b70d176c0d70a5ee31ea1d87590f3d6c6f42
320a49f768cea27200044c0d12f394aa6c795feb
refs/heads/master
2021-12-02T18:36:03.760434
2021-09-30T20:59:01
2021-09-30T21:07:02
156,725,548
1
0
Apache-2.0
2018-11-08T15:13:53
2018-11-08T15:13:52
null
UTF-8
Python
false
false
3,089
py
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for non_semantic_speech_benchmark.eval_embedding.keras.train_keras.""" from absl import flags from absl.testing import absltest from absl.testing import flagsaver from absl.testing import parameterized import mock import tensorflow as tf from non_semantic_speech_benchmark.distillation import train_keras def _get_data(*args, **kwargs): del args assert 'samples_key' in kwargs assert 'min_length' in kwargs assert 'batch_size' in kwargs bs = kwargs['batch_size'] samples = tf.zeros((bs, 16000), tf.float32) targets = tf.ones([bs, 10], tf.float32) return tf.data.Dataset.from_tensors((samples, targets)).repeat() class TrainKerasTest(parameterized.TestCase): @parameterized.parameters( {'bottleneck_dimension': 3, 'alpha': 1.0}, {'bottleneck_dimension': 5, 'alpha': 0.5}, ) def test_get_model(self, bottleneck_dimension, alpha): batched_samples = tf.zeros([3, 16000]) output_dimension = 10 targets = tf.ones([3, output_dimension]) model = train_keras.models.get_keras_model( f'mobilenet_debug_{alpha}_False', bottleneck_dimension=bottleneck_dimension, output_dimension=output_dimension) loss_obj = tf.keras.losses.MeanSquaredError() opt = tf.keras.optimizers.Adam() train_loss = tf.keras.metrics.MeanSquaredError() train_mae = tf.keras.metrics.MeanAbsoluteError() summary_writer = tf.summary.create_file_writer( absltest.get_default_test_tmpdir()) train_step = train_keras.get_train_step( model, loss_obj, opt, train_loss, train_mae, summary_writer) gstep = opt.iterations train_step(batched_samples, targets, gstep) self.assertEqual(1, gstep) train_step(batched_samples, targets, gstep) self.assertEqual(2, gstep) @mock.patch.object(train_keras.get_data, 'get_data', new=_get_data) @mock.patch.object(train_keras.hub, 'load') @flagsaver.flagsaver def test_full_flow(self, mock_load): del mock_load flags.FLAGS.file_pattern = 'dummy' flags.FLAGS.teacher_model_hub = 'dummy' flags.FLAGS.output_key = 'dummmy' flags.FLAGS.bottleneck_dimension = 2 flags.FLAGS.output_dimension = 10 flags.FLAGS.shuffle_buffer_size = 4 flags.FLAGS.samples_key = 'audio' flags.FLAGS.logdir = absltest.get_default_test_tmpdir() train_keras.train_and_report(debug=True) if __name__ == '__main__': tf.compat.v2.enable_v2_behavior() assert tf.executing_eagerly() absltest.main()
ba106a98267a6ec0d424113b2870654dbf4698b9
3154e6d1a9e9e9919cae75570969da36c45429d7
/codigo/tutorial/tut0C_camara.py
9e54589237d6c51292d941cdce95c822a95243c0
[]
no_license
javacasm/TutorialPyGame
0d458c7155794668fc1464c466e4d740b3ac77ee
baeb7ce5dda151f8093e39f8b14182a8ee5de926
refs/heads/master
2021-07-25T20:01:04.504958
2021-05-10T12:33:26
2021-05-10T12:33:26
250,080,620
0
0
null
null
null
null
UTF-8
Python
false
false
1,568
py
https://www.pygame.org/docs/tut/CameraIntro.html ```python class Capture(object): def __init__(self): self.size = (640,480) # create a display surface. standard pygame stuff self.display = pygame.display.set_mode(self.size, 0) # this is the same as what we saw before self.clist = pygame.camera.list_cameras() if not self.clist: raise ValueError("Sorry, no cameras detected.") self.cam = pygame.camera.Camera(self.clist[0], self.size) self.cam.start() # create a surface to capture to. for performance purposes # bit depth is the same as that of the display surface. self.snapshot = pygame.surface.Surface(self.size, 0, self.display) def get_and_flip(self): # if you don't want to tie the framerate to the camera, you can check # if the camera has an image ready. note that while this works # on most cameras, some will never return true. if self.cam.query_image(): self.snapshot = self.cam.get_image(self.snapshot) # blit it to the display surface. simple! self.display.blit(self.snapshot, (0,0)) pygame.display.flip() def main(self): going = True while going: events = pygame.event.get() for e in events: if e.type == QUIT or (e.type == KEYDOWN and e.key == K_ESCAPE): # close the camera safely self.cam.stop() going = False self.get_and_flip() ```
f62111deb74e279775448c7d5a97f5ea7f6a8255
9f835d53232e954805b7ed1d93889e409209b36b
/1541_복습.py
134932438e9def1182112113c24eb401c83df29d
[]
no_license
dmswl0311/Baekjoon
7c8a862fceff086b3d7740eef23b80164e1d5aeb
22040aff6b64d5081e86d91b0d118d1a718a4316
refs/heads/master
2023-04-29T13:48:51.448245
2021-05-26T14:35:32
2021-05-26T14:35:32
323,482,711
0
0
null
null
null
null
UTF-8
Python
false
false
319
py
s = input().split('-') sum = 0 result = [] for i in s: if '+' in i: a = i.split('+') for j in a: sum += int(j) result.append(sum) else: result.append(int(i)) minus = result[0] for i in range(1, len(result)): minus -= result[i] print(minus)
bcdcdba6ff316a16065b95a2bba284abc290a417
9d25d1205da84db33bc425266bc3021cd7529cb1
/digitalearthau/testing/plugin.py
b73fdee1aba0e11cd5d8c9a183a595c1b7c6e754
[]
no_license
GeoscienceAustralia/digitalearthau
9068970b2794a4ac55a34f910caa5877b548bb37
4cf486eb2a93d7de23f86ce6de0c3af549fe42a9
refs/heads/develop
2023-06-22T14:31:41.516829
2022-11-14T05:22:05
2022-11-14T05:22:05
51,411,119
31
21
null
2023-06-14T06:36:31
2016-02-10T00:16:36
Python
UTF-8
Python
false
false
2,081
py
import itertools import os import pytest from pathlib import Path from typing import Iterable import datacube import digitalearthau import digitalearthau.system from datacube.config import LocalConfig from . import factories # These are unavoidable in pytests due to fixtures # pylint: disable=redefined-outer-name,protected-access,invalid-name try: from yaml import CSafeLoader as SafeLoader except ImportError: from yaml import SafeLoader # The default test config options. # The user overrides these by creating their own file in ~/.datacube_integration.conf INTEGRATION_DEFAULT_CONFIG_PATH = Path(__file__).parent.joinpath('testing-default.conf') def pytest_report_header(config): if config.getoption('verbose') > 0: return ( f"digitaleathau {digitalearthau.__version__}, " f"opendatacube {datacube.__version__}" ) return None @pytest.fixture(scope='session') def integration_config_paths(): if not INTEGRATION_DEFAULT_CONFIG_PATH.exists(): # Safety check. We never want it falling back to the default config, # as it will alter/wipe the user's own datacube to run tests raise RuntimeError( 'Integration default file not found. This should be built-in?') return ( str(INTEGRATION_DEFAULT_CONFIG_PATH), os.path.expanduser('~/.datacube_integration.conf') ) @pytest.fixture(scope='session') def global_integration_cli_args(integration_config_paths: Iterable[str]): """ The first arguments to pass to a cli command for integration test configuration. """ # List of a config files in order. return list( itertools.chain(*(('--config_file', f) for f in integration_config_paths))) @pytest.fixture(scope='session') def local_config(integration_config_paths): return LocalConfig.find(integration_config_paths) # Default fixtures which will drop/create on every individual test function. db = factories.db_fixture('local_config') index = factories.index_fixture('db') dea_index = factories.dea_index_fixture('index')
76f794ba7b0ecbb4b8044008f296f605ccca2439
94838674ffd175df6194437c1ccc3f90ab409d6c
/pillowV3/log/2018-12-30 14:25:26.954969
574f467c8fb2f82034a73060e36f0973007e6bd0
[]
no_license
WojciechKoz/MyFirstNeuralNetwork
4fdb3140d8f02257599d005638598f78055c1ac8
3cd032aba80ecd71edb0286724ae9ba565b75a81
refs/heads/master
2020-04-02T03:02:48.680433
2020-02-29T17:57:43
2020-02-29T17:57:43
153,943,121
0
0
null
null
null
null
UTF-8
Python
false
false
498,667
954969
#!/usr/bin/env python3 # -*- coding: utf8 -*- from __future__ import print_function # new print() on python2 from datetime import datetime import sys import numpy as np from mnist import MNIST # Display full arrays np.set_printoptions(threshold=np.inf) mndata = MNIST('./data') images_full, labels_full = mndata.load_training() images = [] labels = [] # dynamic arguments batch_size = int(sys.argv[1]) size_1 = int(sys.argv[2]) size_2 = int(sys.argv[3]) batch_training_size = int(sys.argv[4]) data_part = 5 # only one fifth of the whole dataset to speed up training for i in range(len(labels_full) // batch_size // data_part): images.append(images_full[i*batch_size : (i+1)*batch_size]) labels.append(labels_full[i*batch_size : (i+1)*batch_size]) def sigmoid_prime(x): return np.exp(-x) / ((np.exp(-x) + 1) ** 2) def sigmoid(x): return 1 / (1 + np.exp(-x)) # nowe, przyda się? def relu(x): return np.maximum(x, x * 0.01) def relu_prime(x): if x >= 0: return 1 # ej nie jest tak xd # a jak xd? type(x) == no.ndarray # no x to macierz xd # np.exp jest przeładowane ale jakakoleiwk funkcja to chyba nie # to co foreach ? :( # właśnie nie wiem, a co z gpu? # to miało być szybsze a nie xd # mamy duzo mozliwosci zmian ale nie na raz trzeba ustalic jakos # hm TODO gpu TODO wincyj procent TODO gui gotowe # xd # tamto myliło hah # to co najpierw? :p # ssh daje wglad do basha tylko tak ? # nie, to jest taki fajny programik, byobu # i ten pasek na dole też jest z byobu # on udostepnia tylko basha ? # tak, ale basha multiplayer xd # szkoda że 2 kursorow nie ma # hm return 0.01 # chyba tak xd nikt nie widzial xd # ale x to macierz :p # ale to jest przeciazone i jak jest funkcja od macierzy to bierze po kolei kazdy element # w sumie # zobacze na drugiej karcie xd #X = np.array([[0, 0], # [0, 1], # [1, 0], # [1, 1]]) #X = np.array(images) y = [] for batch in labels: y.append([]) for label in batch: y[-1].append([1.0 if i == label else 0.0 for i in range(10)]) y = np.array(y) #y = np.array([[0], # [1], # [1], # [0]]) np.random.seed(1) LEN = len(labels) SIZES = [ 784, size_1, size_2, 10 ] syn0 = 2 * np.random.random((SIZES[0], SIZES[1])) - 1 syn1 = 2 * np.random.random((SIZES[1], SIZES[2])) - 1 syn2 = 2 * np.random.random((SIZES[2], SIZES[3])) - 1 # biases for respective layers b0 = 2 * np.random.random((1, SIZES[1])) - 1 b1 = 2 * np.random.random((1, SIZES[2])) - 1 b2 = 2 * np.random.random((1, SIZES[3])) - 1 for i, batch in list(enumerate(images)): X = np.array(batch) print("x:") print(np.shape(X)) print("======================= BATCH {} =======================".format(i)) error = 1 j = 0 while j < batch_training_size: l0 = X l1 = sigmoid(np.dot(l0, syn0) + b0) l2 = sigmoid(np.dot(l1, syn1) + b1) l3 = sigmoid(np.dot(l2, syn2) + b2) l3_error = (y[i] - l3)#** 2 error = np.mean(np.abs(l3_error)) j += 1 if j % 20 == 0: print(("[%d] error: " % j) + str(error)) l3_delta = l3_error * sigmoid_prime(l3) l2_error = l3_delta.dot(syn2.T) l2_delta = l2_error * sigmoid_prime(l2) l1_error = l2_delta.dot(syn1.T) l1_delta = l1_error * sigmoid_prime(l1) syn2 += l2.T.dot(l3_delta) syn1 += l1.T.dot(l2_delta) syn0 += l0.T.dot(l1_delta) b0 += l1_delta.mean(axis=0) b1 += l2_delta.mean(axis=0) b2 += l3_delta.mean(axis=0) def predict(data): l0 = [data] l1 = sigmoid(np.dot(l0, syn0) + b0) l2 = sigmoid(np.dot(l1, syn1) + b1) l3 = sigmoid(np.dot(l2, syn2) + b2) return np.argmax(l3) print("Output after training: ") print(l3) for i, el in enumerate(l3): print(labels[0][i], "=", np.argmax(el), " predictions: ", el) testing_images, testing_labels = mndata.load_testing() correct = 0.0 for i, (image, label) in enumerate(zip(testing_images, testing_labels)): prediction = predict(image) if label == prediction: correct += 1.0 correct_rate = correct / (i + 1.0) print("{} = {} (correct {}%)".format(label, prediction, 100 * correct_rate)) with open('log/' + str(datetime.now()), 'a') as f: with open(__file__, 'r') as myself: print(myself.read(), file=f) print("", file=f) print("#### answers:", file=f) print("argv =", sys.argv, file=f) print("correct_rate =", correct_rate, file=f) print("SIZES =", SIZES, file=f) print("syn0 =", syn0, file=f) print("syn1 =", syn1, file=f) print("syn2 =", syn2, file=f) print("b0 =", b0, file=f) print("b1 =", b1, file=f) print("b2 =", b2, file=f) #### answers: argv = ['./main.py', '59', '36', '34', '25'] correct_rate = 0.594 SIZES = [784, 36, 34, 10] syn0 = [[-1.65955991e-01 4.40648987e-01 -9.99771250e-01 -3.95334855e-01 -7.06488218e-01 -8.15322810e-01 -6.27479577e-01 -3.08878546e-01 -2.06465052e-01 7.76334680e-02 -1.61610971e-01 3.70439001e-01 -5.91095501e-01 7.56234873e-01 -9.45224814e-01 3.40935020e-01 -1.65390395e-01 1.17379657e-01 -7.19226123e-01 -6.03797022e-01 6.01489137e-01 9.36523151e-01 -3.73151644e-01 3.84645231e-01 7.52778305e-01 7.89213327e-01 -8.29911577e-01 -9.21890434e-01 -6.60339161e-01 7.56285007e-01 -8.03306332e-01 -1.57784750e-01 9.15779060e-01 6.63305699e-02 3.83754228e-01 -3.68968738e-01] [ 3.73001855e-01 6.69251344e-01 -9.63423445e-01 5.00288630e-01 9.77722178e-01 4.96331309e-01 -4.39112016e-01 5.78558657e-01 -7.93547987e-01 -1.04212948e-01 8.17191006e-01 -4.12771703e-01 -4.24449323e-01 -7.39942856e-01 -9.61266084e-01 3.57671066e-01 -5.76743768e-01 -4.68906681e-01 -1.68536814e-02 -8.93274910e-01 1.48235211e-01 -7.06542850e-01 1.78611074e-01 3.99516720e-01 -7.95331142e-01 -1.71888024e-01 3.88800315e-01 -1.71641461e-01 -9.00093082e-01 7.17928118e-02 3.27589290e-01 2.97782241e-02 8.89189512e-01 1.73110081e-01 8.06803831e-01 -7.25050592e-01] [-7.21447305e-01 6.14782577e-01 -2.04646326e-01 -6.69291606e-01 8.55017161e-01 -3.04468281e-01 5.01624206e-01 4.51995971e-01 7.66612182e-01 2.47344414e-01 5.01884868e-01 -3.02203316e-01 -4.60144216e-01 7.91772436e-01 -1.43817620e-01 9.29680094e-01 3.26882996e-01 2.43391440e-01 -7.70508054e-01 8.98978517e-01 -1.00175733e-01 1.56779229e-01 -1.83726394e-01 -5.25946040e-01 8.06759041e-01 1.47358973e-01 -9.94259346e-01 2.34289827e-01 -3.46710196e-01 5.41162045e-02 7.71884199e-01 -2.85460480e-01 8.17070302e-01 2.46720232e-01 -9.68357514e-01 8.58874467e-01] [ 3.81793835e-01 9.94645701e-01 -6.55318983e-01 -7.25728501e-01 8.65190926e-01 3.93636323e-01 -8.67999655e-01 5.10926105e-01 5.07752377e-01 8.46049071e-01 4.23049517e-01 -7.51458076e-01 -9.60239732e-01 -9.47578026e-01 -9.43387024e-01 -5.07577865e-01 7.20055897e-01 7.76621287e-02 1.05643957e-01 6.84061785e-01 -7.51653370e-01 -4.41632642e-01 1.71518543e-01 9.39191497e-01 1.22060439e-01 -9.62705421e-01 6.01265345e-01 -5.34051452e-01 6.14210391e-01 -2.24278712e-01 7.27083709e-01 4.94243285e-01 1.12480468e-01 -7.27089549e-01 -8.80164621e-01 -7.57313089e-01] [-9.10896243e-01 -7.85011742e-01 -5.48581323e-01 4.25977961e-01 1.19433964e-01 -9.74888040e-01 -8.56051441e-01 9.34552660e-01 1.36200924e-01 -5.93413531e-01 -4.95348511e-01 4.87651708e-01 -6.09141038e-01 1.62717855e-01 9.40039978e-01 6.93657603e-01 -5.20304482e-01 -1.24605715e-02 2.39911437e-01 6.57961799e-01 -6.86417211e-01 -9.62847596e-01 -8.59955713e-01 -2.73097781e-02 2.12658923e-01 1.37702874e-01 -3.65275181e-01 9.77232309e-01 1.59490438e-01 -2.39717655e-01 1.01896438e-01 4.90668862e-01 3.38465787e-01 -4.70160885e-01 -8.67330331e-01 -2.59831604e-01] [ 2.59435014e-01 -5.79651980e-01 5.05511107e-01 -8.66927037e-01 -4.79369803e-01 6.09509127e-01 -6.13131435e-01 2.78921762e-01 4.93406182e-02 8.49615941e-01 -4.73406459e-01 -8.68077819e-01 4.70131927e-01 5.44356059e-01 8.15631705e-01 8.63944138e-01 -9.72096854e-01 -5.31275828e-01 2.33556714e-01 8.98032641e-01 9.00352238e-01 1.13306376e-01 8.31212700e-01 2.83132418e-01 -2.19984572e-01 -2.80186658e-02 2.08620966e-01 9.90958430e-02 8.52362853e-01 8.37466871e-01 -2.10248774e-01 9.26525057e-01 -6.52088667e-01 -7.47340961e-01 -7.29841684e-01 1.13243314e-02] [-9.56950389e-01 8.95940422e-01 6.54230942e-01 -9.69962039e-01 -6.47607489e-01 -3.35872851e-01 -7.38006310e-01 6.18981384e-01 -3.10526695e-01 8.80214965e-01 1.64028360e-01 7.57663969e-01 6.89468891e-01 8.10784637e-01 -8.02394684e-02 9.26936320e-02 5.97207182e-01 -4.28562297e-01 -1.94929548e-02 1.98220615e-01 -9.68933449e-01 1.86962816e-01 -1.32647302e-01 6.14721058e-01 -3.69510394e-01 7.85777417e-01 1.55714431e-01 -6.31979597e-01 5.75858468e-01 2.24062354e-01 -8.92181456e-01 -1.59612640e-01 3.58137673e-01 8.37203556e-01 -9.99195950e-01 9.53518298e-01] [-2.46839371e-01 9.47567077e-01 2.09432202e-01 6.57691616e-01 1.49423009e-01 2.56152397e-01 -4.28847437e-01 1.73666681e-01 5.00043527e-01 7.16627673e-01 5.10164377e-01 3.96114497e-01 7.28958860e-01 -3.54638006e-01 3.41577582e-01 -9.82521272e-02 -2.35794496e-01 -1.78377300e-01 -1.97040833e-01 -3.65232108e-01 2.43838736e-01 -1.39505458e-01 9.47604156e-01 3.55601783e-01 -6.02860223e-01 -1.46597981e-01 -3.13307520e-01 5.95277608e-01 7.59996577e-01 8.07683912e-01 3.25439625e-01 -4.59583476e-01 -4.95266597e-01 7.09795885e-01 5.54292926e-02 6.04322168e-01] [ 1.44977034e-01 4.66285051e-01 3.80232549e-02 5.41767821e-01 1.37715981e-01 -6.85802428e-02 -3.14622184e-01 -8.63581303e-01 -2.44151641e-01 -8.40747845e-01 9.65634227e-01 -6.36774297e-01 6.23717395e-01 7.49923290e-01 3.76826505e-01 1.38988825e-01 -6.78057126e-01 -6.62399545e-02 -3.09655898e-01 -5.49920084e-01 1.85023738e-01 -3.75460325e-01 8.32611107e-01 8.19271050e-01 -4.85763412e-01 -7.78217399e-01 -6.14074536e-01 -8.31658642e-04 4.57171336e-01 -5.83611123e-01 -5.03932883e-01 7.03343750e-01 -1.68302563e-01 2.33370134e-01 -5.32667722e-01 -7.96065481e-01] [ 3.17140339e-02 -4.57180259e-02 -6.94656712e-01 2.43612463e-01 8.80202376e-02 3.08274694e-01 -7.10908920e-01 5.03055634e-01 -5.55901720e-01 3.87036487e-02 5.70592056e-01 -9.55339144e-01 -3.51275081e-01 7.45844753e-01 6.89419215e-01 7.68811852e-02 7.33216548e-01 8.99611983e-01 6.52813995e-01 7.08230888e-01 -8.02513196e-01 3.02608665e-01 4.07033976e-01 2.20481625e-01 5.99230523e-01 -9.30857560e-01 5.40477469e-01 4.63457201e-01 -4.80603213e-01 -4.85861402e-01 2.64606635e-01 -3.09405077e-01 5.93177356e-01 -1.07707536e-01 5.65498830e-01 9.80943567e-01] [-3.99503321e-01 -7.13988343e-01 8.02616873e-01 8.31187578e-02 9.49480742e-01 2.73208800e-01 9.87826049e-01 9.21416083e-02 5.28518678e-02 -7.29144194e-01 -2.88589658e-01 -9.47562865e-01 -6.79209641e-01 4.91274385e-01 -9.39200620e-01 -2.66913806e-01 7.24692506e-01 3.85355435e-01 3.81884284e-01 -6.22726398e-01 -1.16191439e-01 1.63154815e-01 9.79503415e-01 -5.92187550e-01 -5.04534196e-01 -4.75653832e-01 5.00344827e-01 -8.60493451e-02 -8.86141123e-01 1.70324812e-02 -5.76079671e-01 5.97208490e-01 -4.05337237e-01 -9.44787976e-01 1.86864899e-01 6.87680858e-01] [-2.37967752e-01 4.99716621e-01 2.22829566e-02 8.19036099e-02 9.18868642e-01 6.07921783e-01 -9.35353867e-01 4.18774502e-01 -6.99970369e-02 8.95097883e-01 -5.57134531e-01 -4.65855961e-01 -8.37052070e-01 -1.42762343e-01 -7.81962472e-01 2.67573521e-01 6.05926475e-01 3.93600992e-01 5.32422762e-01 -3.15091760e-01 6.91702966e-01 -1.42462450e-01 6.48019741e-01 2.52992317e-01 -7.13153903e-01 -8.43226200e-01 -9.63334714e-01 -8.66550005e-01 -8.28323726e-02 -7.73316154e-01 -9.44433302e-01 5.09722963e-01 -2.10299039e-01 4.93876991e-01 -9.51903465e-02 -9.98265060e-02] [-4.38549866e-02 -5.19921469e-02 6.06326684e-01 -1.95214960e-01 8.09372321e-01 -9.25877904e-01 5.47748685e-01 -7.48717238e-01 2.37027134e-01 -9.79271477e-01 7.72545652e-02 -9.93964087e-01 9.02387571e-01 8.10804067e-01 5.91933884e-01 8.30548640e-01 -7.08883538e-01 -6.84539860e-01 -6.24736654e-01 2.44991805e-01 8.11618992e-01 9.79910357e-01 4.22244918e-01 4.63600818e-01 8.18586409e-01 -1.98252535e-01 -5.00298640e-01 -6.53139658e-01 -7.61085899e-01 6.25221176e-01 -7.06415253e-01 -4.71405035e-01 6.38178357e-01 -3.78825496e-01 9.64834899e-01 -4.66722596e-01] [ 6.73066899e-02 -3.71065978e-01 8.21545662e-01 -2.66886712e-01 -1.32815345e-01 2.45853846e-02 8.77772955e-01 -9.38101987e-01 4.33757327e-01 7.82037909e-01 -9.45425553e-01 4.41024945e-02 -3.48020376e-01 7.18978642e-01 1.17033102e-01 3.80455736e-01 -9.42930001e-02 2.56618075e-01 -4.19806297e-01 -9.81302844e-01 1.53511870e-01 -3.77111572e-01 3.45351970e-02 8.32811706e-01 -1.47050423e-01 -5.05207927e-01 -2.57412477e-01 8.63722233e-01 8.73736763e-01 6.88659897e-01 8.40413029e-01 -5.44199420e-01 -8.25035581e-01 -5.45380527e-01 -3.71246768e-01 -6.50468247e-01] [ 2.14188324e-01 -1.72827170e-01 6.32703024e-01 -6.29739203e-01 4.03753060e-01 -5.19288750e-01 1.48438178e-01 -3.02024806e-01 -8.86071201e-01 -5.42372658e-01 3.28205111e-01 -5.49981328e-03 3.80319681e-02 -6.50559700e-01 1.41431703e-01 9.93506850e-01 6.33670218e-01 1.88745248e-01 9.51978137e-01 8.03125169e-01 1.91215867e-01 -9.35147349e-01 -8.12845808e-01 -8.69256570e-01 -9.65337026e-02 -2.49130334e-01 9.50700069e-01 -6.64033414e-01 9.45575184e-01 5.34949738e-01 6.48475679e-01 2.65231634e-01 3.37465540e-01 -4.62353330e-02 -9.73727286e-01 -2.93987829e-01] [-1.58563970e-02 4.60182422e-01 -6.27433145e-02 -8.51901678e-02 -7.24674518e-01 -9.78222532e-01 5.16556521e-01 -3.60094324e-01 9.68766900e-01 -5.59531548e-01 -3.22583949e-01 4.77922713e-02 5.09782914e-01 -7.22844322e-02 -7.50354914e-01 -3.74997243e-01 9.03833940e-03 3.47698016e-01 5.40299913e-01 -7.39328438e-01 -9.54169737e-01 3.81646444e-02 6.19977421e-01 -9.74792466e-01 3.44939689e-01 3.73616453e-01 -1.01506493e-01 8.29577373e-01 2.88722170e-01 -9.89520325e-01 -3.11431090e-02 7.18635612e-01 6.60799140e-01 2.98308394e-01 3.47396848e-01 1.56999160e-01] [-4.51760450e-01 1.21059981e-01 3.43459570e-01 -2.95140740e-01 7.11656735e-01 -6.09925028e-01 4.94641621e-01 -4.20794508e-01 5.47598574e-01 -1.44525341e-01 6.15396818e-01 -2.92930275e-01 -5.72613525e-01 5.34569017e-01 -3.82716105e-01 4.66490135e-01 4.88946306e-01 -5.57206598e-01 -5.71775726e-01 -6.02104153e-01 -7.14963324e-01 -2.45834802e-01 -9.46744231e-01 -7.78159262e-01 3.49128048e-01 5.99553074e-01 -8.38940946e-01 -5.36595379e-01 -5.84748676e-01 8.34667126e-01 4.22629036e-01 1.07769222e-01 -3.90964024e-01 6.69708095e-01 -1.29388085e-01 8.46912430e-01] [ 4.12103609e-01 -4.39373841e-02 -7.47579793e-01 9.52087101e-01 -6.80332699e-01 -5.94795750e-01 -1.37636490e-01 -1.91596188e-01 -7.06497038e-01 4.58637839e-01 -6.22509866e-01 2.87791289e-01 5.08611901e-01 -5.78535216e-01 2.01908496e-01 4.97856750e-01 2.76437421e-01 1.94254606e-01 -4.09035429e-01 4.63212942e-01 8.90616880e-01 -1.48877219e-01 5.64363634e-01 -8.87717921e-01 6.70543205e-01 -6.15499966e-01 -2.09806262e-01 -3.99837908e-01 -8.39792712e-01 8.09262006e-01 -2.59691645e-01 6.13948770e-02 -1.17674682e-02 -7.35677716e-01 -5.87091882e-01 -8.47622382e-01] [ 1.58433999e-02 -4.76900896e-01 -2.85876782e-01 -7.83869343e-01 5.75103679e-01 -7.86832246e-01 9.71417647e-01 -6.45677671e-01 1.44810225e-01 -9.10309331e-01 5.74232579e-01 -6.20788104e-01 5.58079568e-02 4.80155086e-01 -7.00137030e-01 1.02174348e-01 -5.66765583e-01 5.18392099e-01 4.45830387e-01 -6.46901931e-01 7.23933115e-01 -9.60449801e-01 7.20473995e-01 1.17807622e-01 -1.93559056e-01 5.17493862e-01 4.33858003e-01 9.74652350e-01 -4.43829903e-01 -9.92412655e-01 8.67805217e-01 7.15794209e-01 4.57701755e-01 3.33775658e-02 4.13912490e-01 5.61059114e-01] [-2.50248113e-01 5.40645051e-01 5.01248638e-01 2.26422423e-01 -1.96268152e-01 3.94616039e-01 -9.93774284e-01 5.49793293e-01 7.92833205e-01 -5.21368585e-01 -7.58465631e-01 -5.59432024e-01 -3.95806537e-01 7.66057017e-01 8.63328605e-02 -4.26576701e-01 -7.23290620e-01 -4.19711074e-01 2.27742179e-01 -3.51722940e-01 -8.52796366e-02 -1.11765786e-01 6.56270721e-01 -1.47303692e-01 -3.08602358e-01 3.49943210e-01 -5.57035889e-01 -6.55083521e-02 -3.70468625e-01 2.53711204e-01 7.54720949e-01 -1.04622000e-01 5.68914838e-01 -8.60685989e-02 3.12458663e-01 -7.36318050e-01] [-1.34036986e-01 8.18623977e-01 2.10958002e-01 5.33549174e-01 9.40121619e-03 -3.88875034e-03 6.85799680e-01 -8.64386131e-01 1.46544543e-01 8.85525151e-01 3.57200963e-02 -6.11068381e-01 6.95878785e-01 -4.96721715e-01 4.01452073e-01 8.05218808e-02 8.97672577e-01 2.48673405e-01 6.75955924e-01 -9.84134248e-01 9.78680112e-01 -8.44570859e-01 -3.55740973e-01 8.92304791e-01 -9.82121795e-01 6.45460011e-01 7.22423277e-01 -1.20338372e-01 -4.88509612e-01 6.05379039e-01 -4.42759911e-02 -7.31322783e-01 8.55697986e-01 7.91939934e-01 -1.69097000e-02 7.13404993e-01] [-1.62843948e-01 3.66929800e-01 -2.04018721e-01 1.14840349e-02 -6.20896594e-01 9.29977848e-01 -4.11568624e-01 -7.93080888e-01 -7.11369200e-01 -9.71815412e-01 4.31891399e-01 1.28996640e-01 5.89156702e-01 1.41598466e-02 5.83642079e-01 3.91528429e-01 5.55696954e-01 -1.87034262e-01 2.95541266e-01 -6.40411405e-01 -3.56360073e-01 -6.54790760e-01 -1.82725550e-01 -5.17162504e-01 -1.86156012e-01 9.50444685e-01 -3.59361348e-01 9.64981890e-01 2.72612252e-01 -2.49817963e-01 7.14968998e-01 2.39173479e-01 -4.95933840e-01 5.85711356e-01 -1.34122983e-01 -2.84977665e-01] [-3.39446127e-01 3.94737751e-01 -4.62699752e-01 6.16556027e-01 -4.09422411e-01 8.82427672e-02 -2.41570164e-02 7.10712825e-01 7.76772869e-01 -6.31231115e-01 1.70696918e-01 7.96410092e-01 -1.07765562e-01 8.43736611e-01 -4.42018219e-01 2.17662348e-01 3.64907420e-01 -5.43588533e-01 -9.72464975e-01 -1.66552075e-01 8.76963784e-01 -3.13943780e-01 5.59488591e-01 -6.50527374e-01 -3.16094327e-01 -7.10804558e-01 4.33541628e-01 3.98615247e-01 3.76994636e-01 -4.93207931e-01 3.84720243e-01 -5.45404918e-01 -1.50701768e-01 -2.56155757e-01 -2.89384177e-01 -8.84690386e-01] [ 2.63293254e-01 4.14633205e-01 2.27177389e-01 2.96625512e-01 -6.60118572e-01 -7.01106402e-01 2.83500871e-02 7.50665453e-01 -6.32093117e-01 -7.43217626e-02 -1.42135332e-01 -5.42162816e-03 -6.76978459e-01 -3.15118718e-01 -4.76239192e-01 6.89053886e-01 6.00664492e-01 -1.46721683e-01 2.14030922e-01 -7.09068779e-01 1.92265884e-02 -4.06105828e-01 7.19301907e-01 3.43196762e-01 2.66948025e-01 -7.50497400e-01 -5.88242410e-02 9.73145559e-01 8.96598348e-01 2.90171281e-01 -6.96550258e-01 2.78253697e-01 1.31324225e-01 -6.26683247e-02 -1.43925061e-01 1.98539511e-01] [ 6.99939777e-01 5.02242081e-01 1.58721081e-01 8.49408363e-01 -8.70520033e-01 9.82693017e-01 -8.94010915e-01 -6.01008908e-01 -1.54494677e-01 -7.84982248e-01 2.47340822e-01 -9.04014872e-01 -4.30752238e-01 -8.77926638e-01 4.07038662e-01 3.36912335e-01 -2.42838813e-01 -6.23611480e-01 4.94009658e-01 -3.19241418e-01 5.90602335e-01 -2.41981216e-02 5.13388887e-02 -9.43018301e-01 2.88464040e-01 -2.98686995e-01 -5.41589945e-01 -1.32233248e-01 -2.35065085e-01 -6.04219198e-02 9.58966708e-01 -2.71243859e-01 5.48820267e-01 1.05535193e-01 7.78262178e-01 -2.90094298e-01] [-5.08962640e-01 8.22038479e-01 -9.12931472e-01 9.01506856e-01 1.12813831e-01 -2.47273567e-01 9.90104645e-01 -8.83274708e-01 3.34127195e-02 -9.37805849e-01 1.42351478e-01 -6.39062982e-01 2.61918401e-01 9.61847352e-01 7.49805102e-01 -9.63275012e-02 4.16921740e-01 5.54937500e-01 -1.03138316e-02 5.70669804e-02 -6.98431203e-01 -2.61200149e-01 -7.15557494e-01 4.53787507e-01 -4.59740112e-02 -1.02242327e-01 7.71995942e-01 5.52375446e-02 -1.81818336e-01 -4.62215956e-01 -8.55975930e-01 -1.63727733e-01 -9.48493035e-01 -4.17692119e-01 7.01901970e-03 9.31866130e-01] [-7.81234172e-01 3.46082108e-01 -1.35257802e-04 5.54196459e-01 -7.12786004e-01 -8.33594727e-01 -2.01562789e-01 5.93924504e-01 -6.16648522e-01 5.35554384e-01 -4.19404006e-01 -5.66217025e-01 -9.66568822e-01 -2.02681880e-01 -2.37837017e-01 3.18689872e-01 -8.58163199e-01 -6.94792026e-01 -9.66848234e-01 -7.72407287e-01 3.03578552e-01 -1.94686296e-01 -3.57947372e-01 1.15823988e-01 9.86920926e-01 6.68973028e-01 3.99246365e-01 8.36517178e-01 -9.20542587e-01 -8.59333117e-01 -5.19874200e-02 -3.01665174e-01 8.74504124e-01 -2.08700777e-02 7.92982202e-02 7.90520731e-01] [-1.06729908e-01 7.54068779e-01 -4.92836501e-01 -4.52380592e-01 -3.43277220e-01 9.51285410e-02 -5.59742652e-01 3.42858342e-01 -7.14413434e-01 -8.11799451e-01 7.40383492e-01 -5.26262593e-01 -2.27991978e-01 1.43084185e-01 5.16039399e-02 -8.47952241e-01 7.48251871e-01 9.02271237e-01 6.25014608e-01 -4.32396330e-01 5.56935922e-02 -3.21166552e-01 1.09334622e-01 9.48806938e-01 -3.76594165e-01 3.37593212e-01 -3.48065585e-01 5.48954532e-01 -3.48380067e-01 7.79654683e-01 5.03415442e-01 5.25264191e-01 -6.10419429e-02 -5.78470995e-01 -9.17049841e-01 -3.56342400e-01] [-9.25774671e-01 3.87710823e-01 3.40700064e-01 -1.39056435e-01 5.35577955e-01 7.20169895e-02 -9.20280147e-01 -7.30413764e-01 -6.13167202e-01 -3.28672398e-01 -8.95374107e-01 2.10233561e-01 2.41220550e-02 2.34922024e-01 -1.35288810e-01 6.95400936e-01 -9.18818879e-02 -9.69192960e-01 7.46136297e-01 3.12403095e-01 6.46006081e-01 9.03551386e-01 -8.98175233e-01 -5.29856272e-01 -8.73313113e-01 -1.56684228e-01 7.27658291e-01 -8.36752035e-01 -5.37760942e-02 -7.48913780e-01 5.45771204e-01 6.82844314e-01 -9.13418124e-01 -2.71185137e-02 -5.21177912e-01 9.04947563e-01] [ 8.87785256e-01 2.27868005e-01 9.46974795e-01 -3.10277313e-01 7.95701435e-01 -1.30810053e-01 -5.28370726e-01 8.81655926e-01 3.68436102e-01 -8.70176829e-01 7.40849714e-01 4.02760589e-01 2.09853746e-01 4.64749798e-01 -4.93121915e-01 2.00977911e-01 6.29238363e-01 -8.91772679e-01 -7.38978657e-01 6.84891620e-01 2.36691739e-01 6.25756210e-02 -5.03418542e-01 -4.09842850e-01 7.45372330e-01 -1.56668130e-01 -8.71139489e-01 7.93970139e-01 -5.93238334e-01 6.52455071e-01 7.63541246e-01 -2.64985104e-02 1.96929386e-01 5.45349130e-02 2.49642588e-01 7.10083443e-01] [-4.35721103e-01 7.67511016e-01 1.35380660e-01 -7.69793918e-01 -5.45997670e-01 1.91964771e-01 -5.21107526e-01 -7.37168679e-01 -6.76304572e-01 6.89745036e-01 2.04367308e-01 9.27134174e-01 -3.08641573e-01 1.91250196e-01 1.97970578e-01 2.31408574e-01 -8.81645586e-01 5.00634369e-01 8.96418996e-01 6.93581144e-02 -6.14887958e-01 5.05851830e-01 -9.85362061e-01 -3.43487793e-01 8.35212695e-01 1.76734666e-01 7.10380568e-01 2.09344105e-01 6.45156305e-01 7.58967047e-01 -3.58027251e-01 -7.54090457e-01 4.42606688e-01 -1.19305826e-01 -7.46528582e-01 1.79647296e-01] [-9.27863371e-01 -5.99635767e-01 5.76602379e-01 -9.75806480e-01 -3.93308657e-01 -9.57248078e-01 9.94969985e-01 1.64059953e-01 -4.13247443e-01 8.57898924e-01 1.42388471e-02 -9.06155449e-02 1.75743013e-01 -4.71724712e-01 -3.89423401e-01 -2.56690847e-01 -5.11104001e-01 1.69094532e-01 3.91692268e-01 -8.56105560e-01 9.42166639e-01 5.06141312e-01 6.12326326e-01 5.03280808e-01 -8.39878045e-01 -3.66074340e-02 -1.08654087e-01 3.44945301e-01 -1.02525482e-01 4.08626797e-01 3.63290675e-01 3.94297058e-01 2.37201485e-01 -6.98038533e-01 5.21604913e-01 5.62091644e-01] [ 8.08205972e-01 -5.32462615e-01 -6.46642214e-01 -2.17801754e-01 -3.58870692e-01 6.30953858e-01 2.27051799e-01 5.20003505e-01 -1.44669801e-01 -8.01118874e-01 -7.69929976e-01 -2.53185737e-01 -6.12304465e-01 6.41492997e-01 1.99272017e-01 3.77690518e-01 -1.77800774e-02 -8.23652638e-01 -5.29844727e-01 -7.67958382e-02 -6.02816994e-01 -9.49047528e-01 4.58795397e-01 4.49833494e-01 -3.39216507e-01 6.86988252e-01 -1.43115048e-01 7.29372290e-01 3.14130849e-01 1.62071315e-01 -5.98545024e-01 5.90932210e-02 7.88864837e-01 -3.90012048e-01 7.41891218e-01 8.17490546e-01] [-3.40310875e-01 3.66148733e-01 7.98441899e-01 -8.48606236e-01 7.57175726e-01 -6.18321273e-01 6.99537820e-01 3.34237577e-01 -3.11321609e-01 -6.97248860e-01 2.70741923e-01 6.95576087e-01 6.43698750e-01 2.56479194e-01 9.12603020e-01 1.79846254e-01 -6.04334431e-01 -1.41338555e-01 -3.26508003e-01 9.83890024e-01 -2.39527008e-01 9.85401747e-01 3.76085015e-02 -6.55440597e-01 -8.50851857e-01 -2.59388612e-01 -7.53162280e-01 2.69037433e-01 -1.72160309e-01 9.81831265e-01 8.59911247e-01 -7.01527935e-01 -2.10235475e-01 -7.68405781e-02 1.21897510e-01 5.60727047e-01] [-2.56121819e-02 -1.60012896e-01 -4.76000591e-01 8.21612278e-01 -9.55456977e-01 6.42243796e-01 -6.23063201e-01 3.71513798e-01 -2.89581221e-01 9.48425256e-01 -7.54455741e-01 -6.24860215e-01 7.78884951e-01 1.66812629e-01 -3.81507231e-01 -9.98471229e-01 -5.44804523e-01 -7.09192732e-01 -5.93132351e-01 7.92645114e-01 7.46188757e-01 4.00578875e-01 -5.90046477e-02 6.54272005e-01 -8.34720583e-03 -2.73022633e-01 -4.48793794e-01 8.49481627e-01 -2.26021531e-01 -1.42382531e-02 -4.91123795e-01 7.69933038e-01 -2.33473086e-01 -4.04850569e-01 4.35189924e-01 -6.18260114e-01] [ 1.85045130e+03 5.75004716e+03 -3.59898627e+02 7.80807336e+03 -4.32968047e+01 -1.53378496e+03 -3.93142172e+03 9.09489843e+03 2.96106485e+03 5.54228917e+03 -2.01271355e+03 -2.21276142e+03 9.11549042e+03 4.90249712e+03 -1.45300592e+03 4.04177119e+03 -9.48963419e+02 7.41749170e+03 -1.88532148e+02 -1.33019591e+03 -1.69725300e+03 -4.51351962e+03 9.11460124e+03 -1.13189480e+03 -2.48885186e+03 3.00463819e+02 1.38109134e+04 -1.52921400e+03 9.04945502e+03 3.29025346e+02 -1.25363007e+03 2.60783906e+03 -2.41405778e+03 -2.35560021e+03 9.93629379e+03 8.53791273e+03] [ 6.18048528e+03 1.99989569e+04 -1.21730178e+03 2.73489143e+04 -3.81987800e+01 -5.48575103e+03 -1.48027871e+04 3.22798952e+04 1.01513350e+04 2.01981894e+04 -7.30696130e+03 -7.98782077e+03 3.30066159e+04 1.77011843e+04 -5.20376039e+03 1.52410367e+04 -3.47893370e+03 2.59012969e+04 -8.25115508e+02 -4.70835357e+03 -6.07268937e+03 -1.67218009e+04 3.27550153e+04 -4.10720076e+03 -8.92766887e+03 8.99533088e+02 4.98058234e+04 -5.47603183e+03 3.42155474e+04 5.63209904e+02 -4.44073983e+03 9.60419316e+03 -8.63405946e+03 -8.52373799e+03 3.57062972e+04 3.07083966e+04] [ 1.30509994e+04 2.81423680e+04 -2.31030075e+03 5.43848463e+04 1.34417084e+03 -8.87628591e+03 1.80851019e+03 3.15940968e+04 1.87104513e+04 1.44062471e+04 -1.26036329e+04 -9.52459821e+03 2.21653596e+04 3.69027006e+03 -6.20735693e+03 2.54220450e+04 -6.69317453e+03 6.33829941e+04 3.11277768e+03 -6.70558798e+03 -6.96437879e+03 -1.40399977e+04 3.48911805e+04 -5.46482067e+03 -1.08350612e+04 -2.86009960e+03 4.48206101e+04 -7.73880977e+03 4.91384467e+04 1.05171811e+04 -6.55583308e+03 2.20967551e+04 -9.49937305e+03 -1.00685919e+04 3.63388694e+04 3.08434439e+04] [ 1.92978749e+04 2.69269234e+04 5.74633277e+03 6.79657245e+04 9.66806885e+03 1.42602756e+03 3.55564971e+04 1.79572924e+04 2.58519110e+04 2.03328436e+03 -2.74908328e+03 6.58307106e+03 -6.92528449e+03 -1.70519245e+04 6.64697002e+03 3.17983680e+04 3.42520815e+03 8.98844588e+04 1.13052512e+04 3.24639044e+03 6.83851335e+03 8.07823640e+03 1.84572119e+04 6.91747766e+03 4.85606553e+03 -3.39187019e+02 9.27758934e+03 3.99528539e+03 4.33826638e+04 2.54354709e+04 3.21328983e+03 3.10341223e+04 6.08898325e+03 5.54730055e+03 1.35545210e+04 1.17143957e+04] [ 5.84199808e+04 6.02553503e+04 3.99579630e+04 1.37897710e+05 4.23173751e+04 4.00736055e+04 1.17346761e+05 4.41480249e+04 7.11617691e+04 2.53604836e+04 3.12919301e+04 5.00575668e+04 -1.60321089e+04 -9.60475506e+03 4.70724945e+04 8.49124771e+04 4.38973131e+04 1.77193015e+05 3.84502488e+04 3.90288472e+04 4.74239357e+04 5.95098309e+04 2.83937413e+04 4.89600463e+04 4.68117096e+04 2.31072814e+04 -1.97411121e+03 4.38473410e+04 1.02009954e+05 7.72368839e+04 3.85471784e+04 8.15707978e+04 4.81301115e+04 4.97631782e+04 1.92709302e+04 1.29366104e+04] [ 3.01930792e+04 1.42078603e+04 8.16634269e+03 8.42450380e+04 1.21333767e+04 5.80800713e+03 9.67146979e+04 -1.26248826e+04 3.58941978e+04 -1.78681289e+04 5.96597547e+02 1.33803601e+04 -5.45952616e+04 -4.21518360e+04 1.34795739e+04 4.39733657e+04 6.61325828e+03 1.15372032e+05 1.28871388e+04 8.30558320e+03 1.43526832e+04 3.82136543e+04 -2.78698026e+04 1.19069731e+04 1.27025196e+04 5.78227919e+03 -5.68973105e+04 7.99373273e+03 4.42704055e+04 5.35100277e+04 7.51639114e+03 4.41802841e+04 1.51288700e+04 1.47287904e+04 -4.41666272e+04 -4.13452727e+04] [ 8.80945579e+04 4.00116840e+04 8.15056103e+04 9.62290278e+04 7.86111354e+04 7.71119728e+04 1.55988765e+05 2.64019948e+04 8.18897850e+04 4.49322526e+04 7.35617663e+04 7.74163473e+04 1.88159355e+04 3.81529547e+04 8.50222890e+04 1.07172511e+05 7.79290551e+04 1.00327709e+05 6.93755782e+04 8.06919657e+04 8.51987349e+04 1.14073135e+05 -2.11359266e+04 8.01182980e+04 8.22084202e+04 9.56374110e+04 -6.26956463e+03 7.76890167e+04 9.49112260e+04 1.13661324e+05 8.02626179e+04 9.31086289e+04 8.50279186e+04 8.24591361e+04 -6.40563548e+04 -4.65915741e+04] [ 2.59526548e+05 1.19546381e+05 1.68863458e+05 1.58667805e+05 1.66484954e+05 1.47698153e+05 1.29306271e+05 6.41679887e+04 1.67772942e+05 5.51488659e+04 7.04568195e+04 7.45431555e+04 1.02420288e+05 1.31974730e+05 1.45408581e+05 1.73790013e+05 1.36840896e+05 1.39938344e+05 1.97907360e+05 1.48203262e+05 1.36818857e+05 1.35952320e+05 9.65903029e+04 1.38496520e+05 1.17490480e+05 4.57727756e+04 1.07956211e+05 1.41967288e+05 8.33544012e+04 7.41779830e+04 1.55959534e+05 2.18852699e+05 1.50798189e+05 1.18970821e+05 1.08094993e+05 8.89068938e+04] [ 3.28036746e+05 4.42575293e+04 2.18419884e+05 1.62741272e+05 2.34437762e+05 1.67057860e+05 2.58309955e+05 -1.37568638e+04 1.96392086e+05 -1.19948892e+05 5.23480721e+04 6.64319845e+04 6.15212297e+04 8.57061758e+04 1.72049402e+05 2.08127379e+05 1.40200276e+05 2.05354984e+05 2.54604175e+05 1.83806127e+05 1.75485141e+05 1.99969021e+05 7.19585966e+04 1.58392974e+05 1.42955537e+05 -1.50491851e+04 3.27019063e+04 1.61499615e+05 1.42487907e+05 1.32073050e+05 1.94074645e+05 2.89258109e+05 1.86082047e+05 1.28750196e+05 8.09115740e+04 4.10791085e+04] [ 2.09501801e+05 -7.43478048e+04 1.69453183e+05 1.43008073e+05 1.95065430e+05 1.37612679e+05 3.62418121e+05 -8.66545444e+04 1.88070369e+05 -1.64330433e+05 8.08974022e+04 1.21661407e+05 -2.37681234e+04 -4.13370545e+04 1.50025605e+05 1.88135752e+05 1.13182116e+05 2.81458717e+05 2.23568809e+05 1.47697129e+05 1.65202438e+05 2.05789025e+05 -7.27527425e+03 1.40468414e+05 1.60058395e+05 2.47723151e+04 -8.27987888e+04 1.45541830e+05 2.69127154e+05 2.68345162e+05 1.56120142e+05 2.57086367e+05 1.70843194e+05 1.39419360e+05 -3.06278518e+04 -3.51629396e+04] [ 1.27013279e+05 5.83169992e+04 7.85528081e+04 2.02939873e+05 7.49799023e+04 9.58840786e+04 2.51000307e+05 1.09705090e+05 1.69017943e+05 1.16574236e+05 9.61656351e+04 1.26150372e+05 -3.29645849e+04 6.46961930e+03 1.02830641e+05 1.92743265e+05 1.00702379e+05 2.70448058e+05 1.18099132e+05 8.05593290e+04 1.04445099e+05 1.51284740e+05 2.44301212e+04 1.06405537e+05 1.15918110e+05 1.11046084e+05 -3.46421281e+04 1.03464573e+05 2.73544967e+05 2.28758951e+05 8.17439874e+04 1.98168602e+05 1.07700899e+05 1.20795081e+05 -3.96872967e+04 -2.23799772e+04] [ 1.20541296e+05 1.25114689e+05 6.61063603e+04 2.01847616e+05 4.76193088e+04 9.25382991e+04 1.77134986e+05 1.34574794e+05 1.45222501e+05 1.85302078e+05 9.54500969e+04 1.09461947e+05 1.31725538e+04 7.85065876e+04 9.44118492e+04 1.61160566e+05 1.07947296e+05 2.05988071e+05 7.77819286e+04 7.08283583e+04 8.66863350e+04 1.29525093e+05 3.42210030e+04 1.01414397e+05 9.68917621e+04 1.14321894e+05 2.62457468e+04 9.43239062e+04 2.03503741e+05 1.61177815e+05 7.25958320e+04 1.51350091e+05 9.12414376e+04 1.10735128e+05 -1.66991519e+04 -3.38648436e+03] [ 1.04515257e+05 1.23751682e+05 7.30259256e+04 1.63012773e+05 5.26089590e+04 1.06017335e+05 1.06667200e+05 1.20925496e+05 1.29795287e+05 1.86661268e+05 1.08069598e+05 1.20092354e+05 3.95018745e+04 8.93407581e+04 9.78593782e+04 1.28386051e+05 1.19420572e+05 1.55158879e+05 7.28587620e+04 7.87056449e+04 8.57732879e+04 1.12940791e+05 6.17906565e+04 1.06503768e+05 1.04575528e+05 1.26891123e+05 4.55035573e+04 1.08857642e+05 1.44285011e+05 1.20356250e+05 8.04901985e+04 1.16459913e+05 9.87568911e+04 1.18628204e+05 4.26929895e+04 5.33157296e+04] [ 1.13587625e+05 1.49271451e+05 1.15481943e+05 1.44564225e+05 9.94776478e+04 1.44073562e+05 1.08379471e+05 1.41883493e+05 1.22784849e+05 1.72004646e+05 1.36443881e+05 1.46763702e+05 8.51775466e+04 1.20696813e+05 1.31436135e+05 1.17754944e+05 1.49431063e+05 1.35237775e+05 1.02227070e+05 1.18170832e+05 1.21721589e+05 1.28516657e+05 1.11027468e+05 1.38125150e+05 1.41592198e+05 1.24611874e+05 9.00210975e+04 1.47812483e+05 1.25326077e+05 1.12440790e+05 1.19032984e+05 1.12239301e+05 1.38957839e+05 1.45935395e+05 9.85495358e+04 1.17789197e+05] [ 2.51376867e+04 3.76242244e+04 2.50187590e+04 3.55255731e+04 2.04410643e+04 3.36863541e+04 2.31893796e+04 3.43200471e+04 2.74599297e+04 4.37631337e+04 3.10756707e+04 3.35643240e+04 1.57393532e+04 2.81988022e+04 3.00712004e+04 2.56423272e+04 3.53686518e+04 3.24409570e+04 1.99698700e+04 2.59462651e+04 2.69220345e+04 2.73631328e+04 2.36226820e+04 3.18418105e+04 3.25889063e+04 2.77942462e+04 1.87505409e+04 3.43482964e+04 2.83555777e+04 2.41042216e+04 2.61124531e+04 2.23917531e+04 3.19400886e+04 3.36612226e+04 2.04981730e+04 2.71292892e+04] [ 6.17289040e+03 6.50664666e+03 4.50597080e+03 1.04272486e+04 3.58641276e+03 7.01004397e+03 6.19022965e+03 5.15480709e+03 7.45635436e+03 6.45493511e+03 6.23447324e+03 7.43520889e+03 -4.08959241e+02 2.92973388e+03 6.39510528e+03 6.21620371e+03 7.63595993e+03 1.19619475e+04 1.81140644e+03 5.15198298e+03 5.96201315e+03 7.74078235e+03 1.96997870e+03 6.91710175e+03 7.37887297e+03 6.34081116e+03 -5.44489496e+02 7.29110765e+03 3.79100250e+03 7.09163500e+03 4.93024385e+03 3.68706540e+03 6.64940343e+03 7.46369317e+03 1.47364909e+03 3.04913765e+03] [ 3.33393806e+03 2.62616050e+03 1.74895122e+03 8.56509712e+03 1.20039554e+03 3.45144217e+03 3.02736409e+03 5.99152304e+02 4.84197451e+03 4.70443332e+03 3.16413949e+03 3.91964401e+03 -3.65394503e+03 -1.36407900e+03 3.68492012e+03 5.09438252e+03 4.47279276e+03 1.09198938e+04 -3.03189675e+03 2.77719846e+03 3.40718970e+03 4.84903193e+03 -2.58542067e+03 3.81534885e+03 3.95864098e+03 3.69688564e+03 -4.28985235e+03 3.63785366e+03 1.55721386e+03 4.26625289e+03 2.38988363e+03 1.00616333e+03 2.96662028e+03 4.22297746e+03 -2.10894712e+03 -1.99511135e+03] [-6.48998939e-02 3.33885086e-01 -9.32451470e-02 5.14231827e-02 3.17136083e-01 -6.37609236e-01 5.76099102e-01 2.05730675e-01 9.60665770e-01 -5.55233613e-01 -6.74670517e-02 7.91283605e-01 2.02866819e-01 4.51917692e-01 -1.72659672e-01 3.68619244e-01 8.92110060e-01 -5.99627869e-01 6.14730528e-01 9.39076024e-01 -9.70862536e-01 -5.69580827e-01 -7.65246159e-01 5.34847035e-01 -8.37566828e-01 9.96827117e-01 -2.20775968e-01 8.10405532e-01 -6.22844793e-01 -1.18255600e-01 6.89623638e-01 1.90539561e-01 -7.56838066e-02 2.52994935e-02 1.47771054e-01 -1.19361585e-01] [-6.12882085e-01 -7.72068477e-01 -6.97544145e-01 -8.95018072e-01 1.17352822e-01 6.95442028e-01 -2.81761322e-01 -8.49378255e-01 -1.48551176e-01 2.04015677e-01 -1.49193069e-01 6.21442467e-01 8.83772492e-01 7.39821547e-01 4.07998997e-01 -5.94021504e-02 3.65396086e-01 -9.73163379e-01 9.64956237e-01 -6.55845336e-01 8.12520792e-01 6.14219803e-01 6.00279369e-01 -4.62127884e-01 -5.61692388e-01 -1.42398614e-01 6.98742201e-01 -9.92407151e-02 8.70840228e-01 -2.94641345e-01 2.38784331e-01 9.61398073e-01 2.86925044e-01 -9.09003568e-01 -7.28858181e-02 -3.30497313e-01] [ 6.43630970e-02 -4.30507583e-01 -7.55477540e-01 3.36577978e-01 3.62719510e-01 7.34278600e-01 -7.35237013e-01 5.97240617e-01 6.53537477e-01 2.93099872e-01 -5.90155708e-01 -4.77158571e-01 -1.63006365e-01 8.35981456e-02 -4.51240888e-02 -6.50802159e-02 6.79681420e-01 7.40204731e-01 6.33507929e-01 7.55602837e-01 1.42017524e-01 9.28072267e-01 2.13088697e-01 2.07895482e-01 -3.61404526e-01 3.62408368e-01 -8.96068623e-01 -7.30907158e-01 -7.39515665e-01 3.10402574e-01 -6.49334816e-01 -3.17706353e-01 -9.11376688e-01 -5.32531280e-01 9.28448650e-01 1.82788050e-02] [-6.97850963e-01 4.60170635e-02 8.87018768e-01 7.31372028e-01 -2.15868262e-01 -4.32264968e-01 5.23459725e-01 -5.19031350e-01 -4.91535291e-01 -8.31827292e-01 7.28288190e-01 -1.04202169e-01 1.23572521e-01 4.73421915e-01 5.92977734e-01 -1.04983722e-01 -6.31744888e-01 6.57465703e-01 -9.38004080e-01 8.93456539e-01 1.53955693e-01 7.50777477e-01 2.17130874e-01 -4.96680832e-01 -4.07740153e-01 6.58451181e-02 9.24156426e-01 -6.31008791e-01 1.97967563e-02 -3.12423793e-01 5.39450690e-01 6.05732973e-01 -1.50880179e-01 -5.91755000e-01 -8.65821079e-01 -6.02703471e-01] [-4.55198300e-01 1.97577836e-01 7.46166995e-01 -7.43538122e-01 9.16377483e-01 3.66341688e-01 4.83928471e-01 9.65761572e-01 -1.67798455e-01 6.31669318e-02 3.58425900e-01 2.57502852e-02 -4.01775311e-01 -7.89230655e-01 -4.30135709e-01 5.37705697e-01 2.81565409e-01 6.02661406e-01 3.42410639e-02 -5.35799956e-01 2.55923854e-01 -3.91989020e-01 -9.40942510e-01 8.06662354e-01 -1.59260862e-01 -1.47738439e-01 4.82503471e-01 8.96916809e-01 -8.54968944e-01 -6.54597824e-01 -3.55285022e-01 -5.03151507e-01 -9.01003728e-03 6.48919222e-01 7.07944830e-01 1.91659884e-01] [-5.19652532e-01 -6.27014623e-01 4.86781025e-01 -5.25571885e-01 7.89817819e-02 4.98561574e-01 -5.43501791e-01 -6.50997625e-01 -9.20528627e-01 -7.04862325e-01 7.02877814e-01 -7.90728177e-01 -5.52709909e-01 -9.34485601e-01 3.52713271e-01 -5.36593717e-01 -1.72816564e-01 -7.21397657e-01 -2.45565425e-01 -1.51125068e-01 -5.40700963e-02 -1.54316374e-01 -7.94486872e-01 5.45160533e-01 -7.25587993e-01 -1.51415251e-01 -4.56087775e-01 -3.97984114e-01 3.44841545e-01 3.55734476e-02 -6.19825899e-01 -6.17311203e-02 -3.20918262e-01 4.08994396e-01 -5.47809595e-01 6.89976275e-01] [ 5.24593298e-02 1.23914585e-03 -4.92628386e-01 -6.27688661e-01 -5.63618745e-02 9.63648836e-01 -7.34187525e-01 -4.33075135e-01 6.01282349e-01 3.29553797e-01 -4.42483183e-01 -3.70704786e-01 -1.60103491e-01 2.05573524e-01 4.38677534e-01 7.14600667e-01 3.62222941e-01 -5.26035871e-01 8.51441071e-01 5.62390801e-01 -3.85237039e-01 -3.90068717e-01 7.62336637e-01 -7.47843039e-01 2.66921668e-01 -4.44574535e-01 6.54400650e-01 -2.70953105e-01 4.66732189e-01 -6.15164219e-01 -3.71082049e-02 6.07189253e-01 -2.06023577e-01 -6.76851920e-01 2.97964445e-01 5.06651612e-01] [-4.39614729e-01 -9.72762775e-02 8.00897825e-01 7.43971262e-01 4.14375220e-01 1.81801199e-01 6.34764541e-01 8.15289292e-01 -9.94984881e-01 -2.05544468e-01 1.22819367e-01 4.67846273e-01 -8.25054476e-01 -2.00490025e-01 -4.40757641e-01 -1.52979894e-01 -4.04273465e-03 3.20030447e-01 -7.52772206e-03 2.40936401e-01 1.64879724e-01 -1.43335204e-01 -9.90047271e-01 -6.10967172e-01 -3.59586691e-01 -7.06043748e-01 1.97327763e-01 2.22998953e-01 1.86519194e-04 -3.58302197e-01 3.06516104e-01 -6.19433035e-01 -9.88238037e-01 4.69884037e-01 -1.12992316e-01 3.95683312e-01] [-3.36327577e+02 -7.95739243e+02 -3.92959948e+02 -3.07608303e+02 -3.07761345e+02 -4.40485387e+02 4.07075562e+02 9.56864352e+02 -2.59788798e+02 -4.29153715e+02 -4.24138304e+02 -4.17928518e+02 -9.99253746e+02 -1.15963801e+03 -3.99860362e+02 -6.64679339e+01 -6.51476983e+02 -7.10052968e+01 1.50342230e+02 -2.96348157e+02 -3.01847466e+02 -1.78824541e+02 -1.36196711e+02 -5.40277579e+02 -2.58210993e+02 2.26821439e+02 -5.44201071e+02 -4.36365051e+02 -9.74997279e+01 3.75163804e+01 -3.32042059e+02 -2.36371603e+02 -3.21906840e+02 -5.14550702e+02 -1.17075214e+03 -4.40952736e+02] [-7.58544475e+01 1.58887739e+02 -5.74710488e+01 1.60704218e+02 -3.65294283e+01 -1.17519228e+02 -2.89044715e+02 6.20286286e+02 1.92225042e+01 1.77122209e+02 -1.36803741e+02 -1.50978187e+02 4.19948115e+02 1.36243414e+02 -1.07509947e+02 1.09300858e+02 -1.15968002e+02 1.57956232e+02 -3.09538420e+01 -9.59979418e+01 -9.20567818e+01 -3.11231217e+02 5.15106970e+02 -9.91320114e+01 -1.42112343e+02 2.97626376e+01 7.81979096e+02 -1.23003472e+02 1.99431059e+02 -1.45909178e+02 -9.78477580e+01 -4.85711301e+01 -1.45827959e+02 -1.79773052e+02 4.00648184e+02 4.50230030e+02] [ 1.31092366e+03 3.52417346e+03 3.82084223e+02 2.65427103e+03 5.90629010e+01 4.62686867e+02 -1.93948584e+03 2.81300183e+03 1.27773907e+03 3.77931286e+03 4.31002080e+02 2.64186432e+02 2.68189884e+03 1.98020368e+03 4.72523314e+02 2.19112618e+03 9.66420197e+02 1.69948089e+03 5.40168238e+02 -7.32623628e+01 -7.31851855e+00 -3.05223927e+02 3.20713906e+03 6.12568434e+02 -4.91936116e+01 7.01339993e+02 4.56192064e+03 4.48496795e+02 -3.25183788e+01 -7.91428949e+02 2.35572867e+02 8.50477154e+02 1.15452789e+02 3.51334926e+02 2.95364550e+03 3.14045790e+03] [ 2.61237136e+03 -1.01430468e+04 6.76498049e+03 1.53101845e+04 7.43987304e+03 4.20187207e+03 -3.17748532e+03 9.73054127e+03 1.21665155e+04 -1.05972277e+03 3.87750344e+03 7.64032438e+03 1.09406455e+04 1.96529150e+03 5.24598917e+03 -1.64332029e+03 5.38718021e+03 2.32034636e+04 -1.05781643e+04 6.42197284e+03 6.58511433e+03 -1.78623404e+03 5.48879722e+03 6.59858485e+03 5.35481596e+03 2.55811924e+03 8.42432067e+03 5.54702489e+03 1.16743467e+04 1.25518172e+04 5.80477433e+03 -3.05937004e+03 3.48648022e+03 5.05330052e+03 1.11272006e+04 3.16777891e+03] [ 7.03919919e+04 4.34606758e+04 1.67309441e+04 2.16579376e+05 1.92595211e+04 1.08290940e+04 1.44372743e+05 1.14888844e+05 9.41157347e+04 -4.48871810e+03 1.46166275e+04 4.54819257e+04 -2.94374022e+04 -7.43718794e+04 3.18383825e+04 7.64596344e+04 3.80092230e+04 3.50789684e+05 -3.00796937e+04 1.20851870e+04 4.71552176e+04 8.30685338e+04 2.64346695e+04 4.06101769e+04 5.19757697e+04 1.55601066e+04 -2.17019856e+04 2.72773849e+04 2.10913227e+05 1.49170944e+05 1.03182448e+04 6.27708774e+04 3.11833723e+04 3.61030001e+04 -4.91105246e+03 -1.71800538e+04] [ 4.92994458e+05 7.71529937e+05 -7.18347120e+04 1.21894719e+06 -1.36463148e+05 1.12137812e+04 8.56089768e+05 8.24029887e+05 6.30895050e+05 7.12095881e+05 9.95365410e+04 1.63770801e+05 -4.19515914e+05 -2.26848238e+05 7.19923353e+04 6.49798505e+05 1.51793073e+05 1.58728147e+06 4.63696322e+04 -5.52864148e+04 6.71045328e+04 4.68324739e+05 2.42591314e+04 1.15667806e+05 1.14868760e+05 2.42526750e+05 -2.62266943e+05 5.66973894e+04 1.09148848e+06 7.79800128e+05 -5.74343455e+04 4.89076966e+05 5.58706835e+04 1.60282214e+05 -1.91994115e+05 -1.20865407e+05] [ 7.65052472e+05 1.02339354e+06 1.82473283e+05 1.47995570e+06 1.83800712e+04 3.94998644e+05 7.85533276e+05 1.08070513e+06 1.00745975e+06 1.79384154e+06 4.88083890e+05 5.34652231e+05 -1.39627348e+05 2.40553338e+05 4.38383760e+05 1.13916980e+06 5.59950004e+05 1.67306211e+06 3.25302002e+05 2.38139255e+05 3.27145966e+05 6.95348115e+05 1.35771481e+05 4.37920310e+05 4.37174009e+05 7.66951402e+05 4.85331537e+04 4.40306923e+05 1.26903126e+06 9.10463333e+05 2.38937728e+05 8.83441833e+05 3.74325133e+05 5.15141351e+05 1.52852077e+04 7.70036561e+04] [ 8.69206894e+05 7.58943540e+05 3.47720113e+05 1.36088454e+06 2.00129946e+05 4.85451754e+05 7.62671343e+05 7.82856679e+05 1.00687583e+06 1.27757039e+06 5.05072035e+05 5.62909874e+05 1.30569542e+04 2.90687655e+05 5.02008480e+05 9.85204073e+05 6.01402186e+05 1.46697609e+06 3.71174678e+05 3.63356036e+05 4.30583725e+05 7.26944066e+05 2.02749249e+05 5.06219413e+05 5.12260920e+05 6.59933891e+05 1.16244931e+05 5.14324234e+05 1.07544231e+06 8.43591668e+05 3.73299138e+05 8.44363732e+05 4.62384822e+05 5.70989469e+05 1.42860002e+05 1.60584515e+05] [ 8.34607697e+05 5.98352669e+05 2.98914974e+05 1.16898863e+06 2.23436467e+05 3.72560335e+05 8.53455334e+05 2.54328472e+05 8.45293244e+05 7.46249634e+05 3.67951580e+05 4.15811334e+05 -1.49501452e+05 1.59471574e+05 3.80497925e+05 8.25074254e+05 4.88670697e+05 1.26806477e+06 3.31030040e+05 2.90610239e+05 3.32805789e+05 7.70381814e+05 -5.58522264e+04 4.31970177e+05 3.58764454e+05 5.01399186e+05 -1.52884107e+05 3.71614654e+05 6.78688259e+05 7.36718056e+05 3.09463720e+05 8.12035715e+05 3.62714434e+05 4.90384908e+05 -1.23098927e+05 -1.10671154e+05] [ 1.25631839e+06 1.37142081e+06 3.35673990e+05 2.10715155e+06 2.09410671e+05 4.84062576e+05 1.74224085e+06 9.10598960e+05 1.32813006e+06 1.47815980e+06 5.45776386e+05 6.42826842e+05 -4.38455245e+05 2.41948357e+05 5.62932204e+05 1.58744105e+06 6.99097614e+05 2.28287729e+06 5.53757719e+05 3.34713532e+05 4.89256549e+05 1.31821917e+06 -4.63097524e+04 6.22789792e+05 5.51739712e+05 8.79358433e+05 -3.21507287e+05 5.14355478e+05 1.66466139e+06 1.35890036e+06 3.63482486e+05 1.41285568e+06 5.34545948e+05 7.11509256e+05 -4.25885868e+05 -3.48091567e+05] [ 2.10380785e+06 2.06858644e+06 5.51003257e+05 3.08820465e+06 4.09222232e+05 6.38757559e+05 2.67837920e+06 1.33675069e+06 2.11851515e+06 1.82626811e+06 6.02844923e+05 7.08618664e+05 -5.29440972e+05 3.28571148e+05 7.63927021e+05 2.41292826e+06 8.93999597e+05 3.38894450e+06 1.22330281e+06 4.57231093e+05 6.52121886e+05 1.90015412e+06 3.42757843e+05 8.29239367e+05 6.52102940e+05 1.01458646e+06 -1.53287443e+05 6.76511157e+05 2.21793573e+06 2.02010347e+06 5.36658704e+05 2.32960903e+06 6.93918697e+05 8.76364421e+05 -1.64617745e+05 -1.44984237e+05] [ 2.49887352e+06 2.60723215e+06 4.29713709e+05 3.87621491e+06 2.28400613e+05 5.71533617e+05 3.24321890e+06 2.06663844e+06 2.56346746e+06 2.22742128e+06 3.99409362e+05 6.04873049e+05 -7.78338861e+05 2.56308635e+05 7.11436511e+05 2.97035158e+06 8.80442817e+05 4.27169662e+06 1.45895295e+06 3.13511204e+05 5.87021804e+05 2.10912065e+06 5.67026481e+05 7.97172842e+05 5.90086811e+05 1.02413878e+06 -1.34601902e+05 6.26212489e+05 3.00963258e+06 2.46467159e+06 4.09385778e+05 2.78572910e+06 6.18017745e+05 8.17442115e+05 -1.55946453e+05 -1.11526610e+05] [ 2.59860767e+06 3.10677203e+06 6.04357171e+05 4.18877359e+06 3.73114597e+05 7.85499819e+05 3.71419160e+06 2.86869191e+06 2.81051693e+06 2.58912105e+06 7.12319483e+05 9.78041720e+05 -4.36447370e+05 5.25005578e+05 8.89270253e+05 3.23018506e+06 1.13881516e+06 4.74340839e+06 1.86415645e+06 4.91269930e+05 8.42042759e+05 2.45456997e+06 1.08145265e+06 1.09379119e+06 8.82389173e+05 1.35431627e+06 3.54762340e+05 8.71514904e+05 3.86462714e+06 3.00144117e+06 5.79952438e+05 3.02940839e+06 8.30625921e+05 1.09850727e+06 5.32876176e+04 1.70232526e+05] [ 2.38275502e+06 3.04164446e+06 9.30536040e+05 3.83639860e+06 6.25749198e+05 1.18445309e+06 3.53327583e+06 3.38820074e+06 2.80649845e+06 3.16922128e+06 1.24886109e+06 1.47059029e+06 1.51350472e+05 9.90277864e+05 1.25333923e+06 3.28950899e+06 1.52212495e+06 4.22167262e+06 1.90175435e+06 8.79552352e+05 1.21601741e+06 2.63839678e+06 1.31676534e+06 1.42118231e+06 1.29912896e+06 2.05550957e+06 8.42980442e+05 1.28271031e+06 3.97467215e+06 3.07154748e+06 9.34053132e+05 2.86221992e+06 1.20210591e+06 1.47710597e+06 2.76698032e+05 4.36527156e+05] [ 1.88704711e+06 2.27191684e+06 1.00129333e+06 3.04011053e+06 6.65400988e+05 1.28779672e+06 2.81321902e+06 2.92865884e+06 2.48545860e+06 3.08786409e+06 1.41332665e+06 1.57879203e+06 4.83625910e+05 1.17065539e+06 1.30475332e+06 2.78002088e+06 1.54922906e+06 3.31122968e+06 1.67750203e+06 1.01648200e+06 1.24029918e+06 2.26800891e+06 1.20069048e+06 1.40885953e+06 1.37546266e+06 2.27574770e+06 9.74798932e+05 1.37908864e+06 3.48117471e+06 2.69329816e+06 1.04623631e+06 2.39145094e+06 1.25964846e+06 1.51313252e+06 4.52573974e+05 5.74674780e+05] [ 1.49151680e+06 1.87463664e+06 9.38622445e+05 2.36474012e+06 7.00988676e+05 1.16045714e+06 2.18894129e+06 2.27072778e+06 1.86974471e+06 2.39989835e+06 1.24421655e+06 1.35203101e+06 4.72734921e+05 1.00910478e+06 1.16308819e+06 2.13667292e+06 1.33889713e+06 2.54710175e+06 1.31657295e+06 9.75940279e+05 1.12477884e+06 1.79282108e+06 9.73329783e+05 1.23438465e+06 1.23251768e+06 1.82352920e+06 8.31367081e+05 1.23647297e+06 2.56392358e+06 2.03060555e+06 9.80171196e+05 1.81588776e+06 1.16565895e+06 1.30711958e+06 4.90813123e+05 6.24219016e+05] [ 9.97376024e+05 1.27867105e+06 5.44029329e+05 1.75630643e+06 3.95254672e+05 7.50155908e+05 1.35525612e+06 1.40030037e+06 1.20241534e+06 1.63100596e+06 8.06212036e+05 8.88297586e+05 1.17408666e+05 6.52280112e+05 7.48167069e+05 1.36683023e+06 9.18892559e+05 1.93645068e+06 6.48699797e+05 5.94393270e+05 7.18540796e+05 1.14281497e+06 4.75637311e+05 8.31617648e+05 8.14628865e+05 1.05899477e+06 3.08439355e+05 7.84776052e+05 1.62975868e+06 1.29610605e+06 5.80931298e+05 1.10102810e+06 7.70430999e+05 8.88184212e+05 1.32641993e+05 2.36890106e+05] [ 5.39690563e+05 6.98434315e+05 2.60496499e+05 9.97411783e+05 1.80756951e+05 3.94786086e+05 7.12315284e+05 7.62080951e+05 6.53284235e+05 9.23054284e+05 4.38440579e+05 4.92419349e+05 -1.33566426e+04 3.13444241e+05 4.05026141e+05 7.08686745e+05 4.97031364e+05 1.10323504e+06 2.78838392e+05 3.00612191e+05 3.83132122e+05 5.87855448e+05 2.25988045e+05 4.41920160e+05 4.50349787e+05 5.25450711e+05 6.23103104e+04 4.13661997e+05 8.82376737e+05 6.96660276e+05 2.87814992e+05 5.76568062e+05 4.15118938e+05 4.83716026e+05 4.41322394e+04 9.14331193e+04] [ 1.70442321e+05 2.24343795e+05 1.19853226e+05 2.83963993e+05 9.81443583e+04 1.56974017e+05 2.44737428e+05 2.73271199e+05 1.98677633e+05 2.92279141e+05 1.63754850e+05 1.79019139e+05 4.39271808e+04 1.28924692e+05 1.60548858e+05 2.37251826e+05 1.73609053e+05 2.98492122e+05 9.48332051e+04 1.30197314e+05 1.54953417e+05 2.11903120e+05 1.03566427e+05 1.59800343e+05 1.71750287e+05 1.81743457e+05 5.73865806e+04 1.60309844e+05 3.02049465e+05 2.10855185e+05 1.26389869e+05 1.94715485e+05 1.61541853e+05 1.73236261e+05 4.60073192e+04 5.85442123e+04] [ 8.08897519e+03 8.09024971e+03 1.00742230e+04 1.28013862e+04 7.52724195e+03 1.60405873e+04 1.90610052e+04 2.82693929e+04 1.29090144e+04 2.31959870e+04 1.45052961e+04 1.60689128e+04 6.66474929e+03 1.36778334e+04 1.57612554e+04 2.13167172e+04 1.33719534e+04 1.06726806e+04 2.13919933e+03 1.22612184e+04 1.45381580e+04 1.93972321e+04 7.28115550e+03 1.05372931e+04 1.79727539e+04 2.20908508e+04 5.10468662e+03 1.63263250e+04 2.72467726e+04 1.30822906e+04 1.14735238e+04 1.75304347e+04 1.61496247e+04 1.34638461e+04 6.13824229e+03 5.33277783e+03] [-6.19741681e+02 3.24668234e+02 -2.19851988e+03 -1.45238383e+03 -2.70820970e+03 -8.79394320e+02 1.41778781e+03 3.64805591e+03 -1.24508053e+02 2.43489202e+03 -1.18220846e+03 -1.14924775e+03 2.04497609e+02 1.90438765e+03 -1.35019902e+03 1.76874121e+03 -1.53055677e+03 -2.55944528e+03 1.07424894e+03 -1.95364884e+03 -1.71728103e+03 6.78144599e+02 1.11568948e+03 -2.07804545e+03 -7.32455727e+02 2.06839102e+03 1.60638775e+03 -9.30099818e+02 2.12068464e+03 9.77449615e+01 -1.97995121e+03 2.21291677e+03 -7.53164778e+02 -1.48652608e+03 8.13290894e+02 9.06007514e+02] [ 1.07503625e-01 7.03952516e-01 5.89934849e-01 3.69513410e-01 -1.35785817e-01 3.80868040e-01 -5.67949297e-01 -4.32113124e-01 5.55641222e-01 8.59960273e-01 -6.19900993e-01 -4.07873421e-01 -9.87579466e-01 -1.36875509e-01 -5.79409856e-01 2.82849565e-01 4.19178431e-01 -7.62444571e-01 -8.35711996e-01 8.12670139e-01 -2.21522491e-01 6.68069945e-02 9.26483130e-01 5.18108024e-01 -3.48919405e-01 -8.28301398e-01 7.20480334e-02 -3.27749114e-01 -9.56629191e-01 5.42304667e-01 -2.30181740e-01 1.42642300e-01 5.11485712e-01 8.81694840e-01 2.24644677e-01 -3.69207642e-01] [-7.79846984e-01 -8.52162224e-01 -3.60618452e-01 3.21678278e-01 3.90304129e-01 -5.84563920e-01 -8.34408123e-01 -3.88978677e-01 9.51491197e-02 5.09339349e-01 5.93146411e-02 -4.26032495e-01 2.48359447e-01 -4.70326690e-01 3.05385829e-01 6.83796016e-01 2.77895641e-01 1.31262938e-01 -3.85715781e-01 7.53554080e-01 9.77643769e-01 5.54958862e-01 1.47287715e-01 -7.17441335e-01 -3.70141955e-01 -2.66281363e-01 -4.16209558e-01 -1.08094371e-01 2.21265034e-01 -5.74170819e-01 -5.00480491e-01 -7.75699034e-01 -3.84822822e-01 -5.10344283e-03 -2.03844306e-02 9.91154424e-01] [ 9.62217126e-01 -1.26874457e-01 9.44041244e-01 -5.71204192e-01 8.22417722e-02 -9.31293711e-02 9.35217795e-01 6.72352446e-01 -5.71706150e-01 -1.20921796e-01 -6.63046057e-01 5.81744209e-02 5.86969348e-01 -9.28241702e-01 -6.17282245e-01 9.54911129e-01 9.21594612e-01 1.13183318e-01 2.92181443e-01 -4.55813971e-01 9.04182171e-01 3.39549613e-01 3.33615990e-01 -9.77793333e-01 7.05939700e-01 5.56652437e-01 3.69847994e-01 4.81563626e-01 -6.86855151e-01 4.37550106e-01 -8.06363179e-01 4.13898896e-01 -9.94736408e-01 5.52411575e-01 -1.68856304e-02 -5.91226267e-01] [ 4.58493229e-01 -3.68691736e-01 7.67635180e-01 -6.39532950e-01 8.77101309e-01 9.41500296e-01 -3.91029512e-01 7.24972799e-01 6.84358238e-01 -1.50774580e-01 -2.72631184e-01 -4.35125054e-01 9.86473569e-01 -4.88497946e-01 8.41351196e-01 -1.43329572e-01 8.70854025e-01 6.77689668e-01 -6.88445349e-01 1.48566709e-01 3.47006029e-01 -1.88359188e-01 -9.90245911e-01 -3.49337340e-01 6.77889896e-01 -8.74352040e-01 -7.89160507e-01 4.03574693e-01 2.83165355e-02 -3.66635001e-03 -2.52780562e-01 2.07027233e-01 7.02937534e-01 -4.46153887e-01 6.89522726e-01 -1.66761703e-01] [ 1.96802479e-03 4.59246757e-01 -4.82556585e-01 8.43273837e-01 4.04138928e-01 2.37860846e-01 -4.53982325e-01 3.91696913e-01 -4.85570503e-01 6.32905341e-01 -9.77055090e-01 -6.66924713e-01 1.15657978e-01 4.24561999e-01 -1.50386922e-02 7.55619003e-01 9.51739875e-01 -7.14458649e-02 5.35973959e-01 -1.04557323e-02 3.30197557e-01 -5.50250040e-01 -7.80916566e-01 9.58017875e-01 6.29989319e-01 -4.29232935e-01 1.71656769e-01 -2.39857589e-01 -6.47323918e-01 -1.62329714e-01 -4.05624412e-01 -9.66751787e-01 -2.25263386e-01 8.41826008e-01 6.56400517e-01 1.48149510e-01] [-3.62706270e-01 -5.37471410e-01 9.12039167e-01 1.29220198e-01 -5.64789393e-01 -5.01035898e-01 9.19192405e-01 -5.22371733e-01 -7.86571823e-01 -6.32076120e-01 5.32449614e-01 4.17528512e-01 -1.24116150e-01 5.87609014e-01 3.50253843e-02 -1.72803678e-01 -7.65116128e-01 7.67822132e-01 -4.48813571e-01 2.32521447e-01 9.69159558e-01 -6.21163956e-01 9.30375984e-01 3.05430737e-01 -7.42536791e-01 5.43854292e-01 9.03551557e-01 1.25561099e-01 3.77110400e-01 -9.47304242e-01 9.78151371e-01 -3.63085760e-01 -9.52192441e-01 6.17128301e-01 9.46505104e-01 4.75177020e-01] [-9.94528388e-01 -8.73278977e-01 1.68538810e-01 -3.28569784e-01 7.63666962e-01 7.47338739e-01 9.75037817e-01 4.31663938e-01 7.53767400e-01 -3.60699776e-01 -7.77646096e-01 7.30728212e-01 -3.93054804e-01 -1.61335404e-01 2.92060514e-01 2.10198268e-01 -1.58153831e-01 -2.27698976e-01 -7.54637916e-01 6.77237686e-02 -5.34291806e-01 5.09615702e-01 3.49741168e-01 -8.56146070e-01 9.78529369e-01 5.60913871e-01 -5.44348226e-01 -9.38514363e-01 -4.32563379e-02 -2.94515125e-01 9.30229987e-02 3.19327911e-01 5.94439615e-01 -9.72911306e-01 4.28591028e-01 -4.09372068e-01] [ 9.93846406e+03 9.11164602e+03 1.75551019e+03 2.19963780e+04 4.92680055e+02 3.91696606e+03 1.11981956e+04 2.48931522e+03 1.33296313e+04 9.81503438e+03 5.51609887e+03 6.83106424e+03 -9.42746232e+03 -2.97952065e+03 4.30885389e+03 1.30075825e+04 5.93913529e+03 2.72385627e+04 2.91752906e+03 1.96155943e+03 3.30022369e+03 8.82499657e+03 -2.06231297e+03 5.38929325e+03 5.39249916e+03 3.54365723e+03 -7.77383879e+03 4.54433278e+03 1.61167008e+04 1.39861951e+04 2.48223730e+03 1.16860736e+04 4.76503900e+03 6.80277448e+03 -4.45952315e+03 -3.13927861e+03] [ 9.75360487e+04 1.47670650e+05 1.86613119e+04 2.40796986e+05 2.35525800e+04 2.32279902e+04 2.17524492e+05 -2.67622239e+04 8.67798840e+04 4.21160453e+03 5.11307168e+04 5.67362546e+04 -1.40214729e+05 -6.32856103e+04 3.62884558e+04 1.15438892e+05 3.31612672e+04 3.02248826e+05 3.37859791e+04 2.07897135e+04 3.48557573e+04 8.22074801e+04 -3.92476819e+04 4.77605265e+04 4.42428766e+04 -3.76994708e+04 -1.29463977e+05 2.56297721e+04 1.39965114e+05 1.15265376e+05 2.26697999e+04 9.96150055e+04 4.42520614e+04 5.43296508e+04 -6.32723704e+04 -4.22028059e+04] [ 1.44090899e+05 1.93140178e+05 -1.66611178e+04 3.43611116e+05 3.49571535e+03 -1.02465857e+04 4.99974001e+05 -7.99788878e+04 9.77654367e+04 -1.04878566e+05 3.56465773e+04 5.26428402e+04 -3.91127818e+05 -2.24619041e+05 1.24953829e+04 1.30182362e+05 -1.58684645e+04 4.81214080e+05 9.23510322e+04 -6.93683054e+03 1.90508616e+04 1.47306242e+05 -1.47360720e+05 2.57619933e+04 3.94900954e+04 -8.73829905e+04 -3.81318266e+05 -8.66272599e+03 2.01607316e+05 1.92082094e+05 -4.17560318e+03 1.24878606e+05 3.42557987e+04 4.14780315e+04 -2.22107976e+05 -1.67114015e+05] [ 5.44468454e+04 1.62067408e+05 -5.92130613e+04 1.19748778e+05 -2.41385793e+04 -5.40171568e+04 5.33333054e+05 -2.13596274e+05 -4.60345173e+04 -3.06153747e+05 -2.58099092e+03 -2.47064169e+04 -4.80922670e+05 -2.59302001e+05 -5.92288112e+04 -1.24503664e+05 -7.56084560e+04 2.43116084e+05 6.67244060e+02 -4.48782523e+04 -3.30347829e+04 -1.33362291e+03 -2.50306335e+05 -2.76176570e+04 -2.53232122e+04 -2.63042767e+05 -5.45370016e+05 -6.44980791e+04 9.39130294e+04 4.05745809e+04 -4.64226738e+04 -9.71832917e+04 -3.15652725e+04 -3.49285060e+04 -3.20514904e+05 -2.42467299e+05] [ 1.22210673e+05 2.94380025e+05 -1.25084684e+05 4.80264572e+05 -8.18316279e+04 -1.21106084e+05 9.19171913e+05 -6.63979112e+04 1.08206003e+05 -3.18722322e+05 -2.44508028e+04 -2.47657637e+04 -7.09304366e+05 -4.62136964e+05 -9.67685606e+04 -8.94474161e+03 -1.11664611e+05 8.03273083e+05 -1.15653018e+05 -8.98396461e+04 -2.79861099e+04 1.81516201e+05 -3.91220666e+05 -5.22345302e+04 -2.44115693e+04 -1.77483363e+05 -7.90445617e+05 -1.14092160e+05 3.95425683e+05 3.36829680e+05 -1.16618295e+05 -4.88289016e+04 -7.02997850e+04 -5.89237009e+04 -5.02343290e+05 -4.35560106e+05] [ 1.13099140e+06 1.05782354e+06 5.93791613e+04 2.43218367e+06 -1.31079350e+04 2.26778108e+05 2.16161131e+06 4.19904955e+05 1.37780718e+06 7.01271728e+05 3.86317835e+05 5.50704077e+05 -1.29092739e+06 -6.08968243e+05 3.01593862e+05 1.13323375e+06 4.32363154e+05 3.21517289e+06 3.41164292e+05 1.25341509e+05 2.97292331e+05 1.21401982e+06 -5.14942775e+05 4.23917980e+05 4.23441116e+05 4.13443831e+05 -1.27917162e+06 2.86111037e+05 1.67738699e+06 1.67953120e+06 1.20613900e+05 1.04853273e+06 3.24340080e+05 5.54265136e+05 -8.42869887e+05 -7.47262681e+05] [ 1.93537690e+06 1.24107085e+06 7.46225153e+05 3.47926775e+06 5.94863797e+05 9.81270437e+05 2.84528857e+06 2.51402045e+05 2.36488766e+06 1.38976395e+06 1.16943185e+06 1.38419501e+06 -1.06864542e+06 -1.96413605e+05 1.06380914e+06 1.94516159e+06 1.29315360e+06 4.46108188e+06 8.46157435e+05 8.32549518e+05 1.01546872e+06 2.11414094e+06 -5.82491237e+05 1.23574053e+06 1.19028500e+06 1.18074721e+06 -1.21959046e+06 1.06973231e+06 2.18576630e+06 2.51596030e+06 8.19530318e+05 1.83568037e+06 1.06638893e+06 1.42541153e+06 -8.13413298e+05 -7.95169106e+05] [ 2.19242056e+06 9.56808380e+05 9.66790722e+05 3.99717561e+06 8.54601492e+05 1.09245755e+06 3.70595976e+06 -2.57816534e+05 2.65391446e+06 3.88739808e+05 1.17810606e+06 1.57031059e+06 -1.47873076e+06 -6.63172452e+05 1.27772083e+06 2.00506951e+06 1.38582877e+06 5.36759919e+06 8.02605913e+05 9.96372943e+05 1.27300981e+06 2.69015752e+06 -9.07434836e+05 1.41322574e+06 1.47265282e+06 1.11353356e+06 -1.86378110e+06 1.23274570e+06 2.34233957e+06 3.04780140e+06 1.01787836e+06 2.00121173e+06 1.28706831e+06 1.63189050e+06 -1.27013670e+06 -1.26579678e+06] [ 2.44854581e+06 4.91774855e+05 1.38043691e+06 3.93586880e+06 1.37273587e+06 1.30450926e+06 4.67903860e+06 -1.36945329e+06 2.76171709e+06 -7.67717293e+05 1.40889942e+06 1.77366722e+06 -1.66172250e+06 -6.99038699e+05 1.56244539e+06 2.02669848e+06 1.61434665e+06 5.60239889e+06 5.37551375e+05 1.38194232e+06 1.69500825e+06 3.35721079e+06 -1.49096056e+06 1.74621451e+06 1.76597676e+06 1.10904613e+06 -2.46947931e+06 1.45183568e+06 1.88805395e+06 3.38167419e+06 1.37257250e+06 1.95665010e+06 1.59922186e+06 1.90390578e+06 -1.70038036e+06 -1.85739146e+06] [ 3.63450260e+06 1.56102343e+06 1.59314444e+06 5.94012988e+06 1.46452785e+06 1.61446239e+06 6.76374849e+06 -6.45088711e+05 4.21831589e+06 5.33541262e+05 1.95095463e+06 2.45926510e+06 -2.41060496e+06 -8.19185678e+05 2.05693082e+06 3.60041188e+06 2.23266066e+06 7.85119353e+06 9.60177406e+05 1.56232598e+06 2.09264606e+06 4.80327473e+06 -1.74493800e+06 2.31191325e+06 2.24709098e+06 2.03834625e+06 -3.19635301e+06 1.85723843e+06 3.34362622e+06 4.93188294e+06 1.62080368e+06 3.35913257e+06 1.96878104e+06 2.56680950e+06 -2.22697444e+06 -2.42131500e+06] [ 3.69538871e+06 9.69854404e+05 2.08150504e+06 6.06777584e+06 1.98977018e+06 1.83497738e+06 8.08977286e+06 -3.76952803e+05 4.58103342e+06 -3.97301594e+05 2.18627214e+06 2.77278356e+06 -2.18005343e+06 -8.58545227e+05 2.42553983e+06 4.28313643e+06 2.40890429e+06 8.47117182e+06 1.17012465e+06 1.95101361e+06 2.58229463e+06 5.57298690e+06 -1.57094548e+06 2.60779886e+06 2.58915681e+06 2.53935576e+06 -2.95548829e+06 2.10293413e+06 3.77180470e+06 5.82913208e+06 2.04050813e+06 3.83965506e+06 2.32746738e+06 2.82392348e+06 -2.20241850e+06 -2.53068738e+06] [ 4.45704671e+06 2.22020637e+06 2.43897598e+06 7.52408980e+06 2.32132158e+06 2.14822552e+06 9.55022873e+06 9.26587383e+05 5.20298870e+06 -3.43691232e+05 2.27807026e+06 3.03978183e+06 -2.12450324e+06 -6.16172610e+05 2.70383419e+06 4.85910991e+06 2.73927330e+06 1.04987412e+07 1.92927193e+06 2.19842109e+06 2.96399292e+06 5.96141038e+06 -5.12255899e+05 3.04982340e+06 2.87140489e+06 2.19546667e+06 -2.34342338e+06 2.37450955e+06 5.37755769e+06 6.73283764e+06 2.33214493e+06 4.61104361e+06 2.63601409e+06 3.13921047e+06 -1.61170349e+06 -1.85833238e+06] [ 4.67706040e+06 3.53256743e+06 2.66874731e+06 7.59845299e+06 2.49544122e+06 2.37348129e+06 9.58358519e+06 2.19452186e+06 5.08903261e+06 3.52199987e+05 2.43269444e+06 3.03804441e+06 -1.10316789e+06 2.11566426e+05 2.72999571e+06 4.68639023e+06 2.95187924e+06 1.04401564e+07 2.67518986e+06 2.37612387e+06 3.12291434e+06 5.90731971e+06 6.53812541e+05 3.24630955e+06 2.95950465e+06 2.09089392e+06 -9.46360759e+05 2.55386792e+06 6.01131060e+06 6.76412385e+06 2.46717251e+06 4.56849770e+06 2.76042400e+06 3.18562196e+06 -8.01829188e+05 -9.55785788e+05] [ 4.28065374e+06 3.98835863e+06 2.52975969e+06 7.72459836e+06 2.17692918e+06 2.56940560e+06 8.64814387e+06 3.77883065e+06 5.10157071e+06 2.44647387e+06 2.76237502e+06 3.21130944e+06 -3.92137608e+05 1.00847976e+06 2.74717532e+06 4.95541613e+06 3.15266793e+06 9.84526476e+06 2.66193472e+06 2.38609923e+06 2.99707494e+06 5.61614336e+06 1.28387451e+06 3.25226364e+06 2.99353669e+06 2.89139864e+06 2.91359917e+04 2.70741442e+06 6.67916423e+06 6.55276762e+06 2.43132862e+06 4.37201024e+06 2.73133618e+06 3.26341213e+06 -2.37139391e+05 -3.04182655e+05] [ 3.45506171e+06 4.12349279e+06 2.11059927e+06 6.15674703e+06 1.58798781e+06 2.34243794e+06 6.40552819e+06 4.85661090e+06 4.25112852e+06 4.61013155e+06 2.77300789e+06 2.94120475e+06 7.66648324e+05 2.05415854e+06 2.42645318e+06 4.92965674e+06 2.83119849e+06 6.85520664e+06 2.37141925e+06 2.03238209e+06 2.46187910e+06 4.66961173e+06 1.73755318e+06 2.73510363e+06 2.55895548e+06 3.68114687e+06 1.33609779e+06 2.45350368e+06 6.35387341e+06 5.24661523e+06 2.08328983e+06 3.86271763e+06 2.34569192e+06 2.81473825e+06 4.19783654e+05 5.76366515e+05] [ 3.40088211e+06 4.84142464e+06 2.06643176e+06 6.36469521e+06 1.44495835e+06 2.65914862e+06 4.67607659e+06 5.34199671e+06 4.25074885e+06 6.15497101e+06 2.94279238e+06 3.17166830e+06 7.80911125e+05 2.33707649e+06 2.70734571e+06 5.02042146e+06 3.11489202e+06 6.52150665e+06 2.11907333e+06 2.15066534e+06 2.50227453e+06 4.02473436e+06 1.85551677e+06 2.81059042e+06 2.84843961e+06 3.72379841e+06 1.45634657e+06 2.79609906e+06 6.25436689e+06 4.43418157e+06 2.18846479e+06 3.79908863e+06 2.61696103e+06 3.01888891e+06 7.12972925e+05 1.07951985e+06] [ 2.19463840e+06 3.51514122e+06 1.18014013e+06 4.79573719e+06 6.58756239e+05 1.80705823e+06 2.76570864e+06 4.02408627e+06 2.90160128e+06 5.13311572e+06 1.92878198e+06 2.25189135e+06 8.42828282e+04 1.43059424e+06 1.88839399e+06 3.76182778e+06 2.14890532e+06 4.86886272e+06 1.27477033e+06 1.32118289e+06 1.62636972e+06 2.65140293e+06 1.01267667e+06 1.84305423e+06 2.01500345e+06 2.59425213e+06 5.68961267e+05 1.94108259e+06 4.53875401e+06 2.98114504e+06 1.36180290e+06 2.91930134e+06 1.82408758e+06 2.08753399e+06 8.22514819e+04 3.87899325e+05] [ 1.16038967e+06 2.36043476e+06 3.43311913e+05 3.14038283e+06 2.22353933e+04 8.02361265e+05 1.61472220e+06 2.70777303e+06 1.66520441e+06 3.46186857e+06 8.57513961e+05 1.17138219e+06 -3.21653245e+05 5.13374780e+05 9.20024126e+05 2.46376740e+06 1.03250108e+06 3.12648167e+06 6.97972926e+05 4.37041697e+05 7.04392903e+05 1.50716418e+06 4.96216508e+05 8.40637181e+05 9.80793280e+05 1.38493866e+06 5.55396862e+04 9.24022992e+05 2.79908580e+06 1.73137045e+06 4.86929061e+05 1.93795875e+06 8.71759305e+05 1.03796941e+06 -1.92977667e+05 2.44204259e+04] [ 3.12334905e+05 1.04716817e+06 -1.00121593e+05 1.45921137e+06 -2.41552952e+05 1.19578752e+05 7.85328876e+05 1.67348696e+06 7.39447729e+05 1.66347653e+06 1.19452334e+05 3.65691350e+05 -4.10970856e+05 -1.02711099e+05 2.79001060e+05 1.29355169e+06 2.07906032e+05 1.51383170e+06 3.26066343e+05 -4.54089981e+04 1.50200636e+05 6.40534259e+05 1.37848655e+05 1.44373276e+05 3.01462638e+05 6.86527408e+05 -1.61949490e+05 2.44446681e+05 1.38094343e+06 7.70206120e+05 -1.10081340e+04 9.18139485e+05 2.26988795e+05 2.60631199e+05 -3.36056921e+05 -1.75345099e+05] [-8.23674246e+04 1.26266684e+05 -9.15874961e+04 3.59471812e+05 -1.27907197e+05 -4.47974700e+04 1.83448387e+05 6.42337615e+05 1.37489718e+05 3.88459949e+05 -8.00949339e+04 3.61142951e+04 -1.45691481e+05 -1.30415457e+05 3.10546490e+04 4.42744676e+05 -5.45907684e+04 4.34960707e+05 1.95567452e+04 -5.85057811e+04 3.70743759e+03 8.21865208e+04 7.86094603e+03 -5.82872378e+04 5.77393324e+04 2.03019516e+05 -6.82770466e+04 5.47739541e+03 3.87333133e+05 1.83952983e+05 -6.26980444e+04 1.98893608e+05 3.62856929e+04 -2.23380599e+03 -1.23756633e+05 -7.29256761e+04] [-3.03421433e+04 1.02671888e+05 -6.72755697e+04 2.32739359e+05 -7.72145734e+04 -4.20113338e+04 1.00237587e+05 3.31927037e+05 5.59826718e+04 1.69046011e+05 -5.85992848e+04 8.46895217e+03 -1.18747441e+05 -9.81895237e+04 -3.29334638e+03 2.01078182e+05 -4.93087875e+04 3.20035326e+05 -2.35070363e+04 -4.51109245e+04 -6.71262089e+03 3.25880557e+04 -1.05113562e+04 -4.19955651e+04 1.95540551e+04 8.11487632e+04 -7.92571723e+04 -2.04656516e+04 2.27848401e+05 1.30795823e+05 -5.09375730e+04 7.45864789e+04 6.42083289e+03 -1.44130344e+04 -9.15795555e+04 -6.07115099e+04] [ 2.31949216e+03 3.40116931e+03 -6.97179675e+02 1.31446350e+04 -2.34961355e+03 1.12995633e+03 6.21931434e+03 1.03578517e+04 7.11087698e+03 9.18841413e+03 1.89295902e+03 5.10025768e+03 -6.44019306e+03 -5.05779721e+03 2.59419379e+03 7.84043279e+03 2.15120989e+03 1.85358861e+04 3.89509895e+03 2.13632969e+02 2.22113667e+03 3.94156693e+03 -1.00832492e+03 2.15533211e+03 4.77983198e+03 5.07778113e+03 -4.64761200e+03 2.84854329e+03 1.07701477e+04 1.11200709e+04 5.18960232e+02 7.47144359e+03 2.96652929e+03 3.22782476e+03 -5.12907647e+03 -3.41322372e+03] [ 9.51083956e-01 5.27440064e-01 -9.98518174e-01 4.70431108e-01 -9.56014980e-01 -6.62868635e-01 -9.78971983e-01 -7.01746002e-01 3.75011050e-01 4.04033751e-01 -2.57845187e-01 4.62381648e-01 6.94608411e-01 -7.39284971e-01 -8.25185368e-01 -2.56157087e-01 -1.92232725e-01 -4.47191560e-01 5.08336372e-01 -3.56427599e-01 6.00288624e-01 8.22616709e-01 2.62980151e-02 -1.41155941e-01 -8.16810396e-01 -4.52645392e-01 7.73295629e-01 -5.08111317e-01 2.42378774e-01 -9.98520831e-03 -8.11254928e-01 7.98737063e-01 -8.64458335e-01 3.61404651e-01 9.43996280e-01 4.18747582e-01] [-3.48182559e-01 -8.53119667e-01 1.59474094e-01 4.67034037e-01 -2.82307933e-01 3.07502945e-01 1.33182816e-01 -9.31787165e-01 8.41388906e-01 -2.39988393e-01 -2.41196112e-01 6.92711752e-01 -3.14441960e-02 -9.78624115e-02 2.79713431e-01 -5.76457418e-01 5.66013854e-02 3.37137049e-01 7.75534000e-02 4.17522275e-01 1.97072984e-01 6.82811067e-01 7.58341526e-01 -8.04321594e-01 -4.82812011e-01 -8.90687689e-01 -5.42216264e-01 4.41833414e-01 -8.42909521e-01 -6.89760974e-01 5.41536655e-01 -1.11349645e-01 -4.19758525e-01 2.87969393e-01 7.73876809e-01 -9.24789119e-01] [ 3.86188689e-01 3.37101448e-01 7.36024197e-01 -6.07255920e-01 4.25585259e-01 -7.92197783e-01 -8.86747286e-01 3.61592069e-01 -9.54730572e-01 -9.11401822e-01 -9.26093954e-01 -6.91789825e-02 5.15738888e-01 9.84398447e-01 -5.46784607e-01 5.84760451e-01 5.90491728e-01 7.44485419e-01 -3.71488019e-01 -7.34149890e-01 5.93403160e-01 1.34926675e-01 -1.70692146e-01 -8.82716646e-01 -9.86886249e-01 -3.67953073e-01 -4.57082429e-01 -4.85527454e-02 8.47223729e-01 -1.66631028e-01 -4.24232258e-01 6.90493066e-01 -3.86100265e-01 8.31168045e-01 7.26823687e-01 2.77638376e-01] [ 4.95350387e-01 -6.85354409e-01 2.05748540e-01 -3.45925432e-01 -2.26438929e-02 -5.49229084e-01 8.03915355e-01 -1.76932446e-01 -4.65318936e-02 4.42805506e-01 -7.55606374e-01 6.13009710e-03 6.26295327e-01 3.54683720e-01 -3.56698548e-01 4.21330793e-01 8.68879197e-01 7.89552477e-01 4.84469576e-01 -4.67797662e-01 -2.55025186e-01 1.16835842e-01 -2.37902206e-01 -8.85062759e-02 5.87051888e-01 -7.92119736e-01 9.45993156e-01 4.09238132e-01 7.29455737e-01 5.63360108e-01 -1.35632573e-01 8.85022287e-01 -4.93827566e-01 -9.07503154e-01 -8.06243539e-01 -5.98526756e-01] [ 7.81610727e-02 -5.52794895e-01 6.70641640e-01 -9.81322626e-01 4.91801858e-01 9.38015644e-01 -4.65633578e-01 2.47631013e-01 4.29559270e-01 -3.46085164e-01 -1.33746856e-01 4.68817692e-01 -7.37699626e-01 -7.12628054e-01 -2.49187355e-01 -5.43181896e-01 -3.86027212e-01 -6.99868630e-01 -8.06727880e-01 8.31968062e-01 -3.08213183e-01 1.31932513e-01 9.43975301e-02 -9.92849037e-02 4.95641161e-01 -3.36847085e-01 7.84954914e-01 -8.63933555e-01 1.49779185e-01 -3.21894846e-01 -2.72199310e-01 -3.89804212e-01 2.07172599e-01 -5.31184141e-01 -4.11387601e-01 -4.29010819e-01] [-6.49117434e+03 -1.82824562e+04 1.30915175e+04 -1.25990238e+04 1.35179779e+04 9.78859091e+03 6.82336988e+03 -1.27006906e+04 -4.04611748e+03 -6.85109439e+03 1.13555777e+04 1.05264153e+04 3.69401141e+03 2.64529536e+03 1.17762904e+04 -2.49899227e+03 6.86226905e+03 -1.39576220e+04 -8.07119827e+03 1.31685115e+04 1.29300104e+04 6.64880930e+03 -1.29426043e+04 8.69604522e+03 1.19740098e+04 1.07954806e+04 -9.80434375e+03 9.74703324e+03 -5.18287850e+03 -1.38072999e+03 1.27825899e+04 -3.74239465e+03 1.14778304e+04 8.41201804e+03 -1.49871019e+04 -1.55538073e+04] [-3.04350102e+04 -1.09846524e+05 6.32230611e+04 -6.13072919e+04 6.54585367e+04 4.75027500e+04 3.36374764e+04 -8.76519449e+04 -1.60863664e+04 -4.48825141e+04 5.51431505e+04 5.03762306e+04 6.98410920e+03 8.54954705e+03 5.60297770e+04 -2.09419565e+04 3.56631413e+04 -6.18345368e+04 -4.80284509e+04 6.32938351e+04 6.20572947e+04 2.30723826e+04 -7.57720736e+04 4.42120379e+04 5.55500355e+04 5.50029257e+04 -6.24018951e+04 4.67922092e+04 -4.07218340e+04 -7.98631745e+03 6.15262279e+04 -2.47532512e+04 5.38610450e+04 4.22150522e+04 -8.37548054e+04 -8.68202445e+04] [ 7.15032699e+04 4.16118360e+04 8.63946215e+04 3.16458062e+05 1.02497648e+05 6.44780809e+04 5.93873691e+05 -2.74293355e+05 4.27352369e+04 -2.59554744e+05 1.05250409e+05 1.18112706e+05 -4.19039232e+05 -2.03240323e+05 7.36902852e+04 -4.71187149e+03 2.65683114e+04 4.74040260e+05 -8.85495602e+04 8.25198453e+04 9.24485993e+04 1.60185155e+05 -3.36736571e+05 8.73820388e+04 9.66133396e+04 -8.39091255e+04 -5.59574553e+05 4.09417932e+04 1.00479869e+05 1.28011347e+05 8.94124946e+04 -6.42359784e+04 8.89942212e+04 8.54126919e+04 -4.47366998e+05 -4.19613033e+05] [ 7.55335514e+04 1.25549264e+05 2.72717871e+04 1.94904516e+05 9.52417530e+04 4.66080344e+03 1.02258650e+06 -4.62347910e+05 -7.53270732e+04 -5.75007357e+05 7.17885033e+04 9.00821037e+04 -7.95200815e+05 -4.67298020e+05 5.14940079e+04 -1.10963141e+05 -7.51647040e+04 4.55142425e+05 6.11356428e+04 4.77591336e+04 8.08253084e+04 2.37526659e+05 -6.20050100e+05 3.87436484e+04 1.14899083e+05 -1.91269050e+05 -1.06475224e+06 9.96621871e+03 5.15418564e+04 1.59387343e+05 4.91256348e+04 -1.21863012e+05 9.48204875e+04 6.01944604e+04 -8.77490892e+05 -7.83941988e+05] [ 1.92218810e+05 -1.83364158e+05 1.59090931e+05 4.92292001e+05 2.78711796e+05 1.45354621e+05 1.95935883e+06 -1.12188140e+06 1.18883417e+05 -1.11262045e+06 2.97280712e+05 3.71940520e+05 -1.55237685e+06 -9.85768927e+05 2.42945139e+05 -1.25950614e+05 5.15017043e+04 1.03578613e+06 7.63284073e+04 2.43329727e+05 3.08874216e+05 6.89570199e+05 -1.33523508e+06 2.23097075e+05 3.79656821e+05 -8.92449195e+04 -2.21798079e+06 1.73758011e+05 -8.69928912e+04 5.51231704e+05 2.11441594e+05 -4.86417465e+04 3.24020729e+05 3.19231312e+05 -1.58045482e+06 -1.51034548e+06] [ 5.56390216e+05 -6.08192767e+05 3.28889907e+05 1.29085258e+06 4.95972154e+05 2.27236650e+05 3.00454470e+06 -2.21950796e+06 5.01137844e+05 -2.02736524e+06 4.82421404e+05 5.84724416e+05 -2.31254796e+06 -1.57563895e+06 3.45381345e+05 -2.35145467e+05 2.21220817e+05 2.42220941e+06 7.87164068e+04 4.29947484e+05 4.95526842e+05 1.25770482e+06 -2.07265871e+06 4.55340632e+05 5.56320780e+05 -1.75108931e+05 -3.35277334e+06 2.61063376e+05 -2.05434389e+04 1.33472047e+06 3.67007013e+05 1.60878743e+04 4.63595137e+05 5.77473384e+05 -2.31437707e+06 -2.29981760e+06] [ 1.44664012e+06 -1.25213760e+06 1.14829402e+06 2.56741536e+06 1.35735260e+06 9.50262650e+05 5.04553576e+06 -3.98223479e+06 1.48196878e+06 -3.28548395e+06 1.42287513e+06 1.57105816e+06 -3.10499076e+06 -2.13084188e+06 1.11269676e+06 -1.41643784e+05 1.13216472e+06 4.86413746e+06 1.85519193e+05 1.27741092e+06 1.41616037e+06 2.70042357e+06 -3.22225213e+06 1.44745547e+06 1.46342417e+06 1.12165295e+05 -4.89112840e+06 1.00820551e+06 4.57850912e+05 2.79181519e+06 1.16250920e+06 4.04992130e+05 1.28927735e+06 1.65304708e+06 -3.27559959e+06 -3.43922175e+06] [ 2.15468246e+06 -2.33079011e+06 2.37290496e+06 3.66537347e+06 2.56473390e+06 2.01109341e+06 5.97253151e+06 -5.12019305e+06 2.53949030e+06 -4.01163726e+06 2.52418361e+06 2.82247053e+06 -3.16656977e+06 -2.24248427e+06 2.34316541e+06 3.90497989e+05 2.32021338e+06 6.69714459e+06 4.17277510e+05 2.49067668e+06 2.69772927e+06 3.81623685e+06 -3.64174516e+06 2.68796375e+06 2.71016167e+06 9.05854523e+05 -5.40950852e+06 2.15377416e+06 2.88823123e+05 3.86816114e+06 2.38662107e+06 8.52326175e+05 2.46837688e+06 2.95450246e+06 -3.53862210e+06 -3.83143396e+06] [ 1.38059647e+06 -4.96210472e+06 3.06020426e+06 2.50904078e+06 3.55519152e+06 2.00953286e+06 6.62622344e+06 -7.56146506e+06 1.86617641e+06 -8.01260262e+06 2.45229233e+06 2.99848482e+06 -3.60490067e+06 -3.44452219e+06 2.63902794e+06 -1.23067663e+06 2.11066071e+06 6.40149757e+06 -5.70836770e+05 3.05977576e+06 3.34268022e+06 4.05788710e+06 -4.60133475e+06 2.89363810e+06 3.13994067e+06 1.42666309e+05 -6.59359892e+06 2.23019548e+06 -1.45051550e+06 3.83904934e+06 2.94225745e+06 -4.73201060e+05 2.73490682e+06 2.95876929e+06 -4.44293833e+06 -4.86815181e+06] [ 1.77146120e+06 -6.45900001e+06 3.75529817e+06 3.37703954e+06 4.34309461e+06 2.45107793e+06 7.90554239e+06 -9.19520181e+06 2.63572401e+06 -1.04501446e+07 2.90796031e+06 3.57443212e+06 -4.21524583e+06 -4.04488760e+06 3.02426921e+06 -2.50089878e+06 2.80355121e+06 8.56827917e+06 -1.91312295e+06 3.66932749e+06 4.06431876e+06 4.63043528e+06 -5.49240513e+06 3.69341285e+06 3.72316855e+06 -5.80357151e+05 -7.81929231e+06 2.64960198e+06 -8.30648888e+05 4.76494764e+06 3.52789501e+06 -1.27588495e+06 3.09446556e+06 3.55187662e+06 -5.10821991e+06 -5.94970819e+06] [ 2.83385623e+06 -6.65719401e+06 4.53718747e+06 4.83742924e+06 5.18075613e+06 3.16342644e+06 9.90674064e+06 -9.52062751e+06 3.83792704e+06 -1.10120847e+07 3.73949631e+06 4.49884505e+06 -4.18145377e+06 -3.90349942e+06 3.74022294e+06 -1.75356278e+06 3.74634537e+06 1.07593434e+07 -1.89728037e+06 4.43949907e+06 4.94484354e+06 5.55946573e+06 -5.76069918e+06 4.64256491e+06 4.50999012e+06 -3.38289094e+05 -8.21675677e+06 3.37593845e+06 5.68258323e+05 6.25104881e+06 4.26583332e+06 -4.59985541e+05 3.84650481e+06 4.52682392e+06 -4.85957527e+06 -6.26918866e+06] [ 3.74703593e+06 -6.12310065e+06 5.32800477e+06 6.27907048e+06 5.88018360e+06 3.98398623e+06 1.15976092e+07 -8.29933996e+06 4.99737061e+06 -1.02706229e+07 4.53433245e+06 5.49366928e+06 -3.76672279e+06 -3.55300708e+06 4.66657370e+06 3.35984177e+04 4.61359249e+06 1.27370469e+07 -1.06393390e+06 5.19481463e+06 5.87777648e+06 6.88143538e+06 -4.78272482e+06 5.52484208e+06 5.42536318e+06 7.10308217e+05 -7.47222932e+06 4.24195018e+06 2.43254126e+06 7.79601047e+06 5.03911538e+06 1.41389606e+06 4.79744979e+06 5.48837814e+06 -4.03539379e+06 -5.56043780e+06] [ 3.43885081e+06 -6.19568638e+06 5.27732825e+06 6.77180344e+06 5.94627058e+06 3.88742161e+06 1.45323091e+07 -7.14726498e+06 4.79307402e+06 -1.08564129e+07 4.49934589e+06 5.46563159e+06 -4.85469125e+06 -4.27896199e+06 4.68111859e+06 1.15320794e+06 4.08716325e+06 1.39695696e+07 -4.11174316e+05 5.21982481e+06 6.04918732e+06 7.91948648e+06 -4.73544510e+06 5.33386408e+06 5.45657608e+06 1.32524951e+06 -8.23476610e+06 4.06995735e+06 4.38936055e+06 9.15486948e+06 4.99059050e+06 2.48960839e+06 4.87927861e+06 5.38890143e+06 -4.83440193e+06 -6.10109527e+06] [ 3.59502784e+06 -4.54118581e+06 5.13346622e+06 7.17061364e+06 5.56089770e+06 4.04995048e+06 1.45976262e+07 -4.56238281e+06 5.01346487e+06 -8.80160538e+06 4.57281972e+06 5.17376064e+06 -4.08602805e+06 -3.20207616e+06 4.54515351e+06 2.22330487e+06 4.08973132e+06 1.33182915e+07 9.82978892e+05 5.09611684e+06 5.71451419e+06 7.91983875e+06 -3.35081016e+06 5.12301725e+06 5.19301790e+06 2.22668691e+06 -6.63185347e+06 4.09639789e+06 6.30355728e+06 9.62193369e+06 4.90127418e+06 3.29984591e+06 4.72771366e+06 5.22516810e+06 -4.15764828e+06 -4.85419509e+06] [ 4.20809939e+06 -1.40818167e+06 4.69049710e+06 7.83878421e+06 4.53117329e+06 4.30927533e+06 9.74385060e+06 -8.81683149e+05 5.50585833e+06 -3.46721131e+06 4.45659055e+06 4.65301679e+06 -1.18200340e+06 -1.31057177e+05 4.17778595e+06 3.39152627e+06 4.71985077e+06 1.15624461e+07 1.97546694e+06 4.56498734e+06 4.81804851e+06 6.49843782e+06 -5.27189820e+05 5.00095224e+06 4.50113718e+06 2.66354479e+06 -2.13680177e+06 4.16083644e+06 7.42477052e+06 8.45587952e+06 4.50940845e+06 3.86153086e+06 4.25227973e+06 5.00876202e+06 -1.59293519e+06 -1.79891461e+06] [ 3.71630351e+06 2.10997384e+06 3.65495653e+06 6.46471177e+06 3.01567985e+06 3.79681603e+06 4.24710827e+06 2.30559677e+06 4.70202154e+06 2.99729244e+06 4.25289633e+06 4.12160364e+06 1.57053051e+06 2.57349409e+06 3.57922852e+06 4.05357499e+06 4.42640161e+06 6.96243103e+06 2.31490306e+06 3.47557991e+06 3.52236068e+06 4.76673554e+06 1.57821861e+06 4.20205527e+06 3.57471187e+06 3.60294491e+06 1.79800908e+06 3.71849483e+06 5.69898545e+06 5.44700652e+06 3.58645892e+06 3.60130800e+06 3.48522473e+06 4.21295717e+06 5.67738441e+05 8.04091028e+05] [ 3.30221603e+06 3.75804755e+06 2.26339824e+06 5.70842722e+06 1.56161417e+06 2.75580655e+06 2.06833861e+06 3.52089950e+06 4.00735807e+06 5.75389980e+06 3.07472762e+06 2.89504090e+06 1.64676816e+06 2.93091852e+06 2.62581058e+06 4.48184545e+06 3.33489163e+06 4.91884294e+06 2.26043573e+06 2.12544488e+06 2.13797696e+06 3.46342375e+06 1.91530811e+06 2.95465459e+06 2.35631726e+06 3.29428564e+06 2.42249054e+06 2.72493730e+06 4.49414644e+06 3.52268418e+06 2.30412049e+06 3.81776672e+06 2.37773089e+06 3.03400212e+06 1.05965044e+06 1.38476592e+06] [ 2.59530460e+06 3.86568368e+06 1.16541528e+06 4.69767099e+06 6.16867620e+05 1.83927876e+06 1.40912346e+06 3.72134425e+06 3.04225732e+06 6.41508096e+06 2.00423267e+06 2.00121239e+06 5.50982017e+05 2.30206815e+06 1.80695497e+06 4.33275359e+06 2.21798506e+06 3.37902485e+06 1.76957409e+06 1.24764335e+06 1.28091104e+06 2.53119574e+06 1.18023779e+06 1.84661284e+06 1.62304849e+06 2.88962593e+06 1.22905105e+06 1.83626310e+06 3.53451587e+06 2.38472070e+06 1.33456520e+06 3.39752462e+06 1.60276556e+06 2.03800150e+06 1.61213245e+05 5.26636971e+05] [ 8.25025413e+05 2.65735170e+06 -3.87603676e+04 1.75900780e+06 -5.11827994e+05 5.91602209e+05 -1.86099241e+05 3.56445954e+06 1.16111669e+06 5.90425996e+06 8.01867311e+05 7.50454684e+05 4.28365285e+05 1.57783611e+06 7.83214324e+05 3.65120163e+06 8.56535210e+05 -1.38636247e+05 1.14079757e+06 9.65198938e+04 2.38208419e+05 9.82974528e+05 7.45128307e+05 4.70179676e+05 5.48152731e+05 2.25821954e+06 1.15961103e+06 7.03585100e+05 1.85387609e+06 5.39115089e+05 1.76812221e+05 2.42587277e+06 5.57308804e+05 6.57212623e+05 -2.47633756e+05 2.32481506e+05] [-7.22915548e+05 4.91136459e+05 -5.69309061e+05 -5.38811959e+05 -7.34945662e+05 -3.48868074e+05 -5.01014856e+05 2.88492226e+06 -3.37317323e+05 2.54654991e+06 -2.17351911e+05 -3.34280197e+04 1.12699811e+05 6.61908235e+04 9.22286168e+04 1.84443060e+06 -3.79143437e+05 -1.51572490e+06 6.39288939e+05 -4.43448759e+05 -1.42167661e+05 -8.77922295e+03 3.32205728e+05 -4.31057775e+05 6.26545235e+03 1.28996870e+06 6.45913015e+05 -1.13543142e+05 1.39532538e+05 -3.61324403e+05 -4.22989540e+05 7.08082097e+05 -1.67115787e+04 -3.50974950e+05 -6.91964754e+05 -1.67107804e+05] [-1.12480667e+06 -9.18262978e+05 -1.62767792e+05 -1.39181442e+06 -1.08599701e+05 -2.04094277e+05 -3.39981423e+05 2.09107075e+06 -6.82045650e+05 4.50064354e+05 -2.59759182e+05 1.30355433e+05 1.45387247e+05 -6.08363210e+05 2.85114537e+05 1.24068965e+06 -4.63815981e+05 -1.59462023e+06 6.78583527e+05 -3.01909027e+04 2.23701752e+05 -1.51268445e+05 1.09788017e+05 -3.14789117e+05 3.32294279e+05 1.07857293e+06 3.48347660e+05 4.48901691e+04 -7.16580393e+05 -3.71898487e+05 -5.87791283e+04 1.53965956e+05 3.08212604e+05 -2.27681593e+05 -6.38766023e+05 -2.30775412e+05] [-1.00716728e+06 -1.15172420e+06 3.23721093e+04 -1.35264691e+06 1.26242085e+05 -1.04128031e+05 -2.37770843e+05 8.79138153e+05 -7.21094101e+05 -4.40660398e+05 -1.27180832e+05 7.81223365e+04 2.31724723e+05 -4.48021474e+05 1.86842398e+05 2.83560439e+05 -3.27217758e+05 -1.35315017e+06 1.70831940e+05 1.36851228e+05 2.33397067e+05 -1.67718261e+05 -8.69082537e+04 -1.76111816e+05 2.41672201e+05 6.07596128e+05 1.58489455e+05 3.86047692e+04 -8.20453874e+05 -3.23862919e+05 6.97225526e+04 -3.80641318e+05 2.17014596e+05 -1.40766344e+05 -3.27234342e+05 -1.76634236e+05] [-3.89089732e+05 -4.80742295e+05 -3.42522892e+04 -5.82652813e+05 5.95354381e+03 -1.10846441e+05 -1.57425998e+05 1.23823375e+05 -3.27242618e+05 -2.88979101e+05 -9.14235632e+04 -4.93731694e+04 1.07269870e+05 -1.42713181e+05 -2.79200996e+04 -9.23963943e+04 -1.71808537e+05 -5.88088682e+05 -3.86507612e+04 -1.51743248e+04 2.31153876e+03 -1.44293557e+05 -4.72278100e+04 -1.22321888e+05 -4.63687871e+03 6.82373948e+04 5.14746779e+04 -6.93914032e+04 -3.34226186e+05 -1.71815417e+05 -3.38652538e+04 -2.45243733e+05 -2.81710445e+04 -1.21170145e+05 -6.00958261e+04 -5.53456919e+04] [ 2.94380342e+02 6.64063555e+01 7.78869360e+02 6.98244559e+02 6.46856046e+02 7.55359560e+02 -9.07100003e+02 2.69841256e+03 6.94538990e+02 1.46306606e+03 7.72883066e+02 5.97809983e+02 1.93160776e+03 1.22748112e+03 6.22312941e+02 1.23462580e+03 7.09235039e+02 6.29783706e+02 -1.16709461e+03 6.72888354e+02 6.47548737e+02 -8.18546092e+02 7.64675754e+02 5.84737436e+02 5.94188159e+02 5.10364778e+02 1.84258776e+03 6.21402219e+02 2.33417317e+03 4.09278995e+02 6.89840055e+02 -7.47945239e+02 4.48217964e+02 4.38480350e+02 1.15787950e+03 8.11221412e+02] [-8.17354520e-01 2.28149664e-01 -7.01298378e-01 4.15929934e-02 -8.13309813e-01 5.62400880e-01 5.45862035e-01 1.96297530e-01 -9.70913361e-01 -9.15951559e-01 -6.38058685e-01 9.44061342e-01 -4.90799622e-01 5.02017652e-01 -4.37529581e-01 -4.88962765e-01 -4.84272528e-01 -4.05894009e-01 -9.82110790e-01 9.74352364e-01 1.32921272e-01 2.03684823e-01 7.65201417e-02 -9.12324904e-01 -5.69590222e-02 7.93530024e-02 3.45911582e-01 6.83360054e-02 -8.89855382e-01 2.40197980e-01 1.62350406e-01 9.11926516e-02 6.86562560e-01 -1.05226481e-01 2.07130893e-01 -7.52774227e-01] [-4.95241494e-01 7.00708652e-01 -9.67551275e-01 -6.87498044e-01 6.46769950e-01 -5.41324637e-01 -4.81610089e-01 4.01581213e-01 9.33050558e-01 -6.03440360e-01 4.94994576e-01 -7.18987510e-01 -2.35004857e-01 -3.53421497e-01 7.67571038e-01 3.10762792e-01 -3.32849280e-01 -9.56784082e-01 -2.61982682e-01 9.44361344e-01 5.81981736e-02 4.84289646e-01 -3.09222326e-01 -7.88202693e-02 -5.76728604e-01 6.73919460e-01 -2.80382281e-01 -9.25823734e-01 3.77978380e-01 -6.88422232e-01 5.97502339e-01 -9.69475095e-01 1.71246295e-01 -8.96744595e-03 9.94923468e-01 -7.31258527e-01] [ 3.45107364e-01 -8.10109049e-01 -6.76463171e-01 9.76662583e-01 6.13330135e-01 -5.10719423e-01 6.92600891e-01 -9.28799482e-01 7.12141024e-02 -8.17050489e-01 9.41811333e-01 1.66201873e-01 1.11482549e-01 -3.64053854e-01 6.99809084e-01 6.03090269e-02 -9.65803552e-01 -6.30210219e-01 -1.33063380e-01 -8.40047178e-01 -4.38684893e-01 -4.99209427e-01 -9.98782715e-01 3.85770638e-01 5.47779273e-01 6.40698596e-01 7.03259229e-01 -6.96950238e-01 7.80073277e-01 3.16425780e-01 3.92267326e-01 1.28143328e-01 8.79363997e-01 -4.96305913e-01 5.73768567e-01 -9.48306726e-03] [ 4.89297335e+03 2.57018470e+04 2.20614892e+04 4.01346769e+03 1.99930143e+04 2.28413072e+04 -5.49571424e+04 1.06989871e+04 3.41916105e+03 1.56042653e+04 1.43731548e+04 1.75363527e+04 4.57007680e+04 2.37698113e+04 1.96935053e+04 1.40786645e+03 1.98826909e+04 -4.91441815e+03 -1.06798941e+04 2.16149221e+04 1.85287789e+04 -1.10903643e+04 2.47169354e+04 1.91763759e+04 2.14957339e+04 -1.49564192e+04 4.71719839e+04 2.07532737e+04 1.15461706e+04 -2.04691794e+04 2.17174171e+04 -6.31676784e+03 2.14177975e+04 1.83549452e+04 4.84320838e+04 3.39216217e+04] [ 3.98616427e+04 -7.79935089e+04 9.09559027e+04 3.33109873e+03 9.05414249e+04 8.04492049e+04 -6.89731725e+03 -1.30323266e+05 3.93568356e+04 -5.57084040e+04 6.66112567e+04 6.84860455e+04 1.98721726e+04 2.64022498e+04 7.71518139e+04 -1.31672323e+04 8.66301576e+04 3.16804348e+04 -1.94256467e+04 8.49248902e+04 7.79666064e+04 1.34212878e+04 -3.46459561e+04 8.61854653e+04 7.26406593e+04 -1.40931893e+04 -2.90684027e+04 7.62674466e+04 -2.94745164e+04 -1.85617523e+04 8.73933496e+04 1.18463663e+04 7.37332581e+04 7.79945486e+04 -1.30743076e+04 -3.60057221e+04] [ 5.88959060e+04 -2.21830054e+05 5.20784872e+04 1.60011395e+05 6.05031406e+04 4.88594936e+04 2.60040429e+05 -5.50445230e+05 4.31969717e+04 -3.14385367e+05 3.98027476e+04 5.74001613e+04 -3.28669766e+05 -1.10436841e+05 3.26657887e+04 -1.23973285e+05 6.48952858e+04 2.72510485e+05 -1.21754388e+05 4.87850829e+04 3.82910419e+04 4.75934004e+04 -3.28346942e+05 6.94183853e+04 4.04248451e+04 -1.36253152e+05 -5.02669791e+05 2.88722779e+04 -7.37628363e+04 -3.55319844e+03 5.32287924e+04 -1.92474477e+04 4.36744128e+04 7.82505035e+04 -3.22057038e+05 -3.61507586e+05] [ 2.61006707e+04 -3.11920832e+05 9.14065691e+04 1.97053188e+05 1.45539657e+05 4.10740569e+04 1.10126206e+06 -1.18415368e+06 -9.08538859e+04 -7.99685133e+05 1.67567945e+05 1.34282910e+05 -1.00423201e+06 -4.91560692e+05 7.63365501e+04 -3.98059143e+05 3.89299333e+04 6.08329475e+05 -9.71627820e+04 1.15235442e+05 1.38236387e+05 3.10514816e+05 -9.70815904e+05 1.32360082e+05 1.19125619e+05 -1.57055485e+05 -1.48346808e+06 2.36547444e+04 -2.23919449e+05 8.83941381e+04 9.68651346e+04 -2.36927284e+05 1.07000213e+05 1.49523320e+05 -1.19028399e+06 -1.16198554e+06] [-1.37222188e+05 -7.87513237e+05 2.72804529e+05 -3.41569414e+05 4.75200572e+05 9.32875237e+04 1.60155023e+06 -2.52040061e+06 -5.75672162e+05 -2.20452923e+06 3.39635356e+05 2.72202864e+05 -1.59711511e+06 -1.05893090e+06 1.44806640e+05 -1.36251688e+06 1.08520305e+04 3.27673263e+05 -4.14339620e+05 2.94345475e+05 3.25328480e+05 2.79335454e+05 -1.78068522e+06 2.44791848e+05 2.67456369e+05 -7.43589891e+05 -2.62263895e+06 6.27203735e+04 -1.08365544e+06 -1.56760885e+05 2.52288348e+05 -1.01289655e+06 2.27344236e+05 2.49782711e+05 -2.01053264e+06 -1.93593863e+06] [-3.88261486e+05 -2.17719924e+06 9.36673766e+05 -3.87237173e+05 1.31550215e+06 4.91809986e+05 2.32063787e+06 -4.53295559e+06 -7.24708412e+05 -4.38829031e+06 8.08719008e+05 7.42643813e+05 -2.07353583e+06 -1.68571571e+06 5.57691131e+05 -2.45620248e+06 3.69836320e+05 9.65594130e+05 -1.13961668e+06 1.02920921e+06 1.01426278e+06 7.43811613e+05 -2.96877382e+06 7.96331997e+05 7.79711912e+05 -9.14035072e+05 -3.93630816e+06 4.39437602e+05 -2.16863684e+06 2.67593983e+05 8.34240792e+05 -2.01144261e+06 7.30118032e+05 7.53410368e+05 -3.01537559e+06 -3.06249708e+06] [-6.15244037e+04 -3.83587156e+06 1.73058791e+06 4.93583103e+05 2.20170341e+06 1.02832656e+06 4.13617121e+06 -6.85913175e+06 -1.96477257e+05 -6.80018809e+06 1.60990886e+06 1.60570619e+06 -3.21388853e+06 -2.82869763e+06 1.21978863e+06 -3.15303788e+06 9.93805956e+05 3.05901694e+06 -1.65940481e+06 1.88711040e+06 1.91102252e+06 1.83870173e+06 -4.65194661e+06 1.60377854e+06 1.62289452e+06 -8.47860873e+05 -6.04269334e+06 1.02486553e+06 -2.45979641e+06 1.50654527e+06 1.59791643e+06 -2.41687326e+06 1.46016807e+06 1.60824221e+06 -4.64998879e+06 -4.85328929e+06] [ 6.05116545e+05 -4.65380938e+06 2.80056307e+06 1.89187572e+06 3.24787064e+06 1.95638454e+06 6.48274632e+06 -8.72080300e+06 8.02640857e+05 -8.03386860e+06 2.94524456e+06 3.05471418e+06 -4.78895896e+06 -4.08212083e+06 2.44268663e+06 -2.91623744e+06 2.16139302e+06 5.76817389e+06 -1.53100326e+06 2.98684632e+06 3.23998305e+06 3.54395487e+06 -6.21395336e+06 2.96404564e+06 2.97713056e+06 -3.89080947e+05 -8.47625693e+06 2.08722130e+06 -2.68190005e+06 3.20751972e+06 2.69331951e+06 -2.16451711e+06 2.61068551e+06 3.04189821e+06 -6.81884567e+06 -6.81560589e+06] [ 1.00267425e+06 -6.03578175e+06 4.16138836e+06 2.36850099e+06 4.72749269e+06 2.92539385e+06 7.58560594e+06 -1.03528193e+07 1.44779716e+06 -9.58581767e+06 4.19777112e+06 4.53378247e+06 -5.02093657e+06 -4.78283921e+06 3.78788358e+06 -2.65202806e+06 3.29683967e+06 7.00257725e+06 -7.28144914e+05 4.28500849e+06 4.72757773e+06 5.00329634e+06 -6.70869050e+06 4.35545752e+06 4.37318568e+06 2.59578015e+05 -9.31630009e+06 3.26112228e+06 -3.97972734e+06 4.26886003e+06 4.01056395e+06 -1.68975981e+06 3.94040266e+06 4.47224858e+06 -7.72837406e+06 -7.51984125e+06] [ 1.59372279e+06 -7.36345610e+06 5.09478917e+06 6.86217421e+05 5.87726375e+06 3.22464701e+06 9.10957126e+06 -1.18772844e+07 1.52329160e+06 -1.20344341e+07 4.72159859e+06 5.11076159e+06 -5.20097757e+06 -5.39057559e+06 4.40657626e+06 -2.81997774e+06 3.66051138e+06 5.76865455e+06 7.79698546e+05 4.98126789e+06 5.52342860e+06 6.44142785e+06 -6.98198089e+06 5.05548840e+06 5.00149711e+06 3.99917719e+05 -9.82279957e+06 3.79491069e+06 -5.14196246e+06 4.88238105e+06 4.85910403e+06 -9.48526495e+05 4.53366825e+06 4.91512168e+06 -8.63126805e+06 -8.18829593e+06] [ 1.67726925e+06 -8.67060671e+06 6.36008220e+06 1.58827464e+04 7.27394254e+06 4.27020873e+06 1.10357902e+07 -1.32478043e+07 2.01485762e+06 -1.35714468e+07 6.25802786e+06 6.33728050e+06 -5.13278124e+06 -5.16634165e+06 5.28707745e+06 -4.10760682e+06 4.95669181e+06 6.07145863e+06 1.78296161e+05 6.38279484e+06 6.92106158e+06 8.11071343e+06 -7.65607694e+06 6.52104404e+06 6.16966149e+06 9.85127241e+05 -1.03284818e+07 4.82409686e+06 -4.41981784e+06 6.67513886e+06 6.03652914e+06 -1.51403151e+06 5.45429697e+06 6.07639011e+06 -9.52389434e+06 -9.18552045e+06] [ 3.90932135e+06 -7.19009249e+06 8.83925286e+06 3.23305875e+06 9.52186739e+06 7.12162111e+06 1.36702748e+07 -1.32943666e+07 4.67561880e+06 -1.12931280e+07 9.34284344e+06 9.12240672e+06 -4.59250673e+06 -3.59073748e+06 7.76181808e+06 -2.57850007e+06 8.08310980e+06 9.48287312e+06 3.33862614e+05 9.11588005e+06 9.57084977e+06 1.06137769e+07 -7.18203173e+06 9.50390862e+06 8.72629735e+06 2.32801872e+06 -1.01945213e+07 7.51056845e+06 -2.02274564e+06 9.28864424e+06 8.54397626e+06 1.86038076e+05 8.02209566e+06 9.04807859e+06 -8.41765944e+06 -8.60370939e+06] [ 5.73475154e+06 -4.97993479e+06 1.04833861e+07 5.79746431e+06 1.10703844e+07 9.12311907e+06 1.74276613e+07 -1.09795952e+07 6.87546081e+06 -9.23706201e+06 1.13146123e+07 1.09739025e+07 -4.45893120e+06 -2.63219802e+06 9.52955836e+06 -2.24044578e+05 1.00660596e+07 1.25379069e+07 2.16052297e+06 1.09276654e+07 1.14188432e+07 1.27353640e+07 -5.82135413e+06 1.14632472e+07 1.06259911e+07 4.09792343e+06 -9.32311878e+06 9.42621167e+06 1.55848240e+06 1.18693355e+07 1.02563831e+07 2.52591013e+06 9.89970034e+06 1.09720893e+07 -7.81606483e+06 -7.66215782e+06] [ 6.74083759e+06 -2.88904375e+06 1.03691122e+07 6.29427602e+06 1.08687027e+07 9.29037078e+06 1.89651873e+07 -8.81149407e+06 7.58732631e+06 -7.33085030e+06 1.17697445e+07 1.10703470e+07 -4.65359098e+06 -2.56368698e+06 9.54787966e+06 1.78216690e+06 1.01464926e+07 1.29297159e+07 4.23120922e+06 1.07589037e+07 1.13415045e+07 1.37963822e+07 -4.29590682e+06 1.15127819e+07 1.06734235e+07 5.07167900e+06 -8.41519747e+06 9.57476619e+06 3.83204732e+06 1.29517686e+07 1.01736218e+07 4.49729475e+06 1.00295759e+07 1.11248004e+07 -7.94335874e+06 -7.01614969e+06] [ 5.04440388e+06 -3.95099042e+06 9.35255261e+06 3.38034252e+06 9.86583851e+06 8.18415252e+06 1.66166497e+07 -6.58011186e+06 5.63711665e+06 -7.96784811e+06 1.08002859e+07 9.92238447e+06 -3.93981144e+06 -2.93872511e+06 8.45174292e+06 1.09714250e+06 8.58771131e+06 9.50894782e+06 4.38133979e+06 9.60899984e+06 1.02155678e+07 1.24984410e+07 -2.96213879e+06 9.99935246e+06 9.58971912e+06 5.07552354e+06 -6.92704840e+06 8.40899192e+06 3.35093667e+06 1.19303671e+07 9.20993812e+06 3.68907198e+06 8.91604876e+06 9.69105094e+06 -8.10090472e+06 -6.19400805e+06] [ 4.69986766e+06 -2.20404551e+06 8.46735186e+06 2.23457269e+06 8.59674989e+06 7.71563123e+06 1.11767448e+07 -3.32640789e+06 4.90994382e+06 -4.05740681e+06 1.01065420e+07 9.11472876e+06 -7.83556773e+05 -5.01543853e+05 7.79059305e+06 2.02203378e+06 8.16356603e+06 6.08196290e+06 5.72007211e+06 8.49085014e+06 8.89926952e+06 1.06895306e+07 -3.13355397e+05 9.09680131e+06 8.63722844e+06 5.01330798e+06 -2.72960905e+06 7.99064301e+06 3.50577565e+06 1.02328601e+07 8.37992229e+06 4.33444527e+06 8.13923151e+06 8.82311778e+06 -5.77433293e+06 -3.37736879e+06] [ 4.91478111e+06 8.91332811e+05 7.09839258e+06 2.53985288e+06 6.88922432e+06 6.98708390e+06 5.05646502e+06 2.42877120e+05 4.37590580e+06 1.45585638e+06 9.08572499e+06 8.26505870e+06 2.06485423e+06 2.06650055e+06 6.86838750e+06 3.04026057e+06 7.50907604e+06 3.64321131e+06 6.54809900e+06 7.00117663e+06 7.10629790e+06 8.36293929e+06 1.71675512e+06 7.90803498e+06 7.43446005e+06 4.71623697e+06 1.19691979e+06 7.26604840e+06 3.51933824e+06 7.19563129e+06 7.13629048e+06 4.59907755e+06 7.18368152e+06 7.78545456e+06 -2.60077157e+06 -3.21377252e+05] [ 2.76380856e+06 -2.97732727e+04 4.35492766e+06 7.50406967e+05 4.19997000e+06 4.25256400e+06 3.37113877e+05 1.46740894e+06 2.38860972e+06 2.45129065e+06 5.74710419e+06 5.34801618e+06 2.54773420e+06 1.72716384e+06 4.50129538e+06 2.66109742e+06 4.52338446e+06 5.97051199e+05 4.55537765e+06 4.20326942e+06 4.20293021e+06 4.88733173e+06 1.61729163e+06 4.84729686e+06 4.68695671e+06 3.52173222e+06 2.20513809e+06 4.61266301e+06 9.55781388e+05 3.53517445e+06 4.43045924e+06 3.13019195e+06 4.52483643e+06 4.81774473e+06 -1.60845653e+06 1.80207408e+05] [ 1.35417912e+06 5.24157915e+05 1.69310627e+06 1.38040558e+05 1.53842805e+06 1.91174274e+06 -1.76518815e+06 2.94403750e+06 1.31634683e+06 3.86851092e+06 2.65508819e+06 2.58764085e+06 1.56679891e+06 9.14221431e+05 2.43982547e+06 3.41677688e+06 1.85150104e+06 -1.49985441e+06 3.67433300e+06 1.71322313e+06 1.71267506e+06 2.39815876e+06 1.23561082e+06 1.98328897e+06 2.31511444e+06 2.93317649e+06 1.89510002e+06 2.28580886e+06 -1.50388522e+06 1.09451595e+06 1.94792060e+06 2.41295344e+06 2.24758445e+06 2.17375894e+06 -1.56881506e+06 6.88755748e+04] [-1.63825154e+06 -9.04175408e+05 -7.53265014e+05 -4.51467209e+06 -9.03657750e+05 -5.83042894e+05 -3.68756299e+06 4.37061891e+06 -1.60739140e+06 3.80044313e+06 -2.07331683e+05 -4.34031294e+04 1.51299357e+06 -6.28844927e+04 3.83255183e+05 3.22197691e+06 -1.02598192e+06 -7.20178701e+06 3.78083698e+06 -6.58020579e+05 -4.38062487e+05 -1.19207638e+05 1.04469050e+06 -9.74018899e+05 1.73069875e+05 2.82603880e+06 2.43455824e+06 4.42445434e+04 -3.78412181e+06 -1.75920944e+06 -4.14482904e+05 1.23704165e+06 2.39389487e+05 -6.59375393e+05 -1.87252207e+06 -1.06282132e+05] [-3.00175945e+06 -2.33015939e+06 -1.57982200e+06 -5.70994418e+06 -1.49162392e+06 -1.71817277e+06 -2.82351458e+06 3.76098757e+06 -2.98306383e+06 1.50119265e+06 -1.28336927e+06 -8.20291025e+05 6.44525751e+05 -1.41316368e+06 -4.64888453e+05 2.39506363e+06 -2.32402133e+06 -7.70424054e+06 2.55724537e+06 -1.42358806e+06 -9.69819515e+05 -8.38731990e+05 3.91501506e+05 -2.02003229e+06 -5.54289571e+05 1.97934353e+06 1.29255920e+06 -1.00969874e+06 -4.55632901e+06 -2.44691346e+06 -1.25608148e+06 2.30970972e+05 -5.11101376e+05 -1.67675271e+06 -1.90368071e+06 -5.34052666e+05] [-3.52470975e+06 -4.02340553e+06 -7.87347572e+05 -5.44209328e+06 -5.28901178e+05 -1.12648267e+06 -1.65349265e+06 3.12533295e+06 -2.89902386e+06 -3.24454032e+05 -1.05850513e+06 -2.66246879e+05 5.14628105e+05 -1.81817290e+06 2.59834864e+05 2.18318989e+06 -1.95245283e+06 -6.48382828e+06 1.48546139e+06 -5.71673702e+05 -3.51211709e+04 -6.96221372e+05 -3.42847695e+05 -1.49038800e+06 2.07005806e+05 2.20463225e+06 4.89930226e+05 -4.44633619e+05 -3.97228956e+06 -1.92364835e+06 -5.09944687e+05 -3.70257363e+05 1.59832404e+05 -1.16582538e+06 -1.86386880e+06 -1.00629428e+06] [-2.93287318e+06 -3.66280913e+06 -3.47506784e+05 -4.00322383e+06 -5.68100383e+04 -6.93807762e+05 -7.69559806e+05 1.69944535e+06 -2.31761826e+06 -1.20789791e+06 -7.98182982e+05 -1.67782566e+05 9.77896465e+04 -1.62576044e+06 3.27825207e+05 1.19691137e+06 -1.42217010e+06 -4.52481570e+06 3.60943473e+05 -1.19868974e+05 2.11226042e+05 -5.84121749e+05 -7.57774827e+05 -1.02891044e+06 2.97051604e+05 1.61410371e+06 -2.02591093e+05 -2.43899071e+05 -3.06702318e+06 -1.48975878e+06 -1.56356766e+05 -1.00045528e+06 2.36455591e+05 -8.11728148e+05 -1.54467621e+06 -1.08829839e+06] [-1.17697064e+06 -1.55106613e+06 -1.14135536e+05 -1.75183983e+06 7.26712774e+04 -3.44741295e+05 -1.08046473e+05 3.15695338e+05 -1.11582612e+06 -1.04675429e+06 -3.01191057e+05 -1.21721156e+05 6.79574405e+02 -7.91977503e+05 2.44588940e+04 7.38619914e+04 -6.33391418e+05 -1.76375163e+06 -1.65026711e+04 -4.87016203e+04 5.65419765e+04 -3.20377304e+05 -3.15918448e+05 -4.32788524e+05 6.48405867e+04 2.14735679e+05 -2.07810782e+05 -1.69119736e+05 -1.09460107e+06 -5.63068930e+05 -6.33983294e+04 -6.34027976e+05 4.77320376e+03 -3.49148533e+05 -6.17485114e+05 -4.68947570e+05] [ 7.24791564e+04 6.69297879e+04 7.27222025e+04 1.04537463e+04 7.33180606e+04 7.50272990e+04 6.77700272e+04 6.80716595e+04 4.12376234e+04 8.20351695e+04 1.05522847e+05 8.83427345e+04 -9.02261332e+03 -1.31612318e+04 7.99331914e+04 1.08880019e+05 7.05309281e+04 -6.51964465e+03 9.26059988e+04 7.27256397e+04 7.46668469e+04 8.20191250e+04 3.51317216e+04 7.62547019e+04 8.05908313e+04 8.14953020e+04 1.02762870e+04 7.90800467e+04 4.95721603e+03 6.56351252e+04 7.68909954e+04 7.77459990e+04 7.84685616e+04 8.42710142e+04 -3.14269577e+04 2.31251784e+04] [-1.20663632e+03 -1.79522111e+03 4.87999051e+01 -5.90205959e+02 7.25604595e+01 7.74865852e+01 -3.79757236e+03 5.40515369e+02 -1.21302692e+03 -1.69753337e+03 -1.25498799e+02 3.63336156e+01 6.88673125e+02 -3.26297647e+02 7.30361913e+01 -2.69563741e+03 -7.43473641e+01 -1.36803657e+03 -1.55262734e+03 8.47406375e+01 3.61986487e+01 -1.79332028e+03 1.73304516e+03 -1.18147304e+02 1.49005991e+02 -1.31411312e+03 1.62194273e+03 1.32732357e+02 -1.30185881e+03 -1.55238029e+03 7.12725659e+01 -1.66404387e+03 1.10784236e+02 9.02147431e-01 1.74521827e+03 2.43485571e+03] [-2.40894358e-01 6.92974762e-01 -7.93698698e-01 9.38779566e-01 4.56474780e-02 3.46673005e-01 4.63060861e-01 9.61957610e-01 1.05513955e-01 3.99448689e-01 3.65372643e-01 2.60466282e-01 5.98689923e-01 -3.08691001e-01 -3.62163355e-02 -8.43754922e-01 8.20211677e-01 1.18451482e-01 4.99723341e-02 -4.66096220e-01 7.99985771e-01 -9.72172864e-01 -8.05997728e-01 -8.79850150e-01 -5.18155315e-01 -6.30158108e-03 -7.29519052e-02 -4.58907582e-01 1.10218374e-01 -5.45329707e-01 -2.68607406e-01 -6.60073765e-01 3.28545158e-01 -8.36665637e-01 -3.13422621e-01 6.20506355e-02] [ 9.90601644e-02 -2.64691283e-01 2.87504079e-01 -6.71103840e-01 4.48594330e-01 8.50499312e-01 9.79651875e-01 7.56965115e-01 -4.78162277e-01 -9.23813335e-01 9.48051530e-01 1.14239784e-01 7.94199584e-02 -7.07077734e-01 8.24984355e-01 9.15219177e-01 7.19259790e-01 3.85520930e-01 -2.28197303e-01 8.53455764e-01 7.08932796e-01 6.75772481e-01 1.68113786e-01 -8.60045065e-01 -9.48690449e-01 -5.48795761e-01 -8.15395344e-01 4.90210786e-01 7.02110891e-01 8.09399993e-02 2.22542327e-01 -5.37248309e-02 8.70377355e-01 2.25625405e-01 2.40722245e-01 7.16013207e-01] [-3.06086230e+04 -1.52890615e+05 4.68967005e+04 -2.58637976e+04 6.53146926e+04 2.22902351e+04 1.04381259e+05 -2.26214700e+05 -2.13024523e+04 -2.05020783e+05 2.86598816e+04 4.32868242e+04 -9.53771551e+04 -1.08942099e+05 3.96377171e+04 -7.76744873e+04 1.03852803e+04 3.47826112e+04 -7.54070703e+04 5.27287133e+04 4.75121286e+04 8.18813604e+04 -1.42926671e+05 3.22044611e+04 4.85168436e+04 -2.24045768e+04 -1.77393871e+05 2.96066569e+04 -7.34493580e+04 1.58328061e+04 4.71647300e+04 -7.47759033e+04 4.27058142e+04 4.20298036e+04 -1.14423546e+05 -1.34477019e+05] [-1.86485296e+05 -8.82043209e+05 1.76463271e+05 -3.07078867e+05 2.31706512e+05 7.09653867e+04 1.56632915e+05 -1.18754419e+06 -1.64551308e+05 -9.31311819e+05 9.33189145e+04 9.57444670e+04 -3.09291281e+05 -3.23177979e+05 1.06791741e+05 -4.90688005e+05 5.55985890e+04 -9.64734792e+04 -3.89673130e+05 1.81584844e+05 1.39734350e+05 1.04970494e+05 -6.16570601e+05 1.18949993e+05 1.11104421e+05 -1.38850223e+05 -6.82002327e+05 7.86154367e+04 -5.28884907e+05 -1.32165659e+05 1.65502684e+05 -3.89087174e+05 1.06562162e+05 1.22997834e+05 -4.09973520e+05 -5.36501091e+05] [-3.40154632e+05 -8.65021102e+05 7.53433688e+04 -3.31577377e+05 1.38372525e+05 -6.99959599e+04 3.60514502e+05 -1.69672921e+06 -3.98432587e+05 -1.41771626e+06 7.09539221e+04 1.71834464e+04 -6.83347049e+05 -5.23197668e+05 -4.88780440e+04 -1.02715791e+06 -4.66080726e+04 3.06779198e+04 -7.09980191e+05 7.41818067e+04 4.28228279e+04 3.05119537e+04 -9.16486006e+05 3.84505383e+04 1.54522214e+03 -5.09161691e+05 -1.18239315e+06 -8.15931790e+04 -7.66823888e+05 -2.76533123e+05 3.02117209e+04 -8.46389529e+05 -1.82397478e+04 4.72898073e+04 -8.13918566e+05 -8.98678953e+05] [-2.34021013e+05 -1.04239116e+06 2.76822422e+05 -2.40285177e+05 4.15327461e+05 4.60735527e+04 1.12335540e+06 -2.94431198e+06 -5.26933491e+05 -2.40106333e+06 4.12556811e+05 1.89287454e+05 -1.53103143e+06 -1.06547929e+06 2.34787535e+04 -1.78377520e+06 1.11579597e+05 5.85321605e+05 -1.15582927e+06 2.84556320e+05 2.83727692e+05 4.00150089e+05 -1.76351948e+06 2.78025537e+05 1.37751336e+05 -8.52687292e+05 -2.48282835e+06 -2.68713289e+04 -1.41152538e+06 -7.90501914e+04 1.75700502e+05 -1.42758841e+06 9.31960221e+04 2.55346713e+05 -1.91542683e+06 -1.88951842e+06] [-2.83253868e+05 -2.05545576e+06 1.04683405e+06 -6.36832470e+05 1.36771064e+06 5.79716703e+05 1.81941458e+06 -5.35694192e+06 -8.25185906e+05 -4.22917106e+06 1.15936131e+06 8.51032744e+05 -1.99603599e+06 -1.58470769e+06 5.57955590e+05 -2.82373375e+06 6.66265039e+05 7.44985637e+05 -1.49888425e+06 1.07129795e+06 1.02575639e+06 8.28371526e+05 -2.84846224e+06 1.02633558e+06 7.23151756e+05 -1.31673316e+06 -3.83396714e+06 4.70889934e+05 -2.79233297e+06 1.10010085e+05 8.78005335e+05 -2.22680591e+06 6.86065217e+05 9.63539742e+05 -2.85578007e+06 -2.89554567e+06] [-7.05202823e+05 -3.82488252e+06 2.36386850e+06 -6.77787921e+05 2.83783853e+06 1.51957913e+06 2.91317055e+06 -8.45158937e+06 -1.00873196e+06 -6.86875926e+06 2.36927684e+06 2.03138061e+06 -2.51532227e+06 -2.34694420e+06 1.65034148e+06 -4.41924897e+06 1.68418871e+06 1.66305946e+06 -2.40799802e+06 2.44838355e+06 2.39738830e+06 1.71594229e+06 -4.60016914e+06 2.32880184e+06 1.89808119e+06 -1.39790719e+06 -5.68120264e+06 1.47406076e+06 -4.55790134e+06 5.75686715e+05 2.11406901e+06 -3.73044942e+06 1.79957825e+06 2.16192864e+06 -4.63180845e+06 -4.79840536e+06] [-4.43494309e+05 -6.17831494e+06 3.56655315e+06 -5.15952344e+05 4.12433886e+06 2.32118964e+06 4.84223263e+06 -1.22071229e+07 -6.77499556e+05 -9.87411487e+06 3.86198545e+06 3.30681648e+06 -4.05541639e+06 -3.87850990e+06 2.70589410e+06 -5.40188272e+06 2.63955094e+06 3.07867606e+06 -2.61898165e+06 3.69629591e+06 3.71750566e+06 3.53354004e+06 -6.76427974e+06 3.56599994e+06 3.13461885e+06 -8.36168154e+05 -8.47388891e+06 2.39167875e+06 -6.60082765e+06 2.09031362e+06 3.25313129e+06 -4.31806077e+06 2.86808458e+06 3.42072642e+06 -7.13013153e+06 -7.02344847e+06] [ 3.63556430e+05 -6.96999241e+06 4.36907345e+06 6.05491517e+05 4.93713254e+06 3.07759836e+06 6.71203629e+06 -1.35732334e+07 7.17426303e+04 -1.04612539e+07 5.04428328e+06 4.77833148e+06 -5.80911913e+06 -5.33163644e+06 3.89941283e+06 -4.52313507e+06 3.48756661e+06 4.99549272e+06 -1.44158869e+06 4.62953543e+06 4.93106467e+06 5.43026321e+06 -8.16046133e+06 4.63911505e+06 4.54333721e+06 4.74382614e+05 -1.08282739e+07 3.35568308e+06 -7.63473822e+06 3.40839009e+06 4.15431154e+06 -3.70969433e+06 4.15527884e+06 4.77060101e+06 -9.56729791e+06 -8.73107311e+06] [ 1.65441979e+06 -6.43841410e+06 5.78036807e+06 7.02578295e+05 6.50105889e+06 4.30601690e+06 9.67690443e+06 -1.41797612e+07 1.26284385e+06 -1.08783699e+07 6.73748556e+06 6.38763666e+06 -6.26719708e+06 -5.50618984e+06 5.33075370e+06 -3.40312811e+06 4.91768745e+06 5.69199813e+06 5.49295492e+05 6.00660291e+06 6.50146764e+06 8.14781722e+06 -8.23624265e+06 6.29663814e+06 6.00644881e+06 1.63419278e+06 -1.14895151e+07 4.76519230e+06 -7.16870256e+06 5.50346118e+06 5.53370933e+06 -1.88936106e+06 5.62225161e+06 6.34716723e+06 -1.08703011e+07 -9.35506203e+06] [ 2.06005729e+06 -6.61940286e+06 6.57934072e+06 -2.26728035e+06 7.49708209e+06 4.84639347e+06 1.16624364e+07 -1.42430065e+07 1.10369481e+06 -1.20996477e+07 7.75210620e+06 7.11289785e+06 -5.63550251e+06 -5.38815547e+06 5.71245127e+06 -4.53625395e+06 5.54996284e+06 2.90864391e+06 1.94911407e+06 6.85441045e+06 7.42162971e+06 9.90580166e+06 -8.13318041e+06 7.11938598e+06 6.72819136e+06 2.18744588e+06 -1.10684597e+07 5.45513760e+06 -8.09594871e+06 6.72424589e+06 6.28654763e+06 -1.57154428e+06 6.22610607e+06 6.88276060e+06 -1.14466289e+07 -9.65590136e+06] [ 1.77114855e+06 -7.43650600e+06 7.33730081e+06 -2.12815820e+06 8.37071019e+06 5.60758293e+06 1.50302570e+07 -1.44893340e+07 1.75081576e+06 -1.30339011e+07 8.78805542e+06 7.93462252e+06 -6.04063348e+06 -5.10230116e+06 6.17809306e+06 -5.36236319e+06 6.20308805e+06 3.68509037e+06 1.44784548e+06 7.98724583e+06 8.52106595e+06 1.08611314e+07 -8.93861496e+06 7.91182037e+06 7.52886420e+06 3.07031065e+06 -1.20859462e+07 6.14081442e+06 -6.25907423e+06 8.97217775e+06 7.11210442e+06 -1.59450432e+06 6.82811928e+06 7.59342412e+06 -1.22141313e+07 -1.09316632e+07] [ 2.24906524e+06 -7.36132558e+06 8.43989425e+06 2.22327097e+05 9.39829634e+06 6.87008432e+06 1.67875487e+07 -1.30539322e+07 3.41638709e+06 -1.29722691e+07 9.41714855e+06 8.70335852e+06 -5.00733799e+06 -3.51381115e+06 6.81112841e+06 -6.03490643e+06 7.36403943e+06 6.72140442e+06 4.00055369e+05 9.42158026e+06 9.55214453e+06 1.07273808e+07 -8.32783407e+06 9.06572442e+06 8.40640803e+06 3.04936003e+06 -1.12753826e+07 7.22478502e+06 -3.47508954e+06 1.06913867e+07 8.34205672e+06 -2.10353279e+06 7.60275846e+06 8.40317532e+06 -1.03159494e+07 -1.04767852e+07] [ 1.88852615e+06 -8.85301986e+06 8.17970335e+06 1.38796491e+06 9.30860223e+06 6.44888513e+06 1.83437533e+07 -1.12309100e+07 4.55372691e+06 -1.44269912e+07 8.42010639e+06 8.01929870e+06 -4.92337535e+06 -3.37400949e+06 6.08527835e+06 -6.14559045e+06 6.78281871e+06 9.03939739e+06 2.23968089e+05 9.36686641e+06 9.28449952e+06 1.01827935e+07 -7.79094485e+06 8.66218538e+06 7.96539800e+06 2.69391417e+06 -1.07175031e+07 6.77551822e+06 -1.35084523e+06 1.23952481e+07 8.07645013e+06 -2.46182852e+06 6.99052319e+06 7.74401753e+06 -9.59670295e+06 -1.05512756e+07] [ 4.23769508e+05 -1.12716060e+07 6.59119737e+06 7.63472189e+05 7.87589922e+06 4.79331480e+06 1.84795561e+07 -9.23681681e+06 4.04546946e+06 -1.65428225e+07 6.47102410e+06 6.56624063e+06 -6.69775307e+06 -5.89893263e+06 4.40337944e+06 -6.83220308e+06 4.76685808e+06 1.00068387e+07 1.79149579e+05 7.86719873e+06 7.92774561e+06 8.95816439e+06 -8.08171450e+06 6.87655510e+06 6.69505409e+06 2.04057020e+06 -1.19246414e+07 5.18825752e+06 -4.38860925e+05 1.28997994e+07 6.58239754e+06 -2.85814682e+06 5.50275927e+06 6.07785447e+06 -1.10869339e+07 -1.18578614e+07] [-2.99244942e+05 -1.20795291e+07 4.45353557e+06 -9.59297873e+05 5.65212977e+06 3.13905907e+06 1.60266742e+07 -9.06137742e+06 2.51179466e+06 -1.68805803e+07 4.84379572e+06 4.88697266e+06 -8.64111427e+06 -8.27889254e+06 2.77465707e+06 -7.17232169e+06 2.81397953e+06 7.96990454e+06 -7.17812927e+05 5.71802184e+06 5.90278689e+06 7.39392922e+06 -8.87285382e+06 4.81090881e+06 4.92669337e+06 1.08306535e+06 -1.33627903e+07 3.43276410e+06 -1.88263698e+06 1.13643995e+07 4.62334937e+06 -2.91932962e+06 3.87521638e+06 4.33688556e+06 -1.31115403e+07 -1.28690139e+07] [-1.58546550e+05 -9.62627878e+06 4.16555149e+06 -3.66193009e+06 5.04147253e+06 3.17408802e+06 1.03328609e+07 -7.64218389e+06 6.93881151e+05 -1.31125564e+07 5.35558344e+06 4.74516940e+06 -5.71586033e+06 -6.34714620e+06 2.98080274e+06 -5.52440139e+06 2.70485074e+06 2.70977918e+06 7.51134681e+05 5.00702248e+06 5.16212866e+06 5.92347231e+06 -6.12640383e+06 4.34399267e+06 4.66602090e+06 8.17836649e+05 -9.28161368e+06 3.54277596e+06 -2.83615130e+06 7.96586726e+06 4.36310716e+06 -1.79883625e+06 3.96208128e+06 4.03544300e+06 -1.10353733e+07 -9.47224797e+06] [-1.23578111e+06 -8.71734285e+06 2.57125297e+06 -7.93632088e+06 3.36037242e+06 1.78377527e+06 3.19842584e+06 -6.39258681e+06 -2.31421067e+06 -9.04769664e+06 4.03695248e+06 3.22291957e+06 -2.95222223e+06 -4.46430807e+06 2.02670946e+06 -3.55464170e+06 1.11829994e+06 -5.20034379e+06 3.05665974e+06 2.94235616e+06 3.00879074e+06 3.24496228e+06 -4.19764030e+06 2.35700612e+06 3.07928207e+06 2.08750886e+05 -5.63116329e+06 2.23828481e+06 -5.11464402e+06 2.66082681e+06 2.76985605e+06 -4.76558721e+05 2.83524684e+06 2.27961279e+06 -9.08724100e+06 -6.62630124e+06] [-2.75623807e+06 -7.96801382e+06 1.49266757e+06 -9.12844517e+06 2.14483858e+06 8.91304417e+05 -1.08231981e+06 -4.37741460e+06 -3.90247023e+06 -4.64113201e+06 2.85842779e+06 2.29740333e+06 -1.57153017e+06 -3.25641698e+06 1.81096854e+06 -1.07941227e+06 -7.02678693e+04 -9.46007455e+06 2.95073197e+06 1.72283056e+06 1.74042693e+06 1.65073171e+06 -3.52687920e+06 8.78737417e+05 2.21701064e+06 1.12747286e+06 -3.94533239e+06 1.43688839e+06 -6.61780609e+06 -7.87385464e+05 1.76176691e+06 -4.77760235e+05 2.06177588e+06 1.04869308e+06 -8.12375882e+06 -5.26490676e+06] [-3.87717068e+06 -8.84310194e+06 8.53270729e+05 -9.80670857e+06 1.72571131e+06 -1.76630598e+05 -2.65924229e+06 -2.91827404e+06 -4.82497088e+06 -5.11540230e+06 1.35864187e+06 1.44612888e+06 -6.26489056e+05 -3.86047790e+06 1.40569098e+06 2.41809003e+05 -1.44317417e+06 -1.04761056e+07 3.51960141e+06 1.02588778e+06 1.14681122e+06 1.10725651e+06 -2.73703097e+06 -2.95037140e+05 1.67838233e+06 2.07234570e+06 -2.54939137e+06 6.45277187e+05 -9.89333941e+06 -1.46663735e+06 1.09152845e+06 -1.14614854e+06 1.45767697e+06 8.46283911e+04 -7.03890963e+06 -4.28911522e+06] [-4.25237185e+06 -5.99112537e+06 -6.86394190e+05 -1.02850520e+07 -9.85881428e+03 -1.53638752e+06 -3.83294791e+06 1.48854962e+06 -5.34148217e+06 -2.73904478e+06 -1.70712990e+05 1.38607548e+05 3.11447571e+05 -3.65641653e+06 3.42644794e+05 1.44194072e+06 -2.80756472e+06 -1.18734148e+07 4.63118386e+06 -5.93217929e+05 -1.56828506e+05 5.83465478e+04 -5.62466268e+05 -1.77288619e+06 5.39506046e+05 2.35176565e+06 1.16623964e+05 -4.82809842e+05 -9.46828908e+06 -2.39526630e+06 -3.34777804e+05 -1.09849671e+06 2.36157405e+05 -1.29131637e+06 -5.44306747e+06 -2.28742609e+06] [-4.92261626e+06 -5.62338556e+06 -1.53672573e+06 -1.00748357e+07 -8.03010483e+05 -2.48246997e+06 -2.82613683e+06 3.57436911e+06 -5.67051544e+06 -2.13131947e+06 -1.59343658e+06 -6.48933133e+05 -3.14895204e+05 -4.64635349e+06 -1.17232980e+05 3.25141004e+06 -4.02408741e+06 -1.15499568e+07 4.33571723e+06 -1.42274388e+06 -6.52796987e+05 -5.59803826e+05 -5.07612792e+05 -2.98931998e+06 2.90971082e+04 2.51888204e+06 -2.78762397e+04 -1.25816409e+06 -8.61258989e+06 -3.00382162e+06 -1.13229735e+06 -1.97043255e+05 -1.91973635e+05 -2.22422606e+06 -4.83095601e+06 -2.06476386e+06] [-5.37228042e+06 -6.05633767e+06 -1.15294520e+06 -8.94759439e+06 -5.00882581e+05 -2.01081258e+06 -1.69349675e+06 4.57553832e+06 -4.96339936e+06 -1.72077609e+06 -1.60801569e+06 -1.84832945e+05 -5.73208495e+05 -4.59936041e+06 4.59199460e+05 3.41040389e+06 -3.61777353e+06 -1.02431875e+07 3.16941609e+06 -9.56382074e+05 -6.16785223e+04 -4.95471200e+05 -1.09920667e+06 -2.66302230e+06 6.12109486e+05 3.44329318e+06 -5.63093908e+05 -7.61444157e+05 -6.75784165e+06 -2.69487373e+06 -7.25757426e+05 -5.21966182e+05 3.42665519e+05 -1.80320886e+06 -4.67287671e+06 -2.54422369e+06] [-3.64994535e+06 -4.94858171e+06 -1.69537958e+05 -5.67044035e+06 3.11298996e+05 -8.56639825e+05 -6.39950954e+05 2.79484255e+06 -3.08638304e+06 -1.55545268e+06 -7.65691384e+05 3.31795067e+05 -3.88610636e+05 -3.20564091e+06 8.81774019e+05 2.70472719e+06 -2.03062046e+06 -6.29537742e+06 1.55851540e+06 -1.64889596e+04 5.92210769e+05 -3.85497356e+04 -1.11609276e+06 -1.35978560e+06 9.54480823e+05 2.90526971e+06 -6.80684483e+05 -2.30105436e+04 -4.47431167e+06 -1.49345790e+06 1.07918361e+05 -6.01850819e+05 7.48564062e+05 -7.67641171e+05 -3.25146763e+06 -1.94946850e+06] [-1.25522664e+06 -1.83999042e+06 6.43556652e+04 -1.92988483e+06 2.56281624e+05 -2.24545449e+05 2.21822138e+05 1.36025103e+06 -1.03828998e+06 -4.65815234e+05 -1.96202177e+05 2.35884316e+05 -2.51315817e+05 -1.19962272e+06 4.46392901e+05 1.41193505e+06 -7.04345827e+05 -2.13406400e+06 5.68599689e+05 1.33347553e+05 3.60087508e+05 7.82918666e+04 -4.37583373e+05 -4.25054025e+05 4.72748671e+05 1.23850345e+06 -3.61705686e+05 9.90481858e+04 -1.08986133e+06 -2.81592091e+05 1.88886477e+05 9.50589936e+03 3.83358450e+05 -1.71831767e+05 -1.31586529e+06 -8.09904877e+05] [ 1.30506030e+05 1.26358636e+05 2.05517286e+05 -2.36789215e+03 2.04195123e+05 1.89508614e+05 1.86006274e+05 4.26949335e+05 9.35219907e+04 3.41220705e+05 2.31914152e+05 2.69877962e+05 6.29737590e+04 7.81315068e+03 2.66488119e+05 5.46797025e+05 1.52296320e+05 -8.60641355e+04 2.46971954e+05 2.04304214e+05 2.37863317e+05 2.43625353e+05 1.15324606e+05 1.69183124e+05 2.63924239e+05 3.36838740e+05 1.12327994e+05 2.27392401e+05 4.75989481e+04 1.72070071e+05 2.29874947e+05 3.33038033e+05 2.54598672e+05 2.12424224e+05 -8.27713432e+04 4.57779581e+04] [ 1.37201228e+05 1.34185871e+05 1.45918780e+05 1.43307019e+05 1.37329448e+05 1.52232037e+05 1.47874634e+05 1.53150451e+05 1.39542294e+05 1.49106154e+05 1.51542079e+05 1.57375021e+05 1.31015774e+05 1.25910270e+05 1.51611757e+05 1.56808140e+05 1.51335063e+05 1.43712088e+05 1.38978847e+05 1.46453116e+05 1.49074013e+05 1.53639198e+05 1.50547995e+05 1.50457869e+05 1.56590418e+05 1.40452625e+05 1.48358940e+05 1.58948665e+05 1.51390034e+05 1.40016651e+05 1.47148448e+05 1.45666378e+05 1.53651521e+05 1.55226541e+05 1.46292181e+05 1.45341839e+05] [-1.13527887e+03 -2.21122289e+03 -9.02018707e+02 -1.43717975e+03 -5.94627422e+02 -1.23429023e+03 -1.63379736e+03 -2.49912237e+03 -1.12988022e+03 -1.51347112e+03 -1.30151738e+03 -1.25860591e+03 7.94780403e+01 -1.22511388e+03 -1.20180661e+03 -1.13305486e+03 -1.41522576e+03 -1.25331238e+03 -2.32366198e+03 -8.90764705e+02 -1.08928513e+03 -1.46208658e+03 -1.54728750e+03 -1.23613979e+03 -1.26491594e+03 -1.23491852e+03 -8.57566939e+02 -1.21057194e+03 -1.03669810e+03 -1.30073485e+03 -8.73240402e+02 -1.22566448e+03 -1.34128852e+03 -1.42641304e+03 -6.90369373e+02 -1.86774079e+03] [-2.66125775e+03 -1.12850573e+04 1.52390248e+03 -1.10256457e+04 2.69697063e+03 -2.85566629e+03 -1.41321499e+04 -1.80889187e+04 -5.87167371e+03 2.43473719e+02 -2.88896911e+03 -4.05852829e+03 8.38415164e+03 1.48990779e+03 -2.06930002e+03 8.56254094e+03 -1.56719212e+03 -1.36872850e+04 5.30148925e+03 -6.08641193e+01 -2.36702083e+03 -5.64324571e+03 3.72524948e+03 -7.32489889e+02 -5.57534981e+03 -2.05522868e+03 1.02810417e+04 -3.74800892e+03 -5.29556235e+03 -3.59059915e+03 8.77671229e+02 1.03685067e+04 -4.82211690e+03 -3.50043224e+03 9.08708967e+03 5.25763826e+03] [ 5.73102859e+03 -9.73448496e+04 5.53178246e+04 3.46587539e+04 7.07053779e+04 2.75822037e+04 1.29541600e+05 -1.96762272e+05 5.52018638e+03 -1.55616767e+05 2.54174503e+04 3.72397274e+04 -4.67765258e+04 -4.30136047e+04 3.75861564e+04 -2.01680212e+04 3.74826101e+04 8.07664726e+04 -2.51572867e+03 5.03239446e+04 4.36070836e+04 1.22453197e+05 -1.24091448e+05 5.52512014e+04 3.23173619e+04 1.97665693e+04 -1.18779181e+05 2.57424548e+04 6.47186910e+02 7.36643607e+04 4.83917548e+04 -4.93297435e+04 3.31504610e+04 4.93931559e+04 -7.18189748e+04 -1.18050529e+05] [-3.90907849e+05 -1.35866255e+06 2.98217148e+05 -5.64168728e+05 3.83379493e+05 8.56182495e+04 6.26702314e+04 -2.03774136e+06 -3.91704134e+05 -1.53211140e+06 1.70747857e+05 3.96964040e+04 -2.26006700e+05 -2.82286348e+05 7.56854518e+04 -9.10459181e+05 1.10324626e+05 -2.81753894e+05 -8.15208707e+05 2.77300722e+05 1.68533860e+05 6.18428750e+04 -8.41796877e+05 1.75184940e+05 5.55269356e+04 -2.61676471e+05 -7.88145035e+05 3.16757986e+04 -8.73462207e+05 -2.61794477e+05 2.21105330e+05 -8.39174026e+05 6.45627149e+04 1.35210505e+05 -2.89685896e+05 -5.42598069e+05] [-5.51305867e+05 -1.71360629e+06 3.12127895e+05 -7.27353214e+05 4.57668528e+05 -3.19500189e+04 -3.42868947e+04 -3.54883917e+06 -6.99796760e+05 -2.68597024e+06 2.02154908e+05 -8.32996729e+04 -4.97769222e+05 -4.95947431e+05 -1.13064668e+05 -1.87000334e+06 4.49294534e+04 -9.30572471e+04 -1.56027606e+06 2.65722847e+05 1.23446350e+05 1.06064848e+05 -1.21410351e+06 1.78864102e+05 -8.43909301e+04 -1.02292631e+06 -1.32018447e+06 -1.38434191e+05 -2.02091623e+06 -5.42545219e+05 1.58521775e+05 -1.71815752e+06 -8.53960990e+04 7.39083456e+04 -4.11613315e+05 -8.26730023e+05] [-4.65974199e+05 -1.39352753e+06 5.48691359e+05 -7.90718265e+05 7.02507841e+05 1.68567570e+05 1.64385389e+05 -4.95959013e+06 -8.79690058e+05 -3.11298794e+06 7.14598522e+05 2.60835576e+05 -1.11886164e+06 -8.30696955e+05 3.79696101e+04 -2.66535906e+06 3.71536294e+05 3.96739383e+04 -1.80391584e+06 4.84679278e+05 3.25307413e+05 5.05335021e+05 -1.74472339e+06 5.72240846e+05 8.98926824e+04 -1.59525046e+06 -2.21302868e+06 3.76148944e+04 -2.99255419e+06 -7.34178460e+05 3.59881001e+05 -2.35789581e+06 7.84591043e+04 4.59570720e+05 -1.21436505e+06 -1.46544271e+06] [-7.19602780e+05 -2.12529556e+06 1.09819888e+06 -1.29798102e+06 1.39432601e+06 3.75033794e+05 2.58496848e+05 -8.02642627e+06 -1.55883760e+06 -4.87084192e+06 1.18270052e+06 4.03083887e+05 -1.30698181e+06 -1.03545963e+06 2.14724006e+05 -3.95466047e+06 6.80027280e+05 -2.33061722e+05 -2.42050677e+06 9.90956259e+05 6.96203816e+05 5.68435079e+05 -2.42662492e+06 1.04863723e+06 1.49334777e+05 -2.31317579e+06 -2.97659684e+06 1.26866818e+05 -5.08819576e+06 -1.18657276e+06 7.74081131e+05 -3.46010935e+06 2.27031815e+05 7.86819954e+05 -1.30169956e+06 -1.73045717e+06] [-1.37260605e+06 -3.50012474e+06 1.54564651e+06 -2.45460193e+06 1.95292331e+06 5.50209631e+05 9.38573998e+05 -1.15546993e+07 -2.55023542e+06 -6.80773219e+06 1.85191405e+06 7.10631557e+05 -2.19369649e+06 -1.91098827e+06 5.75105203e+05 -4.83035310e+06 9.05059074e+05 -1.02854220e+06 -3.13522674e+06 1.47626395e+06 1.18211964e+06 1.25332225e+06 -4.08648568e+06 1.41695543e+06 4.94433572e+05 -2.23317772e+06 -4.82497416e+06 3.15468315e+05 -7.60990640e+06 -1.48983649e+06 1.10885722e+06 -4.22470190e+06 5.88175819e+05 1.18074090e+06 -2.81775231e+06 -3.16359428e+06] [-7.01357355e+05 -2.67483223e+06 1.73100834e+06 -2.76362844e+06 2.02625527e+06 1.00539536e+06 2.11608509e+06 -1.32657341e+07 -2.39994095e+06 -6.86678822e+06 2.82964425e+06 1.26544369e+06 -3.98405617e+06 -2.87015166e+06 1.11739402e+06 -4.58089864e+06 1.54062949e+06 -1.66451103e+06 -2.37098002e+06 1.71468116e+06 1.55716524e+06 2.86216968e+06 -5.33618781e+06 2.02605132e+06 9.80657626e+05 -1.57728632e+06 -6.78170871e+06 8.11604783e+05 -8.92352239e+06 -9.96818680e+05 1.34882471e+06 -3.49641049e+06 1.13849659e+06 1.91951734e+06 -5.21240108e+06 -4.45791093e+06] [-9.97344908e+05 -3.67605908e+06 1.55058953e+06 -4.55211523e+06 2.03772204e+06 6.68354742e+05 2.72451991e+06 -1.37713914e+07 -3.18078273e+06 -7.73749924e+06 2.61519833e+06 1.20946902e+06 -4.56891621e+06 -3.70347354e+06 1.07793504e+06 -3.86320824e+06 1.01403664e+06 -3.45365165e+06 -7.51430903e+05 1.58877833e+06 1.53463163e+06 3.80718180e+06 -5.70190132e+06 1.65863442e+06 1.05357099e+06 -4.31175326e+05 -7.26261503e+06 5.83207906e+05 -9.68087322e+06 -8.78190599e+05 1.26186219e+06 -2.50466008e+06 1.23778616e+06 1.63134371e+06 -6.65084814e+06 -5.04479605e+06] [-8.08100106e+05 -4.16195763e+06 1.37949709e+06 -5.80961650e+06 2.11976454e+06 2.99659364e+05 4.51285618e+06 -1.37920715e+07 -3.06091998e+06 -1.02002264e+07 2.31162973e+06 9.73844835e+05 -4.91995968e+06 -4.55368608e+06 5.76633247e+05 -5.12952359e+06 8.62055684e+05 -3.70132964e+06 5.55077041e+05 1.44823416e+06 1.43146858e+06 4.67816141e+06 -5.21947330e+06 1.63990461e+06 9.07617043e+05 -8.00108386e+05 -7.30759730e+06 3.66041687e+05 -1.01636424e+07 7.54096406e+05 1.05112674e+06 -2.39482820e+06 8.96502283e+05 1.43893216e+06 -6.73857471e+06 -4.88551237e+06] [-1.21026023e+06 -6.12153866e+06 5.53128231e+05 -6.79402901e+06 1.51524041e+06 -6.37694695e+05 7.20107866e+06 -1.43310277e+07 -2.82291959e+06 -1.30788217e+07 1.10589314e+06 -1.68146050e+04 -5.62944040e+06 -5.21422995e+06 -7.85162902e+05 -7.43987233e+06 -2.25468359e+05 -3.98866876e+06 1.12983927e+06 9.22550647e+05 8.01343182e+05 4.32548161e+06 -5.78055837e+06 7.83851451e+05 -2.24736279e+04 -1.41842668e+06 -8.26489151e+06 -6.05233062e+05 -1.07042990e+07 2.26740043e+06 3.26408288e+05 -2.76000122e+06 -1.47610159e+05 5.30774632e+05 -6.36418835e+06 -5.58642910e+06] [-3.22524633e+06 -1.00377797e+07 -7.82690686e+05 -6.53064999e+06 4.91098560e+05 -2.14166733e+06 8.25406239e+06 -1.48076277e+07 -3.29503807e+06 -1.75895532e+07 -1.68138631e+06 -2.28634170e+06 -5.77766542e+06 -5.65835228e+06 -3.06778389e+06 -1.07887947e+07 -2.36951607e+06 -2.50017838e+06 -1.74594409e+06 -5.11650657e+04 -6.14575718e+05 8.36179234e+05 -6.90933630e+06 -1.20794409e+06 -1.86345755e+06 -3.76833235e+06 -9.14073516e+06 -2.45075125e+06 -9.19934052e+06 2.48911707e+06 -9.36263795e+05 -5.27451794e+06 -2.01660485e+06 -1.75378275e+06 -5.39058636e+06 -6.78837630e+06] [-4.65714715e+06 -1.28622444e+07 -3.02432643e+06 -3.74296127e+06 -1.58354783e+06 -4.39195326e+06 9.32288720e+06 -1.41566657e+07 -2.88521596e+06 -2.04387372e+07 -5.15941873e+06 -5.00296680e+06 -7.92171153e+06 -7.05665254e+06 -5.76320225e+06 -1.13806313e+07 -5.01880147e+06 2.49355876e+06 -5.55878242e+06 -1.96950325e+06 -2.75625467e+06 -1.91817284e+06 -8.16705361e+06 -3.68651343e+06 -4.32428341e+06 -6.20761790e+06 -1.09656894e+07 -4.99258197e+06 -6.44421559e+06 3.43664856e+06 -3.11286318e+06 -6.56815425e+06 -4.55461793e+06 -4.50153876e+06 -5.17412372e+06 -8.48493673e+06] [-6.90786007e+06 -1.89129662e+07 -3.49037068e+06 -4.00103543e+06 -1.84310880e+06 -5.26349454e+06 1.02038306e+07 -1.48161117e+07 -2.78379981e+06 -2.38006377e+07 -6.22604678e+06 -5.59494349e+06 -8.74057654e+06 -7.92384917e+06 -6.58886330e+06 -1.19463352e+07 -5.95980018e+06 4.44560567e+06 -7.95634159e+06 -2.22307547e+06 -3.09314267e+06 -3.23536955e+06 -9.71985141e+06 -4.34828660e+06 -5.01767785e+06 -6.62261996e+06 -1.26003929e+07 -5.84971655e+06 -4.29994286e+06 5.04383780e+06 -3.54644597e+06 -7.50584358e+06 -5.47568702e+06 -5.23326196e+06 -5.24868324e+06 -1.02493472e+07] [-7.23019349e+06 -2.06295888e+07 -4.63132829e+06 -3.58911093e+06 -2.92560908e+06 -6.17538672e+06 1.12078879e+07 -1.52189187e+07 -2.72904644e+06 -2.50640221e+07 -6.95014566e+06 -6.12968963e+06 -1.19636012e+07 -1.07043638e+07 -7.37963973e+06 -1.14881608e+07 -6.83815292e+06 6.20665633e+06 -9.27723057e+06 -3.17810857e+06 -3.86528244e+06 -3.30654171e+06 -1.18744243e+07 -5.21175512e+06 -5.59243837e+06 -7.09658097e+06 -1.60751064e+07 -6.66718796e+06 -3.79669964e+06 5.86987984e+06 -4.55464959e+06 -7.78312899e+06 -6.16729546e+06 -5.74084415e+06 -7.92113452e+06 -1.27859335e+07] [-7.15342988e+06 -1.71676794e+07 -6.84774390e+06 -4.72143880e+06 -5.50947374e+06 -7.63075883e+06 6.62126100e+06 -1.39041194e+07 -4.13974741e+06 -2.21781791e+07 -8.40341000e+06 -7.98539176e+06 -1.34159782e+07 -1.18943057e+07 -8.77007747e+06 -1.11713624e+07 -8.24129742e+06 3.33773521e+06 -9.56984390e+06 -5.68113904e+06 -6.14889030e+06 -5.48710555e+06 -1.15983208e+07 -7.09142978e+06 -7.45669497e+06 -8.68596161e+06 -1.60289284e+07 -8.09802271e+06 -4.39869057e+06 2.73185903e+06 -6.65928856e+06 -7.29805845e+06 -7.75639394e+06 -7.39858089e+06 -9.72096618e+06 -1.27818355e+07] [-8.13026603e+06 -1.62312045e+07 -6.83364072e+06 -1.03339698e+07 -5.31943067e+06 -8.22671237e+06 2.53618957e+05 -1.54384914e+07 -8.02168047e+06 -2.27529100e+07 -8.29309410e+06 -8.57046682e+06 -1.17458129e+07 -1.22017304e+07 -8.78604446e+06 -1.25629095e+07 -9.13536150e+06 -4.69434795e+06 -8.59776390e+06 -6.32844223e+06 -6.80759019e+06 -7.66625464e+06 -1.02946325e+07 -7.83336135e+06 -7.94968584e+06 -1.08134893e+07 -1.36983601e+07 -8.61816027e+06 -9.46142747e+06 -2.77036000e+06 -6.83227329e+06 -8.71196441e+06 -8.00211383e+06 -8.21218770e+06 -1.03657545e+07 -1.10503714e+07] [-9.00711047e+06 -1.50113156e+07 -7.03336890e+06 -1.46757118e+07 -5.51310612e+06 -8.47816137e+06 -3.76841235e+06 -1.27148604e+07 -1.03996054e+07 -1.93870024e+07 -7.77047470e+06 -7.81062220e+06 -9.70692013e+06 -1.15030577e+07 -8.01380694e+06 -1.06580972e+07 -9.83316603e+06 -1.17838467e+07 -4.25240645e+06 -6.89924821e+06 -7.00554007e+06 -8.06408182e+06 -8.51305693e+06 -8.36525389e+06 -7.45290131e+06 -9.31193723e+06 -1.11329049e+07 -8.44435599e+06 -1.10349789e+07 -6.11278562e+06 -7.00963354e+06 -7.32909241e+06 -7.42968679e+06 -8.39689531e+06 -1.08490856e+07 -9.62212990e+06] [-9.02444537e+06 -1.53632507e+07 -5.67743822e+06 -1.74812406e+07 -4.18782656e+06 -7.03283593e+06 -5.89758191e+06 -1.15416443e+07 -1.12313625e+07 -1.46567112e+07 -5.77675366e+06 -6.02246785e+06 -6.93794688e+06 -9.28383284e+06 -5.80354498e+06 -6.54739482e+06 -8.69869340e+06 -1.75142291e+07 -6.54016608e+04 -5.68279840e+06 -5.70841063e+06 -6.45791028e+06 -7.35566638e+06 -7.33893496e+06 -5.64327474e+06 -5.67366257e+06 -8.72520461e+06 -6.73461540e+06 -1.29810944e+07 -7.63844995e+06 -5.53792831e+06 -5.03796653e+06 -5.43662187e+06 -7.10311802e+06 -1.08263192e+07 -8.38558418e+06] [-9.75791140e+06 -1.49901837e+07 -3.16960636e+06 -1.83839772e+07 -1.77376835e+06 -4.81477208e+06 -6.93255333e+06 -8.22830406e+06 -1.16385298e+07 -1.25183246e+07 -3.58650018e+06 -3.68707193e+06 -3.14031454e+06 -7.37076404e+06 -3.22650416e+06 -5.32553981e+06 -6.80266335e+06 -1.93679351e+07 5.46408362e+05 -3.06622004e+06 -3.10961572e+06 -4.68642187e+06 -5.24722057e+06 -5.49062292e+06 -2.93955364e+06 -2.38918491e+06 -5.17815993e+06 -4.26857227e+06 -1.53098004e+07 -7.26648399e+06 -3.06938246e+06 -6.45666969e+06 -3.03293011e+06 -5.14465181e+06 -8.46404460e+06 -5.57650921e+06] [-7.01521141e+06 -1.06408019e+07 -1.83039232e+06 -1.49691108e+07 -5.95268547e+05 -3.34558326e+06 -4.27796308e+06 -2.20297574e+06 -8.51265263e+06 -7.83903850e+06 -1.83420123e+06 -1.53646614e+06 -8.80112005e+05 -5.99266261e+06 -1.25929846e+06 -1.33861252e+04 -5.07543247e+06 -1.57789118e+07 4.82660155e+06 -1.81216001e+06 -1.42947727e+06 -1.14221469e+06 -2.19969534e+06 -3.75694008e+06 -9.26750545e+05 1.40579100e+06 -1.52562865e+06 -2.31593937e+06 -1.16196021e+07 -3.23911504e+06 -1.64285663e+06 -2.25862206e+06 -1.19544075e+06 -3.14960795e+06 -6.74844292e+06 -3.32385133e+06] [-5.32948454e+06 -7.59711947e+06 -1.22506442e+06 -1.25731083e+07 -1.99540216e+05 -2.40994692e+06 -2.29269435e+06 1.90324608e+06 -6.50586377e+06 -3.21054312e+06 -1.05538510e+06 -1.83250702e+05 -1.23268696e+06 -6.02003499e+06 2.81853317e+05 4.43059577e+06 -4.23570262e+06 -1.41177887e+07 6.44245446e+06 -1.19267504e+06 -3.32572195e+05 6.63468743e+05 -1.38884481e+06 -2.96581371e+06 4.54305203e+05 3.79675594e+06 -1.18414551e+06 -1.00963596e+06 -1.00171060e+07 -2.16585660e+06 -8.06324188e+05 1.22755816e+06 2.71657071e+05 -1.98696870e+06 -6.87358339e+06 -3.18082729e+06] [-4.45285056e+06 -6.91841300e+06 -4.22327803e+05 -1.00282986e+07 4.57234865e+05 -1.61532001e+06 -6.44890487e+05 3.85838700e+06 -4.89615529e+06 -1.55778242e+06 -6.07913903e+05 8.76423826e+05 -1.65593711e+06 -5.93223802e+06 1.34506254e+06 5.78093287e+06 -3.40388437e+06 -1.13392176e+07 5.55306652e+06 -4.33132292e+05 5.41695742e+05 1.35874560e+06 -1.57400807e+06 -2.24148690e+06 1.50618824e+06 4.80414879e+06 -1.85846266e+06 -5.24038464e+04 -7.92290972e+06 -1.32787910e+06 4.37765551e+04 2.01460630e+06 1.21728601e+06 -9.60425135e+05 -6.62599384e+06 -3.59206816e+06] [-3.45819636e+06 -5.88618057e+06 1.05158221e+05 -7.10964386e+06 7.33261521e+05 -8.93840001e+05 -6.05500506e+05 2.36346989e+06 -3.62952118e+06 -1.35304598e+06 -3.95303857e+05 7.87990057e+05 -9.38008542e+05 -4.11279197e+06 1.32074554e+06 4.35025999e+06 -2.27044980e+06 -8.16746719e+06 2.85460364e+06 9.57089658e+04 7.17869327e+05 6.89729363e+05 -1.54507298e+06 -1.46062502e+06 1.34353376e+06 3.81254092e+06 -1.37251809e+06 2.02311528e+05 -5.98887046e+06 -1.31810307e+06 4.35696511e+05 6.41970549e+05 1.14093334e+06 -4.89704920e+05 -4.47617328e+06 -2.61625077e+06] [-1.29601566e+06 -2.82954619e+06 4.37994402e+05 -2.89295845e+06 6.86706127e+05 1.42388792e+04 -1.49203958e+05 1.04302565e+06 -1.25465923e+06 -6.51226583e+05 1.79622576e+05 6.36657412e+05 -2.11536968e+05 -1.59658480e+06 8.98004136e+05 1.93161513e+06 -6.06180248e+05 -3.33561273e+06 9.35699383e+05 4.32552028e+05 6.70243868e+05 4.16334687e+05 -6.87901814e+05 -2.97998142e+05 9.13683655e+05 2.03889038e+06 -5.14786752e+05 4.47374974e+05 -2.18862266e+06 -2.34913655e+05 5.72234550e+05 2.29014155e+05 7.95639648e+05 1.09794259e+05 -1.83316107e+06 -1.04620959e+06] [-7.33274271e+03 -4.00778024e+05 3.39809771e+05 -3.05402749e+05 3.78718155e+05 2.54077851e+05 1.54637302e+05 2.82435860e+05 5.82906586e+03 -2.89972305e+04 2.60391913e+05 3.60067956e+05 2.47962642e+05 -3.33658268e+04 3.80192217e+05 5.34119462e+05 1.40655255e+05 -3.73830520e+05 3.94988870e+05 3.34656025e+05 3.61334775e+05 3.55959183e+05 1.15472364e+05 1.94306532e+05 4.00268063e+05 5.77006784e+05 1.93669932e+05 3.31259549e+05 -2.24066176e+05 2.01066072e+05 3.48917582e+05 2.62827614e+05 3.87669259e+05 2.77770490e+05 -2.58057246e+04 6.67352696e+04] [ 1.11815769e+05 1.11490581e+05 1.19188031e+05 1.14340235e+05 1.12841020e+05 1.23585436e+05 1.44303619e+05 1.21194298e+05 1.14079969e+05 1.19158517e+05 1.26006843e+05 1.33981563e+05 9.10146855e+04 9.24247640e+04 1.27855849e+05 1.37492647e+05 1.23037655e+05 1.18184444e+05 1.15265549e+05 1.20268200e+05 1.23810897e+05 1.33894529e+05 1.02232936e+05 1.23342707e+05 1.32698757e+05 1.17449799e+05 9.65595523e+04 1.31810821e+05 1.29811416e+05 1.21573258e+05 1.21766360e+05 1.23479301e+05 1.29060929e+05 1.29913176e+05 9.23612075e+04 9.30750216e+04] [-4.61458498e+03 -8.98788732e+03 -3.66469486e+03 -5.84271134e+03 -2.41475475e+03 -5.01671229e+03 -6.63559802e+03 -1.01529660e+04 -4.59099068e+03 -6.15466708e+03 -5.28717432e+03 -5.11381383e+03 3.26433661e+02 -4.97931237e+03 -4.88542576e+03 -4.60866036e+03 -5.75145675e+03 -5.09105910e+03 -9.43824422e+03 -3.62391556e+03 -4.42869609e+03 -5.94513308e+03 -6.29189758e+03 -5.02364165e+03 -5.14143161e+03 -5.02139323e+03 -3.48445789e+03 -4.91659994e+03 -4.21181119e+03 -5.28698671e+03 -3.54750969e+03 -4.98493811e+03 -5.45208659e+03 -5.79935548e+03 -2.80838273e+03 -7.59278798e+03] [-2.79318068e+03 -1.46168400e+04 -1.19282817e+04 -7.21218134e+04 -1.24761195e+04 -1.56505720e+04 -9.64539230e+04 -8.37271781e+04 -3.76872099e+04 1.24159433e+04 -2.26173352e+04 -4.33280535e+04 5.90891622e+04 5.71925199e+04 -2.85248802e+04 1.38191926e+04 -9.55892534e+03 -1.09741505e+05 2.85721666e+04 -2.03707672e+04 -3.53252106e+04 -3.56120140e+04 4.70752333e+04 -1.93278203e+04 -4.48141619e+04 -1.65590730e+04 7.95305109e+04 -2.88578466e+04 -4.08859525e+04 -6.32301594e+04 -1.68925694e+04 4.77538488e+04 -3.17687417e+04 -2.71080609e+04 9.74500729e+04 8.74823661e+04] [-3.89130086e+04 -9.00273557e+04 -3.19460334e+04 -1.30550584e+05 -2.14112521e+04 -7.02845234e+04 -1.68006234e+05 -2.59929823e+05 -1.11415345e+05 -1.15111030e+05 -1.00271889e+05 -1.22026274e+05 1.45478953e+05 1.25163174e+05 -8.73232506e+04 -2.12935908e+04 -5.43694750e+04 -1.66646277e+05 8.42171242e+04 -6.12483685e+04 -9.41547326e+04 -9.20049448e+04 1.01110545e+05 -6.25347191e+04 -1.20417617e+05 -8.54899237e+04 1.88716519e+05 -9.99336079e+04 -6.98025055e+04 -1.27946361e+05 -5.47495099e+04 3.52166245e+04 -9.39208223e+04 -9.06195795e+04 3.00288794e+05 2.23895879e+05] [-4.98689742e+05 -1.60572723e+06 2.26319158e+05 -8.49652712e+05 3.31460616e+05 -3.96733206e+04 -5.20411003e+05 -2.63068247e+06 -5.92563890e+05 -1.69202985e+06 6.65774284e+04 -2.05473666e+05 1.49474444e+05 7.00494469e+04 -1.34583602e+05 -1.00364522e+06 2.57351885e+04 -6.30752923e+05 -9.21721701e+05 1.83356544e+05 5.17456323e+03 -1.61839622e+05 -5.60773334e+05 6.38047394e+04 -1.91831526e+05 -5.04595570e+05 -3.38294628e+05 -1.56959819e+05 -1.30927047e+06 -5.43211473e+05 9.13576246e+04 -8.96289955e+05 -1.36336279e+05 -4.40724208e+04 3.50274138e+05 -5.29988364e+04] [-1.13922884e+06 -2.41668531e+06 -4.94513559e+04 -1.97456294e+06 1.40847663e+05 -5.47928819e+05 -1.43645651e+06 -5.55409678e+06 -1.64404073e+06 -3.45280126e+06 -2.35936161e+05 -9.42741825e+05 8.41915909e+04 -6.97047062e+04 -7.79020486e+05 -2.47232769e+06 -4.33178411e+05 -1.58957075e+06 -2.06259649e+06 -1.52698245e+05 -4.87201150e+05 -5.27669454e+05 -9.60843725e+05 -3.43475836e+05 -9.04337070e+05 -1.68467582e+06 -6.38307860e+05 -8.20886617e+05 -3.77375172e+06 -1.64426743e+06 -3.29520520e+05 -2.22274853e+06 -7.71389477e+05 -5.61773621e+05 8.23370649e+05 1.32478641e+05] [-9.67776095e+05 -2.17018403e+06 -2.33893377e+04 -1.93258253e+06 1.98390334e+05 -6.03609617e+05 -1.63833761e+06 -7.34792050e+06 -1.88437890e+06 -4.15460115e+06 -2.98464443e+05 -1.10415246e+06 -2.20838487e+05 -2.39634424e+05 -8.95021095e+05 -2.97292210e+06 -4.15070332e+05 -1.47770466e+06 -2.01941543e+06 -2.59642428e+05 -6.87412992e+05 -5.32174061e+05 -1.03337111e+06 -3.09523004e+05 -1.14045678e+06 -2.52241548e+06 -9.18760399e+05 -9.44901470e+05 -4.94822859e+06 -2.25371260e+06 -3.66221322e+05 -2.51921340e+06 -8.69216380e+05 -5.35698406e+05 1.18403774e+06 3.52507874e+05] [-1.13785546e+06 -1.39444872e+06 -5.23833595e+05 -2.65150674e+06 -2.79915751e+05 -1.16819977e+06 -2.44017093e+06 -8.90573005e+06 -2.76808748e+06 -3.82534503e+06 -5.71285236e+05 -1.78762009e+06 -4.54934246e+05 -3.44791098e+05 -1.47027008e+06 -3.01413772e+06 -8.46974101e+05 -2.67019356e+06 -1.54386137e+06 -8.52593917e+05 -1.35490619e+06 -6.97149969e+05 -5.70954440e+05 -7.86996850e+05 -1.90774516e+06 -2.72912090e+06 -6.12746170e+05 -1.61429764e+06 -6.62242071e+06 -3.21151642e+06 -9.72900045e+05 -2.46106117e+06 -1.51742169e+06 -1.02957237e+06 2.04621212e+06 1.47806465e+06] [-2.27932448e+06 -5.51968648e+05 -1.65590270e+06 -5.47749006e+06 -1.51267867e+06 -2.18812010e+06 -4.27514253e+06 -9.99510338e+06 -4.77970984e+06 -3.26910321e+06 -1.24362497e+06 -3.02221733e+06 -5.94476968e+05 -2.12636548e+05 -2.41434007e+06 -3.24534440e+06 -1.76449030e+06 -6.74316019e+06 -1.28969159e+06 -2.10260622e+06 -2.61764942e+06 -1.83610648e+06 -5.38280019e+04 -1.85563010e+06 -3.14290872e+06 -3.16630434e+06 -5.30029576e+04 -2.69948914e+06 -8.69531040e+06 -5.43485144e+06 -2.19406633e+06 -2.35247339e+06 -2.58854117e+06 -2.13950989e+06 2.23891656e+06 2.44579895e+06] [-3.01961658e+06 1.12733667e+06 -3.44033894e+06 -7.17099629e+06 -3.37538287e+06 -3.68506471e+06 -5.19046338e+06 -9.39278323e+06 -6.05084483e+06 -3.04154400e+06 -2.77363754e+06 -4.83726484e+06 -1.46569564e+06 -7.39577795e+05 -4.01263206e+06 -4.00957384e+06 -3.13683226e+06 -9.47784175e+06 -6.99703983e+05 -3.92122209e+06 -4.43288253e+06 -2.57535220e+06 1.54776142e+05 -3.42729181e+06 -4.83936066e+06 -4.17887068e+06 1.27269173e+05 -4.23269940e+06 -8.40014430e+06 -6.52082030e+06 -3.89880732e+06 -2.29786232e+06 -4.23656441e+06 -3.82696899e+06 1.53395054e+06 2.57543096e+06] [-4.29386502e+06 -3.13126071e+05 -5.47006092e+06 -1.04838894e+07 -5.00554815e+06 -6.00294867e+06 -5.28006343e+06 -1.00601859e+07 -7.94595752e+06 -6.22285596e+06 -5.33983635e+06 -7.12458859e+06 -2.66055862e+06 -2.72504283e+06 -6.33258535e+06 -5.74618651e+06 -5.75936145e+06 -1.25697754e+07 7.76143043e+05 -6.00077647e+06 -6.53919332e+06 -3.05204663e+06 -1.26210238e+05 -5.82712390e+06 -6.86370994e+06 -4.99464031e+06 -4.80943301e+05 -6.51314999e+06 -1.05895703e+07 -7.11953408e+06 -5.90193611e+06 -2.37757804e+06 -6.28596873e+06 -6.23353684e+06 1.49549147e+05 1.77227178e+06] [-3.30491177e+06 -2.03665905e+06 -7.48444366e+06 -1.02263629e+07 -6.88431537e+06 -7.86322130e+06 -3.24112785e+06 -1.03441664e+07 -6.88325653e+06 -8.29788838e+06 -7.57956276e+06 -8.94012099e+06 -4.65298677e+06 -4.60011766e+06 -8.71017316e+06 -6.59417011e+06 -7.37798715e+06 -1.08500385e+07 2.41114658e+06 -7.87669559e+06 -8.49803880e+06 -3.32614294e+06 -3.73309638e+05 -7.51424797e+06 -8.75372273e+06 -6.01395168e+06 -1.85336899e+06 -8.35394221e+06 -1.10616433e+07 -4.83946641e+06 -7.82092498e+06 -9.56748127e+05 -8.27711446e+06 -7.74332138e+06 1.34484081e+05 1.17533422e+06] [-6.95148087e+06 -7.52500707e+06 -1.12937114e+07 -1.21220397e+07 -1.03243130e+07 -1.17122158e+07 -3.27887111e+06 -8.06731367e+06 -8.82368883e+06 -1.40040321e+07 -1.26871022e+07 -1.29303722e+07 -5.97359701e+06 -7.09875152e+06 -1.29190674e+07 -1.06238182e+07 -1.20522879e+07 -1.08521156e+07 -1.59961679e+05 -1.12282315e+07 -1.18509717e+07 -8.42169032e+06 -7.03850547e+05 -1.18786037e+07 -1.22270804e+07 -8.83431038e+06 -2.61978568e+06 -1.21703002e+07 -9.05278480e+06 -5.45900725e+06 -1.13530548e+07 -3.81721890e+06 -1.19587435e+07 -1.21170474e+07 1.02373193e+06 5.12499252e+05] [-9.27719878e+06 -1.22827950e+07 -1.23566644e+07 -1.11788948e+07 -1.12605477e+07 -1.29402207e+07 -3.01453673e+06 -9.04292482e+06 -9.54924324e+06 -1.70443227e+07 -1.49308410e+07 -1.48177014e+07 -6.25868713e+06 -7.05674545e+06 -1.45324879e+07 -1.06438882e+07 -1.38651639e+07 -9.07068481e+06 -3.97045756e+06 -1.19962695e+07 -1.30228238e+07 -1.12942314e+07 -1.93686021e+06 -1.36307207e+07 -1.39220924e+07 -9.74313338e+06 -3.35124605e+06 -1.37397483e+07 -7.10483386e+06 -5.22442393e+06 -1.23872733e+07 -4.97918968e+06 -1.33863104e+07 -1.38443647e+07 2.59731905e+06 9.21740690e+04] [-9.24254189e+06 -1.51951367e+07 -1.11227438e+07 -8.04882737e+06 -9.95787341e+06 -1.18081014e+07 -7.09464252e+05 -1.09606633e+07 -8.17942947e+06 -1.69620220e+07 -1.46534364e+07 -1.41630290e+07 -6.92172045e+06 -6.38372324e+06 -1.32991338e+07 -6.59369992e+06 -1.28791024e+07 -4.92386626e+06 -6.43768459e+06 -1.07444510e+07 -1.18811150e+07 -1.13775559e+07 -3.75833706e+06 -1.25404615e+07 -1.33435625e+07 -9.31735241e+06 -5.07506015e+06 -1.29552819e+07 -2.95229164e+06 -4.07319022e+06 -1.11501690e+07 -2.83678251e+06 -1.24860409e+07 -1.29942741e+07 3.13669819e+06 -1.40428801e+06] [-9.25290504e+06 -1.91311085e+07 -1.00484823e+07 -6.97031415e+06 -9.06245941e+06 -1.07248087e+07 6.44150546e+05 -1.26824566e+07 -7.05102645e+06 -1.62276664e+07 -1.33225050e+07 -1.28742041e+07 -7.81306002e+06 -6.08767815e+06 -1.17962560e+07 -2.69375362e+06 -1.12842099e+07 -3.10700975e+06 -8.57586439e+06 -9.52027675e+06 -1.06238007e+07 -1.04269731e+07 -6.14929602e+06 -1.12299551e+07 -1.22962954e+07 -8.46919638e+06 -7.33479836e+06 -1.19016439e+07 1.20173264e+05 -2.42486170e+06 -9.98410352e+06 -7.40410434e+05 -1.13386448e+07 -1.14408974e+07 2.18414665e+06 -3.56685478e+06] [-8.50989399e+06 -2.04847293e+07 -8.49361663e+06 -6.03677411e+06 -7.41580947e+06 -9.16625036e+06 6.19301315e+04 -1.59345072e+07 -6.25551213e+06 -1.80591994e+07 -1.13600959e+07 -1.12852085e+07 -8.56767278e+06 -6.84439219e+06 -1.03580015e+07 -3.36120890e+06 -9.30829347e+06 -1.12750747e+06 -1.08797054e+07 -7.93955588e+06 -9.09181520e+06 -1.00706224e+07 -7.63095685e+06 -9.35387741e+06 -1.08357613e+07 -9.16767358e+06 -9.10155391e+06 -1.04937710e+07 -4.15134621e+05 -1.74354975e+06 -8.52078879e+06 -1.96411715e+06 -9.94394031e+06 -9.55710340e+06 1.06750198e+06 -4.66892455e+06] [-8.32609864e+06 -1.85574995e+07 -9.11625840e+06 -8.47913454e+06 -7.89055854e+06 -1.00804871e+07 -4.62713874e+06 -2.03514851e+07 -8.11663612e+06 -2.10079201e+07 -1.19718717e+07 -1.23754235e+07 -1.00523639e+07 -9.34892579e+06 -1.12396997e+07 -6.90405134e+06 -1.01700308e+07 -4.24641649e+06 -1.22976076e+07 -9.08354429e+06 -1.02599893e+07 -1.16642884e+07 -8.66598918e+06 -1.00792558e+07 -1.18948083e+07 -1.30862028e+07 -1.05039183e+07 -1.15078458e+07 -6.62732681e+06 -5.29970280e+06 -9.38397851e+06 -4.79131037e+06 -1.09573743e+07 -1.03856989e+07 -1.30328013e+06 -5.56208586e+06] [-1.08181500e+07 -1.79029251e+07 -1.05080079e+07 -1.30819794e+07 -8.97372302e+06 -1.20904986e+07 -7.73441837e+06 -2.13876611e+07 -1.19433157e+07 -2.49041624e+07 -1.33010096e+07 -1.34666221e+07 -1.19147151e+07 -1.28638441e+07 -1.26003219e+07 -1.24189385e+07 -1.27759553e+07 -9.35847555e+06 -1.16156339e+07 -1.08244816e+07 -1.16717226e+07 -1.34447595e+07 -9.91974071e+06 -1.20517544e+07 -1.29238971e+07 -1.58181291e+07 -1.25631216e+07 -1.30701612e+07 -1.26331627e+07 -9.17890528e+06 -1.09408393e+07 -9.12796176e+06 -1.22725191e+07 -1.22310113e+07 -5.86263845e+06 -7.77107990e+06] [-1.26704869e+07 -1.70587933e+07 -1.15981454e+07 -1.74437982e+07 -9.92371492e+06 -1.32547713e+07 -9.95104161e+06 -1.96013234e+07 -1.47588528e+07 -2.44858575e+07 -1.37259148e+07 -1.37441235e+07 -1.20312044e+07 -1.34378594e+07 -1.32366479e+07 -1.50582356e+07 -1.44889310e+07 -1.51268899e+07 -9.11191838e+06 -1.19890562e+07 -1.25107528e+07 -1.43571326e+07 -9.96705680e+06 -1.34169428e+07 -1.32828479e+07 -1.57951839e+07 -1.26196806e+07 -1.38722648e+07 -1.45811029e+07 -1.20432335e+07 -1.20069323e+07 -1.08478259e+07 -1.28618725e+07 -1.35031545e+07 -8.93045803e+06 -8.75211409e+06] [-1.15906043e+07 -1.53272236e+07 -1.08014001e+07 -1.94851657e+07 -9.09731489e+06 -1.22202384e+07 -8.96922527e+06 -1.65841146e+07 -1.47938008e+07 -1.99518277e+07 -1.15554638e+07 -1.20493107e+07 -1.02358603e+07 -1.19610206e+07 -1.18493239e+07 -1.19933803e+07 -1.34470940e+07 -1.87305353e+07 -2.99921620e+06 -1.12292718e+07 -1.14594988e+07 -1.16820833e+07 -8.09242682e+06 -1.23875772e+07 -1.18192377e+07 -1.23518538e+07 -1.03328048e+07 -1.25375900e+07 -1.35238155e+07 -1.06926219e+07 -1.10697001e+07 -7.79376688e+06 -1.14417924e+07 -1.24361481e+07 -9.54451741e+06 -7.49168630e+06] [-1.03216052e+07 -1.44674901e+07 -8.38356310e+06 -1.89579788e+07 -6.69990306e+06 -1.00203478e+07 -6.54067541e+06 -1.13775518e+07 -1.31559382e+07 -1.62111303e+07 -8.60068443e+06 -9.07103355e+06 -7.29272833e+06 -1.06208144e+07 -9.02699207e+06 -8.33642717e+06 -1.14681814e+07 -1.85663198e+07 7.33423974e+05 -8.57913848e+06 -8.65975546e+06 -8.12539817e+06 -6.13030785e+06 -1.03403356e+07 -8.61731514e+06 -7.15362074e+06 -7.59687704e+06 -9.77473193e+06 -1.27877381e+07 -7.50046006e+06 -8.43857089e+06 -6.41607458e+06 -8.65292934e+06 -1.00484483e+07 -8.74903069e+06 -6.22852087e+06] [-6.82457936e+06 -1.08041066e+07 -4.26853261e+06 -1.65263945e+07 -2.88274649e+06 -5.78189441e+06 -4.84547295e+06 -5.73557786e+06 -9.40929486e+06 -1.01437397e+07 -4.03525862e+06 -4.52127627e+06 -2.42457097e+06 -6.92467720e+06 -4.43351599e+06 -2.53016268e+06 -7.14017470e+06 -1.68585355e+07 5.37700979e+06 -4.51024003e+06 -4.39255257e+06 -3.41335474e+06 -2.02625908e+06 -6.13484609e+06 -4.07354874e+06 -1.43003128e+06 -2.01303842e+06 -5.15191095e+06 -1.12394088e+07 -3.83980667e+06 -4.22819509e+06 -2.10431128e+06 -4.19259381e+06 -5.69996246e+06 -5.31816911e+06 -2.19102031e+06] [-4.48160751e+06 -7.62846578e+06 -1.49725576e+06 -1.32775787e+07 -3.94627934e+05 -2.77507366e+06 -2.44843976e+06 -3.54015436e+05 -6.15539245e+06 -4.28959661e+06 -1.37499228e+06 -1.07260397e+06 -5.72498193e+05 -5.18033248e+06 -8.65219555e+05 2.63638641e+06 -4.33916065e+06 -1.43661180e+07 7.41426792e+06 -1.68739544e+06 -1.31027694e+06 2.39064667e+05 -3.02234132e+05 -3.26858130e+06 -6.34205353e+05 2.61816988e+06 -1.37753010e+05 -1.70490200e+06 -9.13259937e+06 -1.40884234e+06 -1.26669783e+06 1.63261333e+06 -7.93516623e+05 -2.54278174e+06 -4.71062972e+06 -1.61245583e+06] [-3.27200577e+06 -5.75407948e+06 -3.84645566e+05 -1.04878491e+07 4.65154033e+05 -1.52743228e+06 -1.32046296e+06 2.81731783e+06 -4.38580793e+06 -1.34410510e+06 -5.70890728e+05 4.69565039e+05 -4.86333825e+05 -4.59735963e+06 6.92875503e+05 4.96793096e+06 -3.09367394e+06 -1.20076069e+07 7.02740068e+06 -6.11372924e+05 -3.06922813e+04 1.32797053e+06 -6.71695935e+04 -2.09552176e+06 8.42244861e+05 4.27894757e+06 -2.25711099e+05 -2.77756730e+05 -7.38178581e+06 -9.13770460e+05 -8.25539988e+04 3.01004323e+06 7.10210015e+05 -1.06331437e+06 -4.68312140e+06 -1.94467591e+06] [-2.68223359e+06 -4.56072991e+06 6.39864393e+05 -7.09489575e+06 1.18188274e+06 -2.69175736e+05 -5.61134179e+05 2.50856261e+06 -3.07936195e+06 -1.50008493e+05 2.12657812e+05 1.16170604e+06 2.81085647e+05 -2.64527723e+06 1.66999884e+06 4.69555418e+06 -1.54586863e+06 -8.58456569e+06 3.98423936e+06 5.81437147e+05 9.93206472e+05 1.14831658e+06 -3.53549320e+05 -8.75387470e+05 1.64633369e+06 4.29632321e+06 1.50967580e+04 7.02286423e+05 -6.00562799e+06 -1.20037199e+06 9.41920258e+05 1.51445059e+06 1.52872496e+06 -6.97940991e+03 -2.78200614e+06 -1.22655321e+06] [-1.53343042e+06 -2.71078927e+06 6.62816759e+04 -3.50890789e+06 3.05621205e+05 -3.65755548e+05 -9.58956303e+05 1.27715212e+06 -1.54695919e+06 -3.07336001e+05 -1.62002003e+05 3.15717345e+05 6.53498681e+04 -1.45771617e+06 5.55261768e+05 1.72994967e+06 -9.69646810e+05 -4.22185056e+06 1.03108118e+06 3.90350107e+04 2.53396563e+05 -6.49002207e+04 -4.36294167e+05 -6.92873069e+05 5.85224982e+05 1.98666047e+06 -1.29528765e+05 1.15373373e+05 -3.07869520e+06 -8.11178821e+05 2.17983211e+05 -1.19628718e+05 4.36017222e+05 -2.91047130e+05 -1.38889289e+06 -6.71589536e+05] [-6.12016627e+04 -3.45464321e+05 2.23917863e+05 -3.01211378e+05 2.48612989e+05 1.56736082e+05 -3.83183049e+04 1.01121855e+05 -3.08706801e+04 -6.07508492e+04 1.66562502e+05 2.04898727e+05 1.91980702e+05 -4.18091611e+04 2.32882826e+05 2.34853476e+05 9.42160329e+04 -4.01638082e+05 1.29317557e+05 2.20157289e+05 2.26136553e+05 1.80755123e+05 -7.65540183e+03 1.18046890e+05 2.43823845e+05 3.76985773e+05 9.35087545e+04 2.05402612e+05 -2.57592806e+05 5.64351151e+04 2.22855113e+05 -4.84644661e+03 2.18411772e+05 1.48941680e+05 -1.29015745e+04 4.81663222e+04] [ 4.98649769e+04 8.41956297e+04 1.99920633e+04 4.74048591e+04 1.44542636e+04 2.28625345e+04 1.13892376e+05 4.60571450e+04 4.59717239e+04 5.77401616e+04 4.39634838e+04 3.51951123e+04 -4.72637757e+04 -1.03519353e+04 3.09979260e+04 7.40413098e+04 3.87256258e+04 4.37049611e+04 3.09903762e+04 2.15056919e+04 2.87027650e+04 8.36329675e+04 -2.16778612e+04 3.76514074e+04 2.65057377e+04 4.77419490e+04 -4.37113711e+04 2.83022164e+04 9.38063942e+04 9.91444472e+04 2.13096285e+04 6.77720079e+04 2.37640937e+04 3.77254827e+04 -5.86837225e+04 -2.64024301e+04] [-7.49789660e+02 -1.45930562e+03 -5.95020248e+02 -9.48694841e+02 -3.91933369e+02 -8.15144495e+02 -1.07737926e+03 -1.64857629e+03 -7.45556836e+02 -9.98503007e+02 -8.59211700e+02 -8.30340987e+02 5.21583173e+01 -8.07863542e+02 -7.92290927e+02 -7.46909958e+02 -9.33129531e+02 -8.26687940e+02 -1.53256153e+03 -5.88040894e+02 -7.17802817e+02 -9.64646968e+02 -1.02169059e+03 -8.15254968e+02 -8.34712719e+02 -8.14105868e+02 -5.66317812e+02 -7.98570552e+02 -6.82976115e+02 -8.57048954e+02 -5.75027191e+02 -8.08792889e+02 -8.84166973e+02 -9.41356810e+02 -4.56347969e+02 -1.23255259e+03] [-2.92197888e+04 -2.02771395e+04 -2.63170955e+04 -1.30990571e+05 -2.96560848e+04 -3.14293386e+04 -1.78082943e+05 -1.30623166e+05 -8.45438003e+04 -9.75575253e+03 -4.26984289e+04 -7.74063090e+04 8.23427302e+04 7.89884836e+04 -5.25590054e+04 -2.59983166e+04 -2.32595270e+04 -1.88943915e+05 2.86232860e+03 -3.91325933e+04 -6.20717782e+04 -9.07678089e+04 7.19439514e+04 -3.93487558e+04 -7.77510162e+04 -5.74057843e+04 1.19784696e+05 -5.37267692e+04 -8.18146410e+04 -1.25558331e+05 -3.52386391e+04 3.54490714e+04 -5.71373233e+04 -5.14089279e+04 1.52363216e+05 1.42044611e+05] [-1.85451454e+05 -4.78888215e+05 -5.19186327e+04 -2.97037674e+05 -9.86002712e+03 -1.36518936e+05 -3.12520762e+05 -7.60008525e+05 -2.42468859e+05 -5.37122442e+05 -1.37014510e+05 -1.95633545e+05 1.63154441e+05 6.15028017e+04 -1.66333434e+05 -2.27963937e+05 -1.35641106e+05 -2.30451516e+05 -2.23303752e+05 -7.15389550e+04 -1.37076870e+05 -2.04851867e+05 5.57711362e+04 -1.29007073e+05 -1.84835774e+05 -2.72213004e+05 1.32569286e+05 -1.82923477e+05 -4.07054671e+05 -2.03033159e+05 -1.02088630e+05 -1.44499838e+05 -1.60655043e+05 -1.50567449e+05 4.83899106e+05 3.26929656e+05] [-8.25927162e+05 -1.72517319e+06 -8.66149832e+04 -1.41334188e+06 3.30917372e+04 -3.78123346e+05 -1.12046700e+06 -2.79658670e+06 -1.02426461e+06 -1.75520536e+06 -2.83918938e+05 -6.17034713e+05 4.12339972e+05 2.01208717e+05 -4.82030236e+05 -1.05941925e+06 -3.56650771e+05 -1.34593467e+06 -1.01911302e+06 -1.22588925e+05 -3.53000366e+05 -6.13012995e+05 -1.88988495e+05 -3.19119496e+05 -5.86144667e+05 -7.02432412e+05 1.51575067e+05 -5.28711281e+05 -1.72139712e+06 -9.84863916e+05 -2.38758360e+05 -8.90476127e+05 -5.01388914e+05 -4.45366439e+05 9.90572690e+05 5.54823016e+05] [-9.78208182e+05 -9.85035849e+05 -7.58171299e+05 -2.34111202e+06 -6.43243741e+05 -1.11628547e+06 -2.37411625e+06 -4.82302472e+06 -2.08916933e+06 -2.04842445e+06 -9.51957328e+05 -1.74667471e+06 4.71446326e+05 4.50623678e+05 -1.37659192e+06 -1.56353627e+06 -9.74025153e+05 -2.79448642e+06 -9.68674073e+05 -9.86362044e+05 -1.36324535e+06 -1.13891160e+06 2.79421828e+05 -1.05145670e+06 -1.72924612e+06 -1.79470544e+06 6.86168490e+05 -1.46829131e+06 -3.47085636e+06 -2.39839544e+06 -1.05179946e+06 -8.80409943e+05 -1.41961735e+06 -1.22378983e+06 2.11597886e+06 1.70161418e+06] [-9.73334133e+05 -5.90142012e+03 -1.38076616e+06 -2.75248954e+06 -1.24657073e+06 -1.85625879e+06 -3.73577498e+06 -6.06780311e+06 -2.74175018e+06 -2.42497845e+06 -1.85616437e+06 -2.89896534e+06 9.40316037e+05 8.47524854e+05 -2.27394308e+06 -2.35685746e+06 -1.56699219e+06 -3.42233106e+06 -9.78810830e+04 -1.86585683e+06 -2.38707922e+06 -2.09699934e+06 1.27117511e+06 -1.73174233e+06 -2.85265044e+06 -3.02495718e+06 1.87767432e+06 -2.34925937e+06 -4.62377452e+06 -3.72357942e+06 -1.80103956e+06 -1.14860399e+06 -2.35820960e+06 -2.09667666e+06 3.99923838e+06 3.34168696e+06] [-2.03260967e+06 1.23111540e+06 -3.26812308e+06 -4.62224378e+06 -3.24419189e+06 -3.46373441e+06 -6.14775769e+06 -5.73726347e+06 -4.38084427e+06 -1.06556002e+06 -3.37912313e+06 -4.79454781e+06 9.37089727e+05 1.14273951e+06 -4.03796774e+06 -2.46686700e+06 -3.15188916e+06 -6.43976478e+06 1.18036626e+05 -3.80208425e+06 -4.41360687e+06 -4.06154316e+06 2.29882157e+06 -3.61029073e+06 -4.77777663e+06 -3.52037102e+06 3.12008975e+06 -4.07177870e+06 -5.22175934e+06 -5.90040003e+06 -3.71370966e+06 -1.27284298e+06 -4.13900348e+06 -3.94711755e+06 5.30600415e+06 5.03259502e+06] [-3.98961513e+06 2.80183138e+06 -6.17254183e+06 -7.85882822e+06 -6.22623023e+06 -6.14250757e+06 -8.68563912e+06 -4.59198607e+06 -6.85494094e+06 -2.38914501e+05 -5.93774067e+06 -7.78849601e+06 4.43303253e+05 7.72020835e+05 -6.71998639e+06 -2.94869195e+06 -5.78174778e+06 -1.11747009e+07 -1.57376743e+05 -6.80465190e+06 -7.43396496e+06 -6.62451520e+06 3.33973720e+06 -6.43379933e+06 -7.71439421e+06 -5.08276074e+06 4.23282864e+06 -6.79578005e+06 -5.74209359e+06 -8.41977503e+06 -6.62311812e+06 -1.62550326e+06 -7.00321741e+06 -6.88111692e+06 5.50940549e+06 6.08123520e+06] [-4.46182271e+06 5.13873250e+06 -8.80391887e+06 -9.84272000e+06 -8.98584688e+06 -8.27961705e+06 -1.06844778e+07 -2.38296564e+06 -8.18491914e+06 8.93273781e+05 -8.27058481e+06 -1.03263776e+07 4.38685277e+04 4.04172752e+05 -9.35281211e+06 -4.08464253e+06 -7.84148733e+06 -1.44504586e+07 1.20823795e+06 -9.55800928e+06 -1.02412259e+07 -7.95170390e+06 4.84755406e+06 -8.78632637e+06 -1.03099974e+07 -6.77920735e+06 5.55999550e+06 -9.04584273e+06 -5.72602629e+06 -9.55295865e+06 -9.17103178e+06 -9.53605228e+05 -9.46686103e+06 -9.35084829e+06 5.68133717e+06 7.01365782e+06] [-5.56426083e+06 4.06814169e+06 -1.32106164e+07 -1.16866853e+07 -1.30930151e+07 -1.27378674e+07 -1.04689085e+07 3.35408595e+05 -9.50874752e+06 -1.54590345e+06 -1.32784296e+07 -1.43758811e+07 -2.68127156e+06 -3.19699804e+06 -1.38868146e+07 -5.82064878e+06 -1.27392409e+07 -1.57284362e+07 3.58589903e+06 -1.39522296e+07 -1.45017312e+07 -9.70859932e+06 5.13547394e+06 -1.35159252e+07 -1.41285597e+07 -8.44141752e+06 4.58552865e+06 -1.33286489e+07 -7.12147198e+06 -9.38804651e+06 -1.34452696e+07 -3.26989203e+05 -1.35134891e+07 -1.37866760e+07 4.22589830e+06 5.97046316e+06] [-7.99188582e+06 -7.01327474e+05 -1.73065992e+07 -1.28411421e+07 -1.68458636e+07 -1.66740773e+07 -9.52374924e+06 2.91801521e+06 -1.00500739e+07 -5.32322210e+06 -1.78408949e+07 -1.74622836e+07 -5.83005745e+06 -7.12184654e+06 -1.77838625e+07 -8.19168399e+06 -1.72131946e+07 -1.46845785e+07 3.02444153e+06 -1.74898875e+07 -1.77528938e+07 -1.22899573e+07 4.00119571e+06 -1.76391465e+07 -1.69773070e+07 -9.30956376e+06 2.18033733e+06 -1.68629701e+07 -7.05381760e+06 -8.41184820e+06 -1.72511274e+07 -1.97541956e+06 -1.68775690e+07 -1.74132007e+07 2.92167412e+06 4.00386293e+06] [-1.03909336e+07 -6.67032595e+06 -1.85317970e+07 -1.35400346e+07 -1.78319823e+07 -1.79230920e+07 -8.36864257e+06 4.76746785e+06 -1.07276182e+07 -8.72402574e+06 -2.00489968e+07 -1.87143477e+07 -6.56760310e+06 -8.11605407e+06 -1.87992896e+07 -7.08226033e+06 -1.90657861e+07 -1.37617509e+07 1.51513142e+06 -1.83446180e+07 -1.84349221e+07 -1.42947788e+07 3.09234629e+06 -1.93026468e+07 -1.78755422e+07 -8.76174958e+06 1.33671802e+06 -1.80372359e+07 -3.84512815e+06 -7.69333243e+06 -1.81933043e+07 -2.00156859e+06 -1.76566225e+07 -1.87905790e+07 3.23724876e+06 3.28402462e+06] [-9.71483561e+06 -8.72699419e+06 -1.53772549e+07 -1.14670185e+07 -1.49496580e+07 -1.47531587e+07 -7.25534138e+06 3.23703304e+06 -9.41771624e+06 -6.38363521e+06 -1.73513753e+07 -1.63554485e+07 -4.29862089e+06 -4.82566983e+06 -1.56973069e+07 -1.75600962e+06 -1.57422945e+07 -1.20315082e+07 3.22441028e+05 -1.51547020e+07 -1.55677027e+07 -1.34081632e+07 2.89726817e+06 -1.62596835e+07 -1.55918279e+07 -6.32924915e+06 2.55037868e+06 -1.52125506e+07 4.22946441e+05 -6.28963249e+06 -1.51349787e+07 6.12000587e+05 -1.48185556e+07 -1.58673600e+07 4.74061317e+06 3.76794130e+06] [-8.51532863e+06 -1.09596257e+07 -1.12252830e+07 -8.47262377e+06 -1.09348259e+07 -1.09128702e+07 -5.47982790e+06 -1.11632899e+06 -7.63444768e+06 -3.42083225e+06 -1.32458280e+07 -1.28772940e+07 -3.45133069e+06 -2.63019868e+06 -1.13017203e+07 4.79587068e+06 -1.15201471e+07 -9.04839164e+06 -2.08091032e+06 -1.11975600e+07 -1.17724151e+07 -1.07975366e+07 9.55404101e+05 -1.21794415e+07 -1.23922314e+07 -4.15483267e+06 1.50758427e+06 -1.17106863e+07 4.21618813e+06 -4.97323340e+06 -1.11289202e+07 4.13419853e+06 -1.12490879e+07 -1.20018997e+07 5.13122661e+06 2.97337297e+06] [-7.76085316e+06 -1.51547740e+07 -6.76228611e+06 -8.39901351e+06 -6.76482293e+06 -6.67242738e+06 -6.66413556e+06 -7.99235822e+06 -6.46385089e+06 -3.56134178e+06 -8.42032761e+06 -9.16710844e+06 -1.34215812e+06 5.63946225e+05 -7.15175325e+06 5.50422696e+06 -6.55879179e+06 -9.50039012e+06 -7.00546610e+06 -6.63440906e+06 -7.76215003e+06 -9.42688169e+06 -1.49825720e+06 -7.68163339e+06 -8.96366333e+06 -3.24814008e+06 5.88784782e+05 -7.87919971e+06 4.27349562e+06 -5.50769240e+06 -6.72027561e+06 3.65747265e+06 -7.65158485e+06 -7.67209153e+06 6.84125584e+06 2.73542659e+06] [-6.31305889e+06 -1.69528661e+07 -2.93914657e+06 -8.34991712e+06 -2.75222960e+06 -3.43450294e+06 -8.42797009e+06 -1.74463777e+07 -6.04810739e+06 -7.67250363e+06 -4.74930506e+06 -6.47181626e+06 -5.90522018e+05 8.21592216e+05 -4.33646122e+06 1.26118428e+06 -2.97948558e+06 -9.38452954e+06 -1.13454090e+07 -2.95657971e+06 -4.80190498e+06 -9.19688361e+06 -3.86382739e+06 -4.06579627e+06 -6.46684418e+06 -5.34720141e+06 -1.35540309e+06 -5.10356930e+06 -1.61214409e+06 -6.95285463e+06 -3.12883233e+06 1.50564152e+05 -5.00130399e+06 -4.31682375e+06 7.62811267e+06 2.40861661e+06] [-7.16966169e+06 -1.43939486e+07 -4.57868430e+06 -1.00921213e+07 -4.02264182e+06 -5.65852497e+06 -1.17779283e+07 -2.29149919e+07 -8.67784884e+06 -1.34028086e+07 -6.76808821e+06 -8.50869849e+06 -3.76583959e+06 -3.35701213e+06 -6.66166239e+06 -6.34469055e+06 -5.32870116e+06 -1.09481514e+07 -1.30383778e+07 -4.96826889e+06 -6.82689718e+06 -1.12577810e+07 -5.65227678e+06 -5.83035420e+06 -8.37700967e+06 -1.11474288e+07 -4.70377807e+06 -7.36227759e+06 -1.02766909e+07 -1.09970600e+07 -5.10789092e+06 -5.63606149e+06 -7.18773076e+06 -6.34033523e+06 4.42578939e+06 3.16601195e+05] [-1.01711406e+07 -1.31855551e+07 -8.84799989e+06 -1.30103238e+07 -7.96968700e+06 -1.00935870e+07 -1.30230371e+07 -2.25567940e+07 -1.22935407e+07 -1.84036155e+07 -1.06327951e+07 -1.17624006e+07 -8.35708584e+06 -8.72983424e+06 -1.09011073e+07 -1.37620502e+07 -1.03209087e+07 -1.27398659e+07 -1.25844096e+07 -9.32478962e+06 -1.05503974e+07 -1.30400105e+07 -7.62315288e+06 -1.01063227e+07 -1.16343719e+07 -1.52118579e+07 -9.10906687e+06 -1.13701207e+07 -1.50672671e+07 -1.34953769e+07 -9.46711797e+06 -1.05444238e+07 -1.10432081e+07 -1.05864675e+07 -1.72056058e+06 -3.39114075e+06] [-1.23168970e+07 -1.33615653e+07 -1.20474880e+07 -1.61582279e+07 -1.07140532e+07 -1.32925397e+07 -1.26913619e+07 -2.24151874e+07 -1.51377778e+07 -2.31510233e+07 -1.36650270e+07 -1.44575985e+07 -1.03217736e+07 -1.09338567e+07 -1.43389622e+07 -1.97695658e+07 -1.38981150e+07 -1.47124828e+07 -1.09302425e+07 -1.25794668e+07 -1.34126000e+07 -1.48541900e+07 -8.56724077e+06 -1.32798929e+07 -1.42642191e+07 -1.80376243e+07 -1.11774520e+07 -1.43713098e+07 -1.54162353e+07 -1.43710044e+07 -1.27290649e+07 -1.32835311e+07 -1.38894675e+07 -1.38897336e+07 -5.12090134e+06 -5.57557059e+06] [-1.02755571e+07 -8.84472599e+06 -1.28710318e+07 -1.72033225e+07 -1.13584079e+07 -1.38016220e+07 -9.19841164e+06 -1.72140854e+07 -1.47130033e+07 -2.02823039e+07 -1.34845026e+07 -1.49298742e+07 -9.26034362e+06 -1.00985788e+07 -1.50367516e+07 -1.66844927e+07 -1.44665770e+07 -1.64159481e+07 -3.44958372e+06 -1.34824699e+07 -1.40716946e+07 -1.32996403e+07 -5.46657396e+06 -1.39632606e+07 -1.46626809e+07 -1.62664858e+07 -7.96413422e+06 -1.47434561e+07 -1.07375989e+07 -1.14052900e+07 -1.34841635e+07 -9.10791644e+06 -1.41697348e+07 -1.45439054e+07 -4.87911824e+06 -3.64047622e+06] [-8.14290915e+06 -1.00262597e+07 -1.03520902e+07 -1.63924190e+07 -8.82197996e+06 -1.14319311e+07 -5.66327966e+06 -1.42830174e+07 -1.18172354e+07 -1.72251073e+07 -1.01013407e+07 -1.18670865e+07 -6.95348037e+06 -8.69775223e+06 -1.22465547e+07 -1.13741411e+07 -1.20308458e+07 -1.52599214e+07 1.42675952e+06 -1.07307083e+07 -1.13236985e+07 -9.32319723e+06 -3.88296263e+06 -1.15207183e+07 -1.16830419e+07 -1.07054386e+07 -5.59545094e+06 -1.19885971e+07 -8.88334817e+06 -6.53167950e+06 -1.07427078e+07 -5.00713184e+06 -1.14227028e+07 -1.17966681e+07 -3.98933130e+06 -2.59294749e+06] [-4.40159620e+06 -6.67736535e+06 -6.27822935e+06 -1.36125616e+07 -5.18447079e+06 -7.04415228e+06 -3.94536505e+06 -6.05159941e+06 -7.04869674e+06 -8.56009828e+06 -5.54475031e+06 -6.92264868e+06 -2.69420783e+06 -4.97423699e+06 -7.31820810e+06 -4.30972145e+06 -7.64216066e+06 -1.34859167e+07 6.64298428e+06 -6.60931655e+06 -7.05957203e+06 -4.53513304e+06 2.35992102e+05 -7.20772309e+06 -6.89258461e+06 -3.83253882e+06 -4.26738375e+05 -7.11267371e+06 -5.26531115e+06 -2.37478932e+06 -6.37811117e+06 2.34892073e+05 -6.81726266e+06 -7.27643745e+06 -1.65734164e+06 4.86784928e+05] [-2.32602090e+06 -5.03687838e+06 -2.62091245e+06 -1.03122973e+07 -1.87974346e+06 -3.28364582e+06 -1.40098922e+06 3.74697798e+05 -3.55524623e+06 -2.47852228e+06 -2.16808003e+06 -2.51581370e+06 2.60405499e+04 -2.73690941e+06 -2.80607380e+06 1.88942559e+06 -4.12148163e+06 -1.07060597e+07 8.61194976e+06 -2.82725152e+06 -2.99938333e+06 -1.84630113e+05 1.86907169e+06 -3.59534950e+06 -2.58286879e+06 1.48120747e+06 1.81274381e+06 -2.85015286e+06 -2.82939900e+06 8.83340467e+05 -2.54671337e+06 3.88485638e+06 -2.57960437e+06 -3.29067930e+06 -1.48887247e+06 5.81779588e+05] [-1.64061593e+06 -3.59407851e+06 -7.89083657e+05 -7.93631587e+06 -1.83532244e+05 -1.49749922e+06 -4.90639824e+05 2.12327775e+06 -2.42349187e+06 -8.05839479e+05 -6.29521149e+05 -4.42871976e+05 3.38027727e+05 -2.29169070e+06 -6.06736173e+05 3.08338782e+06 -2.36749291e+06 -8.61005036e+06 6.84429155e+06 -9.72322886e+05 -8.44095112e+05 1.28950867e+06 1.29545669e+06 -1.74058523e+06 -4.11127711e+05 2.75700160e+06 1.21463614e+06 -8.75728120e+05 -2.96983016e+06 7.94521746e+05 -7.00877885e+05 3.78674467e+06 -4.69662168e+05 -1.30405238e+06 -2.01927809e+06 -1.92134737e+05] [-1.64361825e+06 -2.23545775e+06 2.81788162e+05 -5.29013593e+06 6.41960010e+05 -2.85991036e+05 -1.03047479e+06 7.68882728e+05 -2.23681048e+06 -7.20742686e+04 1.16088049e+05 4.21276829e+05 6.95228200e+05 -1.25689341e+06 6.53287258e+05 2.16673795e+06 -1.05833254e+06 -6.46439964e+06 3.12559646e+06 2.25927854e+05 3.60558770e+05 8.33342701e+05 2.96720716e+05 -6.34775459e+05 6.50971099e+05 2.47137041e+06 6.89362624e+05 2.23258505e+05 -4.41408574e+06 -9.06440887e+05 4.23247401e+05 1.19019884e+06 6.14595743e+05 -3.00223333e+05 -1.07063014e+06 -1.50232561e+05] [-1.10544915e+06 -1.62509695e+06 5.42159848e+04 -2.74167154e+06 2.43367223e+05 -2.29776934e+05 -7.53392906e+05 -1.81055022e+05 -1.36532153e+06 -7.63075535e+05 -1.06074644e+05 6.72169651e+04 1.63721420e+05 -8.88355013e+05 2.06831933e+05 4.48812947e+05 -6.37564978e+05 -3.13560062e+06 6.36307685e+05 4.23125026e+04 1.38207186e+05 -9.53390796e+04 -2.71635738e+05 -4.31220474e+05 2.45732957e+05 7.79511597e+05 -6.54498909e+04 -1.63150812e+04 -2.63451534e+06 -8.35309860e+05 1.13273465e+05 -2.59722234e+05 2.01435553e+05 -2.73049824e+05 -6.10954986e+05 -2.70758574e+05] [-1.24887194e+05 -1.20829856e+05 -1.38828312e+04 -2.62735192e+05 3.68535899e+03 -3.66334768e+04 -1.01096217e+05 -8.78653986e+04 -1.58421302e+05 -1.28733156e+05 -2.03125915e+04 -1.47873118e+04 -5.44996599e+04 -1.41417254e+05 -9.88728385e+03 -2.57876901e+04 -6.94649845e+04 -2.78547418e+05 2.81054434e+04 -1.64218812e+04 -3.24175752e+03 -2.55051561e+04 -6.76268331e+04 -4.99661887e+04 -1.57154190e+03 8.82095030e+03 -8.52021427e+04 -2.56510704e+04 -2.56023689e+05 -1.00578769e+05 -1.30778678e+04 -6.10464666e+04 -4.65700028e+03 -4.87712138e+04 -1.22090463e+05 -5.37076723e+04] [-4.17789280e+03 -2.56156036e+04 1.85038116e+04 -9.59003207e+03 1.98759967e+04 1.36936722e+04 2.28088669e+03 -3.13601047e+04 -4.90828139e+03 -4.53334026e+03 1.86175549e+04 1.60014388e+04 4.24988560e+03 -2.36844235e+03 1.85112314e+04 2.46480520e+04 1.51457120e+04 -8.86300437e+03 -7.01475415e+03 1.89782246e+04 1.82728979e+04 1.41207791e+04 -1.21056370e+04 1.54273953e+04 1.54674565e+04 1.77505101e+04 -8.92822776e+03 1.35595614e+04 -2.39731425e+04 1.30011714e+04 1.87635643e+04 6.65225273e+03 1.63013625e+04 1.52093444e+04 1.50299166e+03 -9.73810110e+02] [ 1.30692910e+02 5.28949036e+02 -7.37443594e+01 -3.96903977e+02 -9.36865585e+01 -6.14111381e+01 -2.83784933e+02 -2.34751257e+00 -3.08676999e+02 4.07594056e+02 -1.17397519e+02 -2.63600176e+02 7.68894489e+01 1.91758911e+02 -4.87038423e+01 1.83719468e+02 -1.00133877e+02 -8.98192933e+02 2.89944773e+02 -1.23868870e+02 -1.51123882e+02 -2.09376245e+02 1.67054220e+02 -2.13687156e+02 -1.34016461e+02 -2.01750911e+01 2.63846465e+02 -1.04496388e+02 1.24769621e+02 -6.74924345e+02 -9.99240432e+01 2.62100226e+02 -6.53641267e+01 -1.62293980e+02 1.97777724e+02 3.98579386e+02] [-2.79801013e+04 7.77047103e+03 -8.74053425e+03 -1.21859775e+05 -1.25604488e+04 -1.36931483e+04 -1.73798773e+05 -8.37608665e+04 -8.58495681e+04 -5.53111864e+03 -3.06626673e+04 -6.17534866e+04 9.98860836e+04 9.13929706e+04 -3.25643918e+04 -3.09283003e+04 -1.00783361e+04 -1.83918892e+05 7.38148788e+03 -2.05243920e+04 -4.20575610e+04 -9.78289963e+04 1.07286395e+05 -2.65015478e+04 -5.53096392e+04 -6.02820662e+04 1.50726716e+05 -3.43599108e+04 -5.95104649e+04 -1.36266630e+05 -1.72117346e+04 3.63781864e+04 -3.53221946e+04 -3.66341227e+04 2.01045763e+05 1.90828230e+05] [-1.46484278e+05 -3.38967435e+05 -3.27237440e+04 -3.47001859e+05 -4.73880914e+03 -1.04721239e+05 -3.28941819e+05 -8.13768764e+05 -3.19423080e+05 -5.04346722e+05 -1.17002816e+05 -2.10821018e+05 1.03361543e+05 2.01736490e+04 -1.34228787e+05 -1.86738657e+05 -1.05907042e+05 -3.65159703e+05 -2.21290147e+05 -6.92223962e+04 -1.37945543e+05 -2.26346487e+05 6.01552216e+04 -1.22227370e+05 -1.87713334e+05 -2.60563518e+05 1.09302536e+05 -1.65355257e+05 -4.20968613e+05 -3.07124481e+05 -8.52692679e+04 -5.18431033e+04 -1.37417446e+05 -1.27490306e+05 4.33723135e+05 3.45332267e+05] [-7.15257236e+05 -9.90666287e+05 -2.55038676e+05 -1.37426486e+06 -1.66401652e+05 -4.58816974e+05 -1.37796416e+06 -2.40570909e+06 -1.14122789e+06 -1.27286639e+06 -4.59508475e+05 -8.48447704e+05 5.15351403e+05 4.04435955e+05 -6.22015508e+05 -9.66953233e+05 -4.16718853e+05 -1.61437791e+06 -1.06949252e+06 -3.12423465e+05 -5.61154919e+05 -8.55587714e+05 1.97426999e+05 -4.54253097e+05 -8.06309334e+05 -9.89434350e+05 5.51419136e+05 -6.64677884e+05 -1.58730561e+06 -1.31387518e+06 -4.11660590e+05 -7.18724585e+05 -6.67518125e+05 -5.80799631e+05 1.38079478e+06 1.05877089e+06] [-9.08017735e+05 1.94665969e+05 -1.05437603e+06 -2.32038582e+06 -9.70009432e+05 -1.32359656e+06 -2.79528374e+06 -3.33480302e+06 -2.24805192e+06 -1.10693176e+06 -1.26990887e+06 -2.00074509e+06 7.79106366e+05 7.28507858e+05 -1.57136724e+06 -1.32634323e+06 -1.18493207e+06 -3.19256590e+06 -4.41610985e+05 -1.30648982e+06 -1.64038855e+06 -1.61473148e+06 1.09299094e+06 -1.32342053e+06 -1.95914237e+06 -1.91418700e+06 1.57951731e+06 -1.66185246e+06 -2.89444375e+06 -2.86276314e+06 -1.31257158e+06 -5.45853567e+05 -1.64422644e+06 -1.54667545e+06 2.75527608e+06 2.53960282e+06] [-1.88103705e+06 9.43301489e+05 -2.66199644e+06 -3.80809101e+06 -2.55830906e+06 -2.92601125e+06 -4.48316648e+06 -2.84802835e+06 -3.53510412e+06 -1.39814323e+06 -3.00505936e+06 -3.86347751e+06 1.23062664e+06 9.51238420e+05 -3.32370660e+06 -2.43141530e+06 -2.76867231e+06 -4.93567182e+06 2.48634871e+05 -3.01410034e+06 -3.42431673e+06 -3.40113257e+06 2.09548691e+06 -3.00363972e+06 -3.76034593e+06 -2.90815423e+06 2.97821655e+06 -3.31691248e+06 -3.05889093e+06 -4.23960764e+06 -2.98953109e+06 -1.27023086e+06 -3.36460187e+06 -3.38007807e+06 4.17331275e+06 3.86008793e+06] [-3.08935611e+06 2.71355552e+06 -5.52479742e+06 -5.39075900e+06 -5.57405807e+06 -5.34765422e+06 -7.05148221e+06 3.35013400e+04 -5.04895476e+06 4.39771753e+05 -5.46565454e+06 -6.48304350e+06 7.41787168e+05 5.45125500e+05 -5.88626816e+06 -2.41936013e+06 -5.28009839e+06 -7.61592878e+06 8.27133959e+05 -5.92036997e+06 -6.30144575e+06 -6.23729887e+06 3.17095679e+06 -5.83054273e+06 -6.31903391e+06 -3.76794286e+06 4.13467983e+06 -5.76152660e+06 -1.92181029e+06 -6.41726703e+06 -5.78853776e+06 -1.49503528e+06 -5.86157073e+06 -6.12648305e+06 4.50456865e+06 4.88631792e+06] [-4.88471092e+06 4.85387304e+06 -9.18365842e+06 -7.92704956e+06 -9.32248801e+06 -8.60282408e+06 -9.08078672e+06 3.73232141e+06 -7.12511367e+06 1.62843323e+06 -8.80792916e+06 -9.79377384e+06 -8.70748913e+04 -3.64871254e+05 -9.23015553e+06 -3.35586723e+06 -8.61536448e+06 -1.12257801e+07 1.38007081e+06 -9.61195393e+06 -9.88747062e+06 -9.04302691e+06 4.58126707e+06 -9.31455068e+06 -9.62471080e+06 -5.42269288e+06 5.30768063e+06 -8.95770564e+06 -1.82506958e+06 -8.41397447e+06 -9.32255102e+06 -2.02128590e+06 -9.21110725e+06 -9.61473516e+06 4.35694145e+06 5.48961056e+06] [-5.07697934e+06 7.21642260e+06 -1.36985699e+07 -8.82810228e+06 -1.39736890e+07 -1.24465576e+07 -1.04880005e+07 8.04788333e+06 -8.00475426e+06 3.37592560e+06 -1.30521367e+07 -1.36132205e+07 -2.18542086e+06 -2.44557835e+06 -1.34326771e+07 -3.80772758e+06 -1.25394312e+07 -1.31425092e+07 3.67248767e+06 -1.42168227e+07 -1.42655786e+07 -1.11259331e+07 5.79435903e+06 -1.35171662e+07 -1.35579114e+07 -7.71165590e+06 5.66965800e+06 -1.27328626e+07 -1.50084074e+06 -8.81752936e+06 -1.36475958e+07 -2.78097563e+05 -1.30753891e+07 -1.36663487e+07 2.98825970e+06 5.14186726e+06] [-6.67258031e+06 4.84980230e+06 -1.87222472e+07 -9.84557076e+06 -1.87839479e+07 -1.71942900e+07 -1.01551880e+07 1.29859864e+07 -8.40470730e+06 2.19159456e+06 -1.82798888e+07 -1.73910256e+07 -5.54697591e+06 -6.53922047e+06 -1.81093472e+07 -4.61259942e+06 -1.78800000e+07 -1.35571069e+07 5.60013162e+06 -1.89680375e+07 -1.86934807e+07 -1.23518426e+07 5.64616399e+06 -1.87255822e+07 -1.72339566e+07 -7.71597513e+06 3.94722425e+06 -1.70390626e+07 -1.22051444e+06 -7.20966733e+06 -1.84527448e+07 5.88800837e+05 -1.71894790e+07 -1.81050259e+07 5.81833437e+05 3.32659147e+06] [-8.70437181e+06 7.49106050e+05 -2.09941425e+07 -1.04652176e+07 -2.09331887e+07 -1.89895929e+07 -8.59759153e+06 1.81943237e+07 -8.23063506e+06 1.24005567e+06 -2.09154912e+07 -1.84496908e+07 -7.30142277e+06 -8.49249321e+06 -1.94467234e+07 -2.83174973e+06 -2.02638611e+07 -1.22885686e+07 6.13632896e+06 -2.07080626e+07 -1.99321116e+07 -1.35634822e+07 5.28569077e+06 -2.09322635e+07 -1.79085955e+07 -5.98320091e+06 3.04584199e+06 -1.84040684e+07 2.45047362e+06 -5.62941320e+06 -2.03186520e+07 9.65944837e+05 -1.82019175e+07 -1.97659904e+07 -6.65505141e+05 2.20974275e+06] [-9.68825042e+06 -4.18093347e+06 -1.76613791e+07 -1.14316428e+07 -1.74932809e+07 -1.59318647e+07 -5.99466297e+06 1.78814971e+07 -8.05698356e+06 1.11891327e+06 -1.81675554e+07 -1.55115120e+07 -5.53414691e+06 -6.68172051e+06 -1.56663164e+07 1.40712807e+06 -1.76849794e+07 -1.26285574e+07 5.61080697e+06 -1.71083522e+07 -1.61820696e+07 -1.20622332e+07 4.31045717e+06 -1.81044256e+07 -1.45090281e+07 -2.06103360e+06 3.04935210e+06 -1.53113207e+07 4.66517424e+06 -4.77804331e+06 -1.68808714e+07 2.36455925e+06 -1.46018644e+07 -1.69032192e+07 -7.32983664e+05 1.46152560e+06] [-7.84705404e+06 -4.83007106e+06 -1.07674832e+07 -9.83263562e+06 -1.07560327e+07 -9.72562266e+06 -4.00095746e+06 1.36589768e+07 -6.59946789e+06 4.03819520e+06 -1.08719512e+07 -9.62955961e+06 -1.62116478e+06 -2.37012639e+06 -9.16653664e+06 6.51595655e+06 -1.08816069e+07 -1.16823811e+07 4.86348317e+06 -1.03910852e+07 -9.72775499e+06 -7.58958115e+06 4.38025422e+06 -1.13100446e+07 -9.01103392e+06 1.57029611e+06 4.71892196e+06 -9.35967453e+06 6.72911255e+06 -2.46259106e+06 -1.03067708e+07 4.98282394e+06 -8.66922381e+06 -1.04470440e+07 5.79209369e+05 2.35388786e+06] [-4.50432115e+06 -6.83593718e+06 -3.41789407e+06 -6.46454615e+06 -3.80403050e+06 -2.92921630e+06 -2.91450571e+06 5.03427508e+06 -3.01273538e+06 6.39121108e+06 -3.04485935e+06 -3.29020311e+06 1.38371937e+06 1.69771112e+06 -2.08229688e+06 1.11002306e+07 -3.03422239e+06 -8.98362558e+06 1.95403701e+06 -3.34565524e+06 -3.14633971e+06 -2.55203620e+06 2.72054005e+06 -3.75330158e+06 -3.26840784e+06 4.76753429e+06 4.41142287e+06 -2.88560462e+06 7.03615777e+06 -5.50752042e+05 -3.22660345e+06 7.96029022e+06 -2.59120991e+06 -3.24856501e+06 3.18539455e+06 2.99342176e+06] [-3.11982889e+06 -1.11012084e+07 2.98404913e+06 -5.38921874e+06 2.21448948e+06 2.97772268e+06 -5.00765199e+06 -8.10738238e+06 -1.61431199e+06 5.06433419e+06 3.35454405e+06 1.20469641e+06 3.57794662e+06 5.89720921e+06 3.00615137e+06 7.59582937e+06 3.67983872e+06 -9.58358734e+06 -7.27885840e+06 3.22971676e+06 1.97170702e+06 -1.35474359e+06 -1.61465299e+06 2.49701019e+06 8.09937236e+05 4.30821405e+06 2.09487426e+06 2.11787283e+06 2.62833887e+06 -2.98543754e+06 3.02209455e+06 3.45926981e+06 1.73132336e+06 2.37927531e+06 5.77715953e+06 2.59180811e+06] [-2.77446827e+06 -1.14584690e+07 5.07479158e+06 -5.46609976e+06 4.48013226e+06 4.59800943e+06 -8.47374444e+06 -1.88745217e+07 -2.01577215e+06 2.99413879e+05 5.49199820e+06 2.35858784e+06 3.78226891e+06 5.99035439e+06 3.79913303e+06 -2.27824138e+05 5.72434747e+06 -9.53123670e+06 -1.30380779e+07 5.42282151e+06 3.29175316e+06 -3.12608552e+06 -3.98758760e+06 4.72972032e+06 1.63010241e+06 -4.57745817e+05 -9.90135916e+04 3.24354120e+06 -6.26477774e+06 -6.47760391e+06 4.89264995e+06 -2.95391150e+06 2.53552154e+06 4.12062484e+06 7.36591546e+06 2.57516843e+06] [-4.91636249e+06 -8.67427057e+06 1.10986826e+06 -7.70910252e+06 1.08886949e+06 1.94854476e+05 -1.13142386e+07 -2.29231764e+07 -5.94037688e+06 -8.75448861e+06 1.05872521e+06 -1.84914227e+06 -1.33686924e+05 9.57217449e+05 -1.20049011e+06 -1.14352321e+07 9.65828955e+05 -9.57196433e+06 -1.45012587e+07 1.32308425e+06 -6.36045374e+05 -6.74418665e+06 -5.23412501e+06 7.68196311e+05 -2.23223533e+06 -8.24283870e+06 -3.50536351e+06 -1.26269638e+06 -1.37301203e+07 -1.08350374e+07 6.08639523e+05 -1.03849209e+07 -1.79402410e+06 -3.52403042e+05 4.76307660e+06 9.02661196e+05] [-7.44458466e+06 -4.61439668e+06 -6.41681417e+06 -8.53233466e+06 -5.95135449e+06 -7.09433833e+06 -1.36651314e+07 -2.16645098e+07 -9.84325099e+06 -1.53169050e+07 -6.76469258e+06 -8.73048109e+06 -4.84957798e+06 -4.52002742e+06 -9.11623265e+06 -2.05572217e+07 -6.58159739e+06 -8.15608398e+06 -1.32310874e+07 -6.56175353e+06 -7.91885536e+06 -1.11290183e+07 -5.15086627e+06 -6.37475759e+06 -8.97148152e+06 -1.60463422e+07 -6.23572092e+06 -8.40812803e+06 -1.47680111e+07 -1.30976535e+07 -7.09995048e+06 -1.45419001e+07 -8.90959217e+06 -7.68887797e+06 1.08859194e+06 -7.68206511e+05] [-7.89751619e+06 -1.70798823e+06 -1.20690923e+07 -1.03743051e+07 -1.14960774e+07 -1.20895403e+07 -1.35126817e+07 -1.94139851e+07 -1.22200629e+07 -1.79222233e+07 -1.25082655e+07 -1.42244515e+07 -7.05802627e+06 -6.35685936e+06 -1.50607933e+07 -2.34518044e+07 -1.16543464e+07 -9.54169295e+06 -8.94548733e+06 -1.26451875e+07 -1.37483588e+07 -1.39419060e+07 -3.87196847e+06 -1.18404523e+07 -1.44833537e+07 -1.96015544e+07 -6.33604558e+06 -1.35755859e+07 -1.23614793e+07 -1.33177728e+07 -1.28854743e+07 -1.34467786e+07 -1.40570596e+07 -1.30132593e+07 8.74355343e+03 -4.88269110e+05] [-6.27273019e+06 5.64943109e+05 -1.41443323e+07 -1.13005833e+07 -1.31703048e+07 -1.40793788e+07 -9.09193753e+06 -1.59320993e+07 -1.20474005e+07 -1.74411978e+07 -1.40329087e+07 -1.64104498e+07 -7.35412808e+06 -6.62531078e+06 -1.73499792e+07 -1.97686999e+07 -1.37627139e+07 -1.05444750e+07 -1.51495596e+06 -1.49354370e+07 -1.59335473e+07 -1.28217472e+07 -1.54615456e+06 -1.39191097e+07 -1.66854364e+07 -1.87774217e+07 -4.27284210e+06 -1.56104863e+07 -7.82734980e+06 -9.77203352e+06 -1.49329558e+07 -8.46883562e+06 -1.58589914e+07 -1.50288486e+07 -3.77012737e+04 6.05350487e+05] [-3.62078236e+06 -2.16502354e+06 -1.08794582e+07 -1.00148159e+07 -9.94691944e+06 -1.09852778e+07 -5.49959257e+06 -1.13998553e+07 -7.90404406e+06 -1.25804824e+07 -1.02743570e+07 -1.27762402e+07 -4.62715309e+06 -4.35250508e+06 -1.36468630e+07 -1.19434107e+07 -1.05982049e+07 -9.15711013e+06 2.96347410e+06 -1.15620724e+07 -1.25999490e+07 -8.83746688e+06 3.59154122e+05 -1.08633651e+07 -1.30999062e+07 -1.21240232e+07 -1.18659271e+06 -1.22281109e+07 -2.45892537e+06 -4.49580692e+06 -1.15138383e+07 -2.98934206e+06 -1.25358546e+07 -1.17099138e+07 1.10164481e+06 1.74893874e+06] [-1.87722529e+06 -2.75162825e+06 -7.17433655e+06 -8.21746710e+06 -6.57042662e+06 -7.08672786e+06 -3.27153050e+06 -3.15845040e+06 -4.01001500e+06 -5.36114737e+06 -6.37331267e+06 -8.03990632e+06 -1.95938609e+06 -2.04590901e+06 -8.80766393e+06 -4.48264288e+06 -7.01132023e+06 -7.50706081e+06 6.12170697e+06 -7.61256244e+06 -8.39872044e+06 -5.00634603e+06 2.48920568e+06 -7.26773139e+06 -8.38043777e+06 -5.34769795e+06 1.72548976e+06 -7.81732988e+06 2.38844532e+06 -6.62862761e+05 -7.48446256e+06 2.09163547e+06 -8.14943895e+06 -7.77627418e+06 1.21990700e+06 2.29802435e+06] [-1.31122922e+06 -2.56315047e+06 -4.21507938e+06 -6.07849805e+06 -3.77799179e+06 -4.17490346e+06 3.24038907e+05 1.89103486e+06 -1.68723567e+06 -1.38504811e+06 -3.43351257e+06 -4.26689817e+06 -8.54649898e+05 -1.17239902e+06 -4.89666309e+06 2.57952388e+05 -4.28893142e+06 -5.27670981e+06 6.61844015e+06 -4.40284404e+06 -4.70789411e+06 -1.39246355e+06 2.19988222e+06 -4.25253728e+06 -4.63346710e+06 -1.07755471e+06 1.72454872e+06 -4.38350228e+06 4.67184468e+06 2.41540136e+06 -4.33592957e+06 4.50308616e+06 -4.60797708e+06 -4.52938554e+06 -7.06484644e+05 4.12045991e+05] [-8.36689440e+05 -1.95274760e+06 -1.96797439e+06 -3.70278753e+06 -1.71847050e+06 -1.97502858e+06 9.60769189e+05 3.15756001e+06 -4.92754636e+05 7.34631836e+05 -1.55501772e+06 -1.59471732e+06 -4.77183815e+05 -9.10384772e+05 -1.96811570e+06 2.50013810e+06 -2.23545600e+06 -3.55886213e+06 4.99941152e+06 -2.00027602e+06 -1.97632097e+06 1.90355381e+05 1.25546172e+06 -2.09579733e+06 -1.77329807e+06 1.17746650e+06 9.07368347e+05 -1.85493536e+06 3.26573215e+06 2.11993688e+06 -1.93068338e+06 4.16676243e+06 -1.84947478e+06 -2.07163188e+06 -1.32113690e+06 -4.09121294e+05] [-6.18589029e+05 -3.44632099e+05 -5.10384856e+05 -2.47904780e+06 -4.01393393e+05 -5.89345155e+05 -8.94627802e+04 5.78657721e+05 -8.33409386e+05 6.74187202e+05 -3.03986573e+05 -2.47972635e+05 -1.08917015e+05 -5.83251076e+05 -2.57689233e+05 1.49706478e+06 -8.65211014e+05 -3.23449167e+06 2.57745959e+06 -5.20823844e+05 -4.29922032e+05 4.39197025e+05 2.74033147e+05 -7.48596658e+05 -2.62413648e+05 1.06534359e+06 2.40317442e+05 -3.78242641e+05 -1.13838118e+06 -1.93921572e+04 -4.10249471e+05 1.92111887e+06 -2.41353262e+05 -6.35478809e+05 -6.83539000e+05 -1.74450020e+05] [-4.21200796e+05 -3.80445492e+05 1.10200139e+04 -1.34845123e+06 6.93340058e+04 -7.66313255e+04 -3.37784128e+05 -4.31991133e+05 -6.39994381e+05 -1.57510704e+05 1.44451878e+04 -1.57790391e+03 1.56485432e+05 -1.77390173e+05 2.80924552e+04 6.55820265e+04 -2.12134601e+05 -1.68225625e+06 5.08980698e+05 -2.56252471e+03 1.83807279e+04 4.70898042e+04 -2.63547711e+04 -1.45357074e+05 4.16188224e+04 1.62443432e+05 6.69341672e+04 -1.74392449e+04 -1.10806073e+06 -3.52160167e+05 2.94122901e+04 1.76792326e+05 4.09475312e+04 -1.51544335e+05 -1.77434670e+05 -6.85071467e+04] [-5.10054949e+04 -5.65496490e+04 5.67473755e+04 -1.42590924e+05 5.42021127e+04 5.26120231e+04 -1.01820159e+05 -6.71873626e+04 -5.38730709e+04 1.60635415e+04 4.57578195e+04 5.17286230e+04 8.86026801e+04 4.84257735e+04 6.09969539e+04 -1.29694880e+03 3.27239736e+04 -2.21604373e+05 8.77453221e+04 5.51509427e+04 5.20649119e+04 -3.57433220e+04 6.99499132e+04 3.55753820e+04 6.33678161e+04 1.31702749e+04 9.74439389e+04 5.54791666e+04 -1.32044166e+05 -8.93866186e+04 6.54060304e+04 2.26663892e+04 5.88516390e+04 2.57688353e+04 8.07290994e+04 8.26554803e+04] [-3.46723239e+03 -1.10041242e+04 5.25100193e+03 -4.90386445e+03 5.77675087e+03 3.32696918e+03 4.07105942e+02 -1.47808495e+04 -3.22166755e+03 -3.54314644e+03 4.71949247e+03 4.06747669e+03 1.47413229e+03 -1.54534046e+03 4.92266467e+03 9.32914628e+03 3.34449101e+03 -4.44297634e+03 -3.69174260e+03 5.42764924e+03 5.00144372e+03 3.74038559e+03 -6.62745011e+03 3.46859451e+03 3.87876713e+03 4.71016459e+03 -6.17150339e+03 3.07255724e+03 -1.26321811e+04 3.67448487e+03 5.27422121e+03 2.99551671e+03 4.38463829e+03 3.56486760e+03 -1.03413346e+02 -2.16638346e+03] [ 1.67075875e+04 6.76734457e+04 -9.40921221e+03 -5.08087614e+04 -1.19651816e+04 -7.79813745e+03 -3.63419209e+04 -4.09654465e+02 -3.94254902e+04 5.21059746e+04 -1.50075494e+04 -3.37647427e+04 9.81578814e+03 2.46695500e+04 -6.30943631e+03 2.36314964e+04 -1.27076028e+04 -1.14958063e+05 3.70461020e+04 -1.59494007e+04 -1.93965293e+04 -2.69146775e+04 2.14988289e+04 -2.74476012e+04 -1.72334213e+04 -2.46556152e+03 3.36895129e+04 -1.33812961e+04 1.59328360e+04 -8.63976970e+04 -1.28600274e+04 3.35636047e+04 -8.26513052e+03 -2.08422207e+04 2.52689590e+04 5.09456590e+04] [-9.85123436e+03 7.49656354e+04 -3.89247955e+04 -1.20380271e+05 -4.21570507e+04 -3.78079491e+04 -1.22403974e+05 -3.83184335e+04 -9.61252517e+04 4.80334326e+04 -5.14503112e+04 -8.39683117e+04 2.38575900e+04 3.46511968e+04 -4.21371555e+04 -4.37458838e+03 -4.30253691e+04 -2.18898978e+05 2.60427290e+04 -5.00600123e+04 -6.10212451e+04 -8.99617585e+04 4.32666776e+04 -6.65726722e+04 -6.18483215e+04 -4.53251584e+04 6.83478180e+04 -5.05868316e+04 -1.57616214e+04 -1.72145608e+05 -4.49933454e+04 2.74289349e+04 -4.59165667e+04 -6.13667074e+04 7.49355278e+04 1.00605974e+05] [-1.52069016e+05 -2.73667693e+05 -5.97387459e+04 -3.27346994e+05 -3.89290793e+04 -1.36244352e+05 -3.22727113e+05 -7.34647144e+05 -3.40095786e+05 -4.60377468e+05 -1.54753799e+05 -2.42320660e+05 6.56065243e+04 -2.47667083e+04 -1.49944854e+05 -1.82998371e+05 -1.38210723e+05 -3.71617973e+05 -1.91524120e+05 -1.07939837e+05 -1.68423817e+05 -2.56082826e+05 5.64206167e+04 -1.58258652e+05 -2.15568072e+05 -2.35112971e+05 9.71787642e+04 -1.91416341e+05 -3.87294879e+05 -3.85442984e+05 -1.10642927e+05 -5.06051957e+04 -1.64261879e+05 -1.61464183e+05 4.04505862e+05 3.38337947e+05] [-3.56003665e+05 -4.15425061e+05 -2.13631695e+05 -7.18747691e+05 -1.86362165e+05 -3.59291578e+05 -1.14305654e+06 -1.71136369e+06 -7.37309128e+05 -8.00511674e+05 -3.54035817e+05 -5.94372432e+05 3.83565102e+05 2.83418608e+05 -4.62247727e+05 -7.37120164e+05 -2.50766805e+05 -9.11688866e+05 -5.86791638e+05 -3.07176593e+05 -4.79199554e+05 -6.68667397e+05 2.87055075e+05 -3.03627574e+05 -6.27193623e+05 -7.95405265e+05 5.11709888e+05 -5.01549749e+05 -1.10638957e+06 -9.65085368e+05 -3.29186214e+05 -5.25163725e+05 -5.29295953e+05 -3.81959081e+05 1.17970473e+06 9.49458097e+05] [-7.71159786e+05 4.32734712e+05 -8.85920294e+05 -1.67338129e+06 -8.17394791e+05 -1.14304128e+06 -2.38655364e+06 -1.83289918e+06 -1.76182875e+06 -1.04530187e+06 -1.18137965e+06 -1.61758150e+06 8.63642217e+05 6.46940533e+05 -1.35099651e+06 -1.54870950e+06 -9.90287326e+05 -2.18921574e+06 -2.85765082e+05 -1.10559835e+06 -1.34817793e+06 -1.60476373e+06 1.14031414e+06 -1.07862299e+06 -1.58678668e+06 -1.82454053e+06 1.61944024e+06 -1.37849073e+06 -1.80404982e+06 -2.15484092e+06 -1.08791842e+06 -9.03814478e+05 -1.41613651e+06 -1.32634585e+06 2.26924007e+06 2.08759279e+06] [-2.24922218e+06 1.52371046e+06 -3.36700422e+06 -3.02095792e+06 -3.31622871e+06 -3.39321038e+06 -3.44794241e+06 6.69401457e+05 -3.19173937e+06 -7.02373684e+05 -3.50688252e+06 -3.98265245e+06 4.98774893e+05 2.98206966e+05 -3.72851499e+06 -2.69328006e+06 -3.37454260e+06 -3.61739347e+06 5.78728940e+04 -3.49494475e+06 -3.70053699e+06 -4.06322348e+06 1.68539158e+06 -3.58321874e+06 -3.79162675e+06 -2.48524546e+06 2.33609572e+06 -3.62127966e+06 -3.32497247e+05 -3.30481643e+06 -3.53276254e+06 -2.09424035e+06 -3.70210941e+06 -3.89960918e+06 2.57630483e+06 2.60455654e+06] [-3.36934555e+06 3.38728809e+06 -6.69938036e+06 -3.88696964e+06 -6.79295019e+06 -6.20932771e+06 -5.30489695e+06 5.57605445e+06 -4.18547904e+06 8.43806942e+05 -6.44056055e+06 -6.84786691e+06 -2.52708640e+05 -4.52385344e+05 -6.76903685e+06 -3.10192267e+06 -6.26629472e+06 -4.99737373e+06 6.49247764e+05 -6.79081985e+06 -6.81391913e+06 -6.96015791e+06 2.83354410e+06 -6.73938112e+06 -6.60768817e+06 -3.38862737e+06 3.44900743e+06 -6.40100699e+06 2.34603606e+06 -4.54266561e+06 -6.79159039e+06 -2.58150295e+06 -6.56971143e+06 -6.97990680e+06 2.22916889e+06 2.88304499e+06] [-5.53053673e+06 4.52444139e+06 -1.19241169e+07 -5.99880865e+06 -1.21982977e+07 -1.09094281e+07 -8.49083805e+06 1.16035821e+07 -6.30604732e+06 2.24350576e+06 -1.16476904e+07 -1.14735451e+07 -1.95761175e+06 -2.75057109e+06 -1.15047489e+07 -4.49062603e+06 -1.12361231e+07 -8.05880796e+06 1.38290332e+06 -1.21304913e+07 -1.18959987e+07 -1.13109682e+07 3.98723099e+06 -1.19163143e+07 -1.11364076e+07 -5.87157670e+06 4.05248949e+06 -1.09155913e+07 2.95496073e+06 -6.86172404e+06 -1.17932266e+07 -3.50033014e+06 -1.12457529e+07 -1.20473503e+07 5.71514407e+05 2.25682283e+06] [-5.83414091e+06 7.38692497e+06 -1.72901891e+07 -6.01782512e+06 -1.79085099e+07 -1.51850412e+07 -1.02921479e+07 1.85780937e+07 -6.51139913e+06 6.12290853e+06 -1.61288981e+07 -1.52722336e+07 -4.86133639e+06 -5.36062790e+06 -1.61655593e+07 -4.16879936e+06 -1.56645760e+07 -9.04916703e+06 3.82421964e+06 -1.74078177e+07 -1.68286564e+07 -1.33982831e+07 5.37972397e+06 -1.67055920e+07 -1.52457617e+07 -6.89966096e+06 4.24020297e+06 -1.50419760e+07 4.35058172e+06 -6.86919651e+06 -1.68395308e+07 -1.71970468e+06 -1.54976861e+07 -1.63939294e+07 -1.80671169e+06 1.66198134e+06] [-8.80458799e+06 1.85203275e+06 -2.08499695e+07 -8.66626786e+06 -2.12594939e+07 -1.85072928e+07 -8.82584513e+06 2.12262519e+07 -7.24159600e+06 4.85251542e+06 -1.98722153e+07 -1.74873178e+07 -7.84349505e+06 -8.84893784e+06 -1.89174600e+07 -2.64040174e+06 -1.98045994e+07 -1.13329922e+07 5.17129040e+06 -2.04569452e+07 -1.96357801e+07 -1.31709970e+07 3.18543688e+06 -2.06712134e+07 -1.73124866e+07 -4.51745741e+06 1.33115015e+06 -1.77878370e+07 3.81949016e+06 -5.08010850e+06 -2.00412940e+07 5.60735176e+04 -1.78601340e+07 -1.94337176e+07 -5.24043490e+06 -1.58536171e+06] [-9.40666947e+06 1.17999642e+05 -1.91047390e+07 -8.82331319e+06 -1.94789148e+07 -1.64282933e+07 -4.52888992e+06 2.60044299e+07 -6.18283115e+06 7.47559473e+06 -1.75657914e+07 -1.39835531e+07 -8.30306482e+06 -8.94832391e+06 -1.55683974e+07 1.90853660e+06 -1.82138024e+07 -1.06439662e+07 7.79090628e+06 -1.81409259e+07 -1.64989825e+07 -1.01209211e+07 2.78220294e+06 -1.86875126e+07 -1.36017051e+07 6.99533539e+05 5.01139981e+05 -1.49753527e+07 7.37566718e+06 -2.32115428e+06 -1.77855966e+07 2.98057737e+06 -1.44893197e+07 -1.69277330e+07 -7.47253644e+06 -2.99736304e+06] [-1.01260248e+07 -2.96749367e+06 -1.18889721e+07 -1.24816710e+07 -1.19875311e+07 -1.04845942e+07 -2.51865276e+06 2.45400169e+07 -7.00713885e+06 7.78012577e+06 -1.04834598e+07 -7.50923286e+06 -3.36272188e+06 -5.80536826e+06 -8.35173362e+06 4.90972948e+06 -1.26542352e+07 -1.45125720e+07 8.72510506e+06 -1.09336863e+07 -9.06240901e+06 -5.80868865e+06 3.31163200e+06 -1.24023159e+07 -6.65601996e+06 6.18848824e+06 2.95071783e+06 -8.67086864e+06 5.84391269e+06 -1.73726769e+06 -1.07689082e+07 3.16686464e+06 -7.64292318e+06 -1.08590824e+07 -6.91076251e+06 -2.11791195e+06] [-8.56837949e+06 -6.32943570e+06 -2.41750926e+06 -1.22561503e+07 -2.35045704e+06 -2.21205039e+06 1.47046651e+06 1.55413977e+07 -5.87991138e+06 5.79003705e+06 -7.57792169e+05 6.88725098e+05 6.91780669e+05 -2.16058983e+06 4.03173688e+05 7.21914733e+06 -3.90988435e+06 -1.38691564e+07 6.76851845e+06 -1.48406422e+06 1.90113168e+05 1.39303190e+06 2.05585440e+06 -3.18083170e+06 1.42996134e+06 1.03083537e+07 2.72355470e+06 -5.50626927e+05 4.01132005e+06 1.32823828e+06 -1.71482619e+06 3.64969560e+06 5.81365774e+05 -1.99195748e+06 -5.65165799e+06 -2.05602105e+06] [-3.96713138e+06 -8.42614188e+06 5.03703649e+06 -7.83296999e+06 4.69012317e+06 4.91644034e+06 1.73410213e+06 1.97028763e+06 -1.45364673e+06 6.32121535e+06 7.43139759e+06 6.46769374e+06 3.02750098e+06 2.40649558e+06 6.83670419e+06 8.76649539e+06 4.72215307e+06 -9.98405327e+06 5.72377058e+05 6.01064305e+06 6.53192930e+06 5.83788135e+06 -7.84093490e+05 4.97535786e+06 6.31059810e+06 1.14449780e+07 1.10962410e+06 5.79591635e+06 1.38231607e+06 3.01485463e+06 5.46968139e+06 4.40994208e+06 6.13034212e+06 5.66421075e+06 -1.95714811e+06 -1.40382049e+06] [-1.89288730e+06 -1.10489498e+07 1.03202065e+07 -5.42699434e+06 9.46145040e+06 9.72262283e+06 -4.03918973e+06 -1.26780061e+07 5.38288154e+05 4.13165735e+06 1.22687968e+07 9.10806763e+06 6.48055799e+06 7.61465524e+06 9.92567051e+06 1.46358824e+06 1.06951811e+07 -9.35557718e+06 -1.06547516e+07 1.13242065e+07 9.88082323e+06 4.14036680e+06 -3.77932464e+06 1.03242259e+07 8.36186938e+06 7.27859100e+06 5.88472760e+05 9.35530455e+06 -5.69027330e+06 -1.46725288e+06 1.04011356e+07 -2.76209230e+06 8.51767234e+06 9.75081534e+06 3.79349027e+06 4.11316548e+05] [-1.32730296e+06 -8.70285486e+06 1.04390308e+07 -2.54242256e+06 9.55869204e+06 9.94142698e+06 -7.32993910e+06 -1.98364707e+07 1.08494765e+06 -1.31730876e+05 1.22927376e+07 8.63748725e+06 5.67281408e+06 7.78451635e+06 8.65408924e+06 -8.13525573e+06 1.14354381e+07 -5.42740300e+06 -1.73431437e+07 1.16195057e+07 9.36739204e+06 9.67940043e+05 -5.50331395e+06 1.11907097e+07 7.52917985e+06 6.12377975e+05 -1.54157421e+06 8.86098527e+06 -1.13421414e+07 -4.51637381e+06 1.03763573e+07 -1.05755346e+07 7.38204284e+06 9.80262281e+06 5.36470017e+06 3.17577319e+05] [-3.77132368e+06 -3.04717274e+06 3.03619398e+06 -3.30130793e+06 2.82778873e+06 2.27155817e+06 -9.35576578e+06 -2.09311847e+07 -3.77555476e+06 -9.63479581e+06 4.34056549e+06 1.33824214e+06 5.38298374e+05 1.51778751e+06 2.25463651e+05 -1.96026156e+07 3.49710683e+06 -2.93787481e+06 -1.64800953e+07 3.79497738e+06 2.04635581e+06 -4.16812416e+06 -5.54891318e+06 4.00298430e+06 5.40006820e+05 -9.12521245e+06 -4.44201380e+06 1.29241059e+06 -1.60839242e+07 -8.17339519e+06 2.63451189e+06 -1.70284255e+07 7.07360800e+04 2.15303355e+06 2.56682415e+06 -9.58393940e+05] [-4.39535990e+06 4.56403243e+06 -6.20560962e+06 -4.18975760e+06 -6.18517814e+06 -5.99893850e+06 -1.22036537e+07 -1.68073479e+07 -7.44848934e+06 -1.34570929e+07 -5.25708933e+06 -7.49494762e+06 -2.44710691e+06 -1.59979582e+06 -9.44607353e+06 -2.55576364e+07 -4.79207882e+06 -2.81805386e+06 -1.12681195e+07 -6.13294216e+06 -7.35703372e+06 -9.25482428e+06 -1.75033443e+06 -4.75730669e+06 -8.19686602e+06 -1.69882903e+07 -3.13645779e+06 -7.17169525e+06 -1.36342160e+07 -9.99259511e+06 -6.88412630e+06 -1.64803159e+07 -8.36534706e+06 -6.38766020e+06 3.07642820e+06 1.59403429e+06] [-2.93537171e+06 1.01547646e+07 -1.19538065e+07 -3.91792234e+06 -1.20742151e+07 -1.08144544e+07 -1.09844761e+07 -1.35200934e+07 -8.58996493e+06 -1.24330355e+07 -1.11160602e+07 -1.35447033e+07 -4.29767313e+06 -1.98353112e+06 -1.51721946e+07 -2.34368173e+07 -9.44300696e+06 -3.48463718e+06 -5.07661662e+06 -1.26363995e+07 -1.35854958e+07 -1.11086270e+07 1.56435257e+06 -1.02152613e+07 -1.42244603e+07 -1.92502390e+07 -1.06207584e+06 -1.24624234e+07 -7.66756104e+06 -9.93660215e+06 -1.28006805e+07 -1.07543053e+07 -1.35830699e+07 -1.17257905e+07 4.44879865e+06 4.55207779e+06] [-1.75709107e+06 8.97863456e+06 -1.36078841e+07 -3.99217445e+06 -1.33293637e+07 -1.26176484e+07 -7.81241609e+06 -1.08644981e+07 -7.84823089e+06 -1.19683197e+07 -1.31031215e+07 -1.59286642e+07 -4.70976840e+06 -2.22536144e+06 -1.70729947e+07 -1.88473758e+07 -1.13714674e+07 -3.57774317e+06 -6.25933024e+05 -1.45816130e+07 -1.57071068e+07 -1.14743914e+07 2.39714012e+06 -1.22318982e+07 -1.64853296e+07 -1.83744722e+07 3.03689594e+05 -1.45069379e+07 -2.00625020e+06 -7.41268322e+06 -1.44372622e+07 -6.96953406e+06 -1.54563396e+07 -1.37303953e+07 4.12175166e+06 4.46944406e+06] [-3.61254985e+05 3.59395665e+06 -1.11223652e+07 -3.41487703e+06 -1.05923153e+07 -1.06375224e+07 -3.24376717e+06 -6.16848281e+06 -4.34799614e+06 -9.09202107e+06 -1.08781969e+07 -1.30890453e+07 -3.99105721e+06 -1.90801802e+06 -1.39348561e+07 -1.10477309e+07 -9.72893278e+06 -2.37733139e+06 3.26133134e+06 -1.20831989e+07 -1.30390388e+07 -8.31687544e+06 2.50699435e+06 -1.03555727e+07 -1.35586565e+07 -1.27500159e+07 7.74219738e+05 -1.21334975e+07 4.20028761e+06 -2.76401282e+06 -1.18292174e+07 -1.38099709e+06 -1.27730188e+07 -1.14965810e+07 3.06705331e+06 2.97252675e+06] [-8.81705304e+05 -1.04828617e+06 -8.43511031e+06 -3.22255731e+06 -8.06077982e+06 -7.88433483e+06 -3.31213632e+05 4.33520925e+05 -1.73263609e+06 -3.56089174e+06 -7.74343089e+06 -9.14121907e+06 -3.29690501e+06 -1.30678823e+06 -9.94338866e+06 -4.11182283e+06 -7.27398981e+06 -1.47727388e+06 3.85815894e+06 -8.86448071e+06 -9.47741873e+06 -5.56041603e+06 1.88821318e+06 -7.83198903e+06 -9.61549479e+06 -6.36917197e+06 7.19277224e+05 -8.85609574e+06 1.01961160e+07 9.26262826e+05 -8.78322793e+06 2.48283988e+06 -9.41965931e+06 -8.59088483e+06 5.29139003e+05 5.77368418e+05] [-1.39901914e+06 -2.17419546e+06 -5.14291130e+06 -2.84305238e+06 -4.91758936e+06 -4.73639739e+06 1.74555579e+06 3.97018431e+06 -5.35777946e+05 -5.89826572e+05 -4.65330614e+06 -5.36536499e+06 -1.91467151e+06 -5.27938436e+05 -5.80470654e+06 -2.15365805e+05 -4.54250900e+06 -1.24399844e+06 3.44727282e+06 -5.20953858e+06 -5.46108175e+06 -3.07090884e+06 1.26040326e+06 -4.81365321e+06 -5.62038152e+06 -2.12131543e+06 7.83281346e+05 -5.28409173e+06 1.06974758e+07 2.57815218e+06 -5.28657854e+06 3.45511263e+06 -5.71349129e+06 -5.42136140e+06 -1.30687100e+06 -1.02372254e+06] [-9.41288130e+05 -1.64801631e+06 -2.77247642e+06 -9.87602401e+05 -2.72543572e+06 -2.38533916e+06 2.25325587e+06 3.97009493e+06 4.74168605e+05 1.06565428e+06 -2.24884659e+06 -2.32039022e+06 -1.93750599e+06 -8.09337217e+05 -2.69575260e+06 1.79453601e+06 -2.35456770e+06 5.23293120e+04 2.09073457e+06 -2.62197014e+06 -2.53762419e+06 -1.07707070e+06 3.48068268e+04 -2.47520674e+06 -2.46609587e+06 3.34057207e+05 -5.18665914e+05 -2.54538233e+06 7.70450974e+06 2.40843072e+06 -2.73127008e+06 2.86346493e+06 -2.69765910e+06 -2.66297771e+06 -2.28112823e+06 -1.82924826e+06] [ 5.35957627e+04 2.50503184e+05 -6.98342021e+05 -3.61975745e+05 -7.30498316e+05 -5.03899658e+05 1.26901273e+06 1.09193357e+06 5.14191144e+05 1.14496934e+06 -2.50226535e+05 -2.46509893e+05 -9.84743659e+05 -4.74509825e+05 -4.14568711e+05 1.67124783e+06 -5.06406754e+05 -4.08402163e+05 1.81470747e+06 -6.23949470e+05 -4.84052805e+05 6.42719047e+05 -2.15977636e+05 -5.16499050e+05 -3.93705512e+05 9.63028548e+05 -5.61735644e+05 -4.47693279e+05 1.60756707e+06 1.13909199e+06 -5.95122591e+05 2.11191480e+06 -4.52762588e+05 -4.72999687e+05 -1.25232711e+06 -9.03343434e+05] [-2.20715671e+05 -4.28050391e+04 -3.05467816e+04 -8.37741107e+05 -9.09467011e+03 -6.03665500e+04 -1.74964146e+05 -3.67215842e+05 -3.71528102e+05 8.88185234e+02 -3.56712975e+04 -5.68947421e+04 8.04649104e+04 1.25943906e+04 -1.66176381e+04 4.32430268e+04 -1.31203550e+05 -1.13976941e+06 4.17763908e+05 -4.98303691e+04 -5.38331610e+04 3.33393115e+04 -5.58992386e+04 -1.07764945e+05 -4.93788408e+04 2.67648205e+04 1.43600416e+04 -3.99101685e+04 -5.41958496e+05 -2.71036831e+05 -1.50239037e+04 2.61277337e+05 -3.83409765e+04 -1.44434548e+05 -1.52995255e+05 -1.08737456e+05] [-1.13768334e+05 -1.08823411e+05 -1.12282091e+04 -2.75441912e+05 -5.06334828e+03 -2.85321711e+04 -1.68131676e+05 -1.23797672e+05 -1.39207736e+05 -6.78484222e+04 -4.44784145e+04 -5.27090513e+04 6.47793066e+04 1.36803935e+04 -2.62846562e+04 -6.68457976e+04 -5.42147512e+04 -3.69845563e+05 7.00320305e+04 -2.13507059e+04 -4.18544190e+04 -1.02004556e+05 2.02121558e+04 -5.03675067e+04 -3.75655666e+04 -6.63939397e+04 6.80520674e+04 -3.02789686e+04 -1.78281684e+05 -1.61945346e+05 -8.73045018e+03 -1.27610964e+04 -3.77902076e+04 -6.96504715e+04 3.41828563e+04 3.77397004e+04] [-5.50527677e+02 1.45642010e+03 -1.14886196e+03 -9.84555667e+02 -1.12694996e+03 -1.14579056e+03 -2.69924321e+03 2.44505570e+03 -8.32990919e+02 1.23500361e+03 -8.59478103e+02 -1.11864503e+03 -1.90335934e+02 -3.85598754e+02 -1.24244901e+03 -1.47395781e+02 -9.29923150e+02 -1.54854080e+03 1.62109490e+03 -1.11143022e+03 -1.21761584e+03 8.10107405e+01 2.36749800e+03 -9.61817474e+02 -1.21294819e+03 4.85893804e+02 1.84560776e+03 -1.04599859e+03 -8.71063083e+02 1.51235387e+01 -1.13465241e+03 5.54677328e+02 -1.13517243e+03 -1.13908415e+03 2.57896029e+02 2.06269953e+03] [-7.96111845e-01 5.70792021e-02 4.26165255e-01 9.82255076e-01 -5.30046477e-01 5.42295688e-01 -5.28967153e-02 -1.68554906e-01 -4.98611999e-01 6.78367760e-01 3.84686010e-02 -7.72120925e-01 -7.73273623e-03 -2.27466481e-02 7.38095713e-01 -9.73036179e-01 6.57795667e-02 7.79219821e-01 5.27514168e-02 -7.67999147e-01 -2.76223906e-01 -3.59570881e-01 -2.09891635e-01 -8.54666366e-01 8.74615668e-01 5.69708000e-01 8.27866109e-01 6.25074411e-01 4.74655830e-01 -7.80248650e-01 1.45172985e-01 -9.91087981e-01 7.45955354e-01 -1.91644886e-01 5.01559889e-01 -9.78181156e-01] [ 2.16928249e+04 1.04368798e+05 -3.17133563e+04 -8.17403662e+04 -3.75114398e+04 -2.37070441e+04 -1.08012963e+05 -2.98841362e+04 -5.88738412e+04 8.70747910e+04 -2.58034080e+04 -6.31376065e+04 1.12075704e+04 2.19559947e+04 -3.59379949e+04 8.39040423e+03 -2.84963963e+04 -1.79366118e+05 4.76722665e+04 -4.49834762e+04 -5.75398376e+04 -6.61798188e+04 3.94145695e+04 -4.75021943e+04 -5.08032087e+04 -3.53275492e+04 4.37679960e+04 -3.79816526e+04 -6.54638178e+04 -1.61912731e+05 -3.46027876e+04 2.62926786e+04 -3.61321578e+04 -4.69410043e+04 4.49531427e+04 7.73702653e+04] [-4.36315734e+04 1.12758828e+04 -1.07712713e+05 -1.59023897e+05 -1.11728901e+05 -1.19311326e+05 -3.05544661e+05 -1.72891266e+05 -1.45481803e+05 4.50771208e+03 -1.42688343e+05 -1.88081556e+05 1.05481677e+05 8.05948846e+04 -1.39267982e+05 -1.91180326e+04 -1.04294828e+05 -2.76564720e+05 3.95061973e+04 -1.41395374e+05 -1.71149864e+05 -1.91815672e+05 1.53972061e+05 -1.32694416e+05 -1.81790386e+05 -1.11294300e+05 2.07452843e+05 -1.48171800e+05 -1.50156795e+05 -2.69469389e+05 -1.25848360e+05 1.64273271e+04 -1.49849715e+05 -1.44774574e+05 3.06084169e+05 2.93642567e+05] [-2.69159502e+05 -9.70193138e+04 -2.64784442e+05 -3.96841484e+05 -2.83114764e+05 -3.14594442e+05 -9.54805995e+05 -4.36587517e+05 -3.49691740e+05 -1.49907991e+05 -2.87691084e+05 -3.74521149e+05 2.69425772e+05 1.59179470e+05 -3.52939624e+05 -5.68910272e+05 -2.25640137e+05 -5.30030983e+05 -2.16395574e+05 -3.26574209e+05 -3.82031811e+05 -5.72031075e+05 2.78245102e+05 -2.72203712e+05 -4.01943107e+05 -4.70253426e+05 4.40305922e+05 -3.50949115e+05 -5.02743216e+05 -7.00077823e+05 -3.06207571e+05 -5.02532885e+05 -3.98299155e+05 -3.26521066e+05 6.48132472e+05 5.93951019e+05] [-1.18194963e+06 4.29497784e+05 -1.11195625e+06 -1.39769593e+06 -1.11378688e+06 -1.23622306e+06 -2.25649797e+06 3.15341496e+05 -1.43447758e+06 -4.31156083e+05 -1.24669727e+06 -1.36089397e+06 6.80800456e+05 3.29683084e+05 -1.33851012e+06 -1.89494959e+06 -1.15378915e+06 -1.67376250e+06 -2.99018136e+05 -1.21006567e+06 -1.29852452e+06 -1.87722411e+06 9.11312603e+05 -1.19741936e+06 -1.34131495e+06 -1.40598323e+06 1.33479220e+06 -1.29370436e+06 -5.77990252e+05 -1.77416239e+06 -1.19242348e+06 -1.55647404e+06 -1.37978883e+06 -1.39429676e+06 1.32185457e+06 1.30215893e+06] [-2.96300357e+06 1.31976392e+06 -4.32357055e+06 -2.77042102e+06 -4.29549382e+06 -4.19223451e+06 -3.00197971e+06 3.56487069e+06 -3.01786413e+06 -3.52496062e+05 -4.31060024e+06 -4.46963819e+06 -3.87326641e+05 -5.48311899e+05 -4.45228220e+06 -2.88137755e+06 -4.33072634e+06 -2.95130557e+06 -1.46942555e+05 -4.28272072e+06 -4.31488129e+06 -4.92649267e+06 1.17746485e+06 -4.50056666e+06 -4.21227311e+06 -2.31284912e+06 1.64485981e+06 -4.27131905e+06 1.99213799e+06 -2.86331213e+06 -4.36298012e+06 -2.68675541e+06 -4.36173700e+06 -4.75820907e+06 9.16046500e+05 1.27818696e+06] [-4.33872501e+06 3.03789198e+06 -8.35250219e+06 -3.56265341e+06 -8.59924507e+06 -7.50884032e+06 -5.35802269e+06 1.03455115e+07 -3.99748748e+06 1.81244715e+06 -7.95213013e+06 -7.85447290e+06 -1.22205591e+06 -1.39813840e+06 -8.07761102e+06 -4.26622344e+06 -7.80372869e+06 -4.32632595e+06 -2.85394821e+05 -8.27061619e+06 -8.04718960e+06 -8.71441644e+06 2.25194171e+06 -8.34927497e+06 -7.50136600e+06 -3.32762530e+06 2.76542082e+06 -7.56154361e+06 5.42652147e+06 -4.47354052e+06 -8.26220988e+06 -4.28103995e+06 -7.85510310e+06 -8.51566502e+06 -2.38699715e+05 8.01778976e+05] [-6.22556406e+06 4.24191852e+06 -1.39673591e+07 -4.19687625e+06 -1.45004469e+07 -1.23544654e+07 -8.19795849e+06 1.70388491e+07 -5.51696043e+06 3.54309545e+06 -1.31440373e+07 -1.25880352e+07 -3.61654258e+06 -3.94289873e+06 -1.31962873e+07 -5.94395501e+06 -1.28110455e+07 -5.37521349e+06 -9.30776494e+05 -1.39034665e+07 -1.33135994e+07 -1.31360246e+07 2.74523225e+06 -1.37059095e+07 -1.21768575e+07 -5.94394983e+06 2.48578277e+06 -1.23048469e+07 7.77285138e+06 -6.10410842e+06 -1.37202443e+07 -5.97275537e+06 -1.28232587e+07 -1.37602167e+07 -3.19697669e+06 -8.46085815e+05] [-8.74873839e+06 2.87471455e+06 -1.93553698e+07 -5.24178644e+06 -1.99244930e+07 -1.70758613e+07 -9.10307052e+06 2.52439088e+07 -6.23442971e+06 4.55043424e+06 -1.82446019e+07 -1.59268374e+07 -6.90857810e+06 -8.02347507e+06 -1.75506476e+07 -5.90821882e+06 -1.81560293e+07 -6.17790267e+06 1.55541623e+06 -1.88398033e+07 -1.76733577e+07 -1.51279303e+07 2.68703247e+06 -1.88697043e+07 -1.55930316e+07 -5.97761567e+06 1.38827205e+06 -1.64055868e+07 8.18324390e+06 -5.40325684e+06 -1.85888298e+07 -5.50721252e+06 -1.66360153e+07 -1.82345934e+07 -6.97115620e+06 -3.29853391e+06] [-1.19656488e+07 -1.89741335e+06 -1.98781170e+07 -8.36578719e+06 -2.03784083e+07 -1.75214990e+07 -7.22065845e+06 2.68166274e+07 -7.17278992e+06 5.03787172e+06 -1.85882614e+07 -1.48317599e+07 -8.44227153e+06 -1.01196249e+07 -1.68889521e+07 -3.44905584e+06 -1.94246881e+07 -9.58095164e+06 2.69417338e+06 -1.87633176e+07 -1.72560007e+07 -1.30128578e+07 2.59982232e+05 -1.97711583e+07 -1.44844162e+07 -1.59467357e+06 -1.26821686e+06 -1.60783425e+07 5.66406072e+06 -4.06286427e+06 -1.86240011e+07 -3.78161269e+06 -1.59341938e+07 -1.83102518e+07 -1.07495805e+07 -6.56927694e+06] [-1.34985863e+07 -4.65673219e+06 -1.56846745e+07 -1.13824036e+07 -1.58072899e+07 -1.41289490e+07 -2.70318155e+06 2.82867780e+07 -7.81361458e+06 5.98044561e+06 -1.41545519e+07 -9.50106284e+06 -7.88741175e+06 -1.07870227e+07 -1.14374670e+07 8.71070549e+05 -1.67344569e+07 -1.18706422e+07 5.81967858e+06 -1.40992519e+07 -1.17835309e+07 -7.88247662e+06 -6.54559410e+05 -1.60030207e+07 -8.90378332e+06 4.50922435e+06 -2.17857949e+06 -1.17420007e+07 3.40569160e+06 -2.02629179e+06 -1.41811776e+07 -1.72797797e+06 -1.07255714e+07 -1.41930240e+07 -1.34489762e+07 -8.09006641e+06] [-1.30694896e+07 -7.31919212e+06 -5.99283294e+06 -1.53227067e+07 -5.80686527e+06 -5.82784967e+06 1.67302996e+06 2.33721910e+07 -8.48570511e+06 5.69566491e+06 -3.61800436e+06 -1.35245220e+05 -3.98752088e+06 -8.28976485e+06 -1.63279499e+06 3.92600393e+06 -8.58375373e+06 -1.61741649e+07 7.35114594e+06 -4.26993776e+06 -1.67483575e+06 1.50426848e+05 -1.02873028e+06 -7.03881861e+06 8.55875245e+05 1.14017594e+07 -1.72834291e+06 -2.88650809e+06 -7.13720240e+05 1.11463094e+05 -4.64345073e+06 -1.04102113e+06 -1.26062909e+06 -5.16970589e+06 -1.39726134e+07 -7.65456576e+06] [-7.60098933e+06 -7.88665834e+06 4.13810891e+06 -1.14958314e+07 4.29587612e+06 3.72386412e+06 6.84687184e+06 1.34870729e+07 -3.79379144e+06 4.93186789e+06 7.89070647e+06 9.42317323e+06 -1.03922435e+06 -4.62747365e+06 7.53512065e+06 5.49831913e+06 2.06452541e+06 -1.15116508e+07 5.88086036e+06 5.94528045e+06 8.18355089e+06 9.51410474e+06 -2.09233239e+06 3.83427655e+06 9.69207669e+06 1.56218174e+07 -3.00952811e+06 6.46868345e+06 -3.37348339e+06 5.83328684e+06 5.16573026e+06 5.68747748e+05 7.74704670e+06 5.48265050e+06 -1.20983959e+07 -7.23607043e+06] [-3.24498413e+06 -8.04348314e+06 1.05797881e+07 -6.65477720e+06 1.02025674e+07 1.01456955e+07 3.72633796e+06 6.28638127e+05 4.07400911e+05 5.09505106e+06 1.48797835e+07 1.37906562e+07 2.98155658e+06 1.47442522e+06 1.22084283e+07 3.05050991e+06 1.00534478e+07 -7.77712578e+06 -2.85902217e+06 1.25332510e+07 1.31480914e+07 1.11928183e+07 -3.52048033e+06 1.11031166e+07 1.31346518e+07 1.38136502e+07 -2.47916681e+06 1.17484795e+07 -7.22946172e+06 5.21858554e+06 1.12643487e+07 -1.97370323e+06 1.18702563e+07 1.17832919e+07 -5.92472716e+06 -4.62501864e+06] [-8.23859802e+04 -6.14996226e+06 1.40445810e+07 -1.06794198e+06 1.29200208e+07 1.38180708e+07 -3.40708703e+06 -9.71191957e+06 3.55243708e+06 5.55516504e+06 1.76415284e+07 1.47775911e+07 6.68361650e+06 7.40838001e+06 1.36038814e+07 -3.91045440e+06 1.50917224e+07 -4.20481538e+06 -1.40672288e+07 1.58851865e+07 1.47377138e+07 7.87519628e+06 -4.20267753e+06 1.52780438e+07 1.35651863e+07 8.05974188e+06 -9.43801689e+05 1.40151435e+07 -1.11791485e+07 2.32424589e+05 1.43851246e+07 -8.40133399e+06 1.26972379e+07 1.44637861e+07 1.75638080e+06 -9.78217872e+05] [-3.03232820e+05 -2.30832802e+06 1.08574822e+07 1.00688443e+06 9.87907890e+06 1.06077955e+07 -5.47419518e+06 -1.28608440e+07 2.65151606e+06 5.62718270e+05 1.35879503e+07 1.10768159e+07 4.80626079e+06 5.55617651e+06 9.53673247e+06 -1.19652626e+07 1.19314288e+07 -4.40366687e+05 -1.58240101e+07 1.25132042e+07 1.11756868e+07 4.05184023e+06 -4.33895153e+06 1.23905968e+07 9.99342871e+06 1.11286599e+06 -2.12275182e+06 1.05323006e+07 -1.51306004e+07 -2.39538214e+06 1.10287579e+07 -1.32323701e+07 9.04332775e+06 1.10290623e+07 2.57707680e+06 -7.96764846e+05] [-4.15584045e+05 7.06116133e+06 1.74418051e+06 6.79060302e+05 1.02335268e+06 1.99065098e+06 -7.98453844e+06 -1.21145920e+07 -1.39892248e+06 -4.09439123e+06 4.11215258e+06 1.94553521e+06 1.31936696e+06 2.13910718e+06 -2.11666300e+05 -1.82884446e+07 3.27231258e+06 2.50531368e+05 -1.01998502e+07 2.40523621e+06 1.43568086e+06 -1.55894543e+06 -1.02455714e+06 3.58273507e+06 9.85393231e+05 -7.77359627e+06 -1.18253065e+06 1.70598503e+06 -1.69059062e+07 -6.07596249e+06 1.57759854e+06 -1.42898708e+07 4.61054156e+05 2.21057998e+06 3.18724376e+06 1.63503480e+06] [-1.29584111e+06 1.25883521e+07 -8.25008125e+06 -1.01892781e+06 -8.81617955e+06 -7.03974430e+06 -1.05024634e+07 -1.01598289e+07 -5.81390194e+06 -8.06247667e+06 -6.34395112e+06 -8.24598436e+06 -2.56666379e+06 -7.70829346e+05 -1.05338390e+07 -2.20716530e+07 -5.68771739e+06 -1.26290998e+06 -5.63903755e+06 -8.44576614e+06 -9.02179929e+06 -7.71839312e+06 1.67738546e+06 -6.09659393e+06 -9.09485883e+06 -1.48526132e+07 -6.28507943e+05 -7.89573880e+06 -1.37427021e+07 -8.96777911e+06 -8.72675195e+06 -1.23703591e+07 -8.95326645e+06 -7.15543279e+06 3.98782347e+06 4.10283298e+06] [-1.84700484e+06 1.25435569e+07 -1.23576618e+07 -6.75390469e+05 -1.27805765e+07 -1.09817128e+07 -9.27514944e+06 -8.42208607e+06 -7.02575034e+06 -9.69632038e+06 -1.15857793e+07 -1.36074449e+07 -3.67672845e+06 -1.02116874e+06 -1.50046642e+07 -2.03507803e+07 -9.60936924e+06 -7.19243757e+05 -3.79177672e+06 -1.30941111e+07 -1.37424411e+07 -1.04506937e+07 2.92528496e+06 -1.04871747e+07 -1.41408806e+07 -1.67830541e+07 8.62120300e+05 -1.24224396e+07 -5.11668981e+06 -8.57926852e+06 -1.30261473e+07 -9.78623491e+06 -1.34877889e+07 -1.16961896e+07 4.85872003e+06 5.22076430e+06] [-1.48742550e+06 7.70910167e+06 -1.26727675e+07 -1.21905432e+06 -1.26463643e+07 -1.17761341e+07 -6.83954880e+06 -5.49384788e+06 -5.96541030e+06 -9.85120490e+06 -1.31132331e+07 -1.50097169e+07 -3.24765656e+06 -7.76657304e+05 -1.55255589e+07 -1.57559063e+07 -1.06579318e+07 -4.19976576e+05 -1.05142771e+06 -1.36142896e+07 -1.44861817e+07 -1.10178779e+07 2.79744961e+06 -1.14977200e+07 -1.51500873e+07 -1.50293053e+07 1.86693103e+06 -1.34511100e+07 2.32593397e+06 -6.19833236e+06 -1.33838320e+07 -6.67049661e+06 -1.43162435e+07 -1.28980301e+07 3.80180912e+06 3.60621647e+06] [-9.98857316e+05 7.36849521e+05 -9.67860357e+06 -2.01865730e+06 -9.31766221e+06 -9.41638340e+06 -1.34713118e+06 -1.35222904e+06 -2.97279176e+06 -7.50969738e+06 -1.04763471e+07 -1.16541119e+07 -3.23059006e+06 -1.06509240e+06 -1.19177107e+07 -8.49848695e+06 -8.76037412e+06 -4.06394075e+05 1.72581195e+06 -1.05500902e+07 -1.12245208e+07 -7.88578778e+06 1.93411575e+06 -9.29613781e+06 -1.16535796e+07 -1.00106149e+07 9.19106221e+05 -1.06632109e+07 8.90399993e+06 -1.91039388e+06 -1.03153682e+07 -1.35798985e+06 -1.12376375e+07 -1.03844994e+07 1.72873166e+06 1.15219103e+06] [-1.19438032e+06 -1.57363253e+06 -7.26932905e+06 -1.80789855e+06 -7.01990784e+06 -6.80096640e+06 1.99080877e+06 4.41645346e+06 -6.01463977e+05 -1.94673077e+06 -7.13631409e+06 -7.77408509e+06 -2.74721390e+06 -5.75112404e+05 -8.36768206e+06 -2.56448452e+06 -6.29721919e+06 1.83517028e+05 2.86794575e+06 -7.58066997e+06 -7.87843462e+06 -4.94494734e+06 1.67236611e+06 -6.74477341e+06 -8.03313091e+06 -4.74448674e+06 7.74745528e+05 -7.57243035e+06 1.37354263e+07 1.89201533e+06 -7.56760016e+06 2.21105802e+06 -8.12367166e+06 -7.51751427e+06 -6.39323387e+05 -7.79971952e+05] [-1.35946048e+06 -1.38586897e+06 -5.07026730e+06 -5.91450675e+05 -4.96010421e+06 -4.54998846e+06 3.37453458e+06 6.57079476e+06 2.35225441e+05 4.20689352e+05 -4.84456806e+06 -5.20276703e+06 -2.60030659e+06 -5.06767654e+05 -5.44495191e+06 3.47898911e+05 -4.32768777e+06 1.29221802e+06 1.56430315e+06 -5.04404905e+06 -4.99210019e+06 -3.51475156e+06 7.16165106e+05 -4.67152500e+06 -5.19884724e+06 -1.85806007e+06 -9.15809748e+03 -5.09475901e+06 1.41544287e+07 2.66756097e+06 -5.22129606e+06 2.63397373e+06 -5.49945531e+06 -5.33037215e+06 -2.36388097e+06 -2.10324100e+06] [-7.70121648e+05 -9.62291629e+05 -2.99717359e+06 4.35846451e+05 -3.04596664e+06 -2.47260002e+06 3.27429695e+06 4.98028737e+06 8.93652230e+05 1.48502508e+06 -2.46107281e+06 -2.56119946e+06 -2.34067979e+06 -6.57495472e+05 -2.85615646e+06 1.67527422e+06 -2.37349272e+06 1.74095209e+06 9.14646146e+05 -2.75516616e+06 -2.59175022e+06 -1.35169112e+06 -3.14888217e+05 -2.59723625e+06 -2.60840743e+06 3.21736668e+05 -8.56241179e+05 -2.69319653e+06 9.92755070e+06 2.73394826e+06 -2.95658727e+06 2.33107231e+06 -2.92366624e+06 -2.83566377e+06 -2.70029952e+06 -2.41537923e+06] [ 5.69233289e+05 2.79858094e+05 -6.76217116e+05 1.11387526e+06 -7.58948349e+05 -4.04169084e+05 2.14944494e+06 1.68552911e+06 1.30545438e+06 1.18279306e+06 -3.48616662e+05 -2.97312855e+05 -1.20292957e+06 -3.19107509e+05 -4.75701580e+05 1.69703371e+06 -3.31557991e+05 1.58102140e+06 1.12489417e+06 -5.86770080e+05 -4.57271094e+05 6.35902348e+05 -3.14667883e+05 -4.15513630e+05 -3.93438543e+05 8.90143937e+05 -7.53023562e+05 -4.36989379e+05 3.74421800e+06 1.93663961e+06 -6.19164497e+05 1.96089107e+06 -5.32157532e+05 -3.85022175e+05 -1.33549394e+06 -1.18972275e+06] [ 4.84061417e+04 2.36597781e+04 1.00244492e+05 -3.66104607e+05 1.15541459e+05 6.32603808e+04 2.17756855e+05 -5.16325298e+05 -1.31067008e+05 -1.39501670e+05 -6.45870719e+03 -1.61063912e+04 3.48030332e+04 7.86826638e+04 8.40702465e+04 4.49701105e+04 2.00227593e+04 -5.04849619e+05 2.48758445e+05 6.46078946e+04 6.61937832e+04 1.49729974e+05 -1.69534117e+05 3.72063386e+04 2.99694170e+04 -9.95474283e+04 -1.27968051e+05 5.85660056e+04 -2.13805583e+05 -1.04600441e+05 9.38434026e+04 2.35632797e+05 5.69074476e+04 -1.26615292e+04 -1.40589934e+05 -2.09849682e+05] [-1.04476802e+05 -2.00898655e+05 -7.57929214e+03 -4.23268802e+05 3.47165730e+04 -9.78725894e+04 -4.80692542e+04 -3.11853239e+05 -2.45277134e+05 -3.91137745e+05 -1.82530523e+05 -1.94334937e+05 3.15305326e+04 -7.20275401e+04 -7.62166226e+04 -1.42251185e+05 -1.52950575e+05 -4.64014501e+05 9.66312739e+04 -4.73251044e+04 -6.69057378e+04 -1.10818037e+05 -3.91776505e+04 -1.16415900e+05 -1.11717169e+05 -2.84483429e+05 -6.33684549e+03 -1.01081857e+05 -2.69955486e+05 -1.91916283e+05 -3.13632747e+04 -8.76743267e+03 -8.67320748e+04 -1.75882553e+05 -9.27667793e+03 -2.38073994e+04] [-1.89140999e+03 4.99524214e+03 -3.93909106e+03 -3.37523474e+03 -3.86657528e+03 -3.92987752e+03 -9.25459063e+03 8.38084776e+03 -2.85720148e+03 4.23359504e+03 -2.94701133e+03 -3.83484540e+03 -6.54021148e+02 -1.32207981e+03 -4.25896601e+03 -5.07579714e+02 -3.18999975e+03 -5.30595900e+03 5.55565694e+03 -3.81115948e+03 -4.17456411e+03 2.75940518e+02 8.12036278e+03 -3.29588982e+03 -4.16105912e+03 1.66492205e+03 6.33049347e+03 -3.58497961e+03 -2.98398724e+03 4.91853018e+01 -3.88792644e+03 1.89831074e+03 -3.89420973e+03 -3.90523336e+03 8.88175385e+02 7.07467419e+03] [ 8.51364635e-01 4.02262462e-01 -9.13928765e-01 6.64160557e-01 -1.67613636e-01 -6.91471758e-01 -3.27589214e-01 6.43102484e-01 3.91026728e-01 -4.58783137e-01 6.80641017e-01 -8.56709284e-01 -1.45006154e-01 9.86727948e-02 4.87544302e-01 -4.52280573e-01 2.41819601e-01 -7.88478875e-01 6.93000379e-01 6.57393547e-01 -8.30082632e-01 -5.13604569e-01 -1.78647894e-01 3.24711073e-01 1.02754886e-01 3.71298728e-02 3.30956102e-01 1.72097302e-01 8.82282964e-01 6.99064072e-01 -4.60503500e-01 1.33045516e-01 7.00055868e-01 6.90558351e-01 1.35096284e-01 4.41569252e-01] [ 1.29101590e+04 5.55177444e+04 -1.77397856e+04 -2.90106951e+04 -2.03248561e+04 -1.13121206e+04 -4.75410687e+04 -3.86481676e+03 -2.31011604e+04 4.37563365e+04 -1.34472877e+04 -2.91805756e+04 1.08746430e+04 1.64332589e+04 -1.84360598e+04 5.26767902e+03 -1.45482632e+04 -7.51377322e+04 3.31022903e+04 -2.34435391e+04 -2.85582326e+04 -2.54324127e+04 1.89428926e+04 -2.41235617e+04 -2.34549840e+04 -1.22206953e+04 2.11106963e+04 -1.74323627e+04 -2.86989284e+04 -6.71324979e+04 -1.88393183e+04 1.24144238e+04 -1.66462466e+04 -2.21167715e+04 1.57127143e+04 3.42562000e+04] [ 1.01967986e+04 4.02640123e+04 -3.46240164e+04 -7.83246323e+04 -3.73867452e+04 -3.78066895e+04 -1.14540533e+05 -7.20289269e+04 -5.32874428e+04 5.03013858e+04 -3.88841913e+04 -6.63749381e+04 2.68383525e+04 3.38033081e+04 -4.09105411e+04 4.29835146e+04 -2.96968746e+04 -1.48719173e+05 7.16400092e+04 -4.98488556e+04 -6.07975936e+04 -5.34537135e+04 4.91847094e+04 -4.39571808e+04 -6.33677603e+04 -1.82092913e+04 7.11051439e+04 -4.92840868e+04 -6.67820908e+04 -1.07444671e+05 -3.99228618e+04 4.02508560e+04 -4.82485475e+04 -4.54678241e+04 6.65154339e+04 9.13752422e+04] [-2.50489021e+05 4.84325445e+04 -2.79783892e+05 -1.65617155e+05 -2.94977323e+05 -2.92523076e+05 -5.24660512e+05 2.23537340e+05 -1.81267431e+05 7.01649353e+03 -2.95717432e+05 -2.51230260e+05 8.72501884e+04 -1.76867944e+04 -2.69059453e+05 -4.37410359e+05 -2.42053139e+05 -1.42477199e+05 -1.50323577e+04 -3.10751577e+05 -2.87637426e+05 -4.74596707e+05 1.58118381e+05 -2.52778586e+05 -2.47141873e+05 -3.22540804e+05 2.08316709e+05 -2.64934518e+05 -2.49523134e+04 -4.20814801e+05 -2.82242314e+05 -3.97418430e+05 -2.99020589e+05 -2.93225499e+05 2.46699305e+05 2.51043231e+05] [-1.41925466e+06 6.18200722e+05 -1.27265165e+06 -1.39830059e+06 -1.34056626e+06 -1.27464324e+06 -2.34630412e+06 1.17580421e+06 -1.46674218e+06 -2.88310796e+04 -1.31686868e+06 -1.37237276e+06 6.56873496e+05 3.66590649e+05 -1.39353742e+06 -2.30361022e+06 -1.24106885e+06 -1.77161627e+06 -4.26993017e+05 -1.30646137e+06 -1.37563476e+06 -2.27486848e+06 7.24301083e+05 -1.33312982e+06 -1.31816608e+06 -1.25476819e+06 1.23101622e+06 -1.29959795e+06 -1.52838529e+04 -2.01343504e+06 -1.28907384e+06 -2.08374925e+06 -1.40986179e+06 -1.53456952e+06 9.74661486e+05 9.83700188e+05] [-3.50221647e+06 7.17899554e+05 -4.68728571e+06 -2.77956253e+06 -4.74018624e+06 -4.37949519e+06 -2.55379645e+06 5.51619912e+06 -2.96383155e+06 -1.62073245e+05 -4.50063533e+06 -4.52898976e+06 -9.70865412e+05 -9.35543931e+05 -4.64638610e+06 -3.21545210e+06 -4.63157128e+06 -2.62144421e+06 -6.17909053e+05 -4.50427666e+06 -4.44642561e+06 -5.58945698e+06 6.67135417e+05 -4.84181859e+06 -4.21769981e+06 -2.07784253e+06 9.93544232e+05 -4.43411772e+06 4.32665507e+06 -2.62569690e+06 -4.63362279e+06 -3.16410672e+06 -4.54835787e+06 -5.03614925e+06 -4.21318846e+05 1.47189877e+05] [-4.87904012e+06 3.58742688e+06 -9.42374084e+06 -2.52686699e+06 -9.90721150e+06 -8.12219465e+06 -5.20499195e+06 1.35276484e+07 -3.62108566e+06 3.13380343e+06 -8.44892952e+06 -8.19094254e+06 -2.39232873e+06 -2.09222755e+06 -8.82079643e+06 -5.13820612e+06 -8.41394520e+06 -2.95644375e+06 -1.56766106e+06 -9.23265154e+06 -8.79361473e+06 -9.59104999e+06 1.61291467e+06 -9.08599054e+06 -7.96032018e+06 -3.74288150e+06 1.66136667e+06 -8.10654827e+06 8.90730886e+06 -4.06391807e+06 -9.22331859e+06 -5.30358372e+06 -8.61613661e+06 -9.19597658e+06 -2.80317761e+06 -1.14172691e+06] [-6.94020151e+06 3.52575589e+06 -1.51539785e+07 -2.43401822e+06 -1.58513235e+07 -1.31467174e+07 -7.56108885e+06 2.16178781e+07 -4.60538113e+06 3.31110554e+06 -1.41061359e+07 -1.29550526e+07 -4.87875464e+06 -5.02192037e+06 -1.41343641e+07 -7.39587492e+06 -1.37578948e+07 -2.11679942e+06 -2.68960341e+06 -1.48569524e+07 -1.39810306e+07 -1.43409621e+07 1.82099054e+06 -1.46251862e+07 -1.25380678e+07 -6.46298021e+06 1.20518941e+06 -1.29968057e+07 1.23888333e+07 -4.69752201e+06 -1.48204436e+07 -7.95238143e+06 -1.36269314e+07 -1.45335281e+07 -6.44879802e+06 -3.58001559e+06] [-9.97342379e+06 -3.58316400e+04 -1.82109035e+07 -3.84534057e+06 -1.87539516e+07 -1.61354701e+07 -7.19284078e+06 2.71544722e+07 -5.64899207e+06 1.48842524e+06 -1.75636936e+07 -1.46504256e+07 -7.47283192e+06 -8.76507196e+06 -1.64004559e+07 -8.27826765e+06 -1.74804715e+07 -2.84935520e+06 -2.31625493e+06 -1.73903448e+07 -1.59300822e+07 -1.54442003e+07 1.07192383e+05 -1.79072919e+07 -1.39022620e+07 -5.69145638e+06 -9.95853340e+05 -1.53232134e+07 1.17221111e+07 -3.77876221e+06 -1.74481076e+07 -9.62810270e+06 -1.55841871e+07 -1.72762954e+07 -1.11074137e+07 -7.30521955e+06] [-1.32165569e+07 -3.95892964e+06 -1.75614229e+07 -6.40001594e+06 -1.79866613e+07 -1.59026144e+07 -3.99834223e+06 2.92154788e+07 -6.38541904e+06 2.09514186e+06 -1.66068473e+07 -1.21721532e+07 -8.78110888e+06 -1.06887039e+07 -1.45974959e+07 -5.89911733e+06 -1.78872646e+07 -5.41321679e+06 -3.04613296e+05 -1.61188957e+07 -1.41084901e+07 -1.20044964e+07 -2.13766468e+06 -1.75478732e+07 -1.16298463e+07 -9.08705590e+05 -3.56194114e+06 -1.41206989e+07 7.98253317e+06 -2.11436572e+06 -1.63155383e+07 -8.67169008e+06 -1.38391222e+07 -1.63435218e+07 -1.50988385e+07 -1.05939983e+07] [-1.48210889e+07 -6.67524728e+06 -1.13591472e+07 -9.80372085e+06 -1.14282959e+07 -1.08130701e+07 1.08090729e+05 2.66265950e+07 -7.55869990e+06 2.39544278e+06 -9.85789664e+06 -5.16782866e+06 -7.59074671e+06 -1.07848311e+07 -7.66393910e+06 -4.15012955e+06 -1.32031718e+07 -8.24455163e+06 7.94517385e+05 -9.39476331e+06 -6.96500259e+06 -5.76730496e+06 -3.85515726e+06 -1.18090402e+07 -4.45626863e+06 4.61666178e+06 -5.29243134e+06 -8.09036651e+06 1.22221559e+06 -5.94144192e+05 -9.91453777e+06 -9.49394256e+06 -7.27184112e+06 -1.04632350e+07 -1.73680624e+07 -1.20809633e+07] [-1.29940981e+07 -8.62596440e+06 -3.25868709e+06 -1.07106929e+07 -3.02656782e+06 -3.51024368e+06 6.35359136e+06 2.01534967e+07 -6.12995418e+06 1.08213568e+06 1.83295620e+05 3.91287644e+06 -7.34000457e+06 -1.08756519e+07 6.98786075e+05 -2.64550510e+06 -5.70449925e+06 -8.20750347e+06 2.17905191e+06 -6.69345159e+05 2.06064440e+06 3.84133702e+06 -6.46533134e+06 -3.36619993e+06 4.36435015e+06 1.10626324e+07 -8.89941394e+06 -1.16803719e+05 -4.96002697e+06 4.29310100e+06 -1.66941593e+06 -9.23088756e+06 1.12641496e+06 -1.75271631e+06 -2.03750634e+07 -1.45485656e+07] [-6.15708807e+06 -5.10449954e+06 4.91255305e+06 -6.11997052e+06 5.00424536e+06 4.63593841e+06 1.10188942e+07 1.18782388e+07 -9.42644917e+05 2.59009644e+06 1.04922074e+07 1.21539906e+07 -5.51517715e+06 -7.85705644e+06 8.19012958e+06 -1.71310237e+05 3.65140040e+06 -3.98438001e+06 2.29094263e+06 7.63906430e+06 9.99627557e+06 1.33438812e+07 -6.39583870e+06 5.93008117e+06 1.15505212e+07 1.47453316e+07 -9.87963480e+06 7.88782078e+06 -9.54605548e+06 9.60764984e+06 6.35209120e+06 -5.49828418e+06 8.77955344e+06 7.65129592e+06 -1.76188145e+07 -1.25547282e+07] [-1.49313204e+06 -3.01866133e+06 1.01713649e+07 -2.00352046e+06 9.55731230e+06 1.04038212e+07 4.81753552e+06 2.57140146e+06 2.97220171e+06 5.17573483e+06 1.57913234e+07 1.55516620e+07 -2.16733080e+05 -1.31464253e+06 1.22793735e+07 -1.21797102e+06 1.05579851e+07 -2.33787098e+06 -4.53928403e+06 1.28670200e+07 1.38569584e+07 1.32655909e+07 -5.57732998e+06 1.19883957e+07 1.43254061e+07 1.30818446e+07 -6.56947809e+06 1.26154628e+07 -1.44074074e+07 6.77666009e+06 1.13796980e+07 -6.38265171e+06 1.24968400e+07 1.27979663e+07 -9.40330364e+06 -7.81267904e+06] [ 1.08043808e+06 2.02133718e+04 1.19453234e+07 2.67068055e+06 1.07211545e+07 1.23046400e+07 -7.84408070e+05 -2.24760320e+06 5.23508552e+06 5.91866885e+06 1.62207086e+07 1.55107088e+07 3.25106870e+06 2.84756860e+06 1.27933486e+07 -4.63437963e+06 1.32050903e+07 1.30194514e+06 -1.02987792e+07 1.41417298e+07 1.42609971e+07 1.01165621e+07 -4.04103248e+06 1.40125628e+07 1.41794175e+07 8.30692485e+06 -3.29520161e+06 1.36828134e+07 -1.52579522e+07 2.96099695e+06 1.27563687e+07 -8.87487007e+06 1.27249307e+07 1.38935283e+07 -2.86493972e+06 -3.81016003e+06] [ 2.24716918e+06 7.19924898e+06 7.18145467e+06 4.95891646e+06 5.94500768e+06 7.69888105e+06 -2.81231128e+06 -3.43591385e+06 4.66395582e+06 4.17974331e+06 1.10385379e+07 1.02127124e+07 2.14575742e+06 2.19494861e+06 7.30701899e+06 -8.96154596e+06 8.94894378e+06 4.42896894e+06 -8.47614184e+06 8.59987741e+06 8.69416614e+06 6.74254702e+06 -1.44127626e+06 9.60004018e+06 8.82075874e+06 1.80395859e+06 -1.68317592e+06 8.85750063e+06 -1.58046947e+07 1.41288334e+06 7.61247726e+06 -9.47640284e+06 7.64199679e+06 9.19002368e+06 -4.32324662e+05 -1.14192999e+06] [-1.01147980e+06 1.01170659e+07 -2.83789584e+06 1.32245830e+05 -3.50165293e+06 -2.26608738e+06 -6.22935990e+06 -6.35675896e+06 -2.38941568e+06 -4.31920880e+06 -2.71940153e+05 -1.18882081e+06 -1.29294818e+06 -1.21212513e+06 -3.81535607e+06 -1.54131633e+07 -1.26881594e+06 3.19777120e+05 -5.33341841e+06 -2.39951615e+06 -2.26622942e+06 -1.05342041e+06 1.20041698e+05 -7.97739732e+05 -2.11025023e+06 -7.84387111e+06 -1.49306956e+06 -1.83316177e+06 -1.64661655e+07 -3.69329824e+06 -2.90493402e+06 -1.07951906e+07 -2.55140401e+06 -1.39907324e+06 4.28116711e+05 7.06040937e+05] [-3.92347403e+06 1.01523714e+07 -1.12877662e+07 -1.93881038e+06 -1.17149722e+07 -1.04656490e+07 -1.01394404e+07 -8.30389797e+06 -7.89771038e+06 -1.12985795e+07 -1.06758279e+07 -1.16332256e+07 -5.02104633e+06 -4.16479548e+06 -1.32557660e+07 -2.16267013e+07 -9.77206864e+06 -1.89603894e+06 -6.30781070e+06 -1.16649238e+07 -1.18185162e+07 -9.34062555e+06 1.40552380e+05 -9.92248630e+06 -1.18977403e+07 -1.49712163e+07 -2.36908878e+06 -1.11834220e+07 -1.48201829e+07 -9.77234129e+06 -1.17219129e+07 -1.37849535e+07 -1.17358561e+07 -1.07337804e+07 1.32991023e+06 1.85221661e+06] [-5.71648236e+06 6.51860362e+06 -1.42327160e+07 -2.77540070e+06 -1.45844387e+07 -1.34034566e+07 -1.00876756e+07 -6.56494576e+06 -9.38036670e+06 -1.22191566e+07 -1.47828340e+07 -1.57952771e+07 -6.17712342e+06 -4.34105744e+06 -1.63310300e+07 -2.04521110e+07 -1.28094400e+07 -2.62124898e+06 -7.55124120e+06 -1.49840392e+07 -1.53306482e+07 -1.31962579e+07 -8.18154525e+05 -1.34624646e+07 -1.56550638e+07 -1.63735918e+07 -2.50981003e+06 -1.46591081e+07 -6.10123557e+06 -1.09791240e+07 -1.47139351e+07 -1.37132968e+07 -1.53088620e+07 -1.44281368e+07 9.06419413e+04 4.49767556e+05] [-4.25759155e+06 2.58369248e+06 -1.10461878e+07 -1.93234394e+06 -1.13125609e+07 -1.03711602e+07 -7.14446846e+06 -9.63006638e+05 -5.85887326e+06 -7.59390135e+06 -1.21092042e+07 -1.26668836e+07 -2.74564045e+06 -1.05909015e+06 -1.26670162e+07 -1.37771027e+07 -9.82138670e+06 -1.47981438e+06 -4.05386352e+06 -1.18293723e+07 -1.22312594e+07 -1.14216303e+07 9.99714293e+05 -1.05428355e+07 -1.24108349e+07 -1.12979765e+07 1.03854786e+06 -1.14945295e+07 4.11344337e+06 -7.36206912e+06 -1.14867216e+07 -8.26588808e+06 -1.22307444e+07 -1.16174752e+07 1.30067710e+06 1.01632104e+06] [-2.18948377e+06 -1.11168736e+06 -6.67333680e+06 -9.45915982e+05 -6.83650373e+06 -6.34993224e+06 -9.39197620e+04 3.30601254e+06 -1.60972836e+06 -3.76239977e+06 -7.67856220e+06 -8.11824287e+06 -1.00838039e+06 1.04739309e+06 -8.01409133e+06 -6.02361815e+06 -5.91253635e+06 2.90377127e+05 -4.83662460e+05 -7.23231569e+06 -7.57331184e+06 -6.91529696e+06 1.47477095e+06 -6.49535941e+06 -7.87445067e+06 -5.55430016e+06 1.93317863e+06 -7.34686312e+06 1.25852525e+07 -1.34682541e+06 -7.15257460e+06 -2.01899401e+06 -7.97136258e+06 -7.53764147e+06 3.62157326e+05 -1.57342132e+05] [-2.02280998e+06 -3.20272770e+06 -5.62940190e+06 -9.77005608e+05 -5.63100030e+06 -5.23742258e+06 3.40807181e+06 7.10690370e+06 5.50590545e+04 -7.57630784e+05 -6.06454313e+06 -6.16994802e+06 -1.72637114e+06 2.06484648e+05 -6.23390377e+06 -1.04841263e+06 -4.99193089e+06 1.30078248e+06 8.28617843e+05 -5.73903337e+06 -5.74133277e+06 -4.50971582e+06 9.51229730e+05 -5.37838148e+06 -5.96090570e+06 -2.29004981e+06 9.16851498e+05 -5.85676315e+06 1.58120457e+07 2.24166549e+06 -5.91793269e+06 1.22932040e+06 -6.33184986e+06 -6.13434511e+06 -1.83988513e+06 -2.07023965e+06] [-9.27944980e+05 -8.57207892e+05 -4.77563616e+06 6.41019793e+05 -4.85271457e+06 -4.12095831e+06 4.50396915e+06 8.12382465e+06 1.07143822e+06 1.81087200e+06 -4.51383017e+06 -4.65774676e+06 -2.67733233e+06 -2.62209000e+05 -4.83772680e+06 1.42483568e+06 -3.92036724e+06 2.53593985e+06 1.03357971e+06 -4.59901769e+06 -4.37317289e+06 -2.87760158e+06 2.67098050e+05 -4.33220740e+06 -4.52732958e+06 -7.53820735e+05 -3.13632264e+05 -4.56522493e+06 1.51663896e+07 2.97636000e+06 -4.86098058e+06 2.53374922e+06 -4.90734011e+06 -4.83914399e+06 -3.16209252e+06 -2.93565195e+06] [-4.82786964e+04 -1.92807344e+05 -2.91976660e+06 2.02515209e+06 -3.02555882e+06 -2.34395003e+06 4.85023160e+06 6.02643479e+06 1.77433066e+06 1.89142875e+06 -2.54269397e+06 -2.43485043e+06 -2.67280893e+06 -7.19478579e+05 -2.67132502e+06 2.35865281e+06 -2.21929913e+06 3.66727683e+06 8.70355515e+05 -2.66629014e+06 -2.36187169e+06 -9.01405262e+05 -4.61348175e+05 -2.46582009e+06 -2.36573685e+06 4.97517421e+05 -1.24836293e+06 -2.53863794e+06 1.16424576e+07 3.66623484e+06 -2.89185693e+06 2.83081975e+06 -2.70833513e+06 -2.65958721e+06 -3.06652018e+06 -2.96432554e+06] [ 5.97091353e+05 3.64792638e+05 -8.69272513e+05 1.56412448e+06 -8.93462135e+05 -6.86460063e+05 3.47700413e+06 2.16360495e+06 1.32710866e+06 8.54172492e+05 -7.28094127e+05 -6.53457575e+05 -1.65079329e+06 -5.87926259e+05 -6.89998144e+05 1.72875125e+06 -6.58159003e+05 2.39436914e+06 7.60495004e+05 -7.34293756e+05 -5.40205190e+05 6.26906863e+05 -7.26832563e+05 -6.87640065e+05 -5.50744315e+05 7.44950737e+05 -1.27986875e+06 -6.98407009e+05 4.96687156e+06 2.47433319e+06 -8.62672936e+05 1.84487708e+06 -7.31657339e+05 -7.21046078e+05 -1.78425060e+06 -1.76556743e+06] [ 3.93779504e+05 3.43396377e+05 1.11582760e+05 2.44206669e+05 1.45548832e+05 5.07626881e+04 8.91107500e+05 -2.63340153e+05 1.76456116e+05 -1.05087019e+05 -2.97822585e+04 -2.74994867e+04 -1.95109400e+05 -5.08493827e+04 9.77627057e+04 2.88411493e+05 3.44028694e+04 2.44516121e+05 4.01704077e+05 7.07060048e+04 1.15487932e+05 4.07394682e+05 -1.24875009e+05 7.86771106e+04 4.64625050e+04 -7.04609790e+04 -2.40972821e+05 4.91129690e+04 2.78980135e+05 3.06364862e+05 8.75254751e+04 4.31673058e+05 8.20951455e+04 2.32437128e+04 -1.92834890e+05 -2.77962766e+05] [-2.39517724e+04 -7.96715646e+04 3.97106425e+02 -1.24248574e+05 1.64542596e+04 -3.19764302e+04 3.26966350e+04 -1.14036807e+05 -7.35296778e+04 -1.49513242e+05 -6.36939314e+04 -6.56999065e+04 -6.77598775e+03 -3.24536942e+04 -2.21934205e+04 -3.86048679e+04 -5.27775971e+04 -1.26096334e+05 1.82726916e+04 -1.27234677e+04 -1.54216282e+04 -2.45524402e+04 -3.78179623e+04 -3.96856201e+04 -3.37238039e+04 -1.00578875e+05 -3.64294717e+04 -3.35791010e+04 -5.83855946e+04 -4.21588374e+04 -9.01834899e+03 6.84367032e+03 -2.48908266e+04 -5.82125464e+04 -2.15040489e+04 -3.60754211e+04] [ 4.12345365e-01 -6.83282212e-01 -6.47111427e-01 3.75852738e-01 -2.76874280e-01 3.96367421e-01 6.01955341e-01 -9.21942450e-01 1.69688690e-01 1.90596398e-02 -7.00071884e-01 8.61455657e-01 7.24685741e-01 -3.66647034e-01 -8.59734563e-01 6.89886777e-01 -6.38289179e-01 4.27422957e-01 8.45260080e-01 7.05607350e-01 4.15191961e-02 3.76215767e-01 -2.02154296e-01 3.26522971e-01 5.27368252e-01 3.72239762e-01 -8.83229493e-01 8.44048127e-01 8.40052892e-01 9.28565479e-01 -2.23385522e-01 1.66849458e-01 -9.69801335e-01 -9.83475144e-01 4.86142792e-01 -3.40694264e-01] [ 5.27216441e-02 5.95598186e-01 8.08863435e-01 9.72596115e-02 1.44549871e-01 -4.84633318e-02 3.91337490e-01 -6.04568083e-01 7.67412084e-01 -8.55948332e-01 -6.30083742e-01 2.95114253e-01 -7.74787242e-01 -7.33894382e-01 1.09763348e-01 4.80369804e-01 7.30554195e-01 -9.20188107e-02 9.16378807e-01 2.48297855e-02 9.22695237e-01 -1.37298732e-01 3.35289006e-01 -2.44383030e-01 8.97268309e-01 -6.50204528e-02 -1.23278467e-01 -1.59012451e-01 1.67287818e-01 -9.90216463e-01 -8.46648962e-01 -7.00619528e-01 8.53517064e-01 2.42697826e-01 4.54646920e-01 7.89956641e-01] [-3.33699570e+03 1.05853327e+03 -6.64442610e+03 1.16621412e+02 -6.27251740e+03 -5.16488242e+03 -4.10233008e+03 2.39874107e+03 -2.66939438e+03 -2.38135903e+03 -5.98051781e+03 -5.08145625e+03 -2.83326648e+01 -1.31642790e+03 -6.11682395e+03 -3.83003979e+03 -5.99325399e+03 -5.37877145e+02 2.36290637e+03 -6.40593170e+03 -6.14313571e+03 -2.99824917e+03 -2.21277656e+03 -6.35763225e+03 -5.04875561e+03 -2.79004559e+03 -2.95257030e+03 -4.91946197e+03 -3.74035373e+03 -6.74130489e+02 -6.45164262e+03 -4.58316013e+03 -5.06903631e+03 -5.46632202e+03 -4.92096149e+03 -3.83358391e+03] [-8.71178645e+03 -1.47106608e+03 -1.50708665e+04 -2.63921087e+03 -1.39829143e+04 -1.28617016e+04 -1.10861516e+04 2.31688128e+02 -7.39718617e+03 -6.94725360e+03 -1.41146851e+04 -1.25407435e+04 -1.40061916e+03 -3.95402385e+03 -1.42511003e+04 -7.21454610e+03 -1.39809261e+04 -3.80331634e+03 5.22093004e+03 -1.47357660e+04 -1.43746132e+04 -7.48796831e+03 -6.16009689e+03 -1.45605416e+04 -1.27837007e+04 -6.32142584e+03 -6.36404568e+03 -1.24205874e+04 -1.09741265e+04 -2.66023518e+03 -1.47369772e+04 -9.88797048e+03 -1.27140078e+04 -1.30299821e+04 -1.09067459e+04 -8.81063198e+03] [-2.01307945e+05 2.29171378e+05 -2.73969268e+05 -2.50600144e+05 -3.03626007e+05 -2.28680220e+05 -3.66355149e+05 2.88838902e+05 -1.90874824e+05 1.03156395e+05 -2.22419091e+05 -1.91561734e+05 1.49773443e+04 -3.19346206e+04 -2.25309157e+05 -3.75503320e+05 -2.11487185e+05 -2.94010502e+05 6.81832612e+04 -2.87332158e+05 -2.52626347e+05 -3.48220858e+05 5.78070565e+04 -2.30582881e+05 -2.02671991e+05 -2.04245923e+05 9.40775142e+04 -1.97484363e+05 -3.76682054e+04 -3.45251293e+05 -2.56910797e+05 -2.60586920e+05 -2.26296651e+05 -2.53481592e+05 8.17423949e+03 5.39895360e+04] [-1.34558807e+06 3.03218409e+05 -1.29962271e+06 -1.15358166e+06 -1.37234677e+06 -1.28687344e+06 -2.00448052e+06 1.43856630e+06 -1.28794563e+06 -5.33866068e+05 -1.39134967e+06 -1.35350122e+06 4.60607637e+05 1.34241389e+05 -1.43290221e+06 -2.47384246e+06 -1.27590714e+06 -1.23532142e+06 -4.66621620e+05 -1.34631497e+06 -1.37922660e+06 -2.34407519e+06 5.40107698e+05 -1.33694991e+06 -1.28551573e+06 -1.43858393e+06 9.42671522e+05 -1.30042845e+06 5.29773797e+05 -1.68111005e+06 -1.31325298e+06 -2.12593438e+06 -1.43074659e+06 -1.55212826e+06 5.13953160e+05 5.13123812e+05] [-3.20517365e+06 7.25548164e+05 -5.03278960e+06 -1.50409182e+06 -5.19218768e+06 -4.45683277e+06 -1.80145034e+06 6.49361092e+06 -2.24423552e+06 1.66491497e+05 -4.74066854e+06 -4.66217126e+06 -1.66061307e+06 -1.05539481e+06 -4.91662542e+06 -3.22028633e+06 -4.61275289e+06 -7.75564857e+05 -1.14367785e+06 -4.89410450e+06 -4.75326462e+06 -5.78548314e+06 3.87490256e+05 -4.92328000e+06 -4.41838783e+06 -2.71708057e+06 3.30472237e+05 -4.59514467e+06 7.18993205e+06 -1.89820375e+06 -4.97928182e+06 -2.88097934e+06 -4.81954334e+06 -5.17026590e+06 -1.58474596e+06 -8.58333761e+05] [-4.58217662e+06 2.54988187e+06 -9.59275894e+06 -6.17073354e+05 -1.00442343e+07 -8.16898254e+06 -3.67699764e+06 1.31065751e+07 -2.72588508e+06 1.42570248e+06 -8.74635538e+06 -8.38733699e+06 -3.25509963e+06 -2.36131422e+06 -9.21737771e+06 -6.23726977e+06 -8.35993583e+06 4.24351150e+05 -2.80825163e+06 -9.36659389e+06 -8.99425843e+06 -9.78066982e+06 6.51579954e+05 -9.05517243e+06 -8.13669003e+06 -5.05178959e+06 3.87449840e+05 -8.31612052e+06 1.25798886e+07 -2.61433814e+06 -9.45170003e+06 -5.98876329e+06 -8.96129824e+06 -9.24245595e+06 -4.43650973e+06 -2.82342153e+06] [-6.69535403e+06 2.80825679e+06 -1.53707937e+07 -1.02780263e+06 -1.59960540e+07 -1.33974966e+07 -5.59656117e+06 2.07346688e+07 -3.96672731e+06 8.33534262e+05 -1.46020798e+07 -1.33292739e+07 -5.94279556e+06 -5.49837252e+06 -1.45872628e+07 -8.95358368e+06 -1.40527651e+07 5.11252303e+05 -3.50004623e+06 -1.51007607e+07 -1.42380240e+07 -1.42114370e+07 4.86824710e+05 -1.47710557e+07 -1.28581187e+07 -7.62611629e+06 -4.72243283e+05 -1.33635749e+07 1.53458239e+07 -3.45497797e+06 -1.50897643e+07 -8.76842413e+06 -1.40253312e+07 -1.47166070e+07 -8.44565384e+06 -5.70599968e+06] [-8.87599860e+06 1.48017783e+06 -1.73730034e+07 -7.28003520e+05 -1.79056905e+07 -1.54115560e+07 -4.35003006e+06 2.62397091e+07 -4.26845036e+06 -8.63462688e+05 -1.69105316e+07 -1.40839088e+07 -8.29707404e+06 -8.54109105e+06 -1.59712323e+07 -1.00905528e+07 -1.65512507e+07 1.79770507e+06 -3.85198276e+06 -1.66169145e+07 -1.50926499e+07 -1.43661180e+07 -1.15046075e+06 -1.67528996e+07 -1.33838279e+07 -6.86229710e+06 -2.72851959e+06 -1.47941723e+07 1.47363783e+07 -1.94391978e+06 -1.67934884e+07 -1.13371635e+07 -1.51383793e+07 -1.63243472e+07 -1.32174802e+07 -9.59619126e+06] [-1.04054774e+07 2.47671427e+04 -1.45679685e+07 -1.02260011e+06 -1.48991385e+07 -1.32581458e+07 4.54828331e+05 2.66971526e+07 -4.36731466e+06 -1.01679710e+06 -1.35346679e+07 -9.59565411e+06 -9.66348395e+06 -1.03310783e+07 -1.22738307e+07 -8.59582226e+06 -1.47229364e+07 2.39462438e+06 -3.14300815e+06 -1.31131552e+07 -1.08892964e+07 -9.66691942e+06 -3.70381532e+06 -1.39771183e+07 -8.98847073e+06 -2.83932559e+06 -6.01799600e+06 -1.16548705e+07 9.87591069e+06 2.36115463e+05 -1.36208191e+07 -1.21537947e+07 -1.14501296e+07 -1.32291403e+07 -1.74046653e+07 -1.29403003e+07] [-1.02989366e+07 -1.80692125e+06 -9.76329462e+06 -4.29739151e+05 -9.96279605e+06 -8.82671526e+06 6.22151854e+06 2.54215978e+07 -2.92768565e+06 7.00401225e+05 -7.32152174e+06 -2.38194052e+06 -1.13647862e+07 -1.24072094e+07 -6.05214096e+06 -6.34615871e+06 -1.04407480e+07 4.27862718e+06 -1.45324136e+06 -7.64800210e+06 -4.71014256e+06 -2.26760973e+06 -6.73344133e+06 -8.69266565e+06 -2.14023870e+06 2.96037551e+06 -1.07482227e+07 -5.97854119e+06 4.26991455e+06 4.28173961e+06 -8.29068802e+06 -1.21354705e+07 -5.35095846e+06 -7.39078245e+06 -2.18635766e+07 -1.65693787e+07] [-6.85733087e+06 -1.74263736e+05 -5.89473775e+06 1.60594509e+06 -5.89741012e+06 -5.03515728e+06 1.30161237e+07 2.08433504e+07 -1.75994482e+05 1.15006566e+06 -1.25870525e+06 3.60315131e+06 -1.52760116e+07 -1.58748815e+07 -1.27908103e+06 -3.73057392e+06 -6.23778925e+06 7.89903111e+06 2.49840758e+06 -3.30938146e+06 2.91443635e+05 6.53911387e+06 -9.85661592e+06 -3.73618162e+06 3.17041065e+06 7.19989793e+06 -1.68348945e+07 -1.31511801e+06 -1.31524122e+06 1.01008097e+07 -4.03946128e+06 -8.74478577e+06 -2.43230133e+05 -1.72387636e+06 -2.66278030e+07 -2.03372039e+07] [-1.95580851e+06 4.08659013e+06 -7.75544333e+05 2.11666042e+06 -1.03700713e+06 6.29163386e+05 1.16099641e+07 1.37899958e+07 2.41195907e+06 4.59578953e+06 5.53296390e+06 8.41809190e+06 -1.17684915e+07 -1.13830272e+07 3.33314102e+06 -2.38847441e+06 4.18666114e+04 4.98839320e+06 2.91205038e+06 1.97146765e+06 4.79804683e+06 1.20596168e+07 -8.52015859e+06 2.08997009e+06 7.25973480e+06 9.40403629e+06 -1.49773013e+07 4.04584560e+06 -8.99445723e+06 1.06004063e+07 1.02625165e+06 -6.11050459e+06 4.70694364e+06 4.15041694e+06 -2.19508215e+07 -1.63990242e+07] [ 1.07380251e+06 6.25598420e+06 3.63752112e+06 1.29758193e+06 2.92861614e+06 4.88717479e+06 4.67973403e+06 5.95822180e+06 3.47387918e+06 5.83388803e+06 9.32392653e+06 1.01785462e+07 -5.16883585e+06 -4.96448001e+06 6.39449770e+06 -3.04593664e+06 5.01367424e+06 4.74250493e+05 -6.91821292e+05 5.95407275e+06 7.46453243e+06 1.11235338e+07 -5.58995764e+06 6.40000063e+06 8.73758536e+06 7.62960805e+06 -8.90067588e+06 7.34027383e+06 -1.58519413e+07 5.82917908e+06 5.05433783e+06 -5.74018081e+06 7.36176108e+06 7.56250103e+06 -1.30690469e+07 -9.82669637e+06] [ 5.28131103e+06 1.23045346e+07 6.28773066e+06 5.80867984e+06 4.81346118e+06 7.86454744e+06 1.14815053e+06 3.96254339e+06 6.72140366e+06 1.03726060e+07 1.19279795e+07 1.16757641e+07 2.94799687e+05 9.47306448e+05 8.33884031e+06 -7.06623789e+05 9.02493548e+06 3.49033298e+06 -2.31018025e+06 8.01139650e+06 9.03764146e+06 1.13568817e+07 -1.29114337e+06 9.59881454e+06 9.75372205e+06 6.39183371e+06 -2.43900891e+06 9.60985442e+06 -1.54144726e+07 4.67265586e+06 7.26802235e+06 -3.32257744e+06 8.97596401e+06 1.02216626e+07 -5.00810203e+06 -3.35947618e+06] [ 6.39506165e+06 1.76697488e+07 2.70441981e+06 8.52286807e+06 1.11965676e+06 4.46947167e+06 -1.06839026e+06 7.68107538e+05 6.20165080e+06 9.41699516e+06 7.73259926e+06 7.11688160e+06 -3.52663548e+05 1.64916649e+06 4.00149713e+06 -2.64789073e+06 6.15794303e+06 6.37641935e+06 -1.94588162e+06 3.55188548e+06 4.38150485e+06 8.16436590e+06 1.25500028e+06 6.27927104e+06 5.15678307e+06 8.59167022e+05 -6.47755803e+05 5.68449353e+06 -1.40429886e+07 2.92013207e+06 3.22794721e+06 -2.87770554e+06 4.71909594e+06 6.64356191e+06 -9.84765320e+05 6.05755454e+05] [-2.72767788e+06 1.20900920e+07 -7.84666736e+06 -2.36114093e+05 -8.58067390e+06 -6.92715504e+06 -7.24204710e+06 -3.33575275e+06 -4.64350615e+06 -5.67836326e+06 -5.63653512e+06 -6.20505828e+06 -3.46281147e+06 -3.11756173e+06 -8.49256895e+06 -1.49642000e+07 -5.89262960e+06 -2.53435606e+05 -5.51152296e+06 -7.66819467e+06 -7.08634172e+06 -3.97092273e+06 4.16002758e+05 -5.71631455e+06 -6.96664704e+06 -9.81456883e+06 -1.39771928e+06 -6.57924433e+06 -1.45296345e+07 -4.59867128e+06 -8.01102424e+06 -1.16570309e+07 -7.13564206e+06 -6.04648811e+06 -8.59983574e+05 6.08287343e+05] [-9.36889381e+06 5.99871729e+06 -1.53649699e+07 -4.34198252e+06 -1.57973997e+07 -1.46561376e+07 -1.09239396e+07 -4.50084696e+06 -1.14837600e+07 -1.34689237e+07 -1.55376154e+07 -1.54210208e+07 -8.75666009e+06 -8.32654259e+06 -1.66150673e+07 -2.29345388e+07 -1.46402616e+07 -3.80771283e+06 -1.02748034e+07 -1.56407024e+07 -1.53200397e+07 -1.34566120e+07 -3.20372952e+06 -1.46848014e+07 -1.51534260e+07 -1.57943863e+07 -5.94695914e+06 -1.51674320e+07 -1.28570626e+07 -1.18606432e+07 -1.56147699e+07 -1.85598771e+07 -1.54529844e+07 -1.52229933e+07 -3.98598094e+06 -2.76687249e+06] [-8.96899027e+06 2.40774876e+06 -1.36408573e+07 -5.51731047e+06 -1.40929941e+07 -1.29882240e+07 -1.19520879e+07 -4.42303916e+06 -1.11267820e+07 -1.12863545e+07 -1.43259304e+07 -1.47390913e+07 -5.95165016e+06 -5.19249188e+06 -1.50167749e+07 -2.09799611e+07 -1.29591236e+07 -5.92696107e+06 -1.07487840e+07 -1.42554472e+07 -1.43959298e+07 -1.47767022e+07 -2.80334747e+06 -1.35325081e+07 -1.43499827e+07 -1.44024775e+07 -3.61712968e+06 -1.39165268e+07 -5.83455098e+06 -1.32341389e+07 -1.39279665e+07 -1.70749310e+07 -1.44814578e+07 -1.43500193e+07 -2.65007121e+06 -1.93071854e+06] [-5.82075515e+06 -1.12152788e+06 -8.21352951e+06 -3.85185630e+06 -8.74708760e+06 -7.65731475e+06 -6.82094083e+06 3.35608044e+05 -6.09577147e+06 -4.88238076e+06 -9.05931863e+06 -9.44738984e+06 -1.64233991e+06 -3.61272212e+05 -9.00170074e+06 -1.14917624e+07 -7.64721387e+06 -4.48932477e+06 -6.04641919e+06 -8.68679200e+06 -8.90650965e+06 -1.03969265e+07 -6.75209916e+05 -8.37449184e+06 -8.96416697e+06 -6.94802777e+06 4.05827105e+05 -8.52658006e+06 4.15637105e+06 -8.10290712e+06 -8.49616944e+06 -9.18276701e+06 -9.09152927e+06 -9.07823155e+06 -1.11500026e+06 -8.46502759e+05] [-4.38001393e+06 -4.32920593e+06 -4.97713443e+06 -1.89472934e+06 -5.50815255e+06 -4.63937989e+06 -7.21596110e+05 6.04429840e+06 -1.77697351e+06 -1.65852713e+06 -5.86113347e+06 -5.72875910e+06 -7.15677535e+04 1.37880492e+06 -5.48845577e+06 -4.91638864e+06 -4.57173518e+06 -5.78174943e+05 -2.86408556e+06 -5.12367152e+06 -5.14176977e+06 -6.93585362e+06 3.95640096e+05 -5.14213010e+06 -5.22621736e+06 -2.02132137e+06 1.81278022e+06 -5.28153651e+06 1.23901277e+07 -1.62308168e+06 -5.27661978e+06 -3.72355732e+06 -5.78395388e+06 -5.89205234e+06 -1.58002181e+06 -1.64875472e+06] [-2.50763560e+06 -4.18787522e+06 -4.26187519e+06 -8.78483217e+05 -4.53903691e+06 -3.92150493e+06 3.56911209e+06 7.95181485e+06 1.69108562e+05 5.53998314e+05 -4.60383783e+06 -4.48049459e+06 -1.23459565e+06 4.48931894e+05 -4.36445398e+06 3.14564844e+05 -3.81078481e+06 1.30927669e+06 1.00028171e+05 -4.16792470e+06 -3.96991007e+06 -3.83443357e+06 1.50948428e+05 -4.17732236e+06 -4.10008344e+06 2.32929495e+04 6.51619585e+05 -4.33477404e+06 1.44559450e+07 1.86173700e+06 -4.45036060e+06 6.00064457e+05 -4.58278746e+06 -4.69486969e+06 -3.11514162e+06 -3.08935266e+06] [-1.21178324e+06 -1.63550155e+06 -4.25174701e+06 7.73210044e+05 -4.47828621e+06 -3.63944062e+06 4.35620548e+06 8.73475435e+06 1.26448317e+06 2.24127544e+06 -4.04558759e+06 -3.99874580e+06 -2.33543092e+06 -2.15150086e+05 -4.12081304e+06 1.68006521e+06 -3.52294118e+06 2.75632414e+06 4.41198357e+05 -3.97444928e+06 -3.72890305e+06 -2.59779204e+06 2.40393787e+04 -3.93692440e+06 -3.79462725e+06 3.33860632e+05 -2.45734939e+05 -3.96986685e+06 1.45002652e+07 2.80472409e+06 -4.28220144e+06 1.72208194e+06 -4.23371238e+06 -4.26758615e+06 -3.45477011e+06 -3.16860827e+06] [-2.15991984e+05 -1.27731786e+05 -3.01063181e+06 2.05748154e+06 -3.12247514e+06 -2.44449669e+06 4.12796322e+06 6.72140337e+06 1.57985550e+06 1.83154466e+06 -2.71804270e+06 -2.49671539e+06 -2.31460193e+06 -6.75989808e+05 -2.69000224e+06 1.93185001e+06 -2.33662911e+06 3.74185260e+06 4.91395336e+05 -2.72811227e+06 -2.38886423e+06 -1.39008615e+06 4.30198428e+04 -2.58852444e+06 -2.35290168e+06 3.95610671e+05 -6.44823778e+05 -2.58464979e+06 1.09878766e+07 2.98915857e+06 -2.96820752e+06 1.94843208e+06 -2.71460392e+06 -2.75236274e+06 -2.49566997e+06 -2.31573849e+06] [ 1.83829405e+05 3.58256449e+05 -1.14080588e+06 1.05301707e+06 -1.05036719e+06 -1.07189316e+06 2.63873627e+06 2.47498612e+06 6.81474663e+05 8.53145314e+04 -1.13991478e+06 -1.04838194e+06 -1.44584497e+06 -7.86338945e+05 -1.08008315e+06 7.76510986e+05 -1.07375175e+06 1.96653819e+06 4.03512038e+05 -1.01677352e+06 -8.30294906e+05 -1.22509274e+05 -3.08624252e+05 -1.02812722e+06 -8.89283848e+05 1.80160493e+05 -8.54415158e+05 -1.08037074e+06 4.25952999e+06 1.68504473e+06 -1.17381780e+06 8.97877987e+05 -1.06041978e+06 -1.13695525e+06 -1.36983975e+06 -1.24306182e+06] [ 3.31430581e+05 3.50677959e+05 -4.23244456e+04 4.26977129e+05 -3.18144108e+04 -5.49723257e+04 5.90060997e+05 -1.23615232e+03 2.14439262e+05 9.53995947e+04 -7.02115539e+04 -4.20851186e+04 -2.70797445e+05 -1.39221263e+05 -1.62835443e+04 3.17607854e+05 -3.02671761e+04 4.31657070e+05 2.65811043e+05 -5.53496082e+04 -7.98211551e+03 2.57252917e+05 -3.40194190e+04 -1.47343013e+04 -3.39369044e+04 8.00375920e+04 -1.77399372e+05 -5.12999283e+04 2.71534732e+05 3.08300788e+05 -5.29982381e+04 3.30749778e+05 -2.83247442e+04 -1.58285674e+04 -1.52819549e+05 -1.75198166e+05] [ 3.70735143e+04 2.80798620e+04 3.75800032e+03 7.71797416e+04 3.17833128e+03 9.73886281e+03 5.49963468e+04 -1.53680690e+03 4.12745735e+04 5.77450195e+03 2.30791616e+02 1.09561443e+04 -1.27170127e+04 3.61325969e+03 9.07052893e+03 1.36676535e+04 1.21534907e+04 1.00555388e+05 8.68987086e+03 3.02934524e+03 6.64555214e+03 1.95639198e+04 4.75923690e+03 9.86580424e+03 1.26406998e+04 -9.84544393e+03 -1.29258379e+04 1.14573467e+04 3.17813558e+04 4.96868401e+04 4.51419764e+03 4.77568627e+03 1.17471650e+04 1.15281839e+04 1.06367117e+04 -7.05437705e+03] [-5.14019080e-01 8.82042125e-01 3.57976836e-01 6.51210548e-02 -9.31384934e-02 -3.34401184e-01 3.02766689e-01 -7.89355737e-01 -4.93219588e-01 8.59582296e-01 -5.87396813e-01 6.34903913e-01 -3.00504352e-01 4.63497068e-01 -9.64828995e-01 3.84823092e-01 -2.41618705e-01 5.66671233e-01 6.65282603e-02 8.30098511e-01 -8.03899960e-01 4.61935320e-02 -1.12370122e-01 5.97784792e-01 4.25957179e-01 1.72175369e-01 4.71524924e-01 1.37788579e-01 1.17276882e-01 1.05511931e-01 8.90962843e-01 -3.22809186e-01 -1.48934013e-02 -6.89915533e-01 -9.66437046e-01 7.29574222e-02] [ 5.23011829e-01 8.60530391e-01 -5.12435590e-01 4.64878342e-01 4.16646953e-01 -7.01402087e-03 -4.01933967e-01 8.26675396e-01 8.66112780e-01 -8.66462505e-01 1.47177351e-01 7.60784152e-01 9.50551613e-01 9.55571494e-01 -2.41345855e-01 8.33726060e-01 -6.44782061e-01 -6.63602830e-01 -2.75727005e-01 -8.05995946e-01 9.81864274e-01 3.59641892e-01 8.77308144e-02 8.59534303e-01 9.94948517e-01 6.22941747e-01 -7.95335309e-01 -8.37654022e-01 -1.71502373e-01 1.09504856e-01 3.33920708e-01 5.88236670e-01 3.10246379e-01 -3.36584116e-01 5.74452116e-01 -5.51883324e-01] [-1.65965091e+02 5.21619764e+01 -3.29560301e+02 5.75907961e+00 -3.10215061e+02 -2.57056318e+02 -2.02672196e+02 1.19270321e+02 -1.32496182e+02 -1.18598442e+02 -2.95868423e+02 -2.51042081e+02 -1.81947513e+00 -6.43859725e+01 -3.03732899e+02 -1.89567535e+02 -2.96629362e+02 -2.68891035e+01 1.18146397e+02 -3.17982704e+02 -3.05397243e+02 -1.49337554e+02 -1.10577240e+02 -3.15052437e+02 -2.50163252e+02 -1.38629391e+02 -1.46664028e+02 -2.43778739e+02 -1.85484930e+02 -3.29779111e+01 -3.19770975e+02 -2.26741157e+02 -2.50579907e+02 -2.71556336e+02 -2.44684252e+02 -1.90458012e+02] [-5.51455962e+04 -7.92938711e+04 -2.30499436e+03 -3.07002855e+04 2.73603232e+03 -1.09490192e+04 -4.58934573e+03 -5.72216769e+04 -3.19913144e+04 -8.02254657e+04 -3.72804394e+03 -7.44618406e+03 -1.02465587e+04 -1.88421737e+04 -9.48045800e+03 -6.61809851e+04 -1.56574193e+04 1.12923041e+03 -4.98638724e+04 4.47257776e+03 5.50455710e+03 -1.54116973e+04 -3.42660565e+04 -9.78339909e+03 -1.57480694e+03 6.63135870e+03 -3.68183239e+04 -1.05341081e+04 -6.43596386e+04 -5.24571811e+03 -5.39403697e+03 -7.49377624e+04 -8.39918405e+03 -9.87437706e+03 -1.99365299e+04 -2.74414825e+04] [-1.39493318e+05 1.10820936e+05 -1.63427839e+05 -3.50276088e+05 -1.53959605e+05 -1.82717410e+05 -2.59137813e+05 -7.80936056e+04 -2.35300344e+05 -3.02001245e+05 -1.95661638e+05 -1.95018786e+05 1.01714203e+04 -5.62187124e+04 -1.93012337e+05 -4.19668258e+05 -1.93130421e+05 -3.87752601e+05 4.15365177e+04 -2.19540497e+05 -2.01635571e+05 -2.20205581e+05 -7.90689526e+04 -1.86291101e+05 -1.89455205e+05 -3.15905516e+05 -2.75779866e+04 -1.68956468e+05 -2.19175181e+05 -3.06865884e+05 -1.78007252e+05 -2.71821425e+05 -1.71477416e+05 -2.20832156e+05 -1.50366742e+05 -1.21322918e+05] [-1.09904894e+06 -3.83399879e+05 -1.24398438e+06 -1.05216139e+06 -1.21312273e+06 -1.27074852e+06 -1.03961555e+06 8.57367164e+05 -1.13739822e+06 -1.34788831e+06 -1.43380675e+06 -1.48904074e+06 -7.98955855e+04 -1.48251175e+05 -1.47073501e+06 -2.13299190e+06 -1.34623305e+06 -8.36246859e+05 -6.16189473e+05 -1.28225933e+06 -1.35675229e+06 -2.07506203e+06 -6.80071645e+03 -1.38004698e+06 -1.32321674e+06 -1.57370096e+06 2.12982703e+05 -1.34774061e+06 1.27713440e+06 -1.25193793e+06 -1.28902780e+06 -1.78140994e+06 -1.41111937e+06 -1.56189811e+06 -1.72533231e+05 -1.34830946e+05] [-2.18718410e+06 -4.25461061e+05 -4.91870029e+06 1.24977101e+05 -4.96333836e+06 -4.39029470e+06 -3.33617879e+05 4.96906376e+06 -1.04104067e+06 -1.57496026e+06 -4.91279694e+06 -4.76024249e+06 -2.50965454e+06 -1.64853928e+06 -5.08626440e+06 -3.32254159e+06 -4.46088417e+06 1.88360496e+06 -1.24366443e+06 -4.82288037e+06 -4.82321505e+06 -5.18047644e+06 -3.60244493e+05 -4.70335533e+06 -4.53586399e+06 -3.76598189e+06 -9.03649909e+05 -4.65236236e+06 8.57077407e+06 -4.01591325e+05 -4.93409128e+06 -2.43998629e+06 -4.92892716e+06 -4.94531076e+06 -2.63725458e+06 -2.08362440e+06] [-4.23140065e+06 3.15412638e+05 -9.75117991e+06 -6.83768589e+05 -9.88419261e+06 -8.69306448e+06 -2.48728654e+06 9.84478536e+06 -2.62879904e+06 -2.32997322e+06 -9.69680037e+06 -9.40064304e+06 -3.87496269e+06 -3.00655369e+06 -9.98639118e+06 -6.90015493e+06 -8.89728014e+06 1.37606412e+06 -2.52489399e+06 -9.75776531e+06 -9.66043026e+06 -9.55005343e+06 -2.88508266e+05 -9.42016152e+06 -9.06551583e+06 -6.88190529e+06 -7.65647212e+05 -9.06181272e+06 1.35066436e+07 -1.85909620e+06 -9.80108224e+06 -5.46368376e+06 -9.70482053e+06 -9.80027088e+06 -5.42418869e+06 -4.13651273e+06] [-4.84212160e+06 2.27832948e+06 -1.39616292e+07 1.51911509e+06 -1.42704844e+07 -1.23187385e+07 -2.44470576e+06 1.60149116e+07 -2.51124115e+06 -2.34349063e+06 -1.39077299e+07 -1.27837353e+07 -6.36462299e+06 -5.14254013e+06 -1.37941540e+07 -8.66983434e+06 -1.27129896e+07 4.29090206e+06 -4.05614689e+06 -1.39003456e+07 -1.32577504e+07 -1.22669044e+07 -8.52802845e+05 -1.33081842e+07 -1.23058842e+07 -8.84837986e+06 -2.13118137e+06 -1.25738550e+07 1.75753871e+07 -1.18182434e+06 -1.38925135e+07 -7.54087956e+06 -1.32442169e+07 -1.34746901e+07 -8.92482946e+06 -7.03966675e+06] [-5.23905756e+06 3.99224336e+06 -1.55361621e+07 3.42485830e+06 -1.58498030e+07 -1.36637498e+07 2.61612599e+05 2.08355438e+07 -1.94016287e+06 -3.03158226e+06 -1.54464884e+07 -1.31987631e+07 -8.95544719e+06 -7.44082478e+06 -1.46653227e+07 -8.76347138e+06 -1.43997861e+07 6.85592203e+06 -3.71082708e+06 -1.50907740e+07 -1.37028090e+07 -1.15691638e+07 -2.08819969e+06 -1.45861992e+07 -1.25092545e+07 -8.05858437e+06 -4.39836648e+06 -1.34466595e+07 1.72911932e+07 3.87769294e+05 -1.52112866e+07 -9.00956243e+06 -1.37983541e+07 -1.43671442e+07 -1.30060887e+07 -1.03194874e+07] [-4.81025627e+06 5.43162391e+06 -1.30498213e+07 6.05086410e+06 -1.33127756e+07 -1.13707565e+07 3.54662781e+06 2.21224094e+07 -8.80809603e+05 -2.26671112e+06 -1.23322989e+07 -9.16825530e+06 -9.34652404e+06 -8.10400554e+06 -1.15963936e+07 -8.40604379e+06 -1.22082271e+07 1.04354496e+07 -2.64022027e+06 -1.21171561e+07 -1.01933047e+07 -7.29589670e+06 -2.62913001e+06 -1.17185921e+07 -8.65313897e+06 -5.59888743e+06 -5.91345640e+06 -1.03690781e+07 1.36446222e+07 2.59117162e+06 -1.24868265e+07 -9.52196997e+06 -1.04498374e+07 -1.12929443e+07 -1.46357412e+07 -1.12020037e+07] [-3.38381420e+06 6.79041719e+06 -1.10506372e+07 7.73825271e+06 -1.12990699e+07 -9.20496520e+06 8.35777365e+06 2.03469638e+07 5.16678501e+05 -9.78275108e+05 -8.63016139e+06 -4.72193247e+06 -1.33266517e+07 -1.14897920e+07 -8.35070173e+06 -6.95300887e+06 -9.99545833e+06 1.36899953e+07 -7.38538065e+05 -9.56986861e+06 -6.95586912e+06 -1.25048462e+06 -5.64361481e+06 -8.81691775e+06 -4.69166903e+06 -2.46778788e+06 -1.15072410e+07 -7.18375181e+06 8.48887668e+06 6.08830921e+06 -9.96215928e+06 -9.01447199e+06 -6.94234160e+06 -7.67087485e+06 -1.95429112e+07 -1.47767526e+07] [ 8.17125910e+05 1.07253333e+07 -7.70269941e+06 8.68736229e+06 -8.02255761e+06 -5.31065553e+06 1.27271156e+07 1.61146305e+07 3.29264821e+06 2.12858405e+06 -2.94162523e+06 5.95159265e+05 -1.50216308e+07 -1.25716254e+07 -3.97730385e+06 -3.53968048e+06 -5.74532346e+06 1.41685980e+07 4.23048971e+06 -5.89697655e+06 -2.94898357e+06 6.86595550e+06 -6.85125597e+06 -4.29117621e+06 -1.04945649e+05 1.20564688e+06 -1.48603392e+07 -2.53298802e+06 1.80164623e+06 1.04074766e+07 -6.15716548e+06 -4.09645926e+06 -2.11291053e+06 -2.39639893e+06 -2.14155157e+07 -1.58470278e+07] [ 4.26942434e+06 1.42482308e+07 -4.35597121e+06 5.62001321e+06 -4.85725616e+06 -1.82608334e+06 8.09661845e+06 9.28354803e+06 3.61450664e+06 5.21082066e+06 1.38679103e+06 3.19778329e+06 -1.06943207e+07 -8.28325943e+06 -1.17456547e+06 -2.27878354e+06 -1.81003601e+06 6.61020084e+06 6.53035001e+06 -2.81696232e+06 -5.79095808e+05 1.05214160e+07 -4.16426895e+06 -6.73470229e+05 1.79358156e+06 2.42487497e+06 -1.08932832e+07 6.79634708e+05 -8.59482988e+06 8.10408212e+06 -2.95447006e+06 -2.71988692e+05 8.82981466e+05 1.09752060e+06 -1.59373465e+07 -1.09184122e+07] [ 9.33031687e+06 1.95547076e+07 4.59178149e+05 7.88951487e+06 -6.04748276e+05 2.87356480e+06 4.67955242e+06 5.67452831e+06 6.79741210e+06 1.12541687e+07 6.22458276e+06 6.40005241e+06 -4.22708032e+06 -1.62569949e+06 2.92312521e+06 2.98608438e+06 3.89700036e+06 4.70652632e+06 7.83043608e+06 1.39850284e+06 2.80708089e+06 1.30102050e+07 2.61140350e+05 4.41977260e+06 4.24830050e+06 3.42501912e+06 -3.75260988e+06 4.66950041e+06 -1.16383766e+07 6.92995154e+06 1.49359517e+06 4.87479237e+06 4.42869912e+06 5.58442721e+06 -7.87593520e+06 -3.95093579e+06] [ 1.20634249e+07 2.54071366e+07 2.90007537e+06 1.05866842e+07 1.07502997e+06 5.62674577e+06 1.16331146e+06 4.97919810e+06 8.85122867e+06 1.72676663e+07 8.51456970e+06 7.37894008e+06 1.81378823e+06 5.10774951e+06 4.93559501e+06 6.67142922e+06 7.52540530e+06 4.42269157e+06 6.00292542e+06 3.28708993e+06 4.06586536e+06 1.22517231e+07 4.82538394e+06 7.07843890e+06 4.96530415e+06 3.20215037e+06 3.46756205e+06 6.66611434e+06 -1.03444404e+07 4.92683494e+06 3.59554262e+06 6.61454976e+06 5.77797783e+06 7.76236987e+06 5.62916008e+05 3.33708424e+06] [ 6.73368549e+06 2.34565211e+07 -1.47475503e+06 5.53775535e+06 -3.05359774e+06 6.69200139e+05 -5.98697917e+06 1.34602416e+06 2.66184459e+06 1.06596950e+07 1.96929777e+06 6.23937364e+05 3.36708938e+06 5.36131831e+06 -6.86558100e+05 -1.44582341e+05 2.31570161e+06 -7.77545678e+05 1.72240812e+06 -1.61114954e+06 -1.35437526e+06 3.56825315e+06 6.25398788e+06 1.62863522e+06 -9.65384421e+05 -3.16949169e+06 6.56054858e+06 9.77224820e+05 -1.27256196e+07 -2.35290317e+06 -1.24034061e+06 1.88243067e+05 5.49726410e+04 1.64460943e+06 5.46505320e+06 7.49039227e+06] [-4.06171043e+06 1.37824114e+07 -1.18537959e+07 -1.74104132e+06 -1.23398401e+07 -1.07371784e+07 -9.34167110e+06 -2.22007321e+06 -8.03706064e+06 -6.55380313e+06 -1.09413593e+07 -1.09716067e+07 -4.63648247e+06 -4.40860274e+06 -1.21363884e+07 -1.38225723e+07 -1.01786800e+07 -3.81605297e+06 -4.06307845e+06 -1.21032522e+07 -1.15555911e+07 -7.46857275e+06 8.83302062e+05 -1.02046844e+07 -1.12485420e+07 -1.28740267e+07 -9.55997629e+05 -1.06418395e+07 -1.45610408e+07 -8.86550174e+06 -1.19276156e+07 -1.14532461e+07 -1.08575375e+07 -1.02660171e+07 -3.49092200e+05 1.71652566e+06] [-1.07787936e+07 3.67545608e+06 -1.51912009e+07 -4.66922672e+06 -1.52562537e+07 -1.46361360e+07 -1.07670689e+07 -4.53192672e+06 -1.27081214e+07 -1.49197840e+07 -1.56095451e+07 -1.50361474e+07 -8.79899109e+06 -8.90519723e+06 -1.59690366e+07 -2.28563981e+07 -1.47611102e+07 -3.98459920e+06 -1.14792805e+07 -1.52909040e+07 -1.48059937e+07 -1.35443212e+07 -4.37764207e+06 -1.45852792e+07 -1.44823808e+07 -1.59783033e+07 -6.89653508e+06 -1.48465980e+07 -1.18861371e+07 -1.28573249e+07 -1.53031700e+07 -1.99518792e+07 -1.49000578e+07 -1.49419224e+07 -5.17631966e+06 -3.98111692e+06] [-1.04913798e+07 -3.96795406e+06 -1.04137202e+07 -5.73161886e+06 -1.06654266e+07 -1.01866524e+07 -9.73065083e+06 -5.10788802e+06 -1.05070738e+07 -1.16372456e+07 -1.06691537e+07 -1.07557870e+07 -5.65662747e+06 -5.69247796e+06 -1.11939568e+07 -1.87689386e+07 -1.03828324e+07 -4.74088764e+06 -1.29013312e+07 -1.04762239e+07 -1.03089014e+07 -1.23294072e+07 -5.43737080e+06 -1.05274446e+07 -1.02455371e+07 -1.05718702e+07 -5.94268114e+06 -1.07576808e+07 -4.76014241e+06 -1.10142352e+07 -1.06518129e+07 -1.75586157e+07 -1.09562672e+07 -1.09715256e+07 -5.72655181e+06 -5.05952836e+06] [-7.03572145e+06 -6.65118331e+06 -4.77882275e+06 -5.27722170e+06 -5.10997792e+06 -4.72759326e+06 -3.70533572e+06 -1.64394527e+06 -5.84833862e+06 -6.18363167e+06 -5.13887403e+06 -5.50908041e+06 -1.88558773e+06 -1.22145384e+06 -5.33410101e+06 -1.01586035e+07 -4.97842141e+06 -4.34290273e+06 -8.04229514e+06 -4.83539489e+06 -4.87577008e+06 -7.87503515e+06 -3.79140140e+06 -5.33190153e+06 -5.01430617e+06 -3.52123189e+06 -2.50668182e+06 -5.32127113e+06 3.93283001e+06 -5.68971663e+06 -5.10886237e+06 -9.73977667e+06 -5.60942346e+06 -5.78585774e+06 -4.73630109e+06 -4.28338401e+06] [-5.68618369e+06 -7.80623939e+06 -3.08556722e+06 -3.11381534e+06 -3.42053608e+06 -3.26366782e+06 1.00737648e+06 5.36297644e+06 -2.01970638e+06 -2.82485510e+06 -3.58933884e+06 -3.53232769e+06 -5.00180913e+05 4.06045582e+05 -3.42837312e+06 -4.69408944e+06 -3.45320826e+06 -9.41837167e+05 -5.09777853e+06 -2.80699694e+06 -2.71066472e+06 -5.31963213e+06 -2.01228901e+06 -3.64033489e+06 -2.96719344e+06 6.01082593e+05 -3.27266078e+05 -3.60813027e+06 1.05995742e+07 -7.74389068e+05 -3.37025797e+06 -5.63071994e+06 -3.84265118e+06 -4.15446051e+06 -4.22869069e+06 -4.22777286e+06] [-2.84371947e+06 -5.52183136e+06 -3.17746647e+06 -7.34049226e+05 -3.50318283e+06 -3.00348915e+06 5.18073614e+06 7.12334745e+06 5.37322978e+05 7.65975405e+05 -2.99035241e+06 -3.02303569e+06 -2.20855968e+06 -2.08961902e+05 -2.91619843e+06 1.37492368e+06 -3.00219312e+06 1.52132478e+06 -1.50961954e+06 -2.76927182e+06 -2.41168090e+06 -2.15019444e+06 -1.76884597e+06 -3.22536339e+06 -2.64009724e+06 2.21305814e+06 -1.31907824e+06 -3.23630762e+06 1.24840709e+07 2.26905116e+06 -3.29089846e+06 -2.31210876e+05 -3.25178571e+06 -3.38267161e+06 -5.13253603e+06 -4.93152477e+06] [-1.40415840e+06 -2.94111667e+06 -3.48825993e+06 1.13775902e+06 -3.70919770e+06 -2.99093316e+06 5.60863119e+06 7.49178796e+06 1.44523893e+06 1.51416592e+06 -2.97862754e+06 -2.90233828e+06 -3.22868973e+06 -1.05702243e+06 -3.10977963e+06 2.06854262e+06 -2.88092161e+06 3.68787114e+06 -5.46467066e+05 -3.03108022e+06 -2.63044573e+06 -1.55095225e+06 -1.39477070e+06 -3.13268592e+06 -2.69606266e+06 1.52255592e+06 -1.88578746e+06 -3.16240011e+06 1.29729606e+07 3.32542978e+06 -3.48261408e+06 1.04185969e+06 -3.24464975e+06 -3.21800956e+06 -4.79701398e+06 -4.44802755e+06] [-6.58257515e+05 -7.57919358e+05 -2.92063491e+06 2.03009962e+06 -3.00134876e+06 -2.46335166e+06 4.10983693e+06 5.46661735e+06 1.18709153e+06 1.04390854e+06 -2.71010551e+06 -2.49090041e+06 -2.78179541e+06 -1.19750837e+06 -2.61247736e+06 1.55040488e+06 -2.41973525e+06 3.98969532e+06 -3.34564380e+05 -2.58841812e+06 -2.26771358e+06 -1.46938364e+06 -7.49539159e+05 -2.60536017e+06 -2.30738439e+06 4.26295650e+05 -1.41220207e+06 -2.59692825e+06 9.44159121e+06 2.54850067e+06 -2.89325148e+06 1.02669394e+06 -2.65359919e+06 -2.68251650e+06 -2.90587801e+06 -2.75783408e+06] [ 5.17571265e+05 1.04185961e+06 -1.02955318e+06 1.75681454e+06 -9.90365171e+05 -8.65264808e+05 2.58627829e+06 2.07063703e+06 9.85115873e+05 5.38692023e+05 -9.08391554e+05 -8.31557165e+05 -1.54321588e+06 -7.73397426e+05 -9.23364411e+05 8.35909541e+05 -7.85284605e+05 2.56319614e+06 2.40203001e+05 -9.30383975e+05 -7.60605261e+05 6.09764739e+04 -3.91909328e+05 -7.84868044e+05 -7.97429936e+05 5.36418247e+04 -9.58066750e+05 -9.01583554e+05 3.69445505e+06 1.73475246e+06 -1.04303114e+06 8.73888559e+05 -9.29379914e+05 -8.39439494e+05 -1.29575293e+06 -1.19610011e+06] [ 2.09238200e+05 1.31975266e+04 -5.79068561e+04 2.05583105e+05 1.63877532e+04 -1.59848927e+05 4.84760197e+05 -4.93995501e+05 6.71598258e+04 -6.09943838e+05 -1.81191904e+05 -1.43896844e+05 -3.04650323e+05 -3.49271284e+05 -1.31156810e+05 -6.60976295e+04 -1.43864129e+05 3.08964711e+05 1.83322935e+05 -1.11710250e+05 -9.08110903e+04 1.62369636e+05 -1.83323098e+05 -7.45965265e+04 -1.53994942e+05 -1.68717369e+05 -3.24063162e+05 -1.54927520e+05 -1.99256029e+05 2.67789662e+05 -9.73248591e+04 1.02430378e+05 -1.30340822e+05 -8.92392567e+04 -2.35715134e+05 -3.00501743e+05] [ 3.88205997e+04 -3.44037999e+04 -1.85419889e+04 1.35762521e+05 -8.11643340e+03 -2.35058949e+04 1.08988303e+05 -1.27483872e+05 5.29112247e+04 -1.46705862e+05 -4.98953756e+04 -1.65434065e+04 -8.33034685e+04 -8.68996827e+04 -2.09075173e+04 -5.87234731e+04 -2.22620407e+04 2.09841535e+05 3.37132452e+03 -2.84083948e+04 -2.21311922e+04 1.15769848e+03 -5.67427055e+04 -1.55499044e+04 -1.35478250e+04 -8.77561640e+04 -1.07899702e+05 -1.58384214e+04 -4.33390895e+04 8.61138947e+04 -1.98292318e+04 -5.97219250e+04 -1.37553181e+04 -1.39497213e+04 -3.88623641e+04 -7.69464333e+04] [-2.45812719e+02 -1.80176640e+01 -3.55956656e+02 -1.30559093e+00 -3.36442058e+02 -2.82135371e+02 -4.52570735e+02 2.85824076e+01 -2.59186156e+02 -3.13962285e+02 -3.39184563e+02 -2.78984623e+02 1.06328354e+02 -9.61702598e+01 -3.35693681e+02 -4.35847719e+02 -3.19068408e+02 -1.31924269e+02 -1.51823287e+02 -3.43785184e+02 -3.36855789e+02 -2.93809735e+02 9.11709435e+01 -3.45526057e+02 -2.76783993e+02 -2.82338982e+02 1.32547235e+02 -2.63777178e+02 -2.83946786e+02 -1.80779890e+02 -3.42554003e+02 -3.09716117e+02 -2.82155534e+02 -2.95425856e+02 1.18962666e+02 1.34278865e+02] [-8.44465227e-01 -9.50422627e-01 5.40680325e-01 3.91445360e-01 -5.18156121e-01 8.73091879e-01 -7.40108732e-01 -3.44728413e-01 -3.67718863e-01 -5.89357888e-01 -7.78840745e-01 -6.82734419e-01 -4.27730802e-01 -9.39667955e-01 5.78253468e-01 1.47990942e-01 -8.17980042e-01 3.53872446e-01 3.35722716e-01 -4.78478168e-01 -9.00314652e-01 1.01571639e-01 -3.09903443e-02 -3.98995210e-01 4.47850587e-01 4.95639366e-01 -4.37154227e-02 -1.93241879e-01 1.05791415e-01 -8.98120302e-02 7.84861225e-01 2.34139911e-01 -4.51767853e-01 -8.37313935e-01 -3.05167836e-01 9.50303409e-01] [-7.23531162e+02 -2.85896111e+03 1.15900350e+03 1.44732168e+03 1.13321848e+03 5.44793463e+02 1.34296133e+03 -3.49524784e+03 1.00703327e+03 -2.99302098e+03 1.66822456e+03 1.31469722e+03 -1.44000666e+03 -4.12529161e+02 7.11539691e+02 -3.12975822e+03 1.34450727e+03 3.34375045e+03 -3.60860062e+03 1.39732025e+03 1.52879250e+03 -1.21467837e+02 -2.11306041e+03 1.31551164e+03 9.58826647e+02 9.17889857e+02 -2.50236883e+03 4.10658598e+02 -1.24345884e+03 1.92317249e+03 7.41820343e+02 -3.65091925e+03 6.81608100e+02 1.62448666e+03 -1.02973921e+03 -1.51526460e+03] [-1.47649910e+05 -3.91800568e+05 8.38229108e+04 -1.80214588e+05 9.63981155e+04 3.74814737e+04 -3.19604381e+04 -3.04260748e+05 -9.03683062e+04 -2.82145242e+05 6.31739814e+04 3.53961275e+04 3.42542197e+04 -1.94314840e+04 4.28404369e+04 -1.85638748e+05 2.77242604e+04 -8.68646852e+04 -1.73721904e+05 9.95118197e+04 8.91056805e+04 -4.49624822e+04 -1.18612281e+05 4.69059520e+04 4.85607391e+04 5.99572179e+04 -7.21929864e+04 3.04105903e+04 -2.79203002e+05 -4.30980132e+04 7.07901746e+04 -2.09347769e+05 3.95726095e+04 3.50847200e+04 -1.45863762e+04 -6.54021915e+04] [-9.34094252e+04 -4.39681190e+05 2.26458704e+05 -4.02114712e+05 2.72092358e+05 1.08332342e+05 -1.80700841e+04 -8.09519437e+05 -1.92238063e+05 -8.83928174e+05 1.53523087e+05 6.83108768e+04 1.57942301e+05 2.89237399e+04 8.42097737e+04 -5.66324401e+05 8.49471501e+04 -2.61477669e+05 -2.01592111e+05 2.02304473e+05 1.61495574e+05 -4.01107635e+04 -2.41897153e+05 1.29381131e+05 8.93995185e+04 -2.24108749e+05 -9.89395981e+04 8.23515623e+04 -6.33533262e+05 -1.50713561e+05 1.78735293e+05 -5.12679023e+05 1.13215461e+05 8.43631955e+04 -5.79264001e+04 -1.39872702e+05] [-7.85666804e+05 -1.86478112e+06 -1.03108855e+06 -7.15558806e+05 -8.33215012e+05 -1.27031736e+06 6.88517796e+04 -6.52564970e+05 -7.95056689e+05 -3.47693635e+06 -1.50819834e+06 -1.51932837e+06 -7.19574853e+05 -8.81753361e+05 -1.50668832e+06 -2.21802781e+06 -1.42757983e+06 4.36226178e+05 -6.97643588e+05 -1.10031671e+06 -1.23824434e+06 -1.73176252e+06 -7.09980799e+05 -1.29697011e+06 -1.31255104e+06 -2.15912348e+06 -7.85466345e+05 -1.40974286e+06 1.27535875e+06 -3.09839159e+05 -1.14737786e+06 -1.67800416e+06 -1.38784113e+06 -1.45357726e+06 -8.39847113e+05 -9.91904998e+05] [-9.45606647e+05 -1.93280913e+06 -4.45860800e+06 1.27803803e+06 -4.26844454e+06 -4.24608379e+06 1.41624928e+06 2.43142497e+06 4.01284083e+04 -4.17031443e+06 -4.90609667e+06 -4.73727661e+06 -3.42195859e+06 -2.44823299e+06 -5.01832841e+06 -3.20562103e+06 -4.19102201e+06 3.99013154e+06 -7.52103017e+05 -4.58828512e+06 -4.69545285e+06 -4.03296460e+06 -1.30908420e+06 -4.23093219e+06 -4.59431189e+06 -4.73978620e+06 -2.40846970e+06 -4.59893053e+06 8.81673289e+06 9.91586212e+05 -4.61275989e+06 -1.57478218e+06 -4.86954331e+06 -4.54367706e+06 -3.75769844e+06 -3.48156067e+06] [-2.36637015e+06 -1.43209224e+06 -8.06517311e+06 1.26035492e+06 -7.91479593e+06 -7.51102809e+06 1.25934553e+06 5.76644883e+06 -8.28172350e+05 -5.06573000e+06 -8.95147290e+06 -8.44882091e+06 -4.87872550e+06 -3.64121863e+06 -8.67833994e+06 -5.25771398e+06 -7.70816041e+06 4.42587039e+06 -1.55264881e+06 -8.28243162e+06 -8.34471179e+06 -7.24950646e+06 -2.23232950e+06 -7.99426706e+06 -8.07646171e+06 -7.02468331e+06 -3.09107417e+06 -7.99066317e+06 1.43919737e+07 5.44722356e+05 -8.26345673e+06 -3.10113766e+06 -8.45886896e+06 -8.35509246e+06 -6.64670818e+06 -6.10652536e+06] [-1.07008096e+06 3.09492228e+06 -1.06536164e+07 4.11243368e+06 -1.07728868e+07 -9.34827233e+06 2.09418894e+06 9.92571721e+06 -9.60523517e+04 -3.28989021e+06 -1.11374068e+07 -1.03563406e+07 -6.41263641e+06 -4.17295595e+06 -1.08126069e+07 -5.28872051e+06 -9.50883788e+06 6.89294056e+06 -1.04654099e+06 -1.09637750e+07 -1.05815158e+07 -8.16151521e+06 -1.83739548e+06 -1.01109880e+07 -9.92031759e+06 -8.08116493e+06 -3.43423477e+06 -9.78135580e+06 1.82931578e+07 1.12768881e+06 -1.07510606e+07 -2.87632301e+06 -1.03291936e+07 -1.03139992e+07 -8.59370246e+06 -7.31577589e+06] [ 7.42148054e+05 8.09828586e+06 -1.11245642e+07 7.73898884e+06 -1.14200731e+07 -9.19118437e+06 5.06070846e+06 1.38703275e+07 1.65808040e+06 -2.10779965e+06 -1.10419826e+07 -9.83318435e+06 -7.44499782e+06 -4.07910763e+06 -1.09645073e+07 -5.65202436e+06 -9.35600518e+06 1.09220856e+07 -1.83320593e+05 -1.11419189e+07 -1.03148324e+07 -6.60799661e+06 -1.18947332e+06 -9.83038944e+06 -9.39451416e+06 -7.72953023e+06 -3.82937106e+06 -9.54478525e+06 1.90763132e+07 2.98471360e+06 -1.10619280e+07 -3.74496786e+06 -1.00603384e+07 -9.87116368e+06 -9.54085021e+06 -7.71711040e+06] [ 1.93740952e+06 1.23968690e+07 -9.91475156e+06 1.01587746e+07 -1.03267277e+07 -7.62378674e+06 6.45086377e+06 1.65957379e+07 2.26841911e+06 5.36566656e+05 -9.14900672e+06 -7.59262140e+06 -7.07748724e+06 -3.59541851e+06 -9.28359906e+06 -4.39591065e+06 -7.82881518e+06 1.35050731e+07 1.87917118e+06 -9.54596629e+06 -8.36335776e+06 -3.44864432e+06 3.54506598e+05 -8.07854538e+06 -7.16497578e+06 -5.79115291e+06 -3.02944545e+06 -7.52262406e+06 1.66928094e+07 4.54329142e+06 -9.59537354e+06 -3.06387419e+06 -7.96681263e+06 -8.04642499e+06 -8.97668842e+06 -6.08380414e+06] [ 6.46607893e+06 1.98812021e+07 -8.51278714e+06 1.48870950e+07 -9.37222054e+06 -5.12025414e+06 1.04785281e+07 1.83328026e+07 5.70194538e+06 5.64590584e+06 -5.55097115e+06 -3.54617814e+06 -9.23491132e+06 -4.52192147e+06 -6.49792795e+06 -6.19777757e+05 -4.85508387e+06 1.85847077e+07 6.97191838e+06 -7.84285803e+06 -5.96902822e+06 2.96479035e+06 1.42107755e+06 -5.08514970e+06 -3.80060705e+06 -2.80978467e+06 -4.75482952e+06 -4.28340007e+06 1.46959522e+07 8.57323871e+06 -7.70918220e+06 1.25999648e+06 -4.59774505e+06 -4.16162886e+06 -9.92098951e+06 -5.53509308e+06] [ 9.17906909e+06 2.45705281e+07 -6.53550849e+06 1.32375295e+07 -7.55590272e+06 -2.89758681e+06 9.92595812e+06 1.39248808e+07 5.67030358e+06 7.96667710e+06 -1.89725676e+06 -9.05016270e+05 -8.49861484e+06 -3.67107012e+06 -4.33649783e+06 2.03198997e+05 -2.21504020e+06 1.51227378e+07 1.01781353e+07 -5.88844467e+06 -4.07356635e+06 7.29103702e+06 2.73487483e+06 -2.35621669e+06 -1.79819236e+06 -1.96368553e+06 -3.97962530e+06 -1.80333929e+06 6.44129020e+06 8.51263975e+06 -5.60892806e+06 4.17744571e+06 -2.06018720e+06 -1.19561870e+06 -8.34789044e+06 -3.12439805e+06] [ 1.23647788e+07 2.62915610e+07 -2.67352695e+06 1.08497388e+07 -3.63574627e+06 3.66156305e+05 6.30262832e+06 4.88832719e+06 5.90963161e+06 8.69289395e+06 1.98307929e+06 1.35232366e+06 -4.51047483e+06 -1.59530430e+05 -1.46764171e+06 1.24136771e+06 1.48004079e+06 8.72377685e+06 1.15747609e+07 -2.61225171e+06 -1.62135017e+06 1.03940580e+07 4.43329182e+06 1.27290822e+06 -1.44905989e+05 -2.16188619e+06 -7.69562301e+05 1.11385616e+06 -4.01922918e+06 6.33096408e+06 -2.09351052e+06 7.20598245e+06 6.44763095e+05 2.05049618e+06 -3.46090054e+06 9.04372229e+05] [ 1.45472650e+07 2.78966023e+07 3.47762010e+05 1.09211665e+07 -7.67884972e+05 2.83364945e+06 3.12858353e+06 2.70764293e+05 6.78852476e+06 1.18028012e+07 4.51858184e+06 2.76562267e+06 -1.41580771e+05 3.68555546e+06 9.94598943e+05 5.80346143e+06 4.64483210e+06 5.52669469e+06 1.15544977e+07 -2.93533758e+05 1.06480137e+05 1.14671062e+07 6.81086843e+06 4.12600667e+06 7.75959880e+05 -2.25974956e+06 3.64024307e+06 2.99962179e+06 -7.40411618e+06 4.50841528e+06 5.03250594e+05 1.06731072e+07 2.44524315e+06 4.43483719e+06 1.79309713e+06 5.19443964e+06] [ 1.45994290e+07 3.00534841e+07 1.59571766e+06 1.15029654e+07 -3.39605947e+05 4.43983010e+06 -3.23975389e+06 -4.78000224e+05 7.68609911e+06 1.74297855e+07 5.14420308e+06 2.78665765e+06 6.12187907e+06 1.00427821e+07 2.28454448e+06 8.76468972e+06 6.89628960e+06 2.85046253e+06 8.85763161e+06 5.84601349e+05 3.61517917e+05 8.28112445e+06 1.01899718e+07 5.44935046e+06 6.16706164e+05 -2.17434375e+06 1.07363388e+07 4.03078689e+06 -6.16345215e+06 6.01042616e+05 1.61516263e+06 1.14820464e+07 2.87162772e+06 5.27676068e+06 9.88710715e+06 1.15008020e+07] [ 6.10459498e+06 2.51136502e+07 -5.26227510e+06 3.45086264e+06 -6.89671295e+06 -2.72953541e+06 -1.23995490e+07 -1.49057140e+06 -9.45829465e+05 9.70685586e+06 -3.58428619e+06 -5.39062871e+06 5.32771434e+06 7.23681128e+06 -5.23077185e+06 -6.52746291e+05 -1.00682453e+06 -5.03361891e+06 2.52435748e+06 -6.39892980e+06 -6.85562529e+06 -2.46808992e+06 9.24958802e+06 -2.64291877e+06 -6.65275124e+06 -8.83423115e+06 1.10288824e+07 -3.52369327e+06 -1.09564426e+07 -8.61543776e+06 -5.32318737e+06 1.60256850e+06 -4.63209535e+06 -3.07278964e+06 1.10400643e+07 1.24018878e+07] [-4.98747933e+06 1.29864818e+07 -1.39798231e+07 -3.73851813e+06 -1.41838231e+07 -1.28070704e+07 -1.17442594e+07 -3.28875560e+06 -1.01913169e+07 -7.86112619e+06 -1.43064374e+07 -1.40298282e+07 -4.50699238e+06 -5.02511216e+06 -1.42918639e+07 -1.33848902e+07 -1.27415877e+07 -7.29798082e+06 -2.63112507e+06 -1.46796058e+07 -1.45009629e+07 -1.02297304e+07 1.44134067e+06 -1.29815385e+07 -1.40197897e+07 -1.50886785e+07 -3.76745313e+04 -1.30226214e+07 -1.48819075e+07 -1.23199712e+07 -1.39141154e+07 -1.01163177e+07 -1.31534293e+07 -1.30840612e+07 1.53424411e+06 3.24141378e+06] [-1.25380293e+07 -1.77652286e+06 -1.39428479e+07 -9.73319242e+06 -1.32799208e+07 -1.43271934e+07 -1.04791551e+07 -8.67079410e+06 -1.53431058e+07 -1.94798591e+07 -1.52644894e+07 -1.46461454e+07 -8.80774538e+06 -1.10202899e+07 -1.48964977e+07 -2.24102020e+07 -1.52444180e+07 -8.96235523e+06 -9.70194951e+06 -1.41371401e+07 -1.38081248e+07 -1.30028944e+07 -6.17911822e+06 -1.44414797e+07 -1.36293143e+07 -1.56731412e+07 -8.68675552e+06 -1.43555773e+07 -1.61254698e+07 -1.39928741e+07 -1.40716281e+07 -1.92407663e+07 -1.38398481e+07 -1.47097205e+07 -6.89666011e+06 -5.50486235e+06] [-9.27548469e+06 -7.46072047e+06 -6.28384748e+06 -4.93925367e+06 -6.14801241e+06 -6.53125171e+06 -4.39418063e+06 -7.48064790e+06 -8.56075829e+06 -1.35214728e+07 -6.42148676e+06 -6.44942267e+06 -6.08291188e+06 -6.62788828e+06 -7.16994724e+06 -1.62992151e+07 -6.76536984e+06 -1.73842477e+06 -1.11318725e+07 -6.16350071e+06 -5.96891532e+06 -7.87582548e+06 -7.40564576e+06 -6.42122555e+06 -5.93481846e+06 -7.80274950e+06 -8.63615698e+06 -6.91525511e+06 -4.40930443e+06 -6.61295148e+06 -6.56593562e+06 -1.54349160e+07 -6.86638314e+06 -6.81070062e+06 -8.83795593e+06 -7.98222889e+06] [-6.53090792e+06 -9.82696236e+06 -1.32483028e+06 -3.91670100e+06 -1.41445272e+06 -1.79769108e+06 9.03955799e+05 -2.76169848e+06 -3.69595866e+06 -7.92953118e+06 -1.66526161e+06 -1.95720537e+06 -1.75362746e+06 -1.42974966e+06 -2.23609785e+06 -9.45784966e+06 -1.84628939e+06 -6.37558228e+05 -8.59790910e+06 -1.15681779e+06 -1.15976633e+06 -4.46318816e+06 -5.50968537e+06 -1.83828967e+06 -1.50707900e+06 -1.55866162e+06 -4.44683971e+06 -2.31740916e+06 4.41876806e+06 -1.90370444e+06 -1.75212322e+06 -9.84906676e+06 -2.55589024e+06 -2.46564252e+06 -6.73802022e+06 -6.76224463e+06] [-3.68866757e+06 -8.84458881e+06 -1.63692889e+05 -6.45226490e+05 -2.41203705e+05 -8.77876139e+05 6.49351429e+06 3.12035542e+06 4.43747003e+05 -4.37308837e+06 -6.07246883e+05 -6.21246995e+05 -1.38769032e+06 -1.84486560e+05 -8.40913010e+05 -3.30161189e+06 -8.98878579e+05 3.16232733e+06 -4.86686066e+06 2.10106514e+05 2.89027545e+05 -1.66595458e+06 -3.79943409e+06 -7.28647493e+05 -2.32389807e+05 1.92878192e+06 -2.82758841e+06 -1.17385431e+06 1.00042120e+07 2.94007381e+06 -5.45250263e+05 -5.09926689e+06 -1.33787281e+06 -1.17136979e+06 -5.92896723e+06 -6.34815201e+06] [-1.74404617e+06 -7.49837251e+06 -1.11914554e+06 7.17779129e+05 -1.11373188e+06 -1.57573393e+06 8.28559865e+06 3.20929193e+06 1.66186734e+06 -1.97942475e+06 -1.19901339e+06 -1.39288775e+06 -3.06310126e+06 -1.03611725e+06 -1.37381813e+06 1.20687804e+06 -1.56239766e+06 4.05910764e+06 -2.15897055e+06 -6.89552483e+05 -5.35229270e+05 -9.34149155e+04 -3.60987730e+06 -1.41855120e+06 -1.06930511e+06 2.64681118e+06 -3.62555912e+06 -1.85402591e+06 1.04244731e+07 4.18389854e+06 -1.38738989e+06 -7.66923280e+05 -1.75246402e+06 -1.49679880e+06 -6.13451379e+06 -6.43208941e+06] [-9.68742232e+05 -4.62333909e+06 -2.31238664e+06 1.97034251e+06 -2.18305651e+06 -2.37835723e+06 7.92788745e+06 2.83328203e+06 1.66219760e+06 -1.91586421e+06 -2.22000951e+06 -2.27518769e+06 -4.31700605e+06 -2.03814743e+06 -2.32538690e+06 1.82071707e+06 -2.31208629e+06 5.32940260e+06 -1.53722060e+06 -1.88752140e+06 -1.60015127e+06 -1.05026091e+05 -3.25347448e+06 -2.20385396e+06 -1.99831987e+06 9.61411487e+05 -4.20319096e+06 -2.61729130e+06 9.88404796e+06 4.15823777e+06 -2.43665429e+06 1.86720761e+05 -2.51333980e+06 -2.27662074e+06 -5.56199829e+06 -5.75391505e+06] [ 3.26619472e+05 -9.56122873e+05 -2.10329588e+06 2.74341938e+06 -1.96567192e+06 -1.95061234e+06 5.50818063e+06 1.88623318e+06 1.58138757e+06 -1.11180287e+06 -2.18681435e+06 -2.08287765e+06 -3.44364878e+06 -1.86935301e+06 -2.05446660e+06 1.78052736e+06 -1.85513923e+06 4.88102503e+06 -7.37781226e+04 -1.92464564e+06 -1.66670514e+06 3.43594743e+04 -1.61211177e+06 -1.85640071e+06 -1.87045621e+06 -2.13815408e+05 -2.75383224e+06 -2.11675579e+06 6.79968161e+06 3.10259027e+06 -2.18112151e+06 1.31183503e+06 -2.04723185e+06 -1.87938053e+06 -3.21826612e+06 -3.24645937e+06] [ 1.05660728e+06 1.05398962e+06 -7.17567795e+05 2.85057371e+06 -6.25282116e+05 -5.50689756e+05 3.56594587e+06 4.72954172e+05 1.45924637e+06 -3.04222489e+05 -6.85331285e+05 -4.19502488e+05 -2.29080242e+06 -1.28631341e+06 -5.31991370e+05 1.23713346e+06 -4.29423475e+05 3.95663069e+06 1.71370474e+05 -6.56390483e+05 -4.20302639e+05 9.47798962e+05 -1.08994001e+06 -3.77358318e+05 -4.11036816e+05 -2.18561917e+05 -2.15049560e+06 -5.25208700e+05 2.89356870e+06 2.26728872e+06 -7.20598925e+05 1.26993961e+06 -4.80856063e+05 -3.09502864e+05 -1.91959038e+06 -1.90984683e+06] [ 5.66297729e+05 1.03962198e+05 1.84772909e+05 8.18407680e+05 2.82815499e+05 9.05847670e+04 1.16978241e+06 -9.12161473e+05 4.33356215e+05 -8.99525895e+05 2.16764169e+04 1.43887453e+05 -5.99632173e+05 -4.99365107e+05 1.12938458e+05 7.78090769e+04 1.58963044e+05 1.28193844e+06 3.34029672e+05 8.84214893e+04 1.42531445e+05 6.06486903e+05 -3.83875302e+05 2.42944144e+05 1.08372746e+05 -3.80162260e+05 -8.29286361e+05 1.05198708e+05 6.81802852e+03 8.02005536e+05 1.37760550e+05 3.52698690e+05 1.30275547e+05 2.47689837e+05 -5.56103385e+05 -6.10056880e+05] [ 1.43354828e+05 -1.07185404e+04 4.18717303e+04 2.63968807e+05 6.49936957e+04 2.35969606e+04 2.20906479e+05 -2.65165975e+05 1.40909545e+05 -2.88133443e+05 -3.05031510e+04 1.57219988e+04 -7.81157114e+04 -1.00132813e+05 9.42513429e+03 -9.87664265e+04 5.19534710e+04 4.39357663e+05 5.19373815e+04 8.82886552e+03 1.54415111e+04 5.87681298e+04 -3.46597051e+04 7.05486243e+04 1.09358876e+04 -2.38416824e+05 -1.26602241e+05 2.38176815e+04 -3.87838639e+04 1.87631392e+05 2.68797431e+04 -2.48214984e+04 1.51514502e+04 5.36856098e+04 -6.01672720e+03 -7.76796781e+04] [-4.51026846e+02 -3.19420458e+01 -6.52135570e+02 -9.26761111e-01 -6.15432751e+02 -5.16396482e+02 -8.30475832e+02 5.44456268e+01 -4.73656846e+02 -5.73756404e+02 -6.20856096e+02 -5.11479095e+02 1.95007332e+02 -1.73528279e+02 -6.13161440e+02 -7.98169151e+02 -5.85958081e+02 -2.42330184e+02 -2.78737324e+02 -6.31638847e+02 -6.18047711e+02 -5.36662451e+02 1.64606554e+02 -6.33296734e+02 -5.08651137e+02 -5.15834800e+02 2.41486452e+02 -4.84443161e+02 -5.18620411e+02 -3.31893150e+02 -6.26901548e+02 -5.66675686e+02 -5.16183611e+02 -5.42040975e+02 2.18520541e+02 2.46276329e+02] [-6.01853703e-01 8.55358498e-01 -2.13715898e-01 -8.16647602e-01 -9.83412567e-01 5.37288628e-01 -4.64964356e-01 -7.78150338e-01 2.16348752e-01 2.56440702e-01 -9.02779893e-01 -6.30071630e-01 8.62481936e-01 -7.74783063e-01 -9.51922070e-01 7.20066700e-01 -5.60350685e-01 6.98578360e-01 2.88478476e-01 5.42921279e-01 2.56388443e-01 -6.52915058e-01 -6.26186934e-01 -6.38771620e-02 3.77627347e-01 8.05947882e-01 -5.03838411e-01 -9.54309407e-01 9.30470601e-01 2.54470556e-01 5.85521623e-01 7.77131372e-01 2.65719295e-01 -1.32294335e-01 5.56736473e-01 3.27631341e-01] [ 2.81457547e+03 -1.78174376e+03 2.13352008e+04 7.59710845e+03 1.78862334e+04 1.62358969e+04 -1.79371291e+04 -3.95902973e+04 3.36033677e+03 -7.98679109e+03 2.22449497e+04 1.23948016e+04 1.70865496e+04 2.46796149e+04 1.23960935e+04 -2.38086062e+04 2.16899423e+04 -7.41480401e+02 -3.05186828e+04 2.16074620e+04 1.50434291e+04 -1.11050735e+03 -7.41285973e+03 1.68253595e+04 1.04887738e+04 8.89144268e+03 6.26839588e+03 1.24074447e+04 -4.45612359e+04 -8.96519714e+03 1.78125503e+04 -2.76422583e+04 1.18093370e+04 1.71088833e+04 1.87250790e+04 1.15002711e+04] [-1.91251824e+05 -6.21972549e+05 1.45659563e+05 -2.91245048e+05 1.62571751e+05 7.14342067e+04 -7.91602646e+04 -5.29220406e+05 -1.31053939e+05 -4.57491086e+05 1.10931486e+05 6.18499023e+04 7.37621811e+04 -1.92585678e+04 7.48285528e+04 -2.86579362e+05 5.92095184e+04 -1.66616668e+05 -2.55754337e+05 1.62858090e+05 1.35149745e+05 -8.17423395e+04 -1.88365208e+05 8.65914098e+04 7.39281542e+04 6.88684584e+04 -9.86588232e+04 5.48739483e+04 -4.65687200e+05 -8.63202182e+04 1.25180738e+05 -3.07835790e+05 7.05248422e+04 6.93332292e+04 -2.65310182e+03 -8.76254648e+04] [-4.05267138e+05 -1.95224824e+06 5.38879807e+05 -7.79331527e+05 7.33204268e+05 1.42279002e+05 2.72408579e+05 -2.40345875e+06 -5.25879571e+05 -2.83861835e+06 2.28316239e+05 1.06948312e+05 4.43361432e+04 -4.95788319e+05 2.05169422e+05 -1.21285731e+06 1.08213336e+04 -9.37242440e+04 -7.28194179e+05 5.39748410e+05 4.36091362e+05 -1.09348129e+04 -7.79998604e+05 2.22631489e+05 2.21858469e+05 -5.24790279e+05 -6.46617354e+05 8.87232649e+04 -1.82563369e+06 -1.10731877e+05 4.36794613e+05 -1.22516845e+06 2.34086107e+05 1.70279288e+05 -1.75379608e+05 -4.75118611e+05] [-7.19772477e+05 -4.22361850e+06 -1.49279048e+05 -8.88359101e+05 3.12779740e+05 -8.99879272e+05 9.23573878e+05 -4.03022230e+06 -7.89345372e+05 -6.75959564e+06 -1.10719120e+06 -1.19384846e+06 -1.00824234e+06 -1.58749021e+06 -1.09688582e+06 -3.19131925e+06 -1.05002456e+06 1.20591198e+06 -1.32114877e+06 -3.62154956e+05 -6.05689298e+05 -1.15034063e+06 -1.80243302e+06 -6.35419626e+05 -9.67379297e+05 -2.95544539e+06 -2.03962950e+06 -1.10276587e+06 -4.05299490e+05 1.46594343e+05 -4.24255829e+05 -2.17007516e+06 -1.02709744e+06 -9.24839902e+05 -1.49400837e+06 -2.08426026e+06] [-8.21864554e+05 -5.79444519e+06 -3.06975776e+06 1.31461253e+06 -2.36847160e+06 -3.66998748e+06 4.17688890e+06 -2.33338968e+06 2.05186210e+05 -9.28803150e+06 -4.45266399e+06 -4.03041955e+06 -4.70851455e+06 -4.30252526e+06 -4.07636769e+06 -3.04801806e+06 -3.84777013e+06 5.77206544e+06 -1.27571618e+06 -3.31801582e+06 -3.45368946e+06 -2.67960542e+06 -3.87428514e+06 -3.41288289e+06 -3.74903743e+06 -5.15068579e+06 -5.36084156e+06 -4.01106694e+06 6.88618504e+06 2.35330720e+06 -3.40126408e+06 -1.61193144e+06 -3.91652574e+06 -3.62906487e+06 -5.59619053e+06 -5.98769596e+06] [-1.27440720e+06 -5.33525019e+06 -5.53122238e+06 1.63956366e+06 -4.87259580e+06 -5.84566615e+06 6.35278917e+06 -2.98402064e+05 8.98014038e+04 -9.52833802e+06 -7.00498247e+06 -6.33412715e+06 -6.89685250e+06 -5.73185120e+06 -6.29252863e+06 -3.01151563e+06 -6.21309732e+06 6.30381507e+06 -8.97121631e+05 -5.81973104e+06 -5.80503834e+06 -4.09136750e+06 -5.55076987e+06 -5.96390538e+06 -5.91288985e+06 -5.98498480e+06 -7.28887508e+06 -6.22765852e+06 1.18454784e+07 2.91109612e+06 -5.76591674e+06 -1.51013294e+06 -6.16481587e+06 -6.03038649e+06 -8.59161805e+06 -8.80290661e+06] [ 5.40584964e+05 1.07707381e+06 -6.79061586e+06 4.54717654e+06 -6.51834451e+06 -6.26617774e+06 7.91130219e+06 4.54353374e+06 1.27373702e+06 -5.31047974e+06 -7.65212631e+06 -7.01963028e+06 -7.16763023e+06 -4.52882656e+06 -7.17550905e+06 -2.19518063e+06 -6.53061530e+06 8.45457552e+06 1.19349092e+06 -7.18511012e+06 -6.87458989e+06 -3.88885144e+06 -4.06387744e+06 -6.63827612e+06 -6.57184381e+06 -5.76326980e+06 -6.08663802e+06 -6.68910456e+06 1.69685864e+07 3.73773428e+06 -6.94240062e+06 -3.20639298e+05 -6.82920669e+06 -6.79440015e+06 -9.07967868e+06 -8.40867674e+06] [ 4.63606792e+06 9.27156763e+06 -5.18563874e+06 9.00020809e+06 -5.42474116e+06 -3.76716046e+06 1.05633432e+07 9.40417769e+06 4.33829877e+06 7.40911083e+05 -5.00508048e+06 -4.49038033e+06 -5.27420286e+06 -1.16014700e+06 -5.12758636e+06 4.33056282e+05 -3.68631601e+06 1.19128592e+07 5.05693726e+06 -5.38635824e+06 -4.88391205e+06 -4.87866678e+05 -7.54419475e+04 -4.09148539e+06 -4.15468478e+06 -3.21466138e+06 -2.58263386e+06 -4.11818818e+06 1.87187525e+07 6.01975290e+06 -5.13433395e+06 2.33391853e+06 -4.40653281e+06 -4.18237333e+06 -6.12704328e+06 -4.72542035e+06] [ 9.19871155e+06 1.84541167e+07 -3.12636579e+06 1.29954317e+07 -3.60293393e+06 -9.74574143e+05 1.35952669e+07 1.34752963e+07 7.02766802e+06 5.05589014e+06 -1.76070145e+06 -1.25974954e+06 -3.28126990e+06 1.10570118e+06 -2.66394144e+06 3.80071222e+06 -6.93752376e+05 1.58367191e+07 1.18865608e+07 -3.19534270e+06 -2.26141918e+06 5.19770351e+06 4.77732781e+06 -1.07854270e+06 -1.18473835e+06 -3.95003501e+05 1.03118573e+06 -1.01545459e+06 1.76648270e+07 9.99212688e+06 -2.91832984e+06 7.33178511e+06 -1.23301418e+06 -9.14905323e+05 -2.76563409e+06 -1.56200901e+05] [ 1.49396214e+07 2.92455664e+07 -2.06896170e+06 1.93619714e+07 -3.45272971e+06 1.66430477e+06 1.52564926e+07 1.73863751e+07 1.14878752e+07 1.41293786e+07 1.61914627e+06 1.93770364e+06 -2.52261687e+06 3.72632580e+06 -5.66950599e+05 9.09720668e+06 3.10606869e+06 2.10602096e+07 1.69523761e+07 -2.12774552e+06 -6.93961633e+05 1.05763054e+07 9.33247395e+06 2.15739689e+06 9.67783260e+05 2.08329447e+06 4.07538504e+06 1.86433399e+06 1.88235872e+07 1.41349166e+07 -1.60648095e+06 1.43388721e+07 1.25743179e+06 2.69459427e+06 1.64449182e+05 4.00560905e+06] [ 1.67156883e+07 3.23887627e+07 -9.56290327e+05 1.78687902e+07 -2.42488829e+06 2.76993057e+06 1.14190443e+07 1.19632973e+07 1.09934890e+07 1.48786837e+07 3.28297649e+06 2.57559753e+06 -1.22878129e+06 5.14675423e+06 1.82227441e+05 8.29694102e+06 4.69645129e+06 1.69580051e+07 1.66151055e+07 -1.39053046e+06 -2.53969654e+05 1.18680518e+07 1.02923297e+07 3.61771057e+06 1.20222502e+06 6.44526926e+05 5.36422227e+06 2.83128628e+06 1.17318531e+07 1.16716912e+07 -7.01941834e+05 1.53488605e+07 2.04575535e+06 4.02591321e+06 2.46930713e+06 6.45352158e+06] [ 1.82537493e+07 3.35388554e+07 1.18990262e+06 1.68736144e+07 -3.57967602e+05 4.34838436e+06 8.27911890e+06 3.20900551e+06 1.05760561e+07 1.52330236e+07 4.88535031e+06 2.97067529e+06 -2.51286694e+05 6.75817175e+06 1.62243071e+06 8.23433500e+06 6.76367105e+06 1.27726179e+07 1.48227959e+07 1.36509779e+05 4.38891672e+05 1.21497560e+07 9.37195229e+06 5.40954579e+06 1.28756020e+06 -1.47453329e+06 5.55468720e+06 3.94281565e+06 4.87521831e+06 8.05545261e+06 1.13562533e+06 1.58449146e+07 2.82936624e+06 5.37693656e+06 4.78624202e+06 8.16186283e+06] [ 1.60279209e+07 3.06508965e+07 1.39852011e+06 1.31516797e+07 -6.46977978e+04 3.66265614e+06 1.08032281e+06 -4.31713259e+06 7.59811034e+06 1.31275403e+07 3.80307651e+06 8.40552403e+05 3.25580516e+06 8.53528911e+06 9.41240723e+05 6.97238405e+06 6.31488338e+06 6.21917063e+06 9.67941672e+06 -3.19008861e+05 -8.09802444e+05 7.89403608e+06 9.15111829e+06 4.74687491e+06 -8.60749366e+05 -5.27794129e+06 8.28214941e+06 2.60914023e+06 -1.39572550e+06 1.64436502e+06 9.60582020e+05 1.24902621e+07 1.37685458e+06 3.96675513e+06 8.96073396e+06 1.04503555e+07] [ 1.15950255e+07 2.77096170e+07 -1.21992852e+06 8.24702890e+06 -2.97818248e+06 1.10377307e+06 -8.77107683e+06 -5.39696815e+06 3.73065161e+06 1.32842506e+07 3.09401116e+05 -2.53019888e+06 7.46329402e+06 1.06714432e+07 -1.77045943e+06 5.12469821e+06 3.58671990e+06 -6.43693882e+05 5.59891084e+06 -3.04614896e+06 -4.03103092e+06 7.35410714e+05 1.08287417e+07 1.53432057e+06 -4.21468968e+06 -7.57203003e+06 1.31467175e+07 -2.00886328e+05 -4.69642697e+06 -5.02679955e+06 -1.60317658e+06 8.91013394e+06 -1.65740343e+06 5.87033733e+05 1.47712797e+07 1.45882518e+07] [ 2.57059992e+06 1.79907663e+07 -8.55312122e+06 2.70523449e+05 -9.59911867e+06 -6.55271124e+06 -1.27988006e+07 -5.14057309e+06 -4.34573383e+06 2.75513357e+06 -8.69882962e+06 -1.01222594e+07 2.79833876e+06 4.03275632e+06 -9.14509319e+06 -2.66553984e+06 -5.42356919e+06 -6.49317625e+06 9.21982053e+05 -9.96895014e+06 -1.06361496e+07 -7.38971001e+06 7.00214474e+06 -7.05371328e+06 -1.06992428e+07 -1.19948146e+07 8.48873813e+06 -7.75449416e+06 -8.96442725e+06 -1.06882048e+07 -8.70138068e+06 2.62476701e+05 -8.48446486e+06 -7.65671262e+06 1.09424863e+07 1.08387742e+07] [-6.38881315e+06 4.41177743e+06 -1.25291504e+07 -5.21408243e+06 -1.23042086e+07 -1.19817222e+07 -9.06963501e+06 -6.18267639e+06 -1.01166598e+07 -1.15308073e+07 -1.39242399e+07 -1.32045769e+07 -5.45545305e+06 -6.71455339e+06 -1.27590466e+07 -1.04813476e+07 -1.24998202e+07 -6.94377879e+06 -2.88836156e+06 -1.31604204e+07 -1.29685561e+07 -9.58780009e+06 -7.32307074e+05 -1.24232221e+07 -1.26602398e+07 -1.28619645e+07 -2.51159761e+06 -1.22243953e+07 -1.32706613e+07 -1.05649506e+07 -1.23806494e+07 -8.28472896e+06 -1.18387608e+07 -1.24406928e+07 1.58343980e+05 9.21600541e+05] [-9.96546203e+06 -5.10003650e+06 -9.51923696e+06 -7.29646837e+06 -8.67053443e+06 -1.04077202e+07 -2.64729447e+06 -6.74917808e+06 -1.10419626e+07 -1.87177879e+07 -1.09808619e+07 -9.80875249e+06 -8.41893059e+06 -1.08661147e+07 -1.01093741e+07 -1.54175163e+07 -1.14195743e+07 -4.09818906e+06 -5.34775370e+06 -9.75628720e+06 -9.05857169e+06 -7.68407384e+06 -6.11490518e+06 -1.02181814e+07 -8.81929167e+06 -1.02209552e+07 -9.21761107e+06 -1.01321430e+07 -1.07170779e+07 -7.16258859e+06 -9.61232265e+06 -1.32599559e+07 -9.29889699e+06 -1.03622362e+07 -8.43208589e+06 -6.93750740e+06] [-6.67842588e+06 -8.63139818e+06 -1.99309594e+06 -3.92647571e+06 -1.60865014e+06 -2.80418531e+06 2.57513000e+06 -4.26693992e+06 -5.07947377e+06 -1.29702521e+07 -2.67625833e+06 -2.14903536e+06 -4.28681761e+06 -5.49396282e+06 -2.68339099e+06 -1.09883658e+07 -3.12824740e+06 8.47288287e+05 -5.43827028e+06 -1.82244685e+06 -1.39942013e+06 -3.10694869e+06 -6.20622757e+06 -2.42173987e+06 -1.38051916e+06 -3.15299047e+06 -7.41370847e+06 -2.70206784e+06 -7.32127398e+05 -9.81195980e+05 -2.23650722e+06 -9.68054530e+06 -2.36301535e+06 -2.80773448e+06 -8.65040923e+06 -8.06724840e+06] [-3.36862200e+06 -9.63276868e+06 1.33470331e+06 2.88590005e+05 1.38463208e+06 5.40859252e+05 7.64611039e+06 -1.41938942e+06 4.21980942e+05 -7.73993884e+06 8.53941607e+05 1.10840242e+06 -2.57402444e+06 -1.82394733e+06 4.79239679e+05 -5.99134358e+06 8.15463248e+05 5.44446798e+06 -5.28432039e+06 1.60858547e+06 1.84149213e+06 -2.89479040e+05 -5.89395263e+06 1.13002330e+06 1.41944179e+06 8.48919556e+05 -5.83866513e+06 3.58469221e+05 6.64626862e+06 3.49911614e+06 9.66835381e+05 -6.26193681e+06 2.24838365e+05 5.66613310e+05 -7.79348268e+06 -8.35241719e+06] [-1.63572017e+06 -8.90410985e+06 1.58574477e+06 2.11383692e+06 1.93321624e+06 3.66718344e+05 1.19314337e+07 -5.90125579e+05 2.34941488e+06 -6.45872842e+06 1.07758213e+06 1.08206949e+06 -3.07314367e+06 -1.47501771e+06 7.06238306e+05 -2.08319737e+06 5.44158299e+05 7.47027676e+06 -3.29095584e+06 1.99234485e+06 2.14696637e+06 1.76172551e+06 -5.36959920e+06 1.19479502e+06 1.36904708e+06 2.13579469e+06 -5.58575330e+06 2.27652598e+05 8.42023263e+06 5.85722423e+06 1.18145087e+06 -3.50762219e+06 2.82296461e+05 7.25100162e+05 -7.20051082e+06 -8.23097072e+06] [-1.09473996e+06 -9.73477496e+06 1.39813897e+05 1.83700680e+06 7.01137801e+05 -1.02831664e+06 1.17816157e+07 -1.49979929e+06 2.21436284e+06 -6.33558567e+06 -1.86597112e+05 -1.75571265e+05 -4.89676832e+06 -3.21561117e+06 -4.09846849e+05 6.90129288e+05 -9.05040253e+05 7.10399665e+06 -1.77505850e+06 5.32297891e+05 7.76320295e+05 2.13893696e+06 -5.89491992e+06 -1.68531312e+05 3.25267606e+04 1.93539438e+06 -6.97807208e+06 -1.09379336e+06 7.63042195e+06 6.41155409e+06 -2.02327089e+05 -1.10911890e+06 -7.19012818e+05 -2.47478642e+05 -7.93180092e+06 -8.71383098e+06] [-7.47175474e+05 -6.02360514e+06 -1.20381681e+06 1.94532859e+06 -6.47837170e+05 -1.89837112e+06 9.20644347e+06 -1.95354225e+06 1.34509624e+06 -5.86659251e+06 -1.39880120e+06 -1.52484126e+06 -5.00933403e+06 -3.40386393e+06 -1.69654088e+06 3.29242803e+05 -1.79661325e+06 6.36452560e+06 -1.63379829e+06 -8.72049302e+05 -6.97654975e+05 1.34054814e+06 -4.66117030e+06 -1.21251433e+06 -1.33859958e+06 -3.76086268e+05 -6.15464201e+06 -2.07312232e+06 6.05889778e+06 4.91049764e+06 -1.46509059e+06 -9.60512466e+05 -1.78373905e+06 -1.34658114e+06 -6.30582973e+06 -6.78599354e+06] [ 4.60429622e+05 -2.11432634e+06 -1.63375850e+06 2.40677494e+06 -1.20701276e+06 -1.81868876e+06 6.34371241e+06 -1.49462667e+06 1.30367385e+06 -3.93698925e+06 -1.87487762e+06 -1.58068284e+06 -4.25527880e+06 -3.00106644e+06 -1.70450793e+06 1.12978792e+06 -1.74939243e+06 5.22111910e+06 1.68921196e+05 -1.51979342e+06 -1.20992792e+06 1.21002065e+06 -2.90079311e+06 -1.40388354e+06 -1.42553658e+06 -9.31146230e+05 -4.57765649e+06 -1.86956826e+06 3.84781827e+06 3.43599285e+06 -1.73889705e+06 8.74985899e+05 -1.55650210e+06 -1.36035854e+06 -4.28617772e+06 -4.43262898e+06] [ 1.12968371e+06 5.35122821e+04 -3.99966019e+05 2.46604009e+06 -1.59102840e+05 -4.37775031e+05 3.52734593e+06 -1.46439734e+06 1.27352240e+06 -2.00714747e+06 -5.90971584e+05 -1.92338322e+05 -2.47495629e+06 -1.82773324e+06 -3.75001282e+05 8.57461360e+05 -3.18964226e+05 4.17455554e+06 6.97952135e+05 -4.44667109e+05 -2.40293576e+05 1.38946631e+06 -1.48805313e+06 -1.36993078e+05 -1.99398602e+05 -8.03675373e+05 -2.82903753e+06 -3.70273500e+05 1.57732643e+06 2.46125012e+06 -4.40035282e+05 1.21740941e+06 -2.04086368e+05 -2.58147009e+03 -2.21934848e+06 -2.29317315e+06] [ 5.95373133e+05 -1.35129595e+05 1.88929897e+05 9.11783035e+05 3.37447344e+05 1.73697239e+04 9.04664776e+05 -1.39092744e+06 4.07486031e+05 -1.57794739e+06 -1.30756584e+05 6.47782116e+04 -5.56166794e+05 -7.12993406e+05 8.21367305e+03 -2.26540052e+05 1.20829823e+05 1.77890250e+06 4.41683670e+05 2.31403050e+04 5.29757480e+04 4.92328962e+05 -2.93247607e+05 2.50363356e+05 3.35256316e+04 -9.08746811e+05 -8.03324689e+05 3.05610852e+04 -3.47364793e+05 7.83989093e+05 1.01049537e+05 1.74952169e+05 6.52347545e+04 2.19651085e+05 -4.45358384e+05 -5.49158365e+05] [ 2.42694860e+05 -2.87730600e+04 1.66588744e+05 3.53861759e+05 1.88307268e+05 1.43118902e+05 2.44629956e+05 -4.57804406e+05 2.25300639e+05 -4.34592015e+05 5.74665303e+04 1.01676615e+05 -7.70927877e+03 -2.72158220e+04 9.50388113e+04 -1.51596838e+05 2.14679915e+05 6.33541488e+05 9.49946600e+04 1.02504652e+05 9.67393687e+04 1.40301101e+05 6.55698597e+03 2.25678186e+05 7.71166787e+04 -3.86118750e+05 -1.15137002e+05 1.20777105e+05 -5.47851346e+04 2.63249367e+05 1.31255855e+05 1.79774784e+04 9.24148154e+04 1.94143082e+05 3.11978217e+04 -6.80553591e+04] [ 3.24153946e+03 4.40364954e+03 -1.26514895e+03 7.92579695e+03 -2.34740780e+03 1.01842335e+03 6.93630305e+03 2.79865403e+03 3.16138138e+03 1.36085317e+03 4.69129385e+01 6.76512215e+02 3.17062944e+03 4.51919825e+03 7.32693629e+00 1.56409626e+03 7.37877517e+02 6.48667209e+03 5.22426157e+03 -1.62714438e+03 -8.88473987e+02 5.72601050e+03 3.58017482e+02 -2.92285424e+02 4.06048723e+02 4.09030905e+03 4.72705510e+02 9.81108201e+02 1.89278861e+03 6.91987124e+03 -1.18779464e+03 2.98458920e+03 1.16295081e+03 1.35846123e+03 -3.94594152e+03 -6.94755534e+02] [-1.88364551e+04 -3.22905077e+04 1.05063964e+03 2.08141509e+04 3.18792665e+03 -6.81160786e+02 2.50896462e+04 3.11050505e+03 9.82752127e+03 -3.38119569e+04 -2.72929697e+03 8.64343650e+03 -7.94664815e+03 -1.03102560e+04 1.04896905e+03 -1.80163453e+04 3.90161957e+02 5.20094476e+04 -3.00253328e+04 6.71388761e+03 8.64238982e+03 2.46511196e+03 -1.90446711e+04 6.16988620e+03 5.40793178e+03 -1.67171729e+03 -2.04070358e+04 3.07817609e+03 1.40591216e+04 4.28303426e+04 2.50611417e+03 -2.62344138e+04 3.64754580e+02 3.44539083e+03 -1.81072527e+04 -3.24465541e+04] [-1.32239124e+03 -2.52041369e+03 4.74099897e+03 -9.57060541e+02 4.38255302e+03 2.87504634e+03 -4.22338754e+03 -1.13657565e+04 -1.50861773e+03 -6.71843208e+03 4.75443400e+03 2.48539191e+03 4.08786340e+03 3.85241562e+03 2.14435997e+03 -8.22880017e+03 4.09293015e+03 -1.48475281e+03 -8.22487656e+03 4.84218195e+03 3.48700144e+03 -5.22659856e+02 -2.37449711e+03 3.38515923e+03 2.15463619e+03 5.03309018e+02 9.99289196e+02 2.04824477e+03 -1.31497962e+04 -2.00913271e+03 3.70778956e+03 -8.82851798e+03 2.23672019e+03 3.35949988e+03 3.51053874e+03 2.01744342e+03] [-2.93964342e+05 -8.34989206e+05 1.47783089e+05 -3.95207194e+05 1.85053231e+05 3.47001175e+04 -1.00778676e+05 -8.15737562e+05 -2.43773632e+05 -7.47440531e+05 9.60041807e+04 4.93293131e+04 8.00021786e+03 -1.40605470e+05 7.09414411e+04 -4.79299587e+05 7.71909602e+03 -2.03102763e+05 -2.99713767e+05 1.70833786e+05 1.38261562e+05 -1.08264711e+05 -3.05216296e+05 7.23052381e+04 7.06240187e+04 2.33214266e+03 -2.35426080e+05 2.62045390e+04 -6.92727663e+05 -1.50031063e+05 1.31213503e+05 -4.16530536e+05 6.37282423e+04 5.72232156e+04 -3.59966583e+04 -1.59824864e+05] [-6.84972655e+05 -3.49125122e+06 1.05874589e+06 -1.20708228e+06 1.36761082e+06 4.54976306e+05 5.39822181e+05 -4.48150557e+06 -7.56182433e+05 -4.30790842e+06 5.94924458e+05 3.91876665e+05 -6.60795448e+04 -7.58465981e+05 5.32679812e+05 -1.89032682e+06 2.65777636e+05 -9.78214655e+04 -1.26168416e+06 1.10378734e+06 8.83424425e+05 1.71377408e+05 -1.55681245e+06 5.92322843e+05 5.57445914e+05 -6.15429992e+05 -1.38581752e+06 3.59021506e+05 -3.08989111e+06 -1.59442076e+05 9.34795936e+05 -1.81817530e+06 5.59430619e+05 5.18206255e+05 -3.91625912e+05 -9.61156510e+05] [-7.99200194e+05 -6.95687979e+06 1.01122103e+06 -9.04234274e+05 1.77008169e+06 -2.29367718e+05 2.67891205e+06 -7.80978084e+06 -6.15169507e+05 -9.78358542e+06 -2.71211754e+05 -3.09356044e+05 -1.82271926e+06 -2.64794370e+06 -2.03382145e+05 -3.75616791e+06 -3.81366450e+05 2.34429727e+06 -1.99890882e+06 8.16371426e+05 5.04865741e+05 -2.23187054e+05 -3.69623730e+06 3.42783086e+05 -7.04397180e+04 -3.09808293e+06 -4.22567771e+06 -4.19935147e+05 -2.18037602e+06 9.76899519e+05 6.68441636e+05 -2.80262938e+06 -1.79525490e+05 5.03665461e+04 -2.85780100e+06 -3.81425858e+06] [-2.14747674e+06 -1.09312998e+07 -9.42276246e+05 -1.07024210e+06 2.61460045e+05 -2.57222831e+06 5.68730318e+06 -8.08055369e+06 -1.01759074e+06 -1.46534974e+07 -3.03099934e+06 -2.49535839e+06 -5.05379462e+06 -5.81127653e+06 -2.31557955e+06 -4.07102162e+06 -3.06169936e+06 4.33215494e+06 -2.37560238e+06 -1.25818831e+06 -1.37321065e+06 -1.53282619e+06 -6.60614365e+06 -2.03233425e+06 -2.02107638e+06 -4.93932475e+06 -8.00114441e+06 -2.74501404e+06 1.84133294e+06 2.26768177e+06 -1.36777359e+06 -3.16458622e+06 -2.27517575e+06 -2.29311636e+06 -7.13913347e+06 -8.16115881e+06] [-2.87331953e+06 -1.16100009e+07 -3.17503528e+06 -1.80378617e+06 -1.86656033e+06 -4.78476365e+06 7.91580954e+06 -6.17281478e+06 -1.52065579e+06 -1.52332682e+07 -5.42418487e+06 -4.45437172e+06 -7.64321478e+06 -8.29292386e+06 -4.12447317e+06 -2.72237662e+06 -5.60756832e+06 3.83078359e+06 -1.27586649e+06 -3.57568716e+06 -3.33146514e+06 -2.59139569e+06 -8.59573369e+06 -4.56186524e+06 -3.76617932e+06 -5.14225299e+06 -1.05116234e+07 -4.79774723e+06 5.17441709e+06 2.97033708e+06 -3.47435846e+06 -2.34202749e+06 -4.07131376e+06 -4.53791746e+06 -1.07157180e+07 -1.13399125e+07] [ 3.32130441e+05 -4.29874756e+06 -2.93787705e+06 2.31026080e+06 -2.21138102e+06 -3.52616843e+06 1.03583983e+07 -2.61582089e+05 1.47287541e+06 -8.79959334e+06 -4.29966648e+06 -3.51279881e+06 -6.65428590e+06 -5.82197594e+06 -3.40620322e+06 5.60344338e+05 -4.03293548e+06 7.18467890e+06 2.95530239e+06 -3.41923027e+06 -3.02510130e+06 -5.02820179e+05 -5.25869624e+06 -3.52830650e+06 -2.95958210e+06 -3.11036977e+06 -7.42687586e+06 -3.55602546e+06 1.13726535e+07 5.71848912e+06 -3.14855805e+06 1.31095498e+06 -3.23500045e+06 -3.41951412e+06 -9.10617678e+06 -8.96632055e+06] [ 6.98392530e+06 7.45521804e+06 -1.73163446e+05 8.71559077e+06 -1.20238017e+05 4.32680630e+05 1.49652717e+07 6.13711620e+06 6.39925754e+06 -1.43146831e+05 -1.83982904e+05 4.61483717e+05 -3.72580226e+06 -1.03742822e+06 -1.42882179e+05 5.39315958e+06 4.80887165e+05 1.26000871e+07 1.02704044e+07 -6.21612439e+05 2.61698846e+04 5.07474517e+06 1.23692328e+06 5.59320388e+05 7.23828342e+05 5.10228513e+05 -1.81923532e+06 5.06312189e+05 1.66196487e+07 1.02038517e+07 -1.94048854e+05 7.62800447e+06 6.02023802e+05 7.55159632e+05 -4.31523803e+06 -3.17782242e+06] [ 1.35564528e+07 1.97019531e+07 2.53843609e+06 1.54444698e+07 1.82278838e+06 4.52733123e+06 1.92549680e+07 1.22401189e+07 1.14611285e+07 9.29954545e+06 4.56235128e+06 4.91474847e+06 -8.27313844e+05 3.99926043e+06 3.34214064e+06 1.13051443e+07 5.47117004e+06 1.80494071e+07 1.72997522e+07 2.22721220e+06 3.31491482e+06 1.20367535e+07 7.46556514e+06 5.06114164e+06 4.35926208e+06 5.14064377e+06 3.41083826e+06 4.70210109e+06 1.95119679e+07 1.57403970e+07 2.70117567e+06 1.52028733e+07 4.51583341e+06 5.46038936e+06 5.88419913e+05 2.96389866e+06] [ 1.81688655e+07 2.87838721e+07 3.17249935e+06 2.06119181e+07 1.62881275e+06 6.27118840e+06 1.97965071e+07 1.56624590e+07 1.53473369e+07 1.77251175e+07 6.99247424e+06 6.74551514e+06 8.45786358e+05 7.52708631e+06 4.65969327e+06 1.61353953e+07 8.44216063e+06 2.12047965e+07 2.03875324e+07 2.81813431e+06 4.13887703e+06 1.60187970e+07 1.11398412e+07 7.39720437e+06 5.32562008e+06 7.52179134e+06 7.03816682e+06 6.44672133e+06 2.08651453e+07 1.84277936e+07 3.41330548e+06 2.11680263e+07 5.81195760e+06 7.85764874e+06 4.11657218e+06 7.07144655e+06] [ 1.89969372e+07 3.16486285e+07 2.95557380e+06 2.00484478e+07 1.22755638e+06 6.14624998e+06 1.56326034e+07 1.08980857e+07 1.43835140e+07 1.91981267e+07 6.85185837e+06 5.77741650e+06 7.67096765e+05 8.36392255e+06 4.25744817e+06 1.52752203e+07 8.91464884e+06 1.80150185e+07 1.83668281e+07 2.19424456e+06 3.14439404e+06 1.52074606e+07 1.06073306e+07 7.50202104e+06 4.13826240e+06 4.69409867e+06 7.03665409e+06 6.04018552e+06 1.64506734e+07 1.43058112e+07 3.02007164e+06 2.12453298e+07 5.14644320e+06 7.62261942e+06 5.19470075e+06 7.95860565e+06] [ 1.87729643e+07 3.06916485e+07 3.10329663e+06 1.96493019e+07 1.33190276e+06 5.87486995e+06 1.09169714e+07 2.19097379e+06 1.34663855e+07 1.81463373e+07 6.08465822e+06 4.14987434e+06 1.03459828e+06 9.21745518e+06 3.84174353e+06 1.41954980e+07 9.10525886e+06 1.53795687e+07 1.38115239e+07 1.82985130e+06 2.03397334e+06 1.25620849e+07 8.41046308e+06 7.31021772e+06 2.32152235e+06 1.16409843e+06 6.32824099e+06 5.22269611e+06 1.18342548e+07 1.03139260e+07 2.91127805e+06 1.97252817e+07 3.94013706e+06 7.03925235e+06 7.11654712e+06 8.52437456e+06] [ 1.34332234e+07 2.54582856e+07 1.34589762e+06 1.23673475e+07 -6.48459997e+04 3.25285274e+06 4.22527756e+05 -5.92714808e+06 7.00455656e+06 1.22891073e+07 2.78892708e+06 -6.56354620e+04 4.69160729e+06 9.94749236e+06 8.11112171e+05 8.27796386e+06 6.16435667e+06 6.53019057e+06 6.77152108e+06 -2.52054332e+05 -9.48293486e+05 5.19346780e+06 7.92285889e+06 4.36504542e+06 -1.61616836e+06 -4.54098759e+06 9.16350540e+06 1.93844371e+06 3.16837971e+06 1.56409095e+06 8.20087208e+05 1.23086981e+07 6.39310443e+05 3.34588126e+06 1.18184123e+07 1.09509217e+07] [ 6.67053336e+06 1.88492772e+07 -3.23198512e+06 4.60737138e+06 -4.23402778e+06 -1.95383150e+06 -6.88525681e+06 -7.11815238e+06 3.51396562e+05 5.65670073e+06 -3.13903806e+06 -5.47407576e+06 5.04012746e+06 7.23786161e+06 -4.37827693e+06 2.40025785e+06 8.26250324e+04 -6.24409801e+05 2.13875979e+06 -4.85945170e+06 -5.64928923e+06 -2.55802303e+06 7.74836576e+06 -1.48969277e+06 -6.51640583e+06 -8.66120479e+06 9.62972125e+06 -3.29166132e+06 -2.07852039e+06 -4.76602102e+06 -3.80959114e+06 5.91083005e+06 -4.30822865e+06 -2.57049810e+06 1.32915314e+07 1.18743769e+07] [-2.84890819e+04 9.10567512e+06 -7.89015923e+06 -6.65592666e+05 -8.53843842e+06 -6.60287205e+06 -8.18857822e+06 -4.70692837e+06 -4.01173599e+06 -8.70707273e+05 -8.46101163e+06 -9.04299507e+06 7.52778958e+05 1.04755373e+06 -8.18008584e+06 -3.34129647e+05 -5.88083789e+06 -3.88117106e+06 -1.11719160e+05 -8.90768613e+06 -9.06683335e+06 -6.16587836e+06 4.79244346e+06 -6.96258396e+06 -9.31944769e+06 -8.78201216e+06 5.18219474e+06 -7.42676144e+06 -5.18511345e+06 -6.65922254e+06 -7.99276357e+06 1.85520822e+06 -7.66612721e+06 -7.22798983e+06 8.75663355e+06 7.94632139e+06] [-4.48599210e+06 -7.63367063e+05 -7.80968873e+06 -4.25351246e+05 -7.62563957e+06 -7.43045624e+06 8.78631304e+05 -3.68753866e+06 -4.97672095e+06 -9.23969765e+06 -8.49359365e+06 -7.44076021e+06 -6.80308749e+06 -6.84603015e+06 -7.32131214e+06 -3.06132607e+06 -7.78507214e+06 1.44266691e+06 -2.52309893e+06 -7.90650598e+06 -7.12884490e+06 -3.87143312e+06 -2.49645587e+06 -7.36830430e+06 -7.02065128e+06 -6.07383721e+06 -5.46139076e+06 -7.45991825e+06 -4.06811654e+06 -2.45216576e+06 -7.54524836e+06 -3.35045150e+06 -6.83282507e+06 -7.18714961e+06 -3.31413191e+06 -2.72781589e+06] [-5.44358172e+06 -6.85635813e+06 -4.58128347e+06 4.85299779e+05 -4.15956878e+06 -5.03590434e+06 8.16077606e+06 -2.03143961e+06 -2.90940862e+06 -1.26077617e+07 -4.61466084e+06 -3.00033474e+06 -9.61490346e+06 -9.64586380e+06 -4.05615345e+06 -6.38576767e+06 -5.43126302e+06 6.33419336e+06 -3.50509902e+06 -4.12860090e+06 -2.92550009e+06 -4.90939406e+05 -7.15060295e+06 -4.22612518e+06 -2.53767792e+06 -2.55681153e+06 -1.12282920e+07 -4.47729007e+06 -4.62163915e+05 2.71916137e+06 -4.33215421e+06 -6.28239247e+06 -3.72292629e+06 -3.94872020e+06 -1.09559828e+07 -9.94197012e+06] [-3.85240103e+06 -9.98865325e+06 9.97647867e+05 4.27299627e+05 1.42985019e+06 -2.03566296e+05 1.10830185e+07 -1.02558972e+06 -1.02007918e+05 -1.08831193e+07 6.83743042e+05 1.95548087e+06 -5.63554494e+06 -6.13737333e+06 9.26322824e+05 -4.83487020e+06 -3.00501741e+05 7.16585938e+06 -2.54837573e+06 1.69095950e+06 2.49637696e+06 2.54720924e+06 -7.02121819e+06 8.44084844e+05 2.57767593e+06 1.77210123e+06 -9.06009905e+06 4.90205342e+05 3.13912262e+06 5.99950856e+06 9.52496068e+05 -5.47607752e+06 1.07747868e+06 9.01901132e+05 -1.09068191e+07 -1.03866513e+07] [-1.65373801e+06 -1.01997472e+07 3.01777741e+06 1.69630331e+06 3.24134129e+06 1.68433964e+06 1.20699772e+07 -1.22314307e+06 2.56426642e+06 -8.25627171e+06 2.61158943e+06 3.14849677e+06 -3.90438603e+06 -3.09622777e+06 2.36700411e+06 -3.01214324e+06 1.88766387e+06 7.59133187e+06 -2.88133284e+06 3.55160532e+06 3.99752297e+06 3.26282270e+06 -6.70569985e+06 2.72777841e+06 3.37359774e+06 3.36714465e+06 -7.40342435e+06 1.86345851e+06 5.50092961e+06 6.73089272e+06 2.75050044e+06 -3.96226640e+06 2.08965568e+06 2.51887146e+06 -9.44148294e+06 -9.83021927e+06] [-1.50862965e+06 -1.09416285e+07 2.12467818e+06 1.39837876e+06 2.82280888e+06 3.76318689e+05 1.17240254e+07 -3.68573592e+06 1.91300165e+06 -1.01324605e+07 1.23017194e+06 1.57809569e+06 -4.56352585e+06 -3.87514117e+06 1.02458101e+06 -3.49946877e+06 4.42503677e+05 7.70044038e+06 -2.97797883e+06 2.47499939e+06 2.70266365e+06 2.51142498e+06 -6.76547310e+06 1.52488107e+06 1.85701835e+06 1.46580478e+06 -7.73889911e+06 4.59347478e+05 3.89338950e+06 5.95113661e+06 1.74923980e+06 -4.32505411e+06 7.81098411e+05 1.15577955e+06 -8.52040261e+06 -9.50042643e+06] [-9.18255413e+05 -1.09551500e+07 1.22082607e+06 1.69408689e+06 2.14303439e+06 -5.23929073e+05 1.17459280e+07 -6.11255529e+06 1.58394152e+06 -1.07812787e+07 3.07410763e+05 6.98757119e+05 -6.00988239e+06 -5.47591076e+06 3.52041255e+05 -1.56792911e+06 -5.53969046e+05 8.07237529e+06 -2.15944003e+06 1.46597233e+06 1.75132658e+06 2.94318138e+06 -7.42653289e+06 6.34782222e+05 9.75505504e+05 6.05130735e+05 -9.25536029e+06 -4.14364523e+05 3.00104288e+06 6.39239784e+06 8.54322653e+05 -2.36622799e+06 1.87521466e+05 5.35124185e+05 -8.79486931e+06 -9.71077500e+06] [-1.54945017e+05 -6.33631739e+06 6.51225449e+04 2.31860291e+06 8.02194899e+05 -8.50846549e+05 9.54075540e+06 -5.03326268e+06 1.33703043e+06 -8.21946588e+06 -2.57859812e+05 9.11766331e+04 -6.08849523e+06 -5.06376068e+06 -3.89780226e+05 -6.78046004e+05 -8.11689592e+05 7.49776090e+06 -1.54166519e+06 3.02251157e+05 6.13574381e+05 2.53264933e+06 -5.88993015e+06 7.61552979e+04 1.72254520e+05 -9.14370030e+05 -8.36301824e+06 -7.90363698e+05 3.08022684e+06 5.38146977e+06 -1.40162977e+05 -1.26424895e+06 -3.10739541e+05 1.28516415e+05 -7.15641217e+06 -7.60267360e+06] [ 1.18420897e+06 -1.94452155e+06 -7.26546687e+05 3.06466056e+06 -1.59126181e+05 -1.08999773e+06 6.93890489e+06 -3.04911695e+06 1.51488163e+06 -5.03246202e+06 -1.01347235e+06 -3.26156810e+05 -4.87218853e+06 -4.13000954e+06 -6.90206268e+05 1.28203907e+06 -1.10018493e+06 6.35883676e+06 9.74448014e+05 -6.90739561e+05 -2.86474380e+05 2.38193439e+06 -3.44324749e+06 -5.02525506e+05 -3.11339308e+05 -1.10358182e+06 -5.87147403e+06 -9.20889751e+05 1.76732045e+06 4.12499078e+06 -7.79011530e+05 1.20016586e+06 -4.03101449e+05 -2.22531994e+05 -4.71095930e+06 -4.79082508e+06] [ 1.34869117e+06 -4.85738717e+05 -1.30020499e+05 2.29750947e+06 1.66311242e+05 -3.01031383e+05 3.16132011e+06 -2.83937031e+06 1.16721395e+06 -2.96695782e+06 -4.97429251e+05 -6.93423113e+04 -2.59735990e+06 -2.29785383e+06 -2.50514078e+05 6.20866750e+05 -2.81745506e+05 4.11898905e+06 8.95515660e+05 -2.38772115e+05 -1.38919113e+05 1.39411577e+06 -1.67307895e+06 -2.85851030e+04 -8.77650077e+04 -1.07752048e+06 -3.10489097e+06 -2.43608956e+05 1.93027901e+05 2.19883357e+06 -1.74366083e+05 1.01113920e+06 1.17920331e+04 1.97466450e+05 -1.95653289e+06 -2.03592729e+06] [ 5.33169922e+05 5.24900439e+04 2.02650098e+05 8.11014943e+05 2.81835087e+05 1.41528957e+05 9.78818470e+05 -1.24877333e+06 3.82452895e+05 -9.73098730e+05 3.99541942e+04 1.40975008e+05 -5.51187622e+05 -4.90191549e+05 7.50725716e+04 9.22833906e+01 1.82733290e+05 1.36214279e+06 2.98898044e+05 1.17589505e+05 8.94053595e+04 5.10656681e+05 -4.18009310e+05 2.47665961e+05 9.44629472e+04 -5.36642293e+05 -7.83749054e+05 1.16675847e+05 -1.12322251e+05 6.54634856e+05 1.59097497e+05 1.66965211e+05 1.47295386e+05 2.81546847e+05 -3.61027291e+05 -4.41601733e+05] [ 3.56117227e+04 -7.23919375e+04 7.42282883e+04 5.01393002e+04 8.37730249e+04 7.28918824e+04 1.94254256e+04 -2.14148222e+05 1.87741635e+04 -1.83419909e+05 3.91575673e+04 6.28489204e+04 -2.78079566e+04 -2.71719381e+04 5.86644848e+04 -7.78395990e+04 8.08505780e+04 1.05748648e+05 7.12363399e+03 6.22541962e+04 5.63413985e+04 5.75179802e+04 -4.14407345e+04 8.25955413e+04 5.71690401e+04 -9.35074991e+04 -9.96911120e+04 6.44917302e+04 -9.66397358e+04 3.02122536e+04 6.68686479e+04 -1.97725935e+04 6.48273907e+04 8.50580527e+04 -2.63162233e+04 -4.66740385e+04] [ 4.28957382e+03 -1.12651701e+03 3.88083679e+03 5.24591889e+03 3.90131565e+03 2.82437654e+03 4.06846123e+03 -2.80952481e+03 4.50793447e+03 3.09578447e+03 2.23434933e+03 2.43580156e+03 7.60108998e+03 4.41551276e+03 2.79517749e+03 3.71368541e+03 2.39635524e+03 5.15520237e+03 -1.08832632e+01 3.56414777e+03 3.02411769e+03 4.17307206e+03 -8.27948501e+02 2.55973838e+03 2.07636088e+03 4.23940365e+03 3.76875906e+03 2.57958201e+03 3.84365542e+03 4.85805857e+03 3.51532942e+03 4.09964037e+03 2.58131746e+03 2.41657790e+03 3.30192092e+02 -1.65493016e+03] [-7.90971360e-01 3.33110072e-01 6.76259745e-01 -9.04275117e-01 5.76304575e-01 -9.34789336e-01 -7.61572889e-01 -2.52175612e-01 2.40192277e-01 -6.45881665e-01 -8.81100427e-01 5.36194729e-01 -7.51220478e-02 -7.98135889e-01 2.00883376e-01 -7.07211632e-01 4.79663284e-01 -1.35395782e-01 -6.45431981e-01 -8.31306449e-01 -1.19099115e-01 2.05192549e-01 -7.53073193e-01 7.18537892e-01 -6.24191380e-01 -4.73380950e-01 4.80433785e-01 5.68531375e-02 5.25741293e-02 2.96072231e-01 6.18493760e-01 -5.11674694e-01 2.64483810e-01 5.72427910e-01 2.95026057e-01 -1.55769197e-02] [ 2.86681488e-01 5.35069116e-02 -2.51663993e-01 7.37200319e-01 1.80622186e-01 2.45297053e-01 8.45545652e-01 -9.31291529e-01 7.40301663e-01 1.94072338e-02 1.84914624e-01 -6.79466692e-01 1.91939444e-01 -6.28583844e-01 -1.21833528e-01 -3.35175145e-01 4.79405887e-01 -5.16230798e-01 9.26418948e-01 -6.56568669e-01 5.44379694e-01 2.68667107e-02 8.49701795e-01 -9.88858143e-01 8.09872843e-01 8.26052992e-01 -9.39094520e-02 -6.41483252e-01 -2.52236216e-01 -9.42860655e-01 2.69882644e-01 -3.49470864e-01 3.55998647e-01 7.44821549e-01 5.63214851e-01 5.05603574e-01] [-2.45766140e+05 -6.39942129e+05 1.71723985e+05 -3.75247543e+05 2.05631593e+05 7.33946818e+04 -1.38281062e+05 -7.51722456e+05 -2.34893029e+05 -6.08784083e+05 1.26130583e+05 7.19167160e+04 2.26550994e+04 -1.03347170e+05 1.09365464e+05 -4.49262717e+05 5.90985586e+04 -2.65814869e+05 -3.01039060e+05 1.91124499e+05 1.57764518e+05 -7.12571836e+04 -2.87153059e+05 1.07553984e+05 9.72493212e+04 5.36027234e+03 -2.02582149e+05 6.53687594e+04 -6.32042464e+05 -1.94318998e+05 1.56982621e+05 -3.98019033e+05 9.30955605e+04 8.96692931e+04 -6.24794037e+04 -1.36998691e+05] [-7.10214601e+05 -3.38379430e+06 1.17346334e+06 -1.14930225e+06 1.49260124e+06 5.49446639e+05 7.23280683e+05 -5.45237047e+06 -7.67827827e+05 -4.45375327e+06 7.15209666e+05 4.26846073e+05 -2.62480141e+05 -7.28024899e+05 5.74813111e+05 -2.22165022e+06 3.96781197e+05 -1.42485415e+05 -1.52981225e+06 1.24299787e+06 9.29520393e+05 3.26732246e+05 -1.95364938e+06 7.20886155e+05 5.77066067e+05 -8.36721173e+05 -1.79256296e+06 4.19277194e+05 -3.54564894e+06 -2.15708425e+05 1.06412361e+06 -2.05355940e+06 5.75283939e+05 6.17898355e+05 -5.47780359e+05 -1.19858875e+06] [-1.14164679e+06 -8.54111169e+06 1.97336997e+06 -1.05936574e+06 2.88036008e+06 4.87865986e+05 3.63795604e+06 -1.02477007e+07 -6.77988613e+05 -1.11272797e+07 7.80953897e+05 7.05299093e+05 -2.28252238e+06 -3.18862611e+06 6.95844685e+05 -4.20767205e+06 3.59009110e+05 2.71547918e+06 -2.81271429e+06 1.90340992e+06 1.60072399e+06 6.52518619e+05 -4.95624999e+06 1.28212502e+06 8.91942960e+05 -2.81798769e+06 -5.69648834e+06 3.35051631e+05 -3.96802425e+06 1.38068661e+06 1.62520438e+06 -3.43806625e+06 6.87397693e+05 9.76272202e+05 -3.58816176e+06 -4.73169309e+06] [-3.33227983e+06 -1.52334483e+07 1.45657298e+06 -3.51087668e+06 3.06105423e+06 -9.17485654e+05 6.60397195e+06 -1.26049965e+07 -2.18346652e+06 -1.79451137e+07 -8.42361691e+05 -3.18545363e+05 -5.28080845e+06 -7.04979602e+06 -7.86583382e+04 -4.55066482e+06 -1.61635822e+06 2.73886953e+06 -3.08243619e+06 1.18447223e+06 1.14877545e+06 8.51307534e+04 -8.78275745e+06 -5.70571062e+04 2.11045934e+05 -3.87119659e+06 -1.02482449e+07 -9.62873150e+05 -2.96660727e+06 2.14379177e+06 9.96516761e+05 -4.11108915e+06 -1.10514040e+05 -3.69817461e+05 -8.78686284e+06 -9.91902562e+06] [-5.70632847e+06 -1.91865337e+07 -2.46960262e+05 -7.65315030e+06 1.74052295e+06 -3.25230463e+06 7.81247730e+06 -1.15535583e+07 -4.41377898e+06 -2.16934895e+07 -3.35780419e+06 -2.31528432e+06 -7.14209918e+06 -1.01648842e+07 -1.58433362e+06 -4.09331449e+06 -4.65128602e+06 -1.17453836e+06 -1.62183581e+06 -6.84351824e+05 -4.22216193e+05 -1.24177844e+06 -1.04857640e+07 -2.73813677e+06 -1.22773926e+06 -4.16358020e+06 -1.21991695e+07 -2.91757058e+06 -3.17247831e+06 1.76944524e+06 -6.59786030e+05 -4.61991322e+06 -1.65017383e+06 -2.77055818e+06 -1.23849143e+07 -1.29209641e+07] [-3.19391088e+06 -1.45596726e+07 -3.40750884e+05 -4.55922747e+06 1.28754606e+06 -2.60306564e+06 1.08518469e+07 -6.59127490e+06 -1.71358050e+06 -1.78570548e+07 -2.79033502e+06 -1.36750404e+06 -7.16423447e+06 -9.69610366e+06 -1.04558131e+06 -2.19082506e+04 -3.94815354e+06 2.05162658e+06 3.29857578e+06 -8.39240595e+05 -1.08673650e+05 1.15006115e+06 -7.34355982e+06 -2.28376669e+06 -3.64512945e+05 -2.28111509e+06 -1.01403605e+07 -1.97040488e+06 2.12821439e+06 5.51070749e+06 -6.12361542e+05 1.93346777e+05 -8.15368741e+05 -1.95185911e+06 -1.13148243e+07 -1.09927750e+07] [ 4.91388639e+06 -2.77870083e+06 2.71685247e+06 3.53289552e+06 3.55581092e+06 1.78815241e+06 1.61340654e+07 -1.94513938e+05 4.71729419e+06 -8.26823217e+06 1.62565206e+06 3.14786458e+06 -4.20599919e+06 -4.71854534e+06 2.52479888e+06 6.39397713e+06 1.23142523e+06 9.33442585e+06 1.10206971e+07 2.11099279e+06 3.16471809e+06 7.83998906e+06 -7.42824594e+05 2.25052499e+06 3.60148202e+06 1.67835303e+06 -4.62101052e+06 2.53773079e+06 9.03091301e+06 1.15749340e+07 2.53438078e+06 8.54250088e+06 3.37518178e+06 2.87840197e+06 -5.93812338e+06 -4.96691244e+06] [ 1.17434915e+07 9.96310149e+06 5.08958055e+06 1.10497926e+07 5.02383384e+06 5.66095668e+06 2.03242032e+07 6.36533439e+06 1.05459291e+07 3.14745524e+06 5.94962404e+06 7.02750303e+06 -1.23499989e+06 1.09338366e+06 5.67908047e+06 1.30307292e+07 6.22684188e+06 1.49803760e+07 1.71116467e+07 4.54367069e+06 5.77942732e+06 1.40130816e+07 4.88878850e+06 6.46963312e+06 6.55251897e+06 6.51843223e+06 7.54123957e+05 6.29032292e+06 1.41115072e+07 1.67136838e+07 5.06462989e+06 1.64532479e+07 6.72476484e+06 7.18424559e+06 -9.29287042e+05 7.00741580e+05] [ 1.46577716e+07 1.74300839e+07 5.47021191e+06 1.48422826e+07 4.72414675e+06 6.79827476e+06 2.04066587e+07 8.24413998e+06 1.27984004e+07 1.12227488e+07 7.59083353e+06 7.81045675e+06 6.86694079e+05 5.10842121e+06 6.54672916e+06 1.69467048e+07 8.45142724e+06 1.64632422e+07 1.81440215e+07 4.86731207e+06 6.01521400e+06 1.64036513e+07 6.86000539e+06 8.14578742e+06 6.64925530e+06 8.34183275e+06 3.92767675e+06 7.21291905e+06 1.53318769e+07 1.71501888e+07 5.50314935e+06 2.02982868e+07 7.24854579e+06 8.49934490e+06 1.71958406e+06 3.28696785e+06] [ 1.68676070e+07 2.28467414e+07 5.34279689e+06 1.89347228e+07 3.96804046e+06 7.31359726e+06 1.90093059e+07 6.03229431e+06 1.43721857e+07 1.64549022e+07 7.96082772e+06 7.37303060e+06 -7.86181538e+04 6.98349457e+06 6.86807609e+06 1.89934017e+07 9.84573644e+06 1.81841593e+07 1.44840972e+07 4.51352179e+06 5.56395341e+06 1.60910991e+07 5.85018934e+06 8.87686969e+06 5.93489169e+06 6.91382960e+06 3.28083529e+06 7.30274473e+06 1.65111186e+07 1.49635981e+07 5.33297581e+06 2.12431570e+07 6.87568981e+06 8.96821581e+06 3.15342936e+06 4.02785692e+06] [ 1.49333810e+07 2.31742321e+07 3.25033217e+06 1.80798629e+07 1.66104539e+06 5.43184307e+06 1.28673997e+07 1.47225465e+06 1.21800155e+07 1.64844922e+07 5.68384219e+06 4.32273986e+06 5.46037747e+04 7.73424978e+06 4.56251167e+06 1.69439021e+07 8.37262267e+06 1.53859238e+07 9.33083928e+06 2.29494101e+06 2.84832091e+06 1.15553960e+07 4.83830990e+06 6.92079579e+06 2.62114918e+06 3.22642608e+06 3.57781185e+06 4.82901476e+06 1.36829643e+07 1.02894079e+07 3.16489754e+06 1.86181873e+07 4.03195980e+06 6.66259535e+06 5.47386121e+06 5.30114226e+06] [ 9.15651827e+06 1.80493947e+07 -3.85259592e+04 1.10677583e+07 -1.32687676e+06 1.64475979e+06 3.08518629e+06 -3.19042718e+06 5.83927122e+06 1.15183115e+07 1.41264200e+06 -5.43205516e+05 2.12134661e+06 7.51679013e+06 2.40276412e+05 1.02464965e+07 4.12369570e+06 7.27809955e+06 3.19986593e+06 -9.89918858e+05 -1.11800663e+06 4.13954447e+06 4.35071207e+06 2.58449059e+06 -1.88956210e+06 -9.60022643e+05 5.45048507e+06 6.29041721e+05 7.30170038e+06 2.81703127e+06 -3.38296767e+05 1.11385046e+07 -1.84513316e+05 1.93472152e+06 8.46662961e+06 6.97096195e+06] [ 3.33923204e+06 9.93936063e+06 -3.81771823e+06 4.70737408e+06 -4.79063885e+06 -2.52779816e+06 -2.07746980e+06 -3.92494239e+06 7.19286000e+05 4.68798462e+06 -3.21745948e+06 -4.75883334e+06 1.22473797e+06 4.00852051e+06 -3.98481877e+06 4.68390280e+06 -1.01121603e+06 2.45618023e+06 -6.86985781e+05 -4.59110041e+06 -4.76944277e+06 -2.07839217e+06 3.77578560e+06 -2.35449347e+06 -5.48555624e+06 -3.58205894e+06 4.57878590e+06 -3.54295993e+06 3.41647721e+06 -1.49690232e+06 -4.05886211e+06 5.39524930e+06 -4.12530484e+06 -2.83007482e+06 8.67516688e+06 7.05673439e+06] [ 6.27474304e+05 3.09284345e+06 -5.32984375e+06 4.58811444e+06 -6.14276771e+06 -3.81682280e+06 2.09792191e+06 -6.03050819e+05 7.22572829e+05 1.58078941e+06 -4.47845717e+06 -4.54751294e+06 -3.55027926e+06 -1.18406456e+06 -4.44621029e+06 4.92292767e+06 -3.08829756e+06 5.07505561e+06 -1.77730777e+06 -5.36172585e+06 -4.78542477e+06 -1.30684576e+06 3.94610182e+05 -3.88017731e+06 -4.94448503e+06 -1.33598107e+06 -1.04668468e+06 -4.37959758e+06 4.49320777e+06 1.02378498e+06 -5.10974568e+06 3.98498664e+06 -4.35600972e+06 -3.66138803e+06 2.26559002e+06 1.30154552e+06] [-1.76825229e+06 -3.19150998e+06 -4.39026441e+06 6.05240519e+06 -4.80370629e+06 -3.46236042e+06 1.02063896e+07 1.80042143e+06 1.88987915e+06 -2.39078278e+06 -2.88233709e+06 -1.62107344e+06 -8.88868523e+06 -6.09561655e+06 -2.88444726e+06 3.09915756e+06 -3.10709764e+06 1.05582992e+07 -2.25084966e+06 -3.55954452e+06 -2.35453228e+06 2.09926709e+06 -4.73036667e+06 -2.80102736e+06 -1.96500638e+06 1.47356109e+06 -8.67484130e+06 -3.15990066e+06 6.08828405e+06 6.10419071e+06 -3.81337341e+06 1.02866990e+06 -2.73107480e+06 -2.21962370e+06 -7.32598367e+06 -7.15464346e+06] [-3.29094794e+06 -8.23957477e+06 -2.12868296e+06 5.12568702e+06 -2.11769088e+06 -2.13442055e+06 1.39715800e+07 1.48120648e+06 2.15400390e+06 -7.30453949e+06 -6.26535125e+05 1.08126211e+06 -1.13446685e+07 -9.19713429e+06 -8.22179943e+05 -1.72794316e+06 -2.06727071e+06 1.19782039e+07 -3.75009010e+06 -7.95938218e+05 5.64996113e+05 4.02128806e+06 -8.92341565e+06 -9.49074953e+05 1.12783405e+06 2.66116972e+06 -1.34492650e+07 -1.29222985e+06 5.05514299e+06 8.74459624e+06 -1.59693472e+06 -3.74217996e+06 -7.23948308e+05 -2.61424636e+05 -1.40580124e+07 -1.29470867e+07] [-3.01558335e+06 -1.17567545e+07 1.20932791e+06 1.26083708e+06 1.76928547e+06 -1.75840470e+05 1.41238509e+07 -1.48919087e+06 1.32536658e+06 -1.13570479e+07 1.55159424e+06 3.05080265e+06 -8.46336780e+06 -8.32312569e+06 1.50366101e+06 -3.10145655e+06 -2.89120602e+05 8.78397383e+06 -1.97753414e+06 2.39626999e+06 3.43957971e+06 5.24091266e+06 -8.79804592e+06 1.28247698e+06 3.49503790e+06 3.12354186e+06 -1.20453782e+07 8.41507698e+05 2.00287706e+06 8.74590696e+06 1.30848995e+06 -4.22164732e+06 1.69401271e+06 1.68821937e+06 -1.38070948e+07 -1.27843730e+07] [-3.03066698e+06 -1.35374621e+07 2.19930063e+06 -7.65116336e+05 3.03858721e+06 9.75792495e+04 1.10774009e+07 -4.69441742e+06 4.92024693e+05 -1.41492131e+07 1.39997418e+06 2.38946568e+06 -5.82284122e+06 -6.76880173e+06 1.32634901e+06 -5.22788123e+06 -1.73183784e+05 6.61627832e+06 -3.04440386e+06 2.91564595e+06 3.41164621e+06 3.12435333e+06 -8.10542850e+06 1.35576102e+06 2.84707075e+06 1.68098714e+06 -9.72406854e+06 7.06944992e+05 4.77866294e+04 6.41459695e+06 1.95716202e+06 -5.84683120e+06 1.35754258e+06 1.34672908e+06 -1.10723663e+07 -1.11856481e+07] [-2.34417558e+06 -1.30713845e+07 1.98145443e+06 -4.82660956e+05 3.13926828e+06 -3.32296893e+05 1.15878449e+07 -7.41224503e+06 1.09154198e+05 -1.54803676e+07 8.37250147e+05 1.66558634e+06 -6.41293652e+06 -7.19984647e+06 7.09399897e+05 -5.69636033e+06 -5.57695702e+05 7.34134690e+06 -3.05582524e+06 2.35138759e+06 2.74920128e+06 2.92172395e+06 -8.79823240e+06 1.07959413e+06 2.03266045e+06 9.72558134e+04 -1.07649353e+07 1.17056311e+05 3.57522391e+05 5.94618627e+06 1.61519015e+06 -5.81733543e+06 8.20296540e+05 8.97028279e+05 -1.06366013e+07 -1.13808591e+07] [-1.17242412e+06 -1.01941068e+07 1.35352878e+06 4.46815709e+05 2.42844975e+06 -4.48198283e+05 1.03226925e+07 -8.05253494e+06 3.05469012e+05 -1.31529207e+07 3.47651822e+05 1.07593768e+06 -6.79594040e+06 -7.00436723e+06 4.96733989e+05 -3.36287191e+06 -6.69473436e+05 7.02830567e+06 -2.12971511e+06 1.50481933e+06 1.88822426e+06 2.90135137e+06 -7.88290466e+06 7.03874777e+05 1.44630601e+06 -8.99853858e+05 -1.05624388e+07 -9.45130755e+04 8.05594413e+04 5.03097110e+06 1.07017796e+06 -3.60966089e+06 6.39106285e+05 6.50663793e+05 -9.26867349e+06 -9.81637318e+06] [ 5.78580332e+05 -5.32831897e+06 7.19615975e+05 1.99220780e+06 1.55655413e+06 -2.55609871e+05 8.62043657e+06 -6.06369652e+06 1.12021674e+06 -9.01327574e+06 8.42138620e+02 7.69145207e+05 -5.89390207e+06 -5.62369109e+06 4.02381965e+05 -4.77270573e+05 -3.86331441e+05 6.75824923e+06 -5.87544868e+04 7.68424858e+05 1.16263348e+06 3.39975405e+06 -5.59697664e+06 6.26968148e+05 9.76718232e+05 -1.17958210e+06 -8.37127068e+06 4.36313298e+03 3.36803150e+05 4.57724220e+06 5.74727651e+05 -6.67108767e+05 6.68941416e+05 7.75353631e+05 -6.81879247e+06 -7.04740502e+06] [ 2.18120876e+06 -9.30513815e+05 3.07576905e+05 3.22593455e+06 7.46086100e+05 3.74102201e+04 5.91488428e+06 -2.82361229e+06 2.02438837e+06 -3.95337722e+06 -1.02359377e+05 7.08829886e+05 -3.73762175e+06 -3.33835592e+06 4.27552087e+05 1.73490182e+06 4.11951936e+04 5.88964838e+06 1.76475996e+06 2.17938014e+05 5.61219980e+05 2.82092552e+06 -2.75877734e+06 5.29148578e+05 6.91982175e+05 -6.97222350e+05 -4.79611100e+06 2.58860374e+05 9.04011660e+05 3.69541846e+06 2.88387626e+05 1.83973299e+06 7.52599676e+05 8.94975766e+05 -3.47082773e+06 -3.55798362e+06] [ 1.29960374e+06 -4.64571479e+05 2.66039757e+05 1.84531239e+06 4.82032423e+05 1.26795219e+05 2.81688370e+06 -2.46419804e+06 1.10137576e+06 -2.37769313e+06 -3.79876046e+04 3.26352364e+05 -1.96373142e+06 -1.75786431e+06 1.80398491e+05 5.86362903e+05 1.13418428e+05 3.26990523e+06 8.94531592e+05 1.85367999e+05 2.29452801e+05 1.30079591e+06 -1.43944435e+06 3.11565771e+05 3.07446746e+05 -6.53666513e+05 -2.51975637e+06 1.75116204e+05 1.42352973e+05 1.84365502e+06 2.48094487e+05 9.37605288e+05 3.98165240e+05 5.45282415e+05 -1.34009153e+06 -1.44238978e+06] [ 3.88159950e+05 -5.65066090e+03 9.35922011e+04 6.46456557e+05 1.64689094e+05 3.55324548e+04 9.43638510e+05 -9.25432832e+05 3.20980014e+05 -8.99136843e+05 -3.88972034e+04 4.51277785e+04 -5.60522922e+05 -5.15446732e+05 -4.13073987e+03 -5.85523883e+04 5.57755516e+04 1.10112770e+06 1.61390214e+05 4.58873174e+04 2.90800634e+04 4.10937664e+05 -4.10170570e+05 1.18853527e+05 1.55948747e+04 -4.14180357e+05 -7.23803364e+05 1.94650305e+04 -3.00851149e+04 5.75975010e+05 5.98739914e+04 9.58419765e+04 5.28326193e+04 1.48241555e+05 -3.15611192e+05 -3.93304308e+05] [ 3.23517977e+03 -6.38955170e+04 2.44305637e+04 -4.96251551e+03 3.36401995e+04 8.90618015e+03 -1.08030042e+04 -1.20467855e+05 -8.02895541e+03 -1.72513318e+05 -2.41450347e+04 -1.39913616e+04 2.13779334e+04 -2.25323396e+04 -1.04342755e+04 -9.90975479e+04 3.15449756e+03 2.17250543e+04 -1.06078452e+03 1.84316538e+04 -1.84461096e+02 -3.01238329e+03 -3.18959517e+03 7.06878509e+03 -8.04116149e+03 -5.78065620e+04 1.18260260e+04 -2.83164951e+03 -8.71776507e+04 3.46252904e+03 1.52369766e+04 -7.54684294e+04 -2.40519128e+03 -1.22833820e+03 3.97513552e+04 2.26567606e+04] [ 1.23217587e+03 -1.48616575e+03 2.07500063e+03 7.90095489e+02 2.27368213e+03 1.21157758e+03 3.19082702e+02 -1.97930326e+03 1.36398365e+03 9.15063001e+02 1.07254664e+03 1.08477480e+03 2.80140064e+03 1.17531778e+03 1.36903844e+03 1.20433509e+03 1.03404223e+03 9.89785126e+02 -1.19049048e+03 2.00177774e+03 1.62702265e+03 7.26708406e+02 -5.13813485e+02 1.29016735e+03 9.91924283e+02 9.94446513e+02 1.45350649e+03 1.09428244e+03 1.12541320e+03 7.07433266e+02 1.90404384e+03 1.17503240e+03 1.08248859e+03 9.51608020e+02 8.61350834e+02 -6.57918500e+02] [-3.40432080e-02 -8.62114143e-02 3.32930081e-01 5.58170640e-01 9.49958050e-01 -2.28558920e-01 -7.43295112e-01 -8.77703499e-01 -9.13417073e-01 -7.86322723e-01 -4.49834429e-01 -8.58034816e-01 2.49640755e-01 -7.13463019e-01 -9.35124299e-01 4.95315538e-01 9.31590643e-01 7.51266241e-01 7.49484665e-01 1.66415301e-01 -9.16258804e-01 3.67774283e-01 -1.36623198e-03 -7.88167521e-01 -2.51440328e-01 -1.84524665e-01 -8.26277803e-01 9.47432611e-01 5.51603673e-01 -5.94230990e-01 1.25763662e-01 -3.09606174e-01 -5.29967194e-01 3.80319734e-01 8.86435526e-01 -2.91082860e-01] [ 7.07176149e+02 -4.40073563e+03 4.12288454e+03 4.05895433e+03 4.21071186e+03 2.14039097e+03 7.96665319e+02 -1.58245906e+04 2.73048125e+03 -2.21981724e+04 3.88994331e+03 1.83021531e+03 9.22101698e+02 -1.27291007e+03 -2.70098112e+02 -2.00594098e+04 4.11178065e+03 1.08906017e+04 -8.03879255e+03 4.36520108e+03 3.01656902e+03 -3.54003964e+03 -3.10809651e+03 3.74221666e+03 1.66104129e+03 -7.20235822e+03 -2.87489804e+03 3.90753468e+02 -1.10025511e+04 1.89552112e+03 2.62217574e+03 -1.40367404e+04 9.33816421e+02 3.78016190e+03 4.69128938e+03 2.89766473e+03] [-3.15819868e+05 -5.78495298e+05 2.28332023e+05 -4.27090491e+05 2.72184732e+05 9.56127964e+04 -1.38059490e+05 -9.46331561e+05 -3.08841749e+05 -8.39090031e+05 1.74936745e+05 1.05233497e+05 5.07128207e+04 -1.08010060e+05 1.14121760e+05 -6.70404735e+05 1.02976056e+05 -3.12377149e+05 -4.68456322e+05 2.44122068e+05 2.00821987e+05 -3.22148885e+04 -3.29253272e+05 1.50971279e+05 1.25363093e+05 -1.84229910e+05 -2.37601953e+05 7.91855231e+04 -8.34161572e+05 -2.48606234e+05 2.03374826e+05 -6.01543874e+05 1.04312536e+05 1.09583248e+05 -8.12897757e+04 -1.67809425e+05] [-1.28806903e+06 -3.98176274e+06 1.16059251e+06 -1.76302635e+06 1.54419606e+06 4.04806008e+05 4.87997784e+05 -6.20542810e+06 -1.35382568e+06 -5.29502318e+06 6.99980996e+05 3.87666536e+05 -4.08909174e+05 -1.13119394e+06 5.09776909e+05 -2.77742971e+06 2.73609063e+05 -6.46197118e+05 -1.93491797e+06 1.25514469e+06 9.58146062e+05 2.68538870e+05 -2.33657838e+06 6.62923058e+05 5.31230825e+05 -1.04203903e+06 -2.16711605e+06 2.91469846e+05 -4.33313472e+06 -4.93779235e+05 1.05086672e+06 -2.50252207e+06 5.07218614e+05 5.32587462e+05 -8.68080750e+05 -1.52471541e+06] [-1.84424443e+06 -9.42548901e+06 2.63716358e+06 -2.21158603e+06 3.52880973e+06 1.02981025e+06 3.56831889e+06 -1.17707631e+07 -1.34806614e+06 -1.14922106e+07 1.66313713e+06 1.34357876e+06 -2.14566673e+06 -3.00262209e+06 1.36306708e+06 -4.52953970e+06 8.64300461e+05 1.28280855e+06 -3.46611328e+06 2.74658226e+06 2.37134683e+06 1.15605109e+06 -5.87445088e+06 1.84052296e+06 1.48396349e+06 -1.95689103e+06 -6.24352132e+06 8.67362242e+05 -5.72888477e+06 1.08679541e+06 2.33025208e+06 -4.09675643e+06 1.31278850e+06 1.56982208e+06 -3.91033136e+06 -5.21966185e+06] [-3.42803791e+06 -1.62816519e+07 3.43579821e+06 -3.75724061e+06 4.95210912e+06 9.66453508e+05 6.77654940e+06 -1.53123721e+07 -1.98173138e+06 -1.75720106e+07 1.66902591e+06 1.84655050e+06 -4.93225045e+06 -6.43237543e+06 1.97243618e+06 -4.40290085e+06 4.11134862e+05 2.07143736e+06 -4.20406425e+06 3.51325802e+06 3.37716589e+06 2.02041690e+06 -9.90562509e+06 2.05332715e+06 2.22360463e+06 -1.99418321e+06 -1.10817458e+07 9.08688120e+05 -6.03224517e+06 2.37005445e+06 3.03009626e+06 -4.63331139e+06 1.85215037e+06 1.79384651e+06 -9.00130748e+06 -1.03056153e+07] [-4.93333525e+06 -2.09962594e+07 2.74960332e+06 -7.34488433e+06 4.83274288e+06 -3.80988182e+05 9.06272388e+06 -1.51974606e+07 -3.54699666e+06 -2.13160136e+07 3.98261120e+05 1.29042009e+06 -7.88749628e+06 -1.05855246e+07 1.66401225e+06 -2.62174855e+06 -1.57631278e+06 -5.73480563e+05 -1.52334348e+06 2.64164002e+06 2.97865948e+06 2.46419286e+06 -1.21070616e+07 6.65267507e+05 2.06355430e+06 -1.56619319e+06 -1.44584226e+07 8.36833143e+04 -6.66576075e+06 3.31477357e+06 2.46455605e+06 -3.26746169e+06 1.58200898e+06 6.87929427e+05 -1.40395652e+07 -1.42073718e+07] [-3.67665272e+06 -1.96954668e+07 3.22611269e+06 -7.13200675e+06 5.30256758e+06 5.81173361e+04 1.22917369e+07 -1.17100762e+07 -2.45264211e+06 -2.12864397e+07 8.80998266e+05 2.40594662e+06 -7.93700550e+06 -1.12430574e+07 2.50648867e+06 3.93542915e+05 -1.42114604e+06 3.50934973e+05 3.07151933e+06 2.93723053e+06 3.77443962e+06 4.43200818e+06 -9.68681144e+06 1.00515261e+06 3.26625192e+06 -2.12627932e+05 -1.30493487e+07 1.00556218e+06 -3.69653226e+06 6.12881192e+06 3.03921435e+06 2.90844354e+05 2.69220352e+06 1.43868076e+06 -1.38107665e+07 -1.31293577e+07] [ 7.53174128e+05 -1.43291536e+07 4.56831503e+06 -2.83406037e+06 6.21809991e+06 2.17556077e+06 1.48221413e+07 -5.80560439e+06 1.47155682e+06 -1.59208590e+07 2.52822542e+06 4.53775158e+06 -5.47420637e+06 -8.18177708e+06 4.25913546e+06 5.09449171e+06 1.04164467e+06 4.11151998e+06 8.13549512e+06 4.14200897e+06 5.24417080e+06 7.71866498e+06 -4.44488457e+06 3.02141172e+06 5.24540602e+06 2.49721244e+06 -8.33593505e+06 3.27597937e+06 1.64249384e+06 1.01388082e+07 4.38727689e+06 5.82738605e+06 4.77890166e+06 3.70357845e+06 -9.55525421e+06 -8.44553988e+06] [ 4.89282580e+06 -4.76780798e+06 4.60209780e+06 2.68931038e+06 5.31858272e+06 3.58512039e+06 1.53910764e+07 -2.64082704e+05 5.28167774e+06 -5.02625864e+06 3.64819829e+06 5.46431057e+06 -3.16295467e+06 -3.33346524e+06 5.10236755e+06 1.10008649e+07 3.13492547e+06 6.81187118e+06 1.22893914e+07 4.04635248e+06 5.04956081e+06 1.03494282e+07 -2.91845601e+04 4.19248149e+06 5.52834308e+06 5.51343373e+06 -3.46413618e+06 4.46663658e+06 6.08865791e+06 1.19648000e+07 4.59998944e+06 1.22858999e+07 5.59676997e+06 5.02635298e+06 -5.09242858e+06 -3.76677312e+06] [ 8.44988674e+06 4.79525929e+06 4.55704507e+06 8.57983415e+06 4.31668636e+06 4.67563918e+06 1.55051486e+07 3.20044302e+06 8.27377156e+06 5.62268714e+06 5.28920475e+06 6.15249174e+06 -1.53980482e+06 1.19513020e+06 5.84311562e+06 1.56356725e+07 5.52950893e+06 9.85657761e+06 1.23452678e+07 4.12272551e+06 5.12132005e+06 1.22525444e+07 2.20116480e+06 5.64913110e+06 5.55395404e+06 7.46754006e+06 -1.82449145e+05 5.28742446e+06 9.86824068e+06 1.21388065e+07 4.72397149e+06 1.61892949e+07 5.97501319e+06 6.30182330e+06 -1.33601782e+06 -3.20546911e+05] [ 1.07628901e+07 1.06865591e+07 4.27134386e+06 1.39256516e+07 3.21469533e+06 5.39540325e+06 1.58662769e+07 2.66784486e+06 1.10263879e+07 1.21825324e+07 6.10358294e+06 6.33286752e+06 -2.22683443e+06 3.56260928e+06 6.35576690e+06 1.87255906e+07 7.34722723e+06 1.34759545e+07 9.22485700e+06 3.80769000e+06 4.91549052e+06 1.28787856e+07 1.10845575e+06 6.70856903e+06 5.16566136e+06 7.85737103e+06 -8.44246475e+05 5.61726945e+06 1.32309533e+07 1.19713714e+07 4.47041192e+06 1.81519302e+07 5.77820355e+06 7.16791630e+06 -2.10200960e+05 -1.65859961e+05] [ 8.49371936e+06 1.16010242e+07 9.72192652e+05 1.30709759e+07 -4.39107348e+05 2.71308785e+06 1.31612703e+07 2.37636359e+06 9.26751745e+06 1.36580909e+07 3.73081695e+06 3.43237476e+06 -3.32296816e+06 3.30475250e+06 3.35348425e+06 1.74128772e+07 4.95457765e+06 1.19876548e+07 6.48931851e+06 7.96553051e+05 1.85889465e+06 9.30900356e+06 9.11103180e+04 3.88557843e+06 1.97346258e+06 6.86602546e+06 -1.36562702e+06 2.66132751e+06 1.40949042e+07 9.55376793e+06 1.32828624e+06 1.64734918e+07 2.57272092e+06 4.24928796e+06 4.19638510e+05 1.20293473e+05] [ 4.04513904e+06 6.21996255e+06 -1.19317942e+06 8.31147704e+06 -2.50504212e+06 2.46047341e+05 8.05543036e+06 1.14170942e+04 5.01359092e+06 9.01386997e+06 1.15341130e+06 3.89130976e+05 -2.97475596e+06 2.21928835e+06 3.50888592e+05 1.19515110e+07 2.06115618e+06 7.64030671e+06 1.77642618e+06 -1.15380002e+06 -4.39205082e+05 4.75182908e+06 -5.39202347e+05 1.01311271e+06 -7.39528144e+05 4.98829143e+06 -1.15334200e+06 -1.10346114e+05 1.04854520e+07 5.79336469e+06 -9.67117652e+05 1.04324714e+07 -2.68701726e+05 1.07482688e+06 1.28326127e+06 2.17121351e+05] [ 1.50156459e+06 8.83082690e+05 -3.18290619e+06 5.87960522e+06 -4.36277525e+06 -1.56684384e+06 6.44971452e+06 6.49849714e+05 3.22541015e+06 6.33075696e+06 -8.44969190e+05 -1.44663651e+06 -4.51368331e+06 -1.85011016e+05 -1.74284873e+06 8.92422945e+06 -3.56918192e+05 6.52974897e+06 -5.58519236e+05 -2.72914759e+06 -2.12844989e+06 1.96472033e+06 -9.45654296e+05 -1.37083502e+06 -2.27549967e+06 4.35434908e+06 -2.37937531e+06 -2.08494991e+06 9.22936737e+06 4.41601199e+06 -2.77399327e+06 7.27687655e+06 -2.10828694e+06 -1.01445154e+06 6.48584956e+05 -3.85439828e+05] [ 9.16304342e+05 -1.70577946e+06 -3.18927623e+06 7.92770600e+06 -4.31751122e+06 -1.42927671e+06 1.05338944e+07 4.95680368e+06 4.80763671e+06 6.18526474e+06 -1.44716886e+05 2.76173404e+05 -8.38417803e+06 -3.96248797e+06 -8.90041310e+05 9.28759704e+06 -5.49661869e+05 1.11104715e+07 -1.42413894e+06 -2.09314912e+06 -8.34123601e+05 3.48055319e+06 -3.39185374e+06 -1.10863216e+06 -4.91457038e+05 6.31322912e+06 -6.84927261e+06 -1.40682662e+06 1.12750965e+07 7.50297998e+06 -2.44370702e+06 6.26716783e+06 -1.02453096e+06 -1.23898626e+05 -4.98353549e+06 -4.95873039e+06] [-8.72985669e+05 -4.14057544e+06 -2.75893995e+06 9.96123701e+06 -3.60092354e+06 -1.34007528e+06 1.48394775e+07 5.22142616e+06 5.12922959e+06 2.47381632e+06 6.69150643e+05 1.88200363e+06 -1.29707389e+07 -7.45237833e+06 -2.67096688e+05 4.73895996e+06 -6.02682196e+05 1.55519216e+07 -4.02580289e+06 -9.82983159e+05 4.92077055e+05 4.91285133e+06 -7.67111791e+06 -3.60781743e+05 1.13005624e+06 5.72614288e+06 -1.31580313e+07 -7.61325563e+05 1.03000225e+07 9.76526070e+06 -1.74661799e+06 1.41145830e+06 -3.92109235e+05 6.72398891e+05 -1.22752459e+07 -1.11875871e+07] [-3.19350729e+06 -8.57309113e+06 -1.95302252e+06 4.13118165e+06 -1.95181895e+06 -1.85322605e+06 1.52616736e+07 1.50961599e+06 2.21212575e+06 -4.72804773e+06 7.46721349e+05 2.07521862e+06 -1.35884663e+07 -1.00579286e+07 -1.17756976e+05 -5.46194491e+05 -1.80675008e+06 1.04865719e+07 -3.27980576e+06 -7.49787199e+04 1.25891529e+06 5.38430874e+06 -1.07554685e+07 -6.05918060e+05 1.88135546e+06 4.70976560e+06 -1.59369473e+07 -7.91418109e+05 3.50815271e+06 8.80990273e+06 -1.18760400e+06 -2.98671488e+06 -4.10010885e+04 3.87938474e+05 -1.70831841e+07 -1.51279341e+07] [-3.35819698e+06 -1.13522943e+07 6.84623803e+05 -1.45202780e+06 1.47785187e+06 -7.98138262e+05 1.40401733e+07 -3.33435811e+06 -3.87318594e+05 -1.17231534e+07 1.47969402e+06 2.72759234e+06 -1.01219202e+07 -9.89266507e+06 1.24950533e+06 -3.14133126e+06 -1.29130128e+06 5.58981539e+06 -4.27574964e+05 1.98598003e+06 3.00424592e+06 5.47894680e+06 -9.84541300e+06 5.41057396e+05 3.20793276e+06 2.86944086e+06 -1.38832240e+07 5.06799130e+05 -2.64958565e+06 7.21218959e+06 9.90461325e+05 -4.15518745e+06 1.56779856e+06 1.13814869e+06 -1.56835495e+07 -1.39755899e+07] [-2.39687689e+06 -1.22473837e+07 1.80809501e+06 -1.83056324e+06 3.07467678e+06 -5.15591311e+05 1.02927632e+07 -7.78737852e+06 -1.08058942e+06 -1.70475833e+07 7.40675201e+05 1.88375000e+06 -7.48137399e+06 -9.02842371e+06 7.68016887e+05 -6.70666150e+06 -1.06558898e+06 5.81590390e+06 -1.82233223e+06 2.28953854e+06 2.76032660e+06 3.20471809e+06 -8.65519105e+06 8.51898059e+05 2.46375374e+06 -1.18074339e+06 -1.16520139e+07 2.86762476e+05 -4.04533710e+06 5.17448927e+06 1.59299546e+06 -6.73048031e+06 1.18412647e+06 9.54430178e+05 -1.23625501e+07 -1.18412514e+07] [-5.59017638e+05 -1.03510605e+07 1.76416396e+06 9.16110859e+05 3.09467864e+06 -4.30395216e+05 1.01238839e+07 -1.01589046e+07 1.23066790e+05 -1.69992275e+07 3.56089716e+05 1.53861332e+06 -7.35912309e+06 -8.37705900e+06 4.14374042e+05 -5.90031606e+06 -7.20508842e+05 8.70824443e+06 -1.70917333e+06 1.80573156e+06 2.19565177e+06 3.35035027e+06 -8.37466817e+06 9.95842740e+05 1.82514265e+06 -2.42471229e+06 -1.15835010e+07 8.23111627e+04 -2.55496624e+06 5.31175487e+06 1.38125442e+06 -5.34353989e+06 9.99958186e+05 1.08668631e+06 -1.04723590e+07 -1.07645932e+07] [ 8.26855831e+05 -6.24526310e+06 1.70777341e+06 2.04614460e+06 2.68730807e+06 2.07827550e+05 8.59475038e+06 -8.29063094e+06 9.56664162e+05 -1.24037845e+07 4.90107053e+05 1.53470874e+06 -5.98320146e+06 -6.47301852e+06 8.84506629e+05 -2.80914814e+06 3.85864697e+04 7.82567493e+06 -1.79400436e+05 1.48284078e+06 1.87537263e+06 3.23817380e+06 -6.23636619e+06 1.30128359e+06 1.74366010e+06 -2.30747878e+06 -9.26909082e+06 5.97214010e+05 -1.48637458e+06 4.49188935e+06 1.42492752e+06 -2.25361050e+06 1.33831504e+06 1.40781379e+06 -7.62834266e+06 -7.95462650e+06] [ 1.47463528e+06 -2.51834126e+06 5.77857259e+05 2.30161064e+06 1.22980349e+06 -1.49346675e+05 5.80814725e+06 -4.12106264e+06 1.23256740e+06 -6.72677436e+06 -3.62563388e+05 7.52919423e+05 -4.25089485e+06 -4.56866878e+06 4.69587766e+05 2.49853054e+05 -3.06697504e+05 5.84948484e+06 1.85497423e+06 3.29667212e+05 7.71956645e+05 2.74237573e+06 -3.41950178e+06 4.78153576e+05 9.35191193e+05 -1.59148100e+06 -5.82933472e+06 2.26883210e+05 -2.49080167e+05 3.30768940e+06 5.14945458e+05 8.98651492e+05 8.41855655e+05 7.18034816e+05 -4.58844607e+06 -4.63793274e+06] [ 1.58432319e+06 -3.26047904e+05 1.15814009e+05 2.06704992e+06 4.23105655e+05 -2.31442445e+04 4.05712098e+06 -1.42782370e+06 1.36108995e+06 -2.66972059e+06 -2.14097089e+05 5.55257728e+05 -2.65181730e+06 -2.51271388e+06 3.54290155e+05 1.30967219e+06 -1.07122346e+05 3.87718092e+06 2.18319387e+06 -1.96449020e+04 3.14989496e+05 1.99534682e+06 -1.72693945e+06 2.69188951e+05 5.48925040e+05 -5.24161867e+05 -3.32260840e+06 2.29230132e+05 8.27684051e+05 2.44240437e+06 1.65490842e+05 1.83047255e+06 6.15101264e+05 5.80225006e+05 -2.48493677e+06 -2.44371372e+06] [ 7.22370995e+05 9.14416195e+04 2.84179234e+05 9.56135266e+05 3.76888217e+05 2.19882960e+05 1.01306106e+06 -1.26474522e+06 5.45531175e+05 -1.39013793e+06 8.55815866e+04 2.42671738e+05 -6.43999614e+05 -6.84957092e+05 2.13661715e+05 -9.20098281e+04 2.65340695e+05 1.68321625e+06 2.97585255e+05 1.89146014e+05 2.20149660e+05 4.85833821e+05 -4.61615004e+05 3.50526156e+05 2.31338912e+05 -6.59839697e+05 -9.15404921e+05 2.18182529e+05 -9.29183975e+03 5.88881263e+05 2.59921925e+05 2.02826882e+05 2.85296206e+05 3.84572446e+05 -3.75826055e+05 -4.83405119e+05] [ 2.24702432e+05 -3.85854352e+04 7.97093817e+04 3.50837145e+05 1.07815731e+05 4.71642730e+04 2.49804606e+05 -4.78029036e+05 1.88109054e+05 -5.63289320e+05 -3.76603414e+04 2.54458326e+04 -2.11601822e+05 -2.41360915e+05 2.56560326e+04 -1.36773698e+05 7.68891762e+04 6.15360396e+05 4.97082172e+04 3.32068474e+04 2.97170286e+04 1.25282311e+05 -1.28197788e+05 9.69736288e+04 1.85685956e+04 -3.05099723e+05 -2.85713466e+05 3.82538742e+04 -7.04394045e+04 1.92485147e+05 5.82080418e+04 2.98267346e+04 3.95708485e+04 8.68728853e+04 -6.44410351e+04 -1.34813006e+05] [ 8.39290056e+03 -6.44281936e+04 5.52605465e+04 -7.70555760e+03 6.09384116e+04 4.35995304e+04 -1.96222318e+04 -1.43264796e+05 8.09380807e+02 -1.16628688e+05 2.67600514e+04 2.66852279e+04 3.33146169e+04 1.26186887e+04 3.12735558e+04 -7.50038003e+04 4.54219010e+04 9.81410208e+02 -2.15105075e+04 4.83853988e+04 3.36582426e+04 4.02513480e+03 -2.12072273e+04 4.66647915e+04 2.61802138e+04 -4.01545674e+04 1.17804011e+03 3.66024696e+04 -9.40127819e+04 -6.58636377e+03 4.94298101e+04 -5.28522495e+04 3.33878970e+04 3.64873117e+04 3.26824486e+04 1.01222711e+04] [-3.80601871e+03 -1.72414114e+04 3.86868290e+03 -5.25029795e+03 5.98055666e+03 1.08176765e+03 1.63112616e+03 -2.07533433e+04 -5.52364977e+03 -1.79287961e+04 1.34480913e+02 3.04071162e+03 -7.43607833e+03 -1.33481275e+04 3.18216494e+03 2.60784661e+03 -7.95599989e+02 2.28389834e+03 2.67639529e+03 3.58130097e+03 3.80862146e+03 5.46137204e+03 -8.58993136e+03 2.56726173e+02 3.94184619e+03 -1.52275965e+03 -1.26845960e+04 1.45363859e+03 -1.44962390e+04 -1.78730600e+02 3.23234274e+03 8.89468211e+03 3.73112108e+03 1.22535818e+03 -8.03706560e+03 -6.80564139e+03] [ 1.37394371e-01 9.80948587e-01 7.29149767e-01 -5.47992638e-01 3.70818375e-01 1.17978036e-02 -6.26817855e-01 -7.47497533e-01 7.43715629e-01 9.98928249e-01 -8.67436998e-01 -5.41713538e-01 5.21558224e-01 -1.11790289e-01 8.34221230e-02 1.41399536e-01 5.26632862e-01 6.86825384e-01 -9.55403667e-01 -5.17708993e-01 4.97550364e-03 -2.26173848e-01 -7.65012780e-01 -3.39440177e-01 3.67107903e-01 5.56927465e-01 1.89250671e-01 -2.53458333e-01 4.49248848e-01 9.40700023e-01 5.65600495e-01 -8.57173958e-03 4.40056914e-01 6.61969894e-01 -8.27335626e-02 6.02401200e-01] [ 4.96292456e+04 5.64510745e+04 3.17048548e+04 5.06255206e+04 2.82452897e+04 2.36667123e+04 -1.54372187e+04 -4.73225209e+04 3.43231469e+04 -2.96380803e+04 1.59111811e+04 9.03111098e+03 1.40359080e+04 1.27040393e+04 1.29296980e+04 -4.89136551e+04 3.56764845e+04 4.78500194e+04 -2.26240974e+04 2.26626217e+04 1.64867780e+04 -2.37439926e+03 1.48807286e+04 3.02164185e+04 1.14142533e+04 -4.89756313e+04 1.35726039e+04 1.60718379e+04 -5.41542340e+04 -1.33411996e+04 2.61847239e+04 -3.31312163e+04 1.01356760e+04 2.11154704e+04 3.18088872e+04 2.92414508e+04] [-4.18196426e+05 -5.90853423e+05 2.58122664e+05 -5.14029994e+05 3.29178106e+05 7.47376086e+04 -1.56571181e+05 -1.01787066e+06 -4.43541472e+05 -1.17295995e+06 1.79501349e+05 1.08048180e+05 1.32128613e+05 -1.62486000e+05 8.33312362e+04 -8.54144671e+05 7.47194839e+04 -3.41407203e+05 -5.40242836e+05 2.52795570e+05 2.09502095e+05 -2.28249093e+04 -2.44381100e+05 1.43643199e+05 1.23213336e+05 -3.57008335e+05 -1.40116918e+05 5.08330732e+04 -1.03070492e+06 -2.98972721e+05 2.10776633e+05 -7.69251157e+05 8.93743615e+04 8.26506246e+04 -9.06394599e+03 -8.37437804e+04] [-1.19540485e+06 -3.25091791e+06 1.04204793e+06 -1.34946358e+06 1.35204489e+06 3.93524885e+05 1.70263259e+05 -4.85359816e+06 -1.20577719e+06 -4.28494571e+06 6.39908632e+05 4.68160208e+05 -1.88819247e+05 -1.00076529e+06 5.36426340e+05 -2.14514082e+06 3.02577210e+05 -2.44197352e+05 -1.68892137e+06 1.11179022e+06 9.27648194e+05 2.22979263e+05 -1.72238753e+06 6.46557640e+05 5.87786344e+05 -8.60521298e+05 -1.56177343e+06 3.37148689e+05 -3.33395895e+06 -3.78498156e+05 9.61018388e+05 -2.02251710e+06 5.45737627e+05 5.27531063e+05 -5.92146362e+05 -1.11069966e+06] [-2.07648847e+06 -7.98558528e+06 2.25512742e+06 -2.54225703e+06 2.96908325e+06 8.98954728e+05 2.10404015e+06 -9.84463002e+06 -1.71633803e+06 -9.03156807e+06 1.52058429e+06 1.19962897e+06 -1.39669981e+06 -2.28379332e+06 1.26969267e+06 -3.82592336e+06 7.48196864e+05 9.10291900e+03 -3.60243696e+06 2.45207571e+06 2.15099292e+06 8.76485453e+05 -4.73219957e+06 1.58102639e+06 1.31976665e+06 -1.42992112e+06 -4.80762322e+06 7.72377641e+05 -5.23559282e+06 3.57959233e+05 2.05132966e+06 -3.68763250e+06 1.16293095e+06 1.31695071e+06 -2.93156956e+06 -4.02937204e+06] [-2.78232759e+06 -1.44122840e+07 4.02282483e+06 -3.01413665e+06 5.26167449e+06 1.81493393e+06 6.03488351e+06 -1.64652667e+07 -1.76599318e+06 -1.52388452e+07 3.01415664e+06 2.59363906e+06 -4.37654057e+06 -5.07329758e+06 2.56382546e+06 -4.46411216e+06 1.52632250e+06 1.79114029e+06 -5.28887327e+06 4.29584944e+06 3.98537507e+06 2.90483468e+06 -9.62323106e+06 3.03420903e+06 2.70539509e+06 -1.31339875e+06 -1.05445215e+07 1.61125596e+06 -7.25877641e+06 2.26782826e+06 3.69601857e+06 -5.02515752e+06 2.36496818e+06 2.70850356e+06 -7.94178957e+06 -9.36568290e+06] [-3.32100648e+06 -1.97522453e+07 5.30407536e+06 -4.89230988e+06 7.22245679e+06 2.33350422e+06 1.02764986e+07 -1.77349822e+07 -1.87366050e+06 -1.91452094e+07 4.19314252e+06 4.44223821e+06 -7.70381809e+06 -9.20296490e+06 4.24447808e+06 -2.33833557e+06 1.61683107e+06 2.13727639e+06 -2.83319202e+06 5.58445935e+06 5.86340419e+06 5.54311493e+06 -1.25917333e+07 3.97971625e+06 4.71956345e+06 4.61018635e+05 -1.52590187e+07 2.71030877e+06 -7.69776758e+06 4.97414181e+06 5.10579070e+06 -3.19921973e+06 4.11565981e+06 3.89426907e+06 -1.36648534e+07 -1.40377905e+07] [-3.30576588e+06 -2.25915439e+07 6.36084098e+06 -7.08077824e+06 8.60742151e+06 2.84219987e+06 1.37196495e+07 -1.61986764e+07 -1.85343945e+06 -2.12995924e+07 5.14547404e+06 6.10611747e+06 -8.78812967e+06 -1.14497019e+07 5.64916121e+06 -1.51281071e+04 1.76109572e+06 1.14451908e+06 7.71621933e+05 6.58735866e+06 7.34676985e+06 7.58934822e+06 -1.29549199e+07 4.59468762e+06 6.52359642e+06 2.39244185e+06 -1.64306624e+07 3.83321149e+06 -6.27900068e+06 7.55851089e+06 6.27712491e+06 -7.60524492e+05 5.68251241e+06 4.88541324e+06 -1.65136382e+07 -1.58495798e+07] [-1.30984330e+06 -1.97039431e+07 6.72162377e+06 -5.12995683e+06 8.39123845e+06 4.13348765e+06 1.30482784e+07 -9.91924034e+06 5.13217932e+05 -1.59128697e+07 5.61458202e+06 7.01462387e+06 -6.41669006e+06 -8.57079212e+06 6.61020025e+06 4.21938408e+06 3.15775815e+06 1.57253952e+06 3.85951892e+06 6.85913909e+06 7.66099386e+06 8.03404726e+06 -8.41574113e+06 5.38228820e+06 7.39759055e+06 4.26360118e+06 -1.16254768e+07 5.12270716e+06 -1.40365403e+06 8.85241066e+06 6.78347800e+06 3.08244152e+06 6.70752916e+06 5.92636299e+06 -1.28603859e+07 -1.16712650e+07] [-1.58442814e+06 -1.74825819e+07 4.90309846e+06 -4.76971353e+06 6.07313788e+06 2.90152263e+06 1.04592891e+07 -6.93610284e+06 5.31039709e+05 -1.09446932e+07 3.88194853e+06 5.35214547e+06 -5.66804610e+06 -6.98992780e+06 5.30524209e+06 6.79451637e+06 1.98858204e+06 -4.51662720e+05 4.96681834e+06 4.92655714e+06 5.58356003e+06 6.48049935e+06 -6.31304046e+06 3.60587755e+06 5.60795605e+06 4.93237067e+06 -8.90159163e+06 3.72138305e+06 7.09622440e+04 7.24690853e+06 5.04786003e+06 5.76409887e+06 5.25483625e+06 4.33716553e+06 -1.02692615e+07 -8.83505961e+06] [ 9.61240163e+05 -1.04539730e+07 4.54091457e+06 -8.18776715e+05 4.82698964e+06 3.55001158e+06 1.02718749e+07 -3.53641364e+06 2.62416830e+06 -1.74215864e+06 4.69427364e+06 5.53484033e+06 -4.34129289e+06 -3.43062405e+06 5.68432692e+06 1.15368004e+07 3.46197316e+06 7.66190644e+05 6.11688150e+06 4.63463133e+06 5.10066507e+06 7.75291136e+06 -3.79041660e+06 4.15903878e+06 5.31715633e+06 6.94247926e+06 -5.57157716e+06 4.20134434e+06 3.22664614e+06 7.55282503e+06 4.90975843e+06 1.00940295e+07 5.31939571e+06 4.93750586e+06 -6.42455001e+06 -5.15107997e+06] [ 2.47906419e+06 -4.31073100e+06 3.00838074e+06 3.42716278e+06 2.66370845e+06 3.01761001e+06 1.11216497e+07 -1.04428264e+06 4.57686742e+06 4.25664148e+06 4.36385912e+06 4.95119198e+06 -4.91785630e+06 -2.13309776e+06 5.02516841e+06 1.42609245e+07 3.91804262e+06 4.17176104e+06 5.44509030e+06 3.11886129e+06 4.05065804e+06 8.25725215e+06 -2.85848923e+06 3.98112074e+06 4.24950923e+06 7.39334937e+06 -4.80928756e+06 3.48244021e+06 6.96055115e+06 7.94550760e+06 3.44879742e+06 1.26094588e+07 4.25483880e+06 4.66704094e+06 -4.58547609e+06 -3.75604457e+06] [ 2.16913711e+06 -1.71320580e+06 9.53274541e+05 5.06861189e+06 8.28193762e+04 1.73478322e+06 1.11673448e+07 2.45286350e+06 5.31276008e+06 7.24015094e+06 3.50328580e+06 3.86690389e+06 -5.79897422e+06 -1.85495419e+06 3.47146473e+06 1.41701522e+07 2.99916301e+06 6.29838211e+06 4.82832167e+06 1.32328957e+06 2.62100208e+06 7.21296225e+06 -2.47719892e+06 2.74656443e+06 2.91443579e+06 8.71631065e+06 -4.62166017e+06 2.18980375e+06 1.02136744e+07 8.36297773e+06 1.54387393e+06 1.21373859e+07 2.61546349e+06 3.30803007e+06 -4.75255698e+06 -3.81256415e+06] [ 6.07797028e+05 -3.46380120e+06 -5.76126891e+05 2.93554342e+06 -1.56350771e+06 4.08527066e+05 7.39449210e+06 2.76700012e+06 3.55349853e+06 5.99603940e+06 2.24749031e+06 1.98892475e+06 -5.22856853e+06 -1.63010953e+06 1.14320595e+06 9.65680494e+06 1.57058269e+06 3.59167934e+06 2.44800475e+06 -2.80641568e+04 8.98294618e+05 4.63751158e+06 -1.37715959e+06 1.14846521e+06 9.60031843e+05 7.69308031e+06 -3.35096652e+06 4.79076436e+05 8.12791725e+06 6.33000356e+06 -1.22037534e+04 8.12609762e+06 6.11495408e+05 1.44790467e+06 -3.75507560e+06 -3.01895607e+06] [-1.03078585e+06 -6.43213196e+06 -2.40709139e+06 7.86354893e+05 -3.22683612e+06 -1.30424706e+06 6.23318225e+06 2.98642198e+06 2.26944031e+06 4.48197283e+06 7.58527479e+05 2.93400491e+05 -6.65862144e+06 -3.40668225e+06 -8.27676175e+05 6.85166050e+06 -4.41669956e+05 2.28137438e+06 -8.83519122e+04 -1.42638261e+06 -4.98677008e+05 2.84638742e+06 -2.27200613e+06 -8.08301708e+05 -4.97790139e+05 6.79045288e+06 -4.65730946e+06 -1.30736818e+06 6.40976554e+06 5.28260469e+06 -1.76363080e+06 5.11652151e+06 -1.02128923e+06 -3.02398980e+05 -5.27329353e+06 -4.49795572e+06] [-1.67594503e+06 -6.46378286e+06 -2.16478674e+06 1.28421879e+06 -3.06258078e+06 -9.29256798e+05 6.22290730e+06 3.77125552e+06 2.35716042e+06 5.38337989e+06 1.58243690e+06 1.47059026e+06 -7.95438486e+06 -4.74088892e+06 -2.82632281e+04 6.01206993e+06 -2.91385425e+05 3.41112419e+06 -1.90852176e+06 -8.03802062e+05 1.68260686e+05 2.55882824e+06 -3.99101242e+06 -4.84331771e+05 7.01391705e+05 6.84990319e+06 -6.85833859e+06 -5.19992849e+05 4.89589063e+06 4.91405071e+06 -1.31687145e+06 3.24913630e+06 -9.90415943e+04 4.37722380e+05 -7.73615579e+06 -6.36921729e+06] [-4.39956814e+06 -8.89003988e+06 -1.89783773e+06 -6.04714850e+05 -1.93385508e+06 -1.90614826e+06 7.81213603e+06 1.33423395e+06 -1.79780173e+05 -2.64134093e+06 7.99288609e+05 1.37997949e+06 -9.67723172e+06 -7.89023804e+06 -3.65446483e+05 -1.76714196e+05 -1.86701229e+06 3.53540138e+06 -3.40102750e+06 -3.86286949e+05 5.76961855e+05 2.78047837e+06 -6.99491510e+06 -9.70968461e+05 1.05002613e+06 4.30891122e+06 -1.06122479e+07 -1.04049384e+06 -3.99715891e+05 4.42037195e+06 -1.20255716e+06 -2.42102160e+06 -3.43796623e+05 -2.25590376e+05 -1.21340077e+07 -1.02476706e+07] [-3.62886704e+06 -7.78556533e+06 -1.46620785e+06 -1.48122704e+06 -1.02567976e+06 -1.79777305e+06 1.03755955e+07 -3.46657362e+05 -8.29088965e+05 -6.16402778e+06 7.93162461e+05 1.72600755e+06 -1.06611703e+07 -9.28066963e+06 2.62791329e+04 -1.75592120e+06 -2.05186797e+06 3.29067823e+06 -6.48250655e+05 5.80195929e+04 1.13144283e+06 4.81458975e+06 -8.68907470e+06 -6.83462371e+05 1.70730188e+06 3.36785163e+06 -1.28444476e+07 -5.80788403e+05 -3.36102213e+06 4.98178504e+06 -8.37352146e+05 -3.17982913e+06 3.92068157e+05 1.69788355e+05 -1.54812615e+07 -1.29073553e+07] [-2.40497099e+06 -7.20752410e+06 -3.97357388e+04 -2.79537290e+06 7.06846618e+05 -1.09100009e+06 9.04024899e+06 -4.00361839e+06 -1.68443587e+06 -9.97836805e+06 9.28777152e+05 1.54019543e+06 -8.53482007e+06 -8.61630284e+06 2.64670823e+05 -4.25135176e+06 -1.49940056e+06 2.31370265e+06 2.16151530e+05 8.81529999e+05 1.58436900e+06 4.22517989e+06 -7.90651486e+06 -4.71647960e+04 1.87925398e+06 5.64269339e+05 -1.14877041e+07 -4.45598025e+04 -5.69656441e+06 3.91124126e+06 1.82907415e+05 -4.82017673e+06 8.23000717e+05 3.92240765e+05 -1.38487178e+07 -1.15529524e+07] [-5.17277840e+05 -6.27320649e+06 1.04736650e+06 -9.92167329e+05 1.97835832e+06 -3.29408110e+05 7.68893319e+06 -6.96097822e+06 -9.12877088e+05 -1.23750794e+07 9.77586973e+05 1.52551408e+06 -6.97201504e+06 -7.41630184e+06 3.99816539e+05 -5.48854699e+06 -7.28744775e+05 4.29494168e+06 -2.37276043e+05 1.39621915e+06 1.74244572e+06 3.34345913e+06 -7.22996012e+06 6.39716676e+05 1.81968389e+06 -1.61658734e+06 -1.03856761e+07 3.28428918e+05 -5.04982431e+06 3.40524511e+06 9.66563468e+05 -5.21903552e+06 1.12368397e+06 9.55290419e+05 -1.11806737e+07 -9.98611854e+06] [ 3.93359411e+05 -5.64085839e+06 7.84962078e+05 9.72559417e+05 1.74722585e+06 -6.41033856e+05 7.00554713e+06 -7.94135862e+06 1.21765080e+05 -1.29752357e+07 -2.43824064e+05 7.62904385e+05 -6.01849392e+06 -6.85483126e+06 -4.77376557e+04 -4.32047406e+06 -9.86925466e+05 6.32048372e+06 2.07827382e+04 6.27564360e+05 1.05668783e+06 2.41320139e+06 -6.27187996e+06 2.74607123e+05 9.74371413e+05 -2.70566981e+06 -9.07099062e+06 -1.36210346e+05 -3.54193666e+06 3.60353885e+06 5.66954501e+05 -3.53728324e+06 6.44205158e+05 5.54329321e+05 -8.34734305e+06 -8.16833091e+06] [ 1.79253250e+06 -1.69058411e+06 2.95521418e+05 2.48617504e+06 9.35495440e+05 -4.70308380e+05 5.08747291e+06 -5.03283766e+06 1.10535913e+06 -8.05583007e+06 -5.35373189e+05 5.40878748e+05 -4.39286614e+06 -4.77807700e+06 -8.77765780e+04 -1.48446340e+06 -5.47248359e+05 5.93579178e+06 2.05270299e+06 -1.01176965e+05 3.20010571e+05 2.17669213e+06 -3.45030435e+06 2.51828259e+05 5.60304687e+05 -2.81570987e+06 -6.03345309e+06 -2.54394941e+04 -1.74016471e+06 3.04917910e+06 1.74785192e+05 2.52998754e+04 5.45845141e+05 5.84888899e+05 -4.97704920e+06 -4.87807552e+06] [ 1.54569871e+06 1.15948261e+05 -1.03956983e+05 2.40224156e+06 2.50991508e+05 -3.81807609e+05 3.55061384e+06 -1.76414576e+06 1.07805636e+06 -3.99235816e+06 -7.99372933e+05 3.49291535e+05 -3.08501031e+06 -3.30230428e+06 1.90248432e+04 3.85972095e+05 -4.79131888e+05 4.61404512e+06 2.77369112e+06 -4.15041127e+05 -7.49980499e+03 1.50738667e+06 -1.56866958e+06 -2.33686396e+04 4.18564220e+05 -1.83616048e+06 -3.66838297e+06 8.70197761e+03 3.65981052e+05 2.21693046e+06 -6.20462234e+04 1.72406128e+06 4.01872173e+05 2.97897169e+05 -2.86836115e+06 -2.64290703e+06] [ 7.94170069e+05 4.30676867e+05 -7.49133004e+04 1.10800875e+06 6.14967901e+04 -7.00205469e+04 1.66264054e+06 -8.47635630e+05 5.27647831e+05 -1.45005195e+06 -2.42140301e+05 1.91230080e+05 -1.43094084e+06 -1.28945711e+06 5.85024501e+04 1.55547992e+05 -9.86963415e+04 1.88681467e+06 1.14592150e+06 -1.74833990e+05 -7.42435026e+03 7.24454088e+05 -8.12372583e+05 4.06206515e+04 1.93067861e+05 -7.72277399e+05 -1.80451312e+06 7.70587331e+04 3.54239934e+05 8.97709351e+05 -2.08436853e+04 8.34167206e+05 2.21753604e+05 2.16136410e+05 -1.27553589e+06 -1.22909428e+06] [ 5.50331862e+05 4.24448988e+05 1.40277506e+05 7.99696393e+05 1.73732977e+05 1.43549966e+05 6.94009869e+05 -6.67392080e+05 3.96378690e+05 -6.33105752e+05 6.15711619e+04 1.66095312e+05 -5.19769312e+05 -4.00168414e+05 1.39069637e+05 3.60969096e+04 1.95056060e+05 1.19540495e+06 2.25266347e+05 7.58096035e+04 1.15596581e+05 4.00358585e+05 -3.71978723e+05 2.23552731e+05 1.57237189e+05 -4.51046103e+05 -7.20932651e+05 1.55178289e+05 2.50769295e+05 4.41129817e+05 1.37511569e+05 2.34551022e+05 1.78034305e+05 2.47887596e+05 -4.27741682e+05 -4.68644671e+05] [ 2.59374068e+05 2.07617574e+05 2.06451175e+05 3.59655642e+05 1.97864951e+05 2.27012281e+05 1.24131736e+05 -1.88321314e+05 2.37479448e+05 -2.12617130e+03 1.94038780e+05 2.26805506e+05 3.01986286e+04 4.76509199e+04 2.19419389e+05 9.27286685e+04 2.67977930e+05 4.32730009e+05 5.29151718e+04 1.89415395e+05 1.99348654e+05 2.37004879e+05 -4.97867065e+04 2.57909934e+05 2.20947386e+05 -3.81741267e+04 -9.04316872e+04 2.28226883e+05 2.00827461e+05 1.80961631e+05 2.07821358e+05 1.67957444e+05 2.30731202e+05 2.57038636e+05 7.02239704e+04 -1.87649024e+04] [-6.72988787e+04 -1.22264098e+05 -1.70663866e+04 -3.11295394e+04 -2.66370210e+03 -2.49702781e+04 3.62999819e+04 -5.67051244e+04 -3.41552324e+04 -1.28365446e+05 -3.16496342e+04 -1.68788642e+04 -4.62471354e+04 -5.19126961e+04 -2.03333463e+04 -2.79880273e+04 -3.36503406e+04 1.65676228e+04 -2.54837449e+04 -1.00915779e+04 -7.36556489e+03 -1.20855294e+04 -6.90154278e+04 -2.57966200e+04 -1.16071622e+04 -2.15738560e+03 -7.74490413e+04 -2.29985594e+04 5.51682857e+04 5.48000666e+04 -1.73116825e+04 1.10895441e+04 -1.20146199e+04 -2.62069214e+04 -5.23480338e+04 -6.72448256e+04] [-9.94120471e-01 9.63538817e-01 -3.57859193e-04 -6.72328742e-01 5.53269927e-01 4.84621398e-01 -1.29581448e-01 9.32066086e-01 -3.93659302e-01 2.88588127e-02 -5.09756345e-01 1.01570642e-02 7.22278981e-02 6.71160204e-01 1.32333901e-01 8.18763383e-01 8.32398180e-01 -5.22547459e-01 5.79552869e-01 -5.09105495e-01 -9.61091523e-02 1.06181330e-02 8.97112448e-01 5.36105960e-01 -5.22696615e-01 -4.07566760e-01 -8.61263609e-01 7.09781021e-01 -9.03740272e-01 -3.79888547e-01 -3.30804684e-01 -4.84500515e-01 4.70831094e-01 -2.41044841e-02 -8.12559676e-02 3.62127517e-01] [-6.53125153e-01 8.62849827e-01 -4.82863050e-01 3.69460440e-01 -2.51560970e-01 -2.80387228e-01 6.61916373e-01 -7.57680204e-01 -8.20094855e-01 -3.89788959e-02 6.10125360e-01 7.13956239e-01 5.35947101e-01 -5.69909063e-01 -1.65857268e-01 -8.81070445e-01 1.25088113e-01 -9.21073409e-01 -6.09302177e-02 -4.46784059e-02 4.45483084e-01 -9.25319390e-01 -1.28799901e-01 4.27784246e-01 2.34362786e-01 -2.01219123e-01 -9.09708085e-01 -3.52970676e-01 4.07056613e-01 2.47370162e-01 -3.81664113e-02 1.37301847e-01 -3.48193354e-01 6.71218875e-01 3.45872049e-01 -3.26446645e-01] [ 2.79008590e-01 1.59247674e-01 -4.42615198e-01 9.12122080e-01 -2.29640842e-01 -6.08707889e-01 5.81798387e-01 2.22746516e-01 4.64614295e-01 -4.21094561e-02 -1.80320220e-02 -5.05209525e-01 -2.98667197e-01 -3.98353085e-02 6.27660936e-01 6.13727214e-01 2.65434628e-01 -4.81829633e-02 6.94704982e-01 -7.45315808e-01 -3.24063333e-01 -5.88613948e-01 -3.10054762e-01 8.57533877e-01 3.36521956e-01 -2.69990089e-01 -3.39950956e-01 -8.71925742e-01 9.14611547e-02 4.46106877e-01 -3.65506547e-01 -6.60034783e-01 7.29748925e-01 9.02661169e-01 -4.86284357e-01 -2.31389809e-01] [-4.53156026e+05 -6.34913097e+05 1.70103254e+05 -5.58006869e+05 2.37695525e+05 2.59212687e+04 -2.03964439e+04 -7.49446205e+05 -4.49932395e+05 -1.01072965e+06 1.33254151e+05 7.83707164e+04 6.27685826e+04 -1.93506944e+05 3.73976372e+04 -6.47424701e+05 -2.90295739e+03 -4.00255395e+05 -4.42420665e+05 1.70368523e+05 1.45010274e+05 1.29244500e+04 -2.16608257e+05 7.35951526e+04 7.77007398e+04 -2.56412009e+05 -1.60070310e+05 9.02353621e+03 -7.87777873e+05 -2.24850219e+05 1.39196528e+05 -6.18308244e+05 5.08304152e+04 3.01068058e+04 -7.87379551e+04 -1.32172743e+05] [-9.54216170e+05 -2.15736301e+06 7.69755293e+05 -9.13293614e+05 9.81908459e+05 3.26667459e+05 1.85539587e+05 -2.93705394e+06 -8.92620450e+05 -2.95393436e+06 5.18352258e+05 4.07387731e+05 -9.05596008e+04 -6.42729694e+05 4.08255477e+05 -1.50199467e+06 2.63454527e+05 -1.31339017e+05 -1.37315303e+06 8.15030633e+05 7.33607468e+05 2.33355071e+05 -1.03102049e+06 5.15481271e+05 4.72558458e+05 -5.67100271e+05 -9.58058762e+05 2.80998226e+05 -2.04387906e+06 -2.23686472e+05 6.86833494e+05 -1.51072926e+06 4.17741502e+05 3.99858852e+05 -3.82137189e+05 -6.75698233e+05] [-1.15719036e+06 -4.84475391e+06 1.59555800e+06 -1.23426636e+06 1.96460524e+06 8.10074779e+05 9.37404404e+05 -5.91660498e+06 -8.79995753e+05 -4.93109393e+06 1.23309109e+06 1.00023214e+06 -6.06942300e+05 -1.11300147e+06 9.94326986e+05 -2.06280020e+06 8.02247411e+05 2.73956427e+05 -2.56360380e+06 1.73163131e+06 1.54864338e+06 6.75434718e+05 -2.68400413e+06 1.23768597e+06 1.01170103e+06 -6.04757165e+05 -2.63773839e+06 7.06227274e+05 -2.93685620e+06 3.03461306e+05 1.46747851e+06 -2.12933188e+06 9.13482874e+05 1.07551311e+06 -1.47489515e+06 -2.14598337e+06] [-1.44758551e+06 -9.17754627e+06 3.05458398e+06 -1.80397436e+06 3.82850316e+06 1.62963023e+06 4.15483570e+06 -1.09805852e+07 -1.12837179e+06 -9.22149591e+06 2.65269943e+06 2.21040471e+06 -2.79348826e+06 -3.06520948e+06 2.17873600e+06 -2.58094267e+06 1.51363990e+06 1.15533320e+06 -3.52172789e+06 3.30734314e+06 3.11038164e+06 2.47847542e+06 -6.21182775e+06 2.52295134e+06 2.17596851e+06 -2.79717715e+05 -6.85450609e+06 1.49363240e+06 -4.72753231e+06 1.80427131e+06 2.89971752e+06 -2.99095830e+06 1.97967260e+06 2.25236939e+06 -5.01962053e+06 -5.90851347e+06] [-1.82278183e+06 -1.41898016e+07 5.72787482e+06 -3.06517291e+06 7.03145168e+06 3.52532516e+06 7.95872452e+06 -1.61474641e+07 -1.06969262e+06 -1.37019242e+07 5.49439649e+06 4.95795341e+06 -5.17027990e+06 -5.48993693e+06 4.65159241e+06 -2.94882926e+06 3.23404289e+06 1.89658516e+06 -3.61068015e+06 6.17441876e+06 6.12654853e+06 5.42847181e+06 -9.88715030e+06 5.03685676e+06 4.87248000e+06 1.28383412e+06 -1.15720146e+07 3.56291675e+06 -7.21862751e+06 4.02555821e+06 5.58406201e+06 -3.53054959e+06 4.48424554e+06 4.70084322e+06 -9.57526765e+06 -1.01258841e+07] [-2.25029056e+06 -1.99504337e+07 7.78138888e+06 -5.87060435e+06 9.58864288e+06 4.73675590e+06 1.15895137e+07 -1.79099614e+07 -1.06088824e+06 -1.78953721e+07 7.36849353e+06 7.24159632e+06 -6.24779036e+06 -7.59693682e+06 6.75124974e+06 -1.57036492e+06 4.14696570e+06 1.21858788e+06 -1.53658885e+06 8.30772990e+06 8.61567809e+06 7.78989762e+06 -1.17026096e+07 6.63073009e+06 7.33674198e+06 3.27336090e+06 -1.40775477e+07 5.27237301e+06 -7.10796188e+06 6.60915867e+06 7.63766776e+06 -2.17801441e+06 6.67469001e+06 6.49186890e+06 -1.28101484e+07 -1.28271000e+07] [-1.70911227e+06 -1.96712199e+07 8.25109176e+06 -6.23150198e+06 9.87978569e+06 5.47711736e+06 1.03351480e+07 -1.53698096e+07 -4.91975270e+05 -1.52143393e+07 7.80830657e+06 7.76666555e+06 -5.25797806e+06 -6.58185283e+06 7.46534171e+06 9.89364803e+05 4.87377751e+06 -5.79069614e+05 3.38900913e+05 8.52031098e+06 8.76200568e+06 7.70562119e+06 -9.49583105e+06 7.06964820e+06 7.79199926e+06 4.24567223e+06 -1.18578516e+07 6.00156853e+06 -4.82373257e+06 6.45995566e+06 8.16530416e+06 2.86243242e+05 7.25738452e+06 7.00552212e+06 -1.15866589e+07 -1.09133370e+07] [-5.39654858e+06 -2.31903291e+07 6.15184983e+06 -1.09165501e+07 7.82783671e+06 3.19649059e+06 6.19239540e+06 -1.52925629e+07 -3.39267005e+06 -1.59784698e+07 5.20748656e+06 5.14264986e+06 -4.79909045e+06 -7.16048757e+06 5.36285903e+06 5.02701654e+04 2.18102507e+06 -6.83163080e+06 -7.92710060e+05 6.37785538e+06 6.29673313e+06 4.24004390e+06 -9.05169976e+06 4.29114777e+06 5.37620306e+06 3.27924384e+06 -1.03196004e+07 3.64442093e+06 -6.64901375e+06 3.02247140e+06 6.02731068e+06 -6.98491440e+05 4.94200619e+06 4.22994486e+06 -1.07029137e+07 -9.85715205e+06] [-3.97911955e+06 -1.84228418e+07 5.01923191e+06 -1.12100795e+07 6.07023000e+06 2.87641648e+06 4.13609142e+06 -1.27515563e+07 -2.97426250e+06 -9.86090156e+06 5.02808666e+06 4.14629247e+06 -3.78543559e+06 -5.27783381e+06 4.63697188e+06 2.64916128e+06 2.31461274e+06 -1.00694829e+07 1.41434529e+06 5.15074682e+06 4.83343589e+06 4.04422382e+06 -6.05920659e+06 3.57067050e+06 4.17870739e+06 3.77918479e+06 -6.81549711e+06 3.12104242e+06 -5.89871313e+06 2.04306505e+06 4.99484789e+06 2.85610094e+06 4.05739429e+06 3.68165398e+06 -7.52652310e+06 -6.09138012e+06] [-4.28463485e+06 -1.47169711e+07 3.18448439e+06 -1.14277565e+07 3.83106834e+06 1.67705690e+06 1.74039541e+06 -9.11447305e+06 -3.47776917e+06 -5.69936436e+06 3.85973538e+06 2.98026581e+06 -3.04418844e+06 -4.11005591e+06 3.26844427e+06 2.83763598e+06 1.43686178e+06 -1.14833819e+07 2.41994056e+06 3.40146525e+06 3.23102807e+06 2.90271804e+06 -3.74164744e+06 2.23178732e+06 2.93342101e+06 3.83671649e+06 -4.27061489e+06 1.94133118e+06 -5.58420754e+06 5.80951846e+05 3.31283220e+06 3.30674313e+06 2.69351205e+06 2.32994217e+06 -5.27212123e+06 -3.55134466e+06] [-4.45525244e+06 -1.23096215e+07 7.38154759e+05 -1.02290140e+07 1.20702222e+06 -6.30837835e+04 1.85597460e+06 -4.41698587e+06 -3.36435066e+06 -3.96602629e+06 2.67550653e+06 1.87942411e+06 -4.39388515e+06 -5.10017451e+06 1.24431804e+06 2.19566187e+06 -8.34463571e+04 -9.16750965e+06 3.72522826e+06 1.25143060e+06 1.62245531e+06 2.84614381e+06 -2.25158515e+06 7.95505661e+05 1.49125475e+06 4.39703484e+06 -4.00793890e+06 4.37101996e+05 -3.24765160e+06 2.33654996e+06 1.04281650e+06 3.49431389e+06 1.02419167e+06 7.76851101e+05 -5.97426231e+06 -3.68382379e+06] [-5.30594021e+06 -1.38761164e+07 -1.22393943e+06 -1.13398629e+07 -7.33640984e+05 -1.71171907e+06 8.19946760e+05 -2.82242524e+06 -3.95287867e+06 -5.40464438e+06 1.05417727e+06 3.80091712e+05 -5.64636084e+06 -6.52000938e+06 -8.66622618e+05 -2.34480138e+04 -1.88510374e+06 -9.97422760e+06 2.93260167e+06 -4.71388152e+05 -1.50616448e+03 1.52388995e+06 -2.42878757e+06 -1.02295962e+06 -1.17696269e+05 3.79272171e+06 -4.90752855e+06 -1.27420047e+06 -4.15818662e+06 2.05671904e+06 -8.67677780e+05 1.72361735e+06 -6.98235558e+05 -9.32463777e+05 -7.27378324e+06 -4.96777912e+06] [-5.69278269e+06 -1.37019255e+07 -2.19558691e+06 -1.26959530e+07 -1.87659366e+06 -2.35669340e+06 -1.40219197e+06 -3.94379200e+06 -4.56759014e+06 -4.13108681e+06 4.52446646e+05 -4.47315983e+05 -5.83515468e+06 -6.65706686e+06 -1.73945298e+06 -9.70952039e+05 -2.63772119e+06 -1.22956974e+07 1.21888361e+06 -1.35889458e+06 -1.09892995e+06 1.57079969e+05 -3.05263485e+06 -2.07739154e+06 -9.30979464e+05 3.06155812e+06 -5.21944270e+06 -1.97840206e+06 -7.78218782e+06 -4.20061082e+05 -1.80159125e+06 3.46495676e+05 -1.35667745e+06 -1.67514768e+06 -7.47735398e+06 -5.16874115e+06] [-6.15337931e+06 -1.14066948e+07 -1.38807712e+06 -1.26022409e+07 -1.24060373e+06 -1.65277956e+06 -3.62085838e+06 -4.30600200e+06 -5.49364850e+06 -3.25782857e+06 8.05544568e+05 -4.84098535e+04 -4.27841902e+06 -5.50866838e+06 -8.12240393e+05 -2.35150632e+06 -2.17481426e+06 -1.31110051e+07 -1.08996699e+06 -5.39028212e+05 -4.66241004e+05 -8.04848519e+05 -3.44802867e+06 -1.62235222e+06 -2.38694755e+05 2.23746781e+06 -4.57968151e+06 -1.14556966e+06 -1.10816947e+07 -3.29566248e+06 -1.00647571e+06 -1.95681334e+06 -5.29561016e+05 -1.12470303e+06 -7.02132167e+06 -4.75164297e+06] [-7.97641019e+06 -1.08658226e+07 -1.87046845e+06 -1.23419765e+07 -1.26987653e+06 -2.82888480e+06 -2.97408598e+06 -4.41928336e+06 -7.03254562e+06 -7.92191110e+06 -8.91572482e+05 -1.03508316e+06 -4.32761537e+06 -6.35069396e+06 -1.71108218e+06 -6.38635033e+06 -3.63789476e+06 -1.16924137e+07 -3.40220704e+06 -1.01070681e+06 -8.28895895e+05 -1.32789520e+06 -5.00464483e+06 -2.53900001e+06 -8.27335376e+05 -1.34225928e+05 -5.88216829e+06 -2.13860248e+06 -1.26189124e+07 -4.07488044e+06 -1.67196989e+06 -6.25272935e+06 -1.40161102e+06 -2.37397486e+06 -8.79309135e+06 -6.48879220e+06] [-4.21490569e+06 -4.90573592e+06 -2.22679571e+06 -7.02144377e+06 -1.70137494e+06 -2.59647379e+06 1.83668889e+06 -1.98030923e+06 -4.18176144e+06 -6.59667189e+06 -8.50031541e+05 -6.60271404e+05 -5.82331111e+06 -6.44267171e+06 -1.75853182e+06 -5.23323658e+06 -3.05526726e+06 -5.30482801e+06 1.87102605e+05 -1.49227010e+06 -9.53811020e+05 1.44678998e+06 -4.97303504e+06 -2.06880461e+06 -6.34680335e+05 -3.98214884e+05 -7.05547407e+06 -1.74982291e+06 -8.17615938e+06 -5.67645896e+05 -1.97395620e+06 -4.19151666e+06 -1.12835605e+06 -1.77829737e+06 -1.07200899e+07 -7.88867857e+06] [-2.13601012e+06 -3.43036503e+06 -1.39715845e+06 -3.62313956e+06 -7.03932472e+05 -2.05565895e+06 3.64130091e+06 -2.49382886e+06 -2.54693073e+06 -7.77197463e+06 -6.20792677e+05 -3.07377772e+05 -5.35051834e+06 -6.13200085e+06 -1.35542438e+06 -4.88454823e+06 -2.50397508e+06 -6.20988013e+05 9.99046037e+05 -9.85852515e+05 -4.14500474e+05 1.62745124e+06 -4.66981528e+06 -1.42189082e+06 -1.68091144e+05 -1.36193635e+06 -6.97575320e+06 -1.25889153e+06 -5.90950716e+06 8.02780132e+05 -1.33999188e+06 -4.31550697e+06 -6.42308110e+05 -1.20465789e+06 -9.70545772e+06 -7.57072642e+06] [-5.66976587e+05 -1.65348494e+06 -1.00982095e+06 -4.86000140e+05 -5.21723128e+05 -1.40536219e+06 3.26909344e+06 -2.50277510e+06 -1.02632134e+06 -7.14967438e+06 -5.52761724e+05 -1.54163823e+05 -4.74510808e+06 -5.15282103e+06 -1.08096663e+06 -4.35242112e+06 -1.65659742e+06 2.46984323e+06 3.19630560e+05 -7.95233444e+05 -3.47890693e+05 9.70720249e+05 -4.01721323e+06 -8.94382115e+05 -9.12399052e+04 -2.23944058e+06 -6.28771219e+06 -8.28525242e+05 -3.62642811e+06 1.57598854e+06 -9.84378293e+05 -3.69649740e+06 -4.26927281e+05 -5.80351872e+05 -7.47554652e+06 -6.10456053e+06] [ 1.61386115e+05 -1.40528899e+05 -9.55388516e+05 9.23929611e+05 -5.93827121e+05 -1.22693619e+06 2.78629563e+06 -2.39897469e+06 -2.42964145e+05 -5.56665762e+06 -1.04636341e+06 -3.89874881e+05 -3.68925949e+06 -3.85975238e+06 -1.04503589e+06 -2.84901667e+06 -1.38024954e+06 3.28733456e+06 9.70084258e+05 -1.01869828e+06 -6.53139576e+05 6.51060488e+05 -2.87605096e+06 -8.43227623e+05 -4.17570926e+05 -2.44776528e+06 -4.70596944e+06 -7.94958181e+05 -2.27229219e+06 1.45192176e+06 -9.41549422e+05 -1.74868972e+06 -5.09792384e+05 -5.62042580e+05 -4.72150278e+06 -4.16697606e+06] [ 9.90611335e+05 1.72936052e+06 -9.36892554e+05 2.02126629e+06 -7.35864455e+05 -9.69984325e+05 2.25712443e+06 -7.29092066e+05 4.72995538e+05 -3.04259003e+06 -1.03302700e+06 -3.10994446e+05 -2.87841487e+06 -2.70741751e+06 -8.73680035e+05 -1.48409745e+06 -9.68367339e+05 3.65850571e+06 1.92358793e+06 -1.09090011e+06 -7.62008465e+05 4.51479847e+05 -1.38432439e+06 -6.71457004e+05 -3.56507920e+05 -2.18045160e+06 -3.05961128e+06 -6.12033984e+05 -1.91147984e+05 1.32913937e+06 -8.80255710e+05 -1.30653251e+05 -4.26845039e+05 -3.87733432e+05 -2.72846534e+06 -2.26675555e+06] [ 7.65177263e+05 1.30728029e+06 -5.80783085e+05 1.72162684e+06 -4.18244710e+05 -5.76709833e+05 1.76510240e+06 -4.75975274e+05 4.37887678e+05 -1.90807964e+06 -7.32344516e+05 -1.06178640e+05 -2.07982606e+06 -1.92300467e+06 -4.44010184e+05 -4.63444972e+05 -5.80998459e+05 2.87959999e+06 1.63386436e+06 -6.77630423e+05 -4.26451082e+05 4.42483095e+05 -7.14068603e+05 -3.54032450e+05 -1.14890243e+05 -1.53167724e+06 -2.07457580e+06 -3.22521128e+05 3.03452264e+05 1.10680885e+06 -5.14498780e+05 6.00759245e+05 -1.68624204e+05 -1.47064062e+05 -1.56096244e+06 -1.26046370e+06] [ 2.84479519e+04 3.93536306e+04 -2.72567264e+05 2.45142091e+05 -1.19089729e+05 -3.75367039e+05 4.62800714e+05 -8.48855570e+05 -1.62052720e+05 -1.73408867e+06 -4.99296572e+05 -2.55018769e+05 -8.16029542e+05 -9.37813849e+05 -3.54950751e+05 -7.71829179e+05 -4.66434957e+05 8.50508356e+05 2.29412888e+05 -3.23021934e+05 -2.76163053e+05 -2.05309264e+05 -4.36556461e+05 -3.11618164e+05 -1.97921737e+05 -1.08633180e+06 -9.75859230e+05 -3.17915810e+05 -2.95714989e+05 1.49746348e+05 -2.68370076e+05 -3.62347488e+05 -1.98844291e+05 -2.43031915e+05 -6.22444342e+05 -5.98912958e+05] [ 2.29242856e+05 1.31741546e+05 8.91665566e+04 3.54735909e+05 1.21598724e+05 7.85547308e+04 3.01100941e+05 -4.18795256e+05 1.54716551e+05 -4.21701071e+05 4.88727653e+04 1.17936804e+05 -2.05662594e+05 -1.88279983e+05 8.04165641e+04 -1.45246896e+04 8.37586900e+04 5.70157527e+05 1.34527986e+05 7.02031222e+04 9.11854163e+04 2.21797525e+05 -1.72710386e+05 1.21981662e+05 1.21556899e+05 -1.86630883e+05 -3.31165157e+05 9.79134050e+04 5.69485319e+04 2.72430371e+05 9.32724195e+04 6.66290630e+04 1.26132617e+05 1.40349937e+05 -1.62385562e+05 -1.95829467e+05] [ 1.58447802e+05 1.42894379e+05 1.22247688e+05 2.26464786e+05 1.20347498e+05 1.34752276e+05 1.42929718e+05 -1.23300750e+05 1.39599732e+05 1.54177481e+02 1.31979838e+05 1.48073986e+05 1.99335396e+04 5.82865436e+04 1.29543323e+05 6.85510225e+04 1.60981488e+05 2.64321321e+05 4.99303034e+04 1.17918630e+05 1.24545549e+05 1.87670672e+05 -2.83407041e+04 1.56827413e+05 1.40497388e+05 -1.89505248e+04 -5.98371311e+04 1.36486506e+05 1.62992000e+05 1.49431877e+05 1.26224430e+05 1.13095414e+05 1.43485233e+05 1.60602281e+05 5.29782125e+04 2.66676986e+03] [ 3.29352377e+03 3.09443644e+03 -5.67381671e+03 1.25211449e+04 -3.87270848e+03 -4.11537291e+03 2.83850699e+04 -2.39777350e+04 3.24482631e+03 -9.42193690e+03 -2.51720414e+03 -1.31557337e+03 -2.30225449e+04 -9.04534828e+03 -3.90907460e+03 3.86743707e+03 -2.21578990e+03 1.75192136e+04 4.82816592e+03 -4.17696086e+03 -3.63395601e+03 1.80587895e+04 -2.06479639e+04 -2.93208853e+03 -2.25382231e+03 -5.26289099e+03 -3.14236205e+04 -3.97365096e+03 2.06147682e+04 2.37643314e+04 -4.29775400e+03 1.46530124e+04 -2.14126045e+03 -4.00891649e+02 -1.45382303e+04 -1.66941265e+04] [ 6.32906301e-01 -4.46936729e-01 4.71115746e-01 5.06667863e-01 -3.06810036e-02 -8.28292937e-01 -1.49641053e-01 -6.07360361e-01 3.00134833e-01 -3.93874607e-01 1.94012188e-01 -8.73040400e-01 4.34607978e-01 6.95198133e-01 -2.16788221e-01 -8.61859429e-01 -1.12639434e-01 5.77520780e-01 9.78047720e-01 3.42980604e-01 1.96451961e-02 -3.09521968e-01 4.08817885e-01 6.17871201e-01 5.54774395e-01 -1.27601078e-01 8.01443545e-01 -3.11427948e-01 1.13554213e-01 -9.88275778e-01 -2.64802758e-01 5.20319329e-01 -2.83446845e-02 -3.98100757e-01 2.20993172e-01 8.62818572e-01] [-7.99929760e-01 -4.40562215e-01 3.67400161e-01 4.28380094e-01 9.50885748e-01 4.98503707e-01 3.57135955e-01 4.07910594e-01 -4.76394320e-01 -9.64423728e-02 3.63719054e-01 -9.54752789e-01 -9.01545309e-01 -9.87832228e-01 7.93111293e-01 -9.23212302e-01 2.93327071e-01 -3.58574904e-01 3.93829554e-01 9.60070899e-01 7.72879735e-01 2.17888026e-01 5.55615028e-01 -1.27230090e-01 -3.95376221e-01 6.14821950e-01 -7.24155563e-01 8.46802560e-01 -4.12658902e-01 9.09998354e-01 -6.03065316e-01 5.21686438e-01 -9.24924495e-01 3.07466447e-01 -5.78858989e-02 2.51161690e-01] [ 2.10366245e-01 5.23439102e-01 -2.63062053e-01 9.11032568e-01 -8.82598388e-01 4.15816117e-01 -1.11701985e-01 -5.32998025e-01 -8.14917626e-01 -3.17695409e-01 9.80235303e-01 7.48507162e-01 4.12663570e-02 3.76262650e-01 5.84509349e-01 -3.32474682e-02 -1.32854102e-01 -4.45345929e-01 -1.16208939e-01 3.10469060e-01 -8.32131580e-01 3.10692028e-01 -3.67374769e-02 2.56714040e-01 -3.58866332e-01 -4.72834199e-01 3.37268801e-02 -8.76235064e-01 7.80181843e-01 -3.75263255e-01 -9.95999853e-01 1.36859274e-01 -1.33294873e-01 7.82656666e-01 5.37688737e-01 -2.15711650e-02] [-2.87999996e+04 -1.20915703e+05 5.56127623e+04 -5.97910621e+04 5.86897478e+04 4.51643063e+04 6.71008049e+04 -1.30034587e+05 -1.97690875e+04 -7.34502990e+04 5.66389228e+04 4.49430958e+04 -3.79007726e+04 -1.80394497e+04 4.36755109e+04 -2.25045013e+04 4.04155372e+04 -5.54567054e+04 -7.19367768e+04 5.85616105e+04 5.17275903e+04 5.47078770e+04 -8.09203094e+04 5.04383374e+04 4.03689206e+04 9.92966717e+03 -9.38480072e+04 3.80876178e+04 -8.65855742e+04 -9.76520642e+03 5.73651346e+04 -5.02171057e+04 4.25881146e+04 4.55738072e+04 -5.89870122e+04 -7.10338269e+04] [-3.74812680e+05 -9.86479232e+05 3.42883929e+05 -5.26724849e+05 3.99946812e+05 2.11551371e+05 1.40694065e+05 -9.62470622e+05 -3.12339281e+05 -8.30726650e+05 2.48372001e+05 2.26777555e+05 -6.82692386e+04 -1.67234996e+05 2.55773545e+05 -3.83880514e+05 1.62348503e+05 -3.48772989e+05 -5.06615895e+05 3.71020378e+05 3.43368896e+05 1.36228254e+05 -4.84181704e+05 2.45996596e+05 2.62906767e+05 -3.73360590e+04 -4.67697547e+05 2.06122484e+05 -6.32536350e+05 -1.41051925e+05 3.39058818e+05 -4.54612025e+05 2.37215278e+05 2.10219224e+05 -2.60544841e+05 -3.81721501e+05] [-8.00092169e+05 -2.80622838e+06 9.05326522e+05 -8.93792154e+05 1.09832983e+06 4.61328359e+05 6.89314697e+05 -2.71890695e+06 -5.61071756e+05 -2.60683012e+06 6.64774113e+05 5.87769565e+05 -3.44817642e+05 -6.26728404e+05 6.05659995e+05 -1.03928044e+06 3.92505775e+05 -9.29964373e+04 -1.46528197e+06 9.88480938e+05 9.49811588e+05 3.81821736e+05 -1.43834516e+06 6.65614394e+05 6.33337004e+05 -7.16890228e+04 -1.44685445e+06 4.17015288e+05 -1.32159539e+06 1.57522752e+05 8.39570044e+05 -1.29632745e+06 5.36806422e+05 5.70439024e+05 -9.02071439e+05 -1.21500687e+06] [-1.08037957e+06 -4.98033972e+06 1.43160231e+06 -1.37796539e+06 1.79145344e+06 7.21307272e+05 1.56295063e+06 -4.96866911e+06 -7.93705866e+05 -4.45005586e+06 1.19420888e+06 1.02029982e+06 -1.10441730e+06 -1.39344538e+06 9.80309936e+05 -1.51645448e+06 6.19795592e+05 1.45833859e+04 -2.15950260e+06 1.56459346e+06 1.48495437e+06 1.03463406e+06 -2.81322057e+06 1.11480961e+06 1.01593488e+06 -5.86281395e+04 -3.05540957e+06 6.36814844e+05 -2.38473883e+06 6.77170835e+05 1.34068473e+06 -1.85853343e+06 8.55602600e+05 9.52352732e+05 -2.16978399e+06 -2.57654141e+06] [-7.59975659e+05 -7.85862920e+06 3.26872363e+06 -1.80691204e+06 3.92144485e+06 2.05972799e+06 3.55947214e+06 -9.32128190e+06 -5.13683332e+05 -6.89955659e+06 3.12307525e+06 2.78259002e+06 -2.27896543e+06 -2.45046468e+06 2.62543155e+06 -1.66153429e+06 2.08133404e+06 5.71484422e+05 -2.39242720e+06 3.46877924e+06 3.40514610e+06 3.18226007e+06 -5.11291715e+06 2.99757123e+06 2.65568438e+06 7.40975572e+05 -5.77150030e+06 2.02924456e+06 -4.80698832e+06 2.12132068e+06 3.11393938e+06 -2.04005805e+06 2.43923414e+06 2.70257685e+06 -4.50588131e+06 -4.91913881e+06] [-6.53590198e+05 -1.07779610e+07 5.50361840e+06 -3.02208814e+06 6.34419557e+06 3.81598874e+06 4.95019839e+06 -1.23517807e+07 -2.60425707e+05 -8.94450712e+06 5.59357437e+06 4.88074850e+06 -2.46254816e+06 -2.68069768e+06 4.62231900e+06 -2.15939331e+06 3.89192281e+06 1.45764320e+05 -2.63922743e+06 5.78693864e+06 5.71735170e+06 4.89631974e+06 -6.39554739e+06 5.09117717e+06 4.73319812e+06 2.05558156e+06 -7.18738725e+06 3.85437980e+06 -5.74137550e+06 3.20697472e+06 5.31137987e+06 -2.39598051e+06 4.38214397e+06 4.66475097e+06 -5.87785204e+06 -6.09535314e+06] [-1.25295103e+06 -1.29826785e+07 6.83373342e+06 -5.94939934e+06 7.75982164e+06 4.88961687e+06 3.81461363e+06 -1.34574447e+07 -1.14559302e+06 -8.57184805e+06 7.11644381e+06 5.88507621e+06 -1.62325677e+06 -2.15050584e+06 5.80826306e+06 -1.66091554e+06 4.71899647e+06 -3.64206231e+06 -2.09603860e+06 7.03459521e+06 6.69908699e+06 4.40236661e+06 -5.57879307e+06 5.99998323e+06 5.71148526e+06 3.23252715e+06 -6.29038478e+06 4.87141220e+06 -6.28924151e+06 1.96813600e+06 6.67614289e+06 -1.54994258e+06 5.40286489e+06 5.50576221e+06 -4.98461985e+06 -4.78100016e+06] [-2.82169625e+06 -1.61514571e+07 7.00917634e+06 -8.11409295e+06 8.09860274e+06 4.96072022e+06 1.76635026e+06 -1.53503679e+07 -2.21628501e+06 -9.90429573e+06 7.09749885e+06 5.72464807e+06 -1.28509599e+06 -2.72371383e+06 5.77019374e+06 -2.20182857e+06 4.53269690e+06 -5.97854018e+06 -2.72141470e+06 7.23490851e+06 6.58109453e+06 3.39735675e+06 -5.10188692e+06 5.91706326e+06 5.54634733e+06 3.09699181e+06 -5.68609712e+06 4.77217494e+06 -7.78007276e+06 1.21024588e+06 6.83262284e+06 -1.87820372e+06 5.28757704e+06 5.39416736e+06 -4.00877558e+06 -3.87722268e+06] [-4.82638259e+06 -1.59975935e+07 5.07135250e+06 -1.24174618e+07 6.06893629e+06 3.13902871e+06 -2.13722127e+06 -1.43915930e+07 -4.70527866e+06 -9.03512711e+06 5.33636022e+06 3.48910200e+06 -7.48822935e+05 -2.77176625e+06 3.77112186e+06 -3.84651987e+06 2.64478151e+06 -1.24655155e+07 -2.60167675e+06 5.33414034e+06 4.44874827e+06 7.97708222e+05 -4.01843860e+06 3.64716310e+06 3.50158572e+06 2.00314158e+06 -3.91236827e+06 2.83622867e+06 -1.00690077e+07 -1.97296415e+06 4.87213106e+06 -2.74736424e+06 3.23538276e+06 3.07971764e+06 -2.96432408e+06 -2.30999469e+06] [-5.64563414e+06 -1.45646841e+07 2.62816036e+06 -1.55074676e+07 3.53052308e+06 1.00901726e+06 -3.29093091e+06 -1.13189542e+07 -5.79935927e+06 -7.82368028e+06 3.83766162e+06 1.89580300e+06 -8.17501518e+05 -3.20117578e+06 1.62530821e+06 -4.00124539e+06 6.15089289e+05 -1.57741778e+07 8.51733072e+05 2.98477307e+06 2.29677788e+06 6.22426995e+05 -2.45632415e+06 1.54304572e+06 1.73585902e+06 2.33509797e+06 -2.32212071e+06 1.07046834e+06 -1.06543301e+07 -1.60569531e+06 2.53080236e+06 -1.63260010e+06 1.46269922e+06 1.09896104e+06 -3.21779860e+06 -1.67975034e+06] [-6.11616208e+06 -1.36290376e+07 5.45106466e+05 -1.69504771e+07 1.43619684e+06 -5.82256535e+05 -2.27749811e+06 -8.48760252e+06 -6.42008291e+06 -6.68149682e+06 2.89073261e+06 1.12359664e+06 -2.71068879e+06 -4.73409849e+06 1.46248301e+05 -3.44083115e+06 -1.09062254e+06 -1.70634540e+07 3.74079580e+06 1.23221267e+06 9.28406213e+05 1.38133505e+06 -2.08928152e+06 -6.82968517e+04 7.63492469e+05 3.38287311e+06 -3.14080017e+06 -1.59931440e+05 -1.20948929e+07 -6.55039241e+05 6.66588295e+05 -5.51744504e+05 3.62183138e+05 -9.67376752e+04 -4.98481083e+06 -2.47555475e+06] [-6.36858930e+06 -1.29215600e+07 -1.03951044e+06 -1.80969229e+07 -1.39220359e+05 -1.82076531e+06 -3.49144614e+06 -8.71880385e+06 -7.35856995e+06 -6.56640756e+06 1.37690881e+06 -2.61504019e+05 -3.57495731e+06 -5.50201033e+06 -1.22646489e+06 -3.77395590e+06 -2.44363530e+06 -1.88188125e+07 3.75035730e+06 -1.92323298e+05 -4.68522465e+05 1.07012732e+06 -2.40327928e+06 -1.43216224e+06 -6.40418981e+05 2.71856816e+06 -3.66721080e+06 -1.33628885e+06 -1.54573345e+07 -1.87976749e+06 -7.79854059e+05 -2.05356740e+05 -7.44655062e+05 -1.32756418e+06 -5.56315289e+06 -3.08459953e+06] [-6.08534927e+06 -9.00447175e+06 -1.93299659e+06 -1.76088403e+07 -1.36273266e+06 -2.27863849e+06 -6.55846569e+06 -8.53231462e+06 -8.11569020e+06 -4.70164701e+06 4.00188946e+05 -1.28066641e+06 -3.40343555e+06 -5.31767953e+06 -2.08711664e+06 -4.50387351e+06 -2.94961276e+06 -1.96931804e+07 1.49191753e+06 -1.38413546e+06 -1.67974213e+06 -4.11775827e+05 -1.87375537e+06 -2.31068575e+06 -1.63007366e+06 2.63887871e+05 -3.13357788e+06 -2.02137293e+06 -1.75052551e+07 -5.01443891e+06 -1.78150700e+06 -9.57136954e+05 -1.44233718e+06 -2.07336371e+06 -4.79485562e+06 -1.97007784e+06] [-5.08510504e+06 -3.88918716e+06 -2.21042978e+06 -1.36881568e+07 -2.11958239e+06 -1.96298708e+06 -7.04960528e+06 -5.71571063e+06 -7.04416608e+06 -8.71857556e+05 4.57986845e+04 -1.61667565e+06 -2.13483741e+06 -2.99656844e+06 -2.08163534e+06 -3.41609599e+06 -2.29833645e+06 -1.65837666e+07 -6.85663837e+05 -1.75311076e+06 -2.03631891e+06 -9.61363151e+05 -1.06685087e+06 -2.13186161e+06 -2.00951162e+06 -5.02047430e+05 -1.56866719e+06 -1.84564812e+06 -1.44521671e+07 -5.80465096e+06 -2.06961907e+06 -1.07889174e+06 -1.59099034e+06 -2.04811231e+06 -3.72668304e+06 -8.81686434e+05] [-3.85376871e+06 2.95460063e+05 -3.40056050e+06 -8.28903001e+06 -3.47801770e+06 -2.89674854e+06 -5.33909257e+06 -1.24117873e+06 -4.94600927e+06 3.09402407e+05 -1.42821548e+06 -2.24538836e+06 -2.65948693e+06 -2.93765053e+06 -2.94285168e+06 -3.84987532e+06 -3.01501883e+06 -1.02034421e+07 -5.01412473e+05 -3.09110323e+06 -2.93457806e+06 -1.36843156e+06 -9.55421562e+05 -2.85580236e+06 -2.65668636e+06 -1.79137092e+06 -1.77080429e+06 -2.57547053e+06 -9.79573101e+06 -4.55654474e+06 -3.21269579e+06 -1.88359476e+06 -2.53890937e+06 -2.83607466e+06 -4.76282322e+06 -1.87747698e+06] [-1.96296828e+06 1.43607232e+06 -3.49360872e+06 -3.83548066e+06 -3.48738914e+06 -2.89249001e+06 -2.08732614e+06 4.41109245e+03 -2.69519307e+06 -4.84180671e+05 -1.75168198e+06 -2.13346813e+06 -3.17017066e+06 -3.10570136e+06 -3.09269352e+06 -3.85692494e+06 -2.97761517e+06 -4.24986637e+06 8.42115743e+05 -3.13052760e+06 -2.83877093e+06 -2.10627352e+05 -1.39990913e+06 -2.75043594e+06 -2.46383161e+06 -1.77813025e+06 -2.68968195e+06 -2.47798724e+06 -6.40371589e+06 -1.73867713e+06 -3.26516710e+06 -2.08904960e+06 -2.47391131e+06 -2.65019235e+06 -5.35256458e+06 -3.02118685e+06] [-1.84475660e+06 1.11866813e+06 -3.19273492e+06 -1.65921596e+06 -2.93612879e+06 -3.01757856e+06 -2.89919649e+05 7.18625698e+05 -2.17717548e+06 -3.05161253e+06 -1.97488016e+06 -1.92165764e+06 -3.30644907e+06 -4.02988104e+06 -3.05233655e+06 -5.09730932e+06 -3.18241675e+06 -1.93177006e+05 8.54406873e+05 -2.90679235e+06 -2.51374938e+06 -7.44448001e+05 -1.62574330e+06 -2.65545917e+06 -2.11177563e+06 -2.61883356e+06 -3.34102594e+06 -2.45879013e+06 -4.13458181e+06 -4.65407771e+05 -3.06062321e+06 -3.84440255e+06 -2.37919273e+06 -2.54566921e+06 -5.10225060e+06 -3.51035918e+06] [-1.24997130e+06 2.26166605e+06 -2.91146395e+06 -4.73085268e+05 -2.82586983e+06 -2.58625940e+06 -5.69649616e+05 2.46018621e+06 -1.46031698e+06 -2.34169316e+06 -2.10086255e+06 -1.70273054e+06 -2.33558292e+06 -2.88319679e+06 -2.64469882e+06 -4.41053058e+06 -2.67289961e+06 6.78839003e+05 1.02686943e+06 -2.68782572e+06 -2.24923571e+06 -1.31291417e+06 -8.15794272e+05 -2.37640881e+06 -1.82829862e+06 -2.59808313e+06 -2.05497179e+06 -2.08465930e+06 -1.91676369e+06 -1.19900125e+05 -2.76943353e+06 -3.14414532e+06 -2.06971517e+06 -2.22786146e+06 -3.55752179e+06 -2.44104498e+06] [-1.27551066e+06 2.40609240e+06 -2.39088224e+06 -5.03237196e+05 -2.33095171e+06 -2.20109114e+06 -8.95750734e+05 2.61734644e+06 -1.49633702e+06 -1.83395906e+06 -2.10540719e+06 -1.61737435e+06 -1.47454835e+06 -2.05420129e+06 -2.20045138e+06 -3.65474395e+06 -2.35257312e+06 3.39621759e+05 3.56559859e+05 -2.27250132e+06 -1.92045365e+06 -1.79080102e+06 -2.52545593e+05 -2.14793204e+06 -1.61511601e+06 -2.23055641e+06 -8.97907201e+05 -1.84016036e+06 -9.93941452e+05 -7.96932431e+05 -2.28877447e+06 -2.92239378e+06 -1.82959150e+06 -2.05232859e+06 -2.00742597e+06 -1.26565610e+06] [-1.04948429e+06 1.54901787e+06 -1.67985421e+06 -1.51624547e+05 -1.52211701e+06 -1.68041647e+06 -6.38167649e+04 1.88529239e+06 -1.12704380e+06 -2.05619381e+06 -1.70444810e+06 -1.16590537e+06 -1.34866336e+06 -1.80197492e+06 -1.62548521e+06 -2.74775368e+06 -1.84880708e+06 8.69527922e+05 4.33738592e+05 -1.60634961e+06 -1.32925820e+06 -1.34242341e+06 -2.44324201e+05 -1.62081606e+06 -1.09314163e+06 -1.75851849e+06 -8.94331264e+05 -1.39042672e+06 -1.32047449e+04 -3.13529853e+05 -1.59809772e+06 -2.10184471e+06 -1.31971979e+06 -1.53942685e+06 -1.37036372e+06 -9.31692656e+05] [-7.25938984e+05 5.96070754e+05 -8.21120815e+05 -2.12426842e+05 -7.12858379e+05 -9.02692424e+05 -8.09903212e+04 6.36651115e+05 -7.72719445e+05 -1.44193427e+06 -8.86726646e+05 -6.05776801e+05 -6.84198633e+05 -9.72184355e+05 -8.63511991e+05 -1.61099924e+06 -1.04051218e+06 2.80016074e+05 1.94834363e+04 -7.84189195e+05 -6.71465139e+05 -8.11495848e+05 -2.21161234e+05 -8.83915114e+05 -5.62525177e+05 -1.09777893e+06 -5.62185617e+05 -7.73368791e+05 -2.87662917e+05 -3.31761293e+05 -7.93487616e+05 -1.35382846e+06 -6.86563956e+05 -8.05190099e+05 -6.70973785e+05 -4.68630099e+05] [-4.39222743e+05 2.93749185e+05 -3.95450376e+05 -2.50998822e+05 -3.31299609e+05 -4.74967004e+05 -1.04408994e+05 -1.08522522e+05 -5.26385534e+05 -9.43056990e+05 -4.81386415e+05 -4.18398880e+05 -3.57721168e+05 -4.43850038e+05 -4.71621214e+05 -9.71414686e+05 -5.43816552e+05 -6.48238652e+04 -3.00344271e+05 -4.03384332e+05 -3.64907058e+05 -5.42376294e+05 -1.71728963e+05 -4.59585373e+05 -3.63101586e+05 -7.63441512e+05 -3.34905139e+05 -4.51684330e+05 -3.56946212e+05 -4.44809623e+05 -4.03462035e+05 -9.07182110e+05 -3.95313585e+05 -4.58629356e+05 -3.49152960e+05 -2.76547199e+05] [-6.85852099e+04 9.34747841e+04 -5.07403971e+04 2.57918296e+04 -1.58976069e+04 -9.92404416e+04 1.03734414e+05 -1.38104845e+05 -1.24386447e+05 -4.03933215e+05 -1.08726547e+05 -9.16805885e+04 -1.04339240e+05 -1.19405571e+05 -9.57134520e+04 -2.13926216e+05 -1.14388864e+05 1.69106037e+05 -7.99016305e+04 -5.93936593e+04 -4.96063822e+04 -1.09243588e+05 -3.63096805e+04 -7.56616070e+04 -6.90268147e+04 -2.51627935e+05 -9.95448423e+04 -9.99070759e+04 -5.45340225e+04 -4.22567782e+04 -6.52997727e+04 -1.99384789e+05 -7.32790388e+04 -9.58156295e+04 -5.87396201e+04 -4.91232337e+04] [ 2.46544799e+04 4.78460522e+04 4.92915726e+03 5.69557588e+04 5.56285625e+03 7.66020769e+03 5.43505465e+04 -3.80335272e+03 1.76503998e+04 7.89021301e+03 1.35022836e+04 1.54990485e+04 -3.04079065e+04 -3.61247751e+03 9.34544501e+03 2.51595372e+04 1.09645553e+04 6.68152608e+04 1.18011486e+04 5.51013981e+03 8.31798786e+03 2.61628915e+04 -6.77529299e+03 1.38563597e+04 1.17334991e+04 -1.01839069e+04 -2.87870629e+04 8.11452472e+03 3.98664565e+04 2.47105493e+04 6.23351925e+03 2.78644174e+04 1.16865873e+04 1.56524066e+04 -1.49383641e+04 -7.30125169e+03] [ 8.51568489e+03 9.03650387e+03 5.05140515e+03 7.55828731e+03 4.61569862e+03 5.08119968e+03 9.26419266e+03 6.83171514e+03 8.00855460e+03 1.10497414e+04 5.93097958e+03 5.12222663e+03 6.54142938e+03 9.79610266e+03 5.68388006e+03 1.40458444e+04 6.48010038e+03 6.24285116e+03 1.58442047e+04 4.81824326e+03 5.23028336e+03 1.02120523e+04 6.18049785e+03 6.46026208e+03 4.75167953e+03 9.12614679e+03 9.19434267e+03 4.64653125e+03 1.22704215e+04 7.39082447e+03 5.08835825e+03 1.31799837e+04 5.03103602e+03 5.91835942e+03 2.69091886e+03 6.96910207e+03] [ 9.57910758e-01 -1.85426791e-01 -3.23380262e-01 8.96759664e-02 4.79776772e-02 5.98782976e-02 -1.09582022e-01 -9.88936877e-01 -3.11595982e-01 2.77354084e-01 1.30092093e-01 -8.74141664e-02 -4.10013149e-02 -5.91150792e-01 -6.89055203e-01 -7.21222995e-01 2.81324516e-01 -2.04106391e-01 7.07519922e-03 -2.62977452e-01 -2.20824527e-02 5.85191872e-01 -5.94225899e-01 -1.80169309e-01 -8.19618518e-01 -7.41645742e-02 5.24353613e-01 -6.36286666e-01 -1.03850531e-01 -4.82264824e-01 -8.58920772e-01 -2.55656381e-01 6.92340341e-01 4.66885585e-01 -3.23755840e-01 2.88576202e-01] [-9.21549655e-01 3.77198659e-01 -2.48568527e-01 -6.76090610e-01 6.45809848e-01 6.29723274e-01 -8.93211261e-01 -8.84545159e-01 9.68086467e-01 2.36628935e-01 -3.63315972e-01 -1.09617170e-01 -2.06505055e-01 9.71908705e-01 8.17480647e-01 3.97737740e-01 -1.74448376e-01 -9.92870885e-01 -8.00057176e-01 5.68292231e-01 6.29165784e-01 8.54250672e-01 6.09705448e-01 9.54822319e-01 -3.05893025e-01 -8.94045137e-01 -7.33603337e-01 -9.83577874e-01 8.85916608e-01 9.08655683e-01 -2.18104214e-02 2.57108793e-01 5.44981980e-01 -7.66689773e-01 -9.31657220e-01 1.17968581e-01] [ 7.60856452e-01 7.12945521e-02 -6.23009910e-02 -8.07545462e-01 9.99514724e-01 5.83534787e-01 6.52534477e-02 5.48111678e-01 6.90686802e-01 1.10192030e-01 -7.00244224e-01 5.44289221e-01 -3.26118202e-01 -4.36358060e-01 1.19851265e-02 8.22342512e-01 5.41613386e-01 5.77196762e-01 5.06538848e-01 5.36204359e-01 6.07377265e-01 4.57107185e-01 1.60930106e-01 2.34244584e-02 6.06279990e-01 1.87259113e-01 -6.09848458e-01 -1.01819074e-01 -7.28232914e-01 -2.46244005e-01 -6.99503700e-01 3.67485565e-01 -9.46288633e-01 9.39727534e-02 -1.12655869e-01 -8.86893228e-01] [ 7.24800850e-01 3.83507421e-01 -4.20755227e-01 8.59182235e-01 1.98656659e-01 6.41695060e-01 -9.62343754e-01 -4.26055907e-01 -3.13178571e-01 -7.61424054e-01 3.51198954e-01 -4.45193143e-01 3.08523220e-01 8.64046913e-01 1.83576657e-01 -2.60299779e-01 -5.37692498e-01 3.55415676e-01 1.43841829e-01 5.34757309e-01 6.94260509e-01 4.24257293e-01 -1.02887764e-01 -8.19595346e-01 -7.90694018e-01 -4.63979809e-01 6.86335047e-01 3.41931746e-01 7.88448034e-01 -8.90622347e-03 -1.52624540e-01 1.09720611e-01 -7.81424717e-01 -6.61513494e-01 -3.03312242e-01 -5.36370264e-02] [-1.94307698e+05 -3.93260742e+05 1.22470391e+05 -3.45258816e+05 1.36671985e+05 7.45608815e+04 -3.94458315e+04 -3.17116256e+05 -1.82918524e+05 -2.68334969e+05 7.84284044e+04 5.07941785e+04 6.83500012e+04 1.95673487e+04 7.99060251e+04 -1.89154774e+05 4.01231356e+04 -3.42870044e+05 -1.91674062e+05 1.36551108e+05 1.22045440e+05 -2.35093638e+04 -1.74439319e+05 5.13183409e+04 7.99367081e+04 4.46153868e+04 -1.03990693e+05 6.36046567e+04 -2.28504679e+05 -1.10841823e+05 1.13301144e+05 -1.63569654e+05 6.93475054e+04 3.96577195e+04 -5.96318073e+04 -1.10517243e+05] [-5.33905230e+05 -1.20482028e+06 2.72199782e+05 -7.16176309e+05 3.25279616e+05 1.01717428e+05 8.52454139e+04 -8.24215998e+05 -4.09366671e+05 -9.17111956e+05 1.78334515e+05 1.37262046e+05 1.62454215e+04 -1.35176988e+05 1.75850478e+05 -5.03646813e+05 2.60196723e+04 -5.50609230e+05 -5.94582293e+05 3.17662686e+05 3.10829544e+05 -5.76945038e+04 -5.51181939e+05 1.12280066e+05 1.88411273e+05 1.17442736e+05 -4.39130729e+05 9.16267927e+04 -5.63192371e+05 -1.54566867e+05 2.49375956e+05 -5.74024212e+05 1.37052786e+05 9.12640900e+04 -2.61453772e+05 -4.13643604e+05] [-8.74869865e+05 -2.58906872e+06 4.55983505e+05 -1.15416429e+06 6.24240959e+05 7.12923834e+04 2.32371055e+05 -2.12535588e+06 -6.88111089e+05 -2.09882681e+06 2.80400596e+05 2.08555800e+05 -3.00903942e+05 -6.64620370e+05 2.42371908e+05 -9.08352498e+05 -6.92376469e+04 -5.55033569e+05 -1.15910212e+06 5.22338293e+05 5.02479668e+05 8.32159539e+04 -1.22381767e+06 1.71877801e+05 2.78290473e+05 8.05190529e+04 -1.18789190e+06 7.24716927e+04 -1.36386004e+06 7.11144611e+03 3.96974482e+05 -1.07449278e+06 1.82192287e+05 1.33533400e+05 -7.35297756e+05 -9.89146320e+05] [-1.17495151e+06 -4.54857551e+06 8.08823797e+05 -1.64566404e+06 1.15512513e+06 1.17076096e+05 5.32271526e+05 -4.88229795e+06 -9.95454988e+05 -4.03943717e+06 6.13946160e+05 3.88517078e+05 -9.39886688e+05 -1.48598600e+06 3.77474582e+05 -1.46558881e+06 -2.58941215e+03 -2.81918993e+05 -2.06120639e+06 8.80580457e+05 8.62987390e+05 5.03381188e+05 -2.35541616e+06 4.41254345e+05 4.21213578e+05 -5.65630898e+03 -2.42639156e+06 8.23873586e+04 -2.99833152e+06 4.58160177e+05 6.51307541e+05 -1.74289534e+06 2.98205096e+05 3.65477078e+05 -1.59548278e+06 -1.90326175e+06] [-2.09730054e+06 -6.07585842e+06 7.94733920e+05 -3.95437814e+06 1.24745430e+06 -1.15353065e+05 -8.72639974e+05 -7.57487971e+06 -2.32004334e+06 -5.48173284e+06 6.26400656e+05 3.07752494e+04 -1.04926598e+06 -1.72039717e+06 1.30468659e+05 -2.97854954e+06 -2.21855779e+05 -2.91036839e+06 -2.92158946e+06 8.30943030e+05 6.74866246e+05 -1.46723210e+05 -2.91312400e+06 2.67429758e+05 8.71798137e+04 -6.10744865e+05 -2.81306372e+06 -2.23491839e+05 -5.53579229e+06 -1.00699217e+06 5.87156954e+05 -2.74487355e+06 1.87575354e+04 5.92697174e+04 -1.64305700e+06 -1.84554332e+06] [-2.70432650e+06 -6.95792016e+06 8.73564582e+05 -6.34841698e+06 1.43530154e+06 -1.93954835e+05 -1.84285448e+06 -8.39041726e+06 -3.42752034e+06 -5.65312181e+06 8.65399632e+05 -2.51786285e+04 -5.98387161e+05 -1.67205645e+06 4.94396235e+04 -3.42791056e+06 -4.38531405e+05 -5.83003709e+06 -2.62956149e+06 9.50412462e+05 6.40382969e+05 -6.28962053e+05 -2.30281009e+06 6.99524335e+04 5.37974599e+04 -4.42556150e+05 -2.21346427e+06 -3.20443556e+05 -6.90662925e+06 -2.16041245e+06 6.77792815e+05 -2.59789300e+06 -2.09967271e+04 -1.53320160e+05 -5.24442562e+05 -5.26749636e+05] [-3.24291517e+06 -8.11784284e+06 8.70327578e+05 -7.76764189e+06 1.59944924e+06 -3.18382212e+05 -3.29479842e+06 -9.50419327e+06 -4.34105917e+06 -6.13585873e+06 6.50948460e+05 -2.56326753e+05 -3.25127316e+05 -2.06259690e+06 -1.34278813e+05 -3.99232249e+06 -7.13761706e+05 -7.44535883e+06 -2.58898404e+06 8.80763598e+05 3.62788750e+05 -1.42246577e+06 -1.52023141e+06 -2.05688880e+05 -1.03842835e+05 -7.97129174e+05 -1.74064184e+06 -4.91011748e+05 -8.61649726e+06 -3.18430723e+06 6.65392486e+05 -2.86894093e+06 -1.70843448e+05 -4.49464619e+05 1.05838234e+06 9.41224276e+05] [-3.92601433e+06 -7.47437694e+06 -2.65878824e+05 -9.36550799e+06 3.28161316e+05 -1.35147539e+06 -6.71586039e+06 -9.91272689e+06 -5.36390983e+06 -5.71377268e+06 -3.90688503e+05 -1.48357418e+06 3.21722399e+05 -1.69063724e+06 -1.39885344e+06 -5.58873113e+06 -1.52584819e+06 -1.03150790e+07 -2.79942281e+06 -3.86056137e+05 -1.04225313e+06 -3.06873843e+06 -4.87184509e+05 -1.26184533e+06 -1.42378996e+06 -1.94974743e+06 -2.56644154e+05 -1.61614174e+06 -1.07883743e+07 -5.33668680e+06 -5.31291726e+05 -3.65732176e+06 -1.43032876e+06 -1.66054282e+06 2.74860378e+06 2.44468845e+06] [-4.33292075e+06 -6.36187652e+06 -2.12342706e+06 -1.00058197e+07 -1.56707684e+06 -3.02412214e+06 -5.98694463e+06 -8.42595449e+06 -5.72268032e+06 -5.32564259e+06 -1.49850560e+06 -2.64165034e+06 -9.60827855e+05 -2.55483935e+06 -2.95710203e+06 -5.44525263e+06 -2.93675612e+06 -1.05943463e+07 -8.64196930e+05 -2.08373518e+06 -2.48249092e+06 -2.82992898e+06 -5.73737884e+05 -2.60762110e+06 -2.84868393e+06 -1.90498128e+06 -6.84076751e+05 -2.98253379e+06 -1.06262886e+07 -3.59309006e+06 -2.31124173e+06 -3.03102541e+06 -2.81688325e+06 -2.92624521e+06 8.14182430e+05 1.21500074e+06] [-4.28498712e+06 -5.93566721e+06 -2.96568795e+06 -1.04333591e+07 -2.29036414e+06 -3.58423484e+06 -3.17294089e+06 -8.30693950e+06 -5.78089369e+06 -5.51661988e+06 -1.73145801e+06 -2.95103830e+06 -3.05703507e+06 -3.72744518e+06 -3.55215611e+06 -4.70740533e+06 -3.63419883e+06 -1.06251474e+07 9.78273174e+05 -2.60335688e+06 -2.91055359e+06 -1.03296543e+06 -1.65872822e+06 -3.10708382e+06 -3.25449416e+06 -1.12125054e+06 -2.76464175e+06 -3.42721867e+06 -1.12513935e+07 -2.04772045e+06 -2.99120452e+06 -1.61742614e+06 -3.15593232e+06 -3.21568699e+06 -1.64998241e+06 -6.83046783e+05] [-2.87050066e+06 -4.60512777e+06 -3.23339793e+06 -9.61147699e+06 -2.68198225e+06 -3.39657198e+06 -1.73372438e+06 -8.40892885e+06 -4.56945829e+06 -3.70532373e+06 -1.84525642e+06 -2.97277409e+06 -3.45488966e+06 -3.19138567e+06 -3.63380287e+06 -2.13299620e+06 -3.34684941e+06 -1.04461060e+07 2.00266560e+06 -2.73104839e+06 -3.14472269e+06 9.94514697e+05 -1.75111210e+06 -2.90932344e+06 -3.47642985e+06 -7.95951942e+05 -2.99192907e+06 -3.27796925e+06 -1.12675727e+07 -8.60225576e+05 -3.13767693e+06 1.35514988e+06 -3.12177058e+06 -2.91577751e+06 -1.86974894e+06 -1.21684948e+06] [-3.03500983e+06 -7.80260218e+05 -4.28098672e+06 -9.50011939e+06 -4.06257339e+06 -3.90890320e+06 -3.43380849e+06 -5.98664428e+06 -5.17826656e+06 -1.34554066e+06 -2.87490929e+06 -4.11604498e+06 -3.16213580e+06 -2.79769574e+06 -4.40872458e+06 -1.59342288e+06 -3.93828161e+06 -1.13414663e+07 1.45521545e+06 -3.92587905e+06 -4.30143198e+06 -3.57279189e+05 -5.49718302e+05 -3.90666772e+06 -4.42578950e+06 -1.90808363e+06 -1.59087586e+06 -3.93506613e+06 -1.04490247e+07 -3.04719606e+06 -4.22470241e+06 1.56270980e+06 -3.87192792e+06 -3.84861195e+06 -1.26840972e+06 7.06269979e+04] [-2.83353652e+06 2.47190701e+06 -4.33656989e+06 -7.09415636e+06 -4.47661984e+06 -3.51226098e+06 -4.57741280e+06 -3.24054527e+06 -4.61546964e+06 1.40569246e+06 -2.92559445e+06 -4.30384986e+06 -1.84804830e+06 -1.00103297e+06 -4.29207130e+06 -1.82506941e+06 -3.52082943e+06 -9.79126746e+06 -3.40216947e+05 -4.07009815e+06 -4.48186843e+06 -1.73299940e+06 5.64054025e+05 -3.91098034e+06 -4.49542344e+06 -2.39423937e+06 1.16334261e+04 -3.73329441e+06 -7.78725550e+06 -4.46096212e+06 -4.26746418e+06 8.32007906e+05 -3.87913996e+06 -3.88360759e+06 1.07622795e+05 1.54729952e+06] [-2.87438223e+06 2.79951318e+06 -5.05157884e+06 -4.00492132e+06 -5.11169745e+06 -4.43912963e+06 -3.86918788e+06 -3.72349703e+05 -3.69877097e+06 3.91321331e+05 -4.08307591e+06 -4.49992540e+06 -2.36732306e+06 -2.13271754e+06 -4.89958880e+06 -3.62154783e+06 -4.55362787e+06 -5.43627507e+06 -6.26760655e+05 -4.85486938e+06 -4.91391522e+06 -2.88330535e+06 1.84649819e+05 -4.71720984e+06 -4.68562205e+06 -3.34233509e+06 -7.76042567e+05 -4.38227524e+06 -5.25150187e+06 -3.58039147e+06 -4.92457117e+06 -1.24124019e+06 -4.51658167e+06 -4.59486933e+06 -8.57136273e+05 3.67435065e+05] [-2.84458795e+06 1.64840024e+06 -4.76750663e+06 -2.34980696e+06 -4.66599232e+06 -4.36990172e+06 -2.83906971e+06 1.19485388e+06 -2.91565206e+06 -1.74562373e+06 -4.44959416e+06 -4.31711671e+06 -2.02948293e+06 -2.34701796e+06 -4.81257797e+06 -5.63373331e+06 -4.69156112e+06 -2.46730597e+06 -1.15841455e+06 -4.49902546e+06 -4.45447568e+06 -3.54683145e+06 -1.55928773e+05 -4.58438061e+06 -4.22336524e+06 -3.57272162e+06 -1.05742601e+06 -4.22256423e+06 -3.21238436e+06 -2.76494370e+06 -4.65444533e+06 -3.71883958e+06 -4.35782452e+06 -4.57694372e+06 -8.23427654e+05 -3.51374424e+05] [-3.07701904e+06 2.34138231e+05 -4.22305886e+06 -1.78850296e+06 -4.01404113e+06 -4.14771601e+06 -2.64272148e+06 2.00596907e+06 -2.63163510e+06 -3.11739933e+06 -4.27299604e+06 -3.83087043e+06 -1.71255282e+06 -2.56008016e+06 -4.42955327e+06 -6.28245733e+06 -4.49479816e+06 -8.52381132e+05 -1.55644896e+06 -3.99240839e+06 -3.87805535e+06 -4.13854847e+06 -5.39628352e+05 -4.24526214e+06 -3.61980149e+06 -3.59976415e+06 -1.24395187e+06 -3.90536086e+06 -1.85871939e+06 -2.27651913e+06 -4.14662822e+06 -5.25659135e+06 -4.00717467e+06 -4.33948457e+06 -1.06147348e+06 -9.97492718e+05] [-1.77670257e+06 1.38207503e+06 -2.94433741e+06 -3.66336104e+05 -2.84938367e+06 -2.78615464e+06 -1.90537888e+06 3.32774248e+06 -1.40955619e+06 -1.55480955e+06 -2.93929052e+06 -2.30936754e+06 -9.92174360e+05 -1.75624386e+06 -2.91047349e+06 -4.46906145e+06 -3.02070818e+06 2.07648981e+05 -3.59669267e+05 -2.78113632e+06 -2.59355754e+06 -2.72398987e+06 6.42706980e+04 -2.83167321e+06 -2.23399535e+06 -2.38121630e+06 -4.43784110e+05 -2.48758173e+06 -7.59119501e+05 -1.07145326e+06 -2.83179413e+06 -3.60611429e+06 -2.59190321e+06 -2.84787690e+06 -9.01314057e+05 -7.25470198e+05] [-1.50353077e+06 1.55706785e+06 -2.08785107e+06 -5.70124282e+05 -2.01799959e+06 -1.98734101e+06 -1.60973055e+06 3.34079976e+06 -1.30276395e+06 -1.24238113e+06 -2.10961093e+06 -1.62986551e+06 -2.08749690e+05 -1.03056093e+06 -2.09057022e+06 -3.61847554e+06 -2.21555345e+06 -2.48760001e+04 -4.37873572e+05 -1.95669038e+06 -1.77176951e+06 -2.36705659e+06 4.33316429e+05 -2.05932326e+06 -1.56258013e+06 -1.76191885e+06 4.14083230e+05 -1.77223474e+06 -1.19354519e+05 -1.04752703e+06 -2.01558485e+06 -3.23625888e+06 -1.83165429e+06 -2.10925464e+06 -3.68989819e+05 -2.32837447e+05] [-1.31786496e+06 1.06041558e+06 -1.34631759e+06 -7.74168879e+05 -1.29510037e+06 -1.36636883e+06 -1.41508119e+06 2.25542507e+06 -1.30389575e+06 -1.11078333e+06 -1.47793029e+06 -1.25633517e+06 2.04379453e+05 -4.50232703e+05 -1.48019078e+06 -2.71757349e+06 -1.54004918e+06 -4.80081536e+05 -6.50106214e+05 -1.26026949e+06 -1.17226669e+06 -2.15229804e+06 5.16513212e+05 -1.46689260e+06 -1.11812849e+06 -1.37656069e+06 7.12983857e+05 -1.27478686e+06 -1.30181227e+05 -1.22162878e+06 -1.33153158e+06 -2.67597044e+06 -1.30119106e+06 -1.54491636e+06 1.87180784e+05 2.65668400e+05] [-8.51709512e+05 4.55065559e+05 -6.43399019e+05 -5.30172482e+05 -6.27265155e+05 -6.80438857e+05 -8.11418690e+05 8.99509451e+05 -8.07659426e+05 -6.00320658e+05 -7.17046410e+05 -6.64962997e+05 1.69023975e+05 -1.13756979e+05 -7.40534067e+05 -1.49148444e+06 -7.94002029e+05 -5.05016950e+05 -6.22625735e+05 -5.85921180e+05 -5.83018282e+05 -1.15989075e+06 1.80645366e+05 -7.68326607e+05 -5.70661743e+05 -7.05942326e+05 3.29053030e+05 -6.59404515e+05 -3.09070954e+05 -8.65930125e+05 -6.41389678e+05 -1.57447188e+06 -6.53569735e+05 -7.59237780e+05 1.59288801e+05 1.66149044e+05] [-3.90327505e+05 2.41963312e+05 -2.91520230e+05 -7.47374723e+04 -2.74488934e+05 -3.19534475e+05 -1.66373392e+05 1.15928302e+05 -3.51061720e+05 -4.49493039e+05 -3.73992517e+05 -3.50557552e+05 -6.22072859e+04 -8.54009992e+04 -3.62001796e+05 -7.27226902e+05 -3.77481776e+05 -4.88107907e+04 -4.83047536e+05 -2.67395154e+05 -2.78926209e+05 -5.06372838e+05 -5.39038540e+04 -3.59556951e+05 -2.97217772e+05 -4.63015782e+05 -4.33991891e+04 -3.35145034e+05 -1.51103352e+05 -4.02143993e+05 -2.97367969e+05 -7.53702366e+05 -3.20232492e+05 -3.54640308e+05 2.24682118e+04 -3.16120214e+04] [-2.47505736e+04 1.79273540e+05 -2.49591696e+04 9.75069809e+04 6.55338689e+03 -7.39149339e+04 1.47977348e+05 -1.77719737e+05 -8.17427090e+04 -3.70589629e+05 -7.93315605e+04 -7.94354792e+04 -1.08231324e+05 -1.06192423e+05 -7.98001061e+04 -1.54411468e+05 -8.47080858e+04 2.58179625e+05 -9.06912948e+04 -3.46912679e+04 -3.12317657e+04 -8.28893382e+04 -3.31255250e+04 -4.86777562e+04 -5.88120107e+04 -2.65769923e+05 -9.48184825e+04 -8.51908140e+04 -4.81935251e+04 -3.10941178e+04 -4.48011697e+04 -1.83645383e+05 -5.95693363e+04 -6.69959444e+04 -4.50060383e+04 -4.17644494e+04] [ 5.92504284e+03 1.77568695e+04 3.11149384e+03 2.24404429e+04 3.04918591e+03 3.62448320e+03 2.84583161e+04 -8.21304292e+03 2.55323771e+03 5.86539750e+03 8.55370870e+03 8.30115601e+03 -1.79369589e+04 -7.71481194e+03 6.67884314e+03 1.72394981e+04 5.91074152e+03 2.88999838e+04 6.21431289e+02 3.91580371e+03 5.58796424e+03 1.33085245e+04 -6.94307306e+03 6.89566178e+03 6.52969839e+03 -3.64170746e+03 -1.81683869e+04 4.66122459e+03 1.39731121e+04 1.04383190e+04 3.97315595e+03 1.65044209e+04 6.40984678e+03 7.89358027e+03 -1.34589317e+04 -8.60323468e+03] [ 8.87903506e-01 1.95819522e-01 -6.03208784e-01 6.26664178e-01 3.32486207e-01 -8.68560578e-01 -4.24811501e-01 7.88604758e-01 -1.58168660e-01 -6.37620032e-01 -1.04113531e-02 9.91399995e-01 9.02491486e-01 9.16234061e-01 5.78492243e-01 -5.51587575e-01 -4.19003114e-01 -2.87243662e-01 1.92200377e-01 -3.70488828e-01 9.33380931e-01 -3.82793268e-01 4.92226414e-01 -8.69945696e-01 8.86811901e-01 5.90128645e-01 6.97344967e-01 -8.23763192e-01 -4.77942764e-02 -9.45896280e-01 -1.79267685e-01 1.85576527e-01 7.68648410e-02 -3.12145381e-01 -7.86275607e-01 2.12717285e-01] [-7.27224968e-01 2.11090189e-01 3.94870382e-01 8.32043566e-02 -2.24572796e-01 6.02355693e-01 3.92649882e-01 8.90571306e-01 -2.15472380e-01 -2.15616681e-01 1.79619927e-02 6.38756011e-01 -8.51916509e-01 7.56943373e-01 -8.18411845e-01 8.97331147e-01 1.68493721e-01 1.53551410e-01 -2.13256861e-02 -3.24260805e-01 3.03348281e-01 3.29876651e-01 -3.61722237e-01 3.78044924e-01 -7.99278972e-02 -6.77885916e-01 -9.47830384e-01 -4.88957130e-02 -6.85445832e-01 1.65646905e-01 -5.92542664e-01 9.29626635e-01 -8.01197111e-01 -8.71901104e-01 5.47148146e-01 5.27624537e-01] [-4.09023746e-01 -2.63333674e-02 -1.05682566e-01 2.89187787e-01 -2.57997445e-01 -7.14498757e-01 2.41900528e-01 5.33251081e-01 -6.53472975e-02 -5.35879905e-01 -1.01515849e-01 4.55825958e-01 -9.16233120e-01 4.22750410e-01 -7.71142673e-01 -8.99058374e-01 1.41579203e-01 8.88210515e-01 -2.88283435e-01 6.95513190e-01 -4.95486065e-02 2.57005794e-01 -5.64592459e-01 -7.32775384e-01 -7.54086324e-01 -8.88382911e-01 -5.45901057e-01 -9.55838485e-01 1.74524939e-01 -5.15427616e-02 -6.39279088e-01 -8.46241127e-01 1.07023886e-01 -6.40317981e-02 8.11122501e-01 -1.55799393e-01] [-5.82680369e-01 -8.52003414e-01 -2.62355247e-01 5.90519617e-01 4.88683921e-01 8.42915955e-01 -6.14274006e-01 5.38636669e-02 -9.19421672e-01 -7.00023346e-01 -8.54653972e-01 9.46525832e-01 9.37219236e-01 -1.38126102e-01 2.07546961e-01 2.30911511e-01 7.87354101e-01 5.40316601e-01 6.31215250e-01 -6.82840556e-01 9.33888932e-02 -4.20955261e-01 -2.56207620e-01 1.97904282e-01 -7.86917702e-01 5.86074180e-01 -9.24300716e-01 2.57807193e-01 -8.09751329e-01 9.47221733e-01 9.22163087e-02 2.72940567e-01 -3.00609555e-01 5.83725498e-02 1.81458025e-01 3.66812941e-01] [ 5.65031623e-01 -7.74616330e-01 5.31140104e-01 9.81613761e-01 -5.69809366e-02 -7.27874315e-01 2.04819708e-01 -1.30370787e-01 -7.16970002e-01 4.78386781e-01 -6.98476874e-01 4.57237953e-01 -5.98062170e-01 -6.08092786e-01 9.42996208e-01 -5.80756933e-01 -9.38109741e-01 -2.44663309e-02 -6.14239727e-02 -4.08720398e-01 9.92624025e-01 -7.55997065e-01 6.62274455e-01 1.02096459e-01 9.69599446e-02 7.72500444e-01 -4.46747850e-01 -8.41062494e-01 3.14440413e-01 -5.20615243e-01 -7.34041895e-01 -6.31370832e-01 -1.80830282e-01 -1.75608175e-01 -9.21011439e-01 5.24847057e-01] [-2.32418186e+04 -7.50133721e+03 2.25576420e+03 -5.19507625e+04 1.14561293e-01 3.13051459e+02 -3.23011575e+04 2.80980234e+04 -1.90944436e+04 1.11565310e+04 -9.59705429e+02 -2.82441044e+03 3.58814907e+04 2.65861542e+04 -1.92609247e+02 -2.78358432e+04 1.71853531e+03 -7.32885485e+04 -3.97354077e+02 5.02450524e+02 -2.26018400e+03 -1.56730558e+04 1.43830778e+04 -2.03276146e+03 7.92941088e+01 4.18185368e+02 3.43465608e+04 3.07762417e+03 -5.92131273e+03 -2.87655108e+04 5.25413458e+02 -2.18629546e+04 -2.04563403e+03 -5.72504798e+03 1.85057319e+04 1.57832893e+04] [-1.91829330e+05 -1.97071062e+05 2.93619422e+04 -3.04351957e+05 2.88930647e+04 -9.02859612e+03 -1.70224972e+05 2.12379667e+04 -1.42709326e+05 -1.27286505e+05 -5.19874429e+03 -1.75535135e+04 1.78210168e+05 9.87333962e+04 -5.88468775e+03 -2.43565410e+05 -7.52611631e+03 -3.62659827e+05 -1.07770906e+05 2.50068541e+04 9.34424179e+03 -1.00659834e+05 1.05300435e+04 -1.14762380e+04 2.61302143e+03 -2.11199461e+04 1.19705445e+05 -1.09217866e+03 -1.07040933e+05 -1.45340091e+05 1.34873447e+04 -2.11946246e+05 -1.85480304e+04 -3.51096609e+04 8.86103319e+04 4.40014069e+04] [-5.96000654e+05 -1.25653157e+06 -1.12380365e+05 -5.04674840e+05 -3.14887169e+04 -3.00124205e+05 -1.96967185e+05 -9.16887826e+05 -4.11420690e+05 -1.17702061e+06 -1.98933585e+05 -2.48504781e+05 -1.07047520e+05 -3.48610984e+05 -2.58967133e+05 -7.90323524e+05 -3.21065994e+05 -1.41755551e+05 -8.14491662e+05 -8.51815727e+04 -1.09678709e+05 -2.76485553e+05 -4.53741228e+05 -2.41994338e+05 -2.04534176e+05 -2.39472287e+05 -3.96359378e+05 -2.93154588e+05 -7.13676573e+05 -6.76010541e+04 -1.71830534e+05 -8.35311325e+05 -2.76379252e+05 -2.77419111e+05 -1.12641500e+05 -2.93064144e+05] [-9.07766553e+05 -2.24407933e+06 -2.34617173e+05 -1.00239135e+06 -8.26810024e+04 -5.59939378e+05 -4.25460456e+05 -2.29261675e+06 -8.61715617e+05 -2.15610259e+06 -3.65485885e+05 -5.20393970e+05 -4.63277009e+05 -8.67920962e+05 -4.69903072e+05 -1.06949220e+06 -6.13734175e+05 -3.95800177e+05 -1.27562635e+06 -2.45140204e+05 -2.84958189e+05 -5.26558266e+05 -8.47211493e+05 -4.74629801e+05 -4.78672962e+05 -4.21161834e+05 -8.68395759e+05 -5.98345819e+05 -1.59545096e+06 -2.09340933e+05 -3.42553503e+05 -1.05271796e+06 -5.21523950e+05 -4.97912476e+05 -3.09191311e+05 -5.03046576e+05] [-1.82917852e+06 -3.20502178e+06 -1.06704118e+06 -2.30549176e+06 -8.65254118e+05 -1.46795080e+06 -1.81780258e+06 -3.73128967e+06 -2.03203708e+06 -3.12909692e+06 -1.35806205e+06 -1.64657737e+06 -7.19212918e+05 -1.31859121e+06 -1.42350963e+06 -1.92167168e+06 -1.58739756e+06 -1.87992219e+06 -2.20392514e+06 -1.11728857e+06 -1.25563964e+06 -1.93847498e+06 -9.96318858e+05 -1.47654922e+06 -1.53858088e+06 -1.41606136e+06 -9.30572857e+05 -1.62211071e+06 -3.01078002e+06 -1.70850382e+06 -1.19872984e+06 -1.73908516e+06 -1.50744919e+06 -1.54231199e+06 4.02820466e+05 2.64566647e+04] [-2.92168255e+06 -4.12642879e+06 -2.30398826e+06 -4.03843356e+06 -2.01321465e+06 -2.80012484e+06 -3.76568584e+06 -5.29540393e+06 -3.60252152e+06 -4.33570404e+06 -2.95227388e+06 -3.39501714e+06 -6.34195680e+05 -1.49454909e+06 -2.93958039e+06 -2.90130994e+06 -2.98922672e+06 -4.04837638e+06 -2.83992913e+06 -2.42005286e+06 -2.77117363e+06 -3.70214040e+06 -5.70476273e+05 -2.95044816e+06 -3.17919223e+06 -2.83319587e+06 -3.12287301e+05 -3.13677308e+06 -4.67125253e+06 -3.58027844e+06 -2.50033030e+06 -2.22885103e+06 -2.98856734e+06 -3.06619364e+06 2.09934722e+06 1.41984605e+06] [-4.11690151e+06 -4.63882666e+06 -3.81910498e+06 -5.40658030e+06 -3.47374453e+06 -4.36157428e+06 -6.20866590e+06 -5.61531101e+06 -5.09053437e+06 -5.32445758e+06 -5.00783422e+06 -5.39168655e+06 -4.28078756e+05 -1.51539374e+06 -4.77066999e+06 -4.63181566e+06 -4.58240758e+06 -5.81649023e+06 -3.54870561e+06 -4.00259510e+06 -4.56272999e+06 -5.91810237e+06 -3.55180018e+04 -4.67565328e+06 -5.02114288e+06 -4.57957037e+06 5.17432873e+05 -4.87708699e+06 -5.43622213e+06 -5.66207519e+06 -4.09458472e+06 -3.38258507e+06 -4.74632319e+06 -4.90955167e+06 3.82451747e+06 2.77242996e+06] [-4.92989153e+06 -4.75006875e+06 -5.14467747e+06 -6.00633991e+06 -4.78451261e+06 -5.68249818e+06 -7.59961424e+06 -5.70010815e+06 -5.86781841e+06 -6.02646519e+06 -6.41706980e+06 -6.67542930e+06 -7.74866907e+05 -1.88115905e+06 -6.18191709e+06 -6.17703696e+06 -5.82323214e+06 -6.44887564e+06 -4.11425854e+06 -5.33040758e+06 -5.89911987e+06 -7.29416987e+06 9.84283035e+04 -5.93707555e+06 -6.37507142e+06 -5.48889283e+06 5.74245865e+05 -6.22602154e+06 -6.06102322e+06 -6.40409541e+06 -5.42026789e+06 -4.36751999e+06 -6.13497951e+06 -6.26155788e+06 4.34776183e+06 3.03729921e+06] [-4.94977321e+06 -4.89678459e+06 -5.68203953e+06 -5.55457285e+06 -5.24610274e+06 -6.24278072e+06 -7.57304214e+06 -6.32293881e+06 -5.67271155e+06 -7.23921951e+06 -7.08552891e+06 -7.35330285e+06 -8.39539246e+05 -1.77617568e+06 -7.00389196e+06 -7.36788586e+06 -6.29874875e+06 -5.66289753e+06 -4.23150772e+06 -5.88411961e+06 -6.54888361e+06 -7.59988624e+06 1.05080817e+05 -6.43609118e+06 -7.10897917e+06 -6.09852815e+06 5.38960967e+05 -6.80222166e+06 -5.95872481e+06 -5.85214535e+06 -5.98081324e+06 -5.28608513e+06 -6.85929344e+06 -6.89996591e+06 4.56556200e+06 2.76089150e+06] [-4.76799422e+06 -5.66320381e+06 -5.25814763e+06 -6.05629555e+06 -4.81270426e+06 -5.68109011e+06 -6.74464886e+06 -7.65213164e+06 -5.43007334e+06 -7.85090869e+06 -6.54530439e+06 -7.01469554e+06 -9.44842589e+05 -1.54201386e+06 -6.68006294e+06 -7.11003616e+06 -5.82443130e+06 -6.27455308e+06 -4.58224847e+06 -5.32935346e+06 -6.15104829e+06 -6.64539935e+06 -6.09315398e+05 -5.95526506e+06 -6.85555524e+06 -5.77837463e+06 -1.60489005e+05 -6.35567716e+06 -6.51237772e+06 -5.28930525e+06 -5.51506712e+06 -5.05850118e+06 -6.50685528e+06 -6.39427379e+06 3.93131669e+06 1.74406544e+06] [-4.21265112e+06 -5.21566426e+06 -4.97085176e+06 -6.43259507e+06 -4.60825672e+06 -5.18992625e+06 -6.60706184e+06 -8.27159239e+06 -5.45950852e+06 -7.51347488e+06 -6.35925249e+06 -7.00438810e+06 -7.21450446e+05 -1.09941628e+06 -6.45299622e+06 -6.78188953e+06 -5.35055364e+06 -7.06331202e+06 -4.43619353e+06 -5.07027644e+06 -6.06446408e+06 -6.58165885e+06 -4.59807907e+05 -5.66456736e+06 -6.77085669e+06 -6.26740637e+06 7.72611014e+04 -6.01466343e+06 -6.74501926e+06 -5.77705457e+06 -5.19665584e+06 -4.20221415e+06 -6.23285916e+06 -6.09474992e+06 4.37853678e+06 2.09604740e+06] [-3.96945595e+06 -2.80588307e+06 -4.99854056e+06 -6.10992325e+06 -4.79450338e+06 -4.93192728e+06 -7.08025598e+06 -6.06393055e+06 -5.47012239e+06 -5.61217410e+06 -6.34115209e+06 -7.09815452e+06 1.78476933e+05 -1.07896848e+05 -6.36293502e+06 -6.27484723e+06 -5.12375132e+06 -7.47515718e+06 -4.35540335e+06 -5.12677479e+06 -6.09342496e+06 -6.84755991e+06 5.33142584e+05 -5.60171131e+06 -6.76366085e+06 -6.48479051e+06 1.43961964e+06 -5.83742987e+06 -5.32560514e+06 -6.57697166e+06 -5.20874061e+06 -3.51581395e+06 -6.12482744e+06 -6.09292516e+06 5.06997157e+06 3.14220101e+06] [-4.08271702e+06 -1.94946618e+06 -4.81622585e+06 -6.52715537e+06 -4.61173476e+06 -4.79455104e+06 -7.03018346e+06 -4.45870208e+06 -5.69793345e+06 -4.61089828e+06 -6.13724053e+06 -6.92059316e+06 2.87718703e+05 -3.99965901e+05 -5.92685188e+06 -5.57906322e+06 -5.25124592e+06 -8.35358344e+06 -3.91226397e+06 -5.02667698e+06 -5.84076291e+06 -6.85318276e+06 6.26900971e+05 -5.72169184e+06 -6.34246295e+06 -5.64241791e+06 1.61088651e+06 -5.59047570e+06 -5.16425796e+06 -7.34660935e+06 -5.04583273e+06 -3.21334508e+06 -5.69547015e+06 -6.04723372e+06 4.45356403e+06 3.30000536e+06] [-3.99854701e+06 -2.67511786e+06 -4.81584876e+06 -4.78471307e+06 -4.49335744e+06 -4.96516908e+06 -5.04179908e+06 -2.06237588e+06 -4.64307022e+06 -5.09184196e+06 -6.10525550e+06 -6.04635883e+06 -7.69982194e+05 -1.84611392e+06 -5.56808433e+06 -5.21709284e+06 -5.50417273e+06 -5.17927857e+06 -2.95482534e+06 -4.85628933e+06 -5.28242566e+06 -5.83478121e+06 8.91398098e+03 -5.61359692e+06 -5.54950324e+06 -4.57133121e+06 2.26713088e+05 -5.32842151e+06 -4.12484760e+06 -4.90209857e+06 -4.90593632e+06 -3.40417217e+06 -5.28477166e+06 -5.71521257e+06 2.45347128e+06 1.46711850e+06] [-3.53070848e+06 -1.96059177e+06 -4.03656531e+06 -2.72579071e+06 -3.64206052e+06 -4.34767352e+06 -3.38910573e+06 -4.56469087e+05 -3.52018289e+06 -5.22420543e+06 -5.33715664e+06 -4.99651765e+06 -8.01941618e+05 -1.88878934e+06 -4.80962708e+06 -5.99732173e+06 -4.84657277e+06 -2.21515409e+06 -2.85810446e+06 -3.97757366e+06 -4.24236954e+06 -5.03724139e+06 -9.74175054e+04 -4.75747197e+06 -4.41459904e+06 -4.27623539e+06 -1.73569032e+05 -4.52827233e+06 -2.73410545e+06 -3.46615934e+06 -4.12178456e+06 -4.67292195e+06 -4.52031541e+06 -4.98575520e+06 1.80395858e+06 7.51522626e+05] [-3.01826915e+06 -1.86992563e+06 -2.95980090e+06 -2.11115485e+06 -2.57271971e+06 -3.28638088e+06 -2.22973704e+06 5.64676135e+05 -2.67112605e+06 -4.29519257e+06 -3.91766218e+06 -3.53651028e+06 -4.56820659e+05 -1.42550402e+06 -3.59591932e+06 -5.45801823e+06 -3.75621556e+06 -1.41481016e+06 -1.97429011e+06 -2.79290078e+06 -2.99341397e+06 -4.01960091e+06 -1.76038109e+05 -3.55747414e+06 -3.05187260e+06 -3.14979156e+06 -2.26483529e+05 -3.33760916e+06 -1.88586934e+06 -2.52221342e+06 -2.98865476e+06 -4.61731286e+06 -3.30455713e+06 -3.74889440e+06 1.18611421e+06 2.69843235e+05] [-1.84157421e+06 -1.46104914e+06 -1.75715727e+06 -1.13873041e+06 -1.45914057e+06 -1.95143903e+06 -1.20645924e+06 4.35306450e+05 -1.50663157e+06 -3.05226072e+06 -2.45237431e+06 -2.09062561e+06 -9.55386409e+04 -7.78237142e+05 -2.18593289e+06 -3.54050484e+06 -2.30228600e+06 -5.42356967e+05 -1.28851503e+06 -1.60441512e+06 -1.77727205e+06 -2.47945846e+06 -2.27441427e+05 -2.14197006e+06 -1.78260983e+06 -2.05882705e+06 -1.38539755e+05 -1.97187203e+06 -7.97519152e+05 -1.24267148e+06 -1.75967619e+06 -2.98796593e+06 -1.95409252e+06 -2.25812247e+06 8.37581436e+05 5.02151190e+04] [-1.17415117e+06 -6.76004286e+05 -1.37971318e+06 -5.58818090e+05 -1.25483781e+06 -1.39061093e+06 -1.16536028e+06 8.43366501e+05 -8.92248929e+05 -1.55273061e+06 -1.78363327e+06 -1.46882368e+06 1.22481069e+05 -3.08272400e+05 -1.59113378e+06 -2.31022821e+06 -1.58553343e+06 -2.17360999e+05 -8.63298033e+05 -1.26323718e+06 -1.36001406e+06 -1.98612561e+06 9.77441115e+04 -1.54814636e+06 -1.30989707e+06 -1.46306631e+06 2.75372510e+05 -1.39552469e+06 -1.22622057e+05 -8.53105877e+05 -1.33920580e+06 -1.91734351e+06 -1.41758767e+06 -1.61432956e+06 8.47363355e+05 2.85995599e+05] [-9.28731701e+05 -2.98641404e+05 -8.30333292e+05 -4.92666274e+05 -7.76831482e+05 -8.62682047e+05 -8.83600634e+05 8.59515690e+05 -6.59041719e+05 -9.01199018e+05 -1.10977008e+06 -9.30343919e+05 2.49798250e+05 -3.03874361e+04 -9.67444339e+05 -1.63540992e+06 -9.90731891e+05 -3.35302800e+05 -8.46734066e+05 -7.46080941e+05 -7.93097787e+05 -1.45402162e+06 1.80218008e+05 -9.71407120e+05 -7.97371954e+05 -8.99248923e+05 3.95666022e+05 -8.56665533e+05 -2.04552704e+04 -7.80477628e+05 -7.97593952e+05 -1.55145428e+06 -8.97393672e+05 -1.05212385e+06 6.51303699e+05 2.86411474e+05] [-5.38792659e+05 -2.36638080e+05 -3.46819943e+05 -3.01962468e+05 -3.14508654e+05 -4.01342218e+05 -3.95423157e+05 3.76462308e+05 -3.73833931e+05 -4.88475753e+05 -5.14941024e+05 -4.46999792e+05 1.50331811e+05 -2.96223687e+04 -4.32831337e+05 -8.23799121e+05 -4.79931046e+05 -2.26959152e+05 -4.99100967e+05 -3.10655410e+05 -3.43939734e+05 -6.56314490e+05 3.11567970e+04 -4.56400032e+05 -3.63395780e+05 -3.68335761e+05 1.58518952e+05 -4.02915970e+05 -5.84239095e+04 -4.06503399e+05 -3.44012075e+05 -8.48722895e+05 -4.16291877e+05 -4.93122121e+05 2.36716787e+05 7.44704731e+04] [-1.85241600e+05 -1.62279848e+05 -1.31796489e+05 -1.46301421e+05 -1.16228274e+05 -1.58744453e+05 -2.12885607e+05 -1.05212473e+04 -1.45658544e+05 -3.19577741e+05 -2.20948662e+05 -2.01145932e+05 6.84474245e+04 -1.83068465e+04 -1.89311569e+05 -4.04808354e+05 -1.88292709e+05 -1.25574788e+05 -2.03117547e+05 -1.30470951e+05 -1.50859022e+05 -2.74637746e+05 -8.91764440e+03 -1.82162020e+05 -1.64818090e+05 -1.93210745e+05 4.33035969e+04 -1.69479731e+05 -1.44505260e+05 -1.89316816e+05 -1.40954733e+05 -3.56942574e+05 -1.76595180e+05 -1.92701630e+05 1.08113274e+05 2.36860704e+04] [-4.87677200e+04 -5.52025745e+04 -2.97588975e+04 -5.55812512e+04 -2.25742324e+04 -4.35504621e+04 -4.41074747e+04 -4.03639168e+04 -4.61253156e+04 -1.13404244e+05 -5.38298068e+04 -5.37346211e+04 5.48782707e+03 -1.70557156e+04 -4.86800282e+04 -1.09679546e+05 -4.91397886e+04 -3.83690560e+04 -4.54388687e+04 -3.13702696e+04 -3.58756482e+04 -6.93105448e+04 -1.65113321e+04 -4.37074625e+04 -4.46090180e+04 -5.71428777e+04 -2.85992889e+03 -4.67192848e+04 -5.46442030e+04 -4.81537261e+04 -3.41043736e+04 -1.01533234e+05 -4.67590408e+04 -5.00460862e+04 6.40336060e+03 -1.06695351e+04] [-3.79132643e-02 -8.50024655e-01 -6.01455915e-01 3.00044387e-01 9.52610824e-01 9.22276193e-01 9.92620620e-01 9.60910524e-01 -1.18420080e-01 2.55165778e-01 -6.13294265e-01 -8.16359343e-01 -8.61328832e-01 9.18509928e-01 1.20815423e-01 6.08470690e-01 5.05489278e-01 -5.49347965e-01 -7.30464114e-02 6.31443689e-01 5.86929054e-01 7.48734160e-02 -9.02185002e-01 -4.64860684e-01 -8.06021988e-01 -5.63473573e-01 -8.45529808e-01 -9.95879195e-01 -7.24218355e-01 9.89222508e-01 -4.43389950e-01 -4.98758256e-04 8.06362474e-01 5.10864513e-01 6.81157838e-01 -6.65509549e-01] [-7.27226454e-01 -5.22895664e-02 -9.05605430e-01 -9.17886550e-01 -1.51222116e-01 -5.07640307e-01 -2.01347869e-01 6.63757440e-01 -1.35910635e-01 -7.87545756e-01 1.80266475e-01 1.42880646e-01 -9.64724806e-01 -4.75344421e-01 -4.76175041e-01 -5.77337102e-01 -5.35824300e-01 4.76972984e-01 2.69707440e-01 9.95651410e-01 4.45078999e-01 5.14830564e-01 -9.06049193e-01 -2.73556883e-01 6.39985247e-01 8.80565262e-02 -1.32510081e-01 -9.06120367e-01 -5.30128457e-01 1.76901278e-01 -8.56964770e-01 -1.93621620e-01 4.91044503e-01 5.13142062e-01 -5.99735746e-01 8.92980557e-01] [-3.19974192e-01 -4.63034036e-01 -3.96724002e-01 8.84067364e-01 9.26975174e-01 6.87404090e-01 -1.41705297e-01 -6.81092523e-01 8.79644564e-01 -5.39008612e-01 -2.12784477e-01 -8.02363780e-01 2.69750477e-01 -8.47810558e-01 -8.06672989e-01 4.92960324e-01 -7.32035163e-02 7.17433917e-01 -7.52547518e-01 4.62984842e-01 4.22352038e-01 -1.52228265e-01 -2.44020094e-01 -9.11503346e-01 5.30196715e-02 1.06642521e-01 -7.34103147e-01 8.65141343e-01 -8.25003931e-01 3.36319862e-01 6.86953403e-01 -6.22944793e-01 2.59803355e-01 1.71906221e-01 -8.06403832e-01 5.29146114e-01] [ 6.07768310e-01 6.73571712e-01 7.83287470e-01 5.48586614e-01 9.18904650e-01 2.53600222e-01 -1.64814994e-01 -7.57999618e-01 7.15736434e-01 2.81968758e-01 7.58182827e-01 -8.41825605e-01 1.63551097e-01 3.40858068e-01 8.77560590e-01 3.19958076e-01 -9.47106401e-01 7.53385093e-01 9.21805426e-01 -9.99369224e-01 9.09735212e-01 -4.43245564e-01 1.40099625e-01 -6.27073392e-01 -2.84916450e-01 -5.84330990e-01 7.75173662e-01 7.22056966e-01 -5.52862864e-02 -6.11097028e-01 -6.97940150e-01 -5.21299483e-01 -7.69174495e-01 -5.51590318e-01 4.89878320e-01 6.84387684e-01] [-1.21866898e-01 -5.49177081e-01 -6.69120752e-01 2.30843400e-01 -9.50167020e-01 6.86101810e-02 -2.52321282e-01 1.29466413e-01 3.90772296e-02 -8.85733430e-01 -6.46189865e-02 -4.29333050e-01 -1.84982789e-01 -9.84133073e-01 9.35313724e-01 8.23264291e-01 -8.82668915e-02 -6.58282513e-01 -2.82761943e-01 -4.03737852e-01 -4.20435442e-01 5.79509975e-01 -7.13070028e-01 2.89797900e-01 1.87961505e-01 -4.88154784e-01 9.39266245e-01 -5.43248647e-03 -1.98017504e-02 -6.36582347e-01 4.01046860e-01 -1.03619071e-01 -2.74944001e-01 -3.15932935e-01 -9.69985178e-01 -7.88132228e-01] [-6.51219747e-01 -8.26791288e-01 -7.45239399e-01 -6.95904026e-01 -9.86664521e-01 -5.71349070e-01 2.33688571e-01 9.98202825e-01 2.96683644e-01 -1.42192300e-01 -6.47662131e-01 -5.00586860e-01 3.46249184e-02 -2.09404203e-01 5.67826057e-01 -7.53281572e-01 -4.29168646e-01 -3.90685306e-01 -7.27911546e-01 1.22733322e-01 -4.16990755e-01 2.75705303e-01 5.78109534e-01 -3.21930225e-01 7.48722426e-01 7.87457485e-01 -6.03200067e-01 -8.98711002e-01 -9.10957008e-01 9.94694147e-01 8.43025537e-01 7.43919088e-01 -6.90243404e-01 -7.83614870e-01 4.49865618e-01 -1.39643777e-01] [-5.53905093e+03 -5.59857238e+03 -6.67772710e+03 -5.56217553e+03 -6.49295522e+03 -6.79437952e+03 -5.54909116e+03 -5.65412796e+03 -5.55138872e+03 -5.68631954e+03 -6.75258011e+03 -6.91138108e+03 -5.60797756e+03 -5.41536805e+03 -6.72202480e+03 -5.72261953e+03 -6.82159063e+03 -5.53712957e+03 -5.55816400e+03 -6.67925379e+03 -6.71820154e+03 -6.20126250e+03 -5.66145904e+03 -6.81746721e+03 -6.89092542e+03 -5.40988955e+03 -5.79898581e+03 -6.95128780e+03 -5.64510505e+03 -5.49003332e+03 -6.67638407e+03 -5.67712396e+03 -6.73692219e+03 -6.83831106e+03 -5.70159587e+03 -5.57979228e+03] [-5.33730508e+04 -5.51610992e+04 -6.26909445e+04 -5.39602416e+04 -6.05035227e+04 -6.43344448e+04 -5.44383436e+04 -5.57587151e+04 -5.31554904e+04 -5.47979060e+04 -6.39131229e+04 -6.55424737e+04 -5.24906560e+04 -5.07447995e+04 -6.35479683e+04 -5.46931041e+04 -6.41865111e+04 -5.37139680e+04 -5.28787476e+04 -6.28493188e+04 -6.35145084e+04 -5.93550539e+04 -5.41196593e+04 -6.40496286e+04 -6.54753404e+04 -5.12581271e+04 -5.47611602e+04 -6.60478429e+04 -5.54337390e+04 -5.29840295e+04 -6.27867413e+04 -5.43300783e+04 -6.40856223e+04 -6.47260542e+04 -5.34352978e+04 -5.24289778e+04] [-1.15399259e+05 -1.59120794e+05 -1.23091506e+05 -1.29989948e+05 -1.19034812e+05 -1.37044820e+05 -1.65671541e+05 -1.82759954e+05 -1.20202460e+05 -1.59549566e+05 -1.37030449e+05 -1.47738074e+05 -5.03311681e+04 -6.94725765e+04 -1.45767833e+05 -1.43328658e+05 -1.25672074e+05 -1.04297691e+05 -1.46064600e+05 -1.24321200e+05 -1.38298026e+05 -1.72872622e+05 -2.56664309e+04 -1.29752978e+05 -1.53868422e+05 -1.48106607e+05 -1.38202096e+04 -1.48388723e+05 -1.42432971e+05 -1.23467470e+05 -1.29900422e+05 -1.34488811e+05 -1.49281024e+05 -1.34798190e+05 4.99404275e+04 3.05347808e+04] [-2.89170974e+05 -3.52862700e+05 -3.57380090e+05 -4.69880091e+05 -3.54712006e+05 -3.75073621e+05 -6.23062507e+05 -5.41706736e+05 -4.00936208e+05 -3.68398479e+05 -3.95634063e+05 -4.48670069e+05 -8.95069385e+04 -1.39370671e+05 -4.12950775e+05 -3.30002822e+05 -3.44975118e+05 -5.31259749e+05 -3.39285212e+05 -3.82303340e+05 -4.29857423e+05 -5.42888810e+05 -1.52908515e+04 -3.76714987e+05 -4.68181405e+05 -4.45352348e+05 3.95923114e+04 -4.26952810e+05 -4.58642166e+05 -4.61558303e+05 -3.75209809e+05 -2.26665941e+05 -4.29279551e+05 -3.86600351e+05 2.17914558e+05 1.84136562e+05] [-7.06704652e+05 -5.28531334e+05 -8.52248313e+05 -1.11345517e+06 -8.47437347e+05 -8.74145524e+05 -1.49078585e+06 -1.05247917e+06 -9.93701825e+05 -5.77438225e+05 -9.85105946e+05 -1.10735147e+06 -7.71735461e+04 -2.19358381e+05 -9.54599760e+05 -6.78107392e+05 -8.50196566e+05 -1.42104913e+06 -6.81286413e+05 -9.29022531e+05 -1.03590532e+06 -1.31050508e+06 1.15691464e+05 -9.36076659e+05 -1.09750082e+06 -9.79604060e+05 2.56171274e+05 -9.86835254e+05 -9.47011533e+05 -1.33228751e+06 -8.85422997e+05 -4.53765789e+05 -1.00451764e+06 -9.86726700e+05 7.83015887e+05 6.41715455e+05] [-1.33931977e+06 -9.66542121e+05 -1.60596754e+06 -1.79388278e+06 -1.56587091e+06 -1.69851057e+06 -2.79598868e+06 -1.57719583e+06 -1.77647483e+06 -1.21367595e+06 -2.04784884e+06 -2.15419675e+06 1.29808886e+05 -2.48988624e+05 -1.85278783e+06 -1.26896891e+06 -1.66361921e+06 -2.28222515e+06 -9.32929761e+05 -1.77536563e+06 -1.97566663e+06 -2.40157087e+06 4.71702202e+05 -1.80302774e+06 -2.08269818e+06 -1.83492480e+06 8.04898469e+05 -1.88891756e+06 -1.39934840e+06 -2.28771909e+06 -1.69740515e+06 -8.25501237e+05 -1.91490797e+06 -1.92163750e+06 1.83910492e+06 1.43550234e+06] [-1.59981729e+06 -1.03180824e+06 -1.92277983e+06 -2.30925161e+06 -1.91388465e+06 -2.05907210e+06 -3.93837111e+06 -1.79304498e+06 -2.18898729e+06 -1.28543497e+06 -2.57907255e+06 -2.75663006e+06 6.09276916e+05 2.09174085e+05 -2.30067343e+06 -1.66520841e+06 -1.98404702e+06 -3.14764258e+06 -9.54706465e+05 -2.17399998e+06 -2.48056940e+06 -3.19729530e+06 9.91461040e+05 -2.21970531e+06 -2.64075930e+06 -2.23183435e+06 1.58795566e+06 -2.33249613e+06 -1.72202637e+06 -3.14598025e+06 -2.05697189e+06 -9.42304363e+05 -2.39845810e+06 -2.40039438e+06 2.90994015e+06 2.32409762e+06] [-1.59324931e+06 -1.06990378e+06 -1.99339412e+06 -2.87090578e+06 -2.02287192e+06 -2.17436075e+06 -4.74691925e+06 -2.62055246e+06 -2.50782928e+06 -1.23854553e+06 -2.77474811e+06 -3.11027843e+06 1.10997011e+06 7.79215394e+05 -2.47769750e+06 -1.46814742e+06 -2.05717199e+06 -4.17925035e+06 -6.62598709e+05 -2.35317602e+06 -2.77115795e+06 -3.52908493e+06 1.58418607e+06 -2.40038501e+06 -3.01459570e+06 -2.24703043e+06 2.34431183e+06 -2.54342855e+06 -2.27885953e+06 -3.76995337e+06 -2.17861146e+06 -4.53977735e+05 -2.61326022e+06 -2.59516233e+06 4.11120724e+06 3.34834901e+06] [-1.46311521e+06 -1.20432068e+06 -2.04767382e+06 -2.95137054e+06 -2.03739999e+06 -2.22824295e+06 -4.94379898e+06 -3.33956777e+06 -2.55095472e+06 -1.69810114e+06 -2.92445505e+06 -3.36162671e+06 1.44701027e+06 1.29851301e+06 -2.72386346e+06 -1.64940542e+06 -2.06014281e+06 -4.33770644e+06 -5.51684516e+05 -2.39669101e+06 -2.94125810e+06 -3.63627282e+06 1.87452411e+06 -2.47605582e+06 -3.27472502e+06 -2.54715864e+06 2.76697578e+06 -2.68007393e+06 -2.31252102e+06 -3.67781133e+06 -2.26246990e+06 -5.77168400e+05 -2.80038884e+06 -2.73206369e+06 4.90185486e+06 3.82956467e+06] [-1.59738401e+06 -1.62357454e+06 -1.82092259e+06 -2.49843387e+06 -1.76984532e+06 -1.98571551e+06 -4.50283922e+06 -3.36675591e+06 -2.32282854e+06 -2.60137689e+06 -2.77208288e+06 -3.08302547e+06 1.42351537e+06 1.33981962e+06 -2.65404843e+06 -2.58517980e+06 -1.78183074e+06 -3.26838913e+06 -1.56533234e+06 -2.06147711e+06 -2.63201529e+06 -3.55501053e+06 1.48474531e+06 -2.12199319e+06 -3.05247265e+06 -3.04481377e+06 2.41003234e+06 -2.47993221e+06 -1.64352714e+06 -2.88852008e+06 -2.03150827e+06 -1.53298937e+06 -2.69981962e+06 -2.49301061e+06 4.57716831e+06 3.16546846e+06] [-1.63192928e+06 -1.50894150e+06 -1.82012033e+06 -3.06927939e+06 -1.76084399e+06 -1.95188130e+06 -4.50844238e+06 -3.76467381e+06 -2.75104844e+06 -2.64435860e+06 -2.88642584e+06 -3.31259711e+06 1.31790822e+06 1.14748377e+06 -2.66787067e+06 -2.50509974e+06 -1.89202922e+06 -4.06546039e+06 -1.41542044e+06 -2.10434810e+06 -2.74884949e+06 -3.81140783e+06 1.30228029e+06 -2.25450672e+06 -3.14642880e+06 -3.23172627e+06 2.23223930e+06 -2.50740791e+06 -1.98563337e+06 -3.47030906e+06 -2.02374200e+06 -1.32295591e+06 -2.67945907e+06 -2.61088156e+06 4.27964876e+06 3.03834201e+06] [-1.51681485e+06 -8.26555085e+05 -1.99855080e+06 -3.03196352e+06 -1.92293743e+06 -2.05586737e+06 -4.59721909e+06 -3.17551106e+06 -2.89884037e+06 -2.36232676e+06 -3.03518172e+06 -3.50410966e+06 1.13530086e+06 7.31406462e+05 -2.81781169e+06 -2.34331689e+06 -2.09245457e+06 -4.15059562e+06 -1.53950662e+06 -2.31579648e+06 -2.92321291e+06 -3.95746320e+06 1.37463500e+06 -2.47983858e+06 -3.26993012e+06 -3.43836535e+06 2.22270154e+06 -2.65865883e+06 -2.09241281e+06 -3.94474679e+06 -2.19969661e+06 -1.05796690e+06 -2.79015574e+06 -2.78786877e+06 4.21005877e+06 3.20799941e+06] [-1.36366285e+06 -1.13619246e+06 -1.64071597e+06 -3.06949243e+06 -1.52003482e+06 -1.75841812e+06 -3.70093636e+06 -2.86872500e+06 -2.61717169e+06 -2.07290582e+06 -2.47113378e+06 -2.95060353e+06 7.31608939e+05 3.24425509e+05 -2.27366280e+06 -1.68614268e+06 -1.89279365e+06 -4.12547526e+06 -1.41703982e+06 -1.89498212e+06 -2.36527194e+06 -3.15438988e+06 8.58907121e+05 -2.18022676e+06 -2.68858818e+06 -2.59326888e+06 1.53971415e+06 -2.26051962e+06 -2.41762551e+06 -3.60757734e+06 -1.81137188e+06 -6.63733684e+05 -2.27000338e+06 -2.34140823e+06 3.17853005e+06 2.49862398e+06] [-1.50484960e+06 -1.57898936e+06 -1.53431941e+06 -2.14367452e+06 -1.35511314e+06 -1.73042927e+06 -2.55168313e+06 -2.06865946e+06 -2.09174291e+06 -2.57737502e+06 -2.41840496e+06 -2.60053132e+06 3.32856469e+05 -9.42516760e+04 -2.09277484e+06 -1.83395682e+06 -1.90902681e+06 -2.40410971e+06 -1.71593613e+06 -1.65352660e+06 -1.97606770e+06 -2.77172948e+06 3.73449865e+05 -2.02637091e+06 -2.31297756e+06 -2.18017018e+06 8.60298961e+05 -2.10224949e+06 -1.68252316e+06 -2.40673847e+06 -1.66674023e+06 -1.17742456e+06 -2.06911594e+06 -2.19921130e+06 2.27108604e+06 1.54993517e+06] [-1.31622270e+06 -7.34742916e+05 -1.63078378e+06 -1.11745102e+06 -1.46463947e+06 -1.78442379e+06 -1.70612619e+06 -7.02050256e+05 -1.55344551e+06 -1.99605170e+06 -2.30862311e+06 -2.29071017e+06 -2.29810025e+05 -4.97082715e+05 -2.01873698e+06 -2.25795333e+06 -1.98545508e+06 -1.21814712e+06 -1.28780157e+06 -1.67986852e+06 -1.86979620e+06 -2.36581413e+06 1.35038567e+05 -2.02520601e+06 -1.98287030e+06 -2.02860072e+06 1.96848861e+05 -1.96195728e+06 -1.10170394e+06 -2.13052601e+06 -1.69768442e+06 -1.78405741e+06 -1.93291942e+06 -2.13910334e+06 1.32242284e+06 8.31743933e+05] [-7.42849219e+05 -2.15114781e+05 -1.27544202e+06 -7.14677611e+05 -1.15691412e+06 -1.36209201e+06 -1.30216618e+06 4.88161978e+04 -9.59639209e+05 -8.88898865e+05 -1.70771211e+06 -1.64955473e+06 -8.12170178e+04 -1.79186732e+05 -1.50119221e+06 -1.65037568e+06 -1.51798562e+06 -9.88318642e+05 -1.98643296e+05 -1.31718312e+06 -1.45735941e+06 -1.73748074e+06 2.66253849e+05 -1.57654442e+06 -1.40064089e+06 -1.36837681e+06 2.67019711e+05 -1.42767001e+06 -6.76073729e+05 -1.73976875e+06 -1.29993114e+06 -1.22720291e+06 -1.39811531e+06 -1.60744077e+06 1.08042690e+06 7.99886566e+05] [-5.46870451e+05 -5.36448244e+05 -7.55877720e+05 -3.07589489e+05 -6.77104580e+05 -8.31330596e+05 -7.55067298e+05 1.62595538e+05 -4.13986756e+05 -5.89463955e+05 -1.10220942e+06 -9.28728988e+05 1.83608212e+05 9.75736797e+04 -8.95739115e+05 -1.00087148e+06 -9.02462558e+05 -3.26515877e+05 1.04680398e+04 -7.52684633e+05 -8.48872118e+05 -1.09391591e+06 2.46686280e+05 -9.14159984e+05 -8.04965238e+05 -7.64776867e+05 3.35110664e+05 -8.27811757e+05 -1.86803727e+05 -7.59434332e+05 -7.52032916e+05 -7.25012409e+05 -8.35764553e+05 -9.55321143e+05 9.67726571e+05 5.96407951e+05] [-4.79247473e+05 -5.73699596e+05 -4.98463721e+05 -6.06075603e+04 -4.23941519e+05 -5.87730865e+05 -3.72698493e+05 2.42907720e+05 -2.36264432e+05 -7.78871565e+05 -7.72535558e+05 -5.61510663e+05 1.13470720e+05 -5.19537635e+04 -6.07783826e+05 -8.75042864e+05 -6.27744081e+05 1.80976493e+05 -2.03789109e+05 -4.70984003e+05 -5.11822383e+05 -7.74807690e+05 1.09720815e+05 -5.81904867e+05 -5.00364300e+05 -5.84160720e+05 1.59970489e+05 -5.53805729e+05 4.38034734e+04 -1.99699079e+05 -4.90158298e+05 -7.44422507e+05 -5.69296791e+05 -6.21662189e+05 5.37676489e+05 2.11370210e+05] [-3.46040711e+05 -2.84534879e+05 -3.05943617e+05 -3.66673783e+04 -2.51391058e+05 -3.56218357e+05 -2.19892949e+05 2.99117195e+05 -1.79945779e+05 -5.57850997e+05 -4.61287855e+05 -3.22747798e+05 2.55364546e+04 -1.08119869e+05 -3.68757449e+05 -6.14327372e+05 -3.85603614e+05 1.81505436e+05 -3.31318118e+05 -2.73771222e+05 -2.74170631e+05 -4.93336263e+05 4.94201397e+04 -3.41193325e+05 -2.85985778e+05 -3.99678063e+05 8.23799276e+04 -3.34809844e+05 1.17594209e+05 -9.65603413e+04 -2.96018670e+05 -5.89105442e+05 -3.45677860e+05 -3.76618899e+05 2.49974102e+05 6.40392963e+04] [-1.02433900e+05 1.40629671e+04 -1.37480111e+05 -6.11821713e+03 -1.34484353e+05 -1.29093798e+05 -1.46040833e+05 1.62505754e+05 -6.26077463e+04 -2.50893124e+04 -1.55337527e+05 -1.31029373e+05 1.02341138e+04 -2.79332564e+04 -1.45487240e+05 -1.48251331e+05 -1.39839334e+05 1.14660701e+03 -1.25699661e+05 -1.29090493e+05 -1.33187747e+05 -1.58138912e+05 4.91052772e+04 -1.42007058e+05 -1.23498681e+05 -1.22444780e+05 5.39454238e+04 -1.26638364e+05 3.31969402e+04 -9.53139211e+04 -1.32041129e+05 -1.30843726e+05 -1.35011840e+05 -1.46071794e+05 1.17702953e+05 7.24523791e+04] [-2.13502612e+04 2.19986075e+04 -3.93832968e+04 -1.08471647e+04 -3.96579301e+04 -3.53170126e+04 -4.34785836e+04 3.59567579e+04 -2.13209931e+04 6.03580554e+03 -4.15166498e+04 -3.95783645e+04 -7.92470770e+02 -8.85687031e+03 -4.14898581e+04 -2.94403778e+04 -3.99701261e+04 -1.75341602e+04 -1.62823499e+04 -3.79717472e+04 -4.04142568e+04 -3.78172044e+04 2.10056596e+04 -4.15871582e+04 -3.74187736e+04 -3.32697751e+04 2.06123086e+04 -3.67628531e+04 -6.55140510e+03 -3.78633965e+04 -3.85047667e+04 -1.87726969e+04 -3.71824889e+04 -4.13174477e+04 3.61317472e+04 2.87356391e+04] [-5.94176231e-01 -3.81076578e-02 -8.94473839e-01 -7.79055153e-01 6.11513233e-01 -9.37959906e-01 8.36163870e-01 -2.51016385e-01 -8.20312409e-01 8.07009835e-01 1.80355770e-02 4.38034226e-01 -7.15988026e-01 9.71745491e-01 2.09002873e-01 2.12852374e-01 -6.94409199e-01 -3.97018561e-01 -3.91759943e-02 -4.80968082e-01 3.96945512e-01 -2.65951073e-01 8.37271735e-01 7.86597035e-01 1.66302699e-01 -7.44952714e-01 -5.70958223e-01 -1.82543478e-01 -1.02552245e-01 3.03510895e-01 -2.75753211e-01 3.58297345e-01 -8.90259502e-01 4.69889746e-01 9.46135381e-01 -8.61946459e-01] [ 5.97083676e-01 3.09771596e-01 2.01269447e-01 -1.19304515e-02 -6.86159424e-02 6.97997754e-02 3.01311490e-01 -3.25858986e-01 6.87539291e-02 -7.10419696e-01 6.20580727e-02 -5.53454274e-01 -6.41747609e-01 8.09202684e-01 -7.43186759e-01 7.62474920e-01 8.66169516e-01 5.01596312e-01 -4.53754699e-01 1.12996292e-01 1.77525736e-01 9.05375407e-02 -2.68762730e-01 -3.46325223e-01 -2.54221314e-01 -3.33890083e-01 -3.27066731e-03 -4.95667858e-01 5.02507375e-01 -7.95641199e-01 -9.63319348e-01 -5.74820832e-01 2.10427528e-01 -7.15339950e-03 -5.96345783e-01 -8.87656036e-01] [-5.25848934e-01 8.79449453e-01 7.78512260e-01 9.19068615e-01 -8.39479399e-01 1.55587170e-01 2.46947027e-01 8.64048786e-01 1.44893535e-01 3.96948490e-01 -5.42654647e-01 -1.24569406e-01 1.69176480e-01 2.88179344e-01 -6.77254111e-02 -1.87835180e-01 3.55777205e-01 7.43809540e-01 1.77354230e-01 -1.65345002e-01 6.42933497e-01 -4.62340024e-01 6.67570264e-01 -8.69460624e-01 -7.13542520e-01 -8.47502000e-01 5.49925949e-01 9.00060680e-02 1.35909643e-01 8.66390310e-02 -5.90471753e-01 -9.79769861e-01 -2.79923157e-02 6.20449489e-01 6.91618789e-01 4.75293660e-01] [ 4.91711012e-01 -4.78010719e-01 -2.86414591e-01 2.99551860e-03 -2.85942948e-01 -5.00158512e-01 4.51907122e-02 5.50876347e-01 -1.05040629e-01 7.51860331e-01 3.34791457e-01 1.71711011e-01 8.58555036e-01 -6.60268560e-01 -1.83746005e-01 -6.94121482e-01 -6.10843295e-01 -4.35922209e-01 9.77531652e-01 2.95127607e-01 -5.45565917e-01 7.31880863e-01 2.02362012e-01 7.24156840e-01 -8.16951620e-01 8.52620433e-01 2.42504274e-01 8.30561521e-01 -2.55883346e-01 9.40595551e-02 5.82685656e-01 -3.18195857e-01 -7.49336321e-01 -2.51686400e-02 5.47911741e-01 -2.67205196e-01] [-1.30447771e-01 -4.10952253e-01 6.97988721e-01 2.40824186e-02 8.03863822e-02 -6.54843136e-01 -2.17029785e-01 4.91887484e-01 -3.44008274e-01 9.14883965e-01 7.07951788e-01 8.29222368e-01 4.82229962e-01 1.07044568e-02 4.81559902e-01 -6.88180378e-01 5.51167303e-01 9.19784965e-01 6.27352603e-01 9.09717032e-01 1.69166468e-01 1.97715737e-01 4.56886135e-01 -8.00298020e-01 2.23468957e-01 -6.41772321e-01 6.91120232e-02 7.51386615e-01 9.50469926e-01 6.74318270e-02 -1.66101927e-01 -8.21871023e-01 1.45753202e-01 4.74327960e-01 5.60342310e-01 6.38536834e-01] [ 4.33669466e-01 -9.45852884e-02 4.14619578e-01 -8.65842838e-02 5.94551961e-01 5.12935246e-03 -8.39495405e-01 -9.76253303e-01 -1.00413902e-01 -2.16046429e-01 -6.00418180e-01 -8.76996714e-01 -2.13275776e-01 9.53123182e-01 1.44859691e-01 -9.67347308e-01 7.89031106e-01 3.08972789e-01 2.14636606e-01 8.50264688e-01 -9.06574446e-01 -4.17235563e-01 -7.52468964e-01 -9.14436723e-01 -6.70487449e-01 -5.91578413e-01 2.14059803e-01 6.11090121e-01 -5.71404987e-01 -9.99716269e-01 6.74374904e-02 1.42035934e-01 -2.86018049e-01 -5.04650083e-01 -1.22317798e-01 -6.23992972e-01] [ 3.85290566e-01 -5.10210803e-01 -2.83108569e-01 -2.85599064e-01 -1.06304300e-01 -2.83486439e-01 3.26049360e-01 -1.86645238e-01 -1.42633521e-01 7.48302714e-01 1.33575400e-01 7.16597580e-01 9.09136017e-01 7.93059026e-01 2.05917137e-02 2.17246529e-01 -9.53358252e-01 4.85825193e-01 -6.10257052e-02 5.56542579e-01 -5.64655334e-01 -4.63254170e-01 4.38405666e-01 -6.23656993e-01 6.37567409e-01 -8.47843168e-01 5.67033102e-01 7.59412569e-01 -4.27478242e-01 1.89661313e-01 6.86870014e-01 -7.74216882e-01 4.34126642e-01 -3.41518603e-01 6.74832049e-01 8.85119002e-01] [ 6.93602228e-01 -5.20389984e-01 9.75494072e-01 -4.00504822e-01 4.01680398e-01 -5.12410235e-01 7.33746053e-01 -5.61384910e-01 -2.21974341e-01 -5.64291597e-01 -8.78081792e-01 -8.15147546e-01 -3.94188872e-03 7.47266834e-01 5.72867879e-01 -2.91770904e-01 7.11853929e-01 2.94999641e-01 7.43035389e-01 3.95484260e-03 -3.09505227e-01 -2.76619924e-01 5.44527845e-01 4.60076407e-01 1.92221422e-01 -7.23120529e-01 -7.36939580e-02 5.75592296e-01 -4.66331534e-01 8.93427902e-01 -4.95623065e-01 9.86627481e-01 2.64206599e-01 -7.37841952e-01 7.63265063e-01 7.44105515e-01] [-7.10313364e-01 -6.59124026e-02 -6.74341320e-01 -4.15203140e-01 -3.52028956e-01 -7.99978938e-01 -5.52830305e-01 -7.16613620e-01 6.60462033e-01 6.81640592e-01 4.08743360e-01 -6.58652328e-01 -9.42149308e-01 -7.49518309e-01 8.67671525e-01 8.76561549e-01 5.96641794e-01 9.04008929e-01 -5.26396559e-01 6.45485559e-01 -5.43202178e-01 -3.12932552e-02 6.13399793e-01 -7.30391486e-01 -6.49718827e-01 9.80960234e-02 5.73124358e-01 -1.17296490e-01 1.07980266e-01 9.94648218e-02 6.86627443e-01 -2.52558966e-01 5.91843460e-01 -8.32135242e-01 -3.63659535e-01 6.66196339e-02] [-1.14486886e+04 -1.24536837e+04 -1.30031676e+04 -1.17718124e+04 -1.19543007e+04 -1.36559462e+04 -1.18628914e+04 -1.28309796e+04 -1.13488940e+04 -1.27791213e+04 -1.33415494e+04 -1.39057886e+04 -1.13249855e+04 -1.11328349e+04 -1.35089366e+04 -1.29273374e+04 -1.33699234e+04 -1.15138628e+04 -1.21554011e+04 -1.31175586e+04 -1.34630471e+04 -1.36141009e+04 -1.28947499e+04 -1.31261250e+04 -1.39293372e+04 -1.19172851e+04 -1.30420302e+04 -1.43199114e+04 -1.27441909e+04 -1.14697543e+04 -1.29597756e+04 -1.23438580e+04 -1.40524390e+04 -1.38067309e+04 -1.26429400e+04 -1.22057428e+04] [-2.63753434e+04 -2.89407646e+04 -2.93853087e+04 -2.71748234e+04 -2.68048346e+04 -3.10420472e+04 -2.74210220e+04 -2.98397967e+04 -2.61491258e+04 -2.95446152e+04 -3.02686104e+04 -3.16280470e+04 -2.59551799e+04 -2.56243009e+04 -3.06636847e+04 -2.99206447e+04 -3.03126094e+04 -2.65513925e+04 -2.81670171e+04 -2.96398060e+04 -3.05328484e+04 -3.13549297e+04 -2.99153720e+04 -2.96984871e+04 -3.16987856e+04 -2.75343595e+04 -3.01502940e+04 -3.26508091e+04 -2.94747135e+04 -2.64507865e+04 -2.92936975e+04 -2.84996382e+04 -3.19891799e+04 -3.13753615e+04 -2.92123219e+04 -2.82918885e+04] [-3.37079034e+04 -4.17910507e+04 -4.44001522e+04 -1.47041920e+04 -3.62990811e+04 -5.21235673e+04 -3.91218394e+04 -3.24436181e+04 -3.28105188e+04 -5.10313201e+04 -5.80707172e+04 -5.57027699e+04 -2.06032561e+04 -3.00630581e+04 -5.18343044e+04 -3.14374847e+04 -4.83922596e+04 -9.55616774e+03 -3.64799164e+04 -4.81129799e+04 -5.04576364e+04 -3.70664277e+04 -2.78664523e+04 -4.57875292e+04 -5.72786318e+04 -4.03449342e+04 -1.81739247e+04 -5.83832952e+04 -1.25728316e+04 -2.07829814e+04 -4.76649598e+04 -4.24145018e+04 -5.63984707e+04 -5.07777463e+04 -1.20588352e+04 -2.34936087e+04] [-2.50382287e+04 -4.33963047e+04 -4.08124046e+04 1.08653682e+04 -2.69401371e+04 -5.77121725e+04 -4.07199144e+04 -4.03029350e+04 -2.46413554e+04 -7.29881152e+04 -7.41803489e+04 -6.78777920e+04 2.11683195e+04 4.62856376e+03 -5.92745914e+04 2.65660777e+03 -5.18771709e+04 1.51728476e+04 -2.92306151e+03 -4.98267653e+04 -5.73803842e+04 -1.16282561e+04 1.68451889e+04 -4.63176659e+04 -7.21570810e+04 -3.02771319e+04 4.18790569e+04 -6.92057850e+04 1.49820945e+04 1.23377003e+04 -5.17076918e+04 -1.42202869e+04 -6.46303350e+04 -5.40596617e+04 6.74132458e+04 3.72461790e+04] [-4.94597850e+04 -3.31110205e+04 -4.43331917e+04 -4.67062264e+04 -3.63645226e+04 -5.65548719e+04 -1.04305198e+05 -6.94006703e+04 -5.19810968e+04 -5.95285892e+04 -6.88597278e+04 -6.71685663e+04 2.84922105e+04 6.42164863e+03 -5.94604008e+04 -2.67858435e+04 -5.47368453e+04 -5.24420958e+04 -2.20453365e+04 -4.91002438e+04 -5.98001522e+04 -6.33366907e+04 3.31801272e+04 -5.21365846e+04 -7.00457732e+04 -6.96752434e+04 5.86965380e+04 -6.41462389e+04 -4.08587136e+04 -4.93797016e+04 -5.04815542e+04 -1.85970450e+04 -6.20782180e+04 -5.80586598e+04 1.06198001e+05 6.74438931e+04] [-1.02245748e+05 2.43272537e+04 -9.60570873e+04 -1.84461356e+05 -9.36145664e+04 -9.17587481e+04 -2.30813317e+05 -1.71982315e+05 -1.60597884e+05 -6.10086574e+04 -1.26899365e+05 -1.53604877e+05 6.02632551e+04 3.75221664e+04 -1.12506404e+05 -9.21243058e+04 -1.00417908e+05 -2.73045897e+05 -4.30722144e+04 -1.18237503e+05 -1.35572678e+05 -2.01199437e+05 9.46931395e+04 -1.16980536e+05 -1.45772343e+05 -1.75319906e+05 1.25201381e+05 -1.17577119e+05 -1.21616343e+05 -2.41159880e+05 -1.04367665e+05 -2.40354662e+04 -1.17871045e+05 -1.26149521e+05 2.60732969e+05 2.02641305e+05] [-1.27722928e+05 8.51517046e+04 -1.65689290e+05 -2.85542722e+05 -1.73418223e+05 -1.48853790e+05 -4.00790877e+05 -2.79786568e+05 -2.76129218e+05 -6.20189568e+04 -2.27693919e+05 -2.90547641e+05 1.02113693e+05 9.42932000e+04 -1.99822405e+05 -7.78821456e+04 -1.53627503e+05 -4.80451397e+05 -6.11689174e+04 -2.13211943e+05 -2.58153340e+05 -3.40203310e+05 1.97116765e+05 -2.03034340e+05 -2.71284026e+05 -2.65837838e+05 2.42873759e+05 -2.04339571e+05 -1.26705243e+05 -4.44936693e+05 -1.84459100e+05 -1.05334963e+04 -2.09958648e+05 -2.16704128e+05 4.48235575e+05 3.78816569e+05] [-1.42981162e+05 -5.94344660e+04 -1.79472669e+05 -4.25640600e+05 -1.92882970e+05 -1.63022377e+05 -7.56230959e+05 -4.38727242e+05 -3.16691704e+05 -4.54940389e+04 -2.75389004e+05 -3.55402054e+05 2.78289770e+05 2.62736012e+05 -2.51450675e+05 -1.42914320e+05 -1.48793468e+05 -6.68634163e+05 -6.94720654e+04 -2.33671668e+05 -3.23976248e+05 -5.05889281e+05 3.10707294e+05 -2.24865239e+05 -3.40152422e+05 -3.96053468e+05 4.53102363e+05 -2.39512587e+05 -2.35489144e+05 -6.31895705e+05 -2.05350161e+05 4.56137018e+04 -2.61804342e+05 -2.51860570e+05 7.69733965e+05 6.26794444e+05] [-1.19792354e+05 -1.51759178e+05 -1.53975966e+05 -4.13794284e+05 -1.58024902e+05 -1.52651655e+05 -7.31250180e+05 -4.70718201e+05 -2.75831980e+05 -7.46623960e+04 -2.42895822e+05 -2.99786253e+05 3.18138290e+05 2.47178917e+05 -2.23042651e+05 -1.19574169e+05 -1.36254892e+05 -6.20350611e+05 1.60583829e+03 -2.03935340e+05 -2.88292158e+05 -4.45114283e+05 3.07893277e+05 -1.96801283e+05 -2.98640136e+05 -3.59070833e+05 4.62537633e+05 -2.14841214e+05 -3.43713124e+05 -5.42825617e+05 -1.78879079e+05 1.04284010e+05 -2.27633525e+05 -2.18441951e+05 8.07087056e+05 6.50265880e+05] [-8.97379643e+04 -5.12599848e+04 -1.28942276e+05 -3.88688096e+05 -1.13029428e+05 -1.22418262e+05 -6.39358716e+05 -4.71638160e+05 -3.32457842e+05 -2.35433370e+05 -2.52476725e+05 -3.33350087e+05 3.13448279e+05 1.80466681e+05 -2.40223293e+05 -1.15067166e+05 -1.29331957e+05 -5.54747560e+05 -1.95056887e+05 -1.82935315e+05 -2.71491589e+05 -4.05324177e+05 3.20800282e+05 -1.89295628e+05 -3.15711082e+05 -4.44643947e+05 4.78876774e+05 -2.17486625e+05 -1.90117401e+05 -4.39164172e+05 -1.65296719e+05 1.47068071e+05 -2.38067334e+05 -2.30945717e+05 6.95050656e+05 5.99925414e+05] [-6.13687156e+04 -1.12508859e+05 -1.01402371e+05 -4.00452060e+05 -1.03999935e+05 -1.01761940e+05 -5.23559127e+05 -3.54688322e+05 -2.44996720e+05 1.75781188e+02 -1.60708795e+05 -2.33073187e+05 2.33764117e+05 1.48502837e+05 -1.51621948e+05 1.11445660e+05 -9.09849157e+04 -5.83057630e+05 -1.67133413e+04 -1.52910580e+05 -2.14011544e+05 -2.65020894e+05 2.33621611e+05 -1.45796883e+05 -2.39889619e+05 -1.91242082e+05 3.66859696e+05 -1.58344940e+05 -1.22762055e+05 -3.17379333e+05 -1.26381192e+05 2.80904202e+05 -1.74690961e+05 -1.55628958e+05 4.47058153e+05 4.28349739e+05] [-9.62781478e+04 -1.16365769e+05 -1.01133824e+05 -2.76437541e+05 -1.02663519e+05 -1.04571345e+05 -3.74469667e+05 -2.32639888e+05 -1.80823683e+05 -5.56027190e+04 -1.40715243e+05 -1.81106322e+05 1.30207827e+05 9.43195517e+04 -1.34448260e+05 -4.13503645e+04 -8.97462187e+04 -3.77792877e+05 -5.01744435e+04 -1.24474675e+05 -1.64066737e+05 -2.28557363e+05 1.27516155e+05 -1.21356948e+05 -1.80766512e+05 -1.81966126e+05 2.11966634e+05 -1.36526234e+05 -1.22749768e+05 -2.64183555e+05 -1.14993550e+05 8.37668952e+04 -1.46352817e+05 -1.33423280e+05 3.30030279e+05 2.85341128e+05] [-7.24755452e+04 -7.49207389e+04 -6.77917230e+04 -2.22868319e+05 -6.55333072e+04 -7.99494832e+04 -2.67067251e+05 -2.02114888e+05 -1.53577482e+05 -4.99937485e+04 -1.00717426e+05 -1.37839467e+05 7.92193252e+04 8.22817524e+04 -9.77653265e+04 -6.18880926e+04 -7.50047039e+04 -3.21386390e+05 -7.29317221e+03 -8.06612191e+04 -1.11827362e+05 -1.64386898e+05 6.09746325e+04 -9.99084366e+04 -1.26095909e+05 -1.00297450e+05 1.21868689e+05 -1.04766371e+05 -1.64401829e+05 -2.46780735e+05 -7.83746314e+04 3.93570608e+03 -1.01369869e+05 -1.01713484e+05 2.22837178e+05 1.92787714e+05] [-6.47641870e+04 -6.15455470e+04 -1.00697432e+05 -2.20753674e+05 -9.26786248e+04 -1.23032018e+05 -2.53624736e+05 -2.15385500e+05 -1.75170730e+05 -4.83532730e+04 -1.50327704e+05 -1.81409594e+05 6.26594096e+04 7.01491711e+04 -1.29655235e+05 -5.41756313e+04 -1.29184894e+05 -3.31003136e+05 5.46046429e+04 -1.19759316e+05 -1.49098808e+05 -1.72780562e+05 5.44194900e+04 -1.54286411e+05 -1.57425761e+05 -9.25927632e+04 1.15415959e+05 -1.45276712e+05 -1.59950368e+05 -2.69418146e+05 -1.15571872e+05 9.74205701e+03 -1.29652563e+05 -1.47499276e+05 2.14603185e+05 1.99885900e+05] [-8.87381091e+04 -9.26082173e+04 -8.06786322e+04 -5.09363779e+04 -7.21116556e+04 -9.63543435e+04 -1.14899374e+05 -8.57343426e+04 -7.33129760e+04 -9.87138167e+04 -1.11133070e+05 -1.00958556e+05 3.22336102e+04 1.72919330e+04 -1.02949949e+05 -1.10000569e+05 -9.18655540e+04 -2.95107059e+04 -4.37294242e+04 -8.39979173e+04 -9.50381662e+04 -1.05644746e+05 1.89974019e+04 -8.88834406e+04 -1.03424993e+05 -8.21137499e+04 4.48330804e+04 -9.93763184e+04 -4.32013710e+04 -6.22480221e+04 -8.71886139e+04 -9.06209278e+04 -1.03034619e+05 -1.01505757e+05 9.97423850e+04 5.71590614e+04] [-1.24348346e+05 -8.71398011e+04 -4.31682717e+04 5.00090632e+04 -3.45737825e+04 -5.89030921e+04 -3.92247686e+04 4.52744032e+04 -4.17013160e+04 -1.45245275e+05 -7.26675982e+04 -3.84113145e+04 5.81508622e+04 3.44081245e+04 -6.99321316e+04 -2.05921208e+05 -4.28293385e+04 1.43032369e+05 -1.60687233e+05 -2.85914258e+04 -3.23240814e+04 -9.88463281e+04 1.13455153e+04 -2.67335269e+04 -4.81131344e+04 -8.79116492e+04 4.60151873e+04 -5.44664354e+04 1.46091903e+05 6.48888777e+04 -4.50665574e+04 -2.13575290e+05 -7.33685161e+04 -5.61318696e+04 4.87737173e+04 -1.42822254e+04] [-1.22943113e+05 -9.10282295e+04 -2.75294092e+04 4.70794499e+04 -1.84498346e+04 -4.05828185e+04 -1.42164253e+04 6.83971388e+04 -3.42472178e+04 -1.36813834e+05 -4.67188748e+04 -1.47282455e+04 3.09513304e+04 2.14121151e+02 -4.71860470e+04 -2.00731117e+05 -2.74340183e+04 1.47274995e+05 -2.06205801e+05 -8.66787132e+03 -6.85616841e+03 -8.54279757e+04 -2.10168076e+04 -9.60646678e+03 -2.24509610e+04 -8.13055450e+04 4.66718570e+03 -3.40192933e+04 1.53788842e+05 7.03687287e+04 -2.57093606e+04 -2.15818199e+05 -5.30511176e+04 -3.63005777e+04 -3.38155456e+03 -6.15053693e+04] [-3.03131830e+04 -1.62076372e+04 -1.56659695e+04 2.29842883e+03 -1.48716515e+04 -1.20350918e+04 -2.40819493e+04 4.01091248e+04 -3.72035796e+03 -6.89053721e+03 -1.60632741e+04 -1.38189407e+04 1.35831711e+04 3.96645808e+03 -1.94330347e+04 -4.43601073e+04 -1.07234000e+04 1.27727731e+04 -8.60054215e+04 -1.11156289e+04 -1.21153305e+04 -3.54735954e+04 -1.06296970e+04 -1.23529886e+04 -1.39776825e+04 -2.37196348e+04 3.90132657e+03 -1.13141026e+04 4.42155555e+04 -4.17243835e+03 -1.33629666e+04 -6.03905796e+04 -2.08643547e+04 -1.69629927e+04 3.81488509e+03 -1.62077441e+04] [-5.58414368e-01 -9.70471191e-01 1.83718256e-02 -9.75830955e-01 9.16341677e-01 3.47016824e-01 7.49157034e-01 -9.28587917e-01 -4.10535751e-01 2.76945346e-01 -8.23477432e-01 6.71673415e-01 2.68614581e-01 -5.61802882e-02 2.49551188e-01 -1.48757709e-01 5.99823224e-01 4.72070827e-01 -9.44399571e-01 -5.18577334e-01 6.13481235e-01 -8.59854209e-01 -1.69457906e-01 7.52431170e-02 3.05857604e-01 -9.30687259e-01 -5.29898830e-01 -2.86141142e-01 -8.14047217e-01 9.73806287e-01 -8.20285911e-01 -7.07639660e-01 3.59650425e-01 9.87485706e-01 -2.20039540e-01 -2.61588327e-01] [ 5.72608071e-01 2.33530101e-01 6.00498229e-01 2.28325618e-01 -4.64364985e-01 -9.65431528e-01 5.10312059e-02 -3.24854200e-01 3.15842332e-01 -8.57049137e-01 9.31756191e-01 5.61954778e-01 -4.79347035e-01 -6.40421437e-01 -1.80755414e-01 -9.03906709e-01 -4.05077118e-01 2.14711498e-01 -2.13021970e-01 -8.47191222e-01 -8.32035878e-01 7.55553096e-01 3.73622457e-01 -5.92786139e-01 -7.07424603e-01 -3.29681284e-01 -4.61888094e-01 -9.31932215e-01 -7.55956296e-01 7.32804674e-01 8.73828459e-01 -6.10612601e-01 -1.21056672e-01 9.40360396e-01 -3.34967722e-01 -2.26362504e-01] [ 2.36464052e-01 1.74153485e-01 6.40094170e-01 5.15566594e-01 -4.15053423e-01 4.02144479e-01 9.05477457e-01 -3.50139231e-02 3.71963517e-01 -9.48158877e-01 1.36436272e-01 8.26476934e-01 -1.92057599e-01 7.93526990e-02 8.67484453e-01 -1.14510330e-01 -8.36366740e-01 -7.04370574e-01 -8.64055902e-01 -7.67772104e-02 -1.74061544e-01 8.26038328e-01 -9.18999810e-01 -6.63860601e-02 -9.31420914e-01 -9.06765421e-01 5.32140099e-01 6.61840184e-01 8.35142235e-01 6.16100959e-01 3.95933242e-01 -7.57683256e-01 -6.53560473e-01 -8.03083364e-01 -5.29417610e-01 -4.71169838e-01] [ 3.60935655e-01 -3.45237237e-01 -4.35722243e-01 -3.75814985e-01 -1.49277035e-01 -2.74310270e-01 -6.84479293e-01 6.66535744e-01 2.60794123e-02 -5.79732077e-01 4.28614506e-01 -9.69019476e-01 7.26218581e-01 -4.06009344e-01 9.60914266e-01 -1.61858519e-01 4.02715687e-01 -9.33991159e-01 3.26568714e-01 1.60260805e-01 8.67397780e-01 -3.78419898e-01 -5.76835669e-01 6.22969159e-01 -1.50952102e-01 -3.25016998e-01 -8.36681811e-01 6.00442492e-01 2.70687485e-01 -3.84585640e-01 -6.12825399e-01 8.58256896e-01 6.71107642e-01 2.54943771e-01 -1.13526455e-01 -2.30062742e-01] [ 2.46337033e-01 5.61829519e-02 -6.96518111e-01 5.69103564e-01 9.75568138e-01 2.44355484e-01 -2.50523822e-01 1.55170553e-01 2.97664350e-01 1.18152581e-01 1.53620154e-01 -2.78894826e-02 4.16572323e-01 -8.30472394e-01 -1.60660972e-01 3.81581455e-01 7.02251444e-01 6.72157256e-01 -2.59652772e-01 -5.07959386e-01 3.55672306e-01 1.11237772e-01 2.44518199e-01 7.76226459e-01 7.70111438e-02 2.15682935e-01 -8.57920365e-03 -9.23451633e-01 4.46530603e-01 -1.85047952e-01 -8.13071179e-01 5.19200588e-01 5.55961997e-02 4.14949149e-01 -2.04051554e-01 4.48129319e-01]] syn1 = [[ 1.75977685e+01 2.05978316e+01 -1.39930154e+02 -4.72769089e+01 3.34585189e+01 -8.83459131e+00 -4.01429061e+01 -1.12633578e+02 -9.45485523e+00 4.31161573e+01 -2.84505982e+01 -8.65471439e+01 -2.54491398e+01 -4.90225383e+01 -5.65367032e+01 -4.39647713e+01 -4.80778132e+01 -1.71617803e+02 3.81401258e+01 1.13354141e+02 -1.24004405e+02 -4.66459847e+01 -8.47690337e+01 -1.93748286e+01 -1.19794282e+02 -1.08444970e+02 -7.97907133e+01 -1.18694351e+02 -6.34789137e+01 -5.71908923e+01 3.90321855e+01 -1.15421995e+02 1.24583856e+02 -1.27481474e+02] [-1.86177366e+02 -5.22331083e+01 -1.64582441e+02 -2.14658516e+01 -8.14839838e+01 -4.68804044e+00 -4.11042144e+01 -1.82920245e+02 8.11842007e+01 1.01294764e+01 8.30170526e+01 -2.09278793e+01 -4.08508104e+01 -1.65559213e+02 9.36006217e+00 -1.58378927e+01 -1.45391162e+01 -9.56463577e+01 7.72729537e+01 -2.66451188e+01 -1.51068490e+02 -1.51576057e+02 -1.25943201e+02 -2.05711402e+01 -3.26242315e+01 -5.02006740e+01 -2.08872109e+02 -1.64221174e+02 -2.35810717e+02 -7.19641912e+01 2.99477061e+01 -6.65396893e+01 1.94313906e+01 -1.08048703e+02] [-2.80808733e+00 8.83277093e+00 -7.83718893e+00 -2.47947559e+01 4.08788466e-01 -2.28210001e+01 3.52431274e+00 -1.44689741e+01 2.15705560e+01 5.72611117e+01 -3.72077974e+01 4.48356471e+00 -1.79727014e+01 -7.20906163e+00 -1.02442398e+01 -2.49985191e+01 -1.08785909e+01 -4.09336100e+01 3.49988579e+00 5.09117197e+01 -6.51490779e+00 5.59177739e+00 -1.28554678e+01 2.51126471e+01 -2.83165122e+01 -1.63845716e+01 3.66288989e+00 -9.99184127e+00 4.03849651e+00 -8.99396336e+01 -5.50493138e+00 9.16982091e+00 3.48510224e+01 -3.72759039e+00] [-5.45919431e+01 3.88499753e+00 -1.36603699e+02 -9.09213343e+01 1.18298483e+02 -2.30421226e+02 -1.20320811e+02 -2.04819949e+02 -3.62671434e+00 7.76818565e+01 -1.09655952e+02 -1.24209920e+02 -7.94922284e+01 -1.58236275e+02 3.44696897e+01 -1.73680008e+02 -5.46746785e+01 -1.38685412e+02 1.58027996e+02 -6.79641994e+00 -4.97990060e+01 -4.01043885e+01 -1.88058045e+02 -7.77818268e+01 -1.99336444e+02 -8.63036715e+01 -3.51039161e+01 -9.43755282e+01 -5.47659453e+01 -1.28670909e+02 -5.69016884e+01 -1.13741737e+02 3.26842182e+01 -1.04476677e+02] [ 2.52365383e+01 5.81346373e-01 -1.96379928e+00 -4.50975113e+00 -1.31623789e+00 5.83273108e+00 2.26025973e+01 -2.00052206e+00 3.29211420e+00 5.91627848e+01 -3.01802715e+01 1.90563531e+01 -1.09158883e+01 1.22008080e+01 -2.03664460e+01 -2.85383463e+01 1.13966008e+01 -1.16837175e+01 6.72374352e+00 5.82630928e+01 -1.40870984e+01 1.42788353e+01 1.05049521e+01 3.15926462e+01 -1.47133523e+01 -9.09216652e+00 1.89645261e+01 9.54904661e+00 2.64738838e+01 -6.59193668e+01 -2.24031570e+01 1.24208287e+01 4.46181190e+01 5.34475466e+00] [-1.45680908e+01 1.97733347e+01 -1.48014630e+01 -5.45425157e+01 -2.55742436e+01 -6.65030956e+01 -1.94719739e+01 -4.17076660e+01 4.74611915e+01 5.32622536e+01 -4.41567349e+01 -2.92944452e+01 -5.84560376e+01 -4.38406439e+01 -4.54013656e+00 -3.21976722e+01 -3.19725798e+01 -5.57393915e+01 -5.25482868e+00 2.92538680e+01 -6.10977887e+00 -2.99466513e+01 -3.86999407e+01 2.77663361e+01 -3.98172779e+01 -2.01497936e+01 -1.28420240e+01 -4.73326418e+01 -2.93841337e+01 -1.21081062e+02 2.68259285e+01 8.11689546e-01 3.17460176e+01 2.30932006e+00] [ 1.06627395e+01 -2.28796113e+01 -4.39944052e+01 1.42812277e+01 -3.14016010e+01 -4.40313023e+01 -3.02945817e+01 -1.67869517e+00 -5.60811996e+01 -6.68596729e+01 1.70907185e+01 -3.98276409e+01 -4.78246807e+01 -3.32433151e+01 -2.35713841e+01 -1.04372732e+02 -6.52477032e+00 1.13813631e+01 -3.59312816e+01 -6.59930156e+01 1.75975012e+01 -1.22735946e+01 8.35424724e+00 -5.19247723e+01 -6.27794135e+01 -2.82314218e+01 1.29849676e+01 -1.23468132e+00 1.05702923e+02 -2.84069069e+00 -5.73928338e+01 -6.64660735e+01 1.45393035e+01 5.14045005e+01] [-2.56489623e+01 -2.06604046e+01 -6.41174547e+01 -2.90049940e+01 2.64408328e+01 1.76115221e+01 -6.66269058e+01 -4.02518882e+01 -1.19466203e+01 -6.89785217e+00 -8.26228058e+01 2.98599495e+01 4.59896399e+01 -1.71385963e+02 1.30702937e+02 9.30592400e+01 -9.23631710e+01 -1.53037548e+01 8.55845633e+01 -1.34400501e+02 4.83606280e+01 -6.43511169e+01 -1.18462666e+01 -9.07696463e+01 7.53239584e+00 -3.63584295e+01 -6.48292449e+01 -2.66630757e+01 -6.98837818e+01 7.87204990e+01 4.51868989e+01 -9.50037423e+00 -2.32973399e+02 5.30887389e+01] [-4.51334737e+00 8.65577428e+01 -1.01236001e+02 -6.91592151e+01 1.64620105e+01 -1.35029245e+02 -7.67208398e+01 -1.31304890e+02 -5.11794273e+01 2.87885074e+01 -1.10710938e+02 -1.35879562e+02 -5.84218243e+01 -1.17091358e+02 -5.54988875e-01 -8.60462965e+01 -7.36347586e+01 -1.61938412e+02 5.51291249e+01 2.54790390e+01 -4.70021407e+01 -3.05227788e+01 -1.35046858e+02 -5.34658388e+01 -1.51710057e+02 -8.14473698e+01 -3.23280832e+01 -8.42887869e+01 -1.95169525e+01 -9.10291586e+01 3.20018416e+01 -9.35662690e+01 -2.49917994e+00 -6.33617257e+01] [-1.68233118e+02 3.93038099e+01 -9.18250706e+01 -9.33362929e+01 -1.00264254e+02 -1.83371973e+02 -3.41449244e+01 -1.40468361e+02 1.11460658e+02 3.36248470e+01 -9.61851993e+01 -1.83633014e+02 -9.38839430e+01 -2.57674204e+02 1.04896337e+02 7.02793536e+01 -1.52106684e+02 -1.35606799e+02 9.88979412e+01 7.81244157e+00 1.64521377e+01 -2.17862695e+02 -2.43971977e+02 1.61844025e+01 -7.78740850e+01 -1.31275465e+02 -1.58625958e+02 -2.17529771e+02 -2.73262264e+02 -1.24051228e+02 1.86015219e+02 -7.53446287e+01 -1.58856956e+02 -8.98745480e+00] [-5.77838722e+01 2.27714368e+01 6.56846304e+00 -6.93985124e+00 -4.59457264e+01 -2.55699006e+01 -2.63267210e+01 2.02608396e+01 3.09424679e+01 3.51416737e+01 1.17224344e+00 -4.77818605e+01 -7.27040550e+01 -9.39214694e+01 4.04373517e+01 -2.86233091e+01 -1.73901265e+01 -3.68065317e+01 -3.09579745e+01 3.82805068e+01 -4.55950534e+01 -6.32787982e+01 -7.47625076e+01 -9.46558683e+00 -3.17431107e+01 -2.02450684e+01 -1.49256866e+01 -9.09720729e+00 -6.52962815e+01 -1.07357810e+02 -1.05890066e+01 -8.38749669e+00 6.48758377e+00 -1.34638024e+01] [-1.90063162e+01 1.59249844e+01 2.01968375e-01 3.46439910e-01 -2.02126662e+01 -4.74721778e+01 -4.39923385e+01 2.39673803e+00 -6.49867756e+00 6.90774637e-01 -5.74095244e+01 -5.14654131e+01 -5.12153640e+01 -9.81241344e+01 2.41455451e+01 -5.60103923e+01 -3.77328099e+01 -5.01439225e+01 -2.04854609e+00 5.40901115e+00 -2.51721208e+01 -2.75772515e+01 -5.47566521e+01 -1.90850264e+01 -5.01641222e+01 6.08473694e+00 1.29364073e+01 -8.45551173e+00 -9.69891893e+00 -8.03503514e+01 -1.42388048e+00 -1.75498495e+01 -2.87012129e+01 -1.80793260e+01] [-2.33686107e+01 3.59521861e+01 5.35345968e+00 7.36798915e+00 -1.20167373e+01 4.30665086e+00 5.05555831e+01 -2.28221311e-01 3.39038163e+01 5.89856892e+00 -5.71710620e+00 7.41091803e+01 5.28502878e+01 3.47510402e+01 2.17854528e+01 1.69004108e+02 2.91019582e+01 1.16366771e+01 4.62448792e+01 3.45891228e+01 -2.54962905e+00 -6.44563376e+00 -1.28021538e+01 -1.32116192e+01 2.94170548e+01 -1.72843908e+01 -1.58354241e+01 1.22336102e+01 -6.63850050e+01 -4.99902360e+01 5.73999217e+01 2.31893598e+01 1.02194096e+01 1.57293210e+01] [-5.76626279e+01 4.18452331e+01 5.96393652e-01 -1.77208242e+01 -6.98921852e+01 -8.28152210e+01 4.35934480e+01 -6.42876064e+01 1.00167047e+02 4.70053328e+01 -5.56052392e+00 1.74147647e+01 -1.01598051e+01 -1.13386387e+01 -3.43579868e+01 1.34278011e+02 7.14446660e+00 -2.83500045e+01 1.53563011e+01 2.15952376e+01 -2.49848154e+01 -8.56810719e+01 -9.34706733e+01 1.27810725e+01 -1.51370921e+01 -6.66317206e+01 -6.61640819e+01 -7.65207182e+01 -1.22646313e+02 -1.51897236e+02 1.22718753e+02 2.28544849e+01 1.72200798e+01 1.89192356e+00] [-4.27308825e+00 5.03472636e+00 -1.07450293e+01 -4.36247290e+01 -3.25073050e+01 -6.47374690e+01 -1.92764516e+01 -3.18818156e+01 1.61031125e+01 3.88154388e+01 -6.70577785e+01 -4.02498878e+01 -2.10697678e+01 -5.14228825e+01 5.44141580e+00 -3.84235005e+01 -5.30688600e+01 -4.64347547e+01 1.58153426e+01 1.47979994e+01 1.64307572e+01 -2.20894612e+01 -4.49252615e+00 3.34633075e+01 -3.18452395e+01 -1.40256483e+00 -8.85834471e+00 -4.08584135e+01 -6.78582984e+00 -7.37946193e+01 1.52812658e+01 -9.41137328e+00 -5.77852434e+00 6.46530125e+00] [ 5.06763752e+01 5.32741699e+01 -5.81752587e+01 -7.59280653e+01 -7.43871057e+01 -1.64771697e+02 7.28514618e+00 -9.21108723e+01 -5.06638559e+01 -8.41696601e+01 -8.48439085e+01 -1.80981341e+02 -8.92712310e+01 -1.14349133e+02 -1.08942609e+01 -3.80241660e+01 -1.47195262e+02 -1.10238126e+02 8.65166620e+01 7.66679769e+01 1.20206436e+02 -7.77424535e+01 -2.31274999e+01 4.18398959e+01 -5.21019916e+01 -7.82324928e+01 3.57155796e+00 -1.07941481e+02 9.84744858e+00 -1.18285047e+01 7.98332370e+01 -1.24729170e+02 -1.28934879e+02 9.39008909e+00] [-3.61784397e+01 4.17002824e+01 -2.95132321e+01 -5.21197065e+01 -2.30571736e+01 -8.49531336e+01 -4.08580023e+01 -4.65160863e+01 3.10591753e+01 5.59135091e+01 -5.60041709e+01 -4.93639917e+01 -5.86405003e+01 -5.78553107e+01 -1.37021833e+01 -3.02940191e+01 -2.68866544e+01 -6.68432436e+01 -7.94269951e+00 3.69784703e+01 -4.36096677e+01 -3.83745209e+01 -7.14384188e+01 -7.94283046e+00 -6.90380349e+01 -3.94053772e+01 -2.85245946e+01 -5.01463386e+01 -6.84676579e+01 -1.32455966e+02 1.70340697e+01 -1.77885946e+01 3.79546694e+01 -2.46465300e+01] [-3.00224148e+01 -1.63850607e+01 -1.35022083e+02 -8.86566366e+01 2.26813889e+02 -2.24327305e+02 -2.13738324e+02 -1.40152887e+02 -1.13136665e+02 1.78643726e+00 -1.35695156e+02 -7.13853680e+01 -8.80112317e+01 -1.09857605e+02 1.06360025e+01 -2.72060541e+02 -2.00233490e+01 -1.14388363e+02 1.23387883e+02 -6.72162325e+01 -1.03761547e+02 7.49195998e+01 -1.55218406e+02 -1.64708863e+02 -2.53849004e+02 -4.92505704e+01 1.72929483e+00 -3.69645442e+00 4.64419744e+01 -2.48930333e+01 -1.82746122e+02 -1.25726000e+02 5.42324712e+01 -9.40806841e+01] [ 1.11028686e+02 3.55576513e+00 -1.47759815e+02 3.06772523e+01 -6.78699383e+01 1.01311900e+02 1.03534723e+01 -2.11596796e+01 -7.86056435e+01 -2.65472490e+02 -1.90957752e+01 -6.70059961e+01 8.55402591e+01 2.35051394e+01 -2.47052036e+01 5.75071684e+01 1.47814592e+01 -9.61639658e+01 -2.11574424e+01 8.26963476e-01 -9.42067487e+01 -4.49389376e+01 4.53400997e+01 -5.27581919e+01 -6.79381220e+00 -1.63346995e+01 -8.34334102e+01 -1.30595844e+02 3.96397721e+01 1.10972309e+02 2.61651625e+01 -1.18407608e+02 -8.68261777e+01 -4.60013371e+01] [ 3.09725625e+00 1.01133227e+01 -7.95417569e+00 -2.92736868e+01 -3.47131230e+01 -3.96927022e+01 8.49259785e+00 -1.82844849e+01 1.17504032e+01 6.15597481e+01 -4.18299810e+01 -5.45391422e+00 -3.68251341e+01 -1.59900891e+01 -1.21550712e+00 -2.66166641e+01 -1.43975877e+01 -2.09387932e+01 5.12013444e+00 3.02635007e+01 1.40623489e+00 -7.83703012e+00 -1.80631418e+01 2.53719694e+01 -2.72423685e+01 -1.39924182e+01 -2.51520488e+00 -1.97267936e+01 4.56217086e+00 -9.78336326e+01 -6.67530802e-01 7.47745976e+00 1.55326177e+01 2.80073503e+01] [ 5.84521231e+00 2.82420939e-01 2.92631839e+00 -1.97724083e+01 -2.81551949e+01 -4.17146872e+01 -1.37797564e+01 -9.59182459e+00 -9.37171230e+00 3.64528098e+01 -4.53740754e+01 -5.93145883e+00 -1.80339616e+01 -2.49992669e+01 5.44331141e+00 -4.10796926e+01 -2.66217919e+01 -1.66326367e+01 9.86945148e+00 1.64713746e+01 8.92027169e+00 3.70557325e+00 -3.81267562e+00 9.73645595e+00 -3.27437300e+01 -4.87787027e+00 7.29252415e+00 -3.23572370e+00 7.71390232e+00 -6.77400367e+01 -2.74204067e+01 -2.50804486e+00 3.92947128e+00 1.09775561e+01] [-4.11283665e+01 3.54043206e+01 -5.14488049e+01 6.46013082e+01 -4.90624854e+01 -6.96054253e+01 -2.08267939e+01 1.11282439e+01 -9.39495923e+01 -4.62787543e+01 -5.04861859e+00 -1.06407737e+02 -3.91608710e+01 -8.62213786e+01 -1.34820668e+01 -6.14452570e+01 -5.93077331e+01 -9.60130433e+01 1.41171535e+01 1.05490131e+02 -2.15642879e+01 -7.06115275e+01 -3.53030005e+01 -1.82614032e+01 -1.09339167e+02 -7.62349571e+01 3.64848906e+01 -1.63853415e+01 2.14200615e-01 -6.70111770e+01 -5.75827499e+01 -9.96405225e+01 3.33547869e+01 -1.85120589e+01] [-2.85952981e+01 -1.69385598e+01 -4.67709844e+01 -2.78134553e+01 8.03070628e+00 2.87660980e+01 3.67726229e+00 8.55626422e+00 -2.08034926e+00 -4.03075424e+01 -4.00106916e+01 3.67732131e+01 4.46159053e+01 4.91179075e+00 5.90708086e+00 1.05754588e+02 3.20134440e+01 -2.90205823e+01 2.13705834e+01 1.67220884e+01 -4.28080451e+01 -1.85812999e+01 -2.39878811e+01 -3.84744892e+01 2.47468960e+01 -3.83371588e+01 -3.77268938e+01 -1.46338620e+01 -9.69088702e+01 -1.08653644e+00 3.18546718e+00 -1.57767834e+01 -1.75386350e+00 -6.11854965e+01] [-3.63256445e+01 2.05358077e+01 -1.67844616e+01 -3.33664730e+01 -1.31898472e+01 -5.71050859e+01 -4.05077018e+01 -1.63993470e+01 1.35765505e+01 5.14012024e+01 -5.94578879e+01 -3.04473394e+01 -4.82651973e+01 -5.06751702e+01 -1.23365150e+01 -3.43668486e+01 -6.83300502e+00 -6.07949787e+01 1.88408541e+00 3.49116352e+01 -4.39418694e+01 -2.37426433e+01 -5.21581273e+01 -2.47811055e+00 -5.73939019e+01 -2.58746618e+01 -7.72260016e+00 -2.17572780e+01 -3.84458709e+01 -1.13634729e+02 -1.10240731e+01 -6.04791099e+00 2.97878429e+01 -1.30258739e+01] [ 3.55843116e+00 -5.74542404e-01 -6.34717125e+00 -2.66362686e+01 -1.12029711e+01 -4.84038497e+01 -2.27469824e+01 -8.32126784e+00 -1.05648543e+01 7.00212550e+00 -5.74509917e+01 -2.64957001e+01 -1.98124582e+01 -4.71728807e+01 1.46086516e+01 -5.71128579e+01 -5.09011984e+01 -3.00954700e+01 6.63398150e+00 -4.57663796e+00 1.87545434e+00 2.50407435e+00 -5.01448639e+00 -3.71576704e+00 -4.25401486e+01 1.46991056e+01 -1.94403324e+00 -6.92125315e+00 1.00905093e+01 -5.50333956e+01 -1.60523464e+01 -2.50551745e+01 -1.83183480e+01 1.93311411e+00] [-2.45231775e+00 4.36779104e+01 -1.42893105e+01 8.92785933e+00 -7.40716208e+01 -1.06762251e+02 1.33324784e+01 -3.46848932e+01 -6.98332892e+01 -4.65520658e+01 -6.94972361e+01 -9.67832240e+01 -6.19437012e+01 -1.11945538e+02 7.84217442e+01 -6.16616801e-01 -1.00932878e+02 1.26444859e+01 1.56977824e+00 -1.45585229e+01 1.27085340e+02 -6.19036239e+01 -6.28479365e+01 -4.95299817e+00 -4.59076581e+01 -3.19221268e+01 3.47084587e+01 -7.05350307e+01 1.71303000e+01 -2.10321829e+01 5.81603084e+01 -5.98007987e+01 -2.02014065e+02 1.01163549e+02] [-2.69449376e+01 1.85107792e+01 -3.06236793e+01 -2.51446426e+01 -1.66010509e+01 8.51105875e+00 4.95350292e+01 -1.72575570e+01 5.63963759e+00 -1.18946275e+01 -1.16307543e+01 8.90695295e+01 5.75467230e+01 1.84892951e+01 1.44715445e+01 1.84988857e+02 2.13941751e+01 -1.41739360e+01 3.38623569e+01 2.33362031e+01 -1.61454214e+01 -2.98356666e+01 -2.55047675e+01 -3.65610039e+01 4.54294812e+01 -5.06431413e+01 -4.28979925e+01 -1.83291785e+01 -1.08177373e+02 -1.78383228e+01 5.07661764e+01 5.37487369e+00 -1.63610525e+01 -1.86505613e+01] [-9.54045781e+00 1.52934875e+01 -2.21786012e+01 -4.01723645e+01 -2.21561983e+01 -6.78765679e+01 -2.81176003e+01 -2.54766350e+01 1.78333672e+01 3.32886865e+01 -4.85524103e+01 -3.99134046e+01 -2.91433176e+01 -5.05764468e+01 4.59536687e-01 -3.46124938e+01 -4.11836158e+01 -4.81529587e+01 2.64027386e+00 1.74591884e+01 -1.94226064e+01 -1.98036844e+01 -2.41934906e+01 1.81740679e+01 -4.55163465e+01 -1.45530472e+01 -1.67193493e+01 -3.83318911e+01 -1.73183573e+01 -8.83810500e+01 1.68993292e+01 -1.91440013e+01 1.18101213e+01 9.26708284e+00] [-2.48836046e+00 5.23053906e+01 -7.78759692e+01 -8.14142112e+01 1.71342801e+02 -2.37309172e+02 -1.38524723e+02 -1.24946340e+02 8.66042409e+01 -7.23670901e+01 -6.85159937e+01 3.35093937e+01 7.29109147e+00 -1.00872219e+02 3.32205652e+01 3.02349174e+00 1.85195956e+01 1.33320012e+02 -3.02717334e+00 -1.27051999e+02 9.61044866e+00 -4.48611601e+01 -8.38503593e+01 -1.73322394e+02 -1.81805203e+02 -8.75122284e+01 -9.01213346e+01 -7.46195029e+01 -8.43302858e+00 2.32050407e+01 9.68265329e+01 -4.21472577e+01 -1.13047268e+02 -6.39786000e+01] [ 3.73074927e+01 7.54166098e+01 -5.98492471e+01 -5.97192893e+00 1.41591921e+01 -1.14915029e+02 -8.43178956e+01 -2.15870045e+01 -1.34882788e+02 -7.49096538e+01 -3.71525856e+01 -9.14563812e+01 -5.71745206e+01 -6.61471402e+01 -9.91279303e+00 -9.48199543e+01 3.95892409e+00 2.01463119e+00 1.95088170e+01 -2.97080922e+01 -5.17424295e+01 -1.69448656e+01 -8.02962026e+01 -1.40419099e+02 -1.66644946e+02 -1.06731337e+02 5.07683588e+01 2.56745800e+01 8.64396426e+01 -1.15921515e+01 -7.69689530e+01 -8.87537680e+01 -2.18245783e+01 -2.40494768e+01] [ 3.36733677e+00 7.08693352e+00 -7.54260195e+00 -3.64775610e+01 -1.72622350e+01 -2.98915492e+01 -9.11436889e-01 -1.50643651e+01 2.36249217e+01 5.80165131e+01 -4.70163968e+01 -1.09551401e+01 -2.98651978e+01 -2.63622863e+01 -2.60459069e+00 -2.03738431e+01 -2.14870220e+01 -4.66841297e+01 2.27332106e+00 3.01910956e+01 2.60202780e+00 -2.91001249e+00 -1.51389814e+01 2.99455310e+01 -2.12098494e+01 -1.16632674e+01 -1.27687183e+00 -1.65657632e+01 1.64355991e+00 -9.70339861e+01 1.06821927e+01 4.50814311e+00 2.45188828e+01 5.61683009e+00] [ 7.38829676e+01 5.67742410e+01 -1.31551556e+02 -2.23922802e+01 -3.58405141e+01 -1.43163504e+02 5.76702434e+00 -7.15975044e+01 -3.86229690e+01 -1.54620839e+02 -8.36581211e+01 -1.58467730e+02 -6.93711497e+01 -3.74077939e+01 -6.09848313e+01 -4.27219373e+01 -2.05454578e+01 -7.57273019e+01 3.84851384e+01 4.15719389e+01 -3.69277307e+00 -1.04658900e+02 -2.80668994e+01 1.42583067e+01 -1.06773596e+02 -1.31499536e+02 -1.26318851e+01 -1.78433136e+02 1.38802254e+01 -5.37448572e+00 6.14873455e+01 -1.31403249e+02 -3.37067474e+01 -8.63057270e+01] [ 1.15965734e+01 -1.57326728e-01 -1.43718273e+01 -2.79314847e+01 -2.15681621e+01 -5.00244874e+01 -1.49641018e+01 -6.48231096e+00 6.40123776e-01 1.54126631e+01 -3.84286559e+01 -2.24599987e+01 -2.02736760e+01 -4.13527926e+01 -9.76593096e-01 -4.41248900e+01 -4.54843424e+01 -3.60197805e+01 5.79545448e+00 1.81979552e+01 3.00901702e+00 -1.11604102e+01 8.77769475e+00 2.51582929e+01 -2.54449404e+01 1.17606812e+01 4.01481502e+00 -2.87987100e+01 5.61387258e+00 -6.72899703e+01 1.71698964e+01 -1.86237351e+01 1.10420766e+00 1.53391160e+01] [-2.78675569e+01 3.08737667e+01 -2.11716488e+01 -2.40875721e+01 -1.71479262e+01 -6.96996139e+01 -4.26116774e+01 -1.41359160e+01 -6.14868751e+00 3.57383664e+01 -4.50651109e+01 -5.76869011e+01 -4.64614018e+01 -7.64263059e+01 -9.84521326e+00 -6.42376332e+01 -3.13494960e+01 -6.60791372e+01 -1.48416931e+01 3.28828789e+01 -5.46226953e+01 -3.16833171e+01 -4.96763399e+01 -1.16002208e+01 -6.32383579e+01 -1.52073335e+01 -7.98653458e+00 -3.30740943e+01 -4.24968665e+01 -1.08343715e+02 -1.16697688e+00 -2.72836390e+01 -2.64135944e+00 -1.60111912e+01] [-1.59081376e+01 1.44263594e+01 -1.19427379e+01 -3.56822523e+01 -9.95374222e+00 -6.63055550e-01 6.43725837e+01 -4.44912970e+01 1.02717943e+01 -5.20030329e+00 -2.29532837e+01 4.50124082e+01 1.33136638e+01 4.19750937e+01 -1.44659033e+01 1.27175210e+02 3.06025751e+01 -2.18393501e+01 9.06530293e+00 2.40656548e+01 -3.39519436e+00 -1.31706866e+01 -3.98734200e+01 -2.43087457e+01 2.24954027e+01 -3.00978424e+01 -3.93640439e+01 -2.66671352e+01 -7.79393522e+01 -1.03650324e+02 2.40266307e+01 5.79173693e-01 3.50804371e+01 -3.38669138e+01] [-2.04533072e+01 1.26044606e+01 -3.17354768e+01 -4.15872116e+01 -1.72731920e+00 3.18797440e+01 6.61529152e+01 -3.11735189e+01 9.16725646e+00 -9.96178562e+00 -2.22334459e+01 4.51382155e+01 1.32813340e+01 2.39853166e+01 -1.90368460e+00 9.64402410e+01 1.18143830e+01 -2.20427060e+01 -8.96384252e-01 2.87679861e+01 -5.88828214e+00 -2.20656112e+01 -3.63774424e+01 -2.02683918e+01 3.55033060e+01 -3.32454619e+01 -5.15658581e+01 -3.50872574e+01 -1.18010751e+02 -5.35763251e+01 2.04927639e+01 -1.45961362e+01 -6.78791843e+00 -5.25786326e+01]] syn2 = [[ 6.53255608e-01 -7.81726238e-01 1.50873204e+00 -3.94529830e+00 -2.05232343e+00 3.92407385e+00 -1.14457075e-02 -3.27455221e+00 1.84395833e+00 -3.35020040e+00] [-2.74766419e+00 -3.24420947e-01 3.55588049e-01 1.21950411e-03 -5.57903366e+00 -3.36522443e+00 6.12355719e+00 -3.19343506e+00 -1.75433576e+00 -5.34801533e+00] [ 4.02695165e-01 -1.07518024e+00 -1.70123094e+00 3.83551550e+00 1.14277753e-01 6.05846222e-01 -9.76958056e-01 -7.03324281e-01 -2.32236188e-01 6.69535983e-01] [-4.82281910e-01 -2.05046345e+00 -1.43298198e+00 2.13073857e-01 4.87762371e-01 -1.72161041e+00 -5.23464525e+00 -2.99146671e+00 3.03699344e-01 -3.15034181e+00] [ 4.06290082e+00 -7.79086267e+00 4.25344763e+00 -6.83517779e-01 2.58091338e+00 -6.66348001e+00 -1.18876372e+00 4.99575897e-01 -3.89736754e+00 -1.74076411e+00] [-5.00540950e+00 -3.49876586e+00 -3.11779151e+00 -2.14650813e-02 -5.66139992e-01 -2.81711436e+00 -5.97783978e+00 -1.13178080e+00 -2.77213977e+00 -1.11986234e+00] [-3.47233185e+00 1.29780938e+00 -2.90674393e+00 3.28820844e-02 -4.82698459e+00 -2.57233305e+00 -5.41093051e+00 5.69418769e+00 1.65149651e+00 -3.55879729e+00] [ 4.58523219e-01 -6.72622424e+00 -7.96778439e-01 2.99154804e+00 1.51677234e+00 -5.23850856e-01 -2.10215802e+00 -2.98234369e+00 -2.42397901e+00 -2.75781051e+00] [ 1.11061493e-01 -7.22705687e-01 -3.24230904e+00 -3.37240545e-01 6.95915214e-01 -5.34915124e+00 -3.30293405e+00 2.78062533e+00 -3.69412028e+00 -1.23650432e+00] [-3.40218255e+00 6.48048851e+00 -1.19797547e+00 2.35100135e-01 -8.19271819e-01 -5.33014661e+00 -7.01056864e+00 -8.35403624e-01 -4.73585684e+00 2.38736310e+00] [-1.94355025e+00 -7.47636253e+00 -2.74446150e+00 8.02378211e-01 -1.37208079e+00 -3.15010520e+00 -3.84930544e+00 2.64969553e+00 2.41581683e+00 1.55866600e-01] [-2.25130566e+00 -5.43921205e+00 -2.08139357e+00 5.65200882e-01 -1.13702658e+00 -1.31291179e+00 -5.47260219e+00 3.51871746e+00 -3.06519286e+00 1.16760709e+00] [-2.65811802e-01 -4.04890070e+00 2.04261188e+00 -2.35510310e+00 7.99617337e-01 -1.96396383e+00 -2.82885688e+00 7.16753195e-02 1.24591074e+00 -5.43892736e-01] [-1.97046977e+00 -1.62590201e+00 1.06351058e+00 3.91604558e-02 -3.94948616e-01 -2.15979345e-01 -5.15585517e+00 3.23560995e+00 2.49619224e+00 2.95721909e+00] [-2.73366636e+00 -2.16611740e+00 -5.42693297e+00 -3.12563919e+00 4.65572352e+00 -1.54487468e+00 2.49614023e-01 -3.18167945e+00 7.70637610e-01 -2.08279123e+00] [-2.81299675e+00 -6.33568421e+00 -3.08082598e+00 -1.95871434e+00 -3.03971293e-01 -2.22888205e+00 -4.16561437e+00 -3.33057712e+00 -2.43312593e-01 1.68456585e+00] [ 2.67729150e+00 -1.18095459e+00 -4.14665587e+00 -1.22593296e+00 -1.92761190e+00 -2.76775554e-02 -3.82779114e-01 -2.62412572e+00 -4.77439733e+00 3.22377066e+00] [ 6.44110414e+00 -3.96538273e+00 -5.00794565e+00 -1.01063410e+00 -1.67352125e+00 -8.18392785e-01 -6.18773236e+00 3.35161386e+00 -3.88472254e+00 -3.49437111e-01] [-7.46861777e+00 -9.75667482e-01 -2.07156291e+00 -1.15526082e+00 -1.25729298e+00 1.33198751e-02 -2.61970421e+00 -6.63320411e+00 4.56103327e-01 -1.12475657e-01] [-5.24298738e+00 1.48085404e+00 6.78771162e-01 -2.85955274e+00 3.09910462e+00 -1.39610107e+00 -3.21238512e+00 4.77340343e-01 1.38217897e+00 -6.52941379e+00] [-2.12551954e+00 -2.46819933e+00 -7.70764569e-01 -1.41946590e+00 -3.82581800e+00 4.80083639e+00 -2.12782064e+00 4.32236620e+00 -5.03320869e+00 -8.95322677e-01] [-2.33533871e-01 -5.68410969e+00 3.68648523e+00 -1.01615772e+00 -7.00216437e-01 -4.89914433e-02 -5.22572635e-01 -2.47941779e-01 -2.36659849e+00 3.39124112e+00] [-8.60503345e-01 -2.59453438e+00 6.33893657e-01 -1.26455802e+00 -2.79479067e+00 4.71301419e+00 -5.23377831e+00 2.12566261e+00 -6.85342766e-01 -1.97481775e+00] [-3.01019172e+00 3.03084461e+00 -6.36654147e-01 3.10246625e-01 7.25535301e-01 1.42265009e+00 -3.90313693e+00 2.35706273e+00 -1.55371903e+00 -1.94184803e-01] [-2.51686524e+00 -8.27406926e-01 -3.93807549e+00 7.17862265e-01 -5.52424423e-01 1.78066048e+00 -4.17260083e+00 4.63216439e+00 -3.43925439e+00 6.77243178e-01] [-1.65359357e-01 -2.18030892e+00 -1.76545898e+00 -3.96749333e-01 2.22075536e+00 2.59673099e+00 1.48400204e-01 -3.91178321e-01 -6.71836591e-01 1.02435614e+00] [-2.96126101e+00 -5.66150537e-01 -3.03042301e+00 3.60454753e+00 -3.74489853e+00 8.86472593e-01 -2.68186065e+00 -3.90179658e+00 1.97754003e+00 -2.11475778e+00] [-4.19420977e-01 -6.64976468e+00 -2.80863799e+00 4.17531061e+00 -4.52969619e-01 -2.53312500e+00 -2.04243429e+00 -1.93778209e+00 -1.59148232e-02 5.02316842e+00] [ 7.77756034e-01 -2.87151110e+00 2.43779910e+00 1.08941564e+00 -2.65841603e+00 1.89653658e+00 -7.38960685e-01 -7.36362648e+00 1.12415557e-01 -1.41625224e+00] [ 1.33079760e+00 -6.60172572e+00 -2.26338025e+00 -5.07170852e+00 2.19034334e+00 1.40784744e-01 -4.04383085e-01 -6.57130084e-01 8.20751426e-01 1.98176397e-01] [-4.72883332e-01 3.57740762e-01 -4.65194027e+00 -4.01463192e+00 -3.47407602e+00 -1.41359965e+00 2.89756373e+00 2.80812333e-01 -2.63416377e+00 1.82721019e+00] [ 5.64979039e-01 1.57499196e+00 -2.02698719e+00 2.53095086e+00 1.40221816e+00 -8.30099075e-01 -2.02834490e+00 -3.27276885e+00 -3.24942111e+00 1.33428065e+00] [-2.93535955e+00 2.13567448e+00 -7.52365913e-01 2.31130072e+00 -1.56005211e+00 -5.26342415e+00 -3.08157013e+00 2.72945538e-01 -2.84029347e+00 1.78330794e+00] [-2.56831877e+00 -1.68549930e+00 -2.93974885e+00 -2.87900416e+00 -1.73070613e+00 3.59006710e+00 -4.01741500e+00 -3.75313207e+00 -2.20974683e+00 4.10056117e+00]] b0 = [[ -875.73663618 -813.85866971 -840.27174486 -1066.0344334 -826.36406162 -877.04031066 -916.60081508 -515.31463157 -856.81938453 -934.05288301 -882.58779013 -884.11254226 -344.67593241 -503.62217279 -882.00032229 -899.51823195 -921.02182561 -1127.18384338 -628.77626535 -831.6744478 -846.43811066 -941.3049701 -301.58188636 -890.1993107 -862.5599114 -661.3040105 -254.89316881 -871.50264689 -869.4125715 -820.86846255 -840.98990615 -850.6850811 -861.05567862 -914.68797341 -250.68963748 -257.9943676 ]] b1 = [[-1.66278210e+00 -3.65324540e+00 -4.51958146e+00 -2.57870597e+00 -4.87897223e+00 5.29131753e-01 -6.82521641e-01 -3.82414882e+00 -3.59395758e+00 -4.49837233e+00 -2.93700807e+00 -2.09688231e+00 -2.71914216e+00 -7.11979726e-01 -4.03584819e+00 3.47651147e-03 1.68643496e-01 -2.81502351e+00 -4.15120256e+00 -5.23985551e+00 -4.01459467e+00 -4.10819489e+00 -3.10466809e+00 -4.72698550e+00 -5.82501507e-01 -3.52325194e+00 -2.77943189e+00 -4.12160271e+00 -3.03927975e+00 -2.62742330e+00 -3.49018083e+00 -2.38325761e+00 -5.95594166e+00 -1.73942359e+00]] b2 = [[-1.29065252 -1.07410532 -1.12565259 -1.91341438 -0.90875645 -1.56695869 -1.52767328 -0.36236739 -1.04558348 -0.45456078]]
d1ddaf333839d2b4c77c8c4265b2240ac9836035
8d6fa96da4220ba886ef8e858f1925b6dca34e58
/examples/wtf/wtf/config.py
7cf539ff078f59cb14f772090950734c0d091acb
[]
no_license
FZambia/cyclone-wtforms
6ee26c920171685e027529e8f1fbb99c765edc30
c266b5f3bfff77e3a721b3335b74a294966f7daf
refs/heads/master
2016-09-05T15:23:08.336180
2012-10-05T18:55:00
2012-10-05T18:55:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,041
py
# coding: utf-8 # # Copyright 2010 Alexandre Fiori # based on the original Tornado by Facebook # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import ConfigParser from cyclone.util import ObjectDict def xget(func, section, option, default=None): try: return func(section, option) except: return default def parse_config(filename): cfg = ConfigParser.RawConfigParser() with open(filename) as fp: cfg.readfp(fp) fp.close() settings = {'raw': cfg} # web server settings settings["debug"] = xget(cfg.getboolean, "server", "debug", False) settings["xheaders"] = xget(cfg.getboolean, "server", "xheaders", False) settings["cookie_secret"] = cfg.get("server", "cookie_secret") settings["xsrf_cookies"] = xget(cfg.getboolean, "server", "xsrf_cookies", False) # get project's absolute path root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) getpath = lambda k, v: os.path.join(root, xget(cfg.get, k, v)) # locale, template and static directories' path settings["locale_path"] = getpath("frontend", "locale_path") settings["static_path"] = getpath("frontend", "static_path") settings["template_path"] = getpath("frontend", "template_path") # sqlite support if xget(cfg.getboolean, "sqlite", "enabled", False): settings["sqlite_settings"] = ObjectDict(database=cfg.get("sqlite", "database")) else: settings["sqlite_settings"] = None # redis support if xget(cfg.getboolean, "redis", "enabled", False): settings["redis_settings"] = ObjectDict( host=cfg.get("redis", "host"), port=cfg.getint("redis", "port"), dbid=cfg.getint("redis", "dbid"), poolsize=cfg.getint("redis", "poolsize")) else: settings["redis_settings"] = None # mysql support if xget(cfg.getboolean, "mysql", "enabled", False): settings["mysql_settings"] = ObjectDict( host=cfg.get("mysql", "host"), port=cfg.getint("mysql", "port"), username=xget(cfg.get, "mysql", "username"), password=xget(cfg.get, "mysql", "password"), database=xget(cfg.get, "mysql", "database"), poolsize=xget(cfg.getint, "mysql", "poolsize", 10), debug=xget(cfg.getboolean, "mysql", "debug", False)) else: settings["mysql_settings"] = None return settings
643a7e8fab27c002a3adec8754905d174c27db19
ab4f74d127bfc89813ee359bb9c779eca5426ddc
/script/label_image.runfiles/org_tensorflow/tensorflow/contrib/resampler/python/ops/resampler_ops.py
77aba28802d7d37842990c9062030322f5f2eb39
[ "MIT" ]
permissive
harshit-jain-git/ImageNET
cdfd5a340b62862ad8d1cc3b9a0f30cccc481744
1cd4c2b70917e4709ce75422c0205fe3735a1b01
refs/heads/master
2022-12-11T12:47:46.795376
2017-12-19T05:47:26
2017-12-19T05:47:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
102
py
/home/co/Documents/ImageClassifier/tensorflow/tensorflow/contrib/resampler/python/ops/resampler_ops.py
128efb9b492a29c2e87a97b932e626a724b6af9f
52b9016932aa426eeaaade5d856af6a1a771683f
/tests/testapp/serializers.py
3c4be81a47c21da377120bda5b7ee7eb6deb647d
[ "MIT" ]
permissive
marlncpe/django-rest-pandas
33033627d88c6467a9677133402fb519d5ea5a75
89a93c3ce8d30688f9137f5a9beacc7d63f621e0
refs/heads/master
2021-01-23T11:55:02.722962
2017-09-01T20:47:46
2017-09-01T20:47:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,844
py
from rest_framework.serializers import ModelSerializer from rest_framework import serializers from rest_pandas import PandasUnstackedSerializer from .models import TimeSeries, MultiTimeSeries, ComplexTimeSeries class TimeSeriesSerializer(ModelSerializer): date = serializers.DateField(format=None) class Meta: model = TimeSeries fields = '__all__' class TimeSeriesNoIdSerializer(TimeSeriesSerializer): class Meta: model = TimeSeries exclude = ['id'] class MultiTimeSeriesSerializer(ModelSerializer): class Meta: model = MultiTimeSeries exclude = ['id'] pandas_index = ['date'] pandas_unstacked_header = ['series'] pandas_scatter_coord = ['series'] pandas_boxplot_group = 'series' pandas_boxplot_date = 'date' class ComplexTimeSeriesSerializer(ModelSerializer): class Meta: model = ComplexTimeSeries exclude = ['id'] pandas_index = ['date', 'type'] pandas_unstacked_header = ['site', 'parameter', 'units'] class ComplexScatterSerializer(ComplexTimeSeriesSerializer): class Meta(ComplexTimeSeriesSerializer.Meta): exclude = ['id', 'flag'] pandas_scatter_coord = ['units', 'parameter'] pandas_scatter_header = ['site'] class ComplexBoxplotSerializer(ComplexTimeSeriesSerializer): class Meta(ComplexTimeSeriesSerializer.Meta): exclude = ['id', 'flag', 'type'] pandas_boxplot_group = 'site' pandas_boxplot_date = 'date' pandas_boxplot_header = ['units', 'parameter'] class NotUnstackableSerializer(ModelSerializer): class Meta: model = MultiTimeSeries fields = '__all__' list_serializer_class = PandasUnstackedSerializer # pandas_unstacked_header = Missing pandas_index = ['series']
626e284b40ec0447bfcba31a165d86827eb7df2a
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/gHrMmA7emP6CFAMnb_6.py
35eeb43f5be552b55e650249bf1ff464b8e37754
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
200
py
def is_apocalyptic(n): L=str(2**n).split('666') if len(L)==1: return "Safe" elif len(L)==2: return "Single" elif len(L)==3: return "Double" elif len(L)==4: return "Triple"
85041057b18077c038426fd96461f5dbd0ed30a7
747febe786dd6b7fd6c63cfe73dbe3023354daa8
/src/the_tale/the_tale/game/companions/tests/test_abilities_effects.py
433f74ad27be13a54043c1f878032a3d17dfde97
[ "BSD-3-Clause" ]
permissive
the-tale/the-tale
4e4b8d91dc873a5fb935fe58e9721a877baa6d3f
e8450bd2332344da805b1851e728da5a3e5bf0ef
refs/heads/develop
2023-08-01T13:53:46.835667
2022-12-25T18:04:56
2022-12-25T18:04:56
1,949,167
98
52
BSD-3-Clause
2023-02-15T18:57:33
2011-06-24T18:49:48
Python
UTF-8
Python
false
false
35,535
py
import smart_imports smart_imports.all() effects = companions_abilities_effects MODIFIERS = heroes_relations.MODIFIERS class BaseEffectsTests(utils_testcase.TestCase): def setUp(self): super(BaseEffectsTests, self).setUp() game_logic.create_test_map() self.account = self.accounts_factory.create_account() self.storage = game_logic_storage.LogicStorage() self.storage.load_account_data(self.account.id) self.hero = self.storage.accounts_to_heroes[self.account.id] self.companion_record = logic.create_companion_record(utg_name=game_names.generator().get_test_name(), description='description', type=tt_beings_relations.TYPE.random(), max_health=10, dedication=relations.DEDICATION.random(), archetype=game_relations.ARCHETYPE.random(), mode=relations.MODE.random(), abilities=companions_abilities_container.Container(), communication_verbal=tt_beings_relations.COMMUNICATION_VERBAL.random(), communication_gestures=tt_beings_relations.COMMUNICATION_GESTURES.random(), communication_telepathic=tt_beings_relations.COMMUNICATION_TELEPATHIC.random(), intellect_level=tt_beings_relations.INTELLECT_LEVEL.random(), structure=tt_beings_relations.STRUCTURE.random(), features=frozenset((tt_beings_relations.FEATURE.random(), tt_beings_relations.FEATURE.random())), movement=tt_beings_relations.MOVEMENT.random(), body=tt_beings_relations.BODY.random(), size=tt_beings_relations.SIZE.random(), orientation=tt_beings_relations.ORIENTATION.random(), weapons=[artifacts_objects.Weapon(weapon=artifacts_relations.STANDARD_WEAPON.random(), material=tt_artifacts_relations.MATERIAL.random(), power_type=artifacts_relations.ARTIFACT_POWER_TYPE.random())], state=relations.STATE.ENABLED) self.hero.set_companion(logic.create_companion(self.companion_record)) def apply_ability(self, ability): container = companions_abilities_container.Container(common=(), start=frozenset((ability,)), coherence=None, honor=None, peacefulness=None) self.companion_record.abilities = container self.hero.reset_accessors_cache() def get_ability(self, *argv): return random.choice([ability for ability in effects.ABILITIES.records if any(isinstance(ability.effect, effect) for effect in argv)]) class CommonTests(BaseEffectsTests): def test_aprox(self): self.assertEqual(effects.aprox(1, 2, 1), 1.2) self.assertEqual(effects.aprox(1, 2, 2), 1.4) self.assertEqual(effects.aprox(1, 2, 3), 1.6) self.assertEqual(effects.aprox(1, 2, 4), 1.8) self.assertEqual(effects.aprox(1, 2, 5), 2) class CoherenceSpeedTests(BaseEffectsTests): def test_effect(self): effect = effects.CoherenceSpeed(0.8) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COHERENCE_EXPERIENCE, 10), 8) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COHERENCE_EXPERIENCE, 11), 8.8) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COHERENCE_EXPERIENCE,)), 11), 11) effect = effects.CoherenceSpeed(1.2) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COHERENCE_EXPERIENCE, 10), 12) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COHERENCE_EXPERIENCE, 11), 13.2) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COHERENCE_EXPERIENCE,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CoherenceSpeed) self.hero.companion.coherence = c.COMPANIONS_MAX_COHERENCE - 1 self.hero.companion.experience = 0 self.hero.companion.add_experience(10) old_delta = self.hero.companion.experience self.hero.companion.experience = 0 self.apply_ability(ability) self.hero.companion.add_experience(10) new_delta = self.hero.companion.experience self.assertEqual(int(round(old_delta * ability.effect.multiplier_left)), new_delta) class ChangeHabitsTests(BaseEffectsTests): def test_effect(self): effect = effects.ChangeHabits(habit_type=game_relations.HABIT_TYPE.HONOR, habit_sources=(heroes_relations.HABIT_CHANGE_SOURCE.COMPANION_HONOR_NEUTRAL_1, heroes_relations.HABIT_CHANGE_SOURCE.COMPANION_HONOR_NEUTRAL_2)) self.assertEqual(effect._modify_attribute({}, MODIFIERS.HABITS_SOURCES, set()), set((heroes_relations.HABIT_CHANGE_SOURCE.COMPANION_HONOR_NEUTRAL_1, heroes_relations.HABIT_CHANGE_SOURCE.COMPANION_HONOR_NEUTRAL_2))) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.HABITS_SOURCES,)), set()), set()) def check_habits_changed(self, honor, peacefulness, honor_check, peacefulness_check): self.hero.habit_honor.set_habit(honor) self.hero.habit_peacefulness.set_habit(peacefulness) for habit_source in self.hero.companion.modify_attribute(heroes_relations.MODIFIERS.HABITS_SOURCES, set()): self.hero.update_habits(habit_source) self.assertTrue(honor_check(self.hero.habit_honor.raw_value)) self.assertTrue(peacefulness_check(self.hero.habit_peacefulness.raw_value)) def test_in_game__aggressive(self): self.apply_ability(effects.ABILITIES.AGGRESSIVE) self.check_habits_changed(honor=-c.HABITS_BORDER, peacefulness=0, honor_check=lambda v: v == -c.HABITS_BORDER, peacefulness_check=lambda v: v < 0) self.check_habits_changed(honor=0, peacefulness=c.HABITS_BORDER, honor_check=lambda v: v == 0, peacefulness_check=lambda v: v < c.HABITS_BORDER) self.check_habits_changed(honor=c.HABITS_BORDER, peacefulness=-c.HABITS_BORDER, honor_check=lambda v: v == c.HABITS_BORDER, peacefulness_check=lambda v: v == -c.HABITS_BORDER) def test_in_game__peaceful(self): self.apply_ability(effects.ABILITIES.PEACEFUL) self.check_habits_changed(honor=-c.HABITS_BORDER, peacefulness=0, honor_check=lambda v: v == -c.HABITS_BORDER, peacefulness_check=lambda v: v > 0) self.check_habits_changed(honor=0, peacefulness=c.HABITS_BORDER, honor_check=lambda v: v == 0, peacefulness_check=lambda v: v == c.HABITS_BORDER) self.check_habits_changed(honor=c.HABITS_BORDER, peacefulness=-c.HABITS_BORDER, honor_check=lambda v: v == c.HABITS_BORDER, peacefulness_check=lambda v: v > -c.HABITS_BORDER) def test_in_game__reserved(self): self.apply_ability(effects.ABILITIES.RESERVED) self.check_habits_changed(honor=-c.HABITS_BORDER, peacefulness=0, honor_check=lambda v: v == -c.HABITS_BORDER, peacefulness_check=lambda v: v == 0) self.check_habits_changed(honor=0, peacefulness=c.HABITS_BORDER, honor_check=lambda v: v == 0, peacefulness_check=lambda v: v < c.HABITS_BORDER) self.check_habits_changed(honor=c.HABITS_BORDER, peacefulness=-c.HABITS_BORDER, honor_check=lambda v: v == c.HABITS_BORDER, peacefulness_check=lambda v: v > -c.HABITS_BORDER) def test_in_game__canny(self): self.apply_ability(effects.ABILITIES.CANNY) self.check_habits_changed(honor=-c.HABITS_BORDER, peacefulness=0, honor_check=lambda v: v > -c.HABITS_BORDER, peacefulness_check=lambda v: v == 0) self.check_habits_changed(honor=0, peacefulness=c.HABITS_BORDER, honor_check=lambda v: v == 0, peacefulness_check=lambda v: v == c.HABITS_BORDER) self.check_habits_changed(honor=c.HABITS_BORDER, peacefulness=-c.HABITS_BORDER, honor_check=lambda v: v < c.HABITS_BORDER, peacefulness_check=lambda v: v == -c.HABITS_BORDER) def test_in_game__honest(self): self.apply_ability(effects.ABILITIES.HONEST) self.check_habits_changed(honor=-c.HABITS_BORDER, peacefulness=0, honor_check=lambda v: v > -c.HABITS_BORDER, peacefulness_check=lambda v: v == 0) self.check_habits_changed(honor=0, peacefulness=c.HABITS_BORDER, honor_check=lambda v: v > 0, peacefulness_check=lambda v: v == c.HABITS_BORDER) self.check_habits_changed(honor=c.HABITS_BORDER, peacefulness=-c.HABITS_BORDER, honor_check=lambda v: v == c.HABITS_BORDER, peacefulness_check=lambda v: v == -c.HABITS_BORDER) def test_in_game__sneaky(self): self.apply_ability(effects.ABILITIES.SNEAKY) self.check_habits_changed(honor=-c.HABITS_BORDER, peacefulness=0, honor_check=lambda v: v == -c.HABITS_BORDER, peacefulness_check=lambda v: v == 0) self.check_habits_changed(honor=0, peacefulness=c.HABITS_BORDER, honor_check=lambda v: v < 0, peacefulness_check=lambda v: v == c.HABITS_BORDER) self.check_habits_changed(honor=c.HABITS_BORDER, peacefulness=-c.HABITS_BORDER, honor_check=lambda v: v < c.HABITS_BORDER, peacefulness_check=lambda v: v == -c.HABITS_BORDER) class QuestMoneyRewardTests(BaseEffectsTests): def test_effect(self): effect = effects.QuestMoneyReward(0.5) self.assertEqual(effect._modify_attribute({}, MODIFIERS.QUEST_MONEY_REWARD, 10), 10.5) self.assertEqual(effect._modify_attribute({}, MODIFIERS.QUEST_MONEY_REWARD, 11), 11.5) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.QUEST_MONEY_REWARD,)), 11), 11) effect = effects.QuestMoneyReward(2.0) self.assertEqual(effect._modify_attribute({}, MODIFIERS.QUEST_MONEY_REWARD, 10), 12) self.assertEqual(effect._modify_attribute({}, MODIFIERS.QUEST_MONEY_REWARD, 11), 13) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.QUEST_MONEY_REWARD,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.QuestMoneyReward) with self.check_changed(lambda: self.hero.quest_money_reward_multiplier()): self.apply_ability(ability) class MaxBagSizeTests(BaseEffectsTests): def test_effect(self): effect = effects.MaxBagSize(666) self.assertEqual(effect._modify_attribute({}, MODIFIERS.MAX_BAG_SIZE, 10), 676) self.assertEqual(effect._modify_attribute({}, MODIFIERS.MAX_BAG_SIZE, 11), 677) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.MAX_BAG_SIZE,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.MaxBagSize) with self.check_changed(lambda: self.hero.max_bag_size): self.apply_ability(ability) class PoliticsPowerTests(BaseEffectsTests): def test_effect(self): effect = effects.PoliticsPower(3) self.assertEqual(effect._modify_attribute({}, MODIFIERS.POWER, 11), 14.0) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.POWER, )), 11), 11) def test_in_game(self): ability = self.get_ability(effects.PoliticsPower) with self.check_changed(lambda: self.hero.politics_power_modifier): self.apply_ability(ability) class MagicDamageBonusTests(BaseEffectsTests): def test_effect(self): effect = effects.MagicDamageBonus(2) self.assertEqual(effect._modify_attribute({}, MODIFIERS.MAGIC_DAMAGE, 10), 20) self.assertEqual(effect._modify_attribute({}, MODIFIERS.PHYSIC_DAMAGE, 10), 10) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.MAGIC_DAMAGE,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.MagicDamageBonus) with self.check_changed(lambda: self.hero.magic_damage_modifier): self.apply_ability(ability) class PhysicDamageBonusTests(BaseEffectsTests): def test_effect(self): effect = effects.PhysicDamageBonus(2) self.assertEqual(effect._modify_attribute({}, MODIFIERS.MAGIC_DAMAGE, 10), 10) self.assertEqual(effect._modify_attribute({}, MODIFIERS.PHYSIC_DAMAGE, 10), 20) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.PHYSIC_DAMAGE,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.PhysicDamageBonus) with self.check_changed(lambda: self.hero.physic_damage_modifier): self.apply_ability(ability) class SpeedTests(BaseEffectsTests): def test_effect(self): effect = effects.Speed(2) self.assertEqual(effect._modify_attribute({}, MODIFIERS.SPEED, 10), 20) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.SPEED,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.Speed) with self.check_changed(lambda: self.hero.move_speed): self.apply_ability(ability) class BattleAbilityTests(BaseEffectsTests): def test_effect(self): effect = effects.BattleAbilityFireball() self.assertEqual(effect._modify_attribute({}, MODIFIERS.INITIATIVE, 10), 10.25) self.assertEqual(effect._modify_attribute({}, MODIFIERS.ADDITIONAL_ABILITIES, []), [effect.ABILITY]) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.INITIATIVE, MODIFIERS.ADDITIONAL_ABILITIES)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.BattleAbilityHit, effects.BattleAbilityStrongHit, effects.BattleAbilityRunUpPush, effects.BattleAbilityFireball, effects.BattleAbilityPoisonCloud, effects.BattleAbilityFreezing) with self.check_changed(lambda: self.hero.initiative): with self.check_changed(lambda: len(self.hero.companion.modify_attribute(heroes_relations.MODIFIERS.ADDITIONAL_ABILITIES, heroes_relations.MODIFIERS.ADDITIONAL_ABILITIES.default()))): self.apply_ability(ability) class InitiativeTests(BaseEffectsTests): def test_effect(self): effect = effects.Initiative(2) self.assertEqual(effect._modify_attribute({}, MODIFIERS.INITIATIVE, 10), 20) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.INITIATIVE,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.Initiative) with self.check_changed(lambda: self.hero.initiative): self.apply_ability(ability) class BattleProbabilityTests(BaseEffectsTests): def test_effect(self): effect = effects.BattleProbability(1.5) self.assertEqual(effect._modify_attribute({}, MODIFIERS.BATTLES_PER_TURN, 10), 11.5) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.BATTLES_PER_TURN,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.BattleProbability) with self.check_changed(lambda: self.hero.battles_per_turn_summand): self.apply_ability(ability) class LootProbabilityTests(BaseEffectsTests): def test_effect(self): effect = effects.LootProbability(2) self.assertEqual(effect._modify_attribute({}, MODIFIERS.LOOT_PROBABILITY, 10), 20) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.LOOT_PROBABILITY,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.LootProbability) with self.check_changed(lambda: self.hero.loot_probability(mobs_storage.mobs.all()[0])): self.apply_ability(ability) class CompanionDamageTests(BaseEffectsTests): def test_effect(self): effect = effects.CompanionDamage(3) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_DAMAGE, 10), 13) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_DAMAGE,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionDamage) with mock.patch('the_tale.game.balance.constants.COMPANIONS_BONUS_DAMAGE_PROBABILITY', 6666666666): with self.check_changed(lambda: self.hero.companion_damage): self.apply_ability(ability) class CompanionDamageProbabilityTests(BaseEffectsTests): def test_effect(self): effect = effects.CompanionDamageProbability(3) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_DAMAGE_PROBABILITY, 10), 30) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_DAMAGE_PROBABILITY,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionDamageProbability) with self.check_changed(lambda: self.hero.companion_damage_probability): self.apply_ability(ability) class CompanionStealMoneyTests(BaseEffectsTests): def test_effect(self): effect = effects.CompanionStealMoney(3) self.assertTrue(effect._check_attribute(MODIFIERS.COMPANION_STEAL_MONEY)) self.assertFalse(effect._check_attribute(MODIFIERS.COMPANION_STEAL_MONEY_MULTIPLIER)) self.assertFalse(effect._check_attribute(MODIFIERS.random(exclude=(MODIFIERS.COMPANION_STEAL_MONEY, MODIFIERS.COMPANION_STEAL_MONEY_MULTIPLIER)))) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_STEAL_MONEY, 10), 10) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_STEAL_MONEY_MULTIPLIER, 10), 30) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_STEAL_MONEY, MODIFIERS.COMPANION_STEAL_MONEY_MULTIPLIER)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionStealMoney) with self.check_changed(lambda: self.hero.can_companion_steal_money()): with self.check_changed(lambda: self.hero.companion_steal_money_modifier): self.apply_ability(ability) class CompanionStealItemTests(BaseEffectsTests): def test_effect(self): effect = effects.CompanionStealItem(3) self.assertTrue(effect._check_attribute(MODIFIERS.COMPANION_STEAL_ITEM)) self.assertFalse(effect._check_attribute(MODIFIERS.COMPANION_STEAL_ITEM_MULTIPLIER)) self.assertFalse(effect._check_attribute(MODIFIERS.random(exclude=(MODIFIERS.COMPANION_STEAL_ITEM, MODIFIERS.COMPANION_STEAL_ITEM)))) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_STEAL_ITEM, 10), 10) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_STEAL_ITEM_MULTIPLIER, 10), 30) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_STEAL_ITEM, MODIFIERS.COMPANION_STEAL_ITEM_MULTIPLIER)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionStealItem) with self.check_changed(lambda: self.hero.can_companion_steal_item()): with self.check_changed(lambda: self.hero.companion_steal_artifact_probability_multiplier): self.apply_ability(ability) class CompanionSparePartsTests(BaseEffectsTests): def test_effect(self): effect = effects.CompanionSpareParts() self.assertTrue(effect._check_attribute(MODIFIERS.COMPANION_SPARE_PARTS)) self.assertFalse(effect._check_attribute(MODIFIERS.random(exclude=(MODIFIERS.COMPANION_SPARE_PARTS,)))) def test_in_game(self): ability = self.get_ability(effects.CompanionSpareParts) with self.check_changed(lambda: self.hero.can_companion_broke_to_spare_parts()): self.apply_ability(ability) class CompanionSayWisdomTests(BaseEffectsTests): def test_effect(self): effect = effects.CompanionSayWisdom(3) self.assertTrue(effect._check_attribute(MODIFIERS.COMPANION_SAY_WISDOM)) self.assertFalse(effect._check_attribute(MODIFIERS.COMPANION_SAY_WISDOM_PROBABILITY)) self.assertFalse(effect._check_attribute(MODIFIERS.random(exclude=(MODIFIERS.COMPANION_SAY_WISDOM, MODIFIERS.COMPANION_SAY_WISDOM_PROBABILITY)))) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_SAY_WISDOM, 10), 10) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_SAY_WISDOM_PROBABILITY, 10), 30) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_SAY_WISDOM, MODIFIERS.COMPANION_SAY_WISDOM_PROBABILITY)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionSayWisdom) with self.check_changed(lambda: self.hero.can_companion_say_wisdom()): with self.check_changed(lambda: self.hero.companion_say_wisdom_probability): self.apply_ability(ability) class CompanionExpPerHealTests(BaseEffectsTests): def test_effect(self): effect = effects.CompanionExpPerHeal(2) self.assertTrue(effect._check_attribute(MODIFIERS.COMPANION_EXP_PER_HEAL)) self.assertFalse(effect._check_attribute(MODIFIERS.COMPANION_EXP_PER_HEAL_PROBABILITY)) self.assertFalse(effect._check_attribute(MODIFIERS.random(exclude=(MODIFIERS.COMPANION_EXP_PER_HEAL, MODIFIERS.COMPANION_EXP_PER_HEAL_PROBABILITY)))) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_EXP_PER_HEAL, 10), 10) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_EXP_PER_HEAL_PROBABILITY, 10), 20) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_EXP_PER_HEAL, MODIFIERS.COMPANION_EXP_PER_HEAL_PROBABILITY)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionExpPerHeal) with self.check_changed(lambda: self.hero.can_companion_exp_per_heal()): with self.check_changed(lambda: self.hero.companion_exp_per_heal_probability): self.apply_ability(ability) class DoubleReligionProfitTests(BaseEffectsTests): def test_effect(self): effect = effects.DoubleReligionProfit(0.1) self.assertEqual(effect._modify_attribute({}, MODIFIERS.DOUBLE_RELIGION_PROFIT, 0), 0.1) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.DOUBLE_RELIGION_PROFIT,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.DoubleReligionProfit) with self.check_changed(lambda: self.hero.double_religion_profit_probability): self.apply_ability(ability) class CompanionEatCorpsesTests(BaseEffectsTests): def test_effect(self): effect = effects.CompanionEatCorpses(3) self.assertTrue(effect._check_attribute(MODIFIERS.COMPANION_EAT_CORPSES)) self.assertFalse(effect._check_attribute(MODIFIERS.COMPANION_EAT_CORPSES_PROBABILITY)) self.assertFalse(effect._check_attribute(MODIFIERS.random(exclude=(MODIFIERS.COMPANION_EAT_CORPSES, MODIFIERS.COMPANION_EAT_CORPSES_PROBABILITY)))) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_EAT_CORPSES, 1), 1) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_EAT_CORPSES_PROBABILITY, 1), 3) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_EAT_CORPSES, MODIFIERS.COMPANION_EAT_CORPSES_PROBABILITY)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionEatCorpses) with self.check_changed(lambda: self.hero.can_companion_eat_corpses()): with self.check_changed(lambda: self.hero.companion_eat_corpses_probability): self.apply_ability(ability) class CompanionRegenerateTests(BaseEffectsTests): def test_effect(self): effect = effects.CompanionRegenerate(2) self.assertTrue(effect._check_attribute(MODIFIERS.COMPANION_REGENERATE)) self.assertFalse(effect._check_attribute(MODIFIERS.COMPANION_REGENERATE_PROBABILITY)) self.assertFalse(effect._check_attribute(MODIFIERS.random(exclude=(MODIFIERS.COMPANION_REGENERATE, MODIFIERS.COMPANION_REGENERATE_PROBABILITY)))) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_REGENERATE, 10), 10) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_REGENERATE_PROBABILITY, 10), 20) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_REGENERATE, MODIFIERS.COMPANION_REGENERATE_PROBABILITY)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionRegenerate) with self.check_changed(lambda: self.hero.can_companion_regenerate()): with self.check_changed(lambda: self.hero.companion_regenerate_probability): self.apply_ability(ability) class CompanionEatAndDiscountTest(BaseEffectsTests): def test_effect(self): effect = effects.CompanionEat(0.5) self.assertTrue(effect._check_attribute(MODIFIERS.COMPANION_MONEY_FOR_FOOD)) self.assertFalse(effect._check_attribute(MODIFIERS.random(exclude=(MODIFIERS.COMPANION_MONEY_FOR_FOOD,)))) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_MONEY_FOR_FOOD, 2), 1.0) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_MONEY_FOR_FOOD,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionEat) with self.check_changed(lambda: self.hero.can_companion_eat()): with self.check_changed(lambda: self.hero.companion_money_for_food_multiplier): self.apply_ability(ability) class CompanionDrinkArtifactTests(BaseEffectsTests): def test_effect(self): effect = effects.CompanionDrinkArtifact(0.5) self.assertTrue(effect._check_attribute(MODIFIERS.COMPANION_DRINK_ARTIFACT)) self.assertFalse(effect._check_attribute(MODIFIERS.COMPANION_DRINK_ARTIFACT_PROBABILITY)) self.assertFalse(effect._check_attribute(MODIFIERS.random(exclude=(MODIFIERS.COMPANION_DRINK_ARTIFACT, MODIFIERS.COMPANION_DRINK_ARTIFACT_PROBABILITY)))) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_DRINK_ARTIFACT, 2), 2) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_DRINK_ARTIFACT_PROBABILITY, 2), 1.0) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_DRINK_ARTIFACT, MODIFIERS.COMPANION_DRINK_ARTIFACT_PROBABILITY,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionDrinkArtifact) with self.check_changed(lambda: self.hero.can_companion_drink_artifact()): with self.check_changed(lambda: self.hero.companion_drink_artifact_probability): self.apply_ability(ability) class CompanionExorcistTests(BaseEffectsTests): def test_effect(self): effect = effects.CompanionExorcist(0.5) self.assertTrue(effect._check_attribute(MODIFIERS.COMPANION_EXORCIST)) self.assertFalse(effect._check_attribute(MODIFIERS.COMPANION_EXORCIST_PROBABILITY)) self.assertFalse(effect._check_attribute(MODIFIERS.random(exclude=(MODIFIERS.COMPANION_EXORCIST, MODIFIERS.COMPANION_EXORCIST_PROBABILITY)))) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_EXORCIST, 2), 2) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_EXORCIST_PROBABILITY, 2), 1.0) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_EXORCIST, MODIFIERS.COMPANION_EXORCIST_PROBABILITY,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionExorcist) with self.check_changed(lambda: self.hero.can_companion_do_exorcism()): with self.check_changed(lambda: self.hero.companion_do_exorcism_probability): self.apply_ability(ability) class RestLenghtTests(BaseEffectsTests): def test_effect(self): effect = effects.RestLenght(3) self.assertEqual(effect._modify_attribute({}, MODIFIERS.REST_LENGTH, 12), 36) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.REST_LENGTH,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.RestLenght) with self.check_changed(lambda: self.hero.rest_length): self.apply_ability(ability) class IDLELenghtTests(BaseEffectsTests): def test_effect(self): effect = effects.IDLELenght(3) self.assertEqual(effect._modify_attribute({}, MODIFIERS.IDLE_LENGTH, 12), 36) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.IDLE_LENGTH,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.IDLELenght) with self.check_changed(lambda: self.hero.idle_length): self.apply_ability(ability) class CompanionBlockProbabilityTests(BaseEffectsTests): def test_effect(self): effect = effects.CompanionBlockProbability(3) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_BLOCK_PROBABILITY, 12), 36) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_BLOCK_PROBABILITY, )), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionBlockProbability) with self.check_changed(lambda: self.hero.companion_block_probability_multiplier): self.apply_ability(ability) class HucksterTests(BaseEffectsTests): def test_effect(self): effect = effects.Huckster(buy_bonus_left=3, buy_bonus_right=3, sell_bonus_left=2, sell_bonus_right=2) self.assertEqual(effect._modify_attribute({}, MODIFIERS.BUY_PRICE, 12), 15) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.BUY_PRICE, MODIFIERS.SELL_PRICE)), 11), 11) self.assertEqual(effect._modify_attribute({}, MODIFIERS.SELL_PRICE, 130), 132) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.BUY_PRICE, MODIFIERS.SELL_PRICE)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.Huckster) with self.check_changed(self.hero.buy_price): with self.check_changed(self.hero.sell_price): self.apply_ability(ability) class EtherealMagnetTests(BaseEffectsTests): def test_effect(self): effect = effects.EtherealMagnet(0.1) self.assertEqual(effect._modify_attribute({}, MODIFIERS.CHARACTER_QUEST_PRIORITY, 0), 0.1) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.CHARACTER_QUEST_PRIORITY,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.EtherealMagnet) with self.check_changed(lambda: self.hero.attribute_modifier(heroes_relations.MODIFIERS.CHARACTER_QUEST_PRIORITY)): self.apply_ability(ability) class CompanionTeleportTests(BaseEffectsTests): def test_effect(self): effect = effects.CompanionTeleport(0.1) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_TELEPORTATOR, 0), 0.1) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_TELEPORTATOR,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionTeleport) with self.check_changed(lambda: self.hero.companion_teleport_probability): self.apply_ability(ability) class CompanionFly(BaseEffectsTests): def test_effect(self): effect = effects.CompanionFly(0.1) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_FLYER, 0), 0.1) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_FLYER,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.CompanionFly) with self.check_changed(lambda: self.hero.companion_fly_probability): self.apply_ability(ability) class UnsociableTests(BaseEffectsTests): def test_effect(self): effect = effects.Unsociable(0.1) self.assertEqual(effect._modify_attribute({}, MODIFIERS.COMPANION_LEAVE_IN_PLACE, 0), 0.1) self.assertEqual(effect._modify_attribute({}, MODIFIERS.random(exclude=(MODIFIERS.COMPANION_LEAVE_IN_PLACE,)), 11), 11) def test_in_game(self): ability = self.get_ability(effects.Unsociable) with self.check_changed(lambda: self.hero.companion_leave_in_place_probability): self.apply_ability(ability)
db266f900c6525725d8b23ccc316b88a594ad197
e10a6d844a286db26ef56469e31dc8488a8c6f0e
/dql_grasping/q_graph.py
c0b5360b942f4f2acb0762e32bcf24e28f12f9a4
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
Jimmy-INL/google-research
54ad5551f97977f01297abddbfc8a99a7900b791
5573d9c5822f4e866b6692769963ae819cb3f10d
refs/heads/master
2023-04-07T19:43:54.483068
2023-03-24T16:27:28
2023-03-24T16:32:17
282,682,170
1
0
Apache-2.0
2020-07-26T15:50:32
2020-07-26T15:50:31
null
UTF-8
Python
false
false
22,583
py
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Continuous Q-Learning via random sampling.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import enum import gin import tensorflow.compat.v1 as tf class DQNTarget(enum.Enum): """Enum constants for DQN target network variants. Attributes: notarget: No target network used. Next-step action-value computed using using online Q network. normal: Target network used to select action and evaluate next-step action-value. doubleq: Double-Q Learning as proposed by https://arxiv.org/abs/1509.06461. Action is selected by online Q network but evaluated using target network. """ notarget = 'notarget' normal = 'normal' doubleq = 'doubleq' gin.constant('DQNTarget.notarget', DQNTarget.notarget) gin.constant('DQNTarget.normal', DQNTarget.normal) gin.constant('DQNTarget.doubleq', DQNTarget.doubleq) @gin.configurable def discrete_q_graph(q_func, transition, target_network_type=DQNTarget.normal, gamma=1.0, loss_fn=tf.losses.huber_loss, extra_callback=None): """Construct loss/summary graph for discrete Q-Learning (DQN). This Q-function loss implementation is derived from OpenAI baselines. This function supports dynamic batch sizes. Args: q_func: Python function that takes in state, scope as input and returns a tensor Q(a_0...a_N) for each action a_0...a_N, and intermediate endpoints dictionary. transition: SARSTransition namedtuple. target_network_type: Option to use Q Learning without target network, Q Learning with a target network (default), or Double-Q Learning with a target network. gamma: Discount factor. loss_fn: Function that computes the td_loss tensor. Takes as arguments (target value tensor, predicted value tensor). extra_callback: Optional function that takes in (transition, end_points_t, end_points_tp1) and adds additional TF graph elements. Returns: A tuple (loss, summaries) where loss is a scalar loss tensor to minimize, summaries are TensorFlow summaries. """ state = transition.state action = transition.action state_p1 = transition.state_p1 reward = transition.reward done = transition.done q_t, end_points_t = q_func(state, scope='q_func') num_actions = q_t.get_shape().as_list()[1] q_t_selected = tf.reduce_sum(q_t * tf.one_hot(action, num_actions), 1) if gamma != 0: if target_network_type == DQNTarget.notarget: # Evaluate target values using the current net only. q_tp1_using_online_net, end_points_tp1 = q_func( state_p1, scope='q_func', reuse=True) q_tp1_best = tf.reduce_max(q_tp1_using_online_net, 1) elif target_network_type == DQNTarget.normal: # Target network Q values at t+1. q_tp1_target, end_points_tp1 = q_func(state_p1, scope='target_q_func') q_tp1_best = tf.reduce_max(q_tp1_target, 1) elif target_network_type == DQNTarget.doubleq: q_tp1_target, end_points_tp1 = q_func(state_p1, scope='target_q_func') # Q values at t+1. q_tp1_using_online_net, _ = q_func(state_p1, scope='q_func', reuse=True) # Q values for action we select at t+1. q_tp1_best_using_online_net = tf.one_hot( tf.argmax(q_tp1_using_online_net, 1), num_actions) # Q value of target network at t+1, but for action selected by online net. q_tp1_best = tf.reduce_sum(q_tp1_target * q_tp1_best_using_online_net, 1) else: logging.error('Invalid target_network_mode %s', target_network_type) q_tp1_best_masked = (1.0 - done) * q_tp1_best q_t_selected_target = tf.stop_gradient(reward + gamma * q_tp1_best_masked) else: q_t_selected_target = tf.stop_gradient(reward) td_error = q_t_selected - q_t_selected_target if extra_callback is not None: extra_callback(transition, end_points_t, end_points_tp1) tf.summary.histogram('td_error', td_error) tf.summary.histogram('q_t_selected', q_t_selected) tf.summary.histogram('q_t_selected_target', q_t_selected_target) tf.summary.scalar('mean_q_t_selected', tf.reduce_mean(q_t_selected)) td_loss = loss_fn(q_t_selected_target, q_t_selected) tf.summary.scalar('td_loss', td_loss) reg_loss = tf.losses.get_regularization_loss() tf.summary.scalar('reg_loss', reg_loss) loss = tf.losses.get_total_loss() tf.summary.scalar('total_loss', loss) summaries = tf.summary.merge_all() return loss, summaries @gin.configurable def random_sample_box(batch_size, action_size, num_samples, minval=-1., maxval=1.): """Samples actions for each batch element uniformly from a hyperrectangle. Args: batch_size: tf.Tensor (dtype=tf.int32) or int representing the minibatch size of the state tensors. action_size: (int) Size of continuous actio space. num_samples: (int) Number of action samples for each minibatch element. minval: (float) Minimum value for each action dimension. maxval: (float) Maximum value for each action dimension. Returns: Tensor (dtype=tf.float32) of shape (batch_size * num_samples, action_size). """ return tf.random_uniform( (batch_size * num_samples, action_size), minval=minval, maxval=maxval) def _q_tp1_notarget(q_func, state_p1, batch_size, num_samples, random_actions): """Evaluate target values at t+1 using online Q function (no target network). Args: q_func: Python function that takes in state, action, scope as input and returns Q(state, action) and intermediate endpoints dictionary. state_p1: Tensor (potentially any dtype) representing next . batch_size: tf.Tensor (dtype=tf.int32) or int representing the minibatch size of the state tensors. num_samples: (int) Number of action samples for each minibatch element. random_actions: tf.Tensor (dtype=tf.float32) of candidate actions. Returns: Tuple (q_tp1_best, end_points_tp1). See _get_q_tp1 docs for description. """ # Evaluate target values using the current net only. q_tp1_using_online_net, end_points_tp1 = q_func( state_p1, random_actions, scope='q_func', reuse=True) q_tp1_using_online_net_2d = tf.reshape( q_tp1_using_online_net, (batch_size, num_samples)) q_tp1_best = tf.reduce_max(q_tp1_using_online_net_2d, 1) return q_tp1_best, end_points_tp1 def _q_tp1_normal(q_func, state_p1, batch_size, num_samples, random_actions): """Evaluate target values at t+1 using separate target network network. Args: q_func: Python function that takes in state, action, scope as input and returns Q(state, action) and intermediate endpoints dictionary. state_p1: Tensor (potentially any dtype) representing next . batch_size: tf.Tensor (dtype=tf.int32) or int representing the minibatch size of the state tensors. num_samples: (int) Number of action samples for each minibatch element. random_actions: tf.Tensor (dtype=tf.float32) of candidate actions. Returns: Tuple (q_tp1_best, end_points_tp1). See _get_q_tp1 docs for description. """ q_tp1_target, end_points_tp1 = q_func( state_p1, random_actions, scope='target_q_func') q_tp1_target_2d = tf.reshape(q_tp1_target, (batch_size, num_samples)) q_tp1_best = tf.reduce_max(q_tp1_target_2d, 1) return q_tp1_best, end_points_tp1 def _q_tp1_doubleq(q_func, state_p1, batch_size, action_size, num_samples, random_actions): """Q(s_p1, a_p1) via Double Q Learning with stochastic sampling. Args: q_func: Python function that takes in state, action, scope as input and returns Q(state, action) and intermediate endpoints dictionary. state_p1: Tensor (potentially any dtype) representing next . batch_size: tf.Tensor (dtype=tf.int32) or int representing the minibatch size of the state tensors. action_size: (int) Size of continuous actio space. num_samples: (int) Number of action samples for each minibatch element. random_actions: tf.Tensor (dtype=tf.float32) of candidate actions. Returns: Tuple (q_tp1_best, end_points_tp1). See _get_q_tp1 docs for description. """ # Target Q values at t+1, for action selected by online net. q_tp1_using_online_net, end_points_tp1 = q_func( state_p1, random_actions, scope='q_func', reuse=True) q_tp1_using_online_net_2d = tf.reshape( q_tp1_using_online_net, (batch_size, num_samples)) q_tp1_indices_using_online_net = tf.argmax(q_tp1_using_online_net_2d, 1) random_actions = tf.reshape( random_actions, (batch_size, num_samples, action_size)) batch_indices = tf.cast(tf.range(batch_size), tf.int64) indices = tf.stack([batch_indices, q_tp1_indices_using_online_net], axis=1) # For each batch item, slice into the num_samples, # action subarray using the corresponding to yield the chosen action. q_tp1_best_action = tf.gather_nd(random_actions, indices) q_tp1_best, end_points_tp1 = q_func( state_p1, q_tp1_best_action, scope='target_q_func') return q_tp1_best, end_points_tp1 def _get_q_tp1(q_func, state_p1, batch_size, action_size, num_samples, random_sample_fn, target_network_type): """Computes non-discounted Bellman target Q(s_p1, a_p1). Args: q_func: Python function that takes in state, action, scope as input and returns Q(state, action) and intermediate endpoints dictionary. state_p1: Tensor (potentially any dtype) representing next . batch_size: tf.Tensor (dtype=tf.int32) or int representing the minibatch size of the state tensors. action_size: (int) Size of continuous action space. num_samples: (int) Number of action samples for each minibatch element. random_sample_fn: See random_continuous_q_graph. target_network_type: See random_continuous_q_graph. Returns: Tuple (q_tp1_best, end_points_tp1) where q_tp1_best is a tensor of best next-actions as computed by a greedy stochastic policy for each minibatch element in state_p1. end_points_tp1 is any auxiliary ouputs computed via q_func. """ random_actions = random_sample_fn(batch_size, action_size, num_samples) if target_network_type == DQNTarget.notarget: q_tp1_best, end_points_tp1 = _q_tp1_notarget( q_func, state_p1, batch_size, num_samples, random_actions) elif target_network_type == DQNTarget.normal: q_tp1_best, end_points_tp1 = _q_tp1_normal( q_func, state_p1, batch_size, num_samples, random_actions) elif target_network_type == DQNTarget.doubleq: q_tp1_best, end_points_tp1 = _q_tp1_doubleq( q_func, state_p1, batch_size, action_size, num_samples, random_actions) else: logging.error('Invalid target_network_mode %s', target_network_type) return q_tp1_best, end_points_tp1 @gin.configurable def random_continuous_q_graph(q_func, transition, random_sample_fn=random_sample_box, num_samples=10, target_network_type=DQNTarget.normal, gamma=1.0, loss_fn=tf.losses.huber_loss, extra_callback=None, log_input_image=True): """Construct loss/summary graph for continuous Q-Learning via sampling. This Q-function loss implementation is derived from OpenAI baselines, extended to work in the continuous case. This function supports batch sizes whose value is only known at runtime. Args: q_func: Python function that takes in state, action, scope as input and returns Q(state, action) and intermediate endpoints dictionary. transition: SARSTransition namedtuple. random_sample_fn: Function that samples actions for Bellman Target maximization. num_samples: For each state, how many actions to randomly sample in order to compute approximate max over Q values. target_network_type: Option to use Q Learning without target network, Q Learning with a target network (default), or Double-Q Learning with a target network. gamma: Discount factor. loss_fn: Function that computes the td_loss tensor. Takes as arguments (target value tensor, predicted value tensor). extra_callback: Optional function that takes in (transition, end_points_t, end_points_tp1) and adds additional TF graph elements. log_input_image: If True, creates an image summary of the first element of the state tuple (assumed to be an image tensor). Returns: A tuple (loss, summaries) where loss is a scalar loss tensor to minimize, summaries are TensorFlow summaries. """ state = transition.state action = transition.action state_p1 = transition.state_p1 reward = transition.reward done = transition.done q_t_selected, end_points_t = q_func(state, action, scope='q_func') if log_input_image: tf.summary.image('input_image', state[0]) if gamma != 0: action_size = action.get_shape().as_list()[1] batch_size = tf.shape(done)[0] q_tp1_best, end_points_tp1 = _get_q_tp1( q_func, state_p1, batch_size, action_size, num_samples, random_sample_fn, target_network_type) # Bellman eq is Q(s,a) = r + max_{a_p1} Q(s_p1, a_p1) # Q(s_T, a_T) is regressed to r, and the max_{a_p1} Q(s_p1, a_p1) # term is masked to zero. q_tp1_best_masked = (1.0 - done) * q_tp1_best # compute RHS of bellman equation q_t_selected_target = tf.stop_gradient(reward + gamma * q_tp1_best_masked) else: # Supervised Target. end_points_tp1 = None q_t_selected_target = reward td_error = q_t_selected - q_t_selected_target if extra_callback is not None: extra_callback(transition, end_points_t, end_points_tp1) tf.summary.histogram('td_error', td_error) tf.summary.histogram('q_t_selected', q_t_selected) tf.summary.histogram('q_t_selected_target', q_t_selected_target) tf.summary.scalar('mean_q_t_selected', tf.reduce_mean(q_t_selected)) td_loss = loss_fn(q_t_selected_target, q_t_selected) tf.summary.scalar('td_loss', td_loss) reg_loss = tf.losses.get_regularization_loss() tf.summary.scalar('reg_loss', reg_loss) loss = tf.losses.get_total_loss() tf.summary.scalar('total_loss', loss) summaries = tf.summary.merge_all() return loss, summaries def _get_tau_var(tau, tau_curriculum_steps): """Variable which increases linearly from 0 to tau over so many steps.""" if tau_curriculum_steps > 0: tau_var = tf.get_variable('tau', [], initializer=tf.constant_initializer(0.0), trainable=False) tau_var = tau_var.assign( tf.minimum(float(tau), tau_var + float(tau) / tau_curriculum_steps)) else: tau_var = tf.get_variable('tau', [], initializer=tf.constant_initializer(float(tau)), trainable=False) return tau_var def _get_pcl_values(q_func, not_pad, state, tstep, action, random_sample_fn, num_samples, target_network_type): """Computes Q- and V-values for batch of episodes.""" # get dimensions of input batch_size = tf.shape(state)[0] episode_length = tf.shape(state)[1] img_height = state.get_shape().as_list()[2] img_width = state.get_shape().as_list()[3] img_channels = state.get_shape().as_list()[4] action_size = action.get_shape().as_list()[2] # flatten input so each row corresponds to single transition flattened_state = tf.reshape(state, [batch_size * episode_length, img_height, img_width, img_channels]) flattened_tstep = tf.reshape(tstep, [batch_size * episode_length]) flattened_action = tf.reshape(action, [batch_size * episode_length, action_size]) flattened_q_t, end_points_q_t = q_func( (flattened_state, flattened_tstep), flattened_action, scope='q_func') flattened_v_t, end_points_v_t = _get_q_tp1( q_func, (flattened_state, flattened_tstep), batch_size * episode_length, action_size, num_samples, random_sample_fn, target_network_type) # reshape to correspond to original input q_t = not_pad * tf.reshape(flattened_q_t, [batch_size, episode_length]) v_t = not_pad * tf.reshape(flattened_v_t, [batch_size, episode_length]) v_t = tf.stop_gradient(v_t) return q_t, v_t, end_points_q_t, end_points_v_t @gin.configurable def random_continuous_pcl_graph(q_func, transition, random_sample_fn=random_sample_box, num_samples=10, target_network_type=None, gamma=1.0, rollout=20, loss_fn=tf.losses.huber_loss, tau=1.0, tau_curriculum_steps=0, stop_gradient_on_adv=False, extra_callback=None): """Construct loss/summary graph for continuous PCL via sampling. This is an implementation of "Corrected MC", a specific variant of PCL. See https://arxiv.org/abs/1802.10264 Args: q_func: Python function that takes in state, action, scope as input and returns Q(state, action) and intermediate endpoints dictionary. transition: SARSTransition namedtuple containing a batch of episodes. random_sample_fn: Function that samples actions for Bellman Target maximization. num_samples: For each state, how many actions to randomly sample in order to compute approximate max over Q values. target_network_type: Option to use Q Learning without target network, Q Learning with a target network (default), or Double-Q Learning with a target network. gamma: Float discount factor. rollout: Integer rollout parameter. When rollout = 1 we recover Q-learning. loss_fn: Function that computes the td_loss tensor. Takes as arguments (target value tensor, predicted value tensor). tau: Coefficient on correction terms (i.e. on advantages). tau_curriculum_steps: Increase tau linearly from 0 over this many steps. stop_gradient_on_adv: Whether to allow training of q-values to targets in the past. extra_callback: Optional function that takes in (transition, end_points_t, end_points_tp1) and adds additional TF graph elements. Returns: A tuple (loss, summaries) where loss is a scalar loss tensor to minimize, summaries are TensorFlow summaries. """ if target_network_type is None: target_network_type = DQNTarget.normal tau_var = _get_tau_var(tau, tau_curriculum_steps) state, tstep = transition.state action = transition.action reward = transition.reward done = transition.done not_pad = tf.to_float(tf.equal(tf.cumsum(done, axis=1, exclusive=True), 0.0)) reward *= not_pad q_t, v_t, end_points_q_t, end_points_v_t = _get_pcl_values( q_func, not_pad, state, tstep, action, random_sample_fn, num_samples, target_network_type) discounted_sum_rewards = discounted_future_sum(reward, gamma, rollout) advantage = q_t - v_t # equivalent to tau * log_pi in PCL if stop_gradient_on_adv: advantage = tf.stop_gradient(advantage) discounted_sum_adv = discounted_future_sum( shift_values(advantage, gamma, 1), gamma, rollout - 1) last_v = shift_values(v_t, gamma, rollout) # values we regress on pcl_values = q_t # targets we regress to pcl_targets = -tau_var * discounted_sum_adv + discounted_sum_rewards + last_v # error is discrepancy between values and targets pcl_error = pcl_values - pcl_targets if extra_callback: extra_callback(transition, end_points_q_t, end_points_v_t) tf.summary.histogram('pcl_error', pcl_error) tf.summary.histogram('q_t', q_t) tf.summary.histogram('v_t', v_t) tf.summary.scalar('mean_q_t', tf.reduce_mean(q_t)) pcl_loss = loss_fn(pcl_values, pcl_targets, weights=not_pad) tf.summary.scalar('pcl_loss', pcl_loss) reg_loss = tf.losses.get_regularization_loss() tf.summary.scalar('reg_loss', reg_loss) loss = tf.losses.get_total_loss() tf.summary.scalar('total_loss', loss) summaries = tf.summary.merge_all() return loss, summaries def shift_values(values, discount, rollout): """Shift values up by some amount of time. Args: values: Tensor of shape [batch_size, time]. discount: Scalar (float) representing discount factor. rollout: Amount (int) to shift values in time by. Returns: Tensor of shape [batch_size, time] with values shifted. """ final_values = tf.zeros_like(values[:, 0]) roll_range = tf.cumsum(tf.ones_like(values[:, :rollout]), 0, exclusive=True, reverse=True) final_pad = tf.expand_dims(final_values, 1) * discount ** roll_range return tf.concat([discount ** rollout * values[:, rollout:], final_pad], 1) def discounted_future_sum(values, discount, rollout): """Discounted future sum of values. Args: values: A tensor of shape [batch_size, episode_length]. discount: Scalar discount factor. rollout: Number of steps to compute sum. Returns: Tensor of same shape as values. """ if not rollout: return tf.zeros_like(values) discount_filter = tf.reshape( discount ** tf.range(float(rollout)), [-1, 1, 1]) expanded_values = tf.concat( [values, tf.zeros([tf.shape(values)[0], rollout - 1])], 1) conv_values = tf.squeeze(tf.nn.conv1d( tf.expand_dims(expanded_values, -1), discount_filter, stride=1, padding='VALID'), -1) return conv_values
4e8d14003c2e112ef076b89c4c8a3ad6613f9a2c
8da91c26d423bacbeee1163ac7e969904c7e4338
/pyvisdk/do/customization_failed.py
b63b14e03d5fddb6d06ae4f32d77239d433f8930
[]
no_license
pexip/os-python-infi-pyvisdk
5d8f3a3858cdd61fb76485574e74ae525cdc7e25
1aadea0afbc306d09f6ecb9af0e683dbbf961d20
refs/heads/master
2023-08-28T02:40:28.789786
2020-07-16T04:00:53
2020-07-16T04:00:53
10,032,240
0
1
null
null
null
null
UTF-8
Python
false
false
1,169
py
import logging from pyvisdk.exceptions import InvalidArgumentError ######################################## # Automatically generated, do not edit. ######################################## log = logging.getLogger(__name__) def CustomizationFailed(vim, *args, **kwargs): '''The customization sequence in the guest failed.''' obj = vim.client.factory.create('{urn:vim25}CustomizationFailed') # do some validation checking... if (len(args) + len(kwargs)) < 5: raise IndexError('Expected at least 6 arguments got: %d' % len(args)) required = [ 'template', 'chainId', 'createdTime', 'key', 'userName' ] optional = [ 'logLocation', 'changeTag', 'computeResource', 'datacenter', 'ds', 'dvs', 'fullFormattedMessage', 'host', 'net', 'vm', 'dynamicProperty', 'dynamicType' ] for name, arg in zip(required+optional, args): setattr(obj, name, arg) for name, value in kwargs.items(): if name in required + optional: setattr(obj, name, value) else: raise InvalidArgumentError("Invalid argument: %s. Expected one of %s" % (name, ", ".join(required + optional))) return obj
23cb6c73db0e3711ff0ecbd0b6aa7165e94b3584
a01fb7bb8e8738a3170083d84bc3fcfd40e7e44f
/python3/module/pandas/df/sql/join.py
540fb2077f46a30f47e810c2b98ebc2c0a79da73
[]
no_license
jk983294/CommonScript
f07acf603611b4691b176aa4a02791ef7d4d9370
774bcbbae9c146f37312c771c9e867fb93a0c452
refs/heads/master
2023-08-21T17:50:19.036159
2023-08-16T00:22:03
2023-08-16T00:22:03
42,732,160
5
0
null
null
null
null
UTF-8
Python
false
false
739
py
import pandas as pd import numpy as np df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value': np.random.randn(4)}) df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'], 'value': np.random.randn(4)}) print(df1) print(df2) # SELECT * FROM df1 INNER JOIN df2 ON df1.key = df2.key; print(pd.merge(df1, df2, on='key')) # in case join key is different print(pd.merge(df1, df2, left_on='key', right_on='key')) # SELECT * FROM df1 LEFT OUTER JOIN df2 ON df1.key = df2.key; print(pd.merge(df1, df2, on='key', how='left')) # SELECT * FROM df1 RIGHT OUTER JOIN df2 ON df1.key = df2.key; print(pd.merge(df1, df2, on='key', how='right')) # SELECT * FROM df1 FULL OUTER JOIN df2 ON df1.key = df2.key; print(pd.merge(df1, df2, on='key', how='outer'))
478b126ab280b9343347c1ee8bc9238dd9f45703
86da8c4d616a78afc7cd09711b0151e5f852a8b8
/pythonprograms/LanguageFundamentals/Logicaloperator.py
98dae1b5e2d38ecb15661dfb77541e77356b7768
[]
no_license
sharijamusthafa/luminarpython
d1d3274d23d93af2c5e4db7d2652e8cb46b133aa
8ebd75ea5f734e5061a7138153a2c6b1cd43a738
refs/heads/master
2022-12-23T22:45:40.194242
2020-10-07T16:40:09
2020-10-07T16:40:09
290,109,565
0
0
null
null
null
null
UTF-8
Python
false
false
32
py
num1=2 num2=4 print(num1&num2)
f46f3f29cb80c2826087623308da18f78f72a5fc
91f948b849a03f27c96aa6b76980a5fa68970b70
/experiments/__init__.py
de913a706b51dac74f50aafe9917d627f649419c
[ "MIT" ]
permissive
satyam-cyc/MASS-Learning
3d987af7622f604db02b64313179590651285170
0d40de5227c94d1a5e4b18e44d16374e12821ad2
refs/heads/master
2022-01-10T02:23:06.670225
2019-06-11T19:41:35
2019-06-11T19:41:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
304
py
from .LogModelParameters import LogModelParameters from .MASSLossTerms import MASSLossTerms from .ModelLossAndAccuracy import ModelLossAndAccuracy from .OODDetection import OODDetection from .SaveModelParameters import SaveModelParameters from .UncertaintyQuantification import UncertaintyQuantification
cfe436e359c52cb80c53b6b3d45d67431576f12c
16f173135e81215d05ee8f475c13a16e3796e1fa
/Deep_Learning_with_Keras_in_Python/3.Improving_Your_Model_Performance/Learning the digits.py
4219e773851dd4e8ea25cc68e96088e4bed25bb3
[]
no_license
jerry-mkpong/DataCamp
1b53821f1a32b48efdc8465251401721ba75bb56
10445bad35ef11567910ffab6ac70a980555a1b7
refs/heads/master
2022-11-11T03:57:21.923366
2020-06-28T17:36:10
2020-06-28T17:36:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,060
py
''' You're going to build a model on the digits dataset, a sample dataset that comes pre-loaded with scikit learn. The digits dataset consist of 8x8 pixel handwritten digits from 0 to 9: You want to distinguish between each of the 10 possible digits given an image, so we are dealing with multi-class classification. The dataset has already been partitioned into X_train, y_train, X_test, and y_test using 30% of the data as testing data. The labels are one-hot encoded vectors, so you don't need to use Keras to_categorical() function. Let's build this new model! ''' # Instantiate a Sequential model model = Sequential() # Input and hidden layer with input_shape, 16 neurons, and relu model.add(Dense(16, input_shape = (64,), activation = 'relu')) # Output layer with 10 neurons (one per digit) and softmax model.add(Dense(10, activation='softmax')) # Compile your model model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy']) # Test if your model works and can process input data print(model.predict(X_train))
cefea000be2b8713b9d4ea548c735c4984caf7de
3904a5773c5aa047692895dce1225be7d84f5cc7
/ML_AI_TechWithTim/K-Means/K_Means.py
f33bc323b87c4aba7ff873f2b6d3cbe38641d449
[]
no_license
snehilk1312/ML_1
063038586296c4f6f0ab92422a6c60dd007c4068
8e3b081b1037ab999ca78fa282ce7041730d082a
refs/heads/master
2020-09-07T20:01:45.509060
2020-03-15T15:44:54
2020-03-15T15:44:54
220,898,676
2
0
null
null
null
null
UTF-8
Python
false
false
1,057
py
# Importing modules import numpy as np import sklearn from sklearn.preprocessing import scale from sklearn.datasets import load_digits from sklearn.cluster import KMeans from sklearn import metrics # Loading Data sets digits = load_digits() data = scale(digits.data) y = digits.target k = len(np.unique(y)) # or here k=10 samples, features = data.shape def bench_k_means(estimator, name, data): estimator.fit(data) print('%-9s\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f' % (name, estimator.inertia_, metrics.homogeneity_score(y, estimator.labels_), metrics.completeness_score(y, estimator.labels_), metrics.v_measure_score(y, estimator.labels_), metrics.adjusted_rand_score(y, estimator.labels_), metrics.adjusted_mutual_info_score(y, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean'))) clf = KMeans(n_clusters=k, init="random", n_init=10) bench_k_means(clf, "1", data)
00bb139bc7606403b576ce7cbadcf0745f8fc7fb
cc1eeb43eb9e4e83078f4c87e40a5c7fe56b109f
/Day05/shuixianhua.py
8cb8f1e3429d4bb2394b367a322d9a2886c2fb28
[]
no_license
test-wsl/learn_100
d57ac4e8e7c062472273622351374decbae6d213
9fbb83455c15115b3cdec80d17c542e0aba2a6df
refs/heads/master
2020-08-29T22:43:10.800177
2019-11-04T08:17:38
2019-11-04T08:17:38
218,192,964
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 寻找水仙花数 水仙花数为一个三位数,每位上的立方之和正好等于本身 version: 0.1 """ for num in range(100, 1000): low = num %10 mid = num // 10 %10 high = num // 100 if num == low ** 3 + mid ** 3 + high **3: print (num)
[ "weishl" ]
weishl
e953daf74af26ba80d58f622e7985c62eaf4cadd
76de53bd3923a57a36d0ed4b4a900b56050ebb31
/SW Expert Academy/190926/1263_사람 네트워크2.py
61dbab0dcf1c40b17376a408ca7e36d21934b1bb
[]
no_license
Seungjin22/Algorithm
5b4fd53ae5742d830594d116e536531959b3454d
753dda47334e445f7a9e1e41df5e44564d99e79e
refs/heads/master
2020-09-04T08:54:01.359518
2020-02-03T10:41:05
2020-02-03T10:41:05
219,697,780
0
0
null
null
null
null
UTF-8
Python
false
false
821
py
import sys sys.stdin = open('1263_input.txt') def AllPairsShortest(D): for k in range(N): for i in range(N): if i != k: for j in range(N): if j != k and j != i: D[i][j] = min(D[i][k] + D[k][j], D[i][j]) T = int(input()) for tc in range(1, T + 1): data = list(map(int, input().split())) N = data.pop(0) dist = [[987654321] * N for _ in range(N)] idx = 0 for i in range(N): for j in range(N): if i == j: dist[i][j] = 0 if data[idx]: dist[i][j] = data[idx] idx += 1 AllPairsShortest(dist) mini = 987654321 for i in range(N): if sum(dist[i]) < mini: mini = sum(dist[i]) print('#{} {}'.format(tc, mini))
b4577f6dc2ca7a3c75449f92e21cad3aa1b6b5fe
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2814/60652/240209.py
19b8d713af73e09dfece90f18c9ba12646de0b4a
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
162
py
n = int(input()) l=list(map(int,input().split())) l.sort() num_s=0 wait_time=0 for i in l: if i>=wait_time: num_s+=1 wait_time+=i print(num_s)